1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 151 void (*cb)(struct sctp_chunk *)) 152 153 { 154 struct sctp_outq *q = &asoc->outqueue; 155 struct sctp_transport *t; 156 struct sctp_chunk *chunk; 157 158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 159 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 160 cb(chunk); 161 162 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 163 cb(chunk); 164 165 list_for_each_entry(chunk, &q->sacked, transmitted_list) 166 cb(chunk); 167 168 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 169 cb(chunk); 170 171 list_for_each_entry(chunk, &q->out_chunk_list, list) 172 cb(chunk); 173 } 174 175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 176 void (*cb)(struct sk_buff *, struct sock *)) 177 178 { 179 struct sk_buff *skb, *tmp; 180 181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 182 cb(skb, sk); 183 184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 185 cb(skb, sk); 186 187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 188 cb(skb, sk); 189 } 190 191 /* Verify that this is a valid address. */ 192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 193 int len) 194 { 195 struct sctp_af *af; 196 197 /* Verify basic sockaddr. */ 198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 199 if (!af) 200 return -EINVAL; 201 202 /* Is this a valid SCTP address? */ 203 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 204 return -EINVAL; 205 206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* Look up the association by its id. If this is not a UDP-style 213 * socket, the ID field is always ignored. 214 */ 215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 216 { 217 struct sctp_association *asoc = NULL; 218 219 /* If this is not a UDP-style socket, assoc id should be ignored. */ 220 if (!sctp_style(sk, UDP)) { 221 /* Return NULL if the socket state is not ESTABLISHED. It 222 * could be a TCP-style listening socket or a socket which 223 * hasn't yet called connect() to establish an association. 224 */ 225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 226 return NULL; 227 228 /* Get the first and the only association from the list. */ 229 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 231 struct sctp_association, asocs); 232 return asoc; 233 } 234 235 /* Otherwise this is a UDP-style socket. */ 236 if (id <= SCTP_ALL_ASSOC) 237 return NULL; 238 239 spin_lock_bh(&sctp_assocs_id_lock); 240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 241 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 242 asoc = NULL; 243 spin_unlock_bh(&sctp_assocs_id_lock); 244 245 return asoc; 246 } 247 248 /* Look up the transport from an address and an assoc id. If both address and 249 * id are specified, the associations matching the address and the id should be 250 * the same. 251 */ 252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 253 struct sockaddr_storage *addr, 254 sctp_assoc_t id) 255 { 256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 258 union sctp_addr *laddr = (union sctp_addr *)addr; 259 struct sctp_transport *transport; 260 261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 262 return NULL; 263 264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 265 laddr, 266 &transport); 267 268 if (!addr_asoc) 269 return NULL; 270 271 id_asoc = sctp_id2assoc(sk, id); 272 if (id_asoc && (id_asoc != addr_asoc)) 273 return NULL; 274 275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 276 (union sctp_addr *)addr); 277 278 return transport; 279 } 280 281 /* API 3.1.2 bind() - UDP Style Syntax 282 * The syntax of bind() is, 283 * 284 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 285 * 286 * sd - the socket descriptor returned by socket(). 287 * addr - the address structure (struct sockaddr_in or struct 288 * sockaddr_in6 [RFC 2553]), 289 * addr_len - the size of the address structure. 290 */ 291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 292 { 293 int retval = 0; 294 295 lock_sock(sk); 296 297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 298 addr, addr_len); 299 300 /* Disallow binding twice. */ 301 if (!sctp_sk(sk)->ep->base.bind_addr.port) 302 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 303 addr_len); 304 else 305 retval = -EINVAL; 306 307 release_sock(sk); 308 309 return retval; 310 } 311 312 static int sctp_get_port_local(struct sock *, union sctp_addr *); 313 314 /* Verify this is a valid sockaddr. */ 315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 316 union sctp_addr *addr, int len) 317 { 318 struct sctp_af *af; 319 320 /* Check minimum size. */ 321 if (len < sizeof (struct sockaddr)) 322 return NULL; 323 324 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 325 return NULL; 326 327 if (addr->sa.sa_family == AF_INET6) { 328 if (len < SIN6_LEN_RFC2133) 329 return NULL; 330 /* V4 mapped address are really of AF_INET family */ 331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 332 !opt->pf->af_supported(AF_INET, opt)) 333 return NULL; 334 } 335 336 /* If we get this far, af is valid. */ 337 af = sctp_get_af_specific(addr->sa.sa_family); 338 339 if (len < af->sockaddr_len) 340 return NULL; 341 342 return af; 343 } 344 345 /* Bind a local address either to an endpoint or to an association. */ 346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 347 { 348 struct net *net = sock_net(sk); 349 struct sctp_sock *sp = sctp_sk(sk); 350 struct sctp_endpoint *ep = sp->ep; 351 struct sctp_bind_addr *bp = &ep->base.bind_addr; 352 struct sctp_af *af; 353 unsigned short snum; 354 int ret = 0; 355 356 /* Common sockaddr verification. */ 357 af = sctp_sockaddr_af(sp, addr, len); 358 if (!af) { 359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 360 __func__, sk, addr, len); 361 return -EINVAL; 362 } 363 364 snum = ntohs(addr->v4.sin_port); 365 366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 367 __func__, sk, &addr->sa, bp->port, snum, len); 368 369 /* PF specific bind() address verification. */ 370 if (!sp->pf->bind_verify(sp, addr)) 371 return -EADDRNOTAVAIL; 372 373 /* We must either be unbound, or bind to the same port. 374 * It's OK to allow 0 ports if we are already bound. 375 * We'll just inhert an already bound port in this case 376 */ 377 if (bp->port) { 378 if (!snum) 379 snum = bp->port; 380 else if (snum != bp->port) { 381 pr_debug("%s: new port %d doesn't match existing port " 382 "%d\n", __func__, snum, bp->port); 383 return -EINVAL; 384 } 385 } 386 387 if (snum && inet_port_requires_bind_service(net, snum) && 388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 389 return -EACCES; 390 391 /* See if the address matches any of the addresses we may have 392 * already bound before checking against other endpoints. 393 */ 394 if (sctp_bind_addr_match(bp, addr, sp)) 395 return -EINVAL; 396 397 /* Make sure we are allowed to bind here. 398 * The function sctp_get_port_local() does duplicate address 399 * detection. 400 */ 401 addr->v4.sin_port = htons(snum); 402 if (sctp_get_port_local(sk, addr)) 403 return -EADDRINUSE; 404 405 /* Refresh ephemeral port. */ 406 if (!bp->port) 407 bp->port = inet_sk(sk)->inet_num; 408 409 /* Add the address to the bind address list. 410 * Use GFP_ATOMIC since BHs will be disabled. 411 */ 412 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 413 SCTP_ADDR_SRC, GFP_ATOMIC); 414 415 if (ret) { 416 sctp_put_port(sk); 417 return ret; 418 } 419 /* Copy back into socket for getsockname() use. */ 420 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 421 sp->pf->to_sk_saddr(addr, sk); 422 423 return ret; 424 } 425 426 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 427 * 428 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 429 * at any one time. If a sender, after sending an ASCONF chunk, decides 430 * it needs to transfer another ASCONF Chunk, it MUST wait until the 431 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 432 * subsequent ASCONF. Note this restriction binds each side, so at any 433 * time two ASCONF may be in-transit on any given association (one sent 434 * from each endpoint). 435 */ 436 static int sctp_send_asconf(struct sctp_association *asoc, 437 struct sctp_chunk *chunk) 438 { 439 struct net *net = sock_net(asoc->base.sk); 440 int retval = 0; 441 442 /* If there is an outstanding ASCONF chunk, queue it for later 443 * transmission. 444 */ 445 if (asoc->addip_last_asconf) { 446 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 447 goto out; 448 } 449 450 /* Hold the chunk until an ASCONF_ACK is received. */ 451 sctp_chunk_hold(chunk); 452 retval = sctp_primitive_ASCONF(net, asoc, chunk); 453 if (retval) 454 sctp_chunk_free(chunk); 455 else 456 asoc->addip_last_asconf = chunk; 457 458 out: 459 return retval; 460 } 461 462 /* Add a list of addresses as bind addresses to local endpoint or 463 * association. 464 * 465 * Basically run through each address specified in the addrs/addrcnt 466 * array/length pair, determine if it is IPv6 or IPv4 and call 467 * sctp_do_bind() on it. 468 * 469 * If any of them fails, then the operation will be reversed and the 470 * ones that were added will be removed. 471 * 472 * Only sctp_setsockopt_bindx() is supposed to call this function. 473 */ 474 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 475 { 476 int cnt; 477 int retval = 0; 478 void *addr_buf; 479 struct sockaddr *sa_addr; 480 struct sctp_af *af; 481 482 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 483 addrs, addrcnt); 484 485 addr_buf = addrs; 486 for (cnt = 0; cnt < addrcnt; cnt++) { 487 /* The list may contain either IPv4 or IPv6 address; 488 * determine the address length for walking thru the list. 489 */ 490 sa_addr = addr_buf; 491 af = sctp_get_af_specific(sa_addr->sa_family); 492 if (!af) { 493 retval = -EINVAL; 494 goto err_bindx_add; 495 } 496 497 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 498 af->sockaddr_len); 499 500 addr_buf += af->sockaddr_len; 501 502 err_bindx_add: 503 if (retval < 0) { 504 /* Failed. Cleanup the ones that have been added */ 505 if (cnt > 0) 506 sctp_bindx_rem(sk, addrs, cnt); 507 return retval; 508 } 509 } 510 511 return retval; 512 } 513 514 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 515 * associations that are part of the endpoint indicating that a list of local 516 * addresses are added to the endpoint. 517 * 518 * If any of the addresses is already in the bind address list of the 519 * association, we do not send the chunk for that association. But it will not 520 * affect other associations. 521 * 522 * Only sctp_setsockopt_bindx() is supposed to call this function. 523 */ 524 static int sctp_send_asconf_add_ip(struct sock *sk, 525 struct sockaddr *addrs, 526 int addrcnt) 527 { 528 struct sctp_sock *sp; 529 struct sctp_endpoint *ep; 530 struct sctp_association *asoc; 531 struct sctp_bind_addr *bp; 532 struct sctp_chunk *chunk; 533 struct sctp_sockaddr_entry *laddr; 534 union sctp_addr *addr; 535 union sctp_addr saveaddr; 536 void *addr_buf; 537 struct sctp_af *af; 538 struct list_head *p; 539 int i; 540 int retval = 0; 541 542 sp = sctp_sk(sk); 543 ep = sp->ep; 544 545 if (!ep->asconf_enable) 546 return retval; 547 548 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 549 __func__, sk, addrs, addrcnt); 550 551 list_for_each_entry(asoc, &ep->asocs, asocs) { 552 if (!asoc->peer.asconf_capable) 553 continue; 554 555 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 556 continue; 557 558 if (!sctp_state(asoc, ESTABLISHED)) 559 continue; 560 561 /* Check if any address in the packed array of addresses is 562 * in the bind address list of the association. If so, 563 * do not send the asconf chunk to its peer, but continue with 564 * other associations. 565 */ 566 addr_buf = addrs; 567 for (i = 0; i < addrcnt; i++) { 568 addr = addr_buf; 569 af = sctp_get_af_specific(addr->v4.sin_family); 570 if (!af) { 571 retval = -EINVAL; 572 goto out; 573 } 574 575 if (sctp_assoc_lookup_laddr(asoc, addr)) 576 break; 577 578 addr_buf += af->sockaddr_len; 579 } 580 if (i < addrcnt) 581 continue; 582 583 /* Use the first valid address in bind addr list of 584 * association as Address Parameter of ASCONF CHUNK. 585 */ 586 bp = &asoc->base.bind_addr; 587 p = bp->address_list.next; 588 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 589 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 590 addrcnt, SCTP_PARAM_ADD_IP); 591 if (!chunk) { 592 retval = -ENOMEM; 593 goto out; 594 } 595 596 /* Add the new addresses to the bind address list with 597 * use_as_src set to 0. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 memcpy(&saveaddr, addr, af->sockaddr_len); 604 retval = sctp_add_bind_addr(bp, &saveaddr, 605 sizeof(saveaddr), 606 SCTP_ADDR_NEW, GFP_ATOMIC); 607 addr_buf += af->sockaddr_len; 608 } 609 if (asoc->src_out_of_asoc_ok) { 610 struct sctp_transport *trans; 611 612 list_for_each_entry(trans, 613 &asoc->peer.transport_addr_list, transports) { 614 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 615 2*asoc->pathmtu, 4380)); 616 trans->ssthresh = asoc->peer.i.a_rwnd; 617 trans->rto = asoc->rto_initial; 618 sctp_max_rto(asoc, trans); 619 trans->rtt = trans->srtt = trans->rttvar = 0; 620 /* Clear the source and route cache */ 621 sctp_transport_route(trans, NULL, 622 sctp_sk(asoc->base.sk)); 623 } 624 } 625 retval = sctp_send_asconf(asoc, chunk); 626 } 627 628 out: 629 return retval; 630 } 631 632 /* Remove a list of addresses from bind addresses list. Do not remove the 633 * last address. 634 * 635 * Basically run through each address specified in the addrs/addrcnt 636 * array/length pair, determine if it is IPv6 or IPv4 and call 637 * sctp_del_bind() on it. 638 * 639 * If any of them fails, then the operation will be reversed and the 640 * ones that were removed will be added back. 641 * 642 * At least one address has to be left; if only one address is 643 * available, the operation will return -EBUSY. 644 * 645 * Only sctp_setsockopt_bindx() is supposed to call this function. 646 */ 647 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 648 { 649 struct sctp_sock *sp = sctp_sk(sk); 650 struct sctp_endpoint *ep = sp->ep; 651 int cnt; 652 struct sctp_bind_addr *bp = &ep->base.bind_addr; 653 int retval = 0; 654 void *addr_buf; 655 union sctp_addr *sa_addr; 656 struct sctp_af *af; 657 658 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 659 __func__, sk, addrs, addrcnt); 660 661 addr_buf = addrs; 662 for (cnt = 0; cnt < addrcnt; cnt++) { 663 /* If the bind address list is empty or if there is only one 664 * bind address, there is nothing more to be removed (we need 665 * at least one address here). 666 */ 667 if (list_empty(&bp->address_list) || 668 (sctp_list_single_entry(&bp->address_list))) { 669 retval = -EBUSY; 670 goto err_bindx_rem; 671 } 672 673 sa_addr = addr_buf; 674 af = sctp_get_af_specific(sa_addr->sa.sa_family); 675 if (!af) { 676 retval = -EINVAL; 677 goto err_bindx_rem; 678 } 679 680 if (!af->addr_valid(sa_addr, sp, NULL)) { 681 retval = -EADDRNOTAVAIL; 682 goto err_bindx_rem; 683 } 684 685 if (sa_addr->v4.sin_port && 686 sa_addr->v4.sin_port != htons(bp->port)) { 687 retval = -EINVAL; 688 goto err_bindx_rem; 689 } 690 691 if (!sa_addr->v4.sin_port) 692 sa_addr->v4.sin_port = htons(bp->port); 693 694 /* FIXME - There is probably a need to check if sk->sk_saddr and 695 * sk->sk_rcv_addr are currently set to one of the addresses to 696 * be removed. This is something which needs to be looked into 697 * when we are fixing the outstanding issues with multi-homing 698 * socket routing and failover schemes. Refer to comments in 699 * sctp_do_bind(). -daisy 700 */ 701 retval = sctp_del_bind_addr(bp, sa_addr); 702 703 addr_buf += af->sockaddr_len; 704 err_bindx_rem: 705 if (retval < 0) { 706 /* Failed. Add the ones that has been removed back */ 707 if (cnt > 0) 708 sctp_bindx_add(sk, addrs, cnt); 709 return retval; 710 } 711 } 712 713 return retval; 714 } 715 716 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 717 * the associations that are part of the endpoint indicating that a list of 718 * local addresses are removed from the endpoint. 719 * 720 * If any of the addresses is already in the bind address list of the 721 * association, we do not send the chunk for that association. But it will not 722 * affect other associations. 723 * 724 * Only sctp_setsockopt_bindx() is supposed to call this function. 725 */ 726 static int sctp_send_asconf_del_ip(struct sock *sk, 727 struct sockaddr *addrs, 728 int addrcnt) 729 { 730 struct sctp_sock *sp; 731 struct sctp_endpoint *ep; 732 struct sctp_association *asoc; 733 struct sctp_transport *transport; 734 struct sctp_bind_addr *bp; 735 struct sctp_chunk *chunk; 736 union sctp_addr *laddr; 737 void *addr_buf; 738 struct sctp_af *af; 739 struct sctp_sockaddr_entry *saddr; 740 int i; 741 int retval = 0; 742 int stored = 0; 743 744 chunk = NULL; 745 sp = sctp_sk(sk); 746 ep = sp->ep; 747 748 if (!ep->asconf_enable) 749 return retval; 750 751 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 752 __func__, sk, addrs, addrcnt); 753 754 list_for_each_entry(asoc, &ep->asocs, asocs) { 755 756 if (!asoc->peer.asconf_capable) 757 continue; 758 759 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 760 continue; 761 762 if (!sctp_state(asoc, ESTABLISHED)) 763 continue; 764 765 /* Check if any address in the packed array of addresses is 766 * not present in the bind address list of the association. 767 * If so, do not send the asconf chunk to its peer, but 768 * continue with other associations. 769 */ 770 addr_buf = addrs; 771 for (i = 0; i < addrcnt; i++) { 772 laddr = addr_buf; 773 af = sctp_get_af_specific(laddr->v4.sin_family); 774 if (!af) { 775 retval = -EINVAL; 776 goto out; 777 } 778 779 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 780 break; 781 782 addr_buf += af->sockaddr_len; 783 } 784 if (i < addrcnt) 785 continue; 786 787 /* Find one address in the association's bind address list 788 * that is not in the packed array of addresses. This is to 789 * make sure that we do not delete all the addresses in the 790 * association. 791 */ 792 bp = &asoc->base.bind_addr; 793 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 794 addrcnt, sp); 795 if ((laddr == NULL) && (addrcnt == 1)) { 796 if (asoc->asconf_addr_del_pending) 797 continue; 798 asoc->asconf_addr_del_pending = 799 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 800 if (asoc->asconf_addr_del_pending == NULL) { 801 retval = -ENOMEM; 802 goto out; 803 } 804 asoc->asconf_addr_del_pending->sa.sa_family = 805 addrs->sa_family; 806 asoc->asconf_addr_del_pending->v4.sin_port = 807 htons(bp->port); 808 if (addrs->sa_family == AF_INET) { 809 struct sockaddr_in *sin; 810 811 sin = (struct sockaddr_in *)addrs; 812 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 813 } else if (addrs->sa_family == AF_INET6) { 814 struct sockaddr_in6 *sin6; 815 816 sin6 = (struct sockaddr_in6 *)addrs; 817 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 818 } 819 820 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 821 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 822 asoc->asconf_addr_del_pending); 823 824 asoc->src_out_of_asoc_ok = 1; 825 stored = 1; 826 goto skip_mkasconf; 827 } 828 829 if (laddr == NULL) 830 return -EINVAL; 831 832 /* We do not need RCU protection throughout this loop 833 * because this is done under a socket lock from the 834 * setsockopt call. 835 */ 836 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 837 SCTP_PARAM_DEL_IP); 838 if (!chunk) { 839 retval = -ENOMEM; 840 goto out; 841 } 842 843 skip_mkasconf: 844 /* Reset use_as_src flag for the addresses in the bind address 845 * list that are to be deleted. 846 */ 847 addr_buf = addrs; 848 for (i = 0; i < addrcnt; i++) { 849 laddr = addr_buf; 850 af = sctp_get_af_specific(laddr->v4.sin_family); 851 list_for_each_entry(saddr, &bp->address_list, list) { 852 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 853 saddr->state = SCTP_ADDR_DEL; 854 } 855 addr_buf += af->sockaddr_len; 856 } 857 858 /* Update the route and saddr entries for all the transports 859 * as some of the addresses in the bind address list are 860 * about to be deleted and cannot be used as source addresses. 861 */ 862 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 863 transports) { 864 sctp_transport_route(transport, NULL, 865 sctp_sk(asoc->base.sk)); 866 } 867 868 if (stored) 869 /* We don't need to transmit ASCONF */ 870 continue; 871 retval = sctp_send_asconf(asoc, chunk); 872 } 873 out: 874 return retval; 875 } 876 877 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 878 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 879 { 880 struct sock *sk = sctp_opt2sk(sp); 881 union sctp_addr *addr; 882 struct sctp_af *af; 883 884 /* It is safe to write port space in caller. */ 885 addr = &addrw->a; 886 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 887 af = sctp_get_af_specific(addr->sa.sa_family); 888 if (!af) 889 return -EINVAL; 890 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 891 return -EINVAL; 892 893 if (addrw->state == SCTP_ADDR_NEW) 894 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 895 else 896 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 897 } 898 899 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 900 * 901 * API 8.1 902 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 903 * int flags); 904 * 905 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 906 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 907 * or IPv6 addresses. 908 * 909 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 910 * Section 3.1.2 for this usage. 911 * 912 * addrs is a pointer to an array of one or more socket addresses. Each 913 * address is contained in its appropriate structure (i.e. struct 914 * sockaddr_in or struct sockaddr_in6) the family of the address type 915 * must be used to distinguish the address length (note that this 916 * representation is termed a "packed array" of addresses). The caller 917 * specifies the number of addresses in the array with addrcnt. 918 * 919 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 920 * -1, and sets errno to the appropriate error code. 921 * 922 * For SCTP, the port given in each socket address must be the same, or 923 * sctp_bindx() will fail, setting errno to EINVAL. 924 * 925 * The flags parameter is formed from the bitwise OR of zero or more of 926 * the following currently defined flags: 927 * 928 * SCTP_BINDX_ADD_ADDR 929 * 930 * SCTP_BINDX_REM_ADDR 931 * 932 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 933 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 934 * addresses from the association. The two flags are mutually exclusive; 935 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 936 * not remove all addresses from an association; sctp_bindx() will 937 * reject such an attempt with EINVAL. 938 * 939 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 940 * additional addresses with an endpoint after calling bind(). Or use 941 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 942 * socket is associated with so that no new association accepted will be 943 * associated with those addresses. If the endpoint supports dynamic 944 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 945 * endpoint to send the appropriate message to the peer to change the 946 * peers address lists. 947 * 948 * Adding and removing addresses from a connected association is 949 * optional functionality. Implementations that do not support this 950 * functionality should return EOPNOTSUPP. 951 * 952 * Basically do nothing but copying the addresses from user to kernel 953 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 954 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 955 * from userspace. 956 * 957 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 958 * it. 959 * 960 * sk The sk of the socket 961 * addrs The pointer to the addresses in user land 962 * addrssize Size of the addrs buffer 963 * op Operation to perform (add or remove, see the flags of 964 * sctp_bindx) 965 * 966 * Returns 0 if ok, <0 errno code on error. 967 */ 968 static int sctp_setsockopt_bindx(struct sock *sk, 969 struct sockaddr __user *addrs, 970 int addrs_size, int op) 971 { 972 struct sockaddr *kaddrs; 973 int err; 974 int addrcnt = 0; 975 int walk_size = 0; 976 struct sockaddr *sa_addr; 977 void *addr_buf; 978 struct sctp_af *af; 979 980 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 981 __func__, sk, addrs, addrs_size, op); 982 983 if (unlikely(addrs_size <= 0)) 984 return -EINVAL; 985 986 kaddrs = memdup_user(addrs, addrs_size); 987 if (IS_ERR(kaddrs)) 988 return PTR_ERR(kaddrs); 989 990 /* Walk through the addrs buffer and count the number of addresses. */ 991 addr_buf = kaddrs; 992 while (walk_size < addrs_size) { 993 if (walk_size + sizeof(sa_family_t) > addrs_size) { 994 kfree(kaddrs); 995 return -EINVAL; 996 } 997 998 sa_addr = addr_buf; 999 af = sctp_get_af_specific(sa_addr->sa_family); 1000 1001 /* If the address family is not supported or if this address 1002 * causes the address buffer to overflow return EINVAL. 1003 */ 1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1005 kfree(kaddrs); 1006 return -EINVAL; 1007 } 1008 addrcnt++; 1009 addr_buf += af->sockaddr_len; 1010 walk_size += af->sockaddr_len; 1011 } 1012 1013 /* Do the work. */ 1014 switch (op) { 1015 case SCTP_BINDX_ADD_ADDR: 1016 /* Allow security module to validate bindx addresses. */ 1017 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1018 (struct sockaddr *)kaddrs, 1019 addrs_size); 1020 if (err) 1021 goto out; 1022 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1023 if (err) 1024 goto out; 1025 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1026 break; 1027 1028 case SCTP_BINDX_REM_ADDR: 1029 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1030 if (err) 1031 goto out; 1032 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1033 break; 1034 1035 default: 1036 err = -EINVAL; 1037 break; 1038 } 1039 1040 out: 1041 kfree(kaddrs); 1042 1043 return err; 1044 } 1045 1046 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1047 const union sctp_addr *daddr, 1048 const struct sctp_initmsg *init, 1049 struct sctp_transport **tp) 1050 { 1051 struct sctp_association *asoc; 1052 struct sock *sk = ep->base.sk; 1053 struct net *net = sock_net(sk); 1054 enum sctp_scope scope; 1055 int err; 1056 1057 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1058 return -EADDRNOTAVAIL; 1059 1060 if (!ep->base.bind_addr.port) { 1061 if (sctp_autobind(sk)) 1062 return -EAGAIN; 1063 } else { 1064 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1065 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1066 return -EACCES; 1067 } 1068 1069 scope = sctp_scope(daddr); 1070 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1071 if (!asoc) 1072 return -ENOMEM; 1073 1074 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1075 if (err < 0) 1076 goto free; 1077 1078 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1079 if (!*tp) { 1080 err = -ENOMEM; 1081 goto free; 1082 } 1083 1084 if (!init) 1085 return 0; 1086 1087 if (init->sinit_num_ostreams) { 1088 __u16 outcnt = init->sinit_num_ostreams; 1089 1090 asoc->c.sinit_num_ostreams = outcnt; 1091 /* outcnt has been changed, need to re-init stream */ 1092 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1093 if (err) 1094 goto free; 1095 } 1096 1097 if (init->sinit_max_instreams) 1098 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1099 1100 if (init->sinit_max_attempts) 1101 asoc->max_init_attempts = init->sinit_max_attempts; 1102 1103 if (init->sinit_max_init_timeo) 1104 asoc->max_init_timeo = 1105 msecs_to_jiffies(init->sinit_max_init_timeo); 1106 1107 return 0; 1108 free: 1109 sctp_association_free(asoc); 1110 return err; 1111 } 1112 1113 static int sctp_connect_add_peer(struct sctp_association *asoc, 1114 union sctp_addr *daddr, int addr_len) 1115 { 1116 struct sctp_endpoint *ep = asoc->ep; 1117 struct sctp_association *old; 1118 struct sctp_transport *t; 1119 int err; 1120 1121 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1122 if (err) 1123 return err; 1124 1125 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1126 if (old && old != asoc) 1127 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1128 : -EALREADY; 1129 1130 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1131 return -EADDRNOTAVAIL; 1132 1133 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1134 if (!t) 1135 return -ENOMEM; 1136 1137 return 0; 1138 } 1139 1140 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1141 * 1142 * Common routine for handling connect() and sctp_connectx(). 1143 * Connect will come in with just a single address. 1144 */ 1145 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1146 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1147 { 1148 struct sctp_sock *sp = sctp_sk(sk); 1149 struct sctp_endpoint *ep = sp->ep; 1150 struct sctp_transport *transport; 1151 struct sctp_association *asoc; 1152 void *addr_buf = kaddrs; 1153 union sctp_addr *daddr; 1154 struct sctp_af *af; 1155 int walk_size, err; 1156 long timeo; 1157 1158 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1159 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1160 return -EISCONN; 1161 1162 daddr = addr_buf; 1163 af = sctp_get_af_specific(daddr->sa.sa_family); 1164 if (!af || af->sockaddr_len > addrs_size) 1165 return -EINVAL; 1166 1167 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1168 if (err) 1169 return err; 1170 1171 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1172 if (asoc) 1173 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1174 : -EALREADY; 1175 1176 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1177 if (err) 1178 return err; 1179 asoc = transport->asoc; 1180 1181 addr_buf += af->sockaddr_len; 1182 walk_size = af->sockaddr_len; 1183 while (walk_size < addrs_size) { 1184 err = -EINVAL; 1185 if (walk_size + sizeof(sa_family_t) > addrs_size) 1186 goto out_free; 1187 1188 daddr = addr_buf; 1189 af = sctp_get_af_specific(daddr->sa.sa_family); 1190 if (!af || af->sockaddr_len + walk_size > addrs_size) 1191 goto out_free; 1192 1193 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1194 goto out_free; 1195 1196 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1197 if (err) 1198 goto out_free; 1199 1200 addr_buf += af->sockaddr_len; 1201 walk_size += af->sockaddr_len; 1202 } 1203 1204 /* In case the user of sctp_connectx() wants an association 1205 * id back, assign one now. 1206 */ 1207 if (assoc_id) { 1208 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1209 if (err < 0) 1210 goto out_free; 1211 } 1212 1213 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1214 if (err < 0) 1215 goto out_free; 1216 1217 /* Initialize sk's dport and daddr for getpeername() */ 1218 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1219 sp->pf->to_sk_daddr(daddr, sk); 1220 sk->sk_err = 0; 1221 1222 if (assoc_id) 1223 *assoc_id = asoc->assoc_id; 1224 1225 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1226 return sctp_wait_for_connect(asoc, &timeo); 1227 1228 out_free: 1229 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1230 __func__, asoc, kaddrs, err); 1231 sctp_association_free(asoc); 1232 return err; 1233 } 1234 1235 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1236 * 1237 * API 8.9 1238 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1239 * sctp_assoc_t *asoc); 1240 * 1241 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1242 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1243 * or IPv6 addresses. 1244 * 1245 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1246 * Section 3.1.2 for this usage. 1247 * 1248 * addrs is a pointer to an array of one or more socket addresses. Each 1249 * address is contained in its appropriate structure (i.e. struct 1250 * sockaddr_in or struct sockaddr_in6) the family of the address type 1251 * must be used to distengish the address length (note that this 1252 * representation is termed a "packed array" of addresses). The caller 1253 * specifies the number of addresses in the array with addrcnt. 1254 * 1255 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1256 * the association id of the new association. On failure, sctp_connectx() 1257 * returns -1, and sets errno to the appropriate error code. The assoc_id 1258 * is not touched by the kernel. 1259 * 1260 * For SCTP, the port given in each socket address must be the same, or 1261 * sctp_connectx() will fail, setting errno to EINVAL. 1262 * 1263 * An application can use sctp_connectx to initiate an association with 1264 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1265 * allows a caller to specify multiple addresses at which a peer can be 1266 * reached. The way the SCTP stack uses the list of addresses to set up 1267 * the association is implementation dependent. This function only 1268 * specifies that the stack will try to make use of all the addresses in 1269 * the list when needed. 1270 * 1271 * Note that the list of addresses passed in is only used for setting up 1272 * the association. It does not necessarily equal the set of addresses 1273 * the peer uses for the resulting association. If the caller wants to 1274 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1275 * retrieve them after the association has been set up. 1276 * 1277 * Basically do nothing but copying the addresses from user to kernel 1278 * land and invoking either sctp_connectx(). This is used for tunneling 1279 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1280 * 1281 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1282 * it. 1283 * 1284 * sk The sk of the socket 1285 * addrs The pointer to the addresses in user land 1286 * addrssize Size of the addrs buffer 1287 * 1288 * Returns >=0 if ok, <0 errno code on error. 1289 */ 1290 static int __sctp_setsockopt_connectx(struct sock *sk, 1291 struct sockaddr __user *addrs, 1292 int addrs_size, 1293 sctp_assoc_t *assoc_id) 1294 { 1295 struct sockaddr *kaddrs; 1296 int err = 0, flags = 0; 1297 1298 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1299 __func__, sk, addrs, addrs_size); 1300 1301 /* make sure the 1st addr's sa_family is accessible later */ 1302 if (unlikely(addrs_size < sizeof(sa_family_t))) 1303 return -EINVAL; 1304 1305 kaddrs = memdup_user(addrs, addrs_size); 1306 if (IS_ERR(kaddrs)) 1307 return PTR_ERR(kaddrs); 1308 1309 /* Allow security module to validate connectx addresses. */ 1310 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1311 (struct sockaddr *)kaddrs, 1312 addrs_size); 1313 if (err) 1314 goto out_free; 1315 1316 /* in-kernel sockets don't generally have a file allocated to them 1317 * if all they do is call sock_create_kern(). 1318 */ 1319 if (sk->sk_socket->file) 1320 flags = sk->sk_socket->file->f_flags; 1321 1322 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1323 1324 out_free: 1325 kfree(kaddrs); 1326 1327 return err; 1328 } 1329 1330 /* 1331 * This is an older interface. It's kept for backward compatibility 1332 * to the option that doesn't provide association id. 1333 */ 1334 static int sctp_setsockopt_connectx_old(struct sock *sk, 1335 struct sockaddr __user *addrs, 1336 int addrs_size) 1337 { 1338 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1339 } 1340 1341 /* 1342 * New interface for the API. The since the API is done with a socket 1343 * option, to make it simple we feed back the association id is as a return 1344 * indication to the call. Error is always negative and association id is 1345 * always positive. 1346 */ 1347 static int sctp_setsockopt_connectx(struct sock *sk, 1348 struct sockaddr __user *addrs, 1349 int addrs_size) 1350 { 1351 sctp_assoc_t assoc_id = 0; 1352 int err = 0; 1353 1354 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1355 1356 if (err) 1357 return err; 1358 else 1359 return assoc_id; 1360 } 1361 1362 /* 1363 * New (hopefully final) interface for the API. 1364 * We use the sctp_getaddrs_old structure so that use-space library 1365 * can avoid any unnecessary allocations. The only different part 1366 * is that we store the actual length of the address buffer into the 1367 * addrs_num structure member. That way we can re-use the existing 1368 * code. 1369 */ 1370 #ifdef CONFIG_COMPAT 1371 struct compat_sctp_getaddrs_old { 1372 sctp_assoc_t assoc_id; 1373 s32 addr_num; 1374 compat_uptr_t addrs; /* struct sockaddr * */ 1375 }; 1376 #endif 1377 1378 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1379 char __user *optval, 1380 int __user *optlen) 1381 { 1382 struct sctp_getaddrs_old param; 1383 sctp_assoc_t assoc_id = 0; 1384 int err = 0; 1385 1386 #ifdef CONFIG_COMPAT 1387 if (in_compat_syscall()) { 1388 struct compat_sctp_getaddrs_old param32; 1389 1390 if (len < sizeof(param32)) 1391 return -EINVAL; 1392 if (copy_from_user(¶m32, optval, sizeof(param32))) 1393 return -EFAULT; 1394 1395 param.assoc_id = param32.assoc_id; 1396 param.addr_num = param32.addr_num; 1397 param.addrs = compat_ptr(param32.addrs); 1398 } else 1399 #endif 1400 { 1401 if (len < sizeof(param)) 1402 return -EINVAL; 1403 if (copy_from_user(¶m, optval, sizeof(param))) 1404 return -EFAULT; 1405 } 1406 1407 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1408 param.addrs, param.addr_num, 1409 &assoc_id); 1410 if (err == 0 || err == -EINPROGRESS) { 1411 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1412 return -EFAULT; 1413 if (put_user(sizeof(assoc_id), optlen)) 1414 return -EFAULT; 1415 } 1416 1417 return err; 1418 } 1419 1420 /* API 3.1.4 close() - UDP Style Syntax 1421 * Applications use close() to perform graceful shutdown (as described in 1422 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1423 * by a UDP-style socket. 1424 * 1425 * The syntax is 1426 * 1427 * ret = close(int sd); 1428 * 1429 * sd - the socket descriptor of the associations to be closed. 1430 * 1431 * To gracefully shutdown a specific association represented by the 1432 * UDP-style socket, an application should use the sendmsg() call, 1433 * passing no user data, but including the appropriate flag in the 1434 * ancillary data (see Section xxxx). 1435 * 1436 * If sd in the close() call is a branched-off socket representing only 1437 * one association, the shutdown is performed on that association only. 1438 * 1439 * 4.1.6 close() - TCP Style Syntax 1440 * 1441 * Applications use close() to gracefully close down an association. 1442 * 1443 * The syntax is: 1444 * 1445 * int close(int sd); 1446 * 1447 * sd - the socket descriptor of the association to be closed. 1448 * 1449 * After an application calls close() on a socket descriptor, no further 1450 * socket operations will succeed on that descriptor. 1451 * 1452 * API 7.1.4 SO_LINGER 1453 * 1454 * An application using the TCP-style socket can use this option to 1455 * perform the SCTP ABORT primitive. The linger option structure is: 1456 * 1457 * struct linger { 1458 * int l_onoff; // option on/off 1459 * int l_linger; // linger time 1460 * }; 1461 * 1462 * To enable the option, set l_onoff to 1. If the l_linger value is set 1463 * to 0, calling close() is the same as the ABORT primitive. If the 1464 * value is set to a negative value, the setsockopt() call will return 1465 * an error. If the value is set to a positive value linger_time, the 1466 * close() can be blocked for at most linger_time ms. If the graceful 1467 * shutdown phase does not finish during this period, close() will 1468 * return but the graceful shutdown phase continues in the system. 1469 */ 1470 static void sctp_close(struct sock *sk, long timeout) 1471 { 1472 struct net *net = sock_net(sk); 1473 struct sctp_endpoint *ep; 1474 struct sctp_association *asoc; 1475 struct list_head *pos, *temp; 1476 unsigned int data_was_unread; 1477 1478 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1479 1480 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1481 sk->sk_shutdown = SHUTDOWN_MASK; 1482 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1483 1484 ep = sctp_sk(sk)->ep; 1485 1486 /* Clean up any skbs sitting on the receive queue. */ 1487 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1488 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1489 1490 /* Walk all associations on an endpoint. */ 1491 list_for_each_safe(pos, temp, &ep->asocs) { 1492 asoc = list_entry(pos, struct sctp_association, asocs); 1493 1494 if (sctp_style(sk, TCP)) { 1495 /* A closed association can still be in the list if 1496 * it belongs to a TCP-style listening socket that is 1497 * not yet accepted. If so, free it. If not, send an 1498 * ABORT or SHUTDOWN based on the linger options. 1499 */ 1500 if (sctp_state(asoc, CLOSED)) { 1501 sctp_association_free(asoc); 1502 continue; 1503 } 1504 } 1505 1506 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1507 !skb_queue_empty(&asoc->ulpq.reasm) || 1508 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1509 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1510 struct sctp_chunk *chunk; 1511 1512 chunk = sctp_make_abort_user(asoc, NULL, 0); 1513 sctp_primitive_ABORT(net, asoc, chunk); 1514 } else 1515 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1516 } 1517 1518 /* On a TCP-style socket, block for at most linger_time if set. */ 1519 if (sctp_style(sk, TCP) && timeout) 1520 sctp_wait_for_close(sk, timeout); 1521 1522 /* This will run the backlog queue. */ 1523 release_sock(sk); 1524 1525 /* Supposedly, no process has access to the socket, but 1526 * the net layers still may. 1527 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1528 * held and that should be grabbed before socket lock. 1529 */ 1530 spin_lock_bh(&net->sctp.addr_wq_lock); 1531 bh_lock_sock_nested(sk); 1532 1533 /* Hold the sock, since sk_common_release() will put sock_put() 1534 * and we have just a little more cleanup. 1535 */ 1536 sock_hold(sk); 1537 sk_common_release(sk); 1538 1539 bh_unlock_sock(sk); 1540 spin_unlock_bh(&net->sctp.addr_wq_lock); 1541 1542 sock_put(sk); 1543 1544 SCTP_DBG_OBJCNT_DEC(sock); 1545 } 1546 1547 /* Handle EPIPE error. */ 1548 static int sctp_error(struct sock *sk, int flags, int err) 1549 { 1550 if (err == -EPIPE) 1551 err = sock_error(sk) ? : -EPIPE; 1552 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1553 send_sig(SIGPIPE, current, 0); 1554 return err; 1555 } 1556 1557 /* API 3.1.3 sendmsg() - UDP Style Syntax 1558 * 1559 * An application uses sendmsg() and recvmsg() calls to transmit data to 1560 * and receive data from its peer. 1561 * 1562 * ssize_t sendmsg(int socket, const struct msghdr *message, 1563 * int flags); 1564 * 1565 * socket - the socket descriptor of the endpoint. 1566 * message - pointer to the msghdr structure which contains a single 1567 * user message and possibly some ancillary data. 1568 * 1569 * See Section 5 for complete description of the data 1570 * structures. 1571 * 1572 * flags - flags sent or received with the user message, see Section 1573 * 5 for complete description of the flags. 1574 * 1575 * Note: This function could use a rewrite especially when explicit 1576 * connect support comes in. 1577 */ 1578 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1579 1580 static int sctp_msghdr_parse(const struct msghdr *msg, 1581 struct sctp_cmsgs *cmsgs); 1582 1583 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1584 struct sctp_sndrcvinfo *srinfo, 1585 const struct msghdr *msg, size_t msg_len) 1586 { 1587 __u16 sflags; 1588 int err; 1589 1590 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1591 return -EPIPE; 1592 1593 if (msg_len > sk->sk_sndbuf) 1594 return -EMSGSIZE; 1595 1596 memset(cmsgs, 0, sizeof(*cmsgs)); 1597 err = sctp_msghdr_parse(msg, cmsgs); 1598 if (err) { 1599 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1600 return err; 1601 } 1602 1603 memset(srinfo, 0, sizeof(*srinfo)); 1604 if (cmsgs->srinfo) { 1605 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1606 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1607 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1608 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1609 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1610 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1611 } 1612 1613 if (cmsgs->sinfo) { 1614 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1615 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1616 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1617 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1618 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1619 } 1620 1621 if (cmsgs->prinfo) { 1622 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1623 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1624 cmsgs->prinfo->pr_policy); 1625 } 1626 1627 sflags = srinfo->sinfo_flags; 1628 if (!sflags && msg_len) 1629 return 0; 1630 1631 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1632 return -EINVAL; 1633 1634 if (((sflags & SCTP_EOF) && msg_len > 0) || 1635 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1636 return -EINVAL; 1637 1638 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1639 return -EINVAL; 1640 1641 return 0; 1642 } 1643 1644 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1645 struct sctp_cmsgs *cmsgs, 1646 union sctp_addr *daddr, 1647 struct sctp_transport **tp) 1648 { 1649 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1650 struct sctp_association *asoc; 1651 struct cmsghdr *cmsg; 1652 __be32 flowinfo = 0; 1653 struct sctp_af *af; 1654 int err; 1655 1656 *tp = NULL; 1657 1658 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1659 return -EINVAL; 1660 1661 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1662 sctp_sstate(sk, CLOSING))) 1663 return -EADDRNOTAVAIL; 1664 1665 /* Label connection socket for first association 1-to-many 1666 * style for client sequence socket()->sendmsg(). This 1667 * needs to be done before sctp_assoc_add_peer() as that will 1668 * set up the initial packet that needs to account for any 1669 * security ip options (CIPSO/CALIPSO) added to the packet. 1670 */ 1671 af = sctp_get_af_specific(daddr->sa.sa_family); 1672 if (!af) 1673 return -EINVAL; 1674 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1675 (struct sockaddr *)daddr, 1676 af->sockaddr_len); 1677 if (err < 0) 1678 return err; 1679 1680 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1681 if (err) 1682 return err; 1683 asoc = (*tp)->asoc; 1684 1685 if (!cmsgs->addrs_msg) 1686 return 0; 1687 1688 if (daddr->sa.sa_family == AF_INET6) 1689 flowinfo = daddr->v6.sin6_flowinfo; 1690 1691 /* sendv addr list parse */ 1692 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1693 union sctp_addr _daddr; 1694 int dlen; 1695 1696 if (cmsg->cmsg_level != IPPROTO_SCTP || 1697 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1698 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1699 continue; 1700 1701 daddr = &_daddr; 1702 memset(daddr, 0, sizeof(*daddr)); 1703 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1704 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1705 if (dlen < sizeof(struct in_addr)) { 1706 err = -EINVAL; 1707 goto free; 1708 } 1709 1710 dlen = sizeof(struct in_addr); 1711 daddr->v4.sin_family = AF_INET; 1712 daddr->v4.sin_port = htons(asoc->peer.port); 1713 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1714 } else { 1715 if (dlen < sizeof(struct in6_addr)) { 1716 err = -EINVAL; 1717 goto free; 1718 } 1719 1720 dlen = sizeof(struct in6_addr); 1721 daddr->v6.sin6_flowinfo = flowinfo; 1722 daddr->v6.sin6_family = AF_INET6; 1723 daddr->v6.sin6_port = htons(asoc->peer.port); 1724 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1725 } 1726 1727 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1728 if (err) 1729 goto free; 1730 } 1731 1732 return 0; 1733 1734 free: 1735 sctp_association_free(asoc); 1736 return err; 1737 } 1738 1739 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1740 __u16 sflags, struct msghdr *msg, 1741 size_t msg_len) 1742 { 1743 struct sock *sk = asoc->base.sk; 1744 struct net *net = sock_net(sk); 1745 1746 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1747 return -EPIPE; 1748 1749 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1750 !sctp_state(asoc, ESTABLISHED)) 1751 return 0; 1752 1753 if (sflags & SCTP_EOF) { 1754 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1755 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1756 1757 return 0; 1758 } 1759 1760 if (sflags & SCTP_ABORT) { 1761 struct sctp_chunk *chunk; 1762 1763 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1764 if (!chunk) 1765 return -ENOMEM; 1766 1767 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1768 sctp_primitive_ABORT(net, asoc, chunk); 1769 iov_iter_revert(&msg->msg_iter, msg_len); 1770 1771 return 0; 1772 } 1773 1774 return 1; 1775 } 1776 1777 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1778 struct msghdr *msg, size_t msg_len, 1779 struct sctp_transport *transport, 1780 struct sctp_sndrcvinfo *sinfo) 1781 { 1782 struct sock *sk = asoc->base.sk; 1783 struct sctp_sock *sp = sctp_sk(sk); 1784 struct net *net = sock_net(sk); 1785 struct sctp_datamsg *datamsg; 1786 bool wait_connect = false; 1787 struct sctp_chunk *chunk; 1788 long timeo; 1789 int err; 1790 1791 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1792 err = -EINVAL; 1793 goto err; 1794 } 1795 1796 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1797 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1798 if (err) 1799 goto err; 1800 } 1801 1802 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1803 err = -EMSGSIZE; 1804 goto err; 1805 } 1806 1807 if (asoc->pmtu_pending) { 1808 if (sp->param_flags & SPP_PMTUD_ENABLE) 1809 sctp_assoc_sync_pmtu(asoc); 1810 asoc->pmtu_pending = 0; 1811 } 1812 1813 if (sctp_wspace(asoc) < (int)msg_len) 1814 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1815 1816 if (sk_under_memory_pressure(sk)) 1817 sk_mem_reclaim(sk); 1818 1819 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1820 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1821 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1822 if (err) 1823 goto err; 1824 } 1825 1826 if (sctp_state(asoc, CLOSED)) { 1827 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1828 if (err) 1829 goto err; 1830 1831 if (asoc->ep->intl_enable) { 1832 timeo = sock_sndtimeo(sk, 0); 1833 err = sctp_wait_for_connect(asoc, &timeo); 1834 if (err) { 1835 err = -ESRCH; 1836 goto err; 1837 } 1838 } else { 1839 wait_connect = true; 1840 } 1841 1842 pr_debug("%s: we associated primitively\n", __func__); 1843 } 1844 1845 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1846 if (IS_ERR(datamsg)) { 1847 err = PTR_ERR(datamsg); 1848 goto err; 1849 } 1850 1851 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1852 1853 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1854 sctp_chunk_hold(chunk); 1855 sctp_set_owner_w(chunk); 1856 chunk->transport = transport; 1857 } 1858 1859 err = sctp_primitive_SEND(net, asoc, datamsg); 1860 if (err) { 1861 sctp_datamsg_free(datamsg); 1862 goto err; 1863 } 1864 1865 pr_debug("%s: we sent primitively\n", __func__); 1866 1867 sctp_datamsg_put(datamsg); 1868 1869 if (unlikely(wait_connect)) { 1870 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1871 sctp_wait_for_connect(asoc, &timeo); 1872 } 1873 1874 err = msg_len; 1875 1876 err: 1877 return err; 1878 } 1879 1880 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1881 const struct msghdr *msg, 1882 struct sctp_cmsgs *cmsgs) 1883 { 1884 union sctp_addr *daddr = NULL; 1885 int err; 1886 1887 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1888 int len = msg->msg_namelen; 1889 1890 if (len > sizeof(*daddr)) 1891 len = sizeof(*daddr); 1892 1893 daddr = (union sctp_addr *)msg->msg_name; 1894 1895 err = sctp_verify_addr(sk, daddr, len); 1896 if (err) 1897 return ERR_PTR(err); 1898 } 1899 1900 return daddr; 1901 } 1902 1903 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1904 struct sctp_sndrcvinfo *sinfo, 1905 struct sctp_cmsgs *cmsgs) 1906 { 1907 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1908 sinfo->sinfo_stream = asoc->default_stream; 1909 sinfo->sinfo_ppid = asoc->default_ppid; 1910 sinfo->sinfo_context = asoc->default_context; 1911 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1912 1913 if (!cmsgs->prinfo) 1914 sinfo->sinfo_flags = asoc->default_flags; 1915 } 1916 1917 if (!cmsgs->srinfo && !cmsgs->prinfo) 1918 sinfo->sinfo_timetolive = asoc->default_timetolive; 1919 1920 if (cmsgs->authinfo) { 1921 /* Reuse sinfo_tsn to indicate that authinfo was set and 1922 * sinfo_ssn to save the keyid on tx path. 1923 */ 1924 sinfo->sinfo_tsn = 1; 1925 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1926 } 1927 } 1928 1929 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1930 { 1931 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1932 struct sctp_transport *transport = NULL; 1933 struct sctp_sndrcvinfo _sinfo, *sinfo; 1934 struct sctp_association *asoc, *tmp; 1935 struct sctp_cmsgs cmsgs; 1936 union sctp_addr *daddr; 1937 bool new = false; 1938 __u16 sflags; 1939 int err; 1940 1941 /* Parse and get snd_info */ 1942 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1943 if (err) 1944 goto out; 1945 1946 sinfo = &_sinfo; 1947 sflags = sinfo->sinfo_flags; 1948 1949 /* Get daddr from msg */ 1950 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1951 if (IS_ERR(daddr)) { 1952 err = PTR_ERR(daddr); 1953 goto out; 1954 } 1955 1956 lock_sock(sk); 1957 1958 /* SCTP_SENDALL process */ 1959 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1960 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1961 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1962 msg_len); 1963 if (err == 0) 1964 continue; 1965 if (err < 0) 1966 goto out_unlock; 1967 1968 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1969 1970 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1971 NULL, sinfo); 1972 if (err < 0) 1973 goto out_unlock; 1974 1975 iov_iter_revert(&msg->msg_iter, err); 1976 } 1977 1978 goto out_unlock; 1979 } 1980 1981 /* Get and check or create asoc */ 1982 if (daddr) { 1983 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1984 if (asoc) { 1985 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1986 msg_len); 1987 if (err <= 0) 1988 goto out_unlock; 1989 } else { 1990 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1991 &transport); 1992 if (err) 1993 goto out_unlock; 1994 1995 asoc = transport->asoc; 1996 new = true; 1997 } 1998 1999 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2000 transport = NULL; 2001 } else { 2002 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2003 if (!asoc) { 2004 err = -EPIPE; 2005 goto out_unlock; 2006 } 2007 2008 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2009 if (err <= 0) 2010 goto out_unlock; 2011 } 2012 2013 /* Update snd_info with the asoc */ 2014 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2015 2016 /* Send msg to the asoc */ 2017 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2018 if (err < 0 && err != -ESRCH && new) 2019 sctp_association_free(asoc); 2020 2021 out_unlock: 2022 release_sock(sk); 2023 out: 2024 return sctp_error(sk, msg->msg_flags, err); 2025 } 2026 2027 /* This is an extended version of skb_pull() that removes the data from the 2028 * start of a skb even when data is spread across the list of skb's in the 2029 * frag_list. len specifies the total amount of data that needs to be removed. 2030 * when 'len' bytes could be removed from the skb, it returns 0. 2031 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2032 * could not be removed. 2033 */ 2034 static int sctp_skb_pull(struct sk_buff *skb, int len) 2035 { 2036 struct sk_buff *list; 2037 int skb_len = skb_headlen(skb); 2038 int rlen; 2039 2040 if (len <= skb_len) { 2041 __skb_pull(skb, len); 2042 return 0; 2043 } 2044 len -= skb_len; 2045 __skb_pull(skb, skb_len); 2046 2047 skb_walk_frags(skb, list) { 2048 rlen = sctp_skb_pull(list, len); 2049 skb->len -= (len-rlen); 2050 skb->data_len -= (len-rlen); 2051 2052 if (!rlen) 2053 return 0; 2054 2055 len = rlen; 2056 } 2057 2058 return len; 2059 } 2060 2061 /* API 3.1.3 recvmsg() - UDP Style Syntax 2062 * 2063 * ssize_t recvmsg(int socket, struct msghdr *message, 2064 * int flags); 2065 * 2066 * socket - the socket descriptor of the endpoint. 2067 * message - pointer to the msghdr structure which contains a single 2068 * user message and possibly some ancillary data. 2069 * 2070 * See Section 5 for complete description of the data 2071 * structures. 2072 * 2073 * flags - flags sent or received with the user message, see Section 2074 * 5 for complete description of the flags. 2075 */ 2076 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2077 int noblock, int flags, int *addr_len) 2078 { 2079 struct sctp_ulpevent *event = NULL; 2080 struct sctp_sock *sp = sctp_sk(sk); 2081 struct sk_buff *skb, *head_skb; 2082 int copied; 2083 int err = 0; 2084 int skb_len; 2085 2086 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2087 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2088 addr_len); 2089 2090 lock_sock(sk); 2091 2092 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2093 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2094 err = -ENOTCONN; 2095 goto out; 2096 } 2097 2098 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2099 if (!skb) 2100 goto out; 2101 2102 /* Get the total length of the skb including any skb's in the 2103 * frag_list. 2104 */ 2105 skb_len = skb->len; 2106 2107 copied = skb_len; 2108 if (copied > len) 2109 copied = len; 2110 2111 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2112 2113 event = sctp_skb2event(skb); 2114 2115 if (err) 2116 goto out_free; 2117 2118 if (event->chunk && event->chunk->head_skb) 2119 head_skb = event->chunk->head_skb; 2120 else 2121 head_skb = skb; 2122 sock_recv_ts_and_drops(msg, sk, head_skb); 2123 if (sctp_ulpevent_is_notification(event)) { 2124 msg->msg_flags |= MSG_NOTIFICATION; 2125 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2126 } else { 2127 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2128 } 2129 2130 /* Check if we allow SCTP_NXTINFO. */ 2131 if (sp->recvnxtinfo) 2132 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2133 /* Check if we allow SCTP_RCVINFO. */ 2134 if (sp->recvrcvinfo) 2135 sctp_ulpevent_read_rcvinfo(event, msg); 2136 /* Check if we allow SCTP_SNDRCVINFO. */ 2137 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2138 sctp_ulpevent_read_sndrcvinfo(event, msg); 2139 2140 err = copied; 2141 2142 /* If skb's length exceeds the user's buffer, update the skb and 2143 * push it back to the receive_queue so that the next call to 2144 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2145 */ 2146 if (skb_len > copied) { 2147 msg->msg_flags &= ~MSG_EOR; 2148 if (flags & MSG_PEEK) 2149 goto out_free; 2150 sctp_skb_pull(skb, copied); 2151 skb_queue_head(&sk->sk_receive_queue, skb); 2152 2153 /* When only partial message is copied to the user, increase 2154 * rwnd by that amount. If all the data in the skb is read, 2155 * rwnd is updated when the event is freed. 2156 */ 2157 if (!sctp_ulpevent_is_notification(event)) 2158 sctp_assoc_rwnd_increase(event->asoc, copied); 2159 goto out; 2160 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2161 (event->msg_flags & MSG_EOR)) 2162 msg->msg_flags |= MSG_EOR; 2163 else 2164 msg->msg_flags &= ~MSG_EOR; 2165 2166 out_free: 2167 if (flags & MSG_PEEK) { 2168 /* Release the skb reference acquired after peeking the skb in 2169 * sctp_skb_recv_datagram(). 2170 */ 2171 kfree_skb(skb); 2172 } else { 2173 /* Free the event which includes releasing the reference to 2174 * the owner of the skb, freeing the skb and updating the 2175 * rwnd. 2176 */ 2177 sctp_ulpevent_free(event); 2178 } 2179 out: 2180 release_sock(sk); 2181 return err; 2182 } 2183 2184 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2185 * 2186 * This option is a on/off flag. If enabled no SCTP message 2187 * fragmentation will be performed. Instead if a message being sent 2188 * exceeds the current PMTU size, the message will NOT be sent and 2189 * instead a error will be indicated to the user. 2190 */ 2191 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2192 char __user *optval, 2193 unsigned int optlen) 2194 { 2195 int val; 2196 2197 if (optlen < sizeof(int)) 2198 return -EINVAL; 2199 2200 if (get_user(val, (int __user *)optval)) 2201 return -EFAULT; 2202 2203 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2204 2205 return 0; 2206 } 2207 2208 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2209 unsigned int optlen) 2210 { 2211 struct sctp_event_subscribe subscribe; 2212 __u8 *sn_type = (__u8 *)&subscribe; 2213 struct sctp_sock *sp = sctp_sk(sk); 2214 struct sctp_association *asoc; 2215 int i; 2216 2217 if (optlen > sizeof(struct sctp_event_subscribe)) 2218 return -EINVAL; 2219 2220 if (copy_from_user(&subscribe, optval, optlen)) 2221 return -EFAULT; 2222 2223 for (i = 0; i < optlen; i++) 2224 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2225 sn_type[i]); 2226 2227 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2228 asoc->subscribe = sctp_sk(sk)->subscribe; 2229 2230 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2231 * if there is no data to be sent or retransmit, the stack will 2232 * immediately send up this notification. 2233 */ 2234 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2235 struct sctp_ulpevent *event; 2236 2237 asoc = sctp_id2assoc(sk, 0); 2238 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2239 event = sctp_ulpevent_make_sender_dry_event(asoc, 2240 GFP_USER | __GFP_NOWARN); 2241 if (!event) 2242 return -ENOMEM; 2243 2244 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2245 } 2246 } 2247 2248 return 0; 2249 } 2250 2251 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2252 * 2253 * This socket option is applicable to the UDP-style socket only. When 2254 * set it will cause associations that are idle for more than the 2255 * specified number of seconds to automatically close. An association 2256 * being idle is defined an association that has NOT sent or received 2257 * user data. The special value of '0' indicates that no automatic 2258 * close of any associations should be performed. The option expects an 2259 * integer defining the number of seconds of idle time before an 2260 * association is closed. 2261 */ 2262 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2263 unsigned int optlen) 2264 { 2265 struct sctp_sock *sp = sctp_sk(sk); 2266 struct net *net = sock_net(sk); 2267 2268 /* Applicable to UDP-style socket only */ 2269 if (sctp_style(sk, TCP)) 2270 return -EOPNOTSUPP; 2271 if (optlen != sizeof(int)) 2272 return -EINVAL; 2273 if (copy_from_user(&sp->autoclose, optval, optlen)) 2274 return -EFAULT; 2275 2276 if (sp->autoclose > net->sctp.max_autoclose) 2277 sp->autoclose = net->sctp.max_autoclose; 2278 2279 return 0; 2280 } 2281 2282 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2283 * 2284 * Applications can enable or disable heartbeats for any peer address of 2285 * an association, modify an address's heartbeat interval, force a 2286 * heartbeat to be sent immediately, and adjust the address's maximum 2287 * number of retransmissions sent before an address is considered 2288 * unreachable. The following structure is used to access and modify an 2289 * address's parameters: 2290 * 2291 * struct sctp_paddrparams { 2292 * sctp_assoc_t spp_assoc_id; 2293 * struct sockaddr_storage spp_address; 2294 * uint32_t spp_hbinterval; 2295 * uint16_t spp_pathmaxrxt; 2296 * uint32_t spp_pathmtu; 2297 * uint32_t spp_sackdelay; 2298 * uint32_t spp_flags; 2299 * uint32_t spp_ipv6_flowlabel; 2300 * uint8_t spp_dscp; 2301 * }; 2302 * 2303 * spp_assoc_id - (one-to-many style socket) This is filled in the 2304 * application, and identifies the association for 2305 * this query. 2306 * spp_address - This specifies which address is of interest. 2307 * spp_hbinterval - This contains the value of the heartbeat interval, 2308 * in milliseconds. If a value of zero 2309 * is present in this field then no changes are to 2310 * be made to this parameter. 2311 * spp_pathmaxrxt - This contains the maximum number of 2312 * retransmissions before this address shall be 2313 * considered unreachable. If a value of zero 2314 * is present in this field then no changes are to 2315 * be made to this parameter. 2316 * spp_pathmtu - When Path MTU discovery is disabled the value 2317 * specified here will be the "fixed" path mtu. 2318 * Note that if the spp_address field is empty 2319 * then all associations on this address will 2320 * have this fixed path mtu set upon them. 2321 * 2322 * spp_sackdelay - When delayed sack is enabled, this value specifies 2323 * the number of milliseconds that sacks will be delayed 2324 * for. This value will apply to all addresses of an 2325 * association if the spp_address field is empty. Note 2326 * also, that if delayed sack is enabled and this 2327 * value is set to 0, no change is made to the last 2328 * recorded delayed sack timer value. 2329 * 2330 * spp_flags - These flags are used to control various features 2331 * on an association. The flag field may contain 2332 * zero or more of the following options. 2333 * 2334 * SPP_HB_ENABLE - Enable heartbeats on the 2335 * specified address. Note that if the address 2336 * field is empty all addresses for the association 2337 * have heartbeats enabled upon them. 2338 * 2339 * SPP_HB_DISABLE - Disable heartbeats on the 2340 * speicifed address. Note that if the address 2341 * field is empty all addresses for the association 2342 * will have their heartbeats disabled. Note also 2343 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2344 * mutually exclusive, only one of these two should 2345 * be specified. Enabling both fields will have 2346 * undetermined results. 2347 * 2348 * SPP_HB_DEMAND - Request a user initiated heartbeat 2349 * to be made immediately. 2350 * 2351 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2352 * heartbeat delayis to be set to the value of 0 2353 * milliseconds. 2354 * 2355 * SPP_PMTUD_ENABLE - This field will enable PMTU 2356 * discovery upon the specified address. Note that 2357 * if the address feild is empty then all addresses 2358 * on the association are effected. 2359 * 2360 * SPP_PMTUD_DISABLE - This field will disable PMTU 2361 * discovery upon the specified address. Note that 2362 * if the address feild is empty then all addresses 2363 * on the association are effected. Not also that 2364 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2365 * exclusive. Enabling both will have undetermined 2366 * results. 2367 * 2368 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2369 * on delayed sack. The time specified in spp_sackdelay 2370 * is used to specify the sack delay for this address. Note 2371 * that if spp_address is empty then all addresses will 2372 * enable delayed sack and take on the sack delay 2373 * value specified in spp_sackdelay. 2374 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2375 * off delayed sack. If the spp_address field is blank then 2376 * delayed sack is disabled for the entire association. Note 2377 * also that this field is mutually exclusive to 2378 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2379 * results. 2380 * 2381 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2382 * setting of the IPV6 flow label value. The value is 2383 * contained in the spp_ipv6_flowlabel field. 2384 * Upon retrieval, this flag will be set to indicate that 2385 * the spp_ipv6_flowlabel field has a valid value returned. 2386 * If a specific destination address is set (in the 2387 * spp_address field), then the value returned is that of 2388 * the address. If just an association is specified (and 2389 * no address), then the association's default flow label 2390 * is returned. If neither an association nor a destination 2391 * is specified, then the socket's default flow label is 2392 * returned. For non-IPv6 sockets, this flag will be left 2393 * cleared. 2394 * 2395 * SPP_DSCP: Setting this flag enables the setting of the 2396 * Differentiated Services Code Point (DSCP) value 2397 * associated with either the association or a specific 2398 * address. The value is obtained in the spp_dscp field. 2399 * Upon retrieval, this flag will be set to indicate that 2400 * the spp_dscp field has a valid value returned. If a 2401 * specific destination address is set when called (in the 2402 * spp_address field), then that specific destination 2403 * address's DSCP value is returned. If just an association 2404 * is specified, then the association's default DSCP is 2405 * returned. If neither an association nor a destination is 2406 * specified, then the socket's default DSCP is returned. 2407 * 2408 * spp_ipv6_flowlabel 2409 * - This field is used in conjunction with the 2410 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2411 * The 20 least significant bits are used for the flow 2412 * label. This setting has precedence over any IPv6-layer 2413 * setting. 2414 * 2415 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2416 * and contains the DSCP. The 6 most significant bits are 2417 * used for the DSCP. This setting has precedence over any 2418 * IPv4- or IPv6- layer setting. 2419 */ 2420 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2421 struct sctp_transport *trans, 2422 struct sctp_association *asoc, 2423 struct sctp_sock *sp, 2424 int hb_change, 2425 int pmtud_change, 2426 int sackdelay_change) 2427 { 2428 int error; 2429 2430 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2431 struct net *net = sock_net(trans->asoc->base.sk); 2432 2433 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2434 if (error) 2435 return error; 2436 } 2437 2438 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2439 * this field is ignored. Note also that a value of zero indicates 2440 * the current setting should be left unchanged. 2441 */ 2442 if (params->spp_flags & SPP_HB_ENABLE) { 2443 2444 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2445 * set. This lets us use 0 value when this flag 2446 * is set. 2447 */ 2448 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2449 params->spp_hbinterval = 0; 2450 2451 if (params->spp_hbinterval || 2452 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2453 if (trans) { 2454 trans->hbinterval = 2455 msecs_to_jiffies(params->spp_hbinterval); 2456 } else if (asoc) { 2457 asoc->hbinterval = 2458 msecs_to_jiffies(params->spp_hbinterval); 2459 } else { 2460 sp->hbinterval = params->spp_hbinterval; 2461 } 2462 } 2463 } 2464 2465 if (hb_change) { 2466 if (trans) { 2467 trans->param_flags = 2468 (trans->param_flags & ~SPP_HB) | hb_change; 2469 } else if (asoc) { 2470 asoc->param_flags = 2471 (asoc->param_flags & ~SPP_HB) | hb_change; 2472 } else { 2473 sp->param_flags = 2474 (sp->param_flags & ~SPP_HB) | hb_change; 2475 } 2476 } 2477 2478 /* When Path MTU discovery is disabled the value specified here will 2479 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2480 * include the flag SPP_PMTUD_DISABLE for this field to have any 2481 * effect). 2482 */ 2483 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2484 if (trans) { 2485 trans->pathmtu = params->spp_pathmtu; 2486 sctp_assoc_sync_pmtu(asoc); 2487 } else if (asoc) { 2488 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2489 } else { 2490 sp->pathmtu = params->spp_pathmtu; 2491 } 2492 } 2493 2494 if (pmtud_change) { 2495 if (trans) { 2496 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2497 (params->spp_flags & SPP_PMTUD_ENABLE); 2498 trans->param_flags = 2499 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2500 if (update) { 2501 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2502 sctp_assoc_sync_pmtu(asoc); 2503 } 2504 } else if (asoc) { 2505 asoc->param_flags = 2506 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2507 } else { 2508 sp->param_flags = 2509 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2510 } 2511 } 2512 2513 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2514 * value of this field is ignored. Note also that a value of zero 2515 * indicates the current setting should be left unchanged. 2516 */ 2517 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2518 if (trans) { 2519 trans->sackdelay = 2520 msecs_to_jiffies(params->spp_sackdelay); 2521 } else if (asoc) { 2522 asoc->sackdelay = 2523 msecs_to_jiffies(params->spp_sackdelay); 2524 } else { 2525 sp->sackdelay = params->spp_sackdelay; 2526 } 2527 } 2528 2529 if (sackdelay_change) { 2530 if (trans) { 2531 trans->param_flags = 2532 (trans->param_flags & ~SPP_SACKDELAY) | 2533 sackdelay_change; 2534 } else if (asoc) { 2535 asoc->param_flags = 2536 (asoc->param_flags & ~SPP_SACKDELAY) | 2537 sackdelay_change; 2538 } else { 2539 sp->param_flags = 2540 (sp->param_flags & ~SPP_SACKDELAY) | 2541 sackdelay_change; 2542 } 2543 } 2544 2545 /* Note that a value of zero indicates the current setting should be 2546 left unchanged. 2547 */ 2548 if (params->spp_pathmaxrxt) { 2549 if (trans) { 2550 trans->pathmaxrxt = params->spp_pathmaxrxt; 2551 } else if (asoc) { 2552 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2553 } else { 2554 sp->pathmaxrxt = params->spp_pathmaxrxt; 2555 } 2556 } 2557 2558 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2559 if (trans) { 2560 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2561 trans->flowlabel = params->spp_ipv6_flowlabel & 2562 SCTP_FLOWLABEL_VAL_MASK; 2563 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2564 } 2565 } else if (asoc) { 2566 struct sctp_transport *t; 2567 2568 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2569 transports) { 2570 if (t->ipaddr.sa.sa_family != AF_INET6) 2571 continue; 2572 t->flowlabel = params->spp_ipv6_flowlabel & 2573 SCTP_FLOWLABEL_VAL_MASK; 2574 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2575 } 2576 asoc->flowlabel = params->spp_ipv6_flowlabel & 2577 SCTP_FLOWLABEL_VAL_MASK; 2578 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2579 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2580 sp->flowlabel = params->spp_ipv6_flowlabel & 2581 SCTP_FLOWLABEL_VAL_MASK; 2582 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2583 } 2584 } 2585 2586 if (params->spp_flags & SPP_DSCP) { 2587 if (trans) { 2588 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2589 trans->dscp |= SCTP_DSCP_SET_MASK; 2590 } else if (asoc) { 2591 struct sctp_transport *t; 2592 2593 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2594 transports) { 2595 t->dscp = params->spp_dscp & 2596 SCTP_DSCP_VAL_MASK; 2597 t->dscp |= SCTP_DSCP_SET_MASK; 2598 } 2599 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2600 asoc->dscp |= SCTP_DSCP_SET_MASK; 2601 } else { 2602 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2603 sp->dscp |= SCTP_DSCP_SET_MASK; 2604 } 2605 } 2606 2607 return 0; 2608 } 2609 2610 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2611 char __user *optval, 2612 unsigned int optlen) 2613 { 2614 struct sctp_paddrparams params; 2615 struct sctp_transport *trans = NULL; 2616 struct sctp_association *asoc = NULL; 2617 struct sctp_sock *sp = sctp_sk(sk); 2618 int error; 2619 int hb_change, pmtud_change, sackdelay_change; 2620 2621 if (optlen == sizeof(params)) { 2622 if (copy_from_user(¶ms, optval, optlen)) 2623 return -EFAULT; 2624 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2625 spp_ipv6_flowlabel), 4)) { 2626 if (copy_from_user(¶ms, optval, optlen)) 2627 return -EFAULT; 2628 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2629 return -EINVAL; 2630 } else { 2631 return -EINVAL; 2632 } 2633 2634 /* Validate flags and value parameters. */ 2635 hb_change = params.spp_flags & SPP_HB; 2636 pmtud_change = params.spp_flags & SPP_PMTUD; 2637 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2638 2639 if (hb_change == SPP_HB || 2640 pmtud_change == SPP_PMTUD || 2641 sackdelay_change == SPP_SACKDELAY || 2642 params.spp_sackdelay > 500 || 2643 (params.spp_pathmtu && 2644 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2645 return -EINVAL; 2646 2647 /* If an address other than INADDR_ANY is specified, and 2648 * no transport is found, then the request is invalid. 2649 */ 2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2651 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2652 params.spp_assoc_id); 2653 if (!trans) 2654 return -EINVAL; 2655 } 2656 2657 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2658 * socket is a one to many style socket, and an association 2659 * was not found, then the id was invalid. 2660 */ 2661 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2662 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2663 sctp_style(sk, UDP)) 2664 return -EINVAL; 2665 2666 /* Heartbeat demand can only be sent on a transport or 2667 * association, but not a socket. 2668 */ 2669 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2670 return -EINVAL; 2671 2672 /* Process parameters. */ 2673 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2674 hb_change, pmtud_change, 2675 sackdelay_change); 2676 2677 if (error) 2678 return error; 2679 2680 /* If changes are for association, also apply parameters to each 2681 * transport. 2682 */ 2683 if (!trans && asoc) { 2684 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2685 transports) { 2686 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2687 hb_change, pmtud_change, 2688 sackdelay_change); 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2696 { 2697 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2698 } 2699 2700 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2701 { 2702 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2703 } 2704 2705 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2706 struct sctp_association *asoc) 2707 { 2708 struct sctp_transport *trans; 2709 2710 if (params->sack_delay) { 2711 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2712 asoc->param_flags = 2713 sctp_spp_sackdelay_enable(asoc->param_flags); 2714 } 2715 if (params->sack_freq == 1) { 2716 asoc->param_flags = 2717 sctp_spp_sackdelay_disable(asoc->param_flags); 2718 } else if (params->sack_freq > 1) { 2719 asoc->sackfreq = params->sack_freq; 2720 asoc->param_flags = 2721 sctp_spp_sackdelay_enable(asoc->param_flags); 2722 } 2723 2724 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2725 transports) { 2726 if (params->sack_delay) { 2727 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 if (params->sack_freq == 1) { 2732 trans->param_flags = 2733 sctp_spp_sackdelay_disable(trans->param_flags); 2734 } else if (params->sack_freq > 1) { 2735 trans->sackfreq = params->sack_freq; 2736 trans->param_flags = 2737 sctp_spp_sackdelay_enable(trans->param_flags); 2738 } 2739 } 2740 } 2741 2742 /* 2743 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2744 * 2745 * This option will effect the way delayed acks are performed. This 2746 * option allows you to get or set the delayed ack time, in 2747 * milliseconds. It also allows changing the delayed ack frequency. 2748 * Changing the frequency to 1 disables the delayed sack algorithm. If 2749 * the assoc_id is 0, then this sets or gets the endpoints default 2750 * values. If the assoc_id field is non-zero, then the set or get 2751 * effects the specified association for the one to many model (the 2752 * assoc_id field is ignored by the one to one model). Note that if 2753 * sack_delay or sack_freq are 0 when setting this option, then the 2754 * current values will remain unchanged. 2755 * 2756 * struct sctp_sack_info { 2757 * sctp_assoc_t sack_assoc_id; 2758 * uint32_t sack_delay; 2759 * uint32_t sack_freq; 2760 * }; 2761 * 2762 * sack_assoc_id - This parameter, indicates which association the user 2763 * is performing an action upon. Note that if this field's value is 2764 * zero then the endpoints default value is changed (effecting future 2765 * associations only). 2766 * 2767 * sack_delay - This parameter contains the number of milliseconds that 2768 * the user is requesting the delayed ACK timer be set to. Note that 2769 * this value is defined in the standard to be between 200 and 500 2770 * milliseconds. 2771 * 2772 * sack_freq - This parameter contains the number of packets that must 2773 * be received before a sack is sent without waiting for the delay 2774 * timer to expire. The default value for this is 2, setting this 2775 * value to 1 will disable the delayed sack algorithm. 2776 */ 2777 2778 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2779 char __user *optval, unsigned int optlen) 2780 { 2781 struct sctp_sock *sp = sctp_sk(sk); 2782 struct sctp_association *asoc; 2783 struct sctp_sack_info params; 2784 2785 if (optlen == sizeof(struct sctp_sack_info)) { 2786 if (copy_from_user(¶ms, optval, optlen)) 2787 return -EFAULT; 2788 2789 if (params.sack_delay == 0 && params.sack_freq == 0) 2790 return 0; 2791 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2792 pr_warn_ratelimited(DEPRECATED 2793 "%s (pid %d) " 2794 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2795 "Use struct sctp_sack_info instead\n", 2796 current->comm, task_pid_nr(current)); 2797 if (copy_from_user(¶ms, optval, optlen)) 2798 return -EFAULT; 2799 2800 if (params.sack_delay == 0) 2801 params.sack_freq = 1; 2802 else 2803 params.sack_freq = 0; 2804 } else 2805 return -EINVAL; 2806 2807 /* Validate value parameter. */ 2808 if (params.sack_delay > 500) 2809 return -EINVAL; 2810 2811 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2812 * socket is a one to many style socket, and an association 2813 * was not found, then the id was invalid. 2814 */ 2815 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2816 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2817 sctp_style(sk, UDP)) 2818 return -EINVAL; 2819 2820 if (asoc) { 2821 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2822 2823 return 0; 2824 } 2825 2826 if (sctp_style(sk, TCP)) 2827 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2828 2829 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2830 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2831 if (params.sack_delay) { 2832 sp->sackdelay = params.sack_delay; 2833 sp->param_flags = 2834 sctp_spp_sackdelay_enable(sp->param_flags); 2835 } 2836 if (params.sack_freq == 1) { 2837 sp->param_flags = 2838 sctp_spp_sackdelay_disable(sp->param_flags); 2839 } else if (params.sack_freq > 1) { 2840 sp->sackfreq = params.sack_freq; 2841 sp->param_flags = 2842 sctp_spp_sackdelay_enable(sp->param_flags); 2843 } 2844 } 2845 2846 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2847 params.sack_assoc_id == SCTP_ALL_ASSOC) 2848 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2849 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2850 2851 return 0; 2852 } 2853 2854 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2855 * 2856 * Applications can specify protocol parameters for the default association 2857 * initialization. The option name argument to setsockopt() and getsockopt() 2858 * is SCTP_INITMSG. 2859 * 2860 * Setting initialization parameters is effective only on an unconnected 2861 * socket (for UDP-style sockets only future associations are effected 2862 * by the change). With TCP-style sockets, this option is inherited by 2863 * sockets derived from a listener socket. 2864 */ 2865 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2866 { 2867 struct sctp_initmsg sinit; 2868 struct sctp_sock *sp = sctp_sk(sk); 2869 2870 if (optlen != sizeof(struct sctp_initmsg)) 2871 return -EINVAL; 2872 if (copy_from_user(&sinit, optval, optlen)) 2873 return -EFAULT; 2874 2875 if (sinit.sinit_num_ostreams) 2876 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2877 if (sinit.sinit_max_instreams) 2878 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2879 if (sinit.sinit_max_attempts) 2880 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2881 if (sinit.sinit_max_init_timeo) 2882 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2883 2884 return 0; 2885 } 2886 2887 /* 2888 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2889 * 2890 * Applications that wish to use the sendto() system call may wish to 2891 * specify a default set of parameters that would normally be supplied 2892 * through the inclusion of ancillary data. This socket option allows 2893 * such an application to set the default sctp_sndrcvinfo structure. 2894 * The application that wishes to use this socket option simply passes 2895 * in to this call the sctp_sndrcvinfo structure defined in Section 2896 * 5.2.2) The input parameters accepted by this call include 2897 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2898 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2899 * to this call if the caller is using the UDP model. 2900 */ 2901 static int sctp_setsockopt_default_send_param(struct sock *sk, 2902 char __user *optval, 2903 unsigned int optlen) 2904 { 2905 struct sctp_sock *sp = sctp_sk(sk); 2906 struct sctp_association *asoc; 2907 struct sctp_sndrcvinfo info; 2908 2909 if (optlen != sizeof(info)) 2910 return -EINVAL; 2911 if (copy_from_user(&info, optval, optlen)) 2912 return -EFAULT; 2913 if (info.sinfo_flags & 2914 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2915 SCTP_ABORT | SCTP_EOF)) 2916 return -EINVAL; 2917 2918 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2919 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 2920 sctp_style(sk, UDP)) 2921 return -EINVAL; 2922 2923 if (asoc) { 2924 asoc->default_stream = info.sinfo_stream; 2925 asoc->default_flags = info.sinfo_flags; 2926 asoc->default_ppid = info.sinfo_ppid; 2927 asoc->default_context = info.sinfo_context; 2928 asoc->default_timetolive = info.sinfo_timetolive; 2929 2930 return 0; 2931 } 2932 2933 if (sctp_style(sk, TCP)) 2934 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2935 2936 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2937 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2938 sp->default_stream = info.sinfo_stream; 2939 sp->default_flags = info.sinfo_flags; 2940 sp->default_ppid = info.sinfo_ppid; 2941 sp->default_context = info.sinfo_context; 2942 sp->default_timetolive = info.sinfo_timetolive; 2943 } 2944 2945 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2946 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2947 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2948 asoc->default_stream = info.sinfo_stream; 2949 asoc->default_flags = info.sinfo_flags; 2950 asoc->default_ppid = info.sinfo_ppid; 2951 asoc->default_context = info.sinfo_context; 2952 asoc->default_timetolive = info.sinfo_timetolive; 2953 } 2954 } 2955 2956 return 0; 2957 } 2958 2959 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2960 * (SCTP_DEFAULT_SNDINFO) 2961 */ 2962 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2963 char __user *optval, 2964 unsigned int optlen) 2965 { 2966 struct sctp_sock *sp = sctp_sk(sk); 2967 struct sctp_association *asoc; 2968 struct sctp_sndinfo info; 2969 2970 if (optlen != sizeof(info)) 2971 return -EINVAL; 2972 if (copy_from_user(&info, optval, optlen)) 2973 return -EFAULT; 2974 if (info.snd_flags & 2975 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2976 SCTP_ABORT | SCTP_EOF)) 2977 return -EINVAL; 2978 2979 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2980 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 2981 sctp_style(sk, UDP)) 2982 return -EINVAL; 2983 2984 if (asoc) { 2985 asoc->default_stream = info.snd_sid; 2986 asoc->default_flags = info.snd_flags; 2987 asoc->default_ppid = info.snd_ppid; 2988 asoc->default_context = info.snd_context; 2989 2990 return 0; 2991 } 2992 2993 if (sctp_style(sk, TCP)) 2994 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 2995 2996 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 2997 info.snd_assoc_id == SCTP_ALL_ASSOC) { 2998 sp->default_stream = info.snd_sid; 2999 sp->default_flags = info.snd_flags; 3000 sp->default_ppid = info.snd_ppid; 3001 sp->default_context = info.snd_context; 3002 } 3003 3004 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3005 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3006 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3007 asoc->default_stream = info.snd_sid; 3008 asoc->default_flags = info.snd_flags; 3009 asoc->default_ppid = info.snd_ppid; 3010 asoc->default_context = info.snd_context; 3011 } 3012 } 3013 3014 return 0; 3015 } 3016 3017 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3018 * 3019 * Requests that the local SCTP stack use the enclosed peer address as 3020 * the association primary. The enclosed address must be one of the 3021 * association peer's addresses. 3022 */ 3023 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3024 unsigned int optlen) 3025 { 3026 struct sctp_prim prim; 3027 struct sctp_transport *trans; 3028 struct sctp_af *af; 3029 int err; 3030 3031 if (optlen != sizeof(struct sctp_prim)) 3032 return -EINVAL; 3033 3034 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3035 return -EFAULT; 3036 3037 /* Allow security module to validate address but need address len. */ 3038 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3039 if (!af) 3040 return -EINVAL; 3041 3042 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3043 (struct sockaddr *)&prim.ssp_addr, 3044 af->sockaddr_len); 3045 if (err) 3046 return err; 3047 3048 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3049 if (!trans) 3050 return -EINVAL; 3051 3052 sctp_assoc_set_primary(trans->asoc, trans); 3053 3054 return 0; 3055 } 3056 3057 /* 3058 * 7.1.5 SCTP_NODELAY 3059 * 3060 * Turn on/off any Nagle-like algorithm. This means that packets are 3061 * generally sent as soon as possible and no unnecessary delays are 3062 * introduced, at the cost of more packets in the network. Expects an 3063 * integer boolean flag. 3064 */ 3065 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3066 unsigned int optlen) 3067 { 3068 int val; 3069 3070 if (optlen < sizeof(int)) 3071 return -EINVAL; 3072 if (get_user(val, (int __user *)optval)) 3073 return -EFAULT; 3074 3075 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3076 return 0; 3077 } 3078 3079 /* 3080 * 3081 * 7.1.1 SCTP_RTOINFO 3082 * 3083 * The protocol parameters used to initialize and bound retransmission 3084 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3085 * and modify these parameters. 3086 * All parameters are time values, in milliseconds. A value of 0, when 3087 * modifying the parameters, indicates that the current value should not 3088 * be changed. 3089 * 3090 */ 3091 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3092 { 3093 struct sctp_rtoinfo rtoinfo; 3094 struct sctp_association *asoc; 3095 unsigned long rto_min, rto_max; 3096 struct sctp_sock *sp = sctp_sk(sk); 3097 3098 if (optlen != sizeof (struct sctp_rtoinfo)) 3099 return -EINVAL; 3100 3101 if (copy_from_user(&rtoinfo, optval, optlen)) 3102 return -EFAULT; 3103 3104 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3105 3106 /* Set the values to the specific association */ 3107 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3108 sctp_style(sk, UDP)) 3109 return -EINVAL; 3110 3111 rto_max = rtoinfo.srto_max; 3112 rto_min = rtoinfo.srto_min; 3113 3114 if (rto_max) 3115 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3116 else 3117 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3118 3119 if (rto_min) 3120 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3121 else 3122 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3123 3124 if (rto_min > rto_max) 3125 return -EINVAL; 3126 3127 if (asoc) { 3128 if (rtoinfo.srto_initial != 0) 3129 asoc->rto_initial = 3130 msecs_to_jiffies(rtoinfo.srto_initial); 3131 asoc->rto_max = rto_max; 3132 asoc->rto_min = rto_min; 3133 } else { 3134 /* If there is no association or the association-id = 0 3135 * set the values to the endpoint. 3136 */ 3137 if (rtoinfo.srto_initial != 0) 3138 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3139 sp->rtoinfo.srto_max = rto_max; 3140 sp->rtoinfo.srto_min = rto_min; 3141 } 3142 3143 return 0; 3144 } 3145 3146 /* 3147 * 3148 * 7.1.2 SCTP_ASSOCINFO 3149 * 3150 * This option is used to tune the maximum retransmission attempts 3151 * of the association. 3152 * Returns an error if the new association retransmission value is 3153 * greater than the sum of the retransmission value of the peer. 3154 * See [SCTP] for more information. 3155 * 3156 */ 3157 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3158 { 3159 3160 struct sctp_assocparams assocparams; 3161 struct sctp_association *asoc; 3162 3163 if (optlen != sizeof(struct sctp_assocparams)) 3164 return -EINVAL; 3165 if (copy_from_user(&assocparams, optval, optlen)) 3166 return -EFAULT; 3167 3168 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3169 3170 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3171 sctp_style(sk, UDP)) 3172 return -EINVAL; 3173 3174 /* Set the values to the specific association */ 3175 if (asoc) { 3176 if (assocparams.sasoc_asocmaxrxt != 0) { 3177 __u32 path_sum = 0; 3178 int paths = 0; 3179 struct sctp_transport *peer_addr; 3180 3181 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3182 transports) { 3183 path_sum += peer_addr->pathmaxrxt; 3184 paths++; 3185 } 3186 3187 /* Only validate asocmaxrxt if we have more than 3188 * one path/transport. We do this because path 3189 * retransmissions are only counted when we have more 3190 * then one path. 3191 */ 3192 if (paths > 1 && 3193 assocparams.sasoc_asocmaxrxt > path_sum) 3194 return -EINVAL; 3195 3196 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3197 } 3198 3199 if (assocparams.sasoc_cookie_life != 0) 3200 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3201 } else { 3202 /* Set the values to the endpoint */ 3203 struct sctp_sock *sp = sctp_sk(sk); 3204 3205 if (assocparams.sasoc_asocmaxrxt != 0) 3206 sp->assocparams.sasoc_asocmaxrxt = 3207 assocparams.sasoc_asocmaxrxt; 3208 if (assocparams.sasoc_cookie_life != 0) 3209 sp->assocparams.sasoc_cookie_life = 3210 assocparams.sasoc_cookie_life; 3211 } 3212 return 0; 3213 } 3214 3215 /* 3216 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3217 * 3218 * This socket option is a boolean flag which turns on or off mapped V4 3219 * addresses. If this option is turned on and the socket is type 3220 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3221 * If this option is turned off, then no mapping will be done of V4 3222 * addresses and a user will receive both PF_INET6 and PF_INET type 3223 * addresses on the socket. 3224 */ 3225 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3226 { 3227 int val; 3228 struct sctp_sock *sp = sctp_sk(sk); 3229 3230 if (optlen < sizeof(int)) 3231 return -EINVAL; 3232 if (get_user(val, (int __user *)optval)) 3233 return -EFAULT; 3234 if (val) 3235 sp->v4mapped = 1; 3236 else 3237 sp->v4mapped = 0; 3238 3239 return 0; 3240 } 3241 3242 /* 3243 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3244 * This option will get or set the maximum size to put in any outgoing 3245 * SCTP DATA chunk. If a message is larger than this size it will be 3246 * fragmented by SCTP into the specified size. Note that the underlying 3247 * SCTP implementation may fragment into smaller sized chunks when the 3248 * PMTU of the underlying association is smaller than the value set by 3249 * the user. The default value for this option is '0' which indicates 3250 * the user is NOT limiting fragmentation and only the PMTU will effect 3251 * SCTP's choice of DATA chunk size. Note also that values set larger 3252 * than the maximum size of an IP datagram will effectively let SCTP 3253 * control fragmentation (i.e. the same as setting this option to 0). 3254 * 3255 * The following structure is used to access and modify this parameter: 3256 * 3257 * struct sctp_assoc_value { 3258 * sctp_assoc_t assoc_id; 3259 * uint32_t assoc_value; 3260 * }; 3261 * 3262 * assoc_id: This parameter is ignored for one-to-one style sockets. 3263 * For one-to-many style sockets this parameter indicates which 3264 * association the user is performing an action upon. Note that if 3265 * this field's value is zero then the endpoints default value is 3266 * changed (effecting future associations only). 3267 * assoc_value: This parameter specifies the maximum size in bytes. 3268 */ 3269 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3270 { 3271 struct sctp_sock *sp = sctp_sk(sk); 3272 struct sctp_assoc_value params; 3273 struct sctp_association *asoc; 3274 int val; 3275 3276 if (optlen == sizeof(int)) { 3277 pr_warn_ratelimited(DEPRECATED 3278 "%s (pid %d) " 3279 "Use of int in maxseg socket option.\n" 3280 "Use struct sctp_assoc_value instead\n", 3281 current->comm, task_pid_nr(current)); 3282 if (copy_from_user(&val, optval, optlen)) 3283 return -EFAULT; 3284 params.assoc_id = SCTP_FUTURE_ASSOC; 3285 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3286 if (copy_from_user(¶ms, optval, optlen)) 3287 return -EFAULT; 3288 val = params.assoc_value; 3289 } else { 3290 return -EINVAL; 3291 } 3292 3293 asoc = sctp_id2assoc(sk, params.assoc_id); 3294 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3295 sctp_style(sk, UDP)) 3296 return -EINVAL; 3297 3298 if (val) { 3299 int min_len, max_len; 3300 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3301 sizeof(struct sctp_data_chunk); 3302 3303 min_len = sctp_min_frag_point(sp, datasize); 3304 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3305 3306 if (val < min_len || val > max_len) 3307 return -EINVAL; 3308 } 3309 3310 if (asoc) { 3311 asoc->user_frag = val; 3312 sctp_assoc_update_frag_point(asoc); 3313 } else { 3314 sp->user_frag = val; 3315 } 3316 3317 return 0; 3318 } 3319 3320 3321 /* 3322 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3323 * 3324 * Requests that the peer mark the enclosed address as the association 3325 * primary. The enclosed address must be one of the association's 3326 * locally bound addresses. The following structure is used to make a 3327 * set primary request: 3328 */ 3329 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3330 unsigned int optlen) 3331 { 3332 struct sctp_sock *sp; 3333 struct sctp_association *asoc = NULL; 3334 struct sctp_setpeerprim prim; 3335 struct sctp_chunk *chunk; 3336 struct sctp_af *af; 3337 int err; 3338 3339 sp = sctp_sk(sk); 3340 3341 if (!sp->ep->asconf_enable) 3342 return -EPERM; 3343 3344 if (optlen != sizeof(struct sctp_setpeerprim)) 3345 return -EINVAL; 3346 3347 if (copy_from_user(&prim, optval, optlen)) 3348 return -EFAULT; 3349 3350 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3351 if (!asoc) 3352 return -EINVAL; 3353 3354 if (!asoc->peer.asconf_capable) 3355 return -EPERM; 3356 3357 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3358 return -EPERM; 3359 3360 if (!sctp_state(asoc, ESTABLISHED)) 3361 return -ENOTCONN; 3362 3363 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3364 if (!af) 3365 return -EINVAL; 3366 3367 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3368 return -EADDRNOTAVAIL; 3369 3370 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3371 return -EADDRNOTAVAIL; 3372 3373 /* Allow security module to validate address. */ 3374 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3375 (struct sockaddr *)&prim.sspp_addr, 3376 af->sockaddr_len); 3377 if (err) 3378 return err; 3379 3380 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3381 chunk = sctp_make_asconf_set_prim(asoc, 3382 (union sctp_addr *)&prim.sspp_addr); 3383 if (!chunk) 3384 return -ENOMEM; 3385 3386 err = sctp_send_asconf(asoc, chunk); 3387 3388 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3389 3390 return err; 3391 } 3392 3393 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3394 unsigned int optlen) 3395 { 3396 struct sctp_setadaptation adaptation; 3397 3398 if (optlen != sizeof(struct sctp_setadaptation)) 3399 return -EINVAL; 3400 if (copy_from_user(&adaptation, optval, optlen)) 3401 return -EFAULT; 3402 3403 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3404 3405 return 0; 3406 } 3407 3408 /* 3409 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3410 * 3411 * The context field in the sctp_sndrcvinfo structure is normally only 3412 * used when a failed message is retrieved holding the value that was 3413 * sent down on the actual send call. This option allows the setting of 3414 * a default context on an association basis that will be received on 3415 * reading messages from the peer. This is especially helpful in the 3416 * one-2-many model for an application to keep some reference to an 3417 * internal state machine that is processing messages on the 3418 * association. Note that the setting of this value only effects 3419 * received messages from the peer and does not effect the value that is 3420 * saved with outbound messages. 3421 */ 3422 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3423 unsigned int optlen) 3424 { 3425 struct sctp_sock *sp = sctp_sk(sk); 3426 struct sctp_assoc_value params; 3427 struct sctp_association *asoc; 3428 3429 if (optlen != sizeof(struct sctp_assoc_value)) 3430 return -EINVAL; 3431 if (copy_from_user(¶ms, optval, optlen)) 3432 return -EFAULT; 3433 3434 asoc = sctp_id2assoc(sk, params.assoc_id); 3435 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3436 sctp_style(sk, UDP)) 3437 return -EINVAL; 3438 3439 if (asoc) { 3440 asoc->default_rcv_context = params.assoc_value; 3441 3442 return 0; 3443 } 3444 3445 if (sctp_style(sk, TCP)) 3446 params.assoc_id = SCTP_FUTURE_ASSOC; 3447 3448 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3449 params.assoc_id == SCTP_ALL_ASSOC) 3450 sp->default_rcv_context = params.assoc_value; 3451 3452 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3453 params.assoc_id == SCTP_ALL_ASSOC) 3454 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3455 asoc->default_rcv_context = params.assoc_value; 3456 3457 return 0; 3458 } 3459 3460 /* 3461 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3462 * 3463 * This options will at a minimum specify if the implementation is doing 3464 * fragmented interleave. Fragmented interleave, for a one to many 3465 * socket, is when subsequent calls to receive a message may return 3466 * parts of messages from different associations. Some implementations 3467 * may allow you to turn this value on or off. If so, when turned off, 3468 * no fragment interleave will occur (which will cause a head of line 3469 * blocking amongst multiple associations sharing the same one to many 3470 * socket). When this option is turned on, then each receive call may 3471 * come from a different association (thus the user must receive data 3472 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3473 * association each receive belongs to. 3474 * 3475 * This option takes a boolean value. A non-zero value indicates that 3476 * fragmented interleave is on. A value of zero indicates that 3477 * fragmented interleave is off. 3478 * 3479 * Note that it is important that an implementation that allows this 3480 * option to be turned on, have it off by default. Otherwise an unaware 3481 * application using the one to many model may become confused and act 3482 * incorrectly. 3483 */ 3484 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3485 char __user *optval, 3486 unsigned int optlen) 3487 { 3488 int val; 3489 3490 if (optlen != sizeof(int)) 3491 return -EINVAL; 3492 if (get_user(val, (int __user *)optval)) 3493 return -EFAULT; 3494 3495 sctp_sk(sk)->frag_interleave = !!val; 3496 3497 if (!sctp_sk(sk)->frag_interleave) 3498 sctp_sk(sk)->ep->intl_enable = 0; 3499 3500 return 0; 3501 } 3502 3503 /* 3504 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3505 * (SCTP_PARTIAL_DELIVERY_POINT) 3506 * 3507 * This option will set or get the SCTP partial delivery point. This 3508 * point is the size of a message where the partial delivery API will be 3509 * invoked to help free up rwnd space for the peer. Setting this to a 3510 * lower value will cause partial deliveries to happen more often. The 3511 * calls argument is an integer that sets or gets the partial delivery 3512 * point. Note also that the call will fail if the user attempts to set 3513 * this value larger than the socket receive buffer size. 3514 * 3515 * Note that any single message having a length smaller than or equal to 3516 * the SCTP partial delivery point will be delivered in one single read 3517 * call as long as the user provided buffer is large enough to hold the 3518 * message. 3519 */ 3520 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3521 char __user *optval, 3522 unsigned int optlen) 3523 { 3524 u32 val; 3525 3526 if (optlen != sizeof(u32)) 3527 return -EINVAL; 3528 if (get_user(val, (int __user *)optval)) 3529 return -EFAULT; 3530 3531 /* Note: We double the receive buffer from what the user sets 3532 * it to be, also initial rwnd is based on rcvbuf/2. 3533 */ 3534 if (val > (sk->sk_rcvbuf >> 1)) 3535 return -EINVAL; 3536 3537 sctp_sk(sk)->pd_point = val; 3538 3539 return 0; /* is this the right error code? */ 3540 } 3541 3542 /* 3543 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3544 * 3545 * This option will allow a user to change the maximum burst of packets 3546 * that can be emitted by this association. Note that the default value 3547 * is 4, and some implementations may restrict this setting so that it 3548 * can only be lowered. 3549 * 3550 * NOTE: This text doesn't seem right. Do this on a socket basis with 3551 * future associations inheriting the socket value. 3552 */ 3553 static int sctp_setsockopt_maxburst(struct sock *sk, 3554 char __user *optval, 3555 unsigned int optlen) 3556 { 3557 struct sctp_sock *sp = sctp_sk(sk); 3558 struct sctp_assoc_value params; 3559 struct sctp_association *asoc; 3560 3561 if (optlen == sizeof(int)) { 3562 pr_warn_ratelimited(DEPRECATED 3563 "%s (pid %d) " 3564 "Use of int in max_burst socket option deprecated.\n" 3565 "Use struct sctp_assoc_value instead\n", 3566 current->comm, task_pid_nr(current)); 3567 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3568 return -EFAULT; 3569 params.assoc_id = SCTP_FUTURE_ASSOC; 3570 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3571 if (copy_from_user(¶ms, optval, optlen)) 3572 return -EFAULT; 3573 } else 3574 return -EINVAL; 3575 3576 asoc = sctp_id2assoc(sk, params.assoc_id); 3577 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3578 sctp_style(sk, UDP)) 3579 return -EINVAL; 3580 3581 if (asoc) { 3582 asoc->max_burst = params.assoc_value; 3583 3584 return 0; 3585 } 3586 3587 if (sctp_style(sk, TCP)) 3588 params.assoc_id = SCTP_FUTURE_ASSOC; 3589 3590 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3591 params.assoc_id == SCTP_ALL_ASSOC) 3592 sp->max_burst = params.assoc_value; 3593 3594 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3595 params.assoc_id == SCTP_ALL_ASSOC) 3596 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3597 asoc->max_burst = params.assoc_value; 3598 3599 return 0; 3600 } 3601 3602 /* 3603 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3604 * 3605 * This set option adds a chunk type that the user is requesting to be 3606 * received only in an authenticated way. Changes to the list of chunks 3607 * will only effect future associations on the socket. 3608 */ 3609 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3610 char __user *optval, 3611 unsigned int optlen) 3612 { 3613 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3614 struct sctp_authchunk val; 3615 3616 if (!ep->auth_enable) 3617 return -EACCES; 3618 3619 if (optlen != sizeof(struct sctp_authchunk)) 3620 return -EINVAL; 3621 if (copy_from_user(&val, optval, optlen)) 3622 return -EFAULT; 3623 3624 switch (val.sauth_chunk) { 3625 case SCTP_CID_INIT: 3626 case SCTP_CID_INIT_ACK: 3627 case SCTP_CID_SHUTDOWN_COMPLETE: 3628 case SCTP_CID_AUTH: 3629 return -EINVAL; 3630 } 3631 3632 /* add this chunk id to the endpoint */ 3633 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3634 } 3635 3636 /* 3637 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3638 * 3639 * This option gets or sets the list of HMAC algorithms that the local 3640 * endpoint requires the peer to use. 3641 */ 3642 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3643 char __user *optval, 3644 unsigned int optlen) 3645 { 3646 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3647 struct sctp_hmacalgo *hmacs; 3648 u32 idents; 3649 int err; 3650 3651 if (!ep->auth_enable) 3652 return -EACCES; 3653 3654 if (optlen < sizeof(struct sctp_hmacalgo)) 3655 return -EINVAL; 3656 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3657 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3658 3659 hmacs = memdup_user(optval, optlen); 3660 if (IS_ERR(hmacs)) 3661 return PTR_ERR(hmacs); 3662 3663 idents = hmacs->shmac_num_idents; 3664 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3665 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3666 err = -EINVAL; 3667 goto out; 3668 } 3669 3670 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3671 out: 3672 kfree(hmacs); 3673 return err; 3674 } 3675 3676 /* 3677 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3678 * 3679 * This option will set a shared secret key which is used to build an 3680 * association shared key. 3681 */ 3682 static int sctp_setsockopt_auth_key(struct sock *sk, 3683 char __user *optval, 3684 unsigned int optlen) 3685 { 3686 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3687 struct sctp_authkey *authkey; 3688 struct sctp_association *asoc; 3689 int ret = -EINVAL; 3690 3691 if (optlen <= sizeof(struct sctp_authkey)) 3692 return -EINVAL; 3693 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3694 * this. 3695 */ 3696 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3697 3698 authkey = memdup_user(optval, optlen); 3699 if (IS_ERR(authkey)) 3700 return PTR_ERR(authkey); 3701 3702 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3703 goto out; 3704 3705 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3706 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3707 sctp_style(sk, UDP)) 3708 goto out; 3709 3710 if (asoc) { 3711 ret = sctp_auth_set_key(ep, asoc, authkey); 3712 goto out; 3713 } 3714 3715 if (sctp_style(sk, TCP)) 3716 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3717 3718 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3719 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3720 ret = sctp_auth_set_key(ep, asoc, authkey); 3721 if (ret) 3722 goto out; 3723 } 3724 3725 ret = 0; 3726 3727 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3728 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3729 list_for_each_entry(asoc, &ep->asocs, asocs) { 3730 int res = sctp_auth_set_key(ep, asoc, authkey); 3731 3732 if (res && !ret) 3733 ret = res; 3734 } 3735 } 3736 3737 out: 3738 kzfree(authkey); 3739 return ret; 3740 } 3741 3742 /* 3743 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3744 * 3745 * This option will get or set the active shared key to be used to build 3746 * the association shared key. 3747 */ 3748 static int sctp_setsockopt_active_key(struct sock *sk, 3749 char __user *optval, 3750 unsigned int optlen) 3751 { 3752 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3753 struct sctp_association *asoc; 3754 struct sctp_authkeyid val; 3755 int ret = 0; 3756 3757 if (optlen != sizeof(struct sctp_authkeyid)) 3758 return -EINVAL; 3759 if (copy_from_user(&val, optval, optlen)) 3760 return -EFAULT; 3761 3762 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3763 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3764 sctp_style(sk, UDP)) 3765 return -EINVAL; 3766 3767 if (asoc) 3768 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3769 3770 if (sctp_style(sk, TCP)) 3771 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3772 3773 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3774 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3775 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3776 if (ret) 3777 return ret; 3778 } 3779 3780 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3781 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3782 list_for_each_entry(asoc, &ep->asocs, asocs) { 3783 int res = sctp_auth_set_active_key(ep, asoc, 3784 val.scact_keynumber); 3785 3786 if (res && !ret) 3787 ret = res; 3788 } 3789 } 3790 3791 return ret; 3792 } 3793 3794 /* 3795 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3796 * 3797 * This set option will delete a shared secret key from use. 3798 */ 3799 static int sctp_setsockopt_del_key(struct sock *sk, 3800 char __user *optval, 3801 unsigned int optlen) 3802 { 3803 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3804 struct sctp_association *asoc; 3805 struct sctp_authkeyid val; 3806 int ret = 0; 3807 3808 if (optlen != sizeof(struct sctp_authkeyid)) 3809 return -EINVAL; 3810 if (copy_from_user(&val, optval, optlen)) 3811 return -EFAULT; 3812 3813 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3814 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3815 sctp_style(sk, UDP)) 3816 return -EINVAL; 3817 3818 if (asoc) 3819 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3820 3821 if (sctp_style(sk, TCP)) 3822 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3823 3824 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3825 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3826 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3827 if (ret) 3828 return ret; 3829 } 3830 3831 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3832 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3833 list_for_each_entry(asoc, &ep->asocs, asocs) { 3834 int res = sctp_auth_del_key_id(ep, asoc, 3835 val.scact_keynumber); 3836 3837 if (res && !ret) 3838 ret = res; 3839 } 3840 } 3841 3842 return ret; 3843 } 3844 3845 /* 3846 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3847 * 3848 * This set option will deactivate a shared secret key. 3849 */ 3850 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3851 unsigned int optlen) 3852 { 3853 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3854 struct sctp_association *asoc; 3855 struct sctp_authkeyid val; 3856 int ret = 0; 3857 3858 if (optlen != sizeof(struct sctp_authkeyid)) 3859 return -EINVAL; 3860 if (copy_from_user(&val, optval, optlen)) 3861 return -EFAULT; 3862 3863 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3864 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3865 sctp_style(sk, UDP)) 3866 return -EINVAL; 3867 3868 if (asoc) 3869 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3870 3871 if (sctp_style(sk, TCP)) 3872 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3873 3874 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3875 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3876 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3877 if (ret) 3878 return ret; 3879 } 3880 3881 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3882 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3883 list_for_each_entry(asoc, &ep->asocs, asocs) { 3884 int res = sctp_auth_deact_key_id(ep, asoc, 3885 val.scact_keynumber); 3886 3887 if (res && !ret) 3888 ret = res; 3889 } 3890 } 3891 3892 return ret; 3893 } 3894 3895 /* 3896 * 8.1.23 SCTP_AUTO_ASCONF 3897 * 3898 * This option will enable or disable the use of the automatic generation of 3899 * ASCONF chunks to add and delete addresses to an existing association. Note 3900 * that this option has two caveats namely: a) it only affects sockets that 3901 * are bound to all addresses available to the SCTP stack, and b) the system 3902 * administrator may have an overriding control that turns the ASCONF feature 3903 * off no matter what setting the socket option may have. 3904 * This option expects an integer boolean flag, where a non-zero value turns on 3905 * the option, and a zero value turns off the option. 3906 * Note. In this implementation, socket operation overrides default parameter 3907 * being set by sysctl as well as FreeBSD implementation 3908 */ 3909 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3910 unsigned int optlen) 3911 { 3912 int val; 3913 struct sctp_sock *sp = sctp_sk(sk); 3914 3915 if (optlen < sizeof(int)) 3916 return -EINVAL; 3917 if (get_user(val, (int __user *)optval)) 3918 return -EFAULT; 3919 if (!sctp_is_ep_boundall(sk) && val) 3920 return -EINVAL; 3921 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3922 return 0; 3923 3924 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3925 if (val == 0 && sp->do_auto_asconf) { 3926 list_del(&sp->auto_asconf_list); 3927 sp->do_auto_asconf = 0; 3928 } else if (val && !sp->do_auto_asconf) { 3929 list_add_tail(&sp->auto_asconf_list, 3930 &sock_net(sk)->sctp.auto_asconf_splist); 3931 sp->do_auto_asconf = 1; 3932 } 3933 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3934 return 0; 3935 } 3936 3937 /* 3938 * SCTP_PEER_ADDR_THLDS 3939 * 3940 * This option allows us to alter the partially failed threshold for one or all 3941 * transports in an association. See Section 6.1 of: 3942 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3943 */ 3944 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3945 char __user *optval, 3946 unsigned int optlen, bool v2) 3947 { 3948 struct sctp_paddrthlds_v2 val; 3949 struct sctp_transport *trans; 3950 struct sctp_association *asoc; 3951 int len; 3952 3953 len = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 3954 if (optlen < len) 3955 return -EINVAL; 3956 if (copy_from_user(&val, optval, len)) 3957 return -EFAULT; 3958 3959 if (v2 && val.spt_pathpfthld > val.spt_pathcpthld) 3960 return -EINVAL; 3961 3962 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3963 trans = sctp_addr_id2transport(sk, &val.spt_address, 3964 val.spt_assoc_id); 3965 if (!trans) 3966 return -ENOENT; 3967 3968 if (val.spt_pathmaxrxt) 3969 trans->pathmaxrxt = val.spt_pathmaxrxt; 3970 if (v2) 3971 trans->ps_retrans = val.spt_pathcpthld; 3972 trans->pf_retrans = val.spt_pathpfthld; 3973 3974 return 0; 3975 } 3976 3977 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3978 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 3979 sctp_style(sk, UDP)) 3980 return -EINVAL; 3981 3982 if (asoc) { 3983 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3984 transports) { 3985 if (val.spt_pathmaxrxt) 3986 trans->pathmaxrxt = val.spt_pathmaxrxt; 3987 if (v2) 3988 trans->ps_retrans = val.spt_pathcpthld; 3989 trans->pf_retrans = val.spt_pathpfthld; 3990 } 3991 3992 if (val.spt_pathmaxrxt) 3993 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3994 if (v2) 3995 asoc->ps_retrans = val.spt_pathcpthld; 3996 asoc->pf_retrans = val.spt_pathpfthld; 3997 } else { 3998 struct sctp_sock *sp = sctp_sk(sk); 3999 4000 if (val.spt_pathmaxrxt) 4001 sp->pathmaxrxt = val.spt_pathmaxrxt; 4002 if (v2) 4003 sp->ps_retrans = val.spt_pathcpthld; 4004 sp->pf_retrans = val.spt_pathpfthld; 4005 } 4006 4007 return 0; 4008 } 4009 4010 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4011 char __user *optval, 4012 unsigned int optlen) 4013 { 4014 int val; 4015 4016 if (optlen < sizeof(int)) 4017 return -EINVAL; 4018 if (get_user(val, (int __user *) optval)) 4019 return -EFAULT; 4020 4021 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4022 4023 return 0; 4024 } 4025 4026 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4027 char __user *optval, 4028 unsigned int optlen) 4029 { 4030 int val; 4031 4032 if (optlen < sizeof(int)) 4033 return -EINVAL; 4034 if (get_user(val, (int __user *) optval)) 4035 return -EFAULT; 4036 4037 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4038 4039 return 0; 4040 } 4041 4042 static int sctp_setsockopt_pr_supported(struct sock *sk, 4043 char __user *optval, 4044 unsigned int optlen) 4045 { 4046 struct sctp_assoc_value params; 4047 struct sctp_association *asoc; 4048 4049 if (optlen != sizeof(params)) 4050 return -EINVAL; 4051 4052 if (copy_from_user(¶ms, optval, optlen)) 4053 return -EFAULT; 4054 4055 asoc = sctp_id2assoc(sk, params.assoc_id); 4056 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4057 sctp_style(sk, UDP)) 4058 return -EINVAL; 4059 4060 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4061 4062 return 0; 4063 } 4064 4065 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4066 char __user *optval, 4067 unsigned int optlen) 4068 { 4069 struct sctp_sock *sp = sctp_sk(sk); 4070 struct sctp_default_prinfo info; 4071 struct sctp_association *asoc; 4072 int retval = -EINVAL; 4073 4074 if (optlen != sizeof(info)) 4075 goto out; 4076 4077 if (copy_from_user(&info, optval, sizeof(info))) { 4078 retval = -EFAULT; 4079 goto out; 4080 } 4081 4082 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4083 goto out; 4084 4085 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4086 info.pr_value = 0; 4087 4088 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4089 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4090 sctp_style(sk, UDP)) 4091 goto out; 4092 4093 retval = 0; 4094 4095 if (asoc) { 4096 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4097 asoc->default_timetolive = info.pr_value; 4098 goto out; 4099 } 4100 4101 if (sctp_style(sk, TCP)) 4102 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4103 4104 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4105 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4106 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4107 sp->default_timetolive = info.pr_value; 4108 } 4109 4110 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4111 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4112 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4113 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4114 asoc->default_timetolive = info.pr_value; 4115 } 4116 } 4117 4118 out: 4119 return retval; 4120 } 4121 4122 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4123 char __user *optval, 4124 unsigned int optlen) 4125 { 4126 struct sctp_assoc_value params; 4127 struct sctp_association *asoc; 4128 int retval = -EINVAL; 4129 4130 if (optlen != sizeof(params)) 4131 goto out; 4132 4133 if (copy_from_user(¶ms, optval, optlen)) { 4134 retval = -EFAULT; 4135 goto out; 4136 } 4137 4138 asoc = sctp_id2assoc(sk, params.assoc_id); 4139 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4140 sctp_style(sk, UDP)) 4141 goto out; 4142 4143 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4144 4145 retval = 0; 4146 4147 out: 4148 return retval; 4149 } 4150 4151 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4152 char __user *optval, 4153 unsigned int optlen) 4154 { 4155 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4156 struct sctp_assoc_value params; 4157 struct sctp_association *asoc; 4158 int retval = -EINVAL; 4159 4160 if (optlen != sizeof(params)) 4161 goto out; 4162 4163 if (copy_from_user(¶ms, optval, optlen)) { 4164 retval = -EFAULT; 4165 goto out; 4166 } 4167 4168 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4169 goto out; 4170 4171 asoc = sctp_id2assoc(sk, params.assoc_id); 4172 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4173 sctp_style(sk, UDP)) 4174 goto out; 4175 4176 retval = 0; 4177 4178 if (asoc) { 4179 asoc->strreset_enable = params.assoc_value; 4180 goto out; 4181 } 4182 4183 if (sctp_style(sk, TCP)) 4184 params.assoc_id = SCTP_FUTURE_ASSOC; 4185 4186 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4187 params.assoc_id == SCTP_ALL_ASSOC) 4188 ep->strreset_enable = params.assoc_value; 4189 4190 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4191 params.assoc_id == SCTP_ALL_ASSOC) 4192 list_for_each_entry(asoc, &ep->asocs, asocs) 4193 asoc->strreset_enable = params.assoc_value; 4194 4195 out: 4196 return retval; 4197 } 4198 4199 static int sctp_setsockopt_reset_streams(struct sock *sk, 4200 char __user *optval, 4201 unsigned int optlen) 4202 { 4203 struct sctp_reset_streams *params; 4204 struct sctp_association *asoc; 4205 int retval = -EINVAL; 4206 4207 if (optlen < sizeof(*params)) 4208 return -EINVAL; 4209 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4210 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4211 sizeof(__u16) * sizeof(*params)); 4212 4213 params = memdup_user(optval, optlen); 4214 if (IS_ERR(params)) 4215 return PTR_ERR(params); 4216 4217 if (params->srs_number_streams * sizeof(__u16) > 4218 optlen - sizeof(*params)) 4219 goto out; 4220 4221 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4222 if (!asoc) 4223 goto out; 4224 4225 retval = sctp_send_reset_streams(asoc, params); 4226 4227 out: 4228 kfree(params); 4229 return retval; 4230 } 4231 4232 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4233 char __user *optval, 4234 unsigned int optlen) 4235 { 4236 struct sctp_association *asoc; 4237 sctp_assoc_t associd; 4238 int retval = -EINVAL; 4239 4240 if (optlen != sizeof(associd)) 4241 goto out; 4242 4243 if (copy_from_user(&associd, optval, optlen)) { 4244 retval = -EFAULT; 4245 goto out; 4246 } 4247 4248 asoc = sctp_id2assoc(sk, associd); 4249 if (!asoc) 4250 goto out; 4251 4252 retval = sctp_send_reset_assoc(asoc); 4253 4254 out: 4255 return retval; 4256 } 4257 4258 static int sctp_setsockopt_add_streams(struct sock *sk, 4259 char __user *optval, 4260 unsigned int optlen) 4261 { 4262 struct sctp_association *asoc; 4263 struct sctp_add_streams params; 4264 int retval = -EINVAL; 4265 4266 if (optlen != sizeof(params)) 4267 goto out; 4268 4269 if (copy_from_user(¶ms, optval, optlen)) { 4270 retval = -EFAULT; 4271 goto out; 4272 } 4273 4274 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4275 if (!asoc) 4276 goto out; 4277 4278 retval = sctp_send_add_streams(asoc, ¶ms); 4279 4280 out: 4281 return retval; 4282 } 4283 4284 static int sctp_setsockopt_scheduler(struct sock *sk, 4285 char __user *optval, 4286 unsigned int optlen) 4287 { 4288 struct sctp_sock *sp = sctp_sk(sk); 4289 struct sctp_association *asoc; 4290 struct sctp_assoc_value params; 4291 int retval = 0; 4292 4293 if (optlen < sizeof(params)) 4294 return -EINVAL; 4295 4296 optlen = sizeof(params); 4297 if (copy_from_user(¶ms, optval, optlen)) 4298 return -EFAULT; 4299 4300 if (params.assoc_value > SCTP_SS_MAX) 4301 return -EINVAL; 4302 4303 asoc = sctp_id2assoc(sk, params.assoc_id); 4304 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4305 sctp_style(sk, UDP)) 4306 return -EINVAL; 4307 4308 if (asoc) 4309 return sctp_sched_set_sched(asoc, params.assoc_value); 4310 4311 if (sctp_style(sk, TCP)) 4312 params.assoc_id = SCTP_FUTURE_ASSOC; 4313 4314 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4315 params.assoc_id == SCTP_ALL_ASSOC) 4316 sp->default_ss = params.assoc_value; 4317 4318 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4319 params.assoc_id == SCTP_ALL_ASSOC) { 4320 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4321 int ret = sctp_sched_set_sched(asoc, 4322 params.assoc_value); 4323 4324 if (ret && !retval) 4325 retval = ret; 4326 } 4327 } 4328 4329 return retval; 4330 } 4331 4332 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4333 char __user *optval, 4334 unsigned int optlen) 4335 { 4336 struct sctp_stream_value params; 4337 struct sctp_association *asoc; 4338 int retval = -EINVAL; 4339 4340 if (optlen < sizeof(params)) 4341 goto out; 4342 4343 optlen = sizeof(params); 4344 if (copy_from_user(¶ms, optval, optlen)) { 4345 retval = -EFAULT; 4346 goto out; 4347 } 4348 4349 asoc = sctp_id2assoc(sk, params.assoc_id); 4350 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4351 sctp_style(sk, UDP)) 4352 goto out; 4353 4354 if (asoc) { 4355 retval = sctp_sched_set_value(asoc, params.stream_id, 4356 params.stream_value, GFP_KERNEL); 4357 goto out; 4358 } 4359 4360 retval = 0; 4361 4362 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4363 int ret = sctp_sched_set_value(asoc, params.stream_id, 4364 params.stream_value, GFP_KERNEL); 4365 if (ret && !retval) /* try to return the 1st error. */ 4366 retval = ret; 4367 } 4368 4369 out: 4370 return retval; 4371 } 4372 4373 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4374 char __user *optval, 4375 unsigned int optlen) 4376 { 4377 struct sctp_sock *sp = sctp_sk(sk); 4378 struct sctp_assoc_value params; 4379 struct sctp_association *asoc; 4380 int retval = -EINVAL; 4381 4382 if (optlen < sizeof(params)) 4383 goto out; 4384 4385 optlen = sizeof(params); 4386 if (copy_from_user(¶ms, optval, optlen)) { 4387 retval = -EFAULT; 4388 goto out; 4389 } 4390 4391 asoc = sctp_id2assoc(sk, params.assoc_id); 4392 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4393 sctp_style(sk, UDP)) 4394 goto out; 4395 4396 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4397 retval = -EPERM; 4398 goto out; 4399 } 4400 4401 sp->ep->intl_enable = !!params.assoc_value; 4402 4403 retval = 0; 4404 4405 out: 4406 return retval; 4407 } 4408 4409 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4410 unsigned int optlen) 4411 { 4412 int val; 4413 4414 if (!sctp_style(sk, TCP)) 4415 return -EOPNOTSUPP; 4416 4417 if (sctp_sk(sk)->ep->base.bind_addr.port) 4418 return -EFAULT; 4419 4420 if (optlen < sizeof(int)) 4421 return -EINVAL; 4422 4423 if (get_user(val, (int __user *)optval)) 4424 return -EFAULT; 4425 4426 sctp_sk(sk)->reuse = !!val; 4427 4428 return 0; 4429 } 4430 4431 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4432 struct sctp_association *asoc) 4433 { 4434 struct sctp_ulpevent *event; 4435 4436 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4437 4438 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4439 if (sctp_outq_is_empty(&asoc->outqueue)) { 4440 event = sctp_ulpevent_make_sender_dry_event(asoc, 4441 GFP_USER | __GFP_NOWARN); 4442 if (!event) 4443 return -ENOMEM; 4444 4445 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4446 } 4447 } 4448 4449 return 0; 4450 } 4451 4452 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4453 unsigned int optlen) 4454 { 4455 struct sctp_sock *sp = sctp_sk(sk); 4456 struct sctp_association *asoc; 4457 struct sctp_event param; 4458 int retval = 0; 4459 4460 if (optlen < sizeof(param)) 4461 return -EINVAL; 4462 4463 optlen = sizeof(param); 4464 if (copy_from_user(¶m, optval, optlen)) 4465 return -EFAULT; 4466 4467 if (param.se_type < SCTP_SN_TYPE_BASE || 4468 param.se_type > SCTP_SN_TYPE_MAX) 4469 return -EINVAL; 4470 4471 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4472 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4473 sctp_style(sk, UDP)) 4474 return -EINVAL; 4475 4476 if (asoc) 4477 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4478 4479 if (sctp_style(sk, TCP)) 4480 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4481 4482 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4483 param.se_assoc_id == SCTP_ALL_ASSOC) 4484 sctp_ulpevent_type_set(&sp->subscribe, 4485 param.se_type, param.se_on); 4486 4487 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4488 param.se_assoc_id == SCTP_ALL_ASSOC) { 4489 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4490 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4491 4492 if (ret && !retval) 4493 retval = ret; 4494 } 4495 } 4496 4497 return retval; 4498 } 4499 4500 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4501 char __user *optval, 4502 unsigned int optlen) 4503 { 4504 struct sctp_assoc_value params; 4505 struct sctp_association *asoc; 4506 struct sctp_endpoint *ep; 4507 int retval = -EINVAL; 4508 4509 if (optlen != sizeof(params)) 4510 goto out; 4511 4512 if (copy_from_user(¶ms, optval, optlen)) { 4513 retval = -EFAULT; 4514 goto out; 4515 } 4516 4517 asoc = sctp_id2assoc(sk, params.assoc_id); 4518 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4519 sctp_style(sk, UDP)) 4520 goto out; 4521 4522 ep = sctp_sk(sk)->ep; 4523 ep->asconf_enable = !!params.assoc_value; 4524 4525 if (ep->asconf_enable && ep->auth_enable) { 4526 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4527 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4528 } 4529 4530 retval = 0; 4531 4532 out: 4533 return retval; 4534 } 4535 4536 static int sctp_setsockopt_auth_supported(struct sock *sk, 4537 char __user *optval, 4538 unsigned int optlen) 4539 { 4540 struct sctp_assoc_value params; 4541 struct sctp_association *asoc; 4542 struct sctp_endpoint *ep; 4543 int retval = -EINVAL; 4544 4545 if (optlen != sizeof(params)) 4546 goto out; 4547 4548 if (copy_from_user(¶ms, optval, optlen)) { 4549 retval = -EFAULT; 4550 goto out; 4551 } 4552 4553 asoc = sctp_id2assoc(sk, params.assoc_id); 4554 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4555 sctp_style(sk, UDP)) 4556 goto out; 4557 4558 ep = sctp_sk(sk)->ep; 4559 if (params.assoc_value) { 4560 retval = sctp_auth_init(ep, GFP_KERNEL); 4561 if (retval) 4562 goto out; 4563 if (ep->asconf_enable) { 4564 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4565 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4566 } 4567 } 4568 4569 ep->auth_enable = !!params.assoc_value; 4570 retval = 0; 4571 4572 out: 4573 return retval; 4574 } 4575 4576 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4577 char __user *optval, 4578 unsigned int optlen) 4579 { 4580 struct sctp_assoc_value params; 4581 struct sctp_association *asoc; 4582 int retval = -EINVAL; 4583 4584 if (optlen != sizeof(params)) 4585 goto out; 4586 4587 if (copy_from_user(¶ms, optval, optlen)) { 4588 retval = -EFAULT; 4589 goto out; 4590 } 4591 4592 asoc = sctp_id2assoc(sk, params.assoc_id); 4593 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4594 sctp_style(sk, UDP)) 4595 goto out; 4596 4597 sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value; 4598 retval = 0; 4599 4600 out: 4601 return retval; 4602 } 4603 4604 static int sctp_setsockopt_pf_expose(struct sock *sk, 4605 char __user *optval, 4606 unsigned int optlen) 4607 { 4608 struct sctp_assoc_value params; 4609 struct sctp_association *asoc; 4610 int retval = -EINVAL; 4611 4612 if (optlen != sizeof(params)) 4613 goto out; 4614 4615 if (copy_from_user(¶ms, optval, optlen)) { 4616 retval = -EFAULT; 4617 goto out; 4618 } 4619 4620 if (params.assoc_value > SCTP_PF_EXPOSE_MAX) 4621 goto out; 4622 4623 asoc = sctp_id2assoc(sk, params.assoc_id); 4624 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4625 sctp_style(sk, UDP)) 4626 goto out; 4627 4628 if (asoc) 4629 asoc->pf_expose = params.assoc_value; 4630 else 4631 sctp_sk(sk)->pf_expose = params.assoc_value; 4632 retval = 0; 4633 4634 out: 4635 return retval; 4636 } 4637 4638 /* API 6.2 setsockopt(), getsockopt() 4639 * 4640 * Applications use setsockopt() and getsockopt() to set or retrieve 4641 * socket options. Socket options are used to change the default 4642 * behavior of sockets calls. They are described in Section 7. 4643 * 4644 * The syntax is: 4645 * 4646 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4647 * int __user *optlen); 4648 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4649 * int optlen); 4650 * 4651 * sd - the socket descript. 4652 * level - set to IPPROTO_SCTP for all SCTP options. 4653 * optname - the option name. 4654 * optval - the buffer to store the value of the option. 4655 * optlen - the size of the buffer. 4656 */ 4657 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4658 char __user *optval, unsigned int optlen) 4659 { 4660 int retval = 0; 4661 4662 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4663 4664 /* I can hardly begin to describe how wrong this is. This is 4665 * so broken as to be worse than useless. The API draft 4666 * REALLY is NOT helpful here... I am not convinced that the 4667 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4668 * are at all well-founded. 4669 */ 4670 if (level != SOL_SCTP) { 4671 struct sctp_af *af = sctp_sk(sk)->pf->af; 4672 retval = af->setsockopt(sk, level, optname, optval, optlen); 4673 goto out_nounlock; 4674 } 4675 4676 lock_sock(sk); 4677 4678 switch (optname) { 4679 case SCTP_SOCKOPT_BINDX_ADD: 4680 /* 'optlen' is the size of the addresses buffer. */ 4681 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4682 optlen, SCTP_BINDX_ADD_ADDR); 4683 break; 4684 4685 case SCTP_SOCKOPT_BINDX_REM: 4686 /* 'optlen' is the size of the addresses buffer. */ 4687 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4688 optlen, SCTP_BINDX_REM_ADDR); 4689 break; 4690 4691 case SCTP_SOCKOPT_CONNECTX_OLD: 4692 /* 'optlen' is the size of the addresses buffer. */ 4693 retval = sctp_setsockopt_connectx_old(sk, 4694 (struct sockaddr __user *)optval, 4695 optlen); 4696 break; 4697 4698 case SCTP_SOCKOPT_CONNECTX: 4699 /* 'optlen' is the size of the addresses buffer. */ 4700 retval = sctp_setsockopt_connectx(sk, 4701 (struct sockaddr __user *)optval, 4702 optlen); 4703 break; 4704 4705 case SCTP_DISABLE_FRAGMENTS: 4706 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4707 break; 4708 4709 case SCTP_EVENTS: 4710 retval = sctp_setsockopt_events(sk, optval, optlen); 4711 break; 4712 4713 case SCTP_AUTOCLOSE: 4714 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4715 break; 4716 4717 case SCTP_PEER_ADDR_PARAMS: 4718 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4719 break; 4720 4721 case SCTP_DELAYED_SACK: 4722 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4723 break; 4724 case SCTP_PARTIAL_DELIVERY_POINT: 4725 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4726 break; 4727 4728 case SCTP_INITMSG: 4729 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4730 break; 4731 case SCTP_DEFAULT_SEND_PARAM: 4732 retval = sctp_setsockopt_default_send_param(sk, optval, 4733 optlen); 4734 break; 4735 case SCTP_DEFAULT_SNDINFO: 4736 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4737 break; 4738 case SCTP_PRIMARY_ADDR: 4739 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4740 break; 4741 case SCTP_SET_PEER_PRIMARY_ADDR: 4742 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4743 break; 4744 case SCTP_NODELAY: 4745 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4746 break; 4747 case SCTP_RTOINFO: 4748 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4749 break; 4750 case SCTP_ASSOCINFO: 4751 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4752 break; 4753 case SCTP_I_WANT_MAPPED_V4_ADDR: 4754 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4755 break; 4756 case SCTP_MAXSEG: 4757 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4758 break; 4759 case SCTP_ADAPTATION_LAYER: 4760 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4761 break; 4762 case SCTP_CONTEXT: 4763 retval = sctp_setsockopt_context(sk, optval, optlen); 4764 break; 4765 case SCTP_FRAGMENT_INTERLEAVE: 4766 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4767 break; 4768 case SCTP_MAX_BURST: 4769 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4770 break; 4771 case SCTP_AUTH_CHUNK: 4772 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4773 break; 4774 case SCTP_HMAC_IDENT: 4775 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4776 break; 4777 case SCTP_AUTH_KEY: 4778 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4779 break; 4780 case SCTP_AUTH_ACTIVE_KEY: 4781 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4782 break; 4783 case SCTP_AUTH_DELETE_KEY: 4784 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4785 break; 4786 case SCTP_AUTH_DEACTIVATE_KEY: 4787 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4788 break; 4789 case SCTP_AUTO_ASCONF: 4790 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4791 break; 4792 case SCTP_PEER_ADDR_THLDS: 4793 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4794 false); 4795 break; 4796 case SCTP_PEER_ADDR_THLDS_V2: 4797 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4798 true); 4799 break; 4800 case SCTP_RECVRCVINFO: 4801 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4802 break; 4803 case SCTP_RECVNXTINFO: 4804 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4805 break; 4806 case SCTP_PR_SUPPORTED: 4807 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4808 break; 4809 case SCTP_DEFAULT_PRINFO: 4810 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4811 break; 4812 case SCTP_RECONFIG_SUPPORTED: 4813 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4814 break; 4815 case SCTP_ENABLE_STREAM_RESET: 4816 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4817 break; 4818 case SCTP_RESET_STREAMS: 4819 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4820 break; 4821 case SCTP_RESET_ASSOC: 4822 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4823 break; 4824 case SCTP_ADD_STREAMS: 4825 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4826 break; 4827 case SCTP_STREAM_SCHEDULER: 4828 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4829 break; 4830 case SCTP_STREAM_SCHEDULER_VALUE: 4831 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4832 break; 4833 case SCTP_INTERLEAVING_SUPPORTED: 4834 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4835 optlen); 4836 break; 4837 case SCTP_REUSE_PORT: 4838 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4839 break; 4840 case SCTP_EVENT: 4841 retval = sctp_setsockopt_event(sk, optval, optlen); 4842 break; 4843 case SCTP_ASCONF_SUPPORTED: 4844 retval = sctp_setsockopt_asconf_supported(sk, optval, optlen); 4845 break; 4846 case SCTP_AUTH_SUPPORTED: 4847 retval = sctp_setsockopt_auth_supported(sk, optval, optlen); 4848 break; 4849 case SCTP_ECN_SUPPORTED: 4850 retval = sctp_setsockopt_ecn_supported(sk, optval, optlen); 4851 break; 4852 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4853 retval = sctp_setsockopt_pf_expose(sk, optval, optlen); 4854 break; 4855 default: 4856 retval = -ENOPROTOOPT; 4857 break; 4858 } 4859 4860 release_sock(sk); 4861 4862 out_nounlock: 4863 return retval; 4864 } 4865 4866 /* API 3.1.6 connect() - UDP Style Syntax 4867 * 4868 * An application may use the connect() call in the UDP model to initiate an 4869 * association without sending data. 4870 * 4871 * The syntax is: 4872 * 4873 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4874 * 4875 * sd: the socket descriptor to have a new association added to. 4876 * 4877 * nam: the address structure (either struct sockaddr_in or struct 4878 * sockaddr_in6 defined in RFC2553 [7]). 4879 * 4880 * len: the size of the address. 4881 */ 4882 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4883 int addr_len, int flags) 4884 { 4885 struct sctp_af *af; 4886 int err = -EINVAL; 4887 4888 lock_sock(sk); 4889 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4890 addr, addr_len); 4891 4892 /* Validate addr_len before calling common connect/connectx routine. */ 4893 af = sctp_get_af_specific(addr->sa_family); 4894 if (af && addr_len >= af->sockaddr_len) 4895 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4896 4897 release_sock(sk); 4898 return err; 4899 } 4900 4901 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4902 int addr_len, int flags) 4903 { 4904 if (addr_len < sizeof(uaddr->sa_family)) 4905 return -EINVAL; 4906 4907 if (uaddr->sa_family == AF_UNSPEC) 4908 return -EOPNOTSUPP; 4909 4910 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4911 } 4912 4913 /* FIXME: Write comments. */ 4914 static int sctp_disconnect(struct sock *sk, int flags) 4915 { 4916 return -EOPNOTSUPP; /* STUB */ 4917 } 4918 4919 /* 4.1.4 accept() - TCP Style Syntax 4920 * 4921 * Applications use accept() call to remove an established SCTP 4922 * association from the accept queue of the endpoint. A new socket 4923 * descriptor will be returned from accept() to represent the newly 4924 * formed association. 4925 */ 4926 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4927 { 4928 struct sctp_sock *sp; 4929 struct sctp_endpoint *ep; 4930 struct sock *newsk = NULL; 4931 struct sctp_association *asoc; 4932 long timeo; 4933 int error = 0; 4934 4935 lock_sock(sk); 4936 4937 sp = sctp_sk(sk); 4938 ep = sp->ep; 4939 4940 if (!sctp_style(sk, TCP)) { 4941 error = -EOPNOTSUPP; 4942 goto out; 4943 } 4944 4945 if (!sctp_sstate(sk, LISTENING)) { 4946 error = -EINVAL; 4947 goto out; 4948 } 4949 4950 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4951 4952 error = sctp_wait_for_accept(sk, timeo); 4953 if (error) 4954 goto out; 4955 4956 /* We treat the list of associations on the endpoint as the accept 4957 * queue and pick the first association on the list. 4958 */ 4959 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4960 4961 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4962 if (!newsk) { 4963 error = -ENOMEM; 4964 goto out; 4965 } 4966 4967 /* Populate the fields of the newsk from the oldsk and migrate the 4968 * asoc to the newsk. 4969 */ 4970 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4971 if (error) { 4972 sk_common_release(newsk); 4973 newsk = NULL; 4974 } 4975 4976 out: 4977 release_sock(sk); 4978 *err = error; 4979 return newsk; 4980 } 4981 4982 /* The SCTP ioctl handler. */ 4983 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4984 { 4985 int rc = -ENOTCONN; 4986 4987 lock_sock(sk); 4988 4989 /* 4990 * SEQPACKET-style sockets in LISTENING state are valid, for 4991 * SCTP, so only discard TCP-style sockets in LISTENING state. 4992 */ 4993 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4994 goto out; 4995 4996 switch (cmd) { 4997 case SIOCINQ: { 4998 struct sk_buff *skb; 4999 unsigned int amount = 0; 5000 5001 skb = skb_peek(&sk->sk_receive_queue); 5002 if (skb != NULL) { 5003 /* 5004 * We will only return the amount of this packet since 5005 * that is all that will be read. 5006 */ 5007 amount = skb->len; 5008 } 5009 rc = put_user(amount, (int __user *)arg); 5010 break; 5011 } 5012 default: 5013 rc = -ENOIOCTLCMD; 5014 break; 5015 } 5016 out: 5017 release_sock(sk); 5018 return rc; 5019 } 5020 5021 /* This is the function which gets called during socket creation to 5022 * initialized the SCTP-specific portion of the sock. 5023 * The sock structure should already be zero-filled memory. 5024 */ 5025 static int sctp_init_sock(struct sock *sk) 5026 { 5027 struct net *net = sock_net(sk); 5028 struct sctp_sock *sp; 5029 5030 pr_debug("%s: sk:%p\n", __func__, sk); 5031 5032 sp = sctp_sk(sk); 5033 5034 /* Initialize the SCTP per socket area. */ 5035 switch (sk->sk_type) { 5036 case SOCK_SEQPACKET: 5037 sp->type = SCTP_SOCKET_UDP; 5038 break; 5039 case SOCK_STREAM: 5040 sp->type = SCTP_SOCKET_TCP; 5041 break; 5042 default: 5043 return -ESOCKTNOSUPPORT; 5044 } 5045 5046 sk->sk_gso_type = SKB_GSO_SCTP; 5047 5048 /* Initialize default send parameters. These parameters can be 5049 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5050 */ 5051 sp->default_stream = 0; 5052 sp->default_ppid = 0; 5053 sp->default_flags = 0; 5054 sp->default_context = 0; 5055 sp->default_timetolive = 0; 5056 5057 sp->default_rcv_context = 0; 5058 sp->max_burst = net->sctp.max_burst; 5059 5060 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5061 5062 /* Initialize default setup parameters. These parameters 5063 * can be modified with the SCTP_INITMSG socket option or 5064 * overridden by the SCTP_INIT CMSG. 5065 */ 5066 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5067 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5068 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5069 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5070 5071 /* Initialize default RTO related parameters. These parameters can 5072 * be modified for with the SCTP_RTOINFO socket option. 5073 */ 5074 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5075 sp->rtoinfo.srto_max = net->sctp.rto_max; 5076 sp->rtoinfo.srto_min = net->sctp.rto_min; 5077 5078 /* Initialize default association related parameters. These parameters 5079 * can be modified with the SCTP_ASSOCINFO socket option. 5080 */ 5081 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5082 sp->assocparams.sasoc_number_peer_destinations = 0; 5083 sp->assocparams.sasoc_peer_rwnd = 0; 5084 sp->assocparams.sasoc_local_rwnd = 0; 5085 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5086 5087 /* Initialize default event subscriptions. By default, all the 5088 * options are off. 5089 */ 5090 sp->subscribe = 0; 5091 5092 /* Default Peer Address Parameters. These defaults can 5093 * be modified via SCTP_PEER_ADDR_PARAMS 5094 */ 5095 sp->hbinterval = net->sctp.hb_interval; 5096 sp->pathmaxrxt = net->sctp.max_retrans_path; 5097 sp->pf_retrans = net->sctp.pf_retrans; 5098 sp->ps_retrans = net->sctp.ps_retrans; 5099 sp->pf_expose = net->sctp.pf_expose; 5100 sp->pathmtu = 0; /* allow default discovery */ 5101 sp->sackdelay = net->sctp.sack_timeout; 5102 sp->sackfreq = 2; 5103 sp->param_flags = SPP_HB_ENABLE | 5104 SPP_PMTUD_ENABLE | 5105 SPP_SACKDELAY_ENABLE; 5106 sp->default_ss = SCTP_SS_DEFAULT; 5107 5108 /* If enabled no SCTP message fragmentation will be performed. 5109 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5110 */ 5111 sp->disable_fragments = 0; 5112 5113 /* Enable Nagle algorithm by default. */ 5114 sp->nodelay = 0; 5115 5116 sp->recvrcvinfo = 0; 5117 sp->recvnxtinfo = 0; 5118 5119 /* Enable by default. */ 5120 sp->v4mapped = 1; 5121 5122 /* Auto-close idle associations after the configured 5123 * number of seconds. A value of 0 disables this 5124 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5125 * for UDP-style sockets only. 5126 */ 5127 sp->autoclose = 0; 5128 5129 /* User specified fragmentation limit. */ 5130 sp->user_frag = 0; 5131 5132 sp->adaptation_ind = 0; 5133 5134 sp->pf = sctp_get_pf_specific(sk->sk_family); 5135 5136 /* Control variables for partial data delivery. */ 5137 atomic_set(&sp->pd_mode, 0); 5138 skb_queue_head_init(&sp->pd_lobby); 5139 sp->frag_interleave = 0; 5140 5141 /* Create a per socket endpoint structure. Even if we 5142 * change the data structure relationships, this may still 5143 * be useful for storing pre-connect address information. 5144 */ 5145 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5146 if (!sp->ep) 5147 return -ENOMEM; 5148 5149 sp->hmac = NULL; 5150 5151 sk->sk_destruct = sctp_destruct_sock; 5152 5153 SCTP_DBG_OBJCNT_INC(sock); 5154 5155 local_bh_disable(); 5156 sk_sockets_allocated_inc(sk); 5157 sock_prot_inuse_add(net, sk->sk_prot, 1); 5158 5159 /* Nothing can fail after this block, otherwise 5160 * sctp_destroy_sock() will be called without addr_wq_lock held 5161 */ 5162 if (net->sctp.default_auto_asconf) { 5163 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5164 list_add_tail(&sp->auto_asconf_list, 5165 &net->sctp.auto_asconf_splist); 5166 sp->do_auto_asconf = 1; 5167 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5168 } else { 5169 sp->do_auto_asconf = 0; 5170 } 5171 5172 local_bh_enable(); 5173 5174 return 0; 5175 } 5176 5177 /* Cleanup any SCTP per socket resources. Must be called with 5178 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5179 */ 5180 static void sctp_destroy_sock(struct sock *sk) 5181 { 5182 struct sctp_sock *sp; 5183 5184 pr_debug("%s: sk:%p\n", __func__, sk); 5185 5186 /* Release our hold on the endpoint. */ 5187 sp = sctp_sk(sk); 5188 /* This could happen during socket init, thus we bail out 5189 * early, since the rest of the below is not setup either. 5190 */ 5191 if (sp->ep == NULL) 5192 return; 5193 5194 if (sp->do_auto_asconf) { 5195 sp->do_auto_asconf = 0; 5196 list_del(&sp->auto_asconf_list); 5197 } 5198 sctp_endpoint_free(sp->ep); 5199 local_bh_disable(); 5200 sk_sockets_allocated_dec(sk); 5201 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5202 local_bh_enable(); 5203 } 5204 5205 /* Triggered when there are no references on the socket anymore */ 5206 static void sctp_destruct_sock(struct sock *sk) 5207 { 5208 struct sctp_sock *sp = sctp_sk(sk); 5209 5210 /* Free up the HMAC transform. */ 5211 crypto_free_shash(sp->hmac); 5212 5213 inet_sock_destruct(sk); 5214 } 5215 5216 /* API 4.1.7 shutdown() - TCP Style Syntax 5217 * int shutdown(int socket, int how); 5218 * 5219 * sd - the socket descriptor of the association to be closed. 5220 * how - Specifies the type of shutdown. The values are 5221 * as follows: 5222 * SHUT_RD 5223 * Disables further receive operations. No SCTP 5224 * protocol action is taken. 5225 * SHUT_WR 5226 * Disables further send operations, and initiates 5227 * the SCTP shutdown sequence. 5228 * SHUT_RDWR 5229 * Disables further send and receive operations 5230 * and initiates the SCTP shutdown sequence. 5231 */ 5232 static void sctp_shutdown(struct sock *sk, int how) 5233 { 5234 struct net *net = sock_net(sk); 5235 struct sctp_endpoint *ep; 5236 5237 if (!sctp_style(sk, TCP)) 5238 return; 5239 5240 ep = sctp_sk(sk)->ep; 5241 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5242 struct sctp_association *asoc; 5243 5244 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5245 asoc = list_entry(ep->asocs.next, 5246 struct sctp_association, asocs); 5247 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5248 } 5249 } 5250 5251 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5252 struct sctp_info *info) 5253 { 5254 struct sctp_transport *prim; 5255 struct list_head *pos; 5256 int mask; 5257 5258 memset(info, 0, sizeof(*info)); 5259 if (!asoc) { 5260 struct sctp_sock *sp = sctp_sk(sk); 5261 5262 info->sctpi_s_autoclose = sp->autoclose; 5263 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5264 info->sctpi_s_pd_point = sp->pd_point; 5265 info->sctpi_s_nodelay = sp->nodelay; 5266 info->sctpi_s_disable_fragments = sp->disable_fragments; 5267 info->sctpi_s_v4mapped = sp->v4mapped; 5268 info->sctpi_s_frag_interleave = sp->frag_interleave; 5269 info->sctpi_s_type = sp->type; 5270 5271 return 0; 5272 } 5273 5274 info->sctpi_tag = asoc->c.my_vtag; 5275 info->sctpi_state = asoc->state; 5276 info->sctpi_rwnd = asoc->a_rwnd; 5277 info->sctpi_unackdata = asoc->unack_data; 5278 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5279 info->sctpi_instrms = asoc->stream.incnt; 5280 info->sctpi_outstrms = asoc->stream.outcnt; 5281 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5282 info->sctpi_inqueue++; 5283 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5284 info->sctpi_outqueue++; 5285 info->sctpi_overall_error = asoc->overall_error_count; 5286 info->sctpi_max_burst = asoc->max_burst; 5287 info->sctpi_maxseg = asoc->frag_point; 5288 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5289 info->sctpi_peer_tag = asoc->c.peer_vtag; 5290 5291 mask = asoc->peer.ecn_capable << 1; 5292 mask = (mask | asoc->peer.ipv4_address) << 1; 5293 mask = (mask | asoc->peer.ipv6_address) << 1; 5294 mask = (mask | asoc->peer.hostname_address) << 1; 5295 mask = (mask | asoc->peer.asconf_capable) << 1; 5296 mask = (mask | asoc->peer.prsctp_capable) << 1; 5297 mask = (mask | asoc->peer.auth_capable); 5298 info->sctpi_peer_capable = mask; 5299 mask = asoc->peer.sack_needed << 1; 5300 mask = (mask | asoc->peer.sack_generation) << 1; 5301 mask = (mask | asoc->peer.zero_window_announced); 5302 info->sctpi_peer_sack = mask; 5303 5304 info->sctpi_isacks = asoc->stats.isacks; 5305 info->sctpi_osacks = asoc->stats.osacks; 5306 info->sctpi_opackets = asoc->stats.opackets; 5307 info->sctpi_ipackets = asoc->stats.ipackets; 5308 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5309 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5310 info->sctpi_idupchunks = asoc->stats.idupchunks; 5311 info->sctpi_gapcnt = asoc->stats.gapcnt; 5312 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5313 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5314 info->sctpi_oodchunks = asoc->stats.oodchunks; 5315 info->sctpi_iodchunks = asoc->stats.iodchunks; 5316 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5317 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5318 5319 prim = asoc->peer.primary_path; 5320 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5321 info->sctpi_p_state = prim->state; 5322 info->sctpi_p_cwnd = prim->cwnd; 5323 info->sctpi_p_srtt = prim->srtt; 5324 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5325 info->sctpi_p_hbinterval = prim->hbinterval; 5326 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5327 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5328 info->sctpi_p_ssthresh = prim->ssthresh; 5329 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5330 info->sctpi_p_flight_size = prim->flight_size; 5331 info->sctpi_p_error = prim->error_count; 5332 5333 return 0; 5334 } 5335 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5336 5337 /* use callback to avoid exporting the core structure */ 5338 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5339 { 5340 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5341 5342 rhashtable_walk_start(iter); 5343 } 5344 5345 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5346 { 5347 rhashtable_walk_stop(iter); 5348 rhashtable_walk_exit(iter); 5349 } 5350 5351 struct sctp_transport *sctp_transport_get_next(struct net *net, 5352 struct rhashtable_iter *iter) 5353 { 5354 struct sctp_transport *t; 5355 5356 t = rhashtable_walk_next(iter); 5357 for (; t; t = rhashtable_walk_next(iter)) { 5358 if (IS_ERR(t)) { 5359 if (PTR_ERR(t) == -EAGAIN) 5360 continue; 5361 break; 5362 } 5363 5364 if (!sctp_transport_hold(t)) 5365 continue; 5366 5367 if (net_eq(sock_net(t->asoc->base.sk), net) && 5368 t->asoc->peer.primary_path == t) 5369 break; 5370 5371 sctp_transport_put(t); 5372 } 5373 5374 return t; 5375 } 5376 5377 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5378 struct rhashtable_iter *iter, 5379 int pos) 5380 { 5381 struct sctp_transport *t; 5382 5383 if (!pos) 5384 return SEQ_START_TOKEN; 5385 5386 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5387 if (!--pos) 5388 break; 5389 sctp_transport_put(t); 5390 } 5391 5392 return t; 5393 } 5394 5395 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5396 void *p) { 5397 int err = 0; 5398 int hash = 0; 5399 struct sctp_ep_common *epb; 5400 struct sctp_hashbucket *head; 5401 5402 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5403 hash++, head++) { 5404 read_lock_bh(&head->lock); 5405 sctp_for_each_hentry(epb, &head->chain) { 5406 err = cb(sctp_ep(epb), p); 5407 if (err) 5408 break; 5409 } 5410 read_unlock_bh(&head->lock); 5411 } 5412 5413 return err; 5414 } 5415 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5416 5417 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5418 struct net *net, 5419 const union sctp_addr *laddr, 5420 const union sctp_addr *paddr, void *p) 5421 { 5422 struct sctp_transport *transport; 5423 int err; 5424 5425 rcu_read_lock(); 5426 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5427 rcu_read_unlock(); 5428 if (!transport) 5429 return -ENOENT; 5430 5431 err = cb(transport, p); 5432 sctp_transport_put(transport); 5433 5434 return err; 5435 } 5436 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5437 5438 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5439 int (*cb_done)(struct sctp_transport *, void *), 5440 struct net *net, int *pos, void *p) { 5441 struct rhashtable_iter hti; 5442 struct sctp_transport *tsp; 5443 int ret; 5444 5445 again: 5446 ret = 0; 5447 sctp_transport_walk_start(&hti); 5448 5449 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5450 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5451 ret = cb(tsp, p); 5452 if (ret) 5453 break; 5454 (*pos)++; 5455 sctp_transport_put(tsp); 5456 } 5457 sctp_transport_walk_stop(&hti); 5458 5459 if (ret) { 5460 if (cb_done && !cb_done(tsp, p)) { 5461 (*pos)++; 5462 sctp_transport_put(tsp); 5463 goto again; 5464 } 5465 sctp_transport_put(tsp); 5466 } 5467 5468 return ret; 5469 } 5470 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5471 5472 /* 7.2.1 Association Status (SCTP_STATUS) 5473 5474 * Applications can retrieve current status information about an 5475 * association, including association state, peer receiver window size, 5476 * number of unacked data chunks, and number of data chunks pending 5477 * receipt. This information is read-only. 5478 */ 5479 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5480 char __user *optval, 5481 int __user *optlen) 5482 { 5483 struct sctp_status status; 5484 struct sctp_association *asoc = NULL; 5485 struct sctp_transport *transport; 5486 sctp_assoc_t associd; 5487 int retval = 0; 5488 5489 if (len < sizeof(status)) { 5490 retval = -EINVAL; 5491 goto out; 5492 } 5493 5494 len = sizeof(status); 5495 if (copy_from_user(&status, optval, len)) { 5496 retval = -EFAULT; 5497 goto out; 5498 } 5499 5500 associd = status.sstat_assoc_id; 5501 asoc = sctp_id2assoc(sk, associd); 5502 if (!asoc) { 5503 retval = -EINVAL; 5504 goto out; 5505 } 5506 5507 transport = asoc->peer.primary_path; 5508 5509 status.sstat_assoc_id = sctp_assoc2id(asoc); 5510 status.sstat_state = sctp_assoc_to_state(asoc); 5511 status.sstat_rwnd = asoc->peer.rwnd; 5512 status.sstat_unackdata = asoc->unack_data; 5513 5514 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5515 status.sstat_instrms = asoc->stream.incnt; 5516 status.sstat_outstrms = asoc->stream.outcnt; 5517 status.sstat_fragmentation_point = asoc->frag_point; 5518 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5519 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5520 transport->af_specific->sockaddr_len); 5521 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5522 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5523 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5524 status.sstat_primary.spinfo_state = transport->state; 5525 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5526 status.sstat_primary.spinfo_srtt = transport->srtt; 5527 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5528 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5529 5530 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5531 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5532 5533 if (put_user(len, optlen)) { 5534 retval = -EFAULT; 5535 goto out; 5536 } 5537 5538 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5539 __func__, len, status.sstat_state, status.sstat_rwnd, 5540 status.sstat_assoc_id); 5541 5542 if (copy_to_user(optval, &status, len)) { 5543 retval = -EFAULT; 5544 goto out; 5545 } 5546 5547 out: 5548 return retval; 5549 } 5550 5551 5552 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5553 * 5554 * Applications can retrieve information about a specific peer address 5555 * of an association, including its reachability state, congestion 5556 * window, and retransmission timer values. This information is 5557 * read-only. 5558 */ 5559 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5560 char __user *optval, 5561 int __user *optlen) 5562 { 5563 struct sctp_paddrinfo pinfo; 5564 struct sctp_transport *transport; 5565 int retval = 0; 5566 5567 if (len < sizeof(pinfo)) { 5568 retval = -EINVAL; 5569 goto out; 5570 } 5571 5572 len = sizeof(pinfo); 5573 if (copy_from_user(&pinfo, optval, len)) { 5574 retval = -EFAULT; 5575 goto out; 5576 } 5577 5578 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5579 pinfo.spinfo_assoc_id); 5580 if (!transport) { 5581 retval = -EINVAL; 5582 goto out; 5583 } 5584 5585 if (transport->state == SCTP_PF && 5586 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5587 retval = -EACCES; 5588 goto out; 5589 } 5590 5591 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5592 pinfo.spinfo_state = transport->state; 5593 pinfo.spinfo_cwnd = transport->cwnd; 5594 pinfo.spinfo_srtt = transport->srtt; 5595 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5596 pinfo.spinfo_mtu = transport->pathmtu; 5597 5598 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5599 pinfo.spinfo_state = SCTP_ACTIVE; 5600 5601 if (put_user(len, optlen)) { 5602 retval = -EFAULT; 5603 goto out; 5604 } 5605 5606 if (copy_to_user(optval, &pinfo, len)) { 5607 retval = -EFAULT; 5608 goto out; 5609 } 5610 5611 out: 5612 return retval; 5613 } 5614 5615 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5616 * 5617 * This option is a on/off flag. If enabled no SCTP message 5618 * fragmentation will be performed. Instead if a message being sent 5619 * exceeds the current PMTU size, the message will NOT be sent and 5620 * instead a error will be indicated to the user. 5621 */ 5622 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5623 char __user *optval, int __user *optlen) 5624 { 5625 int val; 5626 5627 if (len < sizeof(int)) 5628 return -EINVAL; 5629 5630 len = sizeof(int); 5631 val = (sctp_sk(sk)->disable_fragments == 1); 5632 if (put_user(len, optlen)) 5633 return -EFAULT; 5634 if (copy_to_user(optval, &val, len)) 5635 return -EFAULT; 5636 return 0; 5637 } 5638 5639 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5640 * 5641 * This socket option is used to specify various notifications and 5642 * ancillary data the user wishes to receive. 5643 */ 5644 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5645 int __user *optlen) 5646 { 5647 struct sctp_event_subscribe subscribe; 5648 __u8 *sn_type = (__u8 *)&subscribe; 5649 int i; 5650 5651 if (len == 0) 5652 return -EINVAL; 5653 if (len > sizeof(struct sctp_event_subscribe)) 5654 len = sizeof(struct sctp_event_subscribe); 5655 if (put_user(len, optlen)) 5656 return -EFAULT; 5657 5658 for (i = 0; i < len; i++) 5659 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5660 SCTP_SN_TYPE_BASE + i); 5661 5662 if (copy_to_user(optval, &subscribe, len)) 5663 return -EFAULT; 5664 5665 return 0; 5666 } 5667 5668 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5669 * 5670 * This socket option is applicable to the UDP-style socket only. When 5671 * set it will cause associations that are idle for more than the 5672 * specified number of seconds to automatically close. An association 5673 * being idle is defined an association that has NOT sent or received 5674 * user data. The special value of '0' indicates that no automatic 5675 * close of any associations should be performed. The option expects an 5676 * integer defining the number of seconds of idle time before an 5677 * association is closed. 5678 */ 5679 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5680 { 5681 /* Applicable to UDP-style socket only */ 5682 if (sctp_style(sk, TCP)) 5683 return -EOPNOTSUPP; 5684 if (len < sizeof(int)) 5685 return -EINVAL; 5686 len = sizeof(int); 5687 if (put_user(len, optlen)) 5688 return -EFAULT; 5689 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5690 return -EFAULT; 5691 return 0; 5692 } 5693 5694 /* Helper routine to branch off an association to a new socket. */ 5695 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5696 { 5697 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5698 struct sctp_sock *sp = sctp_sk(sk); 5699 struct socket *sock; 5700 int err = 0; 5701 5702 /* Do not peel off from one netns to another one. */ 5703 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5704 return -EINVAL; 5705 5706 if (!asoc) 5707 return -EINVAL; 5708 5709 /* An association cannot be branched off from an already peeled-off 5710 * socket, nor is this supported for tcp style sockets. 5711 */ 5712 if (!sctp_style(sk, UDP)) 5713 return -EINVAL; 5714 5715 /* Create a new socket. */ 5716 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5717 if (err < 0) 5718 return err; 5719 5720 sctp_copy_sock(sock->sk, sk, asoc); 5721 5722 /* Make peeled-off sockets more like 1-1 accepted sockets. 5723 * Set the daddr and initialize id to something more random and also 5724 * copy over any ip options. 5725 */ 5726 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5727 sp->pf->copy_ip_options(sk, sock->sk); 5728 5729 /* Populate the fields of the newsk from the oldsk and migrate the 5730 * asoc to the newsk. 5731 */ 5732 err = sctp_sock_migrate(sk, sock->sk, asoc, 5733 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5734 if (err) { 5735 sock_release(sock); 5736 sock = NULL; 5737 } 5738 5739 *sockp = sock; 5740 5741 return err; 5742 } 5743 EXPORT_SYMBOL(sctp_do_peeloff); 5744 5745 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5746 struct file **newfile, unsigned flags) 5747 { 5748 struct socket *newsock; 5749 int retval; 5750 5751 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5752 if (retval < 0) 5753 goto out; 5754 5755 /* Map the socket to an unused fd that can be returned to the user. */ 5756 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5757 if (retval < 0) { 5758 sock_release(newsock); 5759 goto out; 5760 } 5761 5762 *newfile = sock_alloc_file(newsock, 0, NULL); 5763 if (IS_ERR(*newfile)) { 5764 put_unused_fd(retval); 5765 retval = PTR_ERR(*newfile); 5766 *newfile = NULL; 5767 return retval; 5768 } 5769 5770 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5771 retval); 5772 5773 peeloff->sd = retval; 5774 5775 if (flags & SOCK_NONBLOCK) 5776 (*newfile)->f_flags |= O_NONBLOCK; 5777 out: 5778 return retval; 5779 } 5780 5781 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5782 { 5783 sctp_peeloff_arg_t peeloff; 5784 struct file *newfile = NULL; 5785 int retval = 0; 5786 5787 if (len < sizeof(sctp_peeloff_arg_t)) 5788 return -EINVAL; 5789 len = sizeof(sctp_peeloff_arg_t); 5790 if (copy_from_user(&peeloff, optval, len)) 5791 return -EFAULT; 5792 5793 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5794 if (retval < 0) 5795 goto out; 5796 5797 /* Return the fd mapped to the new socket. */ 5798 if (put_user(len, optlen)) { 5799 fput(newfile); 5800 put_unused_fd(retval); 5801 return -EFAULT; 5802 } 5803 5804 if (copy_to_user(optval, &peeloff, len)) { 5805 fput(newfile); 5806 put_unused_fd(retval); 5807 return -EFAULT; 5808 } 5809 fd_install(retval, newfile); 5810 out: 5811 return retval; 5812 } 5813 5814 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5815 char __user *optval, int __user *optlen) 5816 { 5817 sctp_peeloff_flags_arg_t peeloff; 5818 struct file *newfile = NULL; 5819 int retval = 0; 5820 5821 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5822 return -EINVAL; 5823 len = sizeof(sctp_peeloff_flags_arg_t); 5824 if (copy_from_user(&peeloff, optval, len)) 5825 return -EFAULT; 5826 5827 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5828 &newfile, peeloff.flags); 5829 if (retval < 0) 5830 goto out; 5831 5832 /* Return the fd mapped to the new socket. */ 5833 if (put_user(len, optlen)) { 5834 fput(newfile); 5835 put_unused_fd(retval); 5836 return -EFAULT; 5837 } 5838 5839 if (copy_to_user(optval, &peeloff, len)) { 5840 fput(newfile); 5841 put_unused_fd(retval); 5842 return -EFAULT; 5843 } 5844 fd_install(retval, newfile); 5845 out: 5846 return retval; 5847 } 5848 5849 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5850 * 5851 * Applications can enable or disable heartbeats for any peer address of 5852 * an association, modify an address's heartbeat interval, force a 5853 * heartbeat to be sent immediately, and adjust the address's maximum 5854 * number of retransmissions sent before an address is considered 5855 * unreachable. The following structure is used to access and modify an 5856 * address's parameters: 5857 * 5858 * struct sctp_paddrparams { 5859 * sctp_assoc_t spp_assoc_id; 5860 * struct sockaddr_storage spp_address; 5861 * uint32_t spp_hbinterval; 5862 * uint16_t spp_pathmaxrxt; 5863 * uint32_t spp_pathmtu; 5864 * uint32_t spp_sackdelay; 5865 * uint32_t spp_flags; 5866 * }; 5867 * 5868 * spp_assoc_id - (one-to-many style socket) This is filled in the 5869 * application, and identifies the association for 5870 * this query. 5871 * spp_address - This specifies which address is of interest. 5872 * spp_hbinterval - This contains the value of the heartbeat interval, 5873 * in milliseconds. If a value of zero 5874 * is present in this field then no changes are to 5875 * be made to this parameter. 5876 * spp_pathmaxrxt - This contains the maximum number of 5877 * retransmissions before this address shall be 5878 * considered unreachable. If a value of zero 5879 * is present in this field then no changes are to 5880 * be made to this parameter. 5881 * spp_pathmtu - When Path MTU discovery is disabled the value 5882 * specified here will be the "fixed" path mtu. 5883 * Note that if the spp_address field is empty 5884 * then all associations on this address will 5885 * have this fixed path mtu set upon them. 5886 * 5887 * spp_sackdelay - When delayed sack is enabled, this value specifies 5888 * the number of milliseconds that sacks will be delayed 5889 * for. This value will apply to all addresses of an 5890 * association if the spp_address field is empty. Note 5891 * also, that if delayed sack is enabled and this 5892 * value is set to 0, no change is made to the last 5893 * recorded delayed sack timer value. 5894 * 5895 * spp_flags - These flags are used to control various features 5896 * on an association. The flag field may contain 5897 * zero or more of the following options. 5898 * 5899 * SPP_HB_ENABLE - Enable heartbeats on the 5900 * specified address. Note that if the address 5901 * field is empty all addresses for the association 5902 * have heartbeats enabled upon them. 5903 * 5904 * SPP_HB_DISABLE - Disable heartbeats on the 5905 * speicifed address. Note that if the address 5906 * field is empty all addresses for the association 5907 * will have their heartbeats disabled. Note also 5908 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5909 * mutually exclusive, only one of these two should 5910 * be specified. Enabling both fields will have 5911 * undetermined results. 5912 * 5913 * SPP_HB_DEMAND - Request a user initiated heartbeat 5914 * to be made immediately. 5915 * 5916 * SPP_PMTUD_ENABLE - This field will enable PMTU 5917 * discovery upon the specified address. Note that 5918 * if the address feild is empty then all addresses 5919 * on the association are effected. 5920 * 5921 * SPP_PMTUD_DISABLE - This field will disable PMTU 5922 * discovery upon the specified address. Note that 5923 * if the address feild is empty then all addresses 5924 * on the association are effected. Not also that 5925 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5926 * exclusive. Enabling both will have undetermined 5927 * results. 5928 * 5929 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5930 * on delayed sack. The time specified in spp_sackdelay 5931 * is used to specify the sack delay for this address. Note 5932 * that if spp_address is empty then all addresses will 5933 * enable delayed sack and take on the sack delay 5934 * value specified in spp_sackdelay. 5935 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5936 * off delayed sack. If the spp_address field is blank then 5937 * delayed sack is disabled for the entire association. Note 5938 * also that this field is mutually exclusive to 5939 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5940 * results. 5941 * 5942 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5943 * setting of the IPV6 flow label value. The value is 5944 * contained in the spp_ipv6_flowlabel field. 5945 * Upon retrieval, this flag will be set to indicate that 5946 * the spp_ipv6_flowlabel field has a valid value returned. 5947 * If a specific destination address is set (in the 5948 * spp_address field), then the value returned is that of 5949 * the address. If just an association is specified (and 5950 * no address), then the association's default flow label 5951 * is returned. If neither an association nor a destination 5952 * is specified, then the socket's default flow label is 5953 * returned. For non-IPv6 sockets, this flag will be left 5954 * cleared. 5955 * 5956 * SPP_DSCP: Setting this flag enables the setting of the 5957 * Differentiated Services Code Point (DSCP) value 5958 * associated with either the association or a specific 5959 * address. The value is obtained in the spp_dscp field. 5960 * Upon retrieval, this flag will be set to indicate that 5961 * the spp_dscp field has a valid value returned. If a 5962 * specific destination address is set when called (in the 5963 * spp_address field), then that specific destination 5964 * address's DSCP value is returned. If just an association 5965 * is specified, then the association's default DSCP is 5966 * returned. If neither an association nor a destination is 5967 * specified, then the socket's default DSCP is returned. 5968 * 5969 * spp_ipv6_flowlabel 5970 * - This field is used in conjunction with the 5971 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5972 * The 20 least significant bits are used for the flow 5973 * label. This setting has precedence over any IPv6-layer 5974 * setting. 5975 * 5976 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5977 * and contains the DSCP. The 6 most significant bits are 5978 * used for the DSCP. This setting has precedence over any 5979 * IPv4- or IPv6- layer setting. 5980 */ 5981 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5982 char __user *optval, int __user *optlen) 5983 { 5984 struct sctp_paddrparams params; 5985 struct sctp_transport *trans = NULL; 5986 struct sctp_association *asoc = NULL; 5987 struct sctp_sock *sp = sctp_sk(sk); 5988 5989 if (len >= sizeof(params)) 5990 len = sizeof(params); 5991 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5992 spp_ipv6_flowlabel), 4)) 5993 len = ALIGN(offsetof(struct sctp_paddrparams, 5994 spp_ipv6_flowlabel), 4); 5995 else 5996 return -EINVAL; 5997 5998 if (copy_from_user(¶ms, optval, len)) 5999 return -EFAULT; 6000 6001 /* If an address other than INADDR_ANY is specified, and 6002 * no transport is found, then the request is invalid. 6003 */ 6004 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 6005 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 6006 params.spp_assoc_id); 6007 if (!trans) { 6008 pr_debug("%s: failed no transport\n", __func__); 6009 return -EINVAL; 6010 } 6011 } 6012 6013 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 6014 * socket is a one to many style socket, and an association 6015 * was not found, then the id was invalid. 6016 */ 6017 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 6018 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 6019 sctp_style(sk, UDP)) { 6020 pr_debug("%s: failed no association\n", __func__); 6021 return -EINVAL; 6022 } 6023 6024 if (trans) { 6025 /* Fetch transport values. */ 6026 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 6027 params.spp_pathmtu = trans->pathmtu; 6028 params.spp_pathmaxrxt = trans->pathmaxrxt; 6029 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 6030 6031 /*draft-11 doesn't say what to return in spp_flags*/ 6032 params.spp_flags = trans->param_flags; 6033 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6034 params.spp_ipv6_flowlabel = trans->flowlabel & 6035 SCTP_FLOWLABEL_VAL_MASK; 6036 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6037 } 6038 if (trans->dscp & SCTP_DSCP_SET_MASK) { 6039 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 6040 params.spp_flags |= SPP_DSCP; 6041 } 6042 } else if (asoc) { 6043 /* Fetch association values. */ 6044 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6045 params.spp_pathmtu = asoc->pathmtu; 6046 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6047 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6048 6049 /*draft-11 doesn't say what to return in spp_flags*/ 6050 params.spp_flags = asoc->param_flags; 6051 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6052 params.spp_ipv6_flowlabel = asoc->flowlabel & 6053 SCTP_FLOWLABEL_VAL_MASK; 6054 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6055 } 6056 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6057 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6058 params.spp_flags |= SPP_DSCP; 6059 } 6060 } else { 6061 /* Fetch socket values. */ 6062 params.spp_hbinterval = sp->hbinterval; 6063 params.spp_pathmtu = sp->pathmtu; 6064 params.spp_sackdelay = sp->sackdelay; 6065 params.spp_pathmaxrxt = sp->pathmaxrxt; 6066 6067 /*draft-11 doesn't say what to return in spp_flags*/ 6068 params.spp_flags = sp->param_flags; 6069 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6070 params.spp_ipv6_flowlabel = sp->flowlabel & 6071 SCTP_FLOWLABEL_VAL_MASK; 6072 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6073 } 6074 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6075 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6076 params.spp_flags |= SPP_DSCP; 6077 } 6078 } 6079 6080 if (copy_to_user(optval, ¶ms, len)) 6081 return -EFAULT; 6082 6083 if (put_user(len, optlen)) 6084 return -EFAULT; 6085 6086 return 0; 6087 } 6088 6089 /* 6090 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6091 * 6092 * This option will effect the way delayed acks are performed. This 6093 * option allows you to get or set the delayed ack time, in 6094 * milliseconds. It also allows changing the delayed ack frequency. 6095 * Changing the frequency to 1 disables the delayed sack algorithm. If 6096 * the assoc_id is 0, then this sets or gets the endpoints default 6097 * values. If the assoc_id field is non-zero, then the set or get 6098 * effects the specified association for the one to many model (the 6099 * assoc_id field is ignored by the one to one model). Note that if 6100 * sack_delay or sack_freq are 0 when setting this option, then the 6101 * current values will remain unchanged. 6102 * 6103 * struct sctp_sack_info { 6104 * sctp_assoc_t sack_assoc_id; 6105 * uint32_t sack_delay; 6106 * uint32_t sack_freq; 6107 * }; 6108 * 6109 * sack_assoc_id - This parameter, indicates which association the user 6110 * is performing an action upon. Note that if this field's value is 6111 * zero then the endpoints default value is changed (effecting future 6112 * associations only). 6113 * 6114 * sack_delay - This parameter contains the number of milliseconds that 6115 * the user is requesting the delayed ACK timer be set to. Note that 6116 * this value is defined in the standard to be between 200 and 500 6117 * milliseconds. 6118 * 6119 * sack_freq - This parameter contains the number of packets that must 6120 * be received before a sack is sent without waiting for the delay 6121 * timer to expire. The default value for this is 2, setting this 6122 * value to 1 will disable the delayed sack algorithm. 6123 */ 6124 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6125 char __user *optval, 6126 int __user *optlen) 6127 { 6128 struct sctp_sack_info params; 6129 struct sctp_association *asoc = NULL; 6130 struct sctp_sock *sp = sctp_sk(sk); 6131 6132 if (len >= sizeof(struct sctp_sack_info)) { 6133 len = sizeof(struct sctp_sack_info); 6134 6135 if (copy_from_user(¶ms, optval, len)) 6136 return -EFAULT; 6137 } else if (len == sizeof(struct sctp_assoc_value)) { 6138 pr_warn_ratelimited(DEPRECATED 6139 "%s (pid %d) " 6140 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6141 "Use struct sctp_sack_info instead\n", 6142 current->comm, task_pid_nr(current)); 6143 if (copy_from_user(¶ms, optval, len)) 6144 return -EFAULT; 6145 } else 6146 return -EINVAL; 6147 6148 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6149 * socket is a one to many style socket, and an association 6150 * was not found, then the id was invalid. 6151 */ 6152 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6153 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6154 sctp_style(sk, UDP)) 6155 return -EINVAL; 6156 6157 if (asoc) { 6158 /* Fetch association values. */ 6159 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6160 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6161 params.sack_freq = asoc->sackfreq; 6162 6163 } else { 6164 params.sack_delay = 0; 6165 params.sack_freq = 1; 6166 } 6167 } else { 6168 /* Fetch socket values. */ 6169 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6170 params.sack_delay = sp->sackdelay; 6171 params.sack_freq = sp->sackfreq; 6172 } else { 6173 params.sack_delay = 0; 6174 params.sack_freq = 1; 6175 } 6176 } 6177 6178 if (copy_to_user(optval, ¶ms, len)) 6179 return -EFAULT; 6180 6181 if (put_user(len, optlen)) 6182 return -EFAULT; 6183 6184 return 0; 6185 } 6186 6187 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6188 * 6189 * Applications can specify protocol parameters for the default association 6190 * initialization. The option name argument to setsockopt() and getsockopt() 6191 * is SCTP_INITMSG. 6192 * 6193 * Setting initialization parameters is effective only on an unconnected 6194 * socket (for UDP-style sockets only future associations are effected 6195 * by the change). With TCP-style sockets, this option is inherited by 6196 * sockets derived from a listener socket. 6197 */ 6198 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6199 { 6200 if (len < sizeof(struct sctp_initmsg)) 6201 return -EINVAL; 6202 len = sizeof(struct sctp_initmsg); 6203 if (put_user(len, optlen)) 6204 return -EFAULT; 6205 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6206 return -EFAULT; 6207 return 0; 6208 } 6209 6210 6211 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6212 char __user *optval, int __user *optlen) 6213 { 6214 struct sctp_association *asoc; 6215 int cnt = 0; 6216 struct sctp_getaddrs getaddrs; 6217 struct sctp_transport *from; 6218 void __user *to; 6219 union sctp_addr temp; 6220 struct sctp_sock *sp = sctp_sk(sk); 6221 int addrlen; 6222 size_t space_left; 6223 int bytes_copied; 6224 6225 if (len < sizeof(struct sctp_getaddrs)) 6226 return -EINVAL; 6227 6228 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6229 return -EFAULT; 6230 6231 /* For UDP-style sockets, id specifies the association to query. */ 6232 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6233 if (!asoc) 6234 return -EINVAL; 6235 6236 to = optval + offsetof(struct sctp_getaddrs, addrs); 6237 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6238 6239 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6240 transports) { 6241 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6242 addrlen = sctp_get_pf_specific(sk->sk_family) 6243 ->addr_to_user(sp, &temp); 6244 if (space_left < addrlen) 6245 return -ENOMEM; 6246 if (copy_to_user(to, &temp, addrlen)) 6247 return -EFAULT; 6248 to += addrlen; 6249 cnt++; 6250 space_left -= addrlen; 6251 } 6252 6253 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6254 return -EFAULT; 6255 bytes_copied = ((char __user *)to) - optval; 6256 if (put_user(bytes_copied, optlen)) 6257 return -EFAULT; 6258 6259 return 0; 6260 } 6261 6262 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6263 size_t space_left, int *bytes_copied) 6264 { 6265 struct sctp_sockaddr_entry *addr; 6266 union sctp_addr temp; 6267 int cnt = 0; 6268 int addrlen; 6269 struct net *net = sock_net(sk); 6270 6271 rcu_read_lock(); 6272 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6273 if (!addr->valid) 6274 continue; 6275 6276 if ((PF_INET == sk->sk_family) && 6277 (AF_INET6 == addr->a.sa.sa_family)) 6278 continue; 6279 if ((PF_INET6 == sk->sk_family) && 6280 inet_v6_ipv6only(sk) && 6281 (AF_INET == addr->a.sa.sa_family)) 6282 continue; 6283 memcpy(&temp, &addr->a, sizeof(temp)); 6284 if (!temp.v4.sin_port) 6285 temp.v4.sin_port = htons(port); 6286 6287 addrlen = sctp_get_pf_specific(sk->sk_family) 6288 ->addr_to_user(sctp_sk(sk), &temp); 6289 6290 if (space_left < addrlen) { 6291 cnt = -ENOMEM; 6292 break; 6293 } 6294 memcpy(to, &temp, addrlen); 6295 6296 to += addrlen; 6297 cnt++; 6298 space_left -= addrlen; 6299 *bytes_copied += addrlen; 6300 } 6301 rcu_read_unlock(); 6302 6303 return cnt; 6304 } 6305 6306 6307 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6308 char __user *optval, int __user *optlen) 6309 { 6310 struct sctp_bind_addr *bp; 6311 struct sctp_association *asoc; 6312 int cnt = 0; 6313 struct sctp_getaddrs getaddrs; 6314 struct sctp_sockaddr_entry *addr; 6315 void __user *to; 6316 union sctp_addr temp; 6317 struct sctp_sock *sp = sctp_sk(sk); 6318 int addrlen; 6319 int err = 0; 6320 size_t space_left; 6321 int bytes_copied = 0; 6322 void *addrs; 6323 void *buf; 6324 6325 if (len < sizeof(struct sctp_getaddrs)) 6326 return -EINVAL; 6327 6328 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6329 return -EFAULT; 6330 6331 /* 6332 * For UDP-style sockets, id specifies the association to query. 6333 * If the id field is set to the value '0' then the locally bound 6334 * addresses are returned without regard to any particular 6335 * association. 6336 */ 6337 if (0 == getaddrs.assoc_id) { 6338 bp = &sctp_sk(sk)->ep->base.bind_addr; 6339 } else { 6340 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6341 if (!asoc) 6342 return -EINVAL; 6343 bp = &asoc->base.bind_addr; 6344 } 6345 6346 to = optval + offsetof(struct sctp_getaddrs, addrs); 6347 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6348 6349 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6350 if (!addrs) 6351 return -ENOMEM; 6352 6353 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6354 * addresses from the global local address list. 6355 */ 6356 if (sctp_list_single_entry(&bp->address_list)) { 6357 addr = list_entry(bp->address_list.next, 6358 struct sctp_sockaddr_entry, list); 6359 if (sctp_is_any(sk, &addr->a)) { 6360 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6361 space_left, &bytes_copied); 6362 if (cnt < 0) { 6363 err = cnt; 6364 goto out; 6365 } 6366 goto copy_getaddrs; 6367 } 6368 } 6369 6370 buf = addrs; 6371 /* Protection on the bound address list is not needed since 6372 * in the socket option context we hold a socket lock and 6373 * thus the bound address list can't change. 6374 */ 6375 list_for_each_entry(addr, &bp->address_list, list) { 6376 memcpy(&temp, &addr->a, sizeof(temp)); 6377 addrlen = sctp_get_pf_specific(sk->sk_family) 6378 ->addr_to_user(sp, &temp); 6379 if (space_left < addrlen) { 6380 err = -ENOMEM; /*fixme: right error?*/ 6381 goto out; 6382 } 6383 memcpy(buf, &temp, addrlen); 6384 buf += addrlen; 6385 bytes_copied += addrlen; 6386 cnt++; 6387 space_left -= addrlen; 6388 } 6389 6390 copy_getaddrs: 6391 if (copy_to_user(to, addrs, bytes_copied)) { 6392 err = -EFAULT; 6393 goto out; 6394 } 6395 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6396 err = -EFAULT; 6397 goto out; 6398 } 6399 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6400 * but we can't change it anymore. 6401 */ 6402 if (put_user(bytes_copied, optlen)) 6403 err = -EFAULT; 6404 out: 6405 kfree(addrs); 6406 return err; 6407 } 6408 6409 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6410 * 6411 * Requests that the local SCTP stack use the enclosed peer address as 6412 * the association primary. The enclosed address must be one of the 6413 * association peer's addresses. 6414 */ 6415 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6416 char __user *optval, int __user *optlen) 6417 { 6418 struct sctp_prim prim; 6419 struct sctp_association *asoc; 6420 struct sctp_sock *sp = sctp_sk(sk); 6421 6422 if (len < sizeof(struct sctp_prim)) 6423 return -EINVAL; 6424 6425 len = sizeof(struct sctp_prim); 6426 6427 if (copy_from_user(&prim, optval, len)) 6428 return -EFAULT; 6429 6430 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6431 if (!asoc) 6432 return -EINVAL; 6433 6434 if (!asoc->peer.primary_path) 6435 return -ENOTCONN; 6436 6437 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6438 asoc->peer.primary_path->af_specific->sockaddr_len); 6439 6440 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6441 (union sctp_addr *)&prim.ssp_addr); 6442 6443 if (put_user(len, optlen)) 6444 return -EFAULT; 6445 if (copy_to_user(optval, &prim, len)) 6446 return -EFAULT; 6447 6448 return 0; 6449 } 6450 6451 /* 6452 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6453 * 6454 * Requests that the local endpoint set the specified Adaptation Layer 6455 * Indication parameter for all future INIT and INIT-ACK exchanges. 6456 */ 6457 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6458 char __user *optval, int __user *optlen) 6459 { 6460 struct sctp_setadaptation adaptation; 6461 6462 if (len < sizeof(struct sctp_setadaptation)) 6463 return -EINVAL; 6464 6465 len = sizeof(struct sctp_setadaptation); 6466 6467 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6468 6469 if (put_user(len, optlen)) 6470 return -EFAULT; 6471 if (copy_to_user(optval, &adaptation, len)) 6472 return -EFAULT; 6473 6474 return 0; 6475 } 6476 6477 /* 6478 * 6479 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6480 * 6481 * Applications that wish to use the sendto() system call may wish to 6482 * specify a default set of parameters that would normally be supplied 6483 * through the inclusion of ancillary data. This socket option allows 6484 * such an application to set the default sctp_sndrcvinfo structure. 6485 6486 6487 * The application that wishes to use this socket option simply passes 6488 * in to this call the sctp_sndrcvinfo structure defined in Section 6489 * 5.2.2) The input parameters accepted by this call include 6490 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6491 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6492 * to this call if the caller is using the UDP model. 6493 * 6494 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6495 */ 6496 static int sctp_getsockopt_default_send_param(struct sock *sk, 6497 int len, char __user *optval, 6498 int __user *optlen) 6499 { 6500 struct sctp_sock *sp = sctp_sk(sk); 6501 struct sctp_association *asoc; 6502 struct sctp_sndrcvinfo info; 6503 6504 if (len < sizeof(info)) 6505 return -EINVAL; 6506 6507 len = sizeof(info); 6508 6509 if (copy_from_user(&info, optval, len)) 6510 return -EFAULT; 6511 6512 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6513 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6514 sctp_style(sk, UDP)) 6515 return -EINVAL; 6516 6517 if (asoc) { 6518 info.sinfo_stream = asoc->default_stream; 6519 info.sinfo_flags = asoc->default_flags; 6520 info.sinfo_ppid = asoc->default_ppid; 6521 info.sinfo_context = asoc->default_context; 6522 info.sinfo_timetolive = asoc->default_timetolive; 6523 } else { 6524 info.sinfo_stream = sp->default_stream; 6525 info.sinfo_flags = sp->default_flags; 6526 info.sinfo_ppid = sp->default_ppid; 6527 info.sinfo_context = sp->default_context; 6528 info.sinfo_timetolive = sp->default_timetolive; 6529 } 6530 6531 if (put_user(len, optlen)) 6532 return -EFAULT; 6533 if (copy_to_user(optval, &info, len)) 6534 return -EFAULT; 6535 6536 return 0; 6537 } 6538 6539 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6540 * (SCTP_DEFAULT_SNDINFO) 6541 */ 6542 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6543 char __user *optval, 6544 int __user *optlen) 6545 { 6546 struct sctp_sock *sp = sctp_sk(sk); 6547 struct sctp_association *asoc; 6548 struct sctp_sndinfo info; 6549 6550 if (len < sizeof(info)) 6551 return -EINVAL; 6552 6553 len = sizeof(info); 6554 6555 if (copy_from_user(&info, optval, len)) 6556 return -EFAULT; 6557 6558 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6559 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6560 sctp_style(sk, UDP)) 6561 return -EINVAL; 6562 6563 if (asoc) { 6564 info.snd_sid = asoc->default_stream; 6565 info.snd_flags = asoc->default_flags; 6566 info.snd_ppid = asoc->default_ppid; 6567 info.snd_context = asoc->default_context; 6568 } else { 6569 info.snd_sid = sp->default_stream; 6570 info.snd_flags = sp->default_flags; 6571 info.snd_ppid = sp->default_ppid; 6572 info.snd_context = sp->default_context; 6573 } 6574 6575 if (put_user(len, optlen)) 6576 return -EFAULT; 6577 if (copy_to_user(optval, &info, len)) 6578 return -EFAULT; 6579 6580 return 0; 6581 } 6582 6583 /* 6584 * 6585 * 7.1.5 SCTP_NODELAY 6586 * 6587 * Turn on/off any Nagle-like algorithm. This means that packets are 6588 * generally sent as soon as possible and no unnecessary delays are 6589 * introduced, at the cost of more packets in the network. Expects an 6590 * integer boolean flag. 6591 */ 6592 6593 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6594 char __user *optval, int __user *optlen) 6595 { 6596 int val; 6597 6598 if (len < sizeof(int)) 6599 return -EINVAL; 6600 6601 len = sizeof(int); 6602 val = (sctp_sk(sk)->nodelay == 1); 6603 if (put_user(len, optlen)) 6604 return -EFAULT; 6605 if (copy_to_user(optval, &val, len)) 6606 return -EFAULT; 6607 return 0; 6608 } 6609 6610 /* 6611 * 6612 * 7.1.1 SCTP_RTOINFO 6613 * 6614 * The protocol parameters used to initialize and bound retransmission 6615 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6616 * and modify these parameters. 6617 * All parameters are time values, in milliseconds. A value of 0, when 6618 * modifying the parameters, indicates that the current value should not 6619 * be changed. 6620 * 6621 */ 6622 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6623 char __user *optval, 6624 int __user *optlen) { 6625 struct sctp_rtoinfo rtoinfo; 6626 struct sctp_association *asoc; 6627 6628 if (len < sizeof (struct sctp_rtoinfo)) 6629 return -EINVAL; 6630 6631 len = sizeof(struct sctp_rtoinfo); 6632 6633 if (copy_from_user(&rtoinfo, optval, len)) 6634 return -EFAULT; 6635 6636 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6637 6638 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6639 sctp_style(sk, UDP)) 6640 return -EINVAL; 6641 6642 /* Values corresponding to the specific association. */ 6643 if (asoc) { 6644 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6645 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6646 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6647 } else { 6648 /* Values corresponding to the endpoint. */ 6649 struct sctp_sock *sp = sctp_sk(sk); 6650 6651 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6652 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6653 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6654 } 6655 6656 if (put_user(len, optlen)) 6657 return -EFAULT; 6658 6659 if (copy_to_user(optval, &rtoinfo, len)) 6660 return -EFAULT; 6661 6662 return 0; 6663 } 6664 6665 /* 6666 * 6667 * 7.1.2 SCTP_ASSOCINFO 6668 * 6669 * This option is used to tune the maximum retransmission attempts 6670 * of the association. 6671 * Returns an error if the new association retransmission value is 6672 * greater than the sum of the retransmission value of the peer. 6673 * See [SCTP] for more information. 6674 * 6675 */ 6676 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6677 char __user *optval, 6678 int __user *optlen) 6679 { 6680 6681 struct sctp_assocparams assocparams; 6682 struct sctp_association *asoc; 6683 struct list_head *pos; 6684 int cnt = 0; 6685 6686 if (len < sizeof (struct sctp_assocparams)) 6687 return -EINVAL; 6688 6689 len = sizeof(struct sctp_assocparams); 6690 6691 if (copy_from_user(&assocparams, optval, len)) 6692 return -EFAULT; 6693 6694 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6695 6696 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6697 sctp_style(sk, UDP)) 6698 return -EINVAL; 6699 6700 /* Values correspoinding to the specific association */ 6701 if (asoc) { 6702 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6703 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6704 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6705 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6706 6707 list_for_each(pos, &asoc->peer.transport_addr_list) { 6708 cnt++; 6709 } 6710 6711 assocparams.sasoc_number_peer_destinations = cnt; 6712 } else { 6713 /* Values corresponding to the endpoint */ 6714 struct sctp_sock *sp = sctp_sk(sk); 6715 6716 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6717 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6718 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6719 assocparams.sasoc_cookie_life = 6720 sp->assocparams.sasoc_cookie_life; 6721 assocparams.sasoc_number_peer_destinations = 6722 sp->assocparams. 6723 sasoc_number_peer_destinations; 6724 } 6725 6726 if (put_user(len, optlen)) 6727 return -EFAULT; 6728 6729 if (copy_to_user(optval, &assocparams, len)) 6730 return -EFAULT; 6731 6732 return 0; 6733 } 6734 6735 /* 6736 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6737 * 6738 * This socket option is a boolean flag which turns on or off mapped V4 6739 * addresses. If this option is turned on and the socket is type 6740 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6741 * If this option is turned off, then no mapping will be done of V4 6742 * addresses and a user will receive both PF_INET6 and PF_INET type 6743 * addresses on the socket. 6744 */ 6745 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6746 char __user *optval, int __user *optlen) 6747 { 6748 int val; 6749 struct sctp_sock *sp = sctp_sk(sk); 6750 6751 if (len < sizeof(int)) 6752 return -EINVAL; 6753 6754 len = sizeof(int); 6755 val = sp->v4mapped; 6756 if (put_user(len, optlen)) 6757 return -EFAULT; 6758 if (copy_to_user(optval, &val, len)) 6759 return -EFAULT; 6760 6761 return 0; 6762 } 6763 6764 /* 6765 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6766 * (chapter and verse is quoted at sctp_setsockopt_context()) 6767 */ 6768 static int sctp_getsockopt_context(struct sock *sk, int len, 6769 char __user *optval, int __user *optlen) 6770 { 6771 struct sctp_assoc_value params; 6772 struct sctp_association *asoc; 6773 6774 if (len < sizeof(struct sctp_assoc_value)) 6775 return -EINVAL; 6776 6777 len = sizeof(struct sctp_assoc_value); 6778 6779 if (copy_from_user(¶ms, optval, len)) 6780 return -EFAULT; 6781 6782 asoc = sctp_id2assoc(sk, params.assoc_id); 6783 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6784 sctp_style(sk, UDP)) 6785 return -EINVAL; 6786 6787 params.assoc_value = asoc ? asoc->default_rcv_context 6788 : sctp_sk(sk)->default_rcv_context; 6789 6790 if (put_user(len, optlen)) 6791 return -EFAULT; 6792 if (copy_to_user(optval, ¶ms, len)) 6793 return -EFAULT; 6794 6795 return 0; 6796 } 6797 6798 /* 6799 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6800 * This option will get or set the maximum size to put in any outgoing 6801 * SCTP DATA chunk. If a message is larger than this size it will be 6802 * fragmented by SCTP into the specified size. Note that the underlying 6803 * SCTP implementation may fragment into smaller sized chunks when the 6804 * PMTU of the underlying association is smaller than the value set by 6805 * the user. The default value for this option is '0' which indicates 6806 * the user is NOT limiting fragmentation and only the PMTU will effect 6807 * SCTP's choice of DATA chunk size. Note also that values set larger 6808 * than the maximum size of an IP datagram will effectively let SCTP 6809 * control fragmentation (i.e. the same as setting this option to 0). 6810 * 6811 * The following structure is used to access and modify this parameter: 6812 * 6813 * struct sctp_assoc_value { 6814 * sctp_assoc_t assoc_id; 6815 * uint32_t assoc_value; 6816 * }; 6817 * 6818 * assoc_id: This parameter is ignored for one-to-one style sockets. 6819 * For one-to-many style sockets this parameter indicates which 6820 * association the user is performing an action upon. Note that if 6821 * this field's value is zero then the endpoints default value is 6822 * changed (effecting future associations only). 6823 * assoc_value: This parameter specifies the maximum size in bytes. 6824 */ 6825 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6826 char __user *optval, int __user *optlen) 6827 { 6828 struct sctp_assoc_value params; 6829 struct sctp_association *asoc; 6830 6831 if (len == sizeof(int)) { 6832 pr_warn_ratelimited(DEPRECATED 6833 "%s (pid %d) " 6834 "Use of int in maxseg socket option.\n" 6835 "Use struct sctp_assoc_value instead\n", 6836 current->comm, task_pid_nr(current)); 6837 params.assoc_id = SCTP_FUTURE_ASSOC; 6838 } else if (len >= sizeof(struct sctp_assoc_value)) { 6839 len = sizeof(struct sctp_assoc_value); 6840 if (copy_from_user(¶ms, optval, len)) 6841 return -EFAULT; 6842 } else 6843 return -EINVAL; 6844 6845 asoc = sctp_id2assoc(sk, params.assoc_id); 6846 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6847 sctp_style(sk, UDP)) 6848 return -EINVAL; 6849 6850 if (asoc) 6851 params.assoc_value = asoc->frag_point; 6852 else 6853 params.assoc_value = sctp_sk(sk)->user_frag; 6854 6855 if (put_user(len, optlen)) 6856 return -EFAULT; 6857 if (len == sizeof(int)) { 6858 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6859 return -EFAULT; 6860 } else { 6861 if (copy_to_user(optval, ¶ms, len)) 6862 return -EFAULT; 6863 } 6864 6865 return 0; 6866 } 6867 6868 /* 6869 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6870 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6871 */ 6872 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6873 char __user *optval, int __user *optlen) 6874 { 6875 int val; 6876 6877 if (len < sizeof(int)) 6878 return -EINVAL; 6879 6880 len = sizeof(int); 6881 6882 val = sctp_sk(sk)->frag_interleave; 6883 if (put_user(len, optlen)) 6884 return -EFAULT; 6885 if (copy_to_user(optval, &val, len)) 6886 return -EFAULT; 6887 6888 return 0; 6889 } 6890 6891 /* 6892 * 7.1.25. Set or Get the sctp partial delivery point 6893 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6894 */ 6895 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6896 char __user *optval, 6897 int __user *optlen) 6898 { 6899 u32 val; 6900 6901 if (len < sizeof(u32)) 6902 return -EINVAL; 6903 6904 len = sizeof(u32); 6905 6906 val = sctp_sk(sk)->pd_point; 6907 if (put_user(len, optlen)) 6908 return -EFAULT; 6909 if (copy_to_user(optval, &val, len)) 6910 return -EFAULT; 6911 6912 return 0; 6913 } 6914 6915 /* 6916 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6917 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6918 */ 6919 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6920 char __user *optval, 6921 int __user *optlen) 6922 { 6923 struct sctp_assoc_value params; 6924 struct sctp_association *asoc; 6925 6926 if (len == sizeof(int)) { 6927 pr_warn_ratelimited(DEPRECATED 6928 "%s (pid %d) " 6929 "Use of int in max_burst socket option.\n" 6930 "Use struct sctp_assoc_value instead\n", 6931 current->comm, task_pid_nr(current)); 6932 params.assoc_id = SCTP_FUTURE_ASSOC; 6933 } else if (len >= sizeof(struct sctp_assoc_value)) { 6934 len = sizeof(struct sctp_assoc_value); 6935 if (copy_from_user(¶ms, optval, len)) 6936 return -EFAULT; 6937 } else 6938 return -EINVAL; 6939 6940 asoc = sctp_id2assoc(sk, params.assoc_id); 6941 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6942 sctp_style(sk, UDP)) 6943 return -EINVAL; 6944 6945 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6946 6947 if (len == sizeof(int)) { 6948 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6949 return -EFAULT; 6950 } else { 6951 if (copy_to_user(optval, ¶ms, len)) 6952 return -EFAULT; 6953 } 6954 6955 return 0; 6956 6957 } 6958 6959 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6960 char __user *optval, int __user *optlen) 6961 { 6962 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6963 struct sctp_hmacalgo __user *p = (void __user *)optval; 6964 struct sctp_hmac_algo_param *hmacs; 6965 __u16 data_len = 0; 6966 u32 num_idents; 6967 int i; 6968 6969 if (!ep->auth_enable) 6970 return -EACCES; 6971 6972 hmacs = ep->auth_hmacs_list; 6973 data_len = ntohs(hmacs->param_hdr.length) - 6974 sizeof(struct sctp_paramhdr); 6975 6976 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6977 return -EINVAL; 6978 6979 len = sizeof(struct sctp_hmacalgo) + data_len; 6980 num_idents = data_len / sizeof(u16); 6981 6982 if (put_user(len, optlen)) 6983 return -EFAULT; 6984 if (put_user(num_idents, &p->shmac_num_idents)) 6985 return -EFAULT; 6986 for (i = 0; i < num_idents; i++) { 6987 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6988 6989 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6990 return -EFAULT; 6991 } 6992 return 0; 6993 } 6994 6995 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6996 char __user *optval, int __user *optlen) 6997 { 6998 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6999 struct sctp_authkeyid val; 7000 struct sctp_association *asoc; 7001 7002 if (len < sizeof(struct sctp_authkeyid)) 7003 return -EINVAL; 7004 7005 len = sizeof(struct sctp_authkeyid); 7006 if (copy_from_user(&val, optval, len)) 7007 return -EFAULT; 7008 7009 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 7010 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 7011 return -EINVAL; 7012 7013 if (asoc) { 7014 if (!asoc->peer.auth_capable) 7015 return -EACCES; 7016 val.scact_keynumber = asoc->active_key_id; 7017 } else { 7018 if (!ep->auth_enable) 7019 return -EACCES; 7020 val.scact_keynumber = ep->active_key_id; 7021 } 7022 7023 if (put_user(len, optlen)) 7024 return -EFAULT; 7025 if (copy_to_user(optval, &val, len)) 7026 return -EFAULT; 7027 7028 return 0; 7029 } 7030 7031 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 7032 char __user *optval, int __user *optlen) 7033 { 7034 struct sctp_authchunks __user *p = (void __user *)optval; 7035 struct sctp_authchunks val; 7036 struct sctp_association *asoc; 7037 struct sctp_chunks_param *ch; 7038 u32 num_chunks = 0; 7039 char __user *to; 7040 7041 if (len < sizeof(struct sctp_authchunks)) 7042 return -EINVAL; 7043 7044 if (copy_from_user(&val, optval, sizeof(val))) 7045 return -EFAULT; 7046 7047 to = p->gauth_chunks; 7048 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7049 if (!asoc) 7050 return -EINVAL; 7051 7052 if (!asoc->peer.auth_capable) 7053 return -EACCES; 7054 7055 ch = asoc->peer.peer_chunks; 7056 if (!ch) 7057 goto num; 7058 7059 /* See if the user provided enough room for all the data */ 7060 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7061 if (len < num_chunks) 7062 return -EINVAL; 7063 7064 if (copy_to_user(to, ch->chunks, num_chunks)) 7065 return -EFAULT; 7066 num: 7067 len = sizeof(struct sctp_authchunks) + num_chunks; 7068 if (put_user(len, optlen)) 7069 return -EFAULT; 7070 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7071 return -EFAULT; 7072 return 0; 7073 } 7074 7075 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7076 char __user *optval, int __user *optlen) 7077 { 7078 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7079 struct sctp_authchunks __user *p = (void __user *)optval; 7080 struct sctp_authchunks val; 7081 struct sctp_association *asoc; 7082 struct sctp_chunks_param *ch; 7083 u32 num_chunks = 0; 7084 char __user *to; 7085 7086 if (len < sizeof(struct sctp_authchunks)) 7087 return -EINVAL; 7088 7089 if (copy_from_user(&val, optval, sizeof(val))) 7090 return -EFAULT; 7091 7092 to = p->gauth_chunks; 7093 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7094 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7095 sctp_style(sk, UDP)) 7096 return -EINVAL; 7097 7098 if (asoc) { 7099 if (!asoc->peer.auth_capable) 7100 return -EACCES; 7101 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7102 } else { 7103 if (!ep->auth_enable) 7104 return -EACCES; 7105 ch = ep->auth_chunk_list; 7106 } 7107 if (!ch) 7108 goto num; 7109 7110 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7111 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7112 return -EINVAL; 7113 7114 if (copy_to_user(to, ch->chunks, num_chunks)) 7115 return -EFAULT; 7116 num: 7117 len = sizeof(struct sctp_authchunks) + num_chunks; 7118 if (put_user(len, optlen)) 7119 return -EFAULT; 7120 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7121 return -EFAULT; 7122 7123 return 0; 7124 } 7125 7126 /* 7127 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7128 * This option gets the current number of associations that are attached 7129 * to a one-to-many style socket. The option value is an uint32_t. 7130 */ 7131 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7132 char __user *optval, int __user *optlen) 7133 { 7134 struct sctp_sock *sp = sctp_sk(sk); 7135 struct sctp_association *asoc; 7136 u32 val = 0; 7137 7138 if (sctp_style(sk, TCP)) 7139 return -EOPNOTSUPP; 7140 7141 if (len < sizeof(u32)) 7142 return -EINVAL; 7143 7144 len = sizeof(u32); 7145 7146 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7147 val++; 7148 } 7149 7150 if (put_user(len, optlen)) 7151 return -EFAULT; 7152 if (copy_to_user(optval, &val, len)) 7153 return -EFAULT; 7154 7155 return 0; 7156 } 7157 7158 /* 7159 * 8.1.23 SCTP_AUTO_ASCONF 7160 * See the corresponding setsockopt entry as description 7161 */ 7162 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7163 char __user *optval, int __user *optlen) 7164 { 7165 int val = 0; 7166 7167 if (len < sizeof(int)) 7168 return -EINVAL; 7169 7170 len = sizeof(int); 7171 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7172 val = 1; 7173 if (put_user(len, optlen)) 7174 return -EFAULT; 7175 if (copy_to_user(optval, &val, len)) 7176 return -EFAULT; 7177 return 0; 7178 } 7179 7180 /* 7181 * 8.2.6. Get the Current Identifiers of Associations 7182 * (SCTP_GET_ASSOC_ID_LIST) 7183 * 7184 * This option gets the current list of SCTP association identifiers of 7185 * the SCTP associations handled by a one-to-many style socket. 7186 */ 7187 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7188 char __user *optval, int __user *optlen) 7189 { 7190 struct sctp_sock *sp = sctp_sk(sk); 7191 struct sctp_association *asoc; 7192 struct sctp_assoc_ids *ids; 7193 u32 num = 0; 7194 7195 if (sctp_style(sk, TCP)) 7196 return -EOPNOTSUPP; 7197 7198 if (len < sizeof(struct sctp_assoc_ids)) 7199 return -EINVAL; 7200 7201 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7202 num++; 7203 } 7204 7205 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7206 return -EINVAL; 7207 7208 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7209 7210 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7211 if (unlikely(!ids)) 7212 return -ENOMEM; 7213 7214 ids->gaids_number_of_ids = num; 7215 num = 0; 7216 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7217 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7218 } 7219 7220 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7221 kfree(ids); 7222 return -EFAULT; 7223 } 7224 7225 kfree(ids); 7226 return 0; 7227 } 7228 7229 /* 7230 * SCTP_PEER_ADDR_THLDS 7231 * 7232 * This option allows us to fetch the partially failed threshold for one or all 7233 * transports in an association. See Section 6.1 of: 7234 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7235 */ 7236 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7237 char __user *optval, int len, 7238 int __user *optlen, bool v2) 7239 { 7240 struct sctp_paddrthlds_v2 val; 7241 struct sctp_transport *trans; 7242 struct sctp_association *asoc; 7243 int min; 7244 7245 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7246 if (len < min) 7247 return -EINVAL; 7248 len = min; 7249 if (copy_from_user(&val, optval, len)) 7250 return -EFAULT; 7251 7252 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7253 trans = sctp_addr_id2transport(sk, &val.spt_address, 7254 val.spt_assoc_id); 7255 if (!trans) 7256 return -ENOENT; 7257 7258 val.spt_pathmaxrxt = trans->pathmaxrxt; 7259 val.spt_pathpfthld = trans->pf_retrans; 7260 val.spt_pathcpthld = trans->ps_retrans; 7261 7262 goto out; 7263 } 7264 7265 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7266 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7267 sctp_style(sk, UDP)) 7268 return -EINVAL; 7269 7270 if (asoc) { 7271 val.spt_pathpfthld = asoc->pf_retrans; 7272 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7273 val.spt_pathcpthld = asoc->ps_retrans; 7274 } else { 7275 struct sctp_sock *sp = sctp_sk(sk); 7276 7277 val.spt_pathpfthld = sp->pf_retrans; 7278 val.spt_pathmaxrxt = sp->pathmaxrxt; 7279 val.spt_pathcpthld = sp->ps_retrans; 7280 } 7281 7282 out: 7283 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7284 return -EFAULT; 7285 7286 return 0; 7287 } 7288 7289 /* 7290 * SCTP_GET_ASSOC_STATS 7291 * 7292 * This option retrieves local per endpoint statistics. It is modeled 7293 * after OpenSolaris' implementation 7294 */ 7295 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7296 char __user *optval, 7297 int __user *optlen) 7298 { 7299 struct sctp_assoc_stats sas; 7300 struct sctp_association *asoc = NULL; 7301 7302 /* User must provide at least the assoc id */ 7303 if (len < sizeof(sctp_assoc_t)) 7304 return -EINVAL; 7305 7306 /* Allow the struct to grow and fill in as much as possible */ 7307 len = min_t(size_t, len, sizeof(sas)); 7308 7309 if (copy_from_user(&sas, optval, len)) 7310 return -EFAULT; 7311 7312 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7313 if (!asoc) 7314 return -EINVAL; 7315 7316 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7317 sas.sas_gapcnt = asoc->stats.gapcnt; 7318 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7319 sas.sas_osacks = asoc->stats.osacks; 7320 sas.sas_isacks = asoc->stats.isacks; 7321 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7322 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7323 sas.sas_oodchunks = asoc->stats.oodchunks; 7324 sas.sas_iodchunks = asoc->stats.iodchunks; 7325 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7326 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7327 sas.sas_idupchunks = asoc->stats.idupchunks; 7328 sas.sas_opackets = asoc->stats.opackets; 7329 sas.sas_ipackets = asoc->stats.ipackets; 7330 7331 /* New high max rto observed, will return 0 if not a single 7332 * RTO update took place. obs_rto_ipaddr will be bogus 7333 * in such a case 7334 */ 7335 sas.sas_maxrto = asoc->stats.max_obs_rto; 7336 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7337 sizeof(struct sockaddr_storage)); 7338 7339 /* Mark beginning of a new observation period */ 7340 asoc->stats.max_obs_rto = asoc->rto_min; 7341 7342 if (put_user(len, optlen)) 7343 return -EFAULT; 7344 7345 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7346 7347 if (copy_to_user(optval, &sas, len)) 7348 return -EFAULT; 7349 7350 return 0; 7351 } 7352 7353 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7354 char __user *optval, 7355 int __user *optlen) 7356 { 7357 int val = 0; 7358 7359 if (len < sizeof(int)) 7360 return -EINVAL; 7361 7362 len = sizeof(int); 7363 if (sctp_sk(sk)->recvrcvinfo) 7364 val = 1; 7365 if (put_user(len, optlen)) 7366 return -EFAULT; 7367 if (copy_to_user(optval, &val, len)) 7368 return -EFAULT; 7369 7370 return 0; 7371 } 7372 7373 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7374 char __user *optval, 7375 int __user *optlen) 7376 { 7377 int val = 0; 7378 7379 if (len < sizeof(int)) 7380 return -EINVAL; 7381 7382 len = sizeof(int); 7383 if (sctp_sk(sk)->recvnxtinfo) 7384 val = 1; 7385 if (put_user(len, optlen)) 7386 return -EFAULT; 7387 if (copy_to_user(optval, &val, len)) 7388 return -EFAULT; 7389 7390 return 0; 7391 } 7392 7393 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7394 char __user *optval, 7395 int __user *optlen) 7396 { 7397 struct sctp_assoc_value params; 7398 struct sctp_association *asoc; 7399 int retval = -EFAULT; 7400 7401 if (len < sizeof(params)) { 7402 retval = -EINVAL; 7403 goto out; 7404 } 7405 7406 len = sizeof(params); 7407 if (copy_from_user(¶ms, optval, len)) 7408 goto out; 7409 7410 asoc = sctp_id2assoc(sk, params.assoc_id); 7411 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7412 sctp_style(sk, UDP)) { 7413 retval = -EINVAL; 7414 goto out; 7415 } 7416 7417 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7418 : sctp_sk(sk)->ep->prsctp_enable; 7419 7420 if (put_user(len, optlen)) 7421 goto out; 7422 7423 if (copy_to_user(optval, ¶ms, len)) 7424 goto out; 7425 7426 retval = 0; 7427 7428 out: 7429 return retval; 7430 } 7431 7432 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7433 char __user *optval, 7434 int __user *optlen) 7435 { 7436 struct sctp_default_prinfo info; 7437 struct sctp_association *asoc; 7438 int retval = -EFAULT; 7439 7440 if (len < sizeof(info)) { 7441 retval = -EINVAL; 7442 goto out; 7443 } 7444 7445 len = sizeof(info); 7446 if (copy_from_user(&info, optval, len)) 7447 goto out; 7448 7449 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7450 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7451 sctp_style(sk, UDP)) { 7452 retval = -EINVAL; 7453 goto out; 7454 } 7455 7456 if (asoc) { 7457 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7458 info.pr_value = asoc->default_timetolive; 7459 } else { 7460 struct sctp_sock *sp = sctp_sk(sk); 7461 7462 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7463 info.pr_value = sp->default_timetolive; 7464 } 7465 7466 if (put_user(len, optlen)) 7467 goto out; 7468 7469 if (copy_to_user(optval, &info, len)) 7470 goto out; 7471 7472 retval = 0; 7473 7474 out: 7475 return retval; 7476 } 7477 7478 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7479 char __user *optval, 7480 int __user *optlen) 7481 { 7482 struct sctp_prstatus params; 7483 struct sctp_association *asoc; 7484 int policy; 7485 int retval = -EINVAL; 7486 7487 if (len < sizeof(params)) 7488 goto out; 7489 7490 len = sizeof(params); 7491 if (copy_from_user(¶ms, optval, len)) { 7492 retval = -EFAULT; 7493 goto out; 7494 } 7495 7496 policy = params.sprstat_policy; 7497 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7498 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7499 goto out; 7500 7501 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7502 if (!asoc) 7503 goto out; 7504 7505 if (policy == SCTP_PR_SCTP_ALL) { 7506 params.sprstat_abandoned_unsent = 0; 7507 params.sprstat_abandoned_sent = 0; 7508 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7509 params.sprstat_abandoned_unsent += 7510 asoc->abandoned_unsent[policy]; 7511 params.sprstat_abandoned_sent += 7512 asoc->abandoned_sent[policy]; 7513 } 7514 } else { 7515 params.sprstat_abandoned_unsent = 7516 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7517 params.sprstat_abandoned_sent = 7518 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7519 } 7520 7521 if (put_user(len, optlen)) { 7522 retval = -EFAULT; 7523 goto out; 7524 } 7525 7526 if (copy_to_user(optval, ¶ms, len)) { 7527 retval = -EFAULT; 7528 goto out; 7529 } 7530 7531 retval = 0; 7532 7533 out: 7534 return retval; 7535 } 7536 7537 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7538 char __user *optval, 7539 int __user *optlen) 7540 { 7541 struct sctp_stream_out_ext *streamoute; 7542 struct sctp_association *asoc; 7543 struct sctp_prstatus params; 7544 int retval = -EINVAL; 7545 int policy; 7546 7547 if (len < sizeof(params)) 7548 goto out; 7549 7550 len = sizeof(params); 7551 if (copy_from_user(¶ms, optval, len)) { 7552 retval = -EFAULT; 7553 goto out; 7554 } 7555 7556 policy = params.sprstat_policy; 7557 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7558 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7559 goto out; 7560 7561 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7562 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7563 goto out; 7564 7565 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7566 if (!streamoute) { 7567 /* Not allocated yet, means all stats are 0 */ 7568 params.sprstat_abandoned_unsent = 0; 7569 params.sprstat_abandoned_sent = 0; 7570 retval = 0; 7571 goto out; 7572 } 7573 7574 if (policy == SCTP_PR_SCTP_ALL) { 7575 params.sprstat_abandoned_unsent = 0; 7576 params.sprstat_abandoned_sent = 0; 7577 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7578 params.sprstat_abandoned_unsent += 7579 streamoute->abandoned_unsent[policy]; 7580 params.sprstat_abandoned_sent += 7581 streamoute->abandoned_sent[policy]; 7582 } 7583 } else { 7584 params.sprstat_abandoned_unsent = 7585 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7586 params.sprstat_abandoned_sent = 7587 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7588 } 7589 7590 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7591 retval = -EFAULT; 7592 goto out; 7593 } 7594 7595 retval = 0; 7596 7597 out: 7598 return retval; 7599 } 7600 7601 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7602 char __user *optval, 7603 int __user *optlen) 7604 { 7605 struct sctp_assoc_value params; 7606 struct sctp_association *asoc; 7607 int retval = -EFAULT; 7608 7609 if (len < sizeof(params)) { 7610 retval = -EINVAL; 7611 goto out; 7612 } 7613 7614 len = sizeof(params); 7615 if (copy_from_user(¶ms, optval, len)) 7616 goto out; 7617 7618 asoc = sctp_id2assoc(sk, params.assoc_id); 7619 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7620 sctp_style(sk, UDP)) { 7621 retval = -EINVAL; 7622 goto out; 7623 } 7624 7625 params.assoc_value = asoc ? asoc->peer.reconf_capable 7626 : sctp_sk(sk)->ep->reconf_enable; 7627 7628 if (put_user(len, optlen)) 7629 goto out; 7630 7631 if (copy_to_user(optval, ¶ms, len)) 7632 goto out; 7633 7634 retval = 0; 7635 7636 out: 7637 return retval; 7638 } 7639 7640 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7641 char __user *optval, 7642 int __user *optlen) 7643 { 7644 struct sctp_assoc_value params; 7645 struct sctp_association *asoc; 7646 int retval = -EFAULT; 7647 7648 if (len < sizeof(params)) { 7649 retval = -EINVAL; 7650 goto out; 7651 } 7652 7653 len = sizeof(params); 7654 if (copy_from_user(¶ms, optval, len)) 7655 goto out; 7656 7657 asoc = sctp_id2assoc(sk, params.assoc_id); 7658 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7659 sctp_style(sk, UDP)) { 7660 retval = -EINVAL; 7661 goto out; 7662 } 7663 7664 params.assoc_value = asoc ? asoc->strreset_enable 7665 : sctp_sk(sk)->ep->strreset_enable; 7666 7667 if (put_user(len, optlen)) 7668 goto out; 7669 7670 if (copy_to_user(optval, ¶ms, len)) 7671 goto out; 7672 7673 retval = 0; 7674 7675 out: 7676 return retval; 7677 } 7678 7679 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7680 char __user *optval, 7681 int __user *optlen) 7682 { 7683 struct sctp_assoc_value params; 7684 struct sctp_association *asoc; 7685 int retval = -EFAULT; 7686 7687 if (len < sizeof(params)) { 7688 retval = -EINVAL; 7689 goto out; 7690 } 7691 7692 len = sizeof(params); 7693 if (copy_from_user(¶ms, optval, len)) 7694 goto out; 7695 7696 asoc = sctp_id2assoc(sk, params.assoc_id); 7697 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7698 sctp_style(sk, UDP)) { 7699 retval = -EINVAL; 7700 goto out; 7701 } 7702 7703 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7704 : sctp_sk(sk)->default_ss; 7705 7706 if (put_user(len, optlen)) 7707 goto out; 7708 7709 if (copy_to_user(optval, ¶ms, len)) 7710 goto out; 7711 7712 retval = 0; 7713 7714 out: 7715 return retval; 7716 } 7717 7718 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7719 char __user *optval, 7720 int __user *optlen) 7721 { 7722 struct sctp_stream_value params; 7723 struct sctp_association *asoc; 7724 int retval = -EFAULT; 7725 7726 if (len < sizeof(params)) { 7727 retval = -EINVAL; 7728 goto out; 7729 } 7730 7731 len = sizeof(params); 7732 if (copy_from_user(¶ms, optval, len)) 7733 goto out; 7734 7735 asoc = sctp_id2assoc(sk, params.assoc_id); 7736 if (!asoc) { 7737 retval = -EINVAL; 7738 goto out; 7739 } 7740 7741 retval = sctp_sched_get_value(asoc, params.stream_id, 7742 ¶ms.stream_value); 7743 if (retval) 7744 goto out; 7745 7746 if (put_user(len, optlen)) { 7747 retval = -EFAULT; 7748 goto out; 7749 } 7750 7751 if (copy_to_user(optval, ¶ms, len)) { 7752 retval = -EFAULT; 7753 goto out; 7754 } 7755 7756 out: 7757 return retval; 7758 } 7759 7760 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7761 char __user *optval, 7762 int __user *optlen) 7763 { 7764 struct sctp_assoc_value params; 7765 struct sctp_association *asoc; 7766 int retval = -EFAULT; 7767 7768 if (len < sizeof(params)) { 7769 retval = -EINVAL; 7770 goto out; 7771 } 7772 7773 len = sizeof(params); 7774 if (copy_from_user(¶ms, optval, len)) 7775 goto out; 7776 7777 asoc = sctp_id2assoc(sk, params.assoc_id); 7778 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7779 sctp_style(sk, UDP)) { 7780 retval = -EINVAL; 7781 goto out; 7782 } 7783 7784 params.assoc_value = asoc ? asoc->peer.intl_capable 7785 : sctp_sk(sk)->ep->intl_enable; 7786 7787 if (put_user(len, optlen)) 7788 goto out; 7789 7790 if (copy_to_user(optval, ¶ms, len)) 7791 goto out; 7792 7793 retval = 0; 7794 7795 out: 7796 return retval; 7797 } 7798 7799 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7800 char __user *optval, 7801 int __user *optlen) 7802 { 7803 int val; 7804 7805 if (len < sizeof(int)) 7806 return -EINVAL; 7807 7808 len = sizeof(int); 7809 val = sctp_sk(sk)->reuse; 7810 if (put_user(len, optlen)) 7811 return -EFAULT; 7812 7813 if (copy_to_user(optval, &val, len)) 7814 return -EFAULT; 7815 7816 return 0; 7817 } 7818 7819 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7820 int __user *optlen) 7821 { 7822 struct sctp_association *asoc; 7823 struct sctp_event param; 7824 __u16 subscribe; 7825 7826 if (len < sizeof(param)) 7827 return -EINVAL; 7828 7829 len = sizeof(param); 7830 if (copy_from_user(¶m, optval, len)) 7831 return -EFAULT; 7832 7833 if (param.se_type < SCTP_SN_TYPE_BASE || 7834 param.se_type > SCTP_SN_TYPE_MAX) 7835 return -EINVAL; 7836 7837 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7838 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7839 sctp_style(sk, UDP)) 7840 return -EINVAL; 7841 7842 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7843 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7844 7845 if (put_user(len, optlen)) 7846 return -EFAULT; 7847 7848 if (copy_to_user(optval, ¶m, len)) 7849 return -EFAULT; 7850 7851 return 0; 7852 } 7853 7854 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7855 char __user *optval, 7856 int __user *optlen) 7857 { 7858 struct sctp_assoc_value params; 7859 struct sctp_association *asoc; 7860 int retval = -EFAULT; 7861 7862 if (len < sizeof(params)) { 7863 retval = -EINVAL; 7864 goto out; 7865 } 7866 7867 len = sizeof(params); 7868 if (copy_from_user(¶ms, optval, len)) 7869 goto out; 7870 7871 asoc = sctp_id2assoc(sk, params.assoc_id); 7872 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7873 sctp_style(sk, UDP)) { 7874 retval = -EINVAL; 7875 goto out; 7876 } 7877 7878 params.assoc_value = asoc ? asoc->peer.asconf_capable 7879 : sctp_sk(sk)->ep->asconf_enable; 7880 7881 if (put_user(len, optlen)) 7882 goto out; 7883 7884 if (copy_to_user(optval, ¶ms, len)) 7885 goto out; 7886 7887 retval = 0; 7888 7889 out: 7890 return retval; 7891 } 7892 7893 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7894 char __user *optval, 7895 int __user *optlen) 7896 { 7897 struct sctp_assoc_value params; 7898 struct sctp_association *asoc; 7899 int retval = -EFAULT; 7900 7901 if (len < sizeof(params)) { 7902 retval = -EINVAL; 7903 goto out; 7904 } 7905 7906 len = sizeof(params); 7907 if (copy_from_user(¶ms, optval, len)) 7908 goto out; 7909 7910 asoc = sctp_id2assoc(sk, params.assoc_id); 7911 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7912 sctp_style(sk, UDP)) { 7913 retval = -EINVAL; 7914 goto out; 7915 } 7916 7917 params.assoc_value = asoc ? asoc->peer.auth_capable 7918 : sctp_sk(sk)->ep->auth_enable; 7919 7920 if (put_user(len, optlen)) 7921 goto out; 7922 7923 if (copy_to_user(optval, ¶ms, len)) 7924 goto out; 7925 7926 retval = 0; 7927 7928 out: 7929 return retval; 7930 } 7931 7932 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7933 char __user *optval, 7934 int __user *optlen) 7935 { 7936 struct sctp_assoc_value params; 7937 struct sctp_association *asoc; 7938 int retval = -EFAULT; 7939 7940 if (len < sizeof(params)) { 7941 retval = -EINVAL; 7942 goto out; 7943 } 7944 7945 len = sizeof(params); 7946 if (copy_from_user(¶ms, optval, len)) 7947 goto out; 7948 7949 asoc = sctp_id2assoc(sk, params.assoc_id); 7950 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7951 sctp_style(sk, UDP)) { 7952 retval = -EINVAL; 7953 goto out; 7954 } 7955 7956 params.assoc_value = asoc ? asoc->peer.ecn_capable 7957 : sctp_sk(sk)->ep->ecn_enable; 7958 7959 if (put_user(len, optlen)) 7960 goto out; 7961 7962 if (copy_to_user(optval, ¶ms, len)) 7963 goto out; 7964 7965 retval = 0; 7966 7967 out: 7968 return retval; 7969 } 7970 7971 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7972 char __user *optval, 7973 int __user *optlen) 7974 { 7975 struct sctp_assoc_value params; 7976 struct sctp_association *asoc; 7977 int retval = -EFAULT; 7978 7979 if (len < sizeof(params)) { 7980 retval = -EINVAL; 7981 goto out; 7982 } 7983 7984 len = sizeof(params); 7985 if (copy_from_user(¶ms, optval, len)) 7986 goto out; 7987 7988 asoc = sctp_id2assoc(sk, params.assoc_id); 7989 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7990 sctp_style(sk, UDP)) { 7991 retval = -EINVAL; 7992 goto out; 7993 } 7994 7995 params.assoc_value = asoc ? asoc->pf_expose 7996 : sctp_sk(sk)->pf_expose; 7997 7998 if (put_user(len, optlen)) 7999 goto out; 8000 8001 if (copy_to_user(optval, ¶ms, len)) 8002 goto out; 8003 8004 retval = 0; 8005 8006 out: 8007 return retval; 8008 } 8009 8010 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8011 char __user *optval, int __user *optlen) 8012 { 8013 int retval = 0; 8014 int len; 8015 8016 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8017 8018 /* I can hardly begin to describe how wrong this is. This is 8019 * so broken as to be worse than useless. The API draft 8020 * REALLY is NOT helpful here... I am not convinced that the 8021 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8022 * are at all well-founded. 8023 */ 8024 if (level != SOL_SCTP) { 8025 struct sctp_af *af = sctp_sk(sk)->pf->af; 8026 8027 retval = af->getsockopt(sk, level, optname, optval, optlen); 8028 return retval; 8029 } 8030 8031 if (get_user(len, optlen)) 8032 return -EFAULT; 8033 8034 if (len < 0) 8035 return -EINVAL; 8036 8037 lock_sock(sk); 8038 8039 switch (optname) { 8040 case SCTP_STATUS: 8041 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8042 break; 8043 case SCTP_DISABLE_FRAGMENTS: 8044 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8045 optlen); 8046 break; 8047 case SCTP_EVENTS: 8048 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8049 break; 8050 case SCTP_AUTOCLOSE: 8051 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8052 break; 8053 case SCTP_SOCKOPT_PEELOFF: 8054 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8055 break; 8056 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8057 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8058 break; 8059 case SCTP_PEER_ADDR_PARAMS: 8060 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8061 optlen); 8062 break; 8063 case SCTP_DELAYED_SACK: 8064 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8065 optlen); 8066 break; 8067 case SCTP_INITMSG: 8068 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8069 break; 8070 case SCTP_GET_PEER_ADDRS: 8071 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8072 optlen); 8073 break; 8074 case SCTP_GET_LOCAL_ADDRS: 8075 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8076 optlen); 8077 break; 8078 case SCTP_SOCKOPT_CONNECTX3: 8079 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8080 break; 8081 case SCTP_DEFAULT_SEND_PARAM: 8082 retval = sctp_getsockopt_default_send_param(sk, len, 8083 optval, optlen); 8084 break; 8085 case SCTP_DEFAULT_SNDINFO: 8086 retval = sctp_getsockopt_default_sndinfo(sk, len, 8087 optval, optlen); 8088 break; 8089 case SCTP_PRIMARY_ADDR: 8090 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8091 break; 8092 case SCTP_NODELAY: 8093 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8094 break; 8095 case SCTP_RTOINFO: 8096 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8097 break; 8098 case SCTP_ASSOCINFO: 8099 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8100 break; 8101 case SCTP_I_WANT_MAPPED_V4_ADDR: 8102 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8103 break; 8104 case SCTP_MAXSEG: 8105 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8106 break; 8107 case SCTP_GET_PEER_ADDR_INFO: 8108 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8109 optlen); 8110 break; 8111 case SCTP_ADAPTATION_LAYER: 8112 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8113 optlen); 8114 break; 8115 case SCTP_CONTEXT: 8116 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8117 break; 8118 case SCTP_FRAGMENT_INTERLEAVE: 8119 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8120 optlen); 8121 break; 8122 case SCTP_PARTIAL_DELIVERY_POINT: 8123 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8124 optlen); 8125 break; 8126 case SCTP_MAX_BURST: 8127 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8128 break; 8129 case SCTP_AUTH_KEY: 8130 case SCTP_AUTH_CHUNK: 8131 case SCTP_AUTH_DELETE_KEY: 8132 case SCTP_AUTH_DEACTIVATE_KEY: 8133 retval = -EOPNOTSUPP; 8134 break; 8135 case SCTP_HMAC_IDENT: 8136 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8137 break; 8138 case SCTP_AUTH_ACTIVE_KEY: 8139 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8140 break; 8141 case SCTP_PEER_AUTH_CHUNKS: 8142 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8143 optlen); 8144 break; 8145 case SCTP_LOCAL_AUTH_CHUNKS: 8146 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8147 optlen); 8148 break; 8149 case SCTP_GET_ASSOC_NUMBER: 8150 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8151 break; 8152 case SCTP_GET_ASSOC_ID_LIST: 8153 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8154 break; 8155 case SCTP_AUTO_ASCONF: 8156 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8157 break; 8158 case SCTP_PEER_ADDR_THLDS: 8159 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8160 optlen, false); 8161 break; 8162 case SCTP_PEER_ADDR_THLDS_V2: 8163 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8164 optlen, true); 8165 break; 8166 case SCTP_GET_ASSOC_STATS: 8167 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8168 break; 8169 case SCTP_RECVRCVINFO: 8170 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8171 break; 8172 case SCTP_RECVNXTINFO: 8173 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8174 break; 8175 case SCTP_PR_SUPPORTED: 8176 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8177 break; 8178 case SCTP_DEFAULT_PRINFO: 8179 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8180 optlen); 8181 break; 8182 case SCTP_PR_ASSOC_STATUS: 8183 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8184 optlen); 8185 break; 8186 case SCTP_PR_STREAM_STATUS: 8187 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8188 optlen); 8189 break; 8190 case SCTP_RECONFIG_SUPPORTED: 8191 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8192 optlen); 8193 break; 8194 case SCTP_ENABLE_STREAM_RESET: 8195 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8196 optlen); 8197 break; 8198 case SCTP_STREAM_SCHEDULER: 8199 retval = sctp_getsockopt_scheduler(sk, len, optval, 8200 optlen); 8201 break; 8202 case SCTP_STREAM_SCHEDULER_VALUE: 8203 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8204 optlen); 8205 break; 8206 case SCTP_INTERLEAVING_SUPPORTED: 8207 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8208 optlen); 8209 break; 8210 case SCTP_REUSE_PORT: 8211 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8212 break; 8213 case SCTP_EVENT: 8214 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8215 break; 8216 case SCTP_ASCONF_SUPPORTED: 8217 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8218 optlen); 8219 break; 8220 case SCTP_AUTH_SUPPORTED: 8221 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8222 optlen); 8223 break; 8224 case SCTP_ECN_SUPPORTED: 8225 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8226 break; 8227 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8228 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8229 break; 8230 default: 8231 retval = -ENOPROTOOPT; 8232 break; 8233 } 8234 8235 release_sock(sk); 8236 return retval; 8237 } 8238 8239 static int sctp_hash(struct sock *sk) 8240 { 8241 /* STUB */ 8242 return 0; 8243 } 8244 8245 static void sctp_unhash(struct sock *sk) 8246 { 8247 /* STUB */ 8248 } 8249 8250 /* Check if port is acceptable. Possibly find first available port. 8251 * 8252 * The port hash table (contained in the 'global' SCTP protocol storage 8253 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8254 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8255 * list (the list number is the port number hashed out, so as you 8256 * would expect from a hash function, all the ports in a given list have 8257 * such a number that hashes out to the same list number; you were 8258 * expecting that, right?); so each list has a set of ports, with a 8259 * link to the socket (struct sock) that uses it, the port number and 8260 * a fastreuse flag (FIXME: NPI ipg). 8261 */ 8262 static struct sctp_bind_bucket *sctp_bucket_create( 8263 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8264 8265 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8266 { 8267 struct sctp_sock *sp = sctp_sk(sk); 8268 bool reuse = (sk->sk_reuse || sp->reuse); 8269 struct sctp_bind_hashbucket *head; /* hash list */ 8270 struct net *net = sock_net(sk); 8271 kuid_t uid = sock_i_uid(sk); 8272 struct sctp_bind_bucket *pp; 8273 unsigned short snum; 8274 int ret; 8275 8276 snum = ntohs(addr->v4.sin_port); 8277 8278 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8279 8280 local_bh_disable(); 8281 8282 if (snum == 0) { 8283 /* Search for an available port. */ 8284 int low, high, remaining, index; 8285 unsigned int rover; 8286 8287 inet_get_local_port_range(net, &low, &high); 8288 remaining = (high - low) + 1; 8289 rover = prandom_u32() % remaining + low; 8290 8291 do { 8292 rover++; 8293 if ((rover < low) || (rover > high)) 8294 rover = low; 8295 if (inet_is_local_reserved_port(net, rover)) 8296 continue; 8297 index = sctp_phashfn(net, rover); 8298 head = &sctp_port_hashtable[index]; 8299 spin_lock(&head->lock); 8300 sctp_for_each_hentry(pp, &head->chain) 8301 if ((pp->port == rover) && 8302 net_eq(net, pp->net)) 8303 goto next; 8304 break; 8305 next: 8306 spin_unlock(&head->lock); 8307 } while (--remaining > 0); 8308 8309 /* Exhausted local port range during search? */ 8310 ret = 1; 8311 if (remaining <= 0) 8312 goto fail; 8313 8314 /* OK, here is the one we will use. HEAD (the port 8315 * hash table list entry) is non-NULL and we hold it's 8316 * mutex. 8317 */ 8318 snum = rover; 8319 } else { 8320 /* We are given an specific port number; we verify 8321 * that it is not being used. If it is used, we will 8322 * exahust the search in the hash list corresponding 8323 * to the port number (snum) - we detect that with the 8324 * port iterator, pp being NULL. 8325 */ 8326 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8327 spin_lock(&head->lock); 8328 sctp_for_each_hentry(pp, &head->chain) { 8329 if ((pp->port == snum) && net_eq(pp->net, net)) 8330 goto pp_found; 8331 } 8332 } 8333 pp = NULL; 8334 goto pp_not_found; 8335 pp_found: 8336 if (!hlist_empty(&pp->owner)) { 8337 /* We had a port hash table hit - there is an 8338 * available port (pp != NULL) and it is being 8339 * used by other socket (pp->owner not empty); that other 8340 * socket is going to be sk2. 8341 */ 8342 struct sock *sk2; 8343 8344 pr_debug("%s: found a possible match\n", __func__); 8345 8346 if ((pp->fastreuse && reuse && 8347 sk->sk_state != SCTP_SS_LISTENING) || 8348 (pp->fastreuseport && sk->sk_reuseport && 8349 uid_eq(pp->fastuid, uid))) 8350 goto success; 8351 8352 /* Run through the list of sockets bound to the port 8353 * (pp->port) [via the pointers bind_next and 8354 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8355 * we get the endpoint they describe and run through 8356 * the endpoint's list of IP (v4 or v6) addresses, 8357 * comparing each of the addresses with the address of 8358 * the socket sk. If we find a match, then that means 8359 * that this port/socket (sk) combination are already 8360 * in an endpoint. 8361 */ 8362 sk_for_each_bound(sk2, &pp->owner) { 8363 struct sctp_sock *sp2 = sctp_sk(sk2); 8364 struct sctp_endpoint *ep2 = sp2->ep; 8365 8366 if (sk == sk2 || 8367 (reuse && (sk2->sk_reuse || sp2->reuse) && 8368 sk2->sk_state != SCTP_SS_LISTENING) || 8369 (sk->sk_reuseport && sk2->sk_reuseport && 8370 uid_eq(uid, sock_i_uid(sk2)))) 8371 continue; 8372 8373 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8374 addr, sp2, sp)) { 8375 ret = 1; 8376 goto fail_unlock; 8377 } 8378 } 8379 8380 pr_debug("%s: found a match\n", __func__); 8381 } 8382 pp_not_found: 8383 /* If there was a hash table miss, create a new port. */ 8384 ret = 1; 8385 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8386 goto fail_unlock; 8387 8388 /* In either case (hit or miss), make sure fastreuse is 1 only 8389 * if sk->sk_reuse is too (that is, if the caller requested 8390 * SO_REUSEADDR on this socket -sk-). 8391 */ 8392 if (hlist_empty(&pp->owner)) { 8393 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8394 pp->fastreuse = 1; 8395 else 8396 pp->fastreuse = 0; 8397 8398 if (sk->sk_reuseport) { 8399 pp->fastreuseport = 1; 8400 pp->fastuid = uid; 8401 } else { 8402 pp->fastreuseport = 0; 8403 } 8404 } else { 8405 if (pp->fastreuse && 8406 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8407 pp->fastreuse = 0; 8408 8409 if (pp->fastreuseport && 8410 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8411 pp->fastreuseport = 0; 8412 } 8413 8414 /* We are set, so fill up all the data in the hash table 8415 * entry, tie the socket list information with the rest of the 8416 * sockets FIXME: Blurry, NPI (ipg). 8417 */ 8418 success: 8419 if (!sp->bind_hash) { 8420 inet_sk(sk)->inet_num = snum; 8421 sk_add_bind_node(sk, &pp->owner); 8422 sp->bind_hash = pp; 8423 } 8424 ret = 0; 8425 8426 fail_unlock: 8427 spin_unlock(&head->lock); 8428 8429 fail: 8430 local_bh_enable(); 8431 return ret; 8432 } 8433 8434 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8435 * port is requested. 8436 */ 8437 static int sctp_get_port(struct sock *sk, unsigned short snum) 8438 { 8439 union sctp_addr addr; 8440 struct sctp_af *af = sctp_sk(sk)->pf->af; 8441 8442 /* Set up a dummy address struct from the sk. */ 8443 af->from_sk(&addr, sk); 8444 addr.v4.sin_port = htons(snum); 8445 8446 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8447 return sctp_get_port_local(sk, &addr); 8448 } 8449 8450 /* 8451 * Move a socket to LISTENING state. 8452 */ 8453 static int sctp_listen_start(struct sock *sk, int backlog) 8454 { 8455 struct sctp_sock *sp = sctp_sk(sk); 8456 struct sctp_endpoint *ep = sp->ep; 8457 struct crypto_shash *tfm = NULL; 8458 char alg[32]; 8459 8460 /* Allocate HMAC for generating cookie. */ 8461 if (!sp->hmac && sp->sctp_hmac_alg) { 8462 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8463 tfm = crypto_alloc_shash(alg, 0, 0); 8464 if (IS_ERR(tfm)) { 8465 net_info_ratelimited("failed to load transform for %s: %ld\n", 8466 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8467 return -ENOSYS; 8468 } 8469 sctp_sk(sk)->hmac = tfm; 8470 } 8471 8472 /* 8473 * If a bind() or sctp_bindx() is not called prior to a listen() 8474 * call that allows new associations to be accepted, the system 8475 * picks an ephemeral port and will choose an address set equivalent 8476 * to binding with a wildcard address. 8477 * 8478 * This is not currently spelled out in the SCTP sockets 8479 * extensions draft, but follows the practice as seen in TCP 8480 * sockets. 8481 * 8482 */ 8483 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8484 if (!ep->base.bind_addr.port) { 8485 if (sctp_autobind(sk)) 8486 return -EAGAIN; 8487 } else { 8488 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8489 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8490 return -EADDRINUSE; 8491 } 8492 } 8493 8494 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8495 return sctp_hash_endpoint(ep); 8496 } 8497 8498 /* 8499 * 4.1.3 / 5.1.3 listen() 8500 * 8501 * By default, new associations are not accepted for UDP style sockets. 8502 * An application uses listen() to mark a socket as being able to 8503 * accept new associations. 8504 * 8505 * On TCP style sockets, applications use listen() to ready the SCTP 8506 * endpoint for accepting inbound associations. 8507 * 8508 * On both types of endpoints a backlog of '0' disables listening. 8509 * 8510 * Move a socket to LISTENING state. 8511 */ 8512 int sctp_inet_listen(struct socket *sock, int backlog) 8513 { 8514 struct sock *sk = sock->sk; 8515 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8516 int err = -EINVAL; 8517 8518 if (unlikely(backlog < 0)) 8519 return err; 8520 8521 lock_sock(sk); 8522 8523 /* Peeled-off sockets are not allowed to listen(). */ 8524 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8525 goto out; 8526 8527 if (sock->state != SS_UNCONNECTED) 8528 goto out; 8529 8530 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8531 goto out; 8532 8533 /* If backlog is zero, disable listening. */ 8534 if (!backlog) { 8535 if (sctp_sstate(sk, CLOSED)) 8536 goto out; 8537 8538 err = 0; 8539 sctp_unhash_endpoint(ep); 8540 sk->sk_state = SCTP_SS_CLOSED; 8541 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8542 sctp_sk(sk)->bind_hash->fastreuse = 1; 8543 goto out; 8544 } 8545 8546 /* If we are already listening, just update the backlog */ 8547 if (sctp_sstate(sk, LISTENING)) 8548 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8549 else { 8550 err = sctp_listen_start(sk, backlog); 8551 if (err) 8552 goto out; 8553 } 8554 8555 err = 0; 8556 out: 8557 release_sock(sk); 8558 return err; 8559 } 8560 8561 /* 8562 * This function is done by modeling the current datagram_poll() and the 8563 * tcp_poll(). Note that, based on these implementations, we don't 8564 * lock the socket in this function, even though it seems that, 8565 * ideally, locking or some other mechanisms can be used to ensure 8566 * the integrity of the counters (sndbuf and wmem_alloc) used 8567 * in this place. We assume that we don't need locks either until proven 8568 * otherwise. 8569 * 8570 * Another thing to note is that we include the Async I/O support 8571 * here, again, by modeling the current TCP/UDP code. We don't have 8572 * a good way to test with it yet. 8573 */ 8574 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8575 { 8576 struct sock *sk = sock->sk; 8577 struct sctp_sock *sp = sctp_sk(sk); 8578 __poll_t mask; 8579 8580 poll_wait(file, sk_sleep(sk), wait); 8581 8582 sock_rps_record_flow(sk); 8583 8584 /* A TCP-style listening socket becomes readable when the accept queue 8585 * is not empty. 8586 */ 8587 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8588 return (!list_empty(&sp->ep->asocs)) ? 8589 (EPOLLIN | EPOLLRDNORM) : 0; 8590 8591 mask = 0; 8592 8593 /* Is there any exceptional events? */ 8594 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8595 mask |= EPOLLERR | 8596 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8597 if (sk->sk_shutdown & RCV_SHUTDOWN) 8598 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8599 if (sk->sk_shutdown == SHUTDOWN_MASK) 8600 mask |= EPOLLHUP; 8601 8602 /* Is it readable? Reconsider this code with TCP-style support. */ 8603 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8604 mask |= EPOLLIN | EPOLLRDNORM; 8605 8606 /* The association is either gone or not ready. */ 8607 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8608 return mask; 8609 8610 /* Is it writable? */ 8611 if (sctp_writeable(sk)) { 8612 mask |= EPOLLOUT | EPOLLWRNORM; 8613 } else { 8614 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8615 /* 8616 * Since the socket is not locked, the buffer 8617 * might be made available after the writeable check and 8618 * before the bit is set. This could cause a lost I/O 8619 * signal. tcp_poll() has a race breaker for this race 8620 * condition. Based on their implementation, we put 8621 * in the following code to cover it as well. 8622 */ 8623 if (sctp_writeable(sk)) 8624 mask |= EPOLLOUT | EPOLLWRNORM; 8625 } 8626 return mask; 8627 } 8628 8629 /******************************************************************** 8630 * 2nd Level Abstractions 8631 ********************************************************************/ 8632 8633 static struct sctp_bind_bucket *sctp_bucket_create( 8634 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8635 { 8636 struct sctp_bind_bucket *pp; 8637 8638 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8639 if (pp) { 8640 SCTP_DBG_OBJCNT_INC(bind_bucket); 8641 pp->port = snum; 8642 pp->fastreuse = 0; 8643 INIT_HLIST_HEAD(&pp->owner); 8644 pp->net = net; 8645 hlist_add_head(&pp->node, &head->chain); 8646 } 8647 return pp; 8648 } 8649 8650 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8651 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8652 { 8653 if (pp && hlist_empty(&pp->owner)) { 8654 __hlist_del(&pp->node); 8655 kmem_cache_free(sctp_bucket_cachep, pp); 8656 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8657 } 8658 } 8659 8660 /* Release this socket's reference to a local port. */ 8661 static inline void __sctp_put_port(struct sock *sk) 8662 { 8663 struct sctp_bind_hashbucket *head = 8664 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8665 inet_sk(sk)->inet_num)]; 8666 struct sctp_bind_bucket *pp; 8667 8668 spin_lock(&head->lock); 8669 pp = sctp_sk(sk)->bind_hash; 8670 __sk_del_bind_node(sk); 8671 sctp_sk(sk)->bind_hash = NULL; 8672 inet_sk(sk)->inet_num = 0; 8673 sctp_bucket_destroy(pp); 8674 spin_unlock(&head->lock); 8675 } 8676 8677 void sctp_put_port(struct sock *sk) 8678 { 8679 local_bh_disable(); 8680 __sctp_put_port(sk); 8681 local_bh_enable(); 8682 } 8683 8684 /* 8685 * The system picks an ephemeral port and choose an address set equivalent 8686 * to binding with a wildcard address. 8687 * One of those addresses will be the primary address for the association. 8688 * This automatically enables the multihoming capability of SCTP. 8689 */ 8690 static int sctp_autobind(struct sock *sk) 8691 { 8692 union sctp_addr autoaddr; 8693 struct sctp_af *af; 8694 __be16 port; 8695 8696 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8697 af = sctp_sk(sk)->pf->af; 8698 8699 port = htons(inet_sk(sk)->inet_num); 8700 af->inaddr_any(&autoaddr, port); 8701 8702 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8703 } 8704 8705 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8706 * 8707 * From RFC 2292 8708 * 4.2 The cmsghdr Structure * 8709 * 8710 * When ancillary data is sent or received, any number of ancillary data 8711 * objects can be specified by the msg_control and msg_controllen members of 8712 * the msghdr structure, because each object is preceded by 8713 * a cmsghdr structure defining the object's length (the cmsg_len member). 8714 * Historically Berkeley-derived implementations have passed only one object 8715 * at a time, but this API allows multiple objects to be 8716 * passed in a single call to sendmsg() or recvmsg(). The following example 8717 * shows two ancillary data objects in a control buffer. 8718 * 8719 * |<--------------------------- msg_controllen -------------------------->| 8720 * | | 8721 * 8722 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8723 * 8724 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8725 * | | | 8726 * 8727 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8728 * 8729 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8730 * | | | | | 8731 * 8732 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8733 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8734 * 8735 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8736 * 8737 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8738 * ^ 8739 * | 8740 * 8741 * msg_control 8742 * points here 8743 */ 8744 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8745 { 8746 struct msghdr *my_msg = (struct msghdr *)msg; 8747 struct cmsghdr *cmsg; 8748 8749 for_each_cmsghdr(cmsg, my_msg) { 8750 if (!CMSG_OK(my_msg, cmsg)) 8751 return -EINVAL; 8752 8753 /* Should we parse this header or ignore? */ 8754 if (cmsg->cmsg_level != IPPROTO_SCTP) 8755 continue; 8756 8757 /* Strictly check lengths following example in SCM code. */ 8758 switch (cmsg->cmsg_type) { 8759 case SCTP_INIT: 8760 /* SCTP Socket API Extension 8761 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8762 * 8763 * This cmsghdr structure provides information for 8764 * initializing new SCTP associations with sendmsg(). 8765 * The SCTP_INITMSG socket option uses this same data 8766 * structure. This structure is not used for 8767 * recvmsg(). 8768 * 8769 * cmsg_level cmsg_type cmsg_data[] 8770 * ------------ ------------ ---------------------- 8771 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8772 */ 8773 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8774 return -EINVAL; 8775 8776 cmsgs->init = CMSG_DATA(cmsg); 8777 break; 8778 8779 case SCTP_SNDRCV: 8780 /* SCTP Socket API Extension 8781 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8782 * 8783 * This cmsghdr structure specifies SCTP options for 8784 * sendmsg() and describes SCTP header information 8785 * about a received message through recvmsg(). 8786 * 8787 * cmsg_level cmsg_type cmsg_data[] 8788 * ------------ ------------ ---------------------- 8789 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8790 */ 8791 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8792 return -EINVAL; 8793 8794 cmsgs->srinfo = CMSG_DATA(cmsg); 8795 8796 if (cmsgs->srinfo->sinfo_flags & 8797 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8798 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8799 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8800 return -EINVAL; 8801 break; 8802 8803 case SCTP_SNDINFO: 8804 /* SCTP Socket API Extension 8805 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8806 * 8807 * This cmsghdr structure specifies SCTP options for 8808 * sendmsg(). This structure and SCTP_RCVINFO replaces 8809 * SCTP_SNDRCV which has been deprecated. 8810 * 8811 * cmsg_level cmsg_type cmsg_data[] 8812 * ------------ ------------ --------------------- 8813 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8814 */ 8815 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8816 return -EINVAL; 8817 8818 cmsgs->sinfo = CMSG_DATA(cmsg); 8819 8820 if (cmsgs->sinfo->snd_flags & 8821 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8822 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8823 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8824 return -EINVAL; 8825 break; 8826 case SCTP_PRINFO: 8827 /* SCTP Socket API Extension 8828 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8829 * 8830 * This cmsghdr structure specifies SCTP options for sendmsg(). 8831 * 8832 * cmsg_level cmsg_type cmsg_data[] 8833 * ------------ ------------ --------------------- 8834 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8835 */ 8836 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8837 return -EINVAL; 8838 8839 cmsgs->prinfo = CMSG_DATA(cmsg); 8840 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8841 return -EINVAL; 8842 8843 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8844 cmsgs->prinfo->pr_value = 0; 8845 break; 8846 case SCTP_AUTHINFO: 8847 /* SCTP Socket API Extension 8848 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8849 * 8850 * This cmsghdr structure specifies SCTP options for sendmsg(). 8851 * 8852 * cmsg_level cmsg_type cmsg_data[] 8853 * ------------ ------------ --------------------- 8854 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8855 */ 8856 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8857 return -EINVAL; 8858 8859 cmsgs->authinfo = CMSG_DATA(cmsg); 8860 break; 8861 case SCTP_DSTADDRV4: 8862 case SCTP_DSTADDRV6: 8863 /* SCTP Socket API Extension 8864 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8865 * 8866 * This cmsghdr structure specifies SCTP options for sendmsg(). 8867 * 8868 * cmsg_level cmsg_type cmsg_data[] 8869 * ------------ ------------ --------------------- 8870 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8871 * ------------ ------------ --------------------- 8872 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8873 */ 8874 cmsgs->addrs_msg = my_msg; 8875 break; 8876 default: 8877 return -EINVAL; 8878 } 8879 } 8880 8881 return 0; 8882 } 8883 8884 /* 8885 * Wait for a packet.. 8886 * Note: This function is the same function as in core/datagram.c 8887 * with a few modifications to make lksctp work. 8888 */ 8889 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8890 { 8891 int error; 8892 DEFINE_WAIT(wait); 8893 8894 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8895 8896 /* Socket errors? */ 8897 error = sock_error(sk); 8898 if (error) 8899 goto out; 8900 8901 if (!skb_queue_empty(&sk->sk_receive_queue)) 8902 goto ready; 8903 8904 /* Socket shut down? */ 8905 if (sk->sk_shutdown & RCV_SHUTDOWN) 8906 goto out; 8907 8908 /* Sequenced packets can come disconnected. If so we report the 8909 * problem. 8910 */ 8911 error = -ENOTCONN; 8912 8913 /* Is there a good reason to think that we may receive some data? */ 8914 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8915 goto out; 8916 8917 /* Handle signals. */ 8918 if (signal_pending(current)) 8919 goto interrupted; 8920 8921 /* Let another process have a go. Since we are going to sleep 8922 * anyway. Note: This may cause odd behaviors if the message 8923 * does not fit in the user's buffer, but this seems to be the 8924 * only way to honor MSG_DONTWAIT realistically. 8925 */ 8926 release_sock(sk); 8927 *timeo_p = schedule_timeout(*timeo_p); 8928 lock_sock(sk); 8929 8930 ready: 8931 finish_wait(sk_sleep(sk), &wait); 8932 return 0; 8933 8934 interrupted: 8935 error = sock_intr_errno(*timeo_p); 8936 8937 out: 8938 finish_wait(sk_sleep(sk), &wait); 8939 *err = error; 8940 return error; 8941 } 8942 8943 /* Receive a datagram. 8944 * Note: This is pretty much the same routine as in core/datagram.c 8945 * with a few changes to make lksctp work. 8946 */ 8947 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8948 int noblock, int *err) 8949 { 8950 int error; 8951 struct sk_buff *skb; 8952 long timeo; 8953 8954 timeo = sock_rcvtimeo(sk, noblock); 8955 8956 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8957 MAX_SCHEDULE_TIMEOUT); 8958 8959 do { 8960 /* Again only user level code calls this function, 8961 * so nothing interrupt level 8962 * will suddenly eat the receive_queue. 8963 * 8964 * Look at current nfs client by the way... 8965 * However, this function was correct in any case. 8) 8966 */ 8967 if (flags & MSG_PEEK) { 8968 skb = skb_peek(&sk->sk_receive_queue); 8969 if (skb) 8970 refcount_inc(&skb->users); 8971 } else { 8972 skb = __skb_dequeue(&sk->sk_receive_queue); 8973 } 8974 8975 if (skb) 8976 return skb; 8977 8978 /* Caller is allowed not to check sk->sk_err before calling. */ 8979 error = sock_error(sk); 8980 if (error) 8981 goto no_packet; 8982 8983 if (sk->sk_shutdown & RCV_SHUTDOWN) 8984 break; 8985 8986 if (sk_can_busy_loop(sk)) { 8987 sk_busy_loop(sk, noblock); 8988 8989 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8990 continue; 8991 } 8992 8993 /* User doesn't want to wait. */ 8994 error = -EAGAIN; 8995 if (!timeo) 8996 goto no_packet; 8997 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8998 8999 return NULL; 9000 9001 no_packet: 9002 *err = error; 9003 return NULL; 9004 } 9005 9006 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9007 static void __sctp_write_space(struct sctp_association *asoc) 9008 { 9009 struct sock *sk = asoc->base.sk; 9010 9011 if (sctp_wspace(asoc) <= 0) 9012 return; 9013 9014 if (waitqueue_active(&asoc->wait)) 9015 wake_up_interruptible(&asoc->wait); 9016 9017 if (sctp_writeable(sk)) { 9018 struct socket_wq *wq; 9019 9020 rcu_read_lock(); 9021 wq = rcu_dereference(sk->sk_wq); 9022 if (wq) { 9023 if (waitqueue_active(&wq->wait)) 9024 wake_up_interruptible(&wq->wait); 9025 9026 /* Note that we try to include the Async I/O support 9027 * here by modeling from the current TCP/UDP code. 9028 * We have not tested with it yet. 9029 */ 9030 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9031 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9032 } 9033 rcu_read_unlock(); 9034 } 9035 } 9036 9037 static void sctp_wake_up_waiters(struct sock *sk, 9038 struct sctp_association *asoc) 9039 { 9040 struct sctp_association *tmp = asoc; 9041 9042 /* We do accounting for the sndbuf space per association, 9043 * so we only need to wake our own association. 9044 */ 9045 if (asoc->ep->sndbuf_policy) 9046 return __sctp_write_space(asoc); 9047 9048 /* If association goes down and is just flushing its 9049 * outq, then just normally notify others. 9050 */ 9051 if (asoc->base.dead) 9052 return sctp_write_space(sk); 9053 9054 /* Accounting for the sndbuf space is per socket, so we 9055 * need to wake up others, try to be fair and in case of 9056 * other associations, let them have a go first instead 9057 * of just doing a sctp_write_space() call. 9058 * 9059 * Note that we reach sctp_wake_up_waiters() only when 9060 * associations free up queued chunks, thus we are under 9061 * lock and the list of associations on a socket is 9062 * guaranteed not to change. 9063 */ 9064 for (tmp = list_next_entry(tmp, asocs); 1; 9065 tmp = list_next_entry(tmp, asocs)) { 9066 /* Manually skip the head element. */ 9067 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9068 continue; 9069 /* Wake up association. */ 9070 __sctp_write_space(tmp); 9071 /* We've reached the end. */ 9072 if (tmp == asoc) 9073 break; 9074 } 9075 } 9076 9077 /* Do accounting for the sndbuf space. 9078 * Decrement the used sndbuf space of the corresponding association by the 9079 * data size which was just transmitted(freed). 9080 */ 9081 static void sctp_wfree(struct sk_buff *skb) 9082 { 9083 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9084 struct sctp_association *asoc = chunk->asoc; 9085 struct sock *sk = asoc->base.sk; 9086 9087 sk_mem_uncharge(sk, skb->truesize); 9088 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9089 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9090 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9091 &sk->sk_wmem_alloc)); 9092 9093 if (chunk->shkey) { 9094 struct sctp_shared_key *shkey = chunk->shkey; 9095 9096 /* refcnt == 2 and !list_empty mean after this release, it's 9097 * not being used anywhere, and it's time to notify userland 9098 * that this shkey can be freed if it's been deactivated. 9099 */ 9100 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9101 refcount_read(&shkey->refcnt) == 2) { 9102 struct sctp_ulpevent *ev; 9103 9104 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9105 SCTP_AUTH_FREE_KEY, 9106 GFP_KERNEL); 9107 if (ev) 9108 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9109 } 9110 sctp_auth_shkey_release(chunk->shkey); 9111 } 9112 9113 sock_wfree(skb); 9114 sctp_wake_up_waiters(sk, asoc); 9115 9116 sctp_association_put(asoc); 9117 } 9118 9119 /* Do accounting for the receive space on the socket. 9120 * Accounting for the association is done in ulpevent.c 9121 * We set this as a destructor for the cloned data skbs so that 9122 * accounting is done at the correct time. 9123 */ 9124 void sctp_sock_rfree(struct sk_buff *skb) 9125 { 9126 struct sock *sk = skb->sk; 9127 struct sctp_ulpevent *event = sctp_skb2event(skb); 9128 9129 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9130 9131 /* 9132 * Mimic the behavior of sock_rfree 9133 */ 9134 sk_mem_uncharge(sk, event->rmem_len); 9135 } 9136 9137 9138 /* Helper function to wait for space in the sndbuf. */ 9139 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9140 size_t msg_len) 9141 { 9142 struct sock *sk = asoc->base.sk; 9143 long current_timeo = *timeo_p; 9144 DEFINE_WAIT(wait); 9145 int err = 0; 9146 9147 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9148 *timeo_p, msg_len); 9149 9150 /* Increment the association's refcnt. */ 9151 sctp_association_hold(asoc); 9152 9153 /* Wait on the association specific sndbuf space. */ 9154 for (;;) { 9155 prepare_to_wait_exclusive(&asoc->wait, &wait, 9156 TASK_INTERRUPTIBLE); 9157 if (asoc->base.dead) 9158 goto do_dead; 9159 if (!*timeo_p) 9160 goto do_nonblock; 9161 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9162 goto do_error; 9163 if (signal_pending(current)) 9164 goto do_interrupted; 9165 if (sk_under_memory_pressure(sk)) 9166 sk_mem_reclaim(sk); 9167 if ((int)msg_len <= sctp_wspace(asoc) && 9168 sk_wmem_schedule(sk, msg_len)) 9169 break; 9170 9171 /* Let another process have a go. Since we are going 9172 * to sleep anyway. 9173 */ 9174 release_sock(sk); 9175 current_timeo = schedule_timeout(current_timeo); 9176 lock_sock(sk); 9177 if (sk != asoc->base.sk) 9178 goto do_error; 9179 9180 *timeo_p = current_timeo; 9181 } 9182 9183 out: 9184 finish_wait(&asoc->wait, &wait); 9185 9186 /* Release the association's refcnt. */ 9187 sctp_association_put(asoc); 9188 9189 return err; 9190 9191 do_dead: 9192 err = -ESRCH; 9193 goto out; 9194 9195 do_error: 9196 err = -EPIPE; 9197 goto out; 9198 9199 do_interrupted: 9200 err = sock_intr_errno(*timeo_p); 9201 goto out; 9202 9203 do_nonblock: 9204 err = -EAGAIN; 9205 goto out; 9206 } 9207 9208 void sctp_data_ready(struct sock *sk) 9209 { 9210 struct socket_wq *wq; 9211 9212 rcu_read_lock(); 9213 wq = rcu_dereference(sk->sk_wq); 9214 if (skwq_has_sleeper(wq)) 9215 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9216 EPOLLRDNORM | EPOLLRDBAND); 9217 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9218 rcu_read_unlock(); 9219 } 9220 9221 /* If socket sndbuf has changed, wake up all per association waiters. */ 9222 void sctp_write_space(struct sock *sk) 9223 { 9224 struct sctp_association *asoc; 9225 9226 /* Wake up the tasks in each wait queue. */ 9227 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9228 __sctp_write_space(asoc); 9229 } 9230 } 9231 9232 /* Is there any sndbuf space available on the socket? 9233 * 9234 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9235 * associations on the same socket. For a UDP-style socket with 9236 * multiple associations, it is possible for it to be "unwriteable" 9237 * prematurely. I assume that this is acceptable because 9238 * a premature "unwriteable" is better than an accidental "writeable" which 9239 * would cause an unwanted block under certain circumstances. For the 1-1 9240 * UDP-style sockets or TCP-style sockets, this code should work. 9241 * - Daisy 9242 */ 9243 static bool sctp_writeable(struct sock *sk) 9244 { 9245 return sk->sk_sndbuf > sk->sk_wmem_queued; 9246 } 9247 9248 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9249 * returns immediately with EINPROGRESS. 9250 */ 9251 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9252 { 9253 struct sock *sk = asoc->base.sk; 9254 int err = 0; 9255 long current_timeo = *timeo_p; 9256 DEFINE_WAIT(wait); 9257 9258 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9259 9260 /* Increment the association's refcnt. */ 9261 sctp_association_hold(asoc); 9262 9263 for (;;) { 9264 prepare_to_wait_exclusive(&asoc->wait, &wait, 9265 TASK_INTERRUPTIBLE); 9266 if (!*timeo_p) 9267 goto do_nonblock; 9268 if (sk->sk_shutdown & RCV_SHUTDOWN) 9269 break; 9270 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9271 asoc->base.dead) 9272 goto do_error; 9273 if (signal_pending(current)) 9274 goto do_interrupted; 9275 9276 if (sctp_state(asoc, ESTABLISHED)) 9277 break; 9278 9279 /* Let another process have a go. Since we are going 9280 * to sleep anyway. 9281 */ 9282 release_sock(sk); 9283 current_timeo = schedule_timeout(current_timeo); 9284 lock_sock(sk); 9285 9286 *timeo_p = current_timeo; 9287 } 9288 9289 out: 9290 finish_wait(&asoc->wait, &wait); 9291 9292 /* Release the association's refcnt. */ 9293 sctp_association_put(asoc); 9294 9295 return err; 9296 9297 do_error: 9298 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9299 err = -ETIMEDOUT; 9300 else 9301 err = -ECONNREFUSED; 9302 goto out; 9303 9304 do_interrupted: 9305 err = sock_intr_errno(*timeo_p); 9306 goto out; 9307 9308 do_nonblock: 9309 err = -EINPROGRESS; 9310 goto out; 9311 } 9312 9313 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9314 { 9315 struct sctp_endpoint *ep; 9316 int err = 0; 9317 DEFINE_WAIT(wait); 9318 9319 ep = sctp_sk(sk)->ep; 9320 9321 9322 for (;;) { 9323 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9324 TASK_INTERRUPTIBLE); 9325 9326 if (list_empty(&ep->asocs)) { 9327 release_sock(sk); 9328 timeo = schedule_timeout(timeo); 9329 lock_sock(sk); 9330 } 9331 9332 err = -EINVAL; 9333 if (!sctp_sstate(sk, LISTENING)) 9334 break; 9335 9336 err = 0; 9337 if (!list_empty(&ep->asocs)) 9338 break; 9339 9340 err = sock_intr_errno(timeo); 9341 if (signal_pending(current)) 9342 break; 9343 9344 err = -EAGAIN; 9345 if (!timeo) 9346 break; 9347 } 9348 9349 finish_wait(sk_sleep(sk), &wait); 9350 9351 return err; 9352 } 9353 9354 static void sctp_wait_for_close(struct sock *sk, long timeout) 9355 { 9356 DEFINE_WAIT(wait); 9357 9358 do { 9359 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9360 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9361 break; 9362 release_sock(sk); 9363 timeout = schedule_timeout(timeout); 9364 lock_sock(sk); 9365 } while (!signal_pending(current) && timeout); 9366 9367 finish_wait(sk_sleep(sk), &wait); 9368 } 9369 9370 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9371 { 9372 struct sk_buff *frag; 9373 9374 if (!skb->data_len) 9375 goto done; 9376 9377 /* Don't forget the fragments. */ 9378 skb_walk_frags(skb, frag) 9379 sctp_skb_set_owner_r_frag(frag, sk); 9380 9381 done: 9382 sctp_skb_set_owner_r(skb, sk); 9383 } 9384 9385 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9386 struct sctp_association *asoc) 9387 { 9388 struct inet_sock *inet = inet_sk(sk); 9389 struct inet_sock *newinet; 9390 struct sctp_sock *sp = sctp_sk(sk); 9391 struct sctp_endpoint *ep = sp->ep; 9392 9393 newsk->sk_type = sk->sk_type; 9394 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9395 newsk->sk_flags = sk->sk_flags; 9396 newsk->sk_tsflags = sk->sk_tsflags; 9397 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9398 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9399 newsk->sk_reuse = sk->sk_reuse; 9400 sctp_sk(newsk)->reuse = sp->reuse; 9401 9402 newsk->sk_shutdown = sk->sk_shutdown; 9403 newsk->sk_destruct = sctp_destruct_sock; 9404 newsk->sk_family = sk->sk_family; 9405 newsk->sk_protocol = IPPROTO_SCTP; 9406 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9407 newsk->sk_sndbuf = sk->sk_sndbuf; 9408 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9409 newsk->sk_lingertime = sk->sk_lingertime; 9410 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9411 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9412 newsk->sk_rxhash = sk->sk_rxhash; 9413 9414 newinet = inet_sk(newsk); 9415 9416 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9417 * getsockname() and getpeername() 9418 */ 9419 newinet->inet_sport = inet->inet_sport; 9420 newinet->inet_saddr = inet->inet_saddr; 9421 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9422 newinet->inet_dport = htons(asoc->peer.port); 9423 newinet->pmtudisc = inet->pmtudisc; 9424 newinet->inet_id = prandom_u32(); 9425 9426 newinet->uc_ttl = inet->uc_ttl; 9427 newinet->mc_loop = 1; 9428 newinet->mc_ttl = 1; 9429 newinet->mc_index = 0; 9430 newinet->mc_list = NULL; 9431 9432 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9433 net_enable_timestamp(); 9434 9435 /* Set newsk security attributes from orginal sk and connection 9436 * security attribute from ep. 9437 */ 9438 security_sctp_sk_clone(ep, sk, newsk); 9439 } 9440 9441 static inline void sctp_copy_descendant(struct sock *sk_to, 9442 const struct sock *sk_from) 9443 { 9444 int ancestor_size = sizeof(struct inet_sock) + 9445 sizeof(struct sctp_sock) - 9446 offsetof(struct sctp_sock, pd_lobby); 9447 9448 if (sk_from->sk_family == PF_INET6) 9449 ancestor_size += sizeof(struct ipv6_pinfo); 9450 9451 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9452 } 9453 9454 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9455 * and its messages to the newsk. 9456 */ 9457 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9458 struct sctp_association *assoc, 9459 enum sctp_socket_type type) 9460 { 9461 struct sctp_sock *oldsp = sctp_sk(oldsk); 9462 struct sctp_sock *newsp = sctp_sk(newsk); 9463 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9464 struct sctp_endpoint *newep = newsp->ep; 9465 struct sk_buff *skb, *tmp; 9466 struct sctp_ulpevent *event; 9467 struct sctp_bind_hashbucket *head; 9468 int err; 9469 9470 /* Migrate socket buffer sizes and all the socket level options to the 9471 * new socket. 9472 */ 9473 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9474 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9475 /* Brute force copy old sctp opt. */ 9476 sctp_copy_descendant(newsk, oldsk); 9477 9478 /* Restore the ep value that was overwritten with the above structure 9479 * copy. 9480 */ 9481 newsp->ep = newep; 9482 newsp->hmac = NULL; 9483 9484 /* Hook this new socket in to the bind_hash list. */ 9485 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9486 inet_sk(oldsk)->inet_num)]; 9487 spin_lock_bh(&head->lock); 9488 pp = sctp_sk(oldsk)->bind_hash; 9489 sk_add_bind_node(newsk, &pp->owner); 9490 sctp_sk(newsk)->bind_hash = pp; 9491 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9492 spin_unlock_bh(&head->lock); 9493 9494 /* Copy the bind_addr list from the original endpoint to the new 9495 * endpoint so that we can handle restarts properly 9496 */ 9497 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9498 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9499 if (err) 9500 return err; 9501 9502 /* New ep's auth_hmacs should be set if old ep's is set, in case 9503 * that net->sctp.auth_enable has been changed to 0 by users and 9504 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9505 */ 9506 if (oldsp->ep->auth_hmacs) { 9507 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9508 if (err) 9509 return err; 9510 } 9511 9512 /* Move any messages in the old socket's receive queue that are for the 9513 * peeled off association to the new socket's receive queue. 9514 */ 9515 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9516 event = sctp_skb2event(skb); 9517 if (event->asoc == assoc) { 9518 __skb_unlink(skb, &oldsk->sk_receive_queue); 9519 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9520 sctp_skb_set_owner_r_frag(skb, newsk); 9521 } 9522 } 9523 9524 /* Clean up any messages pending delivery due to partial 9525 * delivery. Three cases: 9526 * 1) No partial deliver; no work. 9527 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9528 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9529 */ 9530 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9531 9532 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9533 struct sk_buff_head *queue; 9534 9535 /* Decide which queue to move pd_lobby skbs to. */ 9536 if (assoc->ulpq.pd_mode) { 9537 queue = &newsp->pd_lobby; 9538 } else 9539 queue = &newsk->sk_receive_queue; 9540 9541 /* Walk through the pd_lobby, looking for skbs that 9542 * need moved to the new socket. 9543 */ 9544 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9545 event = sctp_skb2event(skb); 9546 if (event->asoc == assoc) { 9547 __skb_unlink(skb, &oldsp->pd_lobby); 9548 __skb_queue_tail(queue, skb); 9549 sctp_skb_set_owner_r_frag(skb, newsk); 9550 } 9551 } 9552 9553 /* Clear up any skbs waiting for the partial 9554 * delivery to finish. 9555 */ 9556 if (assoc->ulpq.pd_mode) 9557 sctp_clear_pd(oldsk, NULL); 9558 9559 } 9560 9561 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9562 9563 /* Set the type of socket to indicate that it is peeled off from the 9564 * original UDP-style socket or created with the accept() call on a 9565 * TCP-style socket.. 9566 */ 9567 newsp->type = type; 9568 9569 /* Mark the new socket "in-use" by the user so that any packets 9570 * that may arrive on the association after we've moved it are 9571 * queued to the backlog. This prevents a potential race between 9572 * backlog processing on the old socket and new-packet processing 9573 * on the new socket. 9574 * 9575 * The caller has just allocated newsk so we can guarantee that other 9576 * paths won't try to lock it and then oldsk. 9577 */ 9578 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9579 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9580 sctp_assoc_migrate(assoc, newsk); 9581 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9582 9583 /* If the association on the newsk is already closed before accept() 9584 * is called, set RCV_SHUTDOWN flag. 9585 */ 9586 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9587 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9588 newsk->sk_shutdown |= RCV_SHUTDOWN; 9589 } else { 9590 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9591 } 9592 9593 release_sock(newsk); 9594 9595 return 0; 9596 } 9597 9598 9599 /* This proto struct describes the ULP interface for SCTP. */ 9600 struct proto sctp_prot = { 9601 .name = "SCTP", 9602 .owner = THIS_MODULE, 9603 .close = sctp_close, 9604 .disconnect = sctp_disconnect, 9605 .accept = sctp_accept, 9606 .ioctl = sctp_ioctl, 9607 .init = sctp_init_sock, 9608 .destroy = sctp_destroy_sock, 9609 .shutdown = sctp_shutdown, 9610 .setsockopt = sctp_setsockopt, 9611 .getsockopt = sctp_getsockopt, 9612 .sendmsg = sctp_sendmsg, 9613 .recvmsg = sctp_recvmsg, 9614 .bind = sctp_bind, 9615 .backlog_rcv = sctp_backlog_rcv, 9616 .hash = sctp_hash, 9617 .unhash = sctp_unhash, 9618 .no_autobind = true, 9619 .obj_size = sizeof(struct sctp_sock), 9620 .useroffset = offsetof(struct sctp_sock, subscribe), 9621 .usersize = offsetof(struct sctp_sock, initmsg) - 9622 offsetof(struct sctp_sock, subscribe) + 9623 sizeof_field(struct sctp_sock, initmsg), 9624 .sysctl_mem = sysctl_sctp_mem, 9625 .sysctl_rmem = sysctl_sctp_rmem, 9626 .sysctl_wmem = sysctl_sctp_wmem, 9627 .memory_pressure = &sctp_memory_pressure, 9628 .enter_memory_pressure = sctp_enter_memory_pressure, 9629 .memory_allocated = &sctp_memory_allocated, 9630 .sockets_allocated = &sctp_sockets_allocated, 9631 }; 9632 9633 #if IS_ENABLED(CONFIG_IPV6) 9634 9635 #include <net/transp_v6.h> 9636 static void sctp_v6_destroy_sock(struct sock *sk) 9637 { 9638 sctp_destroy_sock(sk); 9639 inet6_destroy_sock(sk); 9640 } 9641 9642 struct proto sctpv6_prot = { 9643 .name = "SCTPv6", 9644 .owner = THIS_MODULE, 9645 .close = sctp_close, 9646 .disconnect = sctp_disconnect, 9647 .accept = sctp_accept, 9648 .ioctl = sctp_ioctl, 9649 .init = sctp_init_sock, 9650 .destroy = sctp_v6_destroy_sock, 9651 .shutdown = sctp_shutdown, 9652 .setsockopt = sctp_setsockopt, 9653 .getsockopt = sctp_getsockopt, 9654 .sendmsg = sctp_sendmsg, 9655 .recvmsg = sctp_recvmsg, 9656 .bind = sctp_bind, 9657 .backlog_rcv = sctp_backlog_rcv, 9658 .hash = sctp_hash, 9659 .unhash = sctp_unhash, 9660 .no_autobind = true, 9661 .obj_size = sizeof(struct sctp6_sock), 9662 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9663 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9664 offsetof(struct sctp6_sock, sctp.subscribe) + 9665 sizeof_field(struct sctp6_sock, sctp.initmsg), 9666 .sysctl_mem = sysctl_sctp_mem, 9667 .sysctl_rmem = sysctl_sctp_rmem, 9668 .sysctl_wmem = sysctl_sctp_wmem, 9669 .memory_pressure = &sctp_memory_pressure, 9670 .enter_memory_pressure = sctp_enter_memory_pressure, 9671 .memory_allocated = &sctp_memory_allocated, 9672 .sockets_allocated = &sctp_sockets_allocated, 9673 }; 9674 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9675