1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 #include <linux/file.h> 74 75 #include <net/ip.h> 76 #include <net/icmp.h> 77 #include <net/route.h> 78 #include <net/ipv6.h> 79 #include <net/inet_common.h> 80 81 #include <linux/socket.h> /* for sa_family_t */ 82 #include <linux/export.h> 83 #include <net/sock.h> 84 #include <net/sctp/sctp.h> 85 #include <net/sctp/sm.h> 86 87 /* WARNING: Please do not remove the SCTP_STATIC attribute to 88 * any of the functions below as they are used to export functions 89 * used by a project regression testsuite. 90 */ 91 92 /* Forward declarations for internal helper functions. */ 93 static int sctp_writeable(struct sock *sk); 94 static void sctp_wfree(struct sk_buff *skb); 95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 96 size_t msg_len); 97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 99 static int sctp_wait_for_accept(struct sock *sk, long timeo); 100 static void sctp_wait_for_close(struct sock *sk, long timeo); 101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 102 union sctp_addr *addr, int len); 103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 107 static int sctp_send_asconf(struct sctp_association *asoc, 108 struct sctp_chunk *chunk); 109 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 110 static int sctp_autobind(struct sock *sk); 111 static void sctp_sock_migrate(struct sock *, struct sock *, 112 struct sctp_association *, sctp_socket_type_t); 113 114 extern struct kmem_cache *sctp_bucket_cachep; 115 extern long sysctl_sctp_mem[3]; 116 extern int sysctl_sctp_rmem[3]; 117 extern int sysctl_sctp_wmem[3]; 118 119 static int sctp_memory_pressure; 120 static atomic_long_t sctp_memory_allocated; 121 struct percpu_counter sctp_sockets_allocated; 122 123 static void sctp_enter_memory_pressure(struct sock *sk) 124 { 125 sctp_memory_pressure = 1; 126 } 127 128 129 /* Get the sndbuf space available at the time on the association. */ 130 static inline int sctp_wspace(struct sctp_association *asoc) 131 { 132 int amt; 133 134 if (asoc->ep->sndbuf_policy) 135 amt = asoc->sndbuf_used; 136 else 137 amt = sk_wmem_alloc_get(asoc->base.sk); 138 139 if (amt >= asoc->base.sk->sk_sndbuf) { 140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 141 amt = 0; 142 else { 143 amt = sk_stream_wspace(asoc->base.sk); 144 if (amt < 0) 145 amt = 0; 146 } 147 } else { 148 amt = asoc->base.sk->sk_sndbuf - amt; 149 } 150 return amt; 151 } 152 153 /* Increment the used sndbuf space count of the corresponding association by 154 * the size of the outgoing data chunk. 155 * Also, set the skb destructor for sndbuf accounting later. 156 * 157 * Since it is always 1-1 between chunk and skb, and also a new skb is always 158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 159 * destructor in the data chunk skb for the purpose of the sndbuf space 160 * tracking. 161 */ 162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 163 { 164 struct sctp_association *asoc = chunk->asoc; 165 struct sock *sk = asoc->base.sk; 166 167 /* The sndbuf space is tracked per association. */ 168 sctp_association_hold(asoc); 169 170 skb_set_owner_w(chunk->skb, sk); 171 172 chunk->skb->destructor = sctp_wfree; 173 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 175 176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 177 sizeof(struct sk_buff) + 178 sizeof(struct sctp_chunk); 179 180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 181 sk->sk_wmem_queued += chunk->skb->truesize; 182 sk_mem_charge(sk, chunk->skb->truesize); 183 } 184 185 /* Verify that this is a valid address. */ 186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 187 int len) 188 { 189 struct sctp_af *af; 190 191 /* Verify basic sockaddr. */ 192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 193 if (!af) 194 return -EINVAL; 195 196 /* Is this a valid SCTP address? */ 197 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 198 return -EINVAL; 199 200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 201 return -EINVAL; 202 203 return 0; 204 } 205 206 /* Look up the association by its id. If this is not a UDP-style 207 * socket, the ID field is always ignored. 208 */ 209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 210 { 211 struct sctp_association *asoc = NULL; 212 213 /* If this is not a UDP-style socket, assoc id should be ignored. */ 214 if (!sctp_style(sk, UDP)) { 215 /* Return NULL if the socket state is not ESTABLISHED. It 216 * could be a TCP-style listening socket or a socket which 217 * hasn't yet called connect() to establish an association. 218 */ 219 if (!sctp_sstate(sk, ESTABLISHED)) 220 return NULL; 221 222 /* Get the first and the only association from the list. */ 223 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 225 struct sctp_association, asocs); 226 return asoc; 227 } 228 229 /* Otherwise this is a UDP-style socket. */ 230 if (!id || (id == (sctp_assoc_t)-1)) 231 return NULL; 232 233 spin_lock_bh(&sctp_assocs_id_lock); 234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 235 spin_unlock_bh(&sctp_assocs_id_lock); 236 237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 238 return NULL; 239 240 return asoc; 241 } 242 243 /* Look up the transport from an address and an assoc id. If both address and 244 * id are specified, the associations matching the address and the id should be 245 * the same. 246 */ 247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 248 struct sockaddr_storage *addr, 249 sctp_assoc_t id) 250 { 251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 252 struct sctp_transport *transport; 253 union sctp_addr *laddr = (union sctp_addr *)addr; 254 255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 256 laddr, 257 &transport); 258 259 if (!addr_asoc) 260 return NULL; 261 262 id_asoc = sctp_id2assoc(sk, id); 263 if (id_asoc && (id_asoc != addr_asoc)) 264 return NULL; 265 266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 267 (union sctp_addr *)addr); 268 269 return transport; 270 } 271 272 /* API 3.1.2 bind() - UDP Style Syntax 273 * The syntax of bind() is, 274 * 275 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 276 * 277 * sd - the socket descriptor returned by socket(). 278 * addr - the address structure (struct sockaddr_in or struct 279 * sockaddr_in6 [RFC 2553]), 280 * addr_len - the size of the address structure. 281 */ 282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 283 { 284 int retval = 0; 285 286 sctp_lock_sock(sk); 287 288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 289 sk, addr, addr_len); 290 291 /* Disallow binding twice. */ 292 if (!sctp_sk(sk)->ep->base.bind_addr.port) 293 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 294 addr_len); 295 else 296 retval = -EINVAL; 297 298 sctp_release_sock(sk); 299 300 return retval; 301 } 302 303 static long sctp_get_port_local(struct sock *, union sctp_addr *); 304 305 /* Verify this is a valid sockaddr. */ 306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 307 union sctp_addr *addr, int len) 308 { 309 struct sctp_af *af; 310 311 /* Check minimum size. */ 312 if (len < sizeof (struct sockaddr)) 313 return NULL; 314 315 /* V4 mapped address are really of AF_INET family */ 316 if (addr->sa.sa_family == AF_INET6 && 317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 318 if (!opt->pf->af_supported(AF_INET, opt)) 319 return NULL; 320 } else { 321 /* Does this PF support this AF? */ 322 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 323 return NULL; 324 } 325 326 /* If we get this far, af is valid. */ 327 af = sctp_get_af_specific(addr->sa.sa_family); 328 329 if (len < af->sockaddr_len) 330 return NULL; 331 332 return af; 333 } 334 335 /* Bind a local address either to an endpoint or to an association. */ 336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 337 { 338 struct net *net = sock_net(sk); 339 struct sctp_sock *sp = sctp_sk(sk); 340 struct sctp_endpoint *ep = sp->ep; 341 struct sctp_bind_addr *bp = &ep->base.bind_addr; 342 struct sctp_af *af; 343 unsigned short snum; 344 int ret = 0; 345 346 /* Common sockaddr verification. */ 347 af = sctp_sockaddr_af(sp, addr, len); 348 if (!af) { 349 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 350 sk, addr, len); 351 return -EINVAL; 352 } 353 354 snum = ntohs(addr->v4.sin_port); 355 356 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 357 ", port: %d, new port: %d, len: %d)\n", 358 sk, 359 addr, 360 bp->port, snum, 361 len); 362 363 /* PF specific bind() address verification. */ 364 if (!sp->pf->bind_verify(sp, addr)) 365 return -EADDRNOTAVAIL; 366 367 /* We must either be unbound, or bind to the same port. 368 * It's OK to allow 0 ports if we are already bound. 369 * We'll just inhert an already bound port in this case 370 */ 371 if (bp->port) { 372 if (!snum) 373 snum = bp->port; 374 else if (snum != bp->port) { 375 SCTP_DEBUG_PRINTK("sctp_do_bind:" 376 " New port %d does not match existing port " 377 "%d.\n", snum, bp->port); 378 return -EINVAL; 379 } 380 } 381 382 if (snum && snum < PROT_SOCK && 383 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 384 return -EACCES; 385 386 /* See if the address matches any of the addresses we may have 387 * already bound before checking against other endpoints. 388 */ 389 if (sctp_bind_addr_match(bp, addr, sp)) 390 return -EINVAL; 391 392 /* Make sure we are allowed to bind here. 393 * The function sctp_get_port_local() does duplicate address 394 * detection. 395 */ 396 addr->v4.sin_port = htons(snum); 397 if ((ret = sctp_get_port_local(sk, addr))) { 398 return -EADDRINUSE; 399 } 400 401 /* Refresh ephemeral port. */ 402 if (!bp->port) 403 bp->port = inet_sk(sk)->inet_num; 404 405 /* Add the address to the bind address list. 406 * Use GFP_ATOMIC since BHs will be disabled. 407 */ 408 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 409 410 /* Copy back into socket for getsockname() use. */ 411 if (!ret) { 412 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 413 af->to_sk_saddr(addr, sk); 414 } 415 416 return ret; 417 } 418 419 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 420 * 421 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 422 * at any one time. If a sender, after sending an ASCONF chunk, decides 423 * it needs to transfer another ASCONF Chunk, it MUST wait until the 424 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 425 * subsequent ASCONF. Note this restriction binds each side, so at any 426 * time two ASCONF may be in-transit on any given association (one sent 427 * from each endpoint). 428 */ 429 static int sctp_send_asconf(struct sctp_association *asoc, 430 struct sctp_chunk *chunk) 431 { 432 struct net *net = sock_net(asoc->base.sk); 433 int retval = 0; 434 435 /* If there is an outstanding ASCONF chunk, queue it for later 436 * transmission. 437 */ 438 if (asoc->addip_last_asconf) { 439 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 440 goto out; 441 } 442 443 /* Hold the chunk until an ASCONF_ACK is received. */ 444 sctp_chunk_hold(chunk); 445 retval = sctp_primitive_ASCONF(net, asoc, chunk); 446 if (retval) 447 sctp_chunk_free(chunk); 448 else 449 asoc->addip_last_asconf = chunk; 450 451 out: 452 return retval; 453 } 454 455 /* Add a list of addresses as bind addresses to local endpoint or 456 * association. 457 * 458 * Basically run through each address specified in the addrs/addrcnt 459 * array/length pair, determine if it is IPv6 or IPv4 and call 460 * sctp_do_bind() on it. 461 * 462 * If any of them fails, then the operation will be reversed and the 463 * ones that were added will be removed. 464 * 465 * Only sctp_setsockopt_bindx() is supposed to call this function. 466 */ 467 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 468 { 469 int cnt; 470 int retval = 0; 471 void *addr_buf; 472 struct sockaddr *sa_addr; 473 struct sctp_af *af; 474 475 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 476 sk, addrs, addrcnt); 477 478 addr_buf = addrs; 479 for (cnt = 0; cnt < addrcnt; cnt++) { 480 /* The list may contain either IPv4 or IPv6 address; 481 * determine the address length for walking thru the list. 482 */ 483 sa_addr = addr_buf; 484 af = sctp_get_af_specific(sa_addr->sa_family); 485 if (!af) { 486 retval = -EINVAL; 487 goto err_bindx_add; 488 } 489 490 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 491 af->sockaddr_len); 492 493 addr_buf += af->sockaddr_len; 494 495 err_bindx_add: 496 if (retval < 0) { 497 /* Failed. Cleanup the ones that have been added */ 498 if (cnt > 0) 499 sctp_bindx_rem(sk, addrs, cnt); 500 return retval; 501 } 502 } 503 504 return retval; 505 } 506 507 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 508 * associations that are part of the endpoint indicating that a list of local 509 * addresses are added to the endpoint. 510 * 511 * If any of the addresses is already in the bind address list of the 512 * association, we do not send the chunk for that association. But it will not 513 * affect other associations. 514 * 515 * Only sctp_setsockopt_bindx() is supposed to call this function. 516 */ 517 static int sctp_send_asconf_add_ip(struct sock *sk, 518 struct sockaddr *addrs, 519 int addrcnt) 520 { 521 struct net *net = sock_net(sk); 522 struct sctp_sock *sp; 523 struct sctp_endpoint *ep; 524 struct sctp_association *asoc; 525 struct sctp_bind_addr *bp; 526 struct sctp_chunk *chunk; 527 struct sctp_sockaddr_entry *laddr; 528 union sctp_addr *addr; 529 union sctp_addr saveaddr; 530 void *addr_buf; 531 struct sctp_af *af; 532 struct list_head *p; 533 int i; 534 int retval = 0; 535 536 if (!net->sctp.addip_enable) 537 return retval; 538 539 sp = sctp_sk(sk); 540 ep = sp->ep; 541 542 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 543 __func__, sk, addrs, addrcnt); 544 545 list_for_each_entry(asoc, &ep->asocs, asocs) { 546 547 if (!asoc->peer.asconf_capable) 548 continue; 549 550 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 551 continue; 552 553 if (!sctp_state(asoc, ESTABLISHED)) 554 continue; 555 556 /* Check if any address in the packed array of addresses is 557 * in the bind address list of the association. If so, 558 * do not send the asconf chunk to its peer, but continue with 559 * other associations. 560 */ 561 addr_buf = addrs; 562 for (i = 0; i < addrcnt; i++) { 563 addr = addr_buf; 564 af = sctp_get_af_specific(addr->v4.sin_family); 565 if (!af) { 566 retval = -EINVAL; 567 goto out; 568 } 569 570 if (sctp_assoc_lookup_laddr(asoc, addr)) 571 break; 572 573 addr_buf += af->sockaddr_len; 574 } 575 if (i < addrcnt) 576 continue; 577 578 /* Use the first valid address in bind addr list of 579 * association as Address Parameter of ASCONF CHUNK. 580 */ 581 bp = &asoc->base.bind_addr; 582 p = bp->address_list.next; 583 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 584 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 585 addrcnt, SCTP_PARAM_ADD_IP); 586 if (!chunk) { 587 retval = -ENOMEM; 588 goto out; 589 } 590 591 /* Add the new addresses to the bind address list with 592 * use_as_src set to 0. 593 */ 594 addr_buf = addrs; 595 for (i = 0; i < addrcnt; i++) { 596 addr = addr_buf; 597 af = sctp_get_af_specific(addr->v4.sin_family); 598 memcpy(&saveaddr, addr, af->sockaddr_len); 599 retval = sctp_add_bind_addr(bp, &saveaddr, 600 SCTP_ADDR_NEW, GFP_ATOMIC); 601 addr_buf += af->sockaddr_len; 602 } 603 if (asoc->src_out_of_asoc_ok) { 604 struct sctp_transport *trans; 605 606 list_for_each_entry(trans, 607 &asoc->peer.transport_addr_list, transports) { 608 /* Clear the source and route cache */ 609 dst_release(trans->dst); 610 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 611 2*asoc->pathmtu, 4380)); 612 trans->ssthresh = asoc->peer.i.a_rwnd; 613 trans->rto = asoc->rto_initial; 614 sctp_max_rto(asoc, trans); 615 trans->rtt = trans->srtt = trans->rttvar = 0; 616 sctp_transport_route(trans, NULL, 617 sctp_sk(asoc->base.sk)); 618 } 619 } 620 retval = sctp_send_asconf(asoc, chunk); 621 } 622 623 out: 624 return retval; 625 } 626 627 /* Remove a list of addresses from bind addresses list. Do not remove the 628 * last address. 629 * 630 * Basically run through each address specified in the addrs/addrcnt 631 * array/length pair, determine if it is IPv6 or IPv4 and call 632 * sctp_del_bind() on it. 633 * 634 * If any of them fails, then the operation will be reversed and the 635 * ones that were removed will be added back. 636 * 637 * At least one address has to be left; if only one address is 638 * available, the operation will return -EBUSY. 639 * 640 * Only sctp_setsockopt_bindx() is supposed to call this function. 641 */ 642 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 643 { 644 struct sctp_sock *sp = sctp_sk(sk); 645 struct sctp_endpoint *ep = sp->ep; 646 int cnt; 647 struct sctp_bind_addr *bp = &ep->base.bind_addr; 648 int retval = 0; 649 void *addr_buf; 650 union sctp_addr *sa_addr; 651 struct sctp_af *af; 652 653 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 654 sk, addrs, addrcnt); 655 656 addr_buf = addrs; 657 for (cnt = 0; cnt < addrcnt; cnt++) { 658 /* If the bind address list is empty or if there is only one 659 * bind address, there is nothing more to be removed (we need 660 * at least one address here). 661 */ 662 if (list_empty(&bp->address_list) || 663 (sctp_list_single_entry(&bp->address_list))) { 664 retval = -EBUSY; 665 goto err_bindx_rem; 666 } 667 668 sa_addr = addr_buf; 669 af = sctp_get_af_specific(sa_addr->sa.sa_family); 670 if (!af) { 671 retval = -EINVAL; 672 goto err_bindx_rem; 673 } 674 675 if (!af->addr_valid(sa_addr, sp, NULL)) { 676 retval = -EADDRNOTAVAIL; 677 goto err_bindx_rem; 678 } 679 680 if (sa_addr->v4.sin_port && 681 sa_addr->v4.sin_port != htons(bp->port)) { 682 retval = -EINVAL; 683 goto err_bindx_rem; 684 } 685 686 if (!sa_addr->v4.sin_port) 687 sa_addr->v4.sin_port = htons(bp->port); 688 689 /* FIXME - There is probably a need to check if sk->sk_saddr and 690 * sk->sk_rcv_addr are currently set to one of the addresses to 691 * be removed. This is something which needs to be looked into 692 * when we are fixing the outstanding issues with multi-homing 693 * socket routing and failover schemes. Refer to comments in 694 * sctp_do_bind(). -daisy 695 */ 696 retval = sctp_del_bind_addr(bp, sa_addr); 697 698 addr_buf += af->sockaddr_len; 699 err_bindx_rem: 700 if (retval < 0) { 701 /* Failed. Add the ones that has been removed back */ 702 if (cnt > 0) 703 sctp_bindx_add(sk, addrs, cnt); 704 return retval; 705 } 706 } 707 708 return retval; 709 } 710 711 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 712 * the associations that are part of the endpoint indicating that a list of 713 * local addresses are removed from the endpoint. 714 * 715 * If any of the addresses is already in the bind address list of the 716 * association, we do not send the chunk for that association. But it will not 717 * affect other associations. 718 * 719 * Only sctp_setsockopt_bindx() is supposed to call this function. 720 */ 721 static int sctp_send_asconf_del_ip(struct sock *sk, 722 struct sockaddr *addrs, 723 int addrcnt) 724 { 725 struct net *net = sock_net(sk); 726 struct sctp_sock *sp; 727 struct sctp_endpoint *ep; 728 struct sctp_association *asoc; 729 struct sctp_transport *transport; 730 struct sctp_bind_addr *bp; 731 struct sctp_chunk *chunk; 732 union sctp_addr *laddr; 733 void *addr_buf; 734 struct sctp_af *af; 735 struct sctp_sockaddr_entry *saddr; 736 int i; 737 int retval = 0; 738 int stored = 0; 739 740 chunk = NULL; 741 if (!net->sctp.addip_enable) 742 return retval; 743 744 sp = sctp_sk(sk); 745 ep = sp->ep; 746 747 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 748 __func__, sk, addrs, addrcnt); 749 750 list_for_each_entry(asoc, &ep->asocs, asocs) { 751 752 if (!asoc->peer.asconf_capable) 753 continue; 754 755 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 756 continue; 757 758 if (!sctp_state(asoc, ESTABLISHED)) 759 continue; 760 761 /* Check if any address in the packed array of addresses is 762 * not present in the bind address list of the association. 763 * If so, do not send the asconf chunk to its peer, but 764 * continue with other associations. 765 */ 766 addr_buf = addrs; 767 for (i = 0; i < addrcnt; i++) { 768 laddr = addr_buf; 769 af = sctp_get_af_specific(laddr->v4.sin_family); 770 if (!af) { 771 retval = -EINVAL; 772 goto out; 773 } 774 775 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 776 break; 777 778 addr_buf += af->sockaddr_len; 779 } 780 if (i < addrcnt) 781 continue; 782 783 /* Find one address in the association's bind address list 784 * that is not in the packed array of addresses. This is to 785 * make sure that we do not delete all the addresses in the 786 * association. 787 */ 788 bp = &asoc->base.bind_addr; 789 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 790 addrcnt, sp); 791 if ((laddr == NULL) && (addrcnt == 1)) { 792 if (asoc->asconf_addr_del_pending) 793 continue; 794 asoc->asconf_addr_del_pending = 795 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 796 if (asoc->asconf_addr_del_pending == NULL) { 797 retval = -ENOMEM; 798 goto out; 799 } 800 asoc->asconf_addr_del_pending->sa.sa_family = 801 addrs->sa_family; 802 asoc->asconf_addr_del_pending->v4.sin_port = 803 htons(bp->port); 804 if (addrs->sa_family == AF_INET) { 805 struct sockaddr_in *sin; 806 807 sin = (struct sockaddr_in *)addrs; 808 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 809 } else if (addrs->sa_family == AF_INET6) { 810 struct sockaddr_in6 *sin6; 811 812 sin6 = (struct sockaddr_in6 *)addrs; 813 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 814 } 815 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 816 " at %p\n", asoc, asoc->asconf_addr_del_pending, 817 asoc->asconf_addr_del_pending); 818 asoc->src_out_of_asoc_ok = 1; 819 stored = 1; 820 goto skip_mkasconf; 821 } 822 823 /* We do not need RCU protection throughout this loop 824 * because this is done under a socket lock from the 825 * setsockopt call. 826 */ 827 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 828 SCTP_PARAM_DEL_IP); 829 if (!chunk) { 830 retval = -ENOMEM; 831 goto out; 832 } 833 834 skip_mkasconf: 835 /* Reset use_as_src flag for the addresses in the bind address 836 * list that are to be deleted. 837 */ 838 addr_buf = addrs; 839 for (i = 0; i < addrcnt; i++) { 840 laddr = addr_buf; 841 af = sctp_get_af_specific(laddr->v4.sin_family); 842 list_for_each_entry(saddr, &bp->address_list, list) { 843 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 844 saddr->state = SCTP_ADDR_DEL; 845 } 846 addr_buf += af->sockaddr_len; 847 } 848 849 /* Update the route and saddr entries for all the transports 850 * as some of the addresses in the bind address list are 851 * about to be deleted and cannot be used as source addresses. 852 */ 853 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 854 transports) { 855 dst_release(transport->dst); 856 sctp_transport_route(transport, NULL, 857 sctp_sk(asoc->base.sk)); 858 } 859 860 if (stored) 861 /* We don't need to transmit ASCONF */ 862 continue; 863 retval = sctp_send_asconf(asoc, chunk); 864 } 865 out: 866 return retval; 867 } 868 869 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 870 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 871 { 872 struct sock *sk = sctp_opt2sk(sp); 873 union sctp_addr *addr; 874 struct sctp_af *af; 875 876 /* It is safe to write port space in caller. */ 877 addr = &addrw->a; 878 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 879 af = sctp_get_af_specific(addr->sa.sa_family); 880 if (!af) 881 return -EINVAL; 882 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 883 return -EINVAL; 884 885 if (addrw->state == SCTP_ADDR_NEW) 886 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 887 else 888 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 889 } 890 891 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 892 * 893 * API 8.1 894 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 895 * int flags); 896 * 897 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 898 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 899 * or IPv6 addresses. 900 * 901 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 902 * Section 3.1.2 for this usage. 903 * 904 * addrs is a pointer to an array of one or more socket addresses. Each 905 * address is contained in its appropriate structure (i.e. struct 906 * sockaddr_in or struct sockaddr_in6) the family of the address type 907 * must be used to distinguish the address length (note that this 908 * representation is termed a "packed array" of addresses). The caller 909 * specifies the number of addresses in the array with addrcnt. 910 * 911 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 912 * -1, and sets errno to the appropriate error code. 913 * 914 * For SCTP, the port given in each socket address must be the same, or 915 * sctp_bindx() will fail, setting errno to EINVAL. 916 * 917 * The flags parameter is formed from the bitwise OR of zero or more of 918 * the following currently defined flags: 919 * 920 * SCTP_BINDX_ADD_ADDR 921 * 922 * SCTP_BINDX_REM_ADDR 923 * 924 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 925 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 926 * addresses from the association. The two flags are mutually exclusive; 927 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 928 * not remove all addresses from an association; sctp_bindx() will 929 * reject such an attempt with EINVAL. 930 * 931 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 932 * additional addresses with an endpoint after calling bind(). Or use 933 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 934 * socket is associated with so that no new association accepted will be 935 * associated with those addresses. If the endpoint supports dynamic 936 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 937 * endpoint to send the appropriate message to the peer to change the 938 * peers address lists. 939 * 940 * Adding and removing addresses from a connected association is 941 * optional functionality. Implementations that do not support this 942 * functionality should return EOPNOTSUPP. 943 * 944 * Basically do nothing but copying the addresses from user to kernel 945 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 946 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 947 * from userspace. 948 * 949 * We don't use copy_from_user() for optimization: we first do the 950 * sanity checks (buffer size -fast- and access check-healthy 951 * pointer); if all of those succeed, then we can alloc the memory 952 * (expensive operation) needed to copy the data to kernel. Then we do 953 * the copying without checking the user space area 954 * (__copy_from_user()). 955 * 956 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 957 * it. 958 * 959 * sk The sk of the socket 960 * addrs The pointer to the addresses in user land 961 * addrssize Size of the addrs buffer 962 * op Operation to perform (add or remove, see the flags of 963 * sctp_bindx) 964 * 965 * Returns 0 if ok, <0 errno code on error. 966 */ 967 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 968 struct sockaddr __user *addrs, 969 int addrs_size, int op) 970 { 971 struct sockaddr *kaddrs; 972 int err; 973 int addrcnt = 0; 974 int walk_size = 0; 975 struct sockaddr *sa_addr; 976 void *addr_buf; 977 struct sctp_af *af; 978 979 SCTP_DEBUG_PRINTK("sctp_setsockopt_bindx: sk %p addrs %p" 980 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 981 982 if (unlikely(addrs_size <= 0)) 983 return -EINVAL; 984 985 /* Check the user passed a healthy pointer. */ 986 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 987 return -EFAULT; 988 989 /* Alloc space for the address array in kernel memory. */ 990 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 991 if (unlikely(!kaddrs)) 992 return -ENOMEM; 993 994 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 995 kfree(kaddrs); 996 return -EFAULT; 997 } 998 999 /* Walk through the addrs buffer and count the number of addresses. */ 1000 addr_buf = kaddrs; 1001 while (walk_size < addrs_size) { 1002 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1003 kfree(kaddrs); 1004 return -EINVAL; 1005 } 1006 1007 sa_addr = addr_buf; 1008 af = sctp_get_af_specific(sa_addr->sa_family); 1009 1010 /* If the address family is not supported or if this address 1011 * causes the address buffer to overflow return EINVAL. 1012 */ 1013 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1014 kfree(kaddrs); 1015 return -EINVAL; 1016 } 1017 addrcnt++; 1018 addr_buf += af->sockaddr_len; 1019 walk_size += af->sockaddr_len; 1020 } 1021 1022 /* Do the work. */ 1023 switch (op) { 1024 case SCTP_BINDX_ADD_ADDR: 1025 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1026 if (err) 1027 goto out; 1028 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1029 break; 1030 1031 case SCTP_BINDX_REM_ADDR: 1032 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1033 if (err) 1034 goto out; 1035 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1036 break; 1037 1038 default: 1039 err = -EINVAL; 1040 break; 1041 } 1042 1043 out: 1044 kfree(kaddrs); 1045 1046 return err; 1047 } 1048 1049 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1050 * 1051 * Common routine for handling connect() and sctp_connectx(). 1052 * Connect will come in with just a single address. 1053 */ 1054 static int __sctp_connect(struct sock* sk, 1055 struct sockaddr *kaddrs, 1056 int addrs_size, 1057 sctp_assoc_t *assoc_id) 1058 { 1059 struct net *net = sock_net(sk); 1060 struct sctp_sock *sp; 1061 struct sctp_endpoint *ep; 1062 struct sctp_association *asoc = NULL; 1063 struct sctp_association *asoc2; 1064 struct sctp_transport *transport; 1065 union sctp_addr to; 1066 struct sctp_af *af; 1067 sctp_scope_t scope; 1068 long timeo; 1069 int err = 0; 1070 int addrcnt = 0; 1071 int walk_size = 0; 1072 union sctp_addr *sa_addr = NULL; 1073 void *addr_buf; 1074 unsigned short port; 1075 unsigned int f_flags = 0; 1076 1077 sp = sctp_sk(sk); 1078 ep = sp->ep; 1079 1080 /* connect() cannot be done on a socket that is already in ESTABLISHED 1081 * state - UDP-style peeled off socket or a TCP-style socket that 1082 * is already connected. 1083 * It cannot be done even on a TCP-style listening socket. 1084 */ 1085 if (sctp_sstate(sk, ESTABLISHED) || 1086 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1087 err = -EISCONN; 1088 goto out_free; 1089 } 1090 1091 /* Walk through the addrs buffer and count the number of addresses. */ 1092 addr_buf = kaddrs; 1093 while (walk_size < addrs_size) { 1094 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1095 err = -EINVAL; 1096 goto out_free; 1097 } 1098 1099 sa_addr = addr_buf; 1100 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1101 1102 /* If the address family is not supported or if this address 1103 * causes the address buffer to overflow return EINVAL. 1104 */ 1105 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1106 err = -EINVAL; 1107 goto out_free; 1108 } 1109 1110 port = ntohs(sa_addr->v4.sin_port); 1111 1112 /* Save current address so we can work with it */ 1113 memcpy(&to, sa_addr, af->sockaddr_len); 1114 1115 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1116 if (err) 1117 goto out_free; 1118 1119 /* Make sure the destination port is correctly set 1120 * in all addresses. 1121 */ 1122 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1123 err = -EINVAL; 1124 goto out_free; 1125 } 1126 1127 /* Check if there already is a matching association on the 1128 * endpoint (other than the one created here). 1129 */ 1130 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1131 if (asoc2 && asoc2 != asoc) { 1132 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1133 err = -EISCONN; 1134 else 1135 err = -EALREADY; 1136 goto out_free; 1137 } 1138 1139 /* If we could not find a matching association on the endpoint, 1140 * make sure that there is no peeled-off association matching 1141 * the peer address even on another socket. 1142 */ 1143 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1144 err = -EADDRNOTAVAIL; 1145 goto out_free; 1146 } 1147 1148 if (!asoc) { 1149 /* If a bind() or sctp_bindx() is not called prior to 1150 * an sctp_connectx() call, the system picks an 1151 * ephemeral port and will choose an address set 1152 * equivalent to binding with a wildcard address. 1153 */ 1154 if (!ep->base.bind_addr.port) { 1155 if (sctp_autobind(sk)) { 1156 err = -EAGAIN; 1157 goto out_free; 1158 } 1159 } else { 1160 /* 1161 * If an unprivileged user inherits a 1-many 1162 * style socket with open associations on a 1163 * privileged port, it MAY be permitted to 1164 * accept new associations, but it SHOULD NOT 1165 * be permitted to open new associations. 1166 */ 1167 if (ep->base.bind_addr.port < PROT_SOCK && 1168 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1169 err = -EACCES; 1170 goto out_free; 1171 } 1172 } 1173 1174 scope = sctp_scope(&to); 1175 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1176 if (!asoc) { 1177 err = -ENOMEM; 1178 goto out_free; 1179 } 1180 1181 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1182 GFP_KERNEL); 1183 if (err < 0) { 1184 goto out_free; 1185 } 1186 1187 } 1188 1189 /* Prime the peer's transport structures. */ 1190 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1191 SCTP_UNKNOWN); 1192 if (!transport) { 1193 err = -ENOMEM; 1194 goto out_free; 1195 } 1196 1197 addrcnt++; 1198 addr_buf += af->sockaddr_len; 1199 walk_size += af->sockaddr_len; 1200 } 1201 1202 /* In case the user of sctp_connectx() wants an association 1203 * id back, assign one now. 1204 */ 1205 if (assoc_id) { 1206 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1207 if (err < 0) 1208 goto out_free; 1209 } 1210 1211 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1212 if (err < 0) { 1213 goto out_free; 1214 } 1215 1216 /* Initialize sk's dport and daddr for getpeername() */ 1217 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1218 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1219 af->to_sk_daddr(sa_addr, sk); 1220 sk->sk_err = 0; 1221 1222 /* in-kernel sockets don't generally have a file allocated to them 1223 * if all they do is call sock_create_kern(). 1224 */ 1225 if (sk->sk_socket->file) 1226 f_flags = sk->sk_socket->file->f_flags; 1227 1228 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1229 1230 err = sctp_wait_for_connect(asoc, &timeo); 1231 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1232 *assoc_id = asoc->assoc_id; 1233 1234 /* Don't free association on exit. */ 1235 asoc = NULL; 1236 1237 out_free: 1238 1239 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1240 " kaddrs: %p err: %d\n", 1241 asoc, kaddrs, err); 1242 if (asoc) { 1243 /* sctp_primitive_ASSOCIATE may have added this association 1244 * To the hash table, try to unhash it, just in case, its a noop 1245 * if it wasn't hashed so we're safe 1246 */ 1247 sctp_unhash_established(asoc); 1248 sctp_association_free(asoc); 1249 } 1250 return err; 1251 } 1252 1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1254 * 1255 * API 8.9 1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1257 * sctp_assoc_t *asoc); 1258 * 1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1261 * or IPv6 addresses. 1262 * 1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1264 * Section 3.1.2 for this usage. 1265 * 1266 * addrs is a pointer to an array of one or more socket addresses. Each 1267 * address is contained in its appropriate structure (i.e. struct 1268 * sockaddr_in or struct sockaddr_in6) the family of the address type 1269 * must be used to distengish the address length (note that this 1270 * representation is termed a "packed array" of addresses). The caller 1271 * specifies the number of addresses in the array with addrcnt. 1272 * 1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1274 * the association id of the new association. On failure, sctp_connectx() 1275 * returns -1, and sets errno to the appropriate error code. The assoc_id 1276 * is not touched by the kernel. 1277 * 1278 * For SCTP, the port given in each socket address must be the same, or 1279 * sctp_connectx() will fail, setting errno to EINVAL. 1280 * 1281 * An application can use sctp_connectx to initiate an association with 1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1283 * allows a caller to specify multiple addresses at which a peer can be 1284 * reached. The way the SCTP stack uses the list of addresses to set up 1285 * the association is implementation dependent. This function only 1286 * specifies that the stack will try to make use of all the addresses in 1287 * the list when needed. 1288 * 1289 * Note that the list of addresses passed in is only used for setting up 1290 * the association. It does not necessarily equal the set of addresses 1291 * the peer uses for the resulting association. If the caller wants to 1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1293 * retrieve them after the association has been set up. 1294 * 1295 * Basically do nothing but copying the addresses from user to kernel 1296 * land and invoking either sctp_connectx(). This is used for tunneling 1297 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1298 * 1299 * We don't use copy_from_user() for optimization: we first do the 1300 * sanity checks (buffer size -fast- and access check-healthy 1301 * pointer); if all of those succeed, then we can alloc the memory 1302 * (expensive operation) needed to copy the data to kernel. Then we do 1303 * the copying without checking the user space area 1304 * (__copy_from_user()). 1305 * 1306 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1307 * it. 1308 * 1309 * sk The sk of the socket 1310 * addrs The pointer to the addresses in user land 1311 * addrssize Size of the addrs buffer 1312 * 1313 * Returns >=0 if ok, <0 errno code on error. 1314 */ 1315 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1316 struct sockaddr __user *addrs, 1317 int addrs_size, 1318 sctp_assoc_t *assoc_id) 1319 { 1320 int err = 0; 1321 struct sockaddr *kaddrs; 1322 1323 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1324 __func__, sk, addrs, addrs_size); 1325 1326 if (unlikely(addrs_size <= 0)) 1327 return -EINVAL; 1328 1329 /* Check the user passed a healthy pointer. */ 1330 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1331 return -EFAULT; 1332 1333 /* Alloc space for the address array in kernel memory. */ 1334 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1335 if (unlikely(!kaddrs)) 1336 return -ENOMEM; 1337 1338 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1339 err = -EFAULT; 1340 } else { 1341 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1342 } 1343 1344 kfree(kaddrs); 1345 1346 return err; 1347 } 1348 1349 /* 1350 * This is an older interface. It's kept for backward compatibility 1351 * to the option that doesn't provide association id. 1352 */ 1353 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1354 struct sockaddr __user *addrs, 1355 int addrs_size) 1356 { 1357 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1358 } 1359 1360 /* 1361 * New interface for the API. The since the API is done with a socket 1362 * option, to make it simple we feed back the association id is as a return 1363 * indication to the call. Error is always negative and association id is 1364 * always positive. 1365 */ 1366 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1367 struct sockaddr __user *addrs, 1368 int addrs_size) 1369 { 1370 sctp_assoc_t assoc_id = 0; 1371 int err = 0; 1372 1373 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1374 1375 if (err) 1376 return err; 1377 else 1378 return assoc_id; 1379 } 1380 1381 /* 1382 * New (hopefully final) interface for the API. 1383 * We use the sctp_getaddrs_old structure so that use-space library 1384 * can avoid any unnecessary allocations. The only defferent part 1385 * is that we store the actual length of the address buffer into the 1386 * addrs_num structure member. That way we can re-use the existing 1387 * code. 1388 */ 1389 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1390 char __user *optval, 1391 int __user *optlen) 1392 { 1393 struct sctp_getaddrs_old param; 1394 sctp_assoc_t assoc_id = 0; 1395 int err = 0; 1396 1397 if (len < sizeof(param)) 1398 return -EINVAL; 1399 1400 if (copy_from_user(¶m, optval, sizeof(param))) 1401 return -EFAULT; 1402 1403 err = __sctp_setsockopt_connectx(sk, 1404 (struct sockaddr __user *)param.addrs, 1405 param.addr_num, &assoc_id); 1406 1407 if (err == 0 || err == -EINPROGRESS) { 1408 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1409 return -EFAULT; 1410 if (put_user(sizeof(assoc_id), optlen)) 1411 return -EFAULT; 1412 } 1413 1414 return err; 1415 } 1416 1417 /* API 3.1.4 close() - UDP Style Syntax 1418 * Applications use close() to perform graceful shutdown (as described in 1419 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1420 * by a UDP-style socket. 1421 * 1422 * The syntax is 1423 * 1424 * ret = close(int sd); 1425 * 1426 * sd - the socket descriptor of the associations to be closed. 1427 * 1428 * To gracefully shutdown a specific association represented by the 1429 * UDP-style socket, an application should use the sendmsg() call, 1430 * passing no user data, but including the appropriate flag in the 1431 * ancillary data (see Section xxxx). 1432 * 1433 * If sd in the close() call is a branched-off socket representing only 1434 * one association, the shutdown is performed on that association only. 1435 * 1436 * 4.1.6 close() - TCP Style Syntax 1437 * 1438 * Applications use close() to gracefully close down an association. 1439 * 1440 * The syntax is: 1441 * 1442 * int close(int sd); 1443 * 1444 * sd - the socket descriptor of the association to be closed. 1445 * 1446 * After an application calls close() on a socket descriptor, no further 1447 * socket operations will succeed on that descriptor. 1448 * 1449 * API 7.1.4 SO_LINGER 1450 * 1451 * An application using the TCP-style socket can use this option to 1452 * perform the SCTP ABORT primitive. The linger option structure is: 1453 * 1454 * struct linger { 1455 * int l_onoff; // option on/off 1456 * int l_linger; // linger time 1457 * }; 1458 * 1459 * To enable the option, set l_onoff to 1. If the l_linger value is set 1460 * to 0, calling close() is the same as the ABORT primitive. If the 1461 * value is set to a negative value, the setsockopt() call will return 1462 * an error. If the value is set to a positive value linger_time, the 1463 * close() can be blocked for at most linger_time ms. If the graceful 1464 * shutdown phase does not finish during this period, close() will 1465 * return but the graceful shutdown phase continues in the system. 1466 */ 1467 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1468 { 1469 struct net *net = sock_net(sk); 1470 struct sctp_endpoint *ep; 1471 struct sctp_association *asoc; 1472 struct list_head *pos, *temp; 1473 unsigned int data_was_unread; 1474 1475 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1476 1477 sctp_lock_sock(sk); 1478 sk->sk_shutdown = SHUTDOWN_MASK; 1479 sk->sk_state = SCTP_SS_CLOSING; 1480 1481 ep = sctp_sk(sk)->ep; 1482 1483 /* Clean up any skbs sitting on the receive queue. */ 1484 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1485 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1486 1487 /* Walk all associations on an endpoint. */ 1488 list_for_each_safe(pos, temp, &ep->asocs) { 1489 asoc = list_entry(pos, struct sctp_association, asocs); 1490 1491 if (sctp_style(sk, TCP)) { 1492 /* A closed association can still be in the list if 1493 * it belongs to a TCP-style listening socket that is 1494 * not yet accepted. If so, free it. If not, send an 1495 * ABORT or SHUTDOWN based on the linger options. 1496 */ 1497 if (sctp_state(asoc, CLOSED)) { 1498 sctp_unhash_established(asoc); 1499 sctp_association_free(asoc); 1500 continue; 1501 } 1502 } 1503 1504 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1505 !skb_queue_empty(&asoc->ulpq.reasm) || 1506 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1507 struct sctp_chunk *chunk; 1508 1509 chunk = sctp_make_abort_user(asoc, NULL, 0); 1510 if (chunk) 1511 sctp_primitive_ABORT(net, asoc, chunk); 1512 } else 1513 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1514 } 1515 1516 /* On a TCP-style socket, block for at most linger_time if set. */ 1517 if (sctp_style(sk, TCP) && timeout) 1518 sctp_wait_for_close(sk, timeout); 1519 1520 /* This will run the backlog queue. */ 1521 sctp_release_sock(sk); 1522 1523 /* Supposedly, no process has access to the socket, but 1524 * the net layers still may. 1525 */ 1526 sctp_local_bh_disable(); 1527 sctp_bh_lock_sock(sk); 1528 1529 /* Hold the sock, since sk_common_release() will put sock_put() 1530 * and we have just a little more cleanup. 1531 */ 1532 sock_hold(sk); 1533 sk_common_release(sk); 1534 1535 sctp_bh_unlock_sock(sk); 1536 sctp_local_bh_enable(); 1537 1538 sock_put(sk); 1539 1540 SCTP_DBG_OBJCNT_DEC(sock); 1541 } 1542 1543 /* Handle EPIPE error. */ 1544 static int sctp_error(struct sock *sk, int flags, int err) 1545 { 1546 if (err == -EPIPE) 1547 err = sock_error(sk) ? : -EPIPE; 1548 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1549 send_sig(SIGPIPE, current, 0); 1550 return err; 1551 } 1552 1553 /* API 3.1.3 sendmsg() - UDP Style Syntax 1554 * 1555 * An application uses sendmsg() and recvmsg() calls to transmit data to 1556 * and receive data from its peer. 1557 * 1558 * ssize_t sendmsg(int socket, const struct msghdr *message, 1559 * int flags); 1560 * 1561 * socket - the socket descriptor of the endpoint. 1562 * message - pointer to the msghdr structure which contains a single 1563 * user message and possibly some ancillary data. 1564 * 1565 * See Section 5 for complete description of the data 1566 * structures. 1567 * 1568 * flags - flags sent or received with the user message, see Section 1569 * 5 for complete description of the flags. 1570 * 1571 * Note: This function could use a rewrite especially when explicit 1572 * connect support comes in. 1573 */ 1574 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1575 1576 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1577 1578 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1579 struct msghdr *msg, size_t msg_len) 1580 { 1581 struct net *net = sock_net(sk); 1582 struct sctp_sock *sp; 1583 struct sctp_endpoint *ep; 1584 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1585 struct sctp_transport *transport, *chunk_tp; 1586 struct sctp_chunk *chunk; 1587 union sctp_addr to; 1588 struct sockaddr *msg_name = NULL; 1589 struct sctp_sndrcvinfo default_sinfo; 1590 struct sctp_sndrcvinfo *sinfo; 1591 struct sctp_initmsg *sinit; 1592 sctp_assoc_t associd = 0; 1593 sctp_cmsgs_t cmsgs = { NULL }; 1594 int err; 1595 sctp_scope_t scope; 1596 long timeo; 1597 __u16 sinfo_flags = 0; 1598 struct sctp_datamsg *datamsg; 1599 int msg_flags = msg->msg_flags; 1600 1601 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1602 sk, msg, msg_len); 1603 1604 err = 0; 1605 sp = sctp_sk(sk); 1606 ep = sp->ep; 1607 1608 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1609 1610 /* We cannot send a message over a TCP-style listening socket. */ 1611 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1612 err = -EPIPE; 1613 goto out_nounlock; 1614 } 1615 1616 /* Parse out the SCTP CMSGs. */ 1617 err = sctp_msghdr_parse(msg, &cmsgs); 1618 1619 if (err) { 1620 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1621 goto out_nounlock; 1622 } 1623 1624 /* Fetch the destination address for this packet. This 1625 * address only selects the association--it is not necessarily 1626 * the address we will send to. 1627 * For a peeled-off socket, msg_name is ignored. 1628 */ 1629 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1630 int msg_namelen = msg->msg_namelen; 1631 1632 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1633 msg_namelen); 1634 if (err) 1635 return err; 1636 1637 if (msg_namelen > sizeof(to)) 1638 msg_namelen = sizeof(to); 1639 memcpy(&to, msg->msg_name, msg_namelen); 1640 msg_name = msg->msg_name; 1641 } 1642 1643 sinfo = cmsgs.info; 1644 sinit = cmsgs.init; 1645 1646 /* Did the user specify SNDRCVINFO? */ 1647 if (sinfo) { 1648 sinfo_flags = sinfo->sinfo_flags; 1649 associd = sinfo->sinfo_assoc_id; 1650 } 1651 1652 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1653 msg_len, sinfo_flags); 1654 1655 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1656 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1657 err = -EINVAL; 1658 goto out_nounlock; 1659 } 1660 1661 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1662 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1663 * If SCTP_ABORT is set, the message length could be non zero with 1664 * the msg_iov set to the user abort reason. 1665 */ 1666 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1667 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1668 err = -EINVAL; 1669 goto out_nounlock; 1670 } 1671 1672 /* If SCTP_ADDR_OVER is set, there must be an address 1673 * specified in msg_name. 1674 */ 1675 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1676 err = -EINVAL; 1677 goto out_nounlock; 1678 } 1679 1680 transport = NULL; 1681 1682 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1683 1684 sctp_lock_sock(sk); 1685 1686 /* If a msg_name has been specified, assume this is to be used. */ 1687 if (msg_name) { 1688 /* Look for a matching association on the endpoint. */ 1689 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1690 if (!asoc) { 1691 /* If we could not find a matching association on the 1692 * endpoint, make sure that it is not a TCP-style 1693 * socket that already has an association or there is 1694 * no peeled-off association on another socket. 1695 */ 1696 if ((sctp_style(sk, TCP) && 1697 sctp_sstate(sk, ESTABLISHED)) || 1698 sctp_endpoint_is_peeled_off(ep, &to)) { 1699 err = -EADDRNOTAVAIL; 1700 goto out_unlock; 1701 } 1702 } 1703 } else { 1704 asoc = sctp_id2assoc(sk, associd); 1705 if (!asoc) { 1706 err = -EPIPE; 1707 goto out_unlock; 1708 } 1709 } 1710 1711 if (asoc) { 1712 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1713 1714 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1715 * socket that has an association in CLOSED state. This can 1716 * happen when an accepted socket has an association that is 1717 * already CLOSED. 1718 */ 1719 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1720 err = -EPIPE; 1721 goto out_unlock; 1722 } 1723 1724 if (sinfo_flags & SCTP_EOF) { 1725 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1726 asoc); 1727 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1728 err = 0; 1729 goto out_unlock; 1730 } 1731 if (sinfo_flags & SCTP_ABORT) { 1732 1733 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1734 if (!chunk) { 1735 err = -ENOMEM; 1736 goto out_unlock; 1737 } 1738 1739 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1740 sctp_primitive_ABORT(net, asoc, chunk); 1741 err = 0; 1742 goto out_unlock; 1743 } 1744 } 1745 1746 /* Do we need to create the association? */ 1747 if (!asoc) { 1748 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1749 1750 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1751 err = -EINVAL; 1752 goto out_unlock; 1753 } 1754 1755 /* Check for invalid stream against the stream counts, 1756 * either the default or the user specified stream counts. 1757 */ 1758 if (sinfo) { 1759 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1760 /* Check against the defaults. */ 1761 if (sinfo->sinfo_stream >= 1762 sp->initmsg.sinit_num_ostreams) { 1763 err = -EINVAL; 1764 goto out_unlock; 1765 } 1766 } else { 1767 /* Check against the requested. */ 1768 if (sinfo->sinfo_stream >= 1769 sinit->sinit_num_ostreams) { 1770 err = -EINVAL; 1771 goto out_unlock; 1772 } 1773 } 1774 } 1775 1776 /* 1777 * API 3.1.2 bind() - UDP Style Syntax 1778 * If a bind() or sctp_bindx() is not called prior to a 1779 * sendmsg() call that initiates a new association, the 1780 * system picks an ephemeral port and will choose an address 1781 * set equivalent to binding with a wildcard address. 1782 */ 1783 if (!ep->base.bind_addr.port) { 1784 if (sctp_autobind(sk)) { 1785 err = -EAGAIN; 1786 goto out_unlock; 1787 } 1788 } else { 1789 /* 1790 * If an unprivileged user inherits a one-to-many 1791 * style socket with open associations on a privileged 1792 * port, it MAY be permitted to accept new associations, 1793 * but it SHOULD NOT be permitted to open new 1794 * associations. 1795 */ 1796 if (ep->base.bind_addr.port < PROT_SOCK && 1797 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1798 err = -EACCES; 1799 goto out_unlock; 1800 } 1801 } 1802 1803 scope = sctp_scope(&to); 1804 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1805 if (!new_asoc) { 1806 err = -ENOMEM; 1807 goto out_unlock; 1808 } 1809 asoc = new_asoc; 1810 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1811 if (err < 0) { 1812 err = -ENOMEM; 1813 goto out_free; 1814 } 1815 1816 /* If the SCTP_INIT ancillary data is specified, set all 1817 * the association init values accordingly. 1818 */ 1819 if (sinit) { 1820 if (sinit->sinit_num_ostreams) { 1821 asoc->c.sinit_num_ostreams = 1822 sinit->sinit_num_ostreams; 1823 } 1824 if (sinit->sinit_max_instreams) { 1825 asoc->c.sinit_max_instreams = 1826 sinit->sinit_max_instreams; 1827 } 1828 if (sinit->sinit_max_attempts) { 1829 asoc->max_init_attempts 1830 = sinit->sinit_max_attempts; 1831 } 1832 if (sinit->sinit_max_init_timeo) { 1833 asoc->max_init_timeo = 1834 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1835 } 1836 } 1837 1838 /* Prime the peer's transport structures. */ 1839 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1840 if (!transport) { 1841 err = -ENOMEM; 1842 goto out_free; 1843 } 1844 } 1845 1846 /* ASSERT: we have a valid association at this point. */ 1847 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1848 1849 if (!sinfo) { 1850 /* If the user didn't specify SNDRCVINFO, make up one with 1851 * some defaults. 1852 */ 1853 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1854 default_sinfo.sinfo_stream = asoc->default_stream; 1855 default_sinfo.sinfo_flags = asoc->default_flags; 1856 default_sinfo.sinfo_ppid = asoc->default_ppid; 1857 default_sinfo.sinfo_context = asoc->default_context; 1858 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1859 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1860 sinfo = &default_sinfo; 1861 } 1862 1863 /* API 7.1.7, the sndbuf size per association bounds the 1864 * maximum size of data that can be sent in a single send call. 1865 */ 1866 if (msg_len > sk->sk_sndbuf) { 1867 err = -EMSGSIZE; 1868 goto out_free; 1869 } 1870 1871 if (asoc->pmtu_pending) 1872 sctp_assoc_pending_pmtu(sk, asoc); 1873 1874 /* If fragmentation is disabled and the message length exceeds the 1875 * association fragmentation point, return EMSGSIZE. The I-D 1876 * does not specify what this error is, but this looks like 1877 * a great fit. 1878 */ 1879 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1880 err = -EMSGSIZE; 1881 goto out_free; 1882 } 1883 1884 /* Check for invalid stream. */ 1885 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1886 err = -EINVAL; 1887 goto out_free; 1888 } 1889 1890 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1891 if (!sctp_wspace(asoc)) { 1892 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1893 if (err) 1894 goto out_free; 1895 } 1896 1897 /* If an address is passed with the sendto/sendmsg call, it is used 1898 * to override the primary destination address in the TCP model, or 1899 * when SCTP_ADDR_OVER flag is set in the UDP model. 1900 */ 1901 if ((sctp_style(sk, TCP) && msg_name) || 1902 (sinfo_flags & SCTP_ADDR_OVER)) { 1903 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1904 if (!chunk_tp) { 1905 err = -EINVAL; 1906 goto out_free; 1907 } 1908 } else 1909 chunk_tp = NULL; 1910 1911 /* Auto-connect, if we aren't connected already. */ 1912 if (sctp_state(asoc, CLOSED)) { 1913 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1914 if (err < 0) 1915 goto out_free; 1916 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1917 } 1918 1919 /* Break the message into multiple chunks of maximum size. */ 1920 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1921 if (IS_ERR(datamsg)) { 1922 err = PTR_ERR(datamsg); 1923 goto out_free; 1924 } 1925 1926 /* Now send the (possibly) fragmented message. */ 1927 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1928 sctp_chunk_hold(chunk); 1929 1930 /* Do accounting for the write space. */ 1931 sctp_set_owner_w(chunk); 1932 1933 chunk->transport = chunk_tp; 1934 } 1935 1936 /* Send it to the lower layers. Note: all chunks 1937 * must either fail or succeed. The lower layer 1938 * works that way today. Keep it that way or this 1939 * breaks. 1940 */ 1941 err = sctp_primitive_SEND(net, asoc, datamsg); 1942 /* Did the lower layer accept the chunk? */ 1943 if (err) 1944 sctp_datamsg_free(datamsg); 1945 else 1946 sctp_datamsg_put(datamsg); 1947 1948 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1949 1950 if (err) 1951 goto out_free; 1952 else 1953 err = msg_len; 1954 1955 /* If we are already past ASSOCIATE, the lower 1956 * layers are responsible for association cleanup. 1957 */ 1958 goto out_unlock; 1959 1960 out_free: 1961 if (new_asoc) { 1962 sctp_unhash_established(asoc); 1963 sctp_association_free(asoc); 1964 } 1965 out_unlock: 1966 sctp_release_sock(sk); 1967 1968 out_nounlock: 1969 return sctp_error(sk, msg_flags, err); 1970 1971 #if 0 1972 do_sock_err: 1973 if (msg_len) 1974 err = msg_len; 1975 else 1976 err = sock_error(sk); 1977 goto out; 1978 1979 do_interrupted: 1980 if (msg_len) 1981 err = msg_len; 1982 goto out; 1983 #endif /* 0 */ 1984 } 1985 1986 /* This is an extended version of skb_pull() that removes the data from the 1987 * start of a skb even when data is spread across the list of skb's in the 1988 * frag_list. len specifies the total amount of data that needs to be removed. 1989 * when 'len' bytes could be removed from the skb, it returns 0. 1990 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1991 * could not be removed. 1992 */ 1993 static int sctp_skb_pull(struct sk_buff *skb, int len) 1994 { 1995 struct sk_buff *list; 1996 int skb_len = skb_headlen(skb); 1997 int rlen; 1998 1999 if (len <= skb_len) { 2000 __skb_pull(skb, len); 2001 return 0; 2002 } 2003 len -= skb_len; 2004 __skb_pull(skb, skb_len); 2005 2006 skb_walk_frags(skb, list) { 2007 rlen = sctp_skb_pull(list, len); 2008 skb->len -= (len-rlen); 2009 skb->data_len -= (len-rlen); 2010 2011 if (!rlen) 2012 return 0; 2013 2014 len = rlen; 2015 } 2016 2017 return len; 2018 } 2019 2020 /* API 3.1.3 recvmsg() - UDP Style Syntax 2021 * 2022 * ssize_t recvmsg(int socket, struct msghdr *message, 2023 * int flags); 2024 * 2025 * socket - the socket descriptor of the endpoint. 2026 * message - pointer to the msghdr structure which contains a single 2027 * user message and possibly some ancillary data. 2028 * 2029 * See Section 5 for complete description of the data 2030 * structures. 2031 * 2032 * flags - flags sent or received with the user message, see Section 2033 * 5 for complete description of the flags. 2034 */ 2035 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2036 2037 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2038 struct msghdr *msg, size_t len, int noblock, 2039 int flags, int *addr_len) 2040 { 2041 struct sctp_ulpevent *event = NULL; 2042 struct sctp_sock *sp = sctp_sk(sk); 2043 struct sk_buff *skb; 2044 int copied; 2045 int err = 0; 2046 int skb_len; 2047 2048 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2049 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2050 "len", len, "knoblauch", noblock, 2051 "flags", flags, "addr_len", addr_len); 2052 2053 sctp_lock_sock(sk); 2054 2055 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2056 err = -ENOTCONN; 2057 goto out; 2058 } 2059 2060 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2061 if (!skb) 2062 goto out; 2063 2064 /* Get the total length of the skb including any skb's in the 2065 * frag_list. 2066 */ 2067 skb_len = skb->len; 2068 2069 copied = skb_len; 2070 if (copied > len) 2071 copied = len; 2072 2073 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2074 2075 event = sctp_skb2event(skb); 2076 2077 if (err) 2078 goto out_free; 2079 2080 sock_recv_ts_and_drops(msg, sk, skb); 2081 if (sctp_ulpevent_is_notification(event)) { 2082 msg->msg_flags |= MSG_NOTIFICATION; 2083 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2084 } else { 2085 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2086 } 2087 2088 /* Check if we allow SCTP_SNDRCVINFO. */ 2089 if (sp->subscribe.sctp_data_io_event) 2090 sctp_ulpevent_read_sndrcvinfo(event, msg); 2091 #if 0 2092 /* FIXME: we should be calling IP/IPv6 layers. */ 2093 if (sk->sk_protinfo.af_inet.cmsg_flags) 2094 ip_cmsg_recv(msg, skb); 2095 #endif 2096 2097 err = copied; 2098 2099 /* If skb's length exceeds the user's buffer, update the skb and 2100 * push it back to the receive_queue so that the next call to 2101 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2102 */ 2103 if (skb_len > copied) { 2104 msg->msg_flags &= ~MSG_EOR; 2105 if (flags & MSG_PEEK) 2106 goto out_free; 2107 sctp_skb_pull(skb, copied); 2108 skb_queue_head(&sk->sk_receive_queue, skb); 2109 2110 /* When only partial message is copied to the user, increase 2111 * rwnd by that amount. If all the data in the skb is read, 2112 * rwnd is updated when the event is freed. 2113 */ 2114 if (!sctp_ulpevent_is_notification(event)) 2115 sctp_assoc_rwnd_increase(event->asoc, copied); 2116 goto out; 2117 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2118 (event->msg_flags & MSG_EOR)) 2119 msg->msg_flags |= MSG_EOR; 2120 else 2121 msg->msg_flags &= ~MSG_EOR; 2122 2123 out_free: 2124 if (flags & MSG_PEEK) { 2125 /* Release the skb reference acquired after peeking the skb in 2126 * sctp_skb_recv_datagram(). 2127 */ 2128 kfree_skb(skb); 2129 } else { 2130 /* Free the event which includes releasing the reference to 2131 * the owner of the skb, freeing the skb and updating the 2132 * rwnd. 2133 */ 2134 sctp_ulpevent_free(event); 2135 } 2136 out: 2137 sctp_release_sock(sk); 2138 return err; 2139 } 2140 2141 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2142 * 2143 * This option is a on/off flag. If enabled no SCTP message 2144 * fragmentation will be performed. Instead if a message being sent 2145 * exceeds the current PMTU size, the message will NOT be sent and 2146 * instead a error will be indicated to the user. 2147 */ 2148 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2149 char __user *optval, 2150 unsigned int optlen) 2151 { 2152 int val; 2153 2154 if (optlen < sizeof(int)) 2155 return -EINVAL; 2156 2157 if (get_user(val, (int __user *)optval)) 2158 return -EFAULT; 2159 2160 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2161 2162 return 0; 2163 } 2164 2165 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2166 unsigned int optlen) 2167 { 2168 struct sctp_association *asoc; 2169 struct sctp_ulpevent *event; 2170 2171 if (optlen > sizeof(struct sctp_event_subscribe)) 2172 return -EINVAL; 2173 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2174 return -EFAULT; 2175 2176 /* 2177 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2178 * if there is no data to be sent or retransmit, the stack will 2179 * immediately send up this notification. 2180 */ 2181 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2182 &sctp_sk(sk)->subscribe)) { 2183 asoc = sctp_id2assoc(sk, 0); 2184 2185 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2186 event = sctp_ulpevent_make_sender_dry_event(asoc, 2187 GFP_ATOMIC); 2188 if (!event) 2189 return -ENOMEM; 2190 2191 sctp_ulpq_tail_event(&asoc->ulpq, event); 2192 } 2193 } 2194 2195 return 0; 2196 } 2197 2198 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2199 * 2200 * This socket option is applicable to the UDP-style socket only. When 2201 * set it will cause associations that are idle for more than the 2202 * specified number of seconds to automatically close. An association 2203 * being idle is defined an association that has NOT sent or received 2204 * user data. The special value of '0' indicates that no automatic 2205 * close of any associations should be performed. The option expects an 2206 * integer defining the number of seconds of idle time before an 2207 * association is closed. 2208 */ 2209 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2210 unsigned int optlen) 2211 { 2212 struct sctp_sock *sp = sctp_sk(sk); 2213 2214 /* Applicable to UDP-style socket only */ 2215 if (sctp_style(sk, TCP)) 2216 return -EOPNOTSUPP; 2217 if (optlen != sizeof(int)) 2218 return -EINVAL; 2219 if (copy_from_user(&sp->autoclose, optval, optlen)) 2220 return -EFAULT; 2221 2222 return 0; 2223 } 2224 2225 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2226 * 2227 * Applications can enable or disable heartbeats for any peer address of 2228 * an association, modify an address's heartbeat interval, force a 2229 * heartbeat to be sent immediately, and adjust the address's maximum 2230 * number of retransmissions sent before an address is considered 2231 * unreachable. The following structure is used to access and modify an 2232 * address's parameters: 2233 * 2234 * struct sctp_paddrparams { 2235 * sctp_assoc_t spp_assoc_id; 2236 * struct sockaddr_storage spp_address; 2237 * uint32_t spp_hbinterval; 2238 * uint16_t spp_pathmaxrxt; 2239 * uint32_t spp_pathmtu; 2240 * uint32_t spp_sackdelay; 2241 * uint32_t spp_flags; 2242 * }; 2243 * 2244 * spp_assoc_id - (one-to-many style socket) This is filled in the 2245 * application, and identifies the association for 2246 * this query. 2247 * spp_address - This specifies which address is of interest. 2248 * spp_hbinterval - This contains the value of the heartbeat interval, 2249 * in milliseconds. If a value of zero 2250 * is present in this field then no changes are to 2251 * be made to this parameter. 2252 * spp_pathmaxrxt - This contains the maximum number of 2253 * retransmissions before this address shall be 2254 * considered unreachable. If a value of zero 2255 * is present in this field then no changes are to 2256 * be made to this parameter. 2257 * spp_pathmtu - When Path MTU discovery is disabled the value 2258 * specified here will be the "fixed" path mtu. 2259 * Note that if the spp_address field is empty 2260 * then all associations on this address will 2261 * have this fixed path mtu set upon them. 2262 * 2263 * spp_sackdelay - When delayed sack is enabled, this value specifies 2264 * the number of milliseconds that sacks will be delayed 2265 * for. This value will apply to all addresses of an 2266 * association if the spp_address field is empty. Note 2267 * also, that if delayed sack is enabled and this 2268 * value is set to 0, no change is made to the last 2269 * recorded delayed sack timer value. 2270 * 2271 * spp_flags - These flags are used to control various features 2272 * on an association. The flag field may contain 2273 * zero or more of the following options. 2274 * 2275 * SPP_HB_ENABLE - Enable heartbeats on the 2276 * specified address. Note that if the address 2277 * field is empty all addresses for the association 2278 * have heartbeats enabled upon them. 2279 * 2280 * SPP_HB_DISABLE - Disable heartbeats on the 2281 * speicifed address. Note that if the address 2282 * field is empty all addresses for the association 2283 * will have their heartbeats disabled. Note also 2284 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2285 * mutually exclusive, only one of these two should 2286 * be specified. Enabling both fields will have 2287 * undetermined results. 2288 * 2289 * SPP_HB_DEMAND - Request a user initiated heartbeat 2290 * to be made immediately. 2291 * 2292 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2293 * heartbeat delayis to be set to the value of 0 2294 * milliseconds. 2295 * 2296 * SPP_PMTUD_ENABLE - This field will enable PMTU 2297 * discovery upon the specified address. Note that 2298 * if the address feild is empty then all addresses 2299 * on the association are effected. 2300 * 2301 * SPP_PMTUD_DISABLE - This field will disable PMTU 2302 * discovery upon the specified address. Note that 2303 * if the address feild is empty then all addresses 2304 * on the association are effected. Not also that 2305 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2306 * exclusive. Enabling both will have undetermined 2307 * results. 2308 * 2309 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2310 * on delayed sack. The time specified in spp_sackdelay 2311 * is used to specify the sack delay for this address. Note 2312 * that if spp_address is empty then all addresses will 2313 * enable delayed sack and take on the sack delay 2314 * value specified in spp_sackdelay. 2315 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2316 * off delayed sack. If the spp_address field is blank then 2317 * delayed sack is disabled for the entire association. Note 2318 * also that this field is mutually exclusive to 2319 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2320 * results. 2321 */ 2322 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2323 struct sctp_transport *trans, 2324 struct sctp_association *asoc, 2325 struct sctp_sock *sp, 2326 int hb_change, 2327 int pmtud_change, 2328 int sackdelay_change) 2329 { 2330 int error; 2331 2332 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2333 struct net *net = sock_net(trans->asoc->base.sk); 2334 2335 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2336 if (error) 2337 return error; 2338 } 2339 2340 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2341 * this field is ignored. Note also that a value of zero indicates 2342 * the current setting should be left unchanged. 2343 */ 2344 if (params->spp_flags & SPP_HB_ENABLE) { 2345 2346 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2347 * set. This lets us use 0 value when this flag 2348 * is set. 2349 */ 2350 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2351 params->spp_hbinterval = 0; 2352 2353 if (params->spp_hbinterval || 2354 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2355 if (trans) { 2356 trans->hbinterval = 2357 msecs_to_jiffies(params->spp_hbinterval); 2358 } else if (asoc) { 2359 asoc->hbinterval = 2360 msecs_to_jiffies(params->spp_hbinterval); 2361 } else { 2362 sp->hbinterval = params->spp_hbinterval; 2363 } 2364 } 2365 } 2366 2367 if (hb_change) { 2368 if (trans) { 2369 trans->param_flags = 2370 (trans->param_flags & ~SPP_HB) | hb_change; 2371 } else if (asoc) { 2372 asoc->param_flags = 2373 (asoc->param_flags & ~SPP_HB) | hb_change; 2374 } else { 2375 sp->param_flags = 2376 (sp->param_flags & ~SPP_HB) | hb_change; 2377 } 2378 } 2379 2380 /* When Path MTU discovery is disabled the value specified here will 2381 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2382 * include the flag SPP_PMTUD_DISABLE for this field to have any 2383 * effect). 2384 */ 2385 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2386 if (trans) { 2387 trans->pathmtu = params->spp_pathmtu; 2388 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2389 } else if (asoc) { 2390 asoc->pathmtu = params->spp_pathmtu; 2391 sctp_frag_point(asoc, params->spp_pathmtu); 2392 } else { 2393 sp->pathmtu = params->spp_pathmtu; 2394 } 2395 } 2396 2397 if (pmtud_change) { 2398 if (trans) { 2399 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2400 (params->spp_flags & SPP_PMTUD_ENABLE); 2401 trans->param_flags = 2402 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2403 if (update) { 2404 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2405 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2406 } 2407 } else if (asoc) { 2408 asoc->param_flags = 2409 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2410 } else { 2411 sp->param_flags = 2412 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2413 } 2414 } 2415 2416 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2417 * value of this field is ignored. Note also that a value of zero 2418 * indicates the current setting should be left unchanged. 2419 */ 2420 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2421 if (trans) { 2422 trans->sackdelay = 2423 msecs_to_jiffies(params->spp_sackdelay); 2424 } else if (asoc) { 2425 asoc->sackdelay = 2426 msecs_to_jiffies(params->spp_sackdelay); 2427 } else { 2428 sp->sackdelay = params->spp_sackdelay; 2429 } 2430 } 2431 2432 if (sackdelay_change) { 2433 if (trans) { 2434 trans->param_flags = 2435 (trans->param_flags & ~SPP_SACKDELAY) | 2436 sackdelay_change; 2437 } else if (asoc) { 2438 asoc->param_flags = 2439 (asoc->param_flags & ~SPP_SACKDELAY) | 2440 sackdelay_change; 2441 } else { 2442 sp->param_flags = 2443 (sp->param_flags & ~SPP_SACKDELAY) | 2444 sackdelay_change; 2445 } 2446 } 2447 2448 /* Note that a value of zero indicates the current setting should be 2449 left unchanged. 2450 */ 2451 if (params->spp_pathmaxrxt) { 2452 if (trans) { 2453 trans->pathmaxrxt = params->spp_pathmaxrxt; 2454 } else if (asoc) { 2455 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2456 } else { 2457 sp->pathmaxrxt = params->spp_pathmaxrxt; 2458 } 2459 } 2460 2461 return 0; 2462 } 2463 2464 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2465 char __user *optval, 2466 unsigned int optlen) 2467 { 2468 struct sctp_paddrparams params; 2469 struct sctp_transport *trans = NULL; 2470 struct sctp_association *asoc = NULL; 2471 struct sctp_sock *sp = sctp_sk(sk); 2472 int error; 2473 int hb_change, pmtud_change, sackdelay_change; 2474 2475 if (optlen != sizeof(struct sctp_paddrparams)) 2476 return - EINVAL; 2477 2478 if (copy_from_user(¶ms, optval, optlen)) 2479 return -EFAULT; 2480 2481 /* Validate flags and value parameters. */ 2482 hb_change = params.spp_flags & SPP_HB; 2483 pmtud_change = params.spp_flags & SPP_PMTUD; 2484 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2485 2486 if (hb_change == SPP_HB || 2487 pmtud_change == SPP_PMTUD || 2488 sackdelay_change == SPP_SACKDELAY || 2489 params.spp_sackdelay > 500 || 2490 (params.spp_pathmtu && 2491 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2492 return -EINVAL; 2493 2494 /* If an address other than INADDR_ANY is specified, and 2495 * no transport is found, then the request is invalid. 2496 */ 2497 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2498 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2499 params.spp_assoc_id); 2500 if (!trans) 2501 return -EINVAL; 2502 } 2503 2504 /* Get association, if assoc_id != 0 and the socket is a one 2505 * to many style socket, and an association was not found, then 2506 * the id was invalid. 2507 */ 2508 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2509 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2510 return -EINVAL; 2511 2512 /* Heartbeat demand can only be sent on a transport or 2513 * association, but not a socket. 2514 */ 2515 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2516 return -EINVAL; 2517 2518 /* Process parameters. */ 2519 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2520 hb_change, pmtud_change, 2521 sackdelay_change); 2522 2523 if (error) 2524 return error; 2525 2526 /* If changes are for association, also apply parameters to each 2527 * transport. 2528 */ 2529 if (!trans && asoc) { 2530 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2531 transports) { 2532 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2533 hb_change, pmtud_change, 2534 sackdelay_change); 2535 } 2536 } 2537 2538 return 0; 2539 } 2540 2541 /* 2542 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2543 * 2544 * This option will effect the way delayed acks are performed. This 2545 * option allows you to get or set the delayed ack time, in 2546 * milliseconds. It also allows changing the delayed ack frequency. 2547 * Changing the frequency to 1 disables the delayed sack algorithm. If 2548 * the assoc_id is 0, then this sets or gets the endpoints default 2549 * values. If the assoc_id field is non-zero, then the set or get 2550 * effects the specified association for the one to many model (the 2551 * assoc_id field is ignored by the one to one model). Note that if 2552 * sack_delay or sack_freq are 0 when setting this option, then the 2553 * current values will remain unchanged. 2554 * 2555 * struct sctp_sack_info { 2556 * sctp_assoc_t sack_assoc_id; 2557 * uint32_t sack_delay; 2558 * uint32_t sack_freq; 2559 * }; 2560 * 2561 * sack_assoc_id - This parameter, indicates which association the user 2562 * is performing an action upon. Note that if this field's value is 2563 * zero then the endpoints default value is changed (effecting future 2564 * associations only). 2565 * 2566 * sack_delay - This parameter contains the number of milliseconds that 2567 * the user is requesting the delayed ACK timer be set to. Note that 2568 * this value is defined in the standard to be between 200 and 500 2569 * milliseconds. 2570 * 2571 * sack_freq - This parameter contains the number of packets that must 2572 * be received before a sack is sent without waiting for the delay 2573 * timer to expire. The default value for this is 2, setting this 2574 * value to 1 will disable the delayed sack algorithm. 2575 */ 2576 2577 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2578 char __user *optval, unsigned int optlen) 2579 { 2580 struct sctp_sack_info params; 2581 struct sctp_transport *trans = NULL; 2582 struct sctp_association *asoc = NULL; 2583 struct sctp_sock *sp = sctp_sk(sk); 2584 2585 if (optlen == sizeof(struct sctp_sack_info)) { 2586 if (copy_from_user(¶ms, optval, optlen)) 2587 return -EFAULT; 2588 2589 if (params.sack_delay == 0 && params.sack_freq == 0) 2590 return 0; 2591 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2592 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2593 pr_warn("Use struct sctp_sack_info instead\n"); 2594 if (copy_from_user(¶ms, optval, optlen)) 2595 return -EFAULT; 2596 2597 if (params.sack_delay == 0) 2598 params.sack_freq = 1; 2599 else 2600 params.sack_freq = 0; 2601 } else 2602 return - EINVAL; 2603 2604 /* Validate value parameter. */ 2605 if (params.sack_delay > 500) 2606 return -EINVAL; 2607 2608 /* Get association, if sack_assoc_id != 0 and the socket is a one 2609 * to many style socket, and an association was not found, then 2610 * the id was invalid. 2611 */ 2612 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2613 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2614 return -EINVAL; 2615 2616 if (params.sack_delay) { 2617 if (asoc) { 2618 asoc->sackdelay = 2619 msecs_to_jiffies(params.sack_delay); 2620 asoc->param_flags = 2621 (asoc->param_flags & ~SPP_SACKDELAY) | 2622 SPP_SACKDELAY_ENABLE; 2623 } else { 2624 sp->sackdelay = params.sack_delay; 2625 sp->param_flags = 2626 (sp->param_flags & ~SPP_SACKDELAY) | 2627 SPP_SACKDELAY_ENABLE; 2628 } 2629 } 2630 2631 if (params.sack_freq == 1) { 2632 if (asoc) { 2633 asoc->param_flags = 2634 (asoc->param_flags & ~SPP_SACKDELAY) | 2635 SPP_SACKDELAY_DISABLE; 2636 } else { 2637 sp->param_flags = 2638 (sp->param_flags & ~SPP_SACKDELAY) | 2639 SPP_SACKDELAY_DISABLE; 2640 } 2641 } else if (params.sack_freq > 1) { 2642 if (asoc) { 2643 asoc->sackfreq = params.sack_freq; 2644 asoc->param_flags = 2645 (asoc->param_flags & ~SPP_SACKDELAY) | 2646 SPP_SACKDELAY_ENABLE; 2647 } else { 2648 sp->sackfreq = params.sack_freq; 2649 sp->param_flags = 2650 (sp->param_flags & ~SPP_SACKDELAY) | 2651 SPP_SACKDELAY_ENABLE; 2652 } 2653 } 2654 2655 /* If change is for association, also apply to each transport. */ 2656 if (asoc) { 2657 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2658 transports) { 2659 if (params.sack_delay) { 2660 trans->sackdelay = 2661 msecs_to_jiffies(params.sack_delay); 2662 trans->param_flags = 2663 (trans->param_flags & ~SPP_SACKDELAY) | 2664 SPP_SACKDELAY_ENABLE; 2665 } 2666 if (params.sack_freq == 1) { 2667 trans->param_flags = 2668 (trans->param_flags & ~SPP_SACKDELAY) | 2669 SPP_SACKDELAY_DISABLE; 2670 } else if (params.sack_freq > 1) { 2671 trans->sackfreq = params.sack_freq; 2672 trans->param_flags = 2673 (trans->param_flags & ~SPP_SACKDELAY) | 2674 SPP_SACKDELAY_ENABLE; 2675 } 2676 } 2677 } 2678 2679 return 0; 2680 } 2681 2682 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2683 * 2684 * Applications can specify protocol parameters for the default association 2685 * initialization. The option name argument to setsockopt() and getsockopt() 2686 * is SCTP_INITMSG. 2687 * 2688 * Setting initialization parameters is effective only on an unconnected 2689 * socket (for UDP-style sockets only future associations are effected 2690 * by the change). With TCP-style sockets, this option is inherited by 2691 * sockets derived from a listener socket. 2692 */ 2693 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2694 { 2695 struct sctp_initmsg sinit; 2696 struct sctp_sock *sp = sctp_sk(sk); 2697 2698 if (optlen != sizeof(struct sctp_initmsg)) 2699 return -EINVAL; 2700 if (copy_from_user(&sinit, optval, optlen)) 2701 return -EFAULT; 2702 2703 if (sinit.sinit_num_ostreams) 2704 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2705 if (sinit.sinit_max_instreams) 2706 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2707 if (sinit.sinit_max_attempts) 2708 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2709 if (sinit.sinit_max_init_timeo) 2710 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2711 2712 return 0; 2713 } 2714 2715 /* 2716 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2717 * 2718 * Applications that wish to use the sendto() system call may wish to 2719 * specify a default set of parameters that would normally be supplied 2720 * through the inclusion of ancillary data. This socket option allows 2721 * such an application to set the default sctp_sndrcvinfo structure. 2722 * The application that wishes to use this socket option simply passes 2723 * in to this call the sctp_sndrcvinfo structure defined in Section 2724 * 5.2.2) The input parameters accepted by this call include 2725 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2726 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2727 * to this call if the caller is using the UDP model. 2728 */ 2729 static int sctp_setsockopt_default_send_param(struct sock *sk, 2730 char __user *optval, 2731 unsigned int optlen) 2732 { 2733 struct sctp_sndrcvinfo info; 2734 struct sctp_association *asoc; 2735 struct sctp_sock *sp = sctp_sk(sk); 2736 2737 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2738 return -EINVAL; 2739 if (copy_from_user(&info, optval, optlen)) 2740 return -EFAULT; 2741 2742 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2743 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2744 return -EINVAL; 2745 2746 if (asoc) { 2747 asoc->default_stream = info.sinfo_stream; 2748 asoc->default_flags = info.sinfo_flags; 2749 asoc->default_ppid = info.sinfo_ppid; 2750 asoc->default_context = info.sinfo_context; 2751 asoc->default_timetolive = info.sinfo_timetolive; 2752 } else { 2753 sp->default_stream = info.sinfo_stream; 2754 sp->default_flags = info.sinfo_flags; 2755 sp->default_ppid = info.sinfo_ppid; 2756 sp->default_context = info.sinfo_context; 2757 sp->default_timetolive = info.sinfo_timetolive; 2758 } 2759 2760 return 0; 2761 } 2762 2763 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2764 * 2765 * Requests that the local SCTP stack use the enclosed peer address as 2766 * the association primary. The enclosed address must be one of the 2767 * association peer's addresses. 2768 */ 2769 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2770 unsigned int optlen) 2771 { 2772 struct sctp_prim prim; 2773 struct sctp_transport *trans; 2774 2775 if (optlen != sizeof(struct sctp_prim)) 2776 return -EINVAL; 2777 2778 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2779 return -EFAULT; 2780 2781 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2782 if (!trans) 2783 return -EINVAL; 2784 2785 sctp_assoc_set_primary(trans->asoc, trans); 2786 2787 return 0; 2788 } 2789 2790 /* 2791 * 7.1.5 SCTP_NODELAY 2792 * 2793 * Turn on/off any Nagle-like algorithm. This means that packets are 2794 * generally sent as soon as possible and no unnecessary delays are 2795 * introduced, at the cost of more packets in the network. Expects an 2796 * integer boolean flag. 2797 */ 2798 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2799 unsigned int optlen) 2800 { 2801 int val; 2802 2803 if (optlen < sizeof(int)) 2804 return -EINVAL; 2805 if (get_user(val, (int __user *)optval)) 2806 return -EFAULT; 2807 2808 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2809 return 0; 2810 } 2811 2812 /* 2813 * 2814 * 7.1.1 SCTP_RTOINFO 2815 * 2816 * The protocol parameters used to initialize and bound retransmission 2817 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2818 * and modify these parameters. 2819 * All parameters are time values, in milliseconds. A value of 0, when 2820 * modifying the parameters, indicates that the current value should not 2821 * be changed. 2822 * 2823 */ 2824 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2825 { 2826 struct sctp_rtoinfo rtoinfo; 2827 struct sctp_association *asoc; 2828 2829 if (optlen != sizeof (struct sctp_rtoinfo)) 2830 return -EINVAL; 2831 2832 if (copy_from_user(&rtoinfo, optval, optlen)) 2833 return -EFAULT; 2834 2835 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2836 2837 /* Set the values to the specific association */ 2838 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2839 return -EINVAL; 2840 2841 if (asoc) { 2842 if (rtoinfo.srto_initial != 0) 2843 asoc->rto_initial = 2844 msecs_to_jiffies(rtoinfo.srto_initial); 2845 if (rtoinfo.srto_max != 0) 2846 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2847 if (rtoinfo.srto_min != 0) 2848 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2849 } else { 2850 /* If there is no association or the association-id = 0 2851 * set the values to the endpoint. 2852 */ 2853 struct sctp_sock *sp = sctp_sk(sk); 2854 2855 if (rtoinfo.srto_initial != 0) 2856 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2857 if (rtoinfo.srto_max != 0) 2858 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2859 if (rtoinfo.srto_min != 0) 2860 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2861 } 2862 2863 return 0; 2864 } 2865 2866 /* 2867 * 2868 * 7.1.2 SCTP_ASSOCINFO 2869 * 2870 * This option is used to tune the maximum retransmission attempts 2871 * of the association. 2872 * Returns an error if the new association retransmission value is 2873 * greater than the sum of the retransmission value of the peer. 2874 * See [SCTP] for more information. 2875 * 2876 */ 2877 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2878 { 2879 2880 struct sctp_assocparams assocparams; 2881 struct sctp_association *asoc; 2882 2883 if (optlen != sizeof(struct sctp_assocparams)) 2884 return -EINVAL; 2885 if (copy_from_user(&assocparams, optval, optlen)) 2886 return -EFAULT; 2887 2888 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2889 2890 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2891 return -EINVAL; 2892 2893 /* Set the values to the specific association */ 2894 if (asoc) { 2895 if (assocparams.sasoc_asocmaxrxt != 0) { 2896 __u32 path_sum = 0; 2897 int paths = 0; 2898 struct sctp_transport *peer_addr; 2899 2900 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2901 transports) { 2902 path_sum += peer_addr->pathmaxrxt; 2903 paths++; 2904 } 2905 2906 /* Only validate asocmaxrxt if we have more than 2907 * one path/transport. We do this because path 2908 * retransmissions are only counted when we have more 2909 * then one path. 2910 */ 2911 if (paths > 1 && 2912 assocparams.sasoc_asocmaxrxt > path_sum) 2913 return -EINVAL; 2914 2915 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2916 } 2917 2918 if (assocparams.sasoc_cookie_life != 0) { 2919 asoc->cookie_life.tv_sec = 2920 assocparams.sasoc_cookie_life / 1000; 2921 asoc->cookie_life.tv_usec = 2922 (assocparams.sasoc_cookie_life % 1000) 2923 * 1000; 2924 } 2925 } else { 2926 /* Set the values to the endpoint */ 2927 struct sctp_sock *sp = sctp_sk(sk); 2928 2929 if (assocparams.sasoc_asocmaxrxt != 0) 2930 sp->assocparams.sasoc_asocmaxrxt = 2931 assocparams.sasoc_asocmaxrxt; 2932 if (assocparams.sasoc_cookie_life != 0) 2933 sp->assocparams.sasoc_cookie_life = 2934 assocparams.sasoc_cookie_life; 2935 } 2936 return 0; 2937 } 2938 2939 /* 2940 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2941 * 2942 * This socket option is a boolean flag which turns on or off mapped V4 2943 * addresses. If this option is turned on and the socket is type 2944 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2945 * If this option is turned off, then no mapping will be done of V4 2946 * addresses and a user will receive both PF_INET6 and PF_INET type 2947 * addresses on the socket. 2948 */ 2949 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2950 { 2951 int val; 2952 struct sctp_sock *sp = sctp_sk(sk); 2953 2954 if (optlen < sizeof(int)) 2955 return -EINVAL; 2956 if (get_user(val, (int __user *)optval)) 2957 return -EFAULT; 2958 if (val) 2959 sp->v4mapped = 1; 2960 else 2961 sp->v4mapped = 0; 2962 2963 return 0; 2964 } 2965 2966 /* 2967 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2968 * This option will get or set the maximum size to put in any outgoing 2969 * SCTP DATA chunk. If a message is larger than this size it will be 2970 * fragmented by SCTP into the specified size. Note that the underlying 2971 * SCTP implementation may fragment into smaller sized chunks when the 2972 * PMTU of the underlying association is smaller than the value set by 2973 * the user. The default value for this option is '0' which indicates 2974 * the user is NOT limiting fragmentation and only the PMTU will effect 2975 * SCTP's choice of DATA chunk size. Note also that values set larger 2976 * than the maximum size of an IP datagram will effectively let SCTP 2977 * control fragmentation (i.e. the same as setting this option to 0). 2978 * 2979 * The following structure is used to access and modify this parameter: 2980 * 2981 * struct sctp_assoc_value { 2982 * sctp_assoc_t assoc_id; 2983 * uint32_t assoc_value; 2984 * }; 2985 * 2986 * assoc_id: This parameter is ignored for one-to-one style sockets. 2987 * For one-to-many style sockets this parameter indicates which 2988 * association the user is performing an action upon. Note that if 2989 * this field's value is zero then the endpoints default value is 2990 * changed (effecting future associations only). 2991 * assoc_value: This parameter specifies the maximum size in bytes. 2992 */ 2993 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2994 { 2995 struct sctp_assoc_value params; 2996 struct sctp_association *asoc; 2997 struct sctp_sock *sp = sctp_sk(sk); 2998 int val; 2999 3000 if (optlen == sizeof(int)) { 3001 pr_warn("Use of int in maxseg socket option deprecated\n"); 3002 pr_warn("Use struct sctp_assoc_value instead\n"); 3003 if (copy_from_user(&val, optval, optlen)) 3004 return -EFAULT; 3005 params.assoc_id = 0; 3006 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3007 if (copy_from_user(¶ms, optval, optlen)) 3008 return -EFAULT; 3009 val = params.assoc_value; 3010 } else 3011 return -EINVAL; 3012 3013 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3014 return -EINVAL; 3015 3016 asoc = sctp_id2assoc(sk, params.assoc_id); 3017 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3018 return -EINVAL; 3019 3020 if (asoc) { 3021 if (val == 0) { 3022 val = asoc->pathmtu; 3023 val -= sp->pf->af->net_header_len; 3024 val -= sizeof(struct sctphdr) + 3025 sizeof(struct sctp_data_chunk); 3026 } 3027 asoc->user_frag = val; 3028 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3029 } else { 3030 sp->user_frag = val; 3031 } 3032 3033 return 0; 3034 } 3035 3036 3037 /* 3038 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3039 * 3040 * Requests that the peer mark the enclosed address as the association 3041 * primary. The enclosed address must be one of the association's 3042 * locally bound addresses. The following structure is used to make a 3043 * set primary request: 3044 */ 3045 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3046 unsigned int optlen) 3047 { 3048 struct net *net = sock_net(sk); 3049 struct sctp_sock *sp; 3050 struct sctp_association *asoc = NULL; 3051 struct sctp_setpeerprim prim; 3052 struct sctp_chunk *chunk; 3053 struct sctp_af *af; 3054 int err; 3055 3056 sp = sctp_sk(sk); 3057 3058 if (!net->sctp.addip_enable) 3059 return -EPERM; 3060 3061 if (optlen != sizeof(struct sctp_setpeerprim)) 3062 return -EINVAL; 3063 3064 if (copy_from_user(&prim, optval, optlen)) 3065 return -EFAULT; 3066 3067 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3068 if (!asoc) 3069 return -EINVAL; 3070 3071 if (!asoc->peer.asconf_capable) 3072 return -EPERM; 3073 3074 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3075 return -EPERM; 3076 3077 if (!sctp_state(asoc, ESTABLISHED)) 3078 return -ENOTCONN; 3079 3080 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3081 if (!af) 3082 return -EINVAL; 3083 3084 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3085 return -EADDRNOTAVAIL; 3086 3087 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3088 return -EADDRNOTAVAIL; 3089 3090 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3091 chunk = sctp_make_asconf_set_prim(asoc, 3092 (union sctp_addr *)&prim.sspp_addr); 3093 if (!chunk) 3094 return -ENOMEM; 3095 3096 err = sctp_send_asconf(asoc, chunk); 3097 3098 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3099 3100 return err; 3101 } 3102 3103 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3104 unsigned int optlen) 3105 { 3106 struct sctp_setadaptation adaptation; 3107 3108 if (optlen != sizeof(struct sctp_setadaptation)) 3109 return -EINVAL; 3110 if (copy_from_user(&adaptation, optval, optlen)) 3111 return -EFAULT; 3112 3113 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3114 3115 return 0; 3116 } 3117 3118 /* 3119 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3120 * 3121 * The context field in the sctp_sndrcvinfo structure is normally only 3122 * used when a failed message is retrieved holding the value that was 3123 * sent down on the actual send call. This option allows the setting of 3124 * a default context on an association basis that will be received on 3125 * reading messages from the peer. This is especially helpful in the 3126 * one-2-many model for an application to keep some reference to an 3127 * internal state machine that is processing messages on the 3128 * association. Note that the setting of this value only effects 3129 * received messages from the peer and does not effect the value that is 3130 * saved with outbound messages. 3131 */ 3132 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3133 unsigned int optlen) 3134 { 3135 struct sctp_assoc_value params; 3136 struct sctp_sock *sp; 3137 struct sctp_association *asoc; 3138 3139 if (optlen != sizeof(struct sctp_assoc_value)) 3140 return -EINVAL; 3141 if (copy_from_user(¶ms, optval, optlen)) 3142 return -EFAULT; 3143 3144 sp = sctp_sk(sk); 3145 3146 if (params.assoc_id != 0) { 3147 asoc = sctp_id2assoc(sk, params.assoc_id); 3148 if (!asoc) 3149 return -EINVAL; 3150 asoc->default_rcv_context = params.assoc_value; 3151 } else { 3152 sp->default_rcv_context = params.assoc_value; 3153 } 3154 3155 return 0; 3156 } 3157 3158 /* 3159 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3160 * 3161 * This options will at a minimum specify if the implementation is doing 3162 * fragmented interleave. Fragmented interleave, for a one to many 3163 * socket, is when subsequent calls to receive a message may return 3164 * parts of messages from different associations. Some implementations 3165 * may allow you to turn this value on or off. If so, when turned off, 3166 * no fragment interleave will occur (which will cause a head of line 3167 * blocking amongst multiple associations sharing the same one to many 3168 * socket). When this option is turned on, then each receive call may 3169 * come from a different association (thus the user must receive data 3170 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3171 * association each receive belongs to. 3172 * 3173 * This option takes a boolean value. A non-zero value indicates that 3174 * fragmented interleave is on. A value of zero indicates that 3175 * fragmented interleave is off. 3176 * 3177 * Note that it is important that an implementation that allows this 3178 * option to be turned on, have it off by default. Otherwise an unaware 3179 * application using the one to many model may become confused and act 3180 * incorrectly. 3181 */ 3182 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3183 char __user *optval, 3184 unsigned int optlen) 3185 { 3186 int val; 3187 3188 if (optlen != sizeof(int)) 3189 return -EINVAL; 3190 if (get_user(val, (int __user *)optval)) 3191 return -EFAULT; 3192 3193 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3194 3195 return 0; 3196 } 3197 3198 /* 3199 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3200 * (SCTP_PARTIAL_DELIVERY_POINT) 3201 * 3202 * This option will set or get the SCTP partial delivery point. This 3203 * point is the size of a message where the partial delivery API will be 3204 * invoked to help free up rwnd space for the peer. Setting this to a 3205 * lower value will cause partial deliveries to happen more often. The 3206 * calls argument is an integer that sets or gets the partial delivery 3207 * point. Note also that the call will fail if the user attempts to set 3208 * this value larger than the socket receive buffer size. 3209 * 3210 * Note that any single message having a length smaller than or equal to 3211 * the SCTP partial delivery point will be delivered in one single read 3212 * call as long as the user provided buffer is large enough to hold the 3213 * message. 3214 */ 3215 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3216 char __user *optval, 3217 unsigned int optlen) 3218 { 3219 u32 val; 3220 3221 if (optlen != sizeof(u32)) 3222 return -EINVAL; 3223 if (get_user(val, (int __user *)optval)) 3224 return -EFAULT; 3225 3226 /* Note: We double the receive buffer from what the user sets 3227 * it to be, also initial rwnd is based on rcvbuf/2. 3228 */ 3229 if (val > (sk->sk_rcvbuf >> 1)) 3230 return -EINVAL; 3231 3232 sctp_sk(sk)->pd_point = val; 3233 3234 return 0; /* is this the right error code? */ 3235 } 3236 3237 /* 3238 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3239 * 3240 * This option will allow a user to change the maximum burst of packets 3241 * that can be emitted by this association. Note that the default value 3242 * is 4, and some implementations may restrict this setting so that it 3243 * can only be lowered. 3244 * 3245 * NOTE: This text doesn't seem right. Do this on a socket basis with 3246 * future associations inheriting the socket value. 3247 */ 3248 static int sctp_setsockopt_maxburst(struct sock *sk, 3249 char __user *optval, 3250 unsigned int optlen) 3251 { 3252 struct sctp_assoc_value params; 3253 struct sctp_sock *sp; 3254 struct sctp_association *asoc; 3255 int val; 3256 int assoc_id = 0; 3257 3258 if (optlen == sizeof(int)) { 3259 pr_warn("Use of int in max_burst socket option deprecated\n"); 3260 pr_warn("Use struct sctp_assoc_value instead\n"); 3261 if (copy_from_user(&val, optval, optlen)) 3262 return -EFAULT; 3263 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3264 if (copy_from_user(¶ms, optval, optlen)) 3265 return -EFAULT; 3266 val = params.assoc_value; 3267 assoc_id = params.assoc_id; 3268 } else 3269 return -EINVAL; 3270 3271 sp = sctp_sk(sk); 3272 3273 if (assoc_id != 0) { 3274 asoc = sctp_id2assoc(sk, assoc_id); 3275 if (!asoc) 3276 return -EINVAL; 3277 asoc->max_burst = val; 3278 } else 3279 sp->max_burst = val; 3280 3281 return 0; 3282 } 3283 3284 /* 3285 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3286 * 3287 * This set option adds a chunk type that the user is requesting to be 3288 * received only in an authenticated way. Changes to the list of chunks 3289 * will only effect future associations on the socket. 3290 */ 3291 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3292 char __user *optval, 3293 unsigned int optlen) 3294 { 3295 struct net *net = sock_net(sk); 3296 struct sctp_authchunk val; 3297 3298 if (!net->sctp.auth_enable) 3299 return -EACCES; 3300 3301 if (optlen != sizeof(struct sctp_authchunk)) 3302 return -EINVAL; 3303 if (copy_from_user(&val, optval, optlen)) 3304 return -EFAULT; 3305 3306 switch (val.sauth_chunk) { 3307 case SCTP_CID_INIT: 3308 case SCTP_CID_INIT_ACK: 3309 case SCTP_CID_SHUTDOWN_COMPLETE: 3310 case SCTP_CID_AUTH: 3311 return -EINVAL; 3312 } 3313 3314 /* add this chunk id to the endpoint */ 3315 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3316 } 3317 3318 /* 3319 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3320 * 3321 * This option gets or sets the list of HMAC algorithms that the local 3322 * endpoint requires the peer to use. 3323 */ 3324 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3325 char __user *optval, 3326 unsigned int optlen) 3327 { 3328 struct net *net = sock_net(sk); 3329 struct sctp_hmacalgo *hmacs; 3330 u32 idents; 3331 int err; 3332 3333 if (!net->sctp.auth_enable) 3334 return -EACCES; 3335 3336 if (optlen < sizeof(struct sctp_hmacalgo)) 3337 return -EINVAL; 3338 3339 hmacs= memdup_user(optval, optlen); 3340 if (IS_ERR(hmacs)) 3341 return PTR_ERR(hmacs); 3342 3343 idents = hmacs->shmac_num_idents; 3344 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3345 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3346 err = -EINVAL; 3347 goto out; 3348 } 3349 3350 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3351 out: 3352 kfree(hmacs); 3353 return err; 3354 } 3355 3356 /* 3357 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3358 * 3359 * This option will set a shared secret key which is used to build an 3360 * association shared key. 3361 */ 3362 static int sctp_setsockopt_auth_key(struct sock *sk, 3363 char __user *optval, 3364 unsigned int optlen) 3365 { 3366 struct net *net = sock_net(sk); 3367 struct sctp_authkey *authkey; 3368 struct sctp_association *asoc; 3369 int ret; 3370 3371 if (!net->sctp.auth_enable) 3372 return -EACCES; 3373 3374 if (optlen <= sizeof(struct sctp_authkey)) 3375 return -EINVAL; 3376 3377 authkey= memdup_user(optval, optlen); 3378 if (IS_ERR(authkey)) 3379 return PTR_ERR(authkey); 3380 3381 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3382 ret = -EINVAL; 3383 goto out; 3384 } 3385 3386 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3387 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3388 ret = -EINVAL; 3389 goto out; 3390 } 3391 3392 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3393 out: 3394 kzfree(authkey); 3395 return ret; 3396 } 3397 3398 /* 3399 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3400 * 3401 * This option will get or set the active shared key to be used to build 3402 * the association shared key. 3403 */ 3404 static int sctp_setsockopt_active_key(struct sock *sk, 3405 char __user *optval, 3406 unsigned int optlen) 3407 { 3408 struct net *net = sock_net(sk); 3409 struct sctp_authkeyid val; 3410 struct sctp_association *asoc; 3411 3412 if (!net->sctp.auth_enable) 3413 return -EACCES; 3414 3415 if (optlen != sizeof(struct sctp_authkeyid)) 3416 return -EINVAL; 3417 if (copy_from_user(&val, optval, optlen)) 3418 return -EFAULT; 3419 3420 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3421 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3422 return -EINVAL; 3423 3424 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3425 val.scact_keynumber); 3426 } 3427 3428 /* 3429 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3430 * 3431 * This set option will delete a shared secret key from use. 3432 */ 3433 static int sctp_setsockopt_del_key(struct sock *sk, 3434 char __user *optval, 3435 unsigned int optlen) 3436 { 3437 struct net *net = sock_net(sk); 3438 struct sctp_authkeyid val; 3439 struct sctp_association *asoc; 3440 3441 if (!net->sctp.auth_enable) 3442 return -EACCES; 3443 3444 if (optlen != sizeof(struct sctp_authkeyid)) 3445 return -EINVAL; 3446 if (copy_from_user(&val, optval, optlen)) 3447 return -EFAULT; 3448 3449 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3450 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3451 return -EINVAL; 3452 3453 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3454 val.scact_keynumber); 3455 3456 } 3457 3458 /* 3459 * 8.1.23 SCTP_AUTO_ASCONF 3460 * 3461 * This option will enable or disable the use of the automatic generation of 3462 * ASCONF chunks to add and delete addresses to an existing association. Note 3463 * that this option has two caveats namely: a) it only affects sockets that 3464 * are bound to all addresses available to the SCTP stack, and b) the system 3465 * administrator may have an overriding control that turns the ASCONF feature 3466 * off no matter what setting the socket option may have. 3467 * This option expects an integer boolean flag, where a non-zero value turns on 3468 * the option, and a zero value turns off the option. 3469 * Note. In this implementation, socket operation overrides default parameter 3470 * being set by sysctl as well as FreeBSD implementation 3471 */ 3472 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3473 unsigned int optlen) 3474 { 3475 int val; 3476 struct sctp_sock *sp = sctp_sk(sk); 3477 3478 if (optlen < sizeof(int)) 3479 return -EINVAL; 3480 if (get_user(val, (int __user *)optval)) 3481 return -EFAULT; 3482 if (!sctp_is_ep_boundall(sk) && val) 3483 return -EINVAL; 3484 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3485 return 0; 3486 3487 if (val == 0 && sp->do_auto_asconf) { 3488 list_del(&sp->auto_asconf_list); 3489 sp->do_auto_asconf = 0; 3490 } else if (val && !sp->do_auto_asconf) { 3491 list_add_tail(&sp->auto_asconf_list, 3492 &sock_net(sk)->sctp.auto_asconf_splist); 3493 sp->do_auto_asconf = 1; 3494 } 3495 return 0; 3496 } 3497 3498 3499 /* 3500 * SCTP_PEER_ADDR_THLDS 3501 * 3502 * This option allows us to alter the partially failed threshold for one or all 3503 * transports in an association. See Section 6.1 of: 3504 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3505 */ 3506 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3507 char __user *optval, 3508 unsigned int optlen) 3509 { 3510 struct sctp_paddrthlds val; 3511 struct sctp_transport *trans; 3512 struct sctp_association *asoc; 3513 3514 if (optlen < sizeof(struct sctp_paddrthlds)) 3515 return -EINVAL; 3516 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3517 sizeof(struct sctp_paddrthlds))) 3518 return -EFAULT; 3519 3520 3521 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3522 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3523 if (!asoc) 3524 return -ENOENT; 3525 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3526 transports) { 3527 if (val.spt_pathmaxrxt) 3528 trans->pathmaxrxt = val.spt_pathmaxrxt; 3529 trans->pf_retrans = val.spt_pathpfthld; 3530 } 3531 3532 if (val.spt_pathmaxrxt) 3533 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3534 asoc->pf_retrans = val.spt_pathpfthld; 3535 } else { 3536 trans = sctp_addr_id2transport(sk, &val.spt_address, 3537 val.spt_assoc_id); 3538 if (!trans) 3539 return -ENOENT; 3540 3541 if (val.spt_pathmaxrxt) 3542 trans->pathmaxrxt = val.spt_pathmaxrxt; 3543 trans->pf_retrans = val.spt_pathpfthld; 3544 } 3545 3546 return 0; 3547 } 3548 3549 /* API 6.2 setsockopt(), getsockopt() 3550 * 3551 * Applications use setsockopt() and getsockopt() to set or retrieve 3552 * socket options. Socket options are used to change the default 3553 * behavior of sockets calls. They are described in Section 7. 3554 * 3555 * The syntax is: 3556 * 3557 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3558 * int __user *optlen); 3559 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3560 * int optlen); 3561 * 3562 * sd - the socket descript. 3563 * level - set to IPPROTO_SCTP for all SCTP options. 3564 * optname - the option name. 3565 * optval - the buffer to store the value of the option. 3566 * optlen - the size of the buffer. 3567 */ 3568 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3569 char __user *optval, unsigned int optlen) 3570 { 3571 int retval = 0; 3572 3573 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3574 sk, optname); 3575 3576 /* I can hardly begin to describe how wrong this is. This is 3577 * so broken as to be worse than useless. The API draft 3578 * REALLY is NOT helpful here... I am not convinced that the 3579 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3580 * are at all well-founded. 3581 */ 3582 if (level != SOL_SCTP) { 3583 struct sctp_af *af = sctp_sk(sk)->pf->af; 3584 retval = af->setsockopt(sk, level, optname, optval, optlen); 3585 goto out_nounlock; 3586 } 3587 3588 sctp_lock_sock(sk); 3589 3590 switch (optname) { 3591 case SCTP_SOCKOPT_BINDX_ADD: 3592 /* 'optlen' is the size of the addresses buffer. */ 3593 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3594 optlen, SCTP_BINDX_ADD_ADDR); 3595 break; 3596 3597 case SCTP_SOCKOPT_BINDX_REM: 3598 /* 'optlen' is the size of the addresses buffer. */ 3599 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3600 optlen, SCTP_BINDX_REM_ADDR); 3601 break; 3602 3603 case SCTP_SOCKOPT_CONNECTX_OLD: 3604 /* 'optlen' is the size of the addresses buffer. */ 3605 retval = sctp_setsockopt_connectx_old(sk, 3606 (struct sockaddr __user *)optval, 3607 optlen); 3608 break; 3609 3610 case SCTP_SOCKOPT_CONNECTX: 3611 /* 'optlen' is the size of the addresses buffer. */ 3612 retval = sctp_setsockopt_connectx(sk, 3613 (struct sockaddr __user *)optval, 3614 optlen); 3615 break; 3616 3617 case SCTP_DISABLE_FRAGMENTS: 3618 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3619 break; 3620 3621 case SCTP_EVENTS: 3622 retval = sctp_setsockopt_events(sk, optval, optlen); 3623 break; 3624 3625 case SCTP_AUTOCLOSE: 3626 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3627 break; 3628 3629 case SCTP_PEER_ADDR_PARAMS: 3630 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3631 break; 3632 3633 case SCTP_DELAYED_SACK: 3634 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3635 break; 3636 case SCTP_PARTIAL_DELIVERY_POINT: 3637 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3638 break; 3639 3640 case SCTP_INITMSG: 3641 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3642 break; 3643 case SCTP_DEFAULT_SEND_PARAM: 3644 retval = sctp_setsockopt_default_send_param(sk, optval, 3645 optlen); 3646 break; 3647 case SCTP_PRIMARY_ADDR: 3648 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3649 break; 3650 case SCTP_SET_PEER_PRIMARY_ADDR: 3651 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3652 break; 3653 case SCTP_NODELAY: 3654 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3655 break; 3656 case SCTP_RTOINFO: 3657 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3658 break; 3659 case SCTP_ASSOCINFO: 3660 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3661 break; 3662 case SCTP_I_WANT_MAPPED_V4_ADDR: 3663 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3664 break; 3665 case SCTP_MAXSEG: 3666 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3667 break; 3668 case SCTP_ADAPTATION_LAYER: 3669 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3670 break; 3671 case SCTP_CONTEXT: 3672 retval = sctp_setsockopt_context(sk, optval, optlen); 3673 break; 3674 case SCTP_FRAGMENT_INTERLEAVE: 3675 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3676 break; 3677 case SCTP_MAX_BURST: 3678 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3679 break; 3680 case SCTP_AUTH_CHUNK: 3681 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3682 break; 3683 case SCTP_HMAC_IDENT: 3684 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3685 break; 3686 case SCTP_AUTH_KEY: 3687 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3688 break; 3689 case SCTP_AUTH_ACTIVE_KEY: 3690 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3691 break; 3692 case SCTP_AUTH_DELETE_KEY: 3693 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3694 break; 3695 case SCTP_AUTO_ASCONF: 3696 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3697 break; 3698 case SCTP_PEER_ADDR_THLDS: 3699 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3700 break; 3701 default: 3702 retval = -ENOPROTOOPT; 3703 break; 3704 } 3705 3706 sctp_release_sock(sk); 3707 3708 out_nounlock: 3709 return retval; 3710 } 3711 3712 /* API 3.1.6 connect() - UDP Style Syntax 3713 * 3714 * An application may use the connect() call in the UDP model to initiate an 3715 * association without sending data. 3716 * 3717 * The syntax is: 3718 * 3719 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3720 * 3721 * sd: the socket descriptor to have a new association added to. 3722 * 3723 * nam: the address structure (either struct sockaddr_in or struct 3724 * sockaddr_in6 defined in RFC2553 [7]). 3725 * 3726 * len: the size of the address. 3727 */ 3728 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3729 int addr_len) 3730 { 3731 int err = 0; 3732 struct sctp_af *af; 3733 3734 sctp_lock_sock(sk); 3735 3736 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3737 __func__, sk, addr, addr_len); 3738 3739 /* Validate addr_len before calling common connect/connectx routine. */ 3740 af = sctp_get_af_specific(addr->sa_family); 3741 if (!af || addr_len < af->sockaddr_len) { 3742 err = -EINVAL; 3743 } else { 3744 /* Pass correct addr len to common routine (so it knows there 3745 * is only one address being passed. 3746 */ 3747 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3748 } 3749 3750 sctp_release_sock(sk); 3751 return err; 3752 } 3753 3754 /* FIXME: Write comments. */ 3755 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3756 { 3757 return -EOPNOTSUPP; /* STUB */ 3758 } 3759 3760 /* 4.1.4 accept() - TCP Style Syntax 3761 * 3762 * Applications use accept() call to remove an established SCTP 3763 * association from the accept queue of the endpoint. A new socket 3764 * descriptor will be returned from accept() to represent the newly 3765 * formed association. 3766 */ 3767 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3768 { 3769 struct sctp_sock *sp; 3770 struct sctp_endpoint *ep; 3771 struct sock *newsk = NULL; 3772 struct sctp_association *asoc; 3773 long timeo; 3774 int error = 0; 3775 3776 sctp_lock_sock(sk); 3777 3778 sp = sctp_sk(sk); 3779 ep = sp->ep; 3780 3781 if (!sctp_style(sk, TCP)) { 3782 error = -EOPNOTSUPP; 3783 goto out; 3784 } 3785 3786 if (!sctp_sstate(sk, LISTENING)) { 3787 error = -EINVAL; 3788 goto out; 3789 } 3790 3791 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3792 3793 error = sctp_wait_for_accept(sk, timeo); 3794 if (error) 3795 goto out; 3796 3797 /* We treat the list of associations on the endpoint as the accept 3798 * queue and pick the first association on the list. 3799 */ 3800 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3801 3802 newsk = sp->pf->create_accept_sk(sk, asoc); 3803 if (!newsk) { 3804 error = -ENOMEM; 3805 goto out; 3806 } 3807 3808 /* Populate the fields of the newsk from the oldsk and migrate the 3809 * asoc to the newsk. 3810 */ 3811 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3812 3813 out: 3814 sctp_release_sock(sk); 3815 *err = error; 3816 return newsk; 3817 } 3818 3819 /* The SCTP ioctl handler. */ 3820 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3821 { 3822 int rc = -ENOTCONN; 3823 3824 sctp_lock_sock(sk); 3825 3826 /* 3827 * SEQPACKET-style sockets in LISTENING state are valid, for 3828 * SCTP, so only discard TCP-style sockets in LISTENING state. 3829 */ 3830 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3831 goto out; 3832 3833 switch (cmd) { 3834 case SIOCINQ: { 3835 struct sk_buff *skb; 3836 unsigned int amount = 0; 3837 3838 skb = skb_peek(&sk->sk_receive_queue); 3839 if (skb != NULL) { 3840 /* 3841 * We will only return the amount of this packet since 3842 * that is all that will be read. 3843 */ 3844 amount = skb->len; 3845 } 3846 rc = put_user(amount, (int __user *)arg); 3847 break; 3848 } 3849 default: 3850 rc = -ENOIOCTLCMD; 3851 break; 3852 } 3853 out: 3854 sctp_release_sock(sk); 3855 return rc; 3856 } 3857 3858 /* This is the function which gets called during socket creation to 3859 * initialized the SCTP-specific portion of the sock. 3860 * The sock structure should already be zero-filled memory. 3861 */ 3862 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3863 { 3864 struct net *net = sock_net(sk); 3865 struct sctp_endpoint *ep; 3866 struct sctp_sock *sp; 3867 3868 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3869 3870 sp = sctp_sk(sk); 3871 3872 /* Initialize the SCTP per socket area. */ 3873 switch (sk->sk_type) { 3874 case SOCK_SEQPACKET: 3875 sp->type = SCTP_SOCKET_UDP; 3876 break; 3877 case SOCK_STREAM: 3878 sp->type = SCTP_SOCKET_TCP; 3879 break; 3880 default: 3881 return -ESOCKTNOSUPPORT; 3882 } 3883 3884 /* Initialize default send parameters. These parameters can be 3885 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3886 */ 3887 sp->default_stream = 0; 3888 sp->default_ppid = 0; 3889 sp->default_flags = 0; 3890 sp->default_context = 0; 3891 sp->default_timetolive = 0; 3892 3893 sp->default_rcv_context = 0; 3894 sp->max_burst = net->sctp.max_burst; 3895 3896 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 3897 3898 /* Initialize default setup parameters. These parameters 3899 * can be modified with the SCTP_INITMSG socket option or 3900 * overridden by the SCTP_INIT CMSG. 3901 */ 3902 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3903 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3904 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 3905 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 3906 3907 /* Initialize default RTO related parameters. These parameters can 3908 * be modified for with the SCTP_RTOINFO socket option. 3909 */ 3910 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 3911 sp->rtoinfo.srto_max = net->sctp.rto_max; 3912 sp->rtoinfo.srto_min = net->sctp.rto_min; 3913 3914 /* Initialize default association related parameters. These parameters 3915 * can be modified with the SCTP_ASSOCINFO socket option. 3916 */ 3917 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 3918 sp->assocparams.sasoc_number_peer_destinations = 0; 3919 sp->assocparams.sasoc_peer_rwnd = 0; 3920 sp->assocparams.sasoc_local_rwnd = 0; 3921 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 3922 3923 /* Initialize default event subscriptions. By default, all the 3924 * options are off. 3925 */ 3926 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3927 3928 /* Default Peer Address Parameters. These defaults can 3929 * be modified via SCTP_PEER_ADDR_PARAMS 3930 */ 3931 sp->hbinterval = net->sctp.hb_interval; 3932 sp->pathmaxrxt = net->sctp.max_retrans_path; 3933 sp->pathmtu = 0; // allow default discovery 3934 sp->sackdelay = net->sctp.sack_timeout; 3935 sp->sackfreq = 2; 3936 sp->param_flags = SPP_HB_ENABLE | 3937 SPP_PMTUD_ENABLE | 3938 SPP_SACKDELAY_ENABLE; 3939 3940 /* If enabled no SCTP message fragmentation will be performed. 3941 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3942 */ 3943 sp->disable_fragments = 0; 3944 3945 /* Enable Nagle algorithm by default. */ 3946 sp->nodelay = 0; 3947 3948 /* Enable by default. */ 3949 sp->v4mapped = 1; 3950 3951 /* Auto-close idle associations after the configured 3952 * number of seconds. A value of 0 disables this 3953 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3954 * for UDP-style sockets only. 3955 */ 3956 sp->autoclose = 0; 3957 3958 /* User specified fragmentation limit. */ 3959 sp->user_frag = 0; 3960 3961 sp->adaptation_ind = 0; 3962 3963 sp->pf = sctp_get_pf_specific(sk->sk_family); 3964 3965 /* Control variables for partial data delivery. */ 3966 atomic_set(&sp->pd_mode, 0); 3967 skb_queue_head_init(&sp->pd_lobby); 3968 sp->frag_interleave = 0; 3969 3970 /* Create a per socket endpoint structure. Even if we 3971 * change the data structure relationships, this may still 3972 * be useful for storing pre-connect address information. 3973 */ 3974 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3975 if (!ep) 3976 return -ENOMEM; 3977 3978 sp->ep = ep; 3979 sp->hmac = NULL; 3980 3981 SCTP_DBG_OBJCNT_INC(sock); 3982 3983 local_bh_disable(); 3984 percpu_counter_inc(&sctp_sockets_allocated); 3985 sock_prot_inuse_add(net, sk->sk_prot, 1); 3986 if (net->sctp.default_auto_asconf) { 3987 list_add_tail(&sp->auto_asconf_list, 3988 &net->sctp.auto_asconf_splist); 3989 sp->do_auto_asconf = 1; 3990 } else 3991 sp->do_auto_asconf = 0; 3992 local_bh_enable(); 3993 3994 return 0; 3995 } 3996 3997 /* Cleanup any SCTP per socket resources. */ 3998 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3999 { 4000 struct sctp_sock *sp; 4001 4002 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 4003 4004 /* Release our hold on the endpoint. */ 4005 sp = sctp_sk(sk); 4006 /* This could happen during socket init, thus we bail out 4007 * early, since the rest of the below is not setup either. 4008 */ 4009 if (sp->ep == NULL) 4010 return; 4011 4012 if (sp->do_auto_asconf) { 4013 sp->do_auto_asconf = 0; 4014 list_del(&sp->auto_asconf_list); 4015 } 4016 sctp_endpoint_free(sp->ep); 4017 local_bh_disable(); 4018 percpu_counter_dec(&sctp_sockets_allocated); 4019 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4020 local_bh_enable(); 4021 } 4022 4023 /* API 4.1.7 shutdown() - TCP Style Syntax 4024 * int shutdown(int socket, int how); 4025 * 4026 * sd - the socket descriptor of the association to be closed. 4027 * how - Specifies the type of shutdown. The values are 4028 * as follows: 4029 * SHUT_RD 4030 * Disables further receive operations. No SCTP 4031 * protocol action is taken. 4032 * SHUT_WR 4033 * Disables further send operations, and initiates 4034 * the SCTP shutdown sequence. 4035 * SHUT_RDWR 4036 * Disables further send and receive operations 4037 * and initiates the SCTP shutdown sequence. 4038 */ 4039 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 4040 { 4041 struct net *net = sock_net(sk); 4042 struct sctp_endpoint *ep; 4043 struct sctp_association *asoc; 4044 4045 if (!sctp_style(sk, TCP)) 4046 return; 4047 4048 if (how & SEND_SHUTDOWN) { 4049 ep = sctp_sk(sk)->ep; 4050 if (!list_empty(&ep->asocs)) { 4051 asoc = list_entry(ep->asocs.next, 4052 struct sctp_association, asocs); 4053 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4054 } 4055 } 4056 } 4057 4058 /* 7.2.1 Association Status (SCTP_STATUS) 4059 4060 * Applications can retrieve current status information about an 4061 * association, including association state, peer receiver window size, 4062 * number of unacked data chunks, and number of data chunks pending 4063 * receipt. This information is read-only. 4064 */ 4065 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4066 char __user *optval, 4067 int __user *optlen) 4068 { 4069 struct sctp_status status; 4070 struct sctp_association *asoc = NULL; 4071 struct sctp_transport *transport; 4072 sctp_assoc_t associd; 4073 int retval = 0; 4074 4075 if (len < sizeof(status)) { 4076 retval = -EINVAL; 4077 goto out; 4078 } 4079 4080 len = sizeof(status); 4081 if (copy_from_user(&status, optval, len)) { 4082 retval = -EFAULT; 4083 goto out; 4084 } 4085 4086 associd = status.sstat_assoc_id; 4087 asoc = sctp_id2assoc(sk, associd); 4088 if (!asoc) { 4089 retval = -EINVAL; 4090 goto out; 4091 } 4092 4093 transport = asoc->peer.primary_path; 4094 4095 status.sstat_assoc_id = sctp_assoc2id(asoc); 4096 status.sstat_state = asoc->state; 4097 status.sstat_rwnd = asoc->peer.rwnd; 4098 status.sstat_unackdata = asoc->unack_data; 4099 4100 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4101 status.sstat_instrms = asoc->c.sinit_max_instreams; 4102 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4103 status.sstat_fragmentation_point = asoc->frag_point; 4104 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4105 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4106 transport->af_specific->sockaddr_len); 4107 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4108 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4109 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4110 status.sstat_primary.spinfo_state = transport->state; 4111 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4112 status.sstat_primary.spinfo_srtt = transport->srtt; 4113 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4114 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4115 4116 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4117 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4118 4119 if (put_user(len, optlen)) { 4120 retval = -EFAULT; 4121 goto out; 4122 } 4123 4124 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4125 len, status.sstat_state, status.sstat_rwnd, 4126 status.sstat_assoc_id); 4127 4128 if (copy_to_user(optval, &status, len)) { 4129 retval = -EFAULT; 4130 goto out; 4131 } 4132 4133 out: 4134 return retval; 4135 } 4136 4137 4138 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4139 * 4140 * Applications can retrieve information about a specific peer address 4141 * of an association, including its reachability state, congestion 4142 * window, and retransmission timer values. This information is 4143 * read-only. 4144 */ 4145 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4146 char __user *optval, 4147 int __user *optlen) 4148 { 4149 struct sctp_paddrinfo pinfo; 4150 struct sctp_transport *transport; 4151 int retval = 0; 4152 4153 if (len < sizeof(pinfo)) { 4154 retval = -EINVAL; 4155 goto out; 4156 } 4157 4158 len = sizeof(pinfo); 4159 if (copy_from_user(&pinfo, optval, len)) { 4160 retval = -EFAULT; 4161 goto out; 4162 } 4163 4164 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4165 pinfo.spinfo_assoc_id); 4166 if (!transport) 4167 return -EINVAL; 4168 4169 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4170 pinfo.spinfo_state = transport->state; 4171 pinfo.spinfo_cwnd = transport->cwnd; 4172 pinfo.spinfo_srtt = transport->srtt; 4173 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4174 pinfo.spinfo_mtu = transport->pathmtu; 4175 4176 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4177 pinfo.spinfo_state = SCTP_ACTIVE; 4178 4179 if (put_user(len, optlen)) { 4180 retval = -EFAULT; 4181 goto out; 4182 } 4183 4184 if (copy_to_user(optval, &pinfo, len)) { 4185 retval = -EFAULT; 4186 goto out; 4187 } 4188 4189 out: 4190 return retval; 4191 } 4192 4193 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4194 * 4195 * This option is a on/off flag. If enabled no SCTP message 4196 * fragmentation will be performed. Instead if a message being sent 4197 * exceeds the current PMTU size, the message will NOT be sent and 4198 * instead a error will be indicated to the user. 4199 */ 4200 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4201 char __user *optval, int __user *optlen) 4202 { 4203 int val; 4204 4205 if (len < sizeof(int)) 4206 return -EINVAL; 4207 4208 len = sizeof(int); 4209 val = (sctp_sk(sk)->disable_fragments == 1); 4210 if (put_user(len, optlen)) 4211 return -EFAULT; 4212 if (copy_to_user(optval, &val, len)) 4213 return -EFAULT; 4214 return 0; 4215 } 4216 4217 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4218 * 4219 * This socket option is used to specify various notifications and 4220 * ancillary data the user wishes to receive. 4221 */ 4222 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4223 int __user *optlen) 4224 { 4225 if (len <= 0) 4226 return -EINVAL; 4227 if (len > sizeof(struct sctp_event_subscribe)) 4228 len = sizeof(struct sctp_event_subscribe); 4229 if (put_user(len, optlen)) 4230 return -EFAULT; 4231 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4232 return -EFAULT; 4233 return 0; 4234 } 4235 4236 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4237 * 4238 * This socket option is applicable to the UDP-style socket only. When 4239 * set it will cause associations that are idle for more than the 4240 * specified number of seconds to automatically close. An association 4241 * being idle is defined an association that has NOT sent or received 4242 * user data. The special value of '0' indicates that no automatic 4243 * close of any associations should be performed. The option expects an 4244 * integer defining the number of seconds of idle time before an 4245 * association is closed. 4246 */ 4247 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4248 { 4249 /* Applicable to UDP-style socket only */ 4250 if (sctp_style(sk, TCP)) 4251 return -EOPNOTSUPP; 4252 if (len < sizeof(int)) 4253 return -EINVAL; 4254 len = sizeof(int); 4255 if (put_user(len, optlen)) 4256 return -EFAULT; 4257 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4258 return -EFAULT; 4259 return 0; 4260 } 4261 4262 /* Helper routine to branch off an association to a new socket. */ 4263 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4264 { 4265 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4266 struct socket *sock; 4267 struct sctp_af *af; 4268 int err = 0; 4269 4270 if (!asoc) 4271 return -EINVAL; 4272 4273 /* An association cannot be branched off from an already peeled-off 4274 * socket, nor is this supported for tcp style sockets. 4275 */ 4276 if (!sctp_style(sk, UDP)) 4277 return -EINVAL; 4278 4279 /* Create a new socket. */ 4280 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4281 if (err < 0) 4282 return err; 4283 4284 sctp_copy_sock(sock->sk, sk, asoc); 4285 4286 /* Make peeled-off sockets more like 1-1 accepted sockets. 4287 * Set the daddr and initialize id to something more random 4288 */ 4289 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4290 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4291 4292 /* Populate the fields of the newsk from the oldsk and migrate the 4293 * asoc to the newsk. 4294 */ 4295 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4296 4297 *sockp = sock; 4298 4299 return err; 4300 } 4301 EXPORT_SYMBOL(sctp_do_peeloff); 4302 4303 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4304 { 4305 sctp_peeloff_arg_t peeloff; 4306 struct socket *newsock; 4307 struct file *newfile; 4308 int retval = 0; 4309 4310 if (len < sizeof(sctp_peeloff_arg_t)) 4311 return -EINVAL; 4312 len = sizeof(sctp_peeloff_arg_t); 4313 if (copy_from_user(&peeloff, optval, len)) 4314 return -EFAULT; 4315 4316 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4317 if (retval < 0) 4318 goto out; 4319 4320 /* Map the socket to an unused fd that can be returned to the user. */ 4321 retval = get_unused_fd(); 4322 if (retval < 0) { 4323 sock_release(newsock); 4324 goto out; 4325 } 4326 4327 newfile = sock_alloc_file(newsock, 0, NULL); 4328 if (unlikely(IS_ERR(newfile))) { 4329 put_unused_fd(retval); 4330 sock_release(newsock); 4331 return PTR_ERR(newfile); 4332 } 4333 4334 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n", 4335 __func__, sk, newsock->sk, retval); 4336 4337 /* Return the fd mapped to the new socket. */ 4338 if (put_user(len, optlen)) { 4339 fput(newfile); 4340 put_unused_fd(retval); 4341 return -EFAULT; 4342 } 4343 peeloff.sd = retval; 4344 if (copy_to_user(optval, &peeloff, len)) { 4345 fput(newfile); 4346 put_unused_fd(retval); 4347 return -EFAULT; 4348 } 4349 fd_install(retval, newfile); 4350 out: 4351 return retval; 4352 } 4353 4354 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4355 * 4356 * Applications can enable or disable heartbeats for any peer address of 4357 * an association, modify an address's heartbeat interval, force a 4358 * heartbeat to be sent immediately, and adjust the address's maximum 4359 * number of retransmissions sent before an address is considered 4360 * unreachable. The following structure is used to access and modify an 4361 * address's parameters: 4362 * 4363 * struct sctp_paddrparams { 4364 * sctp_assoc_t spp_assoc_id; 4365 * struct sockaddr_storage spp_address; 4366 * uint32_t spp_hbinterval; 4367 * uint16_t spp_pathmaxrxt; 4368 * uint32_t spp_pathmtu; 4369 * uint32_t spp_sackdelay; 4370 * uint32_t spp_flags; 4371 * }; 4372 * 4373 * spp_assoc_id - (one-to-many style socket) This is filled in the 4374 * application, and identifies the association for 4375 * this query. 4376 * spp_address - This specifies which address is of interest. 4377 * spp_hbinterval - This contains the value of the heartbeat interval, 4378 * in milliseconds. If a value of zero 4379 * is present in this field then no changes are to 4380 * be made to this parameter. 4381 * spp_pathmaxrxt - This contains the maximum number of 4382 * retransmissions before this address shall be 4383 * considered unreachable. If a value of zero 4384 * is present in this field then no changes are to 4385 * be made to this parameter. 4386 * spp_pathmtu - When Path MTU discovery is disabled the value 4387 * specified here will be the "fixed" path mtu. 4388 * Note that if the spp_address field is empty 4389 * then all associations on this address will 4390 * have this fixed path mtu set upon them. 4391 * 4392 * spp_sackdelay - When delayed sack is enabled, this value specifies 4393 * the number of milliseconds that sacks will be delayed 4394 * for. This value will apply to all addresses of an 4395 * association if the spp_address field is empty. Note 4396 * also, that if delayed sack is enabled and this 4397 * value is set to 0, no change is made to the last 4398 * recorded delayed sack timer value. 4399 * 4400 * spp_flags - These flags are used to control various features 4401 * on an association. The flag field may contain 4402 * zero or more of the following options. 4403 * 4404 * SPP_HB_ENABLE - Enable heartbeats on the 4405 * specified address. Note that if the address 4406 * field is empty all addresses for the association 4407 * have heartbeats enabled upon them. 4408 * 4409 * SPP_HB_DISABLE - Disable heartbeats on the 4410 * speicifed address. Note that if the address 4411 * field is empty all addresses for the association 4412 * will have their heartbeats disabled. Note also 4413 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4414 * mutually exclusive, only one of these two should 4415 * be specified. Enabling both fields will have 4416 * undetermined results. 4417 * 4418 * SPP_HB_DEMAND - Request a user initiated heartbeat 4419 * to be made immediately. 4420 * 4421 * SPP_PMTUD_ENABLE - This field will enable PMTU 4422 * discovery upon the specified address. Note that 4423 * if the address feild is empty then all addresses 4424 * on the association are effected. 4425 * 4426 * SPP_PMTUD_DISABLE - This field will disable PMTU 4427 * discovery upon the specified address. Note that 4428 * if the address feild is empty then all addresses 4429 * on the association are effected. Not also that 4430 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4431 * exclusive. Enabling both will have undetermined 4432 * results. 4433 * 4434 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4435 * on delayed sack. The time specified in spp_sackdelay 4436 * is used to specify the sack delay for this address. Note 4437 * that if spp_address is empty then all addresses will 4438 * enable delayed sack and take on the sack delay 4439 * value specified in spp_sackdelay. 4440 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4441 * off delayed sack. If the spp_address field is blank then 4442 * delayed sack is disabled for the entire association. Note 4443 * also that this field is mutually exclusive to 4444 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4445 * results. 4446 */ 4447 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4448 char __user *optval, int __user *optlen) 4449 { 4450 struct sctp_paddrparams params; 4451 struct sctp_transport *trans = NULL; 4452 struct sctp_association *asoc = NULL; 4453 struct sctp_sock *sp = sctp_sk(sk); 4454 4455 if (len < sizeof(struct sctp_paddrparams)) 4456 return -EINVAL; 4457 len = sizeof(struct sctp_paddrparams); 4458 if (copy_from_user(¶ms, optval, len)) 4459 return -EFAULT; 4460 4461 /* If an address other than INADDR_ANY is specified, and 4462 * no transport is found, then the request is invalid. 4463 */ 4464 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4465 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4466 params.spp_assoc_id); 4467 if (!trans) { 4468 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4469 return -EINVAL; 4470 } 4471 } 4472 4473 /* Get association, if assoc_id != 0 and the socket is a one 4474 * to many style socket, and an association was not found, then 4475 * the id was invalid. 4476 */ 4477 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4478 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4479 SCTP_DEBUG_PRINTK("Failed no association\n"); 4480 return -EINVAL; 4481 } 4482 4483 if (trans) { 4484 /* Fetch transport values. */ 4485 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4486 params.spp_pathmtu = trans->pathmtu; 4487 params.spp_pathmaxrxt = trans->pathmaxrxt; 4488 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4489 4490 /*draft-11 doesn't say what to return in spp_flags*/ 4491 params.spp_flags = trans->param_flags; 4492 } else if (asoc) { 4493 /* Fetch association values. */ 4494 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4495 params.spp_pathmtu = asoc->pathmtu; 4496 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4497 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4498 4499 /*draft-11 doesn't say what to return in spp_flags*/ 4500 params.spp_flags = asoc->param_flags; 4501 } else { 4502 /* Fetch socket values. */ 4503 params.spp_hbinterval = sp->hbinterval; 4504 params.spp_pathmtu = sp->pathmtu; 4505 params.spp_sackdelay = sp->sackdelay; 4506 params.spp_pathmaxrxt = sp->pathmaxrxt; 4507 4508 /*draft-11 doesn't say what to return in spp_flags*/ 4509 params.spp_flags = sp->param_flags; 4510 } 4511 4512 if (copy_to_user(optval, ¶ms, len)) 4513 return -EFAULT; 4514 4515 if (put_user(len, optlen)) 4516 return -EFAULT; 4517 4518 return 0; 4519 } 4520 4521 /* 4522 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4523 * 4524 * This option will effect the way delayed acks are performed. This 4525 * option allows you to get or set the delayed ack time, in 4526 * milliseconds. It also allows changing the delayed ack frequency. 4527 * Changing the frequency to 1 disables the delayed sack algorithm. If 4528 * the assoc_id is 0, then this sets or gets the endpoints default 4529 * values. If the assoc_id field is non-zero, then the set or get 4530 * effects the specified association for the one to many model (the 4531 * assoc_id field is ignored by the one to one model). Note that if 4532 * sack_delay or sack_freq are 0 when setting this option, then the 4533 * current values will remain unchanged. 4534 * 4535 * struct sctp_sack_info { 4536 * sctp_assoc_t sack_assoc_id; 4537 * uint32_t sack_delay; 4538 * uint32_t sack_freq; 4539 * }; 4540 * 4541 * sack_assoc_id - This parameter, indicates which association the user 4542 * is performing an action upon. Note that if this field's value is 4543 * zero then the endpoints default value is changed (effecting future 4544 * associations only). 4545 * 4546 * sack_delay - This parameter contains the number of milliseconds that 4547 * the user is requesting the delayed ACK timer be set to. Note that 4548 * this value is defined in the standard to be between 200 and 500 4549 * milliseconds. 4550 * 4551 * sack_freq - This parameter contains the number of packets that must 4552 * be received before a sack is sent without waiting for the delay 4553 * timer to expire. The default value for this is 2, setting this 4554 * value to 1 will disable the delayed sack algorithm. 4555 */ 4556 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4557 char __user *optval, 4558 int __user *optlen) 4559 { 4560 struct sctp_sack_info params; 4561 struct sctp_association *asoc = NULL; 4562 struct sctp_sock *sp = sctp_sk(sk); 4563 4564 if (len >= sizeof(struct sctp_sack_info)) { 4565 len = sizeof(struct sctp_sack_info); 4566 4567 if (copy_from_user(¶ms, optval, len)) 4568 return -EFAULT; 4569 } else if (len == sizeof(struct sctp_assoc_value)) { 4570 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4571 pr_warn("Use struct sctp_sack_info instead\n"); 4572 if (copy_from_user(¶ms, optval, len)) 4573 return -EFAULT; 4574 } else 4575 return - EINVAL; 4576 4577 /* Get association, if sack_assoc_id != 0 and the socket is a one 4578 * to many style socket, and an association was not found, then 4579 * the id was invalid. 4580 */ 4581 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4582 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4583 return -EINVAL; 4584 4585 if (asoc) { 4586 /* Fetch association values. */ 4587 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4588 params.sack_delay = jiffies_to_msecs( 4589 asoc->sackdelay); 4590 params.sack_freq = asoc->sackfreq; 4591 4592 } else { 4593 params.sack_delay = 0; 4594 params.sack_freq = 1; 4595 } 4596 } else { 4597 /* Fetch socket values. */ 4598 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4599 params.sack_delay = sp->sackdelay; 4600 params.sack_freq = sp->sackfreq; 4601 } else { 4602 params.sack_delay = 0; 4603 params.sack_freq = 1; 4604 } 4605 } 4606 4607 if (copy_to_user(optval, ¶ms, len)) 4608 return -EFAULT; 4609 4610 if (put_user(len, optlen)) 4611 return -EFAULT; 4612 4613 return 0; 4614 } 4615 4616 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4617 * 4618 * Applications can specify protocol parameters for the default association 4619 * initialization. The option name argument to setsockopt() and getsockopt() 4620 * is SCTP_INITMSG. 4621 * 4622 * Setting initialization parameters is effective only on an unconnected 4623 * socket (for UDP-style sockets only future associations are effected 4624 * by the change). With TCP-style sockets, this option is inherited by 4625 * sockets derived from a listener socket. 4626 */ 4627 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4628 { 4629 if (len < sizeof(struct sctp_initmsg)) 4630 return -EINVAL; 4631 len = sizeof(struct sctp_initmsg); 4632 if (put_user(len, optlen)) 4633 return -EFAULT; 4634 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4635 return -EFAULT; 4636 return 0; 4637 } 4638 4639 4640 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4641 char __user *optval, int __user *optlen) 4642 { 4643 struct sctp_association *asoc; 4644 int cnt = 0; 4645 struct sctp_getaddrs getaddrs; 4646 struct sctp_transport *from; 4647 void __user *to; 4648 union sctp_addr temp; 4649 struct sctp_sock *sp = sctp_sk(sk); 4650 int addrlen; 4651 size_t space_left; 4652 int bytes_copied; 4653 4654 if (len < sizeof(struct sctp_getaddrs)) 4655 return -EINVAL; 4656 4657 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4658 return -EFAULT; 4659 4660 /* For UDP-style sockets, id specifies the association to query. */ 4661 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4662 if (!asoc) 4663 return -EINVAL; 4664 4665 to = optval + offsetof(struct sctp_getaddrs,addrs); 4666 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4667 4668 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4669 transports) { 4670 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4671 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4672 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4673 if (space_left < addrlen) 4674 return -ENOMEM; 4675 if (copy_to_user(to, &temp, addrlen)) 4676 return -EFAULT; 4677 to += addrlen; 4678 cnt++; 4679 space_left -= addrlen; 4680 } 4681 4682 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4683 return -EFAULT; 4684 bytes_copied = ((char __user *)to) - optval; 4685 if (put_user(bytes_copied, optlen)) 4686 return -EFAULT; 4687 4688 return 0; 4689 } 4690 4691 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4692 size_t space_left, int *bytes_copied) 4693 { 4694 struct sctp_sockaddr_entry *addr; 4695 union sctp_addr temp; 4696 int cnt = 0; 4697 int addrlen; 4698 struct net *net = sock_net(sk); 4699 4700 rcu_read_lock(); 4701 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4702 if (!addr->valid) 4703 continue; 4704 4705 if ((PF_INET == sk->sk_family) && 4706 (AF_INET6 == addr->a.sa.sa_family)) 4707 continue; 4708 if ((PF_INET6 == sk->sk_family) && 4709 inet_v6_ipv6only(sk) && 4710 (AF_INET == addr->a.sa.sa_family)) 4711 continue; 4712 memcpy(&temp, &addr->a, sizeof(temp)); 4713 if (!temp.v4.sin_port) 4714 temp.v4.sin_port = htons(port); 4715 4716 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4717 &temp); 4718 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4719 if (space_left < addrlen) { 4720 cnt = -ENOMEM; 4721 break; 4722 } 4723 memcpy(to, &temp, addrlen); 4724 4725 to += addrlen; 4726 cnt ++; 4727 space_left -= addrlen; 4728 *bytes_copied += addrlen; 4729 } 4730 rcu_read_unlock(); 4731 4732 return cnt; 4733 } 4734 4735 4736 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4737 char __user *optval, int __user *optlen) 4738 { 4739 struct sctp_bind_addr *bp; 4740 struct sctp_association *asoc; 4741 int cnt = 0; 4742 struct sctp_getaddrs getaddrs; 4743 struct sctp_sockaddr_entry *addr; 4744 void __user *to; 4745 union sctp_addr temp; 4746 struct sctp_sock *sp = sctp_sk(sk); 4747 int addrlen; 4748 int err = 0; 4749 size_t space_left; 4750 int bytes_copied = 0; 4751 void *addrs; 4752 void *buf; 4753 4754 if (len < sizeof(struct sctp_getaddrs)) 4755 return -EINVAL; 4756 4757 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4758 return -EFAULT; 4759 4760 /* 4761 * For UDP-style sockets, id specifies the association to query. 4762 * If the id field is set to the value '0' then the locally bound 4763 * addresses are returned without regard to any particular 4764 * association. 4765 */ 4766 if (0 == getaddrs.assoc_id) { 4767 bp = &sctp_sk(sk)->ep->base.bind_addr; 4768 } else { 4769 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4770 if (!asoc) 4771 return -EINVAL; 4772 bp = &asoc->base.bind_addr; 4773 } 4774 4775 to = optval + offsetof(struct sctp_getaddrs,addrs); 4776 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4777 4778 addrs = kmalloc(space_left, GFP_KERNEL); 4779 if (!addrs) 4780 return -ENOMEM; 4781 4782 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4783 * addresses from the global local address list. 4784 */ 4785 if (sctp_list_single_entry(&bp->address_list)) { 4786 addr = list_entry(bp->address_list.next, 4787 struct sctp_sockaddr_entry, list); 4788 if (sctp_is_any(sk, &addr->a)) { 4789 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4790 space_left, &bytes_copied); 4791 if (cnt < 0) { 4792 err = cnt; 4793 goto out; 4794 } 4795 goto copy_getaddrs; 4796 } 4797 } 4798 4799 buf = addrs; 4800 /* Protection on the bound address list is not needed since 4801 * in the socket option context we hold a socket lock and 4802 * thus the bound address list can't change. 4803 */ 4804 list_for_each_entry(addr, &bp->address_list, list) { 4805 memcpy(&temp, &addr->a, sizeof(temp)); 4806 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4807 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4808 if (space_left < addrlen) { 4809 err = -ENOMEM; /*fixme: right error?*/ 4810 goto out; 4811 } 4812 memcpy(buf, &temp, addrlen); 4813 buf += addrlen; 4814 bytes_copied += addrlen; 4815 cnt ++; 4816 space_left -= addrlen; 4817 } 4818 4819 copy_getaddrs: 4820 if (copy_to_user(to, addrs, bytes_copied)) { 4821 err = -EFAULT; 4822 goto out; 4823 } 4824 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4825 err = -EFAULT; 4826 goto out; 4827 } 4828 if (put_user(bytes_copied, optlen)) 4829 err = -EFAULT; 4830 out: 4831 kfree(addrs); 4832 return err; 4833 } 4834 4835 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4836 * 4837 * Requests that the local SCTP stack use the enclosed peer address as 4838 * the association primary. The enclosed address must be one of the 4839 * association peer's addresses. 4840 */ 4841 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4842 char __user *optval, int __user *optlen) 4843 { 4844 struct sctp_prim prim; 4845 struct sctp_association *asoc; 4846 struct sctp_sock *sp = sctp_sk(sk); 4847 4848 if (len < sizeof(struct sctp_prim)) 4849 return -EINVAL; 4850 4851 len = sizeof(struct sctp_prim); 4852 4853 if (copy_from_user(&prim, optval, len)) 4854 return -EFAULT; 4855 4856 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4857 if (!asoc) 4858 return -EINVAL; 4859 4860 if (!asoc->peer.primary_path) 4861 return -ENOTCONN; 4862 4863 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4864 asoc->peer.primary_path->af_specific->sockaddr_len); 4865 4866 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4867 (union sctp_addr *)&prim.ssp_addr); 4868 4869 if (put_user(len, optlen)) 4870 return -EFAULT; 4871 if (copy_to_user(optval, &prim, len)) 4872 return -EFAULT; 4873 4874 return 0; 4875 } 4876 4877 /* 4878 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4879 * 4880 * Requests that the local endpoint set the specified Adaptation Layer 4881 * Indication parameter for all future INIT and INIT-ACK exchanges. 4882 */ 4883 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4884 char __user *optval, int __user *optlen) 4885 { 4886 struct sctp_setadaptation adaptation; 4887 4888 if (len < sizeof(struct sctp_setadaptation)) 4889 return -EINVAL; 4890 4891 len = sizeof(struct sctp_setadaptation); 4892 4893 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4894 4895 if (put_user(len, optlen)) 4896 return -EFAULT; 4897 if (copy_to_user(optval, &adaptation, len)) 4898 return -EFAULT; 4899 4900 return 0; 4901 } 4902 4903 /* 4904 * 4905 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4906 * 4907 * Applications that wish to use the sendto() system call may wish to 4908 * specify a default set of parameters that would normally be supplied 4909 * through the inclusion of ancillary data. This socket option allows 4910 * such an application to set the default sctp_sndrcvinfo structure. 4911 4912 4913 * The application that wishes to use this socket option simply passes 4914 * in to this call the sctp_sndrcvinfo structure defined in Section 4915 * 5.2.2) The input parameters accepted by this call include 4916 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4917 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4918 * to this call if the caller is using the UDP model. 4919 * 4920 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4921 */ 4922 static int sctp_getsockopt_default_send_param(struct sock *sk, 4923 int len, char __user *optval, 4924 int __user *optlen) 4925 { 4926 struct sctp_sndrcvinfo info; 4927 struct sctp_association *asoc; 4928 struct sctp_sock *sp = sctp_sk(sk); 4929 4930 if (len < sizeof(struct sctp_sndrcvinfo)) 4931 return -EINVAL; 4932 4933 len = sizeof(struct sctp_sndrcvinfo); 4934 4935 if (copy_from_user(&info, optval, len)) 4936 return -EFAULT; 4937 4938 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4939 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4940 return -EINVAL; 4941 4942 if (asoc) { 4943 info.sinfo_stream = asoc->default_stream; 4944 info.sinfo_flags = asoc->default_flags; 4945 info.sinfo_ppid = asoc->default_ppid; 4946 info.sinfo_context = asoc->default_context; 4947 info.sinfo_timetolive = asoc->default_timetolive; 4948 } else { 4949 info.sinfo_stream = sp->default_stream; 4950 info.sinfo_flags = sp->default_flags; 4951 info.sinfo_ppid = sp->default_ppid; 4952 info.sinfo_context = sp->default_context; 4953 info.sinfo_timetolive = sp->default_timetolive; 4954 } 4955 4956 if (put_user(len, optlen)) 4957 return -EFAULT; 4958 if (copy_to_user(optval, &info, len)) 4959 return -EFAULT; 4960 4961 return 0; 4962 } 4963 4964 /* 4965 * 4966 * 7.1.5 SCTP_NODELAY 4967 * 4968 * Turn on/off any Nagle-like algorithm. This means that packets are 4969 * generally sent as soon as possible and no unnecessary delays are 4970 * introduced, at the cost of more packets in the network. Expects an 4971 * integer boolean flag. 4972 */ 4973 4974 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4975 char __user *optval, int __user *optlen) 4976 { 4977 int val; 4978 4979 if (len < sizeof(int)) 4980 return -EINVAL; 4981 4982 len = sizeof(int); 4983 val = (sctp_sk(sk)->nodelay == 1); 4984 if (put_user(len, optlen)) 4985 return -EFAULT; 4986 if (copy_to_user(optval, &val, len)) 4987 return -EFAULT; 4988 return 0; 4989 } 4990 4991 /* 4992 * 4993 * 7.1.1 SCTP_RTOINFO 4994 * 4995 * The protocol parameters used to initialize and bound retransmission 4996 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4997 * and modify these parameters. 4998 * All parameters are time values, in milliseconds. A value of 0, when 4999 * modifying the parameters, indicates that the current value should not 5000 * be changed. 5001 * 5002 */ 5003 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5004 char __user *optval, 5005 int __user *optlen) { 5006 struct sctp_rtoinfo rtoinfo; 5007 struct sctp_association *asoc; 5008 5009 if (len < sizeof (struct sctp_rtoinfo)) 5010 return -EINVAL; 5011 5012 len = sizeof(struct sctp_rtoinfo); 5013 5014 if (copy_from_user(&rtoinfo, optval, len)) 5015 return -EFAULT; 5016 5017 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5018 5019 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5020 return -EINVAL; 5021 5022 /* Values corresponding to the specific association. */ 5023 if (asoc) { 5024 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5025 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5026 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5027 } else { 5028 /* Values corresponding to the endpoint. */ 5029 struct sctp_sock *sp = sctp_sk(sk); 5030 5031 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5032 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5033 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5034 } 5035 5036 if (put_user(len, optlen)) 5037 return -EFAULT; 5038 5039 if (copy_to_user(optval, &rtoinfo, len)) 5040 return -EFAULT; 5041 5042 return 0; 5043 } 5044 5045 /* 5046 * 5047 * 7.1.2 SCTP_ASSOCINFO 5048 * 5049 * This option is used to tune the maximum retransmission attempts 5050 * of the association. 5051 * Returns an error if the new association retransmission value is 5052 * greater than the sum of the retransmission value of the peer. 5053 * See [SCTP] for more information. 5054 * 5055 */ 5056 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5057 char __user *optval, 5058 int __user *optlen) 5059 { 5060 5061 struct sctp_assocparams assocparams; 5062 struct sctp_association *asoc; 5063 struct list_head *pos; 5064 int cnt = 0; 5065 5066 if (len < sizeof (struct sctp_assocparams)) 5067 return -EINVAL; 5068 5069 len = sizeof(struct sctp_assocparams); 5070 5071 if (copy_from_user(&assocparams, optval, len)) 5072 return -EFAULT; 5073 5074 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5075 5076 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5077 return -EINVAL; 5078 5079 /* Values correspoinding to the specific association */ 5080 if (asoc) { 5081 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5082 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5083 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5084 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5085 * 1000) + 5086 (asoc->cookie_life.tv_usec 5087 / 1000); 5088 5089 list_for_each(pos, &asoc->peer.transport_addr_list) { 5090 cnt ++; 5091 } 5092 5093 assocparams.sasoc_number_peer_destinations = cnt; 5094 } else { 5095 /* Values corresponding to the endpoint */ 5096 struct sctp_sock *sp = sctp_sk(sk); 5097 5098 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5099 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5100 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5101 assocparams.sasoc_cookie_life = 5102 sp->assocparams.sasoc_cookie_life; 5103 assocparams.sasoc_number_peer_destinations = 5104 sp->assocparams. 5105 sasoc_number_peer_destinations; 5106 } 5107 5108 if (put_user(len, optlen)) 5109 return -EFAULT; 5110 5111 if (copy_to_user(optval, &assocparams, len)) 5112 return -EFAULT; 5113 5114 return 0; 5115 } 5116 5117 /* 5118 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5119 * 5120 * This socket option is a boolean flag which turns on or off mapped V4 5121 * addresses. If this option is turned on and the socket is type 5122 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5123 * If this option is turned off, then no mapping will be done of V4 5124 * addresses and a user will receive both PF_INET6 and PF_INET type 5125 * addresses on the socket. 5126 */ 5127 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5128 char __user *optval, int __user *optlen) 5129 { 5130 int val; 5131 struct sctp_sock *sp = sctp_sk(sk); 5132 5133 if (len < sizeof(int)) 5134 return -EINVAL; 5135 5136 len = sizeof(int); 5137 val = sp->v4mapped; 5138 if (put_user(len, optlen)) 5139 return -EFAULT; 5140 if (copy_to_user(optval, &val, len)) 5141 return -EFAULT; 5142 5143 return 0; 5144 } 5145 5146 /* 5147 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5148 * (chapter and verse is quoted at sctp_setsockopt_context()) 5149 */ 5150 static int sctp_getsockopt_context(struct sock *sk, int len, 5151 char __user *optval, int __user *optlen) 5152 { 5153 struct sctp_assoc_value params; 5154 struct sctp_sock *sp; 5155 struct sctp_association *asoc; 5156 5157 if (len < sizeof(struct sctp_assoc_value)) 5158 return -EINVAL; 5159 5160 len = sizeof(struct sctp_assoc_value); 5161 5162 if (copy_from_user(¶ms, optval, len)) 5163 return -EFAULT; 5164 5165 sp = sctp_sk(sk); 5166 5167 if (params.assoc_id != 0) { 5168 asoc = sctp_id2assoc(sk, params.assoc_id); 5169 if (!asoc) 5170 return -EINVAL; 5171 params.assoc_value = asoc->default_rcv_context; 5172 } else { 5173 params.assoc_value = sp->default_rcv_context; 5174 } 5175 5176 if (put_user(len, optlen)) 5177 return -EFAULT; 5178 if (copy_to_user(optval, ¶ms, len)) 5179 return -EFAULT; 5180 5181 return 0; 5182 } 5183 5184 /* 5185 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5186 * This option will get or set the maximum size to put in any outgoing 5187 * SCTP DATA chunk. If a message is larger than this size it will be 5188 * fragmented by SCTP into the specified size. Note that the underlying 5189 * SCTP implementation may fragment into smaller sized chunks when the 5190 * PMTU of the underlying association is smaller than the value set by 5191 * the user. The default value for this option is '0' which indicates 5192 * the user is NOT limiting fragmentation and only the PMTU will effect 5193 * SCTP's choice of DATA chunk size. Note also that values set larger 5194 * than the maximum size of an IP datagram will effectively let SCTP 5195 * control fragmentation (i.e. the same as setting this option to 0). 5196 * 5197 * The following structure is used to access and modify this parameter: 5198 * 5199 * struct sctp_assoc_value { 5200 * sctp_assoc_t assoc_id; 5201 * uint32_t assoc_value; 5202 * }; 5203 * 5204 * assoc_id: This parameter is ignored for one-to-one style sockets. 5205 * For one-to-many style sockets this parameter indicates which 5206 * association the user is performing an action upon. Note that if 5207 * this field's value is zero then the endpoints default value is 5208 * changed (effecting future associations only). 5209 * assoc_value: This parameter specifies the maximum size in bytes. 5210 */ 5211 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5212 char __user *optval, int __user *optlen) 5213 { 5214 struct sctp_assoc_value params; 5215 struct sctp_association *asoc; 5216 5217 if (len == sizeof(int)) { 5218 pr_warn("Use of int in maxseg socket option deprecated\n"); 5219 pr_warn("Use struct sctp_assoc_value instead\n"); 5220 params.assoc_id = 0; 5221 } else if (len >= sizeof(struct sctp_assoc_value)) { 5222 len = sizeof(struct sctp_assoc_value); 5223 if (copy_from_user(¶ms, optval, sizeof(params))) 5224 return -EFAULT; 5225 } else 5226 return -EINVAL; 5227 5228 asoc = sctp_id2assoc(sk, params.assoc_id); 5229 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5230 return -EINVAL; 5231 5232 if (asoc) 5233 params.assoc_value = asoc->frag_point; 5234 else 5235 params.assoc_value = sctp_sk(sk)->user_frag; 5236 5237 if (put_user(len, optlen)) 5238 return -EFAULT; 5239 if (len == sizeof(int)) { 5240 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5241 return -EFAULT; 5242 } else { 5243 if (copy_to_user(optval, ¶ms, len)) 5244 return -EFAULT; 5245 } 5246 5247 return 0; 5248 } 5249 5250 /* 5251 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5252 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5253 */ 5254 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5255 char __user *optval, int __user *optlen) 5256 { 5257 int val; 5258 5259 if (len < sizeof(int)) 5260 return -EINVAL; 5261 5262 len = sizeof(int); 5263 5264 val = sctp_sk(sk)->frag_interleave; 5265 if (put_user(len, optlen)) 5266 return -EFAULT; 5267 if (copy_to_user(optval, &val, len)) 5268 return -EFAULT; 5269 5270 return 0; 5271 } 5272 5273 /* 5274 * 7.1.25. Set or Get the sctp partial delivery point 5275 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5276 */ 5277 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5278 char __user *optval, 5279 int __user *optlen) 5280 { 5281 u32 val; 5282 5283 if (len < sizeof(u32)) 5284 return -EINVAL; 5285 5286 len = sizeof(u32); 5287 5288 val = sctp_sk(sk)->pd_point; 5289 if (put_user(len, optlen)) 5290 return -EFAULT; 5291 if (copy_to_user(optval, &val, len)) 5292 return -EFAULT; 5293 5294 return 0; 5295 } 5296 5297 /* 5298 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5299 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5300 */ 5301 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5302 char __user *optval, 5303 int __user *optlen) 5304 { 5305 struct sctp_assoc_value params; 5306 struct sctp_sock *sp; 5307 struct sctp_association *asoc; 5308 5309 if (len == sizeof(int)) { 5310 pr_warn("Use of int in max_burst socket option deprecated\n"); 5311 pr_warn("Use struct sctp_assoc_value instead\n"); 5312 params.assoc_id = 0; 5313 } else if (len >= sizeof(struct sctp_assoc_value)) { 5314 len = sizeof(struct sctp_assoc_value); 5315 if (copy_from_user(¶ms, optval, len)) 5316 return -EFAULT; 5317 } else 5318 return -EINVAL; 5319 5320 sp = sctp_sk(sk); 5321 5322 if (params.assoc_id != 0) { 5323 asoc = sctp_id2assoc(sk, params.assoc_id); 5324 if (!asoc) 5325 return -EINVAL; 5326 params.assoc_value = asoc->max_burst; 5327 } else 5328 params.assoc_value = sp->max_burst; 5329 5330 if (len == sizeof(int)) { 5331 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5332 return -EFAULT; 5333 } else { 5334 if (copy_to_user(optval, ¶ms, len)) 5335 return -EFAULT; 5336 } 5337 5338 return 0; 5339 5340 } 5341 5342 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5343 char __user *optval, int __user *optlen) 5344 { 5345 struct net *net = sock_net(sk); 5346 struct sctp_hmacalgo __user *p = (void __user *)optval; 5347 struct sctp_hmac_algo_param *hmacs; 5348 __u16 data_len = 0; 5349 u32 num_idents; 5350 5351 if (!net->sctp.auth_enable) 5352 return -EACCES; 5353 5354 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5355 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5356 5357 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5358 return -EINVAL; 5359 5360 len = sizeof(struct sctp_hmacalgo) + data_len; 5361 num_idents = data_len / sizeof(u16); 5362 5363 if (put_user(len, optlen)) 5364 return -EFAULT; 5365 if (put_user(num_idents, &p->shmac_num_idents)) 5366 return -EFAULT; 5367 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5368 return -EFAULT; 5369 return 0; 5370 } 5371 5372 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5373 char __user *optval, int __user *optlen) 5374 { 5375 struct net *net = sock_net(sk); 5376 struct sctp_authkeyid val; 5377 struct sctp_association *asoc; 5378 5379 if (!net->sctp.auth_enable) 5380 return -EACCES; 5381 5382 if (len < sizeof(struct sctp_authkeyid)) 5383 return -EINVAL; 5384 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5385 return -EFAULT; 5386 5387 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5388 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5389 return -EINVAL; 5390 5391 if (asoc) 5392 val.scact_keynumber = asoc->active_key_id; 5393 else 5394 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5395 5396 len = sizeof(struct sctp_authkeyid); 5397 if (put_user(len, optlen)) 5398 return -EFAULT; 5399 if (copy_to_user(optval, &val, len)) 5400 return -EFAULT; 5401 5402 return 0; 5403 } 5404 5405 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5406 char __user *optval, int __user *optlen) 5407 { 5408 struct net *net = sock_net(sk); 5409 struct sctp_authchunks __user *p = (void __user *)optval; 5410 struct sctp_authchunks val; 5411 struct sctp_association *asoc; 5412 struct sctp_chunks_param *ch; 5413 u32 num_chunks = 0; 5414 char __user *to; 5415 5416 if (!net->sctp.auth_enable) 5417 return -EACCES; 5418 5419 if (len < sizeof(struct sctp_authchunks)) 5420 return -EINVAL; 5421 5422 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5423 return -EFAULT; 5424 5425 to = p->gauth_chunks; 5426 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5427 if (!asoc) 5428 return -EINVAL; 5429 5430 ch = asoc->peer.peer_chunks; 5431 if (!ch) 5432 goto num; 5433 5434 /* See if the user provided enough room for all the data */ 5435 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5436 if (len < num_chunks) 5437 return -EINVAL; 5438 5439 if (copy_to_user(to, ch->chunks, num_chunks)) 5440 return -EFAULT; 5441 num: 5442 len = sizeof(struct sctp_authchunks) + num_chunks; 5443 if (put_user(len, optlen)) return -EFAULT; 5444 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5445 return -EFAULT; 5446 return 0; 5447 } 5448 5449 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5450 char __user *optval, int __user *optlen) 5451 { 5452 struct net *net = sock_net(sk); 5453 struct sctp_authchunks __user *p = (void __user *)optval; 5454 struct sctp_authchunks val; 5455 struct sctp_association *asoc; 5456 struct sctp_chunks_param *ch; 5457 u32 num_chunks = 0; 5458 char __user *to; 5459 5460 if (!net->sctp.auth_enable) 5461 return -EACCES; 5462 5463 if (len < sizeof(struct sctp_authchunks)) 5464 return -EINVAL; 5465 5466 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5467 return -EFAULT; 5468 5469 to = p->gauth_chunks; 5470 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5471 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5472 return -EINVAL; 5473 5474 if (asoc) 5475 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5476 else 5477 ch = sctp_sk(sk)->ep->auth_chunk_list; 5478 5479 if (!ch) 5480 goto num; 5481 5482 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5483 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5484 return -EINVAL; 5485 5486 if (copy_to_user(to, ch->chunks, num_chunks)) 5487 return -EFAULT; 5488 num: 5489 len = sizeof(struct sctp_authchunks) + num_chunks; 5490 if (put_user(len, optlen)) 5491 return -EFAULT; 5492 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5493 return -EFAULT; 5494 5495 return 0; 5496 } 5497 5498 /* 5499 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5500 * This option gets the current number of associations that are attached 5501 * to a one-to-many style socket. The option value is an uint32_t. 5502 */ 5503 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5504 char __user *optval, int __user *optlen) 5505 { 5506 struct sctp_sock *sp = sctp_sk(sk); 5507 struct sctp_association *asoc; 5508 u32 val = 0; 5509 5510 if (sctp_style(sk, TCP)) 5511 return -EOPNOTSUPP; 5512 5513 if (len < sizeof(u32)) 5514 return -EINVAL; 5515 5516 len = sizeof(u32); 5517 5518 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5519 val++; 5520 } 5521 5522 if (put_user(len, optlen)) 5523 return -EFAULT; 5524 if (copy_to_user(optval, &val, len)) 5525 return -EFAULT; 5526 5527 return 0; 5528 } 5529 5530 /* 5531 * 8.1.23 SCTP_AUTO_ASCONF 5532 * See the corresponding setsockopt entry as description 5533 */ 5534 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5535 char __user *optval, int __user *optlen) 5536 { 5537 int val = 0; 5538 5539 if (len < sizeof(int)) 5540 return -EINVAL; 5541 5542 len = sizeof(int); 5543 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5544 val = 1; 5545 if (put_user(len, optlen)) 5546 return -EFAULT; 5547 if (copy_to_user(optval, &val, len)) 5548 return -EFAULT; 5549 return 0; 5550 } 5551 5552 /* 5553 * 8.2.6. Get the Current Identifiers of Associations 5554 * (SCTP_GET_ASSOC_ID_LIST) 5555 * 5556 * This option gets the current list of SCTP association identifiers of 5557 * the SCTP associations handled by a one-to-many style socket. 5558 */ 5559 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5560 char __user *optval, int __user *optlen) 5561 { 5562 struct sctp_sock *sp = sctp_sk(sk); 5563 struct sctp_association *asoc; 5564 struct sctp_assoc_ids *ids; 5565 u32 num = 0; 5566 5567 if (sctp_style(sk, TCP)) 5568 return -EOPNOTSUPP; 5569 5570 if (len < sizeof(struct sctp_assoc_ids)) 5571 return -EINVAL; 5572 5573 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5574 num++; 5575 } 5576 5577 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5578 return -EINVAL; 5579 5580 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5581 5582 ids = kmalloc(len, GFP_KERNEL); 5583 if (unlikely(!ids)) 5584 return -ENOMEM; 5585 5586 ids->gaids_number_of_ids = num; 5587 num = 0; 5588 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5589 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5590 } 5591 5592 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5593 kfree(ids); 5594 return -EFAULT; 5595 } 5596 5597 kfree(ids); 5598 return 0; 5599 } 5600 5601 /* 5602 * SCTP_PEER_ADDR_THLDS 5603 * 5604 * This option allows us to fetch the partially failed threshold for one or all 5605 * transports in an association. See Section 6.1 of: 5606 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5607 */ 5608 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5609 char __user *optval, 5610 int len, 5611 int __user *optlen) 5612 { 5613 struct sctp_paddrthlds val; 5614 struct sctp_transport *trans; 5615 struct sctp_association *asoc; 5616 5617 if (len < sizeof(struct sctp_paddrthlds)) 5618 return -EINVAL; 5619 len = sizeof(struct sctp_paddrthlds); 5620 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5621 return -EFAULT; 5622 5623 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5624 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5625 if (!asoc) 5626 return -ENOENT; 5627 5628 val.spt_pathpfthld = asoc->pf_retrans; 5629 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5630 } else { 5631 trans = sctp_addr_id2transport(sk, &val.spt_address, 5632 val.spt_assoc_id); 5633 if (!trans) 5634 return -ENOENT; 5635 5636 val.spt_pathmaxrxt = trans->pathmaxrxt; 5637 val.spt_pathpfthld = trans->pf_retrans; 5638 } 5639 5640 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5641 return -EFAULT; 5642 5643 return 0; 5644 } 5645 5646 /* 5647 * SCTP_GET_ASSOC_STATS 5648 * 5649 * This option retrieves local per endpoint statistics. It is modeled 5650 * after OpenSolaris' implementation 5651 */ 5652 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5653 char __user *optval, 5654 int __user *optlen) 5655 { 5656 struct sctp_assoc_stats sas; 5657 struct sctp_association *asoc = NULL; 5658 5659 /* User must provide at least the assoc id */ 5660 if (len < sizeof(sctp_assoc_t)) 5661 return -EINVAL; 5662 5663 /* Allow the struct to grow and fill in as much as possible */ 5664 len = min_t(size_t, len, sizeof(sas)); 5665 5666 if (copy_from_user(&sas, optval, len)) 5667 return -EFAULT; 5668 5669 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5670 if (!asoc) 5671 return -EINVAL; 5672 5673 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5674 sas.sas_gapcnt = asoc->stats.gapcnt; 5675 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5676 sas.sas_osacks = asoc->stats.osacks; 5677 sas.sas_isacks = asoc->stats.isacks; 5678 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5679 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5680 sas.sas_oodchunks = asoc->stats.oodchunks; 5681 sas.sas_iodchunks = asoc->stats.iodchunks; 5682 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5683 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5684 sas.sas_idupchunks = asoc->stats.idupchunks; 5685 sas.sas_opackets = asoc->stats.opackets; 5686 sas.sas_ipackets = asoc->stats.ipackets; 5687 5688 /* New high max rto observed, will return 0 if not a single 5689 * RTO update took place. obs_rto_ipaddr will be bogus 5690 * in such a case 5691 */ 5692 sas.sas_maxrto = asoc->stats.max_obs_rto; 5693 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5694 sizeof(struct sockaddr_storage)); 5695 5696 /* Mark beginning of a new observation period */ 5697 asoc->stats.max_obs_rto = asoc->rto_min; 5698 5699 if (put_user(len, optlen)) 5700 return -EFAULT; 5701 5702 SCTP_DEBUG_PRINTK("sctp_getsockopt_assoc_stat(%d): %d\n", 5703 len, sas.sas_assoc_id); 5704 5705 if (copy_to_user(optval, &sas, len)) 5706 return -EFAULT; 5707 5708 return 0; 5709 } 5710 5711 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5712 char __user *optval, int __user *optlen) 5713 { 5714 int retval = 0; 5715 int len; 5716 5717 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5718 sk, optname); 5719 5720 /* I can hardly begin to describe how wrong this is. This is 5721 * so broken as to be worse than useless. The API draft 5722 * REALLY is NOT helpful here... I am not convinced that the 5723 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5724 * are at all well-founded. 5725 */ 5726 if (level != SOL_SCTP) { 5727 struct sctp_af *af = sctp_sk(sk)->pf->af; 5728 5729 retval = af->getsockopt(sk, level, optname, optval, optlen); 5730 return retval; 5731 } 5732 5733 if (get_user(len, optlen)) 5734 return -EFAULT; 5735 5736 sctp_lock_sock(sk); 5737 5738 switch (optname) { 5739 case SCTP_STATUS: 5740 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5741 break; 5742 case SCTP_DISABLE_FRAGMENTS: 5743 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5744 optlen); 5745 break; 5746 case SCTP_EVENTS: 5747 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5748 break; 5749 case SCTP_AUTOCLOSE: 5750 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5751 break; 5752 case SCTP_SOCKOPT_PEELOFF: 5753 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5754 break; 5755 case SCTP_PEER_ADDR_PARAMS: 5756 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5757 optlen); 5758 break; 5759 case SCTP_DELAYED_SACK: 5760 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5761 optlen); 5762 break; 5763 case SCTP_INITMSG: 5764 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5765 break; 5766 case SCTP_GET_PEER_ADDRS: 5767 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5768 optlen); 5769 break; 5770 case SCTP_GET_LOCAL_ADDRS: 5771 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5772 optlen); 5773 break; 5774 case SCTP_SOCKOPT_CONNECTX3: 5775 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5776 break; 5777 case SCTP_DEFAULT_SEND_PARAM: 5778 retval = sctp_getsockopt_default_send_param(sk, len, 5779 optval, optlen); 5780 break; 5781 case SCTP_PRIMARY_ADDR: 5782 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5783 break; 5784 case SCTP_NODELAY: 5785 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5786 break; 5787 case SCTP_RTOINFO: 5788 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5789 break; 5790 case SCTP_ASSOCINFO: 5791 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5792 break; 5793 case SCTP_I_WANT_MAPPED_V4_ADDR: 5794 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5795 break; 5796 case SCTP_MAXSEG: 5797 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5798 break; 5799 case SCTP_GET_PEER_ADDR_INFO: 5800 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5801 optlen); 5802 break; 5803 case SCTP_ADAPTATION_LAYER: 5804 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5805 optlen); 5806 break; 5807 case SCTP_CONTEXT: 5808 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5809 break; 5810 case SCTP_FRAGMENT_INTERLEAVE: 5811 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5812 optlen); 5813 break; 5814 case SCTP_PARTIAL_DELIVERY_POINT: 5815 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5816 optlen); 5817 break; 5818 case SCTP_MAX_BURST: 5819 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5820 break; 5821 case SCTP_AUTH_KEY: 5822 case SCTP_AUTH_CHUNK: 5823 case SCTP_AUTH_DELETE_KEY: 5824 retval = -EOPNOTSUPP; 5825 break; 5826 case SCTP_HMAC_IDENT: 5827 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5828 break; 5829 case SCTP_AUTH_ACTIVE_KEY: 5830 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5831 break; 5832 case SCTP_PEER_AUTH_CHUNKS: 5833 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5834 optlen); 5835 break; 5836 case SCTP_LOCAL_AUTH_CHUNKS: 5837 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5838 optlen); 5839 break; 5840 case SCTP_GET_ASSOC_NUMBER: 5841 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5842 break; 5843 case SCTP_GET_ASSOC_ID_LIST: 5844 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5845 break; 5846 case SCTP_AUTO_ASCONF: 5847 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5848 break; 5849 case SCTP_PEER_ADDR_THLDS: 5850 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5851 break; 5852 case SCTP_GET_ASSOC_STATS: 5853 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 5854 break; 5855 default: 5856 retval = -ENOPROTOOPT; 5857 break; 5858 } 5859 5860 sctp_release_sock(sk); 5861 return retval; 5862 } 5863 5864 static void sctp_hash(struct sock *sk) 5865 { 5866 /* STUB */ 5867 } 5868 5869 static void sctp_unhash(struct sock *sk) 5870 { 5871 /* STUB */ 5872 } 5873 5874 /* Check if port is acceptable. Possibly find first available port. 5875 * 5876 * The port hash table (contained in the 'global' SCTP protocol storage 5877 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5878 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5879 * list (the list number is the port number hashed out, so as you 5880 * would expect from a hash function, all the ports in a given list have 5881 * such a number that hashes out to the same list number; you were 5882 * expecting that, right?); so each list has a set of ports, with a 5883 * link to the socket (struct sock) that uses it, the port number and 5884 * a fastreuse flag (FIXME: NPI ipg). 5885 */ 5886 static struct sctp_bind_bucket *sctp_bucket_create( 5887 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 5888 5889 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5890 { 5891 struct sctp_bind_hashbucket *head; /* hash list */ 5892 struct sctp_bind_bucket *pp; 5893 unsigned short snum; 5894 int ret; 5895 5896 snum = ntohs(addr->v4.sin_port); 5897 5898 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5899 sctp_local_bh_disable(); 5900 5901 if (snum == 0) { 5902 /* Search for an available port. */ 5903 int low, high, remaining, index; 5904 unsigned int rover; 5905 5906 inet_get_local_port_range(&low, &high); 5907 remaining = (high - low) + 1; 5908 rover = net_random() % remaining + low; 5909 5910 do { 5911 rover++; 5912 if ((rover < low) || (rover > high)) 5913 rover = low; 5914 if (inet_is_reserved_local_port(rover)) 5915 continue; 5916 index = sctp_phashfn(sock_net(sk), rover); 5917 head = &sctp_port_hashtable[index]; 5918 sctp_spin_lock(&head->lock); 5919 sctp_for_each_hentry(pp, &head->chain) 5920 if ((pp->port == rover) && 5921 net_eq(sock_net(sk), pp->net)) 5922 goto next; 5923 break; 5924 next: 5925 sctp_spin_unlock(&head->lock); 5926 } while (--remaining > 0); 5927 5928 /* Exhausted local port range during search? */ 5929 ret = 1; 5930 if (remaining <= 0) 5931 goto fail; 5932 5933 /* OK, here is the one we will use. HEAD (the port 5934 * hash table list entry) is non-NULL and we hold it's 5935 * mutex. 5936 */ 5937 snum = rover; 5938 } else { 5939 /* We are given an specific port number; we verify 5940 * that it is not being used. If it is used, we will 5941 * exahust the search in the hash list corresponding 5942 * to the port number (snum) - we detect that with the 5943 * port iterator, pp being NULL. 5944 */ 5945 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 5946 sctp_spin_lock(&head->lock); 5947 sctp_for_each_hentry(pp, &head->chain) { 5948 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 5949 goto pp_found; 5950 } 5951 } 5952 pp = NULL; 5953 goto pp_not_found; 5954 pp_found: 5955 if (!hlist_empty(&pp->owner)) { 5956 /* We had a port hash table hit - there is an 5957 * available port (pp != NULL) and it is being 5958 * used by other socket (pp->owner not empty); that other 5959 * socket is going to be sk2. 5960 */ 5961 int reuse = sk->sk_reuse; 5962 struct sock *sk2; 5963 5964 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5965 if (pp->fastreuse && sk->sk_reuse && 5966 sk->sk_state != SCTP_SS_LISTENING) 5967 goto success; 5968 5969 /* Run through the list of sockets bound to the port 5970 * (pp->port) [via the pointers bind_next and 5971 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5972 * we get the endpoint they describe and run through 5973 * the endpoint's list of IP (v4 or v6) addresses, 5974 * comparing each of the addresses with the address of 5975 * the socket sk. If we find a match, then that means 5976 * that this port/socket (sk) combination are already 5977 * in an endpoint. 5978 */ 5979 sk_for_each_bound(sk2, &pp->owner) { 5980 struct sctp_endpoint *ep2; 5981 ep2 = sctp_sk(sk2)->ep; 5982 5983 if (sk == sk2 || 5984 (reuse && sk2->sk_reuse && 5985 sk2->sk_state != SCTP_SS_LISTENING)) 5986 continue; 5987 5988 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5989 sctp_sk(sk2), sctp_sk(sk))) { 5990 ret = (long)sk2; 5991 goto fail_unlock; 5992 } 5993 } 5994 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5995 } 5996 pp_not_found: 5997 /* If there was a hash table miss, create a new port. */ 5998 ret = 1; 5999 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6000 goto fail_unlock; 6001 6002 /* In either case (hit or miss), make sure fastreuse is 1 only 6003 * if sk->sk_reuse is too (that is, if the caller requested 6004 * SO_REUSEADDR on this socket -sk-). 6005 */ 6006 if (hlist_empty(&pp->owner)) { 6007 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6008 pp->fastreuse = 1; 6009 else 6010 pp->fastreuse = 0; 6011 } else if (pp->fastreuse && 6012 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6013 pp->fastreuse = 0; 6014 6015 /* We are set, so fill up all the data in the hash table 6016 * entry, tie the socket list information with the rest of the 6017 * sockets FIXME: Blurry, NPI (ipg). 6018 */ 6019 success: 6020 if (!sctp_sk(sk)->bind_hash) { 6021 inet_sk(sk)->inet_num = snum; 6022 sk_add_bind_node(sk, &pp->owner); 6023 sctp_sk(sk)->bind_hash = pp; 6024 } 6025 ret = 0; 6026 6027 fail_unlock: 6028 sctp_spin_unlock(&head->lock); 6029 6030 fail: 6031 sctp_local_bh_enable(); 6032 return ret; 6033 } 6034 6035 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6036 * port is requested. 6037 */ 6038 static int sctp_get_port(struct sock *sk, unsigned short snum) 6039 { 6040 long ret; 6041 union sctp_addr addr; 6042 struct sctp_af *af = sctp_sk(sk)->pf->af; 6043 6044 /* Set up a dummy address struct from the sk. */ 6045 af->from_sk(&addr, sk); 6046 addr.v4.sin_port = htons(snum); 6047 6048 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6049 ret = sctp_get_port_local(sk, &addr); 6050 6051 return ret ? 1 : 0; 6052 } 6053 6054 /* 6055 * Move a socket to LISTENING state. 6056 */ 6057 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 6058 { 6059 struct sctp_sock *sp = sctp_sk(sk); 6060 struct sctp_endpoint *ep = sp->ep; 6061 struct crypto_hash *tfm = NULL; 6062 char alg[32]; 6063 6064 /* Allocate HMAC for generating cookie. */ 6065 if (!sp->hmac && sp->sctp_hmac_alg) { 6066 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6067 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6068 if (IS_ERR(tfm)) { 6069 net_info_ratelimited("failed to load transform for %s: %ld\n", 6070 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6071 return -ENOSYS; 6072 } 6073 sctp_sk(sk)->hmac = tfm; 6074 } 6075 6076 /* 6077 * If a bind() or sctp_bindx() is not called prior to a listen() 6078 * call that allows new associations to be accepted, the system 6079 * picks an ephemeral port and will choose an address set equivalent 6080 * to binding with a wildcard address. 6081 * 6082 * This is not currently spelled out in the SCTP sockets 6083 * extensions draft, but follows the practice as seen in TCP 6084 * sockets. 6085 * 6086 */ 6087 sk->sk_state = SCTP_SS_LISTENING; 6088 if (!ep->base.bind_addr.port) { 6089 if (sctp_autobind(sk)) 6090 return -EAGAIN; 6091 } else { 6092 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6093 sk->sk_state = SCTP_SS_CLOSED; 6094 return -EADDRINUSE; 6095 } 6096 } 6097 6098 sk->sk_max_ack_backlog = backlog; 6099 sctp_hash_endpoint(ep); 6100 return 0; 6101 } 6102 6103 /* 6104 * 4.1.3 / 5.1.3 listen() 6105 * 6106 * By default, new associations are not accepted for UDP style sockets. 6107 * An application uses listen() to mark a socket as being able to 6108 * accept new associations. 6109 * 6110 * On TCP style sockets, applications use listen() to ready the SCTP 6111 * endpoint for accepting inbound associations. 6112 * 6113 * On both types of endpoints a backlog of '0' disables listening. 6114 * 6115 * Move a socket to LISTENING state. 6116 */ 6117 int sctp_inet_listen(struct socket *sock, int backlog) 6118 { 6119 struct sock *sk = sock->sk; 6120 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6121 int err = -EINVAL; 6122 6123 if (unlikely(backlog < 0)) 6124 return err; 6125 6126 sctp_lock_sock(sk); 6127 6128 /* Peeled-off sockets are not allowed to listen(). */ 6129 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6130 goto out; 6131 6132 if (sock->state != SS_UNCONNECTED) 6133 goto out; 6134 6135 /* If backlog is zero, disable listening. */ 6136 if (!backlog) { 6137 if (sctp_sstate(sk, CLOSED)) 6138 goto out; 6139 6140 err = 0; 6141 sctp_unhash_endpoint(ep); 6142 sk->sk_state = SCTP_SS_CLOSED; 6143 if (sk->sk_reuse) 6144 sctp_sk(sk)->bind_hash->fastreuse = 1; 6145 goto out; 6146 } 6147 6148 /* If we are already listening, just update the backlog */ 6149 if (sctp_sstate(sk, LISTENING)) 6150 sk->sk_max_ack_backlog = backlog; 6151 else { 6152 err = sctp_listen_start(sk, backlog); 6153 if (err) 6154 goto out; 6155 } 6156 6157 err = 0; 6158 out: 6159 sctp_release_sock(sk); 6160 return err; 6161 } 6162 6163 /* 6164 * This function is done by modeling the current datagram_poll() and the 6165 * tcp_poll(). Note that, based on these implementations, we don't 6166 * lock the socket in this function, even though it seems that, 6167 * ideally, locking or some other mechanisms can be used to ensure 6168 * the integrity of the counters (sndbuf and wmem_alloc) used 6169 * in this place. We assume that we don't need locks either until proven 6170 * otherwise. 6171 * 6172 * Another thing to note is that we include the Async I/O support 6173 * here, again, by modeling the current TCP/UDP code. We don't have 6174 * a good way to test with it yet. 6175 */ 6176 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6177 { 6178 struct sock *sk = sock->sk; 6179 struct sctp_sock *sp = sctp_sk(sk); 6180 unsigned int mask; 6181 6182 poll_wait(file, sk_sleep(sk), wait); 6183 6184 /* A TCP-style listening socket becomes readable when the accept queue 6185 * is not empty. 6186 */ 6187 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6188 return (!list_empty(&sp->ep->asocs)) ? 6189 (POLLIN | POLLRDNORM) : 0; 6190 6191 mask = 0; 6192 6193 /* Is there any exceptional events? */ 6194 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6195 mask |= POLLERR | 6196 sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0; 6197 if (sk->sk_shutdown & RCV_SHUTDOWN) 6198 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6199 if (sk->sk_shutdown == SHUTDOWN_MASK) 6200 mask |= POLLHUP; 6201 6202 /* Is it readable? Reconsider this code with TCP-style support. */ 6203 if (!skb_queue_empty(&sk->sk_receive_queue)) 6204 mask |= POLLIN | POLLRDNORM; 6205 6206 /* The association is either gone or not ready. */ 6207 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6208 return mask; 6209 6210 /* Is it writable? */ 6211 if (sctp_writeable(sk)) { 6212 mask |= POLLOUT | POLLWRNORM; 6213 } else { 6214 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6215 /* 6216 * Since the socket is not locked, the buffer 6217 * might be made available after the writeable check and 6218 * before the bit is set. This could cause a lost I/O 6219 * signal. tcp_poll() has a race breaker for this race 6220 * condition. Based on their implementation, we put 6221 * in the following code to cover it as well. 6222 */ 6223 if (sctp_writeable(sk)) 6224 mask |= POLLOUT | POLLWRNORM; 6225 } 6226 return mask; 6227 } 6228 6229 /******************************************************************** 6230 * 2nd Level Abstractions 6231 ********************************************************************/ 6232 6233 static struct sctp_bind_bucket *sctp_bucket_create( 6234 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6235 { 6236 struct sctp_bind_bucket *pp; 6237 6238 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6239 if (pp) { 6240 SCTP_DBG_OBJCNT_INC(bind_bucket); 6241 pp->port = snum; 6242 pp->fastreuse = 0; 6243 INIT_HLIST_HEAD(&pp->owner); 6244 pp->net = net; 6245 hlist_add_head(&pp->node, &head->chain); 6246 } 6247 return pp; 6248 } 6249 6250 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6251 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6252 { 6253 if (pp && hlist_empty(&pp->owner)) { 6254 __hlist_del(&pp->node); 6255 kmem_cache_free(sctp_bucket_cachep, pp); 6256 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6257 } 6258 } 6259 6260 /* Release this socket's reference to a local port. */ 6261 static inline void __sctp_put_port(struct sock *sk) 6262 { 6263 struct sctp_bind_hashbucket *head = 6264 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6265 inet_sk(sk)->inet_num)]; 6266 struct sctp_bind_bucket *pp; 6267 6268 sctp_spin_lock(&head->lock); 6269 pp = sctp_sk(sk)->bind_hash; 6270 __sk_del_bind_node(sk); 6271 sctp_sk(sk)->bind_hash = NULL; 6272 inet_sk(sk)->inet_num = 0; 6273 sctp_bucket_destroy(pp); 6274 sctp_spin_unlock(&head->lock); 6275 } 6276 6277 void sctp_put_port(struct sock *sk) 6278 { 6279 sctp_local_bh_disable(); 6280 __sctp_put_port(sk); 6281 sctp_local_bh_enable(); 6282 } 6283 6284 /* 6285 * The system picks an ephemeral port and choose an address set equivalent 6286 * to binding with a wildcard address. 6287 * One of those addresses will be the primary address for the association. 6288 * This automatically enables the multihoming capability of SCTP. 6289 */ 6290 static int sctp_autobind(struct sock *sk) 6291 { 6292 union sctp_addr autoaddr; 6293 struct sctp_af *af; 6294 __be16 port; 6295 6296 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6297 af = sctp_sk(sk)->pf->af; 6298 6299 port = htons(inet_sk(sk)->inet_num); 6300 af->inaddr_any(&autoaddr, port); 6301 6302 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6303 } 6304 6305 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6306 * 6307 * From RFC 2292 6308 * 4.2 The cmsghdr Structure * 6309 * 6310 * When ancillary data is sent or received, any number of ancillary data 6311 * objects can be specified by the msg_control and msg_controllen members of 6312 * the msghdr structure, because each object is preceded by 6313 * a cmsghdr structure defining the object's length (the cmsg_len member). 6314 * Historically Berkeley-derived implementations have passed only one object 6315 * at a time, but this API allows multiple objects to be 6316 * passed in a single call to sendmsg() or recvmsg(). The following example 6317 * shows two ancillary data objects in a control buffer. 6318 * 6319 * |<--------------------------- msg_controllen -------------------------->| 6320 * | | 6321 * 6322 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6323 * 6324 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6325 * | | | 6326 * 6327 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6328 * 6329 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6330 * | | | | | 6331 * 6332 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6333 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6334 * 6335 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6336 * 6337 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6338 * ^ 6339 * | 6340 * 6341 * msg_control 6342 * points here 6343 */ 6344 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6345 sctp_cmsgs_t *cmsgs) 6346 { 6347 struct cmsghdr *cmsg; 6348 struct msghdr *my_msg = (struct msghdr *)msg; 6349 6350 for (cmsg = CMSG_FIRSTHDR(msg); 6351 cmsg != NULL; 6352 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6353 if (!CMSG_OK(my_msg, cmsg)) 6354 return -EINVAL; 6355 6356 /* Should we parse this header or ignore? */ 6357 if (cmsg->cmsg_level != IPPROTO_SCTP) 6358 continue; 6359 6360 /* Strictly check lengths following example in SCM code. */ 6361 switch (cmsg->cmsg_type) { 6362 case SCTP_INIT: 6363 /* SCTP Socket API Extension 6364 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6365 * 6366 * This cmsghdr structure provides information for 6367 * initializing new SCTP associations with sendmsg(). 6368 * The SCTP_INITMSG socket option uses this same data 6369 * structure. This structure is not used for 6370 * recvmsg(). 6371 * 6372 * cmsg_level cmsg_type cmsg_data[] 6373 * ------------ ------------ ---------------------- 6374 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6375 */ 6376 if (cmsg->cmsg_len != 6377 CMSG_LEN(sizeof(struct sctp_initmsg))) 6378 return -EINVAL; 6379 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6380 break; 6381 6382 case SCTP_SNDRCV: 6383 /* SCTP Socket API Extension 6384 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6385 * 6386 * This cmsghdr structure specifies SCTP options for 6387 * sendmsg() and describes SCTP header information 6388 * about a received message through recvmsg(). 6389 * 6390 * cmsg_level cmsg_type cmsg_data[] 6391 * ------------ ------------ ---------------------- 6392 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6393 */ 6394 if (cmsg->cmsg_len != 6395 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6396 return -EINVAL; 6397 6398 cmsgs->info = 6399 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6400 6401 /* Minimally, validate the sinfo_flags. */ 6402 if (cmsgs->info->sinfo_flags & 6403 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6404 SCTP_ABORT | SCTP_EOF)) 6405 return -EINVAL; 6406 break; 6407 6408 default: 6409 return -EINVAL; 6410 } 6411 } 6412 return 0; 6413 } 6414 6415 /* 6416 * Wait for a packet.. 6417 * Note: This function is the same function as in core/datagram.c 6418 * with a few modifications to make lksctp work. 6419 */ 6420 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6421 { 6422 int error; 6423 DEFINE_WAIT(wait); 6424 6425 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6426 6427 /* Socket errors? */ 6428 error = sock_error(sk); 6429 if (error) 6430 goto out; 6431 6432 if (!skb_queue_empty(&sk->sk_receive_queue)) 6433 goto ready; 6434 6435 /* Socket shut down? */ 6436 if (sk->sk_shutdown & RCV_SHUTDOWN) 6437 goto out; 6438 6439 /* Sequenced packets can come disconnected. If so we report the 6440 * problem. 6441 */ 6442 error = -ENOTCONN; 6443 6444 /* Is there a good reason to think that we may receive some data? */ 6445 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6446 goto out; 6447 6448 /* Handle signals. */ 6449 if (signal_pending(current)) 6450 goto interrupted; 6451 6452 /* Let another process have a go. Since we are going to sleep 6453 * anyway. Note: This may cause odd behaviors if the message 6454 * does not fit in the user's buffer, but this seems to be the 6455 * only way to honor MSG_DONTWAIT realistically. 6456 */ 6457 sctp_release_sock(sk); 6458 *timeo_p = schedule_timeout(*timeo_p); 6459 sctp_lock_sock(sk); 6460 6461 ready: 6462 finish_wait(sk_sleep(sk), &wait); 6463 return 0; 6464 6465 interrupted: 6466 error = sock_intr_errno(*timeo_p); 6467 6468 out: 6469 finish_wait(sk_sleep(sk), &wait); 6470 *err = error; 6471 return error; 6472 } 6473 6474 /* Receive a datagram. 6475 * Note: This is pretty much the same routine as in core/datagram.c 6476 * with a few changes to make lksctp work. 6477 */ 6478 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6479 int noblock, int *err) 6480 { 6481 int error; 6482 struct sk_buff *skb; 6483 long timeo; 6484 6485 timeo = sock_rcvtimeo(sk, noblock); 6486 6487 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6488 timeo, MAX_SCHEDULE_TIMEOUT); 6489 6490 do { 6491 /* Again only user level code calls this function, 6492 * so nothing interrupt level 6493 * will suddenly eat the receive_queue. 6494 * 6495 * Look at current nfs client by the way... 6496 * However, this function was correct in any case. 8) 6497 */ 6498 if (flags & MSG_PEEK) { 6499 spin_lock_bh(&sk->sk_receive_queue.lock); 6500 skb = skb_peek(&sk->sk_receive_queue); 6501 if (skb) 6502 atomic_inc(&skb->users); 6503 spin_unlock_bh(&sk->sk_receive_queue.lock); 6504 } else { 6505 skb = skb_dequeue(&sk->sk_receive_queue); 6506 } 6507 6508 if (skb) 6509 return skb; 6510 6511 /* Caller is allowed not to check sk->sk_err before calling. */ 6512 error = sock_error(sk); 6513 if (error) 6514 goto no_packet; 6515 6516 if (sk->sk_shutdown & RCV_SHUTDOWN) 6517 break; 6518 6519 /* User doesn't want to wait. */ 6520 error = -EAGAIN; 6521 if (!timeo) 6522 goto no_packet; 6523 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6524 6525 return NULL; 6526 6527 no_packet: 6528 *err = error; 6529 return NULL; 6530 } 6531 6532 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6533 static void __sctp_write_space(struct sctp_association *asoc) 6534 { 6535 struct sock *sk = asoc->base.sk; 6536 struct socket *sock = sk->sk_socket; 6537 6538 if ((sctp_wspace(asoc) > 0) && sock) { 6539 if (waitqueue_active(&asoc->wait)) 6540 wake_up_interruptible(&asoc->wait); 6541 6542 if (sctp_writeable(sk)) { 6543 wait_queue_head_t *wq = sk_sleep(sk); 6544 6545 if (wq && waitqueue_active(wq)) 6546 wake_up_interruptible(wq); 6547 6548 /* Note that we try to include the Async I/O support 6549 * here by modeling from the current TCP/UDP code. 6550 * We have not tested with it yet. 6551 */ 6552 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6553 sock_wake_async(sock, 6554 SOCK_WAKE_SPACE, POLL_OUT); 6555 } 6556 } 6557 } 6558 6559 /* Do accounting for the sndbuf space. 6560 * Decrement the used sndbuf space of the corresponding association by the 6561 * data size which was just transmitted(freed). 6562 */ 6563 static void sctp_wfree(struct sk_buff *skb) 6564 { 6565 struct sctp_association *asoc; 6566 struct sctp_chunk *chunk; 6567 struct sock *sk; 6568 6569 /* Get the saved chunk pointer. */ 6570 chunk = *((struct sctp_chunk **)(skb->cb)); 6571 asoc = chunk->asoc; 6572 sk = asoc->base.sk; 6573 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6574 sizeof(struct sk_buff) + 6575 sizeof(struct sctp_chunk); 6576 6577 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6578 6579 /* 6580 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6581 */ 6582 sk->sk_wmem_queued -= skb->truesize; 6583 sk_mem_uncharge(sk, skb->truesize); 6584 6585 sock_wfree(skb); 6586 __sctp_write_space(asoc); 6587 6588 sctp_association_put(asoc); 6589 } 6590 6591 /* Do accounting for the receive space on the socket. 6592 * Accounting for the association is done in ulpevent.c 6593 * We set this as a destructor for the cloned data skbs so that 6594 * accounting is done at the correct time. 6595 */ 6596 void sctp_sock_rfree(struct sk_buff *skb) 6597 { 6598 struct sock *sk = skb->sk; 6599 struct sctp_ulpevent *event = sctp_skb2event(skb); 6600 6601 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6602 6603 /* 6604 * Mimic the behavior of sock_rfree 6605 */ 6606 sk_mem_uncharge(sk, event->rmem_len); 6607 } 6608 6609 6610 /* Helper function to wait for space in the sndbuf. */ 6611 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6612 size_t msg_len) 6613 { 6614 struct sock *sk = asoc->base.sk; 6615 int err = 0; 6616 long current_timeo = *timeo_p; 6617 DEFINE_WAIT(wait); 6618 6619 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6620 asoc, (long)(*timeo_p), msg_len); 6621 6622 /* Increment the association's refcnt. */ 6623 sctp_association_hold(asoc); 6624 6625 /* Wait on the association specific sndbuf space. */ 6626 for (;;) { 6627 prepare_to_wait_exclusive(&asoc->wait, &wait, 6628 TASK_INTERRUPTIBLE); 6629 if (!*timeo_p) 6630 goto do_nonblock; 6631 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6632 asoc->base.dead) 6633 goto do_error; 6634 if (signal_pending(current)) 6635 goto do_interrupted; 6636 if (msg_len <= sctp_wspace(asoc)) 6637 break; 6638 6639 /* Let another process have a go. Since we are going 6640 * to sleep anyway. 6641 */ 6642 sctp_release_sock(sk); 6643 current_timeo = schedule_timeout(current_timeo); 6644 BUG_ON(sk != asoc->base.sk); 6645 sctp_lock_sock(sk); 6646 6647 *timeo_p = current_timeo; 6648 } 6649 6650 out: 6651 finish_wait(&asoc->wait, &wait); 6652 6653 /* Release the association's refcnt. */ 6654 sctp_association_put(asoc); 6655 6656 return err; 6657 6658 do_error: 6659 err = -EPIPE; 6660 goto out; 6661 6662 do_interrupted: 6663 err = sock_intr_errno(*timeo_p); 6664 goto out; 6665 6666 do_nonblock: 6667 err = -EAGAIN; 6668 goto out; 6669 } 6670 6671 void sctp_data_ready(struct sock *sk, int len) 6672 { 6673 struct socket_wq *wq; 6674 6675 rcu_read_lock(); 6676 wq = rcu_dereference(sk->sk_wq); 6677 if (wq_has_sleeper(wq)) 6678 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6679 POLLRDNORM | POLLRDBAND); 6680 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6681 rcu_read_unlock(); 6682 } 6683 6684 /* If socket sndbuf has changed, wake up all per association waiters. */ 6685 void sctp_write_space(struct sock *sk) 6686 { 6687 struct sctp_association *asoc; 6688 6689 /* Wake up the tasks in each wait queue. */ 6690 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6691 __sctp_write_space(asoc); 6692 } 6693 } 6694 6695 /* Is there any sndbuf space available on the socket? 6696 * 6697 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6698 * associations on the same socket. For a UDP-style socket with 6699 * multiple associations, it is possible for it to be "unwriteable" 6700 * prematurely. I assume that this is acceptable because 6701 * a premature "unwriteable" is better than an accidental "writeable" which 6702 * would cause an unwanted block under certain circumstances. For the 1-1 6703 * UDP-style sockets or TCP-style sockets, this code should work. 6704 * - Daisy 6705 */ 6706 static int sctp_writeable(struct sock *sk) 6707 { 6708 int amt = 0; 6709 6710 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6711 if (amt < 0) 6712 amt = 0; 6713 return amt; 6714 } 6715 6716 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6717 * returns immediately with EINPROGRESS. 6718 */ 6719 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6720 { 6721 struct sock *sk = asoc->base.sk; 6722 int err = 0; 6723 long current_timeo = *timeo_p; 6724 DEFINE_WAIT(wait); 6725 6726 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6727 (long)(*timeo_p)); 6728 6729 /* Increment the association's refcnt. */ 6730 sctp_association_hold(asoc); 6731 6732 for (;;) { 6733 prepare_to_wait_exclusive(&asoc->wait, &wait, 6734 TASK_INTERRUPTIBLE); 6735 if (!*timeo_p) 6736 goto do_nonblock; 6737 if (sk->sk_shutdown & RCV_SHUTDOWN) 6738 break; 6739 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6740 asoc->base.dead) 6741 goto do_error; 6742 if (signal_pending(current)) 6743 goto do_interrupted; 6744 6745 if (sctp_state(asoc, ESTABLISHED)) 6746 break; 6747 6748 /* Let another process have a go. Since we are going 6749 * to sleep anyway. 6750 */ 6751 sctp_release_sock(sk); 6752 current_timeo = schedule_timeout(current_timeo); 6753 sctp_lock_sock(sk); 6754 6755 *timeo_p = current_timeo; 6756 } 6757 6758 out: 6759 finish_wait(&asoc->wait, &wait); 6760 6761 /* Release the association's refcnt. */ 6762 sctp_association_put(asoc); 6763 6764 return err; 6765 6766 do_error: 6767 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6768 err = -ETIMEDOUT; 6769 else 6770 err = -ECONNREFUSED; 6771 goto out; 6772 6773 do_interrupted: 6774 err = sock_intr_errno(*timeo_p); 6775 goto out; 6776 6777 do_nonblock: 6778 err = -EINPROGRESS; 6779 goto out; 6780 } 6781 6782 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6783 { 6784 struct sctp_endpoint *ep; 6785 int err = 0; 6786 DEFINE_WAIT(wait); 6787 6788 ep = sctp_sk(sk)->ep; 6789 6790 6791 for (;;) { 6792 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6793 TASK_INTERRUPTIBLE); 6794 6795 if (list_empty(&ep->asocs)) { 6796 sctp_release_sock(sk); 6797 timeo = schedule_timeout(timeo); 6798 sctp_lock_sock(sk); 6799 } 6800 6801 err = -EINVAL; 6802 if (!sctp_sstate(sk, LISTENING)) 6803 break; 6804 6805 err = 0; 6806 if (!list_empty(&ep->asocs)) 6807 break; 6808 6809 err = sock_intr_errno(timeo); 6810 if (signal_pending(current)) 6811 break; 6812 6813 err = -EAGAIN; 6814 if (!timeo) 6815 break; 6816 } 6817 6818 finish_wait(sk_sleep(sk), &wait); 6819 6820 return err; 6821 } 6822 6823 static void sctp_wait_for_close(struct sock *sk, long timeout) 6824 { 6825 DEFINE_WAIT(wait); 6826 6827 do { 6828 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6829 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6830 break; 6831 sctp_release_sock(sk); 6832 timeout = schedule_timeout(timeout); 6833 sctp_lock_sock(sk); 6834 } while (!signal_pending(current) && timeout); 6835 6836 finish_wait(sk_sleep(sk), &wait); 6837 } 6838 6839 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6840 { 6841 struct sk_buff *frag; 6842 6843 if (!skb->data_len) 6844 goto done; 6845 6846 /* Don't forget the fragments. */ 6847 skb_walk_frags(skb, frag) 6848 sctp_skb_set_owner_r_frag(frag, sk); 6849 6850 done: 6851 sctp_skb_set_owner_r(skb, sk); 6852 } 6853 6854 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6855 struct sctp_association *asoc) 6856 { 6857 struct inet_sock *inet = inet_sk(sk); 6858 struct inet_sock *newinet; 6859 6860 newsk->sk_type = sk->sk_type; 6861 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6862 newsk->sk_flags = sk->sk_flags; 6863 newsk->sk_no_check = sk->sk_no_check; 6864 newsk->sk_reuse = sk->sk_reuse; 6865 6866 newsk->sk_shutdown = sk->sk_shutdown; 6867 newsk->sk_destruct = inet_sock_destruct; 6868 newsk->sk_family = sk->sk_family; 6869 newsk->sk_protocol = IPPROTO_SCTP; 6870 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6871 newsk->sk_sndbuf = sk->sk_sndbuf; 6872 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6873 newsk->sk_lingertime = sk->sk_lingertime; 6874 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6875 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6876 6877 newinet = inet_sk(newsk); 6878 6879 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6880 * getsockname() and getpeername() 6881 */ 6882 newinet->inet_sport = inet->inet_sport; 6883 newinet->inet_saddr = inet->inet_saddr; 6884 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6885 newinet->inet_dport = htons(asoc->peer.port); 6886 newinet->pmtudisc = inet->pmtudisc; 6887 newinet->inet_id = asoc->next_tsn ^ jiffies; 6888 6889 newinet->uc_ttl = inet->uc_ttl; 6890 newinet->mc_loop = 1; 6891 newinet->mc_ttl = 1; 6892 newinet->mc_index = 0; 6893 newinet->mc_list = NULL; 6894 } 6895 6896 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6897 * and its messages to the newsk. 6898 */ 6899 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6900 struct sctp_association *assoc, 6901 sctp_socket_type_t type) 6902 { 6903 struct sctp_sock *oldsp = sctp_sk(oldsk); 6904 struct sctp_sock *newsp = sctp_sk(newsk); 6905 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6906 struct sctp_endpoint *newep = newsp->ep; 6907 struct sk_buff *skb, *tmp; 6908 struct sctp_ulpevent *event; 6909 struct sctp_bind_hashbucket *head; 6910 struct list_head tmplist; 6911 6912 /* Migrate socket buffer sizes and all the socket level options to the 6913 * new socket. 6914 */ 6915 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6916 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6917 /* Brute force copy old sctp opt. */ 6918 if (oldsp->do_auto_asconf) { 6919 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6920 inet_sk_copy_descendant(newsk, oldsk); 6921 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6922 } else 6923 inet_sk_copy_descendant(newsk, oldsk); 6924 6925 /* Restore the ep value that was overwritten with the above structure 6926 * copy. 6927 */ 6928 newsp->ep = newep; 6929 newsp->hmac = NULL; 6930 6931 /* Hook this new socket in to the bind_hash list. */ 6932 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 6933 inet_sk(oldsk)->inet_num)]; 6934 sctp_local_bh_disable(); 6935 sctp_spin_lock(&head->lock); 6936 pp = sctp_sk(oldsk)->bind_hash; 6937 sk_add_bind_node(newsk, &pp->owner); 6938 sctp_sk(newsk)->bind_hash = pp; 6939 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6940 sctp_spin_unlock(&head->lock); 6941 sctp_local_bh_enable(); 6942 6943 /* Copy the bind_addr list from the original endpoint to the new 6944 * endpoint so that we can handle restarts properly 6945 */ 6946 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6947 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6948 6949 /* Move any messages in the old socket's receive queue that are for the 6950 * peeled off association to the new socket's receive queue. 6951 */ 6952 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6953 event = sctp_skb2event(skb); 6954 if (event->asoc == assoc) { 6955 __skb_unlink(skb, &oldsk->sk_receive_queue); 6956 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6957 sctp_skb_set_owner_r_frag(skb, newsk); 6958 } 6959 } 6960 6961 /* Clean up any messages pending delivery due to partial 6962 * delivery. Three cases: 6963 * 1) No partial deliver; no work. 6964 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6965 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6966 */ 6967 skb_queue_head_init(&newsp->pd_lobby); 6968 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6969 6970 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6971 struct sk_buff_head *queue; 6972 6973 /* Decide which queue to move pd_lobby skbs to. */ 6974 if (assoc->ulpq.pd_mode) { 6975 queue = &newsp->pd_lobby; 6976 } else 6977 queue = &newsk->sk_receive_queue; 6978 6979 /* Walk through the pd_lobby, looking for skbs that 6980 * need moved to the new socket. 6981 */ 6982 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6983 event = sctp_skb2event(skb); 6984 if (event->asoc == assoc) { 6985 __skb_unlink(skb, &oldsp->pd_lobby); 6986 __skb_queue_tail(queue, skb); 6987 sctp_skb_set_owner_r_frag(skb, newsk); 6988 } 6989 } 6990 6991 /* Clear up any skbs waiting for the partial 6992 * delivery to finish. 6993 */ 6994 if (assoc->ulpq.pd_mode) 6995 sctp_clear_pd(oldsk, NULL); 6996 6997 } 6998 6999 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7000 sctp_skb_set_owner_r_frag(skb, newsk); 7001 7002 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7003 sctp_skb_set_owner_r_frag(skb, newsk); 7004 7005 /* Set the type of socket to indicate that it is peeled off from the 7006 * original UDP-style socket or created with the accept() call on a 7007 * TCP-style socket.. 7008 */ 7009 newsp->type = type; 7010 7011 /* Mark the new socket "in-use" by the user so that any packets 7012 * that may arrive on the association after we've moved it are 7013 * queued to the backlog. This prevents a potential race between 7014 * backlog processing on the old socket and new-packet processing 7015 * on the new socket. 7016 * 7017 * The caller has just allocated newsk so we can guarantee that other 7018 * paths won't try to lock it and then oldsk. 7019 */ 7020 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7021 sctp_assoc_migrate(assoc, newsk); 7022 7023 /* If the association on the newsk is already closed before accept() 7024 * is called, set RCV_SHUTDOWN flag. 7025 */ 7026 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7027 newsk->sk_shutdown |= RCV_SHUTDOWN; 7028 7029 newsk->sk_state = SCTP_SS_ESTABLISHED; 7030 sctp_release_sock(newsk); 7031 } 7032 7033 7034 /* This proto struct describes the ULP interface for SCTP. */ 7035 struct proto sctp_prot = { 7036 .name = "SCTP", 7037 .owner = THIS_MODULE, 7038 .close = sctp_close, 7039 .connect = sctp_connect, 7040 .disconnect = sctp_disconnect, 7041 .accept = sctp_accept, 7042 .ioctl = sctp_ioctl, 7043 .init = sctp_init_sock, 7044 .destroy = sctp_destroy_sock, 7045 .shutdown = sctp_shutdown, 7046 .setsockopt = sctp_setsockopt, 7047 .getsockopt = sctp_getsockopt, 7048 .sendmsg = sctp_sendmsg, 7049 .recvmsg = sctp_recvmsg, 7050 .bind = sctp_bind, 7051 .backlog_rcv = sctp_backlog_rcv, 7052 .hash = sctp_hash, 7053 .unhash = sctp_unhash, 7054 .get_port = sctp_get_port, 7055 .obj_size = sizeof(struct sctp_sock), 7056 .sysctl_mem = sysctl_sctp_mem, 7057 .sysctl_rmem = sysctl_sctp_rmem, 7058 .sysctl_wmem = sysctl_sctp_wmem, 7059 .memory_pressure = &sctp_memory_pressure, 7060 .enter_memory_pressure = sctp_enter_memory_pressure, 7061 .memory_allocated = &sctp_memory_allocated, 7062 .sockets_allocated = &sctp_sockets_allocated, 7063 }; 7064 7065 #if IS_ENABLED(CONFIG_IPV6) 7066 7067 struct proto sctpv6_prot = { 7068 .name = "SCTPv6", 7069 .owner = THIS_MODULE, 7070 .close = sctp_close, 7071 .connect = sctp_connect, 7072 .disconnect = sctp_disconnect, 7073 .accept = sctp_accept, 7074 .ioctl = sctp_ioctl, 7075 .init = sctp_init_sock, 7076 .destroy = sctp_destroy_sock, 7077 .shutdown = sctp_shutdown, 7078 .setsockopt = sctp_setsockopt, 7079 .getsockopt = sctp_getsockopt, 7080 .sendmsg = sctp_sendmsg, 7081 .recvmsg = sctp_recvmsg, 7082 .bind = sctp_bind, 7083 .backlog_rcv = sctp_backlog_rcv, 7084 .hash = sctp_hash, 7085 .unhash = sctp_unhash, 7086 .get_port = sctp_get_port, 7087 .obj_size = sizeof(struct sctp6_sock), 7088 .sysctl_mem = sysctl_sctp_mem, 7089 .sysctl_rmem = sysctl_sctp_rmem, 7090 .sysctl_wmem = sysctl_sctp_wmem, 7091 .memory_pressure = &sctp_memory_pressure, 7092 .enter_memory_pressure = sctp_enter_memory_pressure, 7093 .memory_allocated = &sctp_memory_allocated, 7094 .sockets_allocated = &sctp_sockets_allocated, 7095 }; 7096 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7097