1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 struct percpu_counter sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(struct sock *sk) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = sk_wmem_alloc_get(asoc->base.sk); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* V4 mapped address are really of AF_INET family */ 312 if (addr->sa.sa_family == AF_INET6 && 313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 314 if (!opt->pf->af_supported(AF_INET, opt)) 315 return NULL; 316 } else { 317 /* Does this PF support this AF? */ 318 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 319 return NULL; 320 } 321 322 /* If we get this far, af is valid. */ 323 af = sctp_get_af_specific(addr->sa.sa_family); 324 325 if (len < af->sockaddr_len) 326 return NULL; 327 328 return af; 329 } 330 331 /* Bind a local address either to an endpoint or to an association. */ 332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 333 { 334 struct sctp_sock *sp = sctp_sk(sk); 335 struct sctp_endpoint *ep = sp->ep; 336 struct sctp_bind_addr *bp = &ep->base.bind_addr; 337 struct sctp_af *af; 338 unsigned short snum; 339 int ret = 0; 340 341 /* Common sockaddr verification. */ 342 af = sctp_sockaddr_af(sp, addr, len); 343 if (!af) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 345 sk, addr, len); 346 return -EINVAL; 347 } 348 349 snum = ntohs(addr->v4.sin_port); 350 351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 352 ", port: %d, new port: %d, len: %d)\n", 353 sk, 354 addr, 355 bp->port, snum, 356 len); 357 358 /* PF specific bind() address verification. */ 359 if (!sp->pf->bind_verify(sp, addr)) 360 return -EADDRNOTAVAIL; 361 362 /* We must either be unbound, or bind to the same port. 363 * It's OK to allow 0 ports if we are already bound. 364 * We'll just inhert an already bound port in this case 365 */ 366 if (bp->port) { 367 if (!snum) 368 snum = bp->port; 369 else if (snum != bp->port) { 370 SCTP_DEBUG_PRINTK("sctp_do_bind:" 371 " New port %d does not match existing port " 372 "%d.\n", snum, bp->port); 373 return -EINVAL; 374 } 375 } 376 377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 378 return -EACCES; 379 380 /* See if the address matches any of the addresses we may have 381 * already bound before checking against other endpoints. 382 */ 383 if (sctp_bind_addr_match(bp, addr, sp)) 384 return -EINVAL; 385 386 /* Make sure we are allowed to bind here. 387 * The function sctp_get_port_local() does duplicate address 388 * detection. 389 */ 390 addr->v4.sin_port = htons(snum); 391 if ((ret = sctp_get_port_local(sk, addr))) { 392 return -EADDRINUSE; 393 } 394 395 /* Refresh ephemeral port. */ 396 if (!bp->port) 397 bp->port = inet_sk(sk)->inet_num; 398 399 /* Add the address to the bind address list. 400 * Use GFP_ATOMIC since BHs will be disabled. 401 */ 402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 403 404 /* Copy back into socket for getsockname() use. */ 405 if (!ret) { 406 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 407 af->to_sk_saddr(addr, sk); 408 } 409 410 return ret; 411 } 412 413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 414 * 415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 416 * at any one time. If a sender, after sending an ASCONF chunk, decides 417 * it needs to transfer another ASCONF Chunk, it MUST wait until the 418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 419 * subsequent ASCONF. Note this restriction binds each side, so at any 420 * time two ASCONF may be in-transit on any given association (one sent 421 * from each endpoint). 422 */ 423 static int sctp_send_asconf(struct sctp_association *asoc, 424 struct sctp_chunk *chunk) 425 { 426 int retval = 0; 427 428 /* If there is an outstanding ASCONF chunk, queue it for later 429 * transmission. 430 */ 431 if (asoc->addip_last_asconf) { 432 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 433 goto out; 434 } 435 436 /* Hold the chunk until an ASCONF_ACK is received. */ 437 sctp_chunk_hold(chunk); 438 retval = sctp_primitive_ASCONF(asoc, chunk); 439 if (retval) 440 sctp_chunk_free(chunk); 441 else 442 asoc->addip_last_asconf = chunk; 443 444 out: 445 return retval; 446 } 447 448 /* Add a list of addresses as bind addresses to local endpoint or 449 * association. 450 * 451 * Basically run through each address specified in the addrs/addrcnt 452 * array/length pair, determine if it is IPv6 or IPv4 and call 453 * sctp_do_bind() on it. 454 * 455 * If any of them fails, then the operation will be reversed and the 456 * ones that were added will be removed. 457 * 458 * Only sctp_setsockopt_bindx() is supposed to call this function. 459 */ 460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 461 { 462 int cnt; 463 int retval = 0; 464 void *addr_buf; 465 struct sockaddr *sa_addr; 466 struct sctp_af *af; 467 468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 469 sk, addrs, addrcnt); 470 471 addr_buf = addrs; 472 for (cnt = 0; cnt < addrcnt; cnt++) { 473 /* The list may contain either IPv4 or IPv6 address; 474 * determine the address length for walking thru the list. 475 */ 476 sa_addr = (struct sockaddr *)addr_buf; 477 af = sctp_get_af_specific(sa_addr->sa_family); 478 if (!af) { 479 retval = -EINVAL; 480 goto err_bindx_add; 481 } 482 483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 484 af->sockaddr_len); 485 486 addr_buf += af->sockaddr_len; 487 488 err_bindx_add: 489 if (retval < 0) { 490 /* Failed. Cleanup the ones that have been added */ 491 if (cnt > 0) 492 sctp_bindx_rem(sk, addrs, cnt); 493 return retval; 494 } 495 } 496 497 return retval; 498 } 499 500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 501 * associations that are part of the endpoint indicating that a list of local 502 * addresses are added to the endpoint. 503 * 504 * If any of the addresses is already in the bind address list of the 505 * association, we do not send the chunk for that association. But it will not 506 * affect other associations. 507 * 508 * Only sctp_setsockopt_bindx() is supposed to call this function. 509 */ 510 static int sctp_send_asconf_add_ip(struct sock *sk, 511 struct sockaddr *addrs, 512 int addrcnt) 513 { 514 struct sctp_sock *sp; 515 struct sctp_endpoint *ep; 516 struct sctp_association *asoc; 517 struct sctp_bind_addr *bp; 518 struct sctp_chunk *chunk; 519 struct sctp_sockaddr_entry *laddr; 520 union sctp_addr *addr; 521 union sctp_addr saveaddr; 522 void *addr_buf; 523 struct sctp_af *af; 524 struct list_head *p; 525 int i; 526 int retval = 0; 527 528 if (!sctp_addip_enable) 529 return retval; 530 531 sp = sctp_sk(sk); 532 ep = sp->ep; 533 534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 535 __func__, sk, addrs, addrcnt); 536 537 list_for_each_entry(asoc, &ep->asocs, asocs) { 538 539 if (!asoc->peer.asconf_capable) 540 continue; 541 542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 543 continue; 544 545 if (!sctp_state(asoc, ESTABLISHED)) 546 continue; 547 548 /* Check if any address in the packed array of addresses is 549 * in the bind address list of the association. If so, 550 * do not send the asconf chunk to its peer, but continue with 551 * other associations. 552 */ 553 addr_buf = addrs; 554 for (i = 0; i < addrcnt; i++) { 555 addr = (union sctp_addr *)addr_buf; 556 af = sctp_get_af_specific(addr->v4.sin_family); 557 if (!af) { 558 retval = -EINVAL; 559 goto out; 560 } 561 562 if (sctp_assoc_lookup_laddr(asoc, addr)) 563 break; 564 565 addr_buf += af->sockaddr_len; 566 } 567 if (i < addrcnt) 568 continue; 569 570 /* Use the first valid address in bind addr list of 571 * association as Address Parameter of ASCONF CHUNK. 572 */ 573 bp = &asoc->base.bind_addr; 574 p = bp->address_list.next; 575 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 577 addrcnt, SCTP_PARAM_ADD_IP); 578 if (!chunk) { 579 retval = -ENOMEM; 580 goto out; 581 } 582 583 retval = sctp_send_asconf(asoc, chunk); 584 if (retval) 585 goto out; 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = (union sctp_addr *)addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 } 600 601 out: 602 return retval; 603 } 604 605 /* Remove a list of addresses from bind addresses list. Do not remove the 606 * last address. 607 * 608 * Basically run through each address specified in the addrs/addrcnt 609 * array/length pair, determine if it is IPv6 or IPv4 and call 610 * sctp_del_bind() on it. 611 * 612 * If any of them fails, then the operation will be reversed and the 613 * ones that were removed will be added back. 614 * 615 * At least one address has to be left; if only one address is 616 * available, the operation will return -EBUSY. 617 * 618 * Only sctp_setsockopt_bindx() is supposed to call this function. 619 */ 620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 621 { 622 struct sctp_sock *sp = sctp_sk(sk); 623 struct sctp_endpoint *ep = sp->ep; 624 int cnt; 625 struct sctp_bind_addr *bp = &ep->base.bind_addr; 626 int retval = 0; 627 void *addr_buf; 628 union sctp_addr *sa_addr; 629 struct sctp_af *af; 630 631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 632 sk, addrs, addrcnt); 633 634 addr_buf = addrs; 635 for (cnt = 0; cnt < addrcnt; cnt++) { 636 /* If the bind address list is empty or if there is only one 637 * bind address, there is nothing more to be removed (we need 638 * at least one address here). 639 */ 640 if (list_empty(&bp->address_list) || 641 (sctp_list_single_entry(&bp->address_list))) { 642 retval = -EBUSY; 643 goto err_bindx_rem; 644 } 645 646 sa_addr = (union sctp_addr *)addr_buf; 647 af = sctp_get_af_specific(sa_addr->sa.sa_family); 648 if (!af) { 649 retval = -EINVAL; 650 goto err_bindx_rem; 651 } 652 653 if (!af->addr_valid(sa_addr, sp, NULL)) { 654 retval = -EADDRNOTAVAIL; 655 goto err_bindx_rem; 656 } 657 658 if (sa_addr->v4.sin_port != htons(bp->port)) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 /* FIXME - There is probably a need to check if sk->sk_saddr and 664 * sk->sk_rcv_addr are currently set to one of the addresses to 665 * be removed. This is something which needs to be looked into 666 * when we are fixing the outstanding issues with multi-homing 667 * socket routing and failover schemes. Refer to comments in 668 * sctp_do_bind(). -daisy 669 */ 670 retval = sctp_del_bind_addr(bp, sa_addr); 671 672 addr_buf += af->sockaddr_len; 673 err_bindx_rem: 674 if (retval < 0) { 675 /* Failed. Add the ones that has been removed back */ 676 if (cnt > 0) 677 sctp_bindx_add(sk, addrs, cnt); 678 return retval; 679 } 680 } 681 682 return retval; 683 } 684 685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 686 * the associations that are part of the endpoint indicating that a list of 687 * local addresses are removed from the endpoint. 688 * 689 * If any of the addresses is already in the bind address list of the 690 * association, we do not send the chunk for that association. But it will not 691 * affect other associations. 692 * 693 * Only sctp_setsockopt_bindx() is supposed to call this function. 694 */ 695 static int sctp_send_asconf_del_ip(struct sock *sk, 696 struct sockaddr *addrs, 697 int addrcnt) 698 { 699 struct sctp_sock *sp; 700 struct sctp_endpoint *ep; 701 struct sctp_association *asoc; 702 struct sctp_transport *transport; 703 struct sctp_bind_addr *bp; 704 struct sctp_chunk *chunk; 705 union sctp_addr *laddr; 706 void *addr_buf; 707 struct sctp_af *af; 708 struct sctp_sockaddr_entry *saddr; 709 int i; 710 int retval = 0; 711 712 if (!sctp_addip_enable) 713 return retval; 714 715 sp = sctp_sk(sk); 716 ep = sp->ep; 717 718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 719 __func__, sk, addrs, addrcnt); 720 721 list_for_each_entry(asoc, &ep->asocs, asocs) { 722 723 if (!asoc->peer.asconf_capable) 724 continue; 725 726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 727 continue; 728 729 if (!sctp_state(asoc, ESTABLISHED)) 730 continue; 731 732 /* Check if any address in the packed array of addresses is 733 * not present in the bind address list of the association. 734 * If so, do not send the asconf chunk to its peer, but 735 * continue with other associations. 736 */ 737 addr_buf = addrs; 738 for (i = 0; i < addrcnt; i++) { 739 laddr = (union sctp_addr *)addr_buf; 740 af = sctp_get_af_specific(laddr->v4.sin_family); 741 if (!af) { 742 retval = -EINVAL; 743 goto out; 744 } 745 746 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 747 break; 748 749 addr_buf += af->sockaddr_len; 750 } 751 if (i < addrcnt) 752 continue; 753 754 /* Find one address in the association's bind address list 755 * that is not in the packed array of addresses. This is to 756 * make sure that we do not delete all the addresses in the 757 * association. 758 */ 759 bp = &asoc->base.bind_addr; 760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 761 addrcnt, sp); 762 if (!laddr) 763 continue; 764 765 /* We do not need RCU protection throughout this loop 766 * because this is done under a socket lock from the 767 * setsockopt call. 768 */ 769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 770 SCTP_PARAM_DEL_IP); 771 if (!chunk) { 772 retval = -ENOMEM; 773 goto out; 774 } 775 776 /* Reset use_as_src flag for the addresses in the bind address 777 * list that are to be deleted. 778 */ 779 addr_buf = addrs; 780 for (i = 0; i < addrcnt; i++) { 781 laddr = (union sctp_addr *)addr_buf; 782 af = sctp_get_af_specific(laddr->v4.sin_family); 783 list_for_each_entry(saddr, &bp->address_list, list) { 784 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 785 saddr->state = SCTP_ADDR_DEL; 786 } 787 addr_buf += af->sockaddr_len; 788 } 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 795 transports) { 796 dst_release(transport->dst); 797 sctp_transport_route(transport, NULL, 798 sctp_sk(asoc->base.sk)); 799 } 800 801 retval = sctp_send_asconf(asoc, chunk); 802 } 803 out: 804 return retval; 805 } 806 807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 808 * 809 * API 8.1 810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 811 * int flags); 812 * 813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 815 * or IPv6 addresses. 816 * 817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 818 * Section 3.1.2 for this usage. 819 * 820 * addrs is a pointer to an array of one or more socket addresses. Each 821 * address is contained in its appropriate structure (i.e. struct 822 * sockaddr_in or struct sockaddr_in6) the family of the address type 823 * must be used to distinguish the address length (note that this 824 * representation is termed a "packed array" of addresses). The caller 825 * specifies the number of addresses in the array with addrcnt. 826 * 827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 828 * -1, and sets errno to the appropriate error code. 829 * 830 * For SCTP, the port given in each socket address must be the same, or 831 * sctp_bindx() will fail, setting errno to EINVAL. 832 * 833 * The flags parameter is formed from the bitwise OR of zero or more of 834 * the following currently defined flags: 835 * 836 * SCTP_BINDX_ADD_ADDR 837 * 838 * SCTP_BINDX_REM_ADDR 839 * 840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 842 * addresses from the association. The two flags are mutually exclusive; 843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 844 * not remove all addresses from an association; sctp_bindx() will 845 * reject such an attempt with EINVAL. 846 * 847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 848 * additional addresses with an endpoint after calling bind(). Or use 849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 850 * socket is associated with so that no new association accepted will be 851 * associated with those addresses. If the endpoint supports dynamic 852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 853 * endpoint to send the appropriate message to the peer to change the 854 * peers address lists. 855 * 856 * Adding and removing addresses from a connected association is 857 * optional functionality. Implementations that do not support this 858 * functionality should return EOPNOTSUPP. 859 * 860 * Basically do nothing but copying the addresses from user to kernel 861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 863 * from userspace. 864 * 865 * We don't use copy_from_user() for optimization: we first do the 866 * sanity checks (buffer size -fast- and access check-healthy 867 * pointer); if all of those succeed, then we can alloc the memory 868 * (expensive operation) needed to copy the data to kernel. Then we do 869 * the copying without checking the user space area 870 * (__copy_from_user()). 871 * 872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 873 * it. 874 * 875 * sk The sk of the socket 876 * addrs The pointer to the addresses in user land 877 * addrssize Size of the addrs buffer 878 * op Operation to perform (add or remove, see the flags of 879 * sctp_bindx) 880 * 881 * Returns 0 if ok, <0 errno code on error. 882 */ 883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 884 struct sockaddr __user *addrs, 885 int addrs_size, int op) 886 { 887 struct sockaddr *kaddrs; 888 int err; 889 int addrcnt = 0; 890 int walk_size = 0; 891 struct sockaddr *sa_addr; 892 void *addr_buf; 893 struct sctp_af *af; 894 895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 897 898 if (unlikely(addrs_size <= 0)) 899 return -EINVAL; 900 901 /* Check the user passed a healthy pointer. */ 902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 903 return -EFAULT; 904 905 /* Alloc space for the address array in kernel memory. */ 906 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 907 if (unlikely(!kaddrs)) 908 return -ENOMEM; 909 910 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 911 kfree(kaddrs); 912 return -EFAULT; 913 } 914 915 /* Walk through the addrs buffer and count the number of addresses. */ 916 addr_buf = kaddrs; 917 while (walk_size < addrs_size) { 918 sa_addr = (struct sockaddr *)addr_buf; 919 af = sctp_get_af_specific(sa_addr->sa_family); 920 921 /* If the address family is not supported or if this address 922 * causes the address buffer to overflow return EINVAL. 923 */ 924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 925 kfree(kaddrs); 926 return -EINVAL; 927 } 928 addrcnt++; 929 addr_buf += af->sockaddr_len; 930 walk_size += af->sockaddr_len; 931 } 932 933 /* Do the work. */ 934 switch (op) { 935 case SCTP_BINDX_ADD_ADDR: 936 err = sctp_bindx_add(sk, kaddrs, addrcnt); 937 if (err) 938 goto out; 939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 940 break; 941 942 case SCTP_BINDX_REM_ADDR: 943 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 944 if (err) 945 goto out; 946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 947 break; 948 949 default: 950 err = -EINVAL; 951 break; 952 } 953 954 out: 955 kfree(kaddrs); 956 957 return err; 958 } 959 960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 961 * 962 * Common routine for handling connect() and sctp_connectx(). 963 * Connect will come in with just a single address. 964 */ 965 static int __sctp_connect(struct sock* sk, 966 struct sockaddr *kaddrs, 967 int addrs_size, 968 sctp_assoc_t *assoc_id) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 union sctp_addr *sa_addr = NULL; 983 void *addr_buf; 984 unsigned short port; 985 unsigned int f_flags = 0; 986 987 sp = sctp_sk(sk); 988 ep = sp->ep; 989 990 /* connect() cannot be done on a socket that is already in ESTABLISHED 991 * state - UDP-style peeled off socket or a TCP-style socket that 992 * is already connected. 993 * It cannot be done even on a TCP-style listening socket. 994 */ 995 if (sctp_sstate(sk, ESTABLISHED) || 996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 997 err = -EISCONN; 998 goto out_free; 999 } 1000 1001 /* Walk through the addrs buffer and count the number of addresses. */ 1002 addr_buf = kaddrs; 1003 while (walk_size < addrs_size) { 1004 sa_addr = (union sctp_addr *)addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1006 port = ntohs(sa_addr->v4.sin_port); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 1016 /* Save current address so we can work with it */ 1017 memcpy(&to, sa_addr, af->sockaddr_len); 1018 1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1020 if (err) 1021 goto out_free; 1022 1023 /* Make sure the destination port is correctly set 1024 * in all addresses. 1025 */ 1026 if (asoc && asoc->peer.port && asoc->peer.port != port) 1027 goto out_free; 1028 1029 1030 /* Check if there already is a matching association on the 1031 * endpoint (other than the one created here). 1032 */ 1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1034 if (asoc2 && asoc2 != asoc) { 1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1036 err = -EISCONN; 1037 else 1038 err = -EALREADY; 1039 goto out_free; 1040 } 1041 1042 /* If we could not find a matching association on the endpoint, 1043 * make sure that there is no peeled-off association matching 1044 * the peer address even on another socket. 1045 */ 1046 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1047 err = -EADDRNOTAVAIL; 1048 goto out_free; 1049 } 1050 1051 if (!asoc) { 1052 /* If a bind() or sctp_bindx() is not called prior to 1053 * an sctp_connectx() call, the system picks an 1054 * ephemeral port and will choose an address set 1055 * equivalent to binding with a wildcard address. 1056 */ 1057 if (!ep->base.bind_addr.port) { 1058 if (sctp_autobind(sk)) { 1059 err = -EAGAIN; 1060 goto out_free; 1061 } 1062 } else { 1063 /* 1064 * If an unprivileged user inherits a 1-many 1065 * style socket with open associations on a 1066 * privileged port, it MAY be permitted to 1067 * accept new associations, but it SHOULD NOT 1068 * be permitted to open new associations. 1069 */ 1070 if (ep->base.bind_addr.port < PROT_SOCK && 1071 !capable(CAP_NET_BIND_SERVICE)) { 1072 err = -EACCES; 1073 goto out_free; 1074 } 1075 } 1076 1077 scope = sctp_scope(&to); 1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1079 if (!asoc) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 1084 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1085 GFP_KERNEL); 1086 if (err < 0) { 1087 goto out_free; 1088 } 1089 1090 } 1091 1092 /* Prime the peer's transport structures. */ 1093 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1094 SCTP_UNKNOWN); 1095 if (!transport) { 1096 err = -ENOMEM; 1097 goto out_free; 1098 } 1099 1100 addrcnt++; 1101 addr_buf += af->sockaddr_len; 1102 walk_size += af->sockaddr_len; 1103 } 1104 1105 /* In case the user of sctp_connectx() wants an association 1106 * id back, assign one now. 1107 */ 1108 if (assoc_id) { 1109 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1110 if (err < 0) 1111 goto out_free; 1112 } 1113 1114 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1115 if (err < 0) { 1116 goto out_free; 1117 } 1118 1119 /* Initialize sk's dport and daddr for getpeername() */ 1120 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1121 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1122 af->to_sk_daddr(sa_addr, sk); 1123 sk->sk_err = 0; 1124 1125 /* in-kernel sockets don't generally have a file allocated to them 1126 * if all they do is call sock_create_kern(). 1127 */ 1128 if (sk->sk_socket->file) 1129 f_flags = sk->sk_socket->file->f_flags; 1130 1131 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1132 1133 err = sctp_wait_for_connect(asoc, &timeo); 1134 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1135 *assoc_id = asoc->assoc_id; 1136 1137 /* Don't free association on exit. */ 1138 asoc = NULL; 1139 1140 out_free: 1141 1142 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1143 " kaddrs: %p err: %d\n", 1144 asoc, kaddrs, err); 1145 if (asoc) 1146 sctp_association_free(asoc); 1147 return err; 1148 } 1149 1150 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1151 * 1152 * API 8.9 1153 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1154 * sctp_assoc_t *asoc); 1155 * 1156 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1157 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1158 * or IPv6 addresses. 1159 * 1160 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1161 * Section 3.1.2 for this usage. 1162 * 1163 * addrs is a pointer to an array of one or more socket addresses. Each 1164 * address is contained in its appropriate structure (i.e. struct 1165 * sockaddr_in or struct sockaddr_in6) the family of the address type 1166 * must be used to distengish the address length (note that this 1167 * representation is termed a "packed array" of addresses). The caller 1168 * specifies the number of addresses in the array with addrcnt. 1169 * 1170 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1171 * the association id of the new association. On failure, sctp_connectx() 1172 * returns -1, and sets errno to the appropriate error code. The assoc_id 1173 * is not touched by the kernel. 1174 * 1175 * For SCTP, the port given in each socket address must be the same, or 1176 * sctp_connectx() will fail, setting errno to EINVAL. 1177 * 1178 * An application can use sctp_connectx to initiate an association with 1179 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1180 * allows a caller to specify multiple addresses at which a peer can be 1181 * reached. The way the SCTP stack uses the list of addresses to set up 1182 * the association is implementation dependant. This function only 1183 * specifies that the stack will try to make use of all the addresses in 1184 * the list when needed. 1185 * 1186 * Note that the list of addresses passed in is only used for setting up 1187 * the association. It does not necessarily equal the set of addresses 1188 * the peer uses for the resulting association. If the caller wants to 1189 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1190 * retrieve them after the association has been set up. 1191 * 1192 * Basically do nothing but copying the addresses from user to kernel 1193 * land and invoking either sctp_connectx(). This is used for tunneling 1194 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1195 * 1196 * We don't use copy_from_user() for optimization: we first do the 1197 * sanity checks (buffer size -fast- and access check-healthy 1198 * pointer); if all of those succeed, then we can alloc the memory 1199 * (expensive operation) needed to copy the data to kernel. Then we do 1200 * the copying without checking the user space area 1201 * (__copy_from_user()). 1202 * 1203 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1204 * it. 1205 * 1206 * sk The sk of the socket 1207 * addrs The pointer to the addresses in user land 1208 * addrssize Size of the addrs buffer 1209 * 1210 * Returns >=0 if ok, <0 errno code on error. 1211 */ 1212 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1213 struct sockaddr __user *addrs, 1214 int addrs_size, 1215 sctp_assoc_t *assoc_id) 1216 { 1217 int err = 0; 1218 struct sockaddr *kaddrs; 1219 1220 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1221 __func__, sk, addrs, addrs_size); 1222 1223 if (unlikely(addrs_size <= 0)) 1224 return -EINVAL; 1225 1226 /* Check the user passed a healthy pointer. */ 1227 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1228 return -EFAULT; 1229 1230 /* Alloc space for the address array in kernel memory. */ 1231 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1232 if (unlikely(!kaddrs)) 1233 return -ENOMEM; 1234 1235 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1236 err = -EFAULT; 1237 } else { 1238 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1239 } 1240 1241 kfree(kaddrs); 1242 1243 return err; 1244 } 1245 1246 /* 1247 * This is an older interface. It's kept for backward compatibility 1248 * to the option that doesn't provide association id. 1249 */ 1250 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1251 struct sockaddr __user *addrs, 1252 int addrs_size) 1253 { 1254 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1255 } 1256 1257 /* 1258 * New interface for the API. The since the API is done with a socket 1259 * option, to make it simple we feed back the association id is as a return 1260 * indication to the call. Error is always negative and association id is 1261 * always positive. 1262 */ 1263 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1264 struct sockaddr __user *addrs, 1265 int addrs_size) 1266 { 1267 sctp_assoc_t assoc_id = 0; 1268 int err = 0; 1269 1270 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1271 1272 if (err) 1273 return err; 1274 else 1275 return assoc_id; 1276 } 1277 1278 /* 1279 * New (hopefully final) interface for the API. 1280 * We use the sctp_getaddrs_old structure so that use-space library 1281 * can avoid any unnecessary allocations. The only defferent part 1282 * is that we store the actual length of the address buffer into the 1283 * addrs_num structure member. That way we can re-use the existing 1284 * code. 1285 */ 1286 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1287 char __user *optval, 1288 int __user *optlen) 1289 { 1290 struct sctp_getaddrs_old param; 1291 sctp_assoc_t assoc_id = 0; 1292 int err = 0; 1293 1294 if (len < sizeof(param)) 1295 return -EINVAL; 1296 1297 if (copy_from_user(¶m, optval, sizeof(param))) 1298 return -EFAULT; 1299 1300 err = __sctp_setsockopt_connectx(sk, 1301 (struct sockaddr __user *)param.addrs, 1302 param.addr_num, &assoc_id); 1303 1304 if (err == 0 || err == -EINPROGRESS) { 1305 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1306 return -EFAULT; 1307 if (put_user(sizeof(assoc_id), optlen)) 1308 return -EFAULT; 1309 } 1310 1311 return err; 1312 } 1313 1314 /* API 3.1.4 close() - UDP Style Syntax 1315 * Applications use close() to perform graceful shutdown (as described in 1316 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1317 * by a UDP-style socket. 1318 * 1319 * The syntax is 1320 * 1321 * ret = close(int sd); 1322 * 1323 * sd - the socket descriptor of the associations to be closed. 1324 * 1325 * To gracefully shutdown a specific association represented by the 1326 * UDP-style socket, an application should use the sendmsg() call, 1327 * passing no user data, but including the appropriate flag in the 1328 * ancillary data (see Section xxxx). 1329 * 1330 * If sd in the close() call is a branched-off socket representing only 1331 * one association, the shutdown is performed on that association only. 1332 * 1333 * 4.1.6 close() - TCP Style Syntax 1334 * 1335 * Applications use close() to gracefully close down an association. 1336 * 1337 * The syntax is: 1338 * 1339 * int close(int sd); 1340 * 1341 * sd - the socket descriptor of the association to be closed. 1342 * 1343 * After an application calls close() on a socket descriptor, no further 1344 * socket operations will succeed on that descriptor. 1345 * 1346 * API 7.1.4 SO_LINGER 1347 * 1348 * An application using the TCP-style socket can use this option to 1349 * perform the SCTP ABORT primitive. The linger option structure is: 1350 * 1351 * struct linger { 1352 * int l_onoff; // option on/off 1353 * int l_linger; // linger time 1354 * }; 1355 * 1356 * To enable the option, set l_onoff to 1. If the l_linger value is set 1357 * to 0, calling close() is the same as the ABORT primitive. If the 1358 * value is set to a negative value, the setsockopt() call will return 1359 * an error. If the value is set to a positive value linger_time, the 1360 * close() can be blocked for at most linger_time ms. If the graceful 1361 * shutdown phase does not finish during this period, close() will 1362 * return but the graceful shutdown phase continues in the system. 1363 */ 1364 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1365 { 1366 struct sctp_endpoint *ep; 1367 struct sctp_association *asoc; 1368 struct list_head *pos, *temp; 1369 1370 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1371 1372 sctp_lock_sock(sk); 1373 sk->sk_shutdown = SHUTDOWN_MASK; 1374 sk->sk_state = SCTP_SS_CLOSING; 1375 1376 ep = sctp_sk(sk)->ep; 1377 1378 /* Walk all associations on an endpoint. */ 1379 list_for_each_safe(pos, temp, &ep->asocs) { 1380 asoc = list_entry(pos, struct sctp_association, asocs); 1381 1382 if (sctp_style(sk, TCP)) { 1383 /* A closed association can still be in the list if 1384 * it belongs to a TCP-style listening socket that is 1385 * not yet accepted. If so, free it. If not, send an 1386 * ABORT or SHUTDOWN based on the linger options. 1387 */ 1388 if (sctp_state(asoc, CLOSED)) { 1389 sctp_unhash_established(asoc); 1390 sctp_association_free(asoc); 1391 continue; 1392 } 1393 } 1394 1395 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1396 struct sctp_chunk *chunk; 1397 1398 chunk = sctp_make_abort_user(asoc, NULL, 0); 1399 if (chunk) 1400 sctp_primitive_ABORT(asoc, chunk); 1401 } else 1402 sctp_primitive_SHUTDOWN(asoc, NULL); 1403 } 1404 1405 /* Clean up any skbs sitting on the receive queue. */ 1406 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1407 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1408 1409 /* On a TCP-style socket, block for at most linger_time if set. */ 1410 if (sctp_style(sk, TCP) && timeout) 1411 sctp_wait_for_close(sk, timeout); 1412 1413 /* This will run the backlog queue. */ 1414 sctp_release_sock(sk); 1415 1416 /* Supposedly, no process has access to the socket, but 1417 * the net layers still may. 1418 */ 1419 sctp_local_bh_disable(); 1420 sctp_bh_lock_sock(sk); 1421 1422 /* Hold the sock, since sk_common_release() will put sock_put() 1423 * and we have just a little more cleanup. 1424 */ 1425 sock_hold(sk); 1426 sk_common_release(sk); 1427 1428 sctp_bh_unlock_sock(sk); 1429 sctp_local_bh_enable(); 1430 1431 sock_put(sk); 1432 1433 SCTP_DBG_OBJCNT_DEC(sock); 1434 } 1435 1436 /* Handle EPIPE error. */ 1437 static int sctp_error(struct sock *sk, int flags, int err) 1438 { 1439 if (err == -EPIPE) 1440 err = sock_error(sk) ? : -EPIPE; 1441 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1442 send_sig(SIGPIPE, current, 0); 1443 return err; 1444 } 1445 1446 /* API 3.1.3 sendmsg() - UDP Style Syntax 1447 * 1448 * An application uses sendmsg() and recvmsg() calls to transmit data to 1449 * and receive data from its peer. 1450 * 1451 * ssize_t sendmsg(int socket, const struct msghdr *message, 1452 * int flags); 1453 * 1454 * socket - the socket descriptor of the endpoint. 1455 * message - pointer to the msghdr structure which contains a single 1456 * user message and possibly some ancillary data. 1457 * 1458 * See Section 5 for complete description of the data 1459 * structures. 1460 * 1461 * flags - flags sent or received with the user message, see Section 1462 * 5 for complete description of the flags. 1463 * 1464 * Note: This function could use a rewrite especially when explicit 1465 * connect support comes in. 1466 */ 1467 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1468 1469 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1470 1471 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1472 struct msghdr *msg, size_t msg_len) 1473 { 1474 struct sctp_sock *sp; 1475 struct sctp_endpoint *ep; 1476 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1477 struct sctp_transport *transport, *chunk_tp; 1478 struct sctp_chunk *chunk; 1479 union sctp_addr to; 1480 struct sockaddr *msg_name = NULL; 1481 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1482 struct sctp_sndrcvinfo *sinfo; 1483 struct sctp_initmsg *sinit; 1484 sctp_assoc_t associd = 0; 1485 sctp_cmsgs_t cmsgs = { NULL }; 1486 int err; 1487 sctp_scope_t scope; 1488 long timeo; 1489 __u16 sinfo_flags = 0; 1490 struct sctp_datamsg *datamsg; 1491 int msg_flags = msg->msg_flags; 1492 1493 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1494 sk, msg, msg_len); 1495 1496 err = 0; 1497 sp = sctp_sk(sk); 1498 ep = sp->ep; 1499 1500 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1501 1502 /* We cannot send a message over a TCP-style listening socket. */ 1503 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1504 err = -EPIPE; 1505 goto out_nounlock; 1506 } 1507 1508 /* Parse out the SCTP CMSGs. */ 1509 err = sctp_msghdr_parse(msg, &cmsgs); 1510 1511 if (err) { 1512 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1513 goto out_nounlock; 1514 } 1515 1516 /* Fetch the destination address for this packet. This 1517 * address only selects the association--it is not necessarily 1518 * the address we will send to. 1519 * For a peeled-off socket, msg_name is ignored. 1520 */ 1521 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1522 int msg_namelen = msg->msg_namelen; 1523 1524 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1525 msg_namelen); 1526 if (err) 1527 return err; 1528 1529 if (msg_namelen > sizeof(to)) 1530 msg_namelen = sizeof(to); 1531 memcpy(&to, msg->msg_name, msg_namelen); 1532 msg_name = msg->msg_name; 1533 } 1534 1535 sinfo = cmsgs.info; 1536 sinit = cmsgs.init; 1537 1538 /* Did the user specify SNDRCVINFO? */ 1539 if (sinfo) { 1540 sinfo_flags = sinfo->sinfo_flags; 1541 associd = sinfo->sinfo_assoc_id; 1542 } 1543 1544 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1545 msg_len, sinfo_flags); 1546 1547 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1548 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1549 err = -EINVAL; 1550 goto out_nounlock; 1551 } 1552 1553 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1554 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1555 * If SCTP_ABORT is set, the message length could be non zero with 1556 * the msg_iov set to the user abort reason. 1557 */ 1558 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1559 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1560 err = -EINVAL; 1561 goto out_nounlock; 1562 } 1563 1564 /* If SCTP_ADDR_OVER is set, there must be an address 1565 * specified in msg_name. 1566 */ 1567 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1568 err = -EINVAL; 1569 goto out_nounlock; 1570 } 1571 1572 transport = NULL; 1573 1574 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1575 1576 sctp_lock_sock(sk); 1577 1578 /* If a msg_name has been specified, assume this is to be used. */ 1579 if (msg_name) { 1580 /* Look for a matching association on the endpoint. */ 1581 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1582 if (!asoc) { 1583 /* If we could not find a matching association on the 1584 * endpoint, make sure that it is not a TCP-style 1585 * socket that already has an association or there is 1586 * no peeled-off association on another socket. 1587 */ 1588 if ((sctp_style(sk, TCP) && 1589 sctp_sstate(sk, ESTABLISHED)) || 1590 sctp_endpoint_is_peeled_off(ep, &to)) { 1591 err = -EADDRNOTAVAIL; 1592 goto out_unlock; 1593 } 1594 } 1595 } else { 1596 asoc = sctp_id2assoc(sk, associd); 1597 if (!asoc) { 1598 err = -EPIPE; 1599 goto out_unlock; 1600 } 1601 } 1602 1603 if (asoc) { 1604 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1605 1606 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1607 * socket that has an association in CLOSED state. This can 1608 * happen when an accepted socket has an association that is 1609 * already CLOSED. 1610 */ 1611 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1612 err = -EPIPE; 1613 goto out_unlock; 1614 } 1615 1616 if (sinfo_flags & SCTP_EOF) { 1617 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1618 asoc); 1619 sctp_primitive_SHUTDOWN(asoc, NULL); 1620 err = 0; 1621 goto out_unlock; 1622 } 1623 if (sinfo_flags & SCTP_ABORT) { 1624 1625 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1626 if (!chunk) { 1627 err = -ENOMEM; 1628 goto out_unlock; 1629 } 1630 1631 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1632 sctp_primitive_ABORT(asoc, chunk); 1633 err = 0; 1634 goto out_unlock; 1635 } 1636 } 1637 1638 /* Do we need to create the association? */ 1639 if (!asoc) { 1640 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1641 1642 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1643 err = -EINVAL; 1644 goto out_unlock; 1645 } 1646 1647 /* Check for invalid stream against the stream counts, 1648 * either the default or the user specified stream counts. 1649 */ 1650 if (sinfo) { 1651 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1652 /* Check against the defaults. */ 1653 if (sinfo->sinfo_stream >= 1654 sp->initmsg.sinit_num_ostreams) { 1655 err = -EINVAL; 1656 goto out_unlock; 1657 } 1658 } else { 1659 /* Check against the requested. */ 1660 if (sinfo->sinfo_stream >= 1661 sinit->sinit_num_ostreams) { 1662 err = -EINVAL; 1663 goto out_unlock; 1664 } 1665 } 1666 } 1667 1668 /* 1669 * API 3.1.2 bind() - UDP Style Syntax 1670 * If a bind() or sctp_bindx() is not called prior to a 1671 * sendmsg() call that initiates a new association, the 1672 * system picks an ephemeral port and will choose an address 1673 * set equivalent to binding with a wildcard address. 1674 */ 1675 if (!ep->base.bind_addr.port) { 1676 if (sctp_autobind(sk)) { 1677 err = -EAGAIN; 1678 goto out_unlock; 1679 } 1680 } else { 1681 /* 1682 * If an unprivileged user inherits a one-to-many 1683 * style socket with open associations on a privileged 1684 * port, it MAY be permitted to accept new associations, 1685 * but it SHOULD NOT be permitted to open new 1686 * associations. 1687 */ 1688 if (ep->base.bind_addr.port < PROT_SOCK && 1689 !capable(CAP_NET_BIND_SERVICE)) { 1690 err = -EACCES; 1691 goto out_unlock; 1692 } 1693 } 1694 1695 scope = sctp_scope(&to); 1696 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1697 if (!new_asoc) { 1698 err = -ENOMEM; 1699 goto out_unlock; 1700 } 1701 asoc = new_asoc; 1702 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1703 if (err < 0) { 1704 err = -ENOMEM; 1705 goto out_free; 1706 } 1707 1708 /* If the SCTP_INIT ancillary data is specified, set all 1709 * the association init values accordingly. 1710 */ 1711 if (sinit) { 1712 if (sinit->sinit_num_ostreams) { 1713 asoc->c.sinit_num_ostreams = 1714 sinit->sinit_num_ostreams; 1715 } 1716 if (sinit->sinit_max_instreams) { 1717 asoc->c.sinit_max_instreams = 1718 sinit->sinit_max_instreams; 1719 } 1720 if (sinit->sinit_max_attempts) { 1721 asoc->max_init_attempts 1722 = sinit->sinit_max_attempts; 1723 } 1724 if (sinit->sinit_max_init_timeo) { 1725 asoc->max_init_timeo = 1726 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1727 } 1728 } 1729 1730 /* Prime the peer's transport structures. */ 1731 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1732 if (!transport) { 1733 err = -ENOMEM; 1734 goto out_free; 1735 } 1736 } 1737 1738 /* ASSERT: we have a valid association at this point. */ 1739 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1740 1741 if (!sinfo) { 1742 /* If the user didn't specify SNDRCVINFO, make up one with 1743 * some defaults. 1744 */ 1745 default_sinfo.sinfo_stream = asoc->default_stream; 1746 default_sinfo.sinfo_flags = asoc->default_flags; 1747 default_sinfo.sinfo_ppid = asoc->default_ppid; 1748 default_sinfo.sinfo_context = asoc->default_context; 1749 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1750 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1751 sinfo = &default_sinfo; 1752 } 1753 1754 /* API 7.1.7, the sndbuf size per association bounds the 1755 * maximum size of data that can be sent in a single send call. 1756 */ 1757 if (msg_len > sk->sk_sndbuf) { 1758 err = -EMSGSIZE; 1759 goto out_free; 1760 } 1761 1762 if (asoc->pmtu_pending) 1763 sctp_assoc_pending_pmtu(asoc); 1764 1765 /* If fragmentation is disabled and the message length exceeds the 1766 * association fragmentation point, return EMSGSIZE. The I-D 1767 * does not specify what this error is, but this looks like 1768 * a great fit. 1769 */ 1770 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1771 err = -EMSGSIZE; 1772 goto out_free; 1773 } 1774 1775 if (sinfo) { 1776 /* Check for invalid stream. */ 1777 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1778 err = -EINVAL; 1779 goto out_free; 1780 } 1781 } 1782 1783 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1784 if (!sctp_wspace(asoc)) { 1785 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1786 if (err) 1787 goto out_free; 1788 } 1789 1790 /* If an address is passed with the sendto/sendmsg call, it is used 1791 * to override the primary destination address in the TCP model, or 1792 * when SCTP_ADDR_OVER flag is set in the UDP model. 1793 */ 1794 if ((sctp_style(sk, TCP) && msg_name) || 1795 (sinfo_flags & SCTP_ADDR_OVER)) { 1796 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1797 if (!chunk_tp) { 1798 err = -EINVAL; 1799 goto out_free; 1800 } 1801 } else 1802 chunk_tp = NULL; 1803 1804 /* Auto-connect, if we aren't connected already. */ 1805 if (sctp_state(asoc, CLOSED)) { 1806 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1807 if (err < 0) 1808 goto out_free; 1809 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1810 } 1811 1812 /* Break the message into multiple chunks of maximum size. */ 1813 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1814 if (!datamsg) { 1815 err = -ENOMEM; 1816 goto out_free; 1817 } 1818 1819 /* Now send the (possibly) fragmented message. */ 1820 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1821 sctp_chunk_hold(chunk); 1822 1823 /* Do accounting for the write space. */ 1824 sctp_set_owner_w(chunk); 1825 1826 chunk->transport = chunk_tp; 1827 } 1828 1829 /* Send it to the lower layers. Note: all chunks 1830 * must either fail or succeed. The lower layer 1831 * works that way today. Keep it that way or this 1832 * breaks. 1833 */ 1834 err = sctp_primitive_SEND(asoc, datamsg); 1835 /* Did the lower layer accept the chunk? */ 1836 if (err) 1837 sctp_datamsg_free(datamsg); 1838 else 1839 sctp_datamsg_put(datamsg); 1840 1841 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1842 1843 if (err) 1844 goto out_free; 1845 else 1846 err = msg_len; 1847 1848 /* If we are already past ASSOCIATE, the lower 1849 * layers are responsible for association cleanup. 1850 */ 1851 goto out_unlock; 1852 1853 out_free: 1854 if (new_asoc) 1855 sctp_association_free(asoc); 1856 out_unlock: 1857 sctp_release_sock(sk); 1858 1859 out_nounlock: 1860 return sctp_error(sk, msg_flags, err); 1861 1862 #if 0 1863 do_sock_err: 1864 if (msg_len) 1865 err = msg_len; 1866 else 1867 err = sock_error(sk); 1868 goto out; 1869 1870 do_interrupted: 1871 if (msg_len) 1872 err = msg_len; 1873 goto out; 1874 #endif /* 0 */ 1875 } 1876 1877 /* This is an extended version of skb_pull() that removes the data from the 1878 * start of a skb even when data is spread across the list of skb's in the 1879 * frag_list. len specifies the total amount of data that needs to be removed. 1880 * when 'len' bytes could be removed from the skb, it returns 0. 1881 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1882 * could not be removed. 1883 */ 1884 static int sctp_skb_pull(struct sk_buff *skb, int len) 1885 { 1886 struct sk_buff *list; 1887 int skb_len = skb_headlen(skb); 1888 int rlen; 1889 1890 if (len <= skb_len) { 1891 __skb_pull(skb, len); 1892 return 0; 1893 } 1894 len -= skb_len; 1895 __skb_pull(skb, skb_len); 1896 1897 skb_walk_frags(skb, list) { 1898 rlen = sctp_skb_pull(list, len); 1899 skb->len -= (len-rlen); 1900 skb->data_len -= (len-rlen); 1901 1902 if (!rlen) 1903 return 0; 1904 1905 len = rlen; 1906 } 1907 1908 return len; 1909 } 1910 1911 /* API 3.1.3 recvmsg() - UDP Style Syntax 1912 * 1913 * ssize_t recvmsg(int socket, struct msghdr *message, 1914 * int flags); 1915 * 1916 * socket - the socket descriptor of the endpoint. 1917 * message - pointer to the msghdr structure which contains a single 1918 * user message and possibly some ancillary data. 1919 * 1920 * See Section 5 for complete description of the data 1921 * structures. 1922 * 1923 * flags - flags sent or received with the user message, see Section 1924 * 5 for complete description of the flags. 1925 */ 1926 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1927 1928 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1929 struct msghdr *msg, size_t len, int noblock, 1930 int flags, int *addr_len) 1931 { 1932 struct sctp_ulpevent *event = NULL; 1933 struct sctp_sock *sp = sctp_sk(sk); 1934 struct sk_buff *skb; 1935 int copied; 1936 int err = 0; 1937 int skb_len; 1938 1939 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1940 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1941 "len", len, "knoblauch", noblock, 1942 "flags", flags, "addr_len", addr_len); 1943 1944 sctp_lock_sock(sk); 1945 1946 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1947 err = -ENOTCONN; 1948 goto out; 1949 } 1950 1951 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1952 if (!skb) 1953 goto out; 1954 1955 /* Get the total length of the skb including any skb's in the 1956 * frag_list. 1957 */ 1958 skb_len = skb->len; 1959 1960 copied = skb_len; 1961 if (copied > len) 1962 copied = len; 1963 1964 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1965 1966 event = sctp_skb2event(skb); 1967 1968 if (err) 1969 goto out_free; 1970 1971 sock_recv_ts_and_drops(msg, sk, skb); 1972 if (sctp_ulpevent_is_notification(event)) { 1973 msg->msg_flags |= MSG_NOTIFICATION; 1974 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1975 } else { 1976 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1977 } 1978 1979 /* Check if we allow SCTP_SNDRCVINFO. */ 1980 if (sp->subscribe.sctp_data_io_event) 1981 sctp_ulpevent_read_sndrcvinfo(event, msg); 1982 #if 0 1983 /* FIXME: we should be calling IP/IPv6 layers. */ 1984 if (sk->sk_protinfo.af_inet.cmsg_flags) 1985 ip_cmsg_recv(msg, skb); 1986 #endif 1987 1988 err = copied; 1989 1990 /* If skb's length exceeds the user's buffer, update the skb and 1991 * push it back to the receive_queue so that the next call to 1992 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1993 */ 1994 if (skb_len > copied) { 1995 msg->msg_flags &= ~MSG_EOR; 1996 if (flags & MSG_PEEK) 1997 goto out_free; 1998 sctp_skb_pull(skb, copied); 1999 skb_queue_head(&sk->sk_receive_queue, skb); 2000 2001 /* When only partial message is copied to the user, increase 2002 * rwnd by that amount. If all the data in the skb is read, 2003 * rwnd is updated when the event is freed. 2004 */ 2005 if (!sctp_ulpevent_is_notification(event)) 2006 sctp_assoc_rwnd_increase(event->asoc, copied); 2007 goto out; 2008 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2009 (event->msg_flags & MSG_EOR)) 2010 msg->msg_flags |= MSG_EOR; 2011 else 2012 msg->msg_flags &= ~MSG_EOR; 2013 2014 out_free: 2015 if (flags & MSG_PEEK) { 2016 /* Release the skb reference acquired after peeking the skb in 2017 * sctp_skb_recv_datagram(). 2018 */ 2019 kfree_skb(skb); 2020 } else { 2021 /* Free the event which includes releasing the reference to 2022 * the owner of the skb, freeing the skb and updating the 2023 * rwnd. 2024 */ 2025 sctp_ulpevent_free(event); 2026 } 2027 out: 2028 sctp_release_sock(sk); 2029 return err; 2030 } 2031 2032 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2033 * 2034 * This option is a on/off flag. If enabled no SCTP message 2035 * fragmentation will be performed. Instead if a message being sent 2036 * exceeds the current PMTU size, the message will NOT be sent and 2037 * instead a error will be indicated to the user. 2038 */ 2039 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2040 char __user *optval, 2041 unsigned int optlen) 2042 { 2043 int val; 2044 2045 if (optlen < sizeof(int)) 2046 return -EINVAL; 2047 2048 if (get_user(val, (int __user *)optval)) 2049 return -EFAULT; 2050 2051 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2052 2053 return 0; 2054 } 2055 2056 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2057 unsigned int optlen) 2058 { 2059 if (optlen > sizeof(struct sctp_event_subscribe)) 2060 return -EINVAL; 2061 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2062 return -EFAULT; 2063 return 0; 2064 } 2065 2066 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2067 * 2068 * This socket option is applicable to the UDP-style socket only. When 2069 * set it will cause associations that are idle for more than the 2070 * specified number of seconds to automatically close. An association 2071 * being idle is defined an association that has NOT sent or received 2072 * user data. The special value of '0' indicates that no automatic 2073 * close of any associations should be performed. The option expects an 2074 * integer defining the number of seconds of idle time before an 2075 * association is closed. 2076 */ 2077 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2078 unsigned int optlen) 2079 { 2080 struct sctp_sock *sp = sctp_sk(sk); 2081 2082 /* Applicable to UDP-style socket only */ 2083 if (sctp_style(sk, TCP)) 2084 return -EOPNOTSUPP; 2085 if (optlen != sizeof(int)) 2086 return -EINVAL; 2087 if (copy_from_user(&sp->autoclose, optval, optlen)) 2088 return -EFAULT; 2089 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */ 2090 if (sp->autoclose > (MAX_SCHEDULE_TIMEOUT / HZ) ) 2091 sp->autoclose = (__u32)(MAX_SCHEDULE_TIMEOUT / HZ) ; 2092 2093 return 0; 2094 } 2095 2096 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2097 * 2098 * Applications can enable or disable heartbeats for any peer address of 2099 * an association, modify an address's heartbeat interval, force a 2100 * heartbeat to be sent immediately, and adjust the address's maximum 2101 * number of retransmissions sent before an address is considered 2102 * unreachable. The following structure is used to access and modify an 2103 * address's parameters: 2104 * 2105 * struct sctp_paddrparams { 2106 * sctp_assoc_t spp_assoc_id; 2107 * struct sockaddr_storage spp_address; 2108 * uint32_t spp_hbinterval; 2109 * uint16_t spp_pathmaxrxt; 2110 * uint32_t spp_pathmtu; 2111 * uint32_t spp_sackdelay; 2112 * uint32_t spp_flags; 2113 * }; 2114 * 2115 * spp_assoc_id - (one-to-many style socket) This is filled in the 2116 * application, and identifies the association for 2117 * this query. 2118 * spp_address - This specifies which address is of interest. 2119 * spp_hbinterval - This contains the value of the heartbeat interval, 2120 * in milliseconds. If a value of zero 2121 * is present in this field then no changes are to 2122 * be made to this parameter. 2123 * spp_pathmaxrxt - This contains the maximum number of 2124 * retransmissions before this address shall be 2125 * considered unreachable. If a value of zero 2126 * is present in this field then no changes are to 2127 * be made to this parameter. 2128 * spp_pathmtu - When Path MTU discovery is disabled the value 2129 * specified here will be the "fixed" path mtu. 2130 * Note that if the spp_address field is empty 2131 * then all associations on this address will 2132 * have this fixed path mtu set upon them. 2133 * 2134 * spp_sackdelay - When delayed sack is enabled, this value specifies 2135 * the number of milliseconds that sacks will be delayed 2136 * for. This value will apply to all addresses of an 2137 * association if the spp_address field is empty. Note 2138 * also, that if delayed sack is enabled and this 2139 * value is set to 0, no change is made to the last 2140 * recorded delayed sack timer value. 2141 * 2142 * spp_flags - These flags are used to control various features 2143 * on an association. The flag field may contain 2144 * zero or more of the following options. 2145 * 2146 * SPP_HB_ENABLE - Enable heartbeats on the 2147 * specified address. Note that if the address 2148 * field is empty all addresses for the association 2149 * have heartbeats enabled upon them. 2150 * 2151 * SPP_HB_DISABLE - Disable heartbeats on the 2152 * speicifed address. Note that if the address 2153 * field is empty all addresses for the association 2154 * will have their heartbeats disabled. Note also 2155 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2156 * mutually exclusive, only one of these two should 2157 * be specified. Enabling both fields will have 2158 * undetermined results. 2159 * 2160 * SPP_HB_DEMAND - Request a user initiated heartbeat 2161 * to be made immediately. 2162 * 2163 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2164 * heartbeat delayis to be set to the value of 0 2165 * milliseconds. 2166 * 2167 * SPP_PMTUD_ENABLE - This field will enable PMTU 2168 * discovery upon the specified address. Note that 2169 * if the address feild is empty then all addresses 2170 * on the association are effected. 2171 * 2172 * SPP_PMTUD_DISABLE - This field will disable PMTU 2173 * discovery upon the specified address. Note that 2174 * if the address feild is empty then all addresses 2175 * on the association are effected. Not also that 2176 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2177 * exclusive. Enabling both will have undetermined 2178 * results. 2179 * 2180 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2181 * on delayed sack. The time specified in spp_sackdelay 2182 * is used to specify the sack delay for this address. Note 2183 * that if spp_address is empty then all addresses will 2184 * enable delayed sack and take on the sack delay 2185 * value specified in spp_sackdelay. 2186 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2187 * off delayed sack. If the spp_address field is blank then 2188 * delayed sack is disabled for the entire association. Note 2189 * also that this field is mutually exclusive to 2190 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2191 * results. 2192 */ 2193 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2194 struct sctp_transport *trans, 2195 struct sctp_association *asoc, 2196 struct sctp_sock *sp, 2197 int hb_change, 2198 int pmtud_change, 2199 int sackdelay_change) 2200 { 2201 int error; 2202 2203 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2204 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2205 if (error) 2206 return error; 2207 } 2208 2209 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2210 * this field is ignored. Note also that a value of zero indicates 2211 * the current setting should be left unchanged. 2212 */ 2213 if (params->spp_flags & SPP_HB_ENABLE) { 2214 2215 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2216 * set. This lets us use 0 value when this flag 2217 * is set. 2218 */ 2219 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2220 params->spp_hbinterval = 0; 2221 2222 if (params->spp_hbinterval || 2223 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2224 if (trans) { 2225 trans->hbinterval = 2226 msecs_to_jiffies(params->spp_hbinterval); 2227 } else if (asoc) { 2228 asoc->hbinterval = 2229 msecs_to_jiffies(params->spp_hbinterval); 2230 } else { 2231 sp->hbinterval = params->spp_hbinterval; 2232 } 2233 } 2234 } 2235 2236 if (hb_change) { 2237 if (trans) { 2238 trans->param_flags = 2239 (trans->param_flags & ~SPP_HB) | hb_change; 2240 } else if (asoc) { 2241 asoc->param_flags = 2242 (asoc->param_flags & ~SPP_HB) | hb_change; 2243 } else { 2244 sp->param_flags = 2245 (sp->param_flags & ~SPP_HB) | hb_change; 2246 } 2247 } 2248 2249 /* When Path MTU discovery is disabled the value specified here will 2250 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2251 * include the flag SPP_PMTUD_DISABLE for this field to have any 2252 * effect). 2253 */ 2254 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2255 if (trans) { 2256 trans->pathmtu = params->spp_pathmtu; 2257 sctp_assoc_sync_pmtu(asoc); 2258 } else if (asoc) { 2259 asoc->pathmtu = params->spp_pathmtu; 2260 sctp_frag_point(asoc, params->spp_pathmtu); 2261 } else { 2262 sp->pathmtu = params->spp_pathmtu; 2263 } 2264 } 2265 2266 if (pmtud_change) { 2267 if (trans) { 2268 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2269 (params->spp_flags & SPP_PMTUD_ENABLE); 2270 trans->param_flags = 2271 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2272 if (update) { 2273 sctp_transport_pmtu(trans); 2274 sctp_assoc_sync_pmtu(asoc); 2275 } 2276 } else if (asoc) { 2277 asoc->param_flags = 2278 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2279 } else { 2280 sp->param_flags = 2281 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2282 } 2283 } 2284 2285 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2286 * value of this field is ignored. Note also that a value of zero 2287 * indicates the current setting should be left unchanged. 2288 */ 2289 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2290 if (trans) { 2291 trans->sackdelay = 2292 msecs_to_jiffies(params->spp_sackdelay); 2293 } else if (asoc) { 2294 asoc->sackdelay = 2295 msecs_to_jiffies(params->spp_sackdelay); 2296 } else { 2297 sp->sackdelay = params->spp_sackdelay; 2298 } 2299 } 2300 2301 if (sackdelay_change) { 2302 if (trans) { 2303 trans->param_flags = 2304 (trans->param_flags & ~SPP_SACKDELAY) | 2305 sackdelay_change; 2306 } else if (asoc) { 2307 asoc->param_flags = 2308 (asoc->param_flags & ~SPP_SACKDELAY) | 2309 sackdelay_change; 2310 } else { 2311 sp->param_flags = 2312 (sp->param_flags & ~SPP_SACKDELAY) | 2313 sackdelay_change; 2314 } 2315 } 2316 2317 /* Note that a value of zero indicates the current setting should be 2318 left unchanged. 2319 */ 2320 if (params->spp_pathmaxrxt) { 2321 if (trans) { 2322 trans->pathmaxrxt = params->spp_pathmaxrxt; 2323 } else if (asoc) { 2324 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2325 } else { 2326 sp->pathmaxrxt = params->spp_pathmaxrxt; 2327 } 2328 } 2329 2330 return 0; 2331 } 2332 2333 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2334 char __user *optval, 2335 unsigned int optlen) 2336 { 2337 struct sctp_paddrparams params; 2338 struct sctp_transport *trans = NULL; 2339 struct sctp_association *asoc = NULL; 2340 struct sctp_sock *sp = sctp_sk(sk); 2341 int error; 2342 int hb_change, pmtud_change, sackdelay_change; 2343 2344 if (optlen != sizeof(struct sctp_paddrparams)) 2345 return - EINVAL; 2346 2347 if (copy_from_user(¶ms, optval, optlen)) 2348 return -EFAULT; 2349 2350 /* Validate flags and value parameters. */ 2351 hb_change = params.spp_flags & SPP_HB; 2352 pmtud_change = params.spp_flags & SPP_PMTUD; 2353 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2354 2355 if (hb_change == SPP_HB || 2356 pmtud_change == SPP_PMTUD || 2357 sackdelay_change == SPP_SACKDELAY || 2358 params.spp_sackdelay > 500 || 2359 (params.spp_pathmtu && 2360 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2361 return -EINVAL; 2362 2363 /* If an address other than INADDR_ANY is specified, and 2364 * no transport is found, then the request is invalid. 2365 */ 2366 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2367 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2368 params.spp_assoc_id); 2369 if (!trans) 2370 return -EINVAL; 2371 } 2372 2373 /* Get association, if assoc_id != 0 and the socket is a one 2374 * to many style socket, and an association was not found, then 2375 * the id was invalid. 2376 */ 2377 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2378 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2379 return -EINVAL; 2380 2381 /* Heartbeat demand can only be sent on a transport or 2382 * association, but not a socket. 2383 */ 2384 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2385 return -EINVAL; 2386 2387 /* Process parameters. */ 2388 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2389 hb_change, pmtud_change, 2390 sackdelay_change); 2391 2392 if (error) 2393 return error; 2394 2395 /* If changes are for association, also apply parameters to each 2396 * transport. 2397 */ 2398 if (!trans && asoc) { 2399 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2400 transports) { 2401 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2402 hb_change, pmtud_change, 2403 sackdelay_change); 2404 } 2405 } 2406 2407 return 0; 2408 } 2409 2410 /* 2411 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2412 * 2413 * This option will effect the way delayed acks are performed. This 2414 * option allows you to get or set the delayed ack time, in 2415 * milliseconds. It also allows changing the delayed ack frequency. 2416 * Changing the frequency to 1 disables the delayed sack algorithm. If 2417 * the assoc_id is 0, then this sets or gets the endpoints default 2418 * values. If the assoc_id field is non-zero, then the set or get 2419 * effects the specified association for the one to many model (the 2420 * assoc_id field is ignored by the one to one model). Note that if 2421 * sack_delay or sack_freq are 0 when setting this option, then the 2422 * current values will remain unchanged. 2423 * 2424 * struct sctp_sack_info { 2425 * sctp_assoc_t sack_assoc_id; 2426 * uint32_t sack_delay; 2427 * uint32_t sack_freq; 2428 * }; 2429 * 2430 * sack_assoc_id - This parameter, indicates which association the user 2431 * is performing an action upon. Note that if this field's value is 2432 * zero then the endpoints default value is changed (effecting future 2433 * associations only). 2434 * 2435 * sack_delay - This parameter contains the number of milliseconds that 2436 * the user is requesting the delayed ACK timer be set to. Note that 2437 * this value is defined in the standard to be between 200 and 500 2438 * milliseconds. 2439 * 2440 * sack_freq - This parameter contains the number of packets that must 2441 * be received before a sack is sent without waiting for the delay 2442 * timer to expire. The default value for this is 2, setting this 2443 * value to 1 will disable the delayed sack algorithm. 2444 */ 2445 2446 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2447 char __user *optval, unsigned int optlen) 2448 { 2449 struct sctp_sack_info params; 2450 struct sctp_transport *trans = NULL; 2451 struct sctp_association *asoc = NULL; 2452 struct sctp_sock *sp = sctp_sk(sk); 2453 2454 if (optlen == sizeof(struct sctp_sack_info)) { 2455 if (copy_from_user(¶ms, optval, optlen)) 2456 return -EFAULT; 2457 2458 if (params.sack_delay == 0 && params.sack_freq == 0) 2459 return 0; 2460 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2461 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 2462 "in delayed_ack socket option deprecated\n"); 2463 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 2464 if (copy_from_user(¶ms, optval, optlen)) 2465 return -EFAULT; 2466 2467 if (params.sack_delay == 0) 2468 params.sack_freq = 1; 2469 else 2470 params.sack_freq = 0; 2471 } else 2472 return - EINVAL; 2473 2474 /* Validate value parameter. */ 2475 if (params.sack_delay > 500) 2476 return -EINVAL; 2477 2478 /* Get association, if sack_assoc_id != 0 and the socket is a one 2479 * to many style socket, and an association was not found, then 2480 * the id was invalid. 2481 */ 2482 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2483 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2484 return -EINVAL; 2485 2486 if (params.sack_delay) { 2487 if (asoc) { 2488 asoc->sackdelay = 2489 msecs_to_jiffies(params.sack_delay); 2490 asoc->param_flags = 2491 (asoc->param_flags & ~SPP_SACKDELAY) | 2492 SPP_SACKDELAY_ENABLE; 2493 } else { 2494 sp->sackdelay = params.sack_delay; 2495 sp->param_flags = 2496 (sp->param_flags & ~SPP_SACKDELAY) | 2497 SPP_SACKDELAY_ENABLE; 2498 } 2499 } 2500 2501 if (params.sack_freq == 1) { 2502 if (asoc) { 2503 asoc->param_flags = 2504 (asoc->param_flags & ~SPP_SACKDELAY) | 2505 SPP_SACKDELAY_DISABLE; 2506 } else { 2507 sp->param_flags = 2508 (sp->param_flags & ~SPP_SACKDELAY) | 2509 SPP_SACKDELAY_DISABLE; 2510 } 2511 } else if (params.sack_freq > 1) { 2512 if (asoc) { 2513 asoc->sackfreq = params.sack_freq; 2514 asoc->param_flags = 2515 (asoc->param_flags & ~SPP_SACKDELAY) | 2516 SPP_SACKDELAY_ENABLE; 2517 } else { 2518 sp->sackfreq = params.sack_freq; 2519 sp->param_flags = 2520 (sp->param_flags & ~SPP_SACKDELAY) | 2521 SPP_SACKDELAY_ENABLE; 2522 } 2523 } 2524 2525 /* If change is for association, also apply to each transport. */ 2526 if (asoc) { 2527 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2528 transports) { 2529 if (params.sack_delay) { 2530 trans->sackdelay = 2531 msecs_to_jiffies(params.sack_delay); 2532 trans->param_flags = 2533 (trans->param_flags & ~SPP_SACKDELAY) | 2534 SPP_SACKDELAY_ENABLE; 2535 } 2536 if (params.sack_freq == 1) { 2537 trans->param_flags = 2538 (trans->param_flags & ~SPP_SACKDELAY) | 2539 SPP_SACKDELAY_DISABLE; 2540 } else if (params.sack_freq > 1) { 2541 trans->sackfreq = params.sack_freq; 2542 trans->param_flags = 2543 (trans->param_flags & ~SPP_SACKDELAY) | 2544 SPP_SACKDELAY_ENABLE; 2545 } 2546 } 2547 } 2548 2549 return 0; 2550 } 2551 2552 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2553 * 2554 * Applications can specify protocol parameters for the default association 2555 * initialization. The option name argument to setsockopt() and getsockopt() 2556 * is SCTP_INITMSG. 2557 * 2558 * Setting initialization parameters is effective only on an unconnected 2559 * socket (for UDP-style sockets only future associations are effected 2560 * by the change). With TCP-style sockets, this option is inherited by 2561 * sockets derived from a listener socket. 2562 */ 2563 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2564 { 2565 struct sctp_initmsg sinit; 2566 struct sctp_sock *sp = sctp_sk(sk); 2567 2568 if (optlen != sizeof(struct sctp_initmsg)) 2569 return -EINVAL; 2570 if (copy_from_user(&sinit, optval, optlen)) 2571 return -EFAULT; 2572 2573 if (sinit.sinit_num_ostreams) 2574 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2575 if (sinit.sinit_max_instreams) 2576 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2577 if (sinit.sinit_max_attempts) 2578 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2579 if (sinit.sinit_max_init_timeo) 2580 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2581 2582 return 0; 2583 } 2584 2585 /* 2586 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2587 * 2588 * Applications that wish to use the sendto() system call may wish to 2589 * specify a default set of parameters that would normally be supplied 2590 * through the inclusion of ancillary data. This socket option allows 2591 * such an application to set the default sctp_sndrcvinfo structure. 2592 * The application that wishes to use this socket option simply passes 2593 * in to this call the sctp_sndrcvinfo structure defined in Section 2594 * 5.2.2) The input parameters accepted by this call include 2595 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2596 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2597 * to this call if the caller is using the UDP model. 2598 */ 2599 static int sctp_setsockopt_default_send_param(struct sock *sk, 2600 char __user *optval, 2601 unsigned int optlen) 2602 { 2603 struct sctp_sndrcvinfo info; 2604 struct sctp_association *asoc; 2605 struct sctp_sock *sp = sctp_sk(sk); 2606 2607 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2608 return -EINVAL; 2609 if (copy_from_user(&info, optval, optlen)) 2610 return -EFAULT; 2611 2612 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2613 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2614 return -EINVAL; 2615 2616 if (asoc) { 2617 asoc->default_stream = info.sinfo_stream; 2618 asoc->default_flags = info.sinfo_flags; 2619 asoc->default_ppid = info.sinfo_ppid; 2620 asoc->default_context = info.sinfo_context; 2621 asoc->default_timetolive = info.sinfo_timetolive; 2622 } else { 2623 sp->default_stream = info.sinfo_stream; 2624 sp->default_flags = info.sinfo_flags; 2625 sp->default_ppid = info.sinfo_ppid; 2626 sp->default_context = info.sinfo_context; 2627 sp->default_timetolive = info.sinfo_timetolive; 2628 } 2629 2630 return 0; 2631 } 2632 2633 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2634 * 2635 * Requests that the local SCTP stack use the enclosed peer address as 2636 * the association primary. The enclosed address must be one of the 2637 * association peer's addresses. 2638 */ 2639 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2640 unsigned int optlen) 2641 { 2642 struct sctp_prim prim; 2643 struct sctp_transport *trans; 2644 2645 if (optlen != sizeof(struct sctp_prim)) 2646 return -EINVAL; 2647 2648 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2649 return -EFAULT; 2650 2651 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2652 if (!trans) 2653 return -EINVAL; 2654 2655 sctp_assoc_set_primary(trans->asoc, trans); 2656 2657 return 0; 2658 } 2659 2660 /* 2661 * 7.1.5 SCTP_NODELAY 2662 * 2663 * Turn on/off any Nagle-like algorithm. This means that packets are 2664 * generally sent as soon as possible and no unnecessary delays are 2665 * introduced, at the cost of more packets in the network. Expects an 2666 * integer boolean flag. 2667 */ 2668 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2669 unsigned int optlen) 2670 { 2671 int val; 2672 2673 if (optlen < sizeof(int)) 2674 return -EINVAL; 2675 if (get_user(val, (int __user *)optval)) 2676 return -EFAULT; 2677 2678 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2679 return 0; 2680 } 2681 2682 /* 2683 * 2684 * 7.1.1 SCTP_RTOINFO 2685 * 2686 * The protocol parameters used to initialize and bound retransmission 2687 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2688 * and modify these parameters. 2689 * All parameters are time values, in milliseconds. A value of 0, when 2690 * modifying the parameters, indicates that the current value should not 2691 * be changed. 2692 * 2693 */ 2694 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2695 { 2696 struct sctp_rtoinfo rtoinfo; 2697 struct sctp_association *asoc; 2698 2699 if (optlen != sizeof (struct sctp_rtoinfo)) 2700 return -EINVAL; 2701 2702 if (copy_from_user(&rtoinfo, optval, optlen)) 2703 return -EFAULT; 2704 2705 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2706 2707 /* Set the values to the specific association */ 2708 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2709 return -EINVAL; 2710 2711 if (asoc) { 2712 if (rtoinfo.srto_initial != 0) 2713 asoc->rto_initial = 2714 msecs_to_jiffies(rtoinfo.srto_initial); 2715 if (rtoinfo.srto_max != 0) 2716 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2717 if (rtoinfo.srto_min != 0) 2718 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2719 } else { 2720 /* If there is no association or the association-id = 0 2721 * set the values to the endpoint. 2722 */ 2723 struct sctp_sock *sp = sctp_sk(sk); 2724 2725 if (rtoinfo.srto_initial != 0) 2726 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2727 if (rtoinfo.srto_max != 0) 2728 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2729 if (rtoinfo.srto_min != 0) 2730 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2731 } 2732 2733 return 0; 2734 } 2735 2736 /* 2737 * 2738 * 7.1.2 SCTP_ASSOCINFO 2739 * 2740 * This option is used to tune the maximum retransmission attempts 2741 * of the association. 2742 * Returns an error if the new association retransmission value is 2743 * greater than the sum of the retransmission value of the peer. 2744 * See [SCTP] for more information. 2745 * 2746 */ 2747 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2748 { 2749 2750 struct sctp_assocparams assocparams; 2751 struct sctp_association *asoc; 2752 2753 if (optlen != sizeof(struct sctp_assocparams)) 2754 return -EINVAL; 2755 if (copy_from_user(&assocparams, optval, optlen)) 2756 return -EFAULT; 2757 2758 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2759 2760 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2761 return -EINVAL; 2762 2763 /* Set the values to the specific association */ 2764 if (asoc) { 2765 if (assocparams.sasoc_asocmaxrxt != 0) { 2766 __u32 path_sum = 0; 2767 int paths = 0; 2768 struct sctp_transport *peer_addr; 2769 2770 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2771 transports) { 2772 path_sum += peer_addr->pathmaxrxt; 2773 paths++; 2774 } 2775 2776 /* Only validate asocmaxrxt if we have more than 2777 * one path/transport. We do this because path 2778 * retransmissions are only counted when we have more 2779 * then one path. 2780 */ 2781 if (paths > 1 && 2782 assocparams.sasoc_asocmaxrxt > path_sum) 2783 return -EINVAL; 2784 2785 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2786 } 2787 2788 if (assocparams.sasoc_cookie_life != 0) { 2789 asoc->cookie_life.tv_sec = 2790 assocparams.sasoc_cookie_life / 1000; 2791 asoc->cookie_life.tv_usec = 2792 (assocparams.sasoc_cookie_life % 1000) 2793 * 1000; 2794 } 2795 } else { 2796 /* Set the values to the endpoint */ 2797 struct sctp_sock *sp = sctp_sk(sk); 2798 2799 if (assocparams.sasoc_asocmaxrxt != 0) 2800 sp->assocparams.sasoc_asocmaxrxt = 2801 assocparams.sasoc_asocmaxrxt; 2802 if (assocparams.sasoc_cookie_life != 0) 2803 sp->assocparams.sasoc_cookie_life = 2804 assocparams.sasoc_cookie_life; 2805 } 2806 return 0; 2807 } 2808 2809 /* 2810 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2811 * 2812 * This socket option is a boolean flag which turns on or off mapped V4 2813 * addresses. If this option is turned on and the socket is type 2814 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2815 * If this option is turned off, then no mapping will be done of V4 2816 * addresses and a user will receive both PF_INET6 and PF_INET type 2817 * addresses on the socket. 2818 */ 2819 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2820 { 2821 int val; 2822 struct sctp_sock *sp = sctp_sk(sk); 2823 2824 if (optlen < sizeof(int)) 2825 return -EINVAL; 2826 if (get_user(val, (int __user *)optval)) 2827 return -EFAULT; 2828 if (val) 2829 sp->v4mapped = 1; 2830 else 2831 sp->v4mapped = 0; 2832 2833 return 0; 2834 } 2835 2836 /* 2837 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2838 * This option will get or set the maximum size to put in any outgoing 2839 * SCTP DATA chunk. If a message is larger than this size it will be 2840 * fragmented by SCTP into the specified size. Note that the underlying 2841 * SCTP implementation may fragment into smaller sized chunks when the 2842 * PMTU of the underlying association is smaller than the value set by 2843 * the user. The default value for this option is '0' which indicates 2844 * the user is NOT limiting fragmentation and only the PMTU will effect 2845 * SCTP's choice of DATA chunk size. Note also that values set larger 2846 * than the maximum size of an IP datagram will effectively let SCTP 2847 * control fragmentation (i.e. the same as setting this option to 0). 2848 * 2849 * The following structure is used to access and modify this parameter: 2850 * 2851 * struct sctp_assoc_value { 2852 * sctp_assoc_t assoc_id; 2853 * uint32_t assoc_value; 2854 * }; 2855 * 2856 * assoc_id: This parameter is ignored for one-to-one style sockets. 2857 * For one-to-many style sockets this parameter indicates which 2858 * association the user is performing an action upon. Note that if 2859 * this field's value is zero then the endpoints default value is 2860 * changed (effecting future associations only). 2861 * assoc_value: This parameter specifies the maximum size in bytes. 2862 */ 2863 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2864 { 2865 struct sctp_assoc_value params; 2866 struct sctp_association *asoc; 2867 struct sctp_sock *sp = sctp_sk(sk); 2868 int val; 2869 2870 if (optlen == sizeof(int)) { 2871 printk(KERN_WARNING 2872 "SCTP: Use of int in maxseg socket option deprecated\n"); 2873 printk(KERN_WARNING 2874 "SCTP: Use struct sctp_assoc_value instead\n"); 2875 if (copy_from_user(&val, optval, optlen)) 2876 return -EFAULT; 2877 params.assoc_id = 0; 2878 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2879 if (copy_from_user(¶ms, optval, optlen)) 2880 return -EFAULT; 2881 val = params.assoc_value; 2882 } else 2883 return -EINVAL; 2884 2885 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2886 return -EINVAL; 2887 2888 asoc = sctp_id2assoc(sk, params.assoc_id); 2889 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2890 return -EINVAL; 2891 2892 if (asoc) { 2893 if (val == 0) { 2894 val = asoc->pathmtu; 2895 val -= sp->pf->af->net_header_len; 2896 val -= sizeof(struct sctphdr) + 2897 sizeof(struct sctp_data_chunk); 2898 } 2899 asoc->user_frag = val; 2900 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2901 } else { 2902 sp->user_frag = val; 2903 } 2904 2905 return 0; 2906 } 2907 2908 2909 /* 2910 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2911 * 2912 * Requests that the peer mark the enclosed address as the association 2913 * primary. The enclosed address must be one of the association's 2914 * locally bound addresses. The following structure is used to make a 2915 * set primary request: 2916 */ 2917 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2918 unsigned int optlen) 2919 { 2920 struct sctp_sock *sp; 2921 struct sctp_endpoint *ep; 2922 struct sctp_association *asoc = NULL; 2923 struct sctp_setpeerprim prim; 2924 struct sctp_chunk *chunk; 2925 int err; 2926 2927 sp = sctp_sk(sk); 2928 ep = sp->ep; 2929 2930 if (!sctp_addip_enable) 2931 return -EPERM; 2932 2933 if (optlen != sizeof(struct sctp_setpeerprim)) 2934 return -EINVAL; 2935 2936 if (copy_from_user(&prim, optval, optlen)) 2937 return -EFAULT; 2938 2939 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2940 if (!asoc) 2941 return -EINVAL; 2942 2943 if (!asoc->peer.asconf_capable) 2944 return -EPERM; 2945 2946 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2947 return -EPERM; 2948 2949 if (!sctp_state(asoc, ESTABLISHED)) 2950 return -ENOTCONN; 2951 2952 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2953 return -EADDRNOTAVAIL; 2954 2955 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2956 chunk = sctp_make_asconf_set_prim(asoc, 2957 (union sctp_addr *)&prim.sspp_addr); 2958 if (!chunk) 2959 return -ENOMEM; 2960 2961 err = sctp_send_asconf(asoc, chunk); 2962 2963 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2964 2965 return err; 2966 } 2967 2968 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2969 unsigned int optlen) 2970 { 2971 struct sctp_setadaptation adaptation; 2972 2973 if (optlen != sizeof(struct sctp_setadaptation)) 2974 return -EINVAL; 2975 if (copy_from_user(&adaptation, optval, optlen)) 2976 return -EFAULT; 2977 2978 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2979 2980 return 0; 2981 } 2982 2983 /* 2984 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2985 * 2986 * The context field in the sctp_sndrcvinfo structure is normally only 2987 * used when a failed message is retrieved holding the value that was 2988 * sent down on the actual send call. This option allows the setting of 2989 * a default context on an association basis that will be received on 2990 * reading messages from the peer. This is especially helpful in the 2991 * one-2-many model for an application to keep some reference to an 2992 * internal state machine that is processing messages on the 2993 * association. Note that the setting of this value only effects 2994 * received messages from the peer and does not effect the value that is 2995 * saved with outbound messages. 2996 */ 2997 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2998 unsigned int optlen) 2999 { 3000 struct sctp_assoc_value params; 3001 struct sctp_sock *sp; 3002 struct sctp_association *asoc; 3003 3004 if (optlen != sizeof(struct sctp_assoc_value)) 3005 return -EINVAL; 3006 if (copy_from_user(¶ms, optval, optlen)) 3007 return -EFAULT; 3008 3009 sp = sctp_sk(sk); 3010 3011 if (params.assoc_id != 0) { 3012 asoc = sctp_id2assoc(sk, params.assoc_id); 3013 if (!asoc) 3014 return -EINVAL; 3015 asoc->default_rcv_context = params.assoc_value; 3016 } else { 3017 sp->default_rcv_context = params.assoc_value; 3018 } 3019 3020 return 0; 3021 } 3022 3023 /* 3024 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3025 * 3026 * This options will at a minimum specify if the implementation is doing 3027 * fragmented interleave. Fragmented interleave, for a one to many 3028 * socket, is when subsequent calls to receive a message may return 3029 * parts of messages from different associations. Some implementations 3030 * may allow you to turn this value on or off. If so, when turned off, 3031 * no fragment interleave will occur (which will cause a head of line 3032 * blocking amongst multiple associations sharing the same one to many 3033 * socket). When this option is turned on, then each receive call may 3034 * come from a different association (thus the user must receive data 3035 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3036 * association each receive belongs to. 3037 * 3038 * This option takes a boolean value. A non-zero value indicates that 3039 * fragmented interleave is on. A value of zero indicates that 3040 * fragmented interleave is off. 3041 * 3042 * Note that it is important that an implementation that allows this 3043 * option to be turned on, have it off by default. Otherwise an unaware 3044 * application using the one to many model may become confused and act 3045 * incorrectly. 3046 */ 3047 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3048 char __user *optval, 3049 unsigned int optlen) 3050 { 3051 int val; 3052 3053 if (optlen != sizeof(int)) 3054 return -EINVAL; 3055 if (get_user(val, (int __user *)optval)) 3056 return -EFAULT; 3057 3058 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3059 3060 return 0; 3061 } 3062 3063 /* 3064 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3065 * (SCTP_PARTIAL_DELIVERY_POINT) 3066 * 3067 * This option will set or get the SCTP partial delivery point. This 3068 * point is the size of a message where the partial delivery API will be 3069 * invoked to help free up rwnd space for the peer. Setting this to a 3070 * lower value will cause partial deliveries to happen more often. The 3071 * calls argument is an integer that sets or gets the partial delivery 3072 * point. Note also that the call will fail if the user attempts to set 3073 * this value larger than the socket receive buffer size. 3074 * 3075 * Note that any single message having a length smaller than or equal to 3076 * the SCTP partial delivery point will be delivered in one single read 3077 * call as long as the user provided buffer is large enough to hold the 3078 * message. 3079 */ 3080 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3081 char __user *optval, 3082 unsigned int optlen) 3083 { 3084 u32 val; 3085 3086 if (optlen != sizeof(u32)) 3087 return -EINVAL; 3088 if (get_user(val, (int __user *)optval)) 3089 return -EFAULT; 3090 3091 /* Note: We double the receive buffer from what the user sets 3092 * it to be, also initial rwnd is based on rcvbuf/2. 3093 */ 3094 if (val > (sk->sk_rcvbuf >> 1)) 3095 return -EINVAL; 3096 3097 sctp_sk(sk)->pd_point = val; 3098 3099 return 0; /* is this the right error code? */ 3100 } 3101 3102 /* 3103 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3104 * 3105 * This option will allow a user to change the maximum burst of packets 3106 * that can be emitted by this association. Note that the default value 3107 * is 4, and some implementations may restrict this setting so that it 3108 * can only be lowered. 3109 * 3110 * NOTE: This text doesn't seem right. Do this on a socket basis with 3111 * future associations inheriting the socket value. 3112 */ 3113 static int sctp_setsockopt_maxburst(struct sock *sk, 3114 char __user *optval, 3115 unsigned int optlen) 3116 { 3117 struct sctp_assoc_value params; 3118 struct sctp_sock *sp; 3119 struct sctp_association *asoc; 3120 int val; 3121 int assoc_id = 0; 3122 3123 if (optlen == sizeof(int)) { 3124 printk(KERN_WARNING 3125 "SCTP: Use of int in max_burst socket option deprecated\n"); 3126 printk(KERN_WARNING 3127 "SCTP: Use struct sctp_assoc_value instead\n"); 3128 if (copy_from_user(&val, optval, optlen)) 3129 return -EFAULT; 3130 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3131 if (copy_from_user(¶ms, optval, optlen)) 3132 return -EFAULT; 3133 val = params.assoc_value; 3134 assoc_id = params.assoc_id; 3135 } else 3136 return -EINVAL; 3137 3138 sp = sctp_sk(sk); 3139 3140 if (assoc_id != 0) { 3141 asoc = sctp_id2assoc(sk, assoc_id); 3142 if (!asoc) 3143 return -EINVAL; 3144 asoc->max_burst = val; 3145 } else 3146 sp->max_burst = val; 3147 3148 return 0; 3149 } 3150 3151 /* 3152 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3153 * 3154 * This set option adds a chunk type that the user is requesting to be 3155 * received only in an authenticated way. Changes to the list of chunks 3156 * will only effect future associations on the socket. 3157 */ 3158 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3159 char __user *optval, 3160 unsigned int optlen) 3161 { 3162 struct sctp_authchunk val; 3163 3164 if (!sctp_auth_enable) 3165 return -EACCES; 3166 3167 if (optlen != sizeof(struct sctp_authchunk)) 3168 return -EINVAL; 3169 if (copy_from_user(&val, optval, optlen)) 3170 return -EFAULT; 3171 3172 switch (val.sauth_chunk) { 3173 case SCTP_CID_INIT: 3174 case SCTP_CID_INIT_ACK: 3175 case SCTP_CID_SHUTDOWN_COMPLETE: 3176 case SCTP_CID_AUTH: 3177 return -EINVAL; 3178 } 3179 3180 /* add this chunk id to the endpoint */ 3181 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3182 } 3183 3184 /* 3185 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3186 * 3187 * This option gets or sets the list of HMAC algorithms that the local 3188 * endpoint requires the peer to use. 3189 */ 3190 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3191 char __user *optval, 3192 unsigned int optlen) 3193 { 3194 struct sctp_hmacalgo *hmacs; 3195 u32 idents; 3196 int err; 3197 3198 if (!sctp_auth_enable) 3199 return -EACCES; 3200 3201 if (optlen < sizeof(struct sctp_hmacalgo)) 3202 return -EINVAL; 3203 3204 hmacs = kmalloc(optlen, GFP_KERNEL); 3205 if (!hmacs) 3206 return -ENOMEM; 3207 3208 if (copy_from_user(hmacs, optval, optlen)) { 3209 err = -EFAULT; 3210 goto out; 3211 } 3212 3213 idents = hmacs->shmac_num_idents; 3214 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3215 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3216 err = -EINVAL; 3217 goto out; 3218 } 3219 3220 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3221 out: 3222 kfree(hmacs); 3223 return err; 3224 } 3225 3226 /* 3227 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3228 * 3229 * This option will set a shared secret key which is used to build an 3230 * association shared key. 3231 */ 3232 static int sctp_setsockopt_auth_key(struct sock *sk, 3233 char __user *optval, 3234 unsigned int optlen) 3235 { 3236 struct sctp_authkey *authkey; 3237 struct sctp_association *asoc; 3238 int ret; 3239 3240 if (!sctp_auth_enable) 3241 return -EACCES; 3242 3243 if (optlen <= sizeof(struct sctp_authkey)) 3244 return -EINVAL; 3245 3246 authkey = kmalloc(optlen, GFP_KERNEL); 3247 if (!authkey) 3248 return -ENOMEM; 3249 3250 if (copy_from_user(authkey, optval, optlen)) { 3251 ret = -EFAULT; 3252 goto out; 3253 } 3254 3255 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3256 ret = -EINVAL; 3257 goto out; 3258 } 3259 3260 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3261 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3262 ret = -EINVAL; 3263 goto out; 3264 } 3265 3266 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3267 out: 3268 kfree(authkey); 3269 return ret; 3270 } 3271 3272 /* 3273 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3274 * 3275 * This option will get or set the active shared key to be used to build 3276 * the association shared key. 3277 */ 3278 static int sctp_setsockopt_active_key(struct sock *sk, 3279 char __user *optval, 3280 unsigned int optlen) 3281 { 3282 struct sctp_authkeyid val; 3283 struct sctp_association *asoc; 3284 3285 if (!sctp_auth_enable) 3286 return -EACCES; 3287 3288 if (optlen != sizeof(struct sctp_authkeyid)) 3289 return -EINVAL; 3290 if (copy_from_user(&val, optval, optlen)) 3291 return -EFAULT; 3292 3293 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3294 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3295 return -EINVAL; 3296 3297 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3298 val.scact_keynumber); 3299 } 3300 3301 /* 3302 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3303 * 3304 * This set option will delete a shared secret key from use. 3305 */ 3306 static int sctp_setsockopt_del_key(struct sock *sk, 3307 char __user *optval, 3308 unsigned int optlen) 3309 { 3310 struct sctp_authkeyid val; 3311 struct sctp_association *asoc; 3312 3313 if (!sctp_auth_enable) 3314 return -EACCES; 3315 3316 if (optlen != sizeof(struct sctp_authkeyid)) 3317 return -EINVAL; 3318 if (copy_from_user(&val, optval, optlen)) 3319 return -EFAULT; 3320 3321 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3322 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3323 return -EINVAL; 3324 3325 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3326 val.scact_keynumber); 3327 3328 } 3329 3330 3331 /* API 6.2 setsockopt(), getsockopt() 3332 * 3333 * Applications use setsockopt() and getsockopt() to set or retrieve 3334 * socket options. Socket options are used to change the default 3335 * behavior of sockets calls. They are described in Section 7. 3336 * 3337 * The syntax is: 3338 * 3339 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3340 * int __user *optlen); 3341 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3342 * int optlen); 3343 * 3344 * sd - the socket descript. 3345 * level - set to IPPROTO_SCTP for all SCTP options. 3346 * optname - the option name. 3347 * optval - the buffer to store the value of the option. 3348 * optlen - the size of the buffer. 3349 */ 3350 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3351 char __user *optval, unsigned int optlen) 3352 { 3353 int retval = 0; 3354 3355 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3356 sk, optname); 3357 3358 /* I can hardly begin to describe how wrong this is. This is 3359 * so broken as to be worse than useless. The API draft 3360 * REALLY is NOT helpful here... I am not convinced that the 3361 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3362 * are at all well-founded. 3363 */ 3364 if (level != SOL_SCTP) { 3365 struct sctp_af *af = sctp_sk(sk)->pf->af; 3366 retval = af->setsockopt(sk, level, optname, optval, optlen); 3367 goto out_nounlock; 3368 } 3369 3370 sctp_lock_sock(sk); 3371 3372 switch (optname) { 3373 case SCTP_SOCKOPT_BINDX_ADD: 3374 /* 'optlen' is the size of the addresses buffer. */ 3375 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3376 optlen, SCTP_BINDX_ADD_ADDR); 3377 break; 3378 3379 case SCTP_SOCKOPT_BINDX_REM: 3380 /* 'optlen' is the size of the addresses buffer. */ 3381 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3382 optlen, SCTP_BINDX_REM_ADDR); 3383 break; 3384 3385 case SCTP_SOCKOPT_CONNECTX_OLD: 3386 /* 'optlen' is the size of the addresses buffer. */ 3387 retval = sctp_setsockopt_connectx_old(sk, 3388 (struct sockaddr __user *)optval, 3389 optlen); 3390 break; 3391 3392 case SCTP_SOCKOPT_CONNECTX: 3393 /* 'optlen' is the size of the addresses buffer. */ 3394 retval = sctp_setsockopt_connectx(sk, 3395 (struct sockaddr __user *)optval, 3396 optlen); 3397 break; 3398 3399 case SCTP_DISABLE_FRAGMENTS: 3400 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3401 break; 3402 3403 case SCTP_EVENTS: 3404 retval = sctp_setsockopt_events(sk, optval, optlen); 3405 break; 3406 3407 case SCTP_AUTOCLOSE: 3408 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3409 break; 3410 3411 case SCTP_PEER_ADDR_PARAMS: 3412 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3413 break; 3414 3415 case SCTP_DELAYED_ACK: 3416 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3417 break; 3418 case SCTP_PARTIAL_DELIVERY_POINT: 3419 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3420 break; 3421 3422 case SCTP_INITMSG: 3423 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3424 break; 3425 case SCTP_DEFAULT_SEND_PARAM: 3426 retval = sctp_setsockopt_default_send_param(sk, optval, 3427 optlen); 3428 break; 3429 case SCTP_PRIMARY_ADDR: 3430 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3431 break; 3432 case SCTP_SET_PEER_PRIMARY_ADDR: 3433 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3434 break; 3435 case SCTP_NODELAY: 3436 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3437 break; 3438 case SCTP_RTOINFO: 3439 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3440 break; 3441 case SCTP_ASSOCINFO: 3442 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3443 break; 3444 case SCTP_I_WANT_MAPPED_V4_ADDR: 3445 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3446 break; 3447 case SCTP_MAXSEG: 3448 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3449 break; 3450 case SCTP_ADAPTATION_LAYER: 3451 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3452 break; 3453 case SCTP_CONTEXT: 3454 retval = sctp_setsockopt_context(sk, optval, optlen); 3455 break; 3456 case SCTP_FRAGMENT_INTERLEAVE: 3457 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3458 break; 3459 case SCTP_MAX_BURST: 3460 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3461 break; 3462 case SCTP_AUTH_CHUNK: 3463 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3464 break; 3465 case SCTP_HMAC_IDENT: 3466 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3467 break; 3468 case SCTP_AUTH_KEY: 3469 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3470 break; 3471 case SCTP_AUTH_ACTIVE_KEY: 3472 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3473 break; 3474 case SCTP_AUTH_DELETE_KEY: 3475 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3476 break; 3477 default: 3478 retval = -ENOPROTOOPT; 3479 break; 3480 } 3481 3482 sctp_release_sock(sk); 3483 3484 out_nounlock: 3485 return retval; 3486 } 3487 3488 /* API 3.1.6 connect() - UDP Style Syntax 3489 * 3490 * An application may use the connect() call in the UDP model to initiate an 3491 * association without sending data. 3492 * 3493 * The syntax is: 3494 * 3495 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3496 * 3497 * sd: the socket descriptor to have a new association added to. 3498 * 3499 * nam: the address structure (either struct sockaddr_in or struct 3500 * sockaddr_in6 defined in RFC2553 [7]). 3501 * 3502 * len: the size of the address. 3503 */ 3504 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3505 int addr_len) 3506 { 3507 int err = 0; 3508 struct sctp_af *af; 3509 3510 sctp_lock_sock(sk); 3511 3512 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3513 __func__, sk, addr, addr_len); 3514 3515 /* Validate addr_len before calling common connect/connectx routine. */ 3516 af = sctp_get_af_specific(addr->sa_family); 3517 if (!af || addr_len < af->sockaddr_len) { 3518 err = -EINVAL; 3519 } else { 3520 /* Pass correct addr len to common routine (so it knows there 3521 * is only one address being passed. 3522 */ 3523 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3524 } 3525 3526 sctp_release_sock(sk); 3527 return err; 3528 } 3529 3530 /* FIXME: Write comments. */ 3531 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3532 { 3533 return -EOPNOTSUPP; /* STUB */ 3534 } 3535 3536 /* 4.1.4 accept() - TCP Style Syntax 3537 * 3538 * Applications use accept() call to remove an established SCTP 3539 * association from the accept queue of the endpoint. A new socket 3540 * descriptor will be returned from accept() to represent the newly 3541 * formed association. 3542 */ 3543 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3544 { 3545 struct sctp_sock *sp; 3546 struct sctp_endpoint *ep; 3547 struct sock *newsk = NULL; 3548 struct sctp_association *asoc; 3549 long timeo; 3550 int error = 0; 3551 3552 sctp_lock_sock(sk); 3553 3554 sp = sctp_sk(sk); 3555 ep = sp->ep; 3556 3557 if (!sctp_style(sk, TCP)) { 3558 error = -EOPNOTSUPP; 3559 goto out; 3560 } 3561 3562 if (!sctp_sstate(sk, LISTENING)) { 3563 error = -EINVAL; 3564 goto out; 3565 } 3566 3567 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3568 3569 error = sctp_wait_for_accept(sk, timeo); 3570 if (error) 3571 goto out; 3572 3573 /* We treat the list of associations on the endpoint as the accept 3574 * queue and pick the first association on the list. 3575 */ 3576 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3577 3578 newsk = sp->pf->create_accept_sk(sk, asoc); 3579 if (!newsk) { 3580 error = -ENOMEM; 3581 goto out; 3582 } 3583 3584 /* Populate the fields of the newsk from the oldsk and migrate the 3585 * asoc to the newsk. 3586 */ 3587 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3588 3589 out: 3590 sctp_release_sock(sk); 3591 *err = error; 3592 return newsk; 3593 } 3594 3595 /* The SCTP ioctl handler. */ 3596 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3597 { 3598 return -ENOIOCTLCMD; 3599 } 3600 3601 /* This is the function which gets called during socket creation to 3602 * initialized the SCTP-specific portion of the sock. 3603 * The sock structure should already be zero-filled memory. 3604 */ 3605 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3606 { 3607 struct sctp_endpoint *ep; 3608 struct sctp_sock *sp; 3609 3610 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3611 3612 sp = sctp_sk(sk); 3613 3614 /* Initialize the SCTP per socket area. */ 3615 switch (sk->sk_type) { 3616 case SOCK_SEQPACKET: 3617 sp->type = SCTP_SOCKET_UDP; 3618 break; 3619 case SOCK_STREAM: 3620 sp->type = SCTP_SOCKET_TCP; 3621 break; 3622 default: 3623 return -ESOCKTNOSUPPORT; 3624 } 3625 3626 /* Initialize default send parameters. These parameters can be 3627 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3628 */ 3629 sp->default_stream = 0; 3630 sp->default_ppid = 0; 3631 sp->default_flags = 0; 3632 sp->default_context = 0; 3633 sp->default_timetolive = 0; 3634 3635 sp->default_rcv_context = 0; 3636 sp->max_burst = sctp_max_burst; 3637 3638 /* Initialize default setup parameters. These parameters 3639 * can be modified with the SCTP_INITMSG socket option or 3640 * overridden by the SCTP_INIT CMSG. 3641 */ 3642 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3643 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3644 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3645 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3646 3647 /* Initialize default RTO related parameters. These parameters can 3648 * be modified for with the SCTP_RTOINFO socket option. 3649 */ 3650 sp->rtoinfo.srto_initial = sctp_rto_initial; 3651 sp->rtoinfo.srto_max = sctp_rto_max; 3652 sp->rtoinfo.srto_min = sctp_rto_min; 3653 3654 /* Initialize default association related parameters. These parameters 3655 * can be modified with the SCTP_ASSOCINFO socket option. 3656 */ 3657 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3658 sp->assocparams.sasoc_number_peer_destinations = 0; 3659 sp->assocparams.sasoc_peer_rwnd = 0; 3660 sp->assocparams.sasoc_local_rwnd = 0; 3661 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3662 3663 /* Initialize default event subscriptions. By default, all the 3664 * options are off. 3665 */ 3666 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3667 3668 /* Default Peer Address Parameters. These defaults can 3669 * be modified via SCTP_PEER_ADDR_PARAMS 3670 */ 3671 sp->hbinterval = sctp_hb_interval; 3672 sp->pathmaxrxt = sctp_max_retrans_path; 3673 sp->pathmtu = 0; // allow default discovery 3674 sp->sackdelay = sctp_sack_timeout; 3675 sp->sackfreq = 2; 3676 sp->param_flags = SPP_HB_ENABLE | 3677 SPP_PMTUD_ENABLE | 3678 SPP_SACKDELAY_ENABLE; 3679 3680 /* If enabled no SCTP message fragmentation will be performed. 3681 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3682 */ 3683 sp->disable_fragments = 0; 3684 3685 /* Enable Nagle algorithm by default. */ 3686 sp->nodelay = 0; 3687 3688 /* Enable by default. */ 3689 sp->v4mapped = 1; 3690 3691 /* Auto-close idle associations after the configured 3692 * number of seconds. A value of 0 disables this 3693 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3694 * for UDP-style sockets only. 3695 */ 3696 sp->autoclose = 0; 3697 3698 /* User specified fragmentation limit. */ 3699 sp->user_frag = 0; 3700 3701 sp->adaptation_ind = 0; 3702 3703 sp->pf = sctp_get_pf_specific(sk->sk_family); 3704 3705 /* Control variables for partial data delivery. */ 3706 atomic_set(&sp->pd_mode, 0); 3707 skb_queue_head_init(&sp->pd_lobby); 3708 sp->frag_interleave = 0; 3709 3710 /* Create a per socket endpoint structure. Even if we 3711 * change the data structure relationships, this may still 3712 * be useful for storing pre-connect address information. 3713 */ 3714 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3715 if (!ep) 3716 return -ENOMEM; 3717 3718 sp->ep = ep; 3719 sp->hmac = NULL; 3720 3721 SCTP_DBG_OBJCNT_INC(sock); 3722 percpu_counter_inc(&sctp_sockets_allocated); 3723 3724 local_bh_disable(); 3725 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3726 local_bh_enable(); 3727 3728 return 0; 3729 } 3730 3731 /* Cleanup any SCTP per socket resources. */ 3732 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3733 { 3734 struct sctp_endpoint *ep; 3735 3736 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3737 3738 /* Release our hold on the endpoint. */ 3739 ep = sctp_sk(sk)->ep; 3740 sctp_endpoint_free(ep); 3741 percpu_counter_dec(&sctp_sockets_allocated); 3742 local_bh_disable(); 3743 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3744 local_bh_enable(); 3745 } 3746 3747 /* API 4.1.7 shutdown() - TCP Style Syntax 3748 * int shutdown(int socket, int how); 3749 * 3750 * sd - the socket descriptor of the association to be closed. 3751 * how - Specifies the type of shutdown. The values are 3752 * as follows: 3753 * SHUT_RD 3754 * Disables further receive operations. No SCTP 3755 * protocol action is taken. 3756 * SHUT_WR 3757 * Disables further send operations, and initiates 3758 * the SCTP shutdown sequence. 3759 * SHUT_RDWR 3760 * Disables further send and receive operations 3761 * and initiates the SCTP shutdown sequence. 3762 */ 3763 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3764 { 3765 struct sctp_endpoint *ep; 3766 struct sctp_association *asoc; 3767 3768 if (!sctp_style(sk, TCP)) 3769 return; 3770 3771 if (how & SEND_SHUTDOWN) { 3772 ep = sctp_sk(sk)->ep; 3773 if (!list_empty(&ep->asocs)) { 3774 asoc = list_entry(ep->asocs.next, 3775 struct sctp_association, asocs); 3776 sctp_primitive_SHUTDOWN(asoc, NULL); 3777 } 3778 } 3779 } 3780 3781 /* 7.2.1 Association Status (SCTP_STATUS) 3782 3783 * Applications can retrieve current status information about an 3784 * association, including association state, peer receiver window size, 3785 * number of unacked data chunks, and number of data chunks pending 3786 * receipt. This information is read-only. 3787 */ 3788 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3789 char __user *optval, 3790 int __user *optlen) 3791 { 3792 struct sctp_status status; 3793 struct sctp_association *asoc = NULL; 3794 struct sctp_transport *transport; 3795 sctp_assoc_t associd; 3796 int retval = 0; 3797 3798 if (len < sizeof(status)) { 3799 retval = -EINVAL; 3800 goto out; 3801 } 3802 3803 len = sizeof(status); 3804 if (copy_from_user(&status, optval, len)) { 3805 retval = -EFAULT; 3806 goto out; 3807 } 3808 3809 associd = status.sstat_assoc_id; 3810 asoc = sctp_id2assoc(sk, associd); 3811 if (!asoc) { 3812 retval = -EINVAL; 3813 goto out; 3814 } 3815 3816 transport = asoc->peer.primary_path; 3817 3818 status.sstat_assoc_id = sctp_assoc2id(asoc); 3819 status.sstat_state = asoc->state; 3820 status.sstat_rwnd = asoc->peer.rwnd; 3821 status.sstat_unackdata = asoc->unack_data; 3822 3823 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3824 status.sstat_instrms = asoc->c.sinit_max_instreams; 3825 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3826 status.sstat_fragmentation_point = asoc->frag_point; 3827 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3828 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3829 transport->af_specific->sockaddr_len); 3830 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3831 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3832 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3833 status.sstat_primary.spinfo_state = transport->state; 3834 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3835 status.sstat_primary.spinfo_srtt = transport->srtt; 3836 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3837 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3838 3839 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3840 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3841 3842 if (put_user(len, optlen)) { 3843 retval = -EFAULT; 3844 goto out; 3845 } 3846 3847 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3848 len, status.sstat_state, status.sstat_rwnd, 3849 status.sstat_assoc_id); 3850 3851 if (copy_to_user(optval, &status, len)) { 3852 retval = -EFAULT; 3853 goto out; 3854 } 3855 3856 out: 3857 return (retval); 3858 } 3859 3860 3861 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3862 * 3863 * Applications can retrieve information about a specific peer address 3864 * of an association, including its reachability state, congestion 3865 * window, and retransmission timer values. This information is 3866 * read-only. 3867 */ 3868 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3869 char __user *optval, 3870 int __user *optlen) 3871 { 3872 struct sctp_paddrinfo pinfo; 3873 struct sctp_transport *transport; 3874 int retval = 0; 3875 3876 if (len < sizeof(pinfo)) { 3877 retval = -EINVAL; 3878 goto out; 3879 } 3880 3881 len = sizeof(pinfo); 3882 if (copy_from_user(&pinfo, optval, len)) { 3883 retval = -EFAULT; 3884 goto out; 3885 } 3886 3887 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3888 pinfo.spinfo_assoc_id); 3889 if (!transport) 3890 return -EINVAL; 3891 3892 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3893 pinfo.spinfo_state = transport->state; 3894 pinfo.spinfo_cwnd = transport->cwnd; 3895 pinfo.spinfo_srtt = transport->srtt; 3896 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3897 pinfo.spinfo_mtu = transport->pathmtu; 3898 3899 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3900 pinfo.spinfo_state = SCTP_ACTIVE; 3901 3902 if (put_user(len, optlen)) { 3903 retval = -EFAULT; 3904 goto out; 3905 } 3906 3907 if (copy_to_user(optval, &pinfo, len)) { 3908 retval = -EFAULT; 3909 goto out; 3910 } 3911 3912 out: 3913 return (retval); 3914 } 3915 3916 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3917 * 3918 * This option is a on/off flag. If enabled no SCTP message 3919 * fragmentation will be performed. Instead if a message being sent 3920 * exceeds the current PMTU size, the message will NOT be sent and 3921 * instead a error will be indicated to the user. 3922 */ 3923 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3924 char __user *optval, int __user *optlen) 3925 { 3926 int val; 3927 3928 if (len < sizeof(int)) 3929 return -EINVAL; 3930 3931 len = sizeof(int); 3932 val = (sctp_sk(sk)->disable_fragments == 1); 3933 if (put_user(len, optlen)) 3934 return -EFAULT; 3935 if (copy_to_user(optval, &val, len)) 3936 return -EFAULT; 3937 return 0; 3938 } 3939 3940 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3941 * 3942 * This socket option is used to specify various notifications and 3943 * ancillary data the user wishes to receive. 3944 */ 3945 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3946 int __user *optlen) 3947 { 3948 if (len < sizeof(struct sctp_event_subscribe)) 3949 return -EINVAL; 3950 len = sizeof(struct sctp_event_subscribe); 3951 if (put_user(len, optlen)) 3952 return -EFAULT; 3953 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3954 return -EFAULT; 3955 return 0; 3956 } 3957 3958 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3959 * 3960 * This socket option is applicable to the UDP-style socket only. When 3961 * set it will cause associations that are idle for more than the 3962 * specified number of seconds to automatically close. An association 3963 * being idle is defined an association that has NOT sent or received 3964 * user data. The special value of '0' indicates that no automatic 3965 * close of any associations should be performed. The option expects an 3966 * integer defining the number of seconds of idle time before an 3967 * association is closed. 3968 */ 3969 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3970 { 3971 /* Applicable to UDP-style socket only */ 3972 if (sctp_style(sk, TCP)) 3973 return -EOPNOTSUPP; 3974 if (len < sizeof(int)) 3975 return -EINVAL; 3976 len = sizeof(int); 3977 if (put_user(len, optlen)) 3978 return -EFAULT; 3979 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3980 return -EFAULT; 3981 return 0; 3982 } 3983 3984 /* Helper routine to branch off an association to a new socket. */ 3985 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3986 struct socket **sockp) 3987 { 3988 struct sock *sk = asoc->base.sk; 3989 struct socket *sock; 3990 struct sctp_af *af; 3991 int err = 0; 3992 3993 /* An association cannot be branched off from an already peeled-off 3994 * socket, nor is this supported for tcp style sockets. 3995 */ 3996 if (!sctp_style(sk, UDP)) 3997 return -EINVAL; 3998 3999 /* Create a new socket. */ 4000 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4001 if (err < 0) 4002 return err; 4003 4004 sctp_copy_sock(sock->sk, sk, asoc); 4005 4006 /* Make peeled-off sockets more like 1-1 accepted sockets. 4007 * Set the daddr and initialize id to something more random 4008 */ 4009 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4010 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4011 4012 /* Populate the fields of the newsk from the oldsk and migrate the 4013 * asoc to the newsk. 4014 */ 4015 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4016 4017 *sockp = sock; 4018 4019 return err; 4020 } 4021 4022 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4023 { 4024 sctp_peeloff_arg_t peeloff; 4025 struct socket *newsock; 4026 int retval = 0; 4027 struct sctp_association *asoc; 4028 4029 if (len < sizeof(sctp_peeloff_arg_t)) 4030 return -EINVAL; 4031 len = sizeof(sctp_peeloff_arg_t); 4032 if (copy_from_user(&peeloff, optval, len)) 4033 return -EFAULT; 4034 4035 asoc = sctp_id2assoc(sk, peeloff.associd); 4036 if (!asoc) { 4037 retval = -EINVAL; 4038 goto out; 4039 } 4040 4041 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4042 4043 retval = sctp_do_peeloff(asoc, &newsock); 4044 if (retval < 0) 4045 goto out; 4046 4047 /* Map the socket to an unused fd that can be returned to the user. */ 4048 retval = sock_map_fd(newsock, 0); 4049 if (retval < 0) { 4050 sock_release(newsock); 4051 goto out; 4052 } 4053 4054 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4055 __func__, sk, asoc, newsock->sk, retval); 4056 4057 /* Return the fd mapped to the new socket. */ 4058 peeloff.sd = retval; 4059 if (put_user(len, optlen)) 4060 return -EFAULT; 4061 if (copy_to_user(optval, &peeloff, len)) 4062 retval = -EFAULT; 4063 4064 out: 4065 return retval; 4066 } 4067 4068 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4069 * 4070 * Applications can enable or disable heartbeats for any peer address of 4071 * an association, modify an address's heartbeat interval, force a 4072 * heartbeat to be sent immediately, and adjust the address's maximum 4073 * number of retransmissions sent before an address is considered 4074 * unreachable. The following structure is used to access and modify an 4075 * address's parameters: 4076 * 4077 * struct sctp_paddrparams { 4078 * sctp_assoc_t spp_assoc_id; 4079 * struct sockaddr_storage spp_address; 4080 * uint32_t spp_hbinterval; 4081 * uint16_t spp_pathmaxrxt; 4082 * uint32_t spp_pathmtu; 4083 * uint32_t spp_sackdelay; 4084 * uint32_t spp_flags; 4085 * }; 4086 * 4087 * spp_assoc_id - (one-to-many style socket) This is filled in the 4088 * application, and identifies the association for 4089 * this query. 4090 * spp_address - This specifies which address is of interest. 4091 * spp_hbinterval - This contains the value of the heartbeat interval, 4092 * in milliseconds. If a value of zero 4093 * is present in this field then no changes are to 4094 * be made to this parameter. 4095 * spp_pathmaxrxt - This contains the maximum number of 4096 * retransmissions before this address shall be 4097 * considered unreachable. If a value of zero 4098 * is present in this field then no changes are to 4099 * be made to this parameter. 4100 * spp_pathmtu - When Path MTU discovery is disabled the value 4101 * specified here will be the "fixed" path mtu. 4102 * Note that if the spp_address field is empty 4103 * then all associations on this address will 4104 * have this fixed path mtu set upon them. 4105 * 4106 * spp_sackdelay - When delayed sack is enabled, this value specifies 4107 * the number of milliseconds that sacks will be delayed 4108 * for. This value will apply to all addresses of an 4109 * association if the spp_address field is empty. Note 4110 * also, that if delayed sack is enabled and this 4111 * value is set to 0, no change is made to the last 4112 * recorded delayed sack timer value. 4113 * 4114 * spp_flags - These flags are used to control various features 4115 * on an association. The flag field may contain 4116 * zero or more of the following options. 4117 * 4118 * SPP_HB_ENABLE - Enable heartbeats on the 4119 * specified address. Note that if the address 4120 * field is empty all addresses for the association 4121 * have heartbeats enabled upon them. 4122 * 4123 * SPP_HB_DISABLE - Disable heartbeats on the 4124 * speicifed address. Note that if the address 4125 * field is empty all addresses for the association 4126 * will have their heartbeats disabled. Note also 4127 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4128 * mutually exclusive, only one of these two should 4129 * be specified. Enabling both fields will have 4130 * undetermined results. 4131 * 4132 * SPP_HB_DEMAND - Request a user initiated heartbeat 4133 * to be made immediately. 4134 * 4135 * SPP_PMTUD_ENABLE - This field will enable PMTU 4136 * discovery upon the specified address. Note that 4137 * if the address feild is empty then all addresses 4138 * on the association are effected. 4139 * 4140 * SPP_PMTUD_DISABLE - This field will disable PMTU 4141 * discovery upon the specified address. Note that 4142 * if the address feild is empty then all addresses 4143 * on the association are effected. Not also that 4144 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4145 * exclusive. Enabling both will have undetermined 4146 * results. 4147 * 4148 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4149 * on delayed sack. The time specified in spp_sackdelay 4150 * is used to specify the sack delay for this address. Note 4151 * that if spp_address is empty then all addresses will 4152 * enable delayed sack and take on the sack delay 4153 * value specified in spp_sackdelay. 4154 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4155 * off delayed sack. If the spp_address field is blank then 4156 * delayed sack is disabled for the entire association. Note 4157 * also that this field is mutually exclusive to 4158 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4159 * results. 4160 */ 4161 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4162 char __user *optval, int __user *optlen) 4163 { 4164 struct sctp_paddrparams params; 4165 struct sctp_transport *trans = NULL; 4166 struct sctp_association *asoc = NULL; 4167 struct sctp_sock *sp = sctp_sk(sk); 4168 4169 if (len < sizeof(struct sctp_paddrparams)) 4170 return -EINVAL; 4171 len = sizeof(struct sctp_paddrparams); 4172 if (copy_from_user(¶ms, optval, len)) 4173 return -EFAULT; 4174 4175 /* If an address other than INADDR_ANY is specified, and 4176 * no transport is found, then the request is invalid. 4177 */ 4178 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4179 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4180 params.spp_assoc_id); 4181 if (!trans) { 4182 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4183 return -EINVAL; 4184 } 4185 } 4186 4187 /* Get association, if assoc_id != 0 and the socket is a one 4188 * to many style socket, and an association was not found, then 4189 * the id was invalid. 4190 */ 4191 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4192 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4193 SCTP_DEBUG_PRINTK("Failed no association\n"); 4194 return -EINVAL; 4195 } 4196 4197 if (trans) { 4198 /* Fetch transport values. */ 4199 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4200 params.spp_pathmtu = trans->pathmtu; 4201 params.spp_pathmaxrxt = trans->pathmaxrxt; 4202 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4203 4204 /*draft-11 doesn't say what to return in spp_flags*/ 4205 params.spp_flags = trans->param_flags; 4206 } else if (asoc) { 4207 /* Fetch association values. */ 4208 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4209 params.spp_pathmtu = asoc->pathmtu; 4210 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4211 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4212 4213 /*draft-11 doesn't say what to return in spp_flags*/ 4214 params.spp_flags = asoc->param_flags; 4215 } else { 4216 /* Fetch socket values. */ 4217 params.spp_hbinterval = sp->hbinterval; 4218 params.spp_pathmtu = sp->pathmtu; 4219 params.spp_sackdelay = sp->sackdelay; 4220 params.spp_pathmaxrxt = sp->pathmaxrxt; 4221 4222 /*draft-11 doesn't say what to return in spp_flags*/ 4223 params.spp_flags = sp->param_flags; 4224 } 4225 4226 if (copy_to_user(optval, ¶ms, len)) 4227 return -EFAULT; 4228 4229 if (put_user(len, optlen)) 4230 return -EFAULT; 4231 4232 return 0; 4233 } 4234 4235 /* 4236 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4237 * 4238 * This option will effect the way delayed acks are performed. This 4239 * option allows you to get or set the delayed ack time, in 4240 * milliseconds. It also allows changing the delayed ack frequency. 4241 * Changing the frequency to 1 disables the delayed sack algorithm. If 4242 * the assoc_id is 0, then this sets or gets the endpoints default 4243 * values. If the assoc_id field is non-zero, then the set or get 4244 * effects the specified association for the one to many model (the 4245 * assoc_id field is ignored by the one to one model). Note that if 4246 * sack_delay or sack_freq are 0 when setting this option, then the 4247 * current values will remain unchanged. 4248 * 4249 * struct sctp_sack_info { 4250 * sctp_assoc_t sack_assoc_id; 4251 * uint32_t sack_delay; 4252 * uint32_t sack_freq; 4253 * }; 4254 * 4255 * sack_assoc_id - This parameter, indicates which association the user 4256 * is performing an action upon. Note that if this field's value is 4257 * zero then the endpoints default value is changed (effecting future 4258 * associations only). 4259 * 4260 * sack_delay - This parameter contains the number of milliseconds that 4261 * the user is requesting the delayed ACK timer be set to. Note that 4262 * this value is defined in the standard to be between 200 and 500 4263 * milliseconds. 4264 * 4265 * sack_freq - This parameter contains the number of packets that must 4266 * be received before a sack is sent without waiting for the delay 4267 * timer to expire. The default value for this is 2, setting this 4268 * value to 1 will disable the delayed sack algorithm. 4269 */ 4270 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4271 char __user *optval, 4272 int __user *optlen) 4273 { 4274 struct sctp_sack_info params; 4275 struct sctp_association *asoc = NULL; 4276 struct sctp_sock *sp = sctp_sk(sk); 4277 4278 if (len >= sizeof(struct sctp_sack_info)) { 4279 len = sizeof(struct sctp_sack_info); 4280 4281 if (copy_from_user(¶ms, optval, len)) 4282 return -EFAULT; 4283 } else if (len == sizeof(struct sctp_assoc_value)) { 4284 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 4285 "in delayed_ack socket option deprecated\n"); 4286 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 4287 if (copy_from_user(¶ms, optval, len)) 4288 return -EFAULT; 4289 } else 4290 return - EINVAL; 4291 4292 /* Get association, if sack_assoc_id != 0 and the socket is a one 4293 * to many style socket, and an association was not found, then 4294 * the id was invalid. 4295 */ 4296 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4297 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4298 return -EINVAL; 4299 4300 if (asoc) { 4301 /* Fetch association values. */ 4302 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4303 params.sack_delay = jiffies_to_msecs( 4304 asoc->sackdelay); 4305 params.sack_freq = asoc->sackfreq; 4306 4307 } else { 4308 params.sack_delay = 0; 4309 params.sack_freq = 1; 4310 } 4311 } else { 4312 /* Fetch socket values. */ 4313 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4314 params.sack_delay = sp->sackdelay; 4315 params.sack_freq = sp->sackfreq; 4316 } else { 4317 params.sack_delay = 0; 4318 params.sack_freq = 1; 4319 } 4320 } 4321 4322 if (copy_to_user(optval, ¶ms, len)) 4323 return -EFAULT; 4324 4325 if (put_user(len, optlen)) 4326 return -EFAULT; 4327 4328 return 0; 4329 } 4330 4331 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4332 * 4333 * Applications can specify protocol parameters for the default association 4334 * initialization. The option name argument to setsockopt() and getsockopt() 4335 * is SCTP_INITMSG. 4336 * 4337 * Setting initialization parameters is effective only on an unconnected 4338 * socket (for UDP-style sockets only future associations are effected 4339 * by the change). With TCP-style sockets, this option is inherited by 4340 * sockets derived from a listener socket. 4341 */ 4342 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4343 { 4344 if (len < sizeof(struct sctp_initmsg)) 4345 return -EINVAL; 4346 len = sizeof(struct sctp_initmsg); 4347 if (put_user(len, optlen)) 4348 return -EFAULT; 4349 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4350 return -EFAULT; 4351 return 0; 4352 } 4353 4354 4355 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4356 char __user *optval, int __user *optlen) 4357 { 4358 struct sctp_association *asoc; 4359 int cnt = 0; 4360 struct sctp_getaddrs getaddrs; 4361 struct sctp_transport *from; 4362 void __user *to; 4363 union sctp_addr temp; 4364 struct sctp_sock *sp = sctp_sk(sk); 4365 int addrlen; 4366 size_t space_left; 4367 int bytes_copied; 4368 4369 if (len < sizeof(struct sctp_getaddrs)) 4370 return -EINVAL; 4371 4372 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4373 return -EFAULT; 4374 4375 /* For UDP-style sockets, id specifies the association to query. */ 4376 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4377 if (!asoc) 4378 return -EINVAL; 4379 4380 to = optval + offsetof(struct sctp_getaddrs,addrs); 4381 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4382 4383 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4384 transports) { 4385 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4386 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4387 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4388 if (space_left < addrlen) 4389 return -ENOMEM; 4390 if (copy_to_user(to, &temp, addrlen)) 4391 return -EFAULT; 4392 to += addrlen; 4393 cnt++; 4394 space_left -= addrlen; 4395 } 4396 4397 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4398 return -EFAULT; 4399 bytes_copied = ((char __user *)to) - optval; 4400 if (put_user(bytes_copied, optlen)) 4401 return -EFAULT; 4402 4403 return 0; 4404 } 4405 4406 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4407 size_t space_left, int *bytes_copied) 4408 { 4409 struct sctp_sockaddr_entry *addr; 4410 union sctp_addr temp; 4411 int cnt = 0; 4412 int addrlen; 4413 4414 rcu_read_lock(); 4415 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4416 if (!addr->valid) 4417 continue; 4418 4419 if ((PF_INET == sk->sk_family) && 4420 (AF_INET6 == addr->a.sa.sa_family)) 4421 continue; 4422 if ((PF_INET6 == sk->sk_family) && 4423 inet_v6_ipv6only(sk) && 4424 (AF_INET == addr->a.sa.sa_family)) 4425 continue; 4426 memcpy(&temp, &addr->a, sizeof(temp)); 4427 if (!temp.v4.sin_port) 4428 temp.v4.sin_port = htons(port); 4429 4430 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4431 &temp); 4432 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4433 if (space_left < addrlen) { 4434 cnt = -ENOMEM; 4435 break; 4436 } 4437 memcpy(to, &temp, addrlen); 4438 4439 to += addrlen; 4440 cnt ++; 4441 space_left -= addrlen; 4442 *bytes_copied += addrlen; 4443 } 4444 rcu_read_unlock(); 4445 4446 return cnt; 4447 } 4448 4449 4450 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4451 char __user *optval, int __user *optlen) 4452 { 4453 struct sctp_bind_addr *bp; 4454 struct sctp_association *asoc; 4455 int cnt = 0; 4456 struct sctp_getaddrs getaddrs; 4457 struct sctp_sockaddr_entry *addr; 4458 void __user *to; 4459 union sctp_addr temp; 4460 struct sctp_sock *sp = sctp_sk(sk); 4461 int addrlen; 4462 int err = 0; 4463 size_t space_left; 4464 int bytes_copied = 0; 4465 void *addrs; 4466 void *buf; 4467 4468 if (len < sizeof(struct sctp_getaddrs)) 4469 return -EINVAL; 4470 4471 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4472 return -EFAULT; 4473 4474 /* 4475 * For UDP-style sockets, id specifies the association to query. 4476 * If the id field is set to the value '0' then the locally bound 4477 * addresses are returned without regard to any particular 4478 * association. 4479 */ 4480 if (0 == getaddrs.assoc_id) { 4481 bp = &sctp_sk(sk)->ep->base.bind_addr; 4482 } else { 4483 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4484 if (!asoc) 4485 return -EINVAL; 4486 bp = &asoc->base.bind_addr; 4487 } 4488 4489 to = optval + offsetof(struct sctp_getaddrs,addrs); 4490 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4491 4492 addrs = kmalloc(space_left, GFP_KERNEL); 4493 if (!addrs) 4494 return -ENOMEM; 4495 4496 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4497 * addresses from the global local address list. 4498 */ 4499 if (sctp_list_single_entry(&bp->address_list)) { 4500 addr = list_entry(bp->address_list.next, 4501 struct sctp_sockaddr_entry, list); 4502 if (sctp_is_any(sk, &addr->a)) { 4503 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4504 space_left, &bytes_copied); 4505 if (cnt < 0) { 4506 err = cnt; 4507 goto out; 4508 } 4509 goto copy_getaddrs; 4510 } 4511 } 4512 4513 buf = addrs; 4514 /* Protection on the bound address list is not needed since 4515 * in the socket option context we hold a socket lock and 4516 * thus the bound address list can't change. 4517 */ 4518 list_for_each_entry(addr, &bp->address_list, list) { 4519 memcpy(&temp, &addr->a, sizeof(temp)); 4520 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4521 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4522 if (space_left < addrlen) { 4523 err = -ENOMEM; /*fixme: right error?*/ 4524 goto out; 4525 } 4526 memcpy(buf, &temp, addrlen); 4527 buf += addrlen; 4528 bytes_copied += addrlen; 4529 cnt ++; 4530 space_left -= addrlen; 4531 } 4532 4533 copy_getaddrs: 4534 if (copy_to_user(to, addrs, bytes_copied)) { 4535 err = -EFAULT; 4536 goto out; 4537 } 4538 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4539 err = -EFAULT; 4540 goto out; 4541 } 4542 if (put_user(bytes_copied, optlen)) 4543 err = -EFAULT; 4544 out: 4545 kfree(addrs); 4546 return err; 4547 } 4548 4549 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4550 * 4551 * Requests that the local SCTP stack use the enclosed peer address as 4552 * the association primary. The enclosed address must be one of the 4553 * association peer's addresses. 4554 */ 4555 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4556 char __user *optval, int __user *optlen) 4557 { 4558 struct sctp_prim prim; 4559 struct sctp_association *asoc; 4560 struct sctp_sock *sp = sctp_sk(sk); 4561 4562 if (len < sizeof(struct sctp_prim)) 4563 return -EINVAL; 4564 4565 len = sizeof(struct sctp_prim); 4566 4567 if (copy_from_user(&prim, optval, len)) 4568 return -EFAULT; 4569 4570 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4571 if (!asoc) 4572 return -EINVAL; 4573 4574 if (!asoc->peer.primary_path) 4575 return -ENOTCONN; 4576 4577 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4578 asoc->peer.primary_path->af_specific->sockaddr_len); 4579 4580 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4581 (union sctp_addr *)&prim.ssp_addr); 4582 4583 if (put_user(len, optlen)) 4584 return -EFAULT; 4585 if (copy_to_user(optval, &prim, len)) 4586 return -EFAULT; 4587 4588 return 0; 4589 } 4590 4591 /* 4592 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4593 * 4594 * Requests that the local endpoint set the specified Adaptation Layer 4595 * Indication parameter for all future INIT and INIT-ACK exchanges. 4596 */ 4597 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4598 char __user *optval, int __user *optlen) 4599 { 4600 struct sctp_setadaptation adaptation; 4601 4602 if (len < sizeof(struct sctp_setadaptation)) 4603 return -EINVAL; 4604 4605 len = sizeof(struct sctp_setadaptation); 4606 4607 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4608 4609 if (put_user(len, optlen)) 4610 return -EFAULT; 4611 if (copy_to_user(optval, &adaptation, len)) 4612 return -EFAULT; 4613 4614 return 0; 4615 } 4616 4617 /* 4618 * 4619 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4620 * 4621 * Applications that wish to use the sendto() system call may wish to 4622 * specify a default set of parameters that would normally be supplied 4623 * through the inclusion of ancillary data. This socket option allows 4624 * such an application to set the default sctp_sndrcvinfo structure. 4625 4626 4627 * The application that wishes to use this socket option simply passes 4628 * in to this call the sctp_sndrcvinfo structure defined in Section 4629 * 5.2.2) The input parameters accepted by this call include 4630 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4631 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4632 * to this call if the caller is using the UDP model. 4633 * 4634 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4635 */ 4636 static int sctp_getsockopt_default_send_param(struct sock *sk, 4637 int len, char __user *optval, 4638 int __user *optlen) 4639 { 4640 struct sctp_sndrcvinfo info; 4641 struct sctp_association *asoc; 4642 struct sctp_sock *sp = sctp_sk(sk); 4643 4644 if (len < sizeof(struct sctp_sndrcvinfo)) 4645 return -EINVAL; 4646 4647 len = sizeof(struct sctp_sndrcvinfo); 4648 4649 if (copy_from_user(&info, optval, len)) 4650 return -EFAULT; 4651 4652 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4653 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4654 return -EINVAL; 4655 4656 if (asoc) { 4657 info.sinfo_stream = asoc->default_stream; 4658 info.sinfo_flags = asoc->default_flags; 4659 info.sinfo_ppid = asoc->default_ppid; 4660 info.sinfo_context = asoc->default_context; 4661 info.sinfo_timetolive = asoc->default_timetolive; 4662 } else { 4663 info.sinfo_stream = sp->default_stream; 4664 info.sinfo_flags = sp->default_flags; 4665 info.sinfo_ppid = sp->default_ppid; 4666 info.sinfo_context = sp->default_context; 4667 info.sinfo_timetolive = sp->default_timetolive; 4668 } 4669 4670 if (put_user(len, optlen)) 4671 return -EFAULT; 4672 if (copy_to_user(optval, &info, len)) 4673 return -EFAULT; 4674 4675 return 0; 4676 } 4677 4678 /* 4679 * 4680 * 7.1.5 SCTP_NODELAY 4681 * 4682 * Turn on/off any Nagle-like algorithm. This means that packets are 4683 * generally sent as soon as possible and no unnecessary delays are 4684 * introduced, at the cost of more packets in the network. Expects an 4685 * integer boolean flag. 4686 */ 4687 4688 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4689 char __user *optval, int __user *optlen) 4690 { 4691 int val; 4692 4693 if (len < sizeof(int)) 4694 return -EINVAL; 4695 4696 len = sizeof(int); 4697 val = (sctp_sk(sk)->nodelay == 1); 4698 if (put_user(len, optlen)) 4699 return -EFAULT; 4700 if (copy_to_user(optval, &val, len)) 4701 return -EFAULT; 4702 return 0; 4703 } 4704 4705 /* 4706 * 4707 * 7.1.1 SCTP_RTOINFO 4708 * 4709 * The protocol parameters used to initialize and bound retransmission 4710 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4711 * and modify these parameters. 4712 * All parameters are time values, in milliseconds. A value of 0, when 4713 * modifying the parameters, indicates that the current value should not 4714 * be changed. 4715 * 4716 */ 4717 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4718 char __user *optval, 4719 int __user *optlen) { 4720 struct sctp_rtoinfo rtoinfo; 4721 struct sctp_association *asoc; 4722 4723 if (len < sizeof (struct sctp_rtoinfo)) 4724 return -EINVAL; 4725 4726 len = sizeof(struct sctp_rtoinfo); 4727 4728 if (copy_from_user(&rtoinfo, optval, len)) 4729 return -EFAULT; 4730 4731 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4732 4733 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4734 return -EINVAL; 4735 4736 /* Values corresponding to the specific association. */ 4737 if (asoc) { 4738 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4739 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4740 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4741 } else { 4742 /* Values corresponding to the endpoint. */ 4743 struct sctp_sock *sp = sctp_sk(sk); 4744 4745 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4746 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4747 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4748 } 4749 4750 if (put_user(len, optlen)) 4751 return -EFAULT; 4752 4753 if (copy_to_user(optval, &rtoinfo, len)) 4754 return -EFAULT; 4755 4756 return 0; 4757 } 4758 4759 /* 4760 * 4761 * 7.1.2 SCTP_ASSOCINFO 4762 * 4763 * This option is used to tune the maximum retransmission attempts 4764 * of the association. 4765 * Returns an error if the new association retransmission value is 4766 * greater than the sum of the retransmission value of the peer. 4767 * See [SCTP] for more information. 4768 * 4769 */ 4770 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4771 char __user *optval, 4772 int __user *optlen) 4773 { 4774 4775 struct sctp_assocparams assocparams; 4776 struct sctp_association *asoc; 4777 struct list_head *pos; 4778 int cnt = 0; 4779 4780 if (len < sizeof (struct sctp_assocparams)) 4781 return -EINVAL; 4782 4783 len = sizeof(struct sctp_assocparams); 4784 4785 if (copy_from_user(&assocparams, optval, len)) 4786 return -EFAULT; 4787 4788 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4789 4790 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4791 return -EINVAL; 4792 4793 /* Values correspoinding to the specific association */ 4794 if (asoc) { 4795 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4796 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4797 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4798 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4799 * 1000) + 4800 (asoc->cookie_life.tv_usec 4801 / 1000); 4802 4803 list_for_each(pos, &asoc->peer.transport_addr_list) { 4804 cnt ++; 4805 } 4806 4807 assocparams.sasoc_number_peer_destinations = cnt; 4808 } else { 4809 /* Values corresponding to the endpoint */ 4810 struct sctp_sock *sp = sctp_sk(sk); 4811 4812 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4813 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4814 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4815 assocparams.sasoc_cookie_life = 4816 sp->assocparams.sasoc_cookie_life; 4817 assocparams.sasoc_number_peer_destinations = 4818 sp->assocparams. 4819 sasoc_number_peer_destinations; 4820 } 4821 4822 if (put_user(len, optlen)) 4823 return -EFAULT; 4824 4825 if (copy_to_user(optval, &assocparams, len)) 4826 return -EFAULT; 4827 4828 return 0; 4829 } 4830 4831 /* 4832 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4833 * 4834 * This socket option is a boolean flag which turns on or off mapped V4 4835 * addresses. If this option is turned on and the socket is type 4836 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4837 * If this option is turned off, then no mapping will be done of V4 4838 * addresses and a user will receive both PF_INET6 and PF_INET type 4839 * addresses on the socket. 4840 */ 4841 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4842 char __user *optval, int __user *optlen) 4843 { 4844 int val; 4845 struct sctp_sock *sp = sctp_sk(sk); 4846 4847 if (len < sizeof(int)) 4848 return -EINVAL; 4849 4850 len = sizeof(int); 4851 val = sp->v4mapped; 4852 if (put_user(len, optlen)) 4853 return -EFAULT; 4854 if (copy_to_user(optval, &val, len)) 4855 return -EFAULT; 4856 4857 return 0; 4858 } 4859 4860 /* 4861 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4862 * (chapter and verse is quoted at sctp_setsockopt_context()) 4863 */ 4864 static int sctp_getsockopt_context(struct sock *sk, int len, 4865 char __user *optval, int __user *optlen) 4866 { 4867 struct sctp_assoc_value params; 4868 struct sctp_sock *sp; 4869 struct sctp_association *asoc; 4870 4871 if (len < sizeof(struct sctp_assoc_value)) 4872 return -EINVAL; 4873 4874 len = sizeof(struct sctp_assoc_value); 4875 4876 if (copy_from_user(¶ms, optval, len)) 4877 return -EFAULT; 4878 4879 sp = sctp_sk(sk); 4880 4881 if (params.assoc_id != 0) { 4882 asoc = sctp_id2assoc(sk, params.assoc_id); 4883 if (!asoc) 4884 return -EINVAL; 4885 params.assoc_value = asoc->default_rcv_context; 4886 } else { 4887 params.assoc_value = sp->default_rcv_context; 4888 } 4889 4890 if (put_user(len, optlen)) 4891 return -EFAULT; 4892 if (copy_to_user(optval, ¶ms, len)) 4893 return -EFAULT; 4894 4895 return 0; 4896 } 4897 4898 /* 4899 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 4900 * This option will get or set the maximum size to put in any outgoing 4901 * SCTP DATA chunk. If a message is larger than this size it will be 4902 * fragmented by SCTP into the specified size. Note that the underlying 4903 * SCTP implementation may fragment into smaller sized chunks when the 4904 * PMTU of the underlying association is smaller than the value set by 4905 * the user. The default value for this option is '0' which indicates 4906 * the user is NOT limiting fragmentation and only the PMTU will effect 4907 * SCTP's choice of DATA chunk size. Note also that values set larger 4908 * than the maximum size of an IP datagram will effectively let SCTP 4909 * control fragmentation (i.e. the same as setting this option to 0). 4910 * 4911 * The following structure is used to access and modify this parameter: 4912 * 4913 * struct sctp_assoc_value { 4914 * sctp_assoc_t assoc_id; 4915 * uint32_t assoc_value; 4916 * }; 4917 * 4918 * assoc_id: This parameter is ignored for one-to-one style sockets. 4919 * For one-to-many style sockets this parameter indicates which 4920 * association the user is performing an action upon. Note that if 4921 * this field's value is zero then the endpoints default value is 4922 * changed (effecting future associations only). 4923 * assoc_value: This parameter specifies the maximum size in bytes. 4924 */ 4925 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4926 char __user *optval, int __user *optlen) 4927 { 4928 struct sctp_assoc_value params; 4929 struct sctp_association *asoc; 4930 4931 if (len == sizeof(int)) { 4932 printk(KERN_WARNING 4933 "SCTP: Use of int in maxseg socket option deprecated\n"); 4934 printk(KERN_WARNING 4935 "SCTP: Use struct sctp_assoc_value instead\n"); 4936 params.assoc_id = 0; 4937 } else if (len >= sizeof(struct sctp_assoc_value)) { 4938 len = sizeof(struct sctp_assoc_value); 4939 if (copy_from_user(¶ms, optval, sizeof(params))) 4940 return -EFAULT; 4941 } else 4942 return -EINVAL; 4943 4944 asoc = sctp_id2assoc(sk, params.assoc_id); 4945 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4946 return -EINVAL; 4947 4948 if (asoc) 4949 params.assoc_value = asoc->frag_point; 4950 else 4951 params.assoc_value = sctp_sk(sk)->user_frag; 4952 4953 if (put_user(len, optlen)) 4954 return -EFAULT; 4955 if (len == sizeof(int)) { 4956 if (copy_to_user(optval, ¶ms.assoc_value, len)) 4957 return -EFAULT; 4958 } else { 4959 if (copy_to_user(optval, ¶ms, len)) 4960 return -EFAULT; 4961 } 4962 4963 return 0; 4964 } 4965 4966 /* 4967 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4968 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4969 */ 4970 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4971 char __user *optval, int __user *optlen) 4972 { 4973 int val; 4974 4975 if (len < sizeof(int)) 4976 return -EINVAL; 4977 4978 len = sizeof(int); 4979 4980 val = sctp_sk(sk)->frag_interleave; 4981 if (put_user(len, optlen)) 4982 return -EFAULT; 4983 if (copy_to_user(optval, &val, len)) 4984 return -EFAULT; 4985 4986 return 0; 4987 } 4988 4989 /* 4990 * 7.1.25. Set or Get the sctp partial delivery point 4991 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4992 */ 4993 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4994 char __user *optval, 4995 int __user *optlen) 4996 { 4997 u32 val; 4998 4999 if (len < sizeof(u32)) 5000 return -EINVAL; 5001 5002 len = sizeof(u32); 5003 5004 val = sctp_sk(sk)->pd_point; 5005 if (put_user(len, optlen)) 5006 return -EFAULT; 5007 if (copy_to_user(optval, &val, len)) 5008 return -EFAULT; 5009 5010 return -ENOTSUPP; 5011 } 5012 5013 /* 5014 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5015 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5016 */ 5017 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5018 char __user *optval, 5019 int __user *optlen) 5020 { 5021 struct sctp_assoc_value params; 5022 struct sctp_sock *sp; 5023 struct sctp_association *asoc; 5024 5025 if (len == sizeof(int)) { 5026 printk(KERN_WARNING 5027 "SCTP: Use of int in max_burst socket option deprecated\n"); 5028 printk(KERN_WARNING 5029 "SCTP: Use struct sctp_assoc_value instead\n"); 5030 params.assoc_id = 0; 5031 } else if (len >= sizeof(struct sctp_assoc_value)) { 5032 len = sizeof(struct sctp_assoc_value); 5033 if (copy_from_user(¶ms, optval, len)) 5034 return -EFAULT; 5035 } else 5036 return -EINVAL; 5037 5038 sp = sctp_sk(sk); 5039 5040 if (params.assoc_id != 0) { 5041 asoc = sctp_id2assoc(sk, params.assoc_id); 5042 if (!asoc) 5043 return -EINVAL; 5044 params.assoc_value = asoc->max_burst; 5045 } else 5046 params.assoc_value = sp->max_burst; 5047 5048 if (len == sizeof(int)) { 5049 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5050 return -EFAULT; 5051 } else { 5052 if (copy_to_user(optval, ¶ms, len)) 5053 return -EFAULT; 5054 } 5055 5056 return 0; 5057 5058 } 5059 5060 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5061 char __user *optval, int __user *optlen) 5062 { 5063 struct sctp_hmacalgo __user *p = (void __user *)optval; 5064 struct sctp_hmac_algo_param *hmacs; 5065 __u16 data_len = 0; 5066 u32 num_idents; 5067 5068 if (!sctp_auth_enable) 5069 return -EACCES; 5070 5071 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5072 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5073 5074 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5075 return -EINVAL; 5076 5077 len = sizeof(struct sctp_hmacalgo) + data_len; 5078 num_idents = data_len / sizeof(u16); 5079 5080 if (put_user(len, optlen)) 5081 return -EFAULT; 5082 if (put_user(num_idents, &p->shmac_num_idents)) 5083 return -EFAULT; 5084 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5085 return -EFAULT; 5086 return 0; 5087 } 5088 5089 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5090 char __user *optval, int __user *optlen) 5091 { 5092 struct sctp_authkeyid val; 5093 struct sctp_association *asoc; 5094 5095 if (!sctp_auth_enable) 5096 return -EACCES; 5097 5098 if (len < sizeof(struct sctp_authkeyid)) 5099 return -EINVAL; 5100 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5101 return -EFAULT; 5102 5103 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5104 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5105 return -EINVAL; 5106 5107 if (asoc) 5108 val.scact_keynumber = asoc->active_key_id; 5109 else 5110 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5111 5112 len = sizeof(struct sctp_authkeyid); 5113 if (put_user(len, optlen)) 5114 return -EFAULT; 5115 if (copy_to_user(optval, &val, len)) 5116 return -EFAULT; 5117 5118 return 0; 5119 } 5120 5121 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5122 char __user *optval, int __user *optlen) 5123 { 5124 struct sctp_authchunks __user *p = (void __user *)optval; 5125 struct sctp_authchunks val; 5126 struct sctp_association *asoc; 5127 struct sctp_chunks_param *ch; 5128 u32 num_chunks = 0; 5129 char __user *to; 5130 5131 if (!sctp_auth_enable) 5132 return -EACCES; 5133 5134 if (len < sizeof(struct sctp_authchunks)) 5135 return -EINVAL; 5136 5137 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5138 return -EFAULT; 5139 5140 to = p->gauth_chunks; 5141 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5142 if (!asoc) 5143 return -EINVAL; 5144 5145 ch = asoc->peer.peer_chunks; 5146 if (!ch) 5147 goto num; 5148 5149 /* See if the user provided enough room for all the data */ 5150 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5151 if (len < num_chunks) 5152 return -EINVAL; 5153 5154 if (copy_to_user(to, ch->chunks, num_chunks)) 5155 return -EFAULT; 5156 num: 5157 len = sizeof(struct sctp_authchunks) + num_chunks; 5158 if (put_user(len, optlen)) return -EFAULT; 5159 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5160 return -EFAULT; 5161 return 0; 5162 } 5163 5164 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5165 char __user *optval, int __user *optlen) 5166 { 5167 struct sctp_authchunks __user *p = (void __user *)optval; 5168 struct sctp_authchunks val; 5169 struct sctp_association *asoc; 5170 struct sctp_chunks_param *ch; 5171 u32 num_chunks = 0; 5172 char __user *to; 5173 5174 if (!sctp_auth_enable) 5175 return -EACCES; 5176 5177 if (len < sizeof(struct sctp_authchunks)) 5178 return -EINVAL; 5179 5180 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5181 return -EFAULT; 5182 5183 to = p->gauth_chunks; 5184 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5185 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5186 return -EINVAL; 5187 5188 if (asoc) 5189 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5190 else 5191 ch = sctp_sk(sk)->ep->auth_chunk_list; 5192 5193 if (!ch) 5194 goto num; 5195 5196 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5197 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5198 return -EINVAL; 5199 5200 if (copy_to_user(to, ch->chunks, num_chunks)) 5201 return -EFAULT; 5202 num: 5203 len = sizeof(struct sctp_authchunks) + num_chunks; 5204 if (put_user(len, optlen)) 5205 return -EFAULT; 5206 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5207 return -EFAULT; 5208 5209 return 0; 5210 } 5211 5212 /* 5213 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5214 * This option gets the current number of associations that are attached 5215 * to a one-to-many style socket. The option value is an uint32_t. 5216 */ 5217 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5218 char __user *optval, int __user *optlen) 5219 { 5220 struct sctp_sock *sp = sctp_sk(sk); 5221 struct sctp_association *asoc; 5222 u32 val = 0; 5223 5224 if (sctp_style(sk, TCP)) 5225 return -EOPNOTSUPP; 5226 5227 if (len < sizeof(u32)) 5228 return -EINVAL; 5229 5230 len = sizeof(u32); 5231 5232 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5233 val++; 5234 } 5235 5236 if (put_user(len, optlen)) 5237 return -EFAULT; 5238 if (copy_to_user(optval, &val, len)) 5239 return -EFAULT; 5240 5241 return 0; 5242 } 5243 5244 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5245 char __user *optval, int __user *optlen) 5246 { 5247 int retval = 0; 5248 int len; 5249 5250 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5251 sk, optname); 5252 5253 /* I can hardly begin to describe how wrong this is. This is 5254 * so broken as to be worse than useless. The API draft 5255 * REALLY is NOT helpful here... I am not convinced that the 5256 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5257 * are at all well-founded. 5258 */ 5259 if (level != SOL_SCTP) { 5260 struct sctp_af *af = sctp_sk(sk)->pf->af; 5261 5262 retval = af->getsockopt(sk, level, optname, optval, optlen); 5263 return retval; 5264 } 5265 5266 if (get_user(len, optlen)) 5267 return -EFAULT; 5268 5269 sctp_lock_sock(sk); 5270 5271 switch (optname) { 5272 case SCTP_STATUS: 5273 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5274 break; 5275 case SCTP_DISABLE_FRAGMENTS: 5276 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5277 optlen); 5278 break; 5279 case SCTP_EVENTS: 5280 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5281 break; 5282 case SCTP_AUTOCLOSE: 5283 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5284 break; 5285 case SCTP_SOCKOPT_PEELOFF: 5286 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5287 break; 5288 case SCTP_PEER_ADDR_PARAMS: 5289 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5290 optlen); 5291 break; 5292 case SCTP_DELAYED_ACK: 5293 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5294 optlen); 5295 break; 5296 case SCTP_INITMSG: 5297 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5298 break; 5299 case SCTP_GET_PEER_ADDRS: 5300 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5301 optlen); 5302 break; 5303 case SCTP_GET_LOCAL_ADDRS: 5304 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5305 optlen); 5306 break; 5307 case SCTP_SOCKOPT_CONNECTX3: 5308 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5309 break; 5310 case SCTP_DEFAULT_SEND_PARAM: 5311 retval = sctp_getsockopt_default_send_param(sk, len, 5312 optval, optlen); 5313 break; 5314 case SCTP_PRIMARY_ADDR: 5315 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5316 break; 5317 case SCTP_NODELAY: 5318 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5319 break; 5320 case SCTP_RTOINFO: 5321 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5322 break; 5323 case SCTP_ASSOCINFO: 5324 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5325 break; 5326 case SCTP_I_WANT_MAPPED_V4_ADDR: 5327 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5328 break; 5329 case SCTP_MAXSEG: 5330 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5331 break; 5332 case SCTP_GET_PEER_ADDR_INFO: 5333 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5334 optlen); 5335 break; 5336 case SCTP_ADAPTATION_LAYER: 5337 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5338 optlen); 5339 break; 5340 case SCTP_CONTEXT: 5341 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5342 break; 5343 case SCTP_FRAGMENT_INTERLEAVE: 5344 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5345 optlen); 5346 break; 5347 case SCTP_PARTIAL_DELIVERY_POINT: 5348 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5349 optlen); 5350 break; 5351 case SCTP_MAX_BURST: 5352 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5353 break; 5354 case SCTP_AUTH_KEY: 5355 case SCTP_AUTH_CHUNK: 5356 case SCTP_AUTH_DELETE_KEY: 5357 retval = -EOPNOTSUPP; 5358 break; 5359 case SCTP_HMAC_IDENT: 5360 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5361 break; 5362 case SCTP_AUTH_ACTIVE_KEY: 5363 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5364 break; 5365 case SCTP_PEER_AUTH_CHUNKS: 5366 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5367 optlen); 5368 break; 5369 case SCTP_LOCAL_AUTH_CHUNKS: 5370 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5371 optlen); 5372 break; 5373 case SCTP_GET_ASSOC_NUMBER: 5374 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5375 break; 5376 default: 5377 retval = -ENOPROTOOPT; 5378 break; 5379 } 5380 5381 sctp_release_sock(sk); 5382 return retval; 5383 } 5384 5385 static void sctp_hash(struct sock *sk) 5386 { 5387 /* STUB */ 5388 } 5389 5390 static void sctp_unhash(struct sock *sk) 5391 { 5392 /* STUB */ 5393 } 5394 5395 /* Check if port is acceptable. Possibly find first available port. 5396 * 5397 * The port hash table (contained in the 'global' SCTP protocol storage 5398 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5399 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5400 * list (the list number is the port number hashed out, so as you 5401 * would expect from a hash function, all the ports in a given list have 5402 * such a number that hashes out to the same list number; you were 5403 * expecting that, right?); so each list has a set of ports, with a 5404 * link to the socket (struct sock) that uses it, the port number and 5405 * a fastreuse flag (FIXME: NPI ipg). 5406 */ 5407 static struct sctp_bind_bucket *sctp_bucket_create( 5408 struct sctp_bind_hashbucket *head, unsigned short snum); 5409 5410 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5411 { 5412 struct sctp_bind_hashbucket *head; /* hash list */ 5413 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5414 struct hlist_node *node; 5415 unsigned short snum; 5416 int ret; 5417 5418 snum = ntohs(addr->v4.sin_port); 5419 5420 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5421 sctp_local_bh_disable(); 5422 5423 if (snum == 0) { 5424 /* Search for an available port. */ 5425 int low, high, remaining, index; 5426 unsigned int rover; 5427 5428 inet_get_local_port_range(&low, &high); 5429 remaining = (high - low) + 1; 5430 rover = net_random() % remaining + low; 5431 5432 do { 5433 rover++; 5434 if ((rover < low) || (rover > high)) 5435 rover = low; 5436 index = sctp_phashfn(rover); 5437 head = &sctp_port_hashtable[index]; 5438 sctp_spin_lock(&head->lock); 5439 sctp_for_each_hentry(pp, node, &head->chain) 5440 if (pp->port == rover) 5441 goto next; 5442 break; 5443 next: 5444 sctp_spin_unlock(&head->lock); 5445 } while (--remaining > 0); 5446 5447 /* Exhausted local port range during search? */ 5448 ret = 1; 5449 if (remaining <= 0) 5450 goto fail; 5451 5452 /* OK, here is the one we will use. HEAD (the port 5453 * hash table list entry) is non-NULL and we hold it's 5454 * mutex. 5455 */ 5456 snum = rover; 5457 } else { 5458 /* We are given an specific port number; we verify 5459 * that it is not being used. If it is used, we will 5460 * exahust the search in the hash list corresponding 5461 * to the port number (snum) - we detect that with the 5462 * port iterator, pp being NULL. 5463 */ 5464 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5465 sctp_spin_lock(&head->lock); 5466 sctp_for_each_hentry(pp, node, &head->chain) { 5467 if (pp->port == snum) 5468 goto pp_found; 5469 } 5470 } 5471 pp = NULL; 5472 goto pp_not_found; 5473 pp_found: 5474 if (!hlist_empty(&pp->owner)) { 5475 /* We had a port hash table hit - there is an 5476 * available port (pp != NULL) and it is being 5477 * used by other socket (pp->owner not empty); that other 5478 * socket is going to be sk2. 5479 */ 5480 int reuse = sk->sk_reuse; 5481 struct sock *sk2; 5482 struct hlist_node *node; 5483 5484 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5485 if (pp->fastreuse && sk->sk_reuse && 5486 sk->sk_state != SCTP_SS_LISTENING) 5487 goto success; 5488 5489 /* Run through the list of sockets bound to the port 5490 * (pp->port) [via the pointers bind_next and 5491 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5492 * we get the endpoint they describe and run through 5493 * the endpoint's list of IP (v4 or v6) addresses, 5494 * comparing each of the addresses with the address of 5495 * the socket sk. If we find a match, then that means 5496 * that this port/socket (sk) combination are already 5497 * in an endpoint. 5498 */ 5499 sk_for_each_bound(sk2, node, &pp->owner) { 5500 struct sctp_endpoint *ep2; 5501 ep2 = sctp_sk(sk2)->ep; 5502 5503 if (sk == sk2 || 5504 (reuse && sk2->sk_reuse && 5505 sk2->sk_state != SCTP_SS_LISTENING)) 5506 continue; 5507 5508 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5509 sctp_sk(sk2), sctp_sk(sk))) { 5510 ret = (long)sk2; 5511 goto fail_unlock; 5512 } 5513 } 5514 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5515 } 5516 pp_not_found: 5517 /* If there was a hash table miss, create a new port. */ 5518 ret = 1; 5519 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5520 goto fail_unlock; 5521 5522 /* In either case (hit or miss), make sure fastreuse is 1 only 5523 * if sk->sk_reuse is too (that is, if the caller requested 5524 * SO_REUSEADDR on this socket -sk-). 5525 */ 5526 if (hlist_empty(&pp->owner)) { 5527 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5528 pp->fastreuse = 1; 5529 else 5530 pp->fastreuse = 0; 5531 } else if (pp->fastreuse && 5532 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5533 pp->fastreuse = 0; 5534 5535 /* We are set, so fill up all the data in the hash table 5536 * entry, tie the socket list information with the rest of the 5537 * sockets FIXME: Blurry, NPI (ipg). 5538 */ 5539 success: 5540 if (!sctp_sk(sk)->bind_hash) { 5541 inet_sk(sk)->inet_num = snum; 5542 sk_add_bind_node(sk, &pp->owner); 5543 sctp_sk(sk)->bind_hash = pp; 5544 } 5545 ret = 0; 5546 5547 fail_unlock: 5548 sctp_spin_unlock(&head->lock); 5549 5550 fail: 5551 sctp_local_bh_enable(); 5552 return ret; 5553 } 5554 5555 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5556 * port is requested. 5557 */ 5558 static int sctp_get_port(struct sock *sk, unsigned short snum) 5559 { 5560 long ret; 5561 union sctp_addr addr; 5562 struct sctp_af *af = sctp_sk(sk)->pf->af; 5563 5564 /* Set up a dummy address struct from the sk. */ 5565 af->from_sk(&addr, sk); 5566 addr.v4.sin_port = htons(snum); 5567 5568 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5569 ret = sctp_get_port_local(sk, &addr); 5570 5571 return (ret ? 1 : 0); 5572 } 5573 5574 /* 5575 * Move a socket to LISTENING state. 5576 */ 5577 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5578 { 5579 struct sctp_sock *sp = sctp_sk(sk); 5580 struct sctp_endpoint *ep = sp->ep; 5581 struct crypto_hash *tfm = NULL; 5582 5583 /* Allocate HMAC for generating cookie. */ 5584 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5585 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5586 if (IS_ERR(tfm)) { 5587 if (net_ratelimit()) { 5588 printk(KERN_INFO 5589 "SCTP: failed to load transform for %s: %ld\n", 5590 sctp_hmac_alg, PTR_ERR(tfm)); 5591 } 5592 return -ENOSYS; 5593 } 5594 sctp_sk(sk)->hmac = tfm; 5595 } 5596 5597 /* 5598 * If a bind() or sctp_bindx() is not called prior to a listen() 5599 * call that allows new associations to be accepted, the system 5600 * picks an ephemeral port and will choose an address set equivalent 5601 * to binding with a wildcard address. 5602 * 5603 * This is not currently spelled out in the SCTP sockets 5604 * extensions draft, but follows the practice as seen in TCP 5605 * sockets. 5606 * 5607 */ 5608 sk->sk_state = SCTP_SS_LISTENING; 5609 if (!ep->base.bind_addr.port) { 5610 if (sctp_autobind(sk)) 5611 return -EAGAIN; 5612 } else { 5613 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5614 sk->sk_state = SCTP_SS_CLOSED; 5615 return -EADDRINUSE; 5616 } 5617 } 5618 5619 sk->sk_max_ack_backlog = backlog; 5620 sctp_hash_endpoint(ep); 5621 return 0; 5622 } 5623 5624 /* 5625 * 4.1.3 / 5.1.3 listen() 5626 * 5627 * By default, new associations are not accepted for UDP style sockets. 5628 * An application uses listen() to mark a socket as being able to 5629 * accept new associations. 5630 * 5631 * On TCP style sockets, applications use listen() to ready the SCTP 5632 * endpoint for accepting inbound associations. 5633 * 5634 * On both types of endpoints a backlog of '0' disables listening. 5635 * 5636 * Move a socket to LISTENING state. 5637 */ 5638 int sctp_inet_listen(struct socket *sock, int backlog) 5639 { 5640 struct sock *sk = sock->sk; 5641 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5642 int err = -EINVAL; 5643 5644 if (unlikely(backlog < 0)) 5645 return err; 5646 5647 sctp_lock_sock(sk); 5648 5649 /* Peeled-off sockets are not allowed to listen(). */ 5650 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5651 goto out; 5652 5653 if (sock->state != SS_UNCONNECTED) 5654 goto out; 5655 5656 /* If backlog is zero, disable listening. */ 5657 if (!backlog) { 5658 if (sctp_sstate(sk, CLOSED)) 5659 goto out; 5660 5661 err = 0; 5662 sctp_unhash_endpoint(ep); 5663 sk->sk_state = SCTP_SS_CLOSED; 5664 if (sk->sk_reuse) 5665 sctp_sk(sk)->bind_hash->fastreuse = 1; 5666 goto out; 5667 } 5668 5669 /* If we are already listening, just update the backlog */ 5670 if (sctp_sstate(sk, LISTENING)) 5671 sk->sk_max_ack_backlog = backlog; 5672 else { 5673 err = sctp_listen_start(sk, backlog); 5674 if (err) 5675 goto out; 5676 } 5677 5678 err = 0; 5679 out: 5680 sctp_release_sock(sk); 5681 return err; 5682 } 5683 5684 /* 5685 * This function is done by modeling the current datagram_poll() and the 5686 * tcp_poll(). Note that, based on these implementations, we don't 5687 * lock the socket in this function, even though it seems that, 5688 * ideally, locking or some other mechanisms can be used to ensure 5689 * the integrity of the counters (sndbuf and wmem_alloc) used 5690 * in this place. We assume that we don't need locks either until proven 5691 * otherwise. 5692 * 5693 * Another thing to note is that we include the Async I/O support 5694 * here, again, by modeling the current TCP/UDP code. We don't have 5695 * a good way to test with it yet. 5696 */ 5697 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5698 { 5699 struct sock *sk = sock->sk; 5700 struct sctp_sock *sp = sctp_sk(sk); 5701 unsigned int mask; 5702 5703 poll_wait(file, sk->sk_sleep, wait); 5704 5705 /* A TCP-style listening socket becomes readable when the accept queue 5706 * is not empty. 5707 */ 5708 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5709 return (!list_empty(&sp->ep->asocs)) ? 5710 (POLLIN | POLLRDNORM) : 0; 5711 5712 mask = 0; 5713 5714 /* Is there any exceptional events? */ 5715 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5716 mask |= POLLERR; 5717 if (sk->sk_shutdown & RCV_SHUTDOWN) 5718 mask |= POLLRDHUP; 5719 if (sk->sk_shutdown == SHUTDOWN_MASK) 5720 mask |= POLLHUP; 5721 5722 /* Is it readable? Reconsider this code with TCP-style support. */ 5723 if (!skb_queue_empty(&sk->sk_receive_queue) || 5724 (sk->sk_shutdown & RCV_SHUTDOWN)) 5725 mask |= POLLIN | POLLRDNORM; 5726 5727 /* The association is either gone or not ready. */ 5728 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5729 return mask; 5730 5731 /* Is it writable? */ 5732 if (sctp_writeable(sk)) { 5733 mask |= POLLOUT | POLLWRNORM; 5734 } else { 5735 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5736 /* 5737 * Since the socket is not locked, the buffer 5738 * might be made available after the writeable check and 5739 * before the bit is set. This could cause a lost I/O 5740 * signal. tcp_poll() has a race breaker for this race 5741 * condition. Based on their implementation, we put 5742 * in the following code to cover it as well. 5743 */ 5744 if (sctp_writeable(sk)) 5745 mask |= POLLOUT | POLLWRNORM; 5746 } 5747 return mask; 5748 } 5749 5750 /******************************************************************** 5751 * 2nd Level Abstractions 5752 ********************************************************************/ 5753 5754 static struct sctp_bind_bucket *sctp_bucket_create( 5755 struct sctp_bind_hashbucket *head, unsigned short snum) 5756 { 5757 struct sctp_bind_bucket *pp; 5758 5759 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5760 if (pp) { 5761 SCTP_DBG_OBJCNT_INC(bind_bucket); 5762 pp->port = snum; 5763 pp->fastreuse = 0; 5764 INIT_HLIST_HEAD(&pp->owner); 5765 hlist_add_head(&pp->node, &head->chain); 5766 } 5767 return pp; 5768 } 5769 5770 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5771 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5772 { 5773 if (pp && hlist_empty(&pp->owner)) { 5774 __hlist_del(&pp->node); 5775 kmem_cache_free(sctp_bucket_cachep, pp); 5776 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5777 } 5778 } 5779 5780 /* Release this socket's reference to a local port. */ 5781 static inline void __sctp_put_port(struct sock *sk) 5782 { 5783 struct sctp_bind_hashbucket *head = 5784 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 5785 struct sctp_bind_bucket *pp; 5786 5787 sctp_spin_lock(&head->lock); 5788 pp = sctp_sk(sk)->bind_hash; 5789 __sk_del_bind_node(sk); 5790 sctp_sk(sk)->bind_hash = NULL; 5791 inet_sk(sk)->inet_num = 0; 5792 sctp_bucket_destroy(pp); 5793 sctp_spin_unlock(&head->lock); 5794 } 5795 5796 void sctp_put_port(struct sock *sk) 5797 { 5798 sctp_local_bh_disable(); 5799 __sctp_put_port(sk); 5800 sctp_local_bh_enable(); 5801 } 5802 5803 /* 5804 * The system picks an ephemeral port and choose an address set equivalent 5805 * to binding with a wildcard address. 5806 * One of those addresses will be the primary address for the association. 5807 * This automatically enables the multihoming capability of SCTP. 5808 */ 5809 static int sctp_autobind(struct sock *sk) 5810 { 5811 union sctp_addr autoaddr; 5812 struct sctp_af *af; 5813 __be16 port; 5814 5815 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5816 af = sctp_sk(sk)->pf->af; 5817 5818 port = htons(inet_sk(sk)->inet_num); 5819 af->inaddr_any(&autoaddr, port); 5820 5821 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5822 } 5823 5824 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5825 * 5826 * From RFC 2292 5827 * 4.2 The cmsghdr Structure * 5828 * 5829 * When ancillary data is sent or received, any number of ancillary data 5830 * objects can be specified by the msg_control and msg_controllen members of 5831 * the msghdr structure, because each object is preceded by 5832 * a cmsghdr structure defining the object's length (the cmsg_len member). 5833 * Historically Berkeley-derived implementations have passed only one object 5834 * at a time, but this API allows multiple objects to be 5835 * passed in a single call to sendmsg() or recvmsg(). The following example 5836 * shows two ancillary data objects in a control buffer. 5837 * 5838 * |<--------------------------- msg_controllen -------------------------->| 5839 * | | 5840 * 5841 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5842 * 5843 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5844 * | | | 5845 * 5846 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5847 * 5848 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5849 * | | | | | 5850 * 5851 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5852 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5853 * 5854 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5855 * 5856 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5857 * ^ 5858 * | 5859 * 5860 * msg_control 5861 * points here 5862 */ 5863 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5864 sctp_cmsgs_t *cmsgs) 5865 { 5866 struct cmsghdr *cmsg; 5867 struct msghdr *my_msg = (struct msghdr *)msg; 5868 5869 for (cmsg = CMSG_FIRSTHDR(msg); 5870 cmsg != NULL; 5871 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 5872 if (!CMSG_OK(my_msg, cmsg)) 5873 return -EINVAL; 5874 5875 /* Should we parse this header or ignore? */ 5876 if (cmsg->cmsg_level != IPPROTO_SCTP) 5877 continue; 5878 5879 /* Strictly check lengths following example in SCM code. */ 5880 switch (cmsg->cmsg_type) { 5881 case SCTP_INIT: 5882 /* SCTP Socket API Extension 5883 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5884 * 5885 * This cmsghdr structure provides information for 5886 * initializing new SCTP associations with sendmsg(). 5887 * The SCTP_INITMSG socket option uses this same data 5888 * structure. This structure is not used for 5889 * recvmsg(). 5890 * 5891 * cmsg_level cmsg_type cmsg_data[] 5892 * ------------ ------------ ---------------------- 5893 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5894 */ 5895 if (cmsg->cmsg_len != 5896 CMSG_LEN(sizeof(struct sctp_initmsg))) 5897 return -EINVAL; 5898 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5899 break; 5900 5901 case SCTP_SNDRCV: 5902 /* SCTP Socket API Extension 5903 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5904 * 5905 * This cmsghdr structure specifies SCTP options for 5906 * sendmsg() and describes SCTP header information 5907 * about a received message through recvmsg(). 5908 * 5909 * cmsg_level cmsg_type cmsg_data[] 5910 * ------------ ------------ ---------------------- 5911 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5912 */ 5913 if (cmsg->cmsg_len != 5914 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5915 return -EINVAL; 5916 5917 cmsgs->info = 5918 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5919 5920 /* Minimally, validate the sinfo_flags. */ 5921 if (cmsgs->info->sinfo_flags & 5922 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5923 SCTP_ABORT | SCTP_EOF)) 5924 return -EINVAL; 5925 break; 5926 5927 default: 5928 return -EINVAL; 5929 } 5930 } 5931 return 0; 5932 } 5933 5934 /* 5935 * Wait for a packet.. 5936 * Note: This function is the same function as in core/datagram.c 5937 * with a few modifications to make lksctp work. 5938 */ 5939 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5940 { 5941 int error; 5942 DEFINE_WAIT(wait); 5943 5944 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5945 5946 /* Socket errors? */ 5947 error = sock_error(sk); 5948 if (error) 5949 goto out; 5950 5951 if (!skb_queue_empty(&sk->sk_receive_queue)) 5952 goto ready; 5953 5954 /* Socket shut down? */ 5955 if (sk->sk_shutdown & RCV_SHUTDOWN) 5956 goto out; 5957 5958 /* Sequenced packets can come disconnected. If so we report the 5959 * problem. 5960 */ 5961 error = -ENOTCONN; 5962 5963 /* Is there a good reason to think that we may receive some data? */ 5964 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5965 goto out; 5966 5967 /* Handle signals. */ 5968 if (signal_pending(current)) 5969 goto interrupted; 5970 5971 /* Let another process have a go. Since we are going to sleep 5972 * anyway. Note: This may cause odd behaviors if the message 5973 * does not fit in the user's buffer, but this seems to be the 5974 * only way to honor MSG_DONTWAIT realistically. 5975 */ 5976 sctp_release_sock(sk); 5977 *timeo_p = schedule_timeout(*timeo_p); 5978 sctp_lock_sock(sk); 5979 5980 ready: 5981 finish_wait(sk->sk_sleep, &wait); 5982 return 0; 5983 5984 interrupted: 5985 error = sock_intr_errno(*timeo_p); 5986 5987 out: 5988 finish_wait(sk->sk_sleep, &wait); 5989 *err = error; 5990 return error; 5991 } 5992 5993 /* Receive a datagram. 5994 * Note: This is pretty much the same routine as in core/datagram.c 5995 * with a few changes to make lksctp work. 5996 */ 5997 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5998 int noblock, int *err) 5999 { 6000 int error; 6001 struct sk_buff *skb; 6002 long timeo; 6003 6004 timeo = sock_rcvtimeo(sk, noblock); 6005 6006 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6007 timeo, MAX_SCHEDULE_TIMEOUT); 6008 6009 do { 6010 /* Again only user level code calls this function, 6011 * so nothing interrupt level 6012 * will suddenly eat the receive_queue. 6013 * 6014 * Look at current nfs client by the way... 6015 * However, this function was corrent in any case. 8) 6016 */ 6017 if (flags & MSG_PEEK) { 6018 spin_lock_bh(&sk->sk_receive_queue.lock); 6019 skb = skb_peek(&sk->sk_receive_queue); 6020 if (skb) 6021 atomic_inc(&skb->users); 6022 spin_unlock_bh(&sk->sk_receive_queue.lock); 6023 } else { 6024 skb = skb_dequeue(&sk->sk_receive_queue); 6025 } 6026 6027 if (skb) 6028 return skb; 6029 6030 /* Caller is allowed not to check sk->sk_err before calling. */ 6031 error = sock_error(sk); 6032 if (error) 6033 goto no_packet; 6034 6035 if (sk->sk_shutdown & RCV_SHUTDOWN) 6036 break; 6037 6038 /* User doesn't want to wait. */ 6039 error = -EAGAIN; 6040 if (!timeo) 6041 goto no_packet; 6042 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6043 6044 return NULL; 6045 6046 no_packet: 6047 *err = error; 6048 return NULL; 6049 } 6050 6051 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6052 static void __sctp_write_space(struct sctp_association *asoc) 6053 { 6054 struct sock *sk = asoc->base.sk; 6055 struct socket *sock = sk->sk_socket; 6056 6057 if ((sctp_wspace(asoc) > 0) && sock) { 6058 if (waitqueue_active(&asoc->wait)) 6059 wake_up_interruptible(&asoc->wait); 6060 6061 if (sctp_writeable(sk)) { 6062 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6063 wake_up_interruptible(sk->sk_sleep); 6064 6065 /* Note that we try to include the Async I/O support 6066 * here by modeling from the current TCP/UDP code. 6067 * We have not tested with it yet. 6068 */ 6069 if (sock->fasync_list && 6070 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6071 sock_wake_async(sock, 6072 SOCK_WAKE_SPACE, POLL_OUT); 6073 } 6074 } 6075 } 6076 6077 /* Do accounting for the sndbuf space. 6078 * Decrement the used sndbuf space of the corresponding association by the 6079 * data size which was just transmitted(freed). 6080 */ 6081 static void sctp_wfree(struct sk_buff *skb) 6082 { 6083 struct sctp_association *asoc; 6084 struct sctp_chunk *chunk; 6085 struct sock *sk; 6086 6087 /* Get the saved chunk pointer. */ 6088 chunk = *((struct sctp_chunk **)(skb->cb)); 6089 asoc = chunk->asoc; 6090 sk = asoc->base.sk; 6091 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6092 sizeof(struct sk_buff) + 6093 sizeof(struct sctp_chunk); 6094 6095 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6096 6097 /* 6098 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6099 */ 6100 sk->sk_wmem_queued -= skb->truesize; 6101 sk_mem_uncharge(sk, skb->truesize); 6102 6103 sock_wfree(skb); 6104 __sctp_write_space(asoc); 6105 6106 sctp_association_put(asoc); 6107 } 6108 6109 /* Do accounting for the receive space on the socket. 6110 * Accounting for the association is done in ulpevent.c 6111 * We set this as a destructor for the cloned data skbs so that 6112 * accounting is done at the correct time. 6113 */ 6114 void sctp_sock_rfree(struct sk_buff *skb) 6115 { 6116 struct sock *sk = skb->sk; 6117 struct sctp_ulpevent *event = sctp_skb2event(skb); 6118 6119 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6120 6121 /* 6122 * Mimic the behavior of sock_rfree 6123 */ 6124 sk_mem_uncharge(sk, event->rmem_len); 6125 } 6126 6127 6128 /* Helper function to wait for space in the sndbuf. */ 6129 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6130 size_t msg_len) 6131 { 6132 struct sock *sk = asoc->base.sk; 6133 int err = 0; 6134 long current_timeo = *timeo_p; 6135 DEFINE_WAIT(wait); 6136 6137 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6138 asoc, (long)(*timeo_p), msg_len); 6139 6140 /* Increment the association's refcnt. */ 6141 sctp_association_hold(asoc); 6142 6143 /* Wait on the association specific sndbuf space. */ 6144 for (;;) { 6145 prepare_to_wait_exclusive(&asoc->wait, &wait, 6146 TASK_INTERRUPTIBLE); 6147 if (!*timeo_p) 6148 goto do_nonblock; 6149 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6150 asoc->base.dead) 6151 goto do_error; 6152 if (signal_pending(current)) 6153 goto do_interrupted; 6154 if (msg_len <= sctp_wspace(asoc)) 6155 break; 6156 6157 /* Let another process have a go. Since we are going 6158 * to sleep anyway. 6159 */ 6160 sctp_release_sock(sk); 6161 current_timeo = schedule_timeout(current_timeo); 6162 BUG_ON(sk != asoc->base.sk); 6163 sctp_lock_sock(sk); 6164 6165 *timeo_p = current_timeo; 6166 } 6167 6168 out: 6169 finish_wait(&asoc->wait, &wait); 6170 6171 /* Release the association's refcnt. */ 6172 sctp_association_put(asoc); 6173 6174 return err; 6175 6176 do_error: 6177 err = -EPIPE; 6178 goto out; 6179 6180 do_interrupted: 6181 err = sock_intr_errno(*timeo_p); 6182 goto out; 6183 6184 do_nonblock: 6185 err = -EAGAIN; 6186 goto out; 6187 } 6188 6189 /* If socket sndbuf has changed, wake up all per association waiters. */ 6190 void sctp_write_space(struct sock *sk) 6191 { 6192 struct sctp_association *asoc; 6193 6194 /* Wake up the tasks in each wait queue. */ 6195 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6196 __sctp_write_space(asoc); 6197 } 6198 } 6199 6200 /* Is there any sndbuf space available on the socket? 6201 * 6202 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6203 * associations on the same socket. For a UDP-style socket with 6204 * multiple associations, it is possible for it to be "unwriteable" 6205 * prematurely. I assume that this is acceptable because 6206 * a premature "unwriteable" is better than an accidental "writeable" which 6207 * would cause an unwanted block under certain circumstances. For the 1-1 6208 * UDP-style sockets or TCP-style sockets, this code should work. 6209 * - Daisy 6210 */ 6211 static int sctp_writeable(struct sock *sk) 6212 { 6213 int amt = 0; 6214 6215 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6216 if (amt < 0) 6217 amt = 0; 6218 return amt; 6219 } 6220 6221 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6222 * returns immediately with EINPROGRESS. 6223 */ 6224 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6225 { 6226 struct sock *sk = asoc->base.sk; 6227 int err = 0; 6228 long current_timeo = *timeo_p; 6229 DEFINE_WAIT(wait); 6230 6231 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6232 (long)(*timeo_p)); 6233 6234 /* Increment the association's refcnt. */ 6235 sctp_association_hold(asoc); 6236 6237 for (;;) { 6238 prepare_to_wait_exclusive(&asoc->wait, &wait, 6239 TASK_INTERRUPTIBLE); 6240 if (!*timeo_p) 6241 goto do_nonblock; 6242 if (sk->sk_shutdown & RCV_SHUTDOWN) 6243 break; 6244 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6245 asoc->base.dead) 6246 goto do_error; 6247 if (signal_pending(current)) 6248 goto do_interrupted; 6249 6250 if (sctp_state(asoc, ESTABLISHED)) 6251 break; 6252 6253 /* Let another process have a go. Since we are going 6254 * to sleep anyway. 6255 */ 6256 sctp_release_sock(sk); 6257 current_timeo = schedule_timeout(current_timeo); 6258 sctp_lock_sock(sk); 6259 6260 *timeo_p = current_timeo; 6261 } 6262 6263 out: 6264 finish_wait(&asoc->wait, &wait); 6265 6266 /* Release the association's refcnt. */ 6267 sctp_association_put(asoc); 6268 6269 return err; 6270 6271 do_error: 6272 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6273 err = -ETIMEDOUT; 6274 else 6275 err = -ECONNREFUSED; 6276 goto out; 6277 6278 do_interrupted: 6279 err = sock_intr_errno(*timeo_p); 6280 goto out; 6281 6282 do_nonblock: 6283 err = -EINPROGRESS; 6284 goto out; 6285 } 6286 6287 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6288 { 6289 struct sctp_endpoint *ep; 6290 int err = 0; 6291 DEFINE_WAIT(wait); 6292 6293 ep = sctp_sk(sk)->ep; 6294 6295 6296 for (;;) { 6297 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6298 TASK_INTERRUPTIBLE); 6299 6300 if (list_empty(&ep->asocs)) { 6301 sctp_release_sock(sk); 6302 timeo = schedule_timeout(timeo); 6303 sctp_lock_sock(sk); 6304 } 6305 6306 err = -EINVAL; 6307 if (!sctp_sstate(sk, LISTENING)) 6308 break; 6309 6310 err = 0; 6311 if (!list_empty(&ep->asocs)) 6312 break; 6313 6314 err = sock_intr_errno(timeo); 6315 if (signal_pending(current)) 6316 break; 6317 6318 err = -EAGAIN; 6319 if (!timeo) 6320 break; 6321 } 6322 6323 finish_wait(sk->sk_sleep, &wait); 6324 6325 return err; 6326 } 6327 6328 static void sctp_wait_for_close(struct sock *sk, long timeout) 6329 { 6330 DEFINE_WAIT(wait); 6331 6332 do { 6333 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6334 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6335 break; 6336 sctp_release_sock(sk); 6337 timeout = schedule_timeout(timeout); 6338 sctp_lock_sock(sk); 6339 } while (!signal_pending(current) && timeout); 6340 6341 finish_wait(sk->sk_sleep, &wait); 6342 } 6343 6344 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6345 { 6346 struct sk_buff *frag; 6347 6348 if (!skb->data_len) 6349 goto done; 6350 6351 /* Don't forget the fragments. */ 6352 skb_walk_frags(skb, frag) 6353 sctp_skb_set_owner_r_frag(frag, sk); 6354 6355 done: 6356 sctp_skb_set_owner_r(skb, sk); 6357 } 6358 6359 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6360 struct sctp_association *asoc) 6361 { 6362 struct inet_sock *inet = inet_sk(sk); 6363 struct inet_sock *newinet = inet_sk(newsk); 6364 6365 newsk->sk_type = sk->sk_type; 6366 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6367 newsk->sk_flags = sk->sk_flags; 6368 newsk->sk_no_check = sk->sk_no_check; 6369 newsk->sk_reuse = sk->sk_reuse; 6370 6371 newsk->sk_shutdown = sk->sk_shutdown; 6372 newsk->sk_destruct = inet_sock_destruct; 6373 newsk->sk_family = sk->sk_family; 6374 newsk->sk_protocol = IPPROTO_SCTP; 6375 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6376 newsk->sk_sndbuf = sk->sk_sndbuf; 6377 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6378 newsk->sk_lingertime = sk->sk_lingertime; 6379 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6380 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6381 6382 newinet = inet_sk(newsk); 6383 6384 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6385 * getsockname() and getpeername() 6386 */ 6387 newinet->inet_sport = inet->inet_sport; 6388 newinet->inet_saddr = inet->inet_saddr; 6389 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6390 newinet->inet_dport = htons(asoc->peer.port); 6391 newinet->pmtudisc = inet->pmtudisc; 6392 newinet->inet_id = asoc->next_tsn ^ jiffies; 6393 6394 newinet->uc_ttl = inet->uc_ttl; 6395 newinet->mc_loop = 1; 6396 newinet->mc_ttl = 1; 6397 newinet->mc_index = 0; 6398 newinet->mc_list = NULL; 6399 } 6400 6401 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6402 * and its messages to the newsk. 6403 */ 6404 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6405 struct sctp_association *assoc, 6406 sctp_socket_type_t type) 6407 { 6408 struct sctp_sock *oldsp = sctp_sk(oldsk); 6409 struct sctp_sock *newsp = sctp_sk(newsk); 6410 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6411 struct sctp_endpoint *newep = newsp->ep; 6412 struct sk_buff *skb, *tmp; 6413 struct sctp_ulpevent *event; 6414 struct sctp_bind_hashbucket *head; 6415 6416 /* Migrate socket buffer sizes and all the socket level options to the 6417 * new socket. 6418 */ 6419 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6420 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6421 /* Brute force copy old sctp opt. */ 6422 inet_sk_copy_descendant(newsk, oldsk); 6423 6424 /* Restore the ep value that was overwritten with the above structure 6425 * copy. 6426 */ 6427 newsp->ep = newep; 6428 newsp->hmac = NULL; 6429 6430 /* Hook this new socket in to the bind_hash list. */ 6431 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6432 sctp_local_bh_disable(); 6433 sctp_spin_lock(&head->lock); 6434 pp = sctp_sk(oldsk)->bind_hash; 6435 sk_add_bind_node(newsk, &pp->owner); 6436 sctp_sk(newsk)->bind_hash = pp; 6437 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6438 sctp_spin_unlock(&head->lock); 6439 sctp_local_bh_enable(); 6440 6441 /* Copy the bind_addr list from the original endpoint to the new 6442 * endpoint so that we can handle restarts properly 6443 */ 6444 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6445 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6446 6447 /* Move any messages in the old socket's receive queue that are for the 6448 * peeled off association to the new socket's receive queue. 6449 */ 6450 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6451 event = sctp_skb2event(skb); 6452 if (event->asoc == assoc) { 6453 __skb_unlink(skb, &oldsk->sk_receive_queue); 6454 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6455 sctp_skb_set_owner_r_frag(skb, newsk); 6456 } 6457 } 6458 6459 /* Clean up any messages pending delivery due to partial 6460 * delivery. Three cases: 6461 * 1) No partial deliver; no work. 6462 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6463 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6464 */ 6465 skb_queue_head_init(&newsp->pd_lobby); 6466 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6467 6468 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6469 struct sk_buff_head *queue; 6470 6471 /* Decide which queue to move pd_lobby skbs to. */ 6472 if (assoc->ulpq.pd_mode) { 6473 queue = &newsp->pd_lobby; 6474 } else 6475 queue = &newsk->sk_receive_queue; 6476 6477 /* Walk through the pd_lobby, looking for skbs that 6478 * need moved to the new socket. 6479 */ 6480 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6481 event = sctp_skb2event(skb); 6482 if (event->asoc == assoc) { 6483 __skb_unlink(skb, &oldsp->pd_lobby); 6484 __skb_queue_tail(queue, skb); 6485 sctp_skb_set_owner_r_frag(skb, newsk); 6486 } 6487 } 6488 6489 /* Clear up any skbs waiting for the partial 6490 * delivery to finish. 6491 */ 6492 if (assoc->ulpq.pd_mode) 6493 sctp_clear_pd(oldsk, NULL); 6494 6495 } 6496 6497 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6498 sctp_skb_set_owner_r_frag(skb, newsk); 6499 6500 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6501 sctp_skb_set_owner_r_frag(skb, newsk); 6502 6503 /* Set the type of socket to indicate that it is peeled off from the 6504 * original UDP-style socket or created with the accept() call on a 6505 * TCP-style socket.. 6506 */ 6507 newsp->type = type; 6508 6509 /* Mark the new socket "in-use" by the user so that any packets 6510 * that may arrive on the association after we've moved it are 6511 * queued to the backlog. This prevents a potential race between 6512 * backlog processing on the old socket and new-packet processing 6513 * on the new socket. 6514 * 6515 * The caller has just allocated newsk so we can guarantee that other 6516 * paths won't try to lock it and then oldsk. 6517 */ 6518 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6519 sctp_assoc_migrate(assoc, newsk); 6520 6521 /* If the association on the newsk is already closed before accept() 6522 * is called, set RCV_SHUTDOWN flag. 6523 */ 6524 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6525 newsk->sk_shutdown |= RCV_SHUTDOWN; 6526 6527 newsk->sk_state = SCTP_SS_ESTABLISHED; 6528 sctp_release_sock(newsk); 6529 } 6530 6531 6532 /* This proto struct describes the ULP interface for SCTP. */ 6533 struct proto sctp_prot = { 6534 .name = "SCTP", 6535 .owner = THIS_MODULE, 6536 .close = sctp_close, 6537 .connect = sctp_connect, 6538 .disconnect = sctp_disconnect, 6539 .accept = sctp_accept, 6540 .ioctl = sctp_ioctl, 6541 .init = sctp_init_sock, 6542 .destroy = sctp_destroy_sock, 6543 .shutdown = sctp_shutdown, 6544 .setsockopt = sctp_setsockopt, 6545 .getsockopt = sctp_getsockopt, 6546 .sendmsg = sctp_sendmsg, 6547 .recvmsg = sctp_recvmsg, 6548 .bind = sctp_bind, 6549 .backlog_rcv = sctp_backlog_rcv, 6550 .hash = sctp_hash, 6551 .unhash = sctp_unhash, 6552 .get_port = sctp_get_port, 6553 .obj_size = sizeof(struct sctp_sock), 6554 .sysctl_mem = sysctl_sctp_mem, 6555 .sysctl_rmem = sysctl_sctp_rmem, 6556 .sysctl_wmem = sysctl_sctp_wmem, 6557 .memory_pressure = &sctp_memory_pressure, 6558 .enter_memory_pressure = sctp_enter_memory_pressure, 6559 .memory_allocated = &sctp_memory_allocated, 6560 .sockets_allocated = &sctp_sockets_allocated, 6561 }; 6562 6563 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6564 6565 struct proto sctpv6_prot = { 6566 .name = "SCTPv6", 6567 .owner = THIS_MODULE, 6568 .close = sctp_close, 6569 .connect = sctp_connect, 6570 .disconnect = sctp_disconnect, 6571 .accept = sctp_accept, 6572 .ioctl = sctp_ioctl, 6573 .init = sctp_init_sock, 6574 .destroy = sctp_destroy_sock, 6575 .shutdown = sctp_shutdown, 6576 .setsockopt = sctp_setsockopt, 6577 .getsockopt = sctp_getsockopt, 6578 .sendmsg = sctp_sendmsg, 6579 .recvmsg = sctp_recvmsg, 6580 .bind = sctp_bind, 6581 .backlog_rcv = sctp_backlog_rcv, 6582 .hash = sctp_hash, 6583 .unhash = sctp_unhash, 6584 .get_port = sctp_get_port, 6585 .obj_size = sizeof(struct sctp6_sock), 6586 .sysctl_mem = sysctl_sctp_mem, 6587 .sysctl_rmem = sysctl_sctp_rmem, 6588 .sysctl_wmem = sysctl_sctp_wmem, 6589 .memory_pressure = &sctp_memory_pressure, 6590 .enter_memory_pressure = sctp_enter_memory_pressure, 6591 .memory_allocated = &sctp_memory_allocated, 6592 .sockets_allocated = &sctp_sockets_allocated, 6593 }; 6594 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6595