1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (!id || (id == (sctp_assoc_t)-1)) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = vmemdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kvfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kvfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kvfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = vmemdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kvfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 1870 return 0; 1871 } 1872 1873 return 1; 1874 } 1875 1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1877 struct msghdr *msg, size_t msg_len, 1878 struct sctp_transport *transport, 1879 struct sctp_sndrcvinfo *sinfo) 1880 { 1881 struct sock *sk = asoc->base.sk; 1882 struct sctp_sock *sp = sctp_sk(sk); 1883 struct net *net = sock_net(sk); 1884 struct sctp_datamsg *datamsg; 1885 bool wait_connect = false; 1886 struct sctp_chunk *chunk; 1887 long timeo; 1888 int err; 1889 1890 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1891 err = -EINVAL; 1892 goto err; 1893 } 1894 1895 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1896 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1897 if (err) 1898 goto err; 1899 } 1900 1901 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1902 err = -EMSGSIZE; 1903 goto err; 1904 } 1905 1906 if (asoc->pmtu_pending) { 1907 if (sp->param_flags & SPP_PMTUD_ENABLE) 1908 sctp_assoc_sync_pmtu(asoc); 1909 asoc->pmtu_pending = 0; 1910 } 1911 1912 if (sctp_wspace(asoc) < (int)msg_len) 1913 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1914 1915 if (sctp_wspace(asoc) <= 0) { 1916 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1918 if (err) 1919 goto err; 1920 } 1921 1922 if (sctp_state(asoc, CLOSED)) { 1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1924 if (err) 1925 goto err; 1926 1927 if (sp->strm_interleave) { 1928 timeo = sock_sndtimeo(sk, 0); 1929 err = sctp_wait_for_connect(asoc, &timeo); 1930 if (err) { 1931 err = -ESRCH; 1932 goto err; 1933 } 1934 } else { 1935 wait_connect = true; 1936 } 1937 1938 pr_debug("%s: we associated primitively\n", __func__); 1939 } 1940 1941 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1942 if (IS_ERR(datamsg)) { 1943 err = PTR_ERR(datamsg); 1944 goto err; 1945 } 1946 1947 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1948 1949 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1950 sctp_chunk_hold(chunk); 1951 sctp_set_owner_w(chunk); 1952 chunk->transport = transport; 1953 } 1954 1955 err = sctp_primitive_SEND(net, asoc, datamsg); 1956 if (err) { 1957 sctp_datamsg_free(datamsg); 1958 goto err; 1959 } 1960 1961 pr_debug("%s: we sent primitively\n", __func__); 1962 1963 sctp_datamsg_put(datamsg); 1964 1965 if (unlikely(wait_connect)) { 1966 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1967 sctp_wait_for_connect(asoc, &timeo); 1968 } 1969 1970 err = msg_len; 1971 1972 err: 1973 return err; 1974 } 1975 1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1977 const struct msghdr *msg, 1978 struct sctp_cmsgs *cmsgs) 1979 { 1980 union sctp_addr *daddr = NULL; 1981 int err; 1982 1983 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1984 int len = msg->msg_namelen; 1985 1986 if (len > sizeof(*daddr)) 1987 len = sizeof(*daddr); 1988 1989 daddr = (union sctp_addr *)msg->msg_name; 1990 1991 err = sctp_verify_addr(sk, daddr, len); 1992 if (err) 1993 return ERR_PTR(err); 1994 } 1995 1996 return daddr; 1997 } 1998 1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2000 struct sctp_sndrcvinfo *sinfo, 2001 struct sctp_cmsgs *cmsgs) 2002 { 2003 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2004 sinfo->sinfo_stream = asoc->default_stream; 2005 sinfo->sinfo_ppid = asoc->default_ppid; 2006 sinfo->sinfo_context = asoc->default_context; 2007 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2008 2009 if (!cmsgs->prinfo) 2010 sinfo->sinfo_flags = asoc->default_flags; 2011 } 2012 2013 if (!cmsgs->srinfo && !cmsgs->prinfo) 2014 sinfo->sinfo_timetolive = asoc->default_timetolive; 2015 2016 if (cmsgs->authinfo) { 2017 /* Reuse sinfo_tsn to indicate that authinfo was set and 2018 * sinfo_ssn to save the keyid on tx path. 2019 */ 2020 sinfo->sinfo_tsn = 1; 2021 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2022 } 2023 } 2024 2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2026 { 2027 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2028 struct sctp_transport *transport = NULL; 2029 struct sctp_sndrcvinfo _sinfo, *sinfo; 2030 struct sctp_association *asoc; 2031 struct sctp_cmsgs cmsgs; 2032 union sctp_addr *daddr; 2033 bool new = false; 2034 __u16 sflags; 2035 int err; 2036 2037 /* Parse and get snd_info */ 2038 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2039 if (err) 2040 goto out; 2041 2042 sinfo = &_sinfo; 2043 sflags = sinfo->sinfo_flags; 2044 2045 /* Get daddr from msg */ 2046 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2047 if (IS_ERR(daddr)) { 2048 err = PTR_ERR(daddr); 2049 goto out; 2050 } 2051 2052 lock_sock(sk); 2053 2054 /* SCTP_SENDALL process */ 2055 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2056 list_for_each_entry(asoc, &ep->asocs, asocs) { 2057 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2058 msg_len); 2059 if (err == 0) 2060 continue; 2061 if (err < 0) 2062 goto out_unlock; 2063 2064 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2065 2066 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2067 NULL, sinfo); 2068 if (err < 0) 2069 goto out_unlock; 2070 2071 iov_iter_revert(&msg->msg_iter, err); 2072 } 2073 2074 goto out_unlock; 2075 } 2076 2077 /* Get and check or create asoc */ 2078 if (daddr) { 2079 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2080 if (asoc) { 2081 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2082 msg_len); 2083 if (err <= 0) 2084 goto out_unlock; 2085 } else { 2086 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2087 &transport); 2088 if (err) 2089 goto out_unlock; 2090 2091 asoc = transport->asoc; 2092 new = true; 2093 } 2094 2095 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2096 transport = NULL; 2097 } else { 2098 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2099 if (!asoc) { 2100 err = -EPIPE; 2101 goto out_unlock; 2102 } 2103 2104 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2105 if (err <= 0) 2106 goto out_unlock; 2107 } 2108 2109 /* Update snd_info with the asoc */ 2110 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2111 2112 /* Send msg to the asoc */ 2113 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2114 if (err < 0 && err != -ESRCH && new) 2115 sctp_association_free(asoc); 2116 2117 out_unlock: 2118 release_sock(sk); 2119 out: 2120 return sctp_error(sk, msg->msg_flags, err); 2121 } 2122 2123 /* This is an extended version of skb_pull() that removes the data from the 2124 * start of a skb even when data is spread across the list of skb's in the 2125 * frag_list. len specifies the total amount of data that needs to be removed. 2126 * when 'len' bytes could be removed from the skb, it returns 0. 2127 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2128 * could not be removed. 2129 */ 2130 static int sctp_skb_pull(struct sk_buff *skb, int len) 2131 { 2132 struct sk_buff *list; 2133 int skb_len = skb_headlen(skb); 2134 int rlen; 2135 2136 if (len <= skb_len) { 2137 __skb_pull(skb, len); 2138 return 0; 2139 } 2140 len -= skb_len; 2141 __skb_pull(skb, skb_len); 2142 2143 skb_walk_frags(skb, list) { 2144 rlen = sctp_skb_pull(list, len); 2145 skb->len -= (len-rlen); 2146 skb->data_len -= (len-rlen); 2147 2148 if (!rlen) 2149 return 0; 2150 2151 len = rlen; 2152 } 2153 2154 return len; 2155 } 2156 2157 /* API 3.1.3 recvmsg() - UDP Style Syntax 2158 * 2159 * ssize_t recvmsg(int socket, struct msghdr *message, 2160 * int flags); 2161 * 2162 * socket - the socket descriptor of the endpoint. 2163 * message - pointer to the msghdr structure which contains a single 2164 * user message and possibly some ancillary data. 2165 * 2166 * See Section 5 for complete description of the data 2167 * structures. 2168 * 2169 * flags - flags sent or received with the user message, see Section 2170 * 5 for complete description of the flags. 2171 */ 2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2173 int noblock, int flags, int *addr_len) 2174 { 2175 struct sctp_ulpevent *event = NULL; 2176 struct sctp_sock *sp = sctp_sk(sk); 2177 struct sk_buff *skb, *head_skb; 2178 int copied; 2179 int err = 0; 2180 int skb_len; 2181 2182 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2183 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2184 addr_len); 2185 2186 lock_sock(sk); 2187 2188 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2189 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2190 err = -ENOTCONN; 2191 goto out; 2192 } 2193 2194 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2195 if (!skb) 2196 goto out; 2197 2198 /* Get the total length of the skb including any skb's in the 2199 * frag_list. 2200 */ 2201 skb_len = skb->len; 2202 2203 copied = skb_len; 2204 if (copied > len) 2205 copied = len; 2206 2207 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2208 2209 event = sctp_skb2event(skb); 2210 2211 if (err) 2212 goto out_free; 2213 2214 if (event->chunk && event->chunk->head_skb) 2215 head_skb = event->chunk->head_skb; 2216 else 2217 head_skb = skb; 2218 sock_recv_ts_and_drops(msg, sk, head_skb); 2219 if (sctp_ulpevent_is_notification(event)) { 2220 msg->msg_flags |= MSG_NOTIFICATION; 2221 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2222 } else { 2223 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2224 } 2225 2226 /* Check if we allow SCTP_NXTINFO. */ 2227 if (sp->recvnxtinfo) 2228 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2229 /* Check if we allow SCTP_RCVINFO. */ 2230 if (sp->recvrcvinfo) 2231 sctp_ulpevent_read_rcvinfo(event, msg); 2232 /* Check if we allow SCTP_SNDRCVINFO. */ 2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2234 sctp_ulpevent_read_sndrcvinfo(event, msg); 2235 2236 err = copied; 2237 2238 /* If skb's length exceeds the user's buffer, update the skb and 2239 * push it back to the receive_queue so that the next call to 2240 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2241 */ 2242 if (skb_len > copied) { 2243 msg->msg_flags &= ~MSG_EOR; 2244 if (flags & MSG_PEEK) 2245 goto out_free; 2246 sctp_skb_pull(skb, copied); 2247 skb_queue_head(&sk->sk_receive_queue, skb); 2248 2249 /* When only partial message is copied to the user, increase 2250 * rwnd by that amount. If all the data in the skb is read, 2251 * rwnd is updated when the event is freed. 2252 */ 2253 if (!sctp_ulpevent_is_notification(event)) 2254 sctp_assoc_rwnd_increase(event->asoc, copied); 2255 goto out; 2256 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2257 (event->msg_flags & MSG_EOR)) 2258 msg->msg_flags |= MSG_EOR; 2259 else 2260 msg->msg_flags &= ~MSG_EOR; 2261 2262 out_free: 2263 if (flags & MSG_PEEK) { 2264 /* Release the skb reference acquired after peeking the skb in 2265 * sctp_skb_recv_datagram(). 2266 */ 2267 kfree_skb(skb); 2268 } else { 2269 /* Free the event which includes releasing the reference to 2270 * the owner of the skb, freeing the skb and updating the 2271 * rwnd. 2272 */ 2273 sctp_ulpevent_free(event); 2274 } 2275 out: 2276 release_sock(sk); 2277 return err; 2278 } 2279 2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2281 * 2282 * This option is a on/off flag. If enabled no SCTP message 2283 * fragmentation will be performed. Instead if a message being sent 2284 * exceeds the current PMTU size, the message will NOT be sent and 2285 * instead a error will be indicated to the user. 2286 */ 2287 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2288 char __user *optval, 2289 unsigned int optlen) 2290 { 2291 int val; 2292 2293 if (optlen < sizeof(int)) 2294 return -EINVAL; 2295 2296 if (get_user(val, (int __user *)optval)) 2297 return -EFAULT; 2298 2299 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2300 2301 return 0; 2302 } 2303 2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2305 unsigned int optlen) 2306 { 2307 struct sctp_event_subscribe subscribe; 2308 __u8 *sn_type = (__u8 *)&subscribe; 2309 struct sctp_sock *sp = sctp_sk(sk); 2310 struct sctp_association *asoc; 2311 int i; 2312 2313 if (optlen > sizeof(struct sctp_event_subscribe)) 2314 return -EINVAL; 2315 2316 if (copy_from_user(&subscribe, optval, optlen)) 2317 return -EFAULT; 2318 2319 for (i = 0; i < optlen; i++) 2320 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2321 sn_type[i]); 2322 2323 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2324 asoc->subscribe = sctp_sk(sk)->subscribe; 2325 2326 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2327 * if there is no data to be sent or retransmit, the stack will 2328 * immediately send up this notification. 2329 */ 2330 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2331 struct sctp_ulpevent *event; 2332 2333 asoc = sctp_id2assoc(sk, 0); 2334 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2335 event = sctp_ulpevent_make_sender_dry_event(asoc, 2336 GFP_USER | __GFP_NOWARN); 2337 if (!event) 2338 return -ENOMEM; 2339 2340 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2348 * 2349 * This socket option is applicable to the UDP-style socket only. When 2350 * set it will cause associations that are idle for more than the 2351 * specified number of seconds to automatically close. An association 2352 * being idle is defined an association that has NOT sent or received 2353 * user data. The special value of '0' indicates that no automatic 2354 * close of any associations should be performed. The option expects an 2355 * integer defining the number of seconds of idle time before an 2356 * association is closed. 2357 */ 2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2359 unsigned int optlen) 2360 { 2361 struct sctp_sock *sp = sctp_sk(sk); 2362 struct net *net = sock_net(sk); 2363 2364 /* Applicable to UDP-style socket only */ 2365 if (sctp_style(sk, TCP)) 2366 return -EOPNOTSUPP; 2367 if (optlen != sizeof(int)) 2368 return -EINVAL; 2369 if (copy_from_user(&sp->autoclose, optval, optlen)) 2370 return -EFAULT; 2371 2372 if (sp->autoclose > net->sctp.max_autoclose) 2373 sp->autoclose = net->sctp.max_autoclose; 2374 2375 return 0; 2376 } 2377 2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2379 * 2380 * Applications can enable or disable heartbeats for any peer address of 2381 * an association, modify an address's heartbeat interval, force a 2382 * heartbeat to be sent immediately, and adjust the address's maximum 2383 * number of retransmissions sent before an address is considered 2384 * unreachable. The following structure is used to access and modify an 2385 * address's parameters: 2386 * 2387 * struct sctp_paddrparams { 2388 * sctp_assoc_t spp_assoc_id; 2389 * struct sockaddr_storage spp_address; 2390 * uint32_t spp_hbinterval; 2391 * uint16_t spp_pathmaxrxt; 2392 * uint32_t spp_pathmtu; 2393 * uint32_t spp_sackdelay; 2394 * uint32_t spp_flags; 2395 * uint32_t spp_ipv6_flowlabel; 2396 * uint8_t spp_dscp; 2397 * }; 2398 * 2399 * spp_assoc_id - (one-to-many style socket) This is filled in the 2400 * application, and identifies the association for 2401 * this query. 2402 * spp_address - This specifies which address is of interest. 2403 * spp_hbinterval - This contains the value of the heartbeat interval, 2404 * in milliseconds. If a value of zero 2405 * is present in this field then no changes are to 2406 * be made to this parameter. 2407 * spp_pathmaxrxt - This contains the maximum number of 2408 * retransmissions before this address shall be 2409 * considered unreachable. If a value of zero 2410 * is present in this field then no changes are to 2411 * be made to this parameter. 2412 * spp_pathmtu - When Path MTU discovery is disabled the value 2413 * specified here will be the "fixed" path mtu. 2414 * Note that if the spp_address field is empty 2415 * then all associations on this address will 2416 * have this fixed path mtu set upon them. 2417 * 2418 * spp_sackdelay - When delayed sack is enabled, this value specifies 2419 * the number of milliseconds that sacks will be delayed 2420 * for. This value will apply to all addresses of an 2421 * association if the spp_address field is empty. Note 2422 * also, that if delayed sack is enabled and this 2423 * value is set to 0, no change is made to the last 2424 * recorded delayed sack timer value. 2425 * 2426 * spp_flags - These flags are used to control various features 2427 * on an association. The flag field may contain 2428 * zero or more of the following options. 2429 * 2430 * SPP_HB_ENABLE - Enable heartbeats on the 2431 * specified address. Note that if the address 2432 * field is empty all addresses for the association 2433 * have heartbeats enabled upon them. 2434 * 2435 * SPP_HB_DISABLE - Disable heartbeats on the 2436 * speicifed address. Note that if the address 2437 * field is empty all addresses for the association 2438 * will have their heartbeats disabled. Note also 2439 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2440 * mutually exclusive, only one of these two should 2441 * be specified. Enabling both fields will have 2442 * undetermined results. 2443 * 2444 * SPP_HB_DEMAND - Request a user initiated heartbeat 2445 * to be made immediately. 2446 * 2447 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2448 * heartbeat delayis to be set to the value of 0 2449 * milliseconds. 2450 * 2451 * SPP_PMTUD_ENABLE - This field will enable PMTU 2452 * discovery upon the specified address. Note that 2453 * if the address feild is empty then all addresses 2454 * on the association are effected. 2455 * 2456 * SPP_PMTUD_DISABLE - This field will disable PMTU 2457 * discovery upon the specified address. Note that 2458 * if the address feild is empty then all addresses 2459 * on the association are effected. Not also that 2460 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2461 * exclusive. Enabling both will have undetermined 2462 * results. 2463 * 2464 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2465 * on delayed sack. The time specified in spp_sackdelay 2466 * is used to specify the sack delay for this address. Note 2467 * that if spp_address is empty then all addresses will 2468 * enable delayed sack and take on the sack delay 2469 * value specified in spp_sackdelay. 2470 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2471 * off delayed sack. If the spp_address field is blank then 2472 * delayed sack is disabled for the entire association. Note 2473 * also that this field is mutually exclusive to 2474 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2475 * results. 2476 * 2477 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2478 * setting of the IPV6 flow label value. The value is 2479 * contained in the spp_ipv6_flowlabel field. 2480 * Upon retrieval, this flag will be set to indicate that 2481 * the spp_ipv6_flowlabel field has a valid value returned. 2482 * If a specific destination address is set (in the 2483 * spp_address field), then the value returned is that of 2484 * the address. If just an association is specified (and 2485 * no address), then the association's default flow label 2486 * is returned. If neither an association nor a destination 2487 * is specified, then the socket's default flow label is 2488 * returned. For non-IPv6 sockets, this flag will be left 2489 * cleared. 2490 * 2491 * SPP_DSCP: Setting this flag enables the setting of the 2492 * Differentiated Services Code Point (DSCP) value 2493 * associated with either the association or a specific 2494 * address. The value is obtained in the spp_dscp field. 2495 * Upon retrieval, this flag will be set to indicate that 2496 * the spp_dscp field has a valid value returned. If a 2497 * specific destination address is set when called (in the 2498 * spp_address field), then that specific destination 2499 * address's DSCP value is returned. If just an association 2500 * is specified, then the association's default DSCP is 2501 * returned. If neither an association nor a destination is 2502 * specified, then the socket's default DSCP is returned. 2503 * 2504 * spp_ipv6_flowlabel 2505 * - This field is used in conjunction with the 2506 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2507 * The 20 least significant bits are used for the flow 2508 * label. This setting has precedence over any IPv6-layer 2509 * setting. 2510 * 2511 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2512 * and contains the DSCP. The 6 most significant bits are 2513 * used for the DSCP. This setting has precedence over any 2514 * IPv4- or IPv6- layer setting. 2515 */ 2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2517 struct sctp_transport *trans, 2518 struct sctp_association *asoc, 2519 struct sctp_sock *sp, 2520 int hb_change, 2521 int pmtud_change, 2522 int sackdelay_change) 2523 { 2524 int error; 2525 2526 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2527 struct net *net = sock_net(trans->asoc->base.sk); 2528 2529 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2530 if (error) 2531 return error; 2532 } 2533 2534 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2535 * this field is ignored. Note also that a value of zero indicates 2536 * the current setting should be left unchanged. 2537 */ 2538 if (params->spp_flags & SPP_HB_ENABLE) { 2539 2540 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2541 * set. This lets us use 0 value when this flag 2542 * is set. 2543 */ 2544 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2545 params->spp_hbinterval = 0; 2546 2547 if (params->spp_hbinterval || 2548 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2549 if (trans) { 2550 trans->hbinterval = 2551 msecs_to_jiffies(params->spp_hbinterval); 2552 } else if (asoc) { 2553 asoc->hbinterval = 2554 msecs_to_jiffies(params->spp_hbinterval); 2555 } else { 2556 sp->hbinterval = params->spp_hbinterval; 2557 } 2558 } 2559 } 2560 2561 if (hb_change) { 2562 if (trans) { 2563 trans->param_flags = 2564 (trans->param_flags & ~SPP_HB) | hb_change; 2565 } else if (asoc) { 2566 asoc->param_flags = 2567 (asoc->param_flags & ~SPP_HB) | hb_change; 2568 } else { 2569 sp->param_flags = 2570 (sp->param_flags & ~SPP_HB) | hb_change; 2571 } 2572 } 2573 2574 /* When Path MTU discovery is disabled the value specified here will 2575 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2576 * include the flag SPP_PMTUD_DISABLE for this field to have any 2577 * effect). 2578 */ 2579 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2580 if (trans) { 2581 trans->pathmtu = params->spp_pathmtu; 2582 sctp_assoc_sync_pmtu(asoc); 2583 } else if (asoc) { 2584 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2585 } else { 2586 sp->pathmtu = params->spp_pathmtu; 2587 } 2588 } 2589 2590 if (pmtud_change) { 2591 if (trans) { 2592 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2593 (params->spp_flags & SPP_PMTUD_ENABLE); 2594 trans->param_flags = 2595 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2596 if (update) { 2597 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2598 sctp_assoc_sync_pmtu(asoc); 2599 } 2600 } else if (asoc) { 2601 asoc->param_flags = 2602 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2603 } else { 2604 sp->param_flags = 2605 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2606 } 2607 } 2608 2609 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2610 * value of this field is ignored. Note also that a value of zero 2611 * indicates the current setting should be left unchanged. 2612 */ 2613 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2614 if (trans) { 2615 trans->sackdelay = 2616 msecs_to_jiffies(params->spp_sackdelay); 2617 } else if (asoc) { 2618 asoc->sackdelay = 2619 msecs_to_jiffies(params->spp_sackdelay); 2620 } else { 2621 sp->sackdelay = params->spp_sackdelay; 2622 } 2623 } 2624 2625 if (sackdelay_change) { 2626 if (trans) { 2627 trans->param_flags = 2628 (trans->param_flags & ~SPP_SACKDELAY) | 2629 sackdelay_change; 2630 } else if (asoc) { 2631 asoc->param_flags = 2632 (asoc->param_flags & ~SPP_SACKDELAY) | 2633 sackdelay_change; 2634 } else { 2635 sp->param_flags = 2636 (sp->param_flags & ~SPP_SACKDELAY) | 2637 sackdelay_change; 2638 } 2639 } 2640 2641 /* Note that a value of zero indicates the current setting should be 2642 left unchanged. 2643 */ 2644 if (params->spp_pathmaxrxt) { 2645 if (trans) { 2646 trans->pathmaxrxt = params->spp_pathmaxrxt; 2647 } else if (asoc) { 2648 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2649 } else { 2650 sp->pathmaxrxt = params->spp_pathmaxrxt; 2651 } 2652 } 2653 2654 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2655 if (trans) { 2656 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2657 trans->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 } else if (asoc) { 2662 struct sctp_transport *t; 2663 2664 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2665 transports) { 2666 if (t->ipaddr.sa.sa_family != AF_INET6) 2667 continue; 2668 t->flowlabel = params->spp_ipv6_flowlabel & 2669 SCTP_FLOWLABEL_VAL_MASK; 2670 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2671 } 2672 asoc->flowlabel = params->spp_ipv6_flowlabel & 2673 SCTP_FLOWLABEL_VAL_MASK; 2674 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2675 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2676 sp->flowlabel = params->spp_ipv6_flowlabel & 2677 SCTP_FLOWLABEL_VAL_MASK; 2678 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2679 } 2680 } 2681 2682 if (params->spp_flags & SPP_DSCP) { 2683 if (trans) { 2684 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 trans->dscp |= SCTP_DSCP_SET_MASK; 2686 } else if (asoc) { 2687 struct sctp_transport *t; 2688 2689 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2690 transports) { 2691 t->dscp = params->spp_dscp & 2692 SCTP_DSCP_VAL_MASK; 2693 t->dscp |= SCTP_DSCP_SET_MASK; 2694 } 2695 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2696 asoc->dscp |= SCTP_DSCP_SET_MASK; 2697 } else { 2698 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2699 sp->dscp |= SCTP_DSCP_SET_MASK; 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2707 char __user *optval, 2708 unsigned int optlen) 2709 { 2710 struct sctp_paddrparams params; 2711 struct sctp_transport *trans = NULL; 2712 struct sctp_association *asoc = NULL; 2713 struct sctp_sock *sp = sctp_sk(sk); 2714 int error; 2715 int hb_change, pmtud_change, sackdelay_change; 2716 2717 if (optlen == sizeof(params)) { 2718 if (copy_from_user(¶ms, optval, optlen)) 2719 return -EFAULT; 2720 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2721 spp_ipv6_flowlabel), 4)) { 2722 if (copy_from_user(¶ms, optval, optlen)) 2723 return -EFAULT; 2724 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2725 return -EINVAL; 2726 } else { 2727 return -EINVAL; 2728 } 2729 2730 /* Validate flags and value parameters. */ 2731 hb_change = params.spp_flags & SPP_HB; 2732 pmtud_change = params.spp_flags & SPP_PMTUD; 2733 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2734 2735 if (hb_change == SPP_HB || 2736 pmtud_change == SPP_PMTUD || 2737 sackdelay_change == SPP_SACKDELAY || 2738 params.spp_sackdelay > 500 || 2739 (params.spp_pathmtu && 2740 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2741 return -EINVAL; 2742 2743 /* If an address other than INADDR_ANY is specified, and 2744 * no transport is found, then the request is invalid. 2745 */ 2746 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2747 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2748 params.spp_assoc_id); 2749 if (!trans) 2750 return -EINVAL; 2751 } 2752 2753 /* Get association, if assoc_id != 0 and the socket is a one 2754 * to many style socket, and an association was not found, then 2755 * the id was invalid. 2756 */ 2757 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2758 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2759 return -EINVAL; 2760 2761 /* Heartbeat demand can only be sent on a transport or 2762 * association, but not a socket. 2763 */ 2764 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2765 return -EINVAL; 2766 2767 /* Process parameters. */ 2768 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2769 hb_change, pmtud_change, 2770 sackdelay_change); 2771 2772 if (error) 2773 return error; 2774 2775 /* If changes are for association, also apply parameters to each 2776 * transport. 2777 */ 2778 if (!trans && asoc) { 2779 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2780 transports) { 2781 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2782 hb_change, pmtud_change, 2783 sackdelay_change); 2784 } 2785 } 2786 2787 return 0; 2788 } 2789 2790 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2791 { 2792 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2793 } 2794 2795 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2796 { 2797 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2798 } 2799 2800 /* 2801 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2802 * 2803 * This option will effect the way delayed acks are performed. This 2804 * option allows you to get or set the delayed ack time, in 2805 * milliseconds. It also allows changing the delayed ack frequency. 2806 * Changing the frequency to 1 disables the delayed sack algorithm. If 2807 * the assoc_id is 0, then this sets or gets the endpoints default 2808 * values. If the assoc_id field is non-zero, then the set or get 2809 * effects the specified association for the one to many model (the 2810 * assoc_id field is ignored by the one to one model). Note that if 2811 * sack_delay or sack_freq are 0 when setting this option, then the 2812 * current values will remain unchanged. 2813 * 2814 * struct sctp_sack_info { 2815 * sctp_assoc_t sack_assoc_id; 2816 * uint32_t sack_delay; 2817 * uint32_t sack_freq; 2818 * }; 2819 * 2820 * sack_assoc_id - This parameter, indicates which association the user 2821 * is performing an action upon. Note that if this field's value is 2822 * zero then the endpoints default value is changed (effecting future 2823 * associations only). 2824 * 2825 * sack_delay - This parameter contains the number of milliseconds that 2826 * the user is requesting the delayed ACK timer be set to. Note that 2827 * this value is defined in the standard to be between 200 and 500 2828 * milliseconds. 2829 * 2830 * sack_freq - This parameter contains the number of packets that must 2831 * be received before a sack is sent without waiting for the delay 2832 * timer to expire. The default value for this is 2, setting this 2833 * value to 1 will disable the delayed sack algorithm. 2834 */ 2835 2836 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2837 char __user *optval, unsigned int optlen) 2838 { 2839 struct sctp_sack_info params; 2840 struct sctp_transport *trans = NULL; 2841 struct sctp_association *asoc = NULL; 2842 struct sctp_sock *sp = sctp_sk(sk); 2843 2844 if (optlen == sizeof(struct sctp_sack_info)) { 2845 if (copy_from_user(¶ms, optval, optlen)) 2846 return -EFAULT; 2847 2848 if (params.sack_delay == 0 && params.sack_freq == 0) 2849 return 0; 2850 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2851 pr_warn_ratelimited(DEPRECATED 2852 "%s (pid %d) " 2853 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2854 "Use struct sctp_sack_info instead\n", 2855 current->comm, task_pid_nr(current)); 2856 if (copy_from_user(¶ms, optval, optlen)) 2857 return -EFAULT; 2858 2859 if (params.sack_delay == 0) 2860 params.sack_freq = 1; 2861 else 2862 params.sack_freq = 0; 2863 } else 2864 return -EINVAL; 2865 2866 /* Validate value parameter. */ 2867 if (params.sack_delay > 500) 2868 return -EINVAL; 2869 2870 /* Get association, if sack_assoc_id != 0 and the socket is a one 2871 * to many style socket, and an association was not found, then 2872 * the id was invalid. 2873 */ 2874 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2875 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2876 return -EINVAL; 2877 2878 if (params.sack_delay) { 2879 if (asoc) { 2880 asoc->sackdelay = 2881 msecs_to_jiffies(params.sack_delay); 2882 asoc->param_flags = 2883 sctp_spp_sackdelay_enable(asoc->param_flags); 2884 } else { 2885 sp->sackdelay = params.sack_delay; 2886 sp->param_flags = 2887 sctp_spp_sackdelay_enable(sp->param_flags); 2888 } 2889 } 2890 2891 if (params.sack_freq == 1) { 2892 if (asoc) { 2893 asoc->param_flags = 2894 sctp_spp_sackdelay_disable(asoc->param_flags); 2895 } else { 2896 sp->param_flags = 2897 sctp_spp_sackdelay_disable(sp->param_flags); 2898 } 2899 } else if (params.sack_freq > 1) { 2900 if (asoc) { 2901 asoc->sackfreq = params.sack_freq; 2902 asoc->param_flags = 2903 sctp_spp_sackdelay_enable(asoc->param_flags); 2904 } else { 2905 sp->sackfreq = params.sack_freq; 2906 sp->param_flags = 2907 sctp_spp_sackdelay_enable(sp->param_flags); 2908 } 2909 } 2910 2911 /* If change is for association, also apply to each transport. */ 2912 if (asoc) { 2913 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2914 transports) { 2915 if (params.sack_delay) { 2916 trans->sackdelay = 2917 msecs_to_jiffies(params.sack_delay); 2918 trans->param_flags = 2919 sctp_spp_sackdelay_enable(trans->param_flags); 2920 } 2921 if (params.sack_freq == 1) { 2922 trans->param_flags = 2923 sctp_spp_sackdelay_disable(trans->param_flags); 2924 } else if (params.sack_freq > 1) { 2925 trans->sackfreq = params.sack_freq; 2926 trans->param_flags = 2927 sctp_spp_sackdelay_enable(trans->param_flags); 2928 } 2929 } 2930 } 2931 2932 return 0; 2933 } 2934 2935 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2936 * 2937 * Applications can specify protocol parameters for the default association 2938 * initialization. The option name argument to setsockopt() and getsockopt() 2939 * is SCTP_INITMSG. 2940 * 2941 * Setting initialization parameters is effective only on an unconnected 2942 * socket (for UDP-style sockets only future associations are effected 2943 * by the change). With TCP-style sockets, this option is inherited by 2944 * sockets derived from a listener socket. 2945 */ 2946 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2947 { 2948 struct sctp_initmsg sinit; 2949 struct sctp_sock *sp = sctp_sk(sk); 2950 2951 if (optlen != sizeof(struct sctp_initmsg)) 2952 return -EINVAL; 2953 if (copy_from_user(&sinit, optval, optlen)) 2954 return -EFAULT; 2955 2956 if (sinit.sinit_num_ostreams) 2957 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2958 if (sinit.sinit_max_instreams) 2959 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2960 if (sinit.sinit_max_attempts) 2961 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2962 if (sinit.sinit_max_init_timeo) 2963 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2964 2965 return 0; 2966 } 2967 2968 /* 2969 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2970 * 2971 * Applications that wish to use the sendto() system call may wish to 2972 * specify a default set of parameters that would normally be supplied 2973 * through the inclusion of ancillary data. This socket option allows 2974 * such an application to set the default sctp_sndrcvinfo structure. 2975 * The application that wishes to use this socket option simply passes 2976 * in to this call the sctp_sndrcvinfo structure defined in Section 2977 * 5.2.2) The input parameters accepted by this call include 2978 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2979 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2980 * to this call if the caller is using the UDP model. 2981 */ 2982 static int sctp_setsockopt_default_send_param(struct sock *sk, 2983 char __user *optval, 2984 unsigned int optlen) 2985 { 2986 struct sctp_sock *sp = sctp_sk(sk); 2987 struct sctp_association *asoc; 2988 struct sctp_sndrcvinfo info; 2989 2990 if (optlen != sizeof(info)) 2991 return -EINVAL; 2992 if (copy_from_user(&info, optval, optlen)) 2993 return -EFAULT; 2994 if (info.sinfo_flags & 2995 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2996 SCTP_ABORT | SCTP_EOF)) 2997 return -EINVAL; 2998 2999 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3000 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 3001 return -EINVAL; 3002 if (asoc) { 3003 asoc->default_stream = info.sinfo_stream; 3004 asoc->default_flags = info.sinfo_flags; 3005 asoc->default_ppid = info.sinfo_ppid; 3006 asoc->default_context = info.sinfo_context; 3007 asoc->default_timetolive = info.sinfo_timetolive; 3008 } else { 3009 sp->default_stream = info.sinfo_stream; 3010 sp->default_flags = info.sinfo_flags; 3011 sp->default_ppid = info.sinfo_ppid; 3012 sp->default_context = info.sinfo_context; 3013 sp->default_timetolive = info.sinfo_timetolive; 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3020 * (SCTP_DEFAULT_SNDINFO) 3021 */ 3022 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3023 char __user *optval, 3024 unsigned int optlen) 3025 { 3026 struct sctp_sock *sp = sctp_sk(sk); 3027 struct sctp_association *asoc; 3028 struct sctp_sndinfo info; 3029 3030 if (optlen != sizeof(info)) 3031 return -EINVAL; 3032 if (copy_from_user(&info, optval, optlen)) 3033 return -EFAULT; 3034 if (info.snd_flags & 3035 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3036 SCTP_ABORT | SCTP_EOF)) 3037 return -EINVAL; 3038 3039 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3040 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 3041 return -EINVAL; 3042 if (asoc) { 3043 asoc->default_stream = info.snd_sid; 3044 asoc->default_flags = info.snd_flags; 3045 asoc->default_ppid = info.snd_ppid; 3046 asoc->default_context = info.snd_context; 3047 } else { 3048 sp->default_stream = info.snd_sid; 3049 sp->default_flags = info.snd_flags; 3050 sp->default_ppid = info.snd_ppid; 3051 sp->default_context = info.snd_context; 3052 } 3053 3054 return 0; 3055 } 3056 3057 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3058 * 3059 * Requests that the local SCTP stack use the enclosed peer address as 3060 * the association primary. The enclosed address must be one of the 3061 * association peer's addresses. 3062 */ 3063 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3064 unsigned int optlen) 3065 { 3066 struct sctp_prim prim; 3067 struct sctp_transport *trans; 3068 struct sctp_af *af; 3069 int err; 3070 3071 if (optlen != sizeof(struct sctp_prim)) 3072 return -EINVAL; 3073 3074 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3075 return -EFAULT; 3076 3077 /* Allow security module to validate address but need address len. */ 3078 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3079 if (!af) 3080 return -EINVAL; 3081 3082 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3083 (struct sockaddr *)&prim.ssp_addr, 3084 af->sockaddr_len); 3085 if (err) 3086 return err; 3087 3088 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3089 if (!trans) 3090 return -EINVAL; 3091 3092 sctp_assoc_set_primary(trans->asoc, trans); 3093 3094 return 0; 3095 } 3096 3097 /* 3098 * 7.1.5 SCTP_NODELAY 3099 * 3100 * Turn on/off any Nagle-like algorithm. This means that packets are 3101 * generally sent as soon as possible and no unnecessary delays are 3102 * introduced, at the cost of more packets in the network. Expects an 3103 * integer boolean flag. 3104 */ 3105 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3106 unsigned int optlen) 3107 { 3108 int val; 3109 3110 if (optlen < sizeof(int)) 3111 return -EINVAL; 3112 if (get_user(val, (int __user *)optval)) 3113 return -EFAULT; 3114 3115 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3116 return 0; 3117 } 3118 3119 /* 3120 * 3121 * 7.1.1 SCTP_RTOINFO 3122 * 3123 * The protocol parameters used to initialize and bound retransmission 3124 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3125 * and modify these parameters. 3126 * All parameters are time values, in milliseconds. A value of 0, when 3127 * modifying the parameters, indicates that the current value should not 3128 * be changed. 3129 * 3130 */ 3131 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3132 { 3133 struct sctp_rtoinfo rtoinfo; 3134 struct sctp_association *asoc; 3135 unsigned long rto_min, rto_max; 3136 struct sctp_sock *sp = sctp_sk(sk); 3137 3138 if (optlen != sizeof (struct sctp_rtoinfo)) 3139 return -EINVAL; 3140 3141 if (copy_from_user(&rtoinfo, optval, optlen)) 3142 return -EFAULT; 3143 3144 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3145 3146 /* Set the values to the specific association */ 3147 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3148 return -EINVAL; 3149 3150 rto_max = rtoinfo.srto_max; 3151 rto_min = rtoinfo.srto_min; 3152 3153 if (rto_max) 3154 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3155 else 3156 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3157 3158 if (rto_min) 3159 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3160 else 3161 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3162 3163 if (rto_min > rto_max) 3164 return -EINVAL; 3165 3166 if (asoc) { 3167 if (rtoinfo.srto_initial != 0) 3168 asoc->rto_initial = 3169 msecs_to_jiffies(rtoinfo.srto_initial); 3170 asoc->rto_max = rto_max; 3171 asoc->rto_min = rto_min; 3172 } else { 3173 /* If there is no association or the association-id = 0 3174 * set the values to the endpoint. 3175 */ 3176 if (rtoinfo.srto_initial != 0) 3177 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3178 sp->rtoinfo.srto_max = rto_max; 3179 sp->rtoinfo.srto_min = rto_min; 3180 } 3181 3182 return 0; 3183 } 3184 3185 /* 3186 * 3187 * 7.1.2 SCTP_ASSOCINFO 3188 * 3189 * This option is used to tune the maximum retransmission attempts 3190 * of the association. 3191 * Returns an error if the new association retransmission value is 3192 * greater than the sum of the retransmission value of the peer. 3193 * See [SCTP] for more information. 3194 * 3195 */ 3196 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3197 { 3198 3199 struct sctp_assocparams assocparams; 3200 struct sctp_association *asoc; 3201 3202 if (optlen != sizeof(struct sctp_assocparams)) 3203 return -EINVAL; 3204 if (copy_from_user(&assocparams, optval, optlen)) 3205 return -EFAULT; 3206 3207 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3208 3209 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3210 return -EINVAL; 3211 3212 /* Set the values to the specific association */ 3213 if (asoc) { 3214 if (assocparams.sasoc_asocmaxrxt != 0) { 3215 __u32 path_sum = 0; 3216 int paths = 0; 3217 struct sctp_transport *peer_addr; 3218 3219 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3220 transports) { 3221 path_sum += peer_addr->pathmaxrxt; 3222 paths++; 3223 } 3224 3225 /* Only validate asocmaxrxt if we have more than 3226 * one path/transport. We do this because path 3227 * retransmissions are only counted when we have more 3228 * then one path. 3229 */ 3230 if (paths > 1 && 3231 assocparams.sasoc_asocmaxrxt > path_sum) 3232 return -EINVAL; 3233 3234 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3235 } 3236 3237 if (assocparams.sasoc_cookie_life != 0) 3238 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3239 } else { 3240 /* Set the values to the endpoint */ 3241 struct sctp_sock *sp = sctp_sk(sk); 3242 3243 if (assocparams.sasoc_asocmaxrxt != 0) 3244 sp->assocparams.sasoc_asocmaxrxt = 3245 assocparams.sasoc_asocmaxrxt; 3246 if (assocparams.sasoc_cookie_life != 0) 3247 sp->assocparams.sasoc_cookie_life = 3248 assocparams.sasoc_cookie_life; 3249 } 3250 return 0; 3251 } 3252 3253 /* 3254 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3255 * 3256 * This socket option is a boolean flag which turns on or off mapped V4 3257 * addresses. If this option is turned on and the socket is type 3258 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3259 * If this option is turned off, then no mapping will be done of V4 3260 * addresses and a user will receive both PF_INET6 and PF_INET type 3261 * addresses on the socket. 3262 */ 3263 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3264 { 3265 int val; 3266 struct sctp_sock *sp = sctp_sk(sk); 3267 3268 if (optlen < sizeof(int)) 3269 return -EINVAL; 3270 if (get_user(val, (int __user *)optval)) 3271 return -EFAULT; 3272 if (val) 3273 sp->v4mapped = 1; 3274 else 3275 sp->v4mapped = 0; 3276 3277 return 0; 3278 } 3279 3280 /* 3281 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3282 * This option will get or set the maximum size to put in any outgoing 3283 * SCTP DATA chunk. If a message is larger than this size it will be 3284 * fragmented by SCTP into the specified size. Note that the underlying 3285 * SCTP implementation may fragment into smaller sized chunks when the 3286 * PMTU of the underlying association is smaller than the value set by 3287 * the user. The default value for this option is '0' which indicates 3288 * the user is NOT limiting fragmentation and only the PMTU will effect 3289 * SCTP's choice of DATA chunk size. Note also that values set larger 3290 * than the maximum size of an IP datagram will effectively let SCTP 3291 * control fragmentation (i.e. the same as setting this option to 0). 3292 * 3293 * The following structure is used to access and modify this parameter: 3294 * 3295 * struct sctp_assoc_value { 3296 * sctp_assoc_t assoc_id; 3297 * uint32_t assoc_value; 3298 * }; 3299 * 3300 * assoc_id: This parameter is ignored for one-to-one style sockets. 3301 * For one-to-many style sockets this parameter indicates which 3302 * association the user is performing an action upon. Note that if 3303 * this field's value is zero then the endpoints default value is 3304 * changed (effecting future associations only). 3305 * assoc_value: This parameter specifies the maximum size in bytes. 3306 */ 3307 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3308 { 3309 struct sctp_sock *sp = sctp_sk(sk); 3310 struct sctp_assoc_value params; 3311 struct sctp_association *asoc; 3312 int val; 3313 3314 if (optlen == sizeof(int)) { 3315 pr_warn_ratelimited(DEPRECATED 3316 "%s (pid %d) " 3317 "Use of int in maxseg socket option.\n" 3318 "Use struct sctp_assoc_value instead\n", 3319 current->comm, task_pid_nr(current)); 3320 if (copy_from_user(&val, optval, optlen)) 3321 return -EFAULT; 3322 params.assoc_id = 0; 3323 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3324 if (copy_from_user(¶ms, optval, optlen)) 3325 return -EFAULT; 3326 val = params.assoc_value; 3327 } else { 3328 return -EINVAL; 3329 } 3330 3331 asoc = sctp_id2assoc(sk, params.assoc_id); 3332 3333 if (val) { 3334 int min_len, max_len; 3335 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3336 sizeof(struct sctp_data_chunk); 3337 3338 min_len = sctp_min_frag_point(sp, datasize); 3339 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3340 3341 if (val < min_len || val > max_len) 3342 return -EINVAL; 3343 } 3344 3345 if (asoc) { 3346 asoc->user_frag = val; 3347 sctp_assoc_update_frag_point(asoc); 3348 } else { 3349 if (params.assoc_id && sctp_style(sk, UDP)) 3350 return -EINVAL; 3351 sp->user_frag = val; 3352 } 3353 3354 return 0; 3355 } 3356 3357 3358 /* 3359 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3360 * 3361 * Requests that the peer mark the enclosed address as the association 3362 * primary. The enclosed address must be one of the association's 3363 * locally bound addresses. The following structure is used to make a 3364 * set primary request: 3365 */ 3366 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3367 unsigned int optlen) 3368 { 3369 struct net *net = sock_net(sk); 3370 struct sctp_sock *sp; 3371 struct sctp_association *asoc = NULL; 3372 struct sctp_setpeerprim prim; 3373 struct sctp_chunk *chunk; 3374 struct sctp_af *af; 3375 int err; 3376 3377 sp = sctp_sk(sk); 3378 3379 if (!net->sctp.addip_enable) 3380 return -EPERM; 3381 3382 if (optlen != sizeof(struct sctp_setpeerprim)) 3383 return -EINVAL; 3384 3385 if (copy_from_user(&prim, optval, optlen)) 3386 return -EFAULT; 3387 3388 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3389 if (!asoc) 3390 return -EINVAL; 3391 3392 if (!asoc->peer.asconf_capable) 3393 return -EPERM; 3394 3395 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3396 return -EPERM; 3397 3398 if (!sctp_state(asoc, ESTABLISHED)) 3399 return -ENOTCONN; 3400 3401 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3402 if (!af) 3403 return -EINVAL; 3404 3405 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3406 return -EADDRNOTAVAIL; 3407 3408 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3409 return -EADDRNOTAVAIL; 3410 3411 /* Allow security module to validate address. */ 3412 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3413 (struct sockaddr *)&prim.sspp_addr, 3414 af->sockaddr_len); 3415 if (err) 3416 return err; 3417 3418 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3419 chunk = sctp_make_asconf_set_prim(asoc, 3420 (union sctp_addr *)&prim.sspp_addr); 3421 if (!chunk) 3422 return -ENOMEM; 3423 3424 err = sctp_send_asconf(asoc, chunk); 3425 3426 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3427 3428 return err; 3429 } 3430 3431 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3432 unsigned int optlen) 3433 { 3434 struct sctp_setadaptation adaptation; 3435 3436 if (optlen != sizeof(struct sctp_setadaptation)) 3437 return -EINVAL; 3438 if (copy_from_user(&adaptation, optval, optlen)) 3439 return -EFAULT; 3440 3441 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3442 3443 return 0; 3444 } 3445 3446 /* 3447 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3448 * 3449 * The context field in the sctp_sndrcvinfo structure is normally only 3450 * used when a failed message is retrieved holding the value that was 3451 * sent down on the actual send call. This option allows the setting of 3452 * a default context on an association basis that will be received on 3453 * reading messages from the peer. This is especially helpful in the 3454 * one-2-many model for an application to keep some reference to an 3455 * internal state machine that is processing messages on the 3456 * association. Note that the setting of this value only effects 3457 * received messages from the peer and does not effect the value that is 3458 * saved with outbound messages. 3459 */ 3460 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3461 unsigned int optlen) 3462 { 3463 struct sctp_assoc_value params; 3464 struct sctp_sock *sp; 3465 struct sctp_association *asoc; 3466 3467 if (optlen != sizeof(struct sctp_assoc_value)) 3468 return -EINVAL; 3469 if (copy_from_user(¶ms, optval, optlen)) 3470 return -EFAULT; 3471 3472 sp = sctp_sk(sk); 3473 3474 if (params.assoc_id != 0) { 3475 asoc = sctp_id2assoc(sk, params.assoc_id); 3476 if (!asoc) 3477 return -EINVAL; 3478 asoc->default_rcv_context = params.assoc_value; 3479 } else { 3480 sp->default_rcv_context = params.assoc_value; 3481 } 3482 3483 return 0; 3484 } 3485 3486 /* 3487 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3488 * 3489 * This options will at a minimum specify if the implementation is doing 3490 * fragmented interleave. Fragmented interleave, for a one to many 3491 * socket, is when subsequent calls to receive a message may return 3492 * parts of messages from different associations. Some implementations 3493 * may allow you to turn this value on or off. If so, when turned off, 3494 * no fragment interleave will occur (which will cause a head of line 3495 * blocking amongst multiple associations sharing the same one to many 3496 * socket). When this option is turned on, then each receive call may 3497 * come from a different association (thus the user must receive data 3498 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3499 * association each receive belongs to. 3500 * 3501 * This option takes a boolean value. A non-zero value indicates that 3502 * fragmented interleave is on. A value of zero indicates that 3503 * fragmented interleave is off. 3504 * 3505 * Note that it is important that an implementation that allows this 3506 * option to be turned on, have it off by default. Otherwise an unaware 3507 * application using the one to many model may become confused and act 3508 * incorrectly. 3509 */ 3510 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3511 char __user *optval, 3512 unsigned int optlen) 3513 { 3514 int val; 3515 3516 if (optlen != sizeof(int)) 3517 return -EINVAL; 3518 if (get_user(val, (int __user *)optval)) 3519 return -EFAULT; 3520 3521 sctp_sk(sk)->frag_interleave = !!val; 3522 3523 if (!sctp_sk(sk)->frag_interleave) 3524 sctp_sk(sk)->strm_interleave = 0; 3525 3526 return 0; 3527 } 3528 3529 /* 3530 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3531 * (SCTP_PARTIAL_DELIVERY_POINT) 3532 * 3533 * This option will set or get the SCTP partial delivery point. This 3534 * point is the size of a message where the partial delivery API will be 3535 * invoked to help free up rwnd space for the peer. Setting this to a 3536 * lower value will cause partial deliveries to happen more often. The 3537 * calls argument is an integer that sets or gets the partial delivery 3538 * point. Note also that the call will fail if the user attempts to set 3539 * this value larger than the socket receive buffer size. 3540 * 3541 * Note that any single message having a length smaller than or equal to 3542 * the SCTP partial delivery point will be delivered in one single read 3543 * call as long as the user provided buffer is large enough to hold the 3544 * message. 3545 */ 3546 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3547 char __user *optval, 3548 unsigned int optlen) 3549 { 3550 u32 val; 3551 3552 if (optlen != sizeof(u32)) 3553 return -EINVAL; 3554 if (get_user(val, (int __user *)optval)) 3555 return -EFAULT; 3556 3557 /* Note: We double the receive buffer from what the user sets 3558 * it to be, also initial rwnd is based on rcvbuf/2. 3559 */ 3560 if (val > (sk->sk_rcvbuf >> 1)) 3561 return -EINVAL; 3562 3563 sctp_sk(sk)->pd_point = val; 3564 3565 return 0; /* is this the right error code? */ 3566 } 3567 3568 /* 3569 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3570 * 3571 * This option will allow a user to change the maximum burst of packets 3572 * that can be emitted by this association. Note that the default value 3573 * is 4, and some implementations may restrict this setting so that it 3574 * can only be lowered. 3575 * 3576 * NOTE: This text doesn't seem right. Do this on a socket basis with 3577 * future associations inheriting the socket value. 3578 */ 3579 static int sctp_setsockopt_maxburst(struct sock *sk, 3580 char __user *optval, 3581 unsigned int optlen) 3582 { 3583 struct sctp_assoc_value params; 3584 struct sctp_sock *sp; 3585 struct sctp_association *asoc; 3586 int val; 3587 int assoc_id = 0; 3588 3589 if (optlen == sizeof(int)) { 3590 pr_warn_ratelimited(DEPRECATED 3591 "%s (pid %d) " 3592 "Use of int in max_burst socket option deprecated.\n" 3593 "Use struct sctp_assoc_value instead\n", 3594 current->comm, task_pid_nr(current)); 3595 if (copy_from_user(&val, optval, optlen)) 3596 return -EFAULT; 3597 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3598 if (copy_from_user(¶ms, optval, optlen)) 3599 return -EFAULT; 3600 val = params.assoc_value; 3601 assoc_id = params.assoc_id; 3602 } else 3603 return -EINVAL; 3604 3605 sp = sctp_sk(sk); 3606 3607 if (assoc_id != 0) { 3608 asoc = sctp_id2assoc(sk, assoc_id); 3609 if (!asoc) 3610 return -EINVAL; 3611 asoc->max_burst = val; 3612 } else 3613 sp->max_burst = val; 3614 3615 return 0; 3616 } 3617 3618 /* 3619 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3620 * 3621 * This set option adds a chunk type that the user is requesting to be 3622 * received only in an authenticated way. Changes to the list of chunks 3623 * will only effect future associations on the socket. 3624 */ 3625 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3626 char __user *optval, 3627 unsigned int optlen) 3628 { 3629 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3630 struct sctp_authchunk val; 3631 3632 if (!ep->auth_enable) 3633 return -EACCES; 3634 3635 if (optlen != sizeof(struct sctp_authchunk)) 3636 return -EINVAL; 3637 if (copy_from_user(&val, optval, optlen)) 3638 return -EFAULT; 3639 3640 switch (val.sauth_chunk) { 3641 case SCTP_CID_INIT: 3642 case SCTP_CID_INIT_ACK: 3643 case SCTP_CID_SHUTDOWN_COMPLETE: 3644 case SCTP_CID_AUTH: 3645 return -EINVAL; 3646 } 3647 3648 /* add this chunk id to the endpoint */ 3649 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3650 } 3651 3652 /* 3653 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3654 * 3655 * This option gets or sets the list of HMAC algorithms that the local 3656 * endpoint requires the peer to use. 3657 */ 3658 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3659 char __user *optval, 3660 unsigned int optlen) 3661 { 3662 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3663 struct sctp_hmacalgo *hmacs; 3664 u32 idents; 3665 int err; 3666 3667 if (!ep->auth_enable) 3668 return -EACCES; 3669 3670 if (optlen < sizeof(struct sctp_hmacalgo)) 3671 return -EINVAL; 3672 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3673 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3674 3675 hmacs = memdup_user(optval, optlen); 3676 if (IS_ERR(hmacs)) 3677 return PTR_ERR(hmacs); 3678 3679 idents = hmacs->shmac_num_idents; 3680 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3681 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3682 err = -EINVAL; 3683 goto out; 3684 } 3685 3686 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3687 out: 3688 kfree(hmacs); 3689 return err; 3690 } 3691 3692 /* 3693 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3694 * 3695 * This option will set a shared secret key which is used to build an 3696 * association shared key. 3697 */ 3698 static int sctp_setsockopt_auth_key(struct sock *sk, 3699 char __user *optval, 3700 unsigned int optlen) 3701 { 3702 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3703 struct sctp_authkey *authkey; 3704 struct sctp_association *asoc; 3705 int ret; 3706 3707 if (!ep->auth_enable) 3708 return -EACCES; 3709 3710 if (optlen <= sizeof(struct sctp_authkey)) 3711 return -EINVAL; 3712 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3713 * this. 3714 */ 3715 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3716 sizeof(struct sctp_authkey)); 3717 3718 authkey = memdup_user(optval, optlen); 3719 if (IS_ERR(authkey)) 3720 return PTR_ERR(authkey); 3721 3722 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3723 ret = -EINVAL; 3724 goto out; 3725 } 3726 3727 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3728 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3729 ret = -EINVAL; 3730 goto out; 3731 } 3732 3733 ret = sctp_auth_set_key(ep, asoc, authkey); 3734 out: 3735 kzfree(authkey); 3736 return ret; 3737 } 3738 3739 /* 3740 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3741 * 3742 * This option will get or set the active shared key to be used to build 3743 * the association shared key. 3744 */ 3745 static int sctp_setsockopt_active_key(struct sock *sk, 3746 char __user *optval, 3747 unsigned int optlen) 3748 { 3749 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3750 struct sctp_authkeyid val; 3751 struct sctp_association *asoc; 3752 3753 if (!ep->auth_enable) 3754 return -EACCES; 3755 3756 if (optlen != sizeof(struct sctp_authkeyid)) 3757 return -EINVAL; 3758 if (copy_from_user(&val, optval, optlen)) 3759 return -EFAULT; 3760 3761 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3762 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3763 return -EINVAL; 3764 3765 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3766 } 3767 3768 /* 3769 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3770 * 3771 * This set option will delete a shared secret key from use. 3772 */ 3773 static int sctp_setsockopt_del_key(struct sock *sk, 3774 char __user *optval, 3775 unsigned int optlen) 3776 { 3777 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3778 struct sctp_authkeyid val; 3779 struct sctp_association *asoc; 3780 3781 if (!ep->auth_enable) 3782 return -EACCES; 3783 3784 if (optlen != sizeof(struct sctp_authkeyid)) 3785 return -EINVAL; 3786 if (copy_from_user(&val, optval, optlen)) 3787 return -EFAULT; 3788 3789 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3790 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3791 return -EINVAL; 3792 3793 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3794 3795 } 3796 3797 /* 3798 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3799 * 3800 * This set option will deactivate a shared secret key. 3801 */ 3802 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3803 unsigned int optlen) 3804 { 3805 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3806 struct sctp_authkeyid val; 3807 struct sctp_association *asoc; 3808 3809 if (!ep->auth_enable) 3810 return -EACCES; 3811 3812 if (optlen != sizeof(struct sctp_authkeyid)) 3813 return -EINVAL; 3814 if (copy_from_user(&val, optval, optlen)) 3815 return -EFAULT; 3816 3817 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3818 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3819 return -EINVAL; 3820 3821 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3822 } 3823 3824 /* 3825 * 8.1.23 SCTP_AUTO_ASCONF 3826 * 3827 * This option will enable or disable the use of the automatic generation of 3828 * ASCONF chunks to add and delete addresses to an existing association. Note 3829 * that this option has two caveats namely: a) it only affects sockets that 3830 * are bound to all addresses available to the SCTP stack, and b) the system 3831 * administrator may have an overriding control that turns the ASCONF feature 3832 * off no matter what setting the socket option may have. 3833 * This option expects an integer boolean flag, where a non-zero value turns on 3834 * the option, and a zero value turns off the option. 3835 * Note. In this implementation, socket operation overrides default parameter 3836 * being set by sysctl as well as FreeBSD implementation 3837 */ 3838 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3839 unsigned int optlen) 3840 { 3841 int val; 3842 struct sctp_sock *sp = sctp_sk(sk); 3843 3844 if (optlen < sizeof(int)) 3845 return -EINVAL; 3846 if (get_user(val, (int __user *)optval)) 3847 return -EFAULT; 3848 if (!sctp_is_ep_boundall(sk) && val) 3849 return -EINVAL; 3850 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3851 return 0; 3852 3853 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3854 if (val == 0 && sp->do_auto_asconf) { 3855 list_del(&sp->auto_asconf_list); 3856 sp->do_auto_asconf = 0; 3857 } else if (val && !sp->do_auto_asconf) { 3858 list_add_tail(&sp->auto_asconf_list, 3859 &sock_net(sk)->sctp.auto_asconf_splist); 3860 sp->do_auto_asconf = 1; 3861 } 3862 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3863 return 0; 3864 } 3865 3866 /* 3867 * SCTP_PEER_ADDR_THLDS 3868 * 3869 * This option allows us to alter the partially failed threshold for one or all 3870 * transports in an association. See Section 6.1 of: 3871 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3872 */ 3873 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3874 char __user *optval, 3875 unsigned int optlen) 3876 { 3877 struct sctp_paddrthlds val; 3878 struct sctp_transport *trans; 3879 struct sctp_association *asoc; 3880 3881 if (optlen < sizeof(struct sctp_paddrthlds)) 3882 return -EINVAL; 3883 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3884 sizeof(struct sctp_paddrthlds))) 3885 return -EFAULT; 3886 3887 3888 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3889 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3890 if (!asoc) 3891 return -ENOENT; 3892 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3893 transports) { 3894 if (val.spt_pathmaxrxt) 3895 trans->pathmaxrxt = val.spt_pathmaxrxt; 3896 trans->pf_retrans = val.spt_pathpfthld; 3897 } 3898 3899 if (val.spt_pathmaxrxt) 3900 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3901 asoc->pf_retrans = val.spt_pathpfthld; 3902 } else { 3903 trans = sctp_addr_id2transport(sk, &val.spt_address, 3904 val.spt_assoc_id); 3905 if (!trans) 3906 return -ENOENT; 3907 3908 if (val.spt_pathmaxrxt) 3909 trans->pathmaxrxt = val.spt_pathmaxrxt; 3910 trans->pf_retrans = val.spt_pathpfthld; 3911 } 3912 3913 return 0; 3914 } 3915 3916 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3917 char __user *optval, 3918 unsigned int optlen) 3919 { 3920 int val; 3921 3922 if (optlen < sizeof(int)) 3923 return -EINVAL; 3924 if (get_user(val, (int __user *) optval)) 3925 return -EFAULT; 3926 3927 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3928 3929 return 0; 3930 } 3931 3932 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3933 char __user *optval, 3934 unsigned int optlen) 3935 { 3936 int val; 3937 3938 if (optlen < sizeof(int)) 3939 return -EINVAL; 3940 if (get_user(val, (int __user *) optval)) 3941 return -EFAULT; 3942 3943 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3944 3945 return 0; 3946 } 3947 3948 static int sctp_setsockopt_pr_supported(struct sock *sk, 3949 char __user *optval, 3950 unsigned int optlen) 3951 { 3952 struct sctp_assoc_value params; 3953 3954 if (optlen != sizeof(params)) 3955 return -EINVAL; 3956 3957 if (copy_from_user(¶ms, optval, optlen)) 3958 return -EFAULT; 3959 3960 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 3961 3962 return 0; 3963 } 3964 3965 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3966 char __user *optval, 3967 unsigned int optlen) 3968 { 3969 struct sctp_default_prinfo info; 3970 struct sctp_association *asoc; 3971 int retval = -EINVAL; 3972 3973 if (optlen != sizeof(info)) 3974 goto out; 3975 3976 if (copy_from_user(&info, optval, sizeof(info))) { 3977 retval = -EFAULT; 3978 goto out; 3979 } 3980 3981 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3982 goto out; 3983 3984 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3985 info.pr_value = 0; 3986 3987 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3988 if (asoc) { 3989 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3990 asoc->default_timetolive = info.pr_value; 3991 } else if (!info.pr_assoc_id) { 3992 struct sctp_sock *sp = sctp_sk(sk); 3993 3994 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3995 sp->default_timetolive = info.pr_value; 3996 } else { 3997 goto out; 3998 } 3999 4000 retval = 0; 4001 4002 out: 4003 return retval; 4004 } 4005 4006 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4007 char __user *optval, 4008 unsigned int optlen) 4009 { 4010 struct sctp_assoc_value params; 4011 struct sctp_association *asoc; 4012 int retval = -EINVAL; 4013 4014 if (optlen != sizeof(params)) 4015 goto out; 4016 4017 if (copy_from_user(¶ms, optval, optlen)) { 4018 retval = -EFAULT; 4019 goto out; 4020 } 4021 4022 asoc = sctp_id2assoc(sk, params.assoc_id); 4023 if (asoc) { 4024 asoc->reconf_enable = !!params.assoc_value; 4025 } else if (!params.assoc_id) { 4026 struct sctp_sock *sp = sctp_sk(sk); 4027 4028 sp->ep->reconf_enable = !!params.assoc_value; 4029 } else { 4030 goto out; 4031 } 4032 4033 retval = 0; 4034 4035 out: 4036 return retval; 4037 } 4038 4039 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4040 char __user *optval, 4041 unsigned int optlen) 4042 { 4043 struct sctp_assoc_value params; 4044 struct sctp_association *asoc; 4045 int retval = -EINVAL; 4046 4047 if (optlen != sizeof(params)) 4048 goto out; 4049 4050 if (copy_from_user(¶ms, optval, optlen)) { 4051 retval = -EFAULT; 4052 goto out; 4053 } 4054 4055 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4056 goto out; 4057 4058 asoc = sctp_id2assoc(sk, params.assoc_id); 4059 if (asoc) { 4060 asoc->strreset_enable = params.assoc_value; 4061 } else if (!params.assoc_id) { 4062 struct sctp_sock *sp = sctp_sk(sk); 4063 4064 sp->ep->strreset_enable = params.assoc_value; 4065 } else { 4066 goto out; 4067 } 4068 4069 retval = 0; 4070 4071 out: 4072 return retval; 4073 } 4074 4075 static int sctp_setsockopt_reset_streams(struct sock *sk, 4076 char __user *optval, 4077 unsigned int optlen) 4078 { 4079 struct sctp_reset_streams *params; 4080 struct sctp_association *asoc; 4081 int retval = -EINVAL; 4082 4083 if (optlen < sizeof(*params)) 4084 return -EINVAL; 4085 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4086 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4087 sizeof(__u16) * sizeof(*params)); 4088 4089 params = memdup_user(optval, optlen); 4090 if (IS_ERR(params)) 4091 return PTR_ERR(params); 4092 4093 if (params->srs_number_streams * sizeof(__u16) > 4094 optlen - sizeof(*params)) 4095 goto out; 4096 4097 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4098 if (!asoc) 4099 goto out; 4100 4101 retval = sctp_send_reset_streams(asoc, params); 4102 4103 out: 4104 kfree(params); 4105 return retval; 4106 } 4107 4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4109 char __user *optval, 4110 unsigned int optlen) 4111 { 4112 struct sctp_association *asoc; 4113 sctp_assoc_t associd; 4114 int retval = -EINVAL; 4115 4116 if (optlen != sizeof(associd)) 4117 goto out; 4118 4119 if (copy_from_user(&associd, optval, optlen)) { 4120 retval = -EFAULT; 4121 goto out; 4122 } 4123 4124 asoc = sctp_id2assoc(sk, associd); 4125 if (!asoc) 4126 goto out; 4127 4128 retval = sctp_send_reset_assoc(asoc); 4129 4130 out: 4131 return retval; 4132 } 4133 4134 static int sctp_setsockopt_add_streams(struct sock *sk, 4135 char __user *optval, 4136 unsigned int optlen) 4137 { 4138 struct sctp_association *asoc; 4139 struct sctp_add_streams params; 4140 int retval = -EINVAL; 4141 4142 if (optlen != sizeof(params)) 4143 goto out; 4144 4145 if (copy_from_user(¶ms, optval, optlen)) { 4146 retval = -EFAULT; 4147 goto out; 4148 } 4149 4150 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4151 if (!asoc) 4152 goto out; 4153 4154 retval = sctp_send_add_streams(asoc, ¶ms); 4155 4156 out: 4157 return retval; 4158 } 4159 4160 static int sctp_setsockopt_scheduler(struct sock *sk, 4161 char __user *optval, 4162 unsigned int optlen) 4163 { 4164 struct sctp_association *asoc; 4165 struct sctp_assoc_value params; 4166 int retval = -EINVAL; 4167 4168 if (optlen < sizeof(params)) 4169 goto out; 4170 4171 optlen = sizeof(params); 4172 if (copy_from_user(¶ms, optval, optlen)) { 4173 retval = -EFAULT; 4174 goto out; 4175 } 4176 4177 if (params.assoc_value > SCTP_SS_MAX) 4178 goto out; 4179 4180 asoc = sctp_id2assoc(sk, params.assoc_id); 4181 if (!asoc) 4182 goto out; 4183 4184 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4185 4186 out: 4187 return retval; 4188 } 4189 4190 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4191 char __user *optval, 4192 unsigned int optlen) 4193 { 4194 struct sctp_association *asoc; 4195 struct sctp_stream_value params; 4196 int retval = -EINVAL; 4197 4198 if (optlen < sizeof(params)) 4199 goto out; 4200 4201 optlen = sizeof(params); 4202 if (copy_from_user(¶ms, optval, optlen)) { 4203 retval = -EFAULT; 4204 goto out; 4205 } 4206 4207 asoc = sctp_id2assoc(sk, params.assoc_id); 4208 if (!asoc) 4209 goto out; 4210 4211 retval = sctp_sched_set_value(asoc, params.stream_id, 4212 params.stream_value, GFP_KERNEL); 4213 4214 out: 4215 return retval; 4216 } 4217 4218 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4219 char __user *optval, 4220 unsigned int optlen) 4221 { 4222 struct sctp_sock *sp = sctp_sk(sk); 4223 struct net *net = sock_net(sk); 4224 struct sctp_assoc_value params; 4225 int retval = -EINVAL; 4226 4227 if (optlen < sizeof(params)) 4228 goto out; 4229 4230 optlen = sizeof(params); 4231 if (copy_from_user(¶ms, optval, optlen)) { 4232 retval = -EFAULT; 4233 goto out; 4234 } 4235 4236 if (params.assoc_id) 4237 goto out; 4238 4239 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4240 retval = -EPERM; 4241 goto out; 4242 } 4243 4244 sp->strm_interleave = !!params.assoc_value; 4245 4246 retval = 0; 4247 4248 out: 4249 return retval; 4250 } 4251 4252 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4253 unsigned int optlen) 4254 { 4255 int val; 4256 4257 if (!sctp_style(sk, TCP)) 4258 return -EOPNOTSUPP; 4259 4260 if (sctp_sk(sk)->ep->base.bind_addr.port) 4261 return -EFAULT; 4262 4263 if (optlen < sizeof(int)) 4264 return -EINVAL; 4265 4266 if (get_user(val, (int __user *)optval)) 4267 return -EFAULT; 4268 4269 sctp_sk(sk)->reuse = !!val; 4270 4271 return 0; 4272 } 4273 4274 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4275 unsigned int optlen) 4276 { 4277 struct sctp_association *asoc; 4278 struct sctp_ulpevent *event; 4279 struct sctp_event param; 4280 int retval = 0; 4281 4282 if (optlen < sizeof(param)) { 4283 retval = -EINVAL; 4284 goto out; 4285 } 4286 4287 optlen = sizeof(param); 4288 if (copy_from_user(¶m, optval, optlen)) { 4289 retval = -EFAULT; 4290 goto out; 4291 } 4292 4293 if (param.se_type < SCTP_SN_TYPE_BASE || 4294 param.se_type > SCTP_SN_TYPE_MAX) { 4295 retval = -EINVAL; 4296 goto out; 4297 } 4298 4299 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4300 if (!asoc) { 4301 sctp_ulpevent_type_set(&sctp_sk(sk)->subscribe, 4302 param.se_type, param.se_on); 4303 goto out; 4304 } 4305 4306 sctp_ulpevent_type_set(&asoc->subscribe, param.se_type, param.se_on); 4307 4308 if (param.se_type == SCTP_SENDER_DRY_EVENT && param.se_on) { 4309 if (sctp_outq_is_empty(&asoc->outqueue)) { 4310 event = sctp_ulpevent_make_sender_dry_event(asoc, 4311 GFP_USER | __GFP_NOWARN); 4312 if (!event) { 4313 retval = -ENOMEM; 4314 goto out; 4315 } 4316 4317 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4318 } 4319 } 4320 4321 out: 4322 return retval; 4323 } 4324 4325 /* API 6.2 setsockopt(), getsockopt() 4326 * 4327 * Applications use setsockopt() and getsockopt() to set or retrieve 4328 * socket options. Socket options are used to change the default 4329 * behavior of sockets calls. They are described in Section 7. 4330 * 4331 * The syntax is: 4332 * 4333 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4334 * int __user *optlen); 4335 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4336 * int optlen); 4337 * 4338 * sd - the socket descript. 4339 * level - set to IPPROTO_SCTP for all SCTP options. 4340 * optname - the option name. 4341 * optval - the buffer to store the value of the option. 4342 * optlen - the size of the buffer. 4343 */ 4344 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4345 char __user *optval, unsigned int optlen) 4346 { 4347 int retval = 0; 4348 4349 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4350 4351 /* I can hardly begin to describe how wrong this is. This is 4352 * so broken as to be worse than useless. The API draft 4353 * REALLY is NOT helpful here... I am not convinced that the 4354 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4355 * are at all well-founded. 4356 */ 4357 if (level != SOL_SCTP) { 4358 struct sctp_af *af = sctp_sk(sk)->pf->af; 4359 retval = af->setsockopt(sk, level, optname, optval, optlen); 4360 goto out_nounlock; 4361 } 4362 4363 lock_sock(sk); 4364 4365 switch (optname) { 4366 case SCTP_SOCKOPT_BINDX_ADD: 4367 /* 'optlen' is the size of the addresses buffer. */ 4368 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4369 optlen, SCTP_BINDX_ADD_ADDR); 4370 break; 4371 4372 case SCTP_SOCKOPT_BINDX_REM: 4373 /* 'optlen' is the size of the addresses buffer. */ 4374 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4375 optlen, SCTP_BINDX_REM_ADDR); 4376 break; 4377 4378 case SCTP_SOCKOPT_CONNECTX_OLD: 4379 /* 'optlen' is the size of the addresses buffer. */ 4380 retval = sctp_setsockopt_connectx_old(sk, 4381 (struct sockaddr __user *)optval, 4382 optlen); 4383 break; 4384 4385 case SCTP_SOCKOPT_CONNECTX: 4386 /* 'optlen' is the size of the addresses buffer. */ 4387 retval = sctp_setsockopt_connectx(sk, 4388 (struct sockaddr __user *)optval, 4389 optlen); 4390 break; 4391 4392 case SCTP_DISABLE_FRAGMENTS: 4393 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4394 break; 4395 4396 case SCTP_EVENTS: 4397 retval = sctp_setsockopt_events(sk, optval, optlen); 4398 break; 4399 4400 case SCTP_AUTOCLOSE: 4401 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4402 break; 4403 4404 case SCTP_PEER_ADDR_PARAMS: 4405 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4406 break; 4407 4408 case SCTP_DELAYED_SACK: 4409 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4410 break; 4411 case SCTP_PARTIAL_DELIVERY_POINT: 4412 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4413 break; 4414 4415 case SCTP_INITMSG: 4416 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4417 break; 4418 case SCTP_DEFAULT_SEND_PARAM: 4419 retval = sctp_setsockopt_default_send_param(sk, optval, 4420 optlen); 4421 break; 4422 case SCTP_DEFAULT_SNDINFO: 4423 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4424 break; 4425 case SCTP_PRIMARY_ADDR: 4426 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4427 break; 4428 case SCTP_SET_PEER_PRIMARY_ADDR: 4429 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4430 break; 4431 case SCTP_NODELAY: 4432 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4433 break; 4434 case SCTP_RTOINFO: 4435 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4436 break; 4437 case SCTP_ASSOCINFO: 4438 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4439 break; 4440 case SCTP_I_WANT_MAPPED_V4_ADDR: 4441 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4442 break; 4443 case SCTP_MAXSEG: 4444 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4445 break; 4446 case SCTP_ADAPTATION_LAYER: 4447 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4448 break; 4449 case SCTP_CONTEXT: 4450 retval = sctp_setsockopt_context(sk, optval, optlen); 4451 break; 4452 case SCTP_FRAGMENT_INTERLEAVE: 4453 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4454 break; 4455 case SCTP_MAX_BURST: 4456 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4457 break; 4458 case SCTP_AUTH_CHUNK: 4459 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4460 break; 4461 case SCTP_HMAC_IDENT: 4462 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4463 break; 4464 case SCTP_AUTH_KEY: 4465 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4466 break; 4467 case SCTP_AUTH_ACTIVE_KEY: 4468 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4469 break; 4470 case SCTP_AUTH_DELETE_KEY: 4471 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4472 break; 4473 case SCTP_AUTH_DEACTIVATE_KEY: 4474 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4475 break; 4476 case SCTP_AUTO_ASCONF: 4477 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4478 break; 4479 case SCTP_PEER_ADDR_THLDS: 4480 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4481 break; 4482 case SCTP_RECVRCVINFO: 4483 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4484 break; 4485 case SCTP_RECVNXTINFO: 4486 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4487 break; 4488 case SCTP_PR_SUPPORTED: 4489 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4490 break; 4491 case SCTP_DEFAULT_PRINFO: 4492 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4493 break; 4494 case SCTP_RECONFIG_SUPPORTED: 4495 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4496 break; 4497 case SCTP_ENABLE_STREAM_RESET: 4498 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4499 break; 4500 case SCTP_RESET_STREAMS: 4501 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4502 break; 4503 case SCTP_RESET_ASSOC: 4504 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4505 break; 4506 case SCTP_ADD_STREAMS: 4507 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4508 break; 4509 case SCTP_STREAM_SCHEDULER: 4510 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4511 break; 4512 case SCTP_STREAM_SCHEDULER_VALUE: 4513 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4514 break; 4515 case SCTP_INTERLEAVING_SUPPORTED: 4516 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4517 optlen); 4518 break; 4519 case SCTP_REUSE_PORT: 4520 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4521 break; 4522 case SCTP_EVENT: 4523 retval = sctp_setsockopt_event(sk, optval, optlen); 4524 break; 4525 default: 4526 retval = -ENOPROTOOPT; 4527 break; 4528 } 4529 4530 release_sock(sk); 4531 4532 out_nounlock: 4533 return retval; 4534 } 4535 4536 /* API 3.1.6 connect() - UDP Style Syntax 4537 * 4538 * An application may use the connect() call in the UDP model to initiate an 4539 * association without sending data. 4540 * 4541 * The syntax is: 4542 * 4543 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4544 * 4545 * sd: the socket descriptor to have a new association added to. 4546 * 4547 * nam: the address structure (either struct sockaddr_in or struct 4548 * sockaddr_in6 defined in RFC2553 [7]). 4549 * 4550 * len: the size of the address. 4551 */ 4552 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4553 int addr_len, int flags) 4554 { 4555 struct inet_sock *inet = inet_sk(sk); 4556 struct sctp_af *af; 4557 int err = 0; 4558 4559 lock_sock(sk); 4560 4561 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4562 addr, addr_len); 4563 4564 /* We may need to bind the socket. */ 4565 if (!inet->inet_num) { 4566 if (sk->sk_prot->get_port(sk, 0)) { 4567 release_sock(sk); 4568 return -EAGAIN; 4569 } 4570 inet->inet_sport = htons(inet->inet_num); 4571 } 4572 4573 /* Validate addr_len before calling common connect/connectx routine. */ 4574 af = sctp_get_af_specific(addr->sa_family); 4575 if (!af || addr_len < af->sockaddr_len) { 4576 err = -EINVAL; 4577 } else { 4578 /* Pass correct addr len to common routine (so it knows there 4579 * is only one address being passed. 4580 */ 4581 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4582 } 4583 4584 release_sock(sk); 4585 return err; 4586 } 4587 4588 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4589 int addr_len, int flags) 4590 { 4591 if (addr_len < sizeof(uaddr->sa_family)) 4592 return -EINVAL; 4593 4594 if (uaddr->sa_family == AF_UNSPEC) 4595 return -EOPNOTSUPP; 4596 4597 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4598 } 4599 4600 /* FIXME: Write comments. */ 4601 static int sctp_disconnect(struct sock *sk, int flags) 4602 { 4603 return -EOPNOTSUPP; /* STUB */ 4604 } 4605 4606 /* 4.1.4 accept() - TCP Style Syntax 4607 * 4608 * Applications use accept() call to remove an established SCTP 4609 * association from the accept queue of the endpoint. A new socket 4610 * descriptor will be returned from accept() to represent the newly 4611 * formed association. 4612 */ 4613 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4614 { 4615 struct sctp_sock *sp; 4616 struct sctp_endpoint *ep; 4617 struct sock *newsk = NULL; 4618 struct sctp_association *asoc; 4619 long timeo; 4620 int error = 0; 4621 4622 lock_sock(sk); 4623 4624 sp = sctp_sk(sk); 4625 ep = sp->ep; 4626 4627 if (!sctp_style(sk, TCP)) { 4628 error = -EOPNOTSUPP; 4629 goto out; 4630 } 4631 4632 if (!sctp_sstate(sk, LISTENING)) { 4633 error = -EINVAL; 4634 goto out; 4635 } 4636 4637 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4638 4639 error = sctp_wait_for_accept(sk, timeo); 4640 if (error) 4641 goto out; 4642 4643 /* We treat the list of associations on the endpoint as the accept 4644 * queue and pick the first association on the list. 4645 */ 4646 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4647 4648 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4649 if (!newsk) { 4650 error = -ENOMEM; 4651 goto out; 4652 } 4653 4654 /* Populate the fields of the newsk from the oldsk and migrate the 4655 * asoc to the newsk. 4656 */ 4657 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4658 4659 out: 4660 release_sock(sk); 4661 *err = error; 4662 return newsk; 4663 } 4664 4665 /* The SCTP ioctl handler. */ 4666 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4667 { 4668 int rc = -ENOTCONN; 4669 4670 lock_sock(sk); 4671 4672 /* 4673 * SEQPACKET-style sockets in LISTENING state are valid, for 4674 * SCTP, so only discard TCP-style sockets in LISTENING state. 4675 */ 4676 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4677 goto out; 4678 4679 switch (cmd) { 4680 case SIOCINQ: { 4681 struct sk_buff *skb; 4682 unsigned int amount = 0; 4683 4684 skb = skb_peek(&sk->sk_receive_queue); 4685 if (skb != NULL) { 4686 /* 4687 * We will only return the amount of this packet since 4688 * that is all that will be read. 4689 */ 4690 amount = skb->len; 4691 } 4692 rc = put_user(amount, (int __user *)arg); 4693 break; 4694 } 4695 default: 4696 rc = -ENOIOCTLCMD; 4697 break; 4698 } 4699 out: 4700 release_sock(sk); 4701 return rc; 4702 } 4703 4704 /* This is the function which gets called during socket creation to 4705 * initialized the SCTP-specific portion of the sock. 4706 * The sock structure should already be zero-filled memory. 4707 */ 4708 static int sctp_init_sock(struct sock *sk) 4709 { 4710 struct net *net = sock_net(sk); 4711 struct sctp_sock *sp; 4712 4713 pr_debug("%s: sk:%p\n", __func__, sk); 4714 4715 sp = sctp_sk(sk); 4716 4717 /* Initialize the SCTP per socket area. */ 4718 switch (sk->sk_type) { 4719 case SOCK_SEQPACKET: 4720 sp->type = SCTP_SOCKET_UDP; 4721 break; 4722 case SOCK_STREAM: 4723 sp->type = SCTP_SOCKET_TCP; 4724 break; 4725 default: 4726 return -ESOCKTNOSUPPORT; 4727 } 4728 4729 sk->sk_gso_type = SKB_GSO_SCTP; 4730 4731 /* Initialize default send parameters. These parameters can be 4732 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4733 */ 4734 sp->default_stream = 0; 4735 sp->default_ppid = 0; 4736 sp->default_flags = 0; 4737 sp->default_context = 0; 4738 sp->default_timetolive = 0; 4739 4740 sp->default_rcv_context = 0; 4741 sp->max_burst = net->sctp.max_burst; 4742 4743 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4744 4745 /* Initialize default setup parameters. These parameters 4746 * can be modified with the SCTP_INITMSG socket option or 4747 * overridden by the SCTP_INIT CMSG. 4748 */ 4749 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4750 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4751 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4752 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4753 4754 /* Initialize default RTO related parameters. These parameters can 4755 * be modified for with the SCTP_RTOINFO socket option. 4756 */ 4757 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4758 sp->rtoinfo.srto_max = net->sctp.rto_max; 4759 sp->rtoinfo.srto_min = net->sctp.rto_min; 4760 4761 /* Initialize default association related parameters. These parameters 4762 * can be modified with the SCTP_ASSOCINFO socket option. 4763 */ 4764 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4765 sp->assocparams.sasoc_number_peer_destinations = 0; 4766 sp->assocparams.sasoc_peer_rwnd = 0; 4767 sp->assocparams.sasoc_local_rwnd = 0; 4768 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4769 4770 /* Initialize default event subscriptions. By default, all the 4771 * options are off. 4772 */ 4773 sp->subscribe = 0; 4774 4775 /* Default Peer Address Parameters. These defaults can 4776 * be modified via SCTP_PEER_ADDR_PARAMS 4777 */ 4778 sp->hbinterval = net->sctp.hb_interval; 4779 sp->pathmaxrxt = net->sctp.max_retrans_path; 4780 sp->pathmtu = 0; /* allow default discovery */ 4781 sp->sackdelay = net->sctp.sack_timeout; 4782 sp->sackfreq = 2; 4783 sp->param_flags = SPP_HB_ENABLE | 4784 SPP_PMTUD_ENABLE | 4785 SPP_SACKDELAY_ENABLE; 4786 4787 /* If enabled no SCTP message fragmentation will be performed. 4788 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4789 */ 4790 sp->disable_fragments = 0; 4791 4792 /* Enable Nagle algorithm by default. */ 4793 sp->nodelay = 0; 4794 4795 sp->recvrcvinfo = 0; 4796 sp->recvnxtinfo = 0; 4797 4798 /* Enable by default. */ 4799 sp->v4mapped = 1; 4800 4801 /* Auto-close idle associations after the configured 4802 * number of seconds. A value of 0 disables this 4803 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4804 * for UDP-style sockets only. 4805 */ 4806 sp->autoclose = 0; 4807 4808 /* User specified fragmentation limit. */ 4809 sp->user_frag = 0; 4810 4811 sp->adaptation_ind = 0; 4812 4813 sp->pf = sctp_get_pf_specific(sk->sk_family); 4814 4815 /* Control variables for partial data delivery. */ 4816 atomic_set(&sp->pd_mode, 0); 4817 skb_queue_head_init(&sp->pd_lobby); 4818 sp->frag_interleave = 0; 4819 4820 /* Create a per socket endpoint structure. Even if we 4821 * change the data structure relationships, this may still 4822 * be useful for storing pre-connect address information. 4823 */ 4824 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4825 if (!sp->ep) 4826 return -ENOMEM; 4827 4828 sp->hmac = NULL; 4829 4830 sk->sk_destruct = sctp_destruct_sock; 4831 4832 SCTP_DBG_OBJCNT_INC(sock); 4833 4834 local_bh_disable(); 4835 sk_sockets_allocated_inc(sk); 4836 sock_prot_inuse_add(net, sk->sk_prot, 1); 4837 4838 /* Nothing can fail after this block, otherwise 4839 * sctp_destroy_sock() will be called without addr_wq_lock held 4840 */ 4841 if (net->sctp.default_auto_asconf) { 4842 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4843 list_add_tail(&sp->auto_asconf_list, 4844 &net->sctp.auto_asconf_splist); 4845 sp->do_auto_asconf = 1; 4846 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4847 } else { 4848 sp->do_auto_asconf = 0; 4849 } 4850 4851 local_bh_enable(); 4852 4853 return 0; 4854 } 4855 4856 /* Cleanup any SCTP per socket resources. Must be called with 4857 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4858 */ 4859 static void sctp_destroy_sock(struct sock *sk) 4860 { 4861 struct sctp_sock *sp; 4862 4863 pr_debug("%s: sk:%p\n", __func__, sk); 4864 4865 /* Release our hold on the endpoint. */ 4866 sp = sctp_sk(sk); 4867 /* This could happen during socket init, thus we bail out 4868 * early, since the rest of the below is not setup either. 4869 */ 4870 if (sp->ep == NULL) 4871 return; 4872 4873 if (sp->do_auto_asconf) { 4874 sp->do_auto_asconf = 0; 4875 list_del(&sp->auto_asconf_list); 4876 } 4877 sctp_endpoint_free(sp->ep); 4878 local_bh_disable(); 4879 sk_sockets_allocated_dec(sk); 4880 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4881 local_bh_enable(); 4882 } 4883 4884 /* Triggered when there are no references on the socket anymore */ 4885 static void sctp_destruct_sock(struct sock *sk) 4886 { 4887 struct sctp_sock *sp = sctp_sk(sk); 4888 4889 /* Free up the HMAC transform. */ 4890 crypto_free_shash(sp->hmac); 4891 4892 inet_sock_destruct(sk); 4893 } 4894 4895 /* API 4.1.7 shutdown() - TCP Style Syntax 4896 * int shutdown(int socket, int how); 4897 * 4898 * sd - the socket descriptor of the association to be closed. 4899 * how - Specifies the type of shutdown. The values are 4900 * as follows: 4901 * SHUT_RD 4902 * Disables further receive operations. No SCTP 4903 * protocol action is taken. 4904 * SHUT_WR 4905 * Disables further send operations, and initiates 4906 * the SCTP shutdown sequence. 4907 * SHUT_RDWR 4908 * Disables further send and receive operations 4909 * and initiates the SCTP shutdown sequence. 4910 */ 4911 static void sctp_shutdown(struct sock *sk, int how) 4912 { 4913 struct net *net = sock_net(sk); 4914 struct sctp_endpoint *ep; 4915 4916 if (!sctp_style(sk, TCP)) 4917 return; 4918 4919 ep = sctp_sk(sk)->ep; 4920 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4921 struct sctp_association *asoc; 4922 4923 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4924 asoc = list_entry(ep->asocs.next, 4925 struct sctp_association, asocs); 4926 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4927 } 4928 } 4929 4930 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4931 struct sctp_info *info) 4932 { 4933 struct sctp_transport *prim; 4934 struct list_head *pos; 4935 int mask; 4936 4937 memset(info, 0, sizeof(*info)); 4938 if (!asoc) { 4939 struct sctp_sock *sp = sctp_sk(sk); 4940 4941 info->sctpi_s_autoclose = sp->autoclose; 4942 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4943 info->sctpi_s_pd_point = sp->pd_point; 4944 info->sctpi_s_nodelay = sp->nodelay; 4945 info->sctpi_s_disable_fragments = sp->disable_fragments; 4946 info->sctpi_s_v4mapped = sp->v4mapped; 4947 info->sctpi_s_frag_interleave = sp->frag_interleave; 4948 info->sctpi_s_type = sp->type; 4949 4950 return 0; 4951 } 4952 4953 info->sctpi_tag = asoc->c.my_vtag; 4954 info->sctpi_state = asoc->state; 4955 info->sctpi_rwnd = asoc->a_rwnd; 4956 info->sctpi_unackdata = asoc->unack_data; 4957 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4958 info->sctpi_instrms = asoc->stream.incnt; 4959 info->sctpi_outstrms = asoc->stream.outcnt; 4960 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4961 info->sctpi_inqueue++; 4962 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4963 info->sctpi_outqueue++; 4964 info->sctpi_overall_error = asoc->overall_error_count; 4965 info->sctpi_max_burst = asoc->max_burst; 4966 info->sctpi_maxseg = asoc->frag_point; 4967 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4968 info->sctpi_peer_tag = asoc->c.peer_vtag; 4969 4970 mask = asoc->peer.ecn_capable << 1; 4971 mask = (mask | asoc->peer.ipv4_address) << 1; 4972 mask = (mask | asoc->peer.ipv6_address) << 1; 4973 mask = (mask | asoc->peer.hostname_address) << 1; 4974 mask = (mask | asoc->peer.asconf_capable) << 1; 4975 mask = (mask | asoc->peer.prsctp_capable) << 1; 4976 mask = (mask | asoc->peer.auth_capable); 4977 info->sctpi_peer_capable = mask; 4978 mask = asoc->peer.sack_needed << 1; 4979 mask = (mask | asoc->peer.sack_generation) << 1; 4980 mask = (mask | asoc->peer.zero_window_announced); 4981 info->sctpi_peer_sack = mask; 4982 4983 info->sctpi_isacks = asoc->stats.isacks; 4984 info->sctpi_osacks = asoc->stats.osacks; 4985 info->sctpi_opackets = asoc->stats.opackets; 4986 info->sctpi_ipackets = asoc->stats.ipackets; 4987 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4988 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4989 info->sctpi_idupchunks = asoc->stats.idupchunks; 4990 info->sctpi_gapcnt = asoc->stats.gapcnt; 4991 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4992 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4993 info->sctpi_oodchunks = asoc->stats.oodchunks; 4994 info->sctpi_iodchunks = asoc->stats.iodchunks; 4995 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4996 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4997 4998 prim = asoc->peer.primary_path; 4999 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5000 info->sctpi_p_state = prim->state; 5001 info->sctpi_p_cwnd = prim->cwnd; 5002 info->sctpi_p_srtt = prim->srtt; 5003 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5004 info->sctpi_p_hbinterval = prim->hbinterval; 5005 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5006 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5007 info->sctpi_p_ssthresh = prim->ssthresh; 5008 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5009 info->sctpi_p_flight_size = prim->flight_size; 5010 info->sctpi_p_error = prim->error_count; 5011 5012 return 0; 5013 } 5014 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5015 5016 /* use callback to avoid exporting the core structure */ 5017 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5018 { 5019 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5020 5021 rhashtable_walk_start(iter); 5022 } 5023 5024 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5025 { 5026 rhashtable_walk_stop(iter); 5027 rhashtable_walk_exit(iter); 5028 } 5029 5030 struct sctp_transport *sctp_transport_get_next(struct net *net, 5031 struct rhashtable_iter *iter) 5032 { 5033 struct sctp_transport *t; 5034 5035 t = rhashtable_walk_next(iter); 5036 for (; t; t = rhashtable_walk_next(iter)) { 5037 if (IS_ERR(t)) { 5038 if (PTR_ERR(t) == -EAGAIN) 5039 continue; 5040 break; 5041 } 5042 5043 if (!sctp_transport_hold(t)) 5044 continue; 5045 5046 if (net_eq(sock_net(t->asoc->base.sk), net) && 5047 t->asoc->peer.primary_path == t) 5048 break; 5049 5050 sctp_transport_put(t); 5051 } 5052 5053 return t; 5054 } 5055 5056 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5057 struct rhashtable_iter *iter, 5058 int pos) 5059 { 5060 struct sctp_transport *t; 5061 5062 if (!pos) 5063 return SEQ_START_TOKEN; 5064 5065 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5066 if (!--pos) 5067 break; 5068 sctp_transport_put(t); 5069 } 5070 5071 return t; 5072 } 5073 5074 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5075 void *p) { 5076 int err = 0; 5077 int hash = 0; 5078 struct sctp_ep_common *epb; 5079 struct sctp_hashbucket *head; 5080 5081 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5082 hash++, head++) { 5083 read_lock_bh(&head->lock); 5084 sctp_for_each_hentry(epb, &head->chain) { 5085 err = cb(sctp_ep(epb), p); 5086 if (err) 5087 break; 5088 } 5089 read_unlock_bh(&head->lock); 5090 } 5091 5092 return err; 5093 } 5094 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5095 5096 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5097 struct net *net, 5098 const union sctp_addr *laddr, 5099 const union sctp_addr *paddr, void *p) 5100 { 5101 struct sctp_transport *transport; 5102 int err; 5103 5104 rcu_read_lock(); 5105 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5106 rcu_read_unlock(); 5107 if (!transport) 5108 return -ENOENT; 5109 5110 err = cb(transport, p); 5111 sctp_transport_put(transport); 5112 5113 return err; 5114 } 5115 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5116 5117 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5118 int (*cb_done)(struct sctp_transport *, void *), 5119 struct net *net, int *pos, void *p) { 5120 struct rhashtable_iter hti; 5121 struct sctp_transport *tsp; 5122 int ret; 5123 5124 again: 5125 ret = 0; 5126 sctp_transport_walk_start(&hti); 5127 5128 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5129 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5130 ret = cb(tsp, p); 5131 if (ret) 5132 break; 5133 (*pos)++; 5134 sctp_transport_put(tsp); 5135 } 5136 sctp_transport_walk_stop(&hti); 5137 5138 if (ret) { 5139 if (cb_done && !cb_done(tsp, p)) { 5140 (*pos)++; 5141 sctp_transport_put(tsp); 5142 goto again; 5143 } 5144 sctp_transport_put(tsp); 5145 } 5146 5147 return ret; 5148 } 5149 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5150 5151 /* 7.2.1 Association Status (SCTP_STATUS) 5152 5153 * Applications can retrieve current status information about an 5154 * association, including association state, peer receiver window size, 5155 * number of unacked data chunks, and number of data chunks pending 5156 * receipt. This information is read-only. 5157 */ 5158 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5159 char __user *optval, 5160 int __user *optlen) 5161 { 5162 struct sctp_status status; 5163 struct sctp_association *asoc = NULL; 5164 struct sctp_transport *transport; 5165 sctp_assoc_t associd; 5166 int retval = 0; 5167 5168 if (len < sizeof(status)) { 5169 retval = -EINVAL; 5170 goto out; 5171 } 5172 5173 len = sizeof(status); 5174 if (copy_from_user(&status, optval, len)) { 5175 retval = -EFAULT; 5176 goto out; 5177 } 5178 5179 associd = status.sstat_assoc_id; 5180 asoc = sctp_id2assoc(sk, associd); 5181 if (!asoc) { 5182 retval = -EINVAL; 5183 goto out; 5184 } 5185 5186 transport = asoc->peer.primary_path; 5187 5188 status.sstat_assoc_id = sctp_assoc2id(asoc); 5189 status.sstat_state = sctp_assoc_to_state(asoc); 5190 status.sstat_rwnd = asoc->peer.rwnd; 5191 status.sstat_unackdata = asoc->unack_data; 5192 5193 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5194 status.sstat_instrms = asoc->stream.incnt; 5195 status.sstat_outstrms = asoc->stream.outcnt; 5196 status.sstat_fragmentation_point = asoc->frag_point; 5197 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5198 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5199 transport->af_specific->sockaddr_len); 5200 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5201 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5202 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5203 status.sstat_primary.spinfo_state = transport->state; 5204 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5205 status.sstat_primary.spinfo_srtt = transport->srtt; 5206 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5207 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5208 5209 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5210 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5211 5212 if (put_user(len, optlen)) { 5213 retval = -EFAULT; 5214 goto out; 5215 } 5216 5217 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5218 __func__, len, status.sstat_state, status.sstat_rwnd, 5219 status.sstat_assoc_id); 5220 5221 if (copy_to_user(optval, &status, len)) { 5222 retval = -EFAULT; 5223 goto out; 5224 } 5225 5226 out: 5227 return retval; 5228 } 5229 5230 5231 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5232 * 5233 * Applications can retrieve information about a specific peer address 5234 * of an association, including its reachability state, congestion 5235 * window, and retransmission timer values. This information is 5236 * read-only. 5237 */ 5238 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5239 char __user *optval, 5240 int __user *optlen) 5241 { 5242 struct sctp_paddrinfo pinfo; 5243 struct sctp_transport *transport; 5244 int retval = 0; 5245 5246 if (len < sizeof(pinfo)) { 5247 retval = -EINVAL; 5248 goto out; 5249 } 5250 5251 len = sizeof(pinfo); 5252 if (copy_from_user(&pinfo, optval, len)) { 5253 retval = -EFAULT; 5254 goto out; 5255 } 5256 5257 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5258 pinfo.spinfo_assoc_id); 5259 if (!transport) 5260 return -EINVAL; 5261 5262 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5263 pinfo.spinfo_state = transport->state; 5264 pinfo.spinfo_cwnd = transport->cwnd; 5265 pinfo.spinfo_srtt = transport->srtt; 5266 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5267 pinfo.spinfo_mtu = transport->pathmtu; 5268 5269 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5270 pinfo.spinfo_state = SCTP_ACTIVE; 5271 5272 if (put_user(len, optlen)) { 5273 retval = -EFAULT; 5274 goto out; 5275 } 5276 5277 if (copy_to_user(optval, &pinfo, len)) { 5278 retval = -EFAULT; 5279 goto out; 5280 } 5281 5282 out: 5283 return retval; 5284 } 5285 5286 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5287 * 5288 * This option is a on/off flag. If enabled no SCTP message 5289 * fragmentation will be performed. Instead if a message being sent 5290 * exceeds the current PMTU size, the message will NOT be sent and 5291 * instead a error will be indicated to the user. 5292 */ 5293 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5294 char __user *optval, int __user *optlen) 5295 { 5296 int val; 5297 5298 if (len < sizeof(int)) 5299 return -EINVAL; 5300 5301 len = sizeof(int); 5302 val = (sctp_sk(sk)->disable_fragments == 1); 5303 if (put_user(len, optlen)) 5304 return -EFAULT; 5305 if (copy_to_user(optval, &val, len)) 5306 return -EFAULT; 5307 return 0; 5308 } 5309 5310 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5311 * 5312 * This socket option is used to specify various notifications and 5313 * ancillary data the user wishes to receive. 5314 */ 5315 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5316 int __user *optlen) 5317 { 5318 struct sctp_event_subscribe subscribe; 5319 __u8 *sn_type = (__u8 *)&subscribe; 5320 int i; 5321 5322 if (len == 0) 5323 return -EINVAL; 5324 if (len > sizeof(struct sctp_event_subscribe)) 5325 len = sizeof(struct sctp_event_subscribe); 5326 if (put_user(len, optlen)) 5327 return -EFAULT; 5328 5329 for (i = 0; i < len; i++) 5330 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5331 SCTP_SN_TYPE_BASE + i); 5332 5333 if (copy_to_user(optval, &subscribe, len)) 5334 return -EFAULT; 5335 5336 return 0; 5337 } 5338 5339 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5340 * 5341 * This socket option is applicable to the UDP-style socket only. When 5342 * set it will cause associations that are idle for more than the 5343 * specified number of seconds to automatically close. An association 5344 * being idle is defined an association that has NOT sent or received 5345 * user data. The special value of '0' indicates that no automatic 5346 * close of any associations should be performed. The option expects an 5347 * integer defining the number of seconds of idle time before an 5348 * association is closed. 5349 */ 5350 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5351 { 5352 /* Applicable to UDP-style socket only */ 5353 if (sctp_style(sk, TCP)) 5354 return -EOPNOTSUPP; 5355 if (len < sizeof(int)) 5356 return -EINVAL; 5357 len = sizeof(int); 5358 if (put_user(len, optlen)) 5359 return -EFAULT; 5360 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5361 return -EFAULT; 5362 return 0; 5363 } 5364 5365 /* Helper routine to branch off an association to a new socket. */ 5366 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5367 { 5368 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5369 struct sctp_sock *sp = sctp_sk(sk); 5370 struct socket *sock; 5371 int err = 0; 5372 5373 /* Do not peel off from one netns to another one. */ 5374 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5375 return -EINVAL; 5376 5377 if (!asoc) 5378 return -EINVAL; 5379 5380 /* An association cannot be branched off from an already peeled-off 5381 * socket, nor is this supported for tcp style sockets. 5382 */ 5383 if (!sctp_style(sk, UDP)) 5384 return -EINVAL; 5385 5386 /* Create a new socket. */ 5387 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5388 if (err < 0) 5389 return err; 5390 5391 sctp_copy_sock(sock->sk, sk, asoc); 5392 5393 /* Make peeled-off sockets more like 1-1 accepted sockets. 5394 * Set the daddr and initialize id to something more random and also 5395 * copy over any ip options. 5396 */ 5397 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5398 sp->pf->copy_ip_options(sk, sock->sk); 5399 5400 /* Populate the fields of the newsk from the oldsk and migrate the 5401 * asoc to the newsk. 5402 */ 5403 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5404 5405 *sockp = sock; 5406 5407 return err; 5408 } 5409 EXPORT_SYMBOL(sctp_do_peeloff); 5410 5411 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5412 struct file **newfile, unsigned flags) 5413 { 5414 struct socket *newsock; 5415 int retval; 5416 5417 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5418 if (retval < 0) 5419 goto out; 5420 5421 /* Map the socket to an unused fd that can be returned to the user. */ 5422 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5423 if (retval < 0) { 5424 sock_release(newsock); 5425 goto out; 5426 } 5427 5428 *newfile = sock_alloc_file(newsock, 0, NULL); 5429 if (IS_ERR(*newfile)) { 5430 put_unused_fd(retval); 5431 retval = PTR_ERR(*newfile); 5432 *newfile = NULL; 5433 return retval; 5434 } 5435 5436 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5437 retval); 5438 5439 peeloff->sd = retval; 5440 5441 if (flags & SOCK_NONBLOCK) 5442 (*newfile)->f_flags |= O_NONBLOCK; 5443 out: 5444 return retval; 5445 } 5446 5447 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5448 { 5449 sctp_peeloff_arg_t peeloff; 5450 struct file *newfile = NULL; 5451 int retval = 0; 5452 5453 if (len < sizeof(sctp_peeloff_arg_t)) 5454 return -EINVAL; 5455 len = sizeof(sctp_peeloff_arg_t); 5456 if (copy_from_user(&peeloff, optval, len)) 5457 return -EFAULT; 5458 5459 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5460 if (retval < 0) 5461 goto out; 5462 5463 /* Return the fd mapped to the new socket. */ 5464 if (put_user(len, optlen)) { 5465 fput(newfile); 5466 put_unused_fd(retval); 5467 return -EFAULT; 5468 } 5469 5470 if (copy_to_user(optval, &peeloff, len)) { 5471 fput(newfile); 5472 put_unused_fd(retval); 5473 return -EFAULT; 5474 } 5475 fd_install(retval, newfile); 5476 out: 5477 return retval; 5478 } 5479 5480 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5481 char __user *optval, int __user *optlen) 5482 { 5483 sctp_peeloff_flags_arg_t peeloff; 5484 struct file *newfile = NULL; 5485 int retval = 0; 5486 5487 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5488 return -EINVAL; 5489 len = sizeof(sctp_peeloff_flags_arg_t); 5490 if (copy_from_user(&peeloff, optval, len)) 5491 return -EFAULT; 5492 5493 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5494 &newfile, peeloff.flags); 5495 if (retval < 0) 5496 goto out; 5497 5498 /* Return the fd mapped to the new socket. */ 5499 if (put_user(len, optlen)) { 5500 fput(newfile); 5501 put_unused_fd(retval); 5502 return -EFAULT; 5503 } 5504 5505 if (copy_to_user(optval, &peeloff, len)) { 5506 fput(newfile); 5507 put_unused_fd(retval); 5508 return -EFAULT; 5509 } 5510 fd_install(retval, newfile); 5511 out: 5512 return retval; 5513 } 5514 5515 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5516 * 5517 * Applications can enable or disable heartbeats for any peer address of 5518 * an association, modify an address's heartbeat interval, force a 5519 * heartbeat to be sent immediately, and adjust the address's maximum 5520 * number of retransmissions sent before an address is considered 5521 * unreachable. The following structure is used to access and modify an 5522 * address's parameters: 5523 * 5524 * struct sctp_paddrparams { 5525 * sctp_assoc_t spp_assoc_id; 5526 * struct sockaddr_storage spp_address; 5527 * uint32_t spp_hbinterval; 5528 * uint16_t spp_pathmaxrxt; 5529 * uint32_t spp_pathmtu; 5530 * uint32_t spp_sackdelay; 5531 * uint32_t spp_flags; 5532 * }; 5533 * 5534 * spp_assoc_id - (one-to-many style socket) This is filled in the 5535 * application, and identifies the association for 5536 * this query. 5537 * spp_address - This specifies which address is of interest. 5538 * spp_hbinterval - This contains the value of the heartbeat interval, 5539 * in milliseconds. If a value of zero 5540 * is present in this field then no changes are to 5541 * be made to this parameter. 5542 * spp_pathmaxrxt - This contains the maximum number of 5543 * retransmissions before this address shall be 5544 * considered unreachable. If a value of zero 5545 * is present in this field then no changes are to 5546 * be made to this parameter. 5547 * spp_pathmtu - When Path MTU discovery is disabled the value 5548 * specified here will be the "fixed" path mtu. 5549 * Note that if the spp_address field is empty 5550 * then all associations on this address will 5551 * have this fixed path mtu set upon them. 5552 * 5553 * spp_sackdelay - When delayed sack is enabled, this value specifies 5554 * the number of milliseconds that sacks will be delayed 5555 * for. This value will apply to all addresses of an 5556 * association if the spp_address field is empty. Note 5557 * also, that if delayed sack is enabled and this 5558 * value is set to 0, no change is made to the last 5559 * recorded delayed sack timer value. 5560 * 5561 * spp_flags - These flags are used to control various features 5562 * on an association. The flag field may contain 5563 * zero or more of the following options. 5564 * 5565 * SPP_HB_ENABLE - Enable heartbeats on the 5566 * specified address. Note that if the address 5567 * field is empty all addresses for the association 5568 * have heartbeats enabled upon them. 5569 * 5570 * SPP_HB_DISABLE - Disable heartbeats on the 5571 * speicifed address. Note that if the address 5572 * field is empty all addresses for the association 5573 * will have their heartbeats disabled. Note also 5574 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5575 * mutually exclusive, only one of these two should 5576 * be specified. Enabling both fields will have 5577 * undetermined results. 5578 * 5579 * SPP_HB_DEMAND - Request a user initiated heartbeat 5580 * to be made immediately. 5581 * 5582 * SPP_PMTUD_ENABLE - This field will enable PMTU 5583 * discovery upon the specified address. Note that 5584 * if the address feild is empty then all addresses 5585 * on the association are effected. 5586 * 5587 * SPP_PMTUD_DISABLE - This field will disable PMTU 5588 * discovery upon the specified address. Note that 5589 * if the address feild is empty then all addresses 5590 * on the association are effected. Not also that 5591 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5592 * exclusive. Enabling both will have undetermined 5593 * results. 5594 * 5595 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5596 * on delayed sack. The time specified in spp_sackdelay 5597 * is used to specify the sack delay for this address. Note 5598 * that if spp_address is empty then all addresses will 5599 * enable delayed sack and take on the sack delay 5600 * value specified in spp_sackdelay. 5601 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5602 * off delayed sack. If the spp_address field is blank then 5603 * delayed sack is disabled for the entire association. Note 5604 * also that this field is mutually exclusive to 5605 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5606 * results. 5607 * 5608 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5609 * setting of the IPV6 flow label value. The value is 5610 * contained in the spp_ipv6_flowlabel field. 5611 * Upon retrieval, this flag will be set to indicate that 5612 * the spp_ipv6_flowlabel field has a valid value returned. 5613 * If a specific destination address is set (in the 5614 * spp_address field), then the value returned is that of 5615 * the address. If just an association is specified (and 5616 * no address), then the association's default flow label 5617 * is returned. If neither an association nor a destination 5618 * is specified, then the socket's default flow label is 5619 * returned. For non-IPv6 sockets, this flag will be left 5620 * cleared. 5621 * 5622 * SPP_DSCP: Setting this flag enables the setting of the 5623 * Differentiated Services Code Point (DSCP) value 5624 * associated with either the association or a specific 5625 * address. The value is obtained in the spp_dscp field. 5626 * Upon retrieval, this flag will be set to indicate that 5627 * the spp_dscp field has a valid value returned. If a 5628 * specific destination address is set when called (in the 5629 * spp_address field), then that specific destination 5630 * address's DSCP value is returned. If just an association 5631 * is specified, then the association's default DSCP is 5632 * returned. If neither an association nor a destination is 5633 * specified, then the socket's default DSCP is returned. 5634 * 5635 * spp_ipv6_flowlabel 5636 * - This field is used in conjunction with the 5637 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5638 * The 20 least significant bits are used for the flow 5639 * label. This setting has precedence over any IPv6-layer 5640 * setting. 5641 * 5642 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5643 * and contains the DSCP. The 6 most significant bits are 5644 * used for the DSCP. This setting has precedence over any 5645 * IPv4- or IPv6- layer setting. 5646 */ 5647 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5648 char __user *optval, int __user *optlen) 5649 { 5650 struct sctp_paddrparams params; 5651 struct sctp_transport *trans = NULL; 5652 struct sctp_association *asoc = NULL; 5653 struct sctp_sock *sp = sctp_sk(sk); 5654 5655 if (len >= sizeof(params)) 5656 len = sizeof(params); 5657 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5658 spp_ipv6_flowlabel), 4)) 5659 len = ALIGN(offsetof(struct sctp_paddrparams, 5660 spp_ipv6_flowlabel), 4); 5661 else 5662 return -EINVAL; 5663 5664 if (copy_from_user(¶ms, optval, len)) 5665 return -EFAULT; 5666 5667 /* If an address other than INADDR_ANY is specified, and 5668 * no transport is found, then the request is invalid. 5669 */ 5670 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5671 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5672 params.spp_assoc_id); 5673 if (!trans) { 5674 pr_debug("%s: failed no transport\n", __func__); 5675 return -EINVAL; 5676 } 5677 } 5678 5679 /* Get association, if assoc_id != 0 and the socket is a one 5680 * to many style socket, and an association was not found, then 5681 * the id was invalid. 5682 */ 5683 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5684 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5685 pr_debug("%s: failed no association\n", __func__); 5686 return -EINVAL; 5687 } 5688 5689 if (trans) { 5690 /* Fetch transport values. */ 5691 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5692 params.spp_pathmtu = trans->pathmtu; 5693 params.spp_pathmaxrxt = trans->pathmaxrxt; 5694 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5695 5696 /*draft-11 doesn't say what to return in spp_flags*/ 5697 params.spp_flags = trans->param_flags; 5698 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5699 params.spp_ipv6_flowlabel = trans->flowlabel & 5700 SCTP_FLOWLABEL_VAL_MASK; 5701 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5702 } 5703 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5704 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5705 params.spp_flags |= SPP_DSCP; 5706 } 5707 } else if (asoc) { 5708 /* Fetch association values. */ 5709 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5710 params.spp_pathmtu = asoc->pathmtu; 5711 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5712 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5713 5714 /*draft-11 doesn't say what to return in spp_flags*/ 5715 params.spp_flags = asoc->param_flags; 5716 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5717 params.spp_ipv6_flowlabel = asoc->flowlabel & 5718 SCTP_FLOWLABEL_VAL_MASK; 5719 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5720 } 5721 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5722 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5723 params.spp_flags |= SPP_DSCP; 5724 } 5725 } else { 5726 /* Fetch socket values. */ 5727 params.spp_hbinterval = sp->hbinterval; 5728 params.spp_pathmtu = sp->pathmtu; 5729 params.spp_sackdelay = sp->sackdelay; 5730 params.spp_pathmaxrxt = sp->pathmaxrxt; 5731 5732 /*draft-11 doesn't say what to return in spp_flags*/ 5733 params.spp_flags = sp->param_flags; 5734 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5735 params.spp_ipv6_flowlabel = sp->flowlabel & 5736 SCTP_FLOWLABEL_VAL_MASK; 5737 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5738 } 5739 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5740 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5741 params.spp_flags |= SPP_DSCP; 5742 } 5743 } 5744 5745 if (copy_to_user(optval, ¶ms, len)) 5746 return -EFAULT; 5747 5748 if (put_user(len, optlen)) 5749 return -EFAULT; 5750 5751 return 0; 5752 } 5753 5754 /* 5755 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5756 * 5757 * This option will effect the way delayed acks are performed. This 5758 * option allows you to get or set the delayed ack time, in 5759 * milliseconds. It also allows changing the delayed ack frequency. 5760 * Changing the frequency to 1 disables the delayed sack algorithm. If 5761 * the assoc_id is 0, then this sets or gets the endpoints default 5762 * values. If the assoc_id field is non-zero, then the set or get 5763 * effects the specified association for the one to many model (the 5764 * assoc_id field is ignored by the one to one model). Note that if 5765 * sack_delay or sack_freq are 0 when setting this option, then the 5766 * current values will remain unchanged. 5767 * 5768 * struct sctp_sack_info { 5769 * sctp_assoc_t sack_assoc_id; 5770 * uint32_t sack_delay; 5771 * uint32_t sack_freq; 5772 * }; 5773 * 5774 * sack_assoc_id - This parameter, indicates which association the user 5775 * is performing an action upon. Note that if this field's value is 5776 * zero then the endpoints default value is changed (effecting future 5777 * associations only). 5778 * 5779 * sack_delay - This parameter contains the number of milliseconds that 5780 * the user is requesting the delayed ACK timer be set to. Note that 5781 * this value is defined in the standard to be between 200 and 500 5782 * milliseconds. 5783 * 5784 * sack_freq - This parameter contains the number of packets that must 5785 * be received before a sack is sent without waiting for the delay 5786 * timer to expire. The default value for this is 2, setting this 5787 * value to 1 will disable the delayed sack algorithm. 5788 */ 5789 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5790 char __user *optval, 5791 int __user *optlen) 5792 { 5793 struct sctp_sack_info params; 5794 struct sctp_association *asoc = NULL; 5795 struct sctp_sock *sp = sctp_sk(sk); 5796 5797 if (len >= sizeof(struct sctp_sack_info)) { 5798 len = sizeof(struct sctp_sack_info); 5799 5800 if (copy_from_user(¶ms, optval, len)) 5801 return -EFAULT; 5802 } else if (len == sizeof(struct sctp_assoc_value)) { 5803 pr_warn_ratelimited(DEPRECATED 5804 "%s (pid %d) " 5805 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5806 "Use struct sctp_sack_info instead\n", 5807 current->comm, task_pid_nr(current)); 5808 if (copy_from_user(¶ms, optval, len)) 5809 return -EFAULT; 5810 } else 5811 return -EINVAL; 5812 5813 /* Get association, if sack_assoc_id != 0 and the socket is a one 5814 * to many style socket, and an association was not found, then 5815 * the id was invalid. 5816 */ 5817 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5818 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5819 return -EINVAL; 5820 5821 if (asoc) { 5822 /* Fetch association values. */ 5823 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5824 params.sack_delay = jiffies_to_msecs( 5825 asoc->sackdelay); 5826 params.sack_freq = asoc->sackfreq; 5827 5828 } else { 5829 params.sack_delay = 0; 5830 params.sack_freq = 1; 5831 } 5832 } else { 5833 /* Fetch socket values. */ 5834 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5835 params.sack_delay = sp->sackdelay; 5836 params.sack_freq = sp->sackfreq; 5837 } else { 5838 params.sack_delay = 0; 5839 params.sack_freq = 1; 5840 } 5841 } 5842 5843 if (copy_to_user(optval, ¶ms, len)) 5844 return -EFAULT; 5845 5846 if (put_user(len, optlen)) 5847 return -EFAULT; 5848 5849 return 0; 5850 } 5851 5852 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5853 * 5854 * Applications can specify protocol parameters for the default association 5855 * initialization. The option name argument to setsockopt() and getsockopt() 5856 * is SCTP_INITMSG. 5857 * 5858 * Setting initialization parameters is effective only on an unconnected 5859 * socket (for UDP-style sockets only future associations are effected 5860 * by the change). With TCP-style sockets, this option is inherited by 5861 * sockets derived from a listener socket. 5862 */ 5863 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5864 { 5865 if (len < sizeof(struct sctp_initmsg)) 5866 return -EINVAL; 5867 len = sizeof(struct sctp_initmsg); 5868 if (put_user(len, optlen)) 5869 return -EFAULT; 5870 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5871 return -EFAULT; 5872 return 0; 5873 } 5874 5875 5876 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5877 char __user *optval, int __user *optlen) 5878 { 5879 struct sctp_association *asoc; 5880 int cnt = 0; 5881 struct sctp_getaddrs getaddrs; 5882 struct sctp_transport *from; 5883 void __user *to; 5884 union sctp_addr temp; 5885 struct sctp_sock *sp = sctp_sk(sk); 5886 int addrlen; 5887 size_t space_left; 5888 int bytes_copied; 5889 5890 if (len < sizeof(struct sctp_getaddrs)) 5891 return -EINVAL; 5892 5893 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5894 return -EFAULT; 5895 5896 /* For UDP-style sockets, id specifies the association to query. */ 5897 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5898 if (!asoc) 5899 return -EINVAL; 5900 5901 to = optval + offsetof(struct sctp_getaddrs, addrs); 5902 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5903 5904 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5905 transports) { 5906 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5907 addrlen = sctp_get_pf_specific(sk->sk_family) 5908 ->addr_to_user(sp, &temp); 5909 if (space_left < addrlen) 5910 return -ENOMEM; 5911 if (copy_to_user(to, &temp, addrlen)) 5912 return -EFAULT; 5913 to += addrlen; 5914 cnt++; 5915 space_left -= addrlen; 5916 } 5917 5918 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5919 return -EFAULT; 5920 bytes_copied = ((char __user *)to) - optval; 5921 if (put_user(bytes_copied, optlen)) 5922 return -EFAULT; 5923 5924 return 0; 5925 } 5926 5927 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5928 size_t space_left, int *bytes_copied) 5929 { 5930 struct sctp_sockaddr_entry *addr; 5931 union sctp_addr temp; 5932 int cnt = 0; 5933 int addrlen; 5934 struct net *net = sock_net(sk); 5935 5936 rcu_read_lock(); 5937 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5938 if (!addr->valid) 5939 continue; 5940 5941 if ((PF_INET == sk->sk_family) && 5942 (AF_INET6 == addr->a.sa.sa_family)) 5943 continue; 5944 if ((PF_INET6 == sk->sk_family) && 5945 inet_v6_ipv6only(sk) && 5946 (AF_INET == addr->a.sa.sa_family)) 5947 continue; 5948 memcpy(&temp, &addr->a, sizeof(temp)); 5949 if (!temp.v4.sin_port) 5950 temp.v4.sin_port = htons(port); 5951 5952 addrlen = sctp_get_pf_specific(sk->sk_family) 5953 ->addr_to_user(sctp_sk(sk), &temp); 5954 5955 if (space_left < addrlen) { 5956 cnt = -ENOMEM; 5957 break; 5958 } 5959 memcpy(to, &temp, addrlen); 5960 5961 to += addrlen; 5962 cnt++; 5963 space_left -= addrlen; 5964 *bytes_copied += addrlen; 5965 } 5966 rcu_read_unlock(); 5967 5968 return cnt; 5969 } 5970 5971 5972 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5973 char __user *optval, int __user *optlen) 5974 { 5975 struct sctp_bind_addr *bp; 5976 struct sctp_association *asoc; 5977 int cnt = 0; 5978 struct sctp_getaddrs getaddrs; 5979 struct sctp_sockaddr_entry *addr; 5980 void __user *to; 5981 union sctp_addr temp; 5982 struct sctp_sock *sp = sctp_sk(sk); 5983 int addrlen; 5984 int err = 0; 5985 size_t space_left; 5986 int bytes_copied = 0; 5987 void *addrs; 5988 void *buf; 5989 5990 if (len < sizeof(struct sctp_getaddrs)) 5991 return -EINVAL; 5992 5993 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5994 return -EFAULT; 5995 5996 /* 5997 * For UDP-style sockets, id specifies the association to query. 5998 * If the id field is set to the value '0' then the locally bound 5999 * addresses are returned without regard to any particular 6000 * association. 6001 */ 6002 if (0 == getaddrs.assoc_id) { 6003 bp = &sctp_sk(sk)->ep->base.bind_addr; 6004 } else { 6005 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6006 if (!asoc) 6007 return -EINVAL; 6008 bp = &asoc->base.bind_addr; 6009 } 6010 6011 to = optval + offsetof(struct sctp_getaddrs, addrs); 6012 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6013 6014 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6015 if (!addrs) 6016 return -ENOMEM; 6017 6018 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6019 * addresses from the global local address list. 6020 */ 6021 if (sctp_list_single_entry(&bp->address_list)) { 6022 addr = list_entry(bp->address_list.next, 6023 struct sctp_sockaddr_entry, list); 6024 if (sctp_is_any(sk, &addr->a)) { 6025 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6026 space_left, &bytes_copied); 6027 if (cnt < 0) { 6028 err = cnt; 6029 goto out; 6030 } 6031 goto copy_getaddrs; 6032 } 6033 } 6034 6035 buf = addrs; 6036 /* Protection on the bound address list is not needed since 6037 * in the socket option context we hold a socket lock and 6038 * thus the bound address list can't change. 6039 */ 6040 list_for_each_entry(addr, &bp->address_list, list) { 6041 memcpy(&temp, &addr->a, sizeof(temp)); 6042 addrlen = sctp_get_pf_specific(sk->sk_family) 6043 ->addr_to_user(sp, &temp); 6044 if (space_left < addrlen) { 6045 err = -ENOMEM; /*fixme: right error?*/ 6046 goto out; 6047 } 6048 memcpy(buf, &temp, addrlen); 6049 buf += addrlen; 6050 bytes_copied += addrlen; 6051 cnt++; 6052 space_left -= addrlen; 6053 } 6054 6055 copy_getaddrs: 6056 if (copy_to_user(to, addrs, bytes_copied)) { 6057 err = -EFAULT; 6058 goto out; 6059 } 6060 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6061 err = -EFAULT; 6062 goto out; 6063 } 6064 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6065 * but we can't change it anymore. 6066 */ 6067 if (put_user(bytes_copied, optlen)) 6068 err = -EFAULT; 6069 out: 6070 kfree(addrs); 6071 return err; 6072 } 6073 6074 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6075 * 6076 * Requests that the local SCTP stack use the enclosed peer address as 6077 * the association primary. The enclosed address must be one of the 6078 * association peer's addresses. 6079 */ 6080 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6081 char __user *optval, int __user *optlen) 6082 { 6083 struct sctp_prim prim; 6084 struct sctp_association *asoc; 6085 struct sctp_sock *sp = sctp_sk(sk); 6086 6087 if (len < sizeof(struct sctp_prim)) 6088 return -EINVAL; 6089 6090 len = sizeof(struct sctp_prim); 6091 6092 if (copy_from_user(&prim, optval, len)) 6093 return -EFAULT; 6094 6095 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6096 if (!asoc) 6097 return -EINVAL; 6098 6099 if (!asoc->peer.primary_path) 6100 return -ENOTCONN; 6101 6102 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6103 asoc->peer.primary_path->af_specific->sockaddr_len); 6104 6105 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6106 (union sctp_addr *)&prim.ssp_addr); 6107 6108 if (put_user(len, optlen)) 6109 return -EFAULT; 6110 if (copy_to_user(optval, &prim, len)) 6111 return -EFAULT; 6112 6113 return 0; 6114 } 6115 6116 /* 6117 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6118 * 6119 * Requests that the local endpoint set the specified Adaptation Layer 6120 * Indication parameter for all future INIT and INIT-ACK exchanges. 6121 */ 6122 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6123 char __user *optval, int __user *optlen) 6124 { 6125 struct sctp_setadaptation adaptation; 6126 6127 if (len < sizeof(struct sctp_setadaptation)) 6128 return -EINVAL; 6129 6130 len = sizeof(struct sctp_setadaptation); 6131 6132 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6133 6134 if (put_user(len, optlen)) 6135 return -EFAULT; 6136 if (copy_to_user(optval, &adaptation, len)) 6137 return -EFAULT; 6138 6139 return 0; 6140 } 6141 6142 /* 6143 * 6144 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6145 * 6146 * Applications that wish to use the sendto() system call may wish to 6147 * specify a default set of parameters that would normally be supplied 6148 * through the inclusion of ancillary data. This socket option allows 6149 * such an application to set the default sctp_sndrcvinfo structure. 6150 6151 6152 * The application that wishes to use this socket option simply passes 6153 * in to this call the sctp_sndrcvinfo structure defined in Section 6154 * 5.2.2) The input parameters accepted by this call include 6155 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6156 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6157 * to this call if the caller is using the UDP model. 6158 * 6159 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6160 */ 6161 static int sctp_getsockopt_default_send_param(struct sock *sk, 6162 int len, char __user *optval, 6163 int __user *optlen) 6164 { 6165 struct sctp_sock *sp = sctp_sk(sk); 6166 struct sctp_association *asoc; 6167 struct sctp_sndrcvinfo info; 6168 6169 if (len < sizeof(info)) 6170 return -EINVAL; 6171 6172 len = sizeof(info); 6173 6174 if (copy_from_user(&info, optval, len)) 6175 return -EFAULT; 6176 6177 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6178 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 6179 return -EINVAL; 6180 if (asoc) { 6181 info.sinfo_stream = asoc->default_stream; 6182 info.sinfo_flags = asoc->default_flags; 6183 info.sinfo_ppid = asoc->default_ppid; 6184 info.sinfo_context = asoc->default_context; 6185 info.sinfo_timetolive = asoc->default_timetolive; 6186 } else { 6187 info.sinfo_stream = sp->default_stream; 6188 info.sinfo_flags = sp->default_flags; 6189 info.sinfo_ppid = sp->default_ppid; 6190 info.sinfo_context = sp->default_context; 6191 info.sinfo_timetolive = sp->default_timetolive; 6192 } 6193 6194 if (put_user(len, optlen)) 6195 return -EFAULT; 6196 if (copy_to_user(optval, &info, len)) 6197 return -EFAULT; 6198 6199 return 0; 6200 } 6201 6202 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6203 * (SCTP_DEFAULT_SNDINFO) 6204 */ 6205 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6206 char __user *optval, 6207 int __user *optlen) 6208 { 6209 struct sctp_sock *sp = sctp_sk(sk); 6210 struct sctp_association *asoc; 6211 struct sctp_sndinfo info; 6212 6213 if (len < sizeof(info)) 6214 return -EINVAL; 6215 6216 len = sizeof(info); 6217 6218 if (copy_from_user(&info, optval, len)) 6219 return -EFAULT; 6220 6221 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6222 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 6223 return -EINVAL; 6224 if (asoc) { 6225 info.snd_sid = asoc->default_stream; 6226 info.snd_flags = asoc->default_flags; 6227 info.snd_ppid = asoc->default_ppid; 6228 info.snd_context = asoc->default_context; 6229 } else { 6230 info.snd_sid = sp->default_stream; 6231 info.snd_flags = sp->default_flags; 6232 info.snd_ppid = sp->default_ppid; 6233 info.snd_context = sp->default_context; 6234 } 6235 6236 if (put_user(len, optlen)) 6237 return -EFAULT; 6238 if (copy_to_user(optval, &info, len)) 6239 return -EFAULT; 6240 6241 return 0; 6242 } 6243 6244 /* 6245 * 6246 * 7.1.5 SCTP_NODELAY 6247 * 6248 * Turn on/off any Nagle-like algorithm. This means that packets are 6249 * generally sent as soon as possible and no unnecessary delays are 6250 * introduced, at the cost of more packets in the network. Expects an 6251 * integer boolean flag. 6252 */ 6253 6254 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6255 char __user *optval, int __user *optlen) 6256 { 6257 int val; 6258 6259 if (len < sizeof(int)) 6260 return -EINVAL; 6261 6262 len = sizeof(int); 6263 val = (sctp_sk(sk)->nodelay == 1); 6264 if (put_user(len, optlen)) 6265 return -EFAULT; 6266 if (copy_to_user(optval, &val, len)) 6267 return -EFAULT; 6268 return 0; 6269 } 6270 6271 /* 6272 * 6273 * 7.1.1 SCTP_RTOINFO 6274 * 6275 * The protocol parameters used to initialize and bound retransmission 6276 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6277 * and modify these parameters. 6278 * All parameters are time values, in milliseconds. A value of 0, when 6279 * modifying the parameters, indicates that the current value should not 6280 * be changed. 6281 * 6282 */ 6283 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6284 char __user *optval, 6285 int __user *optlen) { 6286 struct sctp_rtoinfo rtoinfo; 6287 struct sctp_association *asoc; 6288 6289 if (len < sizeof (struct sctp_rtoinfo)) 6290 return -EINVAL; 6291 6292 len = sizeof(struct sctp_rtoinfo); 6293 6294 if (copy_from_user(&rtoinfo, optval, len)) 6295 return -EFAULT; 6296 6297 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6298 6299 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6300 return -EINVAL; 6301 6302 /* Values corresponding to the specific association. */ 6303 if (asoc) { 6304 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6305 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6306 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6307 } else { 6308 /* Values corresponding to the endpoint. */ 6309 struct sctp_sock *sp = sctp_sk(sk); 6310 6311 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6312 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6313 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6314 } 6315 6316 if (put_user(len, optlen)) 6317 return -EFAULT; 6318 6319 if (copy_to_user(optval, &rtoinfo, len)) 6320 return -EFAULT; 6321 6322 return 0; 6323 } 6324 6325 /* 6326 * 6327 * 7.1.2 SCTP_ASSOCINFO 6328 * 6329 * This option is used to tune the maximum retransmission attempts 6330 * of the association. 6331 * Returns an error if the new association retransmission value is 6332 * greater than the sum of the retransmission value of the peer. 6333 * See [SCTP] for more information. 6334 * 6335 */ 6336 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6337 char __user *optval, 6338 int __user *optlen) 6339 { 6340 6341 struct sctp_assocparams assocparams; 6342 struct sctp_association *asoc; 6343 struct list_head *pos; 6344 int cnt = 0; 6345 6346 if (len < sizeof (struct sctp_assocparams)) 6347 return -EINVAL; 6348 6349 len = sizeof(struct sctp_assocparams); 6350 6351 if (copy_from_user(&assocparams, optval, len)) 6352 return -EFAULT; 6353 6354 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6355 6356 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6357 return -EINVAL; 6358 6359 /* Values correspoinding to the specific association */ 6360 if (asoc) { 6361 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6362 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6363 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6364 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6365 6366 list_for_each(pos, &asoc->peer.transport_addr_list) { 6367 cnt++; 6368 } 6369 6370 assocparams.sasoc_number_peer_destinations = cnt; 6371 } else { 6372 /* Values corresponding to the endpoint */ 6373 struct sctp_sock *sp = sctp_sk(sk); 6374 6375 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6376 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6377 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6378 assocparams.sasoc_cookie_life = 6379 sp->assocparams.sasoc_cookie_life; 6380 assocparams.sasoc_number_peer_destinations = 6381 sp->assocparams. 6382 sasoc_number_peer_destinations; 6383 } 6384 6385 if (put_user(len, optlen)) 6386 return -EFAULT; 6387 6388 if (copy_to_user(optval, &assocparams, len)) 6389 return -EFAULT; 6390 6391 return 0; 6392 } 6393 6394 /* 6395 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6396 * 6397 * This socket option is a boolean flag which turns on or off mapped V4 6398 * addresses. If this option is turned on and the socket is type 6399 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6400 * If this option is turned off, then no mapping will be done of V4 6401 * addresses and a user will receive both PF_INET6 and PF_INET type 6402 * addresses on the socket. 6403 */ 6404 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6405 char __user *optval, int __user *optlen) 6406 { 6407 int val; 6408 struct sctp_sock *sp = sctp_sk(sk); 6409 6410 if (len < sizeof(int)) 6411 return -EINVAL; 6412 6413 len = sizeof(int); 6414 val = sp->v4mapped; 6415 if (put_user(len, optlen)) 6416 return -EFAULT; 6417 if (copy_to_user(optval, &val, len)) 6418 return -EFAULT; 6419 6420 return 0; 6421 } 6422 6423 /* 6424 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6425 * (chapter and verse is quoted at sctp_setsockopt_context()) 6426 */ 6427 static int sctp_getsockopt_context(struct sock *sk, int len, 6428 char __user *optval, int __user *optlen) 6429 { 6430 struct sctp_assoc_value params; 6431 struct sctp_sock *sp; 6432 struct sctp_association *asoc; 6433 6434 if (len < sizeof(struct sctp_assoc_value)) 6435 return -EINVAL; 6436 6437 len = sizeof(struct sctp_assoc_value); 6438 6439 if (copy_from_user(¶ms, optval, len)) 6440 return -EFAULT; 6441 6442 sp = sctp_sk(sk); 6443 6444 if (params.assoc_id != 0) { 6445 asoc = sctp_id2assoc(sk, params.assoc_id); 6446 if (!asoc) 6447 return -EINVAL; 6448 params.assoc_value = asoc->default_rcv_context; 6449 } else { 6450 params.assoc_value = sp->default_rcv_context; 6451 } 6452 6453 if (put_user(len, optlen)) 6454 return -EFAULT; 6455 if (copy_to_user(optval, ¶ms, len)) 6456 return -EFAULT; 6457 6458 return 0; 6459 } 6460 6461 /* 6462 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6463 * This option will get or set the maximum size to put in any outgoing 6464 * SCTP DATA chunk. If a message is larger than this size it will be 6465 * fragmented by SCTP into the specified size. Note that the underlying 6466 * SCTP implementation may fragment into smaller sized chunks when the 6467 * PMTU of the underlying association is smaller than the value set by 6468 * the user. The default value for this option is '0' which indicates 6469 * the user is NOT limiting fragmentation and only the PMTU will effect 6470 * SCTP's choice of DATA chunk size. Note also that values set larger 6471 * than the maximum size of an IP datagram will effectively let SCTP 6472 * control fragmentation (i.e. the same as setting this option to 0). 6473 * 6474 * The following structure is used to access and modify this parameter: 6475 * 6476 * struct sctp_assoc_value { 6477 * sctp_assoc_t assoc_id; 6478 * uint32_t assoc_value; 6479 * }; 6480 * 6481 * assoc_id: This parameter is ignored for one-to-one style sockets. 6482 * For one-to-many style sockets this parameter indicates which 6483 * association the user is performing an action upon. Note that if 6484 * this field's value is zero then the endpoints default value is 6485 * changed (effecting future associations only). 6486 * assoc_value: This parameter specifies the maximum size in bytes. 6487 */ 6488 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6489 char __user *optval, int __user *optlen) 6490 { 6491 struct sctp_assoc_value params; 6492 struct sctp_association *asoc; 6493 6494 if (len == sizeof(int)) { 6495 pr_warn_ratelimited(DEPRECATED 6496 "%s (pid %d) " 6497 "Use of int in maxseg socket option.\n" 6498 "Use struct sctp_assoc_value instead\n", 6499 current->comm, task_pid_nr(current)); 6500 params.assoc_id = 0; 6501 } else if (len >= sizeof(struct sctp_assoc_value)) { 6502 len = sizeof(struct sctp_assoc_value); 6503 if (copy_from_user(¶ms, optval, len)) 6504 return -EFAULT; 6505 } else 6506 return -EINVAL; 6507 6508 asoc = sctp_id2assoc(sk, params.assoc_id); 6509 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6510 return -EINVAL; 6511 6512 if (asoc) 6513 params.assoc_value = asoc->frag_point; 6514 else 6515 params.assoc_value = sctp_sk(sk)->user_frag; 6516 6517 if (put_user(len, optlen)) 6518 return -EFAULT; 6519 if (len == sizeof(int)) { 6520 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6521 return -EFAULT; 6522 } else { 6523 if (copy_to_user(optval, ¶ms, len)) 6524 return -EFAULT; 6525 } 6526 6527 return 0; 6528 } 6529 6530 /* 6531 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6532 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6533 */ 6534 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6535 char __user *optval, int __user *optlen) 6536 { 6537 int val; 6538 6539 if (len < sizeof(int)) 6540 return -EINVAL; 6541 6542 len = sizeof(int); 6543 6544 val = sctp_sk(sk)->frag_interleave; 6545 if (put_user(len, optlen)) 6546 return -EFAULT; 6547 if (copy_to_user(optval, &val, len)) 6548 return -EFAULT; 6549 6550 return 0; 6551 } 6552 6553 /* 6554 * 7.1.25. Set or Get the sctp partial delivery point 6555 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6556 */ 6557 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6558 char __user *optval, 6559 int __user *optlen) 6560 { 6561 u32 val; 6562 6563 if (len < sizeof(u32)) 6564 return -EINVAL; 6565 6566 len = sizeof(u32); 6567 6568 val = sctp_sk(sk)->pd_point; 6569 if (put_user(len, optlen)) 6570 return -EFAULT; 6571 if (copy_to_user(optval, &val, len)) 6572 return -EFAULT; 6573 6574 return 0; 6575 } 6576 6577 /* 6578 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6579 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6580 */ 6581 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6582 char __user *optval, 6583 int __user *optlen) 6584 { 6585 struct sctp_assoc_value params; 6586 struct sctp_sock *sp; 6587 struct sctp_association *asoc; 6588 6589 if (len == sizeof(int)) { 6590 pr_warn_ratelimited(DEPRECATED 6591 "%s (pid %d) " 6592 "Use of int in max_burst socket option.\n" 6593 "Use struct sctp_assoc_value instead\n", 6594 current->comm, task_pid_nr(current)); 6595 params.assoc_id = 0; 6596 } else if (len >= sizeof(struct sctp_assoc_value)) { 6597 len = sizeof(struct sctp_assoc_value); 6598 if (copy_from_user(¶ms, optval, len)) 6599 return -EFAULT; 6600 } else 6601 return -EINVAL; 6602 6603 sp = sctp_sk(sk); 6604 6605 if (params.assoc_id != 0) { 6606 asoc = sctp_id2assoc(sk, params.assoc_id); 6607 if (!asoc) 6608 return -EINVAL; 6609 params.assoc_value = asoc->max_burst; 6610 } else 6611 params.assoc_value = sp->max_burst; 6612 6613 if (len == sizeof(int)) { 6614 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6615 return -EFAULT; 6616 } else { 6617 if (copy_to_user(optval, ¶ms, len)) 6618 return -EFAULT; 6619 } 6620 6621 return 0; 6622 6623 } 6624 6625 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6626 char __user *optval, int __user *optlen) 6627 { 6628 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6629 struct sctp_hmacalgo __user *p = (void __user *)optval; 6630 struct sctp_hmac_algo_param *hmacs; 6631 __u16 data_len = 0; 6632 u32 num_idents; 6633 int i; 6634 6635 if (!ep->auth_enable) 6636 return -EACCES; 6637 6638 hmacs = ep->auth_hmacs_list; 6639 data_len = ntohs(hmacs->param_hdr.length) - 6640 sizeof(struct sctp_paramhdr); 6641 6642 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6643 return -EINVAL; 6644 6645 len = sizeof(struct sctp_hmacalgo) + data_len; 6646 num_idents = data_len / sizeof(u16); 6647 6648 if (put_user(len, optlen)) 6649 return -EFAULT; 6650 if (put_user(num_idents, &p->shmac_num_idents)) 6651 return -EFAULT; 6652 for (i = 0; i < num_idents; i++) { 6653 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6654 6655 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6656 return -EFAULT; 6657 } 6658 return 0; 6659 } 6660 6661 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6662 char __user *optval, int __user *optlen) 6663 { 6664 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6665 struct sctp_authkeyid val; 6666 struct sctp_association *asoc; 6667 6668 if (!ep->auth_enable) 6669 return -EACCES; 6670 6671 if (len < sizeof(struct sctp_authkeyid)) 6672 return -EINVAL; 6673 6674 len = sizeof(struct sctp_authkeyid); 6675 if (copy_from_user(&val, optval, len)) 6676 return -EFAULT; 6677 6678 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6679 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6680 return -EINVAL; 6681 6682 if (asoc) 6683 val.scact_keynumber = asoc->active_key_id; 6684 else 6685 val.scact_keynumber = ep->active_key_id; 6686 6687 if (put_user(len, optlen)) 6688 return -EFAULT; 6689 if (copy_to_user(optval, &val, len)) 6690 return -EFAULT; 6691 6692 return 0; 6693 } 6694 6695 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6696 char __user *optval, int __user *optlen) 6697 { 6698 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6699 struct sctp_authchunks __user *p = (void __user *)optval; 6700 struct sctp_authchunks val; 6701 struct sctp_association *asoc; 6702 struct sctp_chunks_param *ch; 6703 u32 num_chunks = 0; 6704 char __user *to; 6705 6706 if (!ep->auth_enable) 6707 return -EACCES; 6708 6709 if (len < sizeof(struct sctp_authchunks)) 6710 return -EINVAL; 6711 6712 if (copy_from_user(&val, optval, sizeof(val))) 6713 return -EFAULT; 6714 6715 to = p->gauth_chunks; 6716 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6717 if (!asoc) 6718 return -EINVAL; 6719 6720 ch = asoc->peer.peer_chunks; 6721 if (!ch) 6722 goto num; 6723 6724 /* See if the user provided enough room for all the data */ 6725 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6726 if (len < num_chunks) 6727 return -EINVAL; 6728 6729 if (copy_to_user(to, ch->chunks, num_chunks)) 6730 return -EFAULT; 6731 num: 6732 len = sizeof(struct sctp_authchunks) + num_chunks; 6733 if (put_user(len, optlen)) 6734 return -EFAULT; 6735 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6736 return -EFAULT; 6737 return 0; 6738 } 6739 6740 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6741 char __user *optval, int __user *optlen) 6742 { 6743 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6744 struct sctp_authchunks __user *p = (void __user *)optval; 6745 struct sctp_authchunks val; 6746 struct sctp_association *asoc; 6747 struct sctp_chunks_param *ch; 6748 u32 num_chunks = 0; 6749 char __user *to; 6750 6751 if (!ep->auth_enable) 6752 return -EACCES; 6753 6754 if (len < sizeof(struct sctp_authchunks)) 6755 return -EINVAL; 6756 6757 if (copy_from_user(&val, optval, sizeof(val))) 6758 return -EFAULT; 6759 6760 to = p->gauth_chunks; 6761 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6762 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6763 return -EINVAL; 6764 6765 if (asoc) 6766 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6767 else 6768 ch = ep->auth_chunk_list; 6769 6770 if (!ch) 6771 goto num; 6772 6773 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6774 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6775 return -EINVAL; 6776 6777 if (copy_to_user(to, ch->chunks, num_chunks)) 6778 return -EFAULT; 6779 num: 6780 len = sizeof(struct sctp_authchunks) + num_chunks; 6781 if (put_user(len, optlen)) 6782 return -EFAULT; 6783 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6784 return -EFAULT; 6785 6786 return 0; 6787 } 6788 6789 /* 6790 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6791 * This option gets the current number of associations that are attached 6792 * to a one-to-many style socket. The option value is an uint32_t. 6793 */ 6794 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6795 char __user *optval, int __user *optlen) 6796 { 6797 struct sctp_sock *sp = sctp_sk(sk); 6798 struct sctp_association *asoc; 6799 u32 val = 0; 6800 6801 if (sctp_style(sk, TCP)) 6802 return -EOPNOTSUPP; 6803 6804 if (len < sizeof(u32)) 6805 return -EINVAL; 6806 6807 len = sizeof(u32); 6808 6809 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6810 val++; 6811 } 6812 6813 if (put_user(len, optlen)) 6814 return -EFAULT; 6815 if (copy_to_user(optval, &val, len)) 6816 return -EFAULT; 6817 6818 return 0; 6819 } 6820 6821 /* 6822 * 8.1.23 SCTP_AUTO_ASCONF 6823 * See the corresponding setsockopt entry as description 6824 */ 6825 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6826 char __user *optval, int __user *optlen) 6827 { 6828 int val = 0; 6829 6830 if (len < sizeof(int)) 6831 return -EINVAL; 6832 6833 len = sizeof(int); 6834 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6835 val = 1; 6836 if (put_user(len, optlen)) 6837 return -EFAULT; 6838 if (copy_to_user(optval, &val, len)) 6839 return -EFAULT; 6840 return 0; 6841 } 6842 6843 /* 6844 * 8.2.6. Get the Current Identifiers of Associations 6845 * (SCTP_GET_ASSOC_ID_LIST) 6846 * 6847 * This option gets the current list of SCTP association identifiers of 6848 * the SCTP associations handled by a one-to-many style socket. 6849 */ 6850 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6851 char __user *optval, int __user *optlen) 6852 { 6853 struct sctp_sock *sp = sctp_sk(sk); 6854 struct sctp_association *asoc; 6855 struct sctp_assoc_ids *ids; 6856 u32 num = 0; 6857 6858 if (sctp_style(sk, TCP)) 6859 return -EOPNOTSUPP; 6860 6861 if (len < sizeof(struct sctp_assoc_ids)) 6862 return -EINVAL; 6863 6864 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6865 num++; 6866 } 6867 6868 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6869 return -EINVAL; 6870 6871 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6872 6873 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6874 if (unlikely(!ids)) 6875 return -ENOMEM; 6876 6877 ids->gaids_number_of_ids = num; 6878 num = 0; 6879 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6880 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6881 } 6882 6883 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6884 kfree(ids); 6885 return -EFAULT; 6886 } 6887 6888 kfree(ids); 6889 return 0; 6890 } 6891 6892 /* 6893 * SCTP_PEER_ADDR_THLDS 6894 * 6895 * This option allows us to fetch the partially failed threshold for one or all 6896 * transports in an association. See Section 6.1 of: 6897 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6898 */ 6899 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6900 char __user *optval, 6901 int len, 6902 int __user *optlen) 6903 { 6904 struct sctp_paddrthlds val; 6905 struct sctp_transport *trans; 6906 struct sctp_association *asoc; 6907 6908 if (len < sizeof(struct sctp_paddrthlds)) 6909 return -EINVAL; 6910 len = sizeof(struct sctp_paddrthlds); 6911 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6912 return -EFAULT; 6913 6914 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6915 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6916 if (!asoc) 6917 return -ENOENT; 6918 6919 val.spt_pathpfthld = asoc->pf_retrans; 6920 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6921 } else { 6922 trans = sctp_addr_id2transport(sk, &val.spt_address, 6923 val.spt_assoc_id); 6924 if (!trans) 6925 return -ENOENT; 6926 6927 val.spt_pathmaxrxt = trans->pathmaxrxt; 6928 val.spt_pathpfthld = trans->pf_retrans; 6929 } 6930 6931 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6932 return -EFAULT; 6933 6934 return 0; 6935 } 6936 6937 /* 6938 * SCTP_GET_ASSOC_STATS 6939 * 6940 * This option retrieves local per endpoint statistics. It is modeled 6941 * after OpenSolaris' implementation 6942 */ 6943 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6944 char __user *optval, 6945 int __user *optlen) 6946 { 6947 struct sctp_assoc_stats sas; 6948 struct sctp_association *asoc = NULL; 6949 6950 /* User must provide at least the assoc id */ 6951 if (len < sizeof(sctp_assoc_t)) 6952 return -EINVAL; 6953 6954 /* Allow the struct to grow and fill in as much as possible */ 6955 len = min_t(size_t, len, sizeof(sas)); 6956 6957 if (copy_from_user(&sas, optval, len)) 6958 return -EFAULT; 6959 6960 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6961 if (!asoc) 6962 return -EINVAL; 6963 6964 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6965 sas.sas_gapcnt = asoc->stats.gapcnt; 6966 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6967 sas.sas_osacks = asoc->stats.osacks; 6968 sas.sas_isacks = asoc->stats.isacks; 6969 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6970 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6971 sas.sas_oodchunks = asoc->stats.oodchunks; 6972 sas.sas_iodchunks = asoc->stats.iodchunks; 6973 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6974 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6975 sas.sas_idupchunks = asoc->stats.idupchunks; 6976 sas.sas_opackets = asoc->stats.opackets; 6977 sas.sas_ipackets = asoc->stats.ipackets; 6978 6979 /* New high max rto observed, will return 0 if not a single 6980 * RTO update took place. obs_rto_ipaddr will be bogus 6981 * in such a case 6982 */ 6983 sas.sas_maxrto = asoc->stats.max_obs_rto; 6984 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6985 sizeof(struct sockaddr_storage)); 6986 6987 /* Mark beginning of a new observation period */ 6988 asoc->stats.max_obs_rto = asoc->rto_min; 6989 6990 if (put_user(len, optlen)) 6991 return -EFAULT; 6992 6993 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6994 6995 if (copy_to_user(optval, &sas, len)) 6996 return -EFAULT; 6997 6998 return 0; 6999 } 7000 7001 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7002 char __user *optval, 7003 int __user *optlen) 7004 { 7005 int val = 0; 7006 7007 if (len < sizeof(int)) 7008 return -EINVAL; 7009 7010 len = sizeof(int); 7011 if (sctp_sk(sk)->recvrcvinfo) 7012 val = 1; 7013 if (put_user(len, optlen)) 7014 return -EFAULT; 7015 if (copy_to_user(optval, &val, len)) 7016 return -EFAULT; 7017 7018 return 0; 7019 } 7020 7021 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7022 char __user *optval, 7023 int __user *optlen) 7024 { 7025 int val = 0; 7026 7027 if (len < sizeof(int)) 7028 return -EINVAL; 7029 7030 len = sizeof(int); 7031 if (sctp_sk(sk)->recvnxtinfo) 7032 val = 1; 7033 if (put_user(len, optlen)) 7034 return -EFAULT; 7035 if (copy_to_user(optval, &val, len)) 7036 return -EFAULT; 7037 7038 return 0; 7039 } 7040 7041 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7042 char __user *optval, 7043 int __user *optlen) 7044 { 7045 struct sctp_assoc_value params; 7046 struct sctp_association *asoc; 7047 int retval = -EFAULT; 7048 7049 if (len < sizeof(params)) { 7050 retval = -EINVAL; 7051 goto out; 7052 } 7053 7054 len = sizeof(params); 7055 if (copy_from_user(¶ms, optval, len)) 7056 goto out; 7057 7058 asoc = sctp_id2assoc(sk, params.assoc_id); 7059 if (asoc) { 7060 params.assoc_value = asoc->prsctp_enable; 7061 } else if (!params.assoc_id) { 7062 struct sctp_sock *sp = sctp_sk(sk); 7063 7064 params.assoc_value = sp->ep->prsctp_enable; 7065 } else { 7066 retval = -EINVAL; 7067 goto out; 7068 } 7069 7070 if (put_user(len, optlen)) 7071 goto out; 7072 7073 if (copy_to_user(optval, ¶ms, len)) 7074 goto out; 7075 7076 retval = 0; 7077 7078 out: 7079 return retval; 7080 } 7081 7082 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7083 char __user *optval, 7084 int __user *optlen) 7085 { 7086 struct sctp_default_prinfo info; 7087 struct sctp_association *asoc; 7088 int retval = -EFAULT; 7089 7090 if (len < sizeof(info)) { 7091 retval = -EINVAL; 7092 goto out; 7093 } 7094 7095 len = sizeof(info); 7096 if (copy_from_user(&info, optval, len)) 7097 goto out; 7098 7099 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7100 if (asoc) { 7101 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7102 info.pr_value = asoc->default_timetolive; 7103 } else if (!info.pr_assoc_id) { 7104 struct sctp_sock *sp = sctp_sk(sk); 7105 7106 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7107 info.pr_value = sp->default_timetolive; 7108 } else { 7109 retval = -EINVAL; 7110 goto out; 7111 } 7112 7113 if (put_user(len, optlen)) 7114 goto out; 7115 7116 if (copy_to_user(optval, &info, len)) 7117 goto out; 7118 7119 retval = 0; 7120 7121 out: 7122 return retval; 7123 } 7124 7125 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7126 char __user *optval, 7127 int __user *optlen) 7128 { 7129 struct sctp_prstatus params; 7130 struct sctp_association *asoc; 7131 int policy; 7132 int retval = -EINVAL; 7133 7134 if (len < sizeof(params)) 7135 goto out; 7136 7137 len = sizeof(params); 7138 if (copy_from_user(¶ms, optval, len)) { 7139 retval = -EFAULT; 7140 goto out; 7141 } 7142 7143 policy = params.sprstat_policy; 7144 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7145 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7146 goto out; 7147 7148 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7149 if (!asoc) 7150 goto out; 7151 7152 if (policy == SCTP_PR_SCTP_ALL) { 7153 params.sprstat_abandoned_unsent = 0; 7154 params.sprstat_abandoned_sent = 0; 7155 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7156 params.sprstat_abandoned_unsent += 7157 asoc->abandoned_unsent[policy]; 7158 params.sprstat_abandoned_sent += 7159 asoc->abandoned_sent[policy]; 7160 } 7161 } else { 7162 params.sprstat_abandoned_unsent = 7163 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7164 params.sprstat_abandoned_sent = 7165 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7166 } 7167 7168 if (put_user(len, optlen)) { 7169 retval = -EFAULT; 7170 goto out; 7171 } 7172 7173 if (copy_to_user(optval, ¶ms, len)) { 7174 retval = -EFAULT; 7175 goto out; 7176 } 7177 7178 retval = 0; 7179 7180 out: 7181 return retval; 7182 } 7183 7184 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7185 char __user *optval, 7186 int __user *optlen) 7187 { 7188 struct sctp_stream_out_ext *streamoute; 7189 struct sctp_association *asoc; 7190 struct sctp_prstatus params; 7191 int retval = -EINVAL; 7192 int policy; 7193 7194 if (len < sizeof(params)) 7195 goto out; 7196 7197 len = sizeof(params); 7198 if (copy_from_user(¶ms, optval, len)) { 7199 retval = -EFAULT; 7200 goto out; 7201 } 7202 7203 policy = params.sprstat_policy; 7204 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7205 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7206 goto out; 7207 7208 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7209 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7210 goto out; 7211 7212 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7213 if (!streamoute) { 7214 /* Not allocated yet, means all stats are 0 */ 7215 params.sprstat_abandoned_unsent = 0; 7216 params.sprstat_abandoned_sent = 0; 7217 retval = 0; 7218 goto out; 7219 } 7220 7221 if (policy == SCTP_PR_SCTP_ALL) { 7222 params.sprstat_abandoned_unsent = 0; 7223 params.sprstat_abandoned_sent = 0; 7224 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7225 params.sprstat_abandoned_unsent += 7226 streamoute->abandoned_unsent[policy]; 7227 params.sprstat_abandoned_sent += 7228 streamoute->abandoned_sent[policy]; 7229 } 7230 } else { 7231 params.sprstat_abandoned_unsent = 7232 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7233 params.sprstat_abandoned_sent = 7234 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7235 } 7236 7237 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7238 retval = -EFAULT; 7239 goto out; 7240 } 7241 7242 retval = 0; 7243 7244 out: 7245 return retval; 7246 } 7247 7248 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7249 char __user *optval, 7250 int __user *optlen) 7251 { 7252 struct sctp_assoc_value params; 7253 struct sctp_association *asoc; 7254 int retval = -EFAULT; 7255 7256 if (len < sizeof(params)) { 7257 retval = -EINVAL; 7258 goto out; 7259 } 7260 7261 len = sizeof(params); 7262 if (copy_from_user(¶ms, optval, len)) 7263 goto out; 7264 7265 asoc = sctp_id2assoc(sk, params.assoc_id); 7266 if (asoc) { 7267 params.assoc_value = asoc->reconf_enable; 7268 } else if (!params.assoc_id) { 7269 struct sctp_sock *sp = sctp_sk(sk); 7270 7271 params.assoc_value = sp->ep->reconf_enable; 7272 } else { 7273 retval = -EINVAL; 7274 goto out; 7275 } 7276 7277 if (put_user(len, optlen)) 7278 goto out; 7279 7280 if (copy_to_user(optval, ¶ms, len)) 7281 goto out; 7282 7283 retval = 0; 7284 7285 out: 7286 return retval; 7287 } 7288 7289 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7290 char __user *optval, 7291 int __user *optlen) 7292 { 7293 struct sctp_assoc_value params; 7294 struct sctp_association *asoc; 7295 int retval = -EFAULT; 7296 7297 if (len < sizeof(params)) { 7298 retval = -EINVAL; 7299 goto out; 7300 } 7301 7302 len = sizeof(params); 7303 if (copy_from_user(¶ms, optval, len)) 7304 goto out; 7305 7306 asoc = sctp_id2assoc(sk, params.assoc_id); 7307 if (asoc) { 7308 params.assoc_value = asoc->strreset_enable; 7309 } else if (!params.assoc_id) { 7310 struct sctp_sock *sp = sctp_sk(sk); 7311 7312 params.assoc_value = sp->ep->strreset_enable; 7313 } else { 7314 retval = -EINVAL; 7315 goto out; 7316 } 7317 7318 if (put_user(len, optlen)) 7319 goto out; 7320 7321 if (copy_to_user(optval, ¶ms, len)) 7322 goto out; 7323 7324 retval = 0; 7325 7326 out: 7327 return retval; 7328 } 7329 7330 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7331 char __user *optval, 7332 int __user *optlen) 7333 { 7334 struct sctp_assoc_value params; 7335 struct sctp_association *asoc; 7336 int retval = -EFAULT; 7337 7338 if (len < sizeof(params)) { 7339 retval = -EINVAL; 7340 goto out; 7341 } 7342 7343 len = sizeof(params); 7344 if (copy_from_user(¶ms, optval, len)) 7345 goto out; 7346 7347 asoc = sctp_id2assoc(sk, params.assoc_id); 7348 if (!asoc) { 7349 retval = -EINVAL; 7350 goto out; 7351 } 7352 7353 params.assoc_value = sctp_sched_get_sched(asoc); 7354 7355 if (put_user(len, optlen)) 7356 goto out; 7357 7358 if (copy_to_user(optval, ¶ms, len)) 7359 goto out; 7360 7361 retval = 0; 7362 7363 out: 7364 return retval; 7365 } 7366 7367 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7368 char __user *optval, 7369 int __user *optlen) 7370 { 7371 struct sctp_stream_value params; 7372 struct sctp_association *asoc; 7373 int retval = -EFAULT; 7374 7375 if (len < sizeof(params)) { 7376 retval = -EINVAL; 7377 goto out; 7378 } 7379 7380 len = sizeof(params); 7381 if (copy_from_user(¶ms, optval, len)) 7382 goto out; 7383 7384 asoc = sctp_id2assoc(sk, params.assoc_id); 7385 if (!asoc) { 7386 retval = -EINVAL; 7387 goto out; 7388 } 7389 7390 retval = sctp_sched_get_value(asoc, params.stream_id, 7391 ¶ms.stream_value); 7392 if (retval) 7393 goto out; 7394 7395 if (put_user(len, optlen)) { 7396 retval = -EFAULT; 7397 goto out; 7398 } 7399 7400 if (copy_to_user(optval, ¶ms, len)) { 7401 retval = -EFAULT; 7402 goto out; 7403 } 7404 7405 out: 7406 return retval; 7407 } 7408 7409 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7410 char __user *optval, 7411 int __user *optlen) 7412 { 7413 struct sctp_assoc_value params; 7414 struct sctp_association *asoc; 7415 int retval = -EFAULT; 7416 7417 if (len < sizeof(params)) { 7418 retval = -EINVAL; 7419 goto out; 7420 } 7421 7422 len = sizeof(params); 7423 if (copy_from_user(¶ms, optval, len)) 7424 goto out; 7425 7426 asoc = sctp_id2assoc(sk, params.assoc_id); 7427 if (asoc) { 7428 params.assoc_value = asoc->intl_enable; 7429 } else if (!params.assoc_id) { 7430 struct sctp_sock *sp = sctp_sk(sk); 7431 7432 params.assoc_value = sp->strm_interleave; 7433 } else { 7434 retval = -EINVAL; 7435 goto out; 7436 } 7437 7438 if (put_user(len, optlen)) 7439 goto out; 7440 7441 if (copy_to_user(optval, ¶ms, len)) 7442 goto out; 7443 7444 retval = 0; 7445 7446 out: 7447 return retval; 7448 } 7449 7450 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7451 char __user *optval, 7452 int __user *optlen) 7453 { 7454 int val; 7455 7456 if (len < sizeof(int)) 7457 return -EINVAL; 7458 7459 len = sizeof(int); 7460 val = sctp_sk(sk)->reuse; 7461 if (put_user(len, optlen)) 7462 return -EFAULT; 7463 7464 if (copy_to_user(optval, &val, len)) 7465 return -EFAULT; 7466 7467 return 0; 7468 } 7469 7470 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7471 int __user *optlen) 7472 { 7473 struct sctp_association *asoc; 7474 struct sctp_event param; 7475 __u16 subscribe; 7476 7477 if (len < sizeof(param)) 7478 return -EINVAL; 7479 7480 len = sizeof(param); 7481 if (copy_from_user(¶m, optval, len)) 7482 return -EFAULT; 7483 7484 if (param.se_type < SCTP_SN_TYPE_BASE || 7485 param.se_type > SCTP_SN_TYPE_MAX) 7486 return -EINVAL; 7487 7488 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7489 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7490 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7491 7492 if (put_user(len, optlen)) 7493 return -EFAULT; 7494 7495 if (copy_to_user(optval, ¶m, len)) 7496 return -EFAULT; 7497 7498 return 0; 7499 } 7500 7501 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7502 char __user *optval, int __user *optlen) 7503 { 7504 int retval = 0; 7505 int len; 7506 7507 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7508 7509 /* I can hardly begin to describe how wrong this is. This is 7510 * so broken as to be worse than useless. The API draft 7511 * REALLY is NOT helpful here... I am not convinced that the 7512 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7513 * are at all well-founded. 7514 */ 7515 if (level != SOL_SCTP) { 7516 struct sctp_af *af = sctp_sk(sk)->pf->af; 7517 7518 retval = af->getsockopt(sk, level, optname, optval, optlen); 7519 return retval; 7520 } 7521 7522 if (get_user(len, optlen)) 7523 return -EFAULT; 7524 7525 if (len < 0) 7526 return -EINVAL; 7527 7528 lock_sock(sk); 7529 7530 switch (optname) { 7531 case SCTP_STATUS: 7532 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7533 break; 7534 case SCTP_DISABLE_FRAGMENTS: 7535 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7536 optlen); 7537 break; 7538 case SCTP_EVENTS: 7539 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7540 break; 7541 case SCTP_AUTOCLOSE: 7542 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7543 break; 7544 case SCTP_SOCKOPT_PEELOFF: 7545 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7546 break; 7547 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7548 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7549 break; 7550 case SCTP_PEER_ADDR_PARAMS: 7551 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7552 optlen); 7553 break; 7554 case SCTP_DELAYED_SACK: 7555 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7556 optlen); 7557 break; 7558 case SCTP_INITMSG: 7559 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7560 break; 7561 case SCTP_GET_PEER_ADDRS: 7562 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7563 optlen); 7564 break; 7565 case SCTP_GET_LOCAL_ADDRS: 7566 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7567 optlen); 7568 break; 7569 case SCTP_SOCKOPT_CONNECTX3: 7570 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7571 break; 7572 case SCTP_DEFAULT_SEND_PARAM: 7573 retval = sctp_getsockopt_default_send_param(sk, len, 7574 optval, optlen); 7575 break; 7576 case SCTP_DEFAULT_SNDINFO: 7577 retval = sctp_getsockopt_default_sndinfo(sk, len, 7578 optval, optlen); 7579 break; 7580 case SCTP_PRIMARY_ADDR: 7581 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7582 break; 7583 case SCTP_NODELAY: 7584 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7585 break; 7586 case SCTP_RTOINFO: 7587 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7588 break; 7589 case SCTP_ASSOCINFO: 7590 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7591 break; 7592 case SCTP_I_WANT_MAPPED_V4_ADDR: 7593 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7594 break; 7595 case SCTP_MAXSEG: 7596 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7597 break; 7598 case SCTP_GET_PEER_ADDR_INFO: 7599 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7600 optlen); 7601 break; 7602 case SCTP_ADAPTATION_LAYER: 7603 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7604 optlen); 7605 break; 7606 case SCTP_CONTEXT: 7607 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7608 break; 7609 case SCTP_FRAGMENT_INTERLEAVE: 7610 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7611 optlen); 7612 break; 7613 case SCTP_PARTIAL_DELIVERY_POINT: 7614 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7615 optlen); 7616 break; 7617 case SCTP_MAX_BURST: 7618 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7619 break; 7620 case SCTP_AUTH_KEY: 7621 case SCTP_AUTH_CHUNK: 7622 case SCTP_AUTH_DELETE_KEY: 7623 case SCTP_AUTH_DEACTIVATE_KEY: 7624 retval = -EOPNOTSUPP; 7625 break; 7626 case SCTP_HMAC_IDENT: 7627 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7628 break; 7629 case SCTP_AUTH_ACTIVE_KEY: 7630 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7631 break; 7632 case SCTP_PEER_AUTH_CHUNKS: 7633 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7634 optlen); 7635 break; 7636 case SCTP_LOCAL_AUTH_CHUNKS: 7637 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7638 optlen); 7639 break; 7640 case SCTP_GET_ASSOC_NUMBER: 7641 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7642 break; 7643 case SCTP_GET_ASSOC_ID_LIST: 7644 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7645 break; 7646 case SCTP_AUTO_ASCONF: 7647 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7648 break; 7649 case SCTP_PEER_ADDR_THLDS: 7650 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7651 break; 7652 case SCTP_GET_ASSOC_STATS: 7653 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7654 break; 7655 case SCTP_RECVRCVINFO: 7656 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7657 break; 7658 case SCTP_RECVNXTINFO: 7659 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7660 break; 7661 case SCTP_PR_SUPPORTED: 7662 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7663 break; 7664 case SCTP_DEFAULT_PRINFO: 7665 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7666 optlen); 7667 break; 7668 case SCTP_PR_ASSOC_STATUS: 7669 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7670 optlen); 7671 break; 7672 case SCTP_PR_STREAM_STATUS: 7673 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7674 optlen); 7675 break; 7676 case SCTP_RECONFIG_SUPPORTED: 7677 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7678 optlen); 7679 break; 7680 case SCTP_ENABLE_STREAM_RESET: 7681 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7682 optlen); 7683 break; 7684 case SCTP_STREAM_SCHEDULER: 7685 retval = sctp_getsockopt_scheduler(sk, len, optval, 7686 optlen); 7687 break; 7688 case SCTP_STREAM_SCHEDULER_VALUE: 7689 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7690 optlen); 7691 break; 7692 case SCTP_INTERLEAVING_SUPPORTED: 7693 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7694 optlen); 7695 break; 7696 case SCTP_REUSE_PORT: 7697 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7698 break; 7699 case SCTP_EVENT: 7700 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7701 break; 7702 default: 7703 retval = -ENOPROTOOPT; 7704 break; 7705 } 7706 7707 release_sock(sk); 7708 return retval; 7709 } 7710 7711 static int sctp_hash(struct sock *sk) 7712 { 7713 /* STUB */ 7714 return 0; 7715 } 7716 7717 static void sctp_unhash(struct sock *sk) 7718 { 7719 /* STUB */ 7720 } 7721 7722 /* Check if port is acceptable. Possibly find first available port. 7723 * 7724 * The port hash table (contained in the 'global' SCTP protocol storage 7725 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7726 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7727 * list (the list number is the port number hashed out, so as you 7728 * would expect from a hash function, all the ports in a given list have 7729 * such a number that hashes out to the same list number; you were 7730 * expecting that, right?); so each list has a set of ports, with a 7731 * link to the socket (struct sock) that uses it, the port number and 7732 * a fastreuse flag (FIXME: NPI ipg). 7733 */ 7734 static struct sctp_bind_bucket *sctp_bucket_create( 7735 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7736 7737 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7738 { 7739 struct sctp_sock *sp = sctp_sk(sk); 7740 bool reuse = (sk->sk_reuse || sp->reuse); 7741 struct sctp_bind_hashbucket *head; /* hash list */ 7742 kuid_t uid = sock_i_uid(sk); 7743 struct sctp_bind_bucket *pp; 7744 unsigned short snum; 7745 int ret; 7746 7747 snum = ntohs(addr->v4.sin_port); 7748 7749 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7750 7751 local_bh_disable(); 7752 7753 if (snum == 0) { 7754 /* Search for an available port. */ 7755 int low, high, remaining, index; 7756 unsigned int rover; 7757 struct net *net = sock_net(sk); 7758 7759 inet_get_local_port_range(net, &low, &high); 7760 remaining = (high - low) + 1; 7761 rover = prandom_u32() % remaining + low; 7762 7763 do { 7764 rover++; 7765 if ((rover < low) || (rover > high)) 7766 rover = low; 7767 if (inet_is_local_reserved_port(net, rover)) 7768 continue; 7769 index = sctp_phashfn(sock_net(sk), rover); 7770 head = &sctp_port_hashtable[index]; 7771 spin_lock(&head->lock); 7772 sctp_for_each_hentry(pp, &head->chain) 7773 if ((pp->port == rover) && 7774 net_eq(sock_net(sk), pp->net)) 7775 goto next; 7776 break; 7777 next: 7778 spin_unlock(&head->lock); 7779 } while (--remaining > 0); 7780 7781 /* Exhausted local port range during search? */ 7782 ret = 1; 7783 if (remaining <= 0) 7784 goto fail; 7785 7786 /* OK, here is the one we will use. HEAD (the port 7787 * hash table list entry) is non-NULL and we hold it's 7788 * mutex. 7789 */ 7790 snum = rover; 7791 } else { 7792 /* We are given an specific port number; we verify 7793 * that it is not being used. If it is used, we will 7794 * exahust the search in the hash list corresponding 7795 * to the port number (snum) - we detect that with the 7796 * port iterator, pp being NULL. 7797 */ 7798 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7799 spin_lock(&head->lock); 7800 sctp_for_each_hentry(pp, &head->chain) { 7801 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7802 goto pp_found; 7803 } 7804 } 7805 pp = NULL; 7806 goto pp_not_found; 7807 pp_found: 7808 if (!hlist_empty(&pp->owner)) { 7809 /* We had a port hash table hit - there is an 7810 * available port (pp != NULL) and it is being 7811 * used by other socket (pp->owner not empty); that other 7812 * socket is going to be sk2. 7813 */ 7814 struct sock *sk2; 7815 7816 pr_debug("%s: found a possible match\n", __func__); 7817 7818 if ((pp->fastreuse && reuse && 7819 sk->sk_state != SCTP_SS_LISTENING) || 7820 (pp->fastreuseport && sk->sk_reuseport && 7821 uid_eq(pp->fastuid, uid))) 7822 goto success; 7823 7824 /* Run through the list of sockets bound to the port 7825 * (pp->port) [via the pointers bind_next and 7826 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7827 * we get the endpoint they describe and run through 7828 * the endpoint's list of IP (v4 or v6) addresses, 7829 * comparing each of the addresses with the address of 7830 * the socket sk. If we find a match, then that means 7831 * that this port/socket (sk) combination are already 7832 * in an endpoint. 7833 */ 7834 sk_for_each_bound(sk2, &pp->owner) { 7835 struct sctp_sock *sp2 = sctp_sk(sk2); 7836 struct sctp_endpoint *ep2 = sp2->ep; 7837 7838 if (sk == sk2 || 7839 (reuse && (sk2->sk_reuse || sp2->reuse) && 7840 sk2->sk_state != SCTP_SS_LISTENING) || 7841 (sk->sk_reuseport && sk2->sk_reuseport && 7842 uid_eq(uid, sock_i_uid(sk2)))) 7843 continue; 7844 7845 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 7846 addr, sp2, sp)) { 7847 ret = (long)sk2; 7848 goto fail_unlock; 7849 } 7850 } 7851 7852 pr_debug("%s: found a match\n", __func__); 7853 } 7854 pp_not_found: 7855 /* If there was a hash table miss, create a new port. */ 7856 ret = 1; 7857 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7858 goto fail_unlock; 7859 7860 /* In either case (hit or miss), make sure fastreuse is 1 only 7861 * if sk->sk_reuse is too (that is, if the caller requested 7862 * SO_REUSEADDR on this socket -sk-). 7863 */ 7864 if (hlist_empty(&pp->owner)) { 7865 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 7866 pp->fastreuse = 1; 7867 else 7868 pp->fastreuse = 0; 7869 7870 if (sk->sk_reuseport) { 7871 pp->fastreuseport = 1; 7872 pp->fastuid = uid; 7873 } else { 7874 pp->fastreuseport = 0; 7875 } 7876 } else { 7877 if (pp->fastreuse && 7878 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 7879 pp->fastreuse = 0; 7880 7881 if (pp->fastreuseport && 7882 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 7883 pp->fastreuseport = 0; 7884 } 7885 7886 /* We are set, so fill up all the data in the hash table 7887 * entry, tie the socket list information with the rest of the 7888 * sockets FIXME: Blurry, NPI (ipg). 7889 */ 7890 success: 7891 if (!sp->bind_hash) { 7892 inet_sk(sk)->inet_num = snum; 7893 sk_add_bind_node(sk, &pp->owner); 7894 sp->bind_hash = pp; 7895 } 7896 ret = 0; 7897 7898 fail_unlock: 7899 spin_unlock(&head->lock); 7900 7901 fail: 7902 local_bh_enable(); 7903 return ret; 7904 } 7905 7906 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7907 * port is requested. 7908 */ 7909 static int sctp_get_port(struct sock *sk, unsigned short snum) 7910 { 7911 union sctp_addr addr; 7912 struct sctp_af *af = sctp_sk(sk)->pf->af; 7913 7914 /* Set up a dummy address struct from the sk. */ 7915 af->from_sk(&addr, sk); 7916 addr.v4.sin_port = htons(snum); 7917 7918 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7919 return !!sctp_get_port_local(sk, &addr); 7920 } 7921 7922 /* 7923 * Move a socket to LISTENING state. 7924 */ 7925 static int sctp_listen_start(struct sock *sk, int backlog) 7926 { 7927 struct sctp_sock *sp = sctp_sk(sk); 7928 struct sctp_endpoint *ep = sp->ep; 7929 struct crypto_shash *tfm = NULL; 7930 char alg[32]; 7931 7932 /* Allocate HMAC for generating cookie. */ 7933 if (!sp->hmac && sp->sctp_hmac_alg) { 7934 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7935 tfm = crypto_alloc_shash(alg, 0, 0); 7936 if (IS_ERR(tfm)) { 7937 net_info_ratelimited("failed to load transform for %s: %ld\n", 7938 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7939 return -ENOSYS; 7940 } 7941 sctp_sk(sk)->hmac = tfm; 7942 } 7943 7944 /* 7945 * If a bind() or sctp_bindx() is not called prior to a listen() 7946 * call that allows new associations to be accepted, the system 7947 * picks an ephemeral port and will choose an address set equivalent 7948 * to binding with a wildcard address. 7949 * 7950 * This is not currently spelled out in the SCTP sockets 7951 * extensions draft, but follows the practice as seen in TCP 7952 * sockets. 7953 * 7954 */ 7955 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7956 if (!ep->base.bind_addr.port) { 7957 if (sctp_autobind(sk)) 7958 return -EAGAIN; 7959 } else { 7960 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7961 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7962 return -EADDRINUSE; 7963 } 7964 } 7965 7966 sk->sk_max_ack_backlog = backlog; 7967 return sctp_hash_endpoint(ep); 7968 } 7969 7970 /* 7971 * 4.1.3 / 5.1.3 listen() 7972 * 7973 * By default, new associations are not accepted for UDP style sockets. 7974 * An application uses listen() to mark a socket as being able to 7975 * accept new associations. 7976 * 7977 * On TCP style sockets, applications use listen() to ready the SCTP 7978 * endpoint for accepting inbound associations. 7979 * 7980 * On both types of endpoints a backlog of '0' disables listening. 7981 * 7982 * Move a socket to LISTENING state. 7983 */ 7984 int sctp_inet_listen(struct socket *sock, int backlog) 7985 { 7986 struct sock *sk = sock->sk; 7987 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7988 int err = -EINVAL; 7989 7990 if (unlikely(backlog < 0)) 7991 return err; 7992 7993 lock_sock(sk); 7994 7995 /* Peeled-off sockets are not allowed to listen(). */ 7996 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7997 goto out; 7998 7999 if (sock->state != SS_UNCONNECTED) 8000 goto out; 8001 8002 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8003 goto out; 8004 8005 /* If backlog is zero, disable listening. */ 8006 if (!backlog) { 8007 if (sctp_sstate(sk, CLOSED)) 8008 goto out; 8009 8010 err = 0; 8011 sctp_unhash_endpoint(ep); 8012 sk->sk_state = SCTP_SS_CLOSED; 8013 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8014 sctp_sk(sk)->bind_hash->fastreuse = 1; 8015 goto out; 8016 } 8017 8018 /* If we are already listening, just update the backlog */ 8019 if (sctp_sstate(sk, LISTENING)) 8020 sk->sk_max_ack_backlog = backlog; 8021 else { 8022 err = sctp_listen_start(sk, backlog); 8023 if (err) 8024 goto out; 8025 } 8026 8027 err = 0; 8028 out: 8029 release_sock(sk); 8030 return err; 8031 } 8032 8033 /* 8034 * This function is done by modeling the current datagram_poll() and the 8035 * tcp_poll(). Note that, based on these implementations, we don't 8036 * lock the socket in this function, even though it seems that, 8037 * ideally, locking or some other mechanisms can be used to ensure 8038 * the integrity of the counters (sndbuf and wmem_alloc) used 8039 * in this place. We assume that we don't need locks either until proven 8040 * otherwise. 8041 * 8042 * Another thing to note is that we include the Async I/O support 8043 * here, again, by modeling the current TCP/UDP code. We don't have 8044 * a good way to test with it yet. 8045 */ 8046 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8047 { 8048 struct sock *sk = sock->sk; 8049 struct sctp_sock *sp = sctp_sk(sk); 8050 __poll_t mask; 8051 8052 poll_wait(file, sk_sleep(sk), wait); 8053 8054 sock_rps_record_flow(sk); 8055 8056 /* A TCP-style listening socket becomes readable when the accept queue 8057 * is not empty. 8058 */ 8059 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8060 return (!list_empty(&sp->ep->asocs)) ? 8061 (EPOLLIN | EPOLLRDNORM) : 0; 8062 8063 mask = 0; 8064 8065 /* Is there any exceptional events? */ 8066 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8067 mask |= EPOLLERR | 8068 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8069 if (sk->sk_shutdown & RCV_SHUTDOWN) 8070 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8071 if (sk->sk_shutdown == SHUTDOWN_MASK) 8072 mask |= EPOLLHUP; 8073 8074 /* Is it readable? Reconsider this code with TCP-style support. */ 8075 if (!skb_queue_empty(&sk->sk_receive_queue)) 8076 mask |= EPOLLIN | EPOLLRDNORM; 8077 8078 /* The association is either gone or not ready. */ 8079 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8080 return mask; 8081 8082 /* Is it writable? */ 8083 if (sctp_writeable(sk)) { 8084 mask |= EPOLLOUT | EPOLLWRNORM; 8085 } else { 8086 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8087 /* 8088 * Since the socket is not locked, the buffer 8089 * might be made available after the writeable check and 8090 * before the bit is set. This could cause a lost I/O 8091 * signal. tcp_poll() has a race breaker for this race 8092 * condition. Based on their implementation, we put 8093 * in the following code to cover it as well. 8094 */ 8095 if (sctp_writeable(sk)) 8096 mask |= EPOLLOUT | EPOLLWRNORM; 8097 } 8098 return mask; 8099 } 8100 8101 /******************************************************************** 8102 * 2nd Level Abstractions 8103 ********************************************************************/ 8104 8105 static struct sctp_bind_bucket *sctp_bucket_create( 8106 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8107 { 8108 struct sctp_bind_bucket *pp; 8109 8110 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8111 if (pp) { 8112 SCTP_DBG_OBJCNT_INC(bind_bucket); 8113 pp->port = snum; 8114 pp->fastreuse = 0; 8115 INIT_HLIST_HEAD(&pp->owner); 8116 pp->net = net; 8117 hlist_add_head(&pp->node, &head->chain); 8118 } 8119 return pp; 8120 } 8121 8122 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8123 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8124 { 8125 if (pp && hlist_empty(&pp->owner)) { 8126 __hlist_del(&pp->node); 8127 kmem_cache_free(sctp_bucket_cachep, pp); 8128 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8129 } 8130 } 8131 8132 /* Release this socket's reference to a local port. */ 8133 static inline void __sctp_put_port(struct sock *sk) 8134 { 8135 struct sctp_bind_hashbucket *head = 8136 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8137 inet_sk(sk)->inet_num)]; 8138 struct sctp_bind_bucket *pp; 8139 8140 spin_lock(&head->lock); 8141 pp = sctp_sk(sk)->bind_hash; 8142 __sk_del_bind_node(sk); 8143 sctp_sk(sk)->bind_hash = NULL; 8144 inet_sk(sk)->inet_num = 0; 8145 sctp_bucket_destroy(pp); 8146 spin_unlock(&head->lock); 8147 } 8148 8149 void sctp_put_port(struct sock *sk) 8150 { 8151 local_bh_disable(); 8152 __sctp_put_port(sk); 8153 local_bh_enable(); 8154 } 8155 8156 /* 8157 * The system picks an ephemeral port and choose an address set equivalent 8158 * to binding with a wildcard address. 8159 * One of those addresses will be the primary address for the association. 8160 * This automatically enables the multihoming capability of SCTP. 8161 */ 8162 static int sctp_autobind(struct sock *sk) 8163 { 8164 union sctp_addr autoaddr; 8165 struct sctp_af *af; 8166 __be16 port; 8167 8168 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8169 af = sctp_sk(sk)->pf->af; 8170 8171 port = htons(inet_sk(sk)->inet_num); 8172 af->inaddr_any(&autoaddr, port); 8173 8174 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8175 } 8176 8177 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8178 * 8179 * From RFC 2292 8180 * 4.2 The cmsghdr Structure * 8181 * 8182 * When ancillary data is sent or received, any number of ancillary data 8183 * objects can be specified by the msg_control and msg_controllen members of 8184 * the msghdr structure, because each object is preceded by 8185 * a cmsghdr structure defining the object's length (the cmsg_len member). 8186 * Historically Berkeley-derived implementations have passed only one object 8187 * at a time, but this API allows multiple objects to be 8188 * passed in a single call to sendmsg() or recvmsg(). The following example 8189 * shows two ancillary data objects in a control buffer. 8190 * 8191 * |<--------------------------- msg_controllen -------------------------->| 8192 * | | 8193 * 8194 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8195 * 8196 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8197 * | | | 8198 * 8199 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8200 * 8201 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8202 * | | | | | 8203 * 8204 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8205 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8206 * 8207 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8208 * 8209 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8210 * ^ 8211 * | 8212 * 8213 * msg_control 8214 * points here 8215 */ 8216 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8217 { 8218 struct msghdr *my_msg = (struct msghdr *)msg; 8219 struct cmsghdr *cmsg; 8220 8221 for_each_cmsghdr(cmsg, my_msg) { 8222 if (!CMSG_OK(my_msg, cmsg)) 8223 return -EINVAL; 8224 8225 /* Should we parse this header or ignore? */ 8226 if (cmsg->cmsg_level != IPPROTO_SCTP) 8227 continue; 8228 8229 /* Strictly check lengths following example in SCM code. */ 8230 switch (cmsg->cmsg_type) { 8231 case SCTP_INIT: 8232 /* SCTP Socket API Extension 8233 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8234 * 8235 * This cmsghdr structure provides information for 8236 * initializing new SCTP associations with sendmsg(). 8237 * The SCTP_INITMSG socket option uses this same data 8238 * structure. This structure is not used for 8239 * recvmsg(). 8240 * 8241 * cmsg_level cmsg_type cmsg_data[] 8242 * ------------ ------------ ---------------------- 8243 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8244 */ 8245 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8246 return -EINVAL; 8247 8248 cmsgs->init = CMSG_DATA(cmsg); 8249 break; 8250 8251 case SCTP_SNDRCV: 8252 /* SCTP Socket API Extension 8253 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8254 * 8255 * This cmsghdr structure specifies SCTP options for 8256 * sendmsg() and describes SCTP header information 8257 * about a received message through recvmsg(). 8258 * 8259 * cmsg_level cmsg_type cmsg_data[] 8260 * ------------ ------------ ---------------------- 8261 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8262 */ 8263 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8264 return -EINVAL; 8265 8266 cmsgs->srinfo = CMSG_DATA(cmsg); 8267 8268 if (cmsgs->srinfo->sinfo_flags & 8269 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8270 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8271 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8272 return -EINVAL; 8273 break; 8274 8275 case SCTP_SNDINFO: 8276 /* SCTP Socket API Extension 8277 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8278 * 8279 * This cmsghdr structure specifies SCTP options for 8280 * sendmsg(). This structure and SCTP_RCVINFO replaces 8281 * SCTP_SNDRCV which has been deprecated. 8282 * 8283 * cmsg_level cmsg_type cmsg_data[] 8284 * ------------ ------------ --------------------- 8285 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8286 */ 8287 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8288 return -EINVAL; 8289 8290 cmsgs->sinfo = CMSG_DATA(cmsg); 8291 8292 if (cmsgs->sinfo->snd_flags & 8293 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8294 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8295 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8296 return -EINVAL; 8297 break; 8298 case SCTP_PRINFO: 8299 /* SCTP Socket API Extension 8300 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8301 * 8302 * This cmsghdr structure specifies SCTP options for sendmsg(). 8303 * 8304 * cmsg_level cmsg_type cmsg_data[] 8305 * ------------ ------------ --------------------- 8306 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8307 */ 8308 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8309 return -EINVAL; 8310 8311 cmsgs->prinfo = CMSG_DATA(cmsg); 8312 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8313 return -EINVAL; 8314 8315 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8316 cmsgs->prinfo->pr_value = 0; 8317 break; 8318 case SCTP_AUTHINFO: 8319 /* SCTP Socket API Extension 8320 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8321 * 8322 * This cmsghdr structure specifies SCTP options for sendmsg(). 8323 * 8324 * cmsg_level cmsg_type cmsg_data[] 8325 * ------------ ------------ --------------------- 8326 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8327 */ 8328 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8329 return -EINVAL; 8330 8331 cmsgs->authinfo = CMSG_DATA(cmsg); 8332 break; 8333 case SCTP_DSTADDRV4: 8334 case SCTP_DSTADDRV6: 8335 /* SCTP Socket API Extension 8336 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8337 * 8338 * This cmsghdr structure specifies SCTP options for sendmsg(). 8339 * 8340 * cmsg_level cmsg_type cmsg_data[] 8341 * ------------ ------------ --------------------- 8342 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8343 * ------------ ------------ --------------------- 8344 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8345 */ 8346 cmsgs->addrs_msg = my_msg; 8347 break; 8348 default: 8349 return -EINVAL; 8350 } 8351 } 8352 8353 return 0; 8354 } 8355 8356 /* 8357 * Wait for a packet.. 8358 * Note: This function is the same function as in core/datagram.c 8359 * with a few modifications to make lksctp work. 8360 */ 8361 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8362 { 8363 int error; 8364 DEFINE_WAIT(wait); 8365 8366 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8367 8368 /* Socket errors? */ 8369 error = sock_error(sk); 8370 if (error) 8371 goto out; 8372 8373 if (!skb_queue_empty(&sk->sk_receive_queue)) 8374 goto ready; 8375 8376 /* Socket shut down? */ 8377 if (sk->sk_shutdown & RCV_SHUTDOWN) 8378 goto out; 8379 8380 /* Sequenced packets can come disconnected. If so we report the 8381 * problem. 8382 */ 8383 error = -ENOTCONN; 8384 8385 /* Is there a good reason to think that we may receive some data? */ 8386 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8387 goto out; 8388 8389 /* Handle signals. */ 8390 if (signal_pending(current)) 8391 goto interrupted; 8392 8393 /* Let another process have a go. Since we are going to sleep 8394 * anyway. Note: This may cause odd behaviors if the message 8395 * does not fit in the user's buffer, but this seems to be the 8396 * only way to honor MSG_DONTWAIT realistically. 8397 */ 8398 release_sock(sk); 8399 *timeo_p = schedule_timeout(*timeo_p); 8400 lock_sock(sk); 8401 8402 ready: 8403 finish_wait(sk_sleep(sk), &wait); 8404 return 0; 8405 8406 interrupted: 8407 error = sock_intr_errno(*timeo_p); 8408 8409 out: 8410 finish_wait(sk_sleep(sk), &wait); 8411 *err = error; 8412 return error; 8413 } 8414 8415 /* Receive a datagram. 8416 * Note: This is pretty much the same routine as in core/datagram.c 8417 * with a few changes to make lksctp work. 8418 */ 8419 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8420 int noblock, int *err) 8421 { 8422 int error; 8423 struct sk_buff *skb; 8424 long timeo; 8425 8426 timeo = sock_rcvtimeo(sk, noblock); 8427 8428 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8429 MAX_SCHEDULE_TIMEOUT); 8430 8431 do { 8432 /* Again only user level code calls this function, 8433 * so nothing interrupt level 8434 * will suddenly eat the receive_queue. 8435 * 8436 * Look at current nfs client by the way... 8437 * However, this function was correct in any case. 8) 8438 */ 8439 if (flags & MSG_PEEK) { 8440 skb = skb_peek(&sk->sk_receive_queue); 8441 if (skb) 8442 refcount_inc(&skb->users); 8443 } else { 8444 skb = __skb_dequeue(&sk->sk_receive_queue); 8445 } 8446 8447 if (skb) 8448 return skb; 8449 8450 /* Caller is allowed not to check sk->sk_err before calling. */ 8451 error = sock_error(sk); 8452 if (error) 8453 goto no_packet; 8454 8455 if (sk->sk_shutdown & RCV_SHUTDOWN) 8456 break; 8457 8458 if (sk_can_busy_loop(sk)) { 8459 sk_busy_loop(sk, noblock); 8460 8461 if (!skb_queue_empty(&sk->sk_receive_queue)) 8462 continue; 8463 } 8464 8465 /* User doesn't want to wait. */ 8466 error = -EAGAIN; 8467 if (!timeo) 8468 goto no_packet; 8469 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8470 8471 return NULL; 8472 8473 no_packet: 8474 *err = error; 8475 return NULL; 8476 } 8477 8478 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8479 static void __sctp_write_space(struct sctp_association *asoc) 8480 { 8481 struct sock *sk = asoc->base.sk; 8482 8483 if (sctp_wspace(asoc) <= 0) 8484 return; 8485 8486 if (waitqueue_active(&asoc->wait)) 8487 wake_up_interruptible(&asoc->wait); 8488 8489 if (sctp_writeable(sk)) { 8490 struct socket_wq *wq; 8491 8492 rcu_read_lock(); 8493 wq = rcu_dereference(sk->sk_wq); 8494 if (wq) { 8495 if (waitqueue_active(&wq->wait)) 8496 wake_up_interruptible(&wq->wait); 8497 8498 /* Note that we try to include the Async I/O support 8499 * here by modeling from the current TCP/UDP code. 8500 * We have not tested with it yet. 8501 */ 8502 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8503 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8504 } 8505 rcu_read_unlock(); 8506 } 8507 } 8508 8509 static void sctp_wake_up_waiters(struct sock *sk, 8510 struct sctp_association *asoc) 8511 { 8512 struct sctp_association *tmp = asoc; 8513 8514 /* We do accounting for the sndbuf space per association, 8515 * so we only need to wake our own association. 8516 */ 8517 if (asoc->ep->sndbuf_policy) 8518 return __sctp_write_space(asoc); 8519 8520 /* If association goes down and is just flushing its 8521 * outq, then just normally notify others. 8522 */ 8523 if (asoc->base.dead) 8524 return sctp_write_space(sk); 8525 8526 /* Accounting for the sndbuf space is per socket, so we 8527 * need to wake up others, try to be fair and in case of 8528 * other associations, let them have a go first instead 8529 * of just doing a sctp_write_space() call. 8530 * 8531 * Note that we reach sctp_wake_up_waiters() only when 8532 * associations free up queued chunks, thus we are under 8533 * lock and the list of associations on a socket is 8534 * guaranteed not to change. 8535 */ 8536 for (tmp = list_next_entry(tmp, asocs); 1; 8537 tmp = list_next_entry(tmp, asocs)) { 8538 /* Manually skip the head element. */ 8539 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8540 continue; 8541 /* Wake up association. */ 8542 __sctp_write_space(tmp); 8543 /* We've reached the end. */ 8544 if (tmp == asoc) 8545 break; 8546 } 8547 } 8548 8549 /* Do accounting for the sndbuf space. 8550 * Decrement the used sndbuf space of the corresponding association by the 8551 * data size which was just transmitted(freed). 8552 */ 8553 static void sctp_wfree(struct sk_buff *skb) 8554 { 8555 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8556 struct sctp_association *asoc = chunk->asoc; 8557 struct sock *sk = asoc->base.sk; 8558 8559 sk_mem_uncharge(sk, skb->truesize); 8560 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8561 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8562 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8563 &sk->sk_wmem_alloc)); 8564 8565 if (chunk->shkey) { 8566 struct sctp_shared_key *shkey = chunk->shkey; 8567 8568 /* refcnt == 2 and !list_empty mean after this release, it's 8569 * not being used anywhere, and it's time to notify userland 8570 * that this shkey can be freed if it's been deactivated. 8571 */ 8572 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8573 refcount_read(&shkey->refcnt) == 2) { 8574 struct sctp_ulpevent *ev; 8575 8576 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8577 SCTP_AUTH_FREE_KEY, 8578 GFP_KERNEL); 8579 if (ev) 8580 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8581 } 8582 sctp_auth_shkey_release(chunk->shkey); 8583 } 8584 8585 sock_wfree(skb); 8586 sctp_wake_up_waiters(sk, asoc); 8587 8588 sctp_association_put(asoc); 8589 } 8590 8591 /* Do accounting for the receive space on the socket. 8592 * Accounting for the association is done in ulpevent.c 8593 * We set this as a destructor for the cloned data skbs so that 8594 * accounting is done at the correct time. 8595 */ 8596 void sctp_sock_rfree(struct sk_buff *skb) 8597 { 8598 struct sock *sk = skb->sk; 8599 struct sctp_ulpevent *event = sctp_skb2event(skb); 8600 8601 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8602 8603 /* 8604 * Mimic the behavior of sock_rfree 8605 */ 8606 sk_mem_uncharge(sk, event->rmem_len); 8607 } 8608 8609 8610 /* Helper function to wait for space in the sndbuf. */ 8611 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8612 size_t msg_len) 8613 { 8614 struct sock *sk = asoc->base.sk; 8615 long current_timeo = *timeo_p; 8616 DEFINE_WAIT(wait); 8617 int err = 0; 8618 8619 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8620 *timeo_p, msg_len); 8621 8622 /* Increment the association's refcnt. */ 8623 sctp_association_hold(asoc); 8624 8625 /* Wait on the association specific sndbuf space. */ 8626 for (;;) { 8627 prepare_to_wait_exclusive(&asoc->wait, &wait, 8628 TASK_INTERRUPTIBLE); 8629 if (asoc->base.dead) 8630 goto do_dead; 8631 if (!*timeo_p) 8632 goto do_nonblock; 8633 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8634 goto do_error; 8635 if (signal_pending(current)) 8636 goto do_interrupted; 8637 if ((int)msg_len <= sctp_wspace(asoc)) 8638 break; 8639 8640 /* Let another process have a go. Since we are going 8641 * to sleep anyway. 8642 */ 8643 release_sock(sk); 8644 current_timeo = schedule_timeout(current_timeo); 8645 lock_sock(sk); 8646 if (sk != asoc->base.sk) 8647 goto do_error; 8648 8649 *timeo_p = current_timeo; 8650 } 8651 8652 out: 8653 finish_wait(&asoc->wait, &wait); 8654 8655 /* Release the association's refcnt. */ 8656 sctp_association_put(asoc); 8657 8658 return err; 8659 8660 do_dead: 8661 err = -ESRCH; 8662 goto out; 8663 8664 do_error: 8665 err = -EPIPE; 8666 goto out; 8667 8668 do_interrupted: 8669 err = sock_intr_errno(*timeo_p); 8670 goto out; 8671 8672 do_nonblock: 8673 err = -EAGAIN; 8674 goto out; 8675 } 8676 8677 void sctp_data_ready(struct sock *sk) 8678 { 8679 struct socket_wq *wq; 8680 8681 rcu_read_lock(); 8682 wq = rcu_dereference(sk->sk_wq); 8683 if (skwq_has_sleeper(wq)) 8684 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8685 EPOLLRDNORM | EPOLLRDBAND); 8686 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8687 rcu_read_unlock(); 8688 } 8689 8690 /* If socket sndbuf has changed, wake up all per association waiters. */ 8691 void sctp_write_space(struct sock *sk) 8692 { 8693 struct sctp_association *asoc; 8694 8695 /* Wake up the tasks in each wait queue. */ 8696 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8697 __sctp_write_space(asoc); 8698 } 8699 } 8700 8701 /* Is there any sndbuf space available on the socket? 8702 * 8703 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8704 * associations on the same socket. For a UDP-style socket with 8705 * multiple associations, it is possible for it to be "unwriteable" 8706 * prematurely. I assume that this is acceptable because 8707 * a premature "unwriteable" is better than an accidental "writeable" which 8708 * would cause an unwanted block under certain circumstances. For the 1-1 8709 * UDP-style sockets or TCP-style sockets, this code should work. 8710 * - Daisy 8711 */ 8712 static bool sctp_writeable(struct sock *sk) 8713 { 8714 return sk->sk_sndbuf > sk->sk_wmem_queued; 8715 } 8716 8717 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8718 * returns immediately with EINPROGRESS. 8719 */ 8720 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8721 { 8722 struct sock *sk = asoc->base.sk; 8723 int err = 0; 8724 long current_timeo = *timeo_p; 8725 DEFINE_WAIT(wait); 8726 8727 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8728 8729 /* Increment the association's refcnt. */ 8730 sctp_association_hold(asoc); 8731 8732 for (;;) { 8733 prepare_to_wait_exclusive(&asoc->wait, &wait, 8734 TASK_INTERRUPTIBLE); 8735 if (!*timeo_p) 8736 goto do_nonblock; 8737 if (sk->sk_shutdown & RCV_SHUTDOWN) 8738 break; 8739 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8740 asoc->base.dead) 8741 goto do_error; 8742 if (signal_pending(current)) 8743 goto do_interrupted; 8744 8745 if (sctp_state(asoc, ESTABLISHED)) 8746 break; 8747 8748 /* Let another process have a go. Since we are going 8749 * to sleep anyway. 8750 */ 8751 release_sock(sk); 8752 current_timeo = schedule_timeout(current_timeo); 8753 lock_sock(sk); 8754 8755 *timeo_p = current_timeo; 8756 } 8757 8758 out: 8759 finish_wait(&asoc->wait, &wait); 8760 8761 /* Release the association's refcnt. */ 8762 sctp_association_put(asoc); 8763 8764 return err; 8765 8766 do_error: 8767 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8768 err = -ETIMEDOUT; 8769 else 8770 err = -ECONNREFUSED; 8771 goto out; 8772 8773 do_interrupted: 8774 err = sock_intr_errno(*timeo_p); 8775 goto out; 8776 8777 do_nonblock: 8778 err = -EINPROGRESS; 8779 goto out; 8780 } 8781 8782 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8783 { 8784 struct sctp_endpoint *ep; 8785 int err = 0; 8786 DEFINE_WAIT(wait); 8787 8788 ep = sctp_sk(sk)->ep; 8789 8790 8791 for (;;) { 8792 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8793 TASK_INTERRUPTIBLE); 8794 8795 if (list_empty(&ep->asocs)) { 8796 release_sock(sk); 8797 timeo = schedule_timeout(timeo); 8798 lock_sock(sk); 8799 } 8800 8801 err = -EINVAL; 8802 if (!sctp_sstate(sk, LISTENING)) 8803 break; 8804 8805 err = 0; 8806 if (!list_empty(&ep->asocs)) 8807 break; 8808 8809 err = sock_intr_errno(timeo); 8810 if (signal_pending(current)) 8811 break; 8812 8813 err = -EAGAIN; 8814 if (!timeo) 8815 break; 8816 } 8817 8818 finish_wait(sk_sleep(sk), &wait); 8819 8820 return err; 8821 } 8822 8823 static void sctp_wait_for_close(struct sock *sk, long timeout) 8824 { 8825 DEFINE_WAIT(wait); 8826 8827 do { 8828 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8829 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8830 break; 8831 release_sock(sk); 8832 timeout = schedule_timeout(timeout); 8833 lock_sock(sk); 8834 } while (!signal_pending(current) && timeout); 8835 8836 finish_wait(sk_sleep(sk), &wait); 8837 } 8838 8839 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8840 { 8841 struct sk_buff *frag; 8842 8843 if (!skb->data_len) 8844 goto done; 8845 8846 /* Don't forget the fragments. */ 8847 skb_walk_frags(skb, frag) 8848 sctp_skb_set_owner_r_frag(frag, sk); 8849 8850 done: 8851 sctp_skb_set_owner_r(skb, sk); 8852 } 8853 8854 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8855 struct sctp_association *asoc) 8856 { 8857 struct inet_sock *inet = inet_sk(sk); 8858 struct inet_sock *newinet; 8859 struct sctp_sock *sp = sctp_sk(sk); 8860 struct sctp_endpoint *ep = sp->ep; 8861 8862 newsk->sk_type = sk->sk_type; 8863 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8864 newsk->sk_flags = sk->sk_flags; 8865 newsk->sk_tsflags = sk->sk_tsflags; 8866 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8867 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8868 newsk->sk_reuse = sk->sk_reuse; 8869 sctp_sk(newsk)->reuse = sp->reuse; 8870 8871 newsk->sk_shutdown = sk->sk_shutdown; 8872 newsk->sk_destruct = sctp_destruct_sock; 8873 newsk->sk_family = sk->sk_family; 8874 newsk->sk_protocol = IPPROTO_SCTP; 8875 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8876 newsk->sk_sndbuf = sk->sk_sndbuf; 8877 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8878 newsk->sk_lingertime = sk->sk_lingertime; 8879 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8880 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8881 newsk->sk_rxhash = sk->sk_rxhash; 8882 8883 newinet = inet_sk(newsk); 8884 8885 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8886 * getsockname() and getpeername() 8887 */ 8888 newinet->inet_sport = inet->inet_sport; 8889 newinet->inet_saddr = inet->inet_saddr; 8890 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8891 newinet->inet_dport = htons(asoc->peer.port); 8892 newinet->pmtudisc = inet->pmtudisc; 8893 newinet->inet_id = asoc->next_tsn ^ jiffies; 8894 8895 newinet->uc_ttl = inet->uc_ttl; 8896 newinet->mc_loop = 1; 8897 newinet->mc_ttl = 1; 8898 newinet->mc_index = 0; 8899 newinet->mc_list = NULL; 8900 8901 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8902 net_enable_timestamp(); 8903 8904 /* Set newsk security attributes from orginal sk and connection 8905 * security attribute from ep. 8906 */ 8907 security_sctp_sk_clone(ep, sk, newsk); 8908 } 8909 8910 static inline void sctp_copy_descendant(struct sock *sk_to, 8911 const struct sock *sk_from) 8912 { 8913 int ancestor_size = sizeof(struct inet_sock) + 8914 sizeof(struct sctp_sock) - 8915 offsetof(struct sctp_sock, auto_asconf_list); 8916 8917 if (sk_from->sk_family == PF_INET6) 8918 ancestor_size += sizeof(struct ipv6_pinfo); 8919 8920 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8921 } 8922 8923 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8924 * and its messages to the newsk. 8925 */ 8926 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8927 struct sctp_association *assoc, 8928 enum sctp_socket_type type) 8929 { 8930 struct sctp_sock *oldsp = sctp_sk(oldsk); 8931 struct sctp_sock *newsp = sctp_sk(newsk); 8932 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8933 struct sctp_endpoint *newep = newsp->ep; 8934 struct sk_buff *skb, *tmp; 8935 struct sctp_ulpevent *event; 8936 struct sctp_bind_hashbucket *head; 8937 8938 /* Migrate socket buffer sizes and all the socket level options to the 8939 * new socket. 8940 */ 8941 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8942 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8943 /* Brute force copy old sctp opt. */ 8944 sctp_copy_descendant(newsk, oldsk); 8945 8946 /* Restore the ep value that was overwritten with the above structure 8947 * copy. 8948 */ 8949 newsp->ep = newep; 8950 newsp->hmac = NULL; 8951 8952 /* Hook this new socket in to the bind_hash list. */ 8953 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8954 inet_sk(oldsk)->inet_num)]; 8955 spin_lock_bh(&head->lock); 8956 pp = sctp_sk(oldsk)->bind_hash; 8957 sk_add_bind_node(newsk, &pp->owner); 8958 sctp_sk(newsk)->bind_hash = pp; 8959 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8960 spin_unlock_bh(&head->lock); 8961 8962 /* Copy the bind_addr list from the original endpoint to the new 8963 * endpoint so that we can handle restarts properly 8964 */ 8965 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8966 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8967 8968 /* Move any messages in the old socket's receive queue that are for the 8969 * peeled off association to the new socket's receive queue. 8970 */ 8971 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8972 event = sctp_skb2event(skb); 8973 if (event->asoc == assoc) { 8974 __skb_unlink(skb, &oldsk->sk_receive_queue); 8975 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8976 sctp_skb_set_owner_r_frag(skb, newsk); 8977 } 8978 } 8979 8980 /* Clean up any messages pending delivery due to partial 8981 * delivery. Three cases: 8982 * 1) No partial deliver; no work. 8983 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8984 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8985 */ 8986 skb_queue_head_init(&newsp->pd_lobby); 8987 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8988 8989 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8990 struct sk_buff_head *queue; 8991 8992 /* Decide which queue to move pd_lobby skbs to. */ 8993 if (assoc->ulpq.pd_mode) { 8994 queue = &newsp->pd_lobby; 8995 } else 8996 queue = &newsk->sk_receive_queue; 8997 8998 /* Walk through the pd_lobby, looking for skbs that 8999 * need moved to the new socket. 9000 */ 9001 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9002 event = sctp_skb2event(skb); 9003 if (event->asoc == assoc) { 9004 __skb_unlink(skb, &oldsp->pd_lobby); 9005 __skb_queue_tail(queue, skb); 9006 sctp_skb_set_owner_r_frag(skb, newsk); 9007 } 9008 } 9009 9010 /* Clear up any skbs waiting for the partial 9011 * delivery to finish. 9012 */ 9013 if (assoc->ulpq.pd_mode) 9014 sctp_clear_pd(oldsk, NULL); 9015 9016 } 9017 9018 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9019 9020 /* Set the type of socket to indicate that it is peeled off from the 9021 * original UDP-style socket or created with the accept() call on a 9022 * TCP-style socket.. 9023 */ 9024 newsp->type = type; 9025 9026 /* Mark the new socket "in-use" by the user so that any packets 9027 * that may arrive on the association after we've moved it are 9028 * queued to the backlog. This prevents a potential race between 9029 * backlog processing on the old socket and new-packet processing 9030 * on the new socket. 9031 * 9032 * The caller has just allocated newsk so we can guarantee that other 9033 * paths won't try to lock it and then oldsk. 9034 */ 9035 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9036 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9037 sctp_assoc_migrate(assoc, newsk); 9038 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9039 9040 /* If the association on the newsk is already closed before accept() 9041 * is called, set RCV_SHUTDOWN flag. 9042 */ 9043 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9044 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9045 newsk->sk_shutdown |= RCV_SHUTDOWN; 9046 } else { 9047 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9048 } 9049 9050 release_sock(newsk); 9051 } 9052 9053 9054 /* This proto struct describes the ULP interface for SCTP. */ 9055 struct proto sctp_prot = { 9056 .name = "SCTP", 9057 .owner = THIS_MODULE, 9058 .close = sctp_close, 9059 .disconnect = sctp_disconnect, 9060 .accept = sctp_accept, 9061 .ioctl = sctp_ioctl, 9062 .init = sctp_init_sock, 9063 .destroy = sctp_destroy_sock, 9064 .shutdown = sctp_shutdown, 9065 .setsockopt = sctp_setsockopt, 9066 .getsockopt = sctp_getsockopt, 9067 .sendmsg = sctp_sendmsg, 9068 .recvmsg = sctp_recvmsg, 9069 .bind = sctp_bind, 9070 .backlog_rcv = sctp_backlog_rcv, 9071 .hash = sctp_hash, 9072 .unhash = sctp_unhash, 9073 .get_port = sctp_get_port, 9074 .obj_size = sizeof(struct sctp_sock), 9075 .useroffset = offsetof(struct sctp_sock, subscribe), 9076 .usersize = offsetof(struct sctp_sock, initmsg) - 9077 offsetof(struct sctp_sock, subscribe) + 9078 sizeof_field(struct sctp_sock, initmsg), 9079 .sysctl_mem = sysctl_sctp_mem, 9080 .sysctl_rmem = sysctl_sctp_rmem, 9081 .sysctl_wmem = sysctl_sctp_wmem, 9082 .memory_pressure = &sctp_memory_pressure, 9083 .enter_memory_pressure = sctp_enter_memory_pressure, 9084 .memory_allocated = &sctp_memory_allocated, 9085 .sockets_allocated = &sctp_sockets_allocated, 9086 }; 9087 9088 #if IS_ENABLED(CONFIG_IPV6) 9089 9090 #include <net/transp_v6.h> 9091 static void sctp_v6_destroy_sock(struct sock *sk) 9092 { 9093 sctp_destroy_sock(sk); 9094 inet6_destroy_sock(sk); 9095 } 9096 9097 struct proto sctpv6_prot = { 9098 .name = "SCTPv6", 9099 .owner = THIS_MODULE, 9100 .close = sctp_close, 9101 .disconnect = sctp_disconnect, 9102 .accept = sctp_accept, 9103 .ioctl = sctp_ioctl, 9104 .init = sctp_init_sock, 9105 .destroy = sctp_v6_destroy_sock, 9106 .shutdown = sctp_shutdown, 9107 .setsockopt = sctp_setsockopt, 9108 .getsockopt = sctp_getsockopt, 9109 .sendmsg = sctp_sendmsg, 9110 .recvmsg = sctp_recvmsg, 9111 .bind = sctp_bind, 9112 .backlog_rcv = sctp_backlog_rcv, 9113 .hash = sctp_hash, 9114 .unhash = sctp_unhash, 9115 .get_port = sctp_get_port, 9116 .obj_size = sizeof(struct sctp6_sock), 9117 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9118 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9119 offsetof(struct sctp6_sock, sctp.subscribe) + 9120 sizeof_field(struct sctp6_sock, sctp.initmsg), 9121 .sysctl_mem = sysctl_sctp_mem, 9122 .sysctl_rmem = sysctl_sctp_rmem, 9123 .sysctl_wmem = sysctl_sctp_wmem, 9124 .memory_pressure = &sctp_memory_pressure, 9125 .enter_memory_pressure = sctp_enter_memory_pressure, 9126 .memory_allocated = &sctp_memory_allocated, 9127 .sockets_allocated = &sctp_sockets_allocated, 9128 }; 9129 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9130