1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 static void sctp_auto_asconf_init(struct sctp_sock *sp) 361 { 362 struct net *net = sock_net(&sp->inet.sk); 363 364 if (net->sctp.default_auto_asconf) { 365 spin_lock(&net->sctp.addr_wq_lock); 366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 367 spin_unlock(&net->sctp.addr_wq_lock); 368 sp->do_auto_asconf = 1; 369 } 370 } 371 372 /* Bind a local address either to an endpoint or to an association. */ 373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 374 { 375 struct net *net = sock_net(sk); 376 struct sctp_sock *sp = sctp_sk(sk); 377 struct sctp_endpoint *ep = sp->ep; 378 struct sctp_bind_addr *bp = &ep->base.bind_addr; 379 struct sctp_af *af; 380 unsigned short snum; 381 int ret = 0; 382 383 /* Common sockaddr verification. */ 384 af = sctp_sockaddr_af(sp, addr, len); 385 if (!af) { 386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 387 __func__, sk, addr, len); 388 return -EINVAL; 389 } 390 391 snum = ntohs(addr->v4.sin_port); 392 393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 394 __func__, sk, &addr->sa, bp->port, snum, len); 395 396 /* PF specific bind() address verification. */ 397 if (!sp->pf->bind_verify(sp, addr)) 398 return -EADDRNOTAVAIL; 399 400 /* We must either be unbound, or bind to the same port. 401 * It's OK to allow 0 ports if we are already bound. 402 * We'll just inhert an already bound port in this case 403 */ 404 if (bp->port) { 405 if (!snum) 406 snum = bp->port; 407 else if (snum != bp->port) { 408 pr_debug("%s: new port %d doesn't match existing port " 409 "%d\n", __func__, snum, bp->port); 410 return -EINVAL; 411 } 412 } 413 414 if (snum && inet_port_requires_bind_service(net, snum) && 415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 416 return -EACCES; 417 418 /* See if the address matches any of the addresses we may have 419 * already bound before checking against other endpoints. 420 */ 421 if (sctp_bind_addr_match(bp, addr, sp)) 422 return -EINVAL; 423 424 /* Make sure we are allowed to bind here. 425 * The function sctp_get_port_local() does duplicate address 426 * detection. 427 */ 428 addr->v4.sin_port = htons(snum); 429 if (sctp_get_port_local(sk, addr)) 430 return -EADDRINUSE; 431 432 /* Refresh ephemeral port. */ 433 if (!bp->port) { 434 bp->port = inet_sk(sk)->inet_num; 435 sctp_auto_asconf_init(sp); 436 } 437 438 /* Add the address to the bind address list. 439 * Use GFP_ATOMIC since BHs will be disabled. 440 */ 441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 442 SCTP_ADDR_SRC, GFP_ATOMIC); 443 444 if (ret) { 445 sctp_put_port(sk); 446 return ret; 447 } 448 /* Copy back into socket for getsockname() use. */ 449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 450 sp->pf->to_sk_saddr(addr, sk); 451 452 return ret; 453 } 454 455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 456 * 457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 458 * at any one time. If a sender, after sending an ASCONF chunk, decides 459 * it needs to transfer another ASCONF Chunk, it MUST wait until the 460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 461 * subsequent ASCONF. Note this restriction binds each side, so at any 462 * time two ASCONF may be in-transit on any given association (one sent 463 * from each endpoint). 464 */ 465 static int sctp_send_asconf(struct sctp_association *asoc, 466 struct sctp_chunk *chunk) 467 { 468 int retval = 0; 469 470 /* If there is an outstanding ASCONF chunk, queue it for later 471 * transmission. 472 */ 473 if (asoc->addip_last_asconf) { 474 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 475 goto out; 476 } 477 478 /* Hold the chunk until an ASCONF_ACK is received. */ 479 sctp_chunk_hold(chunk); 480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 481 if (retval) 482 sctp_chunk_free(chunk); 483 else 484 asoc->addip_last_asconf = chunk; 485 486 out: 487 return retval; 488 } 489 490 /* Add a list of addresses as bind addresses to local endpoint or 491 * association. 492 * 493 * Basically run through each address specified in the addrs/addrcnt 494 * array/length pair, determine if it is IPv6 or IPv4 and call 495 * sctp_do_bind() on it. 496 * 497 * If any of them fails, then the operation will be reversed and the 498 * ones that were added will be removed. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 503 { 504 int cnt; 505 int retval = 0; 506 void *addr_buf; 507 struct sockaddr *sa_addr; 508 struct sctp_af *af; 509 510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 511 addrs, addrcnt); 512 513 addr_buf = addrs; 514 for (cnt = 0; cnt < addrcnt; cnt++) { 515 /* The list may contain either IPv4 or IPv6 address; 516 * determine the address length for walking thru the list. 517 */ 518 sa_addr = addr_buf; 519 af = sctp_get_af_specific(sa_addr->sa_family); 520 if (!af) { 521 retval = -EINVAL; 522 goto err_bindx_add; 523 } 524 525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 526 af->sockaddr_len); 527 528 addr_buf += af->sockaddr_len; 529 530 err_bindx_add: 531 if (retval < 0) { 532 /* Failed. Cleanup the ones that have been added */ 533 if (cnt > 0) 534 sctp_bindx_rem(sk, addrs, cnt); 535 return retval; 536 } 537 } 538 539 return retval; 540 } 541 542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 543 * associations that are part of the endpoint indicating that a list of local 544 * addresses are added to the endpoint. 545 * 546 * If any of the addresses is already in the bind address list of the 547 * association, we do not send the chunk for that association. But it will not 548 * affect other associations. 549 * 550 * Only sctp_setsockopt_bindx() is supposed to call this function. 551 */ 552 static int sctp_send_asconf_add_ip(struct sock *sk, 553 struct sockaddr *addrs, 554 int addrcnt) 555 { 556 struct sctp_sock *sp; 557 struct sctp_endpoint *ep; 558 struct sctp_association *asoc; 559 struct sctp_bind_addr *bp; 560 struct sctp_chunk *chunk; 561 struct sctp_sockaddr_entry *laddr; 562 union sctp_addr *addr; 563 union sctp_addr saveaddr; 564 void *addr_buf; 565 struct sctp_af *af; 566 struct list_head *p; 567 int i; 568 int retval = 0; 569 570 sp = sctp_sk(sk); 571 ep = sp->ep; 572 573 if (!ep->asconf_enable) 574 return retval; 575 576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 577 __func__, sk, addrs, addrcnt); 578 579 list_for_each_entry(asoc, &ep->asocs, asocs) { 580 if (!asoc->peer.asconf_capable) 581 continue; 582 583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 584 continue; 585 586 if (!sctp_state(asoc, ESTABLISHED)) 587 continue; 588 589 /* Check if any address in the packed array of addresses is 590 * in the bind address list of the association. If so, 591 * do not send the asconf chunk to its peer, but continue with 592 * other associations. 593 */ 594 addr_buf = addrs; 595 for (i = 0; i < addrcnt; i++) { 596 addr = addr_buf; 597 af = sctp_get_af_specific(addr->v4.sin_family); 598 if (!af) { 599 retval = -EINVAL; 600 goto out; 601 } 602 603 if (sctp_assoc_lookup_laddr(asoc, addr)) 604 break; 605 606 addr_buf += af->sockaddr_len; 607 } 608 if (i < addrcnt) 609 continue; 610 611 /* Use the first valid address in bind addr list of 612 * association as Address Parameter of ASCONF CHUNK. 613 */ 614 bp = &asoc->base.bind_addr; 615 p = bp->address_list.next; 616 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 618 addrcnt, SCTP_PARAM_ADD_IP); 619 if (!chunk) { 620 retval = -ENOMEM; 621 goto out; 622 } 623 624 /* Add the new addresses to the bind address list with 625 * use_as_src set to 0. 626 */ 627 addr_buf = addrs; 628 for (i = 0; i < addrcnt; i++) { 629 addr = addr_buf; 630 af = sctp_get_af_specific(addr->v4.sin_family); 631 memcpy(&saveaddr, addr, af->sockaddr_len); 632 retval = sctp_add_bind_addr(bp, &saveaddr, 633 sizeof(saveaddr), 634 SCTP_ADDR_NEW, GFP_ATOMIC); 635 addr_buf += af->sockaddr_len; 636 } 637 if (asoc->src_out_of_asoc_ok) { 638 struct sctp_transport *trans; 639 640 list_for_each_entry(trans, 641 &asoc->peer.transport_addr_list, transports) { 642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 643 2*asoc->pathmtu, 4380)); 644 trans->ssthresh = asoc->peer.i.a_rwnd; 645 trans->rto = asoc->rto_initial; 646 sctp_max_rto(asoc, trans); 647 trans->rtt = trans->srtt = trans->rttvar = 0; 648 /* Clear the source and route cache */ 649 sctp_transport_route(trans, NULL, 650 sctp_sk(asoc->base.sk)); 651 } 652 } 653 retval = sctp_send_asconf(asoc, chunk); 654 } 655 656 out: 657 return retval; 658 } 659 660 /* Remove a list of addresses from bind addresses list. Do not remove the 661 * last address. 662 * 663 * Basically run through each address specified in the addrs/addrcnt 664 * array/length pair, determine if it is IPv6 or IPv4 and call 665 * sctp_del_bind() on it. 666 * 667 * If any of them fails, then the operation will be reversed and the 668 * ones that were removed will be added back. 669 * 670 * At least one address has to be left; if only one address is 671 * available, the operation will return -EBUSY. 672 * 673 * Only sctp_setsockopt_bindx() is supposed to call this function. 674 */ 675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 676 { 677 struct sctp_sock *sp = sctp_sk(sk); 678 struct sctp_endpoint *ep = sp->ep; 679 int cnt; 680 struct sctp_bind_addr *bp = &ep->base.bind_addr; 681 int retval = 0; 682 void *addr_buf; 683 union sctp_addr *sa_addr; 684 struct sctp_af *af; 685 686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 687 __func__, sk, addrs, addrcnt); 688 689 addr_buf = addrs; 690 for (cnt = 0; cnt < addrcnt; cnt++) { 691 /* If the bind address list is empty or if there is only one 692 * bind address, there is nothing more to be removed (we need 693 * at least one address here). 694 */ 695 if (list_empty(&bp->address_list) || 696 (sctp_list_single_entry(&bp->address_list))) { 697 retval = -EBUSY; 698 goto err_bindx_rem; 699 } 700 701 sa_addr = addr_buf; 702 af = sctp_get_af_specific(sa_addr->sa.sa_family); 703 if (!af) { 704 retval = -EINVAL; 705 goto err_bindx_rem; 706 } 707 708 if (!af->addr_valid(sa_addr, sp, NULL)) { 709 retval = -EADDRNOTAVAIL; 710 goto err_bindx_rem; 711 } 712 713 if (sa_addr->v4.sin_port && 714 sa_addr->v4.sin_port != htons(bp->port)) { 715 retval = -EINVAL; 716 goto err_bindx_rem; 717 } 718 719 if (!sa_addr->v4.sin_port) 720 sa_addr->v4.sin_port = htons(bp->port); 721 722 /* FIXME - There is probably a need to check if sk->sk_saddr and 723 * sk->sk_rcv_addr are currently set to one of the addresses to 724 * be removed. This is something which needs to be looked into 725 * when we are fixing the outstanding issues with multi-homing 726 * socket routing and failover schemes. Refer to comments in 727 * sctp_do_bind(). -daisy 728 */ 729 retval = sctp_del_bind_addr(bp, sa_addr); 730 731 addr_buf += af->sockaddr_len; 732 err_bindx_rem: 733 if (retval < 0) { 734 /* Failed. Add the ones that has been removed back */ 735 if (cnt > 0) 736 sctp_bindx_add(sk, addrs, cnt); 737 return retval; 738 } 739 } 740 741 return retval; 742 } 743 744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 745 * the associations that are part of the endpoint indicating that a list of 746 * local addresses are removed from the endpoint. 747 * 748 * If any of the addresses is already in the bind address list of the 749 * association, we do not send the chunk for that association. But it will not 750 * affect other associations. 751 * 752 * Only sctp_setsockopt_bindx() is supposed to call this function. 753 */ 754 static int sctp_send_asconf_del_ip(struct sock *sk, 755 struct sockaddr *addrs, 756 int addrcnt) 757 { 758 struct sctp_sock *sp; 759 struct sctp_endpoint *ep; 760 struct sctp_association *asoc; 761 struct sctp_transport *transport; 762 struct sctp_bind_addr *bp; 763 struct sctp_chunk *chunk; 764 union sctp_addr *laddr; 765 void *addr_buf; 766 struct sctp_af *af; 767 struct sctp_sockaddr_entry *saddr; 768 int i; 769 int retval = 0; 770 int stored = 0; 771 772 chunk = NULL; 773 sp = sctp_sk(sk); 774 ep = sp->ep; 775 776 if (!ep->asconf_enable) 777 return retval; 778 779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 780 __func__, sk, addrs, addrcnt); 781 782 list_for_each_entry(asoc, &ep->asocs, asocs) { 783 784 if (!asoc->peer.asconf_capable) 785 continue; 786 787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 788 continue; 789 790 if (!sctp_state(asoc, ESTABLISHED)) 791 continue; 792 793 /* Check if any address in the packed array of addresses is 794 * not present in the bind address list of the association. 795 * If so, do not send the asconf chunk to its peer, but 796 * continue with other associations. 797 */ 798 addr_buf = addrs; 799 for (i = 0; i < addrcnt; i++) { 800 laddr = addr_buf; 801 af = sctp_get_af_specific(laddr->v4.sin_family); 802 if (!af) { 803 retval = -EINVAL; 804 goto out; 805 } 806 807 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 808 break; 809 810 addr_buf += af->sockaddr_len; 811 } 812 if (i < addrcnt) 813 continue; 814 815 /* Find one address in the association's bind address list 816 * that is not in the packed array of addresses. This is to 817 * make sure that we do not delete all the addresses in the 818 * association. 819 */ 820 bp = &asoc->base.bind_addr; 821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 822 addrcnt, sp); 823 if ((laddr == NULL) && (addrcnt == 1)) { 824 if (asoc->asconf_addr_del_pending) 825 continue; 826 asoc->asconf_addr_del_pending = 827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 828 if (asoc->asconf_addr_del_pending == NULL) { 829 retval = -ENOMEM; 830 goto out; 831 } 832 asoc->asconf_addr_del_pending->sa.sa_family = 833 addrs->sa_family; 834 asoc->asconf_addr_del_pending->v4.sin_port = 835 htons(bp->port); 836 if (addrs->sa_family == AF_INET) { 837 struct sockaddr_in *sin; 838 839 sin = (struct sockaddr_in *)addrs; 840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 841 } else if (addrs->sa_family == AF_INET6) { 842 struct sockaddr_in6 *sin6; 843 844 sin6 = (struct sockaddr_in6 *)addrs; 845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 846 } 847 848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 849 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 850 asoc->asconf_addr_del_pending); 851 852 asoc->src_out_of_asoc_ok = 1; 853 stored = 1; 854 goto skip_mkasconf; 855 } 856 857 if (laddr == NULL) 858 return -EINVAL; 859 860 /* We do not need RCU protection throughout this loop 861 * because this is done under a socket lock from the 862 * setsockopt call. 863 */ 864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 865 SCTP_PARAM_DEL_IP); 866 if (!chunk) { 867 retval = -ENOMEM; 868 goto out; 869 } 870 871 skip_mkasconf: 872 /* Reset use_as_src flag for the addresses in the bind address 873 * list that are to be deleted. 874 */ 875 addr_buf = addrs; 876 for (i = 0; i < addrcnt; i++) { 877 laddr = addr_buf; 878 af = sctp_get_af_specific(laddr->v4.sin_family); 879 list_for_each_entry(saddr, &bp->address_list, list) { 880 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 881 saddr->state = SCTP_ADDR_DEL; 882 } 883 addr_buf += af->sockaddr_len; 884 } 885 886 /* Update the route and saddr entries for all the transports 887 * as some of the addresses in the bind address list are 888 * about to be deleted and cannot be used as source addresses. 889 */ 890 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 891 transports) { 892 sctp_transport_route(transport, NULL, 893 sctp_sk(asoc->base.sk)); 894 } 895 896 if (stored) 897 /* We don't need to transmit ASCONF */ 898 continue; 899 retval = sctp_send_asconf(asoc, chunk); 900 } 901 out: 902 return retval; 903 } 904 905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 907 { 908 struct sock *sk = sctp_opt2sk(sp); 909 union sctp_addr *addr; 910 struct sctp_af *af; 911 912 /* It is safe to write port space in caller. */ 913 addr = &addrw->a; 914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 915 af = sctp_get_af_specific(addr->sa.sa_family); 916 if (!af) 917 return -EINVAL; 918 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 919 return -EINVAL; 920 921 if (addrw->state == SCTP_ADDR_NEW) 922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 923 else 924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 925 } 926 927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 928 * 929 * API 8.1 930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 931 * int flags); 932 * 933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 935 * or IPv6 addresses. 936 * 937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 938 * Section 3.1.2 for this usage. 939 * 940 * addrs is a pointer to an array of one or more socket addresses. Each 941 * address is contained in its appropriate structure (i.e. struct 942 * sockaddr_in or struct sockaddr_in6) the family of the address type 943 * must be used to distinguish the address length (note that this 944 * representation is termed a "packed array" of addresses). The caller 945 * specifies the number of addresses in the array with addrcnt. 946 * 947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 948 * -1, and sets errno to the appropriate error code. 949 * 950 * For SCTP, the port given in each socket address must be the same, or 951 * sctp_bindx() will fail, setting errno to EINVAL. 952 * 953 * The flags parameter is formed from the bitwise OR of zero or more of 954 * the following currently defined flags: 955 * 956 * SCTP_BINDX_ADD_ADDR 957 * 958 * SCTP_BINDX_REM_ADDR 959 * 960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 962 * addresses from the association. The two flags are mutually exclusive; 963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 964 * not remove all addresses from an association; sctp_bindx() will 965 * reject such an attempt with EINVAL. 966 * 967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 968 * additional addresses with an endpoint after calling bind(). Or use 969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 970 * socket is associated with so that no new association accepted will be 971 * associated with those addresses. If the endpoint supports dynamic 972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 973 * endpoint to send the appropriate message to the peer to change the 974 * peers address lists. 975 * 976 * Adding and removing addresses from a connected association is 977 * optional functionality. Implementations that do not support this 978 * functionality should return EOPNOTSUPP. 979 * 980 * Basically do nothing but copying the addresses from user to kernel 981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 983 * from userspace. 984 * 985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 986 * it. 987 * 988 * sk The sk of the socket 989 * addrs The pointer to the addresses 990 * addrssize Size of the addrs buffer 991 * op Operation to perform (add or remove, see the flags of 992 * sctp_bindx) 993 * 994 * Returns 0 if ok, <0 errno code on error. 995 */ 996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 997 int addrs_size, int op) 998 { 999 int err; 1000 int addrcnt = 0; 1001 int walk_size = 0; 1002 struct sockaddr *sa_addr; 1003 void *addr_buf = addrs; 1004 struct sctp_af *af; 1005 1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1007 __func__, sk, addr_buf, addrs_size, op); 1008 1009 if (unlikely(addrs_size <= 0)) 1010 return -EINVAL; 1011 1012 /* Walk through the addrs buffer and count the number of addresses. */ 1013 while (walk_size < addrs_size) { 1014 if (walk_size + sizeof(sa_family_t) > addrs_size) 1015 return -EINVAL; 1016 1017 sa_addr = addr_buf; 1018 af = sctp_get_af_specific(sa_addr->sa_family); 1019 1020 /* If the address family is not supported or if this address 1021 * causes the address buffer to overflow return EINVAL. 1022 */ 1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1024 return -EINVAL; 1025 addrcnt++; 1026 addr_buf += af->sockaddr_len; 1027 walk_size += af->sockaddr_len; 1028 } 1029 1030 /* Do the work. */ 1031 switch (op) { 1032 case SCTP_BINDX_ADD_ADDR: 1033 /* Allow security module to validate bindx addresses. */ 1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1035 addrs, addrs_size); 1036 if (err) 1037 return err; 1038 err = sctp_bindx_add(sk, addrs, addrcnt); 1039 if (err) 1040 return err; 1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1042 case SCTP_BINDX_REM_ADDR: 1043 err = sctp_bindx_rem(sk, addrs, addrcnt); 1044 if (err) 1045 return err; 1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1047 1048 default: 1049 return -EINVAL; 1050 } 1051 } 1052 1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1054 int addrlen) 1055 { 1056 int err; 1057 1058 lock_sock(sk); 1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1060 release_sock(sk); 1061 return err; 1062 } 1063 1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1065 const union sctp_addr *daddr, 1066 const struct sctp_initmsg *init, 1067 struct sctp_transport **tp) 1068 { 1069 struct sctp_association *asoc; 1070 struct sock *sk = ep->base.sk; 1071 struct net *net = sock_net(sk); 1072 enum sctp_scope scope; 1073 int err; 1074 1075 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1076 return -EADDRNOTAVAIL; 1077 1078 if (!ep->base.bind_addr.port) { 1079 if (sctp_autobind(sk)) 1080 return -EAGAIN; 1081 } else { 1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1084 return -EACCES; 1085 } 1086 1087 scope = sctp_scope(daddr); 1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1089 if (!asoc) 1090 return -ENOMEM; 1091 1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1093 if (err < 0) 1094 goto free; 1095 1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1097 if (!*tp) { 1098 err = -ENOMEM; 1099 goto free; 1100 } 1101 1102 if (!init) 1103 return 0; 1104 1105 if (init->sinit_num_ostreams) { 1106 __u16 outcnt = init->sinit_num_ostreams; 1107 1108 asoc->c.sinit_num_ostreams = outcnt; 1109 /* outcnt has been changed, need to re-init stream */ 1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1111 if (err) 1112 goto free; 1113 } 1114 1115 if (init->sinit_max_instreams) 1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1117 1118 if (init->sinit_max_attempts) 1119 asoc->max_init_attempts = init->sinit_max_attempts; 1120 1121 if (init->sinit_max_init_timeo) 1122 asoc->max_init_timeo = 1123 msecs_to_jiffies(init->sinit_max_init_timeo); 1124 1125 return 0; 1126 free: 1127 sctp_association_free(asoc); 1128 return err; 1129 } 1130 1131 static int sctp_connect_add_peer(struct sctp_association *asoc, 1132 union sctp_addr *daddr, int addr_len) 1133 { 1134 struct sctp_endpoint *ep = asoc->ep; 1135 struct sctp_association *old; 1136 struct sctp_transport *t; 1137 int err; 1138 1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1140 if (err) 1141 return err; 1142 1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1144 if (old && old != asoc) 1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1146 : -EALREADY; 1147 1148 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1149 return -EADDRNOTAVAIL; 1150 1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1152 if (!t) 1153 return -ENOMEM; 1154 1155 return 0; 1156 } 1157 1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1159 * 1160 * Common routine for handling connect() and sctp_connectx(). 1161 * Connect will come in with just a single address. 1162 */ 1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1164 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1165 { 1166 struct sctp_sock *sp = sctp_sk(sk); 1167 struct sctp_endpoint *ep = sp->ep; 1168 struct sctp_transport *transport; 1169 struct sctp_association *asoc; 1170 void *addr_buf = kaddrs; 1171 union sctp_addr *daddr; 1172 struct sctp_af *af; 1173 int walk_size, err; 1174 long timeo; 1175 1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1178 return -EISCONN; 1179 1180 daddr = addr_buf; 1181 af = sctp_get_af_specific(daddr->sa.sa_family); 1182 if (!af || af->sockaddr_len > addrs_size) 1183 return -EINVAL; 1184 1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1186 if (err) 1187 return err; 1188 1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1190 if (asoc) 1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1192 : -EALREADY; 1193 1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1195 if (err) 1196 return err; 1197 asoc = transport->asoc; 1198 1199 addr_buf += af->sockaddr_len; 1200 walk_size = af->sockaddr_len; 1201 while (walk_size < addrs_size) { 1202 err = -EINVAL; 1203 if (walk_size + sizeof(sa_family_t) > addrs_size) 1204 goto out_free; 1205 1206 daddr = addr_buf; 1207 af = sctp_get_af_specific(daddr->sa.sa_family); 1208 if (!af || af->sockaddr_len + walk_size > addrs_size) 1209 goto out_free; 1210 1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1212 goto out_free; 1213 1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1215 if (err) 1216 goto out_free; 1217 1218 addr_buf += af->sockaddr_len; 1219 walk_size += af->sockaddr_len; 1220 } 1221 1222 /* In case the user of sctp_connectx() wants an association 1223 * id back, assign one now. 1224 */ 1225 if (assoc_id) { 1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1227 if (err < 0) 1228 goto out_free; 1229 } 1230 1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1232 if (err < 0) 1233 goto out_free; 1234 1235 /* Initialize sk's dport and daddr for getpeername() */ 1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1237 sp->pf->to_sk_daddr(daddr, sk); 1238 sk->sk_err = 0; 1239 1240 if (assoc_id) 1241 *assoc_id = asoc->assoc_id; 1242 1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1244 return sctp_wait_for_connect(asoc, &timeo); 1245 1246 out_free: 1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1248 __func__, asoc, kaddrs, err); 1249 sctp_association_free(asoc); 1250 return err; 1251 } 1252 1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1254 * 1255 * API 8.9 1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1257 * sctp_assoc_t *asoc); 1258 * 1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1261 * or IPv6 addresses. 1262 * 1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1264 * Section 3.1.2 for this usage. 1265 * 1266 * addrs is a pointer to an array of one or more socket addresses. Each 1267 * address is contained in its appropriate structure (i.e. struct 1268 * sockaddr_in or struct sockaddr_in6) the family of the address type 1269 * must be used to distengish the address length (note that this 1270 * representation is termed a "packed array" of addresses). The caller 1271 * specifies the number of addresses in the array with addrcnt. 1272 * 1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1274 * the association id of the new association. On failure, sctp_connectx() 1275 * returns -1, and sets errno to the appropriate error code. The assoc_id 1276 * is not touched by the kernel. 1277 * 1278 * For SCTP, the port given in each socket address must be the same, or 1279 * sctp_connectx() will fail, setting errno to EINVAL. 1280 * 1281 * An application can use sctp_connectx to initiate an association with 1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1283 * allows a caller to specify multiple addresses at which a peer can be 1284 * reached. The way the SCTP stack uses the list of addresses to set up 1285 * the association is implementation dependent. This function only 1286 * specifies that the stack will try to make use of all the addresses in 1287 * the list when needed. 1288 * 1289 * Note that the list of addresses passed in is only used for setting up 1290 * the association. It does not necessarily equal the set of addresses 1291 * the peer uses for the resulting association. If the caller wants to 1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1293 * retrieve them after the association has been set up. 1294 * 1295 * Basically do nothing but copying the addresses from user to kernel 1296 * land and invoking either sctp_connectx(). This is used for tunneling 1297 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1298 * 1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1300 * it. 1301 * 1302 * sk The sk of the socket 1303 * addrs The pointer to the addresses 1304 * addrssize Size of the addrs buffer 1305 * 1306 * Returns >=0 if ok, <0 errno code on error. 1307 */ 1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1309 int addrs_size, sctp_assoc_t *assoc_id) 1310 { 1311 int err = 0, flags = 0; 1312 1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1314 __func__, sk, kaddrs, addrs_size); 1315 1316 /* make sure the 1st addr's sa_family is accessible later */ 1317 if (unlikely(addrs_size < sizeof(sa_family_t))) 1318 return -EINVAL; 1319 1320 /* Allow security module to validate connectx addresses. */ 1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1322 (struct sockaddr *)kaddrs, 1323 addrs_size); 1324 if (err) 1325 return err; 1326 1327 /* in-kernel sockets don't generally have a file allocated to them 1328 * if all they do is call sock_create_kern(). 1329 */ 1330 if (sk->sk_socket->file) 1331 flags = sk->sk_socket->file->f_flags; 1332 1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1334 } 1335 1336 /* 1337 * This is an older interface. It's kept for backward compatibility 1338 * to the option that doesn't provide association id. 1339 */ 1340 static int sctp_setsockopt_connectx_old(struct sock *sk, 1341 struct sockaddr *kaddrs, 1342 int addrs_size) 1343 { 1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1345 } 1346 1347 /* 1348 * New interface for the API. The since the API is done with a socket 1349 * option, to make it simple we feed back the association id is as a return 1350 * indication to the call. Error is always negative and association id is 1351 * always positive. 1352 */ 1353 static int sctp_setsockopt_connectx(struct sock *sk, 1354 struct sockaddr *kaddrs, 1355 int addrs_size) 1356 { 1357 sctp_assoc_t assoc_id = 0; 1358 int err = 0; 1359 1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1361 1362 if (err) 1363 return err; 1364 else 1365 return assoc_id; 1366 } 1367 1368 /* 1369 * New (hopefully final) interface for the API. 1370 * We use the sctp_getaddrs_old structure so that use-space library 1371 * can avoid any unnecessary allocations. The only different part 1372 * is that we store the actual length of the address buffer into the 1373 * addrs_num structure member. That way we can re-use the existing 1374 * code. 1375 */ 1376 #ifdef CONFIG_COMPAT 1377 struct compat_sctp_getaddrs_old { 1378 sctp_assoc_t assoc_id; 1379 s32 addr_num; 1380 compat_uptr_t addrs; /* struct sockaddr * */ 1381 }; 1382 #endif 1383 1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1385 char __user *optval, 1386 int __user *optlen) 1387 { 1388 struct sctp_getaddrs_old param; 1389 sctp_assoc_t assoc_id = 0; 1390 struct sockaddr *kaddrs; 1391 int err = 0; 1392 1393 #ifdef CONFIG_COMPAT 1394 if (in_compat_syscall()) { 1395 struct compat_sctp_getaddrs_old param32; 1396 1397 if (len < sizeof(param32)) 1398 return -EINVAL; 1399 if (copy_from_user(¶m32, optval, sizeof(param32))) 1400 return -EFAULT; 1401 1402 param.assoc_id = param32.assoc_id; 1403 param.addr_num = param32.addr_num; 1404 param.addrs = compat_ptr(param32.addrs); 1405 } else 1406 #endif 1407 { 1408 if (len < sizeof(param)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m, optval, sizeof(param))) 1411 return -EFAULT; 1412 } 1413 1414 kaddrs = memdup_user(param.addrs, param.addr_num); 1415 if (IS_ERR(kaddrs)) 1416 return PTR_ERR(kaddrs); 1417 1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1419 kfree(kaddrs); 1420 if (err == 0 || err == -EINPROGRESS) { 1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1422 return -EFAULT; 1423 if (put_user(sizeof(assoc_id), optlen)) 1424 return -EFAULT; 1425 } 1426 1427 return err; 1428 } 1429 1430 /* API 3.1.4 close() - UDP Style Syntax 1431 * Applications use close() to perform graceful shutdown (as described in 1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1433 * by a UDP-style socket. 1434 * 1435 * The syntax is 1436 * 1437 * ret = close(int sd); 1438 * 1439 * sd - the socket descriptor of the associations to be closed. 1440 * 1441 * To gracefully shutdown a specific association represented by the 1442 * UDP-style socket, an application should use the sendmsg() call, 1443 * passing no user data, but including the appropriate flag in the 1444 * ancillary data (see Section xxxx). 1445 * 1446 * If sd in the close() call is a branched-off socket representing only 1447 * one association, the shutdown is performed on that association only. 1448 * 1449 * 4.1.6 close() - TCP Style Syntax 1450 * 1451 * Applications use close() to gracefully close down an association. 1452 * 1453 * The syntax is: 1454 * 1455 * int close(int sd); 1456 * 1457 * sd - the socket descriptor of the association to be closed. 1458 * 1459 * After an application calls close() on a socket descriptor, no further 1460 * socket operations will succeed on that descriptor. 1461 * 1462 * API 7.1.4 SO_LINGER 1463 * 1464 * An application using the TCP-style socket can use this option to 1465 * perform the SCTP ABORT primitive. The linger option structure is: 1466 * 1467 * struct linger { 1468 * int l_onoff; // option on/off 1469 * int l_linger; // linger time 1470 * }; 1471 * 1472 * To enable the option, set l_onoff to 1. If the l_linger value is set 1473 * to 0, calling close() is the same as the ABORT primitive. If the 1474 * value is set to a negative value, the setsockopt() call will return 1475 * an error. If the value is set to a positive value linger_time, the 1476 * close() can be blocked for at most linger_time ms. If the graceful 1477 * shutdown phase does not finish during this period, close() will 1478 * return but the graceful shutdown phase continues in the system. 1479 */ 1480 static void sctp_close(struct sock *sk, long timeout) 1481 { 1482 struct net *net = sock_net(sk); 1483 struct sctp_endpoint *ep; 1484 struct sctp_association *asoc; 1485 struct list_head *pos, *temp; 1486 unsigned int data_was_unread; 1487 1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1489 1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1491 sk->sk_shutdown = SHUTDOWN_MASK; 1492 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1493 1494 ep = sctp_sk(sk)->ep; 1495 1496 /* Clean up any skbs sitting on the receive queue. */ 1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1499 1500 /* Walk all associations on an endpoint. */ 1501 list_for_each_safe(pos, temp, &ep->asocs) { 1502 asoc = list_entry(pos, struct sctp_association, asocs); 1503 1504 if (sctp_style(sk, TCP)) { 1505 /* A closed association can still be in the list if 1506 * it belongs to a TCP-style listening socket that is 1507 * not yet accepted. If so, free it. If not, send an 1508 * ABORT or SHUTDOWN based on the linger options. 1509 */ 1510 if (sctp_state(asoc, CLOSED)) { 1511 sctp_association_free(asoc); 1512 continue; 1513 } 1514 } 1515 1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1517 !skb_queue_empty(&asoc->ulpq.reasm) || 1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1520 struct sctp_chunk *chunk; 1521 1522 chunk = sctp_make_abort_user(asoc, NULL, 0); 1523 sctp_primitive_ABORT(net, asoc, chunk); 1524 } else 1525 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1526 } 1527 1528 /* On a TCP-style socket, block for at most linger_time if set. */ 1529 if (sctp_style(sk, TCP) && timeout) 1530 sctp_wait_for_close(sk, timeout); 1531 1532 /* This will run the backlog queue. */ 1533 release_sock(sk); 1534 1535 /* Supposedly, no process has access to the socket, but 1536 * the net layers still may. 1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1538 * held and that should be grabbed before socket lock. 1539 */ 1540 spin_lock_bh(&net->sctp.addr_wq_lock); 1541 bh_lock_sock_nested(sk); 1542 1543 /* Hold the sock, since sk_common_release() will put sock_put() 1544 * and we have just a little more cleanup. 1545 */ 1546 sock_hold(sk); 1547 sk_common_release(sk); 1548 1549 bh_unlock_sock(sk); 1550 spin_unlock_bh(&net->sctp.addr_wq_lock); 1551 1552 sock_put(sk); 1553 1554 SCTP_DBG_OBJCNT_DEC(sock); 1555 } 1556 1557 /* Handle EPIPE error. */ 1558 static int sctp_error(struct sock *sk, int flags, int err) 1559 { 1560 if (err == -EPIPE) 1561 err = sock_error(sk) ? : -EPIPE; 1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1563 send_sig(SIGPIPE, current, 0); 1564 return err; 1565 } 1566 1567 /* API 3.1.3 sendmsg() - UDP Style Syntax 1568 * 1569 * An application uses sendmsg() and recvmsg() calls to transmit data to 1570 * and receive data from its peer. 1571 * 1572 * ssize_t sendmsg(int socket, const struct msghdr *message, 1573 * int flags); 1574 * 1575 * socket - the socket descriptor of the endpoint. 1576 * message - pointer to the msghdr structure which contains a single 1577 * user message and possibly some ancillary data. 1578 * 1579 * See Section 5 for complete description of the data 1580 * structures. 1581 * 1582 * flags - flags sent or received with the user message, see Section 1583 * 5 for complete description of the flags. 1584 * 1585 * Note: This function could use a rewrite especially when explicit 1586 * connect support comes in. 1587 */ 1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1589 1590 static int sctp_msghdr_parse(const struct msghdr *msg, 1591 struct sctp_cmsgs *cmsgs); 1592 1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1594 struct sctp_sndrcvinfo *srinfo, 1595 const struct msghdr *msg, size_t msg_len) 1596 { 1597 __u16 sflags; 1598 int err; 1599 1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1601 return -EPIPE; 1602 1603 if (msg_len > sk->sk_sndbuf) 1604 return -EMSGSIZE; 1605 1606 memset(cmsgs, 0, sizeof(*cmsgs)); 1607 err = sctp_msghdr_parse(msg, cmsgs); 1608 if (err) { 1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1610 return err; 1611 } 1612 1613 memset(srinfo, 0, sizeof(*srinfo)); 1614 if (cmsgs->srinfo) { 1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1621 } 1622 1623 if (cmsgs->sinfo) { 1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1629 } 1630 1631 if (cmsgs->prinfo) { 1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1634 cmsgs->prinfo->pr_policy); 1635 } 1636 1637 sflags = srinfo->sinfo_flags; 1638 if (!sflags && msg_len) 1639 return 0; 1640 1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1642 return -EINVAL; 1643 1644 if (((sflags & SCTP_EOF) && msg_len > 0) || 1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1646 return -EINVAL; 1647 1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1649 return -EINVAL; 1650 1651 return 0; 1652 } 1653 1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1655 struct sctp_cmsgs *cmsgs, 1656 union sctp_addr *daddr, 1657 struct sctp_transport **tp) 1658 { 1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1660 struct sctp_association *asoc; 1661 struct cmsghdr *cmsg; 1662 __be32 flowinfo = 0; 1663 struct sctp_af *af; 1664 int err; 1665 1666 *tp = NULL; 1667 1668 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1669 return -EINVAL; 1670 1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1672 sctp_sstate(sk, CLOSING))) 1673 return -EADDRNOTAVAIL; 1674 1675 /* Label connection socket for first association 1-to-many 1676 * style for client sequence socket()->sendmsg(). This 1677 * needs to be done before sctp_assoc_add_peer() as that will 1678 * set up the initial packet that needs to account for any 1679 * security ip options (CIPSO/CALIPSO) added to the packet. 1680 */ 1681 af = sctp_get_af_specific(daddr->sa.sa_family); 1682 if (!af) 1683 return -EINVAL; 1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1685 (struct sockaddr *)daddr, 1686 af->sockaddr_len); 1687 if (err < 0) 1688 return err; 1689 1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1691 if (err) 1692 return err; 1693 asoc = (*tp)->asoc; 1694 1695 if (!cmsgs->addrs_msg) 1696 return 0; 1697 1698 if (daddr->sa.sa_family == AF_INET6) 1699 flowinfo = daddr->v6.sin6_flowinfo; 1700 1701 /* sendv addr list parse */ 1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1703 union sctp_addr _daddr; 1704 int dlen; 1705 1706 if (cmsg->cmsg_level != IPPROTO_SCTP || 1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1708 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1709 continue; 1710 1711 daddr = &_daddr; 1712 memset(daddr, 0, sizeof(*daddr)); 1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1715 if (dlen < sizeof(struct in_addr)) { 1716 err = -EINVAL; 1717 goto free; 1718 } 1719 1720 dlen = sizeof(struct in_addr); 1721 daddr->v4.sin_family = AF_INET; 1722 daddr->v4.sin_port = htons(asoc->peer.port); 1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1724 } else { 1725 if (dlen < sizeof(struct in6_addr)) { 1726 err = -EINVAL; 1727 goto free; 1728 } 1729 1730 dlen = sizeof(struct in6_addr); 1731 daddr->v6.sin6_flowinfo = flowinfo; 1732 daddr->v6.sin6_family = AF_INET6; 1733 daddr->v6.sin6_port = htons(asoc->peer.port); 1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1735 } 1736 1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1738 if (err) 1739 goto free; 1740 } 1741 1742 return 0; 1743 1744 free: 1745 sctp_association_free(asoc); 1746 return err; 1747 } 1748 1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1750 __u16 sflags, struct msghdr *msg, 1751 size_t msg_len) 1752 { 1753 struct sock *sk = asoc->base.sk; 1754 struct net *net = sock_net(sk); 1755 1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1757 return -EPIPE; 1758 1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1760 !sctp_state(asoc, ESTABLISHED)) 1761 return 0; 1762 1763 if (sflags & SCTP_EOF) { 1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1765 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1766 1767 return 0; 1768 } 1769 1770 if (sflags & SCTP_ABORT) { 1771 struct sctp_chunk *chunk; 1772 1773 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1774 if (!chunk) 1775 return -ENOMEM; 1776 1777 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1778 sctp_primitive_ABORT(net, asoc, chunk); 1779 iov_iter_revert(&msg->msg_iter, msg_len); 1780 1781 return 0; 1782 } 1783 1784 return 1; 1785 } 1786 1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1788 struct msghdr *msg, size_t msg_len, 1789 struct sctp_transport *transport, 1790 struct sctp_sndrcvinfo *sinfo) 1791 { 1792 struct sock *sk = asoc->base.sk; 1793 struct sctp_sock *sp = sctp_sk(sk); 1794 struct net *net = sock_net(sk); 1795 struct sctp_datamsg *datamsg; 1796 bool wait_connect = false; 1797 struct sctp_chunk *chunk; 1798 long timeo; 1799 int err; 1800 1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1802 err = -EINVAL; 1803 goto err; 1804 } 1805 1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1808 if (err) 1809 goto err; 1810 } 1811 1812 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1813 err = -EMSGSIZE; 1814 goto err; 1815 } 1816 1817 if (asoc->pmtu_pending) { 1818 if (sp->param_flags & SPP_PMTUD_ENABLE) 1819 sctp_assoc_sync_pmtu(asoc); 1820 asoc->pmtu_pending = 0; 1821 } 1822 1823 if (sctp_wspace(asoc) < (int)msg_len) 1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1825 1826 if (sk_under_memory_pressure(sk)) 1827 sk_mem_reclaim(sk); 1828 1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1832 if (err) 1833 goto err; 1834 } 1835 1836 if (sctp_state(asoc, CLOSED)) { 1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1838 if (err) 1839 goto err; 1840 1841 if (asoc->ep->intl_enable) { 1842 timeo = sock_sndtimeo(sk, 0); 1843 err = sctp_wait_for_connect(asoc, &timeo); 1844 if (err) { 1845 err = -ESRCH; 1846 goto err; 1847 } 1848 } else { 1849 wait_connect = true; 1850 } 1851 1852 pr_debug("%s: we associated primitively\n", __func__); 1853 } 1854 1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1856 if (IS_ERR(datamsg)) { 1857 err = PTR_ERR(datamsg); 1858 goto err; 1859 } 1860 1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1862 1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1864 sctp_chunk_hold(chunk); 1865 sctp_set_owner_w(chunk); 1866 chunk->transport = transport; 1867 } 1868 1869 err = sctp_primitive_SEND(net, asoc, datamsg); 1870 if (err) { 1871 sctp_datamsg_free(datamsg); 1872 goto err; 1873 } 1874 1875 pr_debug("%s: we sent primitively\n", __func__); 1876 1877 sctp_datamsg_put(datamsg); 1878 1879 if (unlikely(wait_connect)) { 1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1881 sctp_wait_for_connect(asoc, &timeo); 1882 } 1883 1884 err = msg_len; 1885 1886 err: 1887 return err; 1888 } 1889 1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1891 const struct msghdr *msg, 1892 struct sctp_cmsgs *cmsgs) 1893 { 1894 union sctp_addr *daddr = NULL; 1895 int err; 1896 1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1898 int len = msg->msg_namelen; 1899 1900 if (len > sizeof(*daddr)) 1901 len = sizeof(*daddr); 1902 1903 daddr = (union sctp_addr *)msg->msg_name; 1904 1905 err = sctp_verify_addr(sk, daddr, len); 1906 if (err) 1907 return ERR_PTR(err); 1908 } 1909 1910 return daddr; 1911 } 1912 1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1914 struct sctp_sndrcvinfo *sinfo, 1915 struct sctp_cmsgs *cmsgs) 1916 { 1917 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1918 sinfo->sinfo_stream = asoc->default_stream; 1919 sinfo->sinfo_ppid = asoc->default_ppid; 1920 sinfo->sinfo_context = asoc->default_context; 1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1922 1923 if (!cmsgs->prinfo) 1924 sinfo->sinfo_flags = asoc->default_flags; 1925 } 1926 1927 if (!cmsgs->srinfo && !cmsgs->prinfo) 1928 sinfo->sinfo_timetolive = asoc->default_timetolive; 1929 1930 if (cmsgs->authinfo) { 1931 /* Reuse sinfo_tsn to indicate that authinfo was set and 1932 * sinfo_ssn to save the keyid on tx path. 1933 */ 1934 sinfo->sinfo_tsn = 1; 1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1936 } 1937 } 1938 1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1940 { 1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1942 struct sctp_transport *transport = NULL; 1943 struct sctp_sndrcvinfo _sinfo, *sinfo; 1944 struct sctp_association *asoc, *tmp; 1945 struct sctp_cmsgs cmsgs; 1946 union sctp_addr *daddr; 1947 bool new = false; 1948 __u16 sflags; 1949 int err; 1950 1951 /* Parse and get snd_info */ 1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1953 if (err) 1954 goto out; 1955 1956 sinfo = &_sinfo; 1957 sflags = sinfo->sinfo_flags; 1958 1959 /* Get daddr from msg */ 1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1961 if (IS_ERR(daddr)) { 1962 err = PTR_ERR(daddr); 1963 goto out; 1964 } 1965 1966 lock_sock(sk); 1967 1968 /* SCTP_SENDALL process */ 1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1972 msg_len); 1973 if (err == 0) 1974 continue; 1975 if (err < 0) 1976 goto out_unlock; 1977 1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1979 1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1981 NULL, sinfo); 1982 if (err < 0) 1983 goto out_unlock; 1984 1985 iov_iter_revert(&msg->msg_iter, err); 1986 } 1987 1988 goto out_unlock; 1989 } 1990 1991 /* Get and check or create asoc */ 1992 if (daddr) { 1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1994 if (asoc) { 1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1996 msg_len); 1997 if (err <= 0) 1998 goto out_unlock; 1999 } else { 2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2001 &transport); 2002 if (err) 2003 goto out_unlock; 2004 2005 asoc = transport->asoc; 2006 new = true; 2007 } 2008 2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2010 transport = NULL; 2011 } else { 2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2013 if (!asoc) { 2014 err = -EPIPE; 2015 goto out_unlock; 2016 } 2017 2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2019 if (err <= 0) 2020 goto out_unlock; 2021 } 2022 2023 /* Update snd_info with the asoc */ 2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2025 2026 /* Send msg to the asoc */ 2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2028 if (err < 0 && err != -ESRCH && new) 2029 sctp_association_free(asoc); 2030 2031 out_unlock: 2032 release_sock(sk); 2033 out: 2034 return sctp_error(sk, msg->msg_flags, err); 2035 } 2036 2037 /* This is an extended version of skb_pull() that removes the data from the 2038 * start of a skb even when data is spread across the list of skb's in the 2039 * frag_list. len specifies the total amount of data that needs to be removed. 2040 * when 'len' bytes could be removed from the skb, it returns 0. 2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2042 * could not be removed. 2043 */ 2044 static int sctp_skb_pull(struct sk_buff *skb, int len) 2045 { 2046 struct sk_buff *list; 2047 int skb_len = skb_headlen(skb); 2048 int rlen; 2049 2050 if (len <= skb_len) { 2051 __skb_pull(skb, len); 2052 return 0; 2053 } 2054 len -= skb_len; 2055 __skb_pull(skb, skb_len); 2056 2057 skb_walk_frags(skb, list) { 2058 rlen = sctp_skb_pull(list, len); 2059 skb->len -= (len-rlen); 2060 skb->data_len -= (len-rlen); 2061 2062 if (!rlen) 2063 return 0; 2064 2065 len = rlen; 2066 } 2067 2068 return len; 2069 } 2070 2071 /* API 3.1.3 recvmsg() - UDP Style Syntax 2072 * 2073 * ssize_t recvmsg(int socket, struct msghdr *message, 2074 * int flags); 2075 * 2076 * socket - the socket descriptor of the endpoint. 2077 * message - pointer to the msghdr structure which contains a single 2078 * user message and possibly some ancillary data. 2079 * 2080 * See Section 5 for complete description of the data 2081 * structures. 2082 * 2083 * flags - flags sent or received with the user message, see Section 2084 * 5 for complete description of the flags. 2085 */ 2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2087 int noblock, int flags, int *addr_len) 2088 { 2089 struct sctp_ulpevent *event = NULL; 2090 struct sctp_sock *sp = sctp_sk(sk); 2091 struct sk_buff *skb, *head_skb; 2092 int copied; 2093 int err = 0; 2094 int skb_len; 2095 2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2097 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2098 addr_len); 2099 2100 lock_sock(sk); 2101 2102 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2103 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2104 err = -ENOTCONN; 2105 goto out; 2106 } 2107 2108 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2109 if (!skb) 2110 goto out; 2111 2112 /* Get the total length of the skb including any skb's in the 2113 * frag_list. 2114 */ 2115 skb_len = skb->len; 2116 2117 copied = skb_len; 2118 if (copied > len) 2119 copied = len; 2120 2121 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2122 2123 event = sctp_skb2event(skb); 2124 2125 if (err) 2126 goto out_free; 2127 2128 if (event->chunk && event->chunk->head_skb) 2129 head_skb = event->chunk->head_skb; 2130 else 2131 head_skb = skb; 2132 sock_recv_ts_and_drops(msg, sk, head_skb); 2133 if (sctp_ulpevent_is_notification(event)) { 2134 msg->msg_flags |= MSG_NOTIFICATION; 2135 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2136 } else { 2137 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2138 } 2139 2140 /* Check if we allow SCTP_NXTINFO. */ 2141 if (sp->recvnxtinfo) 2142 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2143 /* Check if we allow SCTP_RCVINFO. */ 2144 if (sp->recvrcvinfo) 2145 sctp_ulpevent_read_rcvinfo(event, msg); 2146 /* Check if we allow SCTP_SNDRCVINFO. */ 2147 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2148 sctp_ulpevent_read_sndrcvinfo(event, msg); 2149 2150 err = copied; 2151 2152 /* If skb's length exceeds the user's buffer, update the skb and 2153 * push it back to the receive_queue so that the next call to 2154 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2155 */ 2156 if (skb_len > copied) { 2157 msg->msg_flags &= ~MSG_EOR; 2158 if (flags & MSG_PEEK) 2159 goto out_free; 2160 sctp_skb_pull(skb, copied); 2161 skb_queue_head(&sk->sk_receive_queue, skb); 2162 2163 /* When only partial message is copied to the user, increase 2164 * rwnd by that amount. If all the data in the skb is read, 2165 * rwnd is updated when the event is freed. 2166 */ 2167 if (!sctp_ulpevent_is_notification(event)) 2168 sctp_assoc_rwnd_increase(event->asoc, copied); 2169 goto out; 2170 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2171 (event->msg_flags & MSG_EOR)) 2172 msg->msg_flags |= MSG_EOR; 2173 else 2174 msg->msg_flags &= ~MSG_EOR; 2175 2176 out_free: 2177 if (flags & MSG_PEEK) { 2178 /* Release the skb reference acquired after peeking the skb in 2179 * sctp_skb_recv_datagram(). 2180 */ 2181 kfree_skb(skb); 2182 } else { 2183 /* Free the event which includes releasing the reference to 2184 * the owner of the skb, freeing the skb and updating the 2185 * rwnd. 2186 */ 2187 sctp_ulpevent_free(event); 2188 } 2189 out: 2190 release_sock(sk); 2191 return err; 2192 } 2193 2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2195 * 2196 * This option is a on/off flag. If enabled no SCTP message 2197 * fragmentation will be performed. Instead if a message being sent 2198 * exceeds the current PMTU size, the message will NOT be sent and 2199 * instead a error will be indicated to the user. 2200 */ 2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2202 unsigned int optlen) 2203 { 2204 if (optlen < sizeof(int)) 2205 return -EINVAL; 2206 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2207 return 0; 2208 } 2209 2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2211 unsigned int optlen) 2212 { 2213 struct sctp_sock *sp = sctp_sk(sk); 2214 struct sctp_association *asoc; 2215 int i; 2216 2217 if (optlen > sizeof(struct sctp_event_subscribe)) 2218 return -EINVAL; 2219 2220 for (i = 0; i < optlen; i++) 2221 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2222 sn_type[i]); 2223 2224 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2225 asoc->subscribe = sctp_sk(sk)->subscribe; 2226 2227 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2228 * if there is no data to be sent or retransmit, the stack will 2229 * immediately send up this notification. 2230 */ 2231 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2232 struct sctp_ulpevent *event; 2233 2234 asoc = sctp_id2assoc(sk, 0); 2235 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2236 event = sctp_ulpevent_make_sender_dry_event(asoc, 2237 GFP_USER | __GFP_NOWARN); 2238 if (!event) 2239 return -ENOMEM; 2240 2241 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2242 } 2243 } 2244 2245 return 0; 2246 } 2247 2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2249 * 2250 * This socket option is applicable to the UDP-style socket only. When 2251 * set it will cause associations that are idle for more than the 2252 * specified number of seconds to automatically close. An association 2253 * being idle is defined an association that has NOT sent or received 2254 * user data. The special value of '0' indicates that no automatic 2255 * close of any associations should be performed. The option expects an 2256 * integer defining the number of seconds of idle time before an 2257 * association is closed. 2258 */ 2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2260 unsigned int optlen) 2261 { 2262 struct sctp_sock *sp = sctp_sk(sk); 2263 struct net *net = sock_net(sk); 2264 2265 /* Applicable to UDP-style socket only */ 2266 if (sctp_style(sk, TCP)) 2267 return -EOPNOTSUPP; 2268 if (optlen != sizeof(int)) 2269 return -EINVAL; 2270 2271 sp->autoclose = *optval; 2272 if (sp->autoclose > net->sctp.max_autoclose) 2273 sp->autoclose = net->sctp.max_autoclose; 2274 2275 return 0; 2276 } 2277 2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2279 * 2280 * Applications can enable or disable heartbeats for any peer address of 2281 * an association, modify an address's heartbeat interval, force a 2282 * heartbeat to be sent immediately, and adjust the address's maximum 2283 * number of retransmissions sent before an address is considered 2284 * unreachable. The following structure is used to access and modify an 2285 * address's parameters: 2286 * 2287 * struct sctp_paddrparams { 2288 * sctp_assoc_t spp_assoc_id; 2289 * struct sockaddr_storage spp_address; 2290 * uint32_t spp_hbinterval; 2291 * uint16_t spp_pathmaxrxt; 2292 * uint32_t spp_pathmtu; 2293 * uint32_t spp_sackdelay; 2294 * uint32_t spp_flags; 2295 * uint32_t spp_ipv6_flowlabel; 2296 * uint8_t spp_dscp; 2297 * }; 2298 * 2299 * spp_assoc_id - (one-to-many style socket) This is filled in the 2300 * application, and identifies the association for 2301 * this query. 2302 * spp_address - This specifies which address is of interest. 2303 * spp_hbinterval - This contains the value of the heartbeat interval, 2304 * in milliseconds. If a value of zero 2305 * is present in this field then no changes are to 2306 * be made to this parameter. 2307 * spp_pathmaxrxt - This contains the maximum number of 2308 * retransmissions before this address shall be 2309 * considered unreachable. If a value of zero 2310 * is present in this field then no changes are to 2311 * be made to this parameter. 2312 * spp_pathmtu - When Path MTU discovery is disabled the value 2313 * specified here will be the "fixed" path mtu. 2314 * Note that if the spp_address field is empty 2315 * then all associations on this address will 2316 * have this fixed path mtu set upon them. 2317 * 2318 * spp_sackdelay - When delayed sack is enabled, this value specifies 2319 * the number of milliseconds that sacks will be delayed 2320 * for. This value will apply to all addresses of an 2321 * association if the spp_address field is empty. Note 2322 * also, that if delayed sack is enabled and this 2323 * value is set to 0, no change is made to the last 2324 * recorded delayed sack timer value. 2325 * 2326 * spp_flags - These flags are used to control various features 2327 * on an association. The flag field may contain 2328 * zero or more of the following options. 2329 * 2330 * SPP_HB_ENABLE - Enable heartbeats on the 2331 * specified address. Note that if the address 2332 * field is empty all addresses for the association 2333 * have heartbeats enabled upon them. 2334 * 2335 * SPP_HB_DISABLE - Disable heartbeats on the 2336 * speicifed address. Note that if the address 2337 * field is empty all addresses for the association 2338 * will have their heartbeats disabled. Note also 2339 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2340 * mutually exclusive, only one of these two should 2341 * be specified. Enabling both fields will have 2342 * undetermined results. 2343 * 2344 * SPP_HB_DEMAND - Request a user initiated heartbeat 2345 * to be made immediately. 2346 * 2347 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2348 * heartbeat delayis to be set to the value of 0 2349 * milliseconds. 2350 * 2351 * SPP_PMTUD_ENABLE - This field will enable PMTU 2352 * discovery upon the specified address. Note that 2353 * if the address feild is empty then all addresses 2354 * on the association are effected. 2355 * 2356 * SPP_PMTUD_DISABLE - This field will disable PMTU 2357 * discovery upon the specified address. Note that 2358 * if the address feild is empty then all addresses 2359 * on the association are effected. Not also that 2360 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2361 * exclusive. Enabling both will have undetermined 2362 * results. 2363 * 2364 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2365 * on delayed sack. The time specified in spp_sackdelay 2366 * is used to specify the sack delay for this address. Note 2367 * that if spp_address is empty then all addresses will 2368 * enable delayed sack and take on the sack delay 2369 * value specified in spp_sackdelay. 2370 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2371 * off delayed sack. If the spp_address field is blank then 2372 * delayed sack is disabled for the entire association. Note 2373 * also that this field is mutually exclusive to 2374 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2375 * results. 2376 * 2377 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2378 * setting of the IPV6 flow label value. The value is 2379 * contained in the spp_ipv6_flowlabel field. 2380 * Upon retrieval, this flag will be set to indicate that 2381 * the spp_ipv6_flowlabel field has a valid value returned. 2382 * If a specific destination address is set (in the 2383 * spp_address field), then the value returned is that of 2384 * the address. If just an association is specified (and 2385 * no address), then the association's default flow label 2386 * is returned. If neither an association nor a destination 2387 * is specified, then the socket's default flow label is 2388 * returned. For non-IPv6 sockets, this flag will be left 2389 * cleared. 2390 * 2391 * SPP_DSCP: Setting this flag enables the setting of the 2392 * Differentiated Services Code Point (DSCP) value 2393 * associated with either the association or a specific 2394 * address. The value is obtained in the spp_dscp field. 2395 * Upon retrieval, this flag will be set to indicate that 2396 * the spp_dscp field has a valid value returned. If a 2397 * specific destination address is set when called (in the 2398 * spp_address field), then that specific destination 2399 * address's DSCP value is returned. If just an association 2400 * is specified, then the association's default DSCP is 2401 * returned. If neither an association nor a destination is 2402 * specified, then the socket's default DSCP is returned. 2403 * 2404 * spp_ipv6_flowlabel 2405 * - This field is used in conjunction with the 2406 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2407 * The 20 least significant bits are used for the flow 2408 * label. This setting has precedence over any IPv6-layer 2409 * setting. 2410 * 2411 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2412 * and contains the DSCP. The 6 most significant bits are 2413 * used for the DSCP. This setting has precedence over any 2414 * IPv4- or IPv6- layer setting. 2415 */ 2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2417 struct sctp_transport *trans, 2418 struct sctp_association *asoc, 2419 struct sctp_sock *sp, 2420 int hb_change, 2421 int pmtud_change, 2422 int sackdelay_change) 2423 { 2424 int error; 2425 2426 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2427 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2428 trans->asoc, trans); 2429 if (error) 2430 return error; 2431 } 2432 2433 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2434 * this field is ignored. Note also that a value of zero indicates 2435 * the current setting should be left unchanged. 2436 */ 2437 if (params->spp_flags & SPP_HB_ENABLE) { 2438 2439 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2440 * set. This lets us use 0 value when this flag 2441 * is set. 2442 */ 2443 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2444 params->spp_hbinterval = 0; 2445 2446 if (params->spp_hbinterval || 2447 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2448 if (trans) { 2449 trans->hbinterval = 2450 msecs_to_jiffies(params->spp_hbinterval); 2451 } else if (asoc) { 2452 asoc->hbinterval = 2453 msecs_to_jiffies(params->spp_hbinterval); 2454 } else { 2455 sp->hbinterval = params->spp_hbinterval; 2456 } 2457 } 2458 } 2459 2460 if (hb_change) { 2461 if (trans) { 2462 trans->param_flags = 2463 (trans->param_flags & ~SPP_HB) | hb_change; 2464 } else if (asoc) { 2465 asoc->param_flags = 2466 (asoc->param_flags & ~SPP_HB) | hb_change; 2467 } else { 2468 sp->param_flags = 2469 (sp->param_flags & ~SPP_HB) | hb_change; 2470 } 2471 } 2472 2473 /* When Path MTU discovery is disabled the value specified here will 2474 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2475 * include the flag SPP_PMTUD_DISABLE for this field to have any 2476 * effect). 2477 */ 2478 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2479 if (trans) { 2480 trans->pathmtu = params->spp_pathmtu; 2481 sctp_assoc_sync_pmtu(asoc); 2482 } else if (asoc) { 2483 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2484 } else { 2485 sp->pathmtu = params->spp_pathmtu; 2486 } 2487 } 2488 2489 if (pmtud_change) { 2490 if (trans) { 2491 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2492 (params->spp_flags & SPP_PMTUD_ENABLE); 2493 trans->param_flags = 2494 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2495 if (update) { 2496 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2497 sctp_assoc_sync_pmtu(asoc); 2498 } 2499 } else if (asoc) { 2500 asoc->param_flags = 2501 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2502 } else { 2503 sp->param_flags = 2504 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2505 } 2506 } 2507 2508 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2509 * value of this field is ignored. Note also that a value of zero 2510 * indicates the current setting should be left unchanged. 2511 */ 2512 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2513 if (trans) { 2514 trans->sackdelay = 2515 msecs_to_jiffies(params->spp_sackdelay); 2516 } else if (asoc) { 2517 asoc->sackdelay = 2518 msecs_to_jiffies(params->spp_sackdelay); 2519 } else { 2520 sp->sackdelay = params->spp_sackdelay; 2521 } 2522 } 2523 2524 if (sackdelay_change) { 2525 if (trans) { 2526 trans->param_flags = 2527 (trans->param_flags & ~SPP_SACKDELAY) | 2528 sackdelay_change; 2529 } else if (asoc) { 2530 asoc->param_flags = 2531 (asoc->param_flags & ~SPP_SACKDELAY) | 2532 sackdelay_change; 2533 } else { 2534 sp->param_flags = 2535 (sp->param_flags & ~SPP_SACKDELAY) | 2536 sackdelay_change; 2537 } 2538 } 2539 2540 /* Note that a value of zero indicates the current setting should be 2541 left unchanged. 2542 */ 2543 if (params->spp_pathmaxrxt) { 2544 if (trans) { 2545 trans->pathmaxrxt = params->spp_pathmaxrxt; 2546 } else if (asoc) { 2547 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2548 } else { 2549 sp->pathmaxrxt = params->spp_pathmaxrxt; 2550 } 2551 } 2552 2553 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2554 if (trans) { 2555 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2556 trans->flowlabel = params->spp_ipv6_flowlabel & 2557 SCTP_FLOWLABEL_VAL_MASK; 2558 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2559 } 2560 } else if (asoc) { 2561 struct sctp_transport *t; 2562 2563 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2564 transports) { 2565 if (t->ipaddr.sa.sa_family != AF_INET6) 2566 continue; 2567 t->flowlabel = params->spp_ipv6_flowlabel & 2568 SCTP_FLOWLABEL_VAL_MASK; 2569 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2570 } 2571 asoc->flowlabel = params->spp_ipv6_flowlabel & 2572 SCTP_FLOWLABEL_VAL_MASK; 2573 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2574 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2575 sp->flowlabel = params->spp_ipv6_flowlabel & 2576 SCTP_FLOWLABEL_VAL_MASK; 2577 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2578 } 2579 } 2580 2581 if (params->spp_flags & SPP_DSCP) { 2582 if (trans) { 2583 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2584 trans->dscp |= SCTP_DSCP_SET_MASK; 2585 } else if (asoc) { 2586 struct sctp_transport *t; 2587 2588 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2589 transports) { 2590 t->dscp = params->spp_dscp & 2591 SCTP_DSCP_VAL_MASK; 2592 t->dscp |= SCTP_DSCP_SET_MASK; 2593 } 2594 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2595 asoc->dscp |= SCTP_DSCP_SET_MASK; 2596 } else { 2597 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2598 sp->dscp |= SCTP_DSCP_SET_MASK; 2599 } 2600 } 2601 2602 return 0; 2603 } 2604 2605 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2606 struct sctp_paddrparams *params, 2607 unsigned int optlen) 2608 { 2609 struct sctp_transport *trans = NULL; 2610 struct sctp_association *asoc = NULL; 2611 struct sctp_sock *sp = sctp_sk(sk); 2612 int error; 2613 int hb_change, pmtud_change, sackdelay_change; 2614 2615 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2616 spp_ipv6_flowlabel), 4)) { 2617 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2618 return -EINVAL; 2619 } else if (optlen != sizeof(*params)) { 2620 return -EINVAL; 2621 } 2622 2623 /* Validate flags and value parameters. */ 2624 hb_change = params->spp_flags & SPP_HB; 2625 pmtud_change = params->spp_flags & SPP_PMTUD; 2626 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2627 2628 if (hb_change == SPP_HB || 2629 pmtud_change == SPP_PMTUD || 2630 sackdelay_change == SPP_SACKDELAY || 2631 params->spp_sackdelay > 500 || 2632 (params->spp_pathmtu && 2633 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2634 return -EINVAL; 2635 2636 /* If an address other than INADDR_ANY is specified, and 2637 * no transport is found, then the request is invalid. 2638 */ 2639 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2640 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2641 params->spp_assoc_id); 2642 if (!trans) 2643 return -EINVAL; 2644 } 2645 2646 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2647 * socket is a one to many style socket, and an association 2648 * was not found, then the id was invalid. 2649 */ 2650 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2651 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2652 sctp_style(sk, UDP)) 2653 return -EINVAL; 2654 2655 /* Heartbeat demand can only be sent on a transport or 2656 * association, but not a socket. 2657 */ 2658 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2659 return -EINVAL; 2660 2661 /* Process parameters. */ 2662 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2663 hb_change, pmtud_change, 2664 sackdelay_change); 2665 2666 if (error) 2667 return error; 2668 2669 /* If changes are for association, also apply parameters to each 2670 * transport. 2671 */ 2672 if (!trans && asoc) { 2673 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2674 transports) { 2675 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2676 hb_change, pmtud_change, 2677 sackdelay_change); 2678 } 2679 } 2680 2681 return 0; 2682 } 2683 2684 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2685 { 2686 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2687 } 2688 2689 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2690 { 2691 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2692 } 2693 2694 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2695 struct sctp_association *asoc) 2696 { 2697 struct sctp_transport *trans; 2698 2699 if (params->sack_delay) { 2700 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2701 asoc->param_flags = 2702 sctp_spp_sackdelay_enable(asoc->param_flags); 2703 } 2704 if (params->sack_freq == 1) { 2705 asoc->param_flags = 2706 sctp_spp_sackdelay_disable(asoc->param_flags); 2707 } else if (params->sack_freq > 1) { 2708 asoc->sackfreq = params->sack_freq; 2709 asoc->param_flags = 2710 sctp_spp_sackdelay_enable(asoc->param_flags); 2711 } 2712 2713 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2714 transports) { 2715 if (params->sack_delay) { 2716 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2717 trans->param_flags = 2718 sctp_spp_sackdelay_enable(trans->param_flags); 2719 } 2720 if (params->sack_freq == 1) { 2721 trans->param_flags = 2722 sctp_spp_sackdelay_disable(trans->param_flags); 2723 } else if (params->sack_freq > 1) { 2724 trans->sackfreq = params->sack_freq; 2725 trans->param_flags = 2726 sctp_spp_sackdelay_enable(trans->param_flags); 2727 } 2728 } 2729 } 2730 2731 /* 2732 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2733 * 2734 * This option will effect the way delayed acks are performed. This 2735 * option allows you to get or set the delayed ack time, in 2736 * milliseconds. It also allows changing the delayed ack frequency. 2737 * Changing the frequency to 1 disables the delayed sack algorithm. If 2738 * the assoc_id is 0, then this sets or gets the endpoints default 2739 * values. If the assoc_id field is non-zero, then the set or get 2740 * effects the specified association for the one to many model (the 2741 * assoc_id field is ignored by the one to one model). Note that if 2742 * sack_delay or sack_freq are 0 when setting this option, then the 2743 * current values will remain unchanged. 2744 * 2745 * struct sctp_sack_info { 2746 * sctp_assoc_t sack_assoc_id; 2747 * uint32_t sack_delay; 2748 * uint32_t sack_freq; 2749 * }; 2750 * 2751 * sack_assoc_id - This parameter, indicates which association the user 2752 * is performing an action upon. Note that if this field's value is 2753 * zero then the endpoints default value is changed (effecting future 2754 * associations only). 2755 * 2756 * sack_delay - This parameter contains the number of milliseconds that 2757 * the user is requesting the delayed ACK timer be set to. Note that 2758 * this value is defined in the standard to be between 200 and 500 2759 * milliseconds. 2760 * 2761 * sack_freq - This parameter contains the number of packets that must 2762 * be received before a sack is sent without waiting for the delay 2763 * timer to expire. The default value for this is 2, setting this 2764 * value to 1 will disable the delayed sack algorithm. 2765 */ 2766 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2767 struct sctp_sack_info *params) 2768 { 2769 struct sctp_sock *sp = sctp_sk(sk); 2770 struct sctp_association *asoc; 2771 2772 /* Validate value parameter. */ 2773 if (params->sack_delay > 500) 2774 return -EINVAL; 2775 2776 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2777 * socket is a one to many style socket, and an association 2778 * was not found, then the id was invalid. 2779 */ 2780 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2781 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2782 sctp_style(sk, UDP)) 2783 return -EINVAL; 2784 2785 if (asoc) { 2786 sctp_apply_asoc_delayed_ack(params, asoc); 2787 2788 return 0; 2789 } 2790 2791 if (sctp_style(sk, TCP)) 2792 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2793 2794 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2795 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2796 if (params->sack_delay) { 2797 sp->sackdelay = params->sack_delay; 2798 sp->param_flags = 2799 sctp_spp_sackdelay_enable(sp->param_flags); 2800 } 2801 if (params->sack_freq == 1) { 2802 sp->param_flags = 2803 sctp_spp_sackdelay_disable(sp->param_flags); 2804 } else if (params->sack_freq > 1) { 2805 sp->sackfreq = params->sack_freq; 2806 sp->param_flags = 2807 sctp_spp_sackdelay_enable(sp->param_flags); 2808 } 2809 } 2810 2811 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2812 params->sack_assoc_id == SCTP_ALL_ASSOC) 2813 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2814 sctp_apply_asoc_delayed_ack(params, asoc); 2815 2816 return 0; 2817 } 2818 2819 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2820 struct sctp_sack_info *params, 2821 unsigned int optlen) 2822 { 2823 if (optlen == sizeof(struct sctp_assoc_value)) { 2824 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2825 struct sctp_sack_info p; 2826 2827 pr_warn_ratelimited(DEPRECATED 2828 "%s (pid %d) " 2829 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2830 "Use struct sctp_sack_info instead\n", 2831 current->comm, task_pid_nr(current)); 2832 2833 p.sack_assoc_id = v->assoc_id; 2834 p.sack_delay = v->assoc_value; 2835 p.sack_freq = v->assoc_value ? 0 : 1; 2836 return __sctp_setsockopt_delayed_ack(sk, &p); 2837 } 2838 2839 if (optlen != sizeof(struct sctp_sack_info)) 2840 return -EINVAL; 2841 if (params->sack_delay == 0 && params->sack_freq == 0) 2842 return 0; 2843 return __sctp_setsockopt_delayed_ack(sk, params); 2844 } 2845 2846 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2847 * 2848 * Applications can specify protocol parameters for the default association 2849 * initialization. The option name argument to setsockopt() and getsockopt() 2850 * is SCTP_INITMSG. 2851 * 2852 * Setting initialization parameters is effective only on an unconnected 2853 * socket (for UDP-style sockets only future associations are effected 2854 * by the change). With TCP-style sockets, this option is inherited by 2855 * sockets derived from a listener socket. 2856 */ 2857 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2858 unsigned int optlen) 2859 { 2860 struct sctp_sock *sp = sctp_sk(sk); 2861 2862 if (optlen != sizeof(struct sctp_initmsg)) 2863 return -EINVAL; 2864 2865 if (sinit->sinit_num_ostreams) 2866 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2867 if (sinit->sinit_max_instreams) 2868 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2869 if (sinit->sinit_max_attempts) 2870 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2871 if (sinit->sinit_max_init_timeo) 2872 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2873 2874 return 0; 2875 } 2876 2877 /* 2878 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2879 * 2880 * Applications that wish to use the sendto() system call may wish to 2881 * specify a default set of parameters that would normally be supplied 2882 * through the inclusion of ancillary data. This socket option allows 2883 * such an application to set the default sctp_sndrcvinfo structure. 2884 * The application that wishes to use this socket option simply passes 2885 * in to this call the sctp_sndrcvinfo structure defined in Section 2886 * 5.2.2) The input parameters accepted by this call include 2887 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2888 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2889 * to this call if the caller is using the UDP model. 2890 */ 2891 static int sctp_setsockopt_default_send_param(struct sock *sk, 2892 struct sctp_sndrcvinfo *info, 2893 unsigned int optlen) 2894 { 2895 struct sctp_sock *sp = sctp_sk(sk); 2896 struct sctp_association *asoc; 2897 2898 if (optlen != sizeof(*info)) 2899 return -EINVAL; 2900 if (info->sinfo_flags & 2901 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2902 SCTP_ABORT | SCTP_EOF)) 2903 return -EINVAL; 2904 2905 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2906 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2907 sctp_style(sk, UDP)) 2908 return -EINVAL; 2909 2910 if (asoc) { 2911 asoc->default_stream = info->sinfo_stream; 2912 asoc->default_flags = info->sinfo_flags; 2913 asoc->default_ppid = info->sinfo_ppid; 2914 asoc->default_context = info->sinfo_context; 2915 asoc->default_timetolive = info->sinfo_timetolive; 2916 2917 return 0; 2918 } 2919 2920 if (sctp_style(sk, TCP)) 2921 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2922 2923 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2924 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2925 sp->default_stream = info->sinfo_stream; 2926 sp->default_flags = info->sinfo_flags; 2927 sp->default_ppid = info->sinfo_ppid; 2928 sp->default_context = info->sinfo_context; 2929 sp->default_timetolive = info->sinfo_timetolive; 2930 } 2931 2932 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2933 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2934 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2935 asoc->default_stream = info->sinfo_stream; 2936 asoc->default_flags = info->sinfo_flags; 2937 asoc->default_ppid = info->sinfo_ppid; 2938 asoc->default_context = info->sinfo_context; 2939 asoc->default_timetolive = info->sinfo_timetolive; 2940 } 2941 } 2942 2943 return 0; 2944 } 2945 2946 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2947 * (SCTP_DEFAULT_SNDINFO) 2948 */ 2949 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2950 struct sctp_sndinfo *info, 2951 unsigned int optlen) 2952 { 2953 struct sctp_sock *sp = sctp_sk(sk); 2954 struct sctp_association *asoc; 2955 2956 if (optlen != sizeof(*info)) 2957 return -EINVAL; 2958 if (info->snd_flags & 2959 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2960 SCTP_ABORT | SCTP_EOF)) 2961 return -EINVAL; 2962 2963 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2964 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2965 sctp_style(sk, UDP)) 2966 return -EINVAL; 2967 2968 if (asoc) { 2969 asoc->default_stream = info->snd_sid; 2970 asoc->default_flags = info->snd_flags; 2971 asoc->default_ppid = info->snd_ppid; 2972 asoc->default_context = info->snd_context; 2973 2974 return 0; 2975 } 2976 2977 if (sctp_style(sk, TCP)) 2978 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2979 2980 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2981 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2982 sp->default_stream = info->snd_sid; 2983 sp->default_flags = info->snd_flags; 2984 sp->default_ppid = info->snd_ppid; 2985 sp->default_context = info->snd_context; 2986 } 2987 2988 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2989 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2990 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2991 asoc->default_stream = info->snd_sid; 2992 asoc->default_flags = info->snd_flags; 2993 asoc->default_ppid = info->snd_ppid; 2994 asoc->default_context = info->snd_context; 2995 } 2996 } 2997 2998 return 0; 2999 } 3000 3001 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3002 * 3003 * Requests that the local SCTP stack use the enclosed peer address as 3004 * the association primary. The enclosed address must be one of the 3005 * association peer's addresses. 3006 */ 3007 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3008 unsigned int optlen) 3009 { 3010 struct sctp_transport *trans; 3011 struct sctp_af *af; 3012 int err; 3013 3014 if (optlen != sizeof(struct sctp_prim)) 3015 return -EINVAL; 3016 3017 /* Allow security module to validate address but need address len. */ 3018 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3019 if (!af) 3020 return -EINVAL; 3021 3022 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3023 (struct sockaddr *)&prim->ssp_addr, 3024 af->sockaddr_len); 3025 if (err) 3026 return err; 3027 3028 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3029 if (!trans) 3030 return -EINVAL; 3031 3032 sctp_assoc_set_primary(trans->asoc, trans); 3033 3034 return 0; 3035 } 3036 3037 /* 3038 * 7.1.5 SCTP_NODELAY 3039 * 3040 * Turn on/off any Nagle-like algorithm. This means that packets are 3041 * generally sent as soon as possible and no unnecessary delays are 3042 * introduced, at the cost of more packets in the network. Expects an 3043 * integer boolean flag. 3044 */ 3045 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3046 unsigned int optlen) 3047 { 3048 if (optlen < sizeof(int)) 3049 return -EINVAL; 3050 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3051 return 0; 3052 } 3053 3054 /* 3055 * 3056 * 7.1.1 SCTP_RTOINFO 3057 * 3058 * The protocol parameters used to initialize and bound retransmission 3059 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3060 * and modify these parameters. 3061 * All parameters are time values, in milliseconds. A value of 0, when 3062 * modifying the parameters, indicates that the current value should not 3063 * be changed. 3064 * 3065 */ 3066 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3067 struct sctp_rtoinfo *rtoinfo, 3068 unsigned int optlen) 3069 { 3070 struct sctp_association *asoc; 3071 unsigned long rto_min, rto_max; 3072 struct sctp_sock *sp = sctp_sk(sk); 3073 3074 if (optlen != sizeof (struct sctp_rtoinfo)) 3075 return -EINVAL; 3076 3077 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3078 3079 /* Set the values to the specific association */ 3080 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3081 sctp_style(sk, UDP)) 3082 return -EINVAL; 3083 3084 rto_max = rtoinfo->srto_max; 3085 rto_min = rtoinfo->srto_min; 3086 3087 if (rto_max) 3088 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3089 else 3090 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3091 3092 if (rto_min) 3093 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3094 else 3095 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3096 3097 if (rto_min > rto_max) 3098 return -EINVAL; 3099 3100 if (asoc) { 3101 if (rtoinfo->srto_initial != 0) 3102 asoc->rto_initial = 3103 msecs_to_jiffies(rtoinfo->srto_initial); 3104 asoc->rto_max = rto_max; 3105 asoc->rto_min = rto_min; 3106 } else { 3107 /* If there is no association or the association-id = 0 3108 * set the values to the endpoint. 3109 */ 3110 if (rtoinfo->srto_initial != 0) 3111 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3112 sp->rtoinfo.srto_max = rto_max; 3113 sp->rtoinfo.srto_min = rto_min; 3114 } 3115 3116 return 0; 3117 } 3118 3119 /* 3120 * 3121 * 7.1.2 SCTP_ASSOCINFO 3122 * 3123 * This option is used to tune the maximum retransmission attempts 3124 * of the association. 3125 * Returns an error if the new association retransmission value is 3126 * greater than the sum of the retransmission value of the peer. 3127 * See [SCTP] for more information. 3128 * 3129 */ 3130 static int sctp_setsockopt_associnfo(struct sock *sk, 3131 struct sctp_assocparams *assocparams, 3132 unsigned int optlen) 3133 { 3134 3135 struct sctp_association *asoc; 3136 3137 if (optlen != sizeof(struct sctp_assocparams)) 3138 return -EINVAL; 3139 3140 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3141 3142 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3143 sctp_style(sk, UDP)) 3144 return -EINVAL; 3145 3146 /* Set the values to the specific association */ 3147 if (asoc) { 3148 if (assocparams->sasoc_asocmaxrxt != 0) { 3149 __u32 path_sum = 0; 3150 int paths = 0; 3151 struct sctp_transport *peer_addr; 3152 3153 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3154 transports) { 3155 path_sum += peer_addr->pathmaxrxt; 3156 paths++; 3157 } 3158 3159 /* Only validate asocmaxrxt if we have more than 3160 * one path/transport. We do this because path 3161 * retransmissions are only counted when we have more 3162 * then one path. 3163 */ 3164 if (paths > 1 && 3165 assocparams->sasoc_asocmaxrxt > path_sum) 3166 return -EINVAL; 3167 3168 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3169 } 3170 3171 if (assocparams->sasoc_cookie_life != 0) 3172 asoc->cookie_life = 3173 ms_to_ktime(assocparams->sasoc_cookie_life); 3174 } else { 3175 /* Set the values to the endpoint */ 3176 struct sctp_sock *sp = sctp_sk(sk); 3177 3178 if (assocparams->sasoc_asocmaxrxt != 0) 3179 sp->assocparams.sasoc_asocmaxrxt = 3180 assocparams->sasoc_asocmaxrxt; 3181 if (assocparams->sasoc_cookie_life != 0) 3182 sp->assocparams.sasoc_cookie_life = 3183 assocparams->sasoc_cookie_life; 3184 } 3185 return 0; 3186 } 3187 3188 /* 3189 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3190 * 3191 * This socket option is a boolean flag which turns on or off mapped V4 3192 * addresses. If this option is turned on and the socket is type 3193 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3194 * If this option is turned off, then no mapping will be done of V4 3195 * addresses and a user will receive both PF_INET6 and PF_INET type 3196 * addresses on the socket. 3197 */ 3198 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3199 unsigned int optlen) 3200 { 3201 struct sctp_sock *sp = sctp_sk(sk); 3202 3203 if (optlen < sizeof(int)) 3204 return -EINVAL; 3205 if (*val) 3206 sp->v4mapped = 1; 3207 else 3208 sp->v4mapped = 0; 3209 3210 return 0; 3211 } 3212 3213 /* 3214 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3215 * This option will get or set the maximum size to put in any outgoing 3216 * SCTP DATA chunk. If a message is larger than this size it will be 3217 * fragmented by SCTP into the specified size. Note that the underlying 3218 * SCTP implementation may fragment into smaller sized chunks when the 3219 * PMTU of the underlying association is smaller than the value set by 3220 * the user. The default value for this option is '0' which indicates 3221 * the user is NOT limiting fragmentation and only the PMTU will effect 3222 * SCTP's choice of DATA chunk size. Note also that values set larger 3223 * than the maximum size of an IP datagram will effectively let SCTP 3224 * control fragmentation (i.e. the same as setting this option to 0). 3225 * 3226 * The following structure is used to access and modify this parameter: 3227 * 3228 * struct sctp_assoc_value { 3229 * sctp_assoc_t assoc_id; 3230 * uint32_t assoc_value; 3231 * }; 3232 * 3233 * assoc_id: This parameter is ignored for one-to-one style sockets. 3234 * For one-to-many style sockets this parameter indicates which 3235 * association the user is performing an action upon. Note that if 3236 * this field's value is zero then the endpoints default value is 3237 * changed (effecting future associations only). 3238 * assoc_value: This parameter specifies the maximum size in bytes. 3239 */ 3240 static int sctp_setsockopt_maxseg(struct sock *sk, 3241 struct sctp_assoc_value *params, 3242 unsigned int optlen) 3243 { 3244 struct sctp_sock *sp = sctp_sk(sk); 3245 struct sctp_association *asoc; 3246 sctp_assoc_t assoc_id; 3247 int val; 3248 3249 if (optlen == sizeof(int)) { 3250 pr_warn_ratelimited(DEPRECATED 3251 "%s (pid %d) " 3252 "Use of int in maxseg socket option.\n" 3253 "Use struct sctp_assoc_value instead\n", 3254 current->comm, task_pid_nr(current)); 3255 assoc_id = SCTP_FUTURE_ASSOC; 3256 val = *(int *)params; 3257 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3258 assoc_id = params->assoc_id; 3259 val = params->assoc_value; 3260 } else { 3261 return -EINVAL; 3262 } 3263 3264 asoc = sctp_id2assoc(sk, assoc_id); 3265 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3266 sctp_style(sk, UDP)) 3267 return -EINVAL; 3268 3269 if (val) { 3270 int min_len, max_len; 3271 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3272 sizeof(struct sctp_data_chunk); 3273 3274 min_len = sctp_min_frag_point(sp, datasize); 3275 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3276 3277 if (val < min_len || val > max_len) 3278 return -EINVAL; 3279 } 3280 3281 if (asoc) { 3282 asoc->user_frag = val; 3283 sctp_assoc_update_frag_point(asoc); 3284 } else { 3285 sp->user_frag = val; 3286 } 3287 3288 return 0; 3289 } 3290 3291 3292 /* 3293 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3294 * 3295 * Requests that the peer mark the enclosed address as the association 3296 * primary. The enclosed address must be one of the association's 3297 * locally bound addresses. The following structure is used to make a 3298 * set primary request: 3299 */ 3300 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3301 struct sctp_setpeerprim *prim, 3302 unsigned int optlen) 3303 { 3304 struct sctp_sock *sp; 3305 struct sctp_association *asoc = NULL; 3306 struct sctp_chunk *chunk; 3307 struct sctp_af *af; 3308 int err; 3309 3310 sp = sctp_sk(sk); 3311 3312 if (!sp->ep->asconf_enable) 3313 return -EPERM; 3314 3315 if (optlen != sizeof(struct sctp_setpeerprim)) 3316 return -EINVAL; 3317 3318 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3319 if (!asoc) 3320 return -EINVAL; 3321 3322 if (!asoc->peer.asconf_capable) 3323 return -EPERM; 3324 3325 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3326 return -EPERM; 3327 3328 if (!sctp_state(asoc, ESTABLISHED)) 3329 return -ENOTCONN; 3330 3331 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3332 if (!af) 3333 return -EINVAL; 3334 3335 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3336 return -EADDRNOTAVAIL; 3337 3338 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3339 return -EADDRNOTAVAIL; 3340 3341 /* Allow security module to validate address. */ 3342 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3343 (struct sockaddr *)&prim->sspp_addr, 3344 af->sockaddr_len); 3345 if (err) 3346 return err; 3347 3348 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3349 chunk = sctp_make_asconf_set_prim(asoc, 3350 (union sctp_addr *)&prim->sspp_addr); 3351 if (!chunk) 3352 return -ENOMEM; 3353 3354 err = sctp_send_asconf(asoc, chunk); 3355 3356 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3357 3358 return err; 3359 } 3360 3361 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3362 struct sctp_setadaptation *adapt, 3363 unsigned int optlen) 3364 { 3365 if (optlen != sizeof(struct sctp_setadaptation)) 3366 return -EINVAL; 3367 3368 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3369 3370 return 0; 3371 } 3372 3373 /* 3374 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3375 * 3376 * The context field in the sctp_sndrcvinfo structure is normally only 3377 * used when a failed message is retrieved holding the value that was 3378 * sent down on the actual send call. This option allows the setting of 3379 * a default context on an association basis that will be received on 3380 * reading messages from the peer. This is especially helpful in the 3381 * one-2-many model for an application to keep some reference to an 3382 * internal state machine that is processing messages on the 3383 * association. Note that the setting of this value only effects 3384 * received messages from the peer and does not effect the value that is 3385 * saved with outbound messages. 3386 */ 3387 static int sctp_setsockopt_context(struct sock *sk, 3388 struct sctp_assoc_value *params, 3389 unsigned int optlen) 3390 { 3391 struct sctp_sock *sp = sctp_sk(sk); 3392 struct sctp_association *asoc; 3393 3394 if (optlen != sizeof(struct sctp_assoc_value)) 3395 return -EINVAL; 3396 3397 asoc = sctp_id2assoc(sk, params->assoc_id); 3398 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3399 sctp_style(sk, UDP)) 3400 return -EINVAL; 3401 3402 if (asoc) { 3403 asoc->default_rcv_context = params->assoc_value; 3404 3405 return 0; 3406 } 3407 3408 if (sctp_style(sk, TCP)) 3409 params->assoc_id = SCTP_FUTURE_ASSOC; 3410 3411 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3412 params->assoc_id == SCTP_ALL_ASSOC) 3413 sp->default_rcv_context = params->assoc_value; 3414 3415 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3416 params->assoc_id == SCTP_ALL_ASSOC) 3417 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3418 asoc->default_rcv_context = params->assoc_value; 3419 3420 return 0; 3421 } 3422 3423 /* 3424 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3425 * 3426 * This options will at a minimum specify if the implementation is doing 3427 * fragmented interleave. Fragmented interleave, for a one to many 3428 * socket, is when subsequent calls to receive a message may return 3429 * parts of messages from different associations. Some implementations 3430 * may allow you to turn this value on or off. If so, when turned off, 3431 * no fragment interleave will occur (which will cause a head of line 3432 * blocking amongst multiple associations sharing the same one to many 3433 * socket). When this option is turned on, then each receive call may 3434 * come from a different association (thus the user must receive data 3435 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3436 * association each receive belongs to. 3437 * 3438 * This option takes a boolean value. A non-zero value indicates that 3439 * fragmented interleave is on. A value of zero indicates that 3440 * fragmented interleave is off. 3441 * 3442 * Note that it is important that an implementation that allows this 3443 * option to be turned on, have it off by default. Otherwise an unaware 3444 * application using the one to many model may become confused and act 3445 * incorrectly. 3446 */ 3447 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3448 unsigned int optlen) 3449 { 3450 if (optlen != sizeof(int)) 3451 return -EINVAL; 3452 3453 sctp_sk(sk)->frag_interleave = !!*val; 3454 3455 if (!sctp_sk(sk)->frag_interleave) 3456 sctp_sk(sk)->ep->intl_enable = 0; 3457 3458 return 0; 3459 } 3460 3461 /* 3462 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3463 * (SCTP_PARTIAL_DELIVERY_POINT) 3464 * 3465 * This option will set or get the SCTP partial delivery point. This 3466 * point is the size of a message where the partial delivery API will be 3467 * invoked to help free up rwnd space for the peer. Setting this to a 3468 * lower value will cause partial deliveries to happen more often. The 3469 * calls argument is an integer that sets or gets the partial delivery 3470 * point. Note also that the call will fail if the user attempts to set 3471 * this value larger than the socket receive buffer size. 3472 * 3473 * Note that any single message having a length smaller than or equal to 3474 * the SCTP partial delivery point will be delivered in one single read 3475 * call as long as the user provided buffer is large enough to hold the 3476 * message. 3477 */ 3478 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3479 unsigned int optlen) 3480 { 3481 if (optlen != sizeof(u32)) 3482 return -EINVAL; 3483 3484 /* Note: We double the receive buffer from what the user sets 3485 * it to be, also initial rwnd is based on rcvbuf/2. 3486 */ 3487 if (*val > (sk->sk_rcvbuf >> 1)) 3488 return -EINVAL; 3489 3490 sctp_sk(sk)->pd_point = *val; 3491 3492 return 0; /* is this the right error code? */ 3493 } 3494 3495 /* 3496 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3497 * 3498 * This option will allow a user to change the maximum burst of packets 3499 * that can be emitted by this association. Note that the default value 3500 * is 4, and some implementations may restrict this setting so that it 3501 * can only be lowered. 3502 * 3503 * NOTE: This text doesn't seem right. Do this on a socket basis with 3504 * future associations inheriting the socket value. 3505 */ 3506 static int sctp_setsockopt_maxburst(struct sock *sk, 3507 struct sctp_assoc_value *params, 3508 unsigned int optlen) 3509 { 3510 struct sctp_sock *sp = sctp_sk(sk); 3511 struct sctp_association *asoc; 3512 sctp_assoc_t assoc_id; 3513 u32 assoc_value; 3514 3515 if (optlen == sizeof(int)) { 3516 pr_warn_ratelimited(DEPRECATED 3517 "%s (pid %d) " 3518 "Use of int in max_burst socket option deprecated.\n" 3519 "Use struct sctp_assoc_value instead\n", 3520 current->comm, task_pid_nr(current)); 3521 assoc_id = SCTP_FUTURE_ASSOC; 3522 assoc_value = *((int *)params); 3523 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3524 assoc_id = params->assoc_id; 3525 assoc_value = params->assoc_value; 3526 } else 3527 return -EINVAL; 3528 3529 asoc = sctp_id2assoc(sk, assoc_id); 3530 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3531 return -EINVAL; 3532 3533 if (asoc) { 3534 asoc->max_burst = assoc_value; 3535 3536 return 0; 3537 } 3538 3539 if (sctp_style(sk, TCP)) 3540 assoc_id = SCTP_FUTURE_ASSOC; 3541 3542 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3543 sp->max_burst = assoc_value; 3544 3545 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3546 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3547 asoc->max_burst = assoc_value; 3548 3549 return 0; 3550 } 3551 3552 /* 3553 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3554 * 3555 * This set option adds a chunk type that the user is requesting to be 3556 * received only in an authenticated way. Changes to the list of chunks 3557 * will only effect future associations on the socket. 3558 */ 3559 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3560 struct sctp_authchunk *val, 3561 unsigned int optlen) 3562 { 3563 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3564 3565 if (!ep->auth_enable) 3566 return -EACCES; 3567 3568 if (optlen != sizeof(struct sctp_authchunk)) 3569 return -EINVAL; 3570 3571 switch (val->sauth_chunk) { 3572 case SCTP_CID_INIT: 3573 case SCTP_CID_INIT_ACK: 3574 case SCTP_CID_SHUTDOWN_COMPLETE: 3575 case SCTP_CID_AUTH: 3576 return -EINVAL; 3577 } 3578 3579 /* add this chunk id to the endpoint */ 3580 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3581 } 3582 3583 /* 3584 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3585 * 3586 * This option gets or sets the list of HMAC algorithms that the local 3587 * endpoint requires the peer to use. 3588 */ 3589 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3590 struct sctp_hmacalgo *hmacs, 3591 unsigned int optlen) 3592 { 3593 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3594 u32 idents; 3595 3596 if (!ep->auth_enable) 3597 return -EACCES; 3598 3599 if (optlen < sizeof(struct sctp_hmacalgo)) 3600 return -EINVAL; 3601 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3602 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3603 3604 idents = hmacs->shmac_num_idents; 3605 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3606 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3607 return -EINVAL; 3608 3609 return sctp_auth_ep_set_hmacs(ep, hmacs); 3610 } 3611 3612 /* 3613 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3614 * 3615 * This option will set a shared secret key which is used to build an 3616 * association shared key. 3617 */ 3618 static int sctp_setsockopt_auth_key(struct sock *sk, 3619 struct sctp_authkey *authkey, 3620 unsigned int optlen) 3621 { 3622 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3623 struct sctp_association *asoc; 3624 int ret = -EINVAL; 3625 3626 if (optlen <= sizeof(struct sctp_authkey)) 3627 return -EINVAL; 3628 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3629 * this. 3630 */ 3631 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3632 3633 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3634 goto out; 3635 3636 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3637 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3638 sctp_style(sk, UDP)) 3639 goto out; 3640 3641 if (asoc) { 3642 ret = sctp_auth_set_key(ep, asoc, authkey); 3643 goto out; 3644 } 3645 3646 if (sctp_style(sk, TCP)) 3647 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3648 3649 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3650 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3651 ret = sctp_auth_set_key(ep, asoc, authkey); 3652 if (ret) 3653 goto out; 3654 } 3655 3656 ret = 0; 3657 3658 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3659 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3660 list_for_each_entry(asoc, &ep->asocs, asocs) { 3661 int res = sctp_auth_set_key(ep, asoc, authkey); 3662 3663 if (res && !ret) 3664 ret = res; 3665 } 3666 } 3667 3668 out: 3669 memzero_explicit(authkey, optlen); 3670 return ret; 3671 } 3672 3673 /* 3674 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3675 * 3676 * This option will get or set the active shared key to be used to build 3677 * the association shared key. 3678 */ 3679 static int sctp_setsockopt_active_key(struct sock *sk, 3680 struct sctp_authkeyid *val, 3681 unsigned int optlen) 3682 { 3683 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3684 struct sctp_association *asoc; 3685 int ret = 0; 3686 3687 if (optlen != sizeof(struct sctp_authkeyid)) 3688 return -EINVAL; 3689 3690 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3691 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3692 sctp_style(sk, UDP)) 3693 return -EINVAL; 3694 3695 if (asoc) 3696 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3697 3698 if (sctp_style(sk, TCP)) 3699 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3700 3701 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3702 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3703 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3704 if (ret) 3705 return ret; 3706 } 3707 3708 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3709 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3710 list_for_each_entry(asoc, &ep->asocs, asocs) { 3711 int res = sctp_auth_set_active_key(ep, asoc, 3712 val->scact_keynumber); 3713 3714 if (res && !ret) 3715 ret = res; 3716 } 3717 } 3718 3719 return ret; 3720 } 3721 3722 /* 3723 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3724 * 3725 * This set option will delete a shared secret key from use. 3726 */ 3727 static int sctp_setsockopt_del_key(struct sock *sk, 3728 struct sctp_authkeyid *val, 3729 unsigned int optlen) 3730 { 3731 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3732 struct sctp_association *asoc; 3733 int ret = 0; 3734 3735 if (optlen != sizeof(struct sctp_authkeyid)) 3736 return -EINVAL; 3737 3738 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3739 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3740 sctp_style(sk, UDP)) 3741 return -EINVAL; 3742 3743 if (asoc) 3744 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3745 3746 if (sctp_style(sk, TCP)) 3747 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3748 3749 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3750 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3751 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3752 if (ret) 3753 return ret; 3754 } 3755 3756 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3757 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3758 list_for_each_entry(asoc, &ep->asocs, asocs) { 3759 int res = sctp_auth_del_key_id(ep, asoc, 3760 val->scact_keynumber); 3761 3762 if (res && !ret) 3763 ret = res; 3764 } 3765 } 3766 3767 return ret; 3768 } 3769 3770 /* 3771 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3772 * 3773 * This set option will deactivate a shared secret key. 3774 */ 3775 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3776 struct sctp_authkeyid *val, 3777 unsigned int optlen) 3778 { 3779 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3780 struct sctp_association *asoc; 3781 int ret = 0; 3782 3783 if (optlen != sizeof(struct sctp_authkeyid)) 3784 return -EINVAL; 3785 3786 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3787 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3788 sctp_style(sk, UDP)) 3789 return -EINVAL; 3790 3791 if (asoc) 3792 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3793 3794 if (sctp_style(sk, TCP)) 3795 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3796 3797 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3798 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3799 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3800 if (ret) 3801 return ret; 3802 } 3803 3804 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3805 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3806 list_for_each_entry(asoc, &ep->asocs, asocs) { 3807 int res = sctp_auth_deact_key_id(ep, asoc, 3808 val->scact_keynumber); 3809 3810 if (res && !ret) 3811 ret = res; 3812 } 3813 } 3814 3815 return ret; 3816 } 3817 3818 /* 3819 * 8.1.23 SCTP_AUTO_ASCONF 3820 * 3821 * This option will enable or disable the use of the automatic generation of 3822 * ASCONF chunks to add and delete addresses to an existing association. Note 3823 * that this option has two caveats namely: a) it only affects sockets that 3824 * are bound to all addresses available to the SCTP stack, and b) the system 3825 * administrator may have an overriding control that turns the ASCONF feature 3826 * off no matter what setting the socket option may have. 3827 * This option expects an integer boolean flag, where a non-zero value turns on 3828 * the option, and a zero value turns off the option. 3829 * Note. In this implementation, socket operation overrides default parameter 3830 * being set by sysctl as well as FreeBSD implementation 3831 */ 3832 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3833 unsigned int optlen) 3834 { 3835 struct sctp_sock *sp = sctp_sk(sk); 3836 3837 if (optlen < sizeof(int)) 3838 return -EINVAL; 3839 if (!sctp_is_ep_boundall(sk) && *val) 3840 return -EINVAL; 3841 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3842 return 0; 3843 3844 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3845 if (*val == 0 && sp->do_auto_asconf) { 3846 list_del(&sp->auto_asconf_list); 3847 sp->do_auto_asconf = 0; 3848 } else if (*val && !sp->do_auto_asconf) { 3849 list_add_tail(&sp->auto_asconf_list, 3850 &sock_net(sk)->sctp.auto_asconf_splist); 3851 sp->do_auto_asconf = 1; 3852 } 3853 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3854 return 0; 3855 } 3856 3857 /* 3858 * SCTP_PEER_ADDR_THLDS 3859 * 3860 * This option allows us to alter the partially failed threshold for one or all 3861 * transports in an association. See Section 6.1 of: 3862 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3863 */ 3864 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3865 struct sctp_paddrthlds_v2 *val, 3866 unsigned int optlen, bool v2) 3867 { 3868 struct sctp_transport *trans; 3869 struct sctp_association *asoc; 3870 int len; 3871 3872 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3873 if (optlen < len) 3874 return -EINVAL; 3875 3876 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3877 return -EINVAL; 3878 3879 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3880 trans = sctp_addr_id2transport(sk, &val->spt_address, 3881 val->spt_assoc_id); 3882 if (!trans) 3883 return -ENOENT; 3884 3885 if (val->spt_pathmaxrxt) 3886 trans->pathmaxrxt = val->spt_pathmaxrxt; 3887 if (v2) 3888 trans->ps_retrans = val->spt_pathcpthld; 3889 trans->pf_retrans = val->spt_pathpfthld; 3890 3891 return 0; 3892 } 3893 3894 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3895 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3896 sctp_style(sk, UDP)) 3897 return -EINVAL; 3898 3899 if (asoc) { 3900 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3901 transports) { 3902 if (val->spt_pathmaxrxt) 3903 trans->pathmaxrxt = val->spt_pathmaxrxt; 3904 if (v2) 3905 trans->ps_retrans = val->spt_pathcpthld; 3906 trans->pf_retrans = val->spt_pathpfthld; 3907 } 3908 3909 if (val->spt_pathmaxrxt) 3910 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3911 if (v2) 3912 asoc->ps_retrans = val->spt_pathcpthld; 3913 asoc->pf_retrans = val->spt_pathpfthld; 3914 } else { 3915 struct sctp_sock *sp = sctp_sk(sk); 3916 3917 if (val->spt_pathmaxrxt) 3918 sp->pathmaxrxt = val->spt_pathmaxrxt; 3919 if (v2) 3920 sp->ps_retrans = val->spt_pathcpthld; 3921 sp->pf_retrans = val->spt_pathpfthld; 3922 } 3923 3924 return 0; 3925 } 3926 3927 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3928 unsigned int optlen) 3929 { 3930 if (optlen < sizeof(int)) 3931 return -EINVAL; 3932 3933 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3934 3935 return 0; 3936 } 3937 3938 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3939 unsigned int optlen) 3940 { 3941 if (optlen < sizeof(int)) 3942 return -EINVAL; 3943 3944 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3945 3946 return 0; 3947 } 3948 3949 static int sctp_setsockopt_pr_supported(struct sock *sk, 3950 struct sctp_assoc_value *params, 3951 unsigned int optlen) 3952 { 3953 struct sctp_association *asoc; 3954 3955 if (optlen != sizeof(*params)) 3956 return -EINVAL; 3957 3958 asoc = sctp_id2assoc(sk, params->assoc_id); 3959 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3960 sctp_style(sk, UDP)) 3961 return -EINVAL; 3962 3963 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3964 3965 return 0; 3966 } 3967 3968 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3969 struct sctp_default_prinfo *info, 3970 unsigned int optlen) 3971 { 3972 struct sctp_sock *sp = sctp_sk(sk); 3973 struct sctp_association *asoc; 3974 int retval = -EINVAL; 3975 3976 if (optlen != sizeof(*info)) 3977 goto out; 3978 3979 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3980 goto out; 3981 3982 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3983 info->pr_value = 0; 3984 3985 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3986 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3987 sctp_style(sk, UDP)) 3988 goto out; 3989 3990 retval = 0; 3991 3992 if (asoc) { 3993 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3994 asoc->default_timetolive = info->pr_value; 3995 goto out; 3996 } 3997 3998 if (sctp_style(sk, TCP)) 3999 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4000 4001 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4002 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4003 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4004 sp->default_timetolive = info->pr_value; 4005 } 4006 4007 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4008 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4009 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4010 SCTP_PR_SET_POLICY(asoc->default_flags, 4011 info->pr_policy); 4012 asoc->default_timetolive = info->pr_value; 4013 } 4014 } 4015 4016 out: 4017 return retval; 4018 } 4019 4020 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4021 struct sctp_assoc_value *params, 4022 unsigned int optlen) 4023 { 4024 struct sctp_association *asoc; 4025 int retval = -EINVAL; 4026 4027 if (optlen != sizeof(*params)) 4028 goto out; 4029 4030 asoc = sctp_id2assoc(sk, params->assoc_id); 4031 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4032 sctp_style(sk, UDP)) 4033 goto out; 4034 4035 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4036 4037 retval = 0; 4038 4039 out: 4040 return retval; 4041 } 4042 4043 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4044 struct sctp_assoc_value *params, 4045 unsigned int optlen) 4046 { 4047 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4048 struct sctp_association *asoc; 4049 int retval = -EINVAL; 4050 4051 if (optlen != sizeof(*params)) 4052 goto out; 4053 4054 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4055 goto out; 4056 4057 asoc = sctp_id2assoc(sk, params->assoc_id); 4058 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4059 sctp_style(sk, UDP)) 4060 goto out; 4061 4062 retval = 0; 4063 4064 if (asoc) { 4065 asoc->strreset_enable = params->assoc_value; 4066 goto out; 4067 } 4068 4069 if (sctp_style(sk, TCP)) 4070 params->assoc_id = SCTP_FUTURE_ASSOC; 4071 4072 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4073 params->assoc_id == SCTP_ALL_ASSOC) 4074 ep->strreset_enable = params->assoc_value; 4075 4076 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4077 params->assoc_id == SCTP_ALL_ASSOC) 4078 list_for_each_entry(asoc, &ep->asocs, asocs) 4079 asoc->strreset_enable = params->assoc_value; 4080 4081 out: 4082 return retval; 4083 } 4084 4085 static int sctp_setsockopt_reset_streams(struct sock *sk, 4086 struct sctp_reset_streams *params, 4087 unsigned int optlen) 4088 { 4089 struct sctp_association *asoc; 4090 4091 if (optlen < sizeof(*params)) 4092 return -EINVAL; 4093 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4094 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4095 sizeof(__u16) * sizeof(*params)); 4096 4097 if (params->srs_number_streams * sizeof(__u16) > 4098 optlen - sizeof(*params)) 4099 return -EINVAL; 4100 4101 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4102 if (!asoc) 4103 return -EINVAL; 4104 4105 return sctp_send_reset_streams(asoc, params); 4106 } 4107 4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4109 unsigned int optlen) 4110 { 4111 struct sctp_association *asoc; 4112 4113 if (optlen != sizeof(*associd)) 4114 return -EINVAL; 4115 4116 asoc = sctp_id2assoc(sk, *associd); 4117 if (!asoc) 4118 return -EINVAL; 4119 4120 return sctp_send_reset_assoc(asoc); 4121 } 4122 4123 static int sctp_setsockopt_add_streams(struct sock *sk, 4124 struct sctp_add_streams *params, 4125 unsigned int optlen) 4126 { 4127 struct sctp_association *asoc; 4128 4129 if (optlen != sizeof(*params)) 4130 return -EINVAL; 4131 4132 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4133 if (!asoc) 4134 return -EINVAL; 4135 4136 return sctp_send_add_streams(asoc, params); 4137 } 4138 4139 static int sctp_setsockopt_scheduler(struct sock *sk, 4140 struct sctp_assoc_value *params, 4141 unsigned int optlen) 4142 { 4143 struct sctp_sock *sp = sctp_sk(sk); 4144 struct sctp_association *asoc; 4145 int retval = 0; 4146 4147 if (optlen < sizeof(*params)) 4148 return -EINVAL; 4149 4150 if (params->assoc_value > SCTP_SS_MAX) 4151 return -EINVAL; 4152 4153 asoc = sctp_id2assoc(sk, params->assoc_id); 4154 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4155 sctp_style(sk, UDP)) 4156 return -EINVAL; 4157 4158 if (asoc) 4159 return sctp_sched_set_sched(asoc, params->assoc_value); 4160 4161 if (sctp_style(sk, TCP)) 4162 params->assoc_id = SCTP_FUTURE_ASSOC; 4163 4164 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4165 params->assoc_id == SCTP_ALL_ASSOC) 4166 sp->default_ss = params->assoc_value; 4167 4168 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4169 params->assoc_id == SCTP_ALL_ASSOC) { 4170 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4171 int ret = sctp_sched_set_sched(asoc, 4172 params->assoc_value); 4173 4174 if (ret && !retval) 4175 retval = ret; 4176 } 4177 } 4178 4179 return retval; 4180 } 4181 4182 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4183 struct sctp_stream_value *params, 4184 unsigned int optlen) 4185 { 4186 struct sctp_association *asoc; 4187 int retval = -EINVAL; 4188 4189 if (optlen < sizeof(*params)) 4190 goto out; 4191 4192 asoc = sctp_id2assoc(sk, params->assoc_id); 4193 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4194 sctp_style(sk, UDP)) 4195 goto out; 4196 4197 if (asoc) { 4198 retval = sctp_sched_set_value(asoc, params->stream_id, 4199 params->stream_value, GFP_KERNEL); 4200 goto out; 4201 } 4202 4203 retval = 0; 4204 4205 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4206 int ret = sctp_sched_set_value(asoc, params->stream_id, 4207 params->stream_value, 4208 GFP_KERNEL); 4209 if (ret && !retval) /* try to return the 1st error. */ 4210 retval = ret; 4211 } 4212 4213 out: 4214 return retval; 4215 } 4216 4217 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4218 struct sctp_assoc_value *p, 4219 unsigned int optlen) 4220 { 4221 struct sctp_sock *sp = sctp_sk(sk); 4222 struct sctp_association *asoc; 4223 4224 if (optlen < sizeof(*p)) 4225 return -EINVAL; 4226 4227 asoc = sctp_id2assoc(sk, p->assoc_id); 4228 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4229 return -EINVAL; 4230 4231 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4232 return -EPERM; 4233 } 4234 4235 sp->ep->intl_enable = !!p->assoc_value; 4236 return 0; 4237 } 4238 4239 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4240 unsigned int optlen) 4241 { 4242 if (!sctp_style(sk, TCP)) 4243 return -EOPNOTSUPP; 4244 4245 if (sctp_sk(sk)->ep->base.bind_addr.port) 4246 return -EFAULT; 4247 4248 if (optlen < sizeof(int)) 4249 return -EINVAL; 4250 4251 sctp_sk(sk)->reuse = !!*val; 4252 4253 return 0; 4254 } 4255 4256 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4257 struct sctp_association *asoc) 4258 { 4259 struct sctp_ulpevent *event; 4260 4261 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4262 4263 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4264 if (sctp_outq_is_empty(&asoc->outqueue)) { 4265 event = sctp_ulpevent_make_sender_dry_event(asoc, 4266 GFP_USER | __GFP_NOWARN); 4267 if (!event) 4268 return -ENOMEM; 4269 4270 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4271 } 4272 } 4273 4274 return 0; 4275 } 4276 4277 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4278 unsigned int optlen) 4279 { 4280 struct sctp_sock *sp = sctp_sk(sk); 4281 struct sctp_association *asoc; 4282 int retval = 0; 4283 4284 if (optlen < sizeof(*param)) 4285 return -EINVAL; 4286 4287 if (param->se_type < SCTP_SN_TYPE_BASE || 4288 param->se_type > SCTP_SN_TYPE_MAX) 4289 return -EINVAL; 4290 4291 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4292 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4293 sctp_style(sk, UDP)) 4294 return -EINVAL; 4295 4296 if (asoc) 4297 return sctp_assoc_ulpevent_type_set(param, asoc); 4298 4299 if (sctp_style(sk, TCP)) 4300 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4301 4302 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4303 param->se_assoc_id == SCTP_ALL_ASSOC) 4304 sctp_ulpevent_type_set(&sp->subscribe, 4305 param->se_type, param->se_on); 4306 4307 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4308 param->se_assoc_id == SCTP_ALL_ASSOC) { 4309 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4310 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4311 4312 if (ret && !retval) 4313 retval = ret; 4314 } 4315 } 4316 4317 return retval; 4318 } 4319 4320 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4321 struct sctp_assoc_value *params, 4322 unsigned int optlen) 4323 { 4324 struct sctp_association *asoc; 4325 struct sctp_endpoint *ep; 4326 int retval = -EINVAL; 4327 4328 if (optlen != sizeof(*params)) 4329 goto out; 4330 4331 asoc = sctp_id2assoc(sk, params->assoc_id); 4332 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4333 sctp_style(sk, UDP)) 4334 goto out; 4335 4336 ep = sctp_sk(sk)->ep; 4337 ep->asconf_enable = !!params->assoc_value; 4338 4339 if (ep->asconf_enable && ep->auth_enable) { 4340 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4342 } 4343 4344 retval = 0; 4345 4346 out: 4347 return retval; 4348 } 4349 4350 static int sctp_setsockopt_auth_supported(struct sock *sk, 4351 struct sctp_assoc_value *params, 4352 unsigned int optlen) 4353 { 4354 struct sctp_association *asoc; 4355 struct sctp_endpoint *ep; 4356 int retval = -EINVAL; 4357 4358 if (optlen != sizeof(*params)) 4359 goto out; 4360 4361 asoc = sctp_id2assoc(sk, params->assoc_id); 4362 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4363 sctp_style(sk, UDP)) 4364 goto out; 4365 4366 ep = sctp_sk(sk)->ep; 4367 if (params->assoc_value) { 4368 retval = sctp_auth_init(ep, GFP_KERNEL); 4369 if (retval) 4370 goto out; 4371 if (ep->asconf_enable) { 4372 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4374 } 4375 } 4376 4377 ep->auth_enable = !!params->assoc_value; 4378 retval = 0; 4379 4380 out: 4381 return retval; 4382 } 4383 4384 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4385 struct sctp_assoc_value *params, 4386 unsigned int optlen) 4387 { 4388 struct sctp_association *asoc; 4389 int retval = -EINVAL; 4390 4391 if (optlen != sizeof(*params)) 4392 goto out; 4393 4394 asoc = sctp_id2assoc(sk, params->assoc_id); 4395 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4396 sctp_style(sk, UDP)) 4397 goto out; 4398 4399 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4400 retval = 0; 4401 4402 out: 4403 return retval; 4404 } 4405 4406 static int sctp_setsockopt_pf_expose(struct sock *sk, 4407 struct sctp_assoc_value *params, 4408 unsigned int optlen) 4409 { 4410 struct sctp_association *asoc; 4411 int retval = -EINVAL; 4412 4413 if (optlen != sizeof(*params)) 4414 goto out; 4415 4416 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4417 goto out; 4418 4419 asoc = sctp_id2assoc(sk, params->assoc_id); 4420 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4421 sctp_style(sk, UDP)) 4422 goto out; 4423 4424 if (asoc) 4425 asoc->pf_expose = params->assoc_value; 4426 else 4427 sctp_sk(sk)->pf_expose = params->assoc_value; 4428 retval = 0; 4429 4430 out: 4431 return retval; 4432 } 4433 4434 static int sctp_setsockopt_encap_port(struct sock *sk, 4435 struct sctp_udpencaps *encap, 4436 unsigned int optlen) 4437 { 4438 struct sctp_association *asoc; 4439 struct sctp_transport *t; 4440 __be16 encap_port; 4441 4442 if (optlen != sizeof(*encap)) 4443 return -EINVAL; 4444 4445 /* If an address other than INADDR_ANY is specified, and 4446 * no transport is found, then the request is invalid. 4447 */ 4448 encap_port = (__force __be16)encap->sue_port; 4449 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4450 t = sctp_addr_id2transport(sk, &encap->sue_address, 4451 encap->sue_assoc_id); 4452 if (!t) 4453 return -EINVAL; 4454 4455 t->encap_port = encap_port; 4456 return 0; 4457 } 4458 4459 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4460 * socket is a one to many style socket, and an association 4461 * was not found, then the id was invalid. 4462 */ 4463 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4464 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4465 sctp_style(sk, UDP)) 4466 return -EINVAL; 4467 4468 /* If changes are for association, also apply encap_port to 4469 * each transport. 4470 */ 4471 if (asoc) { 4472 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4473 transports) 4474 t->encap_port = encap_port; 4475 4476 return 0; 4477 } 4478 4479 sctp_sk(sk)->encap_port = encap_port; 4480 return 0; 4481 } 4482 4483 /* API 6.2 setsockopt(), getsockopt() 4484 * 4485 * Applications use setsockopt() and getsockopt() to set or retrieve 4486 * socket options. Socket options are used to change the default 4487 * behavior of sockets calls. They are described in Section 7. 4488 * 4489 * The syntax is: 4490 * 4491 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4492 * int __user *optlen); 4493 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4494 * int optlen); 4495 * 4496 * sd - the socket descript. 4497 * level - set to IPPROTO_SCTP for all SCTP options. 4498 * optname - the option name. 4499 * optval - the buffer to store the value of the option. 4500 * optlen - the size of the buffer. 4501 */ 4502 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4503 sockptr_t optval, unsigned int optlen) 4504 { 4505 void *kopt = NULL; 4506 int retval = 0; 4507 4508 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4509 4510 /* I can hardly begin to describe how wrong this is. This is 4511 * so broken as to be worse than useless. The API draft 4512 * REALLY is NOT helpful here... I am not convinced that the 4513 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4514 * are at all well-founded. 4515 */ 4516 if (level != SOL_SCTP) { 4517 struct sctp_af *af = sctp_sk(sk)->pf->af; 4518 4519 return af->setsockopt(sk, level, optname, optval, optlen); 4520 } 4521 4522 if (optlen > 0) { 4523 kopt = memdup_sockptr(optval, optlen); 4524 if (IS_ERR(kopt)) 4525 return PTR_ERR(kopt); 4526 } 4527 4528 lock_sock(sk); 4529 4530 switch (optname) { 4531 case SCTP_SOCKOPT_BINDX_ADD: 4532 /* 'optlen' is the size of the addresses buffer. */ 4533 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4534 SCTP_BINDX_ADD_ADDR); 4535 break; 4536 4537 case SCTP_SOCKOPT_BINDX_REM: 4538 /* 'optlen' is the size of the addresses buffer. */ 4539 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4540 SCTP_BINDX_REM_ADDR); 4541 break; 4542 4543 case SCTP_SOCKOPT_CONNECTX_OLD: 4544 /* 'optlen' is the size of the addresses buffer. */ 4545 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4546 break; 4547 4548 case SCTP_SOCKOPT_CONNECTX: 4549 /* 'optlen' is the size of the addresses buffer. */ 4550 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4551 break; 4552 4553 case SCTP_DISABLE_FRAGMENTS: 4554 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4555 break; 4556 4557 case SCTP_EVENTS: 4558 retval = sctp_setsockopt_events(sk, kopt, optlen); 4559 break; 4560 4561 case SCTP_AUTOCLOSE: 4562 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4563 break; 4564 4565 case SCTP_PEER_ADDR_PARAMS: 4566 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4567 break; 4568 4569 case SCTP_DELAYED_SACK: 4570 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4571 break; 4572 case SCTP_PARTIAL_DELIVERY_POINT: 4573 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4574 break; 4575 4576 case SCTP_INITMSG: 4577 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4578 break; 4579 case SCTP_DEFAULT_SEND_PARAM: 4580 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4581 break; 4582 case SCTP_DEFAULT_SNDINFO: 4583 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4584 break; 4585 case SCTP_PRIMARY_ADDR: 4586 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4587 break; 4588 case SCTP_SET_PEER_PRIMARY_ADDR: 4589 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4590 break; 4591 case SCTP_NODELAY: 4592 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4593 break; 4594 case SCTP_RTOINFO: 4595 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4596 break; 4597 case SCTP_ASSOCINFO: 4598 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4599 break; 4600 case SCTP_I_WANT_MAPPED_V4_ADDR: 4601 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4602 break; 4603 case SCTP_MAXSEG: 4604 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4605 break; 4606 case SCTP_ADAPTATION_LAYER: 4607 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4608 break; 4609 case SCTP_CONTEXT: 4610 retval = sctp_setsockopt_context(sk, kopt, optlen); 4611 break; 4612 case SCTP_FRAGMENT_INTERLEAVE: 4613 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4614 break; 4615 case SCTP_MAX_BURST: 4616 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4617 break; 4618 case SCTP_AUTH_CHUNK: 4619 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4620 break; 4621 case SCTP_HMAC_IDENT: 4622 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4623 break; 4624 case SCTP_AUTH_KEY: 4625 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4626 break; 4627 case SCTP_AUTH_ACTIVE_KEY: 4628 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4629 break; 4630 case SCTP_AUTH_DELETE_KEY: 4631 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4632 break; 4633 case SCTP_AUTH_DEACTIVATE_KEY: 4634 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4635 break; 4636 case SCTP_AUTO_ASCONF: 4637 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4638 break; 4639 case SCTP_PEER_ADDR_THLDS: 4640 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4641 false); 4642 break; 4643 case SCTP_PEER_ADDR_THLDS_V2: 4644 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4645 true); 4646 break; 4647 case SCTP_RECVRCVINFO: 4648 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4649 break; 4650 case SCTP_RECVNXTINFO: 4651 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4652 break; 4653 case SCTP_PR_SUPPORTED: 4654 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4655 break; 4656 case SCTP_DEFAULT_PRINFO: 4657 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4658 break; 4659 case SCTP_RECONFIG_SUPPORTED: 4660 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4661 break; 4662 case SCTP_ENABLE_STREAM_RESET: 4663 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4664 break; 4665 case SCTP_RESET_STREAMS: 4666 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4667 break; 4668 case SCTP_RESET_ASSOC: 4669 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4670 break; 4671 case SCTP_ADD_STREAMS: 4672 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4673 break; 4674 case SCTP_STREAM_SCHEDULER: 4675 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4676 break; 4677 case SCTP_STREAM_SCHEDULER_VALUE: 4678 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4679 break; 4680 case SCTP_INTERLEAVING_SUPPORTED: 4681 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4682 optlen); 4683 break; 4684 case SCTP_REUSE_PORT: 4685 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4686 break; 4687 case SCTP_EVENT: 4688 retval = sctp_setsockopt_event(sk, kopt, optlen); 4689 break; 4690 case SCTP_ASCONF_SUPPORTED: 4691 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4692 break; 4693 case SCTP_AUTH_SUPPORTED: 4694 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4695 break; 4696 case SCTP_ECN_SUPPORTED: 4697 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4698 break; 4699 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4700 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4701 break; 4702 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4703 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4704 break; 4705 default: 4706 retval = -ENOPROTOOPT; 4707 break; 4708 } 4709 4710 release_sock(sk); 4711 kfree(kopt); 4712 return retval; 4713 } 4714 4715 /* API 3.1.6 connect() - UDP Style Syntax 4716 * 4717 * An application may use the connect() call in the UDP model to initiate an 4718 * association without sending data. 4719 * 4720 * The syntax is: 4721 * 4722 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4723 * 4724 * sd: the socket descriptor to have a new association added to. 4725 * 4726 * nam: the address structure (either struct sockaddr_in or struct 4727 * sockaddr_in6 defined in RFC2553 [7]). 4728 * 4729 * len: the size of the address. 4730 */ 4731 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4732 int addr_len, int flags) 4733 { 4734 struct sctp_af *af; 4735 int err = -EINVAL; 4736 4737 lock_sock(sk); 4738 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4739 addr, addr_len); 4740 4741 /* Validate addr_len before calling common connect/connectx routine. */ 4742 af = sctp_get_af_specific(addr->sa_family); 4743 if (af && addr_len >= af->sockaddr_len) 4744 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4745 4746 release_sock(sk); 4747 return err; 4748 } 4749 4750 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4751 int addr_len, int flags) 4752 { 4753 if (addr_len < sizeof(uaddr->sa_family)) 4754 return -EINVAL; 4755 4756 if (uaddr->sa_family == AF_UNSPEC) 4757 return -EOPNOTSUPP; 4758 4759 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4760 } 4761 4762 /* FIXME: Write comments. */ 4763 static int sctp_disconnect(struct sock *sk, int flags) 4764 { 4765 return -EOPNOTSUPP; /* STUB */ 4766 } 4767 4768 /* 4.1.4 accept() - TCP Style Syntax 4769 * 4770 * Applications use accept() call to remove an established SCTP 4771 * association from the accept queue of the endpoint. A new socket 4772 * descriptor will be returned from accept() to represent the newly 4773 * formed association. 4774 */ 4775 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4776 { 4777 struct sctp_sock *sp; 4778 struct sctp_endpoint *ep; 4779 struct sock *newsk = NULL; 4780 struct sctp_association *asoc; 4781 long timeo; 4782 int error = 0; 4783 4784 lock_sock(sk); 4785 4786 sp = sctp_sk(sk); 4787 ep = sp->ep; 4788 4789 if (!sctp_style(sk, TCP)) { 4790 error = -EOPNOTSUPP; 4791 goto out; 4792 } 4793 4794 if (!sctp_sstate(sk, LISTENING)) { 4795 error = -EINVAL; 4796 goto out; 4797 } 4798 4799 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4800 4801 error = sctp_wait_for_accept(sk, timeo); 4802 if (error) 4803 goto out; 4804 4805 /* We treat the list of associations on the endpoint as the accept 4806 * queue and pick the first association on the list. 4807 */ 4808 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4809 4810 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4811 if (!newsk) { 4812 error = -ENOMEM; 4813 goto out; 4814 } 4815 4816 /* Populate the fields of the newsk from the oldsk and migrate the 4817 * asoc to the newsk. 4818 */ 4819 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4820 if (error) { 4821 sk_common_release(newsk); 4822 newsk = NULL; 4823 } 4824 4825 out: 4826 release_sock(sk); 4827 *err = error; 4828 return newsk; 4829 } 4830 4831 /* The SCTP ioctl handler. */ 4832 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4833 { 4834 int rc = -ENOTCONN; 4835 4836 lock_sock(sk); 4837 4838 /* 4839 * SEQPACKET-style sockets in LISTENING state are valid, for 4840 * SCTP, so only discard TCP-style sockets in LISTENING state. 4841 */ 4842 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4843 goto out; 4844 4845 switch (cmd) { 4846 case SIOCINQ: { 4847 struct sk_buff *skb; 4848 unsigned int amount = 0; 4849 4850 skb = skb_peek(&sk->sk_receive_queue); 4851 if (skb != NULL) { 4852 /* 4853 * We will only return the amount of this packet since 4854 * that is all that will be read. 4855 */ 4856 amount = skb->len; 4857 } 4858 rc = put_user(amount, (int __user *)arg); 4859 break; 4860 } 4861 default: 4862 rc = -ENOIOCTLCMD; 4863 break; 4864 } 4865 out: 4866 release_sock(sk); 4867 return rc; 4868 } 4869 4870 /* This is the function which gets called during socket creation to 4871 * initialized the SCTP-specific portion of the sock. 4872 * The sock structure should already be zero-filled memory. 4873 */ 4874 static int sctp_init_sock(struct sock *sk) 4875 { 4876 struct net *net = sock_net(sk); 4877 struct sctp_sock *sp; 4878 4879 pr_debug("%s: sk:%p\n", __func__, sk); 4880 4881 sp = sctp_sk(sk); 4882 4883 /* Initialize the SCTP per socket area. */ 4884 switch (sk->sk_type) { 4885 case SOCK_SEQPACKET: 4886 sp->type = SCTP_SOCKET_UDP; 4887 break; 4888 case SOCK_STREAM: 4889 sp->type = SCTP_SOCKET_TCP; 4890 break; 4891 default: 4892 return -ESOCKTNOSUPPORT; 4893 } 4894 4895 sk->sk_gso_type = SKB_GSO_SCTP; 4896 4897 /* Initialize default send parameters. These parameters can be 4898 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4899 */ 4900 sp->default_stream = 0; 4901 sp->default_ppid = 0; 4902 sp->default_flags = 0; 4903 sp->default_context = 0; 4904 sp->default_timetolive = 0; 4905 4906 sp->default_rcv_context = 0; 4907 sp->max_burst = net->sctp.max_burst; 4908 4909 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4910 4911 /* Initialize default setup parameters. These parameters 4912 * can be modified with the SCTP_INITMSG socket option or 4913 * overridden by the SCTP_INIT CMSG. 4914 */ 4915 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4916 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4917 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4918 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4919 4920 /* Initialize default RTO related parameters. These parameters can 4921 * be modified for with the SCTP_RTOINFO socket option. 4922 */ 4923 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4924 sp->rtoinfo.srto_max = net->sctp.rto_max; 4925 sp->rtoinfo.srto_min = net->sctp.rto_min; 4926 4927 /* Initialize default association related parameters. These parameters 4928 * can be modified with the SCTP_ASSOCINFO socket option. 4929 */ 4930 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4931 sp->assocparams.sasoc_number_peer_destinations = 0; 4932 sp->assocparams.sasoc_peer_rwnd = 0; 4933 sp->assocparams.sasoc_local_rwnd = 0; 4934 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4935 4936 /* Initialize default event subscriptions. By default, all the 4937 * options are off. 4938 */ 4939 sp->subscribe = 0; 4940 4941 /* Default Peer Address Parameters. These defaults can 4942 * be modified via SCTP_PEER_ADDR_PARAMS 4943 */ 4944 sp->hbinterval = net->sctp.hb_interval; 4945 sp->udp_port = htons(net->sctp.udp_port); 4946 sp->encap_port = htons(net->sctp.encap_port); 4947 sp->pathmaxrxt = net->sctp.max_retrans_path; 4948 sp->pf_retrans = net->sctp.pf_retrans; 4949 sp->ps_retrans = net->sctp.ps_retrans; 4950 sp->pf_expose = net->sctp.pf_expose; 4951 sp->pathmtu = 0; /* allow default discovery */ 4952 sp->sackdelay = net->sctp.sack_timeout; 4953 sp->sackfreq = 2; 4954 sp->param_flags = SPP_HB_ENABLE | 4955 SPP_PMTUD_ENABLE | 4956 SPP_SACKDELAY_ENABLE; 4957 sp->default_ss = SCTP_SS_DEFAULT; 4958 4959 /* If enabled no SCTP message fragmentation will be performed. 4960 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4961 */ 4962 sp->disable_fragments = 0; 4963 4964 /* Enable Nagle algorithm by default. */ 4965 sp->nodelay = 0; 4966 4967 sp->recvrcvinfo = 0; 4968 sp->recvnxtinfo = 0; 4969 4970 /* Enable by default. */ 4971 sp->v4mapped = 1; 4972 4973 /* Auto-close idle associations after the configured 4974 * number of seconds. A value of 0 disables this 4975 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4976 * for UDP-style sockets only. 4977 */ 4978 sp->autoclose = 0; 4979 4980 /* User specified fragmentation limit. */ 4981 sp->user_frag = 0; 4982 4983 sp->adaptation_ind = 0; 4984 4985 sp->pf = sctp_get_pf_specific(sk->sk_family); 4986 4987 /* Control variables for partial data delivery. */ 4988 atomic_set(&sp->pd_mode, 0); 4989 skb_queue_head_init(&sp->pd_lobby); 4990 sp->frag_interleave = 0; 4991 4992 /* Create a per socket endpoint structure. Even if we 4993 * change the data structure relationships, this may still 4994 * be useful for storing pre-connect address information. 4995 */ 4996 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4997 if (!sp->ep) 4998 return -ENOMEM; 4999 5000 sp->hmac = NULL; 5001 5002 sk->sk_destruct = sctp_destruct_sock; 5003 5004 SCTP_DBG_OBJCNT_INC(sock); 5005 5006 local_bh_disable(); 5007 sk_sockets_allocated_inc(sk); 5008 sock_prot_inuse_add(net, sk->sk_prot, 1); 5009 5010 local_bh_enable(); 5011 5012 return 0; 5013 } 5014 5015 /* Cleanup any SCTP per socket resources. Must be called with 5016 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5017 */ 5018 static void sctp_destroy_sock(struct sock *sk) 5019 { 5020 struct sctp_sock *sp; 5021 5022 pr_debug("%s: sk:%p\n", __func__, sk); 5023 5024 /* Release our hold on the endpoint. */ 5025 sp = sctp_sk(sk); 5026 /* This could happen during socket init, thus we bail out 5027 * early, since the rest of the below is not setup either. 5028 */ 5029 if (sp->ep == NULL) 5030 return; 5031 5032 if (sp->do_auto_asconf) { 5033 sp->do_auto_asconf = 0; 5034 list_del(&sp->auto_asconf_list); 5035 } 5036 sctp_endpoint_free(sp->ep); 5037 local_bh_disable(); 5038 sk_sockets_allocated_dec(sk); 5039 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5040 local_bh_enable(); 5041 } 5042 5043 /* Triggered when there are no references on the socket anymore */ 5044 static void sctp_destruct_sock(struct sock *sk) 5045 { 5046 struct sctp_sock *sp = sctp_sk(sk); 5047 5048 /* Free up the HMAC transform. */ 5049 crypto_free_shash(sp->hmac); 5050 5051 inet_sock_destruct(sk); 5052 } 5053 5054 /* API 4.1.7 shutdown() - TCP Style Syntax 5055 * int shutdown(int socket, int how); 5056 * 5057 * sd - the socket descriptor of the association to be closed. 5058 * how - Specifies the type of shutdown. The values are 5059 * as follows: 5060 * SHUT_RD 5061 * Disables further receive operations. No SCTP 5062 * protocol action is taken. 5063 * SHUT_WR 5064 * Disables further send operations, and initiates 5065 * the SCTP shutdown sequence. 5066 * SHUT_RDWR 5067 * Disables further send and receive operations 5068 * and initiates the SCTP shutdown sequence. 5069 */ 5070 static void sctp_shutdown(struct sock *sk, int how) 5071 { 5072 struct net *net = sock_net(sk); 5073 struct sctp_endpoint *ep; 5074 5075 if (!sctp_style(sk, TCP)) 5076 return; 5077 5078 ep = sctp_sk(sk)->ep; 5079 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5080 struct sctp_association *asoc; 5081 5082 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5083 asoc = list_entry(ep->asocs.next, 5084 struct sctp_association, asocs); 5085 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5086 } 5087 } 5088 5089 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5090 struct sctp_info *info) 5091 { 5092 struct sctp_transport *prim; 5093 struct list_head *pos; 5094 int mask; 5095 5096 memset(info, 0, sizeof(*info)); 5097 if (!asoc) { 5098 struct sctp_sock *sp = sctp_sk(sk); 5099 5100 info->sctpi_s_autoclose = sp->autoclose; 5101 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5102 info->sctpi_s_pd_point = sp->pd_point; 5103 info->sctpi_s_nodelay = sp->nodelay; 5104 info->sctpi_s_disable_fragments = sp->disable_fragments; 5105 info->sctpi_s_v4mapped = sp->v4mapped; 5106 info->sctpi_s_frag_interleave = sp->frag_interleave; 5107 info->sctpi_s_type = sp->type; 5108 5109 return 0; 5110 } 5111 5112 info->sctpi_tag = asoc->c.my_vtag; 5113 info->sctpi_state = asoc->state; 5114 info->sctpi_rwnd = asoc->a_rwnd; 5115 info->sctpi_unackdata = asoc->unack_data; 5116 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5117 info->sctpi_instrms = asoc->stream.incnt; 5118 info->sctpi_outstrms = asoc->stream.outcnt; 5119 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5120 info->sctpi_inqueue++; 5121 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5122 info->sctpi_outqueue++; 5123 info->sctpi_overall_error = asoc->overall_error_count; 5124 info->sctpi_max_burst = asoc->max_burst; 5125 info->sctpi_maxseg = asoc->frag_point; 5126 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5127 info->sctpi_peer_tag = asoc->c.peer_vtag; 5128 5129 mask = asoc->peer.ecn_capable << 1; 5130 mask = (mask | asoc->peer.ipv4_address) << 1; 5131 mask = (mask | asoc->peer.ipv6_address) << 1; 5132 mask = (mask | asoc->peer.hostname_address) << 1; 5133 mask = (mask | asoc->peer.asconf_capable) << 1; 5134 mask = (mask | asoc->peer.prsctp_capable) << 1; 5135 mask = (mask | asoc->peer.auth_capable); 5136 info->sctpi_peer_capable = mask; 5137 mask = asoc->peer.sack_needed << 1; 5138 mask = (mask | asoc->peer.sack_generation) << 1; 5139 mask = (mask | asoc->peer.zero_window_announced); 5140 info->sctpi_peer_sack = mask; 5141 5142 info->sctpi_isacks = asoc->stats.isacks; 5143 info->sctpi_osacks = asoc->stats.osacks; 5144 info->sctpi_opackets = asoc->stats.opackets; 5145 info->sctpi_ipackets = asoc->stats.ipackets; 5146 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5147 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5148 info->sctpi_idupchunks = asoc->stats.idupchunks; 5149 info->sctpi_gapcnt = asoc->stats.gapcnt; 5150 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5151 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5152 info->sctpi_oodchunks = asoc->stats.oodchunks; 5153 info->sctpi_iodchunks = asoc->stats.iodchunks; 5154 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5155 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5156 5157 prim = asoc->peer.primary_path; 5158 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5159 info->sctpi_p_state = prim->state; 5160 info->sctpi_p_cwnd = prim->cwnd; 5161 info->sctpi_p_srtt = prim->srtt; 5162 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5163 info->sctpi_p_hbinterval = prim->hbinterval; 5164 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5165 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5166 info->sctpi_p_ssthresh = prim->ssthresh; 5167 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5168 info->sctpi_p_flight_size = prim->flight_size; 5169 info->sctpi_p_error = prim->error_count; 5170 5171 return 0; 5172 } 5173 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5174 5175 /* use callback to avoid exporting the core structure */ 5176 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5177 { 5178 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5179 5180 rhashtable_walk_start(iter); 5181 } 5182 5183 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5184 { 5185 rhashtable_walk_stop(iter); 5186 rhashtable_walk_exit(iter); 5187 } 5188 5189 struct sctp_transport *sctp_transport_get_next(struct net *net, 5190 struct rhashtable_iter *iter) 5191 { 5192 struct sctp_transport *t; 5193 5194 t = rhashtable_walk_next(iter); 5195 for (; t; t = rhashtable_walk_next(iter)) { 5196 if (IS_ERR(t)) { 5197 if (PTR_ERR(t) == -EAGAIN) 5198 continue; 5199 break; 5200 } 5201 5202 if (!sctp_transport_hold(t)) 5203 continue; 5204 5205 if (net_eq(t->asoc->base.net, net) && 5206 t->asoc->peer.primary_path == t) 5207 break; 5208 5209 sctp_transport_put(t); 5210 } 5211 5212 return t; 5213 } 5214 5215 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5216 struct rhashtable_iter *iter, 5217 int pos) 5218 { 5219 struct sctp_transport *t; 5220 5221 if (!pos) 5222 return SEQ_START_TOKEN; 5223 5224 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5225 if (!--pos) 5226 break; 5227 sctp_transport_put(t); 5228 } 5229 5230 return t; 5231 } 5232 5233 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5234 void *p) { 5235 int err = 0; 5236 int hash = 0; 5237 struct sctp_ep_common *epb; 5238 struct sctp_hashbucket *head; 5239 5240 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5241 hash++, head++) { 5242 read_lock_bh(&head->lock); 5243 sctp_for_each_hentry(epb, &head->chain) { 5244 err = cb(sctp_ep(epb), p); 5245 if (err) 5246 break; 5247 } 5248 read_unlock_bh(&head->lock); 5249 } 5250 5251 return err; 5252 } 5253 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5254 5255 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5256 struct net *net, 5257 const union sctp_addr *laddr, 5258 const union sctp_addr *paddr, void *p) 5259 { 5260 struct sctp_transport *transport; 5261 int err; 5262 5263 rcu_read_lock(); 5264 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5265 rcu_read_unlock(); 5266 if (!transport) 5267 return -ENOENT; 5268 5269 err = cb(transport, p); 5270 sctp_transport_put(transport); 5271 5272 return err; 5273 } 5274 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5275 5276 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5277 int (*cb_done)(struct sctp_transport *, void *), 5278 struct net *net, int *pos, void *p) { 5279 struct rhashtable_iter hti; 5280 struct sctp_transport *tsp; 5281 int ret; 5282 5283 again: 5284 ret = 0; 5285 sctp_transport_walk_start(&hti); 5286 5287 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5288 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5289 ret = cb(tsp, p); 5290 if (ret) 5291 break; 5292 (*pos)++; 5293 sctp_transport_put(tsp); 5294 } 5295 sctp_transport_walk_stop(&hti); 5296 5297 if (ret) { 5298 if (cb_done && !cb_done(tsp, p)) { 5299 (*pos)++; 5300 sctp_transport_put(tsp); 5301 goto again; 5302 } 5303 sctp_transport_put(tsp); 5304 } 5305 5306 return ret; 5307 } 5308 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5309 5310 /* 7.2.1 Association Status (SCTP_STATUS) 5311 5312 * Applications can retrieve current status information about an 5313 * association, including association state, peer receiver window size, 5314 * number of unacked data chunks, and number of data chunks pending 5315 * receipt. This information is read-only. 5316 */ 5317 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5318 char __user *optval, 5319 int __user *optlen) 5320 { 5321 struct sctp_status status; 5322 struct sctp_association *asoc = NULL; 5323 struct sctp_transport *transport; 5324 sctp_assoc_t associd; 5325 int retval = 0; 5326 5327 if (len < sizeof(status)) { 5328 retval = -EINVAL; 5329 goto out; 5330 } 5331 5332 len = sizeof(status); 5333 if (copy_from_user(&status, optval, len)) { 5334 retval = -EFAULT; 5335 goto out; 5336 } 5337 5338 associd = status.sstat_assoc_id; 5339 asoc = sctp_id2assoc(sk, associd); 5340 if (!asoc) { 5341 retval = -EINVAL; 5342 goto out; 5343 } 5344 5345 transport = asoc->peer.primary_path; 5346 5347 status.sstat_assoc_id = sctp_assoc2id(asoc); 5348 status.sstat_state = sctp_assoc_to_state(asoc); 5349 status.sstat_rwnd = asoc->peer.rwnd; 5350 status.sstat_unackdata = asoc->unack_data; 5351 5352 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5353 status.sstat_instrms = asoc->stream.incnt; 5354 status.sstat_outstrms = asoc->stream.outcnt; 5355 status.sstat_fragmentation_point = asoc->frag_point; 5356 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5357 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5358 transport->af_specific->sockaddr_len); 5359 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5360 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5361 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5362 status.sstat_primary.spinfo_state = transport->state; 5363 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5364 status.sstat_primary.spinfo_srtt = transport->srtt; 5365 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5366 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5367 5368 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5369 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5370 5371 if (put_user(len, optlen)) { 5372 retval = -EFAULT; 5373 goto out; 5374 } 5375 5376 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5377 __func__, len, status.sstat_state, status.sstat_rwnd, 5378 status.sstat_assoc_id); 5379 5380 if (copy_to_user(optval, &status, len)) { 5381 retval = -EFAULT; 5382 goto out; 5383 } 5384 5385 out: 5386 return retval; 5387 } 5388 5389 5390 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5391 * 5392 * Applications can retrieve information about a specific peer address 5393 * of an association, including its reachability state, congestion 5394 * window, and retransmission timer values. This information is 5395 * read-only. 5396 */ 5397 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5398 char __user *optval, 5399 int __user *optlen) 5400 { 5401 struct sctp_paddrinfo pinfo; 5402 struct sctp_transport *transport; 5403 int retval = 0; 5404 5405 if (len < sizeof(pinfo)) { 5406 retval = -EINVAL; 5407 goto out; 5408 } 5409 5410 len = sizeof(pinfo); 5411 if (copy_from_user(&pinfo, optval, len)) { 5412 retval = -EFAULT; 5413 goto out; 5414 } 5415 5416 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5417 pinfo.spinfo_assoc_id); 5418 if (!transport) { 5419 retval = -EINVAL; 5420 goto out; 5421 } 5422 5423 if (transport->state == SCTP_PF && 5424 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5425 retval = -EACCES; 5426 goto out; 5427 } 5428 5429 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5430 pinfo.spinfo_state = transport->state; 5431 pinfo.spinfo_cwnd = transport->cwnd; 5432 pinfo.spinfo_srtt = transport->srtt; 5433 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5434 pinfo.spinfo_mtu = transport->pathmtu; 5435 5436 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5437 pinfo.spinfo_state = SCTP_ACTIVE; 5438 5439 if (put_user(len, optlen)) { 5440 retval = -EFAULT; 5441 goto out; 5442 } 5443 5444 if (copy_to_user(optval, &pinfo, len)) { 5445 retval = -EFAULT; 5446 goto out; 5447 } 5448 5449 out: 5450 return retval; 5451 } 5452 5453 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5454 * 5455 * This option is a on/off flag. If enabled no SCTP message 5456 * fragmentation will be performed. Instead if a message being sent 5457 * exceeds the current PMTU size, the message will NOT be sent and 5458 * instead a error will be indicated to the user. 5459 */ 5460 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5461 char __user *optval, int __user *optlen) 5462 { 5463 int val; 5464 5465 if (len < sizeof(int)) 5466 return -EINVAL; 5467 5468 len = sizeof(int); 5469 val = (sctp_sk(sk)->disable_fragments == 1); 5470 if (put_user(len, optlen)) 5471 return -EFAULT; 5472 if (copy_to_user(optval, &val, len)) 5473 return -EFAULT; 5474 return 0; 5475 } 5476 5477 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5478 * 5479 * This socket option is used to specify various notifications and 5480 * ancillary data the user wishes to receive. 5481 */ 5482 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5483 int __user *optlen) 5484 { 5485 struct sctp_event_subscribe subscribe; 5486 __u8 *sn_type = (__u8 *)&subscribe; 5487 int i; 5488 5489 if (len == 0) 5490 return -EINVAL; 5491 if (len > sizeof(struct sctp_event_subscribe)) 5492 len = sizeof(struct sctp_event_subscribe); 5493 if (put_user(len, optlen)) 5494 return -EFAULT; 5495 5496 for (i = 0; i < len; i++) 5497 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5498 SCTP_SN_TYPE_BASE + i); 5499 5500 if (copy_to_user(optval, &subscribe, len)) 5501 return -EFAULT; 5502 5503 return 0; 5504 } 5505 5506 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5507 * 5508 * This socket option is applicable to the UDP-style socket only. When 5509 * set it will cause associations that are idle for more than the 5510 * specified number of seconds to automatically close. An association 5511 * being idle is defined an association that has NOT sent or received 5512 * user data. The special value of '0' indicates that no automatic 5513 * close of any associations should be performed. The option expects an 5514 * integer defining the number of seconds of idle time before an 5515 * association is closed. 5516 */ 5517 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5518 { 5519 /* Applicable to UDP-style socket only */ 5520 if (sctp_style(sk, TCP)) 5521 return -EOPNOTSUPP; 5522 if (len < sizeof(int)) 5523 return -EINVAL; 5524 len = sizeof(int); 5525 if (put_user(len, optlen)) 5526 return -EFAULT; 5527 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5528 return -EFAULT; 5529 return 0; 5530 } 5531 5532 /* Helper routine to branch off an association to a new socket. */ 5533 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5534 { 5535 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5536 struct sctp_sock *sp = sctp_sk(sk); 5537 struct socket *sock; 5538 int err = 0; 5539 5540 /* Do not peel off from one netns to another one. */ 5541 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5542 return -EINVAL; 5543 5544 if (!asoc) 5545 return -EINVAL; 5546 5547 /* An association cannot be branched off from an already peeled-off 5548 * socket, nor is this supported for tcp style sockets. 5549 */ 5550 if (!sctp_style(sk, UDP)) 5551 return -EINVAL; 5552 5553 /* Create a new socket. */ 5554 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5555 if (err < 0) 5556 return err; 5557 5558 sctp_copy_sock(sock->sk, sk, asoc); 5559 5560 /* Make peeled-off sockets more like 1-1 accepted sockets. 5561 * Set the daddr and initialize id to something more random and also 5562 * copy over any ip options. 5563 */ 5564 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5565 sp->pf->copy_ip_options(sk, sock->sk); 5566 5567 /* Populate the fields of the newsk from the oldsk and migrate the 5568 * asoc to the newsk. 5569 */ 5570 err = sctp_sock_migrate(sk, sock->sk, asoc, 5571 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5572 if (err) { 5573 sock_release(sock); 5574 sock = NULL; 5575 } 5576 5577 *sockp = sock; 5578 5579 return err; 5580 } 5581 EXPORT_SYMBOL(sctp_do_peeloff); 5582 5583 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5584 struct file **newfile, unsigned flags) 5585 { 5586 struct socket *newsock; 5587 int retval; 5588 5589 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5590 if (retval < 0) 5591 goto out; 5592 5593 /* Map the socket to an unused fd that can be returned to the user. */ 5594 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5595 if (retval < 0) { 5596 sock_release(newsock); 5597 goto out; 5598 } 5599 5600 *newfile = sock_alloc_file(newsock, 0, NULL); 5601 if (IS_ERR(*newfile)) { 5602 put_unused_fd(retval); 5603 retval = PTR_ERR(*newfile); 5604 *newfile = NULL; 5605 return retval; 5606 } 5607 5608 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5609 retval); 5610 5611 peeloff->sd = retval; 5612 5613 if (flags & SOCK_NONBLOCK) 5614 (*newfile)->f_flags |= O_NONBLOCK; 5615 out: 5616 return retval; 5617 } 5618 5619 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5620 { 5621 sctp_peeloff_arg_t peeloff; 5622 struct file *newfile = NULL; 5623 int retval = 0; 5624 5625 if (len < sizeof(sctp_peeloff_arg_t)) 5626 return -EINVAL; 5627 len = sizeof(sctp_peeloff_arg_t); 5628 if (copy_from_user(&peeloff, optval, len)) 5629 return -EFAULT; 5630 5631 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5632 if (retval < 0) 5633 goto out; 5634 5635 /* Return the fd mapped to the new socket. */ 5636 if (put_user(len, optlen)) { 5637 fput(newfile); 5638 put_unused_fd(retval); 5639 return -EFAULT; 5640 } 5641 5642 if (copy_to_user(optval, &peeloff, len)) { 5643 fput(newfile); 5644 put_unused_fd(retval); 5645 return -EFAULT; 5646 } 5647 fd_install(retval, newfile); 5648 out: 5649 return retval; 5650 } 5651 5652 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5653 char __user *optval, int __user *optlen) 5654 { 5655 sctp_peeloff_flags_arg_t peeloff; 5656 struct file *newfile = NULL; 5657 int retval = 0; 5658 5659 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5660 return -EINVAL; 5661 len = sizeof(sctp_peeloff_flags_arg_t); 5662 if (copy_from_user(&peeloff, optval, len)) 5663 return -EFAULT; 5664 5665 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5666 &newfile, peeloff.flags); 5667 if (retval < 0) 5668 goto out; 5669 5670 /* Return the fd mapped to the new socket. */ 5671 if (put_user(len, optlen)) { 5672 fput(newfile); 5673 put_unused_fd(retval); 5674 return -EFAULT; 5675 } 5676 5677 if (copy_to_user(optval, &peeloff, len)) { 5678 fput(newfile); 5679 put_unused_fd(retval); 5680 return -EFAULT; 5681 } 5682 fd_install(retval, newfile); 5683 out: 5684 return retval; 5685 } 5686 5687 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5688 * 5689 * Applications can enable or disable heartbeats for any peer address of 5690 * an association, modify an address's heartbeat interval, force a 5691 * heartbeat to be sent immediately, and adjust the address's maximum 5692 * number of retransmissions sent before an address is considered 5693 * unreachable. The following structure is used to access and modify an 5694 * address's parameters: 5695 * 5696 * struct sctp_paddrparams { 5697 * sctp_assoc_t spp_assoc_id; 5698 * struct sockaddr_storage spp_address; 5699 * uint32_t spp_hbinterval; 5700 * uint16_t spp_pathmaxrxt; 5701 * uint32_t spp_pathmtu; 5702 * uint32_t spp_sackdelay; 5703 * uint32_t spp_flags; 5704 * }; 5705 * 5706 * spp_assoc_id - (one-to-many style socket) This is filled in the 5707 * application, and identifies the association for 5708 * this query. 5709 * spp_address - This specifies which address is of interest. 5710 * spp_hbinterval - This contains the value of the heartbeat interval, 5711 * in milliseconds. If a value of zero 5712 * is present in this field then no changes are to 5713 * be made to this parameter. 5714 * spp_pathmaxrxt - This contains the maximum number of 5715 * retransmissions before this address shall be 5716 * considered unreachable. If a value of zero 5717 * is present in this field then no changes are to 5718 * be made to this parameter. 5719 * spp_pathmtu - When Path MTU discovery is disabled the value 5720 * specified here will be the "fixed" path mtu. 5721 * Note that if the spp_address field is empty 5722 * then all associations on this address will 5723 * have this fixed path mtu set upon them. 5724 * 5725 * spp_sackdelay - When delayed sack is enabled, this value specifies 5726 * the number of milliseconds that sacks will be delayed 5727 * for. This value will apply to all addresses of an 5728 * association if the spp_address field is empty. Note 5729 * also, that if delayed sack is enabled and this 5730 * value is set to 0, no change is made to the last 5731 * recorded delayed sack timer value. 5732 * 5733 * spp_flags - These flags are used to control various features 5734 * on an association. The flag field may contain 5735 * zero or more of the following options. 5736 * 5737 * SPP_HB_ENABLE - Enable heartbeats on the 5738 * specified address. Note that if the address 5739 * field is empty all addresses for the association 5740 * have heartbeats enabled upon them. 5741 * 5742 * SPP_HB_DISABLE - Disable heartbeats on the 5743 * speicifed address. Note that if the address 5744 * field is empty all addresses for the association 5745 * will have their heartbeats disabled. Note also 5746 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5747 * mutually exclusive, only one of these two should 5748 * be specified. Enabling both fields will have 5749 * undetermined results. 5750 * 5751 * SPP_HB_DEMAND - Request a user initiated heartbeat 5752 * to be made immediately. 5753 * 5754 * SPP_PMTUD_ENABLE - This field will enable PMTU 5755 * discovery upon the specified address. Note that 5756 * if the address feild is empty then all addresses 5757 * on the association are effected. 5758 * 5759 * SPP_PMTUD_DISABLE - This field will disable PMTU 5760 * discovery upon the specified address. Note that 5761 * if the address feild is empty then all addresses 5762 * on the association are effected. Not also that 5763 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5764 * exclusive. Enabling both will have undetermined 5765 * results. 5766 * 5767 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5768 * on delayed sack. The time specified in spp_sackdelay 5769 * is used to specify the sack delay for this address. Note 5770 * that if spp_address is empty then all addresses will 5771 * enable delayed sack and take on the sack delay 5772 * value specified in spp_sackdelay. 5773 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5774 * off delayed sack. If the spp_address field is blank then 5775 * delayed sack is disabled for the entire association. Note 5776 * also that this field is mutually exclusive to 5777 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5778 * results. 5779 * 5780 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5781 * setting of the IPV6 flow label value. The value is 5782 * contained in the spp_ipv6_flowlabel field. 5783 * Upon retrieval, this flag will be set to indicate that 5784 * the spp_ipv6_flowlabel field has a valid value returned. 5785 * If a specific destination address is set (in the 5786 * spp_address field), then the value returned is that of 5787 * the address. If just an association is specified (and 5788 * no address), then the association's default flow label 5789 * is returned. If neither an association nor a destination 5790 * is specified, then the socket's default flow label is 5791 * returned. For non-IPv6 sockets, this flag will be left 5792 * cleared. 5793 * 5794 * SPP_DSCP: Setting this flag enables the setting of the 5795 * Differentiated Services Code Point (DSCP) value 5796 * associated with either the association or a specific 5797 * address. The value is obtained in the spp_dscp field. 5798 * Upon retrieval, this flag will be set to indicate that 5799 * the spp_dscp field has a valid value returned. If a 5800 * specific destination address is set when called (in the 5801 * spp_address field), then that specific destination 5802 * address's DSCP value is returned. If just an association 5803 * is specified, then the association's default DSCP is 5804 * returned. If neither an association nor a destination is 5805 * specified, then the socket's default DSCP is returned. 5806 * 5807 * spp_ipv6_flowlabel 5808 * - This field is used in conjunction with the 5809 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5810 * The 20 least significant bits are used for the flow 5811 * label. This setting has precedence over any IPv6-layer 5812 * setting. 5813 * 5814 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5815 * and contains the DSCP. The 6 most significant bits are 5816 * used for the DSCP. This setting has precedence over any 5817 * IPv4- or IPv6- layer setting. 5818 */ 5819 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5820 char __user *optval, int __user *optlen) 5821 { 5822 struct sctp_paddrparams params; 5823 struct sctp_transport *trans = NULL; 5824 struct sctp_association *asoc = NULL; 5825 struct sctp_sock *sp = sctp_sk(sk); 5826 5827 if (len >= sizeof(params)) 5828 len = sizeof(params); 5829 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5830 spp_ipv6_flowlabel), 4)) 5831 len = ALIGN(offsetof(struct sctp_paddrparams, 5832 spp_ipv6_flowlabel), 4); 5833 else 5834 return -EINVAL; 5835 5836 if (copy_from_user(¶ms, optval, len)) 5837 return -EFAULT; 5838 5839 /* If an address other than INADDR_ANY is specified, and 5840 * no transport is found, then the request is invalid. 5841 */ 5842 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5843 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5844 params.spp_assoc_id); 5845 if (!trans) { 5846 pr_debug("%s: failed no transport\n", __func__); 5847 return -EINVAL; 5848 } 5849 } 5850 5851 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5852 * socket is a one to many style socket, and an association 5853 * was not found, then the id was invalid. 5854 */ 5855 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5856 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5857 sctp_style(sk, UDP)) { 5858 pr_debug("%s: failed no association\n", __func__); 5859 return -EINVAL; 5860 } 5861 5862 if (trans) { 5863 /* Fetch transport values. */ 5864 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5865 params.spp_pathmtu = trans->pathmtu; 5866 params.spp_pathmaxrxt = trans->pathmaxrxt; 5867 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5868 5869 /*draft-11 doesn't say what to return in spp_flags*/ 5870 params.spp_flags = trans->param_flags; 5871 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5872 params.spp_ipv6_flowlabel = trans->flowlabel & 5873 SCTP_FLOWLABEL_VAL_MASK; 5874 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5875 } 5876 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5877 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5878 params.spp_flags |= SPP_DSCP; 5879 } 5880 } else if (asoc) { 5881 /* Fetch association values. */ 5882 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5883 params.spp_pathmtu = asoc->pathmtu; 5884 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5885 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5886 5887 /*draft-11 doesn't say what to return in spp_flags*/ 5888 params.spp_flags = asoc->param_flags; 5889 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5890 params.spp_ipv6_flowlabel = asoc->flowlabel & 5891 SCTP_FLOWLABEL_VAL_MASK; 5892 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5893 } 5894 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5895 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5896 params.spp_flags |= SPP_DSCP; 5897 } 5898 } else { 5899 /* Fetch socket values. */ 5900 params.spp_hbinterval = sp->hbinterval; 5901 params.spp_pathmtu = sp->pathmtu; 5902 params.spp_sackdelay = sp->sackdelay; 5903 params.spp_pathmaxrxt = sp->pathmaxrxt; 5904 5905 /*draft-11 doesn't say what to return in spp_flags*/ 5906 params.spp_flags = sp->param_flags; 5907 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5908 params.spp_ipv6_flowlabel = sp->flowlabel & 5909 SCTP_FLOWLABEL_VAL_MASK; 5910 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5911 } 5912 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5913 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5914 params.spp_flags |= SPP_DSCP; 5915 } 5916 } 5917 5918 if (copy_to_user(optval, ¶ms, len)) 5919 return -EFAULT; 5920 5921 if (put_user(len, optlen)) 5922 return -EFAULT; 5923 5924 return 0; 5925 } 5926 5927 /* 5928 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5929 * 5930 * This option will effect the way delayed acks are performed. This 5931 * option allows you to get or set the delayed ack time, in 5932 * milliseconds. It also allows changing the delayed ack frequency. 5933 * Changing the frequency to 1 disables the delayed sack algorithm. If 5934 * the assoc_id is 0, then this sets or gets the endpoints default 5935 * values. If the assoc_id field is non-zero, then the set or get 5936 * effects the specified association for the one to many model (the 5937 * assoc_id field is ignored by the one to one model). Note that if 5938 * sack_delay or sack_freq are 0 when setting this option, then the 5939 * current values will remain unchanged. 5940 * 5941 * struct sctp_sack_info { 5942 * sctp_assoc_t sack_assoc_id; 5943 * uint32_t sack_delay; 5944 * uint32_t sack_freq; 5945 * }; 5946 * 5947 * sack_assoc_id - This parameter, indicates which association the user 5948 * is performing an action upon. Note that if this field's value is 5949 * zero then the endpoints default value is changed (effecting future 5950 * associations only). 5951 * 5952 * sack_delay - This parameter contains the number of milliseconds that 5953 * the user is requesting the delayed ACK timer be set to. Note that 5954 * this value is defined in the standard to be between 200 and 500 5955 * milliseconds. 5956 * 5957 * sack_freq - This parameter contains the number of packets that must 5958 * be received before a sack is sent without waiting for the delay 5959 * timer to expire. The default value for this is 2, setting this 5960 * value to 1 will disable the delayed sack algorithm. 5961 */ 5962 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5963 char __user *optval, 5964 int __user *optlen) 5965 { 5966 struct sctp_sack_info params; 5967 struct sctp_association *asoc = NULL; 5968 struct sctp_sock *sp = sctp_sk(sk); 5969 5970 if (len >= sizeof(struct sctp_sack_info)) { 5971 len = sizeof(struct sctp_sack_info); 5972 5973 if (copy_from_user(¶ms, optval, len)) 5974 return -EFAULT; 5975 } else if (len == sizeof(struct sctp_assoc_value)) { 5976 pr_warn_ratelimited(DEPRECATED 5977 "%s (pid %d) " 5978 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5979 "Use struct sctp_sack_info instead\n", 5980 current->comm, task_pid_nr(current)); 5981 if (copy_from_user(¶ms, optval, len)) 5982 return -EFAULT; 5983 } else 5984 return -EINVAL; 5985 5986 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 5987 * socket is a one to many style socket, and an association 5988 * was not found, then the id was invalid. 5989 */ 5990 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5991 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 5992 sctp_style(sk, UDP)) 5993 return -EINVAL; 5994 5995 if (asoc) { 5996 /* Fetch association values. */ 5997 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5998 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 5999 params.sack_freq = asoc->sackfreq; 6000 6001 } else { 6002 params.sack_delay = 0; 6003 params.sack_freq = 1; 6004 } 6005 } else { 6006 /* Fetch socket values. */ 6007 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6008 params.sack_delay = sp->sackdelay; 6009 params.sack_freq = sp->sackfreq; 6010 } else { 6011 params.sack_delay = 0; 6012 params.sack_freq = 1; 6013 } 6014 } 6015 6016 if (copy_to_user(optval, ¶ms, len)) 6017 return -EFAULT; 6018 6019 if (put_user(len, optlen)) 6020 return -EFAULT; 6021 6022 return 0; 6023 } 6024 6025 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6026 * 6027 * Applications can specify protocol parameters for the default association 6028 * initialization. The option name argument to setsockopt() and getsockopt() 6029 * is SCTP_INITMSG. 6030 * 6031 * Setting initialization parameters is effective only on an unconnected 6032 * socket (for UDP-style sockets only future associations are effected 6033 * by the change). With TCP-style sockets, this option is inherited by 6034 * sockets derived from a listener socket. 6035 */ 6036 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6037 { 6038 if (len < sizeof(struct sctp_initmsg)) 6039 return -EINVAL; 6040 len = sizeof(struct sctp_initmsg); 6041 if (put_user(len, optlen)) 6042 return -EFAULT; 6043 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6044 return -EFAULT; 6045 return 0; 6046 } 6047 6048 6049 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6050 char __user *optval, int __user *optlen) 6051 { 6052 struct sctp_association *asoc; 6053 int cnt = 0; 6054 struct sctp_getaddrs getaddrs; 6055 struct sctp_transport *from; 6056 void __user *to; 6057 union sctp_addr temp; 6058 struct sctp_sock *sp = sctp_sk(sk); 6059 int addrlen; 6060 size_t space_left; 6061 int bytes_copied; 6062 6063 if (len < sizeof(struct sctp_getaddrs)) 6064 return -EINVAL; 6065 6066 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6067 return -EFAULT; 6068 6069 /* For UDP-style sockets, id specifies the association to query. */ 6070 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6071 if (!asoc) 6072 return -EINVAL; 6073 6074 to = optval + offsetof(struct sctp_getaddrs, addrs); 6075 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6076 6077 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6078 transports) { 6079 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6080 addrlen = sctp_get_pf_specific(sk->sk_family) 6081 ->addr_to_user(sp, &temp); 6082 if (space_left < addrlen) 6083 return -ENOMEM; 6084 if (copy_to_user(to, &temp, addrlen)) 6085 return -EFAULT; 6086 to += addrlen; 6087 cnt++; 6088 space_left -= addrlen; 6089 } 6090 6091 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6092 return -EFAULT; 6093 bytes_copied = ((char __user *)to) - optval; 6094 if (put_user(bytes_copied, optlen)) 6095 return -EFAULT; 6096 6097 return 0; 6098 } 6099 6100 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6101 size_t space_left, int *bytes_copied) 6102 { 6103 struct sctp_sockaddr_entry *addr; 6104 union sctp_addr temp; 6105 int cnt = 0; 6106 int addrlen; 6107 struct net *net = sock_net(sk); 6108 6109 rcu_read_lock(); 6110 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6111 if (!addr->valid) 6112 continue; 6113 6114 if ((PF_INET == sk->sk_family) && 6115 (AF_INET6 == addr->a.sa.sa_family)) 6116 continue; 6117 if ((PF_INET6 == sk->sk_family) && 6118 inet_v6_ipv6only(sk) && 6119 (AF_INET == addr->a.sa.sa_family)) 6120 continue; 6121 memcpy(&temp, &addr->a, sizeof(temp)); 6122 if (!temp.v4.sin_port) 6123 temp.v4.sin_port = htons(port); 6124 6125 addrlen = sctp_get_pf_specific(sk->sk_family) 6126 ->addr_to_user(sctp_sk(sk), &temp); 6127 6128 if (space_left < addrlen) { 6129 cnt = -ENOMEM; 6130 break; 6131 } 6132 memcpy(to, &temp, addrlen); 6133 6134 to += addrlen; 6135 cnt++; 6136 space_left -= addrlen; 6137 *bytes_copied += addrlen; 6138 } 6139 rcu_read_unlock(); 6140 6141 return cnt; 6142 } 6143 6144 6145 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6146 char __user *optval, int __user *optlen) 6147 { 6148 struct sctp_bind_addr *bp; 6149 struct sctp_association *asoc; 6150 int cnt = 0; 6151 struct sctp_getaddrs getaddrs; 6152 struct sctp_sockaddr_entry *addr; 6153 void __user *to; 6154 union sctp_addr temp; 6155 struct sctp_sock *sp = sctp_sk(sk); 6156 int addrlen; 6157 int err = 0; 6158 size_t space_left; 6159 int bytes_copied = 0; 6160 void *addrs; 6161 void *buf; 6162 6163 if (len < sizeof(struct sctp_getaddrs)) 6164 return -EINVAL; 6165 6166 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6167 return -EFAULT; 6168 6169 /* 6170 * For UDP-style sockets, id specifies the association to query. 6171 * If the id field is set to the value '0' then the locally bound 6172 * addresses are returned without regard to any particular 6173 * association. 6174 */ 6175 if (0 == getaddrs.assoc_id) { 6176 bp = &sctp_sk(sk)->ep->base.bind_addr; 6177 } else { 6178 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6179 if (!asoc) 6180 return -EINVAL; 6181 bp = &asoc->base.bind_addr; 6182 } 6183 6184 to = optval + offsetof(struct sctp_getaddrs, addrs); 6185 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6186 6187 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6188 if (!addrs) 6189 return -ENOMEM; 6190 6191 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6192 * addresses from the global local address list. 6193 */ 6194 if (sctp_list_single_entry(&bp->address_list)) { 6195 addr = list_entry(bp->address_list.next, 6196 struct sctp_sockaddr_entry, list); 6197 if (sctp_is_any(sk, &addr->a)) { 6198 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6199 space_left, &bytes_copied); 6200 if (cnt < 0) { 6201 err = cnt; 6202 goto out; 6203 } 6204 goto copy_getaddrs; 6205 } 6206 } 6207 6208 buf = addrs; 6209 /* Protection on the bound address list is not needed since 6210 * in the socket option context we hold a socket lock and 6211 * thus the bound address list can't change. 6212 */ 6213 list_for_each_entry(addr, &bp->address_list, list) { 6214 memcpy(&temp, &addr->a, sizeof(temp)); 6215 addrlen = sctp_get_pf_specific(sk->sk_family) 6216 ->addr_to_user(sp, &temp); 6217 if (space_left < addrlen) { 6218 err = -ENOMEM; /*fixme: right error?*/ 6219 goto out; 6220 } 6221 memcpy(buf, &temp, addrlen); 6222 buf += addrlen; 6223 bytes_copied += addrlen; 6224 cnt++; 6225 space_left -= addrlen; 6226 } 6227 6228 copy_getaddrs: 6229 if (copy_to_user(to, addrs, bytes_copied)) { 6230 err = -EFAULT; 6231 goto out; 6232 } 6233 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6234 err = -EFAULT; 6235 goto out; 6236 } 6237 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6238 * but we can't change it anymore. 6239 */ 6240 if (put_user(bytes_copied, optlen)) 6241 err = -EFAULT; 6242 out: 6243 kfree(addrs); 6244 return err; 6245 } 6246 6247 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6248 * 6249 * Requests that the local SCTP stack use the enclosed peer address as 6250 * the association primary. The enclosed address must be one of the 6251 * association peer's addresses. 6252 */ 6253 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6254 char __user *optval, int __user *optlen) 6255 { 6256 struct sctp_prim prim; 6257 struct sctp_association *asoc; 6258 struct sctp_sock *sp = sctp_sk(sk); 6259 6260 if (len < sizeof(struct sctp_prim)) 6261 return -EINVAL; 6262 6263 len = sizeof(struct sctp_prim); 6264 6265 if (copy_from_user(&prim, optval, len)) 6266 return -EFAULT; 6267 6268 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6269 if (!asoc) 6270 return -EINVAL; 6271 6272 if (!asoc->peer.primary_path) 6273 return -ENOTCONN; 6274 6275 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6276 asoc->peer.primary_path->af_specific->sockaddr_len); 6277 6278 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6279 (union sctp_addr *)&prim.ssp_addr); 6280 6281 if (put_user(len, optlen)) 6282 return -EFAULT; 6283 if (copy_to_user(optval, &prim, len)) 6284 return -EFAULT; 6285 6286 return 0; 6287 } 6288 6289 /* 6290 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6291 * 6292 * Requests that the local endpoint set the specified Adaptation Layer 6293 * Indication parameter for all future INIT and INIT-ACK exchanges. 6294 */ 6295 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6296 char __user *optval, int __user *optlen) 6297 { 6298 struct sctp_setadaptation adaptation; 6299 6300 if (len < sizeof(struct sctp_setadaptation)) 6301 return -EINVAL; 6302 6303 len = sizeof(struct sctp_setadaptation); 6304 6305 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6306 6307 if (put_user(len, optlen)) 6308 return -EFAULT; 6309 if (copy_to_user(optval, &adaptation, len)) 6310 return -EFAULT; 6311 6312 return 0; 6313 } 6314 6315 /* 6316 * 6317 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6318 * 6319 * Applications that wish to use the sendto() system call may wish to 6320 * specify a default set of parameters that would normally be supplied 6321 * through the inclusion of ancillary data. This socket option allows 6322 * such an application to set the default sctp_sndrcvinfo structure. 6323 6324 6325 * The application that wishes to use this socket option simply passes 6326 * in to this call the sctp_sndrcvinfo structure defined in Section 6327 * 5.2.2) The input parameters accepted by this call include 6328 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6329 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6330 * to this call if the caller is using the UDP model. 6331 * 6332 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6333 */ 6334 static int sctp_getsockopt_default_send_param(struct sock *sk, 6335 int len, char __user *optval, 6336 int __user *optlen) 6337 { 6338 struct sctp_sock *sp = sctp_sk(sk); 6339 struct sctp_association *asoc; 6340 struct sctp_sndrcvinfo info; 6341 6342 if (len < sizeof(info)) 6343 return -EINVAL; 6344 6345 len = sizeof(info); 6346 6347 if (copy_from_user(&info, optval, len)) 6348 return -EFAULT; 6349 6350 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6351 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6352 sctp_style(sk, UDP)) 6353 return -EINVAL; 6354 6355 if (asoc) { 6356 info.sinfo_stream = asoc->default_stream; 6357 info.sinfo_flags = asoc->default_flags; 6358 info.sinfo_ppid = asoc->default_ppid; 6359 info.sinfo_context = asoc->default_context; 6360 info.sinfo_timetolive = asoc->default_timetolive; 6361 } else { 6362 info.sinfo_stream = sp->default_stream; 6363 info.sinfo_flags = sp->default_flags; 6364 info.sinfo_ppid = sp->default_ppid; 6365 info.sinfo_context = sp->default_context; 6366 info.sinfo_timetolive = sp->default_timetolive; 6367 } 6368 6369 if (put_user(len, optlen)) 6370 return -EFAULT; 6371 if (copy_to_user(optval, &info, len)) 6372 return -EFAULT; 6373 6374 return 0; 6375 } 6376 6377 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6378 * (SCTP_DEFAULT_SNDINFO) 6379 */ 6380 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6381 char __user *optval, 6382 int __user *optlen) 6383 { 6384 struct sctp_sock *sp = sctp_sk(sk); 6385 struct sctp_association *asoc; 6386 struct sctp_sndinfo info; 6387 6388 if (len < sizeof(info)) 6389 return -EINVAL; 6390 6391 len = sizeof(info); 6392 6393 if (copy_from_user(&info, optval, len)) 6394 return -EFAULT; 6395 6396 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6397 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6398 sctp_style(sk, UDP)) 6399 return -EINVAL; 6400 6401 if (asoc) { 6402 info.snd_sid = asoc->default_stream; 6403 info.snd_flags = asoc->default_flags; 6404 info.snd_ppid = asoc->default_ppid; 6405 info.snd_context = asoc->default_context; 6406 } else { 6407 info.snd_sid = sp->default_stream; 6408 info.snd_flags = sp->default_flags; 6409 info.snd_ppid = sp->default_ppid; 6410 info.snd_context = sp->default_context; 6411 } 6412 6413 if (put_user(len, optlen)) 6414 return -EFAULT; 6415 if (copy_to_user(optval, &info, len)) 6416 return -EFAULT; 6417 6418 return 0; 6419 } 6420 6421 /* 6422 * 6423 * 7.1.5 SCTP_NODELAY 6424 * 6425 * Turn on/off any Nagle-like algorithm. This means that packets are 6426 * generally sent as soon as possible and no unnecessary delays are 6427 * introduced, at the cost of more packets in the network. Expects an 6428 * integer boolean flag. 6429 */ 6430 6431 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6432 char __user *optval, int __user *optlen) 6433 { 6434 int val; 6435 6436 if (len < sizeof(int)) 6437 return -EINVAL; 6438 6439 len = sizeof(int); 6440 val = (sctp_sk(sk)->nodelay == 1); 6441 if (put_user(len, optlen)) 6442 return -EFAULT; 6443 if (copy_to_user(optval, &val, len)) 6444 return -EFAULT; 6445 return 0; 6446 } 6447 6448 /* 6449 * 6450 * 7.1.1 SCTP_RTOINFO 6451 * 6452 * The protocol parameters used to initialize and bound retransmission 6453 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6454 * and modify these parameters. 6455 * All parameters are time values, in milliseconds. A value of 0, when 6456 * modifying the parameters, indicates that the current value should not 6457 * be changed. 6458 * 6459 */ 6460 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6461 char __user *optval, 6462 int __user *optlen) { 6463 struct sctp_rtoinfo rtoinfo; 6464 struct sctp_association *asoc; 6465 6466 if (len < sizeof (struct sctp_rtoinfo)) 6467 return -EINVAL; 6468 6469 len = sizeof(struct sctp_rtoinfo); 6470 6471 if (copy_from_user(&rtoinfo, optval, len)) 6472 return -EFAULT; 6473 6474 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6475 6476 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6477 sctp_style(sk, UDP)) 6478 return -EINVAL; 6479 6480 /* Values corresponding to the specific association. */ 6481 if (asoc) { 6482 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6483 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6484 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6485 } else { 6486 /* Values corresponding to the endpoint. */ 6487 struct sctp_sock *sp = sctp_sk(sk); 6488 6489 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6490 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6491 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6492 } 6493 6494 if (put_user(len, optlen)) 6495 return -EFAULT; 6496 6497 if (copy_to_user(optval, &rtoinfo, len)) 6498 return -EFAULT; 6499 6500 return 0; 6501 } 6502 6503 /* 6504 * 6505 * 7.1.2 SCTP_ASSOCINFO 6506 * 6507 * This option is used to tune the maximum retransmission attempts 6508 * of the association. 6509 * Returns an error if the new association retransmission value is 6510 * greater than the sum of the retransmission value of the peer. 6511 * See [SCTP] for more information. 6512 * 6513 */ 6514 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6515 char __user *optval, 6516 int __user *optlen) 6517 { 6518 6519 struct sctp_assocparams assocparams; 6520 struct sctp_association *asoc; 6521 struct list_head *pos; 6522 int cnt = 0; 6523 6524 if (len < sizeof (struct sctp_assocparams)) 6525 return -EINVAL; 6526 6527 len = sizeof(struct sctp_assocparams); 6528 6529 if (copy_from_user(&assocparams, optval, len)) 6530 return -EFAULT; 6531 6532 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6533 6534 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6535 sctp_style(sk, UDP)) 6536 return -EINVAL; 6537 6538 /* Values correspoinding to the specific association */ 6539 if (asoc) { 6540 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6541 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6542 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6543 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6544 6545 list_for_each(pos, &asoc->peer.transport_addr_list) { 6546 cnt++; 6547 } 6548 6549 assocparams.sasoc_number_peer_destinations = cnt; 6550 } else { 6551 /* Values corresponding to the endpoint */ 6552 struct sctp_sock *sp = sctp_sk(sk); 6553 6554 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6555 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6556 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6557 assocparams.sasoc_cookie_life = 6558 sp->assocparams.sasoc_cookie_life; 6559 assocparams.sasoc_number_peer_destinations = 6560 sp->assocparams. 6561 sasoc_number_peer_destinations; 6562 } 6563 6564 if (put_user(len, optlen)) 6565 return -EFAULT; 6566 6567 if (copy_to_user(optval, &assocparams, len)) 6568 return -EFAULT; 6569 6570 return 0; 6571 } 6572 6573 /* 6574 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6575 * 6576 * This socket option is a boolean flag which turns on or off mapped V4 6577 * addresses. If this option is turned on and the socket is type 6578 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6579 * If this option is turned off, then no mapping will be done of V4 6580 * addresses and a user will receive both PF_INET6 and PF_INET type 6581 * addresses on the socket. 6582 */ 6583 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6584 char __user *optval, int __user *optlen) 6585 { 6586 int val; 6587 struct sctp_sock *sp = sctp_sk(sk); 6588 6589 if (len < sizeof(int)) 6590 return -EINVAL; 6591 6592 len = sizeof(int); 6593 val = sp->v4mapped; 6594 if (put_user(len, optlen)) 6595 return -EFAULT; 6596 if (copy_to_user(optval, &val, len)) 6597 return -EFAULT; 6598 6599 return 0; 6600 } 6601 6602 /* 6603 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6604 * (chapter and verse is quoted at sctp_setsockopt_context()) 6605 */ 6606 static int sctp_getsockopt_context(struct sock *sk, int len, 6607 char __user *optval, int __user *optlen) 6608 { 6609 struct sctp_assoc_value params; 6610 struct sctp_association *asoc; 6611 6612 if (len < sizeof(struct sctp_assoc_value)) 6613 return -EINVAL; 6614 6615 len = sizeof(struct sctp_assoc_value); 6616 6617 if (copy_from_user(¶ms, optval, len)) 6618 return -EFAULT; 6619 6620 asoc = sctp_id2assoc(sk, params.assoc_id); 6621 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6622 sctp_style(sk, UDP)) 6623 return -EINVAL; 6624 6625 params.assoc_value = asoc ? asoc->default_rcv_context 6626 : sctp_sk(sk)->default_rcv_context; 6627 6628 if (put_user(len, optlen)) 6629 return -EFAULT; 6630 if (copy_to_user(optval, ¶ms, len)) 6631 return -EFAULT; 6632 6633 return 0; 6634 } 6635 6636 /* 6637 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6638 * This option will get or set the maximum size to put in any outgoing 6639 * SCTP DATA chunk. If a message is larger than this size it will be 6640 * fragmented by SCTP into the specified size. Note that the underlying 6641 * SCTP implementation may fragment into smaller sized chunks when the 6642 * PMTU of the underlying association is smaller than the value set by 6643 * the user. The default value for this option is '0' which indicates 6644 * the user is NOT limiting fragmentation and only the PMTU will effect 6645 * SCTP's choice of DATA chunk size. Note also that values set larger 6646 * than the maximum size of an IP datagram will effectively let SCTP 6647 * control fragmentation (i.e. the same as setting this option to 0). 6648 * 6649 * The following structure is used to access and modify this parameter: 6650 * 6651 * struct sctp_assoc_value { 6652 * sctp_assoc_t assoc_id; 6653 * uint32_t assoc_value; 6654 * }; 6655 * 6656 * assoc_id: This parameter is ignored for one-to-one style sockets. 6657 * For one-to-many style sockets this parameter indicates which 6658 * association the user is performing an action upon. Note that if 6659 * this field's value is zero then the endpoints default value is 6660 * changed (effecting future associations only). 6661 * assoc_value: This parameter specifies the maximum size in bytes. 6662 */ 6663 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6664 char __user *optval, int __user *optlen) 6665 { 6666 struct sctp_assoc_value params; 6667 struct sctp_association *asoc; 6668 6669 if (len == sizeof(int)) { 6670 pr_warn_ratelimited(DEPRECATED 6671 "%s (pid %d) " 6672 "Use of int in maxseg socket option.\n" 6673 "Use struct sctp_assoc_value instead\n", 6674 current->comm, task_pid_nr(current)); 6675 params.assoc_id = SCTP_FUTURE_ASSOC; 6676 } else if (len >= sizeof(struct sctp_assoc_value)) { 6677 len = sizeof(struct sctp_assoc_value); 6678 if (copy_from_user(¶ms, optval, len)) 6679 return -EFAULT; 6680 } else 6681 return -EINVAL; 6682 6683 asoc = sctp_id2assoc(sk, params.assoc_id); 6684 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6685 sctp_style(sk, UDP)) 6686 return -EINVAL; 6687 6688 if (asoc) 6689 params.assoc_value = asoc->frag_point; 6690 else 6691 params.assoc_value = sctp_sk(sk)->user_frag; 6692 6693 if (put_user(len, optlen)) 6694 return -EFAULT; 6695 if (len == sizeof(int)) { 6696 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6697 return -EFAULT; 6698 } else { 6699 if (copy_to_user(optval, ¶ms, len)) 6700 return -EFAULT; 6701 } 6702 6703 return 0; 6704 } 6705 6706 /* 6707 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6708 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6709 */ 6710 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6711 char __user *optval, int __user *optlen) 6712 { 6713 int val; 6714 6715 if (len < sizeof(int)) 6716 return -EINVAL; 6717 6718 len = sizeof(int); 6719 6720 val = sctp_sk(sk)->frag_interleave; 6721 if (put_user(len, optlen)) 6722 return -EFAULT; 6723 if (copy_to_user(optval, &val, len)) 6724 return -EFAULT; 6725 6726 return 0; 6727 } 6728 6729 /* 6730 * 7.1.25. Set or Get the sctp partial delivery point 6731 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6732 */ 6733 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6734 char __user *optval, 6735 int __user *optlen) 6736 { 6737 u32 val; 6738 6739 if (len < sizeof(u32)) 6740 return -EINVAL; 6741 6742 len = sizeof(u32); 6743 6744 val = sctp_sk(sk)->pd_point; 6745 if (put_user(len, optlen)) 6746 return -EFAULT; 6747 if (copy_to_user(optval, &val, len)) 6748 return -EFAULT; 6749 6750 return 0; 6751 } 6752 6753 /* 6754 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6755 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6756 */ 6757 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6758 char __user *optval, 6759 int __user *optlen) 6760 { 6761 struct sctp_assoc_value params; 6762 struct sctp_association *asoc; 6763 6764 if (len == sizeof(int)) { 6765 pr_warn_ratelimited(DEPRECATED 6766 "%s (pid %d) " 6767 "Use of int in max_burst socket option.\n" 6768 "Use struct sctp_assoc_value instead\n", 6769 current->comm, task_pid_nr(current)); 6770 params.assoc_id = SCTP_FUTURE_ASSOC; 6771 } else if (len >= sizeof(struct sctp_assoc_value)) { 6772 len = sizeof(struct sctp_assoc_value); 6773 if (copy_from_user(¶ms, optval, len)) 6774 return -EFAULT; 6775 } else 6776 return -EINVAL; 6777 6778 asoc = sctp_id2assoc(sk, params.assoc_id); 6779 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6780 sctp_style(sk, UDP)) 6781 return -EINVAL; 6782 6783 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6784 6785 if (len == sizeof(int)) { 6786 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6787 return -EFAULT; 6788 } else { 6789 if (copy_to_user(optval, ¶ms, len)) 6790 return -EFAULT; 6791 } 6792 6793 return 0; 6794 6795 } 6796 6797 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6798 char __user *optval, int __user *optlen) 6799 { 6800 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6801 struct sctp_hmacalgo __user *p = (void __user *)optval; 6802 struct sctp_hmac_algo_param *hmacs; 6803 __u16 data_len = 0; 6804 u32 num_idents; 6805 int i; 6806 6807 if (!ep->auth_enable) 6808 return -EACCES; 6809 6810 hmacs = ep->auth_hmacs_list; 6811 data_len = ntohs(hmacs->param_hdr.length) - 6812 sizeof(struct sctp_paramhdr); 6813 6814 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6815 return -EINVAL; 6816 6817 len = sizeof(struct sctp_hmacalgo) + data_len; 6818 num_idents = data_len / sizeof(u16); 6819 6820 if (put_user(len, optlen)) 6821 return -EFAULT; 6822 if (put_user(num_idents, &p->shmac_num_idents)) 6823 return -EFAULT; 6824 for (i = 0; i < num_idents; i++) { 6825 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6826 6827 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6828 return -EFAULT; 6829 } 6830 return 0; 6831 } 6832 6833 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6834 char __user *optval, int __user *optlen) 6835 { 6836 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6837 struct sctp_authkeyid val; 6838 struct sctp_association *asoc; 6839 6840 if (len < sizeof(struct sctp_authkeyid)) 6841 return -EINVAL; 6842 6843 len = sizeof(struct sctp_authkeyid); 6844 if (copy_from_user(&val, optval, len)) 6845 return -EFAULT; 6846 6847 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6848 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6849 return -EINVAL; 6850 6851 if (asoc) { 6852 if (!asoc->peer.auth_capable) 6853 return -EACCES; 6854 val.scact_keynumber = asoc->active_key_id; 6855 } else { 6856 if (!ep->auth_enable) 6857 return -EACCES; 6858 val.scact_keynumber = ep->active_key_id; 6859 } 6860 6861 if (put_user(len, optlen)) 6862 return -EFAULT; 6863 if (copy_to_user(optval, &val, len)) 6864 return -EFAULT; 6865 6866 return 0; 6867 } 6868 6869 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6870 char __user *optval, int __user *optlen) 6871 { 6872 struct sctp_authchunks __user *p = (void __user *)optval; 6873 struct sctp_authchunks val; 6874 struct sctp_association *asoc; 6875 struct sctp_chunks_param *ch; 6876 u32 num_chunks = 0; 6877 char __user *to; 6878 6879 if (len < sizeof(struct sctp_authchunks)) 6880 return -EINVAL; 6881 6882 if (copy_from_user(&val, optval, sizeof(val))) 6883 return -EFAULT; 6884 6885 to = p->gauth_chunks; 6886 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6887 if (!asoc) 6888 return -EINVAL; 6889 6890 if (!asoc->peer.auth_capable) 6891 return -EACCES; 6892 6893 ch = asoc->peer.peer_chunks; 6894 if (!ch) 6895 goto num; 6896 6897 /* See if the user provided enough room for all the data */ 6898 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6899 if (len < num_chunks) 6900 return -EINVAL; 6901 6902 if (copy_to_user(to, ch->chunks, num_chunks)) 6903 return -EFAULT; 6904 num: 6905 len = sizeof(struct sctp_authchunks) + num_chunks; 6906 if (put_user(len, optlen)) 6907 return -EFAULT; 6908 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6909 return -EFAULT; 6910 return 0; 6911 } 6912 6913 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6914 char __user *optval, int __user *optlen) 6915 { 6916 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6917 struct sctp_authchunks __user *p = (void __user *)optval; 6918 struct sctp_authchunks val; 6919 struct sctp_association *asoc; 6920 struct sctp_chunks_param *ch; 6921 u32 num_chunks = 0; 6922 char __user *to; 6923 6924 if (len < sizeof(struct sctp_authchunks)) 6925 return -EINVAL; 6926 6927 if (copy_from_user(&val, optval, sizeof(val))) 6928 return -EFAULT; 6929 6930 to = p->gauth_chunks; 6931 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6932 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 6933 sctp_style(sk, UDP)) 6934 return -EINVAL; 6935 6936 if (asoc) { 6937 if (!asoc->peer.auth_capable) 6938 return -EACCES; 6939 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6940 } else { 6941 if (!ep->auth_enable) 6942 return -EACCES; 6943 ch = ep->auth_chunk_list; 6944 } 6945 if (!ch) 6946 goto num; 6947 6948 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6949 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6950 return -EINVAL; 6951 6952 if (copy_to_user(to, ch->chunks, num_chunks)) 6953 return -EFAULT; 6954 num: 6955 len = sizeof(struct sctp_authchunks) + num_chunks; 6956 if (put_user(len, optlen)) 6957 return -EFAULT; 6958 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6959 return -EFAULT; 6960 6961 return 0; 6962 } 6963 6964 /* 6965 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6966 * This option gets the current number of associations that are attached 6967 * to a one-to-many style socket. The option value is an uint32_t. 6968 */ 6969 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6970 char __user *optval, int __user *optlen) 6971 { 6972 struct sctp_sock *sp = sctp_sk(sk); 6973 struct sctp_association *asoc; 6974 u32 val = 0; 6975 6976 if (sctp_style(sk, TCP)) 6977 return -EOPNOTSUPP; 6978 6979 if (len < sizeof(u32)) 6980 return -EINVAL; 6981 6982 len = sizeof(u32); 6983 6984 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6985 val++; 6986 } 6987 6988 if (put_user(len, optlen)) 6989 return -EFAULT; 6990 if (copy_to_user(optval, &val, len)) 6991 return -EFAULT; 6992 6993 return 0; 6994 } 6995 6996 /* 6997 * 8.1.23 SCTP_AUTO_ASCONF 6998 * See the corresponding setsockopt entry as description 6999 */ 7000 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7001 char __user *optval, int __user *optlen) 7002 { 7003 int val = 0; 7004 7005 if (len < sizeof(int)) 7006 return -EINVAL; 7007 7008 len = sizeof(int); 7009 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7010 val = 1; 7011 if (put_user(len, optlen)) 7012 return -EFAULT; 7013 if (copy_to_user(optval, &val, len)) 7014 return -EFAULT; 7015 return 0; 7016 } 7017 7018 /* 7019 * 8.2.6. Get the Current Identifiers of Associations 7020 * (SCTP_GET_ASSOC_ID_LIST) 7021 * 7022 * This option gets the current list of SCTP association identifiers of 7023 * the SCTP associations handled by a one-to-many style socket. 7024 */ 7025 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7026 char __user *optval, int __user *optlen) 7027 { 7028 struct sctp_sock *sp = sctp_sk(sk); 7029 struct sctp_association *asoc; 7030 struct sctp_assoc_ids *ids; 7031 u32 num = 0; 7032 7033 if (sctp_style(sk, TCP)) 7034 return -EOPNOTSUPP; 7035 7036 if (len < sizeof(struct sctp_assoc_ids)) 7037 return -EINVAL; 7038 7039 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7040 num++; 7041 } 7042 7043 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7044 return -EINVAL; 7045 7046 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7047 7048 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7049 if (unlikely(!ids)) 7050 return -ENOMEM; 7051 7052 ids->gaids_number_of_ids = num; 7053 num = 0; 7054 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7055 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7056 } 7057 7058 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7059 kfree(ids); 7060 return -EFAULT; 7061 } 7062 7063 kfree(ids); 7064 return 0; 7065 } 7066 7067 /* 7068 * SCTP_PEER_ADDR_THLDS 7069 * 7070 * This option allows us to fetch the partially failed threshold for one or all 7071 * transports in an association. See Section 6.1 of: 7072 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7073 */ 7074 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7075 char __user *optval, int len, 7076 int __user *optlen, bool v2) 7077 { 7078 struct sctp_paddrthlds_v2 val; 7079 struct sctp_transport *trans; 7080 struct sctp_association *asoc; 7081 int min; 7082 7083 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7084 if (len < min) 7085 return -EINVAL; 7086 len = min; 7087 if (copy_from_user(&val, optval, len)) 7088 return -EFAULT; 7089 7090 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7091 trans = sctp_addr_id2transport(sk, &val.spt_address, 7092 val.spt_assoc_id); 7093 if (!trans) 7094 return -ENOENT; 7095 7096 val.spt_pathmaxrxt = trans->pathmaxrxt; 7097 val.spt_pathpfthld = trans->pf_retrans; 7098 val.spt_pathcpthld = trans->ps_retrans; 7099 7100 goto out; 7101 } 7102 7103 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7104 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7105 sctp_style(sk, UDP)) 7106 return -EINVAL; 7107 7108 if (asoc) { 7109 val.spt_pathpfthld = asoc->pf_retrans; 7110 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7111 val.spt_pathcpthld = asoc->ps_retrans; 7112 } else { 7113 struct sctp_sock *sp = sctp_sk(sk); 7114 7115 val.spt_pathpfthld = sp->pf_retrans; 7116 val.spt_pathmaxrxt = sp->pathmaxrxt; 7117 val.spt_pathcpthld = sp->ps_retrans; 7118 } 7119 7120 out: 7121 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7122 return -EFAULT; 7123 7124 return 0; 7125 } 7126 7127 /* 7128 * SCTP_GET_ASSOC_STATS 7129 * 7130 * This option retrieves local per endpoint statistics. It is modeled 7131 * after OpenSolaris' implementation 7132 */ 7133 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7134 char __user *optval, 7135 int __user *optlen) 7136 { 7137 struct sctp_assoc_stats sas; 7138 struct sctp_association *asoc = NULL; 7139 7140 /* User must provide at least the assoc id */ 7141 if (len < sizeof(sctp_assoc_t)) 7142 return -EINVAL; 7143 7144 /* Allow the struct to grow and fill in as much as possible */ 7145 len = min_t(size_t, len, sizeof(sas)); 7146 7147 if (copy_from_user(&sas, optval, len)) 7148 return -EFAULT; 7149 7150 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7151 if (!asoc) 7152 return -EINVAL; 7153 7154 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7155 sas.sas_gapcnt = asoc->stats.gapcnt; 7156 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7157 sas.sas_osacks = asoc->stats.osacks; 7158 sas.sas_isacks = asoc->stats.isacks; 7159 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7160 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7161 sas.sas_oodchunks = asoc->stats.oodchunks; 7162 sas.sas_iodchunks = asoc->stats.iodchunks; 7163 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7164 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7165 sas.sas_idupchunks = asoc->stats.idupchunks; 7166 sas.sas_opackets = asoc->stats.opackets; 7167 sas.sas_ipackets = asoc->stats.ipackets; 7168 7169 /* New high max rto observed, will return 0 if not a single 7170 * RTO update took place. obs_rto_ipaddr will be bogus 7171 * in such a case 7172 */ 7173 sas.sas_maxrto = asoc->stats.max_obs_rto; 7174 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7175 sizeof(struct sockaddr_storage)); 7176 7177 /* Mark beginning of a new observation period */ 7178 asoc->stats.max_obs_rto = asoc->rto_min; 7179 7180 if (put_user(len, optlen)) 7181 return -EFAULT; 7182 7183 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7184 7185 if (copy_to_user(optval, &sas, len)) 7186 return -EFAULT; 7187 7188 return 0; 7189 } 7190 7191 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7192 char __user *optval, 7193 int __user *optlen) 7194 { 7195 int val = 0; 7196 7197 if (len < sizeof(int)) 7198 return -EINVAL; 7199 7200 len = sizeof(int); 7201 if (sctp_sk(sk)->recvrcvinfo) 7202 val = 1; 7203 if (put_user(len, optlen)) 7204 return -EFAULT; 7205 if (copy_to_user(optval, &val, len)) 7206 return -EFAULT; 7207 7208 return 0; 7209 } 7210 7211 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7212 char __user *optval, 7213 int __user *optlen) 7214 { 7215 int val = 0; 7216 7217 if (len < sizeof(int)) 7218 return -EINVAL; 7219 7220 len = sizeof(int); 7221 if (sctp_sk(sk)->recvnxtinfo) 7222 val = 1; 7223 if (put_user(len, optlen)) 7224 return -EFAULT; 7225 if (copy_to_user(optval, &val, len)) 7226 return -EFAULT; 7227 7228 return 0; 7229 } 7230 7231 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7232 char __user *optval, 7233 int __user *optlen) 7234 { 7235 struct sctp_assoc_value params; 7236 struct sctp_association *asoc; 7237 int retval = -EFAULT; 7238 7239 if (len < sizeof(params)) { 7240 retval = -EINVAL; 7241 goto out; 7242 } 7243 7244 len = sizeof(params); 7245 if (copy_from_user(¶ms, optval, len)) 7246 goto out; 7247 7248 asoc = sctp_id2assoc(sk, params.assoc_id); 7249 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7250 sctp_style(sk, UDP)) { 7251 retval = -EINVAL; 7252 goto out; 7253 } 7254 7255 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7256 : sctp_sk(sk)->ep->prsctp_enable; 7257 7258 if (put_user(len, optlen)) 7259 goto out; 7260 7261 if (copy_to_user(optval, ¶ms, len)) 7262 goto out; 7263 7264 retval = 0; 7265 7266 out: 7267 return retval; 7268 } 7269 7270 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7271 char __user *optval, 7272 int __user *optlen) 7273 { 7274 struct sctp_default_prinfo info; 7275 struct sctp_association *asoc; 7276 int retval = -EFAULT; 7277 7278 if (len < sizeof(info)) { 7279 retval = -EINVAL; 7280 goto out; 7281 } 7282 7283 len = sizeof(info); 7284 if (copy_from_user(&info, optval, len)) 7285 goto out; 7286 7287 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7288 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7289 sctp_style(sk, UDP)) { 7290 retval = -EINVAL; 7291 goto out; 7292 } 7293 7294 if (asoc) { 7295 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7296 info.pr_value = asoc->default_timetolive; 7297 } else { 7298 struct sctp_sock *sp = sctp_sk(sk); 7299 7300 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7301 info.pr_value = sp->default_timetolive; 7302 } 7303 7304 if (put_user(len, optlen)) 7305 goto out; 7306 7307 if (copy_to_user(optval, &info, len)) 7308 goto out; 7309 7310 retval = 0; 7311 7312 out: 7313 return retval; 7314 } 7315 7316 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7317 char __user *optval, 7318 int __user *optlen) 7319 { 7320 struct sctp_prstatus params; 7321 struct sctp_association *asoc; 7322 int policy; 7323 int retval = -EINVAL; 7324 7325 if (len < sizeof(params)) 7326 goto out; 7327 7328 len = sizeof(params); 7329 if (copy_from_user(¶ms, optval, len)) { 7330 retval = -EFAULT; 7331 goto out; 7332 } 7333 7334 policy = params.sprstat_policy; 7335 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7336 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7337 goto out; 7338 7339 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7340 if (!asoc) 7341 goto out; 7342 7343 if (policy == SCTP_PR_SCTP_ALL) { 7344 params.sprstat_abandoned_unsent = 0; 7345 params.sprstat_abandoned_sent = 0; 7346 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7347 params.sprstat_abandoned_unsent += 7348 asoc->abandoned_unsent[policy]; 7349 params.sprstat_abandoned_sent += 7350 asoc->abandoned_sent[policy]; 7351 } 7352 } else { 7353 params.sprstat_abandoned_unsent = 7354 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7355 params.sprstat_abandoned_sent = 7356 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7357 } 7358 7359 if (put_user(len, optlen)) { 7360 retval = -EFAULT; 7361 goto out; 7362 } 7363 7364 if (copy_to_user(optval, ¶ms, len)) { 7365 retval = -EFAULT; 7366 goto out; 7367 } 7368 7369 retval = 0; 7370 7371 out: 7372 return retval; 7373 } 7374 7375 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7376 char __user *optval, 7377 int __user *optlen) 7378 { 7379 struct sctp_stream_out_ext *streamoute; 7380 struct sctp_association *asoc; 7381 struct sctp_prstatus params; 7382 int retval = -EINVAL; 7383 int policy; 7384 7385 if (len < sizeof(params)) 7386 goto out; 7387 7388 len = sizeof(params); 7389 if (copy_from_user(¶ms, optval, len)) { 7390 retval = -EFAULT; 7391 goto out; 7392 } 7393 7394 policy = params.sprstat_policy; 7395 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7396 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7397 goto out; 7398 7399 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7400 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7401 goto out; 7402 7403 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7404 if (!streamoute) { 7405 /* Not allocated yet, means all stats are 0 */ 7406 params.sprstat_abandoned_unsent = 0; 7407 params.sprstat_abandoned_sent = 0; 7408 retval = 0; 7409 goto out; 7410 } 7411 7412 if (policy == SCTP_PR_SCTP_ALL) { 7413 params.sprstat_abandoned_unsent = 0; 7414 params.sprstat_abandoned_sent = 0; 7415 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7416 params.sprstat_abandoned_unsent += 7417 streamoute->abandoned_unsent[policy]; 7418 params.sprstat_abandoned_sent += 7419 streamoute->abandoned_sent[policy]; 7420 } 7421 } else { 7422 params.sprstat_abandoned_unsent = 7423 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7424 params.sprstat_abandoned_sent = 7425 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7426 } 7427 7428 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7429 retval = -EFAULT; 7430 goto out; 7431 } 7432 7433 retval = 0; 7434 7435 out: 7436 return retval; 7437 } 7438 7439 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7440 char __user *optval, 7441 int __user *optlen) 7442 { 7443 struct sctp_assoc_value params; 7444 struct sctp_association *asoc; 7445 int retval = -EFAULT; 7446 7447 if (len < sizeof(params)) { 7448 retval = -EINVAL; 7449 goto out; 7450 } 7451 7452 len = sizeof(params); 7453 if (copy_from_user(¶ms, optval, len)) 7454 goto out; 7455 7456 asoc = sctp_id2assoc(sk, params.assoc_id); 7457 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7458 sctp_style(sk, UDP)) { 7459 retval = -EINVAL; 7460 goto out; 7461 } 7462 7463 params.assoc_value = asoc ? asoc->peer.reconf_capable 7464 : sctp_sk(sk)->ep->reconf_enable; 7465 7466 if (put_user(len, optlen)) 7467 goto out; 7468 7469 if (copy_to_user(optval, ¶ms, len)) 7470 goto out; 7471 7472 retval = 0; 7473 7474 out: 7475 return retval; 7476 } 7477 7478 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7479 char __user *optval, 7480 int __user *optlen) 7481 { 7482 struct sctp_assoc_value params; 7483 struct sctp_association *asoc; 7484 int retval = -EFAULT; 7485 7486 if (len < sizeof(params)) { 7487 retval = -EINVAL; 7488 goto out; 7489 } 7490 7491 len = sizeof(params); 7492 if (copy_from_user(¶ms, optval, len)) 7493 goto out; 7494 7495 asoc = sctp_id2assoc(sk, params.assoc_id); 7496 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7497 sctp_style(sk, UDP)) { 7498 retval = -EINVAL; 7499 goto out; 7500 } 7501 7502 params.assoc_value = asoc ? asoc->strreset_enable 7503 : sctp_sk(sk)->ep->strreset_enable; 7504 7505 if (put_user(len, optlen)) 7506 goto out; 7507 7508 if (copy_to_user(optval, ¶ms, len)) 7509 goto out; 7510 7511 retval = 0; 7512 7513 out: 7514 return retval; 7515 } 7516 7517 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7518 char __user *optval, 7519 int __user *optlen) 7520 { 7521 struct sctp_assoc_value params; 7522 struct sctp_association *asoc; 7523 int retval = -EFAULT; 7524 7525 if (len < sizeof(params)) { 7526 retval = -EINVAL; 7527 goto out; 7528 } 7529 7530 len = sizeof(params); 7531 if (copy_from_user(¶ms, optval, len)) 7532 goto out; 7533 7534 asoc = sctp_id2assoc(sk, params.assoc_id); 7535 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7536 sctp_style(sk, UDP)) { 7537 retval = -EINVAL; 7538 goto out; 7539 } 7540 7541 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7542 : sctp_sk(sk)->default_ss; 7543 7544 if (put_user(len, optlen)) 7545 goto out; 7546 7547 if (copy_to_user(optval, ¶ms, len)) 7548 goto out; 7549 7550 retval = 0; 7551 7552 out: 7553 return retval; 7554 } 7555 7556 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7557 char __user *optval, 7558 int __user *optlen) 7559 { 7560 struct sctp_stream_value params; 7561 struct sctp_association *asoc; 7562 int retval = -EFAULT; 7563 7564 if (len < sizeof(params)) { 7565 retval = -EINVAL; 7566 goto out; 7567 } 7568 7569 len = sizeof(params); 7570 if (copy_from_user(¶ms, optval, len)) 7571 goto out; 7572 7573 asoc = sctp_id2assoc(sk, params.assoc_id); 7574 if (!asoc) { 7575 retval = -EINVAL; 7576 goto out; 7577 } 7578 7579 retval = sctp_sched_get_value(asoc, params.stream_id, 7580 ¶ms.stream_value); 7581 if (retval) 7582 goto out; 7583 7584 if (put_user(len, optlen)) { 7585 retval = -EFAULT; 7586 goto out; 7587 } 7588 7589 if (copy_to_user(optval, ¶ms, len)) { 7590 retval = -EFAULT; 7591 goto out; 7592 } 7593 7594 out: 7595 return retval; 7596 } 7597 7598 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7599 char __user *optval, 7600 int __user *optlen) 7601 { 7602 struct sctp_assoc_value params; 7603 struct sctp_association *asoc; 7604 int retval = -EFAULT; 7605 7606 if (len < sizeof(params)) { 7607 retval = -EINVAL; 7608 goto out; 7609 } 7610 7611 len = sizeof(params); 7612 if (copy_from_user(¶ms, optval, len)) 7613 goto out; 7614 7615 asoc = sctp_id2assoc(sk, params.assoc_id); 7616 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7617 sctp_style(sk, UDP)) { 7618 retval = -EINVAL; 7619 goto out; 7620 } 7621 7622 params.assoc_value = asoc ? asoc->peer.intl_capable 7623 : sctp_sk(sk)->ep->intl_enable; 7624 7625 if (put_user(len, optlen)) 7626 goto out; 7627 7628 if (copy_to_user(optval, ¶ms, len)) 7629 goto out; 7630 7631 retval = 0; 7632 7633 out: 7634 return retval; 7635 } 7636 7637 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7638 char __user *optval, 7639 int __user *optlen) 7640 { 7641 int val; 7642 7643 if (len < sizeof(int)) 7644 return -EINVAL; 7645 7646 len = sizeof(int); 7647 val = sctp_sk(sk)->reuse; 7648 if (put_user(len, optlen)) 7649 return -EFAULT; 7650 7651 if (copy_to_user(optval, &val, len)) 7652 return -EFAULT; 7653 7654 return 0; 7655 } 7656 7657 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7658 int __user *optlen) 7659 { 7660 struct sctp_association *asoc; 7661 struct sctp_event param; 7662 __u16 subscribe; 7663 7664 if (len < sizeof(param)) 7665 return -EINVAL; 7666 7667 len = sizeof(param); 7668 if (copy_from_user(¶m, optval, len)) 7669 return -EFAULT; 7670 7671 if (param.se_type < SCTP_SN_TYPE_BASE || 7672 param.se_type > SCTP_SN_TYPE_MAX) 7673 return -EINVAL; 7674 7675 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7676 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7677 sctp_style(sk, UDP)) 7678 return -EINVAL; 7679 7680 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7681 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7682 7683 if (put_user(len, optlen)) 7684 return -EFAULT; 7685 7686 if (copy_to_user(optval, ¶m, len)) 7687 return -EFAULT; 7688 7689 return 0; 7690 } 7691 7692 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7693 char __user *optval, 7694 int __user *optlen) 7695 { 7696 struct sctp_assoc_value params; 7697 struct sctp_association *asoc; 7698 int retval = -EFAULT; 7699 7700 if (len < sizeof(params)) { 7701 retval = -EINVAL; 7702 goto out; 7703 } 7704 7705 len = sizeof(params); 7706 if (copy_from_user(¶ms, optval, len)) 7707 goto out; 7708 7709 asoc = sctp_id2assoc(sk, params.assoc_id); 7710 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7711 sctp_style(sk, UDP)) { 7712 retval = -EINVAL; 7713 goto out; 7714 } 7715 7716 params.assoc_value = asoc ? asoc->peer.asconf_capable 7717 : sctp_sk(sk)->ep->asconf_enable; 7718 7719 if (put_user(len, optlen)) 7720 goto out; 7721 7722 if (copy_to_user(optval, ¶ms, len)) 7723 goto out; 7724 7725 retval = 0; 7726 7727 out: 7728 return retval; 7729 } 7730 7731 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7732 char __user *optval, 7733 int __user *optlen) 7734 { 7735 struct sctp_assoc_value params; 7736 struct sctp_association *asoc; 7737 int retval = -EFAULT; 7738 7739 if (len < sizeof(params)) { 7740 retval = -EINVAL; 7741 goto out; 7742 } 7743 7744 len = sizeof(params); 7745 if (copy_from_user(¶ms, optval, len)) 7746 goto out; 7747 7748 asoc = sctp_id2assoc(sk, params.assoc_id); 7749 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7750 sctp_style(sk, UDP)) { 7751 retval = -EINVAL; 7752 goto out; 7753 } 7754 7755 params.assoc_value = asoc ? asoc->peer.auth_capable 7756 : sctp_sk(sk)->ep->auth_enable; 7757 7758 if (put_user(len, optlen)) 7759 goto out; 7760 7761 if (copy_to_user(optval, ¶ms, len)) 7762 goto out; 7763 7764 retval = 0; 7765 7766 out: 7767 return retval; 7768 } 7769 7770 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7771 char __user *optval, 7772 int __user *optlen) 7773 { 7774 struct sctp_assoc_value params; 7775 struct sctp_association *asoc; 7776 int retval = -EFAULT; 7777 7778 if (len < sizeof(params)) { 7779 retval = -EINVAL; 7780 goto out; 7781 } 7782 7783 len = sizeof(params); 7784 if (copy_from_user(¶ms, optval, len)) 7785 goto out; 7786 7787 asoc = sctp_id2assoc(sk, params.assoc_id); 7788 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7789 sctp_style(sk, UDP)) { 7790 retval = -EINVAL; 7791 goto out; 7792 } 7793 7794 params.assoc_value = asoc ? asoc->peer.ecn_capable 7795 : sctp_sk(sk)->ep->ecn_enable; 7796 7797 if (put_user(len, optlen)) 7798 goto out; 7799 7800 if (copy_to_user(optval, ¶ms, len)) 7801 goto out; 7802 7803 retval = 0; 7804 7805 out: 7806 return retval; 7807 } 7808 7809 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7810 char __user *optval, 7811 int __user *optlen) 7812 { 7813 struct sctp_assoc_value params; 7814 struct sctp_association *asoc; 7815 int retval = -EFAULT; 7816 7817 if (len < sizeof(params)) { 7818 retval = -EINVAL; 7819 goto out; 7820 } 7821 7822 len = sizeof(params); 7823 if (copy_from_user(¶ms, optval, len)) 7824 goto out; 7825 7826 asoc = sctp_id2assoc(sk, params.assoc_id); 7827 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7828 sctp_style(sk, UDP)) { 7829 retval = -EINVAL; 7830 goto out; 7831 } 7832 7833 params.assoc_value = asoc ? asoc->pf_expose 7834 : sctp_sk(sk)->pf_expose; 7835 7836 if (put_user(len, optlen)) 7837 goto out; 7838 7839 if (copy_to_user(optval, ¶ms, len)) 7840 goto out; 7841 7842 retval = 0; 7843 7844 out: 7845 return retval; 7846 } 7847 7848 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7849 char __user *optval, int __user *optlen) 7850 { 7851 struct sctp_association *asoc; 7852 struct sctp_udpencaps encap; 7853 struct sctp_transport *t; 7854 __be16 encap_port; 7855 7856 if (len < sizeof(encap)) 7857 return -EINVAL; 7858 7859 len = sizeof(encap); 7860 if (copy_from_user(&encap, optval, len)) 7861 return -EFAULT; 7862 7863 /* If an address other than INADDR_ANY is specified, and 7864 * no transport is found, then the request is invalid. 7865 */ 7866 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7867 t = sctp_addr_id2transport(sk, &encap.sue_address, 7868 encap.sue_assoc_id); 7869 if (!t) { 7870 pr_debug("%s: failed no transport\n", __func__); 7871 return -EINVAL; 7872 } 7873 7874 encap_port = t->encap_port; 7875 goto out; 7876 } 7877 7878 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7879 * socket is a one to many style socket, and an association 7880 * was not found, then the id was invalid. 7881 */ 7882 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7883 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7884 sctp_style(sk, UDP)) { 7885 pr_debug("%s: failed no association\n", __func__); 7886 return -EINVAL; 7887 } 7888 7889 if (asoc) { 7890 encap_port = asoc->encap_port; 7891 goto out; 7892 } 7893 7894 encap_port = sctp_sk(sk)->encap_port; 7895 7896 out: 7897 encap.sue_port = (__force uint16_t)encap_port; 7898 if (copy_to_user(optval, &encap, len)) 7899 return -EFAULT; 7900 7901 if (put_user(len, optlen)) 7902 return -EFAULT; 7903 7904 return 0; 7905 } 7906 7907 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7908 char __user *optval, int __user *optlen) 7909 { 7910 int retval = 0; 7911 int len; 7912 7913 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7914 7915 /* I can hardly begin to describe how wrong this is. This is 7916 * so broken as to be worse than useless. The API draft 7917 * REALLY is NOT helpful here... I am not convinced that the 7918 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7919 * are at all well-founded. 7920 */ 7921 if (level != SOL_SCTP) { 7922 struct sctp_af *af = sctp_sk(sk)->pf->af; 7923 7924 retval = af->getsockopt(sk, level, optname, optval, optlen); 7925 return retval; 7926 } 7927 7928 if (get_user(len, optlen)) 7929 return -EFAULT; 7930 7931 if (len < 0) 7932 return -EINVAL; 7933 7934 lock_sock(sk); 7935 7936 switch (optname) { 7937 case SCTP_STATUS: 7938 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7939 break; 7940 case SCTP_DISABLE_FRAGMENTS: 7941 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7942 optlen); 7943 break; 7944 case SCTP_EVENTS: 7945 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7946 break; 7947 case SCTP_AUTOCLOSE: 7948 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7949 break; 7950 case SCTP_SOCKOPT_PEELOFF: 7951 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7952 break; 7953 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7954 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7955 break; 7956 case SCTP_PEER_ADDR_PARAMS: 7957 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7958 optlen); 7959 break; 7960 case SCTP_DELAYED_SACK: 7961 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7962 optlen); 7963 break; 7964 case SCTP_INITMSG: 7965 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7966 break; 7967 case SCTP_GET_PEER_ADDRS: 7968 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7969 optlen); 7970 break; 7971 case SCTP_GET_LOCAL_ADDRS: 7972 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7973 optlen); 7974 break; 7975 case SCTP_SOCKOPT_CONNECTX3: 7976 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7977 break; 7978 case SCTP_DEFAULT_SEND_PARAM: 7979 retval = sctp_getsockopt_default_send_param(sk, len, 7980 optval, optlen); 7981 break; 7982 case SCTP_DEFAULT_SNDINFO: 7983 retval = sctp_getsockopt_default_sndinfo(sk, len, 7984 optval, optlen); 7985 break; 7986 case SCTP_PRIMARY_ADDR: 7987 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7988 break; 7989 case SCTP_NODELAY: 7990 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7991 break; 7992 case SCTP_RTOINFO: 7993 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7994 break; 7995 case SCTP_ASSOCINFO: 7996 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7997 break; 7998 case SCTP_I_WANT_MAPPED_V4_ADDR: 7999 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8000 break; 8001 case SCTP_MAXSEG: 8002 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8003 break; 8004 case SCTP_GET_PEER_ADDR_INFO: 8005 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8006 optlen); 8007 break; 8008 case SCTP_ADAPTATION_LAYER: 8009 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8010 optlen); 8011 break; 8012 case SCTP_CONTEXT: 8013 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8014 break; 8015 case SCTP_FRAGMENT_INTERLEAVE: 8016 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8017 optlen); 8018 break; 8019 case SCTP_PARTIAL_DELIVERY_POINT: 8020 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8021 optlen); 8022 break; 8023 case SCTP_MAX_BURST: 8024 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8025 break; 8026 case SCTP_AUTH_KEY: 8027 case SCTP_AUTH_CHUNK: 8028 case SCTP_AUTH_DELETE_KEY: 8029 case SCTP_AUTH_DEACTIVATE_KEY: 8030 retval = -EOPNOTSUPP; 8031 break; 8032 case SCTP_HMAC_IDENT: 8033 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8034 break; 8035 case SCTP_AUTH_ACTIVE_KEY: 8036 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8037 break; 8038 case SCTP_PEER_AUTH_CHUNKS: 8039 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8040 optlen); 8041 break; 8042 case SCTP_LOCAL_AUTH_CHUNKS: 8043 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8044 optlen); 8045 break; 8046 case SCTP_GET_ASSOC_NUMBER: 8047 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8048 break; 8049 case SCTP_GET_ASSOC_ID_LIST: 8050 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8051 break; 8052 case SCTP_AUTO_ASCONF: 8053 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8054 break; 8055 case SCTP_PEER_ADDR_THLDS: 8056 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8057 optlen, false); 8058 break; 8059 case SCTP_PEER_ADDR_THLDS_V2: 8060 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8061 optlen, true); 8062 break; 8063 case SCTP_GET_ASSOC_STATS: 8064 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8065 break; 8066 case SCTP_RECVRCVINFO: 8067 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8068 break; 8069 case SCTP_RECVNXTINFO: 8070 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8071 break; 8072 case SCTP_PR_SUPPORTED: 8073 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8074 break; 8075 case SCTP_DEFAULT_PRINFO: 8076 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8077 optlen); 8078 break; 8079 case SCTP_PR_ASSOC_STATUS: 8080 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8081 optlen); 8082 break; 8083 case SCTP_PR_STREAM_STATUS: 8084 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8085 optlen); 8086 break; 8087 case SCTP_RECONFIG_SUPPORTED: 8088 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8089 optlen); 8090 break; 8091 case SCTP_ENABLE_STREAM_RESET: 8092 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8093 optlen); 8094 break; 8095 case SCTP_STREAM_SCHEDULER: 8096 retval = sctp_getsockopt_scheduler(sk, len, optval, 8097 optlen); 8098 break; 8099 case SCTP_STREAM_SCHEDULER_VALUE: 8100 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8101 optlen); 8102 break; 8103 case SCTP_INTERLEAVING_SUPPORTED: 8104 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8105 optlen); 8106 break; 8107 case SCTP_REUSE_PORT: 8108 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8109 break; 8110 case SCTP_EVENT: 8111 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8112 break; 8113 case SCTP_ASCONF_SUPPORTED: 8114 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8115 optlen); 8116 break; 8117 case SCTP_AUTH_SUPPORTED: 8118 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8119 optlen); 8120 break; 8121 case SCTP_ECN_SUPPORTED: 8122 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8123 break; 8124 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8125 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8126 break; 8127 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8128 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8129 break; 8130 default: 8131 retval = -ENOPROTOOPT; 8132 break; 8133 } 8134 8135 release_sock(sk); 8136 return retval; 8137 } 8138 8139 static int sctp_hash(struct sock *sk) 8140 { 8141 /* STUB */ 8142 return 0; 8143 } 8144 8145 static void sctp_unhash(struct sock *sk) 8146 { 8147 /* STUB */ 8148 } 8149 8150 /* Check if port is acceptable. Possibly find first available port. 8151 * 8152 * The port hash table (contained in the 'global' SCTP protocol storage 8153 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8154 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8155 * list (the list number is the port number hashed out, so as you 8156 * would expect from a hash function, all the ports in a given list have 8157 * such a number that hashes out to the same list number; you were 8158 * expecting that, right?); so each list has a set of ports, with a 8159 * link to the socket (struct sock) that uses it, the port number and 8160 * a fastreuse flag (FIXME: NPI ipg). 8161 */ 8162 static struct sctp_bind_bucket *sctp_bucket_create( 8163 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8164 8165 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8166 { 8167 struct sctp_sock *sp = sctp_sk(sk); 8168 bool reuse = (sk->sk_reuse || sp->reuse); 8169 struct sctp_bind_hashbucket *head; /* hash list */ 8170 struct net *net = sock_net(sk); 8171 kuid_t uid = sock_i_uid(sk); 8172 struct sctp_bind_bucket *pp; 8173 unsigned short snum; 8174 int ret; 8175 8176 snum = ntohs(addr->v4.sin_port); 8177 8178 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8179 8180 if (snum == 0) { 8181 /* Search for an available port. */ 8182 int low, high, remaining, index; 8183 unsigned int rover; 8184 8185 inet_get_local_port_range(net, &low, &high); 8186 remaining = (high - low) + 1; 8187 rover = prandom_u32() % remaining + low; 8188 8189 do { 8190 rover++; 8191 if ((rover < low) || (rover > high)) 8192 rover = low; 8193 if (inet_is_local_reserved_port(net, rover)) 8194 continue; 8195 index = sctp_phashfn(net, rover); 8196 head = &sctp_port_hashtable[index]; 8197 spin_lock_bh(&head->lock); 8198 sctp_for_each_hentry(pp, &head->chain) 8199 if ((pp->port == rover) && 8200 net_eq(net, pp->net)) 8201 goto next; 8202 break; 8203 next: 8204 spin_unlock_bh(&head->lock); 8205 cond_resched(); 8206 } while (--remaining > 0); 8207 8208 /* Exhausted local port range during search? */ 8209 ret = 1; 8210 if (remaining <= 0) 8211 return ret; 8212 8213 /* OK, here is the one we will use. HEAD (the port 8214 * hash table list entry) is non-NULL and we hold it's 8215 * mutex. 8216 */ 8217 snum = rover; 8218 } else { 8219 /* We are given an specific port number; we verify 8220 * that it is not being used. If it is used, we will 8221 * exahust the search in the hash list corresponding 8222 * to the port number (snum) - we detect that with the 8223 * port iterator, pp being NULL. 8224 */ 8225 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8226 spin_lock_bh(&head->lock); 8227 sctp_for_each_hentry(pp, &head->chain) { 8228 if ((pp->port == snum) && net_eq(pp->net, net)) 8229 goto pp_found; 8230 } 8231 } 8232 pp = NULL; 8233 goto pp_not_found; 8234 pp_found: 8235 if (!hlist_empty(&pp->owner)) { 8236 /* We had a port hash table hit - there is an 8237 * available port (pp != NULL) and it is being 8238 * used by other socket (pp->owner not empty); that other 8239 * socket is going to be sk2. 8240 */ 8241 struct sock *sk2; 8242 8243 pr_debug("%s: found a possible match\n", __func__); 8244 8245 if ((pp->fastreuse && reuse && 8246 sk->sk_state != SCTP_SS_LISTENING) || 8247 (pp->fastreuseport && sk->sk_reuseport && 8248 uid_eq(pp->fastuid, uid))) 8249 goto success; 8250 8251 /* Run through the list of sockets bound to the port 8252 * (pp->port) [via the pointers bind_next and 8253 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8254 * we get the endpoint they describe and run through 8255 * the endpoint's list of IP (v4 or v6) addresses, 8256 * comparing each of the addresses with the address of 8257 * the socket sk. If we find a match, then that means 8258 * that this port/socket (sk) combination are already 8259 * in an endpoint. 8260 */ 8261 sk_for_each_bound(sk2, &pp->owner) { 8262 struct sctp_sock *sp2 = sctp_sk(sk2); 8263 struct sctp_endpoint *ep2 = sp2->ep; 8264 8265 if (sk == sk2 || 8266 (reuse && (sk2->sk_reuse || sp2->reuse) && 8267 sk2->sk_state != SCTP_SS_LISTENING) || 8268 (sk->sk_reuseport && sk2->sk_reuseport && 8269 uid_eq(uid, sock_i_uid(sk2)))) 8270 continue; 8271 8272 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8273 addr, sp2, sp)) { 8274 ret = 1; 8275 goto fail_unlock; 8276 } 8277 } 8278 8279 pr_debug("%s: found a match\n", __func__); 8280 } 8281 pp_not_found: 8282 /* If there was a hash table miss, create a new port. */ 8283 ret = 1; 8284 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8285 goto fail_unlock; 8286 8287 /* In either case (hit or miss), make sure fastreuse is 1 only 8288 * if sk->sk_reuse is too (that is, if the caller requested 8289 * SO_REUSEADDR on this socket -sk-). 8290 */ 8291 if (hlist_empty(&pp->owner)) { 8292 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8293 pp->fastreuse = 1; 8294 else 8295 pp->fastreuse = 0; 8296 8297 if (sk->sk_reuseport) { 8298 pp->fastreuseport = 1; 8299 pp->fastuid = uid; 8300 } else { 8301 pp->fastreuseport = 0; 8302 } 8303 } else { 8304 if (pp->fastreuse && 8305 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8306 pp->fastreuse = 0; 8307 8308 if (pp->fastreuseport && 8309 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8310 pp->fastreuseport = 0; 8311 } 8312 8313 /* We are set, so fill up all the data in the hash table 8314 * entry, tie the socket list information with the rest of the 8315 * sockets FIXME: Blurry, NPI (ipg). 8316 */ 8317 success: 8318 if (!sp->bind_hash) { 8319 inet_sk(sk)->inet_num = snum; 8320 sk_add_bind_node(sk, &pp->owner); 8321 sp->bind_hash = pp; 8322 } 8323 ret = 0; 8324 8325 fail_unlock: 8326 spin_unlock_bh(&head->lock); 8327 return ret; 8328 } 8329 8330 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8331 * port is requested. 8332 */ 8333 static int sctp_get_port(struct sock *sk, unsigned short snum) 8334 { 8335 union sctp_addr addr; 8336 struct sctp_af *af = sctp_sk(sk)->pf->af; 8337 8338 /* Set up a dummy address struct from the sk. */ 8339 af->from_sk(&addr, sk); 8340 addr.v4.sin_port = htons(snum); 8341 8342 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8343 return sctp_get_port_local(sk, &addr); 8344 } 8345 8346 /* 8347 * Move a socket to LISTENING state. 8348 */ 8349 static int sctp_listen_start(struct sock *sk, int backlog) 8350 { 8351 struct sctp_sock *sp = sctp_sk(sk); 8352 struct sctp_endpoint *ep = sp->ep; 8353 struct crypto_shash *tfm = NULL; 8354 char alg[32]; 8355 8356 /* Allocate HMAC for generating cookie. */ 8357 if (!sp->hmac && sp->sctp_hmac_alg) { 8358 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8359 tfm = crypto_alloc_shash(alg, 0, 0); 8360 if (IS_ERR(tfm)) { 8361 net_info_ratelimited("failed to load transform for %s: %ld\n", 8362 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8363 return -ENOSYS; 8364 } 8365 sctp_sk(sk)->hmac = tfm; 8366 } 8367 8368 /* 8369 * If a bind() or sctp_bindx() is not called prior to a listen() 8370 * call that allows new associations to be accepted, the system 8371 * picks an ephemeral port and will choose an address set equivalent 8372 * to binding with a wildcard address. 8373 * 8374 * This is not currently spelled out in the SCTP sockets 8375 * extensions draft, but follows the practice as seen in TCP 8376 * sockets. 8377 * 8378 */ 8379 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8380 if (!ep->base.bind_addr.port) { 8381 if (sctp_autobind(sk)) 8382 return -EAGAIN; 8383 } else { 8384 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8385 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8386 return -EADDRINUSE; 8387 } 8388 } 8389 8390 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8391 return sctp_hash_endpoint(ep); 8392 } 8393 8394 /* 8395 * 4.1.3 / 5.1.3 listen() 8396 * 8397 * By default, new associations are not accepted for UDP style sockets. 8398 * An application uses listen() to mark a socket as being able to 8399 * accept new associations. 8400 * 8401 * On TCP style sockets, applications use listen() to ready the SCTP 8402 * endpoint for accepting inbound associations. 8403 * 8404 * On both types of endpoints a backlog of '0' disables listening. 8405 * 8406 * Move a socket to LISTENING state. 8407 */ 8408 int sctp_inet_listen(struct socket *sock, int backlog) 8409 { 8410 struct sock *sk = sock->sk; 8411 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8412 int err = -EINVAL; 8413 8414 if (unlikely(backlog < 0)) 8415 return err; 8416 8417 lock_sock(sk); 8418 8419 /* Peeled-off sockets are not allowed to listen(). */ 8420 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8421 goto out; 8422 8423 if (sock->state != SS_UNCONNECTED) 8424 goto out; 8425 8426 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8427 goto out; 8428 8429 /* If backlog is zero, disable listening. */ 8430 if (!backlog) { 8431 if (sctp_sstate(sk, CLOSED)) 8432 goto out; 8433 8434 err = 0; 8435 sctp_unhash_endpoint(ep); 8436 sk->sk_state = SCTP_SS_CLOSED; 8437 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8438 sctp_sk(sk)->bind_hash->fastreuse = 1; 8439 goto out; 8440 } 8441 8442 /* If we are already listening, just update the backlog */ 8443 if (sctp_sstate(sk, LISTENING)) 8444 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8445 else { 8446 err = sctp_listen_start(sk, backlog); 8447 if (err) 8448 goto out; 8449 } 8450 8451 err = 0; 8452 out: 8453 release_sock(sk); 8454 return err; 8455 } 8456 8457 /* 8458 * This function is done by modeling the current datagram_poll() and the 8459 * tcp_poll(). Note that, based on these implementations, we don't 8460 * lock the socket in this function, even though it seems that, 8461 * ideally, locking or some other mechanisms can be used to ensure 8462 * the integrity of the counters (sndbuf and wmem_alloc) used 8463 * in this place. We assume that we don't need locks either until proven 8464 * otherwise. 8465 * 8466 * Another thing to note is that we include the Async I/O support 8467 * here, again, by modeling the current TCP/UDP code. We don't have 8468 * a good way to test with it yet. 8469 */ 8470 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8471 { 8472 struct sock *sk = sock->sk; 8473 struct sctp_sock *sp = sctp_sk(sk); 8474 __poll_t mask; 8475 8476 poll_wait(file, sk_sleep(sk), wait); 8477 8478 sock_rps_record_flow(sk); 8479 8480 /* A TCP-style listening socket becomes readable when the accept queue 8481 * is not empty. 8482 */ 8483 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8484 return (!list_empty(&sp->ep->asocs)) ? 8485 (EPOLLIN | EPOLLRDNORM) : 0; 8486 8487 mask = 0; 8488 8489 /* Is there any exceptional events? */ 8490 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8491 mask |= EPOLLERR | 8492 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8493 if (sk->sk_shutdown & RCV_SHUTDOWN) 8494 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8495 if (sk->sk_shutdown == SHUTDOWN_MASK) 8496 mask |= EPOLLHUP; 8497 8498 /* Is it readable? Reconsider this code with TCP-style support. */ 8499 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8500 mask |= EPOLLIN | EPOLLRDNORM; 8501 8502 /* The association is either gone or not ready. */ 8503 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8504 return mask; 8505 8506 /* Is it writable? */ 8507 if (sctp_writeable(sk)) { 8508 mask |= EPOLLOUT | EPOLLWRNORM; 8509 } else { 8510 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8511 /* 8512 * Since the socket is not locked, the buffer 8513 * might be made available after the writeable check and 8514 * before the bit is set. This could cause a lost I/O 8515 * signal. tcp_poll() has a race breaker for this race 8516 * condition. Based on their implementation, we put 8517 * in the following code to cover it as well. 8518 */ 8519 if (sctp_writeable(sk)) 8520 mask |= EPOLLOUT | EPOLLWRNORM; 8521 } 8522 return mask; 8523 } 8524 8525 /******************************************************************** 8526 * 2nd Level Abstractions 8527 ********************************************************************/ 8528 8529 static struct sctp_bind_bucket *sctp_bucket_create( 8530 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8531 { 8532 struct sctp_bind_bucket *pp; 8533 8534 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8535 if (pp) { 8536 SCTP_DBG_OBJCNT_INC(bind_bucket); 8537 pp->port = snum; 8538 pp->fastreuse = 0; 8539 INIT_HLIST_HEAD(&pp->owner); 8540 pp->net = net; 8541 hlist_add_head(&pp->node, &head->chain); 8542 } 8543 return pp; 8544 } 8545 8546 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8547 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8548 { 8549 if (pp && hlist_empty(&pp->owner)) { 8550 __hlist_del(&pp->node); 8551 kmem_cache_free(sctp_bucket_cachep, pp); 8552 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8553 } 8554 } 8555 8556 /* Release this socket's reference to a local port. */ 8557 static inline void __sctp_put_port(struct sock *sk) 8558 { 8559 struct sctp_bind_hashbucket *head = 8560 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8561 inet_sk(sk)->inet_num)]; 8562 struct sctp_bind_bucket *pp; 8563 8564 spin_lock(&head->lock); 8565 pp = sctp_sk(sk)->bind_hash; 8566 __sk_del_bind_node(sk); 8567 sctp_sk(sk)->bind_hash = NULL; 8568 inet_sk(sk)->inet_num = 0; 8569 sctp_bucket_destroy(pp); 8570 spin_unlock(&head->lock); 8571 } 8572 8573 void sctp_put_port(struct sock *sk) 8574 { 8575 local_bh_disable(); 8576 __sctp_put_port(sk); 8577 local_bh_enable(); 8578 } 8579 8580 /* 8581 * The system picks an ephemeral port and choose an address set equivalent 8582 * to binding with a wildcard address. 8583 * One of those addresses will be the primary address for the association. 8584 * This automatically enables the multihoming capability of SCTP. 8585 */ 8586 static int sctp_autobind(struct sock *sk) 8587 { 8588 union sctp_addr autoaddr; 8589 struct sctp_af *af; 8590 __be16 port; 8591 8592 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8593 af = sctp_sk(sk)->pf->af; 8594 8595 port = htons(inet_sk(sk)->inet_num); 8596 af->inaddr_any(&autoaddr, port); 8597 8598 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8599 } 8600 8601 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8602 * 8603 * From RFC 2292 8604 * 4.2 The cmsghdr Structure * 8605 * 8606 * When ancillary data is sent or received, any number of ancillary data 8607 * objects can be specified by the msg_control and msg_controllen members of 8608 * the msghdr structure, because each object is preceded by 8609 * a cmsghdr structure defining the object's length (the cmsg_len member). 8610 * Historically Berkeley-derived implementations have passed only one object 8611 * at a time, but this API allows multiple objects to be 8612 * passed in a single call to sendmsg() or recvmsg(). The following example 8613 * shows two ancillary data objects in a control buffer. 8614 * 8615 * |<--------------------------- msg_controllen -------------------------->| 8616 * | | 8617 * 8618 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8619 * 8620 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8621 * | | | 8622 * 8623 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8624 * 8625 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8626 * | | | | | 8627 * 8628 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8629 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8630 * 8631 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8632 * 8633 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8634 * ^ 8635 * | 8636 * 8637 * msg_control 8638 * points here 8639 */ 8640 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8641 { 8642 struct msghdr *my_msg = (struct msghdr *)msg; 8643 struct cmsghdr *cmsg; 8644 8645 for_each_cmsghdr(cmsg, my_msg) { 8646 if (!CMSG_OK(my_msg, cmsg)) 8647 return -EINVAL; 8648 8649 /* Should we parse this header or ignore? */ 8650 if (cmsg->cmsg_level != IPPROTO_SCTP) 8651 continue; 8652 8653 /* Strictly check lengths following example in SCM code. */ 8654 switch (cmsg->cmsg_type) { 8655 case SCTP_INIT: 8656 /* SCTP Socket API Extension 8657 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8658 * 8659 * This cmsghdr structure provides information for 8660 * initializing new SCTP associations with sendmsg(). 8661 * The SCTP_INITMSG socket option uses this same data 8662 * structure. This structure is not used for 8663 * recvmsg(). 8664 * 8665 * cmsg_level cmsg_type cmsg_data[] 8666 * ------------ ------------ ---------------------- 8667 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8668 */ 8669 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8670 return -EINVAL; 8671 8672 cmsgs->init = CMSG_DATA(cmsg); 8673 break; 8674 8675 case SCTP_SNDRCV: 8676 /* SCTP Socket API Extension 8677 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8678 * 8679 * This cmsghdr structure specifies SCTP options for 8680 * sendmsg() and describes SCTP header information 8681 * about a received message through recvmsg(). 8682 * 8683 * cmsg_level cmsg_type cmsg_data[] 8684 * ------------ ------------ ---------------------- 8685 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8686 */ 8687 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8688 return -EINVAL; 8689 8690 cmsgs->srinfo = CMSG_DATA(cmsg); 8691 8692 if (cmsgs->srinfo->sinfo_flags & 8693 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8694 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8695 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8696 return -EINVAL; 8697 break; 8698 8699 case SCTP_SNDINFO: 8700 /* SCTP Socket API Extension 8701 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8702 * 8703 * This cmsghdr structure specifies SCTP options for 8704 * sendmsg(). This structure and SCTP_RCVINFO replaces 8705 * SCTP_SNDRCV which has been deprecated. 8706 * 8707 * cmsg_level cmsg_type cmsg_data[] 8708 * ------------ ------------ --------------------- 8709 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8710 */ 8711 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8712 return -EINVAL; 8713 8714 cmsgs->sinfo = CMSG_DATA(cmsg); 8715 8716 if (cmsgs->sinfo->snd_flags & 8717 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8718 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8719 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8720 return -EINVAL; 8721 break; 8722 case SCTP_PRINFO: 8723 /* SCTP Socket API Extension 8724 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8725 * 8726 * This cmsghdr structure specifies SCTP options for sendmsg(). 8727 * 8728 * cmsg_level cmsg_type cmsg_data[] 8729 * ------------ ------------ --------------------- 8730 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8731 */ 8732 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8733 return -EINVAL; 8734 8735 cmsgs->prinfo = CMSG_DATA(cmsg); 8736 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8737 return -EINVAL; 8738 8739 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8740 cmsgs->prinfo->pr_value = 0; 8741 break; 8742 case SCTP_AUTHINFO: 8743 /* SCTP Socket API Extension 8744 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8745 * 8746 * This cmsghdr structure specifies SCTP options for sendmsg(). 8747 * 8748 * cmsg_level cmsg_type cmsg_data[] 8749 * ------------ ------------ --------------------- 8750 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8751 */ 8752 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8753 return -EINVAL; 8754 8755 cmsgs->authinfo = CMSG_DATA(cmsg); 8756 break; 8757 case SCTP_DSTADDRV4: 8758 case SCTP_DSTADDRV6: 8759 /* SCTP Socket API Extension 8760 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8761 * 8762 * This cmsghdr structure specifies SCTP options for sendmsg(). 8763 * 8764 * cmsg_level cmsg_type cmsg_data[] 8765 * ------------ ------------ --------------------- 8766 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8767 * ------------ ------------ --------------------- 8768 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8769 */ 8770 cmsgs->addrs_msg = my_msg; 8771 break; 8772 default: 8773 return -EINVAL; 8774 } 8775 } 8776 8777 return 0; 8778 } 8779 8780 /* 8781 * Wait for a packet.. 8782 * Note: This function is the same function as in core/datagram.c 8783 * with a few modifications to make lksctp work. 8784 */ 8785 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8786 { 8787 int error; 8788 DEFINE_WAIT(wait); 8789 8790 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8791 8792 /* Socket errors? */ 8793 error = sock_error(sk); 8794 if (error) 8795 goto out; 8796 8797 if (!skb_queue_empty(&sk->sk_receive_queue)) 8798 goto ready; 8799 8800 /* Socket shut down? */ 8801 if (sk->sk_shutdown & RCV_SHUTDOWN) 8802 goto out; 8803 8804 /* Sequenced packets can come disconnected. If so we report the 8805 * problem. 8806 */ 8807 error = -ENOTCONN; 8808 8809 /* Is there a good reason to think that we may receive some data? */ 8810 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8811 goto out; 8812 8813 /* Handle signals. */ 8814 if (signal_pending(current)) 8815 goto interrupted; 8816 8817 /* Let another process have a go. Since we are going to sleep 8818 * anyway. Note: This may cause odd behaviors if the message 8819 * does not fit in the user's buffer, but this seems to be the 8820 * only way to honor MSG_DONTWAIT realistically. 8821 */ 8822 release_sock(sk); 8823 *timeo_p = schedule_timeout(*timeo_p); 8824 lock_sock(sk); 8825 8826 ready: 8827 finish_wait(sk_sleep(sk), &wait); 8828 return 0; 8829 8830 interrupted: 8831 error = sock_intr_errno(*timeo_p); 8832 8833 out: 8834 finish_wait(sk_sleep(sk), &wait); 8835 *err = error; 8836 return error; 8837 } 8838 8839 /* Receive a datagram. 8840 * Note: This is pretty much the same routine as in core/datagram.c 8841 * with a few changes to make lksctp work. 8842 */ 8843 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8844 int noblock, int *err) 8845 { 8846 int error; 8847 struct sk_buff *skb; 8848 long timeo; 8849 8850 timeo = sock_rcvtimeo(sk, noblock); 8851 8852 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8853 MAX_SCHEDULE_TIMEOUT); 8854 8855 do { 8856 /* Again only user level code calls this function, 8857 * so nothing interrupt level 8858 * will suddenly eat the receive_queue. 8859 * 8860 * Look at current nfs client by the way... 8861 * However, this function was correct in any case. 8) 8862 */ 8863 if (flags & MSG_PEEK) { 8864 skb = skb_peek(&sk->sk_receive_queue); 8865 if (skb) 8866 refcount_inc(&skb->users); 8867 } else { 8868 skb = __skb_dequeue(&sk->sk_receive_queue); 8869 } 8870 8871 if (skb) 8872 return skb; 8873 8874 /* Caller is allowed not to check sk->sk_err before calling. */ 8875 error = sock_error(sk); 8876 if (error) 8877 goto no_packet; 8878 8879 if (sk->sk_shutdown & RCV_SHUTDOWN) 8880 break; 8881 8882 if (sk_can_busy_loop(sk)) { 8883 sk_busy_loop(sk, noblock); 8884 8885 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8886 continue; 8887 } 8888 8889 /* User doesn't want to wait. */ 8890 error = -EAGAIN; 8891 if (!timeo) 8892 goto no_packet; 8893 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8894 8895 return NULL; 8896 8897 no_packet: 8898 *err = error; 8899 return NULL; 8900 } 8901 8902 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8903 static void __sctp_write_space(struct sctp_association *asoc) 8904 { 8905 struct sock *sk = asoc->base.sk; 8906 8907 if (sctp_wspace(asoc) <= 0) 8908 return; 8909 8910 if (waitqueue_active(&asoc->wait)) 8911 wake_up_interruptible(&asoc->wait); 8912 8913 if (sctp_writeable(sk)) { 8914 struct socket_wq *wq; 8915 8916 rcu_read_lock(); 8917 wq = rcu_dereference(sk->sk_wq); 8918 if (wq) { 8919 if (waitqueue_active(&wq->wait)) 8920 wake_up_interruptible(&wq->wait); 8921 8922 /* Note that we try to include the Async I/O support 8923 * here by modeling from the current TCP/UDP code. 8924 * We have not tested with it yet. 8925 */ 8926 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8927 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8928 } 8929 rcu_read_unlock(); 8930 } 8931 } 8932 8933 static void sctp_wake_up_waiters(struct sock *sk, 8934 struct sctp_association *asoc) 8935 { 8936 struct sctp_association *tmp = asoc; 8937 8938 /* We do accounting for the sndbuf space per association, 8939 * so we only need to wake our own association. 8940 */ 8941 if (asoc->ep->sndbuf_policy) 8942 return __sctp_write_space(asoc); 8943 8944 /* If association goes down and is just flushing its 8945 * outq, then just normally notify others. 8946 */ 8947 if (asoc->base.dead) 8948 return sctp_write_space(sk); 8949 8950 /* Accounting for the sndbuf space is per socket, so we 8951 * need to wake up others, try to be fair and in case of 8952 * other associations, let them have a go first instead 8953 * of just doing a sctp_write_space() call. 8954 * 8955 * Note that we reach sctp_wake_up_waiters() only when 8956 * associations free up queued chunks, thus we are under 8957 * lock and the list of associations on a socket is 8958 * guaranteed not to change. 8959 */ 8960 for (tmp = list_next_entry(tmp, asocs); 1; 8961 tmp = list_next_entry(tmp, asocs)) { 8962 /* Manually skip the head element. */ 8963 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8964 continue; 8965 /* Wake up association. */ 8966 __sctp_write_space(tmp); 8967 /* We've reached the end. */ 8968 if (tmp == asoc) 8969 break; 8970 } 8971 } 8972 8973 /* Do accounting for the sndbuf space. 8974 * Decrement the used sndbuf space of the corresponding association by the 8975 * data size which was just transmitted(freed). 8976 */ 8977 static void sctp_wfree(struct sk_buff *skb) 8978 { 8979 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8980 struct sctp_association *asoc = chunk->asoc; 8981 struct sock *sk = asoc->base.sk; 8982 8983 sk_mem_uncharge(sk, skb->truesize); 8984 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8985 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8986 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8987 &sk->sk_wmem_alloc)); 8988 8989 if (chunk->shkey) { 8990 struct sctp_shared_key *shkey = chunk->shkey; 8991 8992 /* refcnt == 2 and !list_empty mean after this release, it's 8993 * not being used anywhere, and it's time to notify userland 8994 * that this shkey can be freed if it's been deactivated. 8995 */ 8996 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8997 refcount_read(&shkey->refcnt) == 2) { 8998 struct sctp_ulpevent *ev; 8999 9000 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9001 SCTP_AUTH_FREE_KEY, 9002 GFP_KERNEL); 9003 if (ev) 9004 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9005 } 9006 sctp_auth_shkey_release(chunk->shkey); 9007 } 9008 9009 sock_wfree(skb); 9010 sctp_wake_up_waiters(sk, asoc); 9011 9012 sctp_association_put(asoc); 9013 } 9014 9015 /* Do accounting for the receive space on the socket. 9016 * Accounting for the association is done in ulpevent.c 9017 * We set this as a destructor for the cloned data skbs so that 9018 * accounting is done at the correct time. 9019 */ 9020 void sctp_sock_rfree(struct sk_buff *skb) 9021 { 9022 struct sock *sk = skb->sk; 9023 struct sctp_ulpevent *event = sctp_skb2event(skb); 9024 9025 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9026 9027 /* 9028 * Mimic the behavior of sock_rfree 9029 */ 9030 sk_mem_uncharge(sk, event->rmem_len); 9031 } 9032 9033 9034 /* Helper function to wait for space in the sndbuf. */ 9035 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9036 size_t msg_len) 9037 { 9038 struct sock *sk = asoc->base.sk; 9039 long current_timeo = *timeo_p; 9040 DEFINE_WAIT(wait); 9041 int err = 0; 9042 9043 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9044 *timeo_p, msg_len); 9045 9046 /* Increment the association's refcnt. */ 9047 sctp_association_hold(asoc); 9048 9049 /* Wait on the association specific sndbuf space. */ 9050 for (;;) { 9051 prepare_to_wait_exclusive(&asoc->wait, &wait, 9052 TASK_INTERRUPTIBLE); 9053 if (asoc->base.dead) 9054 goto do_dead; 9055 if (!*timeo_p) 9056 goto do_nonblock; 9057 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9058 goto do_error; 9059 if (signal_pending(current)) 9060 goto do_interrupted; 9061 if (sk_under_memory_pressure(sk)) 9062 sk_mem_reclaim(sk); 9063 if ((int)msg_len <= sctp_wspace(asoc) && 9064 sk_wmem_schedule(sk, msg_len)) 9065 break; 9066 9067 /* Let another process have a go. Since we are going 9068 * to sleep anyway. 9069 */ 9070 release_sock(sk); 9071 current_timeo = schedule_timeout(current_timeo); 9072 lock_sock(sk); 9073 if (sk != asoc->base.sk) 9074 goto do_error; 9075 9076 *timeo_p = current_timeo; 9077 } 9078 9079 out: 9080 finish_wait(&asoc->wait, &wait); 9081 9082 /* Release the association's refcnt. */ 9083 sctp_association_put(asoc); 9084 9085 return err; 9086 9087 do_dead: 9088 err = -ESRCH; 9089 goto out; 9090 9091 do_error: 9092 err = -EPIPE; 9093 goto out; 9094 9095 do_interrupted: 9096 err = sock_intr_errno(*timeo_p); 9097 goto out; 9098 9099 do_nonblock: 9100 err = -EAGAIN; 9101 goto out; 9102 } 9103 9104 void sctp_data_ready(struct sock *sk) 9105 { 9106 struct socket_wq *wq; 9107 9108 rcu_read_lock(); 9109 wq = rcu_dereference(sk->sk_wq); 9110 if (skwq_has_sleeper(wq)) 9111 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9112 EPOLLRDNORM | EPOLLRDBAND); 9113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9114 rcu_read_unlock(); 9115 } 9116 9117 /* If socket sndbuf has changed, wake up all per association waiters. */ 9118 void sctp_write_space(struct sock *sk) 9119 { 9120 struct sctp_association *asoc; 9121 9122 /* Wake up the tasks in each wait queue. */ 9123 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9124 __sctp_write_space(asoc); 9125 } 9126 } 9127 9128 /* Is there any sndbuf space available on the socket? 9129 * 9130 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9131 * associations on the same socket. For a UDP-style socket with 9132 * multiple associations, it is possible for it to be "unwriteable" 9133 * prematurely. I assume that this is acceptable because 9134 * a premature "unwriteable" is better than an accidental "writeable" which 9135 * would cause an unwanted block under certain circumstances. For the 1-1 9136 * UDP-style sockets or TCP-style sockets, this code should work. 9137 * - Daisy 9138 */ 9139 static bool sctp_writeable(struct sock *sk) 9140 { 9141 return sk->sk_sndbuf > sk->sk_wmem_queued; 9142 } 9143 9144 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9145 * returns immediately with EINPROGRESS. 9146 */ 9147 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9148 { 9149 struct sock *sk = asoc->base.sk; 9150 int err = 0; 9151 long current_timeo = *timeo_p; 9152 DEFINE_WAIT(wait); 9153 9154 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9155 9156 /* Increment the association's refcnt. */ 9157 sctp_association_hold(asoc); 9158 9159 for (;;) { 9160 prepare_to_wait_exclusive(&asoc->wait, &wait, 9161 TASK_INTERRUPTIBLE); 9162 if (!*timeo_p) 9163 goto do_nonblock; 9164 if (sk->sk_shutdown & RCV_SHUTDOWN) 9165 break; 9166 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9167 asoc->base.dead) 9168 goto do_error; 9169 if (signal_pending(current)) 9170 goto do_interrupted; 9171 9172 if (sctp_state(asoc, ESTABLISHED)) 9173 break; 9174 9175 /* Let another process have a go. Since we are going 9176 * to sleep anyway. 9177 */ 9178 release_sock(sk); 9179 current_timeo = schedule_timeout(current_timeo); 9180 lock_sock(sk); 9181 9182 *timeo_p = current_timeo; 9183 } 9184 9185 out: 9186 finish_wait(&asoc->wait, &wait); 9187 9188 /* Release the association's refcnt. */ 9189 sctp_association_put(asoc); 9190 9191 return err; 9192 9193 do_error: 9194 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9195 err = -ETIMEDOUT; 9196 else 9197 err = -ECONNREFUSED; 9198 goto out; 9199 9200 do_interrupted: 9201 err = sock_intr_errno(*timeo_p); 9202 goto out; 9203 9204 do_nonblock: 9205 err = -EINPROGRESS; 9206 goto out; 9207 } 9208 9209 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9210 { 9211 struct sctp_endpoint *ep; 9212 int err = 0; 9213 DEFINE_WAIT(wait); 9214 9215 ep = sctp_sk(sk)->ep; 9216 9217 9218 for (;;) { 9219 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9220 TASK_INTERRUPTIBLE); 9221 9222 if (list_empty(&ep->asocs)) { 9223 release_sock(sk); 9224 timeo = schedule_timeout(timeo); 9225 lock_sock(sk); 9226 } 9227 9228 err = -EINVAL; 9229 if (!sctp_sstate(sk, LISTENING)) 9230 break; 9231 9232 err = 0; 9233 if (!list_empty(&ep->asocs)) 9234 break; 9235 9236 err = sock_intr_errno(timeo); 9237 if (signal_pending(current)) 9238 break; 9239 9240 err = -EAGAIN; 9241 if (!timeo) 9242 break; 9243 } 9244 9245 finish_wait(sk_sleep(sk), &wait); 9246 9247 return err; 9248 } 9249 9250 static void sctp_wait_for_close(struct sock *sk, long timeout) 9251 { 9252 DEFINE_WAIT(wait); 9253 9254 do { 9255 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9256 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9257 break; 9258 release_sock(sk); 9259 timeout = schedule_timeout(timeout); 9260 lock_sock(sk); 9261 } while (!signal_pending(current) && timeout); 9262 9263 finish_wait(sk_sleep(sk), &wait); 9264 } 9265 9266 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9267 { 9268 struct sk_buff *frag; 9269 9270 if (!skb->data_len) 9271 goto done; 9272 9273 /* Don't forget the fragments. */ 9274 skb_walk_frags(skb, frag) 9275 sctp_skb_set_owner_r_frag(frag, sk); 9276 9277 done: 9278 sctp_skb_set_owner_r(skb, sk); 9279 } 9280 9281 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9282 struct sctp_association *asoc) 9283 { 9284 struct inet_sock *inet = inet_sk(sk); 9285 struct inet_sock *newinet; 9286 struct sctp_sock *sp = sctp_sk(sk); 9287 struct sctp_endpoint *ep = sp->ep; 9288 9289 newsk->sk_type = sk->sk_type; 9290 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9291 newsk->sk_flags = sk->sk_flags; 9292 newsk->sk_tsflags = sk->sk_tsflags; 9293 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9294 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9295 newsk->sk_reuse = sk->sk_reuse; 9296 sctp_sk(newsk)->reuse = sp->reuse; 9297 9298 newsk->sk_shutdown = sk->sk_shutdown; 9299 newsk->sk_destruct = sctp_destruct_sock; 9300 newsk->sk_family = sk->sk_family; 9301 newsk->sk_protocol = IPPROTO_SCTP; 9302 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9303 newsk->sk_sndbuf = sk->sk_sndbuf; 9304 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9305 newsk->sk_lingertime = sk->sk_lingertime; 9306 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9307 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9308 newsk->sk_rxhash = sk->sk_rxhash; 9309 9310 newinet = inet_sk(newsk); 9311 9312 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9313 * getsockname() and getpeername() 9314 */ 9315 newinet->inet_sport = inet->inet_sport; 9316 newinet->inet_saddr = inet->inet_saddr; 9317 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9318 newinet->inet_dport = htons(asoc->peer.port); 9319 newinet->pmtudisc = inet->pmtudisc; 9320 newinet->inet_id = prandom_u32(); 9321 9322 newinet->uc_ttl = inet->uc_ttl; 9323 newinet->mc_loop = 1; 9324 newinet->mc_ttl = 1; 9325 newinet->mc_index = 0; 9326 newinet->mc_list = NULL; 9327 9328 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9329 net_enable_timestamp(); 9330 9331 /* Set newsk security attributes from original sk and connection 9332 * security attribute from ep. 9333 */ 9334 security_sctp_sk_clone(ep, sk, newsk); 9335 } 9336 9337 static inline void sctp_copy_descendant(struct sock *sk_to, 9338 const struct sock *sk_from) 9339 { 9340 size_t ancestor_size = sizeof(struct inet_sock); 9341 9342 ancestor_size += sk_from->sk_prot->obj_size; 9343 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9344 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9345 } 9346 9347 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9348 * and its messages to the newsk. 9349 */ 9350 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9351 struct sctp_association *assoc, 9352 enum sctp_socket_type type) 9353 { 9354 struct sctp_sock *oldsp = sctp_sk(oldsk); 9355 struct sctp_sock *newsp = sctp_sk(newsk); 9356 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9357 struct sctp_endpoint *newep = newsp->ep; 9358 struct sk_buff *skb, *tmp; 9359 struct sctp_ulpevent *event; 9360 struct sctp_bind_hashbucket *head; 9361 int err; 9362 9363 /* Migrate socket buffer sizes and all the socket level options to the 9364 * new socket. 9365 */ 9366 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9367 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9368 /* Brute force copy old sctp opt. */ 9369 sctp_copy_descendant(newsk, oldsk); 9370 9371 /* Restore the ep value that was overwritten with the above structure 9372 * copy. 9373 */ 9374 newsp->ep = newep; 9375 newsp->hmac = NULL; 9376 9377 /* Hook this new socket in to the bind_hash list. */ 9378 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9379 inet_sk(oldsk)->inet_num)]; 9380 spin_lock_bh(&head->lock); 9381 pp = sctp_sk(oldsk)->bind_hash; 9382 sk_add_bind_node(newsk, &pp->owner); 9383 sctp_sk(newsk)->bind_hash = pp; 9384 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9385 spin_unlock_bh(&head->lock); 9386 9387 /* Copy the bind_addr list from the original endpoint to the new 9388 * endpoint so that we can handle restarts properly 9389 */ 9390 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9391 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9392 if (err) 9393 return err; 9394 9395 /* New ep's auth_hmacs should be set if old ep's is set, in case 9396 * that net->sctp.auth_enable has been changed to 0 by users and 9397 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9398 */ 9399 if (oldsp->ep->auth_hmacs) { 9400 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9401 if (err) 9402 return err; 9403 } 9404 9405 sctp_auto_asconf_init(newsp); 9406 9407 /* Move any messages in the old socket's receive queue that are for the 9408 * peeled off association to the new socket's receive queue. 9409 */ 9410 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9411 event = sctp_skb2event(skb); 9412 if (event->asoc == assoc) { 9413 __skb_unlink(skb, &oldsk->sk_receive_queue); 9414 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9415 sctp_skb_set_owner_r_frag(skb, newsk); 9416 } 9417 } 9418 9419 /* Clean up any messages pending delivery due to partial 9420 * delivery. Three cases: 9421 * 1) No partial deliver; no work. 9422 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9423 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9424 */ 9425 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9426 9427 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9428 struct sk_buff_head *queue; 9429 9430 /* Decide which queue to move pd_lobby skbs to. */ 9431 if (assoc->ulpq.pd_mode) { 9432 queue = &newsp->pd_lobby; 9433 } else 9434 queue = &newsk->sk_receive_queue; 9435 9436 /* Walk through the pd_lobby, looking for skbs that 9437 * need moved to the new socket. 9438 */ 9439 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9440 event = sctp_skb2event(skb); 9441 if (event->asoc == assoc) { 9442 __skb_unlink(skb, &oldsp->pd_lobby); 9443 __skb_queue_tail(queue, skb); 9444 sctp_skb_set_owner_r_frag(skb, newsk); 9445 } 9446 } 9447 9448 /* Clear up any skbs waiting for the partial 9449 * delivery to finish. 9450 */ 9451 if (assoc->ulpq.pd_mode) 9452 sctp_clear_pd(oldsk, NULL); 9453 9454 } 9455 9456 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9457 9458 /* Set the type of socket to indicate that it is peeled off from the 9459 * original UDP-style socket or created with the accept() call on a 9460 * TCP-style socket.. 9461 */ 9462 newsp->type = type; 9463 9464 /* Mark the new socket "in-use" by the user so that any packets 9465 * that may arrive on the association after we've moved it are 9466 * queued to the backlog. This prevents a potential race between 9467 * backlog processing on the old socket and new-packet processing 9468 * on the new socket. 9469 * 9470 * The caller has just allocated newsk so we can guarantee that other 9471 * paths won't try to lock it and then oldsk. 9472 */ 9473 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9474 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9475 sctp_assoc_migrate(assoc, newsk); 9476 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9477 9478 /* If the association on the newsk is already closed before accept() 9479 * is called, set RCV_SHUTDOWN flag. 9480 */ 9481 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9482 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9483 newsk->sk_shutdown |= RCV_SHUTDOWN; 9484 } else { 9485 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9486 } 9487 9488 release_sock(newsk); 9489 9490 return 0; 9491 } 9492 9493 9494 /* This proto struct describes the ULP interface for SCTP. */ 9495 struct proto sctp_prot = { 9496 .name = "SCTP", 9497 .owner = THIS_MODULE, 9498 .close = sctp_close, 9499 .disconnect = sctp_disconnect, 9500 .accept = sctp_accept, 9501 .ioctl = sctp_ioctl, 9502 .init = sctp_init_sock, 9503 .destroy = sctp_destroy_sock, 9504 .shutdown = sctp_shutdown, 9505 .setsockopt = sctp_setsockopt, 9506 .getsockopt = sctp_getsockopt, 9507 .sendmsg = sctp_sendmsg, 9508 .recvmsg = sctp_recvmsg, 9509 .bind = sctp_bind, 9510 .bind_add = sctp_bind_add, 9511 .backlog_rcv = sctp_backlog_rcv, 9512 .hash = sctp_hash, 9513 .unhash = sctp_unhash, 9514 .no_autobind = true, 9515 .obj_size = sizeof(struct sctp_sock), 9516 .useroffset = offsetof(struct sctp_sock, subscribe), 9517 .usersize = offsetof(struct sctp_sock, initmsg) - 9518 offsetof(struct sctp_sock, subscribe) + 9519 sizeof_field(struct sctp_sock, initmsg), 9520 .sysctl_mem = sysctl_sctp_mem, 9521 .sysctl_rmem = sysctl_sctp_rmem, 9522 .sysctl_wmem = sysctl_sctp_wmem, 9523 .memory_pressure = &sctp_memory_pressure, 9524 .enter_memory_pressure = sctp_enter_memory_pressure, 9525 .memory_allocated = &sctp_memory_allocated, 9526 .sockets_allocated = &sctp_sockets_allocated, 9527 }; 9528 9529 #if IS_ENABLED(CONFIG_IPV6) 9530 9531 #include <net/transp_v6.h> 9532 static void sctp_v6_destroy_sock(struct sock *sk) 9533 { 9534 sctp_destroy_sock(sk); 9535 inet6_destroy_sock(sk); 9536 } 9537 9538 struct proto sctpv6_prot = { 9539 .name = "SCTPv6", 9540 .owner = THIS_MODULE, 9541 .close = sctp_close, 9542 .disconnect = sctp_disconnect, 9543 .accept = sctp_accept, 9544 .ioctl = sctp_ioctl, 9545 .init = sctp_init_sock, 9546 .destroy = sctp_v6_destroy_sock, 9547 .shutdown = sctp_shutdown, 9548 .setsockopt = sctp_setsockopt, 9549 .getsockopt = sctp_getsockopt, 9550 .sendmsg = sctp_sendmsg, 9551 .recvmsg = sctp_recvmsg, 9552 .bind = sctp_bind, 9553 .bind_add = sctp_bind_add, 9554 .backlog_rcv = sctp_backlog_rcv, 9555 .hash = sctp_hash, 9556 .unhash = sctp_unhash, 9557 .no_autobind = true, 9558 .obj_size = sizeof(struct sctp6_sock), 9559 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9560 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9561 offsetof(struct sctp6_sock, sctp.subscribe) + 9562 sizeof_field(struct sctp6_sock, sctp.initmsg), 9563 .sysctl_mem = sysctl_sctp_mem, 9564 .sysctl_rmem = sysctl_sctp_rmem, 9565 .sysctl_wmem = sysctl_sctp_wmem, 9566 .memory_pressure = &sctp_memory_pressure, 9567 .enter_memory_pressure = sctp_enter_memory_pressure, 9568 .memory_allocated = &sctp_memory_allocated, 9569 .sockets_allocated = &sctp_sockets_allocated, 9570 }; 9571 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9572