1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 83 /* Forward declarations for internal helper functions. */ 84 static int sctp_writeable(struct sock *sk); 85 static void sctp_wfree(struct sk_buff *skb); 86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 87 size_t msg_len); 88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 90 static int sctp_wait_for_accept(struct sock *sk, long timeo); 91 static void sctp_wait_for_close(struct sock *sk, long timeo); 92 static void sctp_destruct_sock(struct sock *sk); 93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 94 union sctp_addr *addr, int len); 95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf(struct sctp_association *asoc, 100 struct sctp_chunk *chunk); 101 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 102 static int sctp_autobind(struct sock *sk); 103 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 104 struct sctp_association *assoc, 105 enum sctp_socket_type type); 106 107 static unsigned long sctp_memory_pressure; 108 static atomic_long_t sctp_memory_allocated; 109 struct percpu_counter sctp_sockets_allocated; 110 111 static void sctp_enter_memory_pressure(struct sock *sk) 112 { 113 sctp_memory_pressure = 1; 114 } 115 116 117 /* Get the sndbuf space available at the time on the association. */ 118 static inline int sctp_wspace(struct sctp_association *asoc) 119 { 120 int amt; 121 122 if (asoc->ep->sndbuf_policy) 123 amt = asoc->sndbuf_used; 124 else 125 amt = sk_wmem_alloc_get(asoc->base.sk); 126 127 if (amt >= asoc->base.sk->sk_sndbuf) { 128 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 129 amt = 0; 130 else { 131 amt = sk_stream_wspace(asoc->base.sk); 132 if (amt < 0) 133 amt = 0; 134 } 135 } else { 136 amt = asoc->base.sk->sk_sndbuf - amt; 137 } 138 return amt; 139 } 140 141 /* Increment the used sndbuf space count of the corresponding association by 142 * the size of the outgoing data chunk. 143 * Also, set the skb destructor for sndbuf accounting later. 144 * 145 * Since it is always 1-1 between chunk and skb, and also a new skb is always 146 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 147 * destructor in the data chunk skb for the purpose of the sndbuf space 148 * tracking. 149 */ 150 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 151 { 152 struct sctp_association *asoc = chunk->asoc; 153 struct sock *sk = asoc->base.sk; 154 155 /* The sndbuf space is tracked per association. */ 156 sctp_association_hold(asoc); 157 158 skb_set_owner_w(chunk->skb, sk); 159 160 chunk->skb->destructor = sctp_wfree; 161 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 162 skb_shinfo(chunk->skb)->destructor_arg = chunk; 163 164 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 165 sizeof(struct sk_buff) + 166 sizeof(struct sctp_chunk); 167 168 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 169 sk->sk_wmem_queued += chunk->skb->truesize; 170 sk_mem_charge(sk, chunk->skb->truesize); 171 } 172 173 /* Verify that this is a valid address. */ 174 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 175 int len) 176 { 177 struct sctp_af *af; 178 179 /* Verify basic sockaddr. */ 180 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 181 if (!af) 182 return -EINVAL; 183 184 /* Is this a valid SCTP address? */ 185 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 186 return -EINVAL; 187 188 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 189 return -EINVAL; 190 191 return 0; 192 } 193 194 /* Look up the association by its id. If this is not a UDP-style 195 * socket, the ID field is always ignored. 196 */ 197 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 198 { 199 struct sctp_association *asoc = NULL; 200 201 /* If this is not a UDP-style socket, assoc id should be ignored. */ 202 if (!sctp_style(sk, UDP)) { 203 /* Return NULL if the socket state is not ESTABLISHED. It 204 * could be a TCP-style listening socket or a socket which 205 * hasn't yet called connect() to establish an association. 206 */ 207 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 208 return NULL; 209 210 /* Get the first and the only association from the list. */ 211 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 212 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 213 struct sctp_association, asocs); 214 return asoc; 215 } 216 217 /* Otherwise this is a UDP-style socket. */ 218 if (!id || (id == (sctp_assoc_t)-1)) 219 return NULL; 220 221 spin_lock_bh(&sctp_assocs_id_lock); 222 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 223 spin_unlock_bh(&sctp_assocs_id_lock); 224 225 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 226 return NULL; 227 228 return asoc; 229 } 230 231 /* Look up the transport from an address and an assoc id. If both address and 232 * id are specified, the associations matching the address and the id should be 233 * the same. 234 */ 235 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 236 struct sockaddr_storage *addr, 237 sctp_assoc_t id) 238 { 239 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 240 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 241 union sctp_addr *laddr = (union sctp_addr *)addr; 242 struct sctp_transport *transport; 243 244 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 245 return NULL; 246 247 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 248 laddr, 249 &transport); 250 251 if (!addr_asoc) 252 return NULL; 253 254 id_asoc = sctp_id2assoc(sk, id); 255 if (id_asoc && (id_asoc != addr_asoc)) 256 return NULL; 257 258 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 259 (union sctp_addr *)addr); 260 261 return transport; 262 } 263 264 /* API 3.1.2 bind() - UDP Style Syntax 265 * The syntax of bind() is, 266 * 267 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 268 * 269 * sd - the socket descriptor returned by socket(). 270 * addr - the address structure (struct sockaddr_in or struct 271 * sockaddr_in6 [RFC 2553]), 272 * addr_len - the size of the address structure. 273 */ 274 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 275 { 276 int retval = 0; 277 278 lock_sock(sk); 279 280 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 281 addr, addr_len); 282 283 /* Disallow binding twice. */ 284 if (!sctp_sk(sk)->ep->base.bind_addr.port) 285 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 286 addr_len); 287 else 288 retval = -EINVAL; 289 290 release_sock(sk); 291 292 return retval; 293 } 294 295 static long sctp_get_port_local(struct sock *, union sctp_addr *); 296 297 /* Verify this is a valid sockaddr. */ 298 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 299 union sctp_addr *addr, int len) 300 { 301 struct sctp_af *af; 302 303 /* Check minimum size. */ 304 if (len < sizeof (struct sockaddr)) 305 return NULL; 306 307 /* V4 mapped address are really of AF_INET family */ 308 if (addr->sa.sa_family == AF_INET6 && 309 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 310 if (!opt->pf->af_supported(AF_INET, opt)) 311 return NULL; 312 } else { 313 /* Does this PF support this AF? */ 314 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 315 return NULL; 316 } 317 318 /* If we get this far, af is valid. */ 319 af = sctp_get_af_specific(addr->sa.sa_family); 320 321 if (len < af->sockaddr_len) 322 return NULL; 323 324 return af; 325 } 326 327 /* Bind a local address either to an endpoint or to an association. */ 328 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 329 { 330 struct net *net = sock_net(sk); 331 struct sctp_sock *sp = sctp_sk(sk); 332 struct sctp_endpoint *ep = sp->ep; 333 struct sctp_bind_addr *bp = &ep->base.bind_addr; 334 struct sctp_af *af; 335 unsigned short snum; 336 int ret = 0; 337 338 /* Common sockaddr verification. */ 339 af = sctp_sockaddr_af(sp, addr, len); 340 if (!af) { 341 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 342 __func__, sk, addr, len); 343 return -EINVAL; 344 } 345 346 snum = ntohs(addr->v4.sin_port); 347 348 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 349 __func__, sk, &addr->sa, bp->port, snum, len); 350 351 /* PF specific bind() address verification. */ 352 if (!sp->pf->bind_verify(sp, addr)) 353 return -EADDRNOTAVAIL; 354 355 /* We must either be unbound, or bind to the same port. 356 * It's OK to allow 0 ports if we are already bound. 357 * We'll just inhert an already bound port in this case 358 */ 359 if (bp->port) { 360 if (!snum) 361 snum = bp->port; 362 else if (snum != bp->port) { 363 pr_debug("%s: new port %d doesn't match existing port " 364 "%d\n", __func__, snum, bp->port); 365 return -EINVAL; 366 } 367 } 368 369 if (snum && snum < inet_prot_sock(net) && 370 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 371 return -EACCES; 372 373 /* See if the address matches any of the addresses we may have 374 * already bound before checking against other endpoints. 375 */ 376 if (sctp_bind_addr_match(bp, addr, sp)) 377 return -EINVAL; 378 379 /* Make sure we are allowed to bind here. 380 * The function sctp_get_port_local() does duplicate address 381 * detection. 382 */ 383 addr->v4.sin_port = htons(snum); 384 if ((ret = sctp_get_port_local(sk, addr))) { 385 return -EADDRINUSE; 386 } 387 388 /* Refresh ephemeral port. */ 389 if (!bp->port) 390 bp->port = inet_sk(sk)->inet_num; 391 392 /* Add the address to the bind address list. 393 * Use GFP_ATOMIC since BHs will be disabled. 394 */ 395 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 396 SCTP_ADDR_SRC, GFP_ATOMIC); 397 398 /* Copy back into socket for getsockname() use. */ 399 if (!ret) { 400 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 401 sp->pf->to_sk_saddr(addr, sk); 402 } 403 404 return ret; 405 } 406 407 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 408 * 409 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 410 * at any one time. If a sender, after sending an ASCONF chunk, decides 411 * it needs to transfer another ASCONF Chunk, it MUST wait until the 412 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 413 * subsequent ASCONF. Note this restriction binds each side, so at any 414 * time two ASCONF may be in-transit on any given association (one sent 415 * from each endpoint). 416 */ 417 static int sctp_send_asconf(struct sctp_association *asoc, 418 struct sctp_chunk *chunk) 419 { 420 struct net *net = sock_net(asoc->base.sk); 421 int retval = 0; 422 423 /* If there is an outstanding ASCONF chunk, queue it for later 424 * transmission. 425 */ 426 if (asoc->addip_last_asconf) { 427 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 428 goto out; 429 } 430 431 /* Hold the chunk until an ASCONF_ACK is received. */ 432 sctp_chunk_hold(chunk); 433 retval = sctp_primitive_ASCONF(net, asoc, chunk); 434 if (retval) 435 sctp_chunk_free(chunk); 436 else 437 asoc->addip_last_asconf = chunk; 438 439 out: 440 return retval; 441 } 442 443 /* Add a list of addresses as bind addresses to local endpoint or 444 * association. 445 * 446 * Basically run through each address specified in the addrs/addrcnt 447 * array/length pair, determine if it is IPv6 or IPv4 and call 448 * sctp_do_bind() on it. 449 * 450 * If any of them fails, then the operation will be reversed and the 451 * ones that were added will be removed. 452 * 453 * Only sctp_setsockopt_bindx() is supposed to call this function. 454 */ 455 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 456 { 457 int cnt; 458 int retval = 0; 459 void *addr_buf; 460 struct sockaddr *sa_addr; 461 struct sctp_af *af; 462 463 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 464 addrs, addrcnt); 465 466 addr_buf = addrs; 467 for (cnt = 0; cnt < addrcnt; cnt++) { 468 /* The list may contain either IPv4 or IPv6 address; 469 * determine the address length for walking thru the list. 470 */ 471 sa_addr = addr_buf; 472 af = sctp_get_af_specific(sa_addr->sa_family); 473 if (!af) { 474 retval = -EINVAL; 475 goto err_bindx_add; 476 } 477 478 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 479 af->sockaddr_len); 480 481 addr_buf += af->sockaddr_len; 482 483 err_bindx_add: 484 if (retval < 0) { 485 /* Failed. Cleanup the ones that have been added */ 486 if (cnt > 0) 487 sctp_bindx_rem(sk, addrs, cnt); 488 return retval; 489 } 490 } 491 492 return retval; 493 } 494 495 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 496 * associations that are part of the endpoint indicating that a list of local 497 * addresses are added to the endpoint. 498 * 499 * If any of the addresses is already in the bind address list of the 500 * association, we do not send the chunk for that association. But it will not 501 * affect other associations. 502 * 503 * Only sctp_setsockopt_bindx() is supposed to call this function. 504 */ 505 static int sctp_send_asconf_add_ip(struct sock *sk, 506 struct sockaddr *addrs, 507 int addrcnt) 508 { 509 struct net *net = sock_net(sk); 510 struct sctp_sock *sp; 511 struct sctp_endpoint *ep; 512 struct sctp_association *asoc; 513 struct sctp_bind_addr *bp; 514 struct sctp_chunk *chunk; 515 struct sctp_sockaddr_entry *laddr; 516 union sctp_addr *addr; 517 union sctp_addr saveaddr; 518 void *addr_buf; 519 struct sctp_af *af; 520 struct list_head *p; 521 int i; 522 int retval = 0; 523 524 if (!net->sctp.addip_enable) 525 return retval; 526 527 sp = sctp_sk(sk); 528 ep = sp->ep; 529 530 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 531 __func__, sk, addrs, addrcnt); 532 533 list_for_each_entry(asoc, &ep->asocs, asocs) { 534 if (!asoc->peer.asconf_capable) 535 continue; 536 537 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 538 continue; 539 540 if (!sctp_state(asoc, ESTABLISHED)) 541 continue; 542 543 /* Check if any address in the packed array of addresses is 544 * in the bind address list of the association. If so, 545 * do not send the asconf chunk to its peer, but continue with 546 * other associations. 547 */ 548 addr_buf = addrs; 549 for (i = 0; i < addrcnt; i++) { 550 addr = addr_buf; 551 af = sctp_get_af_specific(addr->v4.sin_family); 552 if (!af) { 553 retval = -EINVAL; 554 goto out; 555 } 556 557 if (sctp_assoc_lookup_laddr(asoc, addr)) 558 break; 559 560 addr_buf += af->sockaddr_len; 561 } 562 if (i < addrcnt) 563 continue; 564 565 /* Use the first valid address in bind addr list of 566 * association as Address Parameter of ASCONF CHUNK. 567 */ 568 bp = &asoc->base.bind_addr; 569 p = bp->address_list.next; 570 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 571 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 572 addrcnt, SCTP_PARAM_ADD_IP); 573 if (!chunk) { 574 retval = -ENOMEM; 575 goto out; 576 } 577 578 /* Add the new addresses to the bind address list with 579 * use_as_src set to 0. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 memcpy(&saveaddr, addr, af->sockaddr_len); 586 retval = sctp_add_bind_addr(bp, &saveaddr, 587 sizeof(saveaddr), 588 SCTP_ADDR_NEW, GFP_ATOMIC); 589 addr_buf += af->sockaddr_len; 590 } 591 if (asoc->src_out_of_asoc_ok) { 592 struct sctp_transport *trans; 593 594 list_for_each_entry(trans, 595 &asoc->peer.transport_addr_list, transports) { 596 /* Clear the source and route cache */ 597 sctp_transport_dst_release(trans); 598 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 599 2*asoc->pathmtu, 4380)); 600 trans->ssthresh = asoc->peer.i.a_rwnd; 601 trans->rto = asoc->rto_initial; 602 sctp_max_rto(asoc, trans); 603 trans->rtt = trans->srtt = trans->rttvar = 0; 604 sctp_transport_route(trans, NULL, 605 sctp_sk(asoc->base.sk)); 606 } 607 } 608 retval = sctp_send_asconf(asoc, chunk); 609 } 610 611 out: 612 return retval; 613 } 614 615 /* Remove a list of addresses from bind addresses list. Do not remove the 616 * last address. 617 * 618 * Basically run through each address specified in the addrs/addrcnt 619 * array/length pair, determine if it is IPv6 or IPv4 and call 620 * sctp_del_bind() on it. 621 * 622 * If any of them fails, then the operation will be reversed and the 623 * ones that were removed will be added back. 624 * 625 * At least one address has to be left; if only one address is 626 * available, the operation will return -EBUSY. 627 * 628 * Only sctp_setsockopt_bindx() is supposed to call this function. 629 */ 630 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 631 { 632 struct sctp_sock *sp = sctp_sk(sk); 633 struct sctp_endpoint *ep = sp->ep; 634 int cnt; 635 struct sctp_bind_addr *bp = &ep->base.bind_addr; 636 int retval = 0; 637 void *addr_buf; 638 union sctp_addr *sa_addr; 639 struct sctp_af *af; 640 641 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 642 __func__, sk, addrs, addrcnt); 643 644 addr_buf = addrs; 645 for (cnt = 0; cnt < addrcnt; cnt++) { 646 /* If the bind address list is empty or if there is only one 647 * bind address, there is nothing more to be removed (we need 648 * at least one address here). 649 */ 650 if (list_empty(&bp->address_list) || 651 (sctp_list_single_entry(&bp->address_list))) { 652 retval = -EBUSY; 653 goto err_bindx_rem; 654 } 655 656 sa_addr = addr_buf; 657 af = sctp_get_af_specific(sa_addr->sa.sa_family); 658 if (!af) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 if (!af->addr_valid(sa_addr, sp, NULL)) { 664 retval = -EADDRNOTAVAIL; 665 goto err_bindx_rem; 666 } 667 668 if (sa_addr->v4.sin_port && 669 sa_addr->v4.sin_port != htons(bp->port)) { 670 retval = -EINVAL; 671 goto err_bindx_rem; 672 } 673 674 if (!sa_addr->v4.sin_port) 675 sa_addr->v4.sin_port = htons(bp->port); 676 677 /* FIXME - There is probably a need to check if sk->sk_saddr and 678 * sk->sk_rcv_addr are currently set to one of the addresses to 679 * be removed. This is something which needs to be looked into 680 * when we are fixing the outstanding issues with multi-homing 681 * socket routing and failover schemes. Refer to comments in 682 * sctp_do_bind(). -daisy 683 */ 684 retval = sctp_del_bind_addr(bp, sa_addr); 685 686 addr_buf += af->sockaddr_len; 687 err_bindx_rem: 688 if (retval < 0) { 689 /* Failed. Add the ones that has been removed back */ 690 if (cnt > 0) 691 sctp_bindx_add(sk, addrs, cnt); 692 return retval; 693 } 694 } 695 696 return retval; 697 } 698 699 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 700 * the associations that are part of the endpoint indicating that a list of 701 * local addresses are removed from the endpoint. 702 * 703 * If any of the addresses is already in the bind address list of the 704 * association, we do not send the chunk for that association. But it will not 705 * affect other associations. 706 * 707 * Only sctp_setsockopt_bindx() is supposed to call this function. 708 */ 709 static int sctp_send_asconf_del_ip(struct sock *sk, 710 struct sockaddr *addrs, 711 int addrcnt) 712 { 713 struct net *net = sock_net(sk); 714 struct sctp_sock *sp; 715 struct sctp_endpoint *ep; 716 struct sctp_association *asoc; 717 struct sctp_transport *transport; 718 struct sctp_bind_addr *bp; 719 struct sctp_chunk *chunk; 720 union sctp_addr *laddr; 721 void *addr_buf; 722 struct sctp_af *af; 723 struct sctp_sockaddr_entry *saddr; 724 int i; 725 int retval = 0; 726 int stored = 0; 727 728 chunk = NULL; 729 if (!net->sctp.addip_enable) 730 return retval; 731 732 sp = sctp_sk(sk); 733 ep = sp->ep; 734 735 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 736 __func__, sk, addrs, addrcnt); 737 738 list_for_each_entry(asoc, &ep->asocs, asocs) { 739 740 if (!asoc->peer.asconf_capable) 741 continue; 742 743 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 744 continue; 745 746 if (!sctp_state(asoc, ESTABLISHED)) 747 continue; 748 749 /* Check if any address in the packed array of addresses is 750 * not present in the bind address list of the association. 751 * If so, do not send the asconf chunk to its peer, but 752 * continue with other associations. 753 */ 754 addr_buf = addrs; 755 for (i = 0; i < addrcnt; i++) { 756 laddr = addr_buf; 757 af = sctp_get_af_specific(laddr->v4.sin_family); 758 if (!af) { 759 retval = -EINVAL; 760 goto out; 761 } 762 763 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 764 break; 765 766 addr_buf += af->sockaddr_len; 767 } 768 if (i < addrcnt) 769 continue; 770 771 /* Find one address in the association's bind address list 772 * that is not in the packed array of addresses. This is to 773 * make sure that we do not delete all the addresses in the 774 * association. 775 */ 776 bp = &asoc->base.bind_addr; 777 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 778 addrcnt, sp); 779 if ((laddr == NULL) && (addrcnt == 1)) { 780 if (asoc->asconf_addr_del_pending) 781 continue; 782 asoc->asconf_addr_del_pending = 783 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 784 if (asoc->asconf_addr_del_pending == NULL) { 785 retval = -ENOMEM; 786 goto out; 787 } 788 asoc->asconf_addr_del_pending->sa.sa_family = 789 addrs->sa_family; 790 asoc->asconf_addr_del_pending->v4.sin_port = 791 htons(bp->port); 792 if (addrs->sa_family == AF_INET) { 793 struct sockaddr_in *sin; 794 795 sin = (struct sockaddr_in *)addrs; 796 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 797 } else if (addrs->sa_family == AF_INET6) { 798 struct sockaddr_in6 *sin6; 799 800 sin6 = (struct sockaddr_in6 *)addrs; 801 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 802 } 803 804 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 805 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 806 asoc->asconf_addr_del_pending); 807 808 asoc->src_out_of_asoc_ok = 1; 809 stored = 1; 810 goto skip_mkasconf; 811 } 812 813 if (laddr == NULL) 814 return -EINVAL; 815 816 /* We do not need RCU protection throughout this loop 817 * because this is done under a socket lock from the 818 * setsockopt call. 819 */ 820 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 821 SCTP_PARAM_DEL_IP); 822 if (!chunk) { 823 retval = -ENOMEM; 824 goto out; 825 } 826 827 skip_mkasconf: 828 /* Reset use_as_src flag for the addresses in the bind address 829 * list that are to be deleted. 830 */ 831 addr_buf = addrs; 832 for (i = 0; i < addrcnt; i++) { 833 laddr = addr_buf; 834 af = sctp_get_af_specific(laddr->v4.sin_family); 835 list_for_each_entry(saddr, &bp->address_list, list) { 836 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 837 saddr->state = SCTP_ADDR_DEL; 838 } 839 addr_buf += af->sockaddr_len; 840 } 841 842 /* Update the route and saddr entries for all the transports 843 * as some of the addresses in the bind address list are 844 * about to be deleted and cannot be used as source addresses. 845 */ 846 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 847 transports) { 848 sctp_transport_dst_release(transport); 849 sctp_transport_route(transport, NULL, 850 sctp_sk(asoc->base.sk)); 851 } 852 853 if (stored) 854 /* We don't need to transmit ASCONF */ 855 continue; 856 retval = sctp_send_asconf(asoc, chunk); 857 } 858 out: 859 return retval; 860 } 861 862 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 863 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 864 { 865 struct sock *sk = sctp_opt2sk(sp); 866 union sctp_addr *addr; 867 struct sctp_af *af; 868 869 /* It is safe to write port space in caller. */ 870 addr = &addrw->a; 871 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 872 af = sctp_get_af_specific(addr->sa.sa_family); 873 if (!af) 874 return -EINVAL; 875 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 876 return -EINVAL; 877 878 if (addrw->state == SCTP_ADDR_NEW) 879 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 880 else 881 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 882 } 883 884 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 885 * 886 * API 8.1 887 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 888 * int flags); 889 * 890 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 891 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 892 * or IPv6 addresses. 893 * 894 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 895 * Section 3.1.2 for this usage. 896 * 897 * addrs is a pointer to an array of one or more socket addresses. Each 898 * address is contained in its appropriate structure (i.e. struct 899 * sockaddr_in or struct sockaddr_in6) the family of the address type 900 * must be used to distinguish the address length (note that this 901 * representation is termed a "packed array" of addresses). The caller 902 * specifies the number of addresses in the array with addrcnt. 903 * 904 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 905 * -1, and sets errno to the appropriate error code. 906 * 907 * For SCTP, the port given in each socket address must be the same, or 908 * sctp_bindx() will fail, setting errno to EINVAL. 909 * 910 * The flags parameter is formed from the bitwise OR of zero or more of 911 * the following currently defined flags: 912 * 913 * SCTP_BINDX_ADD_ADDR 914 * 915 * SCTP_BINDX_REM_ADDR 916 * 917 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 918 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 919 * addresses from the association. The two flags are mutually exclusive; 920 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 921 * not remove all addresses from an association; sctp_bindx() will 922 * reject such an attempt with EINVAL. 923 * 924 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 925 * additional addresses with an endpoint after calling bind(). Or use 926 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 927 * socket is associated with so that no new association accepted will be 928 * associated with those addresses. If the endpoint supports dynamic 929 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 930 * endpoint to send the appropriate message to the peer to change the 931 * peers address lists. 932 * 933 * Adding and removing addresses from a connected association is 934 * optional functionality. Implementations that do not support this 935 * functionality should return EOPNOTSUPP. 936 * 937 * Basically do nothing but copying the addresses from user to kernel 938 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 939 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 940 * from userspace. 941 * 942 * We don't use copy_from_user() for optimization: we first do the 943 * sanity checks (buffer size -fast- and access check-healthy 944 * pointer); if all of those succeed, then we can alloc the memory 945 * (expensive operation) needed to copy the data to kernel. Then we do 946 * the copying without checking the user space area 947 * (__copy_from_user()). 948 * 949 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 950 * it. 951 * 952 * sk The sk of the socket 953 * addrs The pointer to the addresses in user land 954 * addrssize Size of the addrs buffer 955 * op Operation to perform (add or remove, see the flags of 956 * sctp_bindx) 957 * 958 * Returns 0 if ok, <0 errno code on error. 959 */ 960 static int sctp_setsockopt_bindx(struct sock *sk, 961 struct sockaddr __user *addrs, 962 int addrs_size, int op) 963 { 964 struct sockaddr *kaddrs; 965 int err; 966 int addrcnt = 0; 967 int walk_size = 0; 968 struct sockaddr *sa_addr; 969 void *addr_buf; 970 struct sctp_af *af; 971 972 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 973 __func__, sk, addrs, addrs_size, op); 974 975 if (unlikely(addrs_size <= 0)) 976 return -EINVAL; 977 978 /* Check the user passed a healthy pointer. */ 979 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 980 return -EFAULT; 981 982 /* Alloc space for the address array in kernel memory. */ 983 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 984 if (unlikely(!kaddrs)) 985 return -ENOMEM; 986 987 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 988 kfree(kaddrs); 989 return -EFAULT; 990 } 991 992 /* Walk through the addrs buffer and count the number of addresses. */ 993 addr_buf = kaddrs; 994 while (walk_size < addrs_size) { 995 if (walk_size + sizeof(sa_family_t) > addrs_size) { 996 kfree(kaddrs); 997 return -EINVAL; 998 } 999 1000 sa_addr = addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa_family); 1002 1003 /* If the address family is not supported or if this address 1004 * causes the address buffer to overflow return EINVAL. 1005 */ 1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1007 kfree(kaddrs); 1008 return -EINVAL; 1009 } 1010 addrcnt++; 1011 addr_buf += af->sockaddr_len; 1012 walk_size += af->sockaddr_len; 1013 } 1014 1015 /* Do the work. */ 1016 switch (op) { 1017 case SCTP_BINDX_ADD_ADDR: 1018 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1019 if (err) 1020 goto out; 1021 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1022 break; 1023 1024 case SCTP_BINDX_REM_ADDR: 1025 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1026 if (err) 1027 goto out; 1028 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1029 break; 1030 1031 default: 1032 err = -EINVAL; 1033 break; 1034 } 1035 1036 out: 1037 kfree(kaddrs); 1038 1039 return err; 1040 } 1041 1042 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1043 * 1044 * Common routine for handling connect() and sctp_connectx(). 1045 * Connect will come in with just a single address. 1046 */ 1047 static int __sctp_connect(struct sock *sk, 1048 struct sockaddr *kaddrs, 1049 int addrs_size, 1050 sctp_assoc_t *assoc_id) 1051 { 1052 struct net *net = sock_net(sk); 1053 struct sctp_sock *sp; 1054 struct sctp_endpoint *ep; 1055 struct sctp_association *asoc = NULL; 1056 struct sctp_association *asoc2; 1057 struct sctp_transport *transport; 1058 union sctp_addr to; 1059 enum sctp_scope scope; 1060 long timeo; 1061 int err = 0; 1062 int addrcnt = 0; 1063 int walk_size = 0; 1064 union sctp_addr *sa_addr = NULL; 1065 void *addr_buf; 1066 unsigned short port; 1067 unsigned int f_flags = 0; 1068 1069 sp = sctp_sk(sk); 1070 ep = sp->ep; 1071 1072 /* connect() cannot be done on a socket that is already in ESTABLISHED 1073 * state - UDP-style peeled off socket or a TCP-style socket that 1074 * is already connected. 1075 * It cannot be done even on a TCP-style listening socket. 1076 */ 1077 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1078 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1079 err = -EISCONN; 1080 goto out_free; 1081 } 1082 1083 /* Walk through the addrs buffer and count the number of addresses. */ 1084 addr_buf = kaddrs; 1085 while (walk_size < addrs_size) { 1086 struct sctp_af *af; 1087 1088 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1089 err = -EINVAL; 1090 goto out_free; 1091 } 1092 1093 sa_addr = addr_buf; 1094 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1095 1096 /* If the address family is not supported or if this address 1097 * causes the address buffer to overflow return EINVAL. 1098 */ 1099 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1100 err = -EINVAL; 1101 goto out_free; 1102 } 1103 1104 port = ntohs(sa_addr->v4.sin_port); 1105 1106 /* Save current address so we can work with it */ 1107 memcpy(&to, sa_addr, af->sockaddr_len); 1108 1109 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1110 if (err) 1111 goto out_free; 1112 1113 /* Make sure the destination port is correctly set 1114 * in all addresses. 1115 */ 1116 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1117 err = -EINVAL; 1118 goto out_free; 1119 } 1120 1121 /* Check if there already is a matching association on the 1122 * endpoint (other than the one created here). 1123 */ 1124 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1125 if (asoc2 && asoc2 != asoc) { 1126 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1127 err = -EISCONN; 1128 else 1129 err = -EALREADY; 1130 goto out_free; 1131 } 1132 1133 /* If we could not find a matching association on the endpoint, 1134 * make sure that there is no peeled-off association matching 1135 * the peer address even on another socket. 1136 */ 1137 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1138 err = -EADDRNOTAVAIL; 1139 goto out_free; 1140 } 1141 1142 if (!asoc) { 1143 /* If a bind() or sctp_bindx() is not called prior to 1144 * an sctp_connectx() call, the system picks an 1145 * ephemeral port and will choose an address set 1146 * equivalent to binding with a wildcard address. 1147 */ 1148 if (!ep->base.bind_addr.port) { 1149 if (sctp_autobind(sk)) { 1150 err = -EAGAIN; 1151 goto out_free; 1152 } 1153 } else { 1154 /* 1155 * If an unprivileged user inherits a 1-many 1156 * style socket with open associations on a 1157 * privileged port, it MAY be permitted to 1158 * accept new associations, but it SHOULD NOT 1159 * be permitted to open new associations. 1160 */ 1161 if (ep->base.bind_addr.port < 1162 inet_prot_sock(net) && 1163 !ns_capable(net->user_ns, 1164 CAP_NET_BIND_SERVICE)) { 1165 err = -EACCES; 1166 goto out_free; 1167 } 1168 } 1169 1170 scope = sctp_scope(&to); 1171 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1172 if (!asoc) { 1173 err = -ENOMEM; 1174 goto out_free; 1175 } 1176 1177 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1178 GFP_KERNEL); 1179 if (err < 0) { 1180 goto out_free; 1181 } 1182 1183 } 1184 1185 /* Prime the peer's transport structures. */ 1186 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1187 SCTP_UNKNOWN); 1188 if (!transport) { 1189 err = -ENOMEM; 1190 goto out_free; 1191 } 1192 1193 addrcnt++; 1194 addr_buf += af->sockaddr_len; 1195 walk_size += af->sockaddr_len; 1196 } 1197 1198 /* In case the user of sctp_connectx() wants an association 1199 * id back, assign one now. 1200 */ 1201 if (assoc_id) { 1202 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1203 if (err < 0) 1204 goto out_free; 1205 } 1206 1207 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1208 if (err < 0) { 1209 goto out_free; 1210 } 1211 1212 /* Initialize sk's dport and daddr for getpeername() */ 1213 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1214 sp->pf->to_sk_daddr(sa_addr, sk); 1215 sk->sk_err = 0; 1216 1217 /* in-kernel sockets don't generally have a file allocated to them 1218 * if all they do is call sock_create_kern(). 1219 */ 1220 if (sk->sk_socket->file) 1221 f_flags = sk->sk_socket->file->f_flags; 1222 1223 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1224 1225 if (assoc_id) 1226 *assoc_id = asoc->assoc_id; 1227 err = sctp_wait_for_connect(asoc, &timeo); 1228 /* Note: the asoc may be freed after the return of 1229 * sctp_wait_for_connect. 1230 */ 1231 1232 /* Don't free association on exit. */ 1233 asoc = NULL; 1234 1235 out_free: 1236 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1237 __func__, asoc, kaddrs, err); 1238 1239 if (asoc) { 1240 /* sctp_primitive_ASSOCIATE may have added this association 1241 * To the hash table, try to unhash it, just in case, its a noop 1242 * if it wasn't hashed so we're safe 1243 */ 1244 sctp_association_free(asoc); 1245 } 1246 return err; 1247 } 1248 1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1250 * 1251 * API 8.9 1252 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1253 * sctp_assoc_t *asoc); 1254 * 1255 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1256 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1257 * or IPv6 addresses. 1258 * 1259 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1260 * Section 3.1.2 for this usage. 1261 * 1262 * addrs is a pointer to an array of one or more socket addresses. Each 1263 * address is contained in its appropriate structure (i.e. struct 1264 * sockaddr_in or struct sockaddr_in6) the family of the address type 1265 * must be used to distengish the address length (note that this 1266 * representation is termed a "packed array" of addresses). The caller 1267 * specifies the number of addresses in the array with addrcnt. 1268 * 1269 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1270 * the association id of the new association. On failure, sctp_connectx() 1271 * returns -1, and sets errno to the appropriate error code. The assoc_id 1272 * is not touched by the kernel. 1273 * 1274 * For SCTP, the port given in each socket address must be the same, or 1275 * sctp_connectx() will fail, setting errno to EINVAL. 1276 * 1277 * An application can use sctp_connectx to initiate an association with 1278 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1279 * allows a caller to specify multiple addresses at which a peer can be 1280 * reached. The way the SCTP stack uses the list of addresses to set up 1281 * the association is implementation dependent. This function only 1282 * specifies that the stack will try to make use of all the addresses in 1283 * the list when needed. 1284 * 1285 * Note that the list of addresses passed in is only used for setting up 1286 * the association. It does not necessarily equal the set of addresses 1287 * the peer uses for the resulting association. If the caller wants to 1288 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1289 * retrieve them after the association has been set up. 1290 * 1291 * Basically do nothing but copying the addresses from user to kernel 1292 * land and invoking either sctp_connectx(). This is used for tunneling 1293 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1294 * 1295 * We don't use copy_from_user() for optimization: we first do the 1296 * sanity checks (buffer size -fast- and access check-healthy 1297 * pointer); if all of those succeed, then we can alloc the memory 1298 * (expensive operation) needed to copy the data to kernel. Then we do 1299 * the copying without checking the user space area 1300 * (__copy_from_user()). 1301 * 1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1303 * it. 1304 * 1305 * sk The sk of the socket 1306 * addrs The pointer to the addresses in user land 1307 * addrssize Size of the addrs buffer 1308 * 1309 * Returns >=0 if ok, <0 errno code on error. 1310 */ 1311 static int __sctp_setsockopt_connectx(struct sock *sk, 1312 struct sockaddr __user *addrs, 1313 int addrs_size, 1314 sctp_assoc_t *assoc_id) 1315 { 1316 struct sockaddr *kaddrs; 1317 gfp_t gfp = GFP_KERNEL; 1318 int err = 0; 1319 1320 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1321 __func__, sk, addrs, addrs_size); 1322 1323 if (unlikely(addrs_size <= 0)) 1324 return -EINVAL; 1325 1326 /* Check the user passed a healthy pointer. */ 1327 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1328 return -EFAULT; 1329 1330 /* Alloc space for the address array in kernel memory. */ 1331 if (sk->sk_socket->file) 1332 gfp = GFP_USER | __GFP_NOWARN; 1333 kaddrs = kmalloc(addrs_size, gfp); 1334 if (unlikely(!kaddrs)) 1335 return -ENOMEM; 1336 1337 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1338 err = -EFAULT; 1339 } else { 1340 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1341 } 1342 1343 kfree(kaddrs); 1344 1345 return err; 1346 } 1347 1348 /* 1349 * This is an older interface. It's kept for backward compatibility 1350 * to the option that doesn't provide association id. 1351 */ 1352 static int sctp_setsockopt_connectx_old(struct sock *sk, 1353 struct sockaddr __user *addrs, 1354 int addrs_size) 1355 { 1356 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1357 } 1358 1359 /* 1360 * New interface for the API. The since the API is done with a socket 1361 * option, to make it simple we feed back the association id is as a return 1362 * indication to the call. Error is always negative and association id is 1363 * always positive. 1364 */ 1365 static int sctp_setsockopt_connectx(struct sock *sk, 1366 struct sockaddr __user *addrs, 1367 int addrs_size) 1368 { 1369 sctp_assoc_t assoc_id = 0; 1370 int err = 0; 1371 1372 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1373 1374 if (err) 1375 return err; 1376 else 1377 return assoc_id; 1378 } 1379 1380 /* 1381 * New (hopefully final) interface for the API. 1382 * We use the sctp_getaddrs_old structure so that use-space library 1383 * can avoid any unnecessary allocations. The only different part 1384 * is that we store the actual length of the address buffer into the 1385 * addrs_num structure member. That way we can re-use the existing 1386 * code. 1387 */ 1388 #ifdef CONFIG_COMPAT 1389 struct compat_sctp_getaddrs_old { 1390 sctp_assoc_t assoc_id; 1391 s32 addr_num; 1392 compat_uptr_t addrs; /* struct sockaddr * */ 1393 }; 1394 #endif 1395 1396 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1397 char __user *optval, 1398 int __user *optlen) 1399 { 1400 struct sctp_getaddrs_old param; 1401 sctp_assoc_t assoc_id = 0; 1402 int err = 0; 1403 1404 #ifdef CONFIG_COMPAT 1405 if (in_compat_syscall()) { 1406 struct compat_sctp_getaddrs_old param32; 1407 1408 if (len < sizeof(param32)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m32, optval, sizeof(param32))) 1411 return -EFAULT; 1412 1413 param.assoc_id = param32.assoc_id; 1414 param.addr_num = param32.addr_num; 1415 param.addrs = compat_ptr(param32.addrs); 1416 } else 1417 #endif 1418 { 1419 if (len < sizeof(param)) 1420 return -EINVAL; 1421 if (copy_from_user(¶m, optval, sizeof(param))) 1422 return -EFAULT; 1423 } 1424 1425 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1426 param.addrs, param.addr_num, 1427 &assoc_id); 1428 if (err == 0 || err == -EINPROGRESS) { 1429 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1430 return -EFAULT; 1431 if (put_user(sizeof(assoc_id), optlen)) 1432 return -EFAULT; 1433 } 1434 1435 return err; 1436 } 1437 1438 /* API 3.1.4 close() - UDP Style Syntax 1439 * Applications use close() to perform graceful shutdown (as described in 1440 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1441 * by a UDP-style socket. 1442 * 1443 * The syntax is 1444 * 1445 * ret = close(int sd); 1446 * 1447 * sd - the socket descriptor of the associations to be closed. 1448 * 1449 * To gracefully shutdown a specific association represented by the 1450 * UDP-style socket, an application should use the sendmsg() call, 1451 * passing no user data, but including the appropriate flag in the 1452 * ancillary data (see Section xxxx). 1453 * 1454 * If sd in the close() call is a branched-off socket representing only 1455 * one association, the shutdown is performed on that association only. 1456 * 1457 * 4.1.6 close() - TCP Style Syntax 1458 * 1459 * Applications use close() to gracefully close down an association. 1460 * 1461 * The syntax is: 1462 * 1463 * int close(int sd); 1464 * 1465 * sd - the socket descriptor of the association to be closed. 1466 * 1467 * After an application calls close() on a socket descriptor, no further 1468 * socket operations will succeed on that descriptor. 1469 * 1470 * API 7.1.4 SO_LINGER 1471 * 1472 * An application using the TCP-style socket can use this option to 1473 * perform the SCTP ABORT primitive. The linger option structure is: 1474 * 1475 * struct linger { 1476 * int l_onoff; // option on/off 1477 * int l_linger; // linger time 1478 * }; 1479 * 1480 * To enable the option, set l_onoff to 1. If the l_linger value is set 1481 * to 0, calling close() is the same as the ABORT primitive. If the 1482 * value is set to a negative value, the setsockopt() call will return 1483 * an error. If the value is set to a positive value linger_time, the 1484 * close() can be blocked for at most linger_time ms. If the graceful 1485 * shutdown phase does not finish during this period, close() will 1486 * return but the graceful shutdown phase continues in the system. 1487 */ 1488 static void sctp_close(struct sock *sk, long timeout) 1489 { 1490 struct net *net = sock_net(sk); 1491 struct sctp_endpoint *ep; 1492 struct sctp_association *asoc; 1493 struct list_head *pos, *temp; 1494 unsigned int data_was_unread; 1495 1496 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1497 1498 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1499 sk->sk_shutdown = SHUTDOWN_MASK; 1500 sk->sk_state = SCTP_SS_CLOSING; 1501 1502 ep = sctp_sk(sk)->ep; 1503 1504 /* Clean up any skbs sitting on the receive queue. */ 1505 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1506 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1507 1508 /* Walk all associations on an endpoint. */ 1509 list_for_each_safe(pos, temp, &ep->asocs) { 1510 asoc = list_entry(pos, struct sctp_association, asocs); 1511 1512 if (sctp_style(sk, TCP)) { 1513 /* A closed association can still be in the list if 1514 * it belongs to a TCP-style listening socket that is 1515 * not yet accepted. If so, free it. If not, send an 1516 * ABORT or SHUTDOWN based on the linger options. 1517 */ 1518 if (sctp_state(asoc, CLOSED)) { 1519 sctp_association_free(asoc); 1520 continue; 1521 } 1522 } 1523 1524 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1525 !skb_queue_empty(&asoc->ulpq.reasm) || 1526 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1527 struct sctp_chunk *chunk; 1528 1529 chunk = sctp_make_abort_user(asoc, NULL, 0); 1530 sctp_primitive_ABORT(net, asoc, chunk); 1531 } else 1532 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1533 } 1534 1535 /* On a TCP-style socket, block for at most linger_time if set. */ 1536 if (sctp_style(sk, TCP) && timeout) 1537 sctp_wait_for_close(sk, timeout); 1538 1539 /* This will run the backlog queue. */ 1540 release_sock(sk); 1541 1542 /* Supposedly, no process has access to the socket, but 1543 * the net layers still may. 1544 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1545 * held and that should be grabbed before socket lock. 1546 */ 1547 spin_lock_bh(&net->sctp.addr_wq_lock); 1548 bh_lock_sock_nested(sk); 1549 1550 /* Hold the sock, since sk_common_release() will put sock_put() 1551 * and we have just a little more cleanup. 1552 */ 1553 sock_hold(sk); 1554 sk_common_release(sk); 1555 1556 bh_unlock_sock(sk); 1557 spin_unlock_bh(&net->sctp.addr_wq_lock); 1558 1559 sock_put(sk); 1560 1561 SCTP_DBG_OBJCNT_DEC(sock); 1562 } 1563 1564 /* Handle EPIPE error. */ 1565 static int sctp_error(struct sock *sk, int flags, int err) 1566 { 1567 if (err == -EPIPE) 1568 err = sock_error(sk) ? : -EPIPE; 1569 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1570 send_sig(SIGPIPE, current, 0); 1571 return err; 1572 } 1573 1574 /* API 3.1.3 sendmsg() - UDP Style Syntax 1575 * 1576 * An application uses sendmsg() and recvmsg() calls to transmit data to 1577 * and receive data from its peer. 1578 * 1579 * ssize_t sendmsg(int socket, const struct msghdr *message, 1580 * int flags); 1581 * 1582 * socket - the socket descriptor of the endpoint. 1583 * message - pointer to the msghdr structure which contains a single 1584 * user message and possibly some ancillary data. 1585 * 1586 * See Section 5 for complete description of the data 1587 * structures. 1588 * 1589 * flags - flags sent or received with the user message, see Section 1590 * 5 for complete description of the flags. 1591 * 1592 * Note: This function could use a rewrite especially when explicit 1593 * connect support comes in. 1594 */ 1595 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1596 1597 static int sctp_msghdr_parse(const struct msghdr *msg, 1598 struct sctp_cmsgs *cmsgs); 1599 1600 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1601 { 1602 struct net *net = sock_net(sk); 1603 struct sctp_sock *sp; 1604 struct sctp_endpoint *ep; 1605 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1606 struct sctp_transport *transport, *chunk_tp; 1607 struct sctp_chunk *chunk; 1608 union sctp_addr to; 1609 struct sockaddr *msg_name = NULL; 1610 struct sctp_sndrcvinfo default_sinfo; 1611 struct sctp_sndrcvinfo *sinfo; 1612 struct sctp_initmsg *sinit; 1613 sctp_assoc_t associd = 0; 1614 struct sctp_cmsgs cmsgs = { NULL }; 1615 enum sctp_scope scope; 1616 bool fill_sinfo_ttl = false, wait_connect = false; 1617 struct sctp_datamsg *datamsg; 1618 int msg_flags = msg->msg_flags; 1619 __u16 sinfo_flags = 0; 1620 long timeo; 1621 int err; 1622 1623 err = 0; 1624 sp = sctp_sk(sk); 1625 ep = sp->ep; 1626 1627 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1628 msg, msg_len, ep); 1629 1630 /* We cannot send a message over a TCP-style listening socket. */ 1631 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1632 err = -EPIPE; 1633 goto out_nounlock; 1634 } 1635 1636 /* Parse out the SCTP CMSGs. */ 1637 err = sctp_msghdr_parse(msg, &cmsgs); 1638 if (err) { 1639 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1640 goto out_nounlock; 1641 } 1642 1643 /* Fetch the destination address for this packet. This 1644 * address only selects the association--it is not necessarily 1645 * the address we will send to. 1646 * For a peeled-off socket, msg_name is ignored. 1647 */ 1648 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1649 int msg_namelen = msg->msg_namelen; 1650 1651 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1652 msg_namelen); 1653 if (err) 1654 return err; 1655 1656 if (msg_namelen > sizeof(to)) 1657 msg_namelen = sizeof(to); 1658 memcpy(&to, msg->msg_name, msg_namelen); 1659 msg_name = msg->msg_name; 1660 } 1661 1662 sinit = cmsgs.init; 1663 if (cmsgs.sinfo != NULL) { 1664 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1665 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1666 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1667 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1668 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1669 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1670 1671 sinfo = &default_sinfo; 1672 fill_sinfo_ttl = true; 1673 } else { 1674 sinfo = cmsgs.srinfo; 1675 } 1676 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1677 if (sinfo) { 1678 sinfo_flags = sinfo->sinfo_flags; 1679 associd = sinfo->sinfo_assoc_id; 1680 } 1681 1682 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1683 msg_len, sinfo_flags); 1684 1685 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1686 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1687 err = -EINVAL; 1688 goto out_nounlock; 1689 } 1690 1691 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1692 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1693 * If SCTP_ABORT is set, the message length could be non zero with 1694 * the msg_iov set to the user abort reason. 1695 */ 1696 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1697 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1698 err = -EINVAL; 1699 goto out_nounlock; 1700 } 1701 1702 /* If SCTP_ADDR_OVER is set, there must be an address 1703 * specified in msg_name. 1704 */ 1705 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1706 err = -EINVAL; 1707 goto out_nounlock; 1708 } 1709 1710 transport = NULL; 1711 1712 pr_debug("%s: about to look up association\n", __func__); 1713 1714 lock_sock(sk); 1715 1716 /* If a msg_name has been specified, assume this is to be used. */ 1717 if (msg_name) { 1718 /* Look for a matching association on the endpoint. */ 1719 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1720 1721 /* If we could not find a matching association on the 1722 * endpoint, make sure that it is not a TCP-style 1723 * socket that already has an association or there is 1724 * no peeled-off association on another socket. 1725 */ 1726 if (!asoc && 1727 ((sctp_style(sk, TCP) && 1728 (sctp_sstate(sk, ESTABLISHED) || 1729 sctp_sstate(sk, CLOSING))) || 1730 sctp_endpoint_is_peeled_off(ep, &to))) { 1731 err = -EADDRNOTAVAIL; 1732 goto out_unlock; 1733 } 1734 } else { 1735 asoc = sctp_id2assoc(sk, associd); 1736 if (!asoc) { 1737 err = -EPIPE; 1738 goto out_unlock; 1739 } 1740 } 1741 1742 if (asoc) { 1743 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1744 1745 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1746 * socket that has an association in CLOSED state. This can 1747 * happen when an accepted socket has an association that is 1748 * already CLOSED. 1749 */ 1750 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1751 err = -EPIPE; 1752 goto out_unlock; 1753 } 1754 1755 if (sinfo_flags & SCTP_EOF) { 1756 pr_debug("%s: shutting down association:%p\n", 1757 __func__, asoc); 1758 1759 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1760 err = 0; 1761 goto out_unlock; 1762 } 1763 if (sinfo_flags & SCTP_ABORT) { 1764 1765 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1766 if (!chunk) { 1767 err = -ENOMEM; 1768 goto out_unlock; 1769 } 1770 1771 pr_debug("%s: aborting association:%p\n", 1772 __func__, asoc); 1773 1774 sctp_primitive_ABORT(net, asoc, chunk); 1775 err = 0; 1776 goto out_unlock; 1777 } 1778 } 1779 1780 /* Do we need to create the association? */ 1781 if (!asoc) { 1782 pr_debug("%s: there is no association yet\n", __func__); 1783 1784 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1785 err = -EINVAL; 1786 goto out_unlock; 1787 } 1788 1789 /* Check for invalid stream against the stream counts, 1790 * either the default or the user specified stream counts. 1791 */ 1792 if (sinfo) { 1793 if (!sinit || !sinit->sinit_num_ostreams) { 1794 /* Check against the defaults. */ 1795 if (sinfo->sinfo_stream >= 1796 sp->initmsg.sinit_num_ostreams) { 1797 err = -EINVAL; 1798 goto out_unlock; 1799 } 1800 } else { 1801 /* Check against the requested. */ 1802 if (sinfo->sinfo_stream >= 1803 sinit->sinit_num_ostreams) { 1804 err = -EINVAL; 1805 goto out_unlock; 1806 } 1807 } 1808 } 1809 1810 /* 1811 * API 3.1.2 bind() - UDP Style Syntax 1812 * If a bind() or sctp_bindx() is not called prior to a 1813 * sendmsg() call that initiates a new association, the 1814 * system picks an ephemeral port and will choose an address 1815 * set equivalent to binding with a wildcard address. 1816 */ 1817 if (!ep->base.bind_addr.port) { 1818 if (sctp_autobind(sk)) { 1819 err = -EAGAIN; 1820 goto out_unlock; 1821 } 1822 } else { 1823 /* 1824 * If an unprivileged user inherits a one-to-many 1825 * style socket with open associations on a privileged 1826 * port, it MAY be permitted to accept new associations, 1827 * but it SHOULD NOT be permitted to open new 1828 * associations. 1829 */ 1830 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1831 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1832 err = -EACCES; 1833 goto out_unlock; 1834 } 1835 } 1836 1837 scope = sctp_scope(&to); 1838 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1839 if (!new_asoc) { 1840 err = -ENOMEM; 1841 goto out_unlock; 1842 } 1843 asoc = new_asoc; 1844 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1845 if (err < 0) { 1846 err = -ENOMEM; 1847 goto out_free; 1848 } 1849 1850 /* If the SCTP_INIT ancillary data is specified, set all 1851 * the association init values accordingly. 1852 */ 1853 if (sinit) { 1854 if (sinit->sinit_num_ostreams) { 1855 asoc->c.sinit_num_ostreams = 1856 sinit->sinit_num_ostreams; 1857 } 1858 if (sinit->sinit_max_instreams) { 1859 asoc->c.sinit_max_instreams = 1860 sinit->sinit_max_instreams; 1861 } 1862 if (sinit->sinit_max_attempts) { 1863 asoc->max_init_attempts 1864 = sinit->sinit_max_attempts; 1865 } 1866 if (sinit->sinit_max_init_timeo) { 1867 asoc->max_init_timeo = 1868 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1869 } 1870 } 1871 1872 /* Prime the peer's transport structures. */ 1873 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1874 if (!transport) { 1875 err = -ENOMEM; 1876 goto out_free; 1877 } 1878 } 1879 1880 /* ASSERT: we have a valid association at this point. */ 1881 pr_debug("%s: we have a valid association\n", __func__); 1882 1883 if (!sinfo) { 1884 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1885 * one with some defaults. 1886 */ 1887 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1888 default_sinfo.sinfo_stream = asoc->default_stream; 1889 default_sinfo.sinfo_flags = asoc->default_flags; 1890 default_sinfo.sinfo_ppid = asoc->default_ppid; 1891 default_sinfo.sinfo_context = asoc->default_context; 1892 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1893 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1894 1895 sinfo = &default_sinfo; 1896 } else if (fill_sinfo_ttl) { 1897 /* In case SNDINFO was specified, we still need to fill 1898 * it with a default ttl from the assoc here. 1899 */ 1900 sinfo->sinfo_timetolive = asoc->default_timetolive; 1901 } 1902 1903 /* API 7.1.7, the sndbuf size per association bounds the 1904 * maximum size of data that can be sent in a single send call. 1905 */ 1906 if (msg_len > sk->sk_sndbuf) { 1907 err = -EMSGSIZE; 1908 goto out_free; 1909 } 1910 1911 if (asoc->pmtu_pending) 1912 sctp_assoc_pending_pmtu(asoc); 1913 1914 /* If fragmentation is disabled and the message length exceeds the 1915 * association fragmentation point, return EMSGSIZE. The I-D 1916 * does not specify what this error is, but this looks like 1917 * a great fit. 1918 */ 1919 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1920 err = -EMSGSIZE; 1921 goto out_free; 1922 } 1923 1924 /* Check for invalid stream. */ 1925 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1926 err = -EINVAL; 1927 goto out_free; 1928 } 1929 1930 if (sctp_wspace(asoc) < msg_len) 1931 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1932 1933 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1934 if (!sctp_wspace(asoc)) { 1935 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1936 if (err) 1937 goto out_free; 1938 } 1939 1940 /* If an address is passed with the sendto/sendmsg call, it is used 1941 * to override the primary destination address in the TCP model, or 1942 * when SCTP_ADDR_OVER flag is set in the UDP model. 1943 */ 1944 if ((sctp_style(sk, TCP) && msg_name) || 1945 (sinfo_flags & SCTP_ADDR_OVER)) { 1946 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1947 if (!chunk_tp) { 1948 err = -EINVAL; 1949 goto out_free; 1950 } 1951 } else 1952 chunk_tp = NULL; 1953 1954 /* Auto-connect, if we aren't connected already. */ 1955 if (sctp_state(asoc, CLOSED)) { 1956 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1957 if (err < 0) 1958 goto out_free; 1959 1960 wait_connect = true; 1961 pr_debug("%s: we associated primitively\n", __func__); 1962 } 1963 1964 /* Break the message into multiple chunks of maximum size. */ 1965 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1966 if (IS_ERR(datamsg)) { 1967 err = PTR_ERR(datamsg); 1968 goto out_free; 1969 } 1970 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1971 1972 /* Now send the (possibly) fragmented message. */ 1973 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1974 sctp_chunk_hold(chunk); 1975 1976 /* Do accounting for the write space. */ 1977 sctp_set_owner_w(chunk); 1978 1979 chunk->transport = chunk_tp; 1980 } 1981 1982 /* Send it to the lower layers. Note: all chunks 1983 * must either fail or succeed. The lower layer 1984 * works that way today. Keep it that way or this 1985 * breaks. 1986 */ 1987 err = sctp_primitive_SEND(net, asoc, datamsg); 1988 /* Did the lower layer accept the chunk? */ 1989 if (err) { 1990 sctp_datamsg_free(datamsg); 1991 goto out_free; 1992 } 1993 1994 pr_debug("%s: we sent primitively\n", __func__); 1995 1996 sctp_datamsg_put(datamsg); 1997 err = msg_len; 1998 1999 if (unlikely(wait_connect)) { 2000 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 2001 sctp_wait_for_connect(asoc, &timeo); 2002 } 2003 2004 /* If we are already past ASSOCIATE, the lower 2005 * layers are responsible for association cleanup. 2006 */ 2007 goto out_unlock; 2008 2009 out_free: 2010 if (new_asoc) 2011 sctp_association_free(asoc); 2012 out_unlock: 2013 release_sock(sk); 2014 2015 out_nounlock: 2016 return sctp_error(sk, msg_flags, err); 2017 2018 #if 0 2019 do_sock_err: 2020 if (msg_len) 2021 err = msg_len; 2022 else 2023 err = sock_error(sk); 2024 goto out; 2025 2026 do_interrupted: 2027 if (msg_len) 2028 err = msg_len; 2029 goto out; 2030 #endif /* 0 */ 2031 } 2032 2033 /* This is an extended version of skb_pull() that removes the data from the 2034 * start of a skb even when data is spread across the list of skb's in the 2035 * frag_list. len specifies the total amount of data that needs to be removed. 2036 * when 'len' bytes could be removed from the skb, it returns 0. 2037 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2038 * could not be removed. 2039 */ 2040 static int sctp_skb_pull(struct sk_buff *skb, int len) 2041 { 2042 struct sk_buff *list; 2043 int skb_len = skb_headlen(skb); 2044 int rlen; 2045 2046 if (len <= skb_len) { 2047 __skb_pull(skb, len); 2048 return 0; 2049 } 2050 len -= skb_len; 2051 __skb_pull(skb, skb_len); 2052 2053 skb_walk_frags(skb, list) { 2054 rlen = sctp_skb_pull(list, len); 2055 skb->len -= (len-rlen); 2056 skb->data_len -= (len-rlen); 2057 2058 if (!rlen) 2059 return 0; 2060 2061 len = rlen; 2062 } 2063 2064 return len; 2065 } 2066 2067 /* API 3.1.3 recvmsg() - UDP Style Syntax 2068 * 2069 * ssize_t recvmsg(int socket, struct msghdr *message, 2070 * int flags); 2071 * 2072 * socket - the socket descriptor of the endpoint. 2073 * message - pointer to the msghdr structure which contains a single 2074 * user message and possibly some ancillary data. 2075 * 2076 * See Section 5 for complete description of the data 2077 * structures. 2078 * 2079 * flags - flags sent or received with the user message, see Section 2080 * 5 for complete description of the flags. 2081 */ 2082 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2083 int noblock, int flags, int *addr_len) 2084 { 2085 struct sctp_ulpevent *event = NULL; 2086 struct sctp_sock *sp = sctp_sk(sk); 2087 struct sk_buff *skb, *head_skb; 2088 int copied; 2089 int err = 0; 2090 int skb_len; 2091 2092 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2093 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2094 addr_len); 2095 2096 lock_sock(sk); 2097 2098 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2099 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2100 err = -ENOTCONN; 2101 goto out; 2102 } 2103 2104 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2105 if (!skb) 2106 goto out; 2107 2108 /* Get the total length of the skb including any skb's in the 2109 * frag_list. 2110 */ 2111 skb_len = skb->len; 2112 2113 copied = skb_len; 2114 if (copied > len) 2115 copied = len; 2116 2117 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2118 2119 event = sctp_skb2event(skb); 2120 2121 if (err) 2122 goto out_free; 2123 2124 if (event->chunk && event->chunk->head_skb) 2125 head_skb = event->chunk->head_skb; 2126 else 2127 head_skb = skb; 2128 sock_recv_ts_and_drops(msg, sk, head_skb); 2129 if (sctp_ulpevent_is_notification(event)) { 2130 msg->msg_flags |= MSG_NOTIFICATION; 2131 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2132 } else { 2133 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2134 } 2135 2136 /* Check if we allow SCTP_NXTINFO. */ 2137 if (sp->recvnxtinfo) 2138 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2139 /* Check if we allow SCTP_RCVINFO. */ 2140 if (sp->recvrcvinfo) 2141 sctp_ulpevent_read_rcvinfo(event, msg); 2142 /* Check if we allow SCTP_SNDRCVINFO. */ 2143 if (sp->subscribe.sctp_data_io_event) 2144 sctp_ulpevent_read_sndrcvinfo(event, msg); 2145 2146 err = copied; 2147 2148 /* If skb's length exceeds the user's buffer, update the skb and 2149 * push it back to the receive_queue so that the next call to 2150 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2151 */ 2152 if (skb_len > copied) { 2153 msg->msg_flags &= ~MSG_EOR; 2154 if (flags & MSG_PEEK) 2155 goto out_free; 2156 sctp_skb_pull(skb, copied); 2157 skb_queue_head(&sk->sk_receive_queue, skb); 2158 2159 /* When only partial message is copied to the user, increase 2160 * rwnd by that amount. If all the data in the skb is read, 2161 * rwnd is updated when the event is freed. 2162 */ 2163 if (!sctp_ulpevent_is_notification(event)) 2164 sctp_assoc_rwnd_increase(event->asoc, copied); 2165 goto out; 2166 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2167 (event->msg_flags & MSG_EOR)) 2168 msg->msg_flags |= MSG_EOR; 2169 else 2170 msg->msg_flags &= ~MSG_EOR; 2171 2172 out_free: 2173 if (flags & MSG_PEEK) { 2174 /* Release the skb reference acquired after peeking the skb in 2175 * sctp_skb_recv_datagram(). 2176 */ 2177 kfree_skb(skb); 2178 } else { 2179 /* Free the event which includes releasing the reference to 2180 * the owner of the skb, freeing the skb and updating the 2181 * rwnd. 2182 */ 2183 sctp_ulpevent_free(event); 2184 } 2185 out: 2186 release_sock(sk); 2187 return err; 2188 } 2189 2190 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2191 * 2192 * This option is a on/off flag. If enabled no SCTP message 2193 * fragmentation will be performed. Instead if a message being sent 2194 * exceeds the current PMTU size, the message will NOT be sent and 2195 * instead a error will be indicated to the user. 2196 */ 2197 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2198 char __user *optval, 2199 unsigned int optlen) 2200 { 2201 int val; 2202 2203 if (optlen < sizeof(int)) 2204 return -EINVAL; 2205 2206 if (get_user(val, (int __user *)optval)) 2207 return -EFAULT; 2208 2209 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2210 2211 return 0; 2212 } 2213 2214 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2215 unsigned int optlen) 2216 { 2217 struct sctp_association *asoc; 2218 struct sctp_ulpevent *event; 2219 2220 if (optlen > sizeof(struct sctp_event_subscribe)) 2221 return -EINVAL; 2222 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2223 return -EFAULT; 2224 2225 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2226 * if there is no data to be sent or retransmit, the stack will 2227 * immediately send up this notification. 2228 */ 2229 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2230 &sctp_sk(sk)->subscribe)) { 2231 asoc = sctp_id2assoc(sk, 0); 2232 2233 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2234 event = sctp_ulpevent_make_sender_dry_event(asoc, 2235 GFP_ATOMIC); 2236 if (!event) 2237 return -ENOMEM; 2238 2239 sctp_ulpq_tail_event(&asoc->ulpq, event); 2240 } 2241 } 2242 2243 return 0; 2244 } 2245 2246 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2247 * 2248 * This socket option is applicable to the UDP-style socket only. When 2249 * set it will cause associations that are idle for more than the 2250 * specified number of seconds to automatically close. An association 2251 * being idle is defined an association that has NOT sent or received 2252 * user data. The special value of '0' indicates that no automatic 2253 * close of any associations should be performed. The option expects an 2254 * integer defining the number of seconds of idle time before an 2255 * association is closed. 2256 */ 2257 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2258 unsigned int optlen) 2259 { 2260 struct sctp_sock *sp = sctp_sk(sk); 2261 struct net *net = sock_net(sk); 2262 2263 /* Applicable to UDP-style socket only */ 2264 if (sctp_style(sk, TCP)) 2265 return -EOPNOTSUPP; 2266 if (optlen != sizeof(int)) 2267 return -EINVAL; 2268 if (copy_from_user(&sp->autoclose, optval, optlen)) 2269 return -EFAULT; 2270 2271 if (sp->autoclose > net->sctp.max_autoclose) 2272 sp->autoclose = net->sctp.max_autoclose; 2273 2274 return 0; 2275 } 2276 2277 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2278 * 2279 * Applications can enable or disable heartbeats for any peer address of 2280 * an association, modify an address's heartbeat interval, force a 2281 * heartbeat to be sent immediately, and adjust the address's maximum 2282 * number of retransmissions sent before an address is considered 2283 * unreachable. The following structure is used to access and modify an 2284 * address's parameters: 2285 * 2286 * struct sctp_paddrparams { 2287 * sctp_assoc_t spp_assoc_id; 2288 * struct sockaddr_storage spp_address; 2289 * uint32_t spp_hbinterval; 2290 * uint16_t spp_pathmaxrxt; 2291 * uint32_t spp_pathmtu; 2292 * uint32_t spp_sackdelay; 2293 * uint32_t spp_flags; 2294 * }; 2295 * 2296 * spp_assoc_id - (one-to-many style socket) This is filled in the 2297 * application, and identifies the association for 2298 * this query. 2299 * spp_address - This specifies which address is of interest. 2300 * spp_hbinterval - This contains the value of the heartbeat interval, 2301 * in milliseconds. If a value of zero 2302 * is present in this field then no changes are to 2303 * be made to this parameter. 2304 * spp_pathmaxrxt - This contains the maximum number of 2305 * retransmissions before this address shall be 2306 * considered unreachable. If a value of zero 2307 * is present in this field then no changes are to 2308 * be made to this parameter. 2309 * spp_pathmtu - When Path MTU discovery is disabled the value 2310 * specified here will be the "fixed" path mtu. 2311 * Note that if the spp_address field is empty 2312 * then all associations on this address will 2313 * have this fixed path mtu set upon them. 2314 * 2315 * spp_sackdelay - When delayed sack is enabled, this value specifies 2316 * the number of milliseconds that sacks will be delayed 2317 * for. This value will apply to all addresses of an 2318 * association if the spp_address field is empty. Note 2319 * also, that if delayed sack is enabled and this 2320 * value is set to 0, no change is made to the last 2321 * recorded delayed sack timer value. 2322 * 2323 * spp_flags - These flags are used to control various features 2324 * on an association. The flag field may contain 2325 * zero or more of the following options. 2326 * 2327 * SPP_HB_ENABLE - Enable heartbeats on the 2328 * specified address. Note that if the address 2329 * field is empty all addresses for the association 2330 * have heartbeats enabled upon them. 2331 * 2332 * SPP_HB_DISABLE - Disable heartbeats on the 2333 * speicifed address. Note that if the address 2334 * field is empty all addresses for the association 2335 * will have their heartbeats disabled. Note also 2336 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2337 * mutually exclusive, only one of these two should 2338 * be specified. Enabling both fields will have 2339 * undetermined results. 2340 * 2341 * SPP_HB_DEMAND - Request a user initiated heartbeat 2342 * to be made immediately. 2343 * 2344 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2345 * heartbeat delayis to be set to the value of 0 2346 * milliseconds. 2347 * 2348 * SPP_PMTUD_ENABLE - This field will enable PMTU 2349 * discovery upon the specified address. Note that 2350 * if the address feild is empty then all addresses 2351 * on the association are effected. 2352 * 2353 * SPP_PMTUD_DISABLE - This field will disable PMTU 2354 * discovery upon the specified address. Note that 2355 * if the address feild is empty then all addresses 2356 * on the association are effected. Not also that 2357 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2358 * exclusive. Enabling both will have undetermined 2359 * results. 2360 * 2361 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2362 * on delayed sack. The time specified in spp_sackdelay 2363 * is used to specify the sack delay for this address. Note 2364 * that if spp_address is empty then all addresses will 2365 * enable delayed sack and take on the sack delay 2366 * value specified in spp_sackdelay. 2367 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2368 * off delayed sack. If the spp_address field is blank then 2369 * delayed sack is disabled for the entire association. Note 2370 * also that this field is mutually exclusive to 2371 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2372 * results. 2373 */ 2374 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2375 struct sctp_transport *trans, 2376 struct sctp_association *asoc, 2377 struct sctp_sock *sp, 2378 int hb_change, 2379 int pmtud_change, 2380 int sackdelay_change) 2381 { 2382 int error; 2383 2384 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2385 struct net *net = sock_net(trans->asoc->base.sk); 2386 2387 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2388 if (error) 2389 return error; 2390 } 2391 2392 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2393 * this field is ignored. Note also that a value of zero indicates 2394 * the current setting should be left unchanged. 2395 */ 2396 if (params->spp_flags & SPP_HB_ENABLE) { 2397 2398 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2399 * set. This lets us use 0 value when this flag 2400 * is set. 2401 */ 2402 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2403 params->spp_hbinterval = 0; 2404 2405 if (params->spp_hbinterval || 2406 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2407 if (trans) { 2408 trans->hbinterval = 2409 msecs_to_jiffies(params->spp_hbinterval); 2410 } else if (asoc) { 2411 asoc->hbinterval = 2412 msecs_to_jiffies(params->spp_hbinterval); 2413 } else { 2414 sp->hbinterval = params->spp_hbinterval; 2415 } 2416 } 2417 } 2418 2419 if (hb_change) { 2420 if (trans) { 2421 trans->param_flags = 2422 (trans->param_flags & ~SPP_HB) | hb_change; 2423 } else if (asoc) { 2424 asoc->param_flags = 2425 (asoc->param_flags & ~SPP_HB) | hb_change; 2426 } else { 2427 sp->param_flags = 2428 (sp->param_flags & ~SPP_HB) | hb_change; 2429 } 2430 } 2431 2432 /* When Path MTU discovery is disabled the value specified here will 2433 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2434 * include the flag SPP_PMTUD_DISABLE for this field to have any 2435 * effect). 2436 */ 2437 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2438 if (trans) { 2439 trans->pathmtu = params->spp_pathmtu; 2440 sctp_assoc_sync_pmtu(asoc); 2441 } else if (asoc) { 2442 asoc->pathmtu = params->spp_pathmtu; 2443 } else { 2444 sp->pathmtu = params->spp_pathmtu; 2445 } 2446 } 2447 2448 if (pmtud_change) { 2449 if (trans) { 2450 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2451 (params->spp_flags & SPP_PMTUD_ENABLE); 2452 trans->param_flags = 2453 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2454 if (update) { 2455 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2456 sctp_assoc_sync_pmtu(asoc); 2457 } 2458 } else if (asoc) { 2459 asoc->param_flags = 2460 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2461 } else { 2462 sp->param_flags = 2463 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2464 } 2465 } 2466 2467 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2468 * value of this field is ignored. Note also that a value of zero 2469 * indicates the current setting should be left unchanged. 2470 */ 2471 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2472 if (trans) { 2473 trans->sackdelay = 2474 msecs_to_jiffies(params->spp_sackdelay); 2475 } else if (asoc) { 2476 asoc->sackdelay = 2477 msecs_to_jiffies(params->spp_sackdelay); 2478 } else { 2479 sp->sackdelay = params->spp_sackdelay; 2480 } 2481 } 2482 2483 if (sackdelay_change) { 2484 if (trans) { 2485 trans->param_flags = 2486 (trans->param_flags & ~SPP_SACKDELAY) | 2487 sackdelay_change; 2488 } else if (asoc) { 2489 asoc->param_flags = 2490 (asoc->param_flags & ~SPP_SACKDELAY) | 2491 sackdelay_change; 2492 } else { 2493 sp->param_flags = 2494 (sp->param_flags & ~SPP_SACKDELAY) | 2495 sackdelay_change; 2496 } 2497 } 2498 2499 /* Note that a value of zero indicates the current setting should be 2500 left unchanged. 2501 */ 2502 if (params->spp_pathmaxrxt) { 2503 if (trans) { 2504 trans->pathmaxrxt = params->spp_pathmaxrxt; 2505 } else if (asoc) { 2506 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2507 } else { 2508 sp->pathmaxrxt = params->spp_pathmaxrxt; 2509 } 2510 } 2511 2512 return 0; 2513 } 2514 2515 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2516 char __user *optval, 2517 unsigned int optlen) 2518 { 2519 struct sctp_paddrparams params; 2520 struct sctp_transport *trans = NULL; 2521 struct sctp_association *asoc = NULL; 2522 struct sctp_sock *sp = sctp_sk(sk); 2523 int error; 2524 int hb_change, pmtud_change, sackdelay_change; 2525 2526 if (optlen != sizeof(struct sctp_paddrparams)) 2527 return -EINVAL; 2528 2529 if (copy_from_user(¶ms, optval, optlen)) 2530 return -EFAULT; 2531 2532 /* Validate flags and value parameters. */ 2533 hb_change = params.spp_flags & SPP_HB; 2534 pmtud_change = params.spp_flags & SPP_PMTUD; 2535 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2536 2537 if (hb_change == SPP_HB || 2538 pmtud_change == SPP_PMTUD || 2539 sackdelay_change == SPP_SACKDELAY || 2540 params.spp_sackdelay > 500 || 2541 (params.spp_pathmtu && 2542 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2543 return -EINVAL; 2544 2545 /* If an address other than INADDR_ANY is specified, and 2546 * no transport is found, then the request is invalid. 2547 */ 2548 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2549 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2550 params.spp_assoc_id); 2551 if (!trans) 2552 return -EINVAL; 2553 } 2554 2555 /* Get association, if assoc_id != 0 and the socket is a one 2556 * to many style socket, and an association was not found, then 2557 * the id was invalid. 2558 */ 2559 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2560 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2561 return -EINVAL; 2562 2563 /* Heartbeat demand can only be sent on a transport or 2564 * association, but not a socket. 2565 */ 2566 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2567 return -EINVAL; 2568 2569 /* Process parameters. */ 2570 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2571 hb_change, pmtud_change, 2572 sackdelay_change); 2573 2574 if (error) 2575 return error; 2576 2577 /* If changes are for association, also apply parameters to each 2578 * transport. 2579 */ 2580 if (!trans && asoc) { 2581 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2582 transports) { 2583 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2584 hb_change, pmtud_change, 2585 sackdelay_change); 2586 } 2587 } 2588 2589 return 0; 2590 } 2591 2592 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2593 { 2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2595 } 2596 2597 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2598 { 2599 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2600 } 2601 2602 /* 2603 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2604 * 2605 * This option will effect the way delayed acks are performed. This 2606 * option allows you to get or set the delayed ack time, in 2607 * milliseconds. It also allows changing the delayed ack frequency. 2608 * Changing the frequency to 1 disables the delayed sack algorithm. If 2609 * the assoc_id is 0, then this sets or gets the endpoints default 2610 * values. If the assoc_id field is non-zero, then the set or get 2611 * effects the specified association for the one to many model (the 2612 * assoc_id field is ignored by the one to one model). Note that if 2613 * sack_delay or sack_freq are 0 when setting this option, then the 2614 * current values will remain unchanged. 2615 * 2616 * struct sctp_sack_info { 2617 * sctp_assoc_t sack_assoc_id; 2618 * uint32_t sack_delay; 2619 * uint32_t sack_freq; 2620 * }; 2621 * 2622 * sack_assoc_id - This parameter, indicates which association the user 2623 * is performing an action upon. Note that if this field's value is 2624 * zero then the endpoints default value is changed (effecting future 2625 * associations only). 2626 * 2627 * sack_delay - This parameter contains the number of milliseconds that 2628 * the user is requesting the delayed ACK timer be set to. Note that 2629 * this value is defined in the standard to be between 200 and 500 2630 * milliseconds. 2631 * 2632 * sack_freq - This parameter contains the number of packets that must 2633 * be received before a sack is sent without waiting for the delay 2634 * timer to expire. The default value for this is 2, setting this 2635 * value to 1 will disable the delayed sack algorithm. 2636 */ 2637 2638 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2639 char __user *optval, unsigned int optlen) 2640 { 2641 struct sctp_sack_info params; 2642 struct sctp_transport *trans = NULL; 2643 struct sctp_association *asoc = NULL; 2644 struct sctp_sock *sp = sctp_sk(sk); 2645 2646 if (optlen == sizeof(struct sctp_sack_info)) { 2647 if (copy_from_user(¶ms, optval, optlen)) 2648 return -EFAULT; 2649 2650 if (params.sack_delay == 0 && params.sack_freq == 0) 2651 return 0; 2652 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2653 pr_warn_ratelimited(DEPRECATED 2654 "%s (pid %d) " 2655 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2656 "Use struct sctp_sack_info instead\n", 2657 current->comm, task_pid_nr(current)); 2658 if (copy_from_user(¶ms, optval, optlen)) 2659 return -EFAULT; 2660 2661 if (params.sack_delay == 0) 2662 params.sack_freq = 1; 2663 else 2664 params.sack_freq = 0; 2665 } else 2666 return -EINVAL; 2667 2668 /* Validate value parameter. */ 2669 if (params.sack_delay > 500) 2670 return -EINVAL; 2671 2672 /* Get association, if sack_assoc_id != 0 and the socket is a one 2673 * to many style socket, and an association was not found, then 2674 * the id was invalid. 2675 */ 2676 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2677 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2678 return -EINVAL; 2679 2680 if (params.sack_delay) { 2681 if (asoc) { 2682 asoc->sackdelay = 2683 msecs_to_jiffies(params.sack_delay); 2684 asoc->param_flags = 2685 sctp_spp_sackdelay_enable(asoc->param_flags); 2686 } else { 2687 sp->sackdelay = params.sack_delay; 2688 sp->param_flags = 2689 sctp_spp_sackdelay_enable(sp->param_flags); 2690 } 2691 } 2692 2693 if (params.sack_freq == 1) { 2694 if (asoc) { 2695 asoc->param_flags = 2696 sctp_spp_sackdelay_disable(asoc->param_flags); 2697 } else { 2698 sp->param_flags = 2699 sctp_spp_sackdelay_disable(sp->param_flags); 2700 } 2701 } else if (params.sack_freq > 1) { 2702 if (asoc) { 2703 asoc->sackfreq = params.sack_freq; 2704 asoc->param_flags = 2705 sctp_spp_sackdelay_enable(asoc->param_flags); 2706 } else { 2707 sp->sackfreq = params.sack_freq; 2708 sp->param_flags = 2709 sctp_spp_sackdelay_enable(sp->param_flags); 2710 } 2711 } 2712 2713 /* If change is for association, also apply to each transport. */ 2714 if (asoc) { 2715 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2716 transports) { 2717 if (params.sack_delay) { 2718 trans->sackdelay = 2719 msecs_to_jiffies(params.sack_delay); 2720 trans->param_flags = 2721 sctp_spp_sackdelay_enable(trans->param_flags); 2722 } 2723 if (params.sack_freq == 1) { 2724 trans->param_flags = 2725 sctp_spp_sackdelay_disable(trans->param_flags); 2726 } else if (params.sack_freq > 1) { 2727 trans->sackfreq = params.sack_freq; 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 } 2732 } 2733 2734 return 0; 2735 } 2736 2737 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2738 * 2739 * Applications can specify protocol parameters for the default association 2740 * initialization. The option name argument to setsockopt() and getsockopt() 2741 * is SCTP_INITMSG. 2742 * 2743 * Setting initialization parameters is effective only on an unconnected 2744 * socket (for UDP-style sockets only future associations are effected 2745 * by the change). With TCP-style sockets, this option is inherited by 2746 * sockets derived from a listener socket. 2747 */ 2748 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2749 { 2750 struct sctp_initmsg sinit; 2751 struct sctp_sock *sp = sctp_sk(sk); 2752 2753 if (optlen != sizeof(struct sctp_initmsg)) 2754 return -EINVAL; 2755 if (copy_from_user(&sinit, optval, optlen)) 2756 return -EFAULT; 2757 2758 if (sinit.sinit_num_ostreams) 2759 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2760 if (sinit.sinit_max_instreams) 2761 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2762 if (sinit.sinit_max_attempts) 2763 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2764 if (sinit.sinit_max_init_timeo) 2765 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2766 2767 return 0; 2768 } 2769 2770 /* 2771 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2772 * 2773 * Applications that wish to use the sendto() system call may wish to 2774 * specify a default set of parameters that would normally be supplied 2775 * through the inclusion of ancillary data. This socket option allows 2776 * such an application to set the default sctp_sndrcvinfo structure. 2777 * The application that wishes to use this socket option simply passes 2778 * in to this call the sctp_sndrcvinfo structure defined in Section 2779 * 5.2.2) The input parameters accepted by this call include 2780 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2781 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2782 * to this call if the caller is using the UDP model. 2783 */ 2784 static int sctp_setsockopt_default_send_param(struct sock *sk, 2785 char __user *optval, 2786 unsigned int optlen) 2787 { 2788 struct sctp_sock *sp = sctp_sk(sk); 2789 struct sctp_association *asoc; 2790 struct sctp_sndrcvinfo info; 2791 2792 if (optlen != sizeof(info)) 2793 return -EINVAL; 2794 if (copy_from_user(&info, optval, optlen)) 2795 return -EFAULT; 2796 if (info.sinfo_flags & 2797 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2798 SCTP_ABORT | SCTP_EOF)) 2799 return -EINVAL; 2800 2801 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2802 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2803 return -EINVAL; 2804 if (asoc) { 2805 asoc->default_stream = info.sinfo_stream; 2806 asoc->default_flags = info.sinfo_flags; 2807 asoc->default_ppid = info.sinfo_ppid; 2808 asoc->default_context = info.sinfo_context; 2809 asoc->default_timetolive = info.sinfo_timetolive; 2810 } else { 2811 sp->default_stream = info.sinfo_stream; 2812 sp->default_flags = info.sinfo_flags; 2813 sp->default_ppid = info.sinfo_ppid; 2814 sp->default_context = info.sinfo_context; 2815 sp->default_timetolive = info.sinfo_timetolive; 2816 } 2817 2818 return 0; 2819 } 2820 2821 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2822 * (SCTP_DEFAULT_SNDINFO) 2823 */ 2824 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2825 char __user *optval, 2826 unsigned int optlen) 2827 { 2828 struct sctp_sock *sp = sctp_sk(sk); 2829 struct sctp_association *asoc; 2830 struct sctp_sndinfo info; 2831 2832 if (optlen != sizeof(info)) 2833 return -EINVAL; 2834 if (copy_from_user(&info, optval, optlen)) 2835 return -EFAULT; 2836 if (info.snd_flags & 2837 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2838 SCTP_ABORT | SCTP_EOF)) 2839 return -EINVAL; 2840 2841 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2842 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2843 return -EINVAL; 2844 if (asoc) { 2845 asoc->default_stream = info.snd_sid; 2846 asoc->default_flags = info.snd_flags; 2847 asoc->default_ppid = info.snd_ppid; 2848 asoc->default_context = info.snd_context; 2849 } else { 2850 sp->default_stream = info.snd_sid; 2851 sp->default_flags = info.snd_flags; 2852 sp->default_ppid = info.snd_ppid; 2853 sp->default_context = info.snd_context; 2854 } 2855 2856 return 0; 2857 } 2858 2859 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2860 * 2861 * Requests that the local SCTP stack use the enclosed peer address as 2862 * the association primary. The enclosed address must be one of the 2863 * association peer's addresses. 2864 */ 2865 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2866 unsigned int optlen) 2867 { 2868 struct sctp_prim prim; 2869 struct sctp_transport *trans; 2870 2871 if (optlen != sizeof(struct sctp_prim)) 2872 return -EINVAL; 2873 2874 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2875 return -EFAULT; 2876 2877 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2878 if (!trans) 2879 return -EINVAL; 2880 2881 sctp_assoc_set_primary(trans->asoc, trans); 2882 2883 return 0; 2884 } 2885 2886 /* 2887 * 7.1.5 SCTP_NODELAY 2888 * 2889 * Turn on/off any Nagle-like algorithm. This means that packets are 2890 * generally sent as soon as possible and no unnecessary delays are 2891 * introduced, at the cost of more packets in the network. Expects an 2892 * integer boolean flag. 2893 */ 2894 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2895 unsigned int optlen) 2896 { 2897 int val; 2898 2899 if (optlen < sizeof(int)) 2900 return -EINVAL; 2901 if (get_user(val, (int __user *)optval)) 2902 return -EFAULT; 2903 2904 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2905 return 0; 2906 } 2907 2908 /* 2909 * 2910 * 7.1.1 SCTP_RTOINFO 2911 * 2912 * The protocol parameters used to initialize and bound retransmission 2913 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2914 * and modify these parameters. 2915 * All parameters are time values, in milliseconds. A value of 0, when 2916 * modifying the parameters, indicates that the current value should not 2917 * be changed. 2918 * 2919 */ 2920 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2921 { 2922 struct sctp_rtoinfo rtoinfo; 2923 struct sctp_association *asoc; 2924 unsigned long rto_min, rto_max; 2925 struct sctp_sock *sp = sctp_sk(sk); 2926 2927 if (optlen != sizeof (struct sctp_rtoinfo)) 2928 return -EINVAL; 2929 2930 if (copy_from_user(&rtoinfo, optval, optlen)) 2931 return -EFAULT; 2932 2933 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2934 2935 /* Set the values to the specific association */ 2936 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2937 return -EINVAL; 2938 2939 rto_max = rtoinfo.srto_max; 2940 rto_min = rtoinfo.srto_min; 2941 2942 if (rto_max) 2943 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2944 else 2945 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2946 2947 if (rto_min) 2948 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2949 else 2950 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2951 2952 if (rto_min > rto_max) 2953 return -EINVAL; 2954 2955 if (asoc) { 2956 if (rtoinfo.srto_initial != 0) 2957 asoc->rto_initial = 2958 msecs_to_jiffies(rtoinfo.srto_initial); 2959 asoc->rto_max = rto_max; 2960 asoc->rto_min = rto_min; 2961 } else { 2962 /* If there is no association or the association-id = 0 2963 * set the values to the endpoint. 2964 */ 2965 if (rtoinfo.srto_initial != 0) 2966 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2967 sp->rtoinfo.srto_max = rto_max; 2968 sp->rtoinfo.srto_min = rto_min; 2969 } 2970 2971 return 0; 2972 } 2973 2974 /* 2975 * 2976 * 7.1.2 SCTP_ASSOCINFO 2977 * 2978 * This option is used to tune the maximum retransmission attempts 2979 * of the association. 2980 * Returns an error if the new association retransmission value is 2981 * greater than the sum of the retransmission value of the peer. 2982 * See [SCTP] for more information. 2983 * 2984 */ 2985 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2986 { 2987 2988 struct sctp_assocparams assocparams; 2989 struct sctp_association *asoc; 2990 2991 if (optlen != sizeof(struct sctp_assocparams)) 2992 return -EINVAL; 2993 if (copy_from_user(&assocparams, optval, optlen)) 2994 return -EFAULT; 2995 2996 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2997 2998 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2999 return -EINVAL; 3000 3001 /* Set the values to the specific association */ 3002 if (asoc) { 3003 if (assocparams.sasoc_asocmaxrxt != 0) { 3004 __u32 path_sum = 0; 3005 int paths = 0; 3006 struct sctp_transport *peer_addr; 3007 3008 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3009 transports) { 3010 path_sum += peer_addr->pathmaxrxt; 3011 paths++; 3012 } 3013 3014 /* Only validate asocmaxrxt if we have more than 3015 * one path/transport. We do this because path 3016 * retransmissions are only counted when we have more 3017 * then one path. 3018 */ 3019 if (paths > 1 && 3020 assocparams.sasoc_asocmaxrxt > path_sum) 3021 return -EINVAL; 3022 3023 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3024 } 3025 3026 if (assocparams.sasoc_cookie_life != 0) 3027 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3028 } else { 3029 /* Set the values to the endpoint */ 3030 struct sctp_sock *sp = sctp_sk(sk); 3031 3032 if (assocparams.sasoc_asocmaxrxt != 0) 3033 sp->assocparams.sasoc_asocmaxrxt = 3034 assocparams.sasoc_asocmaxrxt; 3035 if (assocparams.sasoc_cookie_life != 0) 3036 sp->assocparams.sasoc_cookie_life = 3037 assocparams.sasoc_cookie_life; 3038 } 3039 return 0; 3040 } 3041 3042 /* 3043 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3044 * 3045 * This socket option is a boolean flag which turns on or off mapped V4 3046 * addresses. If this option is turned on and the socket is type 3047 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3048 * If this option is turned off, then no mapping will be done of V4 3049 * addresses and a user will receive both PF_INET6 and PF_INET type 3050 * addresses on the socket. 3051 */ 3052 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3053 { 3054 int val; 3055 struct sctp_sock *sp = sctp_sk(sk); 3056 3057 if (optlen < sizeof(int)) 3058 return -EINVAL; 3059 if (get_user(val, (int __user *)optval)) 3060 return -EFAULT; 3061 if (val) 3062 sp->v4mapped = 1; 3063 else 3064 sp->v4mapped = 0; 3065 3066 return 0; 3067 } 3068 3069 /* 3070 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3071 * This option will get or set the maximum size to put in any outgoing 3072 * SCTP DATA chunk. If a message is larger than this size it will be 3073 * fragmented by SCTP into the specified size. Note that the underlying 3074 * SCTP implementation may fragment into smaller sized chunks when the 3075 * PMTU of the underlying association is smaller than the value set by 3076 * the user. The default value for this option is '0' which indicates 3077 * the user is NOT limiting fragmentation and only the PMTU will effect 3078 * SCTP's choice of DATA chunk size. Note also that values set larger 3079 * than the maximum size of an IP datagram will effectively let SCTP 3080 * control fragmentation (i.e. the same as setting this option to 0). 3081 * 3082 * The following structure is used to access and modify this parameter: 3083 * 3084 * struct sctp_assoc_value { 3085 * sctp_assoc_t assoc_id; 3086 * uint32_t assoc_value; 3087 * }; 3088 * 3089 * assoc_id: This parameter is ignored for one-to-one style sockets. 3090 * For one-to-many style sockets this parameter indicates which 3091 * association the user is performing an action upon. Note that if 3092 * this field's value is zero then the endpoints default value is 3093 * changed (effecting future associations only). 3094 * assoc_value: This parameter specifies the maximum size in bytes. 3095 */ 3096 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3097 { 3098 struct sctp_assoc_value params; 3099 struct sctp_association *asoc; 3100 struct sctp_sock *sp = sctp_sk(sk); 3101 int val; 3102 3103 if (optlen == sizeof(int)) { 3104 pr_warn_ratelimited(DEPRECATED 3105 "%s (pid %d) " 3106 "Use of int in maxseg socket option.\n" 3107 "Use struct sctp_assoc_value instead\n", 3108 current->comm, task_pid_nr(current)); 3109 if (copy_from_user(&val, optval, optlen)) 3110 return -EFAULT; 3111 params.assoc_id = 0; 3112 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3113 if (copy_from_user(¶ms, optval, optlen)) 3114 return -EFAULT; 3115 val = params.assoc_value; 3116 } else 3117 return -EINVAL; 3118 3119 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3120 return -EINVAL; 3121 3122 asoc = sctp_id2assoc(sk, params.assoc_id); 3123 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3124 return -EINVAL; 3125 3126 if (asoc) { 3127 if (val == 0) { 3128 val = asoc->pathmtu; 3129 val -= sp->pf->af->net_header_len; 3130 val -= sizeof(struct sctphdr) + 3131 sizeof(struct sctp_data_chunk); 3132 } 3133 asoc->user_frag = val; 3134 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3135 } else { 3136 sp->user_frag = val; 3137 } 3138 3139 return 0; 3140 } 3141 3142 3143 /* 3144 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3145 * 3146 * Requests that the peer mark the enclosed address as the association 3147 * primary. The enclosed address must be one of the association's 3148 * locally bound addresses. The following structure is used to make a 3149 * set primary request: 3150 */ 3151 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3152 unsigned int optlen) 3153 { 3154 struct net *net = sock_net(sk); 3155 struct sctp_sock *sp; 3156 struct sctp_association *asoc = NULL; 3157 struct sctp_setpeerprim prim; 3158 struct sctp_chunk *chunk; 3159 struct sctp_af *af; 3160 int err; 3161 3162 sp = sctp_sk(sk); 3163 3164 if (!net->sctp.addip_enable) 3165 return -EPERM; 3166 3167 if (optlen != sizeof(struct sctp_setpeerprim)) 3168 return -EINVAL; 3169 3170 if (copy_from_user(&prim, optval, optlen)) 3171 return -EFAULT; 3172 3173 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3174 if (!asoc) 3175 return -EINVAL; 3176 3177 if (!asoc->peer.asconf_capable) 3178 return -EPERM; 3179 3180 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3181 return -EPERM; 3182 3183 if (!sctp_state(asoc, ESTABLISHED)) 3184 return -ENOTCONN; 3185 3186 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3187 if (!af) 3188 return -EINVAL; 3189 3190 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3191 return -EADDRNOTAVAIL; 3192 3193 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3194 return -EADDRNOTAVAIL; 3195 3196 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3197 chunk = sctp_make_asconf_set_prim(asoc, 3198 (union sctp_addr *)&prim.sspp_addr); 3199 if (!chunk) 3200 return -ENOMEM; 3201 3202 err = sctp_send_asconf(asoc, chunk); 3203 3204 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3205 3206 return err; 3207 } 3208 3209 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3210 unsigned int optlen) 3211 { 3212 struct sctp_setadaptation adaptation; 3213 3214 if (optlen != sizeof(struct sctp_setadaptation)) 3215 return -EINVAL; 3216 if (copy_from_user(&adaptation, optval, optlen)) 3217 return -EFAULT; 3218 3219 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3226 * 3227 * The context field in the sctp_sndrcvinfo structure is normally only 3228 * used when a failed message is retrieved holding the value that was 3229 * sent down on the actual send call. This option allows the setting of 3230 * a default context on an association basis that will be received on 3231 * reading messages from the peer. This is especially helpful in the 3232 * one-2-many model for an application to keep some reference to an 3233 * internal state machine that is processing messages on the 3234 * association. Note that the setting of this value only effects 3235 * received messages from the peer and does not effect the value that is 3236 * saved with outbound messages. 3237 */ 3238 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3239 unsigned int optlen) 3240 { 3241 struct sctp_assoc_value params; 3242 struct sctp_sock *sp; 3243 struct sctp_association *asoc; 3244 3245 if (optlen != sizeof(struct sctp_assoc_value)) 3246 return -EINVAL; 3247 if (copy_from_user(¶ms, optval, optlen)) 3248 return -EFAULT; 3249 3250 sp = sctp_sk(sk); 3251 3252 if (params.assoc_id != 0) { 3253 asoc = sctp_id2assoc(sk, params.assoc_id); 3254 if (!asoc) 3255 return -EINVAL; 3256 asoc->default_rcv_context = params.assoc_value; 3257 } else { 3258 sp->default_rcv_context = params.assoc_value; 3259 } 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3266 * 3267 * This options will at a minimum specify if the implementation is doing 3268 * fragmented interleave. Fragmented interleave, for a one to many 3269 * socket, is when subsequent calls to receive a message may return 3270 * parts of messages from different associations. Some implementations 3271 * may allow you to turn this value on or off. If so, when turned off, 3272 * no fragment interleave will occur (which will cause a head of line 3273 * blocking amongst multiple associations sharing the same one to many 3274 * socket). When this option is turned on, then each receive call may 3275 * come from a different association (thus the user must receive data 3276 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3277 * association each receive belongs to. 3278 * 3279 * This option takes a boolean value. A non-zero value indicates that 3280 * fragmented interleave is on. A value of zero indicates that 3281 * fragmented interleave is off. 3282 * 3283 * Note that it is important that an implementation that allows this 3284 * option to be turned on, have it off by default. Otherwise an unaware 3285 * application using the one to many model may become confused and act 3286 * incorrectly. 3287 */ 3288 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3289 char __user *optval, 3290 unsigned int optlen) 3291 { 3292 int val; 3293 3294 if (optlen != sizeof(int)) 3295 return -EINVAL; 3296 if (get_user(val, (int __user *)optval)) 3297 return -EFAULT; 3298 3299 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3300 3301 return 0; 3302 } 3303 3304 /* 3305 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3306 * (SCTP_PARTIAL_DELIVERY_POINT) 3307 * 3308 * This option will set or get the SCTP partial delivery point. This 3309 * point is the size of a message where the partial delivery API will be 3310 * invoked to help free up rwnd space for the peer. Setting this to a 3311 * lower value will cause partial deliveries to happen more often. The 3312 * calls argument is an integer that sets or gets the partial delivery 3313 * point. Note also that the call will fail if the user attempts to set 3314 * this value larger than the socket receive buffer size. 3315 * 3316 * Note that any single message having a length smaller than or equal to 3317 * the SCTP partial delivery point will be delivered in one single read 3318 * call as long as the user provided buffer is large enough to hold the 3319 * message. 3320 */ 3321 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3322 char __user *optval, 3323 unsigned int optlen) 3324 { 3325 u32 val; 3326 3327 if (optlen != sizeof(u32)) 3328 return -EINVAL; 3329 if (get_user(val, (int __user *)optval)) 3330 return -EFAULT; 3331 3332 /* Note: We double the receive buffer from what the user sets 3333 * it to be, also initial rwnd is based on rcvbuf/2. 3334 */ 3335 if (val > (sk->sk_rcvbuf >> 1)) 3336 return -EINVAL; 3337 3338 sctp_sk(sk)->pd_point = val; 3339 3340 return 0; /* is this the right error code? */ 3341 } 3342 3343 /* 3344 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3345 * 3346 * This option will allow a user to change the maximum burst of packets 3347 * that can be emitted by this association. Note that the default value 3348 * is 4, and some implementations may restrict this setting so that it 3349 * can only be lowered. 3350 * 3351 * NOTE: This text doesn't seem right. Do this on a socket basis with 3352 * future associations inheriting the socket value. 3353 */ 3354 static int sctp_setsockopt_maxburst(struct sock *sk, 3355 char __user *optval, 3356 unsigned int optlen) 3357 { 3358 struct sctp_assoc_value params; 3359 struct sctp_sock *sp; 3360 struct sctp_association *asoc; 3361 int val; 3362 int assoc_id = 0; 3363 3364 if (optlen == sizeof(int)) { 3365 pr_warn_ratelimited(DEPRECATED 3366 "%s (pid %d) " 3367 "Use of int in max_burst socket option deprecated.\n" 3368 "Use struct sctp_assoc_value instead\n", 3369 current->comm, task_pid_nr(current)); 3370 if (copy_from_user(&val, optval, optlen)) 3371 return -EFAULT; 3372 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3373 if (copy_from_user(¶ms, optval, optlen)) 3374 return -EFAULT; 3375 val = params.assoc_value; 3376 assoc_id = params.assoc_id; 3377 } else 3378 return -EINVAL; 3379 3380 sp = sctp_sk(sk); 3381 3382 if (assoc_id != 0) { 3383 asoc = sctp_id2assoc(sk, assoc_id); 3384 if (!asoc) 3385 return -EINVAL; 3386 asoc->max_burst = val; 3387 } else 3388 sp->max_burst = val; 3389 3390 return 0; 3391 } 3392 3393 /* 3394 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3395 * 3396 * This set option adds a chunk type that the user is requesting to be 3397 * received only in an authenticated way. Changes to the list of chunks 3398 * will only effect future associations on the socket. 3399 */ 3400 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3401 char __user *optval, 3402 unsigned int optlen) 3403 { 3404 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3405 struct sctp_authchunk val; 3406 3407 if (!ep->auth_enable) 3408 return -EACCES; 3409 3410 if (optlen != sizeof(struct sctp_authchunk)) 3411 return -EINVAL; 3412 if (copy_from_user(&val, optval, optlen)) 3413 return -EFAULT; 3414 3415 switch (val.sauth_chunk) { 3416 case SCTP_CID_INIT: 3417 case SCTP_CID_INIT_ACK: 3418 case SCTP_CID_SHUTDOWN_COMPLETE: 3419 case SCTP_CID_AUTH: 3420 return -EINVAL; 3421 } 3422 3423 /* add this chunk id to the endpoint */ 3424 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3425 } 3426 3427 /* 3428 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3429 * 3430 * This option gets or sets the list of HMAC algorithms that the local 3431 * endpoint requires the peer to use. 3432 */ 3433 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3434 char __user *optval, 3435 unsigned int optlen) 3436 { 3437 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3438 struct sctp_hmacalgo *hmacs; 3439 u32 idents; 3440 int err; 3441 3442 if (!ep->auth_enable) 3443 return -EACCES; 3444 3445 if (optlen < sizeof(struct sctp_hmacalgo)) 3446 return -EINVAL; 3447 3448 hmacs = memdup_user(optval, optlen); 3449 if (IS_ERR(hmacs)) 3450 return PTR_ERR(hmacs); 3451 3452 idents = hmacs->shmac_num_idents; 3453 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3454 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3455 err = -EINVAL; 3456 goto out; 3457 } 3458 3459 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3460 out: 3461 kfree(hmacs); 3462 return err; 3463 } 3464 3465 /* 3466 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3467 * 3468 * This option will set a shared secret key which is used to build an 3469 * association shared key. 3470 */ 3471 static int sctp_setsockopt_auth_key(struct sock *sk, 3472 char __user *optval, 3473 unsigned int optlen) 3474 { 3475 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3476 struct sctp_authkey *authkey; 3477 struct sctp_association *asoc; 3478 int ret; 3479 3480 if (!ep->auth_enable) 3481 return -EACCES; 3482 3483 if (optlen <= sizeof(struct sctp_authkey)) 3484 return -EINVAL; 3485 3486 authkey = memdup_user(optval, optlen); 3487 if (IS_ERR(authkey)) 3488 return PTR_ERR(authkey); 3489 3490 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3491 ret = -EINVAL; 3492 goto out; 3493 } 3494 3495 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3496 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3497 ret = -EINVAL; 3498 goto out; 3499 } 3500 3501 ret = sctp_auth_set_key(ep, asoc, authkey); 3502 out: 3503 kzfree(authkey); 3504 return ret; 3505 } 3506 3507 /* 3508 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3509 * 3510 * This option will get or set the active shared key to be used to build 3511 * the association shared key. 3512 */ 3513 static int sctp_setsockopt_active_key(struct sock *sk, 3514 char __user *optval, 3515 unsigned int optlen) 3516 { 3517 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3518 struct sctp_authkeyid val; 3519 struct sctp_association *asoc; 3520 3521 if (!ep->auth_enable) 3522 return -EACCES; 3523 3524 if (optlen != sizeof(struct sctp_authkeyid)) 3525 return -EINVAL; 3526 if (copy_from_user(&val, optval, optlen)) 3527 return -EFAULT; 3528 3529 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3530 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3531 return -EINVAL; 3532 3533 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3534 } 3535 3536 /* 3537 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3538 * 3539 * This set option will delete a shared secret key from use. 3540 */ 3541 static int sctp_setsockopt_del_key(struct sock *sk, 3542 char __user *optval, 3543 unsigned int optlen) 3544 { 3545 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3546 struct sctp_authkeyid val; 3547 struct sctp_association *asoc; 3548 3549 if (!ep->auth_enable) 3550 return -EACCES; 3551 3552 if (optlen != sizeof(struct sctp_authkeyid)) 3553 return -EINVAL; 3554 if (copy_from_user(&val, optval, optlen)) 3555 return -EFAULT; 3556 3557 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3558 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3559 return -EINVAL; 3560 3561 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3562 3563 } 3564 3565 /* 3566 * 8.1.23 SCTP_AUTO_ASCONF 3567 * 3568 * This option will enable or disable the use of the automatic generation of 3569 * ASCONF chunks to add and delete addresses to an existing association. Note 3570 * that this option has two caveats namely: a) it only affects sockets that 3571 * are bound to all addresses available to the SCTP stack, and b) the system 3572 * administrator may have an overriding control that turns the ASCONF feature 3573 * off no matter what setting the socket option may have. 3574 * This option expects an integer boolean flag, where a non-zero value turns on 3575 * the option, and a zero value turns off the option. 3576 * Note. In this implementation, socket operation overrides default parameter 3577 * being set by sysctl as well as FreeBSD implementation 3578 */ 3579 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3580 unsigned int optlen) 3581 { 3582 int val; 3583 struct sctp_sock *sp = sctp_sk(sk); 3584 3585 if (optlen < sizeof(int)) 3586 return -EINVAL; 3587 if (get_user(val, (int __user *)optval)) 3588 return -EFAULT; 3589 if (!sctp_is_ep_boundall(sk) && val) 3590 return -EINVAL; 3591 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3592 return 0; 3593 3594 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3595 if (val == 0 && sp->do_auto_asconf) { 3596 list_del(&sp->auto_asconf_list); 3597 sp->do_auto_asconf = 0; 3598 } else if (val && !sp->do_auto_asconf) { 3599 list_add_tail(&sp->auto_asconf_list, 3600 &sock_net(sk)->sctp.auto_asconf_splist); 3601 sp->do_auto_asconf = 1; 3602 } 3603 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3604 return 0; 3605 } 3606 3607 /* 3608 * SCTP_PEER_ADDR_THLDS 3609 * 3610 * This option allows us to alter the partially failed threshold for one or all 3611 * transports in an association. See Section 6.1 of: 3612 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3613 */ 3614 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3615 char __user *optval, 3616 unsigned int optlen) 3617 { 3618 struct sctp_paddrthlds val; 3619 struct sctp_transport *trans; 3620 struct sctp_association *asoc; 3621 3622 if (optlen < sizeof(struct sctp_paddrthlds)) 3623 return -EINVAL; 3624 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3625 sizeof(struct sctp_paddrthlds))) 3626 return -EFAULT; 3627 3628 3629 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3630 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3631 if (!asoc) 3632 return -ENOENT; 3633 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3634 transports) { 3635 if (val.spt_pathmaxrxt) 3636 trans->pathmaxrxt = val.spt_pathmaxrxt; 3637 trans->pf_retrans = val.spt_pathpfthld; 3638 } 3639 3640 if (val.spt_pathmaxrxt) 3641 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3642 asoc->pf_retrans = val.spt_pathpfthld; 3643 } else { 3644 trans = sctp_addr_id2transport(sk, &val.spt_address, 3645 val.spt_assoc_id); 3646 if (!trans) 3647 return -ENOENT; 3648 3649 if (val.spt_pathmaxrxt) 3650 trans->pathmaxrxt = val.spt_pathmaxrxt; 3651 trans->pf_retrans = val.spt_pathpfthld; 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3658 char __user *optval, 3659 unsigned int optlen) 3660 { 3661 int val; 3662 3663 if (optlen < sizeof(int)) 3664 return -EINVAL; 3665 if (get_user(val, (int __user *) optval)) 3666 return -EFAULT; 3667 3668 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3669 3670 return 0; 3671 } 3672 3673 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3674 char __user *optval, 3675 unsigned int optlen) 3676 { 3677 int val; 3678 3679 if (optlen < sizeof(int)) 3680 return -EINVAL; 3681 if (get_user(val, (int __user *) optval)) 3682 return -EFAULT; 3683 3684 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3685 3686 return 0; 3687 } 3688 3689 static int sctp_setsockopt_pr_supported(struct sock *sk, 3690 char __user *optval, 3691 unsigned int optlen) 3692 { 3693 struct sctp_assoc_value params; 3694 struct sctp_association *asoc; 3695 int retval = -EINVAL; 3696 3697 if (optlen != sizeof(params)) 3698 goto out; 3699 3700 if (copy_from_user(¶ms, optval, optlen)) { 3701 retval = -EFAULT; 3702 goto out; 3703 } 3704 3705 asoc = sctp_id2assoc(sk, params.assoc_id); 3706 if (asoc) { 3707 asoc->prsctp_enable = !!params.assoc_value; 3708 } else if (!params.assoc_id) { 3709 struct sctp_sock *sp = sctp_sk(sk); 3710 3711 sp->ep->prsctp_enable = !!params.assoc_value; 3712 } else { 3713 goto out; 3714 } 3715 3716 retval = 0; 3717 3718 out: 3719 return retval; 3720 } 3721 3722 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3723 char __user *optval, 3724 unsigned int optlen) 3725 { 3726 struct sctp_default_prinfo info; 3727 struct sctp_association *asoc; 3728 int retval = -EINVAL; 3729 3730 if (optlen != sizeof(info)) 3731 goto out; 3732 3733 if (copy_from_user(&info, optval, sizeof(info))) { 3734 retval = -EFAULT; 3735 goto out; 3736 } 3737 3738 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3739 goto out; 3740 3741 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3742 info.pr_value = 0; 3743 3744 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3745 if (asoc) { 3746 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3747 asoc->default_timetolive = info.pr_value; 3748 } else if (!info.pr_assoc_id) { 3749 struct sctp_sock *sp = sctp_sk(sk); 3750 3751 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3752 sp->default_timetolive = info.pr_value; 3753 } else { 3754 goto out; 3755 } 3756 3757 retval = 0; 3758 3759 out: 3760 return retval; 3761 } 3762 3763 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3764 char __user *optval, 3765 unsigned int optlen) 3766 { 3767 struct sctp_assoc_value params; 3768 struct sctp_association *asoc; 3769 int retval = -EINVAL; 3770 3771 if (optlen != sizeof(params)) 3772 goto out; 3773 3774 if (copy_from_user(¶ms, optval, optlen)) { 3775 retval = -EFAULT; 3776 goto out; 3777 } 3778 3779 asoc = sctp_id2assoc(sk, params.assoc_id); 3780 if (asoc) { 3781 asoc->reconf_enable = !!params.assoc_value; 3782 } else if (!params.assoc_id) { 3783 struct sctp_sock *sp = sctp_sk(sk); 3784 3785 sp->ep->reconf_enable = !!params.assoc_value; 3786 } else { 3787 goto out; 3788 } 3789 3790 retval = 0; 3791 3792 out: 3793 return retval; 3794 } 3795 3796 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3797 char __user *optval, 3798 unsigned int optlen) 3799 { 3800 struct sctp_assoc_value params; 3801 struct sctp_association *asoc; 3802 int retval = -EINVAL; 3803 3804 if (optlen != sizeof(params)) 3805 goto out; 3806 3807 if (copy_from_user(¶ms, optval, optlen)) { 3808 retval = -EFAULT; 3809 goto out; 3810 } 3811 3812 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3813 goto out; 3814 3815 asoc = sctp_id2assoc(sk, params.assoc_id); 3816 if (asoc) { 3817 asoc->strreset_enable = params.assoc_value; 3818 } else if (!params.assoc_id) { 3819 struct sctp_sock *sp = sctp_sk(sk); 3820 3821 sp->ep->strreset_enable = params.assoc_value; 3822 } else { 3823 goto out; 3824 } 3825 3826 retval = 0; 3827 3828 out: 3829 return retval; 3830 } 3831 3832 static int sctp_setsockopt_reset_streams(struct sock *sk, 3833 char __user *optval, 3834 unsigned int optlen) 3835 { 3836 struct sctp_reset_streams *params; 3837 struct sctp_association *asoc; 3838 int retval = -EINVAL; 3839 3840 if (optlen < sizeof(struct sctp_reset_streams)) 3841 return -EINVAL; 3842 3843 params = memdup_user(optval, optlen); 3844 if (IS_ERR(params)) 3845 return PTR_ERR(params); 3846 3847 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3848 if (!asoc) 3849 goto out; 3850 3851 retval = sctp_send_reset_streams(asoc, params); 3852 3853 out: 3854 kfree(params); 3855 return retval; 3856 } 3857 3858 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3859 char __user *optval, 3860 unsigned int optlen) 3861 { 3862 struct sctp_association *asoc; 3863 sctp_assoc_t associd; 3864 int retval = -EINVAL; 3865 3866 if (optlen != sizeof(associd)) 3867 goto out; 3868 3869 if (copy_from_user(&associd, optval, optlen)) { 3870 retval = -EFAULT; 3871 goto out; 3872 } 3873 3874 asoc = sctp_id2assoc(sk, associd); 3875 if (!asoc) 3876 goto out; 3877 3878 retval = sctp_send_reset_assoc(asoc); 3879 3880 out: 3881 return retval; 3882 } 3883 3884 static int sctp_setsockopt_add_streams(struct sock *sk, 3885 char __user *optval, 3886 unsigned int optlen) 3887 { 3888 struct sctp_association *asoc; 3889 struct sctp_add_streams params; 3890 int retval = -EINVAL; 3891 3892 if (optlen != sizeof(params)) 3893 goto out; 3894 3895 if (copy_from_user(¶ms, optval, optlen)) { 3896 retval = -EFAULT; 3897 goto out; 3898 } 3899 3900 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3901 if (!asoc) 3902 goto out; 3903 3904 retval = sctp_send_add_streams(asoc, ¶ms); 3905 3906 out: 3907 return retval; 3908 } 3909 3910 /* API 6.2 setsockopt(), getsockopt() 3911 * 3912 * Applications use setsockopt() and getsockopt() to set or retrieve 3913 * socket options. Socket options are used to change the default 3914 * behavior of sockets calls. They are described in Section 7. 3915 * 3916 * The syntax is: 3917 * 3918 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3919 * int __user *optlen); 3920 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3921 * int optlen); 3922 * 3923 * sd - the socket descript. 3924 * level - set to IPPROTO_SCTP for all SCTP options. 3925 * optname - the option name. 3926 * optval - the buffer to store the value of the option. 3927 * optlen - the size of the buffer. 3928 */ 3929 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3930 char __user *optval, unsigned int optlen) 3931 { 3932 int retval = 0; 3933 3934 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3935 3936 /* I can hardly begin to describe how wrong this is. This is 3937 * so broken as to be worse than useless. The API draft 3938 * REALLY is NOT helpful here... I am not convinced that the 3939 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3940 * are at all well-founded. 3941 */ 3942 if (level != SOL_SCTP) { 3943 struct sctp_af *af = sctp_sk(sk)->pf->af; 3944 retval = af->setsockopt(sk, level, optname, optval, optlen); 3945 goto out_nounlock; 3946 } 3947 3948 lock_sock(sk); 3949 3950 switch (optname) { 3951 case SCTP_SOCKOPT_BINDX_ADD: 3952 /* 'optlen' is the size of the addresses buffer. */ 3953 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3954 optlen, SCTP_BINDX_ADD_ADDR); 3955 break; 3956 3957 case SCTP_SOCKOPT_BINDX_REM: 3958 /* 'optlen' is the size of the addresses buffer. */ 3959 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3960 optlen, SCTP_BINDX_REM_ADDR); 3961 break; 3962 3963 case SCTP_SOCKOPT_CONNECTX_OLD: 3964 /* 'optlen' is the size of the addresses buffer. */ 3965 retval = sctp_setsockopt_connectx_old(sk, 3966 (struct sockaddr __user *)optval, 3967 optlen); 3968 break; 3969 3970 case SCTP_SOCKOPT_CONNECTX: 3971 /* 'optlen' is the size of the addresses buffer. */ 3972 retval = sctp_setsockopt_connectx(sk, 3973 (struct sockaddr __user *)optval, 3974 optlen); 3975 break; 3976 3977 case SCTP_DISABLE_FRAGMENTS: 3978 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3979 break; 3980 3981 case SCTP_EVENTS: 3982 retval = sctp_setsockopt_events(sk, optval, optlen); 3983 break; 3984 3985 case SCTP_AUTOCLOSE: 3986 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3987 break; 3988 3989 case SCTP_PEER_ADDR_PARAMS: 3990 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3991 break; 3992 3993 case SCTP_DELAYED_SACK: 3994 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3995 break; 3996 case SCTP_PARTIAL_DELIVERY_POINT: 3997 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3998 break; 3999 4000 case SCTP_INITMSG: 4001 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4002 break; 4003 case SCTP_DEFAULT_SEND_PARAM: 4004 retval = sctp_setsockopt_default_send_param(sk, optval, 4005 optlen); 4006 break; 4007 case SCTP_DEFAULT_SNDINFO: 4008 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4009 break; 4010 case SCTP_PRIMARY_ADDR: 4011 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4012 break; 4013 case SCTP_SET_PEER_PRIMARY_ADDR: 4014 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4015 break; 4016 case SCTP_NODELAY: 4017 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4018 break; 4019 case SCTP_RTOINFO: 4020 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4021 break; 4022 case SCTP_ASSOCINFO: 4023 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4024 break; 4025 case SCTP_I_WANT_MAPPED_V4_ADDR: 4026 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4027 break; 4028 case SCTP_MAXSEG: 4029 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4030 break; 4031 case SCTP_ADAPTATION_LAYER: 4032 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4033 break; 4034 case SCTP_CONTEXT: 4035 retval = sctp_setsockopt_context(sk, optval, optlen); 4036 break; 4037 case SCTP_FRAGMENT_INTERLEAVE: 4038 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4039 break; 4040 case SCTP_MAX_BURST: 4041 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4042 break; 4043 case SCTP_AUTH_CHUNK: 4044 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4045 break; 4046 case SCTP_HMAC_IDENT: 4047 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4048 break; 4049 case SCTP_AUTH_KEY: 4050 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4051 break; 4052 case SCTP_AUTH_ACTIVE_KEY: 4053 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4054 break; 4055 case SCTP_AUTH_DELETE_KEY: 4056 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4057 break; 4058 case SCTP_AUTO_ASCONF: 4059 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4060 break; 4061 case SCTP_PEER_ADDR_THLDS: 4062 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4063 break; 4064 case SCTP_RECVRCVINFO: 4065 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4066 break; 4067 case SCTP_RECVNXTINFO: 4068 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4069 break; 4070 case SCTP_PR_SUPPORTED: 4071 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4072 break; 4073 case SCTP_DEFAULT_PRINFO: 4074 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4075 break; 4076 case SCTP_RECONFIG_SUPPORTED: 4077 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4078 break; 4079 case SCTP_ENABLE_STREAM_RESET: 4080 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4081 break; 4082 case SCTP_RESET_STREAMS: 4083 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4084 break; 4085 case SCTP_RESET_ASSOC: 4086 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4087 break; 4088 case SCTP_ADD_STREAMS: 4089 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4090 break; 4091 default: 4092 retval = -ENOPROTOOPT; 4093 break; 4094 } 4095 4096 release_sock(sk); 4097 4098 out_nounlock: 4099 return retval; 4100 } 4101 4102 /* API 3.1.6 connect() - UDP Style Syntax 4103 * 4104 * An application may use the connect() call in the UDP model to initiate an 4105 * association without sending data. 4106 * 4107 * The syntax is: 4108 * 4109 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4110 * 4111 * sd: the socket descriptor to have a new association added to. 4112 * 4113 * nam: the address structure (either struct sockaddr_in or struct 4114 * sockaddr_in6 defined in RFC2553 [7]). 4115 * 4116 * len: the size of the address. 4117 */ 4118 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4119 int addr_len) 4120 { 4121 int err = 0; 4122 struct sctp_af *af; 4123 4124 lock_sock(sk); 4125 4126 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4127 addr, addr_len); 4128 4129 /* Validate addr_len before calling common connect/connectx routine. */ 4130 af = sctp_get_af_specific(addr->sa_family); 4131 if (!af || addr_len < af->sockaddr_len) { 4132 err = -EINVAL; 4133 } else { 4134 /* Pass correct addr len to common routine (so it knows there 4135 * is only one address being passed. 4136 */ 4137 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4138 } 4139 4140 release_sock(sk); 4141 return err; 4142 } 4143 4144 /* FIXME: Write comments. */ 4145 static int sctp_disconnect(struct sock *sk, int flags) 4146 { 4147 return -EOPNOTSUPP; /* STUB */ 4148 } 4149 4150 /* 4.1.4 accept() - TCP Style Syntax 4151 * 4152 * Applications use accept() call to remove an established SCTP 4153 * association from the accept queue of the endpoint. A new socket 4154 * descriptor will be returned from accept() to represent the newly 4155 * formed association. 4156 */ 4157 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4158 { 4159 struct sctp_sock *sp; 4160 struct sctp_endpoint *ep; 4161 struct sock *newsk = NULL; 4162 struct sctp_association *asoc; 4163 long timeo; 4164 int error = 0; 4165 4166 lock_sock(sk); 4167 4168 sp = sctp_sk(sk); 4169 ep = sp->ep; 4170 4171 if (!sctp_style(sk, TCP)) { 4172 error = -EOPNOTSUPP; 4173 goto out; 4174 } 4175 4176 if (!sctp_sstate(sk, LISTENING)) { 4177 error = -EINVAL; 4178 goto out; 4179 } 4180 4181 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4182 4183 error = sctp_wait_for_accept(sk, timeo); 4184 if (error) 4185 goto out; 4186 4187 /* We treat the list of associations on the endpoint as the accept 4188 * queue and pick the first association on the list. 4189 */ 4190 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4191 4192 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4193 if (!newsk) { 4194 error = -ENOMEM; 4195 goto out; 4196 } 4197 4198 /* Populate the fields of the newsk from the oldsk and migrate the 4199 * asoc to the newsk. 4200 */ 4201 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4202 4203 out: 4204 release_sock(sk); 4205 *err = error; 4206 return newsk; 4207 } 4208 4209 /* The SCTP ioctl handler. */ 4210 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4211 { 4212 int rc = -ENOTCONN; 4213 4214 lock_sock(sk); 4215 4216 /* 4217 * SEQPACKET-style sockets in LISTENING state are valid, for 4218 * SCTP, so only discard TCP-style sockets in LISTENING state. 4219 */ 4220 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4221 goto out; 4222 4223 switch (cmd) { 4224 case SIOCINQ: { 4225 struct sk_buff *skb; 4226 unsigned int amount = 0; 4227 4228 skb = skb_peek(&sk->sk_receive_queue); 4229 if (skb != NULL) { 4230 /* 4231 * We will only return the amount of this packet since 4232 * that is all that will be read. 4233 */ 4234 amount = skb->len; 4235 } 4236 rc = put_user(amount, (int __user *)arg); 4237 break; 4238 } 4239 default: 4240 rc = -ENOIOCTLCMD; 4241 break; 4242 } 4243 out: 4244 release_sock(sk); 4245 return rc; 4246 } 4247 4248 /* This is the function which gets called during socket creation to 4249 * initialized the SCTP-specific portion of the sock. 4250 * The sock structure should already be zero-filled memory. 4251 */ 4252 static int sctp_init_sock(struct sock *sk) 4253 { 4254 struct net *net = sock_net(sk); 4255 struct sctp_sock *sp; 4256 4257 pr_debug("%s: sk:%p\n", __func__, sk); 4258 4259 sp = sctp_sk(sk); 4260 4261 /* Initialize the SCTP per socket area. */ 4262 switch (sk->sk_type) { 4263 case SOCK_SEQPACKET: 4264 sp->type = SCTP_SOCKET_UDP; 4265 break; 4266 case SOCK_STREAM: 4267 sp->type = SCTP_SOCKET_TCP; 4268 break; 4269 default: 4270 return -ESOCKTNOSUPPORT; 4271 } 4272 4273 sk->sk_gso_type = SKB_GSO_SCTP; 4274 4275 /* Initialize default send parameters. These parameters can be 4276 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4277 */ 4278 sp->default_stream = 0; 4279 sp->default_ppid = 0; 4280 sp->default_flags = 0; 4281 sp->default_context = 0; 4282 sp->default_timetolive = 0; 4283 4284 sp->default_rcv_context = 0; 4285 sp->max_burst = net->sctp.max_burst; 4286 4287 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4288 4289 /* Initialize default setup parameters. These parameters 4290 * can be modified with the SCTP_INITMSG socket option or 4291 * overridden by the SCTP_INIT CMSG. 4292 */ 4293 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4294 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4295 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4296 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4297 4298 /* Initialize default RTO related parameters. These parameters can 4299 * be modified for with the SCTP_RTOINFO socket option. 4300 */ 4301 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4302 sp->rtoinfo.srto_max = net->sctp.rto_max; 4303 sp->rtoinfo.srto_min = net->sctp.rto_min; 4304 4305 /* Initialize default association related parameters. These parameters 4306 * can be modified with the SCTP_ASSOCINFO socket option. 4307 */ 4308 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4309 sp->assocparams.sasoc_number_peer_destinations = 0; 4310 sp->assocparams.sasoc_peer_rwnd = 0; 4311 sp->assocparams.sasoc_local_rwnd = 0; 4312 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4313 4314 /* Initialize default event subscriptions. By default, all the 4315 * options are off. 4316 */ 4317 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4318 4319 /* Default Peer Address Parameters. These defaults can 4320 * be modified via SCTP_PEER_ADDR_PARAMS 4321 */ 4322 sp->hbinterval = net->sctp.hb_interval; 4323 sp->pathmaxrxt = net->sctp.max_retrans_path; 4324 sp->pathmtu = 0; /* allow default discovery */ 4325 sp->sackdelay = net->sctp.sack_timeout; 4326 sp->sackfreq = 2; 4327 sp->param_flags = SPP_HB_ENABLE | 4328 SPP_PMTUD_ENABLE | 4329 SPP_SACKDELAY_ENABLE; 4330 4331 /* If enabled no SCTP message fragmentation will be performed. 4332 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4333 */ 4334 sp->disable_fragments = 0; 4335 4336 /* Enable Nagle algorithm by default. */ 4337 sp->nodelay = 0; 4338 4339 sp->recvrcvinfo = 0; 4340 sp->recvnxtinfo = 0; 4341 4342 /* Enable by default. */ 4343 sp->v4mapped = 1; 4344 4345 /* Auto-close idle associations after the configured 4346 * number of seconds. A value of 0 disables this 4347 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4348 * for UDP-style sockets only. 4349 */ 4350 sp->autoclose = 0; 4351 4352 /* User specified fragmentation limit. */ 4353 sp->user_frag = 0; 4354 4355 sp->adaptation_ind = 0; 4356 4357 sp->pf = sctp_get_pf_specific(sk->sk_family); 4358 4359 /* Control variables for partial data delivery. */ 4360 atomic_set(&sp->pd_mode, 0); 4361 skb_queue_head_init(&sp->pd_lobby); 4362 sp->frag_interleave = 0; 4363 4364 /* Create a per socket endpoint structure. Even if we 4365 * change the data structure relationships, this may still 4366 * be useful for storing pre-connect address information. 4367 */ 4368 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4369 if (!sp->ep) 4370 return -ENOMEM; 4371 4372 sp->hmac = NULL; 4373 4374 sk->sk_destruct = sctp_destruct_sock; 4375 4376 SCTP_DBG_OBJCNT_INC(sock); 4377 4378 local_bh_disable(); 4379 percpu_counter_inc(&sctp_sockets_allocated); 4380 sock_prot_inuse_add(net, sk->sk_prot, 1); 4381 4382 /* Nothing can fail after this block, otherwise 4383 * sctp_destroy_sock() will be called without addr_wq_lock held 4384 */ 4385 if (net->sctp.default_auto_asconf) { 4386 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4387 list_add_tail(&sp->auto_asconf_list, 4388 &net->sctp.auto_asconf_splist); 4389 sp->do_auto_asconf = 1; 4390 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4391 } else { 4392 sp->do_auto_asconf = 0; 4393 } 4394 4395 local_bh_enable(); 4396 4397 return 0; 4398 } 4399 4400 /* Cleanup any SCTP per socket resources. Must be called with 4401 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4402 */ 4403 static void sctp_destroy_sock(struct sock *sk) 4404 { 4405 struct sctp_sock *sp; 4406 4407 pr_debug("%s: sk:%p\n", __func__, sk); 4408 4409 /* Release our hold on the endpoint. */ 4410 sp = sctp_sk(sk); 4411 /* This could happen during socket init, thus we bail out 4412 * early, since the rest of the below is not setup either. 4413 */ 4414 if (sp->ep == NULL) 4415 return; 4416 4417 if (sp->do_auto_asconf) { 4418 sp->do_auto_asconf = 0; 4419 list_del(&sp->auto_asconf_list); 4420 } 4421 sctp_endpoint_free(sp->ep); 4422 local_bh_disable(); 4423 percpu_counter_dec(&sctp_sockets_allocated); 4424 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4425 local_bh_enable(); 4426 } 4427 4428 /* Triggered when there are no references on the socket anymore */ 4429 static void sctp_destruct_sock(struct sock *sk) 4430 { 4431 struct sctp_sock *sp = sctp_sk(sk); 4432 4433 /* Free up the HMAC transform. */ 4434 crypto_free_shash(sp->hmac); 4435 4436 inet_sock_destruct(sk); 4437 } 4438 4439 /* API 4.1.7 shutdown() - TCP Style Syntax 4440 * int shutdown(int socket, int how); 4441 * 4442 * sd - the socket descriptor of the association to be closed. 4443 * how - Specifies the type of shutdown. The values are 4444 * as follows: 4445 * SHUT_RD 4446 * Disables further receive operations. No SCTP 4447 * protocol action is taken. 4448 * SHUT_WR 4449 * Disables further send operations, and initiates 4450 * the SCTP shutdown sequence. 4451 * SHUT_RDWR 4452 * Disables further send and receive operations 4453 * and initiates the SCTP shutdown sequence. 4454 */ 4455 static void sctp_shutdown(struct sock *sk, int how) 4456 { 4457 struct net *net = sock_net(sk); 4458 struct sctp_endpoint *ep; 4459 4460 if (!sctp_style(sk, TCP)) 4461 return; 4462 4463 ep = sctp_sk(sk)->ep; 4464 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4465 struct sctp_association *asoc; 4466 4467 sk->sk_state = SCTP_SS_CLOSING; 4468 asoc = list_entry(ep->asocs.next, 4469 struct sctp_association, asocs); 4470 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4471 } 4472 } 4473 4474 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4475 struct sctp_info *info) 4476 { 4477 struct sctp_transport *prim; 4478 struct list_head *pos; 4479 int mask; 4480 4481 memset(info, 0, sizeof(*info)); 4482 if (!asoc) { 4483 struct sctp_sock *sp = sctp_sk(sk); 4484 4485 info->sctpi_s_autoclose = sp->autoclose; 4486 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4487 info->sctpi_s_pd_point = sp->pd_point; 4488 info->sctpi_s_nodelay = sp->nodelay; 4489 info->sctpi_s_disable_fragments = sp->disable_fragments; 4490 info->sctpi_s_v4mapped = sp->v4mapped; 4491 info->sctpi_s_frag_interleave = sp->frag_interleave; 4492 info->sctpi_s_type = sp->type; 4493 4494 return 0; 4495 } 4496 4497 info->sctpi_tag = asoc->c.my_vtag; 4498 info->sctpi_state = asoc->state; 4499 info->sctpi_rwnd = asoc->a_rwnd; 4500 info->sctpi_unackdata = asoc->unack_data; 4501 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4502 info->sctpi_instrms = asoc->stream.incnt; 4503 info->sctpi_outstrms = asoc->stream.outcnt; 4504 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4505 info->sctpi_inqueue++; 4506 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4507 info->sctpi_outqueue++; 4508 info->sctpi_overall_error = asoc->overall_error_count; 4509 info->sctpi_max_burst = asoc->max_burst; 4510 info->sctpi_maxseg = asoc->frag_point; 4511 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4512 info->sctpi_peer_tag = asoc->c.peer_vtag; 4513 4514 mask = asoc->peer.ecn_capable << 1; 4515 mask = (mask | asoc->peer.ipv4_address) << 1; 4516 mask = (mask | asoc->peer.ipv6_address) << 1; 4517 mask = (mask | asoc->peer.hostname_address) << 1; 4518 mask = (mask | asoc->peer.asconf_capable) << 1; 4519 mask = (mask | asoc->peer.prsctp_capable) << 1; 4520 mask = (mask | asoc->peer.auth_capable); 4521 info->sctpi_peer_capable = mask; 4522 mask = asoc->peer.sack_needed << 1; 4523 mask = (mask | asoc->peer.sack_generation) << 1; 4524 mask = (mask | asoc->peer.zero_window_announced); 4525 info->sctpi_peer_sack = mask; 4526 4527 info->sctpi_isacks = asoc->stats.isacks; 4528 info->sctpi_osacks = asoc->stats.osacks; 4529 info->sctpi_opackets = asoc->stats.opackets; 4530 info->sctpi_ipackets = asoc->stats.ipackets; 4531 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4532 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4533 info->sctpi_idupchunks = asoc->stats.idupchunks; 4534 info->sctpi_gapcnt = asoc->stats.gapcnt; 4535 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4536 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4537 info->sctpi_oodchunks = asoc->stats.oodchunks; 4538 info->sctpi_iodchunks = asoc->stats.iodchunks; 4539 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4540 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4541 4542 prim = asoc->peer.primary_path; 4543 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4544 info->sctpi_p_state = prim->state; 4545 info->sctpi_p_cwnd = prim->cwnd; 4546 info->sctpi_p_srtt = prim->srtt; 4547 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4548 info->sctpi_p_hbinterval = prim->hbinterval; 4549 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4550 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4551 info->sctpi_p_ssthresh = prim->ssthresh; 4552 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4553 info->sctpi_p_flight_size = prim->flight_size; 4554 info->sctpi_p_error = prim->error_count; 4555 4556 return 0; 4557 } 4558 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4559 4560 /* use callback to avoid exporting the core structure */ 4561 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4562 { 4563 int err; 4564 4565 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4566 4567 err = rhashtable_walk_start(iter); 4568 if (err && err != -EAGAIN) { 4569 rhashtable_walk_stop(iter); 4570 rhashtable_walk_exit(iter); 4571 return err; 4572 } 4573 4574 return 0; 4575 } 4576 4577 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4578 { 4579 rhashtable_walk_stop(iter); 4580 rhashtable_walk_exit(iter); 4581 } 4582 4583 struct sctp_transport *sctp_transport_get_next(struct net *net, 4584 struct rhashtable_iter *iter) 4585 { 4586 struct sctp_transport *t; 4587 4588 t = rhashtable_walk_next(iter); 4589 for (; t; t = rhashtable_walk_next(iter)) { 4590 if (IS_ERR(t)) { 4591 if (PTR_ERR(t) == -EAGAIN) 4592 continue; 4593 break; 4594 } 4595 4596 if (net_eq(sock_net(t->asoc->base.sk), net) && 4597 t->asoc->peer.primary_path == t) 4598 break; 4599 } 4600 4601 return t; 4602 } 4603 4604 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4605 struct rhashtable_iter *iter, 4606 int pos) 4607 { 4608 void *obj = SEQ_START_TOKEN; 4609 4610 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4611 !IS_ERR(obj)) 4612 pos--; 4613 4614 return obj; 4615 } 4616 4617 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4618 void *p) { 4619 int err = 0; 4620 int hash = 0; 4621 struct sctp_ep_common *epb; 4622 struct sctp_hashbucket *head; 4623 4624 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4625 hash++, head++) { 4626 read_lock_bh(&head->lock); 4627 sctp_for_each_hentry(epb, &head->chain) { 4628 err = cb(sctp_ep(epb), p); 4629 if (err) 4630 break; 4631 } 4632 read_unlock_bh(&head->lock); 4633 } 4634 4635 return err; 4636 } 4637 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4638 4639 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4640 struct net *net, 4641 const union sctp_addr *laddr, 4642 const union sctp_addr *paddr, void *p) 4643 { 4644 struct sctp_transport *transport; 4645 int err; 4646 4647 rcu_read_lock(); 4648 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4649 rcu_read_unlock(); 4650 if (!transport) 4651 return -ENOENT; 4652 4653 err = cb(transport, p); 4654 sctp_transport_put(transport); 4655 4656 return err; 4657 } 4658 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4659 4660 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4661 struct net *net, int pos, void *p) { 4662 struct rhashtable_iter hti; 4663 void *obj; 4664 int err; 4665 4666 err = sctp_transport_walk_start(&hti); 4667 if (err) 4668 return err; 4669 4670 obj = sctp_transport_get_idx(net, &hti, pos + 1); 4671 for (; !IS_ERR_OR_NULL(obj); obj = sctp_transport_get_next(net, &hti)) { 4672 struct sctp_transport *transport = obj; 4673 4674 if (!sctp_transport_hold(transport)) 4675 continue; 4676 err = cb(transport, p); 4677 sctp_transport_put(transport); 4678 if (err) 4679 break; 4680 } 4681 sctp_transport_walk_stop(&hti); 4682 4683 return err; 4684 } 4685 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4686 4687 /* 7.2.1 Association Status (SCTP_STATUS) 4688 4689 * Applications can retrieve current status information about an 4690 * association, including association state, peer receiver window size, 4691 * number of unacked data chunks, and number of data chunks pending 4692 * receipt. This information is read-only. 4693 */ 4694 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4695 char __user *optval, 4696 int __user *optlen) 4697 { 4698 struct sctp_status status; 4699 struct sctp_association *asoc = NULL; 4700 struct sctp_transport *transport; 4701 sctp_assoc_t associd; 4702 int retval = 0; 4703 4704 if (len < sizeof(status)) { 4705 retval = -EINVAL; 4706 goto out; 4707 } 4708 4709 len = sizeof(status); 4710 if (copy_from_user(&status, optval, len)) { 4711 retval = -EFAULT; 4712 goto out; 4713 } 4714 4715 associd = status.sstat_assoc_id; 4716 asoc = sctp_id2assoc(sk, associd); 4717 if (!asoc) { 4718 retval = -EINVAL; 4719 goto out; 4720 } 4721 4722 transport = asoc->peer.primary_path; 4723 4724 status.sstat_assoc_id = sctp_assoc2id(asoc); 4725 status.sstat_state = sctp_assoc_to_state(asoc); 4726 status.sstat_rwnd = asoc->peer.rwnd; 4727 status.sstat_unackdata = asoc->unack_data; 4728 4729 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4730 status.sstat_instrms = asoc->stream.incnt; 4731 status.sstat_outstrms = asoc->stream.outcnt; 4732 status.sstat_fragmentation_point = asoc->frag_point; 4733 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4734 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4735 transport->af_specific->sockaddr_len); 4736 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4737 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4738 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4739 status.sstat_primary.spinfo_state = transport->state; 4740 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4741 status.sstat_primary.spinfo_srtt = transport->srtt; 4742 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4743 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4744 4745 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4746 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4747 4748 if (put_user(len, optlen)) { 4749 retval = -EFAULT; 4750 goto out; 4751 } 4752 4753 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4754 __func__, len, status.sstat_state, status.sstat_rwnd, 4755 status.sstat_assoc_id); 4756 4757 if (copy_to_user(optval, &status, len)) { 4758 retval = -EFAULT; 4759 goto out; 4760 } 4761 4762 out: 4763 return retval; 4764 } 4765 4766 4767 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4768 * 4769 * Applications can retrieve information about a specific peer address 4770 * of an association, including its reachability state, congestion 4771 * window, and retransmission timer values. This information is 4772 * read-only. 4773 */ 4774 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4775 char __user *optval, 4776 int __user *optlen) 4777 { 4778 struct sctp_paddrinfo pinfo; 4779 struct sctp_transport *transport; 4780 int retval = 0; 4781 4782 if (len < sizeof(pinfo)) { 4783 retval = -EINVAL; 4784 goto out; 4785 } 4786 4787 len = sizeof(pinfo); 4788 if (copy_from_user(&pinfo, optval, len)) { 4789 retval = -EFAULT; 4790 goto out; 4791 } 4792 4793 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4794 pinfo.spinfo_assoc_id); 4795 if (!transport) 4796 return -EINVAL; 4797 4798 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4799 pinfo.spinfo_state = transport->state; 4800 pinfo.spinfo_cwnd = transport->cwnd; 4801 pinfo.spinfo_srtt = transport->srtt; 4802 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4803 pinfo.spinfo_mtu = transport->pathmtu; 4804 4805 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4806 pinfo.spinfo_state = SCTP_ACTIVE; 4807 4808 if (put_user(len, optlen)) { 4809 retval = -EFAULT; 4810 goto out; 4811 } 4812 4813 if (copy_to_user(optval, &pinfo, len)) { 4814 retval = -EFAULT; 4815 goto out; 4816 } 4817 4818 out: 4819 return retval; 4820 } 4821 4822 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4823 * 4824 * This option is a on/off flag. If enabled no SCTP message 4825 * fragmentation will be performed. Instead if a message being sent 4826 * exceeds the current PMTU size, the message will NOT be sent and 4827 * instead a error will be indicated to the user. 4828 */ 4829 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4830 char __user *optval, int __user *optlen) 4831 { 4832 int val; 4833 4834 if (len < sizeof(int)) 4835 return -EINVAL; 4836 4837 len = sizeof(int); 4838 val = (sctp_sk(sk)->disable_fragments == 1); 4839 if (put_user(len, optlen)) 4840 return -EFAULT; 4841 if (copy_to_user(optval, &val, len)) 4842 return -EFAULT; 4843 return 0; 4844 } 4845 4846 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4847 * 4848 * This socket option is used to specify various notifications and 4849 * ancillary data the user wishes to receive. 4850 */ 4851 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4852 int __user *optlen) 4853 { 4854 if (len == 0) 4855 return -EINVAL; 4856 if (len > sizeof(struct sctp_event_subscribe)) 4857 len = sizeof(struct sctp_event_subscribe); 4858 if (put_user(len, optlen)) 4859 return -EFAULT; 4860 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4861 return -EFAULT; 4862 return 0; 4863 } 4864 4865 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4866 * 4867 * This socket option is applicable to the UDP-style socket only. When 4868 * set it will cause associations that are idle for more than the 4869 * specified number of seconds to automatically close. An association 4870 * being idle is defined an association that has NOT sent or received 4871 * user data. The special value of '0' indicates that no automatic 4872 * close of any associations should be performed. The option expects an 4873 * integer defining the number of seconds of idle time before an 4874 * association is closed. 4875 */ 4876 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4877 { 4878 /* Applicable to UDP-style socket only */ 4879 if (sctp_style(sk, TCP)) 4880 return -EOPNOTSUPP; 4881 if (len < sizeof(int)) 4882 return -EINVAL; 4883 len = sizeof(int); 4884 if (put_user(len, optlen)) 4885 return -EFAULT; 4886 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4887 return -EFAULT; 4888 return 0; 4889 } 4890 4891 /* Helper routine to branch off an association to a new socket. */ 4892 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4893 { 4894 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4895 struct sctp_sock *sp = sctp_sk(sk); 4896 struct socket *sock; 4897 int err = 0; 4898 4899 if (!asoc) 4900 return -EINVAL; 4901 4902 /* If there is a thread waiting on more sndbuf space for 4903 * sending on this asoc, it cannot be peeled. 4904 */ 4905 if (waitqueue_active(&asoc->wait)) 4906 return -EBUSY; 4907 4908 /* An association cannot be branched off from an already peeled-off 4909 * socket, nor is this supported for tcp style sockets. 4910 */ 4911 if (!sctp_style(sk, UDP)) 4912 return -EINVAL; 4913 4914 /* Create a new socket. */ 4915 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4916 if (err < 0) 4917 return err; 4918 4919 sctp_copy_sock(sock->sk, sk, asoc); 4920 4921 /* Make peeled-off sockets more like 1-1 accepted sockets. 4922 * Set the daddr and initialize id to something more random 4923 */ 4924 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4925 4926 /* Populate the fields of the newsk from the oldsk and migrate the 4927 * asoc to the newsk. 4928 */ 4929 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4930 4931 *sockp = sock; 4932 4933 return err; 4934 } 4935 EXPORT_SYMBOL(sctp_do_peeloff); 4936 4937 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 4938 struct file **newfile, unsigned flags) 4939 { 4940 struct socket *newsock; 4941 int retval; 4942 4943 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 4944 if (retval < 0) 4945 goto out; 4946 4947 /* Map the socket to an unused fd that can be returned to the user. */ 4948 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 4949 if (retval < 0) { 4950 sock_release(newsock); 4951 goto out; 4952 } 4953 4954 *newfile = sock_alloc_file(newsock, 0, NULL); 4955 if (IS_ERR(*newfile)) { 4956 put_unused_fd(retval); 4957 sock_release(newsock); 4958 retval = PTR_ERR(*newfile); 4959 *newfile = NULL; 4960 return retval; 4961 } 4962 4963 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4964 retval); 4965 4966 peeloff->sd = retval; 4967 4968 if (flags & SOCK_NONBLOCK) 4969 (*newfile)->f_flags |= O_NONBLOCK; 4970 out: 4971 return retval; 4972 } 4973 4974 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4975 { 4976 sctp_peeloff_arg_t peeloff; 4977 struct file *newfile = NULL; 4978 int retval = 0; 4979 4980 if (len < sizeof(sctp_peeloff_arg_t)) 4981 return -EINVAL; 4982 len = sizeof(sctp_peeloff_arg_t); 4983 if (copy_from_user(&peeloff, optval, len)) 4984 return -EFAULT; 4985 4986 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 4987 if (retval < 0) 4988 goto out; 4989 4990 /* Return the fd mapped to the new socket. */ 4991 if (put_user(len, optlen)) { 4992 fput(newfile); 4993 put_unused_fd(retval); 4994 return -EFAULT; 4995 } 4996 4997 if (copy_to_user(optval, &peeloff, len)) { 4998 fput(newfile); 4999 put_unused_fd(retval); 5000 return -EFAULT; 5001 } 5002 fd_install(retval, newfile); 5003 out: 5004 return retval; 5005 } 5006 5007 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5008 char __user *optval, int __user *optlen) 5009 { 5010 sctp_peeloff_flags_arg_t peeloff; 5011 struct file *newfile = NULL; 5012 int retval = 0; 5013 5014 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5015 return -EINVAL; 5016 len = sizeof(sctp_peeloff_flags_arg_t); 5017 if (copy_from_user(&peeloff, optval, len)) 5018 return -EFAULT; 5019 5020 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5021 &newfile, peeloff.flags); 5022 if (retval < 0) 5023 goto out; 5024 5025 /* Return the fd mapped to the new socket. */ 5026 if (put_user(len, optlen)) { 5027 fput(newfile); 5028 put_unused_fd(retval); 5029 return -EFAULT; 5030 } 5031 5032 if (copy_to_user(optval, &peeloff, len)) { 5033 fput(newfile); 5034 put_unused_fd(retval); 5035 return -EFAULT; 5036 } 5037 fd_install(retval, newfile); 5038 out: 5039 return retval; 5040 } 5041 5042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5043 * 5044 * Applications can enable or disable heartbeats for any peer address of 5045 * an association, modify an address's heartbeat interval, force a 5046 * heartbeat to be sent immediately, and adjust the address's maximum 5047 * number of retransmissions sent before an address is considered 5048 * unreachable. The following structure is used to access and modify an 5049 * address's parameters: 5050 * 5051 * struct sctp_paddrparams { 5052 * sctp_assoc_t spp_assoc_id; 5053 * struct sockaddr_storage spp_address; 5054 * uint32_t spp_hbinterval; 5055 * uint16_t spp_pathmaxrxt; 5056 * uint32_t spp_pathmtu; 5057 * uint32_t spp_sackdelay; 5058 * uint32_t spp_flags; 5059 * }; 5060 * 5061 * spp_assoc_id - (one-to-many style socket) This is filled in the 5062 * application, and identifies the association for 5063 * this query. 5064 * spp_address - This specifies which address is of interest. 5065 * spp_hbinterval - This contains the value of the heartbeat interval, 5066 * in milliseconds. If a value of zero 5067 * is present in this field then no changes are to 5068 * be made to this parameter. 5069 * spp_pathmaxrxt - This contains the maximum number of 5070 * retransmissions before this address shall be 5071 * considered unreachable. If a value of zero 5072 * is present in this field then no changes are to 5073 * be made to this parameter. 5074 * spp_pathmtu - When Path MTU discovery is disabled the value 5075 * specified here will be the "fixed" path mtu. 5076 * Note that if the spp_address field is empty 5077 * then all associations on this address will 5078 * have this fixed path mtu set upon them. 5079 * 5080 * spp_sackdelay - When delayed sack is enabled, this value specifies 5081 * the number of milliseconds that sacks will be delayed 5082 * for. This value will apply to all addresses of an 5083 * association if the spp_address field is empty. Note 5084 * also, that if delayed sack is enabled and this 5085 * value is set to 0, no change is made to the last 5086 * recorded delayed sack timer value. 5087 * 5088 * spp_flags - These flags are used to control various features 5089 * on an association. The flag field may contain 5090 * zero or more of the following options. 5091 * 5092 * SPP_HB_ENABLE - Enable heartbeats on the 5093 * specified address. Note that if the address 5094 * field is empty all addresses for the association 5095 * have heartbeats enabled upon them. 5096 * 5097 * SPP_HB_DISABLE - Disable heartbeats on the 5098 * speicifed address. Note that if the address 5099 * field is empty all addresses for the association 5100 * will have their heartbeats disabled. Note also 5101 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5102 * mutually exclusive, only one of these two should 5103 * be specified. Enabling both fields will have 5104 * undetermined results. 5105 * 5106 * SPP_HB_DEMAND - Request a user initiated heartbeat 5107 * to be made immediately. 5108 * 5109 * SPP_PMTUD_ENABLE - This field will enable PMTU 5110 * discovery upon the specified address. Note that 5111 * if the address feild is empty then all addresses 5112 * on the association are effected. 5113 * 5114 * SPP_PMTUD_DISABLE - This field will disable PMTU 5115 * discovery upon the specified address. Note that 5116 * if the address feild is empty then all addresses 5117 * on the association are effected. Not also that 5118 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5119 * exclusive. Enabling both will have undetermined 5120 * results. 5121 * 5122 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5123 * on delayed sack. The time specified in spp_sackdelay 5124 * is used to specify the sack delay for this address. Note 5125 * that if spp_address is empty then all addresses will 5126 * enable delayed sack and take on the sack delay 5127 * value specified in spp_sackdelay. 5128 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5129 * off delayed sack. If the spp_address field is blank then 5130 * delayed sack is disabled for the entire association. Note 5131 * also that this field is mutually exclusive to 5132 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5133 * results. 5134 */ 5135 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5136 char __user *optval, int __user *optlen) 5137 { 5138 struct sctp_paddrparams params; 5139 struct sctp_transport *trans = NULL; 5140 struct sctp_association *asoc = NULL; 5141 struct sctp_sock *sp = sctp_sk(sk); 5142 5143 if (len < sizeof(struct sctp_paddrparams)) 5144 return -EINVAL; 5145 len = sizeof(struct sctp_paddrparams); 5146 if (copy_from_user(¶ms, optval, len)) 5147 return -EFAULT; 5148 5149 /* If an address other than INADDR_ANY is specified, and 5150 * no transport is found, then the request is invalid. 5151 */ 5152 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5153 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5154 params.spp_assoc_id); 5155 if (!trans) { 5156 pr_debug("%s: failed no transport\n", __func__); 5157 return -EINVAL; 5158 } 5159 } 5160 5161 /* Get association, if assoc_id != 0 and the socket is a one 5162 * to many style socket, and an association was not found, then 5163 * the id was invalid. 5164 */ 5165 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5166 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5167 pr_debug("%s: failed no association\n", __func__); 5168 return -EINVAL; 5169 } 5170 5171 if (trans) { 5172 /* Fetch transport values. */ 5173 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5174 params.spp_pathmtu = trans->pathmtu; 5175 params.spp_pathmaxrxt = trans->pathmaxrxt; 5176 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5177 5178 /*draft-11 doesn't say what to return in spp_flags*/ 5179 params.spp_flags = trans->param_flags; 5180 } else if (asoc) { 5181 /* Fetch association values. */ 5182 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5183 params.spp_pathmtu = asoc->pathmtu; 5184 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5185 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5186 5187 /*draft-11 doesn't say what to return in spp_flags*/ 5188 params.spp_flags = asoc->param_flags; 5189 } else { 5190 /* Fetch socket values. */ 5191 params.spp_hbinterval = sp->hbinterval; 5192 params.spp_pathmtu = sp->pathmtu; 5193 params.spp_sackdelay = sp->sackdelay; 5194 params.spp_pathmaxrxt = sp->pathmaxrxt; 5195 5196 /*draft-11 doesn't say what to return in spp_flags*/ 5197 params.spp_flags = sp->param_flags; 5198 } 5199 5200 if (copy_to_user(optval, ¶ms, len)) 5201 return -EFAULT; 5202 5203 if (put_user(len, optlen)) 5204 return -EFAULT; 5205 5206 return 0; 5207 } 5208 5209 /* 5210 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5211 * 5212 * This option will effect the way delayed acks are performed. This 5213 * option allows you to get or set the delayed ack time, in 5214 * milliseconds. It also allows changing the delayed ack frequency. 5215 * Changing the frequency to 1 disables the delayed sack algorithm. If 5216 * the assoc_id is 0, then this sets or gets the endpoints default 5217 * values. If the assoc_id field is non-zero, then the set or get 5218 * effects the specified association for the one to many model (the 5219 * assoc_id field is ignored by the one to one model). Note that if 5220 * sack_delay or sack_freq are 0 when setting this option, then the 5221 * current values will remain unchanged. 5222 * 5223 * struct sctp_sack_info { 5224 * sctp_assoc_t sack_assoc_id; 5225 * uint32_t sack_delay; 5226 * uint32_t sack_freq; 5227 * }; 5228 * 5229 * sack_assoc_id - This parameter, indicates which association the user 5230 * is performing an action upon. Note that if this field's value is 5231 * zero then the endpoints default value is changed (effecting future 5232 * associations only). 5233 * 5234 * sack_delay - This parameter contains the number of milliseconds that 5235 * the user is requesting the delayed ACK timer be set to. Note that 5236 * this value is defined in the standard to be between 200 and 500 5237 * milliseconds. 5238 * 5239 * sack_freq - This parameter contains the number of packets that must 5240 * be received before a sack is sent without waiting for the delay 5241 * timer to expire. The default value for this is 2, setting this 5242 * value to 1 will disable the delayed sack algorithm. 5243 */ 5244 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5245 char __user *optval, 5246 int __user *optlen) 5247 { 5248 struct sctp_sack_info params; 5249 struct sctp_association *asoc = NULL; 5250 struct sctp_sock *sp = sctp_sk(sk); 5251 5252 if (len >= sizeof(struct sctp_sack_info)) { 5253 len = sizeof(struct sctp_sack_info); 5254 5255 if (copy_from_user(¶ms, optval, len)) 5256 return -EFAULT; 5257 } else if (len == sizeof(struct sctp_assoc_value)) { 5258 pr_warn_ratelimited(DEPRECATED 5259 "%s (pid %d) " 5260 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5261 "Use struct sctp_sack_info instead\n", 5262 current->comm, task_pid_nr(current)); 5263 if (copy_from_user(¶ms, optval, len)) 5264 return -EFAULT; 5265 } else 5266 return -EINVAL; 5267 5268 /* Get association, if sack_assoc_id != 0 and the socket is a one 5269 * to many style socket, and an association was not found, then 5270 * the id was invalid. 5271 */ 5272 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5273 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5274 return -EINVAL; 5275 5276 if (asoc) { 5277 /* Fetch association values. */ 5278 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5279 params.sack_delay = jiffies_to_msecs( 5280 asoc->sackdelay); 5281 params.sack_freq = asoc->sackfreq; 5282 5283 } else { 5284 params.sack_delay = 0; 5285 params.sack_freq = 1; 5286 } 5287 } else { 5288 /* Fetch socket values. */ 5289 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5290 params.sack_delay = sp->sackdelay; 5291 params.sack_freq = sp->sackfreq; 5292 } else { 5293 params.sack_delay = 0; 5294 params.sack_freq = 1; 5295 } 5296 } 5297 5298 if (copy_to_user(optval, ¶ms, len)) 5299 return -EFAULT; 5300 5301 if (put_user(len, optlen)) 5302 return -EFAULT; 5303 5304 return 0; 5305 } 5306 5307 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5308 * 5309 * Applications can specify protocol parameters for the default association 5310 * initialization. The option name argument to setsockopt() and getsockopt() 5311 * is SCTP_INITMSG. 5312 * 5313 * Setting initialization parameters is effective only on an unconnected 5314 * socket (for UDP-style sockets only future associations are effected 5315 * by the change). With TCP-style sockets, this option is inherited by 5316 * sockets derived from a listener socket. 5317 */ 5318 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5319 { 5320 if (len < sizeof(struct sctp_initmsg)) 5321 return -EINVAL; 5322 len = sizeof(struct sctp_initmsg); 5323 if (put_user(len, optlen)) 5324 return -EFAULT; 5325 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5326 return -EFAULT; 5327 return 0; 5328 } 5329 5330 5331 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5332 char __user *optval, int __user *optlen) 5333 { 5334 struct sctp_association *asoc; 5335 int cnt = 0; 5336 struct sctp_getaddrs getaddrs; 5337 struct sctp_transport *from; 5338 void __user *to; 5339 union sctp_addr temp; 5340 struct sctp_sock *sp = sctp_sk(sk); 5341 int addrlen; 5342 size_t space_left; 5343 int bytes_copied; 5344 5345 if (len < sizeof(struct sctp_getaddrs)) 5346 return -EINVAL; 5347 5348 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5349 return -EFAULT; 5350 5351 /* For UDP-style sockets, id specifies the association to query. */ 5352 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5353 if (!asoc) 5354 return -EINVAL; 5355 5356 to = optval + offsetof(struct sctp_getaddrs, addrs); 5357 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5358 5359 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5360 transports) { 5361 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5362 addrlen = sctp_get_pf_specific(sk->sk_family) 5363 ->addr_to_user(sp, &temp); 5364 if (space_left < addrlen) 5365 return -ENOMEM; 5366 if (copy_to_user(to, &temp, addrlen)) 5367 return -EFAULT; 5368 to += addrlen; 5369 cnt++; 5370 space_left -= addrlen; 5371 } 5372 5373 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5374 return -EFAULT; 5375 bytes_copied = ((char __user *)to) - optval; 5376 if (put_user(bytes_copied, optlen)) 5377 return -EFAULT; 5378 5379 return 0; 5380 } 5381 5382 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5383 size_t space_left, int *bytes_copied) 5384 { 5385 struct sctp_sockaddr_entry *addr; 5386 union sctp_addr temp; 5387 int cnt = 0; 5388 int addrlen; 5389 struct net *net = sock_net(sk); 5390 5391 rcu_read_lock(); 5392 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5393 if (!addr->valid) 5394 continue; 5395 5396 if ((PF_INET == sk->sk_family) && 5397 (AF_INET6 == addr->a.sa.sa_family)) 5398 continue; 5399 if ((PF_INET6 == sk->sk_family) && 5400 inet_v6_ipv6only(sk) && 5401 (AF_INET == addr->a.sa.sa_family)) 5402 continue; 5403 memcpy(&temp, &addr->a, sizeof(temp)); 5404 if (!temp.v4.sin_port) 5405 temp.v4.sin_port = htons(port); 5406 5407 addrlen = sctp_get_pf_specific(sk->sk_family) 5408 ->addr_to_user(sctp_sk(sk), &temp); 5409 5410 if (space_left < addrlen) { 5411 cnt = -ENOMEM; 5412 break; 5413 } 5414 memcpy(to, &temp, addrlen); 5415 5416 to += addrlen; 5417 cnt++; 5418 space_left -= addrlen; 5419 *bytes_copied += addrlen; 5420 } 5421 rcu_read_unlock(); 5422 5423 return cnt; 5424 } 5425 5426 5427 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5428 char __user *optval, int __user *optlen) 5429 { 5430 struct sctp_bind_addr *bp; 5431 struct sctp_association *asoc; 5432 int cnt = 0; 5433 struct sctp_getaddrs getaddrs; 5434 struct sctp_sockaddr_entry *addr; 5435 void __user *to; 5436 union sctp_addr temp; 5437 struct sctp_sock *sp = sctp_sk(sk); 5438 int addrlen; 5439 int err = 0; 5440 size_t space_left; 5441 int bytes_copied = 0; 5442 void *addrs; 5443 void *buf; 5444 5445 if (len < sizeof(struct sctp_getaddrs)) 5446 return -EINVAL; 5447 5448 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5449 return -EFAULT; 5450 5451 /* 5452 * For UDP-style sockets, id specifies the association to query. 5453 * If the id field is set to the value '0' then the locally bound 5454 * addresses are returned without regard to any particular 5455 * association. 5456 */ 5457 if (0 == getaddrs.assoc_id) { 5458 bp = &sctp_sk(sk)->ep->base.bind_addr; 5459 } else { 5460 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5461 if (!asoc) 5462 return -EINVAL; 5463 bp = &asoc->base.bind_addr; 5464 } 5465 5466 to = optval + offsetof(struct sctp_getaddrs, addrs); 5467 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5468 5469 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5470 if (!addrs) 5471 return -ENOMEM; 5472 5473 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5474 * addresses from the global local address list. 5475 */ 5476 if (sctp_list_single_entry(&bp->address_list)) { 5477 addr = list_entry(bp->address_list.next, 5478 struct sctp_sockaddr_entry, list); 5479 if (sctp_is_any(sk, &addr->a)) { 5480 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5481 space_left, &bytes_copied); 5482 if (cnt < 0) { 5483 err = cnt; 5484 goto out; 5485 } 5486 goto copy_getaddrs; 5487 } 5488 } 5489 5490 buf = addrs; 5491 /* Protection on the bound address list is not needed since 5492 * in the socket option context we hold a socket lock and 5493 * thus the bound address list can't change. 5494 */ 5495 list_for_each_entry(addr, &bp->address_list, list) { 5496 memcpy(&temp, &addr->a, sizeof(temp)); 5497 addrlen = sctp_get_pf_specific(sk->sk_family) 5498 ->addr_to_user(sp, &temp); 5499 if (space_left < addrlen) { 5500 err = -ENOMEM; /*fixme: right error?*/ 5501 goto out; 5502 } 5503 memcpy(buf, &temp, addrlen); 5504 buf += addrlen; 5505 bytes_copied += addrlen; 5506 cnt++; 5507 space_left -= addrlen; 5508 } 5509 5510 copy_getaddrs: 5511 if (copy_to_user(to, addrs, bytes_copied)) { 5512 err = -EFAULT; 5513 goto out; 5514 } 5515 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5516 err = -EFAULT; 5517 goto out; 5518 } 5519 if (put_user(bytes_copied, optlen)) 5520 err = -EFAULT; 5521 out: 5522 kfree(addrs); 5523 return err; 5524 } 5525 5526 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5527 * 5528 * Requests that the local SCTP stack use the enclosed peer address as 5529 * the association primary. The enclosed address must be one of the 5530 * association peer's addresses. 5531 */ 5532 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5533 char __user *optval, int __user *optlen) 5534 { 5535 struct sctp_prim prim; 5536 struct sctp_association *asoc; 5537 struct sctp_sock *sp = sctp_sk(sk); 5538 5539 if (len < sizeof(struct sctp_prim)) 5540 return -EINVAL; 5541 5542 len = sizeof(struct sctp_prim); 5543 5544 if (copy_from_user(&prim, optval, len)) 5545 return -EFAULT; 5546 5547 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5548 if (!asoc) 5549 return -EINVAL; 5550 5551 if (!asoc->peer.primary_path) 5552 return -ENOTCONN; 5553 5554 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5555 asoc->peer.primary_path->af_specific->sockaddr_len); 5556 5557 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5558 (union sctp_addr *)&prim.ssp_addr); 5559 5560 if (put_user(len, optlen)) 5561 return -EFAULT; 5562 if (copy_to_user(optval, &prim, len)) 5563 return -EFAULT; 5564 5565 return 0; 5566 } 5567 5568 /* 5569 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5570 * 5571 * Requests that the local endpoint set the specified Adaptation Layer 5572 * Indication parameter for all future INIT and INIT-ACK exchanges. 5573 */ 5574 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5575 char __user *optval, int __user *optlen) 5576 { 5577 struct sctp_setadaptation adaptation; 5578 5579 if (len < sizeof(struct sctp_setadaptation)) 5580 return -EINVAL; 5581 5582 len = sizeof(struct sctp_setadaptation); 5583 5584 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5585 5586 if (put_user(len, optlen)) 5587 return -EFAULT; 5588 if (copy_to_user(optval, &adaptation, len)) 5589 return -EFAULT; 5590 5591 return 0; 5592 } 5593 5594 /* 5595 * 5596 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5597 * 5598 * Applications that wish to use the sendto() system call may wish to 5599 * specify a default set of parameters that would normally be supplied 5600 * through the inclusion of ancillary data. This socket option allows 5601 * such an application to set the default sctp_sndrcvinfo structure. 5602 5603 5604 * The application that wishes to use this socket option simply passes 5605 * in to this call the sctp_sndrcvinfo structure defined in Section 5606 * 5.2.2) The input parameters accepted by this call include 5607 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5608 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5609 * to this call if the caller is using the UDP model. 5610 * 5611 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5612 */ 5613 static int sctp_getsockopt_default_send_param(struct sock *sk, 5614 int len, char __user *optval, 5615 int __user *optlen) 5616 { 5617 struct sctp_sock *sp = sctp_sk(sk); 5618 struct sctp_association *asoc; 5619 struct sctp_sndrcvinfo info; 5620 5621 if (len < sizeof(info)) 5622 return -EINVAL; 5623 5624 len = sizeof(info); 5625 5626 if (copy_from_user(&info, optval, len)) 5627 return -EFAULT; 5628 5629 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5630 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5631 return -EINVAL; 5632 if (asoc) { 5633 info.sinfo_stream = asoc->default_stream; 5634 info.sinfo_flags = asoc->default_flags; 5635 info.sinfo_ppid = asoc->default_ppid; 5636 info.sinfo_context = asoc->default_context; 5637 info.sinfo_timetolive = asoc->default_timetolive; 5638 } else { 5639 info.sinfo_stream = sp->default_stream; 5640 info.sinfo_flags = sp->default_flags; 5641 info.sinfo_ppid = sp->default_ppid; 5642 info.sinfo_context = sp->default_context; 5643 info.sinfo_timetolive = sp->default_timetolive; 5644 } 5645 5646 if (put_user(len, optlen)) 5647 return -EFAULT; 5648 if (copy_to_user(optval, &info, len)) 5649 return -EFAULT; 5650 5651 return 0; 5652 } 5653 5654 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5655 * (SCTP_DEFAULT_SNDINFO) 5656 */ 5657 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5658 char __user *optval, 5659 int __user *optlen) 5660 { 5661 struct sctp_sock *sp = sctp_sk(sk); 5662 struct sctp_association *asoc; 5663 struct sctp_sndinfo info; 5664 5665 if (len < sizeof(info)) 5666 return -EINVAL; 5667 5668 len = sizeof(info); 5669 5670 if (copy_from_user(&info, optval, len)) 5671 return -EFAULT; 5672 5673 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5674 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5675 return -EINVAL; 5676 if (asoc) { 5677 info.snd_sid = asoc->default_stream; 5678 info.snd_flags = asoc->default_flags; 5679 info.snd_ppid = asoc->default_ppid; 5680 info.snd_context = asoc->default_context; 5681 } else { 5682 info.snd_sid = sp->default_stream; 5683 info.snd_flags = sp->default_flags; 5684 info.snd_ppid = sp->default_ppid; 5685 info.snd_context = sp->default_context; 5686 } 5687 5688 if (put_user(len, optlen)) 5689 return -EFAULT; 5690 if (copy_to_user(optval, &info, len)) 5691 return -EFAULT; 5692 5693 return 0; 5694 } 5695 5696 /* 5697 * 5698 * 7.1.5 SCTP_NODELAY 5699 * 5700 * Turn on/off any Nagle-like algorithm. This means that packets are 5701 * generally sent as soon as possible and no unnecessary delays are 5702 * introduced, at the cost of more packets in the network. Expects an 5703 * integer boolean flag. 5704 */ 5705 5706 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5707 char __user *optval, int __user *optlen) 5708 { 5709 int val; 5710 5711 if (len < sizeof(int)) 5712 return -EINVAL; 5713 5714 len = sizeof(int); 5715 val = (sctp_sk(sk)->nodelay == 1); 5716 if (put_user(len, optlen)) 5717 return -EFAULT; 5718 if (copy_to_user(optval, &val, len)) 5719 return -EFAULT; 5720 return 0; 5721 } 5722 5723 /* 5724 * 5725 * 7.1.1 SCTP_RTOINFO 5726 * 5727 * The protocol parameters used to initialize and bound retransmission 5728 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5729 * and modify these parameters. 5730 * All parameters are time values, in milliseconds. A value of 0, when 5731 * modifying the parameters, indicates that the current value should not 5732 * be changed. 5733 * 5734 */ 5735 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5736 char __user *optval, 5737 int __user *optlen) { 5738 struct sctp_rtoinfo rtoinfo; 5739 struct sctp_association *asoc; 5740 5741 if (len < sizeof (struct sctp_rtoinfo)) 5742 return -EINVAL; 5743 5744 len = sizeof(struct sctp_rtoinfo); 5745 5746 if (copy_from_user(&rtoinfo, optval, len)) 5747 return -EFAULT; 5748 5749 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5750 5751 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5752 return -EINVAL; 5753 5754 /* Values corresponding to the specific association. */ 5755 if (asoc) { 5756 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5757 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5758 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5759 } else { 5760 /* Values corresponding to the endpoint. */ 5761 struct sctp_sock *sp = sctp_sk(sk); 5762 5763 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5764 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5765 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5766 } 5767 5768 if (put_user(len, optlen)) 5769 return -EFAULT; 5770 5771 if (copy_to_user(optval, &rtoinfo, len)) 5772 return -EFAULT; 5773 5774 return 0; 5775 } 5776 5777 /* 5778 * 5779 * 7.1.2 SCTP_ASSOCINFO 5780 * 5781 * This option is used to tune the maximum retransmission attempts 5782 * of the association. 5783 * Returns an error if the new association retransmission value is 5784 * greater than the sum of the retransmission value of the peer. 5785 * See [SCTP] for more information. 5786 * 5787 */ 5788 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5789 char __user *optval, 5790 int __user *optlen) 5791 { 5792 5793 struct sctp_assocparams assocparams; 5794 struct sctp_association *asoc; 5795 struct list_head *pos; 5796 int cnt = 0; 5797 5798 if (len < sizeof (struct sctp_assocparams)) 5799 return -EINVAL; 5800 5801 len = sizeof(struct sctp_assocparams); 5802 5803 if (copy_from_user(&assocparams, optval, len)) 5804 return -EFAULT; 5805 5806 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5807 5808 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5809 return -EINVAL; 5810 5811 /* Values correspoinding to the specific association */ 5812 if (asoc) { 5813 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5814 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5815 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5816 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5817 5818 list_for_each(pos, &asoc->peer.transport_addr_list) { 5819 cnt++; 5820 } 5821 5822 assocparams.sasoc_number_peer_destinations = cnt; 5823 } else { 5824 /* Values corresponding to the endpoint */ 5825 struct sctp_sock *sp = sctp_sk(sk); 5826 5827 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5828 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5829 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5830 assocparams.sasoc_cookie_life = 5831 sp->assocparams.sasoc_cookie_life; 5832 assocparams.sasoc_number_peer_destinations = 5833 sp->assocparams. 5834 sasoc_number_peer_destinations; 5835 } 5836 5837 if (put_user(len, optlen)) 5838 return -EFAULT; 5839 5840 if (copy_to_user(optval, &assocparams, len)) 5841 return -EFAULT; 5842 5843 return 0; 5844 } 5845 5846 /* 5847 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5848 * 5849 * This socket option is a boolean flag which turns on or off mapped V4 5850 * addresses. If this option is turned on and the socket is type 5851 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5852 * If this option is turned off, then no mapping will be done of V4 5853 * addresses and a user will receive both PF_INET6 and PF_INET type 5854 * addresses on the socket. 5855 */ 5856 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5857 char __user *optval, int __user *optlen) 5858 { 5859 int val; 5860 struct sctp_sock *sp = sctp_sk(sk); 5861 5862 if (len < sizeof(int)) 5863 return -EINVAL; 5864 5865 len = sizeof(int); 5866 val = sp->v4mapped; 5867 if (put_user(len, optlen)) 5868 return -EFAULT; 5869 if (copy_to_user(optval, &val, len)) 5870 return -EFAULT; 5871 5872 return 0; 5873 } 5874 5875 /* 5876 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5877 * (chapter and verse is quoted at sctp_setsockopt_context()) 5878 */ 5879 static int sctp_getsockopt_context(struct sock *sk, int len, 5880 char __user *optval, int __user *optlen) 5881 { 5882 struct sctp_assoc_value params; 5883 struct sctp_sock *sp; 5884 struct sctp_association *asoc; 5885 5886 if (len < sizeof(struct sctp_assoc_value)) 5887 return -EINVAL; 5888 5889 len = sizeof(struct sctp_assoc_value); 5890 5891 if (copy_from_user(¶ms, optval, len)) 5892 return -EFAULT; 5893 5894 sp = sctp_sk(sk); 5895 5896 if (params.assoc_id != 0) { 5897 asoc = sctp_id2assoc(sk, params.assoc_id); 5898 if (!asoc) 5899 return -EINVAL; 5900 params.assoc_value = asoc->default_rcv_context; 5901 } else { 5902 params.assoc_value = sp->default_rcv_context; 5903 } 5904 5905 if (put_user(len, optlen)) 5906 return -EFAULT; 5907 if (copy_to_user(optval, ¶ms, len)) 5908 return -EFAULT; 5909 5910 return 0; 5911 } 5912 5913 /* 5914 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5915 * This option will get or set the maximum size to put in any outgoing 5916 * SCTP DATA chunk. If a message is larger than this size it will be 5917 * fragmented by SCTP into the specified size. Note that the underlying 5918 * SCTP implementation may fragment into smaller sized chunks when the 5919 * PMTU of the underlying association is smaller than the value set by 5920 * the user. The default value for this option is '0' which indicates 5921 * the user is NOT limiting fragmentation and only the PMTU will effect 5922 * SCTP's choice of DATA chunk size. Note also that values set larger 5923 * than the maximum size of an IP datagram will effectively let SCTP 5924 * control fragmentation (i.e. the same as setting this option to 0). 5925 * 5926 * The following structure is used to access and modify this parameter: 5927 * 5928 * struct sctp_assoc_value { 5929 * sctp_assoc_t assoc_id; 5930 * uint32_t assoc_value; 5931 * }; 5932 * 5933 * assoc_id: This parameter is ignored for one-to-one style sockets. 5934 * For one-to-many style sockets this parameter indicates which 5935 * association the user is performing an action upon. Note that if 5936 * this field's value is zero then the endpoints default value is 5937 * changed (effecting future associations only). 5938 * assoc_value: This parameter specifies the maximum size in bytes. 5939 */ 5940 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5941 char __user *optval, int __user *optlen) 5942 { 5943 struct sctp_assoc_value params; 5944 struct sctp_association *asoc; 5945 5946 if (len == sizeof(int)) { 5947 pr_warn_ratelimited(DEPRECATED 5948 "%s (pid %d) " 5949 "Use of int in maxseg socket option.\n" 5950 "Use struct sctp_assoc_value instead\n", 5951 current->comm, task_pid_nr(current)); 5952 params.assoc_id = 0; 5953 } else if (len >= sizeof(struct sctp_assoc_value)) { 5954 len = sizeof(struct sctp_assoc_value); 5955 if (copy_from_user(¶ms, optval, sizeof(params))) 5956 return -EFAULT; 5957 } else 5958 return -EINVAL; 5959 5960 asoc = sctp_id2assoc(sk, params.assoc_id); 5961 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5962 return -EINVAL; 5963 5964 if (asoc) 5965 params.assoc_value = asoc->frag_point; 5966 else 5967 params.assoc_value = sctp_sk(sk)->user_frag; 5968 5969 if (put_user(len, optlen)) 5970 return -EFAULT; 5971 if (len == sizeof(int)) { 5972 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5973 return -EFAULT; 5974 } else { 5975 if (copy_to_user(optval, ¶ms, len)) 5976 return -EFAULT; 5977 } 5978 5979 return 0; 5980 } 5981 5982 /* 5983 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5984 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5985 */ 5986 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5987 char __user *optval, int __user *optlen) 5988 { 5989 int val; 5990 5991 if (len < sizeof(int)) 5992 return -EINVAL; 5993 5994 len = sizeof(int); 5995 5996 val = sctp_sk(sk)->frag_interleave; 5997 if (put_user(len, optlen)) 5998 return -EFAULT; 5999 if (copy_to_user(optval, &val, len)) 6000 return -EFAULT; 6001 6002 return 0; 6003 } 6004 6005 /* 6006 * 7.1.25. Set or Get the sctp partial delivery point 6007 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6008 */ 6009 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6010 char __user *optval, 6011 int __user *optlen) 6012 { 6013 u32 val; 6014 6015 if (len < sizeof(u32)) 6016 return -EINVAL; 6017 6018 len = sizeof(u32); 6019 6020 val = sctp_sk(sk)->pd_point; 6021 if (put_user(len, optlen)) 6022 return -EFAULT; 6023 if (copy_to_user(optval, &val, len)) 6024 return -EFAULT; 6025 6026 return 0; 6027 } 6028 6029 /* 6030 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6031 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6032 */ 6033 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6034 char __user *optval, 6035 int __user *optlen) 6036 { 6037 struct sctp_assoc_value params; 6038 struct sctp_sock *sp; 6039 struct sctp_association *asoc; 6040 6041 if (len == sizeof(int)) { 6042 pr_warn_ratelimited(DEPRECATED 6043 "%s (pid %d) " 6044 "Use of int in max_burst socket option.\n" 6045 "Use struct sctp_assoc_value instead\n", 6046 current->comm, task_pid_nr(current)); 6047 params.assoc_id = 0; 6048 } else if (len >= sizeof(struct sctp_assoc_value)) { 6049 len = sizeof(struct sctp_assoc_value); 6050 if (copy_from_user(¶ms, optval, len)) 6051 return -EFAULT; 6052 } else 6053 return -EINVAL; 6054 6055 sp = sctp_sk(sk); 6056 6057 if (params.assoc_id != 0) { 6058 asoc = sctp_id2assoc(sk, params.assoc_id); 6059 if (!asoc) 6060 return -EINVAL; 6061 params.assoc_value = asoc->max_burst; 6062 } else 6063 params.assoc_value = sp->max_burst; 6064 6065 if (len == sizeof(int)) { 6066 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6067 return -EFAULT; 6068 } else { 6069 if (copy_to_user(optval, ¶ms, len)) 6070 return -EFAULT; 6071 } 6072 6073 return 0; 6074 6075 } 6076 6077 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6078 char __user *optval, int __user *optlen) 6079 { 6080 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6081 struct sctp_hmacalgo __user *p = (void __user *)optval; 6082 struct sctp_hmac_algo_param *hmacs; 6083 __u16 data_len = 0; 6084 u32 num_idents; 6085 int i; 6086 6087 if (!ep->auth_enable) 6088 return -EACCES; 6089 6090 hmacs = ep->auth_hmacs_list; 6091 data_len = ntohs(hmacs->param_hdr.length) - 6092 sizeof(struct sctp_paramhdr); 6093 6094 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6095 return -EINVAL; 6096 6097 len = sizeof(struct sctp_hmacalgo) + data_len; 6098 num_idents = data_len / sizeof(u16); 6099 6100 if (put_user(len, optlen)) 6101 return -EFAULT; 6102 if (put_user(num_idents, &p->shmac_num_idents)) 6103 return -EFAULT; 6104 for (i = 0; i < num_idents; i++) { 6105 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6106 6107 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6108 return -EFAULT; 6109 } 6110 return 0; 6111 } 6112 6113 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6114 char __user *optval, int __user *optlen) 6115 { 6116 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6117 struct sctp_authkeyid val; 6118 struct sctp_association *asoc; 6119 6120 if (!ep->auth_enable) 6121 return -EACCES; 6122 6123 if (len < sizeof(struct sctp_authkeyid)) 6124 return -EINVAL; 6125 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6126 return -EFAULT; 6127 6128 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6129 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6130 return -EINVAL; 6131 6132 if (asoc) 6133 val.scact_keynumber = asoc->active_key_id; 6134 else 6135 val.scact_keynumber = ep->active_key_id; 6136 6137 len = sizeof(struct sctp_authkeyid); 6138 if (put_user(len, optlen)) 6139 return -EFAULT; 6140 if (copy_to_user(optval, &val, len)) 6141 return -EFAULT; 6142 6143 return 0; 6144 } 6145 6146 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6147 char __user *optval, int __user *optlen) 6148 { 6149 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6150 struct sctp_authchunks __user *p = (void __user *)optval; 6151 struct sctp_authchunks val; 6152 struct sctp_association *asoc; 6153 struct sctp_chunks_param *ch; 6154 u32 num_chunks = 0; 6155 char __user *to; 6156 6157 if (!ep->auth_enable) 6158 return -EACCES; 6159 6160 if (len < sizeof(struct sctp_authchunks)) 6161 return -EINVAL; 6162 6163 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6164 return -EFAULT; 6165 6166 to = p->gauth_chunks; 6167 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6168 if (!asoc) 6169 return -EINVAL; 6170 6171 ch = asoc->peer.peer_chunks; 6172 if (!ch) 6173 goto num; 6174 6175 /* See if the user provided enough room for all the data */ 6176 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6177 if (len < num_chunks) 6178 return -EINVAL; 6179 6180 if (copy_to_user(to, ch->chunks, num_chunks)) 6181 return -EFAULT; 6182 num: 6183 len = sizeof(struct sctp_authchunks) + num_chunks; 6184 if (put_user(len, optlen)) 6185 return -EFAULT; 6186 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6187 return -EFAULT; 6188 return 0; 6189 } 6190 6191 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6192 char __user *optval, int __user *optlen) 6193 { 6194 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6195 struct sctp_authchunks __user *p = (void __user *)optval; 6196 struct sctp_authchunks val; 6197 struct sctp_association *asoc; 6198 struct sctp_chunks_param *ch; 6199 u32 num_chunks = 0; 6200 char __user *to; 6201 6202 if (!ep->auth_enable) 6203 return -EACCES; 6204 6205 if (len < sizeof(struct sctp_authchunks)) 6206 return -EINVAL; 6207 6208 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6209 return -EFAULT; 6210 6211 to = p->gauth_chunks; 6212 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6213 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6214 return -EINVAL; 6215 6216 if (asoc) 6217 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6218 else 6219 ch = ep->auth_chunk_list; 6220 6221 if (!ch) 6222 goto num; 6223 6224 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6225 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6226 return -EINVAL; 6227 6228 if (copy_to_user(to, ch->chunks, num_chunks)) 6229 return -EFAULT; 6230 num: 6231 len = sizeof(struct sctp_authchunks) + num_chunks; 6232 if (put_user(len, optlen)) 6233 return -EFAULT; 6234 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6235 return -EFAULT; 6236 6237 return 0; 6238 } 6239 6240 /* 6241 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6242 * This option gets the current number of associations that are attached 6243 * to a one-to-many style socket. The option value is an uint32_t. 6244 */ 6245 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6246 char __user *optval, int __user *optlen) 6247 { 6248 struct sctp_sock *sp = sctp_sk(sk); 6249 struct sctp_association *asoc; 6250 u32 val = 0; 6251 6252 if (sctp_style(sk, TCP)) 6253 return -EOPNOTSUPP; 6254 6255 if (len < sizeof(u32)) 6256 return -EINVAL; 6257 6258 len = sizeof(u32); 6259 6260 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6261 val++; 6262 } 6263 6264 if (put_user(len, optlen)) 6265 return -EFAULT; 6266 if (copy_to_user(optval, &val, len)) 6267 return -EFAULT; 6268 6269 return 0; 6270 } 6271 6272 /* 6273 * 8.1.23 SCTP_AUTO_ASCONF 6274 * See the corresponding setsockopt entry as description 6275 */ 6276 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6277 char __user *optval, int __user *optlen) 6278 { 6279 int val = 0; 6280 6281 if (len < sizeof(int)) 6282 return -EINVAL; 6283 6284 len = sizeof(int); 6285 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6286 val = 1; 6287 if (put_user(len, optlen)) 6288 return -EFAULT; 6289 if (copy_to_user(optval, &val, len)) 6290 return -EFAULT; 6291 return 0; 6292 } 6293 6294 /* 6295 * 8.2.6. Get the Current Identifiers of Associations 6296 * (SCTP_GET_ASSOC_ID_LIST) 6297 * 6298 * This option gets the current list of SCTP association identifiers of 6299 * the SCTP associations handled by a one-to-many style socket. 6300 */ 6301 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6302 char __user *optval, int __user *optlen) 6303 { 6304 struct sctp_sock *sp = sctp_sk(sk); 6305 struct sctp_association *asoc; 6306 struct sctp_assoc_ids *ids; 6307 u32 num = 0; 6308 6309 if (sctp_style(sk, TCP)) 6310 return -EOPNOTSUPP; 6311 6312 if (len < sizeof(struct sctp_assoc_ids)) 6313 return -EINVAL; 6314 6315 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6316 num++; 6317 } 6318 6319 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6320 return -EINVAL; 6321 6322 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6323 6324 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6325 if (unlikely(!ids)) 6326 return -ENOMEM; 6327 6328 ids->gaids_number_of_ids = num; 6329 num = 0; 6330 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6331 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6332 } 6333 6334 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6335 kfree(ids); 6336 return -EFAULT; 6337 } 6338 6339 kfree(ids); 6340 return 0; 6341 } 6342 6343 /* 6344 * SCTP_PEER_ADDR_THLDS 6345 * 6346 * This option allows us to fetch the partially failed threshold for one or all 6347 * transports in an association. See Section 6.1 of: 6348 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6349 */ 6350 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6351 char __user *optval, 6352 int len, 6353 int __user *optlen) 6354 { 6355 struct sctp_paddrthlds val; 6356 struct sctp_transport *trans; 6357 struct sctp_association *asoc; 6358 6359 if (len < sizeof(struct sctp_paddrthlds)) 6360 return -EINVAL; 6361 len = sizeof(struct sctp_paddrthlds); 6362 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6363 return -EFAULT; 6364 6365 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6366 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6367 if (!asoc) 6368 return -ENOENT; 6369 6370 val.spt_pathpfthld = asoc->pf_retrans; 6371 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6372 } else { 6373 trans = sctp_addr_id2transport(sk, &val.spt_address, 6374 val.spt_assoc_id); 6375 if (!trans) 6376 return -ENOENT; 6377 6378 val.spt_pathmaxrxt = trans->pathmaxrxt; 6379 val.spt_pathpfthld = trans->pf_retrans; 6380 } 6381 6382 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6383 return -EFAULT; 6384 6385 return 0; 6386 } 6387 6388 /* 6389 * SCTP_GET_ASSOC_STATS 6390 * 6391 * This option retrieves local per endpoint statistics. It is modeled 6392 * after OpenSolaris' implementation 6393 */ 6394 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6395 char __user *optval, 6396 int __user *optlen) 6397 { 6398 struct sctp_assoc_stats sas; 6399 struct sctp_association *asoc = NULL; 6400 6401 /* User must provide at least the assoc id */ 6402 if (len < sizeof(sctp_assoc_t)) 6403 return -EINVAL; 6404 6405 /* Allow the struct to grow and fill in as much as possible */ 6406 len = min_t(size_t, len, sizeof(sas)); 6407 6408 if (copy_from_user(&sas, optval, len)) 6409 return -EFAULT; 6410 6411 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6412 if (!asoc) 6413 return -EINVAL; 6414 6415 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6416 sas.sas_gapcnt = asoc->stats.gapcnt; 6417 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6418 sas.sas_osacks = asoc->stats.osacks; 6419 sas.sas_isacks = asoc->stats.isacks; 6420 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6421 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6422 sas.sas_oodchunks = asoc->stats.oodchunks; 6423 sas.sas_iodchunks = asoc->stats.iodchunks; 6424 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6425 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6426 sas.sas_idupchunks = asoc->stats.idupchunks; 6427 sas.sas_opackets = asoc->stats.opackets; 6428 sas.sas_ipackets = asoc->stats.ipackets; 6429 6430 /* New high max rto observed, will return 0 if not a single 6431 * RTO update took place. obs_rto_ipaddr will be bogus 6432 * in such a case 6433 */ 6434 sas.sas_maxrto = asoc->stats.max_obs_rto; 6435 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6436 sizeof(struct sockaddr_storage)); 6437 6438 /* Mark beginning of a new observation period */ 6439 asoc->stats.max_obs_rto = asoc->rto_min; 6440 6441 if (put_user(len, optlen)) 6442 return -EFAULT; 6443 6444 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6445 6446 if (copy_to_user(optval, &sas, len)) 6447 return -EFAULT; 6448 6449 return 0; 6450 } 6451 6452 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6453 char __user *optval, 6454 int __user *optlen) 6455 { 6456 int val = 0; 6457 6458 if (len < sizeof(int)) 6459 return -EINVAL; 6460 6461 len = sizeof(int); 6462 if (sctp_sk(sk)->recvrcvinfo) 6463 val = 1; 6464 if (put_user(len, optlen)) 6465 return -EFAULT; 6466 if (copy_to_user(optval, &val, len)) 6467 return -EFAULT; 6468 6469 return 0; 6470 } 6471 6472 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6473 char __user *optval, 6474 int __user *optlen) 6475 { 6476 int val = 0; 6477 6478 if (len < sizeof(int)) 6479 return -EINVAL; 6480 6481 len = sizeof(int); 6482 if (sctp_sk(sk)->recvnxtinfo) 6483 val = 1; 6484 if (put_user(len, optlen)) 6485 return -EFAULT; 6486 if (copy_to_user(optval, &val, len)) 6487 return -EFAULT; 6488 6489 return 0; 6490 } 6491 6492 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6493 char __user *optval, 6494 int __user *optlen) 6495 { 6496 struct sctp_assoc_value params; 6497 struct sctp_association *asoc; 6498 int retval = -EFAULT; 6499 6500 if (len < sizeof(params)) { 6501 retval = -EINVAL; 6502 goto out; 6503 } 6504 6505 len = sizeof(params); 6506 if (copy_from_user(¶ms, optval, len)) 6507 goto out; 6508 6509 asoc = sctp_id2assoc(sk, params.assoc_id); 6510 if (asoc) { 6511 params.assoc_value = asoc->prsctp_enable; 6512 } else if (!params.assoc_id) { 6513 struct sctp_sock *sp = sctp_sk(sk); 6514 6515 params.assoc_value = sp->ep->prsctp_enable; 6516 } else { 6517 retval = -EINVAL; 6518 goto out; 6519 } 6520 6521 if (put_user(len, optlen)) 6522 goto out; 6523 6524 if (copy_to_user(optval, ¶ms, len)) 6525 goto out; 6526 6527 retval = 0; 6528 6529 out: 6530 return retval; 6531 } 6532 6533 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6534 char __user *optval, 6535 int __user *optlen) 6536 { 6537 struct sctp_default_prinfo info; 6538 struct sctp_association *asoc; 6539 int retval = -EFAULT; 6540 6541 if (len < sizeof(info)) { 6542 retval = -EINVAL; 6543 goto out; 6544 } 6545 6546 len = sizeof(info); 6547 if (copy_from_user(&info, optval, len)) 6548 goto out; 6549 6550 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6551 if (asoc) { 6552 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6553 info.pr_value = asoc->default_timetolive; 6554 } else if (!info.pr_assoc_id) { 6555 struct sctp_sock *sp = sctp_sk(sk); 6556 6557 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6558 info.pr_value = sp->default_timetolive; 6559 } else { 6560 retval = -EINVAL; 6561 goto out; 6562 } 6563 6564 if (put_user(len, optlen)) 6565 goto out; 6566 6567 if (copy_to_user(optval, &info, len)) 6568 goto out; 6569 6570 retval = 0; 6571 6572 out: 6573 return retval; 6574 } 6575 6576 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6577 char __user *optval, 6578 int __user *optlen) 6579 { 6580 struct sctp_prstatus params; 6581 struct sctp_association *asoc; 6582 int policy; 6583 int retval = -EINVAL; 6584 6585 if (len < sizeof(params)) 6586 goto out; 6587 6588 len = sizeof(params); 6589 if (copy_from_user(¶ms, optval, len)) { 6590 retval = -EFAULT; 6591 goto out; 6592 } 6593 6594 policy = params.sprstat_policy; 6595 if (policy & ~SCTP_PR_SCTP_MASK) 6596 goto out; 6597 6598 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6599 if (!asoc) 6600 goto out; 6601 6602 if (policy == SCTP_PR_SCTP_NONE) { 6603 params.sprstat_abandoned_unsent = 0; 6604 params.sprstat_abandoned_sent = 0; 6605 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6606 params.sprstat_abandoned_unsent += 6607 asoc->abandoned_unsent[policy]; 6608 params.sprstat_abandoned_sent += 6609 asoc->abandoned_sent[policy]; 6610 } 6611 } else { 6612 params.sprstat_abandoned_unsent = 6613 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6614 params.sprstat_abandoned_sent = 6615 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6616 } 6617 6618 if (put_user(len, optlen)) { 6619 retval = -EFAULT; 6620 goto out; 6621 } 6622 6623 if (copy_to_user(optval, ¶ms, len)) { 6624 retval = -EFAULT; 6625 goto out; 6626 } 6627 6628 retval = 0; 6629 6630 out: 6631 return retval; 6632 } 6633 6634 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6635 char __user *optval, 6636 int __user *optlen) 6637 { 6638 struct sctp_stream_out *streamout; 6639 struct sctp_association *asoc; 6640 struct sctp_prstatus params; 6641 int retval = -EINVAL; 6642 int policy; 6643 6644 if (len < sizeof(params)) 6645 goto out; 6646 6647 len = sizeof(params); 6648 if (copy_from_user(¶ms, optval, len)) { 6649 retval = -EFAULT; 6650 goto out; 6651 } 6652 6653 policy = params.sprstat_policy; 6654 if (policy & ~SCTP_PR_SCTP_MASK) 6655 goto out; 6656 6657 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6658 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6659 goto out; 6660 6661 streamout = &asoc->stream.out[params.sprstat_sid]; 6662 if (policy == SCTP_PR_SCTP_NONE) { 6663 params.sprstat_abandoned_unsent = 0; 6664 params.sprstat_abandoned_sent = 0; 6665 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6666 params.sprstat_abandoned_unsent += 6667 streamout->abandoned_unsent[policy]; 6668 params.sprstat_abandoned_sent += 6669 streamout->abandoned_sent[policy]; 6670 } 6671 } else { 6672 params.sprstat_abandoned_unsent = 6673 streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6674 params.sprstat_abandoned_sent = 6675 streamout->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6676 } 6677 6678 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6679 retval = -EFAULT; 6680 goto out; 6681 } 6682 6683 retval = 0; 6684 6685 out: 6686 return retval; 6687 } 6688 6689 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6690 char __user *optval, 6691 int __user *optlen) 6692 { 6693 struct sctp_assoc_value params; 6694 struct sctp_association *asoc; 6695 int retval = -EFAULT; 6696 6697 if (len < sizeof(params)) { 6698 retval = -EINVAL; 6699 goto out; 6700 } 6701 6702 len = sizeof(params); 6703 if (copy_from_user(¶ms, optval, len)) 6704 goto out; 6705 6706 asoc = sctp_id2assoc(sk, params.assoc_id); 6707 if (asoc) { 6708 params.assoc_value = asoc->reconf_enable; 6709 } else if (!params.assoc_id) { 6710 struct sctp_sock *sp = sctp_sk(sk); 6711 6712 params.assoc_value = sp->ep->reconf_enable; 6713 } else { 6714 retval = -EINVAL; 6715 goto out; 6716 } 6717 6718 if (put_user(len, optlen)) 6719 goto out; 6720 6721 if (copy_to_user(optval, ¶ms, len)) 6722 goto out; 6723 6724 retval = 0; 6725 6726 out: 6727 return retval; 6728 } 6729 6730 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6731 char __user *optval, 6732 int __user *optlen) 6733 { 6734 struct sctp_assoc_value params; 6735 struct sctp_association *asoc; 6736 int retval = -EFAULT; 6737 6738 if (len < sizeof(params)) { 6739 retval = -EINVAL; 6740 goto out; 6741 } 6742 6743 len = sizeof(params); 6744 if (copy_from_user(¶ms, optval, len)) 6745 goto out; 6746 6747 asoc = sctp_id2assoc(sk, params.assoc_id); 6748 if (asoc) { 6749 params.assoc_value = asoc->strreset_enable; 6750 } else if (!params.assoc_id) { 6751 struct sctp_sock *sp = sctp_sk(sk); 6752 6753 params.assoc_value = sp->ep->strreset_enable; 6754 } else { 6755 retval = -EINVAL; 6756 goto out; 6757 } 6758 6759 if (put_user(len, optlen)) 6760 goto out; 6761 6762 if (copy_to_user(optval, ¶ms, len)) 6763 goto out; 6764 6765 retval = 0; 6766 6767 out: 6768 return retval; 6769 } 6770 6771 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6772 char __user *optval, int __user *optlen) 6773 { 6774 int retval = 0; 6775 int len; 6776 6777 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6778 6779 /* I can hardly begin to describe how wrong this is. This is 6780 * so broken as to be worse than useless. The API draft 6781 * REALLY is NOT helpful here... I am not convinced that the 6782 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6783 * are at all well-founded. 6784 */ 6785 if (level != SOL_SCTP) { 6786 struct sctp_af *af = sctp_sk(sk)->pf->af; 6787 6788 retval = af->getsockopt(sk, level, optname, optval, optlen); 6789 return retval; 6790 } 6791 6792 if (get_user(len, optlen)) 6793 return -EFAULT; 6794 6795 if (len < 0) 6796 return -EINVAL; 6797 6798 lock_sock(sk); 6799 6800 switch (optname) { 6801 case SCTP_STATUS: 6802 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6803 break; 6804 case SCTP_DISABLE_FRAGMENTS: 6805 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6806 optlen); 6807 break; 6808 case SCTP_EVENTS: 6809 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6810 break; 6811 case SCTP_AUTOCLOSE: 6812 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6813 break; 6814 case SCTP_SOCKOPT_PEELOFF: 6815 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6816 break; 6817 case SCTP_SOCKOPT_PEELOFF_FLAGS: 6818 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 6819 break; 6820 case SCTP_PEER_ADDR_PARAMS: 6821 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6822 optlen); 6823 break; 6824 case SCTP_DELAYED_SACK: 6825 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6826 optlen); 6827 break; 6828 case SCTP_INITMSG: 6829 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6830 break; 6831 case SCTP_GET_PEER_ADDRS: 6832 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6833 optlen); 6834 break; 6835 case SCTP_GET_LOCAL_ADDRS: 6836 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6837 optlen); 6838 break; 6839 case SCTP_SOCKOPT_CONNECTX3: 6840 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6841 break; 6842 case SCTP_DEFAULT_SEND_PARAM: 6843 retval = sctp_getsockopt_default_send_param(sk, len, 6844 optval, optlen); 6845 break; 6846 case SCTP_DEFAULT_SNDINFO: 6847 retval = sctp_getsockopt_default_sndinfo(sk, len, 6848 optval, optlen); 6849 break; 6850 case SCTP_PRIMARY_ADDR: 6851 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6852 break; 6853 case SCTP_NODELAY: 6854 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6855 break; 6856 case SCTP_RTOINFO: 6857 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6858 break; 6859 case SCTP_ASSOCINFO: 6860 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6861 break; 6862 case SCTP_I_WANT_MAPPED_V4_ADDR: 6863 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6864 break; 6865 case SCTP_MAXSEG: 6866 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6867 break; 6868 case SCTP_GET_PEER_ADDR_INFO: 6869 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6870 optlen); 6871 break; 6872 case SCTP_ADAPTATION_LAYER: 6873 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6874 optlen); 6875 break; 6876 case SCTP_CONTEXT: 6877 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6878 break; 6879 case SCTP_FRAGMENT_INTERLEAVE: 6880 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6881 optlen); 6882 break; 6883 case SCTP_PARTIAL_DELIVERY_POINT: 6884 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6885 optlen); 6886 break; 6887 case SCTP_MAX_BURST: 6888 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6889 break; 6890 case SCTP_AUTH_KEY: 6891 case SCTP_AUTH_CHUNK: 6892 case SCTP_AUTH_DELETE_KEY: 6893 retval = -EOPNOTSUPP; 6894 break; 6895 case SCTP_HMAC_IDENT: 6896 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6897 break; 6898 case SCTP_AUTH_ACTIVE_KEY: 6899 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6900 break; 6901 case SCTP_PEER_AUTH_CHUNKS: 6902 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6903 optlen); 6904 break; 6905 case SCTP_LOCAL_AUTH_CHUNKS: 6906 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6907 optlen); 6908 break; 6909 case SCTP_GET_ASSOC_NUMBER: 6910 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6911 break; 6912 case SCTP_GET_ASSOC_ID_LIST: 6913 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6914 break; 6915 case SCTP_AUTO_ASCONF: 6916 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6917 break; 6918 case SCTP_PEER_ADDR_THLDS: 6919 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6920 break; 6921 case SCTP_GET_ASSOC_STATS: 6922 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6923 break; 6924 case SCTP_RECVRCVINFO: 6925 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6926 break; 6927 case SCTP_RECVNXTINFO: 6928 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6929 break; 6930 case SCTP_PR_SUPPORTED: 6931 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6932 break; 6933 case SCTP_DEFAULT_PRINFO: 6934 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6935 optlen); 6936 break; 6937 case SCTP_PR_ASSOC_STATUS: 6938 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6939 optlen); 6940 break; 6941 case SCTP_PR_STREAM_STATUS: 6942 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 6943 optlen); 6944 break; 6945 case SCTP_RECONFIG_SUPPORTED: 6946 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 6947 optlen); 6948 break; 6949 case SCTP_ENABLE_STREAM_RESET: 6950 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6951 optlen); 6952 break; 6953 default: 6954 retval = -ENOPROTOOPT; 6955 break; 6956 } 6957 6958 release_sock(sk); 6959 return retval; 6960 } 6961 6962 static int sctp_hash(struct sock *sk) 6963 { 6964 /* STUB */ 6965 return 0; 6966 } 6967 6968 static void sctp_unhash(struct sock *sk) 6969 { 6970 /* STUB */ 6971 } 6972 6973 /* Check if port is acceptable. Possibly find first available port. 6974 * 6975 * The port hash table (contained in the 'global' SCTP protocol storage 6976 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6977 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6978 * list (the list number is the port number hashed out, so as you 6979 * would expect from a hash function, all the ports in a given list have 6980 * such a number that hashes out to the same list number; you were 6981 * expecting that, right?); so each list has a set of ports, with a 6982 * link to the socket (struct sock) that uses it, the port number and 6983 * a fastreuse flag (FIXME: NPI ipg). 6984 */ 6985 static struct sctp_bind_bucket *sctp_bucket_create( 6986 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6987 6988 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6989 { 6990 struct sctp_bind_hashbucket *head; /* hash list */ 6991 struct sctp_bind_bucket *pp; 6992 unsigned short snum; 6993 int ret; 6994 6995 snum = ntohs(addr->v4.sin_port); 6996 6997 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6998 6999 local_bh_disable(); 7000 7001 if (snum == 0) { 7002 /* Search for an available port. */ 7003 int low, high, remaining, index; 7004 unsigned int rover; 7005 struct net *net = sock_net(sk); 7006 7007 inet_get_local_port_range(net, &low, &high); 7008 remaining = (high - low) + 1; 7009 rover = prandom_u32() % remaining + low; 7010 7011 do { 7012 rover++; 7013 if ((rover < low) || (rover > high)) 7014 rover = low; 7015 if (inet_is_local_reserved_port(net, rover)) 7016 continue; 7017 index = sctp_phashfn(sock_net(sk), rover); 7018 head = &sctp_port_hashtable[index]; 7019 spin_lock(&head->lock); 7020 sctp_for_each_hentry(pp, &head->chain) 7021 if ((pp->port == rover) && 7022 net_eq(sock_net(sk), pp->net)) 7023 goto next; 7024 break; 7025 next: 7026 spin_unlock(&head->lock); 7027 } while (--remaining > 0); 7028 7029 /* Exhausted local port range during search? */ 7030 ret = 1; 7031 if (remaining <= 0) 7032 goto fail; 7033 7034 /* OK, here is the one we will use. HEAD (the port 7035 * hash table list entry) is non-NULL and we hold it's 7036 * mutex. 7037 */ 7038 snum = rover; 7039 } else { 7040 /* We are given an specific port number; we verify 7041 * that it is not being used. If it is used, we will 7042 * exahust the search in the hash list corresponding 7043 * to the port number (snum) - we detect that with the 7044 * port iterator, pp being NULL. 7045 */ 7046 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7047 spin_lock(&head->lock); 7048 sctp_for_each_hentry(pp, &head->chain) { 7049 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7050 goto pp_found; 7051 } 7052 } 7053 pp = NULL; 7054 goto pp_not_found; 7055 pp_found: 7056 if (!hlist_empty(&pp->owner)) { 7057 /* We had a port hash table hit - there is an 7058 * available port (pp != NULL) and it is being 7059 * used by other socket (pp->owner not empty); that other 7060 * socket is going to be sk2. 7061 */ 7062 int reuse = sk->sk_reuse; 7063 struct sock *sk2; 7064 7065 pr_debug("%s: found a possible match\n", __func__); 7066 7067 if (pp->fastreuse && sk->sk_reuse && 7068 sk->sk_state != SCTP_SS_LISTENING) 7069 goto success; 7070 7071 /* Run through the list of sockets bound to the port 7072 * (pp->port) [via the pointers bind_next and 7073 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7074 * we get the endpoint they describe and run through 7075 * the endpoint's list of IP (v4 or v6) addresses, 7076 * comparing each of the addresses with the address of 7077 * the socket sk. If we find a match, then that means 7078 * that this port/socket (sk) combination are already 7079 * in an endpoint. 7080 */ 7081 sk_for_each_bound(sk2, &pp->owner) { 7082 struct sctp_endpoint *ep2; 7083 ep2 = sctp_sk(sk2)->ep; 7084 7085 if (sk == sk2 || 7086 (reuse && sk2->sk_reuse && 7087 sk2->sk_state != SCTP_SS_LISTENING)) 7088 continue; 7089 7090 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7091 sctp_sk(sk2), sctp_sk(sk))) { 7092 ret = (long)sk2; 7093 goto fail_unlock; 7094 } 7095 } 7096 7097 pr_debug("%s: found a match\n", __func__); 7098 } 7099 pp_not_found: 7100 /* If there was a hash table miss, create a new port. */ 7101 ret = 1; 7102 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7103 goto fail_unlock; 7104 7105 /* In either case (hit or miss), make sure fastreuse is 1 only 7106 * if sk->sk_reuse is too (that is, if the caller requested 7107 * SO_REUSEADDR on this socket -sk-). 7108 */ 7109 if (hlist_empty(&pp->owner)) { 7110 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7111 pp->fastreuse = 1; 7112 else 7113 pp->fastreuse = 0; 7114 } else if (pp->fastreuse && 7115 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7116 pp->fastreuse = 0; 7117 7118 /* We are set, so fill up all the data in the hash table 7119 * entry, tie the socket list information with the rest of the 7120 * sockets FIXME: Blurry, NPI (ipg). 7121 */ 7122 success: 7123 if (!sctp_sk(sk)->bind_hash) { 7124 inet_sk(sk)->inet_num = snum; 7125 sk_add_bind_node(sk, &pp->owner); 7126 sctp_sk(sk)->bind_hash = pp; 7127 } 7128 ret = 0; 7129 7130 fail_unlock: 7131 spin_unlock(&head->lock); 7132 7133 fail: 7134 local_bh_enable(); 7135 return ret; 7136 } 7137 7138 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7139 * port is requested. 7140 */ 7141 static int sctp_get_port(struct sock *sk, unsigned short snum) 7142 { 7143 union sctp_addr addr; 7144 struct sctp_af *af = sctp_sk(sk)->pf->af; 7145 7146 /* Set up a dummy address struct from the sk. */ 7147 af->from_sk(&addr, sk); 7148 addr.v4.sin_port = htons(snum); 7149 7150 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7151 return !!sctp_get_port_local(sk, &addr); 7152 } 7153 7154 /* 7155 * Move a socket to LISTENING state. 7156 */ 7157 static int sctp_listen_start(struct sock *sk, int backlog) 7158 { 7159 struct sctp_sock *sp = sctp_sk(sk); 7160 struct sctp_endpoint *ep = sp->ep; 7161 struct crypto_shash *tfm = NULL; 7162 char alg[32]; 7163 7164 /* Allocate HMAC for generating cookie. */ 7165 if (!sp->hmac && sp->sctp_hmac_alg) { 7166 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7167 tfm = crypto_alloc_shash(alg, 0, 0); 7168 if (IS_ERR(tfm)) { 7169 net_info_ratelimited("failed to load transform for %s: %ld\n", 7170 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7171 return -ENOSYS; 7172 } 7173 sctp_sk(sk)->hmac = tfm; 7174 } 7175 7176 /* 7177 * If a bind() or sctp_bindx() is not called prior to a listen() 7178 * call that allows new associations to be accepted, the system 7179 * picks an ephemeral port and will choose an address set equivalent 7180 * to binding with a wildcard address. 7181 * 7182 * This is not currently spelled out in the SCTP sockets 7183 * extensions draft, but follows the practice as seen in TCP 7184 * sockets. 7185 * 7186 */ 7187 sk->sk_state = SCTP_SS_LISTENING; 7188 if (!ep->base.bind_addr.port) { 7189 if (sctp_autobind(sk)) 7190 return -EAGAIN; 7191 } else { 7192 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7193 sk->sk_state = SCTP_SS_CLOSED; 7194 return -EADDRINUSE; 7195 } 7196 } 7197 7198 sk->sk_max_ack_backlog = backlog; 7199 sctp_hash_endpoint(ep); 7200 return 0; 7201 } 7202 7203 /* 7204 * 4.1.3 / 5.1.3 listen() 7205 * 7206 * By default, new associations are not accepted for UDP style sockets. 7207 * An application uses listen() to mark a socket as being able to 7208 * accept new associations. 7209 * 7210 * On TCP style sockets, applications use listen() to ready the SCTP 7211 * endpoint for accepting inbound associations. 7212 * 7213 * On both types of endpoints a backlog of '0' disables listening. 7214 * 7215 * Move a socket to LISTENING state. 7216 */ 7217 int sctp_inet_listen(struct socket *sock, int backlog) 7218 { 7219 struct sock *sk = sock->sk; 7220 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7221 int err = -EINVAL; 7222 7223 if (unlikely(backlog < 0)) 7224 return err; 7225 7226 lock_sock(sk); 7227 7228 /* Peeled-off sockets are not allowed to listen(). */ 7229 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7230 goto out; 7231 7232 if (sock->state != SS_UNCONNECTED) 7233 goto out; 7234 7235 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7236 goto out; 7237 7238 /* If backlog is zero, disable listening. */ 7239 if (!backlog) { 7240 if (sctp_sstate(sk, CLOSED)) 7241 goto out; 7242 7243 err = 0; 7244 sctp_unhash_endpoint(ep); 7245 sk->sk_state = SCTP_SS_CLOSED; 7246 if (sk->sk_reuse) 7247 sctp_sk(sk)->bind_hash->fastreuse = 1; 7248 goto out; 7249 } 7250 7251 /* If we are already listening, just update the backlog */ 7252 if (sctp_sstate(sk, LISTENING)) 7253 sk->sk_max_ack_backlog = backlog; 7254 else { 7255 err = sctp_listen_start(sk, backlog); 7256 if (err) 7257 goto out; 7258 } 7259 7260 err = 0; 7261 out: 7262 release_sock(sk); 7263 return err; 7264 } 7265 7266 /* 7267 * This function is done by modeling the current datagram_poll() and the 7268 * tcp_poll(). Note that, based on these implementations, we don't 7269 * lock the socket in this function, even though it seems that, 7270 * ideally, locking or some other mechanisms can be used to ensure 7271 * the integrity of the counters (sndbuf and wmem_alloc) used 7272 * in this place. We assume that we don't need locks either until proven 7273 * otherwise. 7274 * 7275 * Another thing to note is that we include the Async I/O support 7276 * here, again, by modeling the current TCP/UDP code. We don't have 7277 * a good way to test with it yet. 7278 */ 7279 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7280 { 7281 struct sock *sk = sock->sk; 7282 struct sctp_sock *sp = sctp_sk(sk); 7283 unsigned int mask; 7284 7285 poll_wait(file, sk_sleep(sk), wait); 7286 7287 sock_rps_record_flow(sk); 7288 7289 /* A TCP-style listening socket becomes readable when the accept queue 7290 * is not empty. 7291 */ 7292 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7293 return (!list_empty(&sp->ep->asocs)) ? 7294 (POLLIN | POLLRDNORM) : 0; 7295 7296 mask = 0; 7297 7298 /* Is there any exceptional events? */ 7299 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7300 mask |= POLLERR | 7301 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7302 if (sk->sk_shutdown & RCV_SHUTDOWN) 7303 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7304 if (sk->sk_shutdown == SHUTDOWN_MASK) 7305 mask |= POLLHUP; 7306 7307 /* Is it readable? Reconsider this code with TCP-style support. */ 7308 if (!skb_queue_empty(&sk->sk_receive_queue)) 7309 mask |= POLLIN | POLLRDNORM; 7310 7311 /* The association is either gone or not ready. */ 7312 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7313 return mask; 7314 7315 /* Is it writable? */ 7316 if (sctp_writeable(sk)) { 7317 mask |= POLLOUT | POLLWRNORM; 7318 } else { 7319 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7320 /* 7321 * Since the socket is not locked, the buffer 7322 * might be made available after the writeable check and 7323 * before the bit is set. This could cause a lost I/O 7324 * signal. tcp_poll() has a race breaker for this race 7325 * condition. Based on their implementation, we put 7326 * in the following code to cover it as well. 7327 */ 7328 if (sctp_writeable(sk)) 7329 mask |= POLLOUT | POLLWRNORM; 7330 } 7331 return mask; 7332 } 7333 7334 /******************************************************************** 7335 * 2nd Level Abstractions 7336 ********************************************************************/ 7337 7338 static struct sctp_bind_bucket *sctp_bucket_create( 7339 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7340 { 7341 struct sctp_bind_bucket *pp; 7342 7343 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7344 if (pp) { 7345 SCTP_DBG_OBJCNT_INC(bind_bucket); 7346 pp->port = snum; 7347 pp->fastreuse = 0; 7348 INIT_HLIST_HEAD(&pp->owner); 7349 pp->net = net; 7350 hlist_add_head(&pp->node, &head->chain); 7351 } 7352 return pp; 7353 } 7354 7355 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7356 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7357 { 7358 if (pp && hlist_empty(&pp->owner)) { 7359 __hlist_del(&pp->node); 7360 kmem_cache_free(sctp_bucket_cachep, pp); 7361 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7362 } 7363 } 7364 7365 /* Release this socket's reference to a local port. */ 7366 static inline void __sctp_put_port(struct sock *sk) 7367 { 7368 struct sctp_bind_hashbucket *head = 7369 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7370 inet_sk(sk)->inet_num)]; 7371 struct sctp_bind_bucket *pp; 7372 7373 spin_lock(&head->lock); 7374 pp = sctp_sk(sk)->bind_hash; 7375 __sk_del_bind_node(sk); 7376 sctp_sk(sk)->bind_hash = NULL; 7377 inet_sk(sk)->inet_num = 0; 7378 sctp_bucket_destroy(pp); 7379 spin_unlock(&head->lock); 7380 } 7381 7382 void sctp_put_port(struct sock *sk) 7383 { 7384 local_bh_disable(); 7385 __sctp_put_port(sk); 7386 local_bh_enable(); 7387 } 7388 7389 /* 7390 * The system picks an ephemeral port and choose an address set equivalent 7391 * to binding with a wildcard address. 7392 * One of those addresses will be the primary address for the association. 7393 * This automatically enables the multihoming capability of SCTP. 7394 */ 7395 static int sctp_autobind(struct sock *sk) 7396 { 7397 union sctp_addr autoaddr; 7398 struct sctp_af *af; 7399 __be16 port; 7400 7401 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7402 af = sctp_sk(sk)->pf->af; 7403 7404 port = htons(inet_sk(sk)->inet_num); 7405 af->inaddr_any(&autoaddr, port); 7406 7407 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7408 } 7409 7410 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7411 * 7412 * From RFC 2292 7413 * 4.2 The cmsghdr Structure * 7414 * 7415 * When ancillary data is sent or received, any number of ancillary data 7416 * objects can be specified by the msg_control and msg_controllen members of 7417 * the msghdr structure, because each object is preceded by 7418 * a cmsghdr structure defining the object's length (the cmsg_len member). 7419 * Historically Berkeley-derived implementations have passed only one object 7420 * at a time, but this API allows multiple objects to be 7421 * passed in a single call to sendmsg() or recvmsg(). The following example 7422 * shows two ancillary data objects in a control buffer. 7423 * 7424 * |<--------------------------- msg_controllen -------------------------->| 7425 * | | 7426 * 7427 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7428 * 7429 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7430 * | | | 7431 * 7432 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7433 * 7434 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7435 * | | | | | 7436 * 7437 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7438 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7439 * 7440 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7441 * 7442 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7443 * ^ 7444 * | 7445 * 7446 * msg_control 7447 * points here 7448 */ 7449 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7450 { 7451 struct msghdr *my_msg = (struct msghdr *)msg; 7452 struct cmsghdr *cmsg; 7453 7454 for_each_cmsghdr(cmsg, my_msg) { 7455 if (!CMSG_OK(my_msg, cmsg)) 7456 return -EINVAL; 7457 7458 /* Should we parse this header or ignore? */ 7459 if (cmsg->cmsg_level != IPPROTO_SCTP) 7460 continue; 7461 7462 /* Strictly check lengths following example in SCM code. */ 7463 switch (cmsg->cmsg_type) { 7464 case SCTP_INIT: 7465 /* SCTP Socket API Extension 7466 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7467 * 7468 * This cmsghdr structure provides information for 7469 * initializing new SCTP associations with sendmsg(). 7470 * The SCTP_INITMSG socket option uses this same data 7471 * structure. This structure is not used for 7472 * recvmsg(). 7473 * 7474 * cmsg_level cmsg_type cmsg_data[] 7475 * ------------ ------------ ---------------------- 7476 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7477 */ 7478 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7479 return -EINVAL; 7480 7481 cmsgs->init = CMSG_DATA(cmsg); 7482 break; 7483 7484 case SCTP_SNDRCV: 7485 /* SCTP Socket API Extension 7486 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7487 * 7488 * This cmsghdr structure specifies SCTP options for 7489 * sendmsg() and describes SCTP header information 7490 * about a received message through recvmsg(). 7491 * 7492 * cmsg_level cmsg_type cmsg_data[] 7493 * ------------ ------------ ---------------------- 7494 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7495 */ 7496 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7497 return -EINVAL; 7498 7499 cmsgs->srinfo = CMSG_DATA(cmsg); 7500 7501 if (cmsgs->srinfo->sinfo_flags & 7502 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7503 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7504 SCTP_ABORT | SCTP_EOF)) 7505 return -EINVAL; 7506 break; 7507 7508 case SCTP_SNDINFO: 7509 /* SCTP Socket API Extension 7510 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7511 * 7512 * This cmsghdr structure specifies SCTP options for 7513 * sendmsg(). This structure and SCTP_RCVINFO replaces 7514 * SCTP_SNDRCV which has been deprecated. 7515 * 7516 * cmsg_level cmsg_type cmsg_data[] 7517 * ------------ ------------ --------------------- 7518 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7519 */ 7520 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7521 return -EINVAL; 7522 7523 cmsgs->sinfo = CMSG_DATA(cmsg); 7524 7525 if (cmsgs->sinfo->snd_flags & 7526 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7527 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7528 SCTP_ABORT | SCTP_EOF)) 7529 return -EINVAL; 7530 break; 7531 default: 7532 return -EINVAL; 7533 } 7534 } 7535 7536 return 0; 7537 } 7538 7539 /* 7540 * Wait for a packet.. 7541 * Note: This function is the same function as in core/datagram.c 7542 * with a few modifications to make lksctp work. 7543 */ 7544 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7545 { 7546 int error; 7547 DEFINE_WAIT(wait); 7548 7549 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7550 7551 /* Socket errors? */ 7552 error = sock_error(sk); 7553 if (error) 7554 goto out; 7555 7556 if (!skb_queue_empty(&sk->sk_receive_queue)) 7557 goto ready; 7558 7559 /* Socket shut down? */ 7560 if (sk->sk_shutdown & RCV_SHUTDOWN) 7561 goto out; 7562 7563 /* Sequenced packets can come disconnected. If so we report the 7564 * problem. 7565 */ 7566 error = -ENOTCONN; 7567 7568 /* Is there a good reason to think that we may receive some data? */ 7569 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7570 goto out; 7571 7572 /* Handle signals. */ 7573 if (signal_pending(current)) 7574 goto interrupted; 7575 7576 /* Let another process have a go. Since we are going to sleep 7577 * anyway. Note: This may cause odd behaviors if the message 7578 * does not fit in the user's buffer, but this seems to be the 7579 * only way to honor MSG_DONTWAIT realistically. 7580 */ 7581 release_sock(sk); 7582 *timeo_p = schedule_timeout(*timeo_p); 7583 lock_sock(sk); 7584 7585 ready: 7586 finish_wait(sk_sleep(sk), &wait); 7587 return 0; 7588 7589 interrupted: 7590 error = sock_intr_errno(*timeo_p); 7591 7592 out: 7593 finish_wait(sk_sleep(sk), &wait); 7594 *err = error; 7595 return error; 7596 } 7597 7598 /* Receive a datagram. 7599 * Note: This is pretty much the same routine as in core/datagram.c 7600 * with a few changes to make lksctp work. 7601 */ 7602 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7603 int noblock, int *err) 7604 { 7605 int error; 7606 struct sk_buff *skb; 7607 long timeo; 7608 7609 timeo = sock_rcvtimeo(sk, noblock); 7610 7611 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7612 MAX_SCHEDULE_TIMEOUT); 7613 7614 do { 7615 /* Again only user level code calls this function, 7616 * so nothing interrupt level 7617 * will suddenly eat the receive_queue. 7618 * 7619 * Look at current nfs client by the way... 7620 * However, this function was correct in any case. 8) 7621 */ 7622 if (flags & MSG_PEEK) { 7623 skb = skb_peek(&sk->sk_receive_queue); 7624 if (skb) 7625 refcount_inc(&skb->users); 7626 } else { 7627 skb = __skb_dequeue(&sk->sk_receive_queue); 7628 } 7629 7630 if (skb) 7631 return skb; 7632 7633 /* Caller is allowed not to check sk->sk_err before calling. */ 7634 error = sock_error(sk); 7635 if (error) 7636 goto no_packet; 7637 7638 if (sk->sk_shutdown & RCV_SHUTDOWN) 7639 break; 7640 7641 if (sk_can_busy_loop(sk)) { 7642 sk_busy_loop(sk, noblock); 7643 7644 if (!skb_queue_empty(&sk->sk_receive_queue)) 7645 continue; 7646 } 7647 7648 /* User doesn't want to wait. */ 7649 error = -EAGAIN; 7650 if (!timeo) 7651 goto no_packet; 7652 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7653 7654 return NULL; 7655 7656 no_packet: 7657 *err = error; 7658 return NULL; 7659 } 7660 7661 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7662 static void __sctp_write_space(struct sctp_association *asoc) 7663 { 7664 struct sock *sk = asoc->base.sk; 7665 7666 if (sctp_wspace(asoc) <= 0) 7667 return; 7668 7669 if (waitqueue_active(&asoc->wait)) 7670 wake_up_interruptible(&asoc->wait); 7671 7672 if (sctp_writeable(sk)) { 7673 struct socket_wq *wq; 7674 7675 rcu_read_lock(); 7676 wq = rcu_dereference(sk->sk_wq); 7677 if (wq) { 7678 if (waitqueue_active(&wq->wait)) 7679 wake_up_interruptible(&wq->wait); 7680 7681 /* Note that we try to include the Async I/O support 7682 * here by modeling from the current TCP/UDP code. 7683 * We have not tested with it yet. 7684 */ 7685 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7686 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7687 } 7688 rcu_read_unlock(); 7689 } 7690 } 7691 7692 static void sctp_wake_up_waiters(struct sock *sk, 7693 struct sctp_association *asoc) 7694 { 7695 struct sctp_association *tmp = asoc; 7696 7697 /* We do accounting for the sndbuf space per association, 7698 * so we only need to wake our own association. 7699 */ 7700 if (asoc->ep->sndbuf_policy) 7701 return __sctp_write_space(asoc); 7702 7703 /* If association goes down and is just flushing its 7704 * outq, then just normally notify others. 7705 */ 7706 if (asoc->base.dead) 7707 return sctp_write_space(sk); 7708 7709 /* Accounting for the sndbuf space is per socket, so we 7710 * need to wake up others, try to be fair and in case of 7711 * other associations, let them have a go first instead 7712 * of just doing a sctp_write_space() call. 7713 * 7714 * Note that we reach sctp_wake_up_waiters() only when 7715 * associations free up queued chunks, thus we are under 7716 * lock and the list of associations on a socket is 7717 * guaranteed not to change. 7718 */ 7719 for (tmp = list_next_entry(tmp, asocs); 1; 7720 tmp = list_next_entry(tmp, asocs)) { 7721 /* Manually skip the head element. */ 7722 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7723 continue; 7724 /* Wake up association. */ 7725 __sctp_write_space(tmp); 7726 /* We've reached the end. */ 7727 if (tmp == asoc) 7728 break; 7729 } 7730 } 7731 7732 /* Do accounting for the sndbuf space. 7733 * Decrement the used sndbuf space of the corresponding association by the 7734 * data size which was just transmitted(freed). 7735 */ 7736 static void sctp_wfree(struct sk_buff *skb) 7737 { 7738 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7739 struct sctp_association *asoc = chunk->asoc; 7740 struct sock *sk = asoc->base.sk; 7741 7742 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7743 sizeof(struct sk_buff) + 7744 sizeof(struct sctp_chunk); 7745 7746 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 7747 7748 /* 7749 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7750 */ 7751 sk->sk_wmem_queued -= skb->truesize; 7752 sk_mem_uncharge(sk, skb->truesize); 7753 7754 sock_wfree(skb); 7755 sctp_wake_up_waiters(sk, asoc); 7756 7757 sctp_association_put(asoc); 7758 } 7759 7760 /* Do accounting for the receive space on the socket. 7761 * Accounting for the association is done in ulpevent.c 7762 * We set this as a destructor for the cloned data skbs so that 7763 * accounting is done at the correct time. 7764 */ 7765 void sctp_sock_rfree(struct sk_buff *skb) 7766 { 7767 struct sock *sk = skb->sk; 7768 struct sctp_ulpevent *event = sctp_skb2event(skb); 7769 7770 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7771 7772 /* 7773 * Mimic the behavior of sock_rfree 7774 */ 7775 sk_mem_uncharge(sk, event->rmem_len); 7776 } 7777 7778 7779 /* Helper function to wait for space in the sndbuf. */ 7780 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7781 size_t msg_len) 7782 { 7783 struct sock *sk = asoc->base.sk; 7784 int err = 0; 7785 long current_timeo = *timeo_p; 7786 DEFINE_WAIT(wait); 7787 7788 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7789 *timeo_p, msg_len); 7790 7791 /* Increment the association's refcnt. */ 7792 sctp_association_hold(asoc); 7793 7794 /* Wait on the association specific sndbuf space. */ 7795 for (;;) { 7796 prepare_to_wait_exclusive(&asoc->wait, &wait, 7797 TASK_INTERRUPTIBLE); 7798 if (!*timeo_p) 7799 goto do_nonblock; 7800 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7801 asoc->base.dead) 7802 goto do_error; 7803 if (signal_pending(current)) 7804 goto do_interrupted; 7805 if (msg_len <= sctp_wspace(asoc)) 7806 break; 7807 7808 /* Let another process have a go. Since we are going 7809 * to sleep anyway. 7810 */ 7811 release_sock(sk); 7812 current_timeo = schedule_timeout(current_timeo); 7813 lock_sock(sk); 7814 7815 *timeo_p = current_timeo; 7816 } 7817 7818 out: 7819 finish_wait(&asoc->wait, &wait); 7820 7821 /* Release the association's refcnt. */ 7822 sctp_association_put(asoc); 7823 7824 return err; 7825 7826 do_error: 7827 err = -EPIPE; 7828 goto out; 7829 7830 do_interrupted: 7831 err = sock_intr_errno(*timeo_p); 7832 goto out; 7833 7834 do_nonblock: 7835 err = -EAGAIN; 7836 goto out; 7837 } 7838 7839 void sctp_data_ready(struct sock *sk) 7840 { 7841 struct socket_wq *wq; 7842 7843 rcu_read_lock(); 7844 wq = rcu_dereference(sk->sk_wq); 7845 if (skwq_has_sleeper(wq)) 7846 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7847 POLLRDNORM | POLLRDBAND); 7848 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7849 rcu_read_unlock(); 7850 } 7851 7852 /* If socket sndbuf has changed, wake up all per association waiters. */ 7853 void sctp_write_space(struct sock *sk) 7854 { 7855 struct sctp_association *asoc; 7856 7857 /* Wake up the tasks in each wait queue. */ 7858 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7859 __sctp_write_space(asoc); 7860 } 7861 } 7862 7863 /* Is there any sndbuf space available on the socket? 7864 * 7865 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7866 * associations on the same socket. For a UDP-style socket with 7867 * multiple associations, it is possible for it to be "unwriteable" 7868 * prematurely. I assume that this is acceptable because 7869 * a premature "unwriteable" is better than an accidental "writeable" which 7870 * would cause an unwanted block under certain circumstances. For the 1-1 7871 * UDP-style sockets or TCP-style sockets, this code should work. 7872 * - Daisy 7873 */ 7874 static int sctp_writeable(struct sock *sk) 7875 { 7876 int amt = 0; 7877 7878 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7879 if (amt < 0) 7880 amt = 0; 7881 return amt; 7882 } 7883 7884 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7885 * returns immediately with EINPROGRESS. 7886 */ 7887 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7888 { 7889 struct sock *sk = asoc->base.sk; 7890 int err = 0; 7891 long current_timeo = *timeo_p; 7892 DEFINE_WAIT(wait); 7893 7894 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7895 7896 /* Increment the association's refcnt. */ 7897 sctp_association_hold(asoc); 7898 7899 for (;;) { 7900 prepare_to_wait_exclusive(&asoc->wait, &wait, 7901 TASK_INTERRUPTIBLE); 7902 if (!*timeo_p) 7903 goto do_nonblock; 7904 if (sk->sk_shutdown & RCV_SHUTDOWN) 7905 break; 7906 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7907 asoc->base.dead) 7908 goto do_error; 7909 if (signal_pending(current)) 7910 goto do_interrupted; 7911 7912 if (sctp_state(asoc, ESTABLISHED)) 7913 break; 7914 7915 /* Let another process have a go. Since we are going 7916 * to sleep anyway. 7917 */ 7918 release_sock(sk); 7919 current_timeo = schedule_timeout(current_timeo); 7920 lock_sock(sk); 7921 7922 *timeo_p = current_timeo; 7923 } 7924 7925 out: 7926 finish_wait(&asoc->wait, &wait); 7927 7928 /* Release the association's refcnt. */ 7929 sctp_association_put(asoc); 7930 7931 return err; 7932 7933 do_error: 7934 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7935 err = -ETIMEDOUT; 7936 else 7937 err = -ECONNREFUSED; 7938 goto out; 7939 7940 do_interrupted: 7941 err = sock_intr_errno(*timeo_p); 7942 goto out; 7943 7944 do_nonblock: 7945 err = -EINPROGRESS; 7946 goto out; 7947 } 7948 7949 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7950 { 7951 struct sctp_endpoint *ep; 7952 int err = 0; 7953 DEFINE_WAIT(wait); 7954 7955 ep = sctp_sk(sk)->ep; 7956 7957 7958 for (;;) { 7959 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7960 TASK_INTERRUPTIBLE); 7961 7962 if (list_empty(&ep->asocs)) { 7963 release_sock(sk); 7964 timeo = schedule_timeout(timeo); 7965 lock_sock(sk); 7966 } 7967 7968 err = -EINVAL; 7969 if (!sctp_sstate(sk, LISTENING)) 7970 break; 7971 7972 err = 0; 7973 if (!list_empty(&ep->asocs)) 7974 break; 7975 7976 err = sock_intr_errno(timeo); 7977 if (signal_pending(current)) 7978 break; 7979 7980 err = -EAGAIN; 7981 if (!timeo) 7982 break; 7983 } 7984 7985 finish_wait(sk_sleep(sk), &wait); 7986 7987 return err; 7988 } 7989 7990 static void sctp_wait_for_close(struct sock *sk, long timeout) 7991 { 7992 DEFINE_WAIT(wait); 7993 7994 do { 7995 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7996 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7997 break; 7998 release_sock(sk); 7999 timeout = schedule_timeout(timeout); 8000 lock_sock(sk); 8001 } while (!signal_pending(current) && timeout); 8002 8003 finish_wait(sk_sleep(sk), &wait); 8004 } 8005 8006 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8007 { 8008 struct sk_buff *frag; 8009 8010 if (!skb->data_len) 8011 goto done; 8012 8013 /* Don't forget the fragments. */ 8014 skb_walk_frags(skb, frag) 8015 sctp_skb_set_owner_r_frag(frag, sk); 8016 8017 done: 8018 sctp_skb_set_owner_r(skb, sk); 8019 } 8020 8021 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8022 struct sctp_association *asoc) 8023 { 8024 struct inet_sock *inet = inet_sk(sk); 8025 struct inet_sock *newinet; 8026 8027 newsk->sk_type = sk->sk_type; 8028 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8029 newsk->sk_flags = sk->sk_flags; 8030 newsk->sk_tsflags = sk->sk_tsflags; 8031 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8032 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8033 newsk->sk_reuse = sk->sk_reuse; 8034 8035 newsk->sk_shutdown = sk->sk_shutdown; 8036 newsk->sk_destruct = sctp_destruct_sock; 8037 newsk->sk_family = sk->sk_family; 8038 newsk->sk_protocol = IPPROTO_SCTP; 8039 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8040 newsk->sk_sndbuf = sk->sk_sndbuf; 8041 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8042 newsk->sk_lingertime = sk->sk_lingertime; 8043 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8044 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8045 newsk->sk_rxhash = sk->sk_rxhash; 8046 8047 newinet = inet_sk(newsk); 8048 8049 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8050 * getsockname() and getpeername() 8051 */ 8052 newinet->inet_sport = inet->inet_sport; 8053 newinet->inet_saddr = inet->inet_saddr; 8054 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8055 newinet->inet_dport = htons(asoc->peer.port); 8056 newinet->pmtudisc = inet->pmtudisc; 8057 newinet->inet_id = asoc->next_tsn ^ jiffies; 8058 8059 newinet->uc_ttl = inet->uc_ttl; 8060 newinet->mc_loop = 1; 8061 newinet->mc_ttl = 1; 8062 newinet->mc_index = 0; 8063 newinet->mc_list = NULL; 8064 8065 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8066 net_enable_timestamp(); 8067 8068 security_sk_clone(sk, newsk); 8069 } 8070 8071 static inline void sctp_copy_descendant(struct sock *sk_to, 8072 const struct sock *sk_from) 8073 { 8074 int ancestor_size = sizeof(struct inet_sock) + 8075 sizeof(struct sctp_sock) - 8076 offsetof(struct sctp_sock, auto_asconf_list); 8077 8078 if (sk_from->sk_family == PF_INET6) 8079 ancestor_size += sizeof(struct ipv6_pinfo); 8080 8081 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8082 } 8083 8084 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8085 * and its messages to the newsk. 8086 */ 8087 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8088 struct sctp_association *assoc, 8089 enum sctp_socket_type type) 8090 { 8091 struct sctp_sock *oldsp = sctp_sk(oldsk); 8092 struct sctp_sock *newsp = sctp_sk(newsk); 8093 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8094 struct sctp_endpoint *newep = newsp->ep; 8095 struct sk_buff *skb, *tmp; 8096 struct sctp_ulpevent *event; 8097 struct sctp_bind_hashbucket *head; 8098 8099 /* Migrate socket buffer sizes and all the socket level options to the 8100 * new socket. 8101 */ 8102 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8103 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8104 /* Brute force copy old sctp opt. */ 8105 sctp_copy_descendant(newsk, oldsk); 8106 8107 /* Restore the ep value that was overwritten with the above structure 8108 * copy. 8109 */ 8110 newsp->ep = newep; 8111 newsp->hmac = NULL; 8112 8113 /* Hook this new socket in to the bind_hash list. */ 8114 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8115 inet_sk(oldsk)->inet_num)]; 8116 spin_lock_bh(&head->lock); 8117 pp = sctp_sk(oldsk)->bind_hash; 8118 sk_add_bind_node(newsk, &pp->owner); 8119 sctp_sk(newsk)->bind_hash = pp; 8120 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8121 spin_unlock_bh(&head->lock); 8122 8123 /* Copy the bind_addr list from the original endpoint to the new 8124 * endpoint so that we can handle restarts properly 8125 */ 8126 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8127 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8128 8129 /* Move any messages in the old socket's receive queue that are for the 8130 * peeled off association to the new socket's receive queue. 8131 */ 8132 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8133 event = sctp_skb2event(skb); 8134 if (event->asoc == assoc) { 8135 __skb_unlink(skb, &oldsk->sk_receive_queue); 8136 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8137 sctp_skb_set_owner_r_frag(skb, newsk); 8138 } 8139 } 8140 8141 /* Clean up any messages pending delivery due to partial 8142 * delivery. Three cases: 8143 * 1) No partial deliver; no work. 8144 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8145 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8146 */ 8147 skb_queue_head_init(&newsp->pd_lobby); 8148 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8149 8150 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8151 struct sk_buff_head *queue; 8152 8153 /* Decide which queue to move pd_lobby skbs to. */ 8154 if (assoc->ulpq.pd_mode) { 8155 queue = &newsp->pd_lobby; 8156 } else 8157 queue = &newsk->sk_receive_queue; 8158 8159 /* Walk through the pd_lobby, looking for skbs that 8160 * need moved to the new socket. 8161 */ 8162 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8163 event = sctp_skb2event(skb); 8164 if (event->asoc == assoc) { 8165 __skb_unlink(skb, &oldsp->pd_lobby); 8166 __skb_queue_tail(queue, skb); 8167 sctp_skb_set_owner_r_frag(skb, newsk); 8168 } 8169 } 8170 8171 /* Clear up any skbs waiting for the partial 8172 * delivery to finish. 8173 */ 8174 if (assoc->ulpq.pd_mode) 8175 sctp_clear_pd(oldsk, NULL); 8176 8177 } 8178 8179 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 8180 sctp_skb_set_owner_r_frag(skb, newsk); 8181 8182 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 8183 sctp_skb_set_owner_r_frag(skb, newsk); 8184 8185 /* Set the type of socket to indicate that it is peeled off from the 8186 * original UDP-style socket or created with the accept() call on a 8187 * TCP-style socket.. 8188 */ 8189 newsp->type = type; 8190 8191 /* Mark the new socket "in-use" by the user so that any packets 8192 * that may arrive on the association after we've moved it are 8193 * queued to the backlog. This prevents a potential race between 8194 * backlog processing on the old socket and new-packet processing 8195 * on the new socket. 8196 * 8197 * The caller has just allocated newsk so we can guarantee that other 8198 * paths won't try to lock it and then oldsk. 8199 */ 8200 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8201 sctp_assoc_migrate(assoc, newsk); 8202 8203 /* If the association on the newsk is already closed before accept() 8204 * is called, set RCV_SHUTDOWN flag. 8205 */ 8206 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8207 newsk->sk_state = SCTP_SS_CLOSED; 8208 newsk->sk_shutdown |= RCV_SHUTDOWN; 8209 } else { 8210 newsk->sk_state = SCTP_SS_ESTABLISHED; 8211 } 8212 8213 release_sock(newsk); 8214 } 8215 8216 8217 /* This proto struct describes the ULP interface for SCTP. */ 8218 struct proto sctp_prot = { 8219 .name = "SCTP", 8220 .owner = THIS_MODULE, 8221 .close = sctp_close, 8222 .connect = sctp_connect, 8223 .disconnect = sctp_disconnect, 8224 .accept = sctp_accept, 8225 .ioctl = sctp_ioctl, 8226 .init = sctp_init_sock, 8227 .destroy = sctp_destroy_sock, 8228 .shutdown = sctp_shutdown, 8229 .setsockopt = sctp_setsockopt, 8230 .getsockopt = sctp_getsockopt, 8231 .sendmsg = sctp_sendmsg, 8232 .recvmsg = sctp_recvmsg, 8233 .bind = sctp_bind, 8234 .backlog_rcv = sctp_backlog_rcv, 8235 .hash = sctp_hash, 8236 .unhash = sctp_unhash, 8237 .get_port = sctp_get_port, 8238 .obj_size = sizeof(struct sctp_sock), 8239 .sysctl_mem = sysctl_sctp_mem, 8240 .sysctl_rmem = sysctl_sctp_rmem, 8241 .sysctl_wmem = sysctl_sctp_wmem, 8242 .memory_pressure = &sctp_memory_pressure, 8243 .enter_memory_pressure = sctp_enter_memory_pressure, 8244 .memory_allocated = &sctp_memory_allocated, 8245 .sockets_allocated = &sctp_sockets_allocated, 8246 }; 8247 8248 #if IS_ENABLED(CONFIG_IPV6) 8249 8250 #include <net/transp_v6.h> 8251 static void sctp_v6_destroy_sock(struct sock *sk) 8252 { 8253 sctp_destroy_sock(sk); 8254 inet6_destroy_sock(sk); 8255 } 8256 8257 struct proto sctpv6_prot = { 8258 .name = "SCTPv6", 8259 .owner = THIS_MODULE, 8260 .close = sctp_close, 8261 .connect = sctp_connect, 8262 .disconnect = sctp_disconnect, 8263 .accept = sctp_accept, 8264 .ioctl = sctp_ioctl, 8265 .init = sctp_init_sock, 8266 .destroy = sctp_v6_destroy_sock, 8267 .shutdown = sctp_shutdown, 8268 .setsockopt = sctp_setsockopt, 8269 .getsockopt = sctp_getsockopt, 8270 .sendmsg = sctp_sendmsg, 8271 .recvmsg = sctp_recvmsg, 8272 .bind = sctp_bind, 8273 .backlog_rcv = sctp_backlog_rcv, 8274 .hash = sctp_hash, 8275 .unhash = sctp_unhash, 8276 .get_port = sctp_get_port, 8277 .obj_size = sizeof(struct sctp6_sock), 8278 .sysctl_mem = sysctl_sctp_mem, 8279 .sysctl_rmem = sysctl_sctp_rmem, 8280 .sysctl_wmem = sysctl_sctp_wmem, 8281 .memory_pressure = &sctp_memory_pressure, 8282 .enter_memory_pressure = sctp_enter_memory_pressure, 8283 .memory_allocated = &sctp_memory_allocated, 8284 .sockets_allocated = &sctp_sockets_allocated, 8285 }; 8286 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8287