xref: /openbmc/linux/net/sctp/socket.c (revision 738f6ba1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 #define traverse_and_process()	\
151 do {				\
152 	msg = chunk->msg;	\
153 	if (msg == prev_msg)	\
154 		continue;	\
155 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
156 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
157 		    (!clear && asoc->base.sk != c->skb->sk))	\
158 			cb(c);	\
159 	}			\
160 	prev_msg = msg;		\
161 } while (0)
162 
163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 				       bool clear,
165 				       void (*cb)(struct sctp_chunk *))
166 
167 {
168 	struct sctp_datamsg *msg, *prev_msg = NULL;
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_chunk *chunk, *c;
171 	struct sctp_transport *t;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			traverse_and_process();
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		traverse_and_process();
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		traverse_and_process();
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		traverse_and_process();
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		traverse_and_process();
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && inet_port_requires_bind_service(net, snum) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if (sctp_get_port_local(sk, addr))
418 		return -EADDRINUSE;
419 
420 	/* Refresh ephemeral port.  */
421 	if (!bp->port)
422 		bp->port = inet_sk(sk)->inet_num;
423 
424 	/* Add the address to the bind address list.
425 	 * Use GFP_ATOMIC since BHs will be disabled.
426 	 */
427 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
428 				 SCTP_ADDR_SRC, GFP_ATOMIC);
429 
430 	if (ret) {
431 		sctp_put_port(sk);
432 		return ret;
433 	}
434 	/* Copy back into socket for getsockname() use. */
435 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
436 	sp->pf->to_sk_saddr(addr, sk);
437 
438 	return ret;
439 }
440 
441  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
442  *
443  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
444  * at any one time.  If a sender, after sending an ASCONF chunk, decides
445  * it needs to transfer another ASCONF Chunk, it MUST wait until the
446  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
447  * subsequent ASCONF. Note this restriction binds each side, so at any
448  * time two ASCONF may be in-transit on any given association (one sent
449  * from each endpoint).
450  */
451 static int sctp_send_asconf(struct sctp_association *asoc,
452 			    struct sctp_chunk *chunk)
453 {
454 	int retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct sctp_sock		*sp;
543 	struct sctp_endpoint		*ep;
544 	struct sctp_association		*asoc;
545 	struct sctp_bind_addr		*bp;
546 	struct sctp_chunk		*chunk;
547 	struct sctp_sockaddr_entry	*laddr;
548 	union sctp_addr			*addr;
549 	union sctp_addr			saveaddr;
550 	void				*addr_buf;
551 	struct sctp_af			*af;
552 	struct list_head		*p;
553 	int 				i;
554 	int 				retval = 0;
555 
556 	sp = sctp_sk(sk);
557 	ep = sp->ep;
558 
559 	if (!ep->asconf_enable)
560 		return retval;
561 
562 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
563 		 __func__, sk, addrs, addrcnt);
564 
565 	list_for_each_entry(asoc, &ep->asocs, asocs) {
566 		if (!asoc->peer.asconf_capable)
567 			continue;
568 
569 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
570 			continue;
571 
572 		if (!sctp_state(asoc, ESTABLISHED))
573 			continue;
574 
575 		/* Check if any address in the packed array of addresses is
576 		 * in the bind address list of the association. If so,
577 		 * do not send the asconf chunk to its peer, but continue with
578 		 * other associations.
579 		 */
580 		addr_buf = addrs;
581 		for (i = 0; i < addrcnt; i++) {
582 			addr = addr_buf;
583 			af = sctp_get_af_specific(addr->v4.sin_family);
584 			if (!af) {
585 				retval = -EINVAL;
586 				goto out;
587 			}
588 
589 			if (sctp_assoc_lookup_laddr(asoc, addr))
590 				break;
591 
592 			addr_buf += af->sockaddr_len;
593 		}
594 		if (i < addrcnt)
595 			continue;
596 
597 		/* Use the first valid address in bind addr list of
598 		 * association as Address Parameter of ASCONF CHUNK.
599 		 */
600 		bp = &asoc->base.bind_addr;
601 		p = bp->address_list.next;
602 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
603 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
604 						   addrcnt, SCTP_PARAM_ADD_IP);
605 		if (!chunk) {
606 			retval = -ENOMEM;
607 			goto out;
608 		}
609 
610 		/* Add the new addresses to the bind address list with
611 		 * use_as_src set to 0.
612 		 */
613 		addr_buf = addrs;
614 		for (i = 0; i < addrcnt; i++) {
615 			addr = addr_buf;
616 			af = sctp_get_af_specific(addr->v4.sin_family);
617 			memcpy(&saveaddr, addr, af->sockaddr_len);
618 			retval = sctp_add_bind_addr(bp, &saveaddr,
619 						    sizeof(saveaddr),
620 						    SCTP_ADDR_NEW, GFP_ATOMIC);
621 			addr_buf += af->sockaddr_len;
622 		}
623 		if (asoc->src_out_of_asoc_ok) {
624 			struct sctp_transport *trans;
625 
626 			list_for_each_entry(trans,
627 			    &asoc->peer.transport_addr_list, transports) {
628 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 				    2*asoc->pathmtu, 4380));
630 				trans->ssthresh = asoc->peer.i.a_rwnd;
631 				trans->rto = asoc->rto_initial;
632 				sctp_max_rto(asoc, trans);
633 				trans->rtt = trans->srtt = trans->rttvar = 0;
634 				/* Clear the source and route cache */
635 				sctp_transport_route(trans, NULL,
636 						     sctp_sk(asoc->base.sk));
637 			}
638 		}
639 		retval = sctp_send_asconf(asoc, chunk);
640 	}
641 
642 out:
643 	return retval;
644 }
645 
646 /* Remove a list of addresses from bind addresses list.  Do not remove the
647  * last address.
648  *
649  * Basically run through each address specified in the addrs/addrcnt
650  * array/length pair, determine if it is IPv6 or IPv4 and call
651  * sctp_del_bind() on it.
652  *
653  * If any of them fails, then the operation will be reversed and the
654  * ones that were removed will be added back.
655  *
656  * At least one address has to be left; if only one address is
657  * available, the operation will return -EBUSY.
658  *
659  * Only sctp_setsockopt_bindx() is supposed to call this function.
660  */
661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662 {
663 	struct sctp_sock *sp = sctp_sk(sk);
664 	struct sctp_endpoint *ep = sp->ep;
665 	int cnt;
666 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 	int retval = 0;
668 	void *addr_buf;
669 	union sctp_addr *sa_addr;
670 	struct sctp_af *af;
671 
672 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 		 __func__, sk, addrs, addrcnt);
674 
675 	addr_buf = addrs;
676 	for (cnt = 0; cnt < addrcnt; cnt++) {
677 		/* If the bind address list is empty or if there is only one
678 		 * bind address, there is nothing more to be removed (we need
679 		 * at least one address here).
680 		 */
681 		if (list_empty(&bp->address_list) ||
682 		    (sctp_list_single_entry(&bp->address_list))) {
683 			retval = -EBUSY;
684 			goto err_bindx_rem;
685 		}
686 
687 		sa_addr = addr_buf;
688 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 		if (!af) {
690 			retval = -EINVAL;
691 			goto err_bindx_rem;
692 		}
693 
694 		if (!af->addr_valid(sa_addr, sp, NULL)) {
695 			retval = -EADDRNOTAVAIL;
696 			goto err_bindx_rem;
697 		}
698 
699 		if (sa_addr->v4.sin_port &&
700 		    sa_addr->v4.sin_port != htons(bp->port)) {
701 			retval = -EINVAL;
702 			goto err_bindx_rem;
703 		}
704 
705 		if (!sa_addr->v4.sin_port)
706 			sa_addr->v4.sin_port = htons(bp->port);
707 
708 		/* FIXME - There is probably a need to check if sk->sk_saddr and
709 		 * sk->sk_rcv_addr are currently set to one of the addresses to
710 		 * be removed. This is something which needs to be looked into
711 		 * when we are fixing the outstanding issues with multi-homing
712 		 * socket routing and failover schemes. Refer to comments in
713 		 * sctp_do_bind(). -daisy
714 		 */
715 		retval = sctp_del_bind_addr(bp, sa_addr);
716 
717 		addr_buf += af->sockaddr_len;
718 err_bindx_rem:
719 		if (retval < 0) {
720 			/* Failed. Add the ones that has been removed back */
721 			if (cnt > 0)
722 				sctp_bindx_add(sk, addrs, cnt);
723 			return retval;
724 		}
725 	}
726 
727 	return retval;
728 }
729 
730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731  * the associations that are part of the endpoint indicating that a list of
732  * local addresses are removed from the endpoint.
733  *
734  * If any of the addresses is already in the bind address list of the
735  * association, we do not send the chunk for that association.  But it will not
736  * affect other associations.
737  *
738  * Only sctp_setsockopt_bindx() is supposed to call this function.
739  */
740 static int sctp_send_asconf_del_ip(struct sock		*sk,
741 				   struct sockaddr	*addrs,
742 				   int			addrcnt)
743 {
744 	struct sctp_sock	*sp;
745 	struct sctp_endpoint	*ep;
746 	struct sctp_association	*asoc;
747 	struct sctp_transport	*transport;
748 	struct sctp_bind_addr	*bp;
749 	struct sctp_chunk	*chunk;
750 	union sctp_addr		*laddr;
751 	void			*addr_buf;
752 	struct sctp_af		*af;
753 	struct sctp_sockaddr_entry *saddr;
754 	int 			i;
755 	int 			retval = 0;
756 	int			stored = 0;
757 
758 	chunk = NULL;
759 	sp = sctp_sk(sk);
760 	ep = sp->ep;
761 
762 	if (!ep->asconf_enable)
763 		return retval;
764 
765 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 		 __func__, sk, addrs, addrcnt);
767 
768 	list_for_each_entry(asoc, &ep->asocs, asocs) {
769 
770 		if (!asoc->peer.asconf_capable)
771 			continue;
772 
773 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 			continue;
775 
776 		if (!sctp_state(asoc, ESTABLISHED))
777 			continue;
778 
779 		/* Check if any address in the packed array of addresses is
780 		 * not present in the bind address list of the association.
781 		 * If so, do not send the asconf chunk to its peer, but
782 		 * continue with other associations.
783 		 */
784 		addr_buf = addrs;
785 		for (i = 0; i < addrcnt; i++) {
786 			laddr = addr_buf;
787 			af = sctp_get_af_specific(laddr->v4.sin_family);
788 			if (!af) {
789 				retval = -EINVAL;
790 				goto out;
791 			}
792 
793 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 				break;
795 
796 			addr_buf += af->sockaddr_len;
797 		}
798 		if (i < addrcnt)
799 			continue;
800 
801 		/* Find one address in the association's bind address list
802 		 * that is not in the packed array of addresses. This is to
803 		 * make sure that we do not delete all the addresses in the
804 		 * association.
805 		 */
806 		bp = &asoc->base.bind_addr;
807 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 					       addrcnt, sp);
809 		if ((laddr == NULL) && (addrcnt == 1)) {
810 			if (asoc->asconf_addr_del_pending)
811 				continue;
812 			asoc->asconf_addr_del_pending =
813 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 			if (asoc->asconf_addr_del_pending == NULL) {
815 				retval = -ENOMEM;
816 				goto out;
817 			}
818 			asoc->asconf_addr_del_pending->sa.sa_family =
819 				    addrs->sa_family;
820 			asoc->asconf_addr_del_pending->v4.sin_port =
821 				    htons(bp->port);
822 			if (addrs->sa_family == AF_INET) {
823 				struct sockaddr_in *sin;
824 
825 				sin = (struct sockaddr_in *)addrs;
826 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 			} else if (addrs->sa_family == AF_INET6) {
828 				struct sockaddr_in6 *sin6;
829 
830 				sin6 = (struct sockaddr_in6 *)addrs;
831 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 			}
833 
834 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 				 asoc->asconf_addr_del_pending);
837 
838 			asoc->src_out_of_asoc_ok = 1;
839 			stored = 1;
840 			goto skip_mkasconf;
841 		}
842 
843 		if (laddr == NULL)
844 			return -EINVAL;
845 
846 		/* We do not need RCU protection throughout this loop
847 		 * because this is done under a socket lock from the
848 		 * setsockopt call.
849 		 */
850 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 						   SCTP_PARAM_DEL_IP);
852 		if (!chunk) {
853 			retval = -ENOMEM;
854 			goto out;
855 		}
856 
857 skip_mkasconf:
858 		/* Reset use_as_src flag for the addresses in the bind address
859 		 * list that are to be deleted.
860 		 */
861 		addr_buf = addrs;
862 		for (i = 0; i < addrcnt; i++) {
863 			laddr = addr_buf;
864 			af = sctp_get_af_specific(laddr->v4.sin_family);
865 			list_for_each_entry(saddr, &bp->address_list, list) {
866 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 					saddr->state = SCTP_ADDR_DEL;
868 			}
869 			addr_buf += af->sockaddr_len;
870 		}
871 
872 		/* Update the route and saddr entries for all the transports
873 		 * as some of the addresses in the bind address list are
874 		 * about to be deleted and cannot be used as source addresses.
875 		 */
876 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 					transports) {
878 			sctp_transport_route(transport, NULL,
879 					     sctp_sk(asoc->base.sk));
880 		}
881 
882 		if (stored)
883 			/* We don't need to transmit ASCONF */
884 			continue;
885 		retval = sctp_send_asconf(asoc, chunk);
886 	}
887 out:
888 	return retval;
889 }
890 
891 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
893 {
894 	struct sock *sk = sctp_opt2sk(sp);
895 	union sctp_addr *addr;
896 	struct sctp_af *af;
897 
898 	/* It is safe to write port space in caller. */
899 	addr = &addrw->a;
900 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
901 	af = sctp_get_af_specific(addr->sa.sa_family);
902 	if (!af)
903 		return -EINVAL;
904 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
905 		return -EINVAL;
906 
907 	if (addrw->state == SCTP_ADDR_NEW)
908 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
909 	else
910 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
911 }
912 
913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
914  *
915  * API 8.1
916  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
917  *                int flags);
918  *
919  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
920  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
921  * or IPv6 addresses.
922  *
923  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
924  * Section 3.1.2 for this usage.
925  *
926  * addrs is a pointer to an array of one or more socket addresses. Each
927  * address is contained in its appropriate structure (i.e. struct
928  * sockaddr_in or struct sockaddr_in6) the family of the address type
929  * must be used to distinguish the address length (note that this
930  * representation is termed a "packed array" of addresses). The caller
931  * specifies the number of addresses in the array with addrcnt.
932  *
933  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
934  * -1, and sets errno to the appropriate error code.
935  *
936  * For SCTP, the port given in each socket address must be the same, or
937  * sctp_bindx() will fail, setting errno to EINVAL.
938  *
939  * The flags parameter is formed from the bitwise OR of zero or more of
940  * the following currently defined flags:
941  *
942  * SCTP_BINDX_ADD_ADDR
943  *
944  * SCTP_BINDX_REM_ADDR
945  *
946  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
947  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
948  * addresses from the association. The two flags are mutually exclusive;
949  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
950  * not remove all addresses from an association; sctp_bindx() will
951  * reject such an attempt with EINVAL.
952  *
953  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
954  * additional addresses with an endpoint after calling bind().  Or use
955  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
956  * socket is associated with so that no new association accepted will be
957  * associated with those addresses. If the endpoint supports dynamic
958  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
959  * endpoint to send the appropriate message to the peer to change the
960  * peers address lists.
961  *
962  * Adding and removing addresses from a connected association is
963  * optional functionality. Implementations that do not support this
964  * functionality should return EOPNOTSUPP.
965  *
966  * Basically do nothing but copying the addresses from user to kernel
967  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
968  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
969  * from userspace.
970  *
971  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
972  * it.
973  *
974  * sk        The sk of the socket
975  * addrs     The pointer to the addresses
976  * addrssize Size of the addrs buffer
977  * op        Operation to perform (add or remove, see the flags of
978  *           sctp_bindx)
979  *
980  * Returns 0 if ok, <0 errno code on error.
981  */
982 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
983 				 int addrs_size, int op)
984 {
985 	int err;
986 	int addrcnt = 0;
987 	int walk_size = 0;
988 	struct sockaddr *sa_addr;
989 	void *addr_buf = addrs;
990 	struct sctp_af *af;
991 
992 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
993 		 __func__, sk, addr_buf, addrs_size, op);
994 
995 	if (unlikely(addrs_size <= 0))
996 		return -EINVAL;
997 
998 	/* Walk through the addrs buffer and count the number of addresses. */
999 	while (walk_size < addrs_size) {
1000 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1001 			return -EINVAL;
1002 
1003 		sa_addr = addr_buf;
1004 		af = sctp_get_af_specific(sa_addr->sa_family);
1005 
1006 		/* If the address family is not supported or if this address
1007 		 * causes the address buffer to overflow return EINVAL.
1008 		 */
1009 		if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1010 			return -EINVAL;
1011 		addrcnt++;
1012 		addr_buf += af->sockaddr_len;
1013 		walk_size += af->sockaddr_len;
1014 	}
1015 
1016 	/* Do the work. */
1017 	switch (op) {
1018 	case SCTP_BINDX_ADD_ADDR:
1019 		/* Allow security module to validate bindx addresses. */
1020 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1021 						 addrs, addrs_size);
1022 		if (err)
1023 			return err;
1024 		err = sctp_bindx_add(sk, addrs, addrcnt);
1025 		if (err)
1026 			return err;
1027 		return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1028 	case SCTP_BINDX_REM_ADDR:
1029 		err = sctp_bindx_rem(sk, addrs, addrcnt);
1030 		if (err)
1031 			return err;
1032 		return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1033 
1034 	default:
1035 		return -EINVAL;
1036 	}
1037 }
1038 
1039 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1040 		int addrlen)
1041 {
1042 	int err;
1043 
1044 	lock_sock(sk);
1045 	err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1046 	release_sock(sk);
1047 	return err;
1048 }
1049 
1050 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1051 				 const union sctp_addr *daddr,
1052 				 const struct sctp_initmsg *init,
1053 				 struct sctp_transport **tp)
1054 {
1055 	struct sctp_association *asoc;
1056 	struct sock *sk = ep->base.sk;
1057 	struct net *net = sock_net(sk);
1058 	enum sctp_scope scope;
1059 	int err;
1060 
1061 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1062 		return -EADDRNOTAVAIL;
1063 
1064 	if (!ep->base.bind_addr.port) {
1065 		if (sctp_autobind(sk))
1066 			return -EAGAIN;
1067 	} else {
1068 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1069 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1070 			return -EACCES;
1071 	}
1072 
1073 	scope = sctp_scope(daddr);
1074 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 	if (!asoc)
1076 		return -ENOMEM;
1077 
1078 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1079 	if (err < 0)
1080 		goto free;
1081 
1082 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1083 	if (!*tp) {
1084 		err = -ENOMEM;
1085 		goto free;
1086 	}
1087 
1088 	if (!init)
1089 		return 0;
1090 
1091 	if (init->sinit_num_ostreams) {
1092 		__u16 outcnt = init->sinit_num_ostreams;
1093 
1094 		asoc->c.sinit_num_ostreams = outcnt;
1095 		/* outcnt has been changed, need to re-init stream */
1096 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1097 		if (err)
1098 			goto free;
1099 	}
1100 
1101 	if (init->sinit_max_instreams)
1102 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1103 
1104 	if (init->sinit_max_attempts)
1105 		asoc->max_init_attempts = init->sinit_max_attempts;
1106 
1107 	if (init->sinit_max_init_timeo)
1108 		asoc->max_init_timeo =
1109 			msecs_to_jiffies(init->sinit_max_init_timeo);
1110 
1111 	return 0;
1112 free:
1113 	sctp_association_free(asoc);
1114 	return err;
1115 }
1116 
1117 static int sctp_connect_add_peer(struct sctp_association *asoc,
1118 				 union sctp_addr *daddr, int addr_len)
1119 {
1120 	struct sctp_endpoint *ep = asoc->ep;
1121 	struct sctp_association *old;
1122 	struct sctp_transport *t;
1123 	int err;
1124 
1125 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1126 	if (err)
1127 		return err;
1128 
1129 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1130 	if (old && old != asoc)
1131 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1132 							    : -EALREADY;
1133 
1134 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1135 		return -EADDRNOTAVAIL;
1136 
1137 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1138 	if (!t)
1139 		return -ENOMEM;
1140 
1141 	return 0;
1142 }
1143 
1144 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1145  *
1146  * Common routine for handling connect() and sctp_connectx().
1147  * Connect will come in with just a single address.
1148  */
1149 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1150 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1151 {
1152 	struct sctp_sock *sp = sctp_sk(sk);
1153 	struct sctp_endpoint *ep = sp->ep;
1154 	struct sctp_transport *transport;
1155 	struct sctp_association *asoc;
1156 	void *addr_buf = kaddrs;
1157 	union sctp_addr *daddr;
1158 	struct sctp_af *af;
1159 	int walk_size, err;
1160 	long timeo;
1161 
1162 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1163 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1164 		return -EISCONN;
1165 
1166 	daddr = addr_buf;
1167 	af = sctp_get_af_specific(daddr->sa.sa_family);
1168 	if (!af || af->sockaddr_len > addrs_size)
1169 		return -EINVAL;
1170 
1171 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1172 	if (err)
1173 		return err;
1174 
1175 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1176 	if (asoc)
1177 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1178 							     : -EALREADY;
1179 
1180 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1181 	if (err)
1182 		return err;
1183 	asoc = transport->asoc;
1184 
1185 	addr_buf += af->sockaddr_len;
1186 	walk_size = af->sockaddr_len;
1187 	while (walk_size < addrs_size) {
1188 		err = -EINVAL;
1189 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1190 			goto out_free;
1191 
1192 		daddr = addr_buf;
1193 		af = sctp_get_af_specific(daddr->sa.sa_family);
1194 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1195 			goto out_free;
1196 
1197 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1198 			goto out_free;
1199 
1200 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1201 		if (err)
1202 			goto out_free;
1203 
1204 		addr_buf  += af->sockaddr_len;
1205 		walk_size += af->sockaddr_len;
1206 	}
1207 
1208 	/* In case the user of sctp_connectx() wants an association
1209 	 * id back, assign one now.
1210 	 */
1211 	if (assoc_id) {
1212 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1213 		if (err < 0)
1214 			goto out_free;
1215 	}
1216 
1217 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1218 	if (err < 0)
1219 		goto out_free;
1220 
1221 	/* Initialize sk's dport and daddr for getpeername() */
1222 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1223 	sp->pf->to_sk_daddr(daddr, sk);
1224 	sk->sk_err = 0;
1225 
1226 	if (assoc_id)
1227 		*assoc_id = asoc->assoc_id;
1228 
1229 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1230 	return sctp_wait_for_connect(asoc, &timeo);
1231 
1232 out_free:
1233 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1234 		 __func__, asoc, kaddrs, err);
1235 	sctp_association_free(asoc);
1236 	return err;
1237 }
1238 
1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1240  *
1241  * API 8.9
1242  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1243  * 			sctp_assoc_t *asoc);
1244  *
1245  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1246  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1247  * or IPv6 addresses.
1248  *
1249  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1250  * Section 3.1.2 for this usage.
1251  *
1252  * addrs is a pointer to an array of one or more socket addresses. Each
1253  * address is contained in its appropriate structure (i.e. struct
1254  * sockaddr_in or struct sockaddr_in6) the family of the address type
1255  * must be used to distengish the address length (note that this
1256  * representation is termed a "packed array" of addresses). The caller
1257  * specifies the number of addresses in the array with addrcnt.
1258  *
1259  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1260  * the association id of the new association.  On failure, sctp_connectx()
1261  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1262  * is not touched by the kernel.
1263  *
1264  * For SCTP, the port given in each socket address must be the same, or
1265  * sctp_connectx() will fail, setting errno to EINVAL.
1266  *
1267  * An application can use sctp_connectx to initiate an association with
1268  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1269  * allows a caller to specify multiple addresses at which a peer can be
1270  * reached.  The way the SCTP stack uses the list of addresses to set up
1271  * the association is implementation dependent.  This function only
1272  * specifies that the stack will try to make use of all the addresses in
1273  * the list when needed.
1274  *
1275  * Note that the list of addresses passed in is only used for setting up
1276  * the association.  It does not necessarily equal the set of addresses
1277  * the peer uses for the resulting association.  If the caller wants to
1278  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1279  * retrieve them after the association has been set up.
1280  *
1281  * Basically do nothing but copying the addresses from user to kernel
1282  * land and invoking either sctp_connectx(). This is used for tunneling
1283  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1284  *
1285  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1286  * it.
1287  *
1288  * sk        The sk of the socket
1289  * addrs     The pointer to the addresses
1290  * addrssize Size of the addrs buffer
1291  *
1292  * Returns >=0 if ok, <0 errno code on error.
1293  */
1294 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1295 				      int addrs_size, sctp_assoc_t *assoc_id)
1296 {
1297 	int err = 0, flags = 0;
1298 
1299 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1300 		 __func__, sk, kaddrs, addrs_size);
1301 
1302 	/* make sure the 1st addr's sa_family is accessible later */
1303 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1304 		return -EINVAL;
1305 
1306 	/* Allow security module to validate connectx addresses. */
1307 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1308 					 (struct sockaddr *)kaddrs,
1309 					  addrs_size);
1310 	if (err)
1311 		return err;
1312 
1313 	/* in-kernel sockets don't generally have a file allocated to them
1314 	 * if all they do is call sock_create_kern().
1315 	 */
1316 	if (sk->sk_socket->file)
1317 		flags = sk->sk_socket->file->f_flags;
1318 
1319 	return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1320 }
1321 
1322 /*
1323  * This is an older interface.  It's kept for backward compatibility
1324  * to the option that doesn't provide association id.
1325  */
1326 static int sctp_setsockopt_connectx_old(struct sock *sk,
1327 					struct sockaddr *kaddrs,
1328 					int addrs_size)
1329 {
1330 	return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1331 }
1332 
1333 /*
1334  * New interface for the API.  The since the API is done with a socket
1335  * option, to make it simple we feed back the association id is as a return
1336  * indication to the call.  Error is always negative and association id is
1337  * always positive.
1338  */
1339 static int sctp_setsockopt_connectx(struct sock *sk,
1340 				    struct sockaddr *kaddrs,
1341 				    int addrs_size)
1342 {
1343 	sctp_assoc_t assoc_id = 0;
1344 	int err = 0;
1345 
1346 	err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1347 
1348 	if (err)
1349 		return err;
1350 	else
1351 		return assoc_id;
1352 }
1353 
1354 /*
1355  * New (hopefully final) interface for the API.
1356  * We use the sctp_getaddrs_old structure so that use-space library
1357  * can avoid any unnecessary allocations. The only different part
1358  * is that we store the actual length of the address buffer into the
1359  * addrs_num structure member. That way we can re-use the existing
1360  * code.
1361  */
1362 #ifdef CONFIG_COMPAT
1363 struct compat_sctp_getaddrs_old {
1364 	sctp_assoc_t	assoc_id;
1365 	s32		addr_num;
1366 	compat_uptr_t	addrs;		/* struct sockaddr * */
1367 };
1368 #endif
1369 
1370 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1371 				     char __user *optval,
1372 				     int __user *optlen)
1373 {
1374 	struct sctp_getaddrs_old param;
1375 	sctp_assoc_t assoc_id = 0;
1376 	struct sockaddr *kaddrs;
1377 	int err = 0;
1378 
1379 #ifdef CONFIG_COMPAT
1380 	if (in_compat_syscall()) {
1381 		struct compat_sctp_getaddrs_old param32;
1382 
1383 		if (len < sizeof(param32))
1384 			return -EINVAL;
1385 		if (copy_from_user(&param32, optval, sizeof(param32)))
1386 			return -EFAULT;
1387 
1388 		param.assoc_id = param32.assoc_id;
1389 		param.addr_num = param32.addr_num;
1390 		param.addrs = compat_ptr(param32.addrs);
1391 	} else
1392 #endif
1393 	{
1394 		if (len < sizeof(param))
1395 			return -EINVAL;
1396 		if (copy_from_user(&param, optval, sizeof(param)))
1397 			return -EFAULT;
1398 	}
1399 
1400 	kaddrs = memdup_user(param.addrs, param.addr_num);
1401 	if (IS_ERR(kaddrs))
1402 		return PTR_ERR(kaddrs);
1403 
1404 	err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1405 	kfree(kaddrs);
1406 	if (err == 0 || err == -EINPROGRESS) {
1407 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 			return -EFAULT;
1409 		if (put_user(sizeof(assoc_id), optlen))
1410 			return -EFAULT;
1411 	}
1412 
1413 	return err;
1414 }
1415 
1416 /* API 3.1.4 close() - UDP Style Syntax
1417  * Applications use close() to perform graceful shutdown (as described in
1418  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419  * by a UDP-style socket.
1420  *
1421  * The syntax is
1422  *
1423  *   ret = close(int sd);
1424  *
1425  *   sd      - the socket descriptor of the associations to be closed.
1426  *
1427  * To gracefully shutdown a specific association represented by the
1428  * UDP-style socket, an application should use the sendmsg() call,
1429  * passing no user data, but including the appropriate flag in the
1430  * ancillary data (see Section xxxx).
1431  *
1432  * If sd in the close() call is a branched-off socket representing only
1433  * one association, the shutdown is performed on that association only.
1434  *
1435  * 4.1.6 close() - TCP Style Syntax
1436  *
1437  * Applications use close() to gracefully close down an association.
1438  *
1439  * The syntax is:
1440  *
1441  *    int close(int sd);
1442  *
1443  *      sd      - the socket descriptor of the association to be closed.
1444  *
1445  * After an application calls close() on a socket descriptor, no further
1446  * socket operations will succeed on that descriptor.
1447  *
1448  * API 7.1.4 SO_LINGER
1449  *
1450  * An application using the TCP-style socket can use this option to
1451  * perform the SCTP ABORT primitive.  The linger option structure is:
1452  *
1453  *  struct  linger {
1454  *     int     l_onoff;                // option on/off
1455  *     int     l_linger;               // linger time
1456  * };
1457  *
1458  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1459  * to 0, calling close() is the same as the ABORT primitive.  If the
1460  * value is set to a negative value, the setsockopt() call will return
1461  * an error.  If the value is set to a positive value linger_time, the
1462  * close() can be blocked for at most linger_time ms.  If the graceful
1463  * shutdown phase does not finish during this period, close() will
1464  * return but the graceful shutdown phase continues in the system.
1465  */
1466 static void sctp_close(struct sock *sk, long timeout)
1467 {
1468 	struct net *net = sock_net(sk);
1469 	struct sctp_endpoint *ep;
1470 	struct sctp_association *asoc;
1471 	struct list_head *pos, *temp;
1472 	unsigned int data_was_unread;
1473 
1474 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1475 
1476 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1477 	sk->sk_shutdown = SHUTDOWN_MASK;
1478 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1479 
1480 	ep = sctp_sk(sk)->ep;
1481 
1482 	/* Clean up any skbs sitting on the receive queue.  */
1483 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485 
1486 	/* Walk all associations on an endpoint.  */
1487 	list_for_each_safe(pos, temp, &ep->asocs) {
1488 		asoc = list_entry(pos, struct sctp_association, asocs);
1489 
1490 		if (sctp_style(sk, TCP)) {
1491 			/* A closed association can still be in the list if
1492 			 * it belongs to a TCP-style listening socket that is
1493 			 * not yet accepted. If so, free it. If not, send an
1494 			 * ABORT or SHUTDOWN based on the linger options.
1495 			 */
1496 			if (sctp_state(asoc, CLOSED)) {
1497 				sctp_association_free(asoc);
1498 				continue;
1499 			}
1500 		}
1501 
1502 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1503 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1504 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1505 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 			struct sctp_chunk *chunk;
1507 
1508 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 			sctp_primitive_ABORT(net, asoc, chunk);
1510 		} else
1511 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1512 	}
1513 
1514 	/* On a TCP-style socket, block for at most linger_time if set. */
1515 	if (sctp_style(sk, TCP) && timeout)
1516 		sctp_wait_for_close(sk, timeout);
1517 
1518 	/* This will run the backlog queue.  */
1519 	release_sock(sk);
1520 
1521 	/* Supposedly, no process has access to the socket, but
1522 	 * the net layers still may.
1523 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1524 	 * held and that should be grabbed before socket lock.
1525 	 */
1526 	spin_lock_bh(&net->sctp.addr_wq_lock);
1527 	bh_lock_sock_nested(sk);
1528 
1529 	/* Hold the sock, since sk_common_release() will put sock_put()
1530 	 * and we have just a little more cleanup.
1531 	 */
1532 	sock_hold(sk);
1533 	sk_common_release(sk);
1534 
1535 	bh_unlock_sock(sk);
1536 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1537 
1538 	sock_put(sk);
1539 
1540 	SCTP_DBG_OBJCNT_DEC(sock);
1541 }
1542 
1543 /* Handle EPIPE error. */
1544 static int sctp_error(struct sock *sk, int flags, int err)
1545 {
1546 	if (err == -EPIPE)
1547 		err = sock_error(sk) ? : -EPIPE;
1548 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1549 		send_sig(SIGPIPE, current, 0);
1550 	return err;
1551 }
1552 
1553 /* API 3.1.3 sendmsg() - UDP Style Syntax
1554  *
1555  * An application uses sendmsg() and recvmsg() calls to transmit data to
1556  * and receive data from its peer.
1557  *
1558  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1559  *                  int flags);
1560  *
1561  *  socket  - the socket descriptor of the endpoint.
1562  *  message - pointer to the msghdr structure which contains a single
1563  *            user message and possibly some ancillary data.
1564  *
1565  *            See Section 5 for complete description of the data
1566  *            structures.
1567  *
1568  *  flags   - flags sent or received with the user message, see Section
1569  *            5 for complete description of the flags.
1570  *
1571  * Note:  This function could use a rewrite especially when explicit
1572  * connect support comes in.
1573  */
1574 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1575 
1576 static int sctp_msghdr_parse(const struct msghdr *msg,
1577 			     struct sctp_cmsgs *cmsgs);
1578 
1579 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1580 			      struct sctp_sndrcvinfo *srinfo,
1581 			      const struct msghdr *msg, size_t msg_len)
1582 {
1583 	__u16 sflags;
1584 	int err;
1585 
1586 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1587 		return -EPIPE;
1588 
1589 	if (msg_len > sk->sk_sndbuf)
1590 		return -EMSGSIZE;
1591 
1592 	memset(cmsgs, 0, sizeof(*cmsgs));
1593 	err = sctp_msghdr_parse(msg, cmsgs);
1594 	if (err) {
1595 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1596 		return err;
1597 	}
1598 
1599 	memset(srinfo, 0, sizeof(*srinfo));
1600 	if (cmsgs->srinfo) {
1601 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1602 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1603 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1604 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1605 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1606 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1607 	}
1608 
1609 	if (cmsgs->sinfo) {
1610 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1611 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1612 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1613 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1614 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1615 	}
1616 
1617 	if (cmsgs->prinfo) {
1618 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1619 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1620 				   cmsgs->prinfo->pr_policy);
1621 	}
1622 
1623 	sflags = srinfo->sinfo_flags;
1624 	if (!sflags && msg_len)
1625 		return 0;
1626 
1627 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1628 		return -EINVAL;
1629 
1630 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1631 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1632 		return -EINVAL;
1633 
1634 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1635 		return -EINVAL;
1636 
1637 	return 0;
1638 }
1639 
1640 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1641 				 struct sctp_cmsgs *cmsgs,
1642 				 union sctp_addr *daddr,
1643 				 struct sctp_transport **tp)
1644 {
1645 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1646 	struct sctp_association *asoc;
1647 	struct cmsghdr *cmsg;
1648 	__be32 flowinfo = 0;
1649 	struct sctp_af *af;
1650 	int err;
1651 
1652 	*tp = NULL;
1653 
1654 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1655 		return -EINVAL;
1656 
1657 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1658 				    sctp_sstate(sk, CLOSING)))
1659 		return -EADDRNOTAVAIL;
1660 
1661 	/* Label connection socket for first association 1-to-many
1662 	 * style for client sequence socket()->sendmsg(). This
1663 	 * needs to be done before sctp_assoc_add_peer() as that will
1664 	 * set up the initial packet that needs to account for any
1665 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1666 	 */
1667 	af = sctp_get_af_specific(daddr->sa.sa_family);
1668 	if (!af)
1669 		return -EINVAL;
1670 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1671 					 (struct sockaddr *)daddr,
1672 					 af->sockaddr_len);
1673 	if (err < 0)
1674 		return err;
1675 
1676 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1677 	if (err)
1678 		return err;
1679 	asoc = (*tp)->asoc;
1680 
1681 	if (!cmsgs->addrs_msg)
1682 		return 0;
1683 
1684 	if (daddr->sa.sa_family == AF_INET6)
1685 		flowinfo = daddr->v6.sin6_flowinfo;
1686 
1687 	/* sendv addr list parse */
1688 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1689 		union sctp_addr _daddr;
1690 		int dlen;
1691 
1692 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1693 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1694 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1695 			continue;
1696 
1697 		daddr = &_daddr;
1698 		memset(daddr, 0, sizeof(*daddr));
1699 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1700 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1701 			if (dlen < sizeof(struct in_addr)) {
1702 				err = -EINVAL;
1703 				goto free;
1704 			}
1705 
1706 			dlen = sizeof(struct in_addr);
1707 			daddr->v4.sin_family = AF_INET;
1708 			daddr->v4.sin_port = htons(asoc->peer.port);
1709 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1710 		} else {
1711 			if (dlen < sizeof(struct in6_addr)) {
1712 				err = -EINVAL;
1713 				goto free;
1714 			}
1715 
1716 			dlen = sizeof(struct in6_addr);
1717 			daddr->v6.sin6_flowinfo = flowinfo;
1718 			daddr->v6.sin6_family = AF_INET6;
1719 			daddr->v6.sin6_port = htons(asoc->peer.port);
1720 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1721 		}
1722 
1723 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1724 		if (err)
1725 			goto free;
1726 	}
1727 
1728 	return 0;
1729 
1730 free:
1731 	sctp_association_free(asoc);
1732 	return err;
1733 }
1734 
1735 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1736 				     __u16 sflags, struct msghdr *msg,
1737 				     size_t msg_len)
1738 {
1739 	struct sock *sk = asoc->base.sk;
1740 	struct net *net = sock_net(sk);
1741 
1742 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1743 		return -EPIPE;
1744 
1745 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1746 	    !sctp_state(asoc, ESTABLISHED))
1747 		return 0;
1748 
1749 	if (sflags & SCTP_EOF) {
1750 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1751 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1752 
1753 		return 0;
1754 	}
1755 
1756 	if (sflags & SCTP_ABORT) {
1757 		struct sctp_chunk *chunk;
1758 
1759 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1760 		if (!chunk)
1761 			return -ENOMEM;
1762 
1763 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1764 		sctp_primitive_ABORT(net, asoc, chunk);
1765 		iov_iter_revert(&msg->msg_iter, msg_len);
1766 
1767 		return 0;
1768 	}
1769 
1770 	return 1;
1771 }
1772 
1773 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1774 				struct msghdr *msg, size_t msg_len,
1775 				struct sctp_transport *transport,
1776 				struct sctp_sndrcvinfo *sinfo)
1777 {
1778 	struct sock *sk = asoc->base.sk;
1779 	struct sctp_sock *sp = sctp_sk(sk);
1780 	struct net *net = sock_net(sk);
1781 	struct sctp_datamsg *datamsg;
1782 	bool wait_connect = false;
1783 	struct sctp_chunk *chunk;
1784 	long timeo;
1785 	int err;
1786 
1787 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1788 		err = -EINVAL;
1789 		goto err;
1790 	}
1791 
1792 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1793 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1794 		if (err)
1795 			goto err;
1796 	}
1797 
1798 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1799 		err = -EMSGSIZE;
1800 		goto err;
1801 	}
1802 
1803 	if (asoc->pmtu_pending) {
1804 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1805 			sctp_assoc_sync_pmtu(asoc);
1806 		asoc->pmtu_pending = 0;
1807 	}
1808 
1809 	if (sctp_wspace(asoc) < (int)msg_len)
1810 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1811 
1812 	if (sk_under_memory_pressure(sk))
1813 		sk_mem_reclaim(sk);
1814 
1815 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1816 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1817 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1818 		if (err)
1819 			goto err;
1820 	}
1821 
1822 	if (sctp_state(asoc, CLOSED)) {
1823 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1824 		if (err)
1825 			goto err;
1826 
1827 		if (asoc->ep->intl_enable) {
1828 			timeo = sock_sndtimeo(sk, 0);
1829 			err = sctp_wait_for_connect(asoc, &timeo);
1830 			if (err) {
1831 				err = -ESRCH;
1832 				goto err;
1833 			}
1834 		} else {
1835 			wait_connect = true;
1836 		}
1837 
1838 		pr_debug("%s: we associated primitively\n", __func__);
1839 	}
1840 
1841 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1842 	if (IS_ERR(datamsg)) {
1843 		err = PTR_ERR(datamsg);
1844 		goto err;
1845 	}
1846 
1847 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1848 
1849 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1850 		sctp_chunk_hold(chunk);
1851 		sctp_set_owner_w(chunk);
1852 		chunk->transport = transport;
1853 	}
1854 
1855 	err = sctp_primitive_SEND(net, asoc, datamsg);
1856 	if (err) {
1857 		sctp_datamsg_free(datamsg);
1858 		goto err;
1859 	}
1860 
1861 	pr_debug("%s: we sent primitively\n", __func__);
1862 
1863 	sctp_datamsg_put(datamsg);
1864 
1865 	if (unlikely(wait_connect)) {
1866 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1867 		sctp_wait_for_connect(asoc, &timeo);
1868 	}
1869 
1870 	err = msg_len;
1871 
1872 err:
1873 	return err;
1874 }
1875 
1876 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1877 					       const struct msghdr *msg,
1878 					       struct sctp_cmsgs *cmsgs)
1879 {
1880 	union sctp_addr *daddr = NULL;
1881 	int err;
1882 
1883 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1884 		int len = msg->msg_namelen;
1885 
1886 		if (len > sizeof(*daddr))
1887 			len = sizeof(*daddr);
1888 
1889 		daddr = (union sctp_addr *)msg->msg_name;
1890 
1891 		err = sctp_verify_addr(sk, daddr, len);
1892 		if (err)
1893 			return ERR_PTR(err);
1894 	}
1895 
1896 	return daddr;
1897 }
1898 
1899 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1900 				      struct sctp_sndrcvinfo *sinfo,
1901 				      struct sctp_cmsgs *cmsgs)
1902 {
1903 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1904 		sinfo->sinfo_stream = asoc->default_stream;
1905 		sinfo->sinfo_ppid = asoc->default_ppid;
1906 		sinfo->sinfo_context = asoc->default_context;
1907 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1908 
1909 		if (!cmsgs->prinfo)
1910 			sinfo->sinfo_flags = asoc->default_flags;
1911 	}
1912 
1913 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1914 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1915 
1916 	if (cmsgs->authinfo) {
1917 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1918 		 * sinfo_ssn to save the keyid on tx path.
1919 		 */
1920 		sinfo->sinfo_tsn = 1;
1921 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1922 	}
1923 }
1924 
1925 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1926 {
1927 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1928 	struct sctp_transport *transport = NULL;
1929 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1930 	struct sctp_association *asoc, *tmp;
1931 	struct sctp_cmsgs cmsgs;
1932 	union sctp_addr *daddr;
1933 	bool new = false;
1934 	__u16 sflags;
1935 	int err;
1936 
1937 	/* Parse and get snd_info */
1938 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1939 	if (err)
1940 		goto out;
1941 
1942 	sinfo  = &_sinfo;
1943 	sflags = sinfo->sinfo_flags;
1944 
1945 	/* Get daddr from msg */
1946 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1947 	if (IS_ERR(daddr)) {
1948 		err = PTR_ERR(daddr);
1949 		goto out;
1950 	}
1951 
1952 	lock_sock(sk);
1953 
1954 	/* SCTP_SENDALL process */
1955 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1956 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1957 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1958 							msg_len);
1959 			if (err == 0)
1960 				continue;
1961 			if (err < 0)
1962 				goto out_unlock;
1963 
1964 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1965 
1966 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1967 						   NULL, sinfo);
1968 			if (err < 0)
1969 				goto out_unlock;
1970 
1971 			iov_iter_revert(&msg->msg_iter, err);
1972 		}
1973 
1974 		goto out_unlock;
1975 	}
1976 
1977 	/* Get and check or create asoc */
1978 	if (daddr) {
1979 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1980 		if (asoc) {
1981 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1982 							msg_len);
1983 			if (err <= 0)
1984 				goto out_unlock;
1985 		} else {
1986 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1987 						    &transport);
1988 			if (err)
1989 				goto out_unlock;
1990 
1991 			asoc = transport->asoc;
1992 			new = true;
1993 		}
1994 
1995 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
1996 			transport = NULL;
1997 	} else {
1998 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
1999 		if (!asoc) {
2000 			err = -EPIPE;
2001 			goto out_unlock;
2002 		}
2003 
2004 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2005 		if (err <= 0)
2006 			goto out_unlock;
2007 	}
2008 
2009 	/* Update snd_info with the asoc */
2010 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2011 
2012 	/* Send msg to the asoc */
2013 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2014 	if (err < 0 && err != -ESRCH && new)
2015 		sctp_association_free(asoc);
2016 
2017 out_unlock:
2018 	release_sock(sk);
2019 out:
2020 	return sctp_error(sk, msg->msg_flags, err);
2021 }
2022 
2023 /* This is an extended version of skb_pull() that removes the data from the
2024  * start of a skb even when data is spread across the list of skb's in the
2025  * frag_list. len specifies the total amount of data that needs to be removed.
2026  * when 'len' bytes could be removed from the skb, it returns 0.
2027  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2028  * could not be removed.
2029  */
2030 static int sctp_skb_pull(struct sk_buff *skb, int len)
2031 {
2032 	struct sk_buff *list;
2033 	int skb_len = skb_headlen(skb);
2034 	int rlen;
2035 
2036 	if (len <= skb_len) {
2037 		__skb_pull(skb, len);
2038 		return 0;
2039 	}
2040 	len -= skb_len;
2041 	__skb_pull(skb, skb_len);
2042 
2043 	skb_walk_frags(skb, list) {
2044 		rlen = sctp_skb_pull(list, len);
2045 		skb->len -= (len-rlen);
2046 		skb->data_len -= (len-rlen);
2047 
2048 		if (!rlen)
2049 			return 0;
2050 
2051 		len = rlen;
2052 	}
2053 
2054 	return len;
2055 }
2056 
2057 /* API 3.1.3  recvmsg() - UDP Style Syntax
2058  *
2059  *  ssize_t recvmsg(int socket, struct msghdr *message,
2060  *                    int flags);
2061  *
2062  *  socket  - the socket descriptor of the endpoint.
2063  *  message - pointer to the msghdr structure which contains a single
2064  *            user message and possibly some ancillary data.
2065  *
2066  *            See Section 5 for complete description of the data
2067  *            structures.
2068  *
2069  *  flags   - flags sent or received with the user message, see Section
2070  *            5 for complete description of the flags.
2071  */
2072 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2073 			int noblock, int flags, int *addr_len)
2074 {
2075 	struct sctp_ulpevent *event = NULL;
2076 	struct sctp_sock *sp = sctp_sk(sk);
2077 	struct sk_buff *skb, *head_skb;
2078 	int copied;
2079 	int err = 0;
2080 	int skb_len;
2081 
2082 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2083 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2084 		 addr_len);
2085 
2086 	lock_sock(sk);
2087 
2088 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2089 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2090 		err = -ENOTCONN;
2091 		goto out;
2092 	}
2093 
2094 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2095 	if (!skb)
2096 		goto out;
2097 
2098 	/* Get the total length of the skb including any skb's in the
2099 	 * frag_list.
2100 	 */
2101 	skb_len = skb->len;
2102 
2103 	copied = skb_len;
2104 	if (copied > len)
2105 		copied = len;
2106 
2107 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2108 
2109 	event = sctp_skb2event(skb);
2110 
2111 	if (err)
2112 		goto out_free;
2113 
2114 	if (event->chunk && event->chunk->head_skb)
2115 		head_skb = event->chunk->head_skb;
2116 	else
2117 		head_skb = skb;
2118 	sock_recv_ts_and_drops(msg, sk, head_skb);
2119 	if (sctp_ulpevent_is_notification(event)) {
2120 		msg->msg_flags |= MSG_NOTIFICATION;
2121 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2122 	} else {
2123 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2124 	}
2125 
2126 	/* Check if we allow SCTP_NXTINFO. */
2127 	if (sp->recvnxtinfo)
2128 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2129 	/* Check if we allow SCTP_RCVINFO. */
2130 	if (sp->recvrcvinfo)
2131 		sctp_ulpevent_read_rcvinfo(event, msg);
2132 	/* Check if we allow SCTP_SNDRCVINFO. */
2133 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2134 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2135 
2136 	err = copied;
2137 
2138 	/* If skb's length exceeds the user's buffer, update the skb and
2139 	 * push it back to the receive_queue so that the next call to
2140 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2141 	 */
2142 	if (skb_len > copied) {
2143 		msg->msg_flags &= ~MSG_EOR;
2144 		if (flags & MSG_PEEK)
2145 			goto out_free;
2146 		sctp_skb_pull(skb, copied);
2147 		skb_queue_head(&sk->sk_receive_queue, skb);
2148 
2149 		/* When only partial message is copied to the user, increase
2150 		 * rwnd by that amount. If all the data in the skb is read,
2151 		 * rwnd is updated when the event is freed.
2152 		 */
2153 		if (!sctp_ulpevent_is_notification(event))
2154 			sctp_assoc_rwnd_increase(event->asoc, copied);
2155 		goto out;
2156 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2157 		   (event->msg_flags & MSG_EOR))
2158 		msg->msg_flags |= MSG_EOR;
2159 	else
2160 		msg->msg_flags &= ~MSG_EOR;
2161 
2162 out_free:
2163 	if (flags & MSG_PEEK) {
2164 		/* Release the skb reference acquired after peeking the skb in
2165 		 * sctp_skb_recv_datagram().
2166 		 */
2167 		kfree_skb(skb);
2168 	} else {
2169 		/* Free the event which includes releasing the reference to
2170 		 * the owner of the skb, freeing the skb and updating the
2171 		 * rwnd.
2172 		 */
2173 		sctp_ulpevent_free(event);
2174 	}
2175 out:
2176 	release_sock(sk);
2177 	return err;
2178 }
2179 
2180 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2181  *
2182  * This option is a on/off flag.  If enabled no SCTP message
2183  * fragmentation will be performed.  Instead if a message being sent
2184  * exceeds the current PMTU size, the message will NOT be sent and
2185  * instead a error will be indicated to the user.
2186  */
2187 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2188 					     unsigned int optlen)
2189 {
2190 	if (optlen < sizeof(int))
2191 		return -EINVAL;
2192 	sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2193 	return 0;
2194 }
2195 
2196 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2197 				  unsigned int optlen)
2198 {
2199 	struct sctp_sock *sp = sctp_sk(sk);
2200 	struct sctp_association *asoc;
2201 	int i;
2202 
2203 	if (optlen > sizeof(struct sctp_event_subscribe))
2204 		return -EINVAL;
2205 
2206 	for (i = 0; i < optlen; i++)
2207 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2208 				       sn_type[i]);
2209 
2210 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2211 		asoc->subscribe = sctp_sk(sk)->subscribe;
2212 
2213 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2214 	 * if there is no data to be sent or retransmit, the stack will
2215 	 * immediately send up this notification.
2216 	 */
2217 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2218 		struct sctp_ulpevent *event;
2219 
2220 		asoc = sctp_id2assoc(sk, 0);
2221 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2222 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2223 					GFP_USER | __GFP_NOWARN);
2224 			if (!event)
2225 				return -ENOMEM;
2226 
2227 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2228 		}
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2235  *
2236  * This socket option is applicable to the UDP-style socket only.  When
2237  * set it will cause associations that are idle for more than the
2238  * specified number of seconds to automatically close.  An association
2239  * being idle is defined an association that has NOT sent or received
2240  * user data.  The special value of '0' indicates that no automatic
2241  * close of any associations should be performed.  The option expects an
2242  * integer defining the number of seconds of idle time before an
2243  * association is closed.
2244  */
2245 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2246 				     unsigned int optlen)
2247 {
2248 	struct sctp_sock *sp = sctp_sk(sk);
2249 	struct net *net = sock_net(sk);
2250 
2251 	/* Applicable to UDP-style socket only */
2252 	if (sctp_style(sk, TCP))
2253 		return -EOPNOTSUPP;
2254 	if (optlen != sizeof(int))
2255 		return -EINVAL;
2256 
2257 	sp->autoclose = *optval;
2258 	if (sp->autoclose > net->sctp.max_autoclose)
2259 		sp->autoclose = net->sctp.max_autoclose;
2260 
2261 	return 0;
2262 }
2263 
2264 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2265  *
2266  * Applications can enable or disable heartbeats for any peer address of
2267  * an association, modify an address's heartbeat interval, force a
2268  * heartbeat to be sent immediately, and adjust the address's maximum
2269  * number of retransmissions sent before an address is considered
2270  * unreachable.  The following structure is used to access and modify an
2271  * address's parameters:
2272  *
2273  *  struct sctp_paddrparams {
2274  *     sctp_assoc_t            spp_assoc_id;
2275  *     struct sockaddr_storage spp_address;
2276  *     uint32_t                spp_hbinterval;
2277  *     uint16_t                spp_pathmaxrxt;
2278  *     uint32_t                spp_pathmtu;
2279  *     uint32_t                spp_sackdelay;
2280  *     uint32_t                spp_flags;
2281  *     uint32_t                spp_ipv6_flowlabel;
2282  *     uint8_t                 spp_dscp;
2283  * };
2284  *
2285  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2286  *                     application, and identifies the association for
2287  *                     this query.
2288  *   spp_address     - This specifies which address is of interest.
2289  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2290  *                     in milliseconds.  If a  value of zero
2291  *                     is present in this field then no changes are to
2292  *                     be made to this parameter.
2293  *   spp_pathmaxrxt  - This contains the maximum number of
2294  *                     retransmissions before this address shall be
2295  *                     considered unreachable. If a  value of zero
2296  *                     is present in this field then no changes are to
2297  *                     be made to this parameter.
2298  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2299  *                     specified here will be the "fixed" path mtu.
2300  *                     Note that if the spp_address field is empty
2301  *                     then all associations on this address will
2302  *                     have this fixed path mtu set upon them.
2303  *
2304  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2305  *                     the number of milliseconds that sacks will be delayed
2306  *                     for. This value will apply to all addresses of an
2307  *                     association if the spp_address field is empty. Note
2308  *                     also, that if delayed sack is enabled and this
2309  *                     value is set to 0, no change is made to the last
2310  *                     recorded delayed sack timer value.
2311  *
2312  *   spp_flags       - These flags are used to control various features
2313  *                     on an association. The flag field may contain
2314  *                     zero or more of the following options.
2315  *
2316  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2317  *                     specified address. Note that if the address
2318  *                     field is empty all addresses for the association
2319  *                     have heartbeats enabled upon them.
2320  *
2321  *                     SPP_HB_DISABLE - Disable heartbeats on the
2322  *                     speicifed address. Note that if the address
2323  *                     field is empty all addresses for the association
2324  *                     will have their heartbeats disabled. Note also
2325  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2326  *                     mutually exclusive, only one of these two should
2327  *                     be specified. Enabling both fields will have
2328  *                     undetermined results.
2329  *
2330  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2331  *                     to be made immediately.
2332  *
2333  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2334  *                     heartbeat delayis to be set to the value of 0
2335  *                     milliseconds.
2336  *
2337  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2338  *                     discovery upon the specified address. Note that
2339  *                     if the address feild is empty then all addresses
2340  *                     on the association are effected.
2341  *
2342  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2343  *                     discovery upon the specified address. Note that
2344  *                     if the address feild is empty then all addresses
2345  *                     on the association are effected. Not also that
2346  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2347  *                     exclusive. Enabling both will have undetermined
2348  *                     results.
2349  *
2350  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2351  *                     on delayed sack. The time specified in spp_sackdelay
2352  *                     is used to specify the sack delay for this address. Note
2353  *                     that if spp_address is empty then all addresses will
2354  *                     enable delayed sack and take on the sack delay
2355  *                     value specified in spp_sackdelay.
2356  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2357  *                     off delayed sack. If the spp_address field is blank then
2358  *                     delayed sack is disabled for the entire association. Note
2359  *                     also that this field is mutually exclusive to
2360  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2361  *                     results.
2362  *
2363  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2364  *                     setting of the IPV6 flow label value.  The value is
2365  *                     contained in the spp_ipv6_flowlabel field.
2366  *                     Upon retrieval, this flag will be set to indicate that
2367  *                     the spp_ipv6_flowlabel field has a valid value returned.
2368  *                     If a specific destination address is set (in the
2369  *                     spp_address field), then the value returned is that of
2370  *                     the address.  If just an association is specified (and
2371  *                     no address), then the association's default flow label
2372  *                     is returned.  If neither an association nor a destination
2373  *                     is specified, then the socket's default flow label is
2374  *                     returned.  For non-IPv6 sockets, this flag will be left
2375  *                     cleared.
2376  *
2377  *                     SPP_DSCP:  Setting this flag enables the setting of the
2378  *                     Differentiated Services Code Point (DSCP) value
2379  *                     associated with either the association or a specific
2380  *                     address.  The value is obtained in the spp_dscp field.
2381  *                     Upon retrieval, this flag will be set to indicate that
2382  *                     the spp_dscp field has a valid value returned.  If a
2383  *                     specific destination address is set when called (in the
2384  *                     spp_address field), then that specific destination
2385  *                     address's DSCP value is returned.  If just an association
2386  *                     is specified, then the association's default DSCP is
2387  *                     returned.  If neither an association nor a destination is
2388  *                     specified, then the socket's default DSCP is returned.
2389  *
2390  *   spp_ipv6_flowlabel
2391  *                   - This field is used in conjunction with the
2392  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2393  *                     The 20 least significant bits are used for the flow
2394  *                     label.  This setting has precedence over any IPv6-layer
2395  *                     setting.
2396  *
2397  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2398  *                     and contains the DSCP.  The 6 most significant bits are
2399  *                     used for the DSCP.  This setting has precedence over any
2400  *                     IPv4- or IPv6- layer setting.
2401  */
2402 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2403 				       struct sctp_transport   *trans,
2404 				       struct sctp_association *asoc,
2405 				       struct sctp_sock        *sp,
2406 				       int                      hb_change,
2407 				       int                      pmtud_change,
2408 				       int                      sackdelay_change)
2409 {
2410 	int error;
2411 
2412 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2413 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2414 							trans->asoc, trans);
2415 		if (error)
2416 			return error;
2417 	}
2418 
2419 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2420 	 * this field is ignored.  Note also that a value of zero indicates
2421 	 * the current setting should be left unchanged.
2422 	 */
2423 	if (params->spp_flags & SPP_HB_ENABLE) {
2424 
2425 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2426 		 * set.  This lets us use 0 value when this flag
2427 		 * is set.
2428 		 */
2429 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2430 			params->spp_hbinterval = 0;
2431 
2432 		if (params->spp_hbinterval ||
2433 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2434 			if (trans) {
2435 				trans->hbinterval =
2436 				    msecs_to_jiffies(params->spp_hbinterval);
2437 			} else if (asoc) {
2438 				asoc->hbinterval =
2439 				    msecs_to_jiffies(params->spp_hbinterval);
2440 			} else {
2441 				sp->hbinterval = params->spp_hbinterval;
2442 			}
2443 		}
2444 	}
2445 
2446 	if (hb_change) {
2447 		if (trans) {
2448 			trans->param_flags =
2449 				(trans->param_flags & ~SPP_HB) | hb_change;
2450 		} else if (asoc) {
2451 			asoc->param_flags =
2452 				(asoc->param_flags & ~SPP_HB) | hb_change;
2453 		} else {
2454 			sp->param_flags =
2455 				(sp->param_flags & ~SPP_HB) | hb_change;
2456 		}
2457 	}
2458 
2459 	/* When Path MTU discovery is disabled the value specified here will
2460 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2461 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2462 	 * effect).
2463 	 */
2464 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2465 		if (trans) {
2466 			trans->pathmtu = params->spp_pathmtu;
2467 			sctp_assoc_sync_pmtu(asoc);
2468 		} else if (asoc) {
2469 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2470 		} else {
2471 			sp->pathmtu = params->spp_pathmtu;
2472 		}
2473 	}
2474 
2475 	if (pmtud_change) {
2476 		if (trans) {
2477 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2478 				(params->spp_flags & SPP_PMTUD_ENABLE);
2479 			trans->param_flags =
2480 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2481 			if (update) {
2482 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2483 				sctp_assoc_sync_pmtu(asoc);
2484 			}
2485 		} else if (asoc) {
2486 			asoc->param_flags =
2487 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2488 		} else {
2489 			sp->param_flags =
2490 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2491 		}
2492 	}
2493 
2494 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2495 	 * value of this field is ignored.  Note also that a value of zero
2496 	 * indicates the current setting should be left unchanged.
2497 	 */
2498 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2499 		if (trans) {
2500 			trans->sackdelay =
2501 				msecs_to_jiffies(params->spp_sackdelay);
2502 		} else if (asoc) {
2503 			asoc->sackdelay =
2504 				msecs_to_jiffies(params->spp_sackdelay);
2505 		} else {
2506 			sp->sackdelay = params->spp_sackdelay;
2507 		}
2508 	}
2509 
2510 	if (sackdelay_change) {
2511 		if (trans) {
2512 			trans->param_flags =
2513 				(trans->param_flags & ~SPP_SACKDELAY) |
2514 				sackdelay_change;
2515 		} else if (asoc) {
2516 			asoc->param_flags =
2517 				(asoc->param_flags & ~SPP_SACKDELAY) |
2518 				sackdelay_change;
2519 		} else {
2520 			sp->param_flags =
2521 				(sp->param_flags & ~SPP_SACKDELAY) |
2522 				sackdelay_change;
2523 		}
2524 	}
2525 
2526 	/* Note that a value of zero indicates the current setting should be
2527 	   left unchanged.
2528 	 */
2529 	if (params->spp_pathmaxrxt) {
2530 		if (trans) {
2531 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2532 		} else if (asoc) {
2533 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2534 		} else {
2535 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2536 		}
2537 	}
2538 
2539 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2540 		if (trans) {
2541 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2542 				trans->flowlabel = params->spp_ipv6_flowlabel &
2543 						   SCTP_FLOWLABEL_VAL_MASK;
2544 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2545 			}
2546 		} else if (asoc) {
2547 			struct sctp_transport *t;
2548 
2549 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2550 					    transports) {
2551 				if (t->ipaddr.sa.sa_family != AF_INET6)
2552 					continue;
2553 				t->flowlabel = params->spp_ipv6_flowlabel &
2554 					       SCTP_FLOWLABEL_VAL_MASK;
2555 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2556 			}
2557 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2558 					  SCTP_FLOWLABEL_VAL_MASK;
2559 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2560 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2561 			sp->flowlabel = params->spp_ipv6_flowlabel &
2562 					SCTP_FLOWLABEL_VAL_MASK;
2563 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2564 		}
2565 	}
2566 
2567 	if (params->spp_flags & SPP_DSCP) {
2568 		if (trans) {
2569 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2570 			trans->dscp |= SCTP_DSCP_SET_MASK;
2571 		} else if (asoc) {
2572 			struct sctp_transport *t;
2573 
2574 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2575 					    transports) {
2576 				t->dscp = params->spp_dscp &
2577 					  SCTP_DSCP_VAL_MASK;
2578 				t->dscp |= SCTP_DSCP_SET_MASK;
2579 			}
2580 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2581 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2582 		} else {
2583 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 			sp->dscp |= SCTP_DSCP_SET_MASK;
2585 		}
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2592 					    struct sctp_paddrparams *params,
2593 					    unsigned int optlen)
2594 {
2595 	struct sctp_transport   *trans = NULL;
2596 	struct sctp_association *asoc = NULL;
2597 	struct sctp_sock        *sp = sctp_sk(sk);
2598 	int error;
2599 	int hb_change, pmtud_change, sackdelay_change;
2600 
2601 	if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2602 					    spp_ipv6_flowlabel), 4)) {
2603 		if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2604 			return -EINVAL;
2605 	} else if (optlen != sizeof(*params)) {
2606 		return -EINVAL;
2607 	}
2608 
2609 	/* Validate flags and value parameters. */
2610 	hb_change        = params->spp_flags & SPP_HB;
2611 	pmtud_change     = params->spp_flags & SPP_PMTUD;
2612 	sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2613 
2614 	if (hb_change        == SPP_HB ||
2615 	    pmtud_change     == SPP_PMTUD ||
2616 	    sackdelay_change == SPP_SACKDELAY ||
2617 	    params->spp_sackdelay > 500 ||
2618 	    (params->spp_pathmtu &&
2619 	     params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2620 		return -EINVAL;
2621 
2622 	/* If an address other than INADDR_ANY is specified, and
2623 	 * no transport is found, then the request is invalid.
2624 	 */
2625 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2626 		trans = sctp_addr_id2transport(sk, &params->spp_address,
2627 					       params->spp_assoc_id);
2628 		if (!trans)
2629 			return -EINVAL;
2630 	}
2631 
2632 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2633 	 * socket is a one to many style socket, and an association
2634 	 * was not found, then the id was invalid.
2635 	 */
2636 	asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2637 	if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2638 	    sctp_style(sk, UDP))
2639 		return -EINVAL;
2640 
2641 	/* Heartbeat demand can only be sent on a transport or
2642 	 * association, but not a socket.
2643 	 */
2644 	if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2645 		return -EINVAL;
2646 
2647 	/* Process parameters. */
2648 	error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2649 					    hb_change, pmtud_change,
2650 					    sackdelay_change);
2651 
2652 	if (error)
2653 		return error;
2654 
2655 	/* If changes are for association, also apply parameters to each
2656 	 * transport.
2657 	 */
2658 	if (!trans && asoc) {
2659 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2660 				transports) {
2661 			sctp_apply_peer_addr_params(params, trans, asoc, sp,
2662 						    hb_change, pmtud_change,
2663 						    sackdelay_change);
2664 		}
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2671 {
2672 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2673 }
2674 
2675 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2676 {
2677 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2678 }
2679 
2680 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2681 					struct sctp_association *asoc)
2682 {
2683 	struct sctp_transport *trans;
2684 
2685 	if (params->sack_delay) {
2686 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2687 		asoc->param_flags =
2688 			sctp_spp_sackdelay_enable(asoc->param_flags);
2689 	}
2690 	if (params->sack_freq == 1) {
2691 		asoc->param_flags =
2692 			sctp_spp_sackdelay_disable(asoc->param_flags);
2693 	} else if (params->sack_freq > 1) {
2694 		asoc->sackfreq = params->sack_freq;
2695 		asoc->param_flags =
2696 			sctp_spp_sackdelay_enable(asoc->param_flags);
2697 	}
2698 
2699 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2700 			    transports) {
2701 		if (params->sack_delay) {
2702 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2703 			trans->param_flags =
2704 				sctp_spp_sackdelay_enable(trans->param_flags);
2705 		}
2706 		if (params->sack_freq == 1) {
2707 			trans->param_flags =
2708 				sctp_spp_sackdelay_disable(trans->param_flags);
2709 		} else if (params->sack_freq > 1) {
2710 			trans->sackfreq = params->sack_freq;
2711 			trans->param_flags =
2712 				sctp_spp_sackdelay_enable(trans->param_flags);
2713 		}
2714 	}
2715 }
2716 
2717 /*
2718  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2719  *
2720  * This option will effect the way delayed acks are performed.  This
2721  * option allows you to get or set the delayed ack time, in
2722  * milliseconds.  It also allows changing the delayed ack frequency.
2723  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2724  * the assoc_id is 0, then this sets or gets the endpoints default
2725  * values.  If the assoc_id field is non-zero, then the set or get
2726  * effects the specified association for the one to many model (the
2727  * assoc_id field is ignored by the one to one model).  Note that if
2728  * sack_delay or sack_freq are 0 when setting this option, then the
2729  * current values will remain unchanged.
2730  *
2731  * struct sctp_sack_info {
2732  *     sctp_assoc_t            sack_assoc_id;
2733  *     uint32_t                sack_delay;
2734  *     uint32_t                sack_freq;
2735  * };
2736  *
2737  * sack_assoc_id -  This parameter, indicates which association the user
2738  *    is performing an action upon.  Note that if this field's value is
2739  *    zero then the endpoints default value is changed (effecting future
2740  *    associations only).
2741  *
2742  * sack_delay -  This parameter contains the number of milliseconds that
2743  *    the user is requesting the delayed ACK timer be set to.  Note that
2744  *    this value is defined in the standard to be between 200 and 500
2745  *    milliseconds.
2746  *
2747  * sack_freq -  This parameter contains the number of packets that must
2748  *    be received before a sack is sent without waiting for the delay
2749  *    timer to expire.  The default value for this is 2, setting this
2750  *    value to 1 will disable the delayed sack algorithm.
2751  */
2752 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2753 					 struct sctp_sack_info *params)
2754 {
2755 	struct sctp_sock *sp = sctp_sk(sk);
2756 	struct sctp_association *asoc;
2757 
2758 	/* Validate value parameter. */
2759 	if (params->sack_delay > 500)
2760 		return -EINVAL;
2761 
2762 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2763 	 * socket is a one to many style socket, and an association
2764 	 * was not found, then the id was invalid.
2765 	 */
2766 	asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2767 	if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2768 	    sctp_style(sk, UDP))
2769 		return -EINVAL;
2770 
2771 	if (asoc) {
2772 		sctp_apply_asoc_delayed_ack(params, asoc);
2773 
2774 		return 0;
2775 	}
2776 
2777 	if (sctp_style(sk, TCP))
2778 		params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2779 
2780 	if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2781 	    params->sack_assoc_id == SCTP_ALL_ASSOC) {
2782 		if (params->sack_delay) {
2783 			sp->sackdelay = params->sack_delay;
2784 			sp->param_flags =
2785 				sctp_spp_sackdelay_enable(sp->param_flags);
2786 		}
2787 		if (params->sack_freq == 1) {
2788 			sp->param_flags =
2789 				sctp_spp_sackdelay_disable(sp->param_flags);
2790 		} else if (params->sack_freq > 1) {
2791 			sp->sackfreq = params->sack_freq;
2792 			sp->param_flags =
2793 				sctp_spp_sackdelay_enable(sp->param_flags);
2794 		}
2795 	}
2796 
2797 	if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2798 	    params->sack_assoc_id == SCTP_ALL_ASSOC)
2799 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2800 			sctp_apply_asoc_delayed_ack(params, asoc);
2801 
2802 	return 0;
2803 }
2804 
2805 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2806 				       struct sctp_sack_info *params,
2807 				       unsigned int optlen)
2808 {
2809 	if (optlen == sizeof(struct sctp_assoc_value)) {
2810 		struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2811 		struct sctp_sack_info p;
2812 
2813 		pr_warn_ratelimited(DEPRECATED
2814 				    "%s (pid %d) "
2815 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2816 				    "Use struct sctp_sack_info instead\n",
2817 				    current->comm, task_pid_nr(current));
2818 
2819 		p.sack_assoc_id = v->assoc_id;
2820 		p.sack_delay = v->assoc_value;
2821 		p.sack_freq = v->assoc_value ? 0 : 1;
2822 		return __sctp_setsockopt_delayed_ack(sk, &p);
2823 	}
2824 
2825 	if (optlen != sizeof(struct sctp_sack_info))
2826 		return -EINVAL;
2827 	if (params->sack_delay == 0 && params->sack_freq == 0)
2828 		return 0;
2829 	return __sctp_setsockopt_delayed_ack(sk, params);
2830 }
2831 
2832 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2833  *
2834  * Applications can specify protocol parameters for the default association
2835  * initialization.  The option name argument to setsockopt() and getsockopt()
2836  * is SCTP_INITMSG.
2837  *
2838  * Setting initialization parameters is effective only on an unconnected
2839  * socket (for UDP-style sockets only future associations are effected
2840  * by the change).  With TCP-style sockets, this option is inherited by
2841  * sockets derived from a listener socket.
2842  */
2843 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2844 				   unsigned int optlen)
2845 {
2846 	struct sctp_sock *sp = sctp_sk(sk);
2847 
2848 	if (optlen != sizeof(struct sctp_initmsg))
2849 		return -EINVAL;
2850 
2851 	if (sinit->sinit_num_ostreams)
2852 		sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2853 	if (sinit->sinit_max_instreams)
2854 		sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2855 	if (sinit->sinit_max_attempts)
2856 		sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2857 	if (sinit->sinit_max_init_timeo)
2858 		sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2865  *
2866  *   Applications that wish to use the sendto() system call may wish to
2867  *   specify a default set of parameters that would normally be supplied
2868  *   through the inclusion of ancillary data.  This socket option allows
2869  *   such an application to set the default sctp_sndrcvinfo structure.
2870  *   The application that wishes to use this socket option simply passes
2871  *   in to this call the sctp_sndrcvinfo structure defined in Section
2872  *   5.2.2) The input parameters accepted by this call include
2873  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2874  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2875  *   to this call if the caller is using the UDP model.
2876  */
2877 static int sctp_setsockopt_default_send_param(struct sock *sk,
2878 					      struct sctp_sndrcvinfo *info,
2879 					      unsigned int optlen)
2880 {
2881 	struct sctp_sock *sp = sctp_sk(sk);
2882 	struct sctp_association *asoc;
2883 
2884 	if (optlen != sizeof(*info))
2885 		return -EINVAL;
2886 	if (info->sinfo_flags &
2887 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2888 	      SCTP_ABORT | SCTP_EOF))
2889 		return -EINVAL;
2890 
2891 	asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2892 	if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2893 	    sctp_style(sk, UDP))
2894 		return -EINVAL;
2895 
2896 	if (asoc) {
2897 		asoc->default_stream = info->sinfo_stream;
2898 		asoc->default_flags = info->sinfo_flags;
2899 		asoc->default_ppid = info->sinfo_ppid;
2900 		asoc->default_context = info->sinfo_context;
2901 		asoc->default_timetolive = info->sinfo_timetolive;
2902 
2903 		return 0;
2904 	}
2905 
2906 	if (sctp_style(sk, TCP))
2907 		info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2908 
2909 	if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2910 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2911 		sp->default_stream = info->sinfo_stream;
2912 		sp->default_flags = info->sinfo_flags;
2913 		sp->default_ppid = info->sinfo_ppid;
2914 		sp->default_context = info->sinfo_context;
2915 		sp->default_timetolive = info->sinfo_timetolive;
2916 	}
2917 
2918 	if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2919 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2920 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2921 			asoc->default_stream = info->sinfo_stream;
2922 			asoc->default_flags = info->sinfo_flags;
2923 			asoc->default_ppid = info->sinfo_ppid;
2924 			asoc->default_context = info->sinfo_context;
2925 			asoc->default_timetolive = info->sinfo_timetolive;
2926 		}
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2933  * (SCTP_DEFAULT_SNDINFO)
2934  */
2935 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2936 					   struct sctp_sndinfo *info,
2937 					   unsigned int optlen)
2938 {
2939 	struct sctp_sock *sp = sctp_sk(sk);
2940 	struct sctp_association *asoc;
2941 
2942 	if (optlen != sizeof(*info))
2943 		return -EINVAL;
2944 	if (info->snd_flags &
2945 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2946 	      SCTP_ABORT | SCTP_EOF))
2947 		return -EINVAL;
2948 
2949 	asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2950 	if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2951 	    sctp_style(sk, UDP))
2952 		return -EINVAL;
2953 
2954 	if (asoc) {
2955 		asoc->default_stream = info->snd_sid;
2956 		asoc->default_flags = info->snd_flags;
2957 		asoc->default_ppid = info->snd_ppid;
2958 		asoc->default_context = info->snd_context;
2959 
2960 		return 0;
2961 	}
2962 
2963 	if (sctp_style(sk, TCP))
2964 		info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2965 
2966 	if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2967 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2968 		sp->default_stream = info->snd_sid;
2969 		sp->default_flags = info->snd_flags;
2970 		sp->default_ppid = info->snd_ppid;
2971 		sp->default_context = info->snd_context;
2972 	}
2973 
2974 	if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2975 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2976 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2977 			asoc->default_stream = info->snd_sid;
2978 			asoc->default_flags = info->snd_flags;
2979 			asoc->default_ppid = info->snd_ppid;
2980 			asoc->default_context = info->snd_context;
2981 		}
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2988  *
2989  * Requests that the local SCTP stack use the enclosed peer address as
2990  * the association primary.  The enclosed address must be one of the
2991  * association peer's addresses.
2992  */
2993 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
2994 					unsigned int optlen)
2995 {
2996 	struct sctp_transport *trans;
2997 	struct sctp_af *af;
2998 	int err;
2999 
3000 	if (optlen != sizeof(struct sctp_prim))
3001 		return -EINVAL;
3002 
3003 	/* Allow security module to validate address but need address len. */
3004 	af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3005 	if (!af)
3006 		return -EINVAL;
3007 
3008 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3009 					 (struct sockaddr *)&prim->ssp_addr,
3010 					 af->sockaddr_len);
3011 	if (err)
3012 		return err;
3013 
3014 	trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3015 	if (!trans)
3016 		return -EINVAL;
3017 
3018 	sctp_assoc_set_primary(trans->asoc, trans);
3019 
3020 	return 0;
3021 }
3022 
3023 /*
3024  * 7.1.5 SCTP_NODELAY
3025  *
3026  * Turn on/off any Nagle-like algorithm.  This means that packets are
3027  * generally sent as soon as possible and no unnecessary delays are
3028  * introduced, at the cost of more packets in the network.  Expects an
3029  *  integer boolean flag.
3030  */
3031 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3032 				   unsigned int optlen)
3033 {
3034 	if (optlen < sizeof(int))
3035 		return -EINVAL;
3036 	sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3037 	return 0;
3038 }
3039 
3040 /*
3041  *
3042  * 7.1.1 SCTP_RTOINFO
3043  *
3044  * The protocol parameters used to initialize and bound retransmission
3045  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3046  * and modify these parameters.
3047  * All parameters are time values, in milliseconds.  A value of 0, when
3048  * modifying the parameters, indicates that the current value should not
3049  * be changed.
3050  *
3051  */
3052 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3053 				   struct sctp_rtoinfo *rtoinfo,
3054 				   unsigned int optlen)
3055 {
3056 	struct sctp_association *asoc;
3057 	unsigned long rto_min, rto_max;
3058 	struct sctp_sock *sp = sctp_sk(sk);
3059 
3060 	if (optlen != sizeof (struct sctp_rtoinfo))
3061 		return -EINVAL;
3062 
3063 	asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3064 
3065 	/* Set the values to the specific association */
3066 	if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3067 	    sctp_style(sk, UDP))
3068 		return -EINVAL;
3069 
3070 	rto_max = rtoinfo->srto_max;
3071 	rto_min = rtoinfo->srto_min;
3072 
3073 	if (rto_max)
3074 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3075 	else
3076 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3077 
3078 	if (rto_min)
3079 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3080 	else
3081 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3082 
3083 	if (rto_min > rto_max)
3084 		return -EINVAL;
3085 
3086 	if (asoc) {
3087 		if (rtoinfo->srto_initial != 0)
3088 			asoc->rto_initial =
3089 				msecs_to_jiffies(rtoinfo->srto_initial);
3090 		asoc->rto_max = rto_max;
3091 		asoc->rto_min = rto_min;
3092 	} else {
3093 		/* If there is no association or the association-id = 0
3094 		 * set the values to the endpoint.
3095 		 */
3096 		if (rtoinfo->srto_initial != 0)
3097 			sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3098 		sp->rtoinfo.srto_max = rto_max;
3099 		sp->rtoinfo.srto_min = rto_min;
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 /*
3106  *
3107  * 7.1.2 SCTP_ASSOCINFO
3108  *
3109  * This option is used to tune the maximum retransmission attempts
3110  * of the association.
3111  * Returns an error if the new association retransmission value is
3112  * greater than the sum of the retransmission value  of the peer.
3113  * See [SCTP] for more information.
3114  *
3115  */
3116 static int sctp_setsockopt_associnfo(struct sock *sk,
3117 				     struct sctp_assocparams *assocparams,
3118 				     unsigned int optlen)
3119 {
3120 
3121 	struct sctp_association *asoc;
3122 
3123 	if (optlen != sizeof(struct sctp_assocparams))
3124 		return -EINVAL;
3125 
3126 	asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3127 
3128 	if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3129 	    sctp_style(sk, UDP))
3130 		return -EINVAL;
3131 
3132 	/* Set the values to the specific association */
3133 	if (asoc) {
3134 		if (assocparams->sasoc_asocmaxrxt != 0) {
3135 			__u32 path_sum = 0;
3136 			int   paths = 0;
3137 			struct sctp_transport *peer_addr;
3138 
3139 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3140 					transports) {
3141 				path_sum += peer_addr->pathmaxrxt;
3142 				paths++;
3143 			}
3144 
3145 			/* Only validate asocmaxrxt if we have more than
3146 			 * one path/transport.  We do this because path
3147 			 * retransmissions are only counted when we have more
3148 			 * then one path.
3149 			 */
3150 			if (paths > 1 &&
3151 			    assocparams->sasoc_asocmaxrxt > path_sum)
3152 				return -EINVAL;
3153 
3154 			asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3155 		}
3156 
3157 		if (assocparams->sasoc_cookie_life != 0)
3158 			asoc->cookie_life =
3159 				ms_to_ktime(assocparams->sasoc_cookie_life);
3160 	} else {
3161 		/* Set the values to the endpoint */
3162 		struct sctp_sock *sp = sctp_sk(sk);
3163 
3164 		if (assocparams->sasoc_asocmaxrxt != 0)
3165 			sp->assocparams.sasoc_asocmaxrxt =
3166 						assocparams->sasoc_asocmaxrxt;
3167 		if (assocparams->sasoc_cookie_life != 0)
3168 			sp->assocparams.sasoc_cookie_life =
3169 						assocparams->sasoc_cookie_life;
3170 	}
3171 	return 0;
3172 }
3173 
3174 /*
3175  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3176  *
3177  * This socket option is a boolean flag which turns on or off mapped V4
3178  * addresses.  If this option is turned on and the socket is type
3179  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3180  * If this option is turned off, then no mapping will be done of V4
3181  * addresses and a user will receive both PF_INET6 and PF_INET type
3182  * addresses on the socket.
3183  */
3184 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3185 				    unsigned int optlen)
3186 {
3187 	struct sctp_sock *sp = sctp_sk(sk);
3188 
3189 	if (optlen < sizeof(int))
3190 		return -EINVAL;
3191 	if (*val)
3192 		sp->v4mapped = 1;
3193 	else
3194 		sp->v4mapped = 0;
3195 
3196 	return 0;
3197 }
3198 
3199 /*
3200  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3201  * This option will get or set the maximum size to put in any outgoing
3202  * SCTP DATA chunk.  If a message is larger than this size it will be
3203  * fragmented by SCTP into the specified size.  Note that the underlying
3204  * SCTP implementation may fragment into smaller sized chunks when the
3205  * PMTU of the underlying association is smaller than the value set by
3206  * the user.  The default value for this option is '0' which indicates
3207  * the user is NOT limiting fragmentation and only the PMTU will effect
3208  * SCTP's choice of DATA chunk size.  Note also that values set larger
3209  * than the maximum size of an IP datagram will effectively let SCTP
3210  * control fragmentation (i.e. the same as setting this option to 0).
3211  *
3212  * The following structure is used to access and modify this parameter:
3213  *
3214  * struct sctp_assoc_value {
3215  *   sctp_assoc_t assoc_id;
3216  *   uint32_t assoc_value;
3217  * };
3218  *
3219  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3220  *    For one-to-many style sockets this parameter indicates which
3221  *    association the user is performing an action upon.  Note that if
3222  *    this field's value is zero then the endpoints default value is
3223  *    changed (effecting future associations only).
3224  * assoc_value:  This parameter specifies the maximum size in bytes.
3225  */
3226 static int sctp_setsockopt_maxseg(struct sock *sk,
3227 				  struct sctp_assoc_value *params,
3228 				  unsigned int optlen)
3229 {
3230 	struct sctp_sock *sp = sctp_sk(sk);
3231 	struct sctp_association *asoc;
3232 	sctp_assoc_t assoc_id;
3233 	int val;
3234 
3235 	if (optlen == sizeof(int)) {
3236 		pr_warn_ratelimited(DEPRECATED
3237 				    "%s (pid %d) "
3238 				    "Use of int in maxseg socket option.\n"
3239 				    "Use struct sctp_assoc_value instead\n",
3240 				    current->comm, task_pid_nr(current));
3241 		assoc_id = SCTP_FUTURE_ASSOC;
3242 		val = *(int *)params;
3243 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3244 		assoc_id = params->assoc_id;
3245 		val = params->assoc_value;
3246 	} else {
3247 		return -EINVAL;
3248 	}
3249 
3250 	asoc = sctp_id2assoc(sk, assoc_id);
3251 	if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3252 	    sctp_style(sk, UDP))
3253 		return -EINVAL;
3254 
3255 	if (val) {
3256 		int min_len, max_len;
3257 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3258 				 sizeof(struct sctp_data_chunk);
3259 
3260 		min_len = sctp_min_frag_point(sp, datasize);
3261 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3262 
3263 		if (val < min_len || val > max_len)
3264 			return -EINVAL;
3265 	}
3266 
3267 	if (asoc) {
3268 		asoc->user_frag = val;
3269 		sctp_assoc_update_frag_point(asoc);
3270 	} else {
3271 		sp->user_frag = val;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 
3278 /*
3279  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3280  *
3281  *   Requests that the peer mark the enclosed address as the association
3282  *   primary. The enclosed address must be one of the association's
3283  *   locally bound addresses. The following structure is used to make a
3284  *   set primary request:
3285  */
3286 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3287 					     struct sctp_setpeerprim *prim,
3288 					     unsigned int optlen)
3289 {
3290 	struct sctp_sock	*sp;
3291 	struct sctp_association	*asoc = NULL;
3292 	struct sctp_chunk	*chunk;
3293 	struct sctp_af		*af;
3294 	int 			err;
3295 
3296 	sp = sctp_sk(sk);
3297 
3298 	if (!sp->ep->asconf_enable)
3299 		return -EPERM;
3300 
3301 	if (optlen != sizeof(struct sctp_setpeerprim))
3302 		return -EINVAL;
3303 
3304 	asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3305 	if (!asoc)
3306 		return -EINVAL;
3307 
3308 	if (!asoc->peer.asconf_capable)
3309 		return -EPERM;
3310 
3311 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3312 		return -EPERM;
3313 
3314 	if (!sctp_state(asoc, ESTABLISHED))
3315 		return -ENOTCONN;
3316 
3317 	af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3318 	if (!af)
3319 		return -EINVAL;
3320 
3321 	if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3322 		return -EADDRNOTAVAIL;
3323 
3324 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3325 		return -EADDRNOTAVAIL;
3326 
3327 	/* Allow security module to validate address. */
3328 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3329 					 (struct sockaddr *)&prim->sspp_addr,
3330 					 af->sockaddr_len);
3331 	if (err)
3332 		return err;
3333 
3334 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3335 	chunk = sctp_make_asconf_set_prim(asoc,
3336 					  (union sctp_addr *)&prim->sspp_addr);
3337 	if (!chunk)
3338 		return -ENOMEM;
3339 
3340 	err = sctp_send_asconf(asoc, chunk);
3341 
3342 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3343 
3344 	return err;
3345 }
3346 
3347 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3348 					    struct sctp_setadaptation *adapt,
3349 					    unsigned int optlen)
3350 {
3351 	if (optlen != sizeof(struct sctp_setadaptation))
3352 		return -EINVAL;
3353 
3354 	sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3355 
3356 	return 0;
3357 }
3358 
3359 /*
3360  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3361  *
3362  * The context field in the sctp_sndrcvinfo structure is normally only
3363  * used when a failed message is retrieved holding the value that was
3364  * sent down on the actual send call.  This option allows the setting of
3365  * a default context on an association basis that will be received on
3366  * reading messages from the peer.  This is especially helpful in the
3367  * one-2-many model for an application to keep some reference to an
3368  * internal state machine that is processing messages on the
3369  * association.  Note that the setting of this value only effects
3370  * received messages from the peer and does not effect the value that is
3371  * saved with outbound messages.
3372  */
3373 static int sctp_setsockopt_context(struct sock *sk,
3374 				   struct sctp_assoc_value *params,
3375 				   unsigned int optlen)
3376 {
3377 	struct sctp_sock *sp = sctp_sk(sk);
3378 	struct sctp_association *asoc;
3379 
3380 	if (optlen != sizeof(struct sctp_assoc_value))
3381 		return -EINVAL;
3382 
3383 	asoc = sctp_id2assoc(sk, params->assoc_id);
3384 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3385 	    sctp_style(sk, UDP))
3386 		return -EINVAL;
3387 
3388 	if (asoc) {
3389 		asoc->default_rcv_context = params->assoc_value;
3390 
3391 		return 0;
3392 	}
3393 
3394 	if (sctp_style(sk, TCP))
3395 		params->assoc_id = SCTP_FUTURE_ASSOC;
3396 
3397 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3398 	    params->assoc_id == SCTP_ALL_ASSOC)
3399 		sp->default_rcv_context = params->assoc_value;
3400 
3401 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3402 	    params->assoc_id == SCTP_ALL_ASSOC)
3403 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3404 			asoc->default_rcv_context = params->assoc_value;
3405 
3406 	return 0;
3407 }
3408 
3409 /*
3410  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3411  *
3412  * This options will at a minimum specify if the implementation is doing
3413  * fragmented interleave.  Fragmented interleave, for a one to many
3414  * socket, is when subsequent calls to receive a message may return
3415  * parts of messages from different associations.  Some implementations
3416  * may allow you to turn this value on or off.  If so, when turned off,
3417  * no fragment interleave will occur (which will cause a head of line
3418  * blocking amongst multiple associations sharing the same one to many
3419  * socket).  When this option is turned on, then each receive call may
3420  * come from a different association (thus the user must receive data
3421  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3422  * association each receive belongs to.
3423  *
3424  * This option takes a boolean value.  A non-zero value indicates that
3425  * fragmented interleave is on.  A value of zero indicates that
3426  * fragmented interleave is off.
3427  *
3428  * Note that it is important that an implementation that allows this
3429  * option to be turned on, have it off by default.  Otherwise an unaware
3430  * application using the one to many model may become confused and act
3431  * incorrectly.
3432  */
3433 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3434 					       unsigned int optlen)
3435 {
3436 	if (optlen != sizeof(int))
3437 		return -EINVAL;
3438 
3439 	sctp_sk(sk)->frag_interleave = !!*val;
3440 
3441 	if (!sctp_sk(sk)->frag_interleave)
3442 		sctp_sk(sk)->ep->intl_enable = 0;
3443 
3444 	return 0;
3445 }
3446 
3447 /*
3448  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3449  *       (SCTP_PARTIAL_DELIVERY_POINT)
3450  *
3451  * This option will set or get the SCTP partial delivery point.  This
3452  * point is the size of a message where the partial delivery API will be
3453  * invoked to help free up rwnd space for the peer.  Setting this to a
3454  * lower value will cause partial deliveries to happen more often.  The
3455  * calls argument is an integer that sets or gets the partial delivery
3456  * point.  Note also that the call will fail if the user attempts to set
3457  * this value larger than the socket receive buffer size.
3458  *
3459  * Note that any single message having a length smaller than or equal to
3460  * the SCTP partial delivery point will be delivered in one single read
3461  * call as long as the user provided buffer is large enough to hold the
3462  * message.
3463  */
3464 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3465 						  unsigned int optlen)
3466 {
3467 	if (optlen != sizeof(u32))
3468 		return -EINVAL;
3469 
3470 	/* Note: We double the receive buffer from what the user sets
3471 	 * it to be, also initial rwnd is based on rcvbuf/2.
3472 	 */
3473 	if (*val > (sk->sk_rcvbuf >> 1))
3474 		return -EINVAL;
3475 
3476 	sctp_sk(sk)->pd_point = *val;
3477 
3478 	return 0; /* is this the right error code? */
3479 }
3480 
3481 /*
3482  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3483  *
3484  * This option will allow a user to change the maximum burst of packets
3485  * that can be emitted by this association.  Note that the default value
3486  * is 4, and some implementations may restrict this setting so that it
3487  * can only be lowered.
3488  *
3489  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3490  * future associations inheriting the socket value.
3491  */
3492 static int sctp_setsockopt_maxburst(struct sock *sk,
3493 				    struct sctp_assoc_value *params,
3494 				    unsigned int optlen)
3495 {
3496 	struct sctp_sock *sp = sctp_sk(sk);
3497 	struct sctp_association *asoc;
3498 	sctp_assoc_t assoc_id;
3499 	u32 assoc_value;
3500 
3501 	if (optlen == sizeof(int)) {
3502 		pr_warn_ratelimited(DEPRECATED
3503 				    "%s (pid %d) "
3504 				    "Use of int in max_burst socket option deprecated.\n"
3505 				    "Use struct sctp_assoc_value instead\n",
3506 				    current->comm, task_pid_nr(current));
3507 		assoc_id = SCTP_FUTURE_ASSOC;
3508 		assoc_value = *((int *)params);
3509 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3510 		assoc_id = params->assoc_id;
3511 		assoc_value = params->assoc_value;
3512 	} else
3513 		return -EINVAL;
3514 
3515 	asoc = sctp_id2assoc(sk, assoc_id);
3516 	if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3517 		return -EINVAL;
3518 
3519 	if (asoc) {
3520 		asoc->max_burst = assoc_value;
3521 
3522 		return 0;
3523 	}
3524 
3525 	if (sctp_style(sk, TCP))
3526 		assoc_id = SCTP_FUTURE_ASSOC;
3527 
3528 	if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3529 		sp->max_burst = assoc_value;
3530 
3531 	if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3532 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3533 			asoc->max_burst = assoc_value;
3534 
3535 	return 0;
3536 }
3537 
3538 /*
3539  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3540  *
3541  * This set option adds a chunk type that the user is requesting to be
3542  * received only in an authenticated way.  Changes to the list of chunks
3543  * will only effect future associations on the socket.
3544  */
3545 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3546 				      struct sctp_authchunk *val,
3547 				      unsigned int optlen)
3548 {
3549 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3550 
3551 	if (!ep->auth_enable)
3552 		return -EACCES;
3553 
3554 	if (optlen != sizeof(struct sctp_authchunk))
3555 		return -EINVAL;
3556 
3557 	switch (val->sauth_chunk) {
3558 	case SCTP_CID_INIT:
3559 	case SCTP_CID_INIT_ACK:
3560 	case SCTP_CID_SHUTDOWN_COMPLETE:
3561 	case SCTP_CID_AUTH:
3562 		return -EINVAL;
3563 	}
3564 
3565 	/* add this chunk id to the endpoint */
3566 	return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3567 }
3568 
3569 /*
3570  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3571  *
3572  * This option gets or sets the list of HMAC algorithms that the local
3573  * endpoint requires the peer to use.
3574  */
3575 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3576 				      struct sctp_hmacalgo *hmacs,
3577 				      unsigned int optlen)
3578 {
3579 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3580 	u32 idents;
3581 
3582 	if (!ep->auth_enable)
3583 		return -EACCES;
3584 
3585 	if (optlen < sizeof(struct sctp_hmacalgo))
3586 		return -EINVAL;
3587 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3588 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3589 
3590 	idents = hmacs->shmac_num_idents;
3591 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3592 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3593 		return -EINVAL;
3594 
3595 	return sctp_auth_ep_set_hmacs(ep, hmacs);
3596 }
3597 
3598 /*
3599  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3600  *
3601  * This option will set a shared secret key which is used to build an
3602  * association shared key.
3603  */
3604 static int sctp_setsockopt_auth_key(struct sock *sk,
3605 				    struct sctp_authkey *authkey,
3606 				    unsigned int optlen)
3607 {
3608 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3609 	struct sctp_association *asoc;
3610 	int ret = -EINVAL;
3611 
3612 	if (optlen <= sizeof(struct sctp_authkey))
3613 		return -EINVAL;
3614 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3615 	 * this.
3616 	 */
3617 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3618 
3619 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3620 		goto out;
3621 
3622 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3623 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3624 	    sctp_style(sk, UDP))
3625 		goto out;
3626 
3627 	if (asoc) {
3628 		ret = sctp_auth_set_key(ep, asoc, authkey);
3629 		goto out;
3630 	}
3631 
3632 	if (sctp_style(sk, TCP))
3633 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3634 
3635 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3636 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3637 		ret = sctp_auth_set_key(ep, asoc, authkey);
3638 		if (ret)
3639 			goto out;
3640 	}
3641 
3642 	ret = 0;
3643 
3644 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3645 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3646 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3647 			int res = sctp_auth_set_key(ep, asoc, authkey);
3648 
3649 			if (res && !ret)
3650 				ret = res;
3651 		}
3652 	}
3653 
3654 out:
3655 	memzero_explicit(authkey, optlen);
3656 	return ret;
3657 }
3658 
3659 /*
3660  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3661  *
3662  * This option will get or set the active shared key to be used to build
3663  * the association shared key.
3664  */
3665 static int sctp_setsockopt_active_key(struct sock *sk,
3666 				      struct sctp_authkeyid *val,
3667 				      unsigned int optlen)
3668 {
3669 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3670 	struct sctp_association *asoc;
3671 	int ret = 0;
3672 
3673 	if (optlen != sizeof(struct sctp_authkeyid))
3674 		return -EINVAL;
3675 
3676 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3677 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3678 	    sctp_style(sk, UDP))
3679 		return -EINVAL;
3680 
3681 	if (asoc)
3682 		return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3683 
3684 	if (sctp_style(sk, TCP))
3685 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3686 
3687 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3688 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3689 		ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3690 		if (ret)
3691 			return ret;
3692 	}
3693 
3694 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3695 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3696 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3697 			int res = sctp_auth_set_active_key(ep, asoc,
3698 							   val->scact_keynumber);
3699 
3700 			if (res && !ret)
3701 				ret = res;
3702 		}
3703 	}
3704 
3705 	return ret;
3706 }
3707 
3708 /*
3709  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3710  *
3711  * This set option will delete a shared secret key from use.
3712  */
3713 static int sctp_setsockopt_del_key(struct sock *sk,
3714 				   struct sctp_authkeyid *val,
3715 				   unsigned int optlen)
3716 {
3717 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3718 	struct sctp_association *asoc;
3719 	int ret = 0;
3720 
3721 	if (optlen != sizeof(struct sctp_authkeyid))
3722 		return -EINVAL;
3723 
3724 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3725 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3726 	    sctp_style(sk, UDP))
3727 		return -EINVAL;
3728 
3729 	if (asoc)
3730 		return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3731 
3732 	if (sctp_style(sk, TCP))
3733 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3734 
3735 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3736 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3737 		ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3738 		if (ret)
3739 			return ret;
3740 	}
3741 
3742 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3743 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3744 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3745 			int res = sctp_auth_del_key_id(ep, asoc,
3746 						       val->scact_keynumber);
3747 
3748 			if (res && !ret)
3749 				ret = res;
3750 		}
3751 	}
3752 
3753 	return ret;
3754 }
3755 
3756 /*
3757  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3758  *
3759  * This set option will deactivate a shared secret key.
3760  */
3761 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3762 					  struct sctp_authkeyid *val,
3763 					  unsigned int optlen)
3764 {
3765 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3766 	struct sctp_association *asoc;
3767 	int ret = 0;
3768 
3769 	if (optlen != sizeof(struct sctp_authkeyid))
3770 		return -EINVAL;
3771 
3772 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3773 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3774 	    sctp_style(sk, UDP))
3775 		return -EINVAL;
3776 
3777 	if (asoc)
3778 		return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3779 
3780 	if (sctp_style(sk, TCP))
3781 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3782 
3783 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3784 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3785 		ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3786 		if (ret)
3787 			return ret;
3788 	}
3789 
3790 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3791 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3792 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3793 			int res = sctp_auth_deact_key_id(ep, asoc,
3794 							 val->scact_keynumber);
3795 
3796 			if (res && !ret)
3797 				ret = res;
3798 		}
3799 	}
3800 
3801 	return ret;
3802 }
3803 
3804 /*
3805  * 8.1.23 SCTP_AUTO_ASCONF
3806  *
3807  * This option will enable or disable the use of the automatic generation of
3808  * ASCONF chunks to add and delete addresses to an existing association.  Note
3809  * that this option has two caveats namely: a) it only affects sockets that
3810  * are bound to all addresses available to the SCTP stack, and b) the system
3811  * administrator may have an overriding control that turns the ASCONF feature
3812  * off no matter what setting the socket option may have.
3813  * This option expects an integer boolean flag, where a non-zero value turns on
3814  * the option, and a zero value turns off the option.
3815  * Note. In this implementation, socket operation overrides default parameter
3816  * being set by sysctl as well as FreeBSD implementation
3817  */
3818 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3819 					unsigned int optlen)
3820 {
3821 	struct sctp_sock *sp = sctp_sk(sk);
3822 
3823 	if (optlen < sizeof(int))
3824 		return -EINVAL;
3825 	if (!sctp_is_ep_boundall(sk) && *val)
3826 		return -EINVAL;
3827 	if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3828 		return 0;
3829 
3830 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3831 	if (*val == 0 && sp->do_auto_asconf) {
3832 		list_del(&sp->auto_asconf_list);
3833 		sp->do_auto_asconf = 0;
3834 	} else if (*val && !sp->do_auto_asconf) {
3835 		list_add_tail(&sp->auto_asconf_list,
3836 		    &sock_net(sk)->sctp.auto_asconf_splist);
3837 		sp->do_auto_asconf = 1;
3838 	}
3839 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3840 	return 0;
3841 }
3842 
3843 /*
3844  * SCTP_PEER_ADDR_THLDS
3845  *
3846  * This option allows us to alter the partially failed threshold for one or all
3847  * transports in an association.  See Section 6.1 of:
3848  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3849  */
3850 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3851 					    struct sctp_paddrthlds_v2 *val,
3852 					    unsigned int optlen, bool v2)
3853 {
3854 	struct sctp_transport *trans;
3855 	struct sctp_association *asoc;
3856 	int len;
3857 
3858 	len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3859 	if (optlen < len)
3860 		return -EINVAL;
3861 
3862 	if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3863 		return -EINVAL;
3864 
3865 	if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3866 		trans = sctp_addr_id2transport(sk, &val->spt_address,
3867 					       val->spt_assoc_id);
3868 		if (!trans)
3869 			return -ENOENT;
3870 
3871 		if (val->spt_pathmaxrxt)
3872 			trans->pathmaxrxt = val->spt_pathmaxrxt;
3873 		if (v2)
3874 			trans->ps_retrans = val->spt_pathcpthld;
3875 		trans->pf_retrans = val->spt_pathpfthld;
3876 
3877 		return 0;
3878 	}
3879 
3880 	asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3881 	if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3882 	    sctp_style(sk, UDP))
3883 		return -EINVAL;
3884 
3885 	if (asoc) {
3886 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3887 				    transports) {
3888 			if (val->spt_pathmaxrxt)
3889 				trans->pathmaxrxt = val->spt_pathmaxrxt;
3890 			if (v2)
3891 				trans->ps_retrans = val->spt_pathcpthld;
3892 			trans->pf_retrans = val->spt_pathpfthld;
3893 		}
3894 
3895 		if (val->spt_pathmaxrxt)
3896 			asoc->pathmaxrxt = val->spt_pathmaxrxt;
3897 		if (v2)
3898 			asoc->ps_retrans = val->spt_pathcpthld;
3899 		asoc->pf_retrans = val->spt_pathpfthld;
3900 	} else {
3901 		struct sctp_sock *sp = sctp_sk(sk);
3902 
3903 		if (val->spt_pathmaxrxt)
3904 			sp->pathmaxrxt = val->spt_pathmaxrxt;
3905 		if (v2)
3906 			sp->ps_retrans = val->spt_pathcpthld;
3907 		sp->pf_retrans = val->spt_pathpfthld;
3908 	}
3909 
3910 	return 0;
3911 }
3912 
3913 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3914 				       unsigned int optlen)
3915 {
3916 	if (optlen < sizeof(int))
3917 		return -EINVAL;
3918 
3919 	sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3920 
3921 	return 0;
3922 }
3923 
3924 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3925 				       unsigned int optlen)
3926 {
3927 	if (optlen < sizeof(int))
3928 		return -EINVAL;
3929 
3930 	sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3931 
3932 	return 0;
3933 }
3934 
3935 static int sctp_setsockopt_pr_supported(struct sock *sk,
3936 					struct sctp_assoc_value *params,
3937 					unsigned int optlen)
3938 {
3939 	struct sctp_association *asoc;
3940 
3941 	if (optlen != sizeof(*params))
3942 		return -EINVAL;
3943 
3944 	asoc = sctp_id2assoc(sk, params->assoc_id);
3945 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3946 	    sctp_style(sk, UDP))
3947 		return -EINVAL;
3948 
3949 	sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3950 
3951 	return 0;
3952 }
3953 
3954 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3955 					  struct sctp_default_prinfo *info,
3956 					  unsigned int optlen)
3957 {
3958 	struct sctp_sock *sp = sctp_sk(sk);
3959 	struct sctp_association *asoc;
3960 	int retval = -EINVAL;
3961 
3962 	if (optlen != sizeof(*info))
3963 		goto out;
3964 
3965 	if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3966 		goto out;
3967 
3968 	if (info->pr_policy == SCTP_PR_SCTP_NONE)
3969 		info->pr_value = 0;
3970 
3971 	asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3972 	if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3973 	    sctp_style(sk, UDP))
3974 		goto out;
3975 
3976 	retval = 0;
3977 
3978 	if (asoc) {
3979 		SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3980 		asoc->default_timetolive = info->pr_value;
3981 		goto out;
3982 	}
3983 
3984 	if (sctp_style(sk, TCP))
3985 		info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3986 
3987 	if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
3988 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
3989 		SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
3990 		sp->default_timetolive = info->pr_value;
3991 	}
3992 
3993 	if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
3994 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
3995 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3996 			SCTP_PR_SET_POLICY(asoc->default_flags,
3997 					   info->pr_policy);
3998 			asoc->default_timetolive = info->pr_value;
3999 		}
4000 	}
4001 
4002 out:
4003 	return retval;
4004 }
4005 
4006 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4007 					      struct sctp_assoc_value *params,
4008 					      unsigned int optlen)
4009 {
4010 	struct sctp_association *asoc;
4011 	int retval = -EINVAL;
4012 
4013 	if (optlen != sizeof(*params))
4014 		goto out;
4015 
4016 	asoc = sctp_id2assoc(sk, params->assoc_id);
4017 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4018 	    sctp_style(sk, UDP))
4019 		goto out;
4020 
4021 	sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4022 
4023 	retval = 0;
4024 
4025 out:
4026 	return retval;
4027 }
4028 
4029 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4030 					   struct sctp_assoc_value *params,
4031 					   unsigned int optlen)
4032 {
4033 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4034 	struct sctp_association *asoc;
4035 	int retval = -EINVAL;
4036 
4037 	if (optlen != sizeof(*params))
4038 		goto out;
4039 
4040 	if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4041 		goto out;
4042 
4043 	asoc = sctp_id2assoc(sk, params->assoc_id);
4044 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4045 	    sctp_style(sk, UDP))
4046 		goto out;
4047 
4048 	retval = 0;
4049 
4050 	if (asoc) {
4051 		asoc->strreset_enable = params->assoc_value;
4052 		goto out;
4053 	}
4054 
4055 	if (sctp_style(sk, TCP))
4056 		params->assoc_id = SCTP_FUTURE_ASSOC;
4057 
4058 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4059 	    params->assoc_id == SCTP_ALL_ASSOC)
4060 		ep->strreset_enable = params->assoc_value;
4061 
4062 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4063 	    params->assoc_id == SCTP_ALL_ASSOC)
4064 		list_for_each_entry(asoc, &ep->asocs, asocs)
4065 			asoc->strreset_enable = params->assoc_value;
4066 
4067 out:
4068 	return retval;
4069 }
4070 
4071 static int sctp_setsockopt_reset_streams(struct sock *sk,
4072 					 struct sctp_reset_streams *params,
4073 					 unsigned int optlen)
4074 {
4075 	struct sctp_association *asoc;
4076 
4077 	if (optlen < sizeof(*params))
4078 		return -EINVAL;
4079 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4080 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4081 					     sizeof(__u16) * sizeof(*params));
4082 
4083 	if (params->srs_number_streams * sizeof(__u16) >
4084 	    optlen - sizeof(*params))
4085 		return -EINVAL;
4086 
4087 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4088 	if (!asoc)
4089 		return -EINVAL;
4090 
4091 	return sctp_send_reset_streams(asoc, params);
4092 }
4093 
4094 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4095 				       unsigned int optlen)
4096 {
4097 	struct sctp_association *asoc;
4098 
4099 	if (optlen != sizeof(*associd))
4100 		return -EINVAL;
4101 
4102 	asoc = sctp_id2assoc(sk, *associd);
4103 	if (!asoc)
4104 		return -EINVAL;
4105 
4106 	return sctp_send_reset_assoc(asoc);
4107 }
4108 
4109 static int sctp_setsockopt_add_streams(struct sock *sk,
4110 				       struct sctp_add_streams *params,
4111 				       unsigned int optlen)
4112 {
4113 	struct sctp_association *asoc;
4114 
4115 	if (optlen != sizeof(*params))
4116 		return -EINVAL;
4117 
4118 	asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4119 	if (!asoc)
4120 		return -EINVAL;
4121 
4122 	return sctp_send_add_streams(asoc, params);
4123 }
4124 
4125 static int sctp_setsockopt_scheduler(struct sock *sk,
4126 				     struct sctp_assoc_value *params,
4127 				     unsigned int optlen)
4128 {
4129 	struct sctp_sock *sp = sctp_sk(sk);
4130 	struct sctp_association *asoc;
4131 	int retval = 0;
4132 
4133 	if (optlen < sizeof(*params))
4134 		return -EINVAL;
4135 
4136 	if (params->assoc_value > SCTP_SS_MAX)
4137 		return -EINVAL;
4138 
4139 	asoc = sctp_id2assoc(sk, params->assoc_id);
4140 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4141 	    sctp_style(sk, UDP))
4142 		return -EINVAL;
4143 
4144 	if (asoc)
4145 		return sctp_sched_set_sched(asoc, params->assoc_value);
4146 
4147 	if (sctp_style(sk, TCP))
4148 		params->assoc_id = SCTP_FUTURE_ASSOC;
4149 
4150 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4151 	    params->assoc_id == SCTP_ALL_ASSOC)
4152 		sp->default_ss = params->assoc_value;
4153 
4154 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4155 	    params->assoc_id == SCTP_ALL_ASSOC) {
4156 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4157 			int ret = sctp_sched_set_sched(asoc,
4158 						       params->assoc_value);
4159 
4160 			if (ret && !retval)
4161 				retval = ret;
4162 		}
4163 	}
4164 
4165 	return retval;
4166 }
4167 
4168 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4169 					   struct sctp_stream_value *params,
4170 					   unsigned int optlen)
4171 {
4172 	struct sctp_association *asoc;
4173 	int retval = -EINVAL;
4174 
4175 	if (optlen < sizeof(*params))
4176 		goto out;
4177 
4178 	asoc = sctp_id2assoc(sk, params->assoc_id);
4179 	if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4180 	    sctp_style(sk, UDP))
4181 		goto out;
4182 
4183 	if (asoc) {
4184 		retval = sctp_sched_set_value(asoc, params->stream_id,
4185 					      params->stream_value, GFP_KERNEL);
4186 		goto out;
4187 	}
4188 
4189 	retval = 0;
4190 
4191 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4192 		int ret = sctp_sched_set_value(asoc, params->stream_id,
4193 					       params->stream_value,
4194 					       GFP_KERNEL);
4195 		if (ret && !retval) /* try to return the 1st error. */
4196 			retval = ret;
4197 	}
4198 
4199 out:
4200 	return retval;
4201 }
4202 
4203 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4204 						  struct sctp_assoc_value *p,
4205 						  unsigned int optlen)
4206 {
4207 	struct sctp_sock *sp = sctp_sk(sk);
4208 	struct sctp_association *asoc;
4209 
4210 	if (optlen < sizeof(*p))
4211 		return -EINVAL;
4212 
4213 	asoc = sctp_id2assoc(sk, p->assoc_id);
4214 	if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4215 		return -EINVAL;
4216 
4217 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4218 		return -EPERM;
4219 	}
4220 
4221 	sp->ep->intl_enable = !!p->assoc_value;
4222 	return 0;
4223 }
4224 
4225 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4226 				      unsigned int optlen)
4227 {
4228 	if (!sctp_style(sk, TCP))
4229 		return -EOPNOTSUPP;
4230 
4231 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4232 		return -EFAULT;
4233 
4234 	if (optlen < sizeof(int))
4235 		return -EINVAL;
4236 
4237 	sctp_sk(sk)->reuse = !!*val;
4238 
4239 	return 0;
4240 }
4241 
4242 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4243 					struct sctp_association *asoc)
4244 {
4245 	struct sctp_ulpevent *event;
4246 
4247 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4248 
4249 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4250 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4251 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4252 					GFP_USER | __GFP_NOWARN);
4253 			if (!event)
4254 				return -ENOMEM;
4255 
4256 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4257 		}
4258 	}
4259 
4260 	return 0;
4261 }
4262 
4263 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4264 				 unsigned int optlen)
4265 {
4266 	struct sctp_sock *sp = sctp_sk(sk);
4267 	struct sctp_association *asoc;
4268 	int retval = 0;
4269 
4270 	if (optlen < sizeof(*param))
4271 		return -EINVAL;
4272 
4273 	if (param->se_type < SCTP_SN_TYPE_BASE ||
4274 	    param->se_type > SCTP_SN_TYPE_MAX)
4275 		return -EINVAL;
4276 
4277 	asoc = sctp_id2assoc(sk, param->se_assoc_id);
4278 	if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4279 	    sctp_style(sk, UDP))
4280 		return -EINVAL;
4281 
4282 	if (asoc)
4283 		return sctp_assoc_ulpevent_type_set(param, asoc);
4284 
4285 	if (sctp_style(sk, TCP))
4286 		param->se_assoc_id = SCTP_FUTURE_ASSOC;
4287 
4288 	if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4289 	    param->se_assoc_id == SCTP_ALL_ASSOC)
4290 		sctp_ulpevent_type_set(&sp->subscribe,
4291 				       param->se_type, param->se_on);
4292 
4293 	if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4294 	    param->se_assoc_id == SCTP_ALL_ASSOC) {
4295 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4296 			int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4297 
4298 			if (ret && !retval)
4299 				retval = ret;
4300 		}
4301 	}
4302 
4303 	return retval;
4304 }
4305 
4306 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4307 					    struct sctp_assoc_value *params,
4308 					    unsigned int optlen)
4309 {
4310 	struct sctp_association *asoc;
4311 	struct sctp_endpoint *ep;
4312 	int retval = -EINVAL;
4313 
4314 	if (optlen != sizeof(*params))
4315 		goto out;
4316 
4317 	asoc = sctp_id2assoc(sk, params->assoc_id);
4318 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4319 	    sctp_style(sk, UDP))
4320 		goto out;
4321 
4322 	ep = sctp_sk(sk)->ep;
4323 	ep->asconf_enable = !!params->assoc_value;
4324 
4325 	if (ep->asconf_enable && ep->auth_enable) {
4326 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4327 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4328 	}
4329 
4330 	retval = 0;
4331 
4332 out:
4333 	return retval;
4334 }
4335 
4336 static int sctp_setsockopt_auth_supported(struct sock *sk,
4337 					  struct sctp_assoc_value *params,
4338 					  unsigned int optlen)
4339 {
4340 	struct sctp_association *asoc;
4341 	struct sctp_endpoint *ep;
4342 	int retval = -EINVAL;
4343 
4344 	if (optlen != sizeof(*params))
4345 		goto out;
4346 
4347 	asoc = sctp_id2assoc(sk, params->assoc_id);
4348 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4349 	    sctp_style(sk, UDP))
4350 		goto out;
4351 
4352 	ep = sctp_sk(sk)->ep;
4353 	if (params->assoc_value) {
4354 		retval = sctp_auth_init(ep, GFP_KERNEL);
4355 		if (retval)
4356 			goto out;
4357 		if (ep->asconf_enable) {
4358 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4359 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4360 		}
4361 	}
4362 
4363 	ep->auth_enable = !!params->assoc_value;
4364 	retval = 0;
4365 
4366 out:
4367 	return retval;
4368 }
4369 
4370 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4371 					 struct sctp_assoc_value *params,
4372 					 unsigned int optlen)
4373 {
4374 	struct sctp_association *asoc;
4375 	int retval = -EINVAL;
4376 
4377 	if (optlen != sizeof(*params))
4378 		goto out;
4379 
4380 	asoc = sctp_id2assoc(sk, params->assoc_id);
4381 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4382 	    sctp_style(sk, UDP))
4383 		goto out;
4384 
4385 	sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4386 	retval = 0;
4387 
4388 out:
4389 	return retval;
4390 }
4391 
4392 static int sctp_setsockopt_pf_expose(struct sock *sk,
4393 				     struct sctp_assoc_value *params,
4394 				     unsigned int optlen)
4395 {
4396 	struct sctp_association *asoc;
4397 	int retval = -EINVAL;
4398 
4399 	if (optlen != sizeof(*params))
4400 		goto out;
4401 
4402 	if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4403 		goto out;
4404 
4405 	asoc = sctp_id2assoc(sk, params->assoc_id);
4406 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4407 	    sctp_style(sk, UDP))
4408 		goto out;
4409 
4410 	if (asoc)
4411 		asoc->pf_expose = params->assoc_value;
4412 	else
4413 		sctp_sk(sk)->pf_expose = params->assoc_value;
4414 	retval = 0;
4415 
4416 out:
4417 	return retval;
4418 }
4419 
4420 static int sctp_setsockopt_encap_port(struct sock *sk,
4421 				      struct sctp_udpencaps *encap,
4422 				      unsigned int optlen)
4423 {
4424 	struct sctp_association *asoc;
4425 	struct sctp_transport *t;
4426 	__be16 encap_port;
4427 
4428 	if (optlen != sizeof(*encap))
4429 		return -EINVAL;
4430 
4431 	/* If an address other than INADDR_ANY is specified, and
4432 	 * no transport is found, then the request is invalid.
4433 	 */
4434 	encap_port = (__force __be16)encap->sue_port;
4435 	if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4436 		t = sctp_addr_id2transport(sk, &encap->sue_address,
4437 					   encap->sue_assoc_id);
4438 		if (!t)
4439 			return -EINVAL;
4440 
4441 		t->encap_port = encap_port;
4442 		return 0;
4443 	}
4444 
4445 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4446 	 * socket is a one to many style socket, and an association
4447 	 * was not found, then the id was invalid.
4448 	 */
4449 	asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4450 	if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4451 	    sctp_style(sk, UDP))
4452 		return -EINVAL;
4453 
4454 	/* If changes are for association, also apply encap_port to
4455 	 * each transport.
4456 	 */
4457 	if (asoc) {
4458 		list_for_each_entry(t, &asoc->peer.transport_addr_list,
4459 				    transports)
4460 			t->encap_port = encap_port;
4461 
4462 		return 0;
4463 	}
4464 
4465 	sctp_sk(sk)->encap_port = encap_port;
4466 	return 0;
4467 }
4468 
4469 /* API 6.2 setsockopt(), getsockopt()
4470  *
4471  * Applications use setsockopt() and getsockopt() to set or retrieve
4472  * socket options.  Socket options are used to change the default
4473  * behavior of sockets calls.  They are described in Section 7.
4474  *
4475  * The syntax is:
4476  *
4477  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4478  *                    int __user *optlen);
4479  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4480  *                    int optlen);
4481  *
4482  *   sd      - the socket descript.
4483  *   level   - set to IPPROTO_SCTP for all SCTP options.
4484  *   optname - the option name.
4485  *   optval  - the buffer to store the value of the option.
4486  *   optlen  - the size of the buffer.
4487  */
4488 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4489 			   sockptr_t optval, unsigned int optlen)
4490 {
4491 	void *kopt = NULL;
4492 	int retval = 0;
4493 
4494 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4495 
4496 	/* I can hardly begin to describe how wrong this is.  This is
4497 	 * so broken as to be worse than useless.  The API draft
4498 	 * REALLY is NOT helpful here...  I am not convinced that the
4499 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4500 	 * are at all well-founded.
4501 	 */
4502 	if (level != SOL_SCTP) {
4503 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4504 
4505 		return af->setsockopt(sk, level, optname, optval, optlen);
4506 	}
4507 
4508 	if (optlen > 0) {
4509 		kopt = memdup_sockptr(optval, optlen);
4510 		if (IS_ERR(kopt))
4511 			return PTR_ERR(kopt);
4512 	}
4513 
4514 	lock_sock(sk);
4515 
4516 	switch (optname) {
4517 	case SCTP_SOCKOPT_BINDX_ADD:
4518 		/* 'optlen' is the size of the addresses buffer. */
4519 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4520 					       SCTP_BINDX_ADD_ADDR);
4521 		break;
4522 
4523 	case SCTP_SOCKOPT_BINDX_REM:
4524 		/* 'optlen' is the size of the addresses buffer. */
4525 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4526 					       SCTP_BINDX_REM_ADDR);
4527 		break;
4528 
4529 	case SCTP_SOCKOPT_CONNECTX_OLD:
4530 		/* 'optlen' is the size of the addresses buffer. */
4531 		retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4532 		break;
4533 
4534 	case SCTP_SOCKOPT_CONNECTX:
4535 		/* 'optlen' is the size of the addresses buffer. */
4536 		retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4537 		break;
4538 
4539 	case SCTP_DISABLE_FRAGMENTS:
4540 		retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4541 		break;
4542 
4543 	case SCTP_EVENTS:
4544 		retval = sctp_setsockopt_events(sk, kopt, optlen);
4545 		break;
4546 
4547 	case SCTP_AUTOCLOSE:
4548 		retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4549 		break;
4550 
4551 	case SCTP_PEER_ADDR_PARAMS:
4552 		retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4553 		break;
4554 
4555 	case SCTP_DELAYED_SACK:
4556 		retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4557 		break;
4558 	case SCTP_PARTIAL_DELIVERY_POINT:
4559 		retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4560 		break;
4561 
4562 	case SCTP_INITMSG:
4563 		retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4564 		break;
4565 	case SCTP_DEFAULT_SEND_PARAM:
4566 		retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4567 		break;
4568 	case SCTP_DEFAULT_SNDINFO:
4569 		retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4570 		break;
4571 	case SCTP_PRIMARY_ADDR:
4572 		retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4573 		break;
4574 	case SCTP_SET_PEER_PRIMARY_ADDR:
4575 		retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4576 		break;
4577 	case SCTP_NODELAY:
4578 		retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4579 		break;
4580 	case SCTP_RTOINFO:
4581 		retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4582 		break;
4583 	case SCTP_ASSOCINFO:
4584 		retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4585 		break;
4586 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4587 		retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4588 		break;
4589 	case SCTP_MAXSEG:
4590 		retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4591 		break;
4592 	case SCTP_ADAPTATION_LAYER:
4593 		retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4594 		break;
4595 	case SCTP_CONTEXT:
4596 		retval = sctp_setsockopt_context(sk, kopt, optlen);
4597 		break;
4598 	case SCTP_FRAGMENT_INTERLEAVE:
4599 		retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4600 		break;
4601 	case SCTP_MAX_BURST:
4602 		retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4603 		break;
4604 	case SCTP_AUTH_CHUNK:
4605 		retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4606 		break;
4607 	case SCTP_HMAC_IDENT:
4608 		retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4609 		break;
4610 	case SCTP_AUTH_KEY:
4611 		retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4612 		break;
4613 	case SCTP_AUTH_ACTIVE_KEY:
4614 		retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4615 		break;
4616 	case SCTP_AUTH_DELETE_KEY:
4617 		retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4618 		break;
4619 	case SCTP_AUTH_DEACTIVATE_KEY:
4620 		retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4621 		break;
4622 	case SCTP_AUTO_ASCONF:
4623 		retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4624 		break;
4625 	case SCTP_PEER_ADDR_THLDS:
4626 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4627 							  false);
4628 		break;
4629 	case SCTP_PEER_ADDR_THLDS_V2:
4630 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4631 							  true);
4632 		break;
4633 	case SCTP_RECVRCVINFO:
4634 		retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4635 		break;
4636 	case SCTP_RECVNXTINFO:
4637 		retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4638 		break;
4639 	case SCTP_PR_SUPPORTED:
4640 		retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4641 		break;
4642 	case SCTP_DEFAULT_PRINFO:
4643 		retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4644 		break;
4645 	case SCTP_RECONFIG_SUPPORTED:
4646 		retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4647 		break;
4648 	case SCTP_ENABLE_STREAM_RESET:
4649 		retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4650 		break;
4651 	case SCTP_RESET_STREAMS:
4652 		retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4653 		break;
4654 	case SCTP_RESET_ASSOC:
4655 		retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4656 		break;
4657 	case SCTP_ADD_STREAMS:
4658 		retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4659 		break;
4660 	case SCTP_STREAM_SCHEDULER:
4661 		retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4662 		break;
4663 	case SCTP_STREAM_SCHEDULER_VALUE:
4664 		retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4665 		break;
4666 	case SCTP_INTERLEAVING_SUPPORTED:
4667 		retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4668 								optlen);
4669 		break;
4670 	case SCTP_REUSE_PORT:
4671 		retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4672 		break;
4673 	case SCTP_EVENT:
4674 		retval = sctp_setsockopt_event(sk, kopt, optlen);
4675 		break;
4676 	case SCTP_ASCONF_SUPPORTED:
4677 		retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4678 		break;
4679 	case SCTP_AUTH_SUPPORTED:
4680 		retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4681 		break;
4682 	case SCTP_ECN_SUPPORTED:
4683 		retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4684 		break;
4685 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4686 		retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4687 		break;
4688 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
4689 		retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4690 		break;
4691 	default:
4692 		retval = -ENOPROTOOPT;
4693 		break;
4694 	}
4695 
4696 	release_sock(sk);
4697 	kfree(kopt);
4698 	return retval;
4699 }
4700 
4701 /* API 3.1.6 connect() - UDP Style Syntax
4702  *
4703  * An application may use the connect() call in the UDP model to initiate an
4704  * association without sending data.
4705  *
4706  * The syntax is:
4707  *
4708  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4709  *
4710  * sd: the socket descriptor to have a new association added to.
4711  *
4712  * nam: the address structure (either struct sockaddr_in or struct
4713  *    sockaddr_in6 defined in RFC2553 [7]).
4714  *
4715  * len: the size of the address.
4716  */
4717 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4718 			int addr_len, int flags)
4719 {
4720 	struct sctp_af *af;
4721 	int err = -EINVAL;
4722 
4723 	lock_sock(sk);
4724 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4725 		 addr, addr_len);
4726 
4727 	/* Validate addr_len before calling common connect/connectx routine. */
4728 	af = sctp_get_af_specific(addr->sa_family);
4729 	if (af && addr_len >= af->sockaddr_len)
4730 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4731 
4732 	release_sock(sk);
4733 	return err;
4734 }
4735 
4736 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4737 		      int addr_len, int flags)
4738 {
4739 	if (addr_len < sizeof(uaddr->sa_family))
4740 		return -EINVAL;
4741 
4742 	if (uaddr->sa_family == AF_UNSPEC)
4743 		return -EOPNOTSUPP;
4744 
4745 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4746 }
4747 
4748 /* FIXME: Write comments. */
4749 static int sctp_disconnect(struct sock *sk, int flags)
4750 {
4751 	return -EOPNOTSUPP; /* STUB */
4752 }
4753 
4754 /* 4.1.4 accept() - TCP Style Syntax
4755  *
4756  * Applications use accept() call to remove an established SCTP
4757  * association from the accept queue of the endpoint.  A new socket
4758  * descriptor will be returned from accept() to represent the newly
4759  * formed association.
4760  */
4761 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4762 {
4763 	struct sctp_sock *sp;
4764 	struct sctp_endpoint *ep;
4765 	struct sock *newsk = NULL;
4766 	struct sctp_association *asoc;
4767 	long timeo;
4768 	int error = 0;
4769 
4770 	lock_sock(sk);
4771 
4772 	sp = sctp_sk(sk);
4773 	ep = sp->ep;
4774 
4775 	if (!sctp_style(sk, TCP)) {
4776 		error = -EOPNOTSUPP;
4777 		goto out;
4778 	}
4779 
4780 	if (!sctp_sstate(sk, LISTENING)) {
4781 		error = -EINVAL;
4782 		goto out;
4783 	}
4784 
4785 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4786 
4787 	error = sctp_wait_for_accept(sk, timeo);
4788 	if (error)
4789 		goto out;
4790 
4791 	/* We treat the list of associations on the endpoint as the accept
4792 	 * queue and pick the first association on the list.
4793 	 */
4794 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4795 
4796 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4797 	if (!newsk) {
4798 		error = -ENOMEM;
4799 		goto out;
4800 	}
4801 
4802 	/* Populate the fields of the newsk from the oldsk and migrate the
4803 	 * asoc to the newsk.
4804 	 */
4805 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4806 	if (error) {
4807 		sk_common_release(newsk);
4808 		newsk = NULL;
4809 	}
4810 
4811 out:
4812 	release_sock(sk);
4813 	*err = error;
4814 	return newsk;
4815 }
4816 
4817 /* The SCTP ioctl handler. */
4818 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4819 {
4820 	int rc = -ENOTCONN;
4821 
4822 	lock_sock(sk);
4823 
4824 	/*
4825 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4826 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4827 	 */
4828 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4829 		goto out;
4830 
4831 	switch (cmd) {
4832 	case SIOCINQ: {
4833 		struct sk_buff *skb;
4834 		unsigned int amount = 0;
4835 
4836 		skb = skb_peek(&sk->sk_receive_queue);
4837 		if (skb != NULL) {
4838 			/*
4839 			 * We will only return the amount of this packet since
4840 			 * that is all that will be read.
4841 			 */
4842 			amount = skb->len;
4843 		}
4844 		rc = put_user(amount, (int __user *)arg);
4845 		break;
4846 	}
4847 	default:
4848 		rc = -ENOIOCTLCMD;
4849 		break;
4850 	}
4851 out:
4852 	release_sock(sk);
4853 	return rc;
4854 }
4855 
4856 /* This is the function which gets called during socket creation to
4857  * initialized the SCTP-specific portion of the sock.
4858  * The sock structure should already be zero-filled memory.
4859  */
4860 static int sctp_init_sock(struct sock *sk)
4861 {
4862 	struct net *net = sock_net(sk);
4863 	struct sctp_sock *sp;
4864 
4865 	pr_debug("%s: sk:%p\n", __func__, sk);
4866 
4867 	sp = sctp_sk(sk);
4868 
4869 	/* Initialize the SCTP per socket area.  */
4870 	switch (sk->sk_type) {
4871 	case SOCK_SEQPACKET:
4872 		sp->type = SCTP_SOCKET_UDP;
4873 		break;
4874 	case SOCK_STREAM:
4875 		sp->type = SCTP_SOCKET_TCP;
4876 		break;
4877 	default:
4878 		return -ESOCKTNOSUPPORT;
4879 	}
4880 
4881 	sk->sk_gso_type = SKB_GSO_SCTP;
4882 
4883 	/* Initialize default send parameters. These parameters can be
4884 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4885 	 */
4886 	sp->default_stream = 0;
4887 	sp->default_ppid = 0;
4888 	sp->default_flags = 0;
4889 	sp->default_context = 0;
4890 	sp->default_timetolive = 0;
4891 
4892 	sp->default_rcv_context = 0;
4893 	sp->max_burst = net->sctp.max_burst;
4894 
4895 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4896 
4897 	/* Initialize default setup parameters. These parameters
4898 	 * can be modified with the SCTP_INITMSG socket option or
4899 	 * overridden by the SCTP_INIT CMSG.
4900 	 */
4901 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4902 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4903 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4904 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4905 
4906 	/* Initialize default RTO related parameters.  These parameters can
4907 	 * be modified for with the SCTP_RTOINFO socket option.
4908 	 */
4909 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4910 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4911 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4912 
4913 	/* Initialize default association related parameters. These parameters
4914 	 * can be modified with the SCTP_ASSOCINFO socket option.
4915 	 */
4916 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4917 	sp->assocparams.sasoc_number_peer_destinations = 0;
4918 	sp->assocparams.sasoc_peer_rwnd = 0;
4919 	sp->assocparams.sasoc_local_rwnd = 0;
4920 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4921 
4922 	/* Initialize default event subscriptions. By default, all the
4923 	 * options are off.
4924 	 */
4925 	sp->subscribe = 0;
4926 
4927 	/* Default Peer Address Parameters.  These defaults can
4928 	 * be modified via SCTP_PEER_ADDR_PARAMS
4929 	 */
4930 	sp->hbinterval  = net->sctp.hb_interval;
4931 	sp->udp_port    = htons(net->sctp.udp_port);
4932 	sp->encap_port  = htons(net->sctp.encap_port);
4933 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4934 	sp->pf_retrans  = net->sctp.pf_retrans;
4935 	sp->ps_retrans  = net->sctp.ps_retrans;
4936 	sp->pf_expose   = net->sctp.pf_expose;
4937 	sp->pathmtu     = 0; /* allow default discovery */
4938 	sp->sackdelay   = net->sctp.sack_timeout;
4939 	sp->sackfreq	= 2;
4940 	sp->param_flags = SPP_HB_ENABLE |
4941 			  SPP_PMTUD_ENABLE |
4942 			  SPP_SACKDELAY_ENABLE;
4943 	sp->default_ss = SCTP_SS_DEFAULT;
4944 
4945 	/* If enabled no SCTP message fragmentation will be performed.
4946 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4947 	 */
4948 	sp->disable_fragments = 0;
4949 
4950 	/* Enable Nagle algorithm by default.  */
4951 	sp->nodelay           = 0;
4952 
4953 	sp->recvrcvinfo = 0;
4954 	sp->recvnxtinfo = 0;
4955 
4956 	/* Enable by default. */
4957 	sp->v4mapped          = 1;
4958 
4959 	/* Auto-close idle associations after the configured
4960 	 * number of seconds.  A value of 0 disables this
4961 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4962 	 * for UDP-style sockets only.
4963 	 */
4964 	sp->autoclose         = 0;
4965 
4966 	/* User specified fragmentation limit. */
4967 	sp->user_frag         = 0;
4968 
4969 	sp->adaptation_ind = 0;
4970 
4971 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4972 
4973 	/* Control variables for partial data delivery. */
4974 	atomic_set(&sp->pd_mode, 0);
4975 	skb_queue_head_init(&sp->pd_lobby);
4976 	sp->frag_interleave = 0;
4977 
4978 	/* Create a per socket endpoint structure.  Even if we
4979 	 * change the data structure relationships, this may still
4980 	 * be useful for storing pre-connect address information.
4981 	 */
4982 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4983 	if (!sp->ep)
4984 		return -ENOMEM;
4985 
4986 	sp->hmac = NULL;
4987 
4988 	sk->sk_destruct = sctp_destruct_sock;
4989 
4990 	SCTP_DBG_OBJCNT_INC(sock);
4991 
4992 	local_bh_disable();
4993 	sk_sockets_allocated_inc(sk);
4994 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4995 
4996 	/* Nothing can fail after this block, otherwise
4997 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4998 	 */
4999 	if (net->sctp.default_auto_asconf) {
5000 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5001 		list_add_tail(&sp->auto_asconf_list,
5002 		    &net->sctp.auto_asconf_splist);
5003 		sp->do_auto_asconf = 1;
5004 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5005 	} else {
5006 		sp->do_auto_asconf = 0;
5007 	}
5008 
5009 	local_bh_enable();
5010 
5011 	return 0;
5012 }
5013 
5014 /* Cleanup any SCTP per socket resources. Must be called with
5015  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5016  */
5017 static void sctp_destroy_sock(struct sock *sk)
5018 {
5019 	struct sctp_sock *sp;
5020 
5021 	pr_debug("%s: sk:%p\n", __func__, sk);
5022 
5023 	/* Release our hold on the endpoint. */
5024 	sp = sctp_sk(sk);
5025 	/* This could happen during socket init, thus we bail out
5026 	 * early, since the rest of the below is not setup either.
5027 	 */
5028 	if (sp->ep == NULL)
5029 		return;
5030 
5031 	if (sp->do_auto_asconf) {
5032 		sp->do_auto_asconf = 0;
5033 		list_del(&sp->auto_asconf_list);
5034 	}
5035 	sctp_endpoint_free(sp->ep);
5036 	local_bh_disable();
5037 	sk_sockets_allocated_dec(sk);
5038 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5039 	local_bh_enable();
5040 }
5041 
5042 /* Triggered when there are no references on the socket anymore */
5043 static void sctp_destruct_sock(struct sock *sk)
5044 {
5045 	struct sctp_sock *sp = sctp_sk(sk);
5046 
5047 	/* Free up the HMAC transform. */
5048 	crypto_free_shash(sp->hmac);
5049 
5050 	inet_sock_destruct(sk);
5051 }
5052 
5053 /* API 4.1.7 shutdown() - TCP Style Syntax
5054  *     int shutdown(int socket, int how);
5055  *
5056  *     sd      - the socket descriptor of the association to be closed.
5057  *     how     - Specifies the type of shutdown.  The  values  are
5058  *               as follows:
5059  *               SHUT_RD
5060  *                     Disables further receive operations. No SCTP
5061  *                     protocol action is taken.
5062  *               SHUT_WR
5063  *                     Disables further send operations, and initiates
5064  *                     the SCTP shutdown sequence.
5065  *               SHUT_RDWR
5066  *                     Disables further send  and  receive  operations
5067  *                     and initiates the SCTP shutdown sequence.
5068  */
5069 static void sctp_shutdown(struct sock *sk, int how)
5070 {
5071 	struct net *net = sock_net(sk);
5072 	struct sctp_endpoint *ep;
5073 
5074 	if (!sctp_style(sk, TCP))
5075 		return;
5076 
5077 	ep = sctp_sk(sk)->ep;
5078 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5079 		struct sctp_association *asoc;
5080 
5081 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5082 		asoc = list_entry(ep->asocs.next,
5083 				  struct sctp_association, asocs);
5084 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5085 	}
5086 }
5087 
5088 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5089 		       struct sctp_info *info)
5090 {
5091 	struct sctp_transport *prim;
5092 	struct list_head *pos;
5093 	int mask;
5094 
5095 	memset(info, 0, sizeof(*info));
5096 	if (!asoc) {
5097 		struct sctp_sock *sp = sctp_sk(sk);
5098 
5099 		info->sctpi_s_autoclose = sp->autoclose;
5100 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5101 		info->sctpi_s_pd_point = sp->pd_point;
5102 		info->sctpi_s_nodelay = sp->nodelay;
5103 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5104 		info->sctpi_s_v4mapped = sp->v4mapped;
5105 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5106 		info->sctpi_s_type = sp->type;
5107 
5108 		return 0;
5109 	}
5110 
5111 	info->sctpi_tag = asoc->c.my_vtag;
5112 	info->sctpi_state = asoc->state;
5113 	info->sctpi_rwnd = asoc->a_rwnd;
5114 	info->sctpi_unackdata = asoc->unack_data;
5115 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5116 	info->sctpi_instrms = asoc->stream.incnt;
5117 	info->sctpi_outstrms = asoc->stream.outcnt;
5118 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5119 		info->sctpi_inqueue++;
5120 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5121 		info->sctpi_outqueue++;
5122 	info->sctpi_overall_error = asoc->overall_error_count;
5123 	info->sctpi_max_burst = asoc->max_burst;
5124 	info->sctpi_maxseg = asoc->frag_point;
5125 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5126 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5127 
5128 	mask = asoc->peer.ecn_capable << 1;
5129 	mask = (mask | asoc->peer.ipv4_address) << 1;
5130 	mask = (mask | asoc->peer.ipv6_address) << 1;
5131 	mask = (mask | asoc->peer.hostname_address) << 1;
5132 	mask = (mask | asoc->peer.asconf_capable) << 1;
5133 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5134 	mask = (mask | asoc->peer.auth_capable);
5135 	info->sctpi_peer_capable = mask;
5136 	mask = asoc->peer.sack_needed << 1;
5137 	mask = (mask | asoc->peer.sack_generation) << 1;
5138 	mask = (mask | asoc->peer.zero_window_announced);
5139 	info->sctpi_peer_sack = mask;
5140 
5141 	info->sctpi_isacks = asoc->stats.isacks;
5142 	info->sctpi_osacks = asoc->stats.osacks;
5143 	info->sctpi_opackets = asoc->stats.opackets;
5144 	info->sctpi_ipackets = asoc->stats.ipackets;
5145 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5146 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5147 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5148 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5149 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5150 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5151 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5152 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5153 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5154 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5155 
5156 	prim = asoc->peer.primary_path;
5157 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5158 	info->sctpi_p_state = prim->state;
5159 	info->sctpi_p_cwnd = prim->cwnd;
5160 	info->sctpi_p_srtt = prim->srtt;
5161 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5162 	info->sctpi_p_hbinterval = prim->hbinterval;
5163 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5164 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5165 	info->sctpi_p_ssthresh = prim->ssthresh;
5166 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5167 	info->sctpi_p_flight_size = prim->flight_size;
5168 	info->sctpi_p_error = prim->error_count;
5169 
5170 	return 0;
5171 }
5172 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5173 
5174 /* use callback to avoid exporting the core structure */
5175 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5176 {
5177 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5178 
5179 	rhashtable_walk_start(iter);
5180 }
5181 
5182 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5183 {
5184 	rhashtable_walk_stop(iter);
5185 	rhashtable_walk_exit(iter);
5186 }
5187 
5188 struct sctp_transport *sctp_transport_get_next(struct net *net,
5189 					       struct rhashtable_iter *iter)
5190 {
5191 	struct sctp_transport *t;
5192 
5193 	t = rhashtable_walk_next(iter);
5194 	for (; t; t = rhashtable_walk_next(iter)) {
5195 		if (IS_ERR(t)) {
5196 			if (PTR_ERR(t) == -EAGAIN)
5197 				continue;
5198 			break;
5199 		}
5200 
5201 		if (!sctp_transport_hold(t))
5202 			continue;
5203 
5204 		if (net_eq(t->asoc->base.net, net) &&
5205 		    t->asoc->peer.primary_path == t)
5206 			break;
5207 
5208 		sctp_transport_put(t);
5209 	}
5210 
5211 	return t;
5212 }
5213 
5214 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5215 					      struct rhashtable_iter *iter,
5216 					      int pos)
5217 {
5218 	struct sctp_transport *t;
5219 
5220 	if (!pos)
5221 		return SEQ_START_TOKEN;
5222 
5223 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5224 		if (!--pos)
5225 			break;
5226 		sctp_transport_put(t);
5227 	}
5228 
5229 	return t;
5230 }
5231 
5232 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5233 			   void *p) {
5234 	int err = 0;
5235 	int hash = 0;
5236 	struct sctp_ep_common *epb;
5237 	struct sctp_hashbucket *head;
5238 
5239 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5240 	     hash++, head++) {
5241 		read_lock_bh(&head->lock);
5242 		sctp_for_each_hentry(epb, &head->chain) {
5243 			err = cb(sctp_ep(epb), p);
5244 			if (err)
5245 				break;
5246 		}
5247 		read_unlock_bh(&head->lock);
5248 	}
5249 
5250 	return err;
5251 }
5252 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5253 
5254 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5255 				  struct net *net,
5256 				  const union sctp_addr *laddr,
5257 				  const union sctp_addr *paddr, void *p)
5258 {
5259 	struct sctp_transport *transport;
5260 	int err;
5261 
5262 	rcu_read_lock();
5263 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5264 	rcu_read_unlock();
5265 	if (!transport)
5266 		return -ENOENT;
5267 
5268 	err = cb(transport, p);
5269 	sctp_transport_put(transport);
5270 
5271 	return err;
5272 }
5273 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5274 
5275 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5276 			    int (*cb_done)(struct sctp_transport *, void *),
5277 			    struct net *net, int *pos, void *p) {
5278 	struct rhashtable_iter hti;
5279 	struct sctp_transport *tsp;
5280 	int ret;
5281 
5282 again:
5283 	ret = 0;
5284 	sctp_transport_walk_start(&hti);
5285 
5286 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5287 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5288 		ret = cb(tsp, p);
5289 		if (ret)
5290 			break;
5291 		(*pos)++;
5292 		sctp_transport_put(tsp);
5293 	}
5294 	sctp_transport_walk_stop(&hti);
5295 
5296 	if (ret) {
5297 		if (cb_done && !cb_done(tsp, p)) {
5298 			(*pos)++;
5299 			sctp_transport_put(tsp);
5300 			goto again;
5301 		}
5302 		sctp_transport_put(tsp);
5303 	}
5304 
5305 	return ret;
5306 }
5307 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5308 
5309 /* 7.2.1 Association Status (SCTP_STATUS)
5310 
5311  * Applications can retrieve current status information about an
5312  * association, including association state, peer receiver window size,
5313  * number of unacked data chunks, and number of data chunks pending
5314  * receipt.  This information is read-only.
5315  */
5316 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5317 				       char __user *optval,
5318 				       int __user *optlen)
5319 {
5320 	struct sctp_status status;
5321 	struct sctp_association *asoc = NULL;
5322 	struct sctp_transport *transport;
5323 	sctp_assoc_t associd;
5324 	int retval = 0;
5325 
5326 	if (len < sizeof(status)) {
5327 		retval = -EINVAL;
5328 		goto out;
5329 	}
5330 
5331 	len = sizeof(status);
5332 	if (copy_from_user(&status, optval, len)) {
5333 		retval = -EFAULT;
5334 		goto out;
5335 	}
5336 
5337 	associd = status.sstat_assoc_id;
5338 	asoc = sctp_id2assoc(sk, associd);
5339 	if (!asoc) {
5340 		retval = -EINVAL;
5341 		goto out;
5342 	}
5343 
5344 	transport = asoc->peer.primary_path;
5345 
5346 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5347 	status.sstat_state = sctp_assoc_to_state(asoc);
5348 	status.sstat_rwnd =  asoc->peer.rwnd;
5349 	status.sstat_unackdata = asoc->unack_data;
5350 
5351 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5352 	status.sstat_instrms = asoc->stream.incnt;
5353 	status.sstat_outstrms = asoc->stream.outcnt;
5354 	status.sstat_fragmentation_point = asoc->frag_point;
5355 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5356 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5357 			transport->af_specific->sockaddr_len);
5358 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5359 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5360 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5361 	status.sstat_primary.spinfo_state = transport->state;
5362 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5363 	status.sstat_primary.spinfo_srtt = transport->srtt;
5364 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5365 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5366 
5367 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5368 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5369 
5370 	if (put_user(len, optlen)) {
5371 		retval = -EFAULT;
5372 		goto out;
5373 	}
5374 
5375 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5376 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5377 		 status.sstat_assoc_id);
5378 
5379 	if (copy_to_user(optval, &status, len)) {
5380 		retval = -EFAULT;
5381 		goto out;
5382 	}
5383 
5384 out:
5385 	return retval;
5386 }
5387 
5388 
5389 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5390  *
5391  * Applications can retrieve information about a specific peer address
5392  * of an association, including its reachability state, congestion
5393  * window, and retransmission timer values.  This information is
5394  * read-only.
5395  */
5396 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5397 					  char __user *optval,
5398 					  int __user *optlen)
5399 {
5400 	struct sctp_paddrinfo pinfo;
5401 	struct sctp_transport *transport;
5402 	int retval = 0;
5403 
5404 	if (len < sizeof(pinfo)) {
5405 		retval = -EINVAL;
5406 		goto out;
5407 	}
5408 
5409 	len = sizeof(pinfo);
5410 	if (copy_from_user(&pinfo, optval, len)) {
5411 		retval = -EFAULT;
5412 		goto out;
5413 	}
5414 
5415 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5416 					   pinfo.spinfo_assoc_id);
5417 	if (!transport) {
5418 		retval = -EINVAL;
5419 		goto out;
5420 	}
5421 
5422 	if (transport->state == SCTP_PF &&
5423 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5424 		retval = -EACCES;
5425 		goto out;
5426 	}
5427 
5428 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5429 	pinfo.spinfo_state = transport->state;
5430 	pinfo.spinfo_cwnd = transport->cwnd;
5431 	pinfo.spinfo_srtt = transport->srtt;
5432 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5433 	pinfo.spinfo_mtu = transport->pathmtu;
5434 
5435 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5436 		pinfo.spinfo_state = SCTP_ACTIVE;
5437 
5438 	if (put_user(len, optlen)) {
5439 		retval = -EFAULT;
5440 		goto out;
5441 	}
5442 
5443 	if (copy_to_user(optval, &pinfo, len)) {
5444 		retval = -EFAULT;
5445 		goto out;
5446 	}
5447 
5448 out:
5449 	return retval;
5450 }
5451 
5452 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5453  *
5454  * This option is a on/off flag.  If enabled no SCTP message
5455  * fragmentation will be performed.  Instead if a message being sent
5456  * exceeds the current PMTU size, the message will NOT be sent and
5457  * instead a error will be indicated to the user.
5458  */
5459 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5460 					char __user *optval, int __user *optlen)
5461 {
5462 	int val;
5463 
5464 	if (len < sizeof(int))
5465 		return -EINVAL;
5466 
5467 	len = sizeof(int);
5468 	val = (sctp_sk(sk)->disable_fragments == 1);
5469 	if (put_user(len, optlen))
5470 		return -EFAULT;
5471 	if (copy_to_user(optval, &val, len))
5472 		return -EFAULT;
5473 	return 0;
5474 }
5475 
5476 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5477  *
5478  * This socket option is used to specify various notifications and
5479  * ancillary data the user wishes to receive.
5480  */
5481 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5482 				  int __user *optlen)
5483 {
5484 	struct sctp_event_subscribe subscribe;
5485 	__u8 *sn_type = (__u8 *)&subscribe;
5486 	int i;
5487 
5488 	if (len == 0)
5489 		return -EINVAL;
5490 	if (len > sizeof(struct sctp_event_subscribe))
5491 		len = sizeof(struct sctp_event_subscribe);
5492 	if (put_user(len, optlen))
5493 		return -EFAULT;
5494 
5495 	for (i = 0; i < len; i++)
5496 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5497 							SCTP_SN_TYPE_BASE + i);
5498 
5499 	if (copy_to_user(optval, &subscribe, len))
5500 		return -EFAULT;
5501 
5502 	return 0;
5503 }
5504 
5505 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5506  *
5507  * This socket option is applicable to the UDP-style socket only.  When
5508  * set it will cause associations that are idle for more than the
5509  * specified number of seconds to automatically close.  An association
5510  * being idle is defined an association that has NOT sent or received
5511  * user data.  The special value of '0' indicates that no automatic
5512  * close of any associations should be performed.  The option expects an
5513  * integer defining the number of seconds of idle time before an
5514  * association is closed.
5515  */
5516 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5517 {
5518 	/* Applicable to UDP-style socket only */
5519 	if (sctp_style(sk, TCP))
5520 		return -EOPNOTSUPP;
5521 	if (len < sizeof(int))
5522 		return -EINVAL;
5523 	len = sizeof(int);
5524 	if (put_user(len, optlen))
5525 		return -EFAULT;
5526 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5527 		return -EFAULT;
5528 	return 0;
5529 }
5530 
5531 /* Helper routine to branch off an association to a new socket.  */
5532 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5533 {
5534 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5535 	struct sctp_sock *sp = sctp_sk(sk);
5536 	struct socket *sock;
5537 	int err = 0;
5538 
5539 	/* Do not peel off from one netns to another one. */
5540 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5541 		return -EINVAL;
5542 
5543 	if (!asoc)
5544 		return -EINVAL;
5545 
5546 	/* An association cannot be branched off from an already peeled-off
5547 	 * socket, nor is this supported for tcp style sockets.
5548 	 */
5549 	if (!sctp_style(sk, UDP))
5550 		return -EINVAL;
5551 
5552 	/* Create a new socket.  */
5553 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5554 	if (err < 0)
5555 		return err;
5556 
5557 	sctp_copy_sock(sock->sk, sk, asoc);
5558 
5559 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5560 	 * Set the daddr and initialize id to something more random and also
5561 	 * copy over any ip options.
5562 	 */
5563 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5564 	sp->pf->copy_ip_options(sk, sock->sk);
5565 
5566 	/* Populate the fields of the newsk from the oldsk and migrate the
5567 	 * asoc to the newsk.
5568 	 */
5569 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5570 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5571 	if (err) {
5572 		sock_release(sock);
5573 		sock = NULL;
5574 	}
5575 
5576 	*sockp = sock;
5577 
5578 	return err;
5579 }
5580 EXPORT_SYMBOL(sctp_do_peeloff);
5581 
5582 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5583 					  struct file **newfile, unsigned flags)
5584 {
5585 	struct socket *newsock;
5586 	int retval;
5587 
5588 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5589 	if (retval < 0)
5590 		goto out;
5591 
5592 	/* Map the socket to an unused fd that can be returned to the user.  */
5593 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5594 	if (retval < 0) {
5595 		sock_release(newsock);
5596 		goto out;
5597 	}
5598 
5599 	*newfile = sock_alloc_file(newsock, 0, NULL);
5600 	if (IS_ERR(*newfile)) {
5601 		put_unused_fd(retval);
5602 		retval = PTR_ERR(*newfile);
5603 		*newfile = NULL;
5604 		return retval;
5605 	}
5606 
5607 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5608 		 retval);
5609 
5610 	peeloff->sd = retval;
5611 
5612 	if (flags & SOCK_NONBLOCK)
5613 		(*newfile)->f_flags |= O_NONBLOCK;
5614 out:
5615 	return retval;
5616 }
5617 
5618 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5619 {
5620 	sctp_peeloff_arg_t peeloff;
5621 	struct file *newfile = NULL;
5622 	int retval = 0;
5623 
5624 	if (len < sizeof(sctp_peeloff_arg_t))
5625 		return -EINVAL;
5626 	len = sizeof(sctp_peeloff_arg_t);
5627 	if (copy_from_user(&peeloff, optval, len))
5628 		return -EFAULT;
5629 
5630 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5631 	if (retval < 0)
5632 		goto out;
5633 
5634 	/* Return the fd mapped to the new socket.  */
5635 	if (put_user(len, optlen)) {
5636 		fput(newfile);
5637 		put_unused_fd(retval);
5638 		return -EFAULT;
5639 	}
5640 
5641 	if (copy_to_user(optval, &peeloff, len)) {
5642 		fput(newfile);
5643 		put_unused_fd(retval);
5644 		return -EFAULT;
5645 	}
5646 	fd_install(retval, newfile);
5647 out:
5648 	return retval;
5649 }
5650 
5651 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5652 					 char __user *optval, int __user *optlen)
5653 {
5654 	sctp_peeloff_flags_arg_t peeloff;
5655 	struct file *newfile = NULL;
5656 	int retval = 0;
5657 
5658 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5659 		return -EINVAL;
5660 	len = sizeof(sctp_peeloff_flags_arg_t);
5661 	if (copy_from_user(&peeloff, optval, len))
5662 		return -EFAULT;
5663 
5664 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5665 						&newfile, peeloff.flags);
5666 	if (retval < 0)
5667 		goto out;
5668 
5669 	/* Return the fd mapped to the new socket.  */
5670 	if (put_user(len, optlen)) {
5671 		fput(newfile);
5672 		put_unused_fd(retval);
5673 		return -EFAULT;
5674 	}
5675 
5676 	if (copy_to_user(optval, &peeloff, len)) {
5677 		fput(newfile);
5678 		put_unused_fd(retval);
5679 		return -EFAULT;
5680 	}
5681 	fd_install(retval, newfile);
5682 out:
5683 	return retval;
5684 }
5685 
5686 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5687  *
5688  * Applications can enable or disable heartbeats for any peer address of
5689  * an association, modify an address's heartbeat interval, force a
5690  * heartbeat to be sent immediately, and adjust the address's maximum
5691  * number of retransmissions sent before an address is considered
5692  * unreachable.  The following structure is used to access and modify an
5693  * address's parameters:
5694  *
5695  *  struct sctp_paddrparams {
5696  *     sctp_assoc_t            spp_assoc_id;
5697  *     struct sockaddr_storage spp_address;
5698  *     uint32_t                spp_hbinterval;
5699  *     uint16_t                spp_pathmaxrxt;
5700  *     uint32_t                spp_pathmtu;
5701  *     uint32_t                spp_sackdelay;
5702  *     uint32_t                spp_flags;
5703  * };
5704  *
5705  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5706  *                     application, and identifies the association for
5707  *                     this query.
5708  *   spp_address     - This specifies which address is of interest.
5709  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5710  *                     in milliseconds.  If a  value of zero
5711  *                     is present in this field then no changes are to
5712  *                     be made to this parameter.
5713  *   spp_pathmaxrxt  - This contains the maximum number of
5714  *                     retransmissions before this address shall be
5715  *                     considered unreachable. If a  value of zero
5716  *                     is present in this field then no changes are to
5717  *                     be made to this parameter.
5718  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5719  *                     specified here will be the "fixed" path mtu.
5720  *                     Note that if the spp_address field is empty
5721  *                     then all associations on this address will
5722  *                     have this fixed path mtu set upon them.
5723  *
5724  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5725  *                     the number of milliseconds that sacks will be delayed
5726  *                     for. This value will apply to all addresses of an
5727  *                     association if the spp_address field is empty. Note
5728  *                     also, that if delayed sack is enabled and this
5729  *                     value is set to 0, no change is made to the last
5730  *                     recorded delayed sack timer value.
5731  *
5732  *   spp_flags       - These flags are used to control various features
5733  *                     on an association. The flag field may contain
5734  *                     zero or more of the following options.
5735  *
5736  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5737  *                     specified address. Note that if the address
5738  *                     field is empty all addresses for the association
5739  *                     have heartbeats enabled upon them.
5740  *
5741  *                     SPP_HB_DISABLE - Disable heartbeats on the
5742  *                     speicifed address. Note that if the address
5743  *                     field is empty all addresses for the association
5744  *                     will have their heartbeats disabled. Note also
5745  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5746  *                     mutually exclusive, only one of these two should
5747  *                     be specified. Enabling both fields will have
5748  *                     undetermined results.
5749  *
5750  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5751  *                     to be made immediately.
5752  *
5753  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5754  *                     discovery upon the specified address. Note that
5755  *                     if the address feild is empty then all addresses
5756  *                     on the association are effected.
5757  *
5758  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5759  *                     discovery upon the specified address. Note that
5760  *                     if the address feild is empty then all addresses
5761  *                     on the association are effected. Not also that
5762  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5763  *                     exclusive. Enabling both will have undetermined
5764  *                     results.
5765  *
5766  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5767  *                     on delayed sack. The time specified in spp_sackdelay
5768  *                     is used to specify the sack delay for this address. Note
5769  *                     that if spp_address is empty then all addresses will
5770  *                     enable delayed sack and take on the sack delay
5771  *                     value specified in spp_sackdelay.
5772  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5773  *                     off delayed sack. If the spp_address field is blank then
5774  *                     delayed sack is disabled for the entire association. Note
5775  *                     also that this field is mutually exclusive to
5776  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5777  *                     results.
5778  *
5779  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5780  *                     setting of the IPV6 flow label value.  The value is
5781  *                     contained in the spp_ipv6_flowlabel field.
5782  *                     Upon retrieval, this flag will be set to indicate that
5783  *                     the spp_ipv6_flowlabel field has a valid value returned.
5784  *                     If a specific destination address is set (in the
5785  *                     spp_address field), then the value returned is that of
5786  *                     the address.  If just an association is specified (and
5787  *                     no address), then the association's default flow label
5788  *                     is returned.  If neither an association nor a destination
5789  *                     is specified, then the socket's default flow label is
5790  *                     returned.  For non-IPv6 sockets, this flag will be left
5791  *                     cleared.
5792  *
5793  *                     SPP_DSCP:  Setting this flag enables the setting of the
5794  *                     Differentiated Services Code Point (DSCP) value
5795  *                     associated with either the association or a specific
5796  *                     address.  The value is obtained in the spp_dscp field.
5797  *                     Upon retrieval, this flag will be set to indicate that
5798  *                     the spp_dscp field has a valid value returned.  If a
5799  *                     specific destination address is set when called (in the
5800  *                     spp_address field), then that specific destination
5801  *                     address's DSCP value is returned.  If just an association
5802  *                     is specified, then the association's default DSCP is
5803  *                     returned.  If neither an association nor a destination is
5804  *                     specified, then the socket's default DSCP is returned.
5805  *
5806  *   spp_ipv6_flowlabel
5807  *                   - This field is used in conjunction with the
5808  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5809  *                     The 20 least significant bits are used for the flow
5810  *                     label.  This setting has precedence over any IPv6-layer
5811  *                     setting.
5812  *
5813  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5814  *                     and contains the DSCP.  The 6 most significant bits are
5815  *                     used for the DSCP.  This setting has precedence over any
5816  *                     IPv4- or IPv6- layer setting.
5817  */
5818 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5819 					    char __user *optval, int __user *optlen)
5820 {
5821 	struct sctp_paddrparams  params;
5822 	struct sctp_transport   *trans = NULL;
5823 	struct sctp_association *asoc = NULL;
5824 	struct sctp_sock        *sp = sctp_sk(sk);
5825 
5826 	if (len >= sizeof(params))
5827 		len = sizeof(params);
5828 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5829 				       spp_ipv6_flowlabel), 4))
5830 		len = ALIGN(offsetof(struct sctp_paddrparams,
5831 				     spp_ipv6_flowlabel), 4);
5832 	else
5833 		return -EINVAL;
5834 
5835 	if (copy_from_user(&params, optval, len))
5836 		return -EFAULT;
5837 
5838 	/* If an address other than INADDR_ANY is specified, and
5839 	 * no transport is found, then the request is invalid.
5840 	 */
5841 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5842 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5843 					       params.spp_assoc_id);
5844 		if (!trans) {
5845 			pr_debug("%s: failed no transport\n", __func__);
5846 			return -EINVAL;
5847 		}
5848 	}
5849 
5850 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5851 	 * socket is a one to many style socket, and an association
5852 	 * was not found, then the id was invalid.
5853 	 */
5854 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5855 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5856 	    sctp_style(sk, UDP)) {
5857 		pr_debug("%s: failed no association\n", __func__);
5858 		return -EINVAL;
5859 	}
5860 
5861 	if (trans) {
5862 		/* Fetch transport values. */
5863 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5864 		params.spp_pathmtu    = trans->pathmtu;
5865 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5866 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5867 
5868 		/*draft-11 doesn't say what to return in spp_flags*/
5869 		params.spp_flags      = trans->param_flags;
5870 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5871 			params.spp_ipv6_flowlabel = trans->flowlabel &
5872 						    SCTP_FLOWLABEL_VAL_MASK;
5873 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5874 		}
5875 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5876 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5877 			params.spp_flags |= SPP_DSCP;
5878 		}
5879 	} else if (asoc) {
5880 		/* Fetch association values. */
5881 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5882 		params.spp_pathmtu    = asoc->pathmtu;
5883 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5884 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5885 
5886 		/*draft-11 doesn't say what to return in spp_flags*/
5887 		params.spp_flags      = asoc->param_flags;
5888 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5889 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5890 						    SCTP_FLOWLABEL_VAL_MASK;
5891 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5892 		}
5893 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5894 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5895 			params.spp_flags |= SPP_DSCP;
5896 		}
5897 	} else {
5898 		/* Fetch socket values. */
5899 		params.spp_hbinterval = sp->hbinterval;
5900 		params.spp_pathmtu    = sp->pathmtu;
5901 		params.spp_sackdelay  = sp->sackdelay;
5902 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5903 
5904 		/*draft-11 doesn't say what to return in spp_flags*/
5905 		params.spp_flags      = sp->param_flags;
5906 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5907 			params.spp_ipv6_flowlabel = sp->flowlabel &
5908 						    SCTP_FLOWLABEL_VAL_MASK;
5909 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5910 		}
5911 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5912 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5913 			params.spp_flags |= SPP_DSCP;
5914 		}
5915 	}
5916 
5917 	if (copy_to_user(optval, &params, len))
5918 		return -EFAULT;
5919 
5920 	if (put_user(len, optlen))
5921 		return -EFAULT;
5922 
5923 	return 0;
5924 }
5925 
5926 /*
5927  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5928  *
5929  * This option will effect the way delayed acks are performed.  This
5930  * option allows you to get or set the delayed ack time, in
5931  * milliseconds.  It also allows changing the delayed ack frequency.
5932  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5933  * the assoc_id is 0, then this sets or gets the endpoints default
5934  * values.  If the assoc_id field is non-zero, then the set or get
5935  * effects the specified association for the one to many model (the
5936  * assoc_id field is ignored by the one to one model).  Note that if
5937  * sack_delay or sack_freq are 0 when setting this option, then the
5938  * current values will remain unchanged.
5939  *
5940  * struct sctp_sack_info {
5941  *     sctp_assoc_t            sack_assoc_id;
5942  *     uint32_t                sack_delay;
5943  *     uint32_t                sack_freq;
5944  * };
5945  *
5946  * sack_assoc_id -  This parameter, indicates which association the user
5947  *    is performing an action upon.  Note that if this field's value is
5948  *    zero then the endpoints default value is changed (effecting future
5949  *    associations only).
5950  *
5951  * sack_delay -  This parameter contains the number of milliseconds that
5952  *    the user is requesting the delayed ACK timer be set to.  Note that
5953  *    this value is defined in the standard to be between 200 and 500
5954  *    milliseconds.
5955  *
5956  * sack_freq -  This parameter contains the number of packets that must
5957  *    be received before a sack is sent without waiting for the delay
5958  *    timer to expire.  The default value for this is 2, setting this
5959  *    value to 1 will disable the delayed sack algorithm.
5960  */
5961 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5962 					    char __user *optval,
5963 					    int __user *optlen)
5964 {
5965 	struct sctp_sack_info    params;
5966 	struct sctp_association *asoc = NULL;
5967 	struct sctp_sock        *sp = sctp_sk(sk);
5968 
5969 	if (len >= sizeof(struct sctp_sack_info)) {
5970 		len = sizeof(struct sctp_sack_info);
5971 
5972 		if (copy_from_user(&params, optval, len))
5973 			return -EFAULT;
5974 	} else if (len == sizeof(struct sctp_assoc_value)) {
5975 		pr_warn_ratelimited(DEPRECATED
5976 				    "%s (pid %d) "
5977 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5978 				    "Use struct sctp_sack_info instead\n",
5979 				    current->comm, task_pid_nr(current));
5980 		if (copy_from_user(&params, optval, len))
5981 			return -EFAULT;
5982 	} else
5983 		return -EINVAL;
5984 
5985 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5986 	 * socket is a one to many style socket, and an association
5987 	 * was not found, then the id was invalid.
5988 	 */
5989 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5990 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5991 	    sctp_style(sk, UDP))
5992 		return -EINVAL;
5993 
5994 	if (asoc) {
5995 		/* Fetch association values. */
5996 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5997 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5998 			params.sack_freq = asoc->sackfreq;
5999 
6000 		} else {
6001 			params.sack_delay = 0;
6002 			params.sack_freq = 1;
6003 		}
6004 	} else {
6005 		/* Fetch socket values. */
6006 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6007 			params.sack_delay  = sp->sackdelay;
6008 			params.sack_freq = sp->sackfreq;
6009 		} else {
6010 			params.sack_delay  = 0;
6011 			params.sack_freq = 1;
6012 		}
6013 	}
6014 
6015 	if (copy_to_user(optval, &params, len))
6016 		return -EFAULT;
6017 
6018 	if (put_user(len, optlen))
6019 		return -EFAULT;
6020 
6021 	return 0;
6022 }
6023 
6024 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6025  *
6026  * Applications can specify protocol parameters for the default association
6027  * initialization.  The option name argument to setsockopt() and getsockopt()
6028  * is SCTP_INITMSG.
6029  *
6030  * Setting initialization parameters is effective only on an unconnected
6031  * socket (for UDP-style sockets only future associations are effected
6032  * by the change).  With TCP-style sockets, this option is inherited by
6033  * sockets derived from a listener socket.
6034  */
6035 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6036 {
6037 	if (len < sizeof(struct sctp_initmsg))
6038 		return -EINVAL;
6039 	len = sizeof(struct sctp_initmsg);
6040 	if (put_user(len, optlen))
6041 		return -EFAULT;
6042 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6043 		return -EFAULT;
6044 	return 0;
6045 }
6046 
6047 
6048 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6049 				      char __user *optval, int __user *optlen)
6050 {
6051 	struct sctp_association *asoc;
6052 	int cnt = 0;
6053 	struct sctp_getaddrs getaddrs;
6054 	struct sctp_transport *from;
6055 	void __user *to;
6056 	union sctp_addr temp;
6057 	struct sctp_sock *sp = sctp_sk(sk);
6058 	int addrlen;
6059 	size_t space_left;
6060 	int bytes_copied;
6061 
6062 	if (len < sizeof(struct sctp_getaddrs))
6063 		return -EINVAL;
6064 
6065 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6066 		return -EFAULT;
6067 
6068 	/* For UDP-style sockets, id specifies the association to query.  */
6069 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6070 	if (!asoc)
6071 		return -EINVAL;
6072 
6073 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6074 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6075 
6076 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6077 				transports) {
6078 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6079 		addrlen = sctp_get_pf_specific(sk->sk_family)
6080 			      ->addr_to_user(sp, &temp);
6081 		if (space_left < addrlen)
6082 			return -ENOMEM;
6083 		if (copy_to_user(to, &temp, addrlen))
6084 			return -EFAULT;
6085 		to += addrlen;
6086 		cnt++;
6087 		space_left -= addrlen;
6088 	}
6089 
6090 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6091 		return -EFAULT;
6092 	bytes_copied = ((char __user *)to) - optval;
6093 	if (put_user(bytes_copied, optlen))
6094 		return -EFAULT;
6095 
6096 	return 0;
6097 }
6098 
6099 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6100 			    size_t space_left, int *bytes_copied)
6101 {
6102 	struct sctp_sockaddr_entry *addr;
6103 	union sctp_addr temp;
6104 	int cnt = 0;
6105 	int addrlen;
6106 	struct net *net = sock_net(sk);
6107 
6108 	rcu_read_lock();
6109 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6110 		if (!addr->valid)
6111 			continue;
6112 
6113 		if ((PF_INET == sk->sk_family) &&
6114 		    (AF_INET6 == addr->a.sa.sa_family))
6115 			continue;
6116 		if ((PF_INET6 == sk->sk_family) &&
6117 		    inet_v6_ipv6only(sk) &&
6118 		    (AF_INET == addr->a.sa.sa_family))
6119 			continue;
6120 		memcpy(&temp, &addr->a, sizeof(temp));
6121 		if (!temp.v4.sin_port)
6122 			temp.v4.sin_port = htons(port);
6123 
6124 		addrlen = sctp_get_pf_specific(sk->sk_family)
6125 			      ->addr_to_user(sctp_sk(sk), &temp);
6126 
6127 		if (space_left < addrlen) {
6128 			cnt =  -ENOMEM;
6129 			break;
6130 		}
6131 		memcpy(to, &temp, addrlen);
6132 
6133 		to += addrlen;
6134 		cnt++;
6135 		space_left -= addrlen;
6136 		*bytes_copied += addrlen;
6137 	}
6138 	rcu_read_unlock();
6139 
6140 	return cnt;
6141 }
6142 
6143 
6144 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6145 				       char __user *optval, int __user *optlen)
6146 {
6147 	struct sctp_bind_addr *bp;
6148 	struct sctp_association *asoc;
6149 	int cnt = 0;
6150 	struct sctp_getaddrs getaddrs;
6151 	struct sctp_sockaddr_entry *addr;
6152 	void __user *to;
6153 	union sctp_addr temp;
6154 	struct sctp_sock *sp = sctp_sk(sk);
6155 	int addrlen;
6156 	int err = 0;
6157 	size_t space_left;
6158 	int bytes_copied = 0;
6159 	void *addrs;
6160 	void *buf;
6161 
6162 	if (len < sizeof(struct sctp_getaddrs))
6163 		return -EINVAL;
6164 
6165 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6166 		return -EFAULT;
6167 
6168 	/*
6169 	 *  For UDP-style sockets, id specifies the association to query.
6170 	 *  If the id field is set to the value '0' then the locally bound
6171 	 *  addresses are returned without regard to any particular
6172 	 *  association.
6173 	 */
6174 	if (0 == getaddrs.assoc_id) {
6175 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6176 	} else {
6177 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6178 		if (!asoc)
6179 			return -EINVAL;
6180 		bp = &asoc->base.bind_addr;
6181 	}
6182 
6183 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6184 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6185 
6186 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6187 	if (!addrs)
6188 		return -ENOMEM;
6189 
6190 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6191 	 * addresses from the global local address list.
6192 	 */
6193 	if (sctp_list_single_entry(&bp->address_list)) {
6194 		addr = list_entry(bp->address_list.next,
6195 				  struct sctp_sockaddr_entry, list);
6196 		if (sctp_is_any(sk, &addr->a)) {
6197 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6198 						space_left, &bytes_copied);
6199 			if (cnt < 0) {
6200 				err = cnt;
6201 				goto out;
6202 			}
6203 			goto copy_getaddrs;
6204 		}
6205 	}
6206 
6207 	buf = addrs;
6208 	/* Protection on the bound address list is not needed since
6209 	 * in the socket option context we hold a socket lock and
6210 	 * thus the bound address list can't change.
6211 	 */
6212 	list_for_each_entry(addr, &bp->address_list, list) {
6213 		memcpy(&temp, &addr->a, sizeof(temp));
6214 		addrlen = sctp_get_pf_specific(sk->sk_family)
6215 			      ->addr_to_user(sp, &temp);
6216 		if (space_left < addrlen) {
6217 			err =  -ENOMEM; /*fixme: right error?*/
6218 			goto out;
6219 		}
6220 		memcpy(buf, &temp, addrlen);
6221 		buf += addrlen;
6222 		bytes_copied += addrlen;
6223 		cnt++;
6224 		space_left -= addrlen;
6225 	}
6226 
6227 copy_getaddrs:
6228 	if (copy_to_user(to, addrs, bytes_copied)) {
6229 		err = -EFAULT;
6230 		goto out;
6231 	}
6232 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6233 		err = -EFAULT;
6234 		goto out;
6235 	}
6236 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6237 	 * but we can't change it anymore.
6238 	 */
6239 	if (put_user(bytes_copied, optlen))
6240 		err = -EFAULT;
6241 out:
6242 	kfree(addrs);
6243 	return err;
6244 }
6245 
6246 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6247  *
6248  * Requests that the local SCTP stack use the enclosed peer address as
6249  * the association primary.  The enclosed address must be one of the
6250  * association peer's addresses.
6251  */
6252 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6253 					char __user *optval, int __user *optlen)
6254 {
6255 	struct sctp_prim prim;
6256 	struct sctp_association *asoc;
6257 	struct sctp_sock *sp = sctp_sk(sk);
6258 
6259 	if (len < sizeof(struct sctp_prim))
6260 		return -EINVAL;
6261 
6262 	len = sizeof(struct sctp_prim);
6263 
6264 	if (copy_from_user(&prim, optval, len))
6265 		return -EFAULT;
6266 
6267 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6268 	if (!asoc)
6269 		return -EINVAL;
6270 
6271 	if (!asoc->peer.primary_path)
6272 		return -ENOTCONN;
6273 
6274 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6275 		asoc->peer.primary_path->af_specific->sockaddr_len);
6276 
6277 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6278 			(union sctp_addr *)&prim.ssp_addr);
6279 
6280 	if (put_user(len, optlen))
6281 		return -EFAULT;
6282 	if (copy_to_user(optval, &prim, len))
6283 		return -EFAULT;
6284 
6285 	return 0;
6286 }
6287 
6288 /*
6289  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6290  *
6291  * Requests that the local endpoint set the specified Adaptation Layer
6292  * Indication parameter for all future INIT and INIT-ACK exchanges.
6293  */
6294 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6295 				  char __user *optval, int __user *optlen)
6296 {
6297 	struct sctp_setadaptation adaptation;
6298 
6299 	if (len < sizeof(struct sctp_setadaptation))
6300 		return -EINVAL;
6301 
6302 	len = sizeof(struct sctp_setadaptation);
6303 
6304 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6305 
6306 	if (put_user(len, optlen))
6307 		return -EFAULT;
6308 	if (copy_to_user(optval, &adaptation, len))
6309 		return -EFAULT;
6310 
6311 	return 0;
6312 }
6313 
6314 /*
6315  *
6316  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6317  *
6318  *   Applications that wish to use the sendto() system call may wish to
6319  *   specify a default set of parameters that would normally be supplied
6320  *   through the inclusion of ancillary data.  This socket option allows
6321  *   such an application to set the default sctp_sndrcvinfo structure.
6322 
6323 
6324  *   The application that wishes to use this socket option simply passes
6325  *   in to this call the sctp_sndrcvinfo structure defined in Section
6326  *   5.2.2) The input parameters accepted by this call include
6327  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6328  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6329  *   to this call if the caller is using the UDP model.
6330  *
6331  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6332  */
6333 static int sctp_getsockopt_default_send_param(struct sock *sk,
6334 					int len, char __user *optval,
6335 					int __user *optlen)
6336 {
6337 	struct sctp_sock *sp = sctp_sk(sk);
6338 	struct sctp_association *asoc;
6339 	struct sctp_sndrcvinfo info;
6340 
6341 	if (len < sizeof(info))
6342 		return -EINVAL;
6343 
6344 	len = sizeof(info);
6345 
6346 	if (copy_from_user(&info, optval, len))
6347 		return -EFAULT;
6348 
6349 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6350 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6351 	    sctp_style(sk, UDP))
6352 		return -EINVAL;
6353 
6354 	if (asoc) {
6355 		info.sinfo_stream = asoc->default_stream;
6356 		info.sinfo_flags = asoc->default_flags;
6357 		info.sinfo_ppid = asoc->default_ppid;
6358 		info.sinfo_context = asoc->default_context;
6359 		info.sinfo_timetolive = asoc->default_timetolive;
6360 	} else {
6361 		info.sinfo_stream = sp->default_stream;
6362 		info.sinfo_flags = sp->default_flags;
6363 		info.sinfo_ppid = sp->default_ppid;
6364 		info.sinfo_context = sp->default_context;
6365 		info.sinfo_timetolive = sp->default_timetolive;
6366 	}
6367 
6368 	if (put_user(len, optlen))
6369 		return -EFAULT;
6370 	if (copy_to_user(optval, &info, len))
6371 		return -EFAULT;
6372 
6373 	return 0;
6374 }
6375 
6376 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6377  * (SCTP_DEFAULT_SNDINFO)
6378  */
6379 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6380 					   char __user *optval,
6381 					   int __user *optlen)
6382 {
6383 	struct sctp_sock *sp = sctp_sk(sk);
6384 	struct sctp_association *asoc;
6385 	struct sctp_sndinfo info;
6386 
6387 	if (len < sizeof(info))
6388 		return -EINVAL;
6389 
6390 	len = sizeof(info);
6391 
6392 	if (copy_from_user(&info, optval, len))
6393 		return -EFAULT;
6394 
6395 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6396 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6397 	    sctp_style(sk, UDP))
6398 		return -EINVAL;
6399 
6400 	if (asoc) {
6401 		info.snd_sid = asoc->default_stream;
6402 		info.snd_flags = asoc->default_flags;
6403 		info.snd_ppid = asoc->default_ppid;
6404 		info.snd_context = asoc->default_context;
6405 	} else {
6406 		info.snd_sid = sp->default_stream;
6407 		info.snd_flags = sp->default_flags;
6408 		info.snd_ppid = sp->default_ppid;
6409 		info.snd_context = sp->default_context;
6410 	}
6411 
6412 	if (put_user(len, optlen))
6413 		return -EFAULT;
6414 	if (copy_to_user(optval, &info, len))
6415 		return -EFAULT;
6416 
6417 	return 0;
6418 }
6419 
6420 /*
6421  *
6422  * 7.1.5 SCTP_NODELAY
6423  *
6424  * Turn on/off any Nagle-like algorithm.  This means that packets are
6425  * generally sent as soon as possible and no unnecessary delays are
6426  * introduced, at the cost of more packets in the network.  Expects an
6427  * integer boolean flag.
6428  */
6429 
6430 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6431 				   char __user *optval, int __user *optlen)
6432 {
6433 	int val;
6434 
6435 	if (len < sizeof(int))
6436 		return -EINVAL;
6437 
6438 	len = sizeof(int);
6439 	val = (sctp_sk(sk)->nodelay == 1);
6440 	if (put_user(len, optlen))
6441 		return -EFAULT;
6442 	if (copy_to_user(optval, &val, len))
6443 		return -EFAULT;
6444 	return 0;
6445 }
6446 
6447 /*
6448  *
6449  * 7.1.1 SCTP_RTOINFO
6450  *
6451  * The protocol parameters used to initialize and bound retransmission
6452  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6453  * and modify these parameters.
6454  * All parameters are time values, in milliseconds.  A value of 0, when
6455  * modifying the parameters, indicates that the current value should not
6456  * be changed.
6457  *
6458  */
6459 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6460 				char __user *optval,
6461 				int __user *optlen) {
6462 	struct sctp_rtoinfo rtoinfo;
6463 	struct sctp_association *asoc;
6464 
6465 	if (len < sizeof (struct sctp_rtoinfo))
6466 		return -EINVAL;
6467 
6468 	len = sizeof(struct sctp_rtoinfo);
6469 
6470 	if (copy_from_user(&rtoinfo, optval, len))
6471 		return -EFAULT;
6472 
6473 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6474 
6475 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6476 	    sctp_style(sk, UDP))
6477 		return -EINVAL;
6478 
6479 	/* Values corresponding to the specific association. */
6480 	if (asoc) {
6481 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6482 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6483 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6484 	} else {
6485 		/* Values corresponding to the endpoint. */
6486 		struct sctp_sock *sp = sctp_sk(sk);
6487 
6488 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6489 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6490 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6491 	}
6492 
6493 	if (put_user(len, optlen))
6494 		return -EFAULT;
6495 
6496 	if (copy_to_user(optval, &rtoinfo, len))
6497 		return -EFAULT;
6498 
6499 	return 0;
6500 }
6501 
6502 /*
6503  *
6504  * 7.1.2 SCTP_ASSOCINFO
6505  *
6506  * This option is used to tune the maximum retransmission attempts
6507  * of the association.
6508  * Returns an error if the new association retransmission value is
6509  * greater than the sum of the retransmission value  of the peer.
6510  * See [SCTP] for more information.
6511  *
6512  */
6513 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6514 				     char __user *optval,
6515 				     int __user *optlen)
6516 {
6517 
6518 	struct sctp_assocparams assocparams;
6519 	struct sctp_association *asoc;
6520 	struct list_head *pos;
6521 	int cnt = 0;
6522 
6523 	if (len < sizeof (struct sctp_assocparams))
6524 		return -EINVAL;
6525 
6526 	len = sizeof(struct sctp_assocparams);
6527 
6528 	if (copy_from_user(&assocparams, optval, len))
6529 		return -EFAULT;
6530 
6531 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6532 
6533 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6534 	    sctp_style(sk, UDP))
6535 		return -EINVAL;
6536 
6537 	/* Values correspoinding to the specific association */
6538 	if (asoc) {
6539 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6540 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6541 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6542 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6543 
6544 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6545 			cnt++;
6546 		}
6547 
6548 		assocparams.sasoc_number_peer_destinations = cnt;
6549 	} else {
6550 		/* Values corresponding to the endpoint */
6551 		struct sctp_sock *sp = sctp_sk(sk);
6552 
6553 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6554 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6555 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6556 		assocparams.sasoc_cookie_life =
6557 					sp->assocparams.sasoc_cookie_life;
6558 		assocparams.sasoc_number_peer_destinations =
6559 					sp->assocparams.
6560 					sasoc_number_peer_destinations;
6561 	}
6562 
6563 	if (put_user(len, optlen))
6564 		return -EFAULT;
6565 
6566 	if (copy_to_user(optval, &assocparams, len))
6567 		return -EFAULT;
6568 
6569 	return 0;
6570 }
6571 
6572 /*
6573  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6574  *
6575  * This socket option is a boolean flag which turns on or off mapped V4
6576  * addresses.  If this option is turned on and the socket is type
6577  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6578  * If this option is turned off, then no mapping will be done of V4
6579  * addresses and a user will receive both PF_INET6 and PF_INET type
6580  * addresses on the socket.
6581  */
6582 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6583 				    char __user *optval, int __user *optlen)
6584 {
6585 	int val;
6586 	struct sctp_sock *sp = sctp_sk(sk);
6587 
6588 	if (len < sizeof(int))
6589 		return -EINVAL;
6590 
6591 	len = sizeof(int);
6592 	val = sp->v4mapped;
6593 	if (put_user(len, optlen))
6594 		return -EFAULT;
6595 	if (copy_to_user(optval, &val, len))
6596 		return -EFAULT;
6597 
6598 	return 0;
6599 }
6600 
6601 /*
6602  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6603  * (chapter and verse is quoted at sctp_setsockopt_context())
6604  */
6605 static int sctp_getsockopt_context(struct sock *sk, int len,
6606 				   char __user *optval, int __user *optlen)
6607 {
6608 	struct sctp_assoc_value params;
6609 	struct sctp_association *asoc;
6610 
6611 	if (len < sizeof(struct sctp_assoc_value))
6612 		return -EINVAL;
6613 
6614 	len = sizeof(struct sctp_assoc_value);
6615 
6616 	if (copy_from_user(&params, optval, len))
6617 		return -EFAULT;
6618 
6619 	asoc = sctp_id2assoc(sk, params.assoc_id);
6620 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6621 	    sctp_style(sk, UDP))
6622 		return -EINVAL;
6623 
6624 	params.assoc_value = asoc ? asoc->default_rcv_context
6625 				  : sctp_sk(sk)->default_rcv_context;
6626 
6627 	if (put_user(len, optlen))
6628 		return -EFAULT;
6629 	if (copy_to_user(optval, &params, len))
6630 		return -EFAULT;
6631 
6632 	return 0;
6633 }
6634 
6635 /*
6636  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6637  * This option will get or set the maximum size to put in any outgoing
6638  * SCTP DATA chunk.  If a message is larger than this size it will be
6639  * fragmented by SCTP into the specified size.  Note that the underlying
6640  * SCTP implementation may fragment into smaller sized chunks when the
6641  * PMTU of the underlying association is smaller than the value set by
6642  * the user.  The default value for this option is '0' which indicates
6643  * the user is NOT limiting fragmentation and only the PMTU will effect
6644  * SCTP's choice of DATA chunk size.  Note also that values set larger
6645  * than the maximum size of an IP datagram will effectively let SCTP
6646  * control fragmentation (i.e. the same as setting this option to 0).
6647  *
6648  * The following structure is used to access and modify this parameter:
6649  *
6650  * struct sctp_assoc_value {
6651  *   sctp_assoc_t assoc_id;
6652  *   uint32_t assoc_value;
6653  * };
6654  *
6655  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6656  *    For one-to-many style sockets this parameter indicates which
6657  *    association the user is performing an action upon.  Note that if
6658  *    this field's value is zero then the endpoints default value is
6659  *    changed (effecting future associations only).
6660  * assoc_value:  This parameter specifies the maximum size in bytes.
6661  */
6662 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6663 				  char __user *optval, int __user *optlen)
6664 {
6665 	struct sctp_assoc_value params;
6666 	struct sctp_association *asoc;
6667 
6668 	if (len == sizeof(int)) {
6669 		pr_warn_ratelimited(DEPRECATED
6670 				    "%s (pid %d) "
6671 				    "Use of int in maxseg socket option.\n"
6672 				    "Use struct sctp_assoc_value instead\n",
6673 				    current->comm, task_pid_nr(current));
6674 		params.assoc_id = SCTP_FUTURE_ASSOC;
6675 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6676 		len = sizeof(struct sctp_assoc_value);
6677 		if (copy_from_user(&params, optval, len))
6678 			return -EFAULT;
6679 	} else
6680 		return -EINVAL;
6681 
6682 	asoc = sctp_id2assoc(sk, params.assoc_id);
6683 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6684 	    sctp_style(sk, UDP))
6685 		return -EINVAL;
6686 
6687 	if (asoc)
6688 		params.assoc_value = asoc->frag_point;
6689 	else
6690 		params.assoc_value = sctp_sk(sk)->user_frag;
6691 
6692 	if (put_user(len, optlen))
6693 		return -EFAULT;
6694 	if (len == sizeof(int)) {
6695 		if (copy_to_user(optval, &params.assoc_value, len))
6696 			return -EFAULT;
6697 	} else {
6698 		if (copy_to_user(optval, &params, len))
6699 			return -EFAULT;
6700 	}
6701 
6702 	return 0;
6703 }
6704 
6705 /*
6706  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6707  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6708  */
6709 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6710 					       char __user *optval, int __user *optlen)
6711 {
6712 	int val;
6713 
6714 	if (len < sizeof(int))
6715 		return -EINVAL;
6716 
6717 	len = sizeof(int);
6718 
6719 	val = sctp_sk(sk)->frag_interleave;
6720 	if (put_user(len, optlen))
6721 		return -EFAULT;
6722 	if (copy_to_user(optval, &val, len))
6723 		return -EFAULT;
6724 
6725 	return 0;
6726 }
6727 
6728 /*
6729  * 7.1.25.  Set or Get the sctp partial delivery point
6730  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6731  */
6732 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6733 						  char __user *optval,
6734 						  int __user *optlen)
6735 {
6736 	u32 val;
6737 
6738 	if (len < sizeof(u32))
6739 		return -EINVAL;
6740 
6741 	len = sizeof(u32);
6742 
6743 	val = sctp_sk(sk)->pd_point;
6744 	if (put_user(len, optlen))
6745 		return -EFAULT;
6746 	if (copy_to_user(optval, &val, len))
6747 		return -EFAULT;
6748 
6749 	return 0;
6750 }
6751 
6752 /*
6753  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6754  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6755  */
6756 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6757 				    char __user *optval,
6758 				    int __user *optlen)
6759 {
6760 	struct sctp_assoc_value params;
6761 	struct sctp_association *asoc;
6762 
6763 	if (len == sizeof(int)) {
6764 		pr_warn_ratelimited(DEPRECATED
6765 				    "%s (pid %d) "
6766 				    "Use of int in max_burst socket option.\n"
6767 				    "Use struct sctp_assoc_value instead\n",
6768 				    current->comm, task_pid_nr(current));
6769 		params.assoc_id = SCTP_FUTURE_ASSOC;
6770 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6771 		len = sizeof(struct sctp_assoc_value);
6772 		if (copy_from_user(&params, optval, len))
6773 			return -EFAULT;
6774 	} else
6775 		return -EINVAL;
6776 
6777 	asoc = sctp_id2assoc(sk, params.assoc_id);
6778 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6779 	    sctp_style(sk, UDP))
6780 		return -EINVAL;
6781 
6782 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6783 
6784 	if (len == sizeof(int)) {
6785 		if (copy_to_user(optval, &params.assoc_value, len))
6786 			return -EFAULT;
6787 	} else {
6788 		if (copy_to_user(optval, &params, len))
6789 			return -EFAULT;
6790 	}
6791 
6792 	return 0;
6793 
6794 }
6795 
6796 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6797 				    char __user *optval, int __user *optlen)
6798 {
6799 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6800 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6801 	struct sctp_hmac_algo_param *hmacs;
6802 	__u16 data_len = 0;
6803 	u32 num_idents;
6804 	int i;
6805 
6806 	if (!ep->auth_enable)
6807 		return -EACCES;
6808 
6809 	hmacs = ep->auth_hmacs_list;
6810 	data_len = ntohs(hmacs->param_hdr.length) -
6811 		   sizeof(struct sctp_paramhdr);
6812 
6813 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6814 		return -EINVAL;
6815 
6816 	len = sizeof(struct sctp_hmacalgo) + data_len;
6817 	num_idents = data_len / sizeof(u16);
6818 
6819 	if (put_user(len, optlen))
6820 		return -EFAULT;
6821 	if (put_user(num_idents, &p->shmac_num_idents))
6822 		return -EFAULT;
6823 	for (i = 0; i < num_idents; i++) {
6824 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6825 
6826 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6827 			return -EFAULT;
6828 	}
6829 	return 0;
6830 }
6831 
6832 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6833 				    char __user *optval, int __user *optlen)
6834 {
6835 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6836 	struct sctp_authkeyid val;
6837 	struct sctp_association *asoc;
6838 
6839 	if (len < sizeof(struct sctp_authkeyid))
6840 		return -EINVAL;
6841 
6842 	len = sizeof(struct sctp_authkeyid);
6843 	if (copy_from_user(&val, optval, len))
6844 		return -EFAULT;
6845 
6846 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6847 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6848 		return -EINVAL;
6849 
6850 	if (asoc) {
6851 		if (!asoc->peer.auth_capable)
6852 			return -EACCES;
6853 		val.scact_keynumber = asoc->active_key_id;
6854 	} else {
6855 		if (!ep->auth_enable)
6856 			return -EACCES;
6857 		val.scact_keynumber = ep->active_key_id;
6858 	}
6859 
6860 	if (put_user(len, optlen))
6861 		return -EFAULT;
6862 	if (copy_to_user(optval, &val, len))
6863 		return -EFAULT;
6864 
6865 	return 0;
6866 }
6867 
6868 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6869 				    char __user *optval, int __user *optlen)
6870 {
6871 	struct sctp_authchunks __user *p = (void __user *)optval;
6872 	struct sctp_authchunks val;
6873 	struct sctp_association *asoc;
6874 	struct sctp_chunks_param *ch;
6875 	u32    num_chunks = 0;
6876 	char __user *to;
6877 
6878 	if (len < sizeof(struct sctp_authchunks))
6879 		return -EINVAL;
6880 
6881 	if (copy_from_user(&val, optval, sizeof(val)))
6882 		return -EFAULT;
6883 
6884 	to = p->gauth_chunks;
6885 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6886 	if (!asoc)
6887 		return -EINVAL;
6888 
6889 	if (!asoc->peer.auth_capable)
6890 		return -EACCES;
6891 
6892 	ch = asoc->peer.peer_chunks;
6893 	if (!ch)
6894 		goto num;
6895 
6896 	/* See if the user provided enough room for all the data */
6897 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6898 	if (len < num_chunks)
6899 		return -EINVAL;
6900 
6901 	if (copy_to_user(to, ch->chunks, num_chunks))
6902 		return -EFAULT;
6903 num:
6904 	len = sizeof(struct sctp_authchunks) + num_chunks;
6905 	if (put_user(len, optlen))
6906 		return -EFAULT;
6907 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6908 		return -EFAULT;
6909 	return 0;
6910 }
6911 
6912 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6913 				    char __user *optval, int __user *optlen)
6914 {
6915 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6916 	struct sctp_authchunks __user *p = (void __user *)optval;
6917 	struct sctp_authchunks val;
6918 	struct sctp_association *asoc;
6919 	struct sctp_chunks_param *ch;
6920 	u32    num_chunks = 0;
6921 	char __user *to;
6922 
6923 	if (len < sizeof(struct sctp_authchunks))
6924 		return -EINVAL;
6925 
6926 	if (copy_from_user(&val, optval, sizeof(val)))
6927 		return -EFAULT;
6928 
6929 	to = p->gauth_chunks;
6930 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6931 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6932 	    sctp_style(sk, UDP))
6933 		return -EINVAL;
6934 
6935 	if (asoc) {
6936 		if (!asoc->peer.auth_capable)
6937 			return -EACCES;
6938 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6939 	} else {
6940 		if (!ep->auth_enable)
6941 			return -EACCES;
6942 		ch = ep->auth_chunk_list;
6943 	}
6944 	if (!ch)
6945 		goto num;
6946 
6947 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6948 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6949 		return -EINVAL;
6950 
6951 	if (copy_to_user(to, ch->chunks, num_chunks))
6952 		return -EFAULT;
6953 num:
6954 	len = sizeof(struct sctp_authchunks) + num_chunks;
6955 	if (put_user(len, optlen))
6956 		return -EFAULT;
6957 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6958 		return -EFAULT;
6959 
6960 	return 0;
6961 }
6962 
6963 /*
6964  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6965  * This option gets the current number of associations that are attached
6966  * to a one-to-many style socket.  The option value is an uint32_t.
6967  */
6968 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6969 				    char __user *optval, int __user *optlen)
6970 {
6971 	struct sctp_sock *sp = sctp_sk(sk);
6972 	struct sctp_association *asoc;
6973 	u32 val = 0;
6974 
6975 	if (sctp_style(sk, TCP))
6976 		return -EOPNOTSUPP;
6977 
6978 	if (len < sizeof(u32))
6979 		return -EINVAL;
6980 
6981 	len = sizeof(u32);
6982 
6983 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6984 		val++;
6985 	}
6986 
6987 	if (put_user(len, optlen))
6988 		return -EFAULT;
6989 	if (copy_to_user(optval, &val, len))
6990 		return -EFAULT;
6991 
6992 	return 0;
6993 }
6994 
6995 /*
6996  * 8.1.23 SCTP_AUTO_ASCONF
6997  * See the corresponding setsockopt entry as description
6998  */
6999 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7000 				   char __user *optval, int __user *optlen)
7001 {
7002 	int val = 0;
7003 
7004 	if (len < sizeof(int))
7005 		return -EINVAL;
7006 
7007 	len = sizeof(int);
7008 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7009 		val = 1;
7010 	if (put_user(len, optlen))
7011 		return -EFAULT;
7012 	if (copy_to_user(optval, &val, len))
7013 		return -EFAULT;
7014 	return 0;
7015 }
7016 
7017 /*
7018  * 8.2.6. Get the Current Identifiers of Associations
7019  *        (SCTP_GET_ASSOC_ID_LIST)
7020  *
7021  * This option gets the current list of SCTP association identifiers of
7022  * the SCTP associations handled by a one-to-many style socket.
7023  */
7024 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7025 				    char __user *optval, int __user *optlen)
7026 {
7027 	struct sctp_sock *sp = sctp_sk(sk);
7028 	struct sctp_association *asoc;
7029 	struct sctp_assoc_ids *ids;
7030 	u32 num = 0;
7031 
7032 	if (sctp_style(sk, TCP))
7033 		return -EOPNOTSUPP;
7034 
7035 	if (len < sizeof(struct sctp_assoc_ids))
7036 		return -EINVAL;
7037 
7038 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7039 		num++;
7040 	}
7041 
7042 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7043 		return -EINVAL;
7044 
7045 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7046 
7047 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7048 	if (unlikely(!ids))
7049 		return -ENOMEM;
7050 
7051 	ids->gaids_number_of_ids = num;
7052 	num = 0;
7053 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7054 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7055 	}
7056 
7057 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7058 		kfree(ids);
7059 		return -EFAULT;
7060 	}
7061 
7062 	kfree(ids);
7063 	return 0;
7064 }
7065 
7066 /*
7067  * SCTP_PEER_ADDR_THLDS
7068  *
7069  * This option allows us to fetch the partially failed threshold for one or all
7070  * transports in an association.  See Section 6.1 of:
7071  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7072  */
7073 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7074 					    char __user *optval, int len,
7075 					    int __user *optlen, bool v2)
7076 {
7077 	struct sctp_paddrthlds_v2 val;
7078 	struct sctp_transport *trans;
7079 	struct sctp_association *asoc;
7080 	int min;
7081 
7082 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7083 	if (len < min)
7084 		return -EINVAL;
7085 	len = min;
7086 	if (copy_from_user(&val, optval, len))
7087 		return -EFAULT;
7088 
7089 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7090 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7091 					       val.spt_assoc_id);
7092 		if (!trans)
7093 			return -ENOENT;
7094 
7095 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7096 		val.spt_pathpfthld = trans->pf_retrans;
7097 		val.spt_pathcpthld = trans->ps_retrans;
7098 
7099 		goto out;
7100 	}
7101 
7102 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7103 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7104 	    sctp_style(sk, UDP))
7105 		return -EINVAL;
7106 
7107 	if (asoc) {
7108 		val.spt_pathpfthld = asoc->pf_retrans;
7109 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7110 		val.spt_pathcpthld = asoc->ps_retrans;
7111 	} else {
7112 		struct sctp_sock *sp = sctp_sk(sk);
7113 
7114 		val.spt_pathpfthld = sp->pf_retrans;
7115 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7116 		val.spt_pathcpthld = sp->ps_retrans;
7117 	}
7118 
7119 out:
7120 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7121 		return -EFAULT;
7122 
7123 	return 0;
7124 }
7125 
7126 /*
7127  * SCTP_GET_ASSOC_STATS
7128  *
7129  * This option retrieves local per endpoint statistics. It is modeled
7130  * after OpenSolaris' implementation
7131  */
7132 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7133 				       char __user *optval,
7134 				       int __user *optlen)
7135 {
7136 	struct sctp_assoc_stats sas;
7137 	struct sctp_association *asoc = NULL;
7138 
7139 	/* User must provide at least the assoc id */
7140 	if (len < sizeof(sctp_assoc_t))
7141 		return -EINVAL;
7142 
7143 	/* Allow the struct to grow and fill in as much as possible */
7144 	len = min_t(size_t, len, sizeof(sas));
7145 
7146 	if (copy_from_user(&sas, optval, len))
7147 		return -EFAULT;
7148 
7149 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7150 	if (!asoc)
7151 		return -EINVAL;
7152 
7153 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7154 	sas.sas_gapcnt = asoc->stats.gapcnt;
7155 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7156 	sas.sas_osacks = asoc->stats.osacks;
7157 	sas.sas_isacks = asoc->stats.isacks;
7158 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7159 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7160 	sas.sas_oodchunks = asoc->stats.oodchunks;
7161 	sas.sas_iodchunks = asoc->stats.iodchunks;
7162 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7163 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7164 	sas.sas_idupchunks = asoc->stats.idupchunks;
7165 	sas.sas_opackets = asoc->stats.opackets;
7166 	sas.sas_ipackets = asoc->stats.ipackets;
7167 
7168 	/* New high max rto observed, will return 0 if not a single
7169 	 * RTO update took place. obs_rto_ipaddr will be bogus
7170 	 * in such a case
7171 	 */
7172 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7173 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7174 		sizeof(struct sockaddr_storage));
7175 
7176 	/* Mark beginning of a new observation period */
7177 	asoc->stats.max_obs_rto = asoc->rto_min;
7178 
7179 	if (put_user(len, optlen))
7180 		return -EFAULT;
7181 
7182 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7183 
7184 	if (copy_to_user(optval, &sas, len))
7185 		return -EFAULT;
7186 
7187 	return 0;
7188 }
7189 
7190 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7191 				       char __user *optval,
7192 				       int __user *optlen)
7193 {
7194 	int val = 0;
7195 
7196 	if (len < sizeof(int))
7197 		return -EINVAL;
7198 
7199 	len = sizeof(int);
7200 	if (sctp_sk(sk)->recvrcvinfo)
7201 		val = 1;
7202 	if (put_user(len, optlen))
7203 		return -EFAULT;
7204 	if (copy_to_user(optval, &val, len))
7205 		return -EFAULT;
7206 
7207 	return 0;
7208 }
7209 
7210 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7211 				       char __user *optval,
7212 				       int __user *optlen)
7213 {
7214 	int val = 0;
7215 
7216 	if (len < sizeof(int))
7217 		return -EINVAL;
7218 
7219 	len = sizeof(int);
7220 	if (sctp_sk(sk)->recvnxtinfo)
7221 		val = 1;
7222 	if (put_user(len, optlen))
7223 		return -EFAULT;
7224 	if (copy_to_user(optval, &val, len))
7225 		return -EFAULT;
7226 
7227 	return 0;
7228 }
7229 
7230 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7231 					char __user *optval,
7232 					int __user *optlen)
7233 {
7234 	struct sctp_assoc_value params;
7235 	struct sctp_association *asoc;
7236 	int retval = -EFAULT;
7237 
7238 	if (len < sizeof(params)) {
7239 		retval = -EINVAL;
7240 		goto out;
7241 	}
7242 
7243 	len = sizeof(params);
7244 	if (copy_from_user(&params, optval, len))
7245 		goto out;
7246 
7247 	asoc = sctp_id2assoc(sk, params.assoc_id);
7248 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7249 	    sctp_style(sk, UDP)) {
7250 		retval = -EINVAL;
7251 		goto out;
7252 	}
7253 
7254 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7255 				  : sctp_sk(sk)->ep->prsctp_enable;
7256 
7257 	if (put_user(len, optlen))
7258 		goto out;
7259 
7260 	if (copy_to_user(optval, &params, len))
7261 		goto out;
7262 
7263 	retval = 0;
7264 
7265 out:
7266 	return retval;
7267 }
7268 
7269 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7270 					  char __user *optval,
7271 					  int __user *optlen)
7272 {
7273 	struct sctp_default_prinfo info;
7274 	struct sctp_association *asoc;
7275 	int retval = -EFAULT;
7276 
7277 	if (len < sizeof(info)) {
7278 		retval = -EINVAL;
7279 		goto out;
7280 	}
7281 
7282 	len = sizeof(info);
7283 	if (copy_from_user(&info, optval, len))
7284 		goto out;
7285 
7286 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7287 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7288 	    sctp_style(sk, UDP)) {
7289 		retval = -EINVAL;
7290 		goto out;
7291 	}
7292 
7293 	if (asoc) {
7294 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7295 		info.pr_value = asoc->default_timetolive;
7296 	} else {
7297 		struct sctp_sock *sp = sctp_sk(sk);
7298 
7299 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7300 		info.pr_value = sp->default_timetolive;
7301 	}
7302 
7303 	if (put_user(len, optlen))
7304 		goto out;
7305 
7306 	if (copy_to_user(optval, &info, len))
7307 		goto out;
7308 
7309 	retval = 0;
7310 
7311 out:
7312 	return retval;
7313 }
7314 
7315 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7316 					  char __user *optval,
7317 					  int __user *optlen)
7318 {
7319 	struct sctp_prstatus params;
7320 	struct sctp_association *asoc;
7321 	int policy;
7322 	int retval = -EINVAL;
7323 
7324 	if (len < sizeof(params))
7325 		goto out;
7326 
7327 	len = sizeof(params);
7328 	if (copy_from_user(&params, optval, len)) {
7329 		retval = -EFAULT;
7330 		goto out;
7331 	}
7332 
7333 	policy = params.sprstat_policy;
7334 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7335 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7336 		goto out;
7337 
7338 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7339 	if (!asoc)
7340 		goto out;
7341 
7342 	if (policy == SCTP_PR_SCTP_ALL) {
7343 		params.sprstat_abandoned_unsent = 0;
7344 		params.sprstat_abandoned_sent = 0;
7345 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7346 			params.sprstat_abandoned_unsent +=
7347 				asoc->abandoned_unsent[policy];
7348 			params.sprstat_abandoned_sent +=
7349 				asoc->abandoned_sent[policy];
7350 		}
7351 	} else {
7352 		params.sprstat_abandoned_unsent =
7353 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7354 		params.sprstat_abandoned_sent =
7355 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7356 	}
7357 
7358 	if (put_user(len, optlen)) {
7359 		retval = -EFAULT;
7360 		goto out;
7361 	}
7362 
7363 	if (copy_to_user(optval, &params, len)) {
7364 		retval = -EFAULT;
7365 		goto out;
7366 	}
7367 
7368 	retval = 0;
7369 
7370 out:
7371 	return retval;
7372 }
7373 
7374 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7375 					   char __user *optval,
7376 					   int __user *optlen)
7377 {
7378 	struct sctp_stream_out_ext *streamoute;
7379 	struct sctp_association *asoc;
7380 	struct sctp_prstatus params;
7381 	int retval = -EINVAL;
7382 	int policy;
7383 
7384 	if (len < sizeof(params))
7385 		goto out;
7386 
7387 	len = sizeof(params);
7388 	if (copy_from_user(&params, optval, len)) {
7389 		retval = -EFAULT;
7390 		goto out;
7391 	}
7392 
7393 	policy = params.sprstat_policy;
7394 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7395 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7396 		goto out;
7397 
7398 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7399 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7400 		goto out;
7401 
7402 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7403 	if (!streamoute) {
7404 		/* Not allocated yet, means all stats are 0 */
7405 		params.sprstat_abandoned_unsent = 0;
7406 		params.sprstat_abandoned_sent = 0;
7407 		retval = 0;
7408 		goto out;
7409 	}
7410 
7411 	if (policy == SCTP_PR_SCTP_ALL) {
7412 		params.sprstat_abandoned_unsent = 0;
7413 		params.sprstat_abandoned_sent = 0;
7414 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7415 			params.sprstat_abandoned_unsent +=
7416 				streamoute->abandoned_unsent[policy];
7417 			params.sprstat_abandoned_sent +=
7418 				streamoute->abandoned_sent[policy];
7419 		}
7420 	} else {
7421 		params.sprstat_abandoned_unsent =
7422 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7423 		params.sprstat_abandoned_sent =
7424 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7425 	}
7426 
7427 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7428 		retval = -EFAULT;
7429 		goto out;
7430 	}
7431 
7432 	retval = 0;
7433 
7434 out:
7435 	return retval;
7436 }
7437 
7438 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7439 					      char __user *optval,
7440 					      int __user *optlen)
7441 {
7442 	struct sctp_assoc_value params;
7443 	struct sctp_association *asoc;
7444 	int retval = -EFAULT;
7445 
7446 	if (len < sizeof(params)) {
7447 		retval = -EINVAL;
7448 		goto out;
7449 	}
7450 
7451 	len = sizeof(params);
7452 	if (copy_from_user(&params, optval, len))
7453 		goto out;
7454 
7455 	asoc = sctp_id2assoc(sk, params.assoc_id);
7456 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7457 	    sctp_style(sk, UDP)) {
7458 		retval = -EINVAL;
7459 		goto out;
7460 	}
7461 
7462 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7463 				  : sctp_sk(sk)->ep->reconf_enable;
7464 
7465 	if (put_user(len, optlen))
7466 		goto out;
7467 
7468 	if (copy_to_user(optval, &params, len))
7469 		goto out;
7470 
7471 	retval = 0;
7472 
7473 out:
7474 	return retval;
7475 }
7476 
7477 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7478 					   char __user *optval,
7479 					   int __user *optlen)
7480 {
7481 	struct sctp_assoc_value params;
7482 	struct sctp_association *asoc;
7483 	int retval = -EFAULT;
7484 
7485 	if (len < sizeof(params)) {
7486 		retval = -EINVAL;
7487 		goto out;
7488 	}
7489 
7490 	len = sizeof(params);
7491 	if (copy_from_user(&params, optval, len))
7492 		goto out;
7493 
7494 	asoc = sctp_id2assoc(sk, params.assoc_id);
7495 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7496 	    sctp_style(sk, UDP)) {
7497 		retval = -EINVAL;
7498 		goto out;
7499 	}
7500 
7501 	params.assoc_value = asoc ? asoc->strreset_enable
7502 				  : sctp_sk(sk)->ep->strreset_enable;
7503 
7504 	if (put_user(len, optlen))
7505 		goto out;
7506 
7507 	if (copy_to_user(optval, &params, len))
7508 		goto out;
7509 
7510 	retval = 0;
7511 
7512 out:
7513 	return retval;
7514 }
7515 
7516 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7517 				     char __user *optval,
7518 				     int __user *optlen)
7519 {
7520 	struct sctp_assoc_value params;
7521 	struct sctp_association *asoc;
7522 	int retval = -EFAULT;
7523 
7524 	if (len < sizeof(params)) {
7525 		retval = -EINVAL;
7526 		goto out;
7527 	}
7528 
7529 	len = sizeof(params);
7530 	if (copy_from_user(&params, optval, len))
7531 		goto out;
7532 
7533 	asoc = sctp_id2assoc(sk, params.assoc_id);
7534 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7535 	    sctp_style(sk, UDP)) {
7536 		retval = -EINVAL;
7537 		goto out;
7538 	}
7539 
7540 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7541 				  : sctp_sk(sk)->default_ss;
7542 
7543 	if (put_user(len, optlen))
7544 		goto out;
7545 
7546 	if (copy_to_user(optval, &params, len))
7547 		goto out;
7548 
7549 	retval = 0;
7550 
7551 out:
7552 	return retval;
7553 }
7554 
7555 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7556 					   char __user *optval,
7557 					   int __user *optlen)
7558 {
7559 	struct sctp_stream_value params;
7560 	struct sctp_association *asoc;
7561 	int retval = -EFAULT;
7562 
7563 	if (len < sizeof(params)) {
7564 		retval = -EINVAL;
7565 		goto out;
7566 	}
7567 
7568 	len = sizeof(params);
7569 	if (copy_from_user(&params, optval, len))
7570 		goto out;
7571 
7572 	asoc = sctp_id2assoc(sk, params.assoc_id);
7573 	if (!asoc) {
7574 		retval = -EINVAL;
7575 		goto out;
7576 	}
7577 
7578 	retval = sctp_sched_get_value(asoc, params.stream_id,
7579 				      &params.stream_value);
7580 	if (retval)
7581 		goto out;
7582 
7583 	if (put_user(len, optlen)) {
7584 		retval = -EFAULT;
7585 		goto out;
7586 	}
7587 
7588 	if (copy_to_user(optval, &params, len)) {
7589 		retval = -EFAULT;
7590 		goto out;
7591 	}
7592 
7593 out:
7594 	return retval;
7595 }
7596 
7597 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7598 						  char __user *optval,
7599 						  int __user *optlen)
7600 {
7601 	struct sctp_assoc_value params;
7602 	struct sctp_association *asoc;
7603 	int retval = -EFAULT;
7604 
7605 	if (len < sizeof(params)) {
7606 		retval = -EINVAL;
7607 		goto out;
7608 	}
7609 
7610 	len = sizeof(params);
7611 	if (copy_from_user(&params, optval, len))
7612 		goto out;
7613 
7614 	asoc = sctp_id2assoc(sk, params.assoc_id);
7615 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7616 	    sctp_style(sk, UDP)) {
7617 		retval = -EINVAL;
7618 		goto out;
7619 	}
7620 
7621 	params.assoc_value = asoc ? asoc->peer.intl_capable
7622 				  : sctp_sk(sk)->ep->intl_enable;
7623 
7624 	if (put_user(len, optlen))
7625 		goto out;
7626 
7627 	if (copy_to_user(optval, &params, len))
7628 		goto out;
7629 
7630 	retval = 0;
7631 
7632 out:
7633 	return retval;
7634 }
7635 
7636 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7637 				      char __user *optval,
7638 				      int __user *optlen)
7639 {
7640 	int val;
7641 
7642 	if (len < sizeof(int))
7643 		return -EINVAL;
7644 
7645 	len = sizeof(int);
7646 	val = sctp_sk(sk)->reuse;
7647 	if (put_user(len, optlen))
7648 		return -EFAULT;
7649 
7650 	if (copy_to_user(optval, &val, len))
7651 		return -EFAULT;
7652 
7653 	return 0;
7654 }
7655 
7656 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7657 				 int __user *optlen)
7658 {
7659 	struct sctp_association *asoc;
7660 	struct sctp_event param;
7661 	__u16 subscribe;
7662 
7663 	if (len < sizeof(param))
7664 		return -EINVAL;
7665 
7666 	len = sizeof(param);
7667 	if (copy_from_user(&param, optval, len))
7668 		return -EFAULT;
7669 
7670 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7671 	    param.se_type > SCTP_SN_TYPE_MAX)
7672 		return -EINVAL;
7673 
7674 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7675 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7676 	    sctp_style(sk, UDP))
7677 		return -EINVAL;
7678 
7679 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7680 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7681 
7682 	if (put_user(len, optlen))
7683 		return -EFAULT;
7684 
7685 	if (copy_to_user(optval, &param, len))
7686 		return -EFAULT;
7687 
7688 	return 0;
7689 }
7690 
7691 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7692 					    char __user *optval,
7693 					    int __user *optlen)
7694 {
7695 	struct sctp_assoc_value params;
7696 	struct sctp_association *asoc;
7697 	int retval = -EFAULT;
7698 
7699 	if (len < sizeof(params)) {
7700 		retval = -EINVAL;
7701 		goto out;
7702 	}
7703 
7704 	len = sizeof(params);
7705 	if (copy_from_user(&params, optval, len))
7706 		goto out;
7707 
7708 	asoc = sctp_id2assoc(sk, params.assoc_id);
7709 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7710 	    sctp_style(sk, UDP)) {
7711 		retval = -EINVAL;
7712 		goto out;
7713 	}
7714 
7715 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7716 				  : sctp_sk(sk)->ep->asconf_enable;
7717 
7718 	if (put_user(len, optlen))
7719 		goto out;
7720 
7721 	if (copy_to_user(optval, &params, len))
7722 		goto out;
7723 
7724 	retval = 0;
7725 
7726 out:
7727 	return retval;
7728 }
7729 
7730 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7731 					  char __user *optval,
7732 					  int __user *optlen)
7733 {
7734 	struct sctp_assoc_value params;
7735 	struct sctp_association *asoc;
7736 	int retval = -EFAULT;
7737 
7738 	if (len < sizeof(params)) {
7739 		retval = -EINVAL;
7740 		goto out;
7741 	}
7742 
7743 	len = sizeof(params);
7744 	if (copy_from_user(&params, optval, len))
7745 		goto out;
7746 
7747 	asoc = sctp_id2assoc(sk, params.assoc_id);
7748 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7749 	    sctp_style(sk, UDP)) {
7750 		retval = -EINVAL;
7751 		goto out;
7752 	}
7753 
7754 	params.assoc_value = asoc ? asoc->peer.auth_capable
7755 				  : sctp_sk(sk)->ep->auth_enable;
7756 
7757 	if (put_user(len, optlen))
7758 		goto out;
7759 
7760 	if (copy_to_user(optval, &params, len))
7761 		goto out;
7762 
7763 	retval = 0;
7764 
7765 out:
7766 	return retval;
7767 }
7768 
7769 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7770 					 char __user *optval,
7771 					 int __user *optlen)
7772 {
7773 	struct sctp_assoc_value params;
7774 	struct sctp_association *asoc;
7775 	int retval = -EFAULT;
7776 
7777 	if (len < sizeof(params)) {
7778 		retval = -EINVAL;
7779 		goto out;
7780 	}
7781 
7782 	len = sizeof(params);
7783 	if (copy_from_user(&params, optval, len))
7784 		goto out;
7785 
7786 	asoc = sctp_id2assoc(sk, params.assoc_id);
7787 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7788 	    sctp_style(sk, UDP)) {
7789 		retval = -EINVAL;
7790 		goto out;
7791 	}
7792 
7793 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7794 				  : sctp_sk(sk)->ep->ecn_enable;
7795 
7796 	if (put_user(len, optlen))
7797 		goto out;
7798 
7799 	if (copy_to_user(optval, &params, len))
7800 		goto out;
7801 
7802 	retval = 0;
7803 
7804 out:
7805 	return retval;
7806 }
7807 
7808 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7809 				     char __user *optval,
7810 				     int __user *optlen)
7811 {
7812 	struct sctp_assoc_value params;
7813 	struct sctp_association *asoc;
7814 	int retval = -EFAULT;
7815 
7816 	if (len < sizeof(params)) {
7817 		retval = -EINVAL;
7818 		goto out;
7819 	}
7820 
7821 	len = sizeof(params);
7822 	if (copy_from_user(&params, optval, len))
7823 		goto out;
7824 
7825 	asoc = sctp_id2assoc(sk, params.assoc_id);
7826 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7827 	    sctp_style(sk, UDP)) {
7828 		retval = -EINVAL;
7829 		goto out;
7830 	}
7831 
7832 	params.assoc_value = asoc ? asoc->pf_expose
7833 				  : sctp_sk(sk)->pf_expose;
7834 
7835 	if (put_user(len, optlen))
7836 		goto out;
7837 
7838 	if (copy_to_user(optval, &params, len))
7839 		goto out;
7840 
7841 	retval = 0;
7842 
7843 out:
7844 	return retval;
7845 }
7846 
7847 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7848 				      char __user *optval, int __user *optlen)
7849 {
7850 	struct sctp_association *asoc;
7851 	struct sctp_udpencaps encap;
7852 	struct sctp_transport *t;
7853 	__be16 encap_port;
7854 
7855 	if (len < sizeof(encap))
7856 		return -EINVAL;
7857 
7858 	len = sizeof(encap);
7859 	if (copy_from_user(&encap, optval, len))
7860 		return -EFAULT;
7861 
7862 	/* If an address other than INADDR_ANY is specified, and
7863 	 * no transport is found, then the request is invalid.
7864 	 */
7865 	if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7866 		t = sctp_addr_id2transport(sk, &encap.sue_address,
7867 					   encap.sue_assoc_id);
7868 		if (!t) {
7869 			pr_debug("%s: failed no transport\n", __func__);
7870 			return -EINVAL;
7871 		}
7872 
7873 		encap_port = t->encap_port;
7874 		goto out;
7875 	}
7876 
7877 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7878 	 * socket is a one to many style socket, and an association
7879 	 * was not found, then the id was invalid.
7880 	 */
7881 	asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7882 	if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7883 	    sctp_style(sk, UDP)) {
7884 		pr_debug("%s: failed no association\n", __func__);
7885 		return -EINVAL;
7886 	}
7887 
7888 	if (asoc) {
7889 		encap_port = asoc->encap_port;
7890 		goto out;
7891 	}
7892 
7893 	encap_port = sctp_sk(sk)->encap_port;
7894 
7895 out:
7896 	encap.sue_port = (__force uint16_t)encap_port;
7897 	if (copy_to_user(optval, &encap, len))
7898 		return -EFAULT;
7899 
7900 	if (put_user(len, optlen))
7901 		return -EFAULT;
7902 
7903 	return 0;
7904 }
7905 
7906 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7907 			   char __user *optval, int __user *optlen)
7908 {
7909 	int retval = 0;
7910 	int len;
7911 
7912 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7913 
7914 	/* I can hardly begin to describe how wrong this is.  This is
7915 	 * so broken as to be worse than useless.  The API draft
7916 	 * REALLY is NOT helpful here...  I am not convinced that the
7917 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7918 	 * are at all well-founded.
7919 	 */
7920 	if (level != SOL_SCTP) {
7921 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7922 
7923 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7924 		return retval;
7925 	}
7926 
7927 	if (get_user(len, optlen))
7928 		return -EFAULT;
7929 
7930 	if (len < 0)
7931 		return -EINVAL;
7932 
7933 	lock_sock(sk);
7934 
7935 	switch (optname) {
7936 	case SCTP_STATUS:
7937 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7938 		break;
7939 	case SCTP_DISABLE_FRAGMENTS:
7940 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7941 							   optlen);
7942 		break;
7943 	case SCTP_EVENTS:
7944 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7945 		break;
7946 	case SCTP_AUTOCLOSE:
7947 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7948 		break;
7949 	case SCTP_SOCKOPT_PEELOFF:
7950 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7951 		break;
7952 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7953 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7954 		break;
7955 	case SCTP_PEER_ADDR_PARAMS:
7956 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7957 							  optlen);
7958 		break;
7959 	case SCTP_DELAYED_SACK:
7960 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7961 							  optlen);
7962 		break;
7963 	case SCTP_INITMSG:
7964 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7965 		break;
7966 	case SCTP_GET_PEER_ADDRS:
7967 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7968 						    optlen);
7969 		break;
7970 	case SCTP_GET_LOCAL_ADDRS:
7971 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7972 						     optlen);
7973 		break;
7974 	case SCTP_SOCKOPT_CONNECTX3:
7975 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7976 		break;
7977 	case SCTP_DEFAULT_SEND_PARAM:
7978 		retval = sctp_getsockopt_default_send_param(sk, len,
7979 							    optval, optlen);
7980 		break;
7981 	case SCTP_DEFAULT_SNDINFO:
7982 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7983 							 optval, optlen);
7984 		break;
7985 	case SCTP_PRIMARY_ADDR:
7986 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7987 		break;
7988 	case SCTP_NODELAY:
7989 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7990 		break;
7991 	case SCTP_RTOINFO:
7992 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7993 		break;
7994 	case SCTP_ASSOCINFO:
7995 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7996 		break;
7997 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7998 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7999 		break;
8000 	case SCTP_MAXSEG:
8001 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8002 		break;
8003 	case SCTP_GET_PEER_ADDR_INFO:
8004 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8005 							optlen);
8006 		break;
8007 	case SCTP_ADAPTATION_LAYER:
8008 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8009 							optlen);
8010 		break;
8011 	case SCTP_CONTEXT:
8012 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
8013 		break;
8014 	case SCTP_FRAGMENT_INTERLEAVE:
8015 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8016 							     optlen);
8017 		break;
8018 	case SCTP_PARTIAL_DELIVERY_POINT:
8019 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8020 								optlen);
8021 		break;
8022 	case SCTP_MAX_BURST:
8023 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8024 		break;
8025 	case SCTP_AUTH_KEY:
8026 	case SCTP_AUTH_CHUNK:
8027 	case SCTP_AUTH_DELETE_KEY:
8028 	case SCTP_AUTH_DEACTIVATE_KEY:
8029 		retval = -EOPNOTSUPP;
8030 		break;
8031 	case SCTP_HMAC_IDENT:
8032 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8033 		break;
8034 	case SCTP_AUTH_ACTIVE_KEY:
8035 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8036 		break;
8037 	case SCTP_PEER_AUTH_CHUNKS:
8038 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8039 							optlen);
8040 		break;
8041 	case SCTP_LOCAL_AUTH_CHUNKS:
8042 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8043 							optlen);
8044 		break;
8045 	case SCTP_GET_ASSOC_NUMBER:
8046 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8047 		break;
8048 	case SCTP_GET_ASSOC_ID_LIST:
8049 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8050 		break;
8051 	case SCTP_AUTO_ASCONF:
8052 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8053 		break;
8054 	case SCTP_PEER_ADDR_THLDS:
8055 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8056 							  optlen, false);
8057 		break;
8058 	case SCTP_PEER_ADDR_THLDS_V2:
8059 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8060 							  optlen, true);
8061 		break;
8062 	case SCTP_GET_ASSOC_STATS:
8063 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8064 		break;
8065 	case SCTP_RECVRCVINFO:
8066 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8067 		break;
8068 	case SCTP_RECVNXTINFO:
8069 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8070 		break;
8071 	case SCTP_PR_SUPPORTED:
8072 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8073 		break;
8074 	case SCTP_DEFAULT_PRINFO:
8075 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8076 							optlen);
8077 		break;
8078 	case SCTP_PR_ASSOC_STATUS:
8079 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8080 							optlen);
8081 		break;
8082 	case SCTP_PR_STREAM_STATUS:
8083 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8084 							 optlen);
8085 		break;
8086 	case SCTP_RECONFIG_SUPPORTED:
8087 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8088 							    optlen);
8089 		break;
8090 	case SCTP_ENABLE_STREAM_RESET:
8091 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8092 							 optlen);
8093 		break;
8094 	case SCTP_STREAM_SCHEDULER:
8095 		retval = sctp_getsockopt_scheduler(sk, len, optval,
8096 						   optlen);
8097 		break;
8098 	case SCTP_STREAM_SCHEDULER_VALUE:
8099 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8100 							 optlen);
8101 		break;
8102 	case SCTP_INTERLEAVING_SUPPORTED:
8103 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8104 								optlen);
8105 		break;
8106 	case SCTP_REUSE_PORT:
8107 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8108 		break;
8109 	case SCTP_EVENT:
8110 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8111 		break;
8112 	case SCTP_ASCONF_SUPPORTED:
8113 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8114 							  optlen);
8115 		break;
8116 	case SCTP_AUTH_SUPPORTED:
8117 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
8118 							optlen);
8119 		break;
8120 	case SCTP_ECN_SUPPORTED:
8121 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8122 		break;
8123 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8124 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8125 		break;
8126 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
8127 		retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8128 		break;
8129 	default:
8130 		retval = -ENOPROTOOPT;
8131 		break;
8132 	}
8133 
8134 	release_sock(sk);
8135 	return retval;
8136 }
8137 
8138 static int sctp_hash(struct sock *sk)
8139 {
8140 	/* STUB */
8141 	return 0;
8142 }
8143 
8144 static void sctp_unhash(struct sock *sk)
8145 {
8146 	/* STUB */
8147 }
8148 
8149 /* Check if port is acceptable.  Possibly find first available port.
8150  *
8151  * The port hash table (contained in the 'global' SCTP protocol storage
8152  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8153  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8154  * list (the list number is the port number hashed out, so as you
8155  * would expect from a hash function, all the ports in a given list have
8156  * such a number that hashes out to the same list number; you were
8157  * expecting that, right?); so each list has a set of ports, with a
8158  * link to the socket (struct sock) that uses it, the port number and
8159  * a fastreuse flag (FIXME: NPI ipg).
8160  */
8161 static struct sctp_bind_bucket *sctp_bucket_create(
8162 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8163 
8164 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8165 {
8166 	struct sctp_sock *sp = sctp_sk(sk);
8167 	bool reuse = (sk->sk_reuse || sp->reuse);
8168 	struct sctp_bind_hashbucket *head; /* hash list */
8169 	struct net *net = sock_net(sk);
8170 	kuid_t uid = sock_i_uid(sk);
8171 	struct sctp_bind_bucket *pp;
8172 	unsigned short snum;
8173 	int ret;
8174 
8175 	snum = ntohs(addr->v4.sin_port);
8176 
8177 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8178 
8179 	if (snum == 0) {
8180 		/* Search for an available port. */
8181 		int low, high, remaining, index;
8182 		unsigned int rover;
8183 
8184 		inet_get_local_port_range(net, &low, &high);
8185 		remaining = (high - low) + 1;
8186 		rover = prandom_u32() % remaining + low;
8187 
8188 		do {
8189 			rover++;
8190 			if ((rover < low) || (rover > high))
8191 				rover = low;
8192 			if (inet_is_local_reserved_port(net, rover))
8193 				continue;
8194 			index = sctp_phashfn(net, rover);
8195 			head = &sctp_port_hashtable[index];
8196 			spin_lock_bh(&head->lock);
8197 			sctp_for_each_hentry(pp, &head->chain)
8198 				if ((pp->port == rover) &&
8199 				    net_eq(net, pp->net))
8200 					goto next;
8201 			break;
8202 		next:
8203 			spin_unlock_bh(&head->lock);
8204 			cond_resched();
8205 		} while (--remaining > 0);
8206 
8207 		/* Exhausted local port range during search? */
8208 		ret = 1;
8209 		if (remaining <= 0)
8210 			return ret;
8211 
8212 		/* OK, here is the one we will use.  HEAD (the port
8213 		 * hash table list entry) is non-NULL and we hold it's
8214 		 * mutex.
8215 		 */
8216 		snum = rover;
8217 	} else {
8218 		/* We are given an specific port number; we verify
8219 		 * that it is not being used. If it is used, we will
8220 		 * exahust the search in the hash list corresponding
8221 		 * to the port number (snum) - we detect that with the
8222 		 * port iterator, pp being NULL.
8223 		 */
8224 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8225 		spin_lock_bh(&head->lock);
8226 		sctp_for_each_hentry(pp, &head->chain) {
8227 			if ((pp->port == snum) && net_eq(pp->net, net))
8228 				goto pp_found;
8229 		}
8230 	}
8231 	pp = NULL;
8232 	goto pp_not_found;
8233 pp_found:
8234 	if (!hlist_empty(&pp->owner)) {
8235 		/* We had a port hash table hit - there is an
8236 		 * available port (pp != NULL) and it is being
8237 		 * used by other socket (pp->owner not empty); that other
8238 		 * socket is going to be sk2.
8239 		 */
8240 		struct sock *sk2;
8241 
8242 		pr_debug("%s: found a possible match\n", __func__);
8243 
8244 		if ((pp->fastreuse && reuse &&
8245 		     sk->sk_state != SCTP_SS_LISTENING) ||
8246 		    (pp->fastreuseport && sk->sk_reuseport &&
8247 		     uid_eq(pp->fastuid, uid)))
8248 			goto success;
8249 
8250 		/* Run through the list of sockets bound to the port
8251 		 * (pp->port) [via the pointers bind_next and
8252 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8253 		 * we get the endpoint they describe and run through
8254 		 * the endpoint's list of IP (v4 or v6) addresses,
8255 		 * comparing each of the addresses with the address of
8256 		 * the socket sk. If we find a match, then that means
8257 		 * that this port/socket (sk) combination are already
8258 		 * in an endpoint.
8259 		 */
8260 		sk_for_each_bound(sk2, &pp->owner) {
8261 			struct sctp_sock *sp2 = sctp_sk(sk2);
8262 			struct sctp_endpoint *ep2 = sp2->ep;
8263 
8264 			if (sk == sk2 ||
8265 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8266 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8267 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8268 			     uid_eq(uid, sock_i_uid(sk2))))
8269 				continue;
8270 
8271 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8272 						    addr, sp2, sp)) {
8273 				ret = 1;
8274 				goto fail_unlock;
8275 			}
8276 		}
8277 
8278 		pr_debug("%s: found a match\n", __func__);
8279 	}
8280 pp_not_found:
8281 	/* If there was a hash table miss, create a new port.  */
8282 	ret = 1;
8283 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8284 		goto fail_unlock;
8285 
8286 	/* In either case (hit or miss), make sure fastreuse is 1 only
8287 	 * if sk->sk_reuse is too (that is, if the caller requested
8288 	 * SO_REUSEADDR on this socket -sk-).
8289 	 */
8290 	if (hlist_empty(&pp->owner)) {
8291 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8292 			pp->fastreuse = 1;
8293 		else
8294 			pp->fastreuse = 0;
8295 
8296 		if (sk->sk_reuseport) {
8297 			pp->fastreuseport = 1;
8298 			pp->fastuid = uid;
8299 		} else {
8300 			pp->fastreuseport = 0;
8301 		}
8302 	} else {
8303 		if (pp->fastreuse &&
8304 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8305 			pp->fastreuse = 0;
8306 
8307 		if (pp->fastreuseport &&
8308 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8309 			pp->fastreuseport = 0;
8310 	}
8311 
8312 	/* We are set, so fill up all the data in the hash table
8313 	 * entry, tie the socket list information with the rest of the
8314 	 * sockets FIXME: Blurry, NPI (ipg).
8315 	 */
8316 success:
8317 	if (!sp->bind_hash) {
8318 		inet_sk(sk)->inet_num = snum;
8319 		sk_add_bind_node(sk, &pp->owner);
8320 		sp->bind_hash = pp;
8321 	}
8322 	ret = 0;
8323 
8324 fail_unlock:
8325 	spin_unlock_bh(&head->lock);
8326 	return ret;
8327 }
8328 
8329 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8330  * port is requested.
8331  */
8332 static int sctp_get_port(struct sock *sk, unsigned short snum)
8333 {
8334 	union sctp_addr addr;
8335 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8336 
8337 	/* Set up a dummy address struct from the sk. */
8338 	af->from_sk(&addr, sk);
8339 	addr.v4.sin_port = htons(snum);
8340 
8341 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8342 	return sctp_get_port_local(sk, &addr);
8343 }
8344 
8345 /*
8346  *  Move a socket to LISTENING state.
8347  */
8348 static int sctp_listen_start(struct sock *sk, int backlog)
8349 {
8350 	struct sctp_sock *sp = sctp_sk(sk);
8351 	struct sctp_endpoint *ep = sp->ep;
8352 	struct crypto_shash *tfm = NULL;
8353 	char alg[32];
8354 
8355 	/* Allocate HMAC for generating cookie. */
8356 	if (!sp->hmac && sp->sctp_hmac_alg) {
8357 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8358 		tfm = crypto_alloc_shash(alg, 0, 0);
8359 		if (IS_ERR(tfm)) {
8360 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8361 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8362 			return -ENOSYS;
8363 		}
8364 		sctp_sk(sk)->hmac = tfm;
8365 	}
8366 
8367 	/*
8368 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8369 	 * call that allows new associations to be accepted, the system
8370 	 * picks an ephemeral port and will choose an address set equivalent
8371 	 * to binding with a wildcard address.
8372 	 *
8373 	 * This is not currently spelled out in the SCTP sockets
8374 	 * extensions draft, but follows the practice as seen in TCP
8375 	 * sockets.
8376 	 *
8377 	 */
8378 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8379 	if (!ep->base.bind_addr.port) {
8380 		if (sctp_autobind(sk))
8381 			return -EAGAIN;
8382 	} else {
8383 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8384 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8385 			return -EADDRINUSE;
8386 		}
8387 	}
8388 
8389 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8390 	return sctp_hash_endpoint(ep);
8391 }
8392 
8393 /*
8394  * 4.1.3 / 5.1.3 listen()
8395  *
8396  *   By default, new associations are not accepted for UDP style sockets.
8397  *   An application uses listen() to mark a socket as being able to
8398  *   accept new associations.
8399  *
8400  *   On TCP style sockets, applications use listen() to ready the SCTP
8401  *   endpoint for accepting inbound associations.
8402  *
8403  *   On both types of endpoints a backlog of '0' disables listening.
8404  *
8405  *  Move a socket to LISTENING state.
8406  */
8407 int sctp_inet_listen(struct socket *sock, int backlog)
8408 {
8409 	struct sock *sk = sock->sk;
8410 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8411 	int err = -EINVAL;
8412 
8413 	if (unlikely(backlog < 0))
8414 		return err;
8415 
8416 	lock_sock(sk);
8417 
8418 	/* Peeled-off sockets are not allowed to listen().  */
8419 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8420 		goto out;
8421 
8422 	if (sock->state != SS_UNCONNECTED)
8423 		goto out;
8424 
8425 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8426 		goto out;
8427 
8428 	/* If backlog is zero, disable listening. */
8429 	if (!backlog) {
8430 		if (sctp_sstate(sk, CLOSED))
8431 			goto out;
8432 
8433 		err = 0;
8434 		sctp_unhash_endpoint(ep);
8435 		sk->sk_state = SCTP_SS_CLOSED;
8436 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8437 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8438 		goto out;
8439 	}
8440 
8441 	/* If we are already listening, just update the backlog */
8442 	if (sctp_sstate(sk, LISTENING))
8443 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8444 	else {
8445 		err = sctp_listen_start(sk, backlog);
8446 		if (err)
8447 			goto out;
8448 	}
8449 
8450 	err = 0;
8451 out:
8452 	release_sock(sk);
8453 	return err;
8454 }
8455 
8456 /*
8457  * This function is done by modeling the current datagram_poll() and the
8458  * tcp_poll().  Note that, based on these implementations, we don't
8459  * lock the socket in this function, even though it seems that,
8460  * ideally, locking or some other mechanisms can be used to ensure
8461  * the integrity of the counters (sndbuf and wmem_alloc) used
8462  * in this place.  We assume that we don't need locks either until proven
8463  * otherwise.
8464  *
8465  * Another thing to note is that we include the Async I/O support
8466  * here, again, by modeling the current TCP/UDP code.  We don't have
8467  * a good way to test with it yet.
8468  */
8469 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8470 {
8471 	struct sock *sk = sock->sk;
8472 	struct sctp_sock *sp = sctp_sk(sk);
8473 	__poll_t mask;
8474 
8475 	poll_wait(file, sk_sleep(sk), wait);
8476 
8477 	sock_rps_record_flow(sk);
8478 
8479 	/* A TCP-style listening socket becomes readable when the accept queue
8480 	 * is not empty.
8481 	 */
8482 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8483 		return (!list_empty(&sp->ep->asocs)) ?
8484 			(EPOLLIN | EPOLLRDNORM) : 0;
8485 
8486 	mask = 0;
8487 
8488 	/* Is there any exceptional events?  */
8489 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8490 		mask |= EPOLLERR |
8491 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8492 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8493 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8494 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8495 		mask |= EPOLLHUP;
8496 
8497 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8498 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8499 		mask |= EPOLLIN | EPOLLRDNORM;
8500 
8501 	/* The association is either gone or not ready.  */
8502 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8503 		return mask;
8504 
8505 	/* Is it writable?  */
8506 	if (sctp_writeable(sk)) {
8507 		mask |= EPOLLOUT | EPOLLWRNORM;
8508 	} else {
8509 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8510 		/*
8511 		 * Since the socket is not locked, the buffer
8512 		 * might be made available after the writeable check and
8513 		 * before the bit is set.  This could cause a lost I/O
8514 		 * signal.  tcp_poll() has a race breaker for this race
8515 		 * condition.  Based on their implementation, we put
8516 		 * in the following code to cover it as well.
8517 		 */
8518 		if (sctp_writeable(sk))
8519 			mask |= EPOLLOUT | EPOLLWRNORM;
8520 	}
8521 	return mask;
8522 }
8523 
8524 /********************************************************************
8525  * 2nd Level Abstractions
8526  ********************************************************************/
8527 
8528 static struct sctp_bind_bucket *sctp_bucket_create(
8529 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8530 {
8531 	struct sctp_bind_bucket *pp;
8532 
8533 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8534 	if (pp) {
8535 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8536 		pp->port = snum;
8537 		pp->fastreuse = 0;
8538 		INIT_HLIST_HEAD(&pp->owner);
8539 		pp->net = net;
8540 		hlist_add_head(&pp->node, &head->chain);
8541 	}
8542 	return pp;
8543 }
8544 
8545 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8546 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8547 {
8548 	if (pp && hlist_empty(&pp->owner)) {
8549 		__hlist_del(&pp->node);
8550 		kmem_cache_free(sctp_bucket_cachep, pp);
8551 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8552 	}
8553 }
8554 
8555 /* Release this socket's reference to a local port.  */
8556 static inline void __sctp_put_port(struct sock *sk)
8557 {
8558 	struct sctp_bind_hashbucket *head =
8559 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8560 						  inet_sk(sk)->inet_num)];
8561 	struct sctp_bind_bucket *pp;
8562 
8563 	spin_lock(&head->lock);
8564 	pp = sctp_sk(sk)->bind_hash;
8565 	__sk_del_bind_node(sk);
8566 	sctp_sk(sk)->bind_hash = NULL;
8567 	inet_sk(sk)->inet_num = 0;
8568 	sctp_bucket_destroy(pp);
8569 	spin_unlock(&head->lock);
8570 }
8571 
8572 void sctp_put_port(struct sock *sk)
8573 {
8574 	local_bh_disable();
8575 	__sctp_put_port(sk);
8576 	local_bh_enable();
8577 }
8578 
8579 /*
8580  * The system picks an ephemeral port and choose an address set equivalent
8581  * to binding with a wildcard address.
8582  * One of those addresses will be the primary address for the association.
8583  * This automatically enables the multihoming capability of SCTP.
8584  */
8585 static int sctp_autobind(struct sock *sk)
8586 {
8587 	union sctp_addr autoaddr;
8588 	struct sctp_af *af;
8589 	__be16 port;
8590 
8591 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8592 	af = sctp_sk(sk)->pf->af;
8593 
8594 	port = htons(inet_sk(sk)->inet_num);
8595 	af->inaddr_any(&autoaddr, port);
8596 
8597 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8598 }
8599 
8600 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8601  *
8602  * From RFC 2292
8603  * 4.2 The cmsghdr Structure *
8604  *
8605  * When ancillary data is sent or received, any number of ancillary data
8606  * objects can be specified by the msg_control and msg_controllen members of
8607  * the msghdr structure, because each object is preceded by
8608  * a cmsghdr structure defining the object's length (the cmsg_len member).
8609  * Historically Berkeley-derived implementations have passed only one object
8610  * at a time, but this API allows multiple objects to be
8611  * passed in a single call to sendmsg() or recvmsg(). The following example
8612  * shows two ancillary data objects in a control buffer.
8613  *
8614  *   |<--------------------------- msg_controllen -------------------------->|
8615  *   |                                                                       |
8616  *
8617  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8618  *
8619  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8620  *   |                                   |                                   |
8621  *
8622  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8623  *
8624  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8625  *   |                                |  |                                |  |
8626  *
8627  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8628  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8629  *
8630  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8631  *
8632  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8633  *    ^
8634  *    |
8635  *
8636  * msg_control
8637  * points here
8638  */
8639 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8640 {
8641 	struct msghdr *my_msg = (struct msghdr *)msg;
8642 	struct cmsghdr *cmsg;
8643 
8644 	for_each_cmsghdr(cmsg, my_msg) {
8645 		if (!CMSG_OK(my_msg, cmsg))
8646 			return -EINVAL;
8647 
8648 		/* Should we parse this header or ignore?  */
8649 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8650 			continue;
8651 
8652 		/* Strictly check lengths following example in SCM code.  */
8653 		switch (cmsg->cmsg_type) {
8654 		case SCTP_INIT:
8655 			/* SCTP Socket API Extension
8656 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8657 			 *
8658 			 * This cmsghdr structure provides information for
8659 			 * initializing new SCTP associations with sendmsg().
8660 			 * The SCTP_INITMSG socket option uses this same data
8661 			 * structure.  This structure is not used for
8662 			 * recvmsg().
8663 			 *
8664 			 * cmsg_level    cmsg_type      cmsg_data[]
8665 			 * ------------  ------------   ----------------------
8666 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8667 			 */
8668 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8669 				return -EINVAL;
8670 
8671 			cmsgs->init = CMSG_DATA(cmsg);
8672 			break;
8673 
8674 		case SCTP_SNDRCV:
8675 			/* SCTP Socket API Extension
8676 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8677 			 *
8678 			 * This cmsghdr structure specifies SCTP options for
8679 			 * sendmsg() and describes SCTP header information
8680 			 * about a received message through recvmsg().
8681 			 *
8682 			 * cmsg_level    cmsg_type      cmsg_data[]
8683 			 * ------------  ------------   ----------------------
8684 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8685 			 */
8686 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8687 				return -EINVAL;
8688 
8689 			cmsgs->srinfo = CMSG_DATA(cmsg);
8690 
8691 			if (cmsgs->srinfo->sinfo_flags &
8692 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8693 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8694 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8695 				return -EINVAL;
8696 			break;
8697 
8698 		case SCTP_SNDINFO:
8699 			/* SCTP Socket API Extension
8700 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8701 			 *
8702 			 * This cmsghdr structure specifies SCTP options for
8703 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8704 			 * SCTP_SNDRCV which has been deprecated.
8705 			 *
8706 			 * cmsg_level    cmsg_type      cmsg_data[]
8707 			 * ------------  ------------   ---------------------
8708 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8709 			 */
8710 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8711 				return -EINVAL;
8712 
8713 			cmsgs->sinfo = CMSG_DATA(cmsg);
8714 
8715 			if (cmsgs->sinfo->snd_flags &
8716 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8717 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8718 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8719 				return -EINVAL;
8720 			break;
8721 		case SCTP_PRINFO:
8722 			/* SCTP Socket API Extension
8723 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8724 			 *
8725 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8726 			 *
8727 			 * cmsg_level    cmsg_type      cmsg_data[]
8728 			 * ------------  ------------   ---------------------
8729 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8730 			 */
8731 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8732 				return -EINVAL;
8733 
8734 			cmsgs->prinfo = CMSG_DATA(cmsg);
8735 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8736 				return -EINVAL;
8737 
8738 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8739 				cmsgs->prinfo->pr_value = 0;
8740 			break;
8741 		case SCTP_AUTHINFO:
8742 			/* SCTP Socket API Extension
8743 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8744 			 *
8745 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8746 			 *
8747 			 * cmsg_level    cmsg_type      cmsg_data[]
8748 			 * ------------  ------------   ---------------------
8749 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8750 			 */
8751 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8752 				return -EINVAL;
8753 
8754 			cmsgs->authinfo = CMSG_DATA(cmsg);
8755 			break;
8756 		case SCTP_DSTADDRV4:
8757 		case SCTP_DSTADDRV6:
8758 			/* SCTP Socket API Extension
8759 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8760 			 *
8761 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8762 			 *
8763 			 * cmsg_level    cmsg_type         cmsg_data[]
8764 			 * ------------  ------------   ---------------------
8765 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8766 			 * ------------  ------------   ---------------------
8767 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8768 			 */
8769 			cmsgs->addrs_msg = my_msg;
8770 			break;
8771 		default:
8772 			return -EINVAL;
8773 		}
8774 	}
8775 
8776 	return 0;
8777 }
8778 
8779 /*
8780  * Wait for a packet..
8781  * Note: This function is the same function as in core/datagram.c
8782  * with a few modifications to make lksctp work.
8783  */
8784 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8785 {
8786 	int error;
8787 	DEFINE_WAIT(wait);
8788 
8789 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8790 
8791 	/* Socket errors? */
8792 	error = sock_error(sk);
8793 	if (error)
8794 		goto out;
8795 
8796 	if (!skb_queue_empty(&sk->sk_receive_queue))
8797 		goto ready;
8798 
8799 	/* Socket shut down?  */
8800 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8801 		goto out;
8802 
8803 	/* Sequenced packets can come disconnected.  If so we report the
8804 	 * problem.
8805 	 */
8806 	error = -ENOTCONN;
8807 
8808 	/* Is there a good reason to think that we may receive some data?  */
8809 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8810 		goto out;
8811 
8812 	/* Handle signals.  */
8813 	if (signal_pending(current))
8814 		goto interrupted;
8815 
8816 	/* Let another process have a go.  Since we are going to sleep
8817 	 * anyway.  Note: This may cause odd behaviors if the message
8818 	 * does not fit in the user's buffer, but this seems to be the
8819 	 * only way to honor MSG_DONTWAIT realistically.
8820 	 */
8821 	release_sock(sk);
8822 	*timeo_p = schedule_timeout(*timeo_p);
8823 	lock_sock(sk);
8824 
8825 ready:
8826 	finish_wait(sk_sleep(sk), &wait);
8827 	return 0;
8828 
8829 interrupted:
8830 	error = sock_intr_errno(*timeo_p);
8831 
8832 out:
8833 	finish_wait(sk_sleep(sk), &wait);
8834 	*err = error;
8835 	return error;
8836 }
8837 
8838 /* Receive a datagram.
8839  * Note: This is pretty much the same routine as in core/datagram.c
8840  * with a few changes to make lksctp work.
8841  */
8842 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8843 				       int noblock, int *err)
8844 {
8845 	int error;
8846 	struct sk_buff *skb;
8847 	long timeo;
8848 
8849 	timeo = sock_rcvtimeo(sk, noblock);
8850 
8851 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8852 		 MAX_SCHEDULE_TIMEOUT);
8853 
8854 	do {
8855 		/* Again only user level code calls this function,
8856 		 * so nothing interrupt level
8857 		 * will suddenly eat the receive_queue.
8858 		 *
8859 		 *  Look at current nfs client by the way...
8860 		 *  However, this function was correct in any case. 8)
8861 		 */
8862 		if (flags & MSG_PEEK) {
8863 			skb = skb_peek(&sk->sk_receive_queue);
8864 			if (skb)
8865 				refcount_inc(&skb->users);
8866 		} else {
8867 			skb = __skb_dequeue(&sk->sk_receive_queue);
8868 		}
8869 
8870 		if (skb)
8871 			return skb;
8872 
8873 		/* Caller is allowed not to check sk->sk_err before calling. */
8874 		error = sock_error(sk);
8875 		if (error)
8876 			goto no_packet;
8877 
8878 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8879 			break;
8880 
8881 		if (sk_can_busy_loop(sk)) {
8882 			sk_busy_loop(sk, noblock);
8883 
8884 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8885 				continue;
8886 		}
8887 
8888 		/* User doesn't want to wait.  */
8889 		error = -EAGAIN;
8890 		if (!timeo)
8891 			goto no_packet;
8892 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8893 
8894 	return NULL;
8895 
8896 no_packet:
8897 	*err = error;
8898 	return NULL;
8899 }
8900 
8901 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8902 static void __sctp_write_space(struct sctp_association *asoc)
8903 {
8904 	struct sock *sk = asoc->base.sk;
8905 
8906 	if (sctp_wspace(asoc) <= 0)
8907 		return;
8908 
8909 	if (waitqueue_active(&asoc->wait))
8910 		wake_up_interruptible(&asoc->wait);
8911 
8912 	if (sctp_writeable(sk)) {
8913 		struct socket_wq *wq;
8914 
8915 		rcu_read_lock();
8916 		wq = rcu_dereference(sk->sk_wq);
8917 		if (wq) {
8918 			if (waitqueue_active(&wq->wait))
8919 				wake_up_interruptible(&wq->wait);
8920 
8921 			/* Note that we try to include the Async I/O support
8922 			 * here by modeling from the current TCP/UDP code.
8923 			 * We have not tested with it yet.
8924 			 */
8925 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8926 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8927 		}
8928 		rcu_read_unlock();
8929 	}
8930 }
8931 
8932 static void sctp_wake_up_waiters(struct sock *sk,
8933 				 struct sctp_association *asoc)
8934 {
8935 	struct sctp_association *tmp = asoc;
8936 
8937 	/* We do accounting for the sndbuf space per association,
8938 	 * so we only need to wake our own association.
8939 	 */
8940 	if (asoc->ep->sndbuf_policy)
8941 		return __sctp_write_space(asoc);
8942 
8943 	/* If association goes down and is just flushing its
8944 	 * outq, then just normally notify others.
8945 	 */
8946 	if (asoc->base.dead)
8947 		return sctp_write_space(sk);
8948 
8949 	/* Accounting for the sndbuf space is per socket, so we
8950 	 * need to wake up others, try to be fair and in case of
8951 	 * other associations, let them have a go first instead
8952 	 * of just doing a sctp_write_space() call.
8953 	 *
8954 	 * Note that we reach sctp_wake_up_waiters() only when
8955 	 * associations free up queued chunks, thus we are under
8956 	 * lock and the list of associations on a socket is
8957 	 * guaranteed not to change.
8958 	 */
8959 	for (tmp = list_next_entry(tmp, asocs); 1;
8960 	     tmp = list_next_entry(tmp, asocs)) {
8961 		/* Manually skip the head element. */
8962 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8963 			continue;
8964 		/* Wake up association. */
8965 		__sctp_write_space(tmp);
8966 		/* We've reached the end. */
8967 		if (tmp == asoc)
8968 			break;
8969 	}
8970 }
8971 
8972 /* Do accounting for the sndbuf space.
8973  * Decrement the used sndbuf space of the corresponding association by the
8974  * data size which was just transmitted(freed).
8975  */
8976 static void sctp_wfree(struct sk_buff *skb)
8977 {
8978 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8979 	struct sctp_association *asoc = chunk->asoc;
8980 	struct sock *sk = asoc->base.sk;
8981 
8982 	sk_mem_uncharge(sk, skb->truesize);
8983 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8984 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8985 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8986 				      &sk->sk_wmem_alloc));
8987 
8988 	if (chunk->shkey) {
8989 		struct sctp_shared_key *shkey = chunk->shkey;
8990 
8991 		/* refcnt == 2 and !list_empty mean after this release, it's
8992 		 * not being used anywhere, and it's time to notify userland
8993 		 * that this shkey can be freed if it's been deactivated.
8994 		 */
8995 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8996 		    refcount_read(&shkey->refcnt) == 2) {
8997 			struct sctp_ulpevent *ev;
8998 
8999 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9000 							SCTP_AUTH_FREE_KEY,
9001 							GFP_KERNEL);
9002 			if (ev)
9003 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9004 		}
9005 		sctp_auth_shkey_release(chunk->shkey);
9006 	}
9007 
9008 	sock_wfree(skb);
9009 	sctp_wake_up_waiters(sk, asoc);
9010 
9011 	sctp_association_put(asoc);
9012 }
9013 
9014 /* Do accounting for the receive space on the socket.
9015  * Accounting for the association is done in ulpevent.c
9016  * We set this as a destructor for the cloned data skbs so that
9017  * accounting is done at the correct time.
9018  */
9019 void sctp_sock_rfree(struct sk_buff *skb)
9020 {
9021 	struct sock *sk = skb->sk;
9022 	struct sctp_ulpevent *event = sctp_skb2event(skb);
9023 
9024 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9025 
9026 	/*
9027 	 * Mimic the behavior of sock_rfree
9028 	 */
9029 	sk_mem_uncharge(sk, event->rmem_len);
9030 }
9031 
9032 
9033 /* Helper function to wait for space in the sndbuf.  */
9034 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9035 				size_t msg_len)
9036 {
9037 	struct sock *sk = asoc->base.sk;
9038 	long current_timeo = *timeo_p;
9039 	DEFINE_WAIT(wait);
9040 	int err = 0;
9041 
9042 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9043 		 *timeo_p, msg_len);
9044 
9045 	/* Increment the association's refcnt.  */
9046 	sctp_association_hold(asoc);
9047 
9048 	/* Wait on the association specific sndbuf space. */
9049 	for (;;) {
9050 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9051 					  TASK_INTERRUPTIBLE);
9052 		if (asoc->base.dead)
9053 			goto do_dead;
9054 		if (!*timeo_p)
9055 			goto do_nonblock;
9056 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9057 			goto do_error;
9058 		if (signal_pending(current))
9059 			goto do_interrupted;
9060 		if (sk_under_memory_pressure(sk))
9061 			sk_mem_reclaim(sk);
9062 		if ((int)msg_len <= sctp_wspace(asoc) &&
9063 		    sk_wmem_schedule(sk, msg_len))
9064 			break;
9065 
9066 		/* Let another process have a go.  Since we are going
9067 		 * to sleep anyway.
9068 		 */
9069 		release_sock(sk);
9070 		current_timeo = schedule_timeout(current_timeo);
9071 		lock_sock(sk);
9072 		if (sk != asoc->base.sk)
9073 			goto do_error;
9074 
9075 		*timeo_p = current_timeo;
9076 	}
9077 
9078 out:
9079 	finish_wait(&asoc->wait, &wait);
9080 
9081 	/* Release the association's refcnt.  */
9082 	sctp_association_put(asoc);
9083 
9084 	return err;
9085 
9086 do_dead:
9087 	err = -ESRCH;
9088 	goto out;
9089 
9090 do_error:
9091 	err = -EPIPE;
9092 	goto out;
9093 
9094 do_interrupted:
9095 	err = sock_intr_errno(*timeo_p);
9096 	goto out;
9097 
9098 do_nonblock:
9099 	err = -EAGAIN;
9100 	goto out;
9101 }
9102 
9103 void sctp_data_ready(struct sock *sk)
9104 {
9105 	struct socket_wq *wq;
9106 
9107 	rcu_read_lock();
9108 	wq = rcu_dereference(sk->sk_wq);
9109 	if (skwq_has_sleeper(wq))
9110 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9111 						EPOLLRDNORM | EPOLLRDBAND);
9112 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9113 	rcu_read_unlock();
9114 }
9115 
9116 /* If socket sndbuf has changed, wake up all per association waiters.  */
9117 void sctp_write_space(struct sock *sk)
9118 {
9119 	struct sctp_association *asoc;
9120 
9121 	/* Wake up the tasks in each wait queue.  */
9122 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9123 		__sctp_write_space(asoc);
9124 	}
9125 }
9126 
9127 /* Is there any sndbuf space available on the socket?
9128  *
9129  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9130  * associations on the same socket.  For a UDP-style socket with
9131  * multiple associations, it is possible for it to be "unwriteable"
9132  * prematurely.  I assume that this is acceptable because
9133  * a premature "unwriteable" is better than an accidental "writeable" which
9134  * would cause an unwanted block under certain circumstances.  For the 1-1
9135  * UDP-style sockets or TCP-style sockets, this code should work.
9136  *  - Daisy
9137  */
9138 static bool sctp_writeable(struct sock *sk)
9139 {
9140 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9141 }
9142 
9143 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9144  * returns immediately with EINPROGRESS.
9145  */
9146 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9147 {
9148 	struct sock *sk = asoc->base.sk;
9149 	int err = 0;
9150 	long current_timeo = *timeo_p;
9151 	DEFINE_WAIT(wait);
9152 
9153 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9154 
9155 	/* Increment the association's refcnt.  */
9156 	sctp_association_hold(asoc);
9157 
9158 	for (;;) {
9159 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9160 					  TASK_INTERRUPTIBLE);
9161 		if (!*timeo_p)
9162 			goto do_nonblock;
9163 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9164 			break;
9165 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9166 		    asoc->base.dead)
9167 			goto do_error;
9168 		if (signal_pending(current))
9169 			goto do_interrupted;
9170 
9171 		if (sctp_state(asoc, ESTABLISHED))
9172 			break;
9173 
9174 		/* Let another process have a go.  Since we are going
9175 		 * to sleep anyway.
9176 		 */
9177 		release_sock(sk);
9178 		current_timeo = schedule_timeout(current_timeo);
9179 		lock_sock(sk);
9180 
9181 		*timeo_p = current_timeo;
9182 	}
9183 
9184 out:
9185 	finish_wait(&asoc->wait, &wait);
9186 
9187 	/* Release the association's refcnt.  */
9188 	sctp_association_put(asoc);
9189 
9190 	return err;
9191 
9192 do_error:
9193 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9194 		err = -ETIMEDOUT;
9195 	else
9196 		err = -ECONNREFUSED;
9197 	goto out;
9198 
9199 do_interrupted:
9200 	err = sock_intr_errno(*timeo_p);
9201 	goto out;
9202 
9203 do_nonblock:
9204 	err = -EINPROGRESS;
9205 	goto out;
9206 }
9207 
9208 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9209 {
9210 	struct sctp_endpoint *ep;
9211 	int err = 0;
9212 	DEFINE_WAIT(wait);
9213 
9214 	ep = sctp_sk(sk)->ep;
9215 
9216 
9217 	for (;;) {
9218 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9219 					  TASK_INTERRUPTIBLE);
9220 
9221 		if (list_empty(&ep->asocs)) {
9222 			release_sock(sk);
9223 			timeo = schedule_timeout(timeo);
9224 			lock_sock(sk);
9225 		}
9226 
9227 		err = -EINVAL;
9228 		if (!sctp_sstate(sk, LISTENING))
9229 			break;
9230 
9231 		err = 0;
9232 		if (!list_empty(&ep->asocs))
9233 			break;
9234 
9235 		err = sock_intr_errno(timeo);
9236 		if (signal_pending(current))
9237 			break;
9238 
9239 		err = -EAGAIN;
9240 		if (!timeo)
9241 			break;
9242 	}
9243 
9244 	finish_wait(sk_sleep(sk), &wait);
9245 
9246 	return err;
9247 }
9248 
9249 static void sctp_wait_for_close(struct sock *sk, long timeout)
9250 {
9251 	DEFINE_WAIT(wait);
9252 
9253 	do {
9254 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9255 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9256 			break;
9257 		release_sock(sk);
9258 		timeout = schedule_timeout(timeout);
9259 		lock_sock(sk);
9260 	} while (!signal_pending(current) && timeout);
9261 
9262 	finish_wait(sk_sleep(sk), &wait);
9263 }
9264 
9265 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9266 {
9267 	struct sk_buff *frag;
9268 
9269 	if (!skb->data_len)
9270 		goto done;
9271 
9272 	/* Don't forget the fragments. */
9273 	skb_walk_frags(skb, frag)
9274 		sctp_skb_set_owner_r_frag(frag, sk);
9275 
9276 done:
9277 	sctp_skb_set_owner_r(skb, sk);
9278 }
9279 
9280 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9281 		    struct sctp_association *asoc)
9282 {
9283 	struct inet_sock *inet = inet_sk(sk);
9284 	struct inet_sock *newinet;
9285 	struct sctp_sock *sp = sctp_sk(sk);
9286 	struct sctp_endpoint *ep = sp->ep;
9287 
9288 	newsk->sk_type = sk->sk_type;
9289 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9290 	newsk->sk_flags = sk->sk_flags;
9291 	newsk->sk_tsflags = sk->sk_tsflags;
9292 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9293 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9294 	newsk->sk_reuse = sk->sk_reuse;
9295 	sctp_sk(newsk)->reuse = sp->reuse;
9296 
9297 	newsk->sk_shutdown = sk->sk_shutdown;
9298 	newsk->sk_destruct = sctp_destruct_sock;
9299 	newsk->sk_family = sk->sk_family;
9300 	newsk->sk_protocol = IPPROTO_SCTP;
9301 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9302 	newsk->sk_sndbuf = sk->sk_sndbuf;
9303 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9304 	newsk->sk_lingertime = sk->sk_lingertime;
9305 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9306 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9307 	newsk->sk_rxhash = sk->sk_rxhash;
9308 
9309 	newinet = inet_sk(newsk);
9310 
9311 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9312 	 * getsockname() and getpeername()
9313 	 */
9314 	newinet->inet_sport = inet->inet_sport;
9315 	newinet->inet_saddr = inet->inet_saddr;
9316 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9317 	newinet->inet_dport = htons(asoc->peer.port);
9318 	newinet->pmtudisc = inet->pmtudisc;
9319 	newinet->inet_id = prandom_u32();
9320 
9321 	newinet->uc_ttl = inet->uc_ttl;
9322 	newinet->mc_loop = 1;
9323 	newinet->mc_ttl = 1;
9324 	newinet->mc_index = 0;
9325 	newinet->mc_list = NULL;
9326 
9327 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9328 		net_enable_timestamp();
9329 
9330 	/* Set newsk security attributes from orginal sk and connection
9331 	 * security attribute from ep.
9332 	 */
9333 	security_sctp_sk_clone(ep, sk, newsk);
9334 }
9335 
9336 static inline void sctp_copy_descendant(struct sock *sk_to,
9337 					const struct sock *sk_from)
9338 {
9339 	size_t ancestor_size = sizeof(struct inet_sock);
9340 
9341 	ancestor_size += sk_from->sk_prot->obj_size;
9342 	ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9343 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9344 }
9345 
9346 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9347  * and its messages to the newsk.
9348  */
9349 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9350 			     struct sctp_association *assoc,
9351 			     enum sctp_socket_type type)
9352 {
9353 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9354 	struct sctp_sock *newsp = sctp_sk(newsk);
9355 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9356 	struct sctp_endpoint *newep = newsp->ep;
9357 	struct sk_buff *skb, *tmp;
9358 	struct sctp_ulpevent *event;
9359 	struct sctp_bind_hashbucket *head;
9360 	int err;
9361 
9362 	/* Migrate socket buffer sizes and all the socket level options to the
9363 	 * new socket.
9364 	 */
9365 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9366 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9367 	/* Brute force copy old sctp opt. */
9368 	sctp_copy_descendant(newsk, oldsk);
9369 
9370 	/* Restore the ep value that was overwritten with the above structure
9371 	 * copy.
9372 	 */
9373 	newsp->ep = newep;
9374 	newsp->hmac = NULL;
9375 
9376 	/* Hook this new socket in to the bind_hash list. */
9377 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9378 						 inet_sk(oldsk)->inet_num)];
9379 	spin_lock_bh(&head->lock);
9380 	pp = sctp_sk(oldsk)->bind_hash;
9381 	sk_add_bind_node(newsk, &pp->owner);
9382 	sctp_sk(newsk)->bind_hash = pp;
9383 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9384 	spin_unlock_bh(&head->lock);
9385 
9386 	/* Copy the bind_addr list from the original endpoint to the new
9387 	 * endpoint so that we can handle restarts properly
9388 	 */
9389 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9390 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9391 	if (err)
9392 		return err;
9393 
9394 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9395 	 * that net->sctp.auth_enable has been changed to 0 by users and
9396 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9397 	 */
9398 	if (oldsp->ep->auth_hmacs) {
9399 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9400 		if (err)
9401 			return err;
9402 	}
9403 
9404 	/* Move any messages in the old socket's receive queue that are for the
9405 	 * peeled off association to the new socket's receive queue.
9406 	 */
9407 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9408 		event = sctp_skb2event(skb);
9409 		if (event->asoc == assoc) {
9410 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9411 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9412 			sctp_skb_set_owner_r_frag(skb, newsk);
9413 		}
9414 	}
9415 
9416 	/* Clean up any messages pending delivery due to partial
9417 	 * delivery.   Three cases:
9418 	 * 1) No partial deliver;  no work.
9419 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9420 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9421 	 */
9422 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9423 
9424 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9425 		struct sk_buff_head *queue;
9426 
9427 		/* Decide which queue to move pd_lobby skbs to. */
9428 		if (assoc->ulpq.pd_mode) {
9429 			queue = &newsp->pd_lobby;
9430 		} else
9431 			queue = &newsk->sk_receive_queue;
9432 
9433 		/* Walk through the pd_lobby, looking for skbs that
9434 		 * need moved to the new socket.
9435 		 */
9436 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9437 			event = sctp_skb2event(skb);
9438 			if (event->asoc == assoc) {
9439 				__skb_unlink(skb, &oldsp->pd_lobby);
9440 				__skb_queue_tail(queue, skb);
9441 				sctp_skb_set_owner_r_frag(skb, newsk);
9442 			}
9443 		}
9444 
9445 		/* Clear up any skbs waiting for the partial
9446 		 * delivery to finish.
9447 		 */
9448 		if (assoc->ulpq.pd_mode)
9449 			sctp_clear_pd(oldsk, NULL);
9450 
9451 	}
9452 
9453 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9454 
9455 	/* Set the type of socket to indicate that it is peeled off from the
9456 	 * original UDP-style socket or created with the accept() call on a
9457 	 * TCP-style socket..
9458 	 */
9459 	newsp->type = type;
9460 
9461 	/* Mark the new socket "in-use" by the user so that any packets
9462 	 * that may arrive on the association after we've moved it are
9463 	 * queued to the backlog.  This prevents a potential race between
9464 	 * backlog processing on the old socket and new-packet processing
9465 	 * on the new socket.
9466 	 *
9467 	 * The caller has just allocated newsk so we can guarantee that other
9468 	 * paths won't try to lock it and then oldsk.
9469 	 */
9470 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9471 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9472 	sctp_assoc_migrate(assoc, newsk);
9473 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9474 
9475 	/* If the association on the newsk is already closed before accept()
9476 	 * is called, set RCV_SHUTDOWN flag.
9477 	 */
9478 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9479 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9480 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9481 	} else {
9482 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9483 	}
9484 
9485 	release_sock(newsk);
9486 
9487 	return 0;
9488 }
9489 
9490 
9491 /* This proto struct describes the ULP interface for SCTP.  */
9492 struct proto sctp_prot = {
9493 	.name        =	"SCTP",
9494 	.owner       =	THIS_MODULE,
9495 	.close       =	sctp_close,
9496 	.disconnect  =	sctp_disconnect,
9497 	.accept      =	sctp_accept,
9498 	.ioctl       =	sctp_ioctl,
9499 	.init        =	sctp_init_sock,
9500 	.destroy     =	sctp_destroy_sock,
9501 	.shutdown    =	sctp_shutdown,
9502 	.setsockopt  =	sctp_setsockopt,
9503 	.getsockopt  =	sctp_getsockopt,
9504 	.sendmsg     =	sctp_sendmsg,
9505 	.recvmsg     =	sctp_recvmsg,
9506 	.bind        =	sctp_bind,
9507 	.bind_add    =  sctp_bind_add,
9508 	.backlog_rcv =	sctp_backlog_rcv,
9509 	.hash        =	sctp_hash,
9510 	.unhash      =	sctp_unhash,
9511 	.no_autobind =	true,
9512 	.obj_size    =  sizeof(struct sctp_sock),
9513 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9514 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9515 				offsetof(struct sctp_sock, subscribe) +
9516 				sizeof_field(struct sctp_sock, initmsg),
9517 	.sysctl_mem  =  sysctl_sctp_mem,
9518 	.sysctl_rmem =  sysctl_sctp_rmem,
9519 	.sysctl_wmem =  sysctl_sctp_wmem,
9520 	.memory_pressure = &sctp_memory_pressure,
9521 	.enter_memory_pressure = sctp_enter_memory_pressure,
9522 	.memory_allocated = &sctp_memory_allocated,
9523 	.sockets_allocated = &sctp_sockets_allocated,
9524 };
9525 
9526 #if IS_ENABLED(CONFIG_IPV6)
9527 
9528 #include <net/transp_v6.h>
9529 static void sctp_v6_destroy_sock(struct sock *sk)
9530 {
9531 	sctp_destroy_sock(sk);
9532 	inet6_destroy_sock(sk);
9533 }
9534 
9535 struct proto sctpv6_prot = {
9536 	.name		= "SCTPv6",
9537 	.owner		= THIS_MODULE,
9538 	.close		= sctp_close,
9539 	.disconnect	= sctp_disconnect,
9540 	.accept		= sctp_accept,
9541 	.ioctl		= sctp_ioctl,
9542 	.init		= sctp_init_sock,
9543 	.destroy	= sctp_v6_destroy_sock,
9544 	.shutdown	= sctp_shutdown,
9545 	.setsockopt	= sctp_setsockopt,
9546 	.getsockopt	= sctp_getsockopt,
9547 	.sendmsg	= sctp_sendmsg,
9548 	.recvmsg	= sctp_recvmsg,
9549 	.bind		= sctp_bind,
9550 	.bind_add	= sctp_bind_add,
9551 	.backlog_rcv	= sctp_backlog_rcv,
9552 	.hash		= sctp_hash,
9553 	.unhash		= sctp_unhash,
9554 	.no_autobind	= true,
9555 	.obj_size	= sizeof(struct sctp6_sock),
9556 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9557 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9558 				offsetof(struct sctp6_sock, sctp.subscribe) +
9559 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9560 	.sysctl_mem	= sysctl_sctp_mem,
9561 	.sysctl_rmem	= sysctl_sctp_rmem,
9562 	.sysctl_wmem	= sysctl_sctp_wmem,
9563 	.memory_pressure = &sctp_memory_pressure,
9564 	.enter_memory_pressure = sctp_enter_memory_pressure,
9565 	.memory_allocated = &sctp_memory_allocated,
9566 	.sockets_allocated = &sctp_sockets_allocated,
9567 };
9568 #endif /* IS_ENABLED(CONFIG_IPV6) */
9569