1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 static atomic_t sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(void) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 315 /* If we get this far, af is valid. */ 316 af = sctp_get_af_specific(addr->sa.sa_family); 317 318 if (len < af->sockaddr_len) 319 return NULL; 320 321 return af; 322 } 323 324 /* Bind a local address either to an endpoint or to an association. */ 325 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 326 { 327 struct sctp_sock *sp = sctp_sk(sk); 328 struct sctp_endpoint *ep = sp->ep; 329 struct sctp_bind_addr *bp = &ep->base.bind_addr; 330 struct sctp_af *af; 331 unsigned short snum; 332 int ret = 0; 333 334 /* Common sockaddr verification. */ 335 af = sctp_sockaddr_af(sp, addr, len); 336 if (!af) { 337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 338 sk, addr, len); 339 return -EINVAL; 340 } 341 342 snum = ntohs(addr->v4.sin_port); 343 344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 345 ", port: %d, new port: %d, len: %d)\n", 346 sk, 347 addr, 348 bp->port, snum, 349 len); 350 351 /* PF specific bind() address verification. */ 352 if (!sp->pf->bind_verify(sp, addr)) 353 return -EADDRNOTAVAIL; 354 355 /* We must either be unbound, or bind to the same port. 356 * It's OK to allow 0 ports if we are already bound. 357 * We'll just inhert an already bound port in this case 358 */ 359 if (bp->port) { 360 if (!snum) 361 snum = bp->port; 362 else if (snum != bp->port) { 363 SCTP_DEBUG_PRINTK("sctp_do_bind:" 364 " New port %d does not match existing port " 365 "%d.\n", snum, bp->port); 366 return -EINVAL; 367 } 368 } 369 370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 371 return -EACCES; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 if (ret == (long) sk) { 380 /* This endpoint has a conflicting address. */ 381 return -EINVAL; 382 } else { 383 return -EADDRINUSE; 384 } 385 } 386 387 /* Refresh ephemeral port. */ 388 if (!bp->port) 389 bp->port = inet_sk(sk)->num; 390 391 /* Add the address to the bind address list. 392 * Use GFP_ATOMIC since BHs will be disabled. 393 */ 394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 395 396 /* Copy back into socket for getsockname() use. */ 397 if (!ret) { 398 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 399 af->to_sk_saddr(addr, sk); 400 } 401 402 return ret; 403 } 404 405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 406 * 407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 408 * at any one time. If a sender, after sending an ASCONF chunk, decides 409 * it needs to transfer another ASCONF Chunk, it MUST wait until the 410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 411 * subsequent ASCONF. Note this restriction binds each side, so at any 412 * time two ASCONF may be in-transit on any given association (one sent 413 * from each endpoint). 414 */ 415 static int sctp_send_asconf(struct sctp_association *asoc, 416 struct sctp_chunk *chunk) 417 { 418 int retval = 0; 419 420 /* If there is an outstanding ASCONF chunk, queue it for later 421 * transmission. 422 */ 423 if (asoc->addip_last_asconf) { 424 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 425 goto out; 426 } 427 428 /* Hold the chunk until an ASCONF_ACK is received. */ 429 sctp_chunk_hold(chunk); 430 retval = sctp_primitive_ASCONF(asoc, chunk); 431 if (retval) 432 sctp_chunk_free(chunk); 433 else 434 asoc->addip_last_asconf = chunk; 435 436 out: 437 return retval; 438 } 439 440 /* Add a list of addresses as bind addresses to local endpoint or 441 * association. 442 * 443 * Basically run through each address specified in the addrs/addrcnt 444 * array/length pair, determine if it is IPv6 or IPv4 and call 445 * sctp_do_bind() on it. 446 * 447 * If any of them fails, then the operation will be reversed and the 448 * ones that were added will be removed. 449 * 450 * Only sctp_setsockopt_bindx() is supposed to call this function. 451 */ 452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 453 { 454 int cnt; 455 int retval = 0; 456 void *addr_buf; 457 struct sockaddr *sa_addr; 458 struct sctp_af *af; 459 460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 461 sk, addrs, addrcnt); 462 463 addr_buf = addrs; 464 for (cnt = 0; cnt < addrcnt; cnt++) { 465 /* The list may contain either IPv4 or IPv6 address; 466 * determine the address length for walking thru the list. 467 */ 468 sa_addr = (struct sockaddr *)addr_buf; 469 af = sctp_get_af_specific(sa_addr->sa_family); 470 if (!af) { 471 retval = -EINVAL; 472 goto err_bindx_add; 473 } 474 475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 476 af->sockaddr_len); 477 478 addr_buf += af->sockaddr_len; 479 480 err_bindx_add: 481 if (retval < 0) { 482 /* Failed. Cleanup the ones that have been added */ 483 if (cnt > 0) 484 sctp_bindx_rem(sk, addrs, cnt); 485 return retval; 486 } 487 } 488 489 return retval; 490 } 491 492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 493 * associations that are part of the endpoint indicating that a list of local 494 * addresses are added to the endpoint. 495 * 496 * If any of the addresses is already in the bind address list of the 497 * association, we do not send the chunk for that association. But it will not 498 * affect other associations. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_send_asconf_add_ip(struct sock *sk, 503 struct sockaddr *addrs, 504 int addrcnt) 505 { 506 struct sctp_sock *sp; 507 struct sctp_endpoint *ep; 508 struct sctp_association *asoc; 509 struct sctp_bind_addr *bp; 510 struct sctp_chunk *chunk; 511 struct sctp_sockaddr_entry *laddr; 512 union sctp_addr *addr; 513 union sctp_addr saveaddr; 514 void *addr_buf; 515 struct sctp_af *af; 516 struct list_head *pos; 517 struct list_head *p; 518 int i; 519 int retval = 0; 520 521 if (!sctp_addip_enable) 522 return retval; 523 524 sp = sctp_sk(sk); 525 ep = sp->ep; 526 527 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 528 __FUNCTION__, sk, addrs, addrcnt); 529 530 list_for_each(pos, &ep->asocs) { 531 asoc = list_entry(pos, struct sctp_association, asocs); 532 533 if (!asoc->peer.asconf_capable) 534 continue; 535 536 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 537 continue; 538 539 if (!sctp_state(asoc, ESTABLISHED)) 540 continue; 541 542 /* Check if any address in the packed array of addresses is 543 * in the bind address list of the association. If so, 544 * do not send the asconf chunk to its peer, but continue with 545 * other associations. 546 */ 547 addr_buf = addrs; 548 for (i = 0; i < addrcnt; i++) { 549 addr = (union sctp_addr *)addr_buf; 550 af = sctp_get_af_specific(addr->v4.sin_family); 551 if (!af) { 552 retval = -EINVAL; 553 goto out; 554 } 555 556 if (sctp_assoc_lookup_laddr(asoc, addr)) 557 break; 558 559 addr_buf += af->sockaddr_len; 560 } 561 if (i < addrcnt) 562 continue; 563 564 /* Use the first valid address in bind addr list of 565 * association as Address Parameter of ASCONF CHUNK. 566 */ 567 bp = &asoc->base.bind_addr; 568 p = bp->address_list.next; 569 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 570 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 571 addrcnt, SCTP_PARAM_ADD_IP); 572 if (!chunk) { 573 retval = -ENOMEM; 574 goto out; 575 } 576 577 retval = sctp_send_asconf(asoc, chunk); 578 if (retval) 579 goto out; 580 581 /* Add the new addresses to the bind address list with 582 * use_as_src set to 0. 583 */ 584 addr_buf = addrs; 585 for (i = 0; i < addrcnt; i++) { 586 addr = (union sctp_addr *)addr_buf; 587 af = sctp_get_af_specific(addr->v4.sin_family); 588 memcpy(&saveaddr, addr, af->sockaddr_len); 589 retval = sctp_add_bind_addr(bp, &saveaddr, 590 SCTP_ADDR_NEW, GFP_ATOMIC); 591 addr_buf += af->sockaddr_len; 592 } 593 } 594 595 out: 596 return retval; 597 } 598 599 /* Remove a list of addresses from bind addresses list. Do not remove the 600 * last address. 601 * 602 * Basically run through each address specified in the addrs/addrcnt 603 * array/length pair, determine if it is IPv6 or IPv4 and call 604 * sctp_del_bind() on it. 605 * 606 * If any of them fails, then the operation will be reversed and the 607 * ones that were removed will be added back. 608 * 609 * At least one address has to be left; if only one address is 610 * available, the operation will return -EBUSY. 611 * 612 * Only sctp_setsockopt_bindx() is supposed to call this function. 613 */ 614 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 615 { 616 struct sctp_sock *sp = sctp_sk(sk); 617 struct sctp_endpoint *ep = sp->ep; 618 int cnt; 619 struct sctp_bind_addr *bp = &ep->base.bind_addr; 620 int retval = 0; 621 void *addr_buf; 622 union sctp_addr *sa_addr; 623 struct sctp_af *af; 624 625 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 626 sk, addrs, addrcnt); 627 628 addr_buf = addrs; 629 for (cnt = 0; cnt < addrcnt; cnt++) { 630 /* If the bind address list is empty or if there is only one 631 * bind address, there is nothing more to be removed (we need 632 * at least one address here). 633 */ 634 if (list_empty(&bp->address_list) || 635 (sctp_list_single_entry(&bp->address_list))) { 636 retval = -EBUSY; 637 goto err_bindx_rem; 638 } 639 640 sa_addr = (union sctp_addr *)addr_buf; 641 af = sctp_get_af_specific(sa_addr->sa.sa_family); 642 if (!af) { 643 retval = -EINVAL; 644 goto err_bindx_rem; 645 } 646 647 if (!af->addr_valid(sa_addr, sp, NULL)) { 648 retval = -EADDRNOTAVAIL; 649 goto err_bindx_rem; 650 } 651 652 if (sa_addr->v4.sin_port != htons(bp->port)) { 653 retval = -EINVAL; 654 goto err_bindx_rem; 655 } 656 657 /* FIXME - There is probably a need to check if sk->sk_saddr and 658 * sk->sk_rcv_addr are currently set to one of the addresses to 659 * be removed. This is something which needs to be looked into 660 * when we are fixing the outstanding issues with multi-homing 661 * socket routing and failover schemes. Refer to comments in 662 * sctp_do_bind(). -daisy 663 */ 664 retval = sctp_del_bind_addr(bp, sa_addr); 665 666 addr_buf += af->sockaddr_len; 667 err_bindx_rem: 668 if (retval < 0) { 669 /* Failed. Add the ones that has been removed back */ 670 if (cnt > 0) 671 sctp_bindx_add(sk, addrs, cnt); 672 return retval; 673 } 674 } 675 676 return retval; 677 } 678 679 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 680 * the associations that are part of the endpoint indicating that a list of 681 * local addresses are removed from the endpoint. 682 * 683 * If any of the addresses is already in the bind address list of the 684 * association, we do not send the chunk for that association. But it will not 685 * affect other associations. 686 * 687 * Only sctp_setsockopt_bindx() is supposed to call this function. 688 */ 689 static int sctp_send_asconf_del_ip(struct sock *sk, 690 struct sockaddr *addrs, 691 int addrcnt) 692 { 693 struct sctp_sock *sp; 694 struct sctp_endpoint *ep; 695 struct sctp_association *asoc; 696 struct sctp_transport *transport; 697 struct sctp_bind_addr *bp; 698 struct sctp_chunk *chunk; 699 union sctp_addr *laddr; 700 void *addr_buf; 701 struct sctp_af *af; 702 struct list_head *pos, *pos1; 703 struct sctp_sockaddr_entry *saddr; 704 int i; 705 int retval = 0; 706 707 if (!sctp_addip_enable) 708 return retval; 709 710 sp = sctp_sk(sk); 711 ep = sp->ep; 712 713 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 714 __FUNCTION__, sk, addrs, addrcnt); 715 716 list_for_each(pos, &ep->asocs) { 717 asoc = list_entry(pos, struct sctp_association, asocs); 718 719 if (!asoc->peer.asconf_capable) 720 continue; 721 722 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 723 continue; 724 725 if (!sctp_state(asoc, ESTABLISHED)) 726 continue; 727 728 /* Check if any address in the packed array of addresses is 729 * not present in the bind address list of the association. 730 * If so, do not send the asconf chunk to its peer, but 731 * continue with other associations. 732 */ 733 addr_buf = addrs; 734 for (i = 0; i < addrcnt; i++) { 735 laddr = (union sctp_addr *)addr_buf; 736 af = sctp_get_af_specific(laddr->v4.sin_family); 737 if (!af) { 738 retval = -EINVAL; 739 goto out; 740 } 741 742 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 743 break; 744 745 addr_buf += af->sockaddr_len; 746 } 747 if (i < addrcnt) 748 continue; 749 750 /* Find one address in the association's bind address list 751 * that is not in the packed array of addresses. This is to 752 * make sure that we do not delete all the addresses in the 753 * association. 754 */ 755 bp = &asoc->base.bind_addr; 756 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 757 addrcnt, sp); 758 if (!laddr) 759 continue; 760 761 /* We do not need RCU protection throughout this loop 762 * because this is done under a socket lock from the 763 * setsockopt call. 764 */ 765 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 766 SCTP_PARAM_DEL_IP); 767 if (!chunk) { 768 retval = -ENOMEM; 769 goto out; 770 } 771 772 /* Reset use_as_src flag for the addresses in the bind address 773 * list that are to be deleted. 774 */ 775 addr_buf = addrs; 776 for (i = 0; i < addrcnt; i++) { 777 laddr = (union sctp_addr *)addr_buf; 778 af = sctp_get_af_specific(laddr->v4.sin_family); 779 list_for_each_entry(saddr, &bp->address_list, list) { 780 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 781 saddr->state = SCTP_ADDR_DEL; 782 } 783 addr_buf += af->sockaddr_len; 784 } 785 786 /* Update the route and saddr entries for all the transports 787 * as some of the addresses in the bind address list are 788 * about to be deleted and cannot be used as source addresses. 789 */ 790 list_for_each(pos1, &asoc->peer.transport_addr_list) { 791 transport = list_entry(pos1, struct sctp_transport, 792 transports); 793 dst_release(transport->dst); 794 sctp_transport_route(transport, NULL, 795 sctp_sk(asoc->base.sk)); 796 } 797 798 retval = sctp_send_asconf(asoc, chunk); 799 } 800 out: 801 return retval; 802 } 803 804 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 805 * 806 * API 8.1 807 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 808 * int flags); 809 * 810 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 811 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 812 * or IPv6 addresses. 813 * 814 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 815 * Section 3.1.2 for this usage. 816 * 817 * addrs is a pointer to an array of one or more socket addresses. Each 818 * address is contained in its appropriate structure (i.e. struct 819 * sockaddr_in or struct sockaddr_in6) the family of the address type 820 * must be used to distinguish the address length (note that this 821 * representation is termed a "packed array" of addresses). The caller 822 * specifies the number of addresses in the array with addrcnt. 823 * 824 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 825 * -1, and sets errno to the appropriate error code. 826 * 827 * For SCTP, the port given in each socket address must be the same, or 828 * sctp_bindx() will fail, setting errno to EINVAL. 829 * 830 * The flags parameter is formed from the bitwise OR of zero or more of 831 * the following currently defined flags: 832 * 833 * SCTP_BINDX_ADD_ADDR 834 * 835 * SCTP_BINDX_REM_ADDR 836 * 837 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 838 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 839 * addresses from the association. The two flags are mutually exclusive; 840 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 841 * not remove all addresses from an association; sctp_bindx() will 842 * reject such an attempt with EINVAL. 843 * 844 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 845 * additional addresses with an endpoint after calling bind(). Or use 846 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 847 * socket is associated with so that no new association accepted will be 848 * associated with those addresses. If the endpoint supports dynamic 849 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 850 * endpoint to send the appropriate message to the peer to change the 851 * peers address lists. 852 * 853 * Adding and removing addresses from a connected association is 854 * optional functionality. Implementations that do not support this 855 * functionality should return EOPNOTSUPP. 856 * 857 * Basically do nothing but copying the addresses from user to kernel 858 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 859 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 860 * from userspace. 861 * 862 * We don't use copy_from_user() for optimization: we first do the 863 * sanity checks (buffer size -fast- and access check-healthy 864 * pointer); if all of those succeed, then we can alloc the memory 865 * (expensive operation) needed to copy the data to kernel. Then we do 866 * the copying without checking the user space area 867 * (__copy_from_user()). 868 * 869 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 870 * it. 871 * 872 * sk The sk of the socket 873 * addrs The pointer to the addresses in user land 874 * addrssize Size of the addrs buffer 875 * op Operation to perform (add or remove, see the flags of 876 * sctp_bindx) 877 * 878 * Returns 0 if ok, <0 errno code on error. 879 */ 880 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 881 struct sockaddr __user *addrs, 882 int addrs_size, int op) 883 { 884 struct sockaddr *kaddrs; 885 int err; 886 int addrcnt = 0; 887 int walk_size = 0; 888 struct sockaddr *sa_addr; 889 void *addr_buf; 890 struct sctp_af *af; 891 892 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 893 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 894 895 if (unlikely(addrs_size <= 0)) 896 return -EINVAL; 897 898 /* Check the user passed a healthy pointer. */ 899 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 900 return -EFAULT; 901 902 /* Alloc space for the address array in kernel memory. */ 903 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 904 if (unlikely(!kaddrs)) 905 return -ENOMEM; 906 907 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 908 kfree(kaddrs); 909 return -EFAULT; 910 } 911 912 /* Walk through the addrs buffer and count the number of addresses. */ 913 addr_buf = kaddrs; 914 while (walk_size < addrs_size) { 915 sa_addr = (struct sockaddr *)addr_buf; 916 af = sctp_get_af_specific(sa_addr->sa_family); 917 918 /* If the address family is not supported or if this address 919 * causes the address buffer to overflow return EINVAL. 920 */ 921 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 922 kfree(kaddrs); 923 return -EINVAL; 924 } 925 addrcnt++; 926 addr_buf += af->sockaddr_len; 927 walk_size += af->sockaddr_len; 928 } 929 930 /* Do the work. */ 931 switch (op) { 932 case SCTP_BINDX_ADD_ADDR: 933 err = sctp_bindx_add(sk, kaddrs, addrcnt); 934 if (err) 935 goto out; 936 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 937 break; 938 939 case SCTP_BINDX_REM_ADDR: 940 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 941 if (err) 942 goto out; 943 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 944 break; 945 946 default: 947 err = -EINVAL; 948 break; 949 } 950 951 out: 952 kfree(kaddrs); 953 954 return err; 955 } 956 957 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 958 * 959 * Common routine for handling connect() and sctp_connectx(). 960 * Connect will come in with just a single address. 961 */ 962 static int __sctp_connect(struct sock* sk, 963 struct sockaddr *kaddrs, 964 int addrs_size) 965 { 966 struct sctp_sock *sp; 967 struct sctp_endpoint *ep; 968 struct sctp_association *asoc = NULL; 969 struct sctp_association *asoc2; 970 struct sctp_transport *transport; 971 union sctp_addr to; 972 struct sctp_af *af; 973 sctp_scope_t scope; 974 long timeo; 975 int err = 0; 976 int addrcnt = 0; 977 int walk_size = 0; 978 union sctp_addr *sa_addr = NULL; 979 void *addr_buf; 980 unsigned short port; 981 unsigned int f_flags = 0; 982 983 sp = sctp_sk(sk); 984 ep = sp->ep; 985 986 /* connect() cannot be done on a socket that is already in ESTABLISHED 987 * state - UDP-style peeled off socket or a TCP-style socket that 988 * is already connected. 989 * It cannot be done even on a TCP-style listening socket. 990 */ 991 if (sctp_sstate(sk, ESTABLISHED) || 992 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 993 err = -EISCONN; 994 goto out_free; 995 } 996 997 /* Walk through the addrs buffer and count the number of addresses. */ 998 addr_buf = kaddrs; 999 while (walk_size < addrs_size) { 1000 sa_addr = (union sctp_addr *)addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1002 port = ntohs(sa_addr->v4.sin_port); 1003 1004 /* If the address family is not supported or if this address 1005 * causes the address buffer to overflow return EINVAL. 1006 */ 1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1008 err = -EINVAL; 1009 goto out_free; 1010 } 1011 1012 /* Save current address so we can work with it */ 1013 memcpy(&to, sa_addr, af->sockaddr_len); 1014 1015 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1016 if (err) 1017 goto out_free; 1018 1019 /* Make sure the destination port is correctly set 1020 * in all addresses. 1021 */ 1022 if (asoc && asoc->peer.port && asoc->peer.port != port) 1023 goto out_free; 1024 1025 1026 /* Check if there already is a matching association on the 1027 * endpoint (other than the one created here). 1028 */ 1029 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1030 if (asoc2 && asoc2 != asoc) { 1031 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1032 err = -EISCONN; 1033 else 1034 err = -EALREADY; 1035 goto out_free; 1036 } 1037 1038 /* If we could not find a matching association on the endpoint, 1039 * make sure that there is no peeled-off association matching 1040 * the peer address even on another socket. 1041 */ 1042 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1043 err = -EADDRNOTAVAIL; 1044 goto out_free; 1045 } 1046 1047 if (!asoc) { 1048 /* If a bind() or sctp_bindx() is not called prior to 1049 * an sctp_connectx() call, the system picks an 1050 * ephemeral port and will choose an address set 1051 * equivalent to binding with a wildcard address. 1052 */ 1053 if (!ep->base.bind_addr.port) { 1054 if (sctp_autobind(sk)) { 1055 err = -EAGAIN; 1056 goto out_free; 1057 } 1058 } else { 1059 /* 1060 * If an unprivileged user inherits a 1-many 1061 * style socket with open associations on a 1062 * privileged port, it MAY be permitted to 1063 * accept new associations, but it SHOULD NOT 1064 * be permitted to open new associations. 1065 */ 1066 if (ep->base.bind_addr.port < PROT_SOCK && 1067 !capable(CAP_NET_BIND_SERVICE)) { 1068 err = -EACCES; 1069 goto out_free; 1070 } 1071 } 1072 1073 scope = sctp_scope(&to); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) { 1076 err = -ENOMEM; 1077 goto out_free; 1078 } 1079 } 1080 1081 /* Prime the peer's transport structures. */ 1082 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1083 SCTP_UNKNOWN); 1084 if (!transport) { 1085 err = -ENOMEM; 1086 goto out_free; 1087 } 1088 1089 addrcnt++; 1090 addr_buf += af->sockaddr_len; 1091 walk_size += af->sockaddr_len; 1092 } 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1095 if (err < 0) { 1096 goto out_free; 1097 } 1098 1099 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1100 if (err < 0) { 1101 goto out_free; 1102 } 1103 1104 /* Initialize sk's dport and daddr for getpeername() */ 1105 inet_sk(sk)->dport = htons(asoc->peer.port); 1106 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1107 af->to_sk_daddr(sa_addr, sk); 1108 sk->sk_err = 0; 1109 1110 /* in-kernel sockets don't generally have a file allocated to them 1111 * if all they do is call sock_create_kern(). 1112 */ 1113 if (sk->sk_socket->file) 1114 f_flags = sk->sk_socket->file->f_flags; 1115 1116 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1117 1118 err = sctp_wait_for_connect(asoc, &timeo); 1119 1120 /* Don't free association on exit. */ 1121 asoc = NULL; 1122 1123 out_free: 1124 1125 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1126 " kaddrs: %p err: %d\n", 1127 asoc, kaddrs, err); 1128 if (asoc) 1129 sctp_association_free(asoc); 1130 return err; 1131 } 1132 1133 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1134 * 1135 * API 8.9 1136 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1137 * 1138 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1139 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1140 * or IPv6 addresses. 1141 * 1142 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1143 * Section 3.1.2 for this usage. 1144 * 1145 * addrs is a pointer to an array of one or more socket addresses. Each 1146 * address is contained in its appropriate structure (i.e. struct 1147 * sockaddr_in or struct sockaddr_in6) the family of the address type 1148 * must be used to distengish the address length (note that this 1149 * representation is termed a "packed array" of addresses). The caller 1150 * specifies the number of addresses in the array with addrcnt. 1151 * 1152 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1153 * -1, and sets errno to the appropriate error code. 1154 * 1155 * For SCTP, the port given in each socket address must be the same, or 1156 * sctp_connectx() will fail, setting errno to EINVAL. 1157 * 1158 * An application can use sctp_connectx to initiate an association with 1159 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1160 * allows a caller to specify multiple addresses at which a peer can be 1161 * reached. The way the SCTP stack uses the list of addresses to set up 1162 * the association is implementation dependant. This function only 1163 * specifies that the stack will try to make use of all the addresses in 1164 * the list when needed. 1165 * 1166 * Note that the list of addresses passed in is only used for setting up 1167 * the association. It does not necessarily equal the set of addresses 1168 * the peer uses for the resulting association. If the caller wants to 1169 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1170 * retrieve them after the association has been set up. 1171 * 1172 * Basically do nothing but copying the addresses from user to kernel 1173 * land and invoking either sctp_connectx(). This is used for tunneling 1174 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1175 * 1176 * We don't use copy_from_user() for optimization: we first do the 1177 * sanity checks (buffer size -fast- and access check-healthy 1178 * pointer); if all of those succeed, then we can alloc the memory 1179 * (expensive operation) needed to copy the data to kernel. Then we do 1180 * the copying without checking the user space area 1181 * (__copy_from_user()). 1182 * 1183 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1184 * it. 1185 * 1186 * sk The sk of the socket 1187 * addrs The pointer to the addresses in user land 1188 * addrssize Size of the addrs buffer 1189 * 1190 * Returns 0 if ok, <0 errno code on error. 1191 */ 1192 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1193 struct sockaddr __user *addrs, 1194 int addrs_size) 1195 { 1196 int err = 0; 1197 struct sockaddr *kaddrs; 1198 1199 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1200 __FUNCTION__, sk, addrs, addrs_size); 1201 1202 if (unlikely(addrs_size <= 0)) 1203 return -EINVAL; 1204 1205 /* Check the user passed a healthy pointer. */ 1206 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1207 return -EFAULT; 1208 1209 /* Alloc space for the address array in kernel memory. */ 1210 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1211 if (unlikely(!kaddrs)) 1212 return -ENOMEM; 1213 1214 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1215 err = -EFAULT; 1216 } else { 1217 err = __sctp_connect(sk, kaddrs, addrs_size); 1218 } 1219 1220 kfree(kaddrs); 1221 return err; 1222 } 1223 1224 /* API 3.1.4 close() - UDP Style Syntax 1225 * Applications use close() to perform graceful shutdown (as described in 1226 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1227 * by a UDP-style socket. 1228 * 1229 * The syntax is 1230 * 1231 * ret = close(int sd); 1232 * 1233 * sd - the socket descriptor of the associations to be closed. 1234 * 1235 * To gracefully shutdown a specific association represented by the 1236 * UDP-style socket, an application should use the sendmsg() call, 1237 * passing no user data, but including the appropriate flag in the 1238 * ancillary data (see Section xxxx). 1239 * 1240 * If sd in the close() call is a branched-off socket representing only 1241 * one association, the shutdown is performed on that association only. 1242 * 1243 * 4.1.6 close() - TCP Style Syntax 1244 * 1245 * Applications use close() to gracefully close down an association. 1246 * 1247 * The syntax is: 1248 * 1249 * int close(int sd); 1250 * 1251 * sd - the socket descriptor of the association to be closed. 1252 * 1253 * After an application calls close() on a socket descriptor, no further 1254 * socket operations will succeed on that descriptor. 1255 * 1256 * API 7.1.4 SO_LINGER 1257 * 1258 * An application using the TCP-style socket can use this option to 1259 * perform the SCTP ABORT primitive. The linger option structure is: 1260 * 1261 * struct linger { 1262 * int l_onoff; // option on/off 1263 * int l_linger; // linger time 1264 * }; 1265 * 1266 * To enable the option, set l_onoff to 1. If the l_linger value is set 1267 * to 0, calling close() is the same as the ABORT primitive. If the 1268 * value is set to a negative value, the setsockopt() call will return 1269 * an error. If the value is set to a positive value linger_time, the 1270 * close() can be blocked for at most linger_time ms. If the graceful 1271 * shutdown phase does not finish during this period, close() will 1272 * return but the graceful shutdown phase continues in the system. 1273 */ 1274 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1275 { 1276 struct sctp_endpoint *ep; 1277 struct sctp_association *asoc; 1278 struct list_head *pos, *temp; 1279 1280 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1281 1282 sctp_lock_sock(sk); 1283 sk->sk_shutdown = SHUTDOWN_MASK; 1284 1285 ep = sctp_sk(sk)->ep; 1286 1287 /* Walk all associations on an endpoint. */ 1288 list_for_each_safe(pos, temp, &ep->asocs) { 1289 asoc = list_entry(pos, struct sctp_association, asocs); 1290 1291 if (sctp_style(sk, TCP)) { 1292 /* A closed association can still be in the list if 1293 * it belongs to a TCP-style listening socket that is 1294 * not yet accepted. If so, free it. If not, send an 1295 * ABORT or SHUTDOWN based on the linger options. 1296 */ 1297 if (sctp_state(asoc, CLOSED)) { 1298 sctp_unhash_established(asoc); 1299 sctp_association_free(asoc); 1300 continue; 1301 } 1302 } 1303 1304 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1305 struct sctp_chunk *chunk; 1306 1307 chunk = sctp_make_abort_user(asoc, NULL, 0); 1308 if (chunk) 1309 sctp_primitive_ABORT(asoc, chunk); 1310 } else 1311 sctp_primitive_SHUTDOWN(asoc, NULL); 1312 } 1313 1314 /* Clean up any skbs sitting on the receive queue. */ 1315 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1316 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1317 1318 /* On a TCP-style socket, block for at most linger_time if set. */ 1319 if (sctp_style(sk, TCP) && timeout) 1320 sctp_wait_for_close(sk, timeout); 1321 1322 /* This will run the backlog queue. */ 1323 sctp_release_sock(sk); 1324 1325 /* Supposedly, no process has access to the socket, but 1326 * the net layers still may. 1327 */ 1328 sctp_local_bh_disable(); 1329 sctp_bh_lock_sock(sk); 1330 1331 /* Hold the sock, since sk_common_release() will put sock_put() 1332 * and we have just a little more cleanup. 1333 */ 1334 sock_hold(sk); 1335 sk_common_release(sk); 1336 1337 sctp_bh_unlock_sock(sk); 1338 sctp_local_bh_enable(); 1339 1340 sock_put(sk); 1341 1342 SCTP_DBG_OBJCNT_DEC(sock); 1343 } 1344 1345 /* Handle EPIPE error. */ 1346 static int sctp_error(struct sock *sk, int flags, int err) 1347 { 1348 if (err == -EPIPE) 1349 err = sock_error(sk) ? : -EPIPE; 1350 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1351 send_sig(SIGPIPE, current, 0); 1352 return err; 1353 } 1354 1355 /* API 3.1.3 sendmsg() - UDP Style Syntax 1356 * 1357 * An application uses sendmsg() and recvmsg() calls to transmit data to 1358 * and receive data from its peer. 1359 * 1360 * ssize_t sendmsg(int socket, const struct msghdr *message, 1361 * int flags); 1362 * 1363 * socket - the socket descriptor of the endpoint. 1364 * message - pointer to the msghdr structure which contains a single 1365 * user message and possibly some ancillary data. 1366 * 1367 * See Section 5 for complete description of the data 1368 * structures. 1369 * 1370 * flags - flags sent or received with the user message, see Section 1371 * 5 for complete description of the flags. 1372 * 1373 * Note: This function could use a rewrite especially when explicit 1374 * connect support comes in. 1375 */ 1376 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1377 1378 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1379 1380 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1381 struct msghdr *msg, size_t msg_len) 1382 { 1383 struct sctp_sock *sp; 1384 struct sctp_endpoint *ep; 1385 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1386 struct sctp_transport *transport, *chunk_tp; 1387 struct sctp_chunk *chunk; 1388 union sctp_addr to; 1389 struct sockaddr *msg_name = NULL; 1390 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1391 struct sctp_sndrcvinfo *sinfo; 1392 struct sctp_initmsg *sinit; 1393 sctp_assoc_t associd = 0; 1394 sctp_cmsgs_t cmsgs = { NULL }; 1395 int err; 1396 sctp_scope_t scope; 1397 long timeo; 1398 __u16 sinfo_flags = 0; 1399 struct sctp_datamsg *datamsg; 1400 struct list_head *pos; 1401 int msg_flags = msg->msg_flags; 1402 1403 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1404 sk, msg, msg_len); 1405 1406 err = 0; 1407 sp = sctp_sk(sk); 1408 ep = sp->ep; 1409 1410 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1411 1412 /* We cannot send a message over a TCP-style listening socket. */ 1413 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1414 err = -EPIPE; 1415 goto out_nounlock; 1416 } 1417 1418 /* Parse out the SCTP CMSGs. */ 1419 err = sctp_msghdr_parse(msg, &cmsgs); 1420 1421 if (err) { 1422 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1423 goto out_nounlock; 1424 } 1425 1426 /* Fetch the destination address for this packet. This 1427 * address only selects the association--it is not necessarily 1428 * the address we will send to. 1429 * For a peeled-off socket, msg_name is ignored. 1430 */ 1431 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1432 int msg_namelen = msg->msg_namelen; 1433 1434 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1435 msg_namelen); 1436 if (err) 1437 return err; 1438 1439 if (msg_namelen > sizeof(to)) 1440 msg_namelen = sizeof(to); 1441 memcpy(&to, msg->msg_name, msg_namelen); 1442 msg_name = msg->msg_name; 1443 } 1444 1445 sinfo = cmsgs.info; 1446 sinit = cmsgs.init; 1447 1448 /* Did the user specify SNDRCVINFO? */ 1449 if (sinfo) { 1450 sinfo_flags = sinfo->sinfo_flags; 1451 associd = sinfo->sinfo_assoc_id; 1452 } 1453 1454 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1455 msg_len, sinfo_flags); 1456 1457 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1458 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1459 err = -EINVAL; 1460 goto out_nounlock; 1461 } 1462 1463 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1464 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1465 * If SCTP_ABORT is set, the message length could be non zero with 1466 * the msg_iov set to the user abort reason. 1467 */ 1468 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1469 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1470 err = -EINVAL; 1471 goto out_nounlock; 1472 } 1473 1474 /* If SCTP_ADDR_OVER is set, there must be an address 1475 * specified in msg_name. 1476 */ 1477 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1478 err = -EINVAL; 1479 goto out_nounlock; 1480 } 1481 1482 transport = NULL; 1483 1484 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1485 1486 sctp_lock_sock(sk); 1487 1488 /* If a msg_name has been specified, assume this is to be used. */ 1489 if (msg_name) { 1490 /* Look for a matching association on the endpoint. */ 1491 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1492 if (!asoc) { 1493 /* If we could not find a matching association on the 1494 * endpoint, make sure that it is not a TCP-style 1495 * socket that already has an association or there is 1496 * no peeled-off association on another socket. 1497 */ 1498 if ((sctp_style(sk, TCP) && 1499 sctp_sstate(sk, ESTABLISHED)) || 1500 sctp_endpoint_is_peeled_off(ep, &to)) { 1501 err = -EADDRNOTAVAIL; 1502 goto out_unlock; 1503 } 1504 } 1505 } else { 1506 asoc = sctp_id2assoc(sk, associd); 1507 if (!asoc) { 1508 err = -EPIPE; 1509 goto out_unlock; 1510 } 1511 } 1512 1513 if (asoc) { 1514 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1515 1516 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1517 * socket that has an association in CLOSED state. This can 1518 * happen when an accepted socket has an association that is 1519 * already CLOSED. 1520 */ 1521 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1522 err = -EPIPE; 1523 goto out_unlock; 1524 } 1525 1526 if (sinfo_flags & SCTP_EOF) { 1527 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1528 asoc); 1529 sctp_primitive_SHUTDOWN(asoc, NULL); 1530 err = 0; 1531 goto out_unlock; 1532 } 1533 if (sinfo_flags & SCTP_ABORT) { 1534 1535 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1536 if (!chunk) { 1537 err = -ENOMEM; 1538 goto out_unlock; 1539 } 1540 1541 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1542 sctp_primitive_ABORT(asoc, chunk); 1543 err = 0; 1544 goto out_unlock; 1545 } 1546 } 1547 1548 /* Do we need to create the association? */ 1549 if (!asoc) { 1550 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1551 1552 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1553 err = -EINVAL; 1554 goto out_unlock; 1555 } 1556 1557 /* Check for invalid stream against the stream counts, 1558 * either the default or the user specified stream counts. 1559 */ 1560 if (sinfo) { 1561 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1562 /* Check against the defaults. */ 1563 if (sinfo->sinfo_stream >= 1564 sp->initmsg.sinit_num_ostreams) { 1565 err = -EINVAL; 1566 goto out_unlock; 1567 } 1568 } else { 1569 /* Check against the requested. */ 1570 if (sinfo->sinfo_stream >= 1571 sinit->sinit_num_ostreams) { 1572 err = -EINVAL; 1573 goto out_unlock; 1574 } 1575 } 1576 } 1577 1578 /* 1579 * API 3.1.2 bind() - UDP Style Syntax 1580 * If a bind() or sctp_bindx() is not called prior to a 1581 * sendmsg() call that initiates a new association, the 1582 * system picks an ephemeral port and will choose an address 1583 * set equivalent to binding with a wildcard address. 1584 */ 1585 if (!ep->base.bind_addr.port) { 1586 if (sctp_autobind(sk)) { 1587 err = -EAGAIN; 1588 goto out_unlock; 1589 } 1590 } else { 1591 /* 1592 * If an unprivileged user inherits a one-to-many 1593 * style socket with open associations on a privileged 1594 * port, it MAY be permitted to accept new associations, 1595 * but it SHOULD NOT be permitted to open new 1596 * associations. 1597 */ 1598 if (ep->base.bind_addr.port < PROT_SOCK && 1599 !capable(CAP_NET_BIND_SERVICE)) { 1600 err = -EACCES; 1601 goto out_unlock; 1602 } 1603 } 1604 1605 scope = sctp_scope(&to); 1606 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1607 if (!new_asoc) { 1608 err = -ENOMEM; 1609 goto out_unlock; 1610 } 1611 asoc = new_asoc; 1612 1613 /* If the SCTP_INIT ancillary data is specified, set all 1614 * the association init values accordingly. 1615 */ 1616 if (sinit) { 1617 if (sinit->sinit_num_ostreams) { 1618 asoc->c.sinit_num_ostreams = 1619 sinit->sinit_num_ostreams; 1620 } 1621 if (sinit->sinit_max_instreams) { 1622 asoc->c.sinit_max_instreams = 1623 sinit->sinit_max_instreams; 1624 } 1625 if (sinit->sinit_max_attempts) { 1626 asoc->max_init_attempts 1627 = sinit->sinit_max_attempts; 1628 } 1629 if (sinit->sinit_max_init_timeo) { 1630 asoc->max_init_timeo = 1631 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1632 } 1633 } 1634 1635 /* Prime the peer's transport structures. */ 1636 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1637 if (!transport) { 1638 err = -ENOMEM; 1639 goto out_free; 1640 } 1641 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1642 if (err < 0) { 1643 err = -ENOMEM; 1644 goto out_free; 1645 } 1646 } 1647 1648 /* ASSERT: we have a valid association at this point. */ 1649 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1650 1651 if (!sinfo) { 1652 /* If the user didn't specify SNDRCVINFO, make up one with 1653 * some defaults. 1654 */ 1655 default_sinfo.sinfo_stream = asoc->default_stream; 1656 default_sinfo.sinfo_flags = asoc->default_flags; 1657 default_sinfo.sinfo_ppid = asoc->default_ppid; 1658 default_sinfo.sinfo_context = asoc->default_context; 1659 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1660 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1661 sinfo = &default_sinfo; 1662 } 1663 1664 /* API 7.1.7, the sndbuf size per association bounds the 1665 * maximum size of data that can be sent in a single send call. 1666 */ 1667 if (msg_len > sk->sk_sndbuf) { 1668 err = -EMSGSIZE; 1669 goto out_free; 1670 } 1671 1672 if (asoc->pmtu_pending) 1673 sctp_assoc_pending_pmtu(asoc); 1674 1675 /* If fragmentation is disabled and the message length exceeds the 1676 * association fragmentation point, return EMSGSIZE. The I-D 1677 * does not specify what this error is, but this looks like 1678 * a great fit. 1679 */ 1680 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1681 err = -EMSGSIZE; 1682 goto out_free; 1683 } 1684 1685 if (sinfo) { 1686 /* Check for invalid stream. */ 1687 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1688 err = -EINVAL; 1689 goto out_free; 1690 } 1691 } 1692 1693 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1694 if (!sctp_wspace(asoc)) { 1695 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1696 if (err) 1697 goto out_free; 1698 } 1699 1700 /* If an address is passed with the sendto/sendmsg call, it is used 1701 * to override the primary destination address in the TCP model, or 1702 * when SCTP_ADDR_OVER flag is set in the UDP model. 1703 */ 1704 if ((sctp_style(sk, TCP) && msg_name) || 1705 (sinfo_flags & SCTP_ADDR_OVER)) { 1706 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1707 if (!chunk_tp) { 1708 err = -EINVAL; 1709 goto out_free; 1710 } 1711 } else 1712 chunk_tp = NULL; 1713 1714 /* Auto-connect, if we aren't connected already. */ 1715 if (sctp_state(asoc, CLOSED)) { 1716 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1717 if (err < 0) 1718 goto out_free; 1719 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1720 } 1721 1722 /* Break the message into multiple chunks of maximum size. */ 1723 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1724 if (!datamsg) { 1725 err = -ENOMEM; 1726 goto out_free; 1727 } 1728 1729 /* Now send the (possibly) fragmented message. */ 1730 list_for_each(pos, &datamsg->chunks) { 1731 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1732 sctp_datamsg_track(chunk); 1733 1734 /* Do accounting for the write space. */ 1735 sctp_set_owner_w(chunk); 1736 1737 chunk->transport = chunk_tp; 1738 1739 /* Send it to the lower layers. Note: all chunks 1740 * must either fail or succeed. The lower layer 1741 * works that way today. Keep it that way or this 1742 * breaks. 1743 */ 1744 err = sctp_primitive_SEND(asoc, chunk); 1745 /* Did the lower layer accept the chunk? */ 1746 if (err) 1747 sctp_chunk_free(chunk); 1748 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1749 } 1750 1751 sctp_datamsg_free(datamsg); 1752 if (err) 1753 goto out_free; 1754 else 1755 err = msg_len; 1756 1757 /* If we are already past ASSOCIATE, the lower 1758 * layers are responsible for association cleanup. 1759 */ 1760 goto out_unlock; 1761 1762 out_free: 1763 if (new_asoc) 1764 sctp_association_free(asoc); 1765 out_unlock: 1766 sctp_release_sock(sk); 1767 1768 out_nounlock: 1769 return sctp_error(sk, msg_flags, err); 1770 1771 #if 0 1772 do_sock_err: 1773 if (msg_len) 1774 err = msg_len; 1775 else 1776 err = sock_error(sk); 1777 goto out; 1778 1779 do_interrupted: 1780 if (msg_len) 1781 err = msg_len; 1782 goto out; 1783 #endif /* 0 */ 1784 } 1785 1786 /* This is an extended version of skb_pull() that removes the data from the 1787 * start of a skb even when data is spread across the list of skb's in the 1788 * frag_list. len specifies the total amount of data that needs to be removed. 1789 * when 'len' bytes could be removed from the skb, it returns 0. 1790 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1791 * could not be removed. 1792 */ 1793 static int sctp_skb_pull(struct sk_buff *skb, int len) 1794 { 1795 struct sk_buff *list; 1796 int skb_len = skb_headlen(skb); 1797 int rlen; 1798 1799 if (len <= skb_len) { 1800 __skb_pull(skb, len); 1801 return 0; 1802 } 1803 len -= skb_len; 1804 __skb_pull(skb, skb_len); 1805 1806 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1807 rlen = sctp_skb_pull(list, len); 1808 skb->len -= (len-rlen); 1809 skb->data_len -= (len-rlen); 1810 1811 if (!rlen) 1812 return 0; 1813 1814 len = rlen; 1815 } 1816 1817 return len; 1818 } 1819 1820 /* API 3.1.3 recvmsg() - UDP Style Syntax 1821 * 1822 * ssize_t recvmsg(int socket, struct msghdr *message, 1823 * int flags); 1824 * 1825 * socket - the socket descriptor of the endpoint. 1826 * message - pointer to the msghdr structure which contains a single 1827 * user message and possibly some ancillary data. 1828 * 1829 * See Section 5 for complete description of the data 1830 * structures. 1831 * 1832 * flags - flags sent or received with the user message, see Section 1833 * 5 for complete description of the flags. 1834 */ 1835 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1836 1837 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1838 struct msghdr *msg, size_t len, int noblock, 1839 int flags, int *addr_len) 1840 { 1841 struct sctp_ulpevent *event = NULL; 1842 struct sctp_sock *sp = sctp_sk(sk); 1843 struct sk_buff *skb; 1844 int copied; 1845 int err = 0; 1846 int skb_len; 1847 1848 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1849 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1850 "len", len, "knoblauch", noblock, 1851 "flags", flags, "addr_len", addr_len); 1852 1853 sctp_lock_sock(sk); 1854 1855 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1856 err = -ENOTCONN; 1857 goto out; 1858 } 1859 1860 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1861 if (!skb) 1862 goto out; 1863 1864 /* Get the total length of the skb including any skb's in the 1865 * frag_list. 1866 */ 1867 skb_len = skb->len; 1868 1869 copied = skb_len; 1870 if (copied > len) 1871 copied = len; 1872 1873 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1874 1875 event = sctp_skb2event(skb); 1876 1877 if (err) 1878 goto out_free; 1879 1880 sock_recv_timestamp(msg, sk, skb); 1881 if (sctp_ulpevent_is_notification(event)) { 1882 msg->msg_flags |= MSG_NOTIFICATION; 1883 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1884 } else { 1885 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1886 } 1887 1888 /* Check if we allow SCTP_SNDRCVINFO. */ 1889 if (sp->subscribe.sctp_data_io_event) 1890 sctp_ulpevent_read_sndrcvinfo(event, msg); 1891 #if 0 1892 /* FIXME: we should be calling IP/IPv6 layers. */ 1893 if (sk->sk_protinfo.af_inet.cmsg_flags) 1894 ip_cmsg_recv(msg, skb); 1895 #endif 1896 1897 err = copied; 1898 1899 /* If skb's length exceeds the user's buffer, update the skb and 1900 * push it back to the receive_queue so that the next call to 1901 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1902 */ 1903 if (skb_len > copied) { 1904 msg->msg_flags &= ~MSG_EOR; 1905 if (flags & MSG_PEEK) 1906 goto out_free; 1907 sctp_skb_pull(skb, copied); 1908 skb_queue_head(&sk->sk_receive_queue, skb); 1909 1910 /* When only partial message is copied to the user, increase 1911 * rwnd by that amount. If all the data in the skb is read, 1912 * rwnd is updated when the event is freed. 1913 */ 1914 sctp_assoc_rwnd_increase(event->asoc, copied); 1915 goto out; 1916 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1917 (event->msg_flags & MSG_EOR)) 1918 msg->msg_flags |= MSG_EOR; 1919 else 1920 msg->msg_flags &= ~MSG_EOR; 1921 1922 out_free: 1923 if (flags & MSG_PEEK) { 1924 /* Release the skb reference acquired after peeking the skb in 1925 * sctp_skb_recv_datagram(). 1926 */ 1927 kfree_skb(skb); 1928 } else { 1929 /* Free the event which includes releasing the reference to 1930 * the owner of the skb, freeing the skb and updating the 1931 * rwnd. 1932 */ 1933 sctp_ulpevent_free(event); 1934 } 1935 out: 1936 sctp_release_sock(sk); 1937 return err; 1938 } 1939 1940 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1941 * 1942 * This option is a on/off flag. If enabled no SCTP message 1943 * fragmentation will be performed. Instead if a message being sent 1944 * exceeds the current PMTU size, the message will NOT be sent and 1945 * instead a error will be indicated to the user. 1946 */ 1947 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1948 char __user *optval, int optlen) 1949 { 1950 int val; 1951 1952 if (optlen < sizeof(int)) 1953 return -EINVAL; 1954 1955 if (get_user(val, (int __user *)optval)) 1956 return -EFAULT; 1957 1958 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1959 1960 return 0; 1961 } 1962 1963 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1964 int optlen) 1965 { 1966 if (optlen != sizeof(struct sctp_event_subscribe)) 1967 return -EINVAL; 1968 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1969 return -EFAULT; 1970 return 0; 1971 } 1972 1973 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1974 * 1975 * This socket option is applicable to the UDP-style socket only. When 1976 * set it will cause associations that are idle for more than the 1977 * specified number of seconds to automatically close. An association 1978 * being idle is defined an association that has NOT sent or received 1979 * user data. The special value of '0' indicates that no automatic 1980 * close of any associations should be performed. The option expects an 1981 * integer defining the number of seconds of idle time before an 1982 * association is closed. 1983 */ 1984 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1985 int optlen) 1986 { 1987 struct sctp_sock *sp = sctp_sk(sk); 1988 1989 /* Applicable to UDP-style socket only */ 1990 if (sctp_style(sk, TCP)) 1991 return -EOPNOTSUPP; 1992 if (optlen != sizeof(int)) 1993 return -EINVAL; 1994 if (copy_from_user(&sp->autoclose, optval, optlen)) 1995 return -EFAULT; 1996 1997 return 0; 1998 } 1999 2000 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2001 * 2002 * Applications can enable or disable heartbeats for any peer address of 2003 * an association, modify an address's heartbeat interval, force a 2004 * heartbeat to be sent immediately, and adjust the address's maximum 2005 * number of retransmissions sent before an address is considered 2006 * unreachable. The following structure is used to access and modify an 2007 * address's parameters: 2008 * 2009 * struct sctp_paddrparams { 2010 * sctp_assoc_t spp_assoc_id; 2011 * struct sockaddr_storage spp_address; 2012 * uint32_t spp_hbinterval; 2013 * uint16_t spp_pathmaxrxt; 2014 * uint32_t spp_pathmtu; 2015 * uint32_t spp_sackdelay; 2016 * uint32_t spp_flags; 2017 * }; 2018 * 2019 * spp_assoc_id - (one-to-many style socket) This is filled in the 2020 * application, and identifies the association for 2021 * this query. 2022 * spp_address - This specifies which address is of interest. 2023 * spp_hbinterval - This contains the value of the heartbeat interval, 2024 * in milliseconds. If a value of zero 2025 * is present in this field then no changes are to 2026 * be made to this parameter. 2027 * spp_pathmaxrxt - This contains the maximum number of 2028 * retransmissions before this address shall be 2029 * considered unreachable. If a value of zero 2030 * is present in this field then no changes are to 2031 * be made to this parameter. 2032 * spp_pathmtu - When Path MTU discovery is disabled the value 2033 * specified here will be the "fixed" path mtu. 2034 * Note that if the spp_address field is empty 2035 * then all associations on this address will 2036 * have this fixed path mtu set upon them. 2037 * 2038 * spp_sackdelay - When delayed sack is enabled, this value specifies 2039 * the number of milliseconds that sacks will be delayed 2040 * for. This value will apply to all addresses of an 2041 * association if the spp_address field is empty. Note 2042 * also, that if delayed sack is enabled and this 2043 * value is set to 0, no change is made to the last 2044 * recorded delayed sack timer value. 2045 * 2046 * spp_flags - These flags are used to control various features 2047 * on an association. The flag field may contain 2048 * zero or more of the following options. 2049 * 2050 * SPP_HB_ENABLE - Enable heartbeats on the 2051 * specified address. Note that if the address 2052 * field is empty all addresses for the association 2053 * have heartbeats enabled upon them. 2054 * 2055 * SPP_HB_DISABLE - Disable heartbeats on the 2056 * speicifed address. Note that if the address 2057 * field is empty all addresses for the association 2058 * will have their heartbeats disabled. Note also 2059 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2060 * mutually exclusive, only one of these two should 2061 * be specified. Enabling both fields will have 2062 * undetermined results. 2063 * 2064 * SPP_HB_DEMAND - Request a user initiated heartbeat 2065 * to be made immediately. 2066 * 2067 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2068 * heartbeat delayis to be set to the value of 0 2069 * milliseconds. 2070 * 2071 * SPP_PMTUD_ENABLE - This field will enable PMTU 2072 * discovery upon the specified address. Note that 2073 * if the address feild is empty then all addresses 2074 * on the association are effected. 2075 * 2076 * SPP_PMTUD_DISABLE - This field will disable PMTU 2077 * discovery upon the specified address. Note that 2078 * if the address feild is empty then all addresses 2079 * on the association are effected. Not also that 2080 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2081 * exclusive. Enabling both will have undetermined 2082 * results. 2083 * 2084 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2085 * on delayed sack. The time specified in spp_sackdelay 2086 * is used to specify the sack delay for this address. Note 2087 * that if spp_address is empty then all addresses will 2088 * enable delayed sack and take on the sack delay 2089 * value specified in spp_sackdelay. 2090 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2091 * off delayed sack. If the spp_address field is blank then 2092 * delayed sack is disabled for the entire association. Note 2093 * also that this field is mutually exclusive to 2094 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2095 * results. 2096 */ 2097 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2098 struct sctp_transport *trans, 2099 struct sctp_association *asoc, 2100 struct sctp_sock *sp, 2101 int hb_change, 2102 int pmtud_change, 2103 int sackdelay_change) 2104 { 2105 int error; 2106 2107 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2108 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2109 if (error) 2110 return error; 2111 } 2112 2113 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2114 * this field is ignored. Note also that a value of zero indicates 2115 * the current setting should be left unchanged. 2116 */ 2117 if (params->spp_flags & SPP_HB_ENABLE) { 2118 2119 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2120 * set. This lets us use 0 value when this flag 2121 * is set. 2122 */ 2123 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2124 params->spp_hbinterval = 0; 2125 2126 if (params->spp_hbinterval || 2127 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2128 if (trans) { 2129 trans->hbinterval = 2130 msecs_to_jiffies(params->spp_hbinterval); 2131 } else if (asoc) { 2132 asoc->hbinterval = 2133 msecs_to_jiffies(params->spp_hbinterval); 2134 } else { 2135 sp->hbinterval = params->spp_hbinterval; 2136 } 2137 } 2138 } 2139 2140 if (hb_change) { 2141 if (trans) { 2142 trans->param_flags = 2143 (trans->param_flags & ~SPP_HB) | hb_change; 2144 } else if (asoc) { 2145 asoc->param_flags = 2146 (asoc->param_flags & ~SPP_HB) | hb_change; 2147 } else { 2148 sp->param_flags = 2149 (sp->param_flags & ~SPP_HB) | hb_change; 2150 } 2151 } 2152 2153 /* When Path MTU discovery is disabled the value specified here will 2154 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2155 * include the flag SPP_PMTUD_DISABLE for this field to have any 2156 * effect). 2157 */ 2158 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2159 if (trans) { 2160 trans->pathmtu = params->spp_pathmtu; 2161 sctp_assoc_sync_pmtu(asoc); 2162 } else if (asoc) { 2163 asoc->pathmtu = params->spp_pathmtu; 2164 sctp_frag_point(sp, params->spp_pathmtu); 2165 } else { 2166 sp->pathmtu = params->spp_pathmtu; 2167 } 2168 } 2169 2170 if (pmtud_change) { 2171 if (trans) { 2172 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2173 (params->spp_flags & SPP_PMTUD_ENABLE); 2174 trans->param_flags = 2175 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2176 if (update) { 2177 sctp_transport_pmtu(trans); 2178 sctp_assoc_sync_pmtu(asoc); 2179 } 2180 } else if (asoc) { 2181 asoc->param_flags = 2182 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2183 } else { 2184 sp->param_flags = 2185 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2186 } 2187 } 2188 2189 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2190 * value of this field is ignored. Note also that a value of zero 2191 * indicates the current setting should be left unchanged. 2192 */ 2193 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2194 if (trans) { 2195 trans->sackdelay = 2196 msecs_to_jiffies(params->spp_sackdelay); 2197 } else if (asoc) { 2198 asoc->sackdelay = 2199 msecs_to_jiffies(params->spp_sackdelay); 2200 } else { 2201 sp->sackdelay = params->spp_sackdelay; 2202 } 2203 } 2204 2205 if (sackdelay_change) { 2206 if (trans) { 2207 trans->param_flags = 2208 (trans->param_flags & ~SPP_SACKDELAY) | 2209 sackdelay_change; 2210 } else if (asoc) { 2211 asoc->param_flags = 2212 (asoc->param_flags & ~SPP_SACKDELAY) | 2213 sackdelay_change; 2214 } else { 2215 sp->param_flags = 2216 (sp->param_flags & ~SPP_SACKDELAY) | 2217 sackdelay_change; 2218 } 2219 } 2220 2221 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2222 * of this field is ignored. Note also that a value of zero 2223 * indicates the current setting should be left unchanged. 2224 */ 2225 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2226 if (trans) { 2227 trans->pathmaxrxt = params->spp_pathmaxrxt; 2228 } else if (asoc) { 2229 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2230 } else { 2231 sp->pathmaxrxt = params->spp_pathmaxrxt; 2232 } 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2239 char __user *optval, int optlen) 2240 { 2241 struct sctp_paddrparams params; 2242 struct sctp_transport *trans = NULL; 2243 struct sctp_association *asoc = NULL; 2244 struct sctp_sock *sp = sctp_sk(sk); 2245 int error; 2246 int hb_change, pmtud_change, sackdelay_change; 2247 2248 if (optlen != sizeof(struct sctp_paddrparams)) 2249 return - EINVAL; 2250 2251 if (copy_from_user(¶ms, optval, optlen)) 2252 return -EFAULT; 2253 2254 /* Validate flags and value parameters. */ 2255 hb_change = params.spp_flags & SPP_HB; 2256 pmtud_change = params.spp_flags & SPP_PMTUD; 2257 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2258 2259 if (hb_change == SPP_HB || 2260 pmtud_change == SPP_PMTUD || 2261 sackdelay_change == SPP_SACKDELAY || 2262 params.spp_sackdelay > 500 || 2263 (params.spp_pathmtu 2264 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2265 return -EINVAL; 2266 2267 /* If an address other than INADDR_ANY is specified, and 2268 * no transport is found, then the request is invalid. 2269 */ 2270 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2271 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2272 params.spp_assoc_id); 2273 if (!trans) 2274 return -EINVAL; 2275 } 2276 2277 /* Get association, if assoc_id != 0 and the socket is a one 2278 * to many style socket, and an association was not found, then 2279 * the id was invalid. 2280 */ 2281 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2282 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2283 return -EINVAL; 2284 2285 /* Heartbeat demand can only be sent on a transport or 2286 * association, but not a socket. 2287 */ 2288 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2289 return -EINVAL; 2290 2291 /* Process parameters. */ 2292 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2293 hb_change, pmtud_change, 2294 sackdelay_change); 2295 2296 if (error) 2297 return error; 2298 2299 /* If changes are for association, also apply parameters to each 2300 * transport. 2301 */ 2302 if (!trans && asoc) { 2303 struct list_head *pos; 2304 2305 list_for_each(pos, &asoc->peer.transport_addr_list) { 2306 trans = list_entry(pos, struct sctp_transport, 2307 transports); 2308 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2309 hb_change, pmtud_change, 2310 sackdelay_change); 2311 } 2312 } 2313 2314 return 0; 2315 } 2316 2317 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2318 * 2319 * This options will get or set the delayed ack timer. The time is set 2320 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2321 * endpoints default delayed ack timer value. If the assoc_id field is 2322 * non-zero, then the set or get effects the specified association. 2323 * 2324 * struct sctp_assoc_value { 2325 * sctp_assoc_t assoc_id; 2326 * uint32_t assoc_value; 2327 * }; 2328 * 2329 * assoc_id - This parameter, indicates which association the 2330 * user is preforming an action upon. Note that if 2331 * this field's value is zero then the endpoints 2332 * default value is changed (effecting future 2333 * associations only). 2334 * 2335 * assoc_value - This parameter contains the number of milliseconds 2336 * that the user is requesting the delayed ACK timer 2337 * be set to. Note that this value is defined in 2338 * the standard to be between 200 and 500 milliseconds. 2339 * 2340 * Note: a value of zero will leave the value alone, 2341 * but disable SACK delay. A non-zero value will also 2342 * enable SACK delay. 2343 */ 2344 2345 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2346 char __user *optval, int optlen) 2347 { 2348 struct sctp_assoc_value params; 2349 struct sctp_transport *trans = NULL; 2350 struct sctp_association *asoc = NULL; 2351 struct sctp_sock *sp = sctp_sk(sk); 2352 2353 if (optlen != sizeof(struct sctp_assoc_value)) 2354 return - EINVAL; 2355 2356 if (copy_from_user(¶ms, optval, optlen)) 2357 return -EFAULT; 2358 2359 /* Validate value parameter. */ 2360 if (params.assoc_value > 500) 2361 return -EINVAL; 2362 2363 /* Get association, if assoc_id != 0 and the socket is a one 2364 * to many style socket, and an association was not found, then 2365 * the id was invalid. 2366 */ 2367 asoc = sctp_id2assoc(sk, params.assoc_id); 2368 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2369 return -EINVAL; 2370 2371 if (params.assoc_value) { 2372 if (asoc) { 2373 asoc->sackdelay = 2374 msecs_to_jiffies(params.assoc_value); 2375 asoc->param_flags = 2376 (asoc->param_flags & ~SPP_SACKDELAY) | 2377 SPP_SACKDELAY_ENABLE; 2378 } else { 2379 sp->sackdelay = params.assoc_value; 2380 sp->param_flags = 2381 (sp->param_flags & ~SPP_SACKDELAY) | 2382 SPP_SACKDELAY_ENABLE; 2383 } 2384 } else { 2385 if (asoc) { 2386 asoc->param_flags = 2387 (asoc->param_flags & ~SPP_SACKDELAY) | 2388 SPP_SACKDELAY_DISABLE; 2389 } else { 2390 sp->param_flags = 2391 (sp->param_flags & ~SPP_SACKDELAY) | 2392 SPP_SACKDELAY_DISABLE; 2393 } 2394 } 2395 2396 /* If change is for association, also apply to each transport. */ 2397 if (asoc) { 2398 struct list_head *pos; 2399 2400 list_for_each(pos, &asoc->peer.transport_addr_list) { 2401 trans = list_entry(pos, struct sctp_transport, 2402 transports); 2403 if (params.assoc_value) { 2404 trans->sackdelay = 2405 msecs_to_jiffies(params.assoc_value); 2406 trans->param_flags = 2407 (trans->param_flags & ~SPP_SACKDELAY) | 2408 SPP_SACKDELAY_ENABLE; 2409 } else { 2410 trans->param_flags = 2411 (trans->param_flags & ~SPP_SACKDELAY) | 2412 SPP_SACKDELAY_DISABLE; 2413 } 2414 } 2415 } 2416 2417 return 0; 2418 } 2419 2420 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2421 * 2422 * Applications can specify protocol parameters for the default association 2423 * initialization. The option name argument to setsockopt() and getsockopt() 2424 * is SCTP_INITMSG. 2425 * 2426 * Setting initialization parameters is effective only on an unconnected 2427 * socket (for UDP-style sockets only future associations are effected 2428 * by the change). With TCP-style sockets, this option is inherited by 2429 * sockets derived from a listener socket. 2430 */ 2431 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2432 { 2433 struct sctp_initmsg sinit; 2434 struct sctp_sock *sp = sctp_sk(sk); 2435 2436 if (optlen != sizeof(struct sctp_initmsg)) 2437 return -EINVAL; 2438 if (copy_from_user(&sinit, optval, optlen)) 2439 return -EFAULT; 2440 2441 if (sinit.sinit_num_ostreams) 2442 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2443 if (sinit.sinit_max_instreams) 2444 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2445 if (sinit.sinit_max_attempts) 2446 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2447 if (sinit.sinit_max_init_timeo) 2448 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2449 2450 return 0; 2451 } 2452 2453 /* 2454 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2455 * 2456 * Applications that wish to use the sendto() system call may wish to 2457 * specify a default set of parameters that would normally be supplied 2458 * through the inclusion of ancillary data. This socket option allows 2459 * such an application to set the default sctp_sndrcvinfo structure. 2460 * The application that wishes to use this socket option simply passes 2461 * in to this call the sctp_sndrcvinfo structure defined in Section 2462 * 5.2.2) The input parameters accepted by this call include 2463 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2464 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2465 * to this call if the caller is using the UDP model. 2466 */ 2467 static int sctp_setsockopt_default_send_param(struct sock *sk, 2468 char __user *optval, int optlen) 2469 { 2470 struct sctp_sndrcvinfo info; 2471 struct sctp_association *asoc; 2472 struct sctp_sock *sp = sctp_sk(sk); 2473 2474 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2475 return -EINVAL; 2476 if (copy_from_user(&info, optval, optlen)) 2477 return -EFAULT; 2478 2479 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2480 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2481 return -EINVAL; 2482 2483 if (asoc) { 2484 asoc->default_stream = info.sinfo_stream; 2485 asoc->default_flags = info.sinfo_flags; 2486 asoc->default_ppid = info.sinfo_ppid; 2487 asoc->default_context = info.sinfo_context; 2488 asoc->default_timetolive = info.sinfo_timetolive; 2489 } else { 2490 sp->default_stream = info.sinfo_stream; 2491 sp->default_flags = info.sinfo_flags; 2492 sp->default_ppid = info.sinfo_ppid; 2493 sp->default_context = info.sinfo_context; 2494 sp->default_timetolive = info.sinfo_timetolive; 2495 } 2496 2497 return 0; 2498 } 2499 2500 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2501 * 2502 * Requests that the local SCTP stack use the enclosed peer address as 2503 * the association primary. The enclosed address must be one of the 2504 * association peer's addresses. 2505 */ 2506 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2507 int optlen) 2508 { 2509 struct sctp_prim prim; 2510 struct sctp_transport *trans; 2511 2512 if (optlen != sizeof(struct sctp_prim)) 2513 return -EINVAL; 2514 2515 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2516 return -EFAULT; 2517 2518 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2519 if (!trans) 2520 return -EINVAL; 2521 2522 sctp_assoc_set_primary(trans->asoc, trans); 2523 2524 return 0; 2525 } 2526 2527 /* 2528 * 7.1.5 SCTP_NODELAY 2529 * 2530 * Turn on/off any Nagle-like algorithm. This means that packets are 2531 * generally sent as soon as possible and no unnecessary delays are 2532 * introduced, at the cost of more packets in the network. Expects an 2533 * integer boolean flag. 2534 */ 2535 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2536 int optlen) 2537 { 2538 int val; 2539 2540 if (optlen < sizeof(int)) 2541 return -EINVAL; 2542 if (get_user(val, (int __user *)optval)) 2543 return -EFAULT; 2544 2545 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2546 return 0; 2547 } 2548 2549 /* 2550 * 2551 * 7.1.1 SCTP_RTOINFO 2552 * 2553 * The protocol parameters used to initialize and bound retransmission 2554 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2555 * and modify these parameters. 2556 * All parameters are time values, in milliseconds. A value of 0, when 2557 * modifying the parameters, indicates that the current value should not 2558 * be changed. 2559 * 2560 */ 2561 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2562 struct sctp_rtoinfo rtoinfo; 2563 struct sctp_association *asoc; 2564 2565 if (optlen != sizeof (struct sctp_rtoinfo)) 2566 return -EINVAL; 2567 2568 if (copy_from_user(&rtoinfo, optval, optlen)) 2569 return -EFAULT; 2570 2571 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2572 2573 /* Set the values to the specific association */ 2574 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2575 return -EINVAL; 2576 2577 if (asoc) { 2578 if (rtoinfo.srto_initial != 0) 2579 asoc->rto_initial = 2580 msecs_to_jiffies(rtoinfo.srto_initial); 2581 if (rtoinfo.srto_max != 0) 2582 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2583 if (rtoinfo.srto_min != 0) 2584 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2585 } else { 2586 /* If there is no association or the association-id = 0 2587 * set the values to the endpoint. 2588 */ 2589 struct sctp_sock *sp = sctp_sk(sk); 2590 2591 if (rtoinfo.srto_initial != 0) 2592 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2593 if (rtoinfo.srto_max != 0) 2594 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2595 if (rtoinfo.srto_min != 0) 2596 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2597 } 2598 2599 return 0; 2600 } 2601 2602 /* 2603 * 2604 * 7.1.2 SCTP_ASSOCINFO 2605 * 2606 * This option is used to tune the maximum retransmission attempts 2607 * of the association. 2608 * Returns an error if the new association retransmission value is 2609 * greater than the sum of the retransmission value of the peer. 2610 * See [SCTP] for more information. 2611 * 2612 */ 2613 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2614 { 2615 2616 struct sctp_assocparams assocparams; 2617 struct sctp_association *asoc; 2618 2619 if (optlen != sizeof(struct sctp_assocparams)) 2620 return -EINVAL; 2621 if (copy_from_user(&assocparams, optval, optlen)) 2622 return -EFAULT; 2623 2624 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2625 2626 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2627 return -EINVAL; 2628 2629 /* Set the values to the specific association */ 2630 if (asoc) { 2631 if (assocparams.sasoc_asocmaxrxt != 0) { 2632 __u32 path_sum = 0; 2633 int paths = 0; 2634 struct list_head *pos; 2635 struct sctp_transport *peer_addr; 2636 2637 list_for_each(pos, &asoc->peer.transport_addr_list) { 2638 peer_addr = list_entry(pos, 2639 struct sctp_transport, 2640 transports); 2641 path_sum += peer_addr->pathmaxrxt; 2642 paths++; 2643 } 2644 2645 /* Only validate asocmaxrxt if we have more then 2646 * one path/transport. We do this because path 2647 * retransmissions are only counted when we have more 2648 * then one path. 2649 */ 2650 if (paths > 1 && 2651 assocparams.sasoc_asocmaxrxt > path_sum) 2652 return -EINVAL; 2653 2654 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2655 } 2656 2657 if (assocparams.sasoc_cookie_life != 0) { 2658 asoc->cookie_life.tv_sec = 2659 assocparams.sasoc_cookie_life / 1000; 2660 asoc->cookie_life.tv_usec = 2661 (assocparams.sasoc_cookie_life % 1000) 2662 * 1000; 2663 } 2664 } else { 2665 /* Set the values to the endpoint */ 2666 struct sctp_sock *sp = sctp_sk(sk); 2667 2668 if (assocparams.sasoc_asocmaxrxt != 0) 2669 sp->assocparams.sasoc_asocmaxrxt = 2670 assocparams.sasoc_asocmaxrxt; 2671 if (assocparams.sasoc_cookie_life != 0) 2672 sp->assocparams.sasoc_cookie_life = 2673 assocparams.sasoc_cookie_life; 2674 } 2675 return 0; 2676 } 2677 2678 /* 2679 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2680 * 2681 * This socket option is a boolean flag which turns on or off mapped V4 2682 * addresses. If this option is turned on and the socket is type 2683 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2684 * If this option is turned off, then no mapping will be done of V4 2685 * addresses and a user will receive both PF_INET6 and PF_INET type 2686 * addresses on the socket. 2687 */ 2688 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2689 { 2690 int val; 2691 struct sctp_sock *sp = sctp_sk(sk); 2692 2693 if (optlen < sizeof(int)) 2694 return -EINVAL; 2695 if (get_user(val, (int __user *)optval)) 2696 return -EFAULT; 2697 if (val) 2698 sp->v4mapped = 1; 2699 else 2700 sp->v4mapped = 0; 2701 2702 return 0; 2703 } 2704 2705 /* 2706 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2707 * 2708 * This socket option specifies the maximum size to put in any outgoing 2709 * SCTP chunk. If a message is larger than this size it will be 2710 * fragmented by SCTP into the specified size. Note that the underlying 2711 * SCTP implementation may fragment into smaller sized chunks when the 2712 * PMTU of the underlying association is smaller than the value set by 2713 * the user. 2714 */ 2715 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2716 { 2717 struct sctp_association *asoc; 2718 struct list_head *pos; 2719 struct sctp_sock *sp = sctp_sk(sk); 2720 int val; 2721 2722 if (optlen < sizeof(int)) 2723 return -EINVAL; 2724 if (get_user(val, (int __user *)optval)) 2725 return -EFAULT; 2726 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2727 return -EINVAL; 2728 sp->user_frag = val; 2729 2730 /* Update the frag_point of the existing associations. */ 2731 list_for_each(pos, &(sp->ep->asocs)) { 2732 asoc = list_entry(pos, struct sctp_association, asocs); 2733 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2734 } 2735 2736 return 0; 2737 } 2738 2739 2740 /* 2741 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2742 * 2743 * Requests that the peer mark the enclosed address as the association 2744 * primary. The enclosed address must be one of the association's 2745 * locally bound addresses. The following structure is used to make a 2746 * set primary request: 2747 */ 2748 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2749 int optlen) 2750 { 2751 struct sctp_sock *sp; 2752 struct sctp_endpoint *ep; 2753 struct sctp_association *asoc = NULL; 2754 struct sctp_setpeerprim prim; 2755 struct sctp_chunk *chunk; 2756 int err; 2757 2758 sp = sctp_sk(sk); 2759 ep = sp->ep; 2760 2761 if (!sctp_addip_enable) 2762 return -EPERM; 2763 2764 if (optlen != sizeof(struct sctp_setpeerprim)) 2765 return -EINVAL; 2766 2767 if (copy_from_user(&prim, optval, optlen)) 2768 return -EFAULT; 2769 2770 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2771 if (!asoc) 2772 return -EINVAL; 2773 2774 if (!asoc->peer.asconf_capable) 2775 return -EPERM; 2776 2777 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2778 return -EPERM; 2779 2780 if (!sctp_state(asoc, ESTABLISHED)) 2781 return -ENOTCONN; 2782 2783 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2784 return -EADDRNOTAVAIL; 2785 2786 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2787 chunk = sctp_make_asconf_set_prim(asoc, 2788 (union sctp_addr *)&prim.sspp_addr); 2789 if (!chunk) 2790 return -ENOMEM; 2791 2792 err = sctp_send_asconf(asoc, chunk); 2793 2794 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2795 2796 return err; 2797 } 2798 2799 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2800 int optlen) 2801 { 2802 struct sctp_setadaptation adaptation; 2803 2804 if (optlen != sizeof(struct sctp_setadaptation)) 2805 return -EINVAL; 2806 if (copy_from_user(&adaptation, optval, optlen)) 2807 return -EFAULT; 2808 2809 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2810 2811 return 0; 2812 } 2813 2814 /* 2815 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2816 * 2817 * The context field in the sctp_sndrcvinfo structure is normally only 2818 * used when a failed message is retrieved holding the value that was 2819 * sent down on the actual send call. This option allows the setting of 2820 * a default context on an association basis that will be received on 2821 * reading messages from the peer. This is especially helpful in the 2822 * one-2-many model for an application to keep some reference to an 2823 * internal state machine that is processing messages on the 2824 * association. Note that the setting of this value only effects 2825 * received messages from the peer and does not effect the value that is 2826 * saved with outbound messages. 2827 */ 2828 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2829 int optlen) 2830 { 2831 struct sctp_assoc_value params; 2832 struct sctp_sock *sp; 2833 struct sctp_association *asoc; 2834 2835 if (optlen != sizeof(struct sctp_assoc_value)) 2836 return -EINVAL; 2837 if (copy_from_user(¶ms, optval, optlen)) 2838 return -EFAULT; 2839 2840 sp = sctp_sk(sk); 2841 2842 if (params.assoc_id != 0) { 2843 asoc = sctp_id2assoc(sk, params.assoc_id); 2844 if (!asoc) 2845 return -EINVAL; 2846 asoc->default_rcv_context = params.assoc_value; 2847 } else { 2848 sp->default_rcv_context = params.assoc_value; 2849 } 2850 2851 return 0; 2852 } 2853 2854 /* 2855 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2856 * 2857 * This options will at a minimum specify if the implementation is doing 2858 * fragmented interleave. Fragmented interleave, for a one to many 2859 * socket, is when subsequent calls to receive a message may return 2860 * parts of messages from different associations. Some implementations 2861 * may allow you to turn this value on or off. If so, when turned off, 2862 * no fragment interleave will occur (which will cause a head of line 2863 * blocking amongst multiple associations sharing the same one to many 2864 * socket). When this option is turned on, then each receive call may 2865 * come from a different association (thus the user must receive data 2866 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2867 * association each receive belongs to. 2868 * 2869 * This option takes a boolean value. A non-zero value indicates that 2870 * fragmented interleave is on. A value of zero indicates that 2871 * fragmented interleave is off. 2872 * 2873 * Note that it is important that an implementation that allows this 2874 * option to be turned on, have it off by default. Otherwise an unaware 2875 * application using the one to many model may become confused and act 2876 * incorrectly. 2877 */ 2878 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2879 char __user *optval, 2880 int optlen) 2881 { 2882 int val; 2883 2884 if (optlen != sizeof(int)) 2885 return -EINVAL; 2886 if (get_user(val, (int __user *)optval)) 2887 return -EFAULT; 2888 2889 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2890 2891 return 0; 2892 } 2893 2894 /* 2895 * 7.1.25. Set or Get the sctp partial delivery point 2896 * (SCTP_PARTIAL_DELIVERY_POINT) 2897 * This option will set or get the SCTP partial delivery point. This 2898 * point is the size of a message where the partial delivery API will be 2899 * invoked to help free up rwnd space for the peer. Setting this to a 2900 * lower value will cause partial delivery's to happen more often. The 2901 * calls argument is an integer that sets or gets the partial delivery 2902 * point. 2903 */ 2904 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2905 char __user *optval, 2906 int optlen) 2907 { 2908 u32 val; 2909 2910 if (optlen != sizeof(u32)) 2911 return -EINVAL; 2912 if (get_user(val, (int __user *)optval)) 2913 return -EFAULT; 2914 2915 sctp_sk(sk)->pd_point = val; 2916 2917 return 0; /* is this the right error code? */ 2918 } 2919 2920 /* 2921 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2922 * 2923 * This option will allow a user to change the maximum burst of packets 2924 * that can be emitted by this association. Note that the default value 2925 * is 4, and some implementations may restrict this setting so that it 2926 * can only be lowered. 2927 * 2928 * NOTE: This text doesn't seem right. Do this on a socket basis with 2929 * future associations inheriting the socket value. 2930 */ 2931 static int sctp_setsockopt_maxburst(struct sock *sk, 2932 char __user *optval, 2933 int optlen) 2934 { 2935 int val; 2936 2937 if (optlen != sizeof(int)) 2938 return -EINVAL; 2939 if (get_user(val, (int __user *)optval)) 2940 return -EFAULT; 2941 2942 if (val < 0) 2943 return -EINVAL; 2944 2945 sctp_sk(sk)->max_burst = val; 2946 2947 return 0; 2948 } 2949 2950 /* 2951 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 2952 * 2953 * This set option adds a chunk type that the user is requesting to be 2954 * received only in an authenticated way. Changes to the list of chunks 2955 * will only effect future associations on the socket. 2956 */ 2957 static int sctp_setsockopt_auth_chunk(struct sock *sk, 2958 char __user *optval, 2959 int optlen) 2960 { 2961 struct sctp_authchunk val; 2962 2963 if (optlen != sizeof(struct sctp_authchunk)) 2964 return -EINVAL; 2965 if (copy_from_user(&val, optval, optlen)) 2966 return -EFAULT; 2967 2968 switch (val.sauth_chunk) { 2969 case SCTP_CID_INIT: 2970 case SCTP_CID_INIT_ACK: 2971 case SCTP_CID_SHUTDOWN_COMPLETE: 2972 case SCTP_CID_AUTH: 2973 return -EINVAL; 2974 } 2975 2976 /* add this chunk id to the endpoint */ 2977 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 2978 } 2979 2980 /* 2981 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 2982 * 2983 * This option gets or sets the list of HMAC algorithms that the local 2984 * endpoint requires the peer to use. 2985 */ 2986 static int sctp_setsockopt_hmac_ident(struct sock *sk, 2987 char __user *optval, 2988 int optlen) 2989 { 2990 struct sctp_hmacalgo *hmacs; 2991 int err; 2992 2993 if (optlen < sizeof(struct sctp_hmacalgo)) 2994 return -EINVAL; 2995 2996 hmacs = kmalloc(optlen, GFP_KERNEL); 2997 if (!hmacs) 2998 return -ENOMEM; 2999 3000 if (copy_from_user(hmacs, optval, optlen)) { 3001 err = -EFAULT; 3002 goto out; 3003 } 3004 3005 if (hmacs->shmac_num_idents == 0 || 3006 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) { 3007 err = -EINVAL; 3008 goto out; 3009 } 3010 3011 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3012 out: 3013 kfree(hmacs); 3014 return err; 3015 } 3016 3017 /* 3018 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3019 * 3020 * This option will set a shared secret key which is used to build an 3021 * association shared key. 3022 */ 3023 static int sctp_setsockopt_auth_key(struct sock *sk, 3024 char __user *optval, 3025 int optlen) 3026 { 3027 struct sctp_authkey *authkey; 3028 struct sctp_association *asoc; 3029 int ret; 3030 3031 if (optlen <= sizeof(struct sctp_authkey)) 3032 return -EINVAL; 3033 3034 authkey = kmalloc(optlen, GFP_KERNEL); 3035 if (!authkey) 3036 return -ENOMEM; 3037 3038 if (copy_from_user(authkey, optval, optlen)) { 3039 ret = -EFAULT; 3040 goto out; 3041 } 3042 3043 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3044 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3045 ret = -EINVAL; 3046 goto out; 3047 } 3048 3049 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3050 out: 3051 kfree(authkey); 3052 return ret; 3053 } 3054 3055 /* 3056 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3057 * 3058 * This option will get or set the active shared key to be used to build 3059 * the association shared key. 3060 */ 3061 static int sctp_setsockopt_active_key(struct sock *sk, 3062 char __user *optval, 3063 int optlen) 3064 { 3065 struct sctp_authkeyid val; 3066 struct sctp_association *asoc; 3067 3068 if (optlen != sizeof(struct sctp_authkeyid)) 3069 return -EINVAL; 3070 if (copy_from_user(&val, optval, optlen)) 3071 return -EFAULT; 3072 3073 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3074 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3075 return -EINVAL; 3076 3077 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3078 val.scact_keynumber); 3079 } 3080 3081 /* 3082 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3083 * 3084 * This set option will delete a shared secret key from use. 3085 */ 3086 static int sctp_setsockopt_del_key(struct sock *sk, 3087 char __user *optval, 3088 int optlen) 3089 { 3090 struct sctp_authkeyid val; 3091 struct sctp_association *asoc; 3092 3093 if (optlen != sizeof(struct sctp_authkeyid)) 3094 return -EINVAL; 3095 if (copy_from_user(&val, optval, optlen)) 3096 return -EFAULT; 3097 3098 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3099 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3100 return -EINVAL; 3101 3102 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3103 val.scact_keynumber); 3104 3105 } 3106 3107 3108 /* API 6.2 setsockopt(), getsockopt() 3109 * 3110 * Applications use setsockopt() and getsockopt() to set or retrieve 3111 * socket options. Socket options are used to change the default 3112 * behavior of sockets calls. They are described in Section 7. 3113 * 3114 * The syntax is: 3115 * 3116 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3117 * int __user *optlen); 3118 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3119 * int optlen); 3120 * 3121 * sd - the socket descript. 3122 * level - set to IPPROTO_SCTP for all SCTP options. 3123 * optname - the option name. 3124 * optval - the buffer to store the value of the option. 3125 * optlen - the size of the buffer. 3126 */ 3127 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3128 char __user *optval, int optlen) 3129 { 3130 int retval = 0; 3131 3132 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3133 sk, optname); 3134 3135 /* I can hardly begin to describe how wrong this is. This is 3136 * so broken as to be worse than useless. The API draft 3137 * REALLY is NOT helpful here... I am not convinced that the 3138 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3139 * are at all well-founded. 3140 */ 3141 if (level != SOL_SCTP) { 3142 struct sctp_af *af = sctp_sk(sk)->pf->af; 3143 retval = af->setsockopt(sk, level, optname, optval, optlen); 3144 goto out_nounlock; 3145 } 3146 3147 sctp_lock_sock(sk); 3148 3149 switch (optname) { 3150 case SCTP_SOCKOPT_BINDX_ADD: 3151 /* 'optlen' is the size of the addresses buffer. */ 3152 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3153 optlen, SCTP_BINDX_ADD_ADDR); 3154 break; 3155 3156 case SCTP_SOCKOPT_BINDX_REM: 3157 /* 'optlen' is the size of the addresses buffer. */ 3158 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3159 optlen, SCTP_BINDX_REM_ADDR); 3160 break; 3161 3162 case SCTP_SOCKOPT_CONNECTX: 3163 /* 'optlen' is the size of the addresses buffer. */ 3164 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 3165 optlen); 3166 break; 3167 3168 case SCTP_DISABLE_FRAGMENTS: 3169 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3170 break; 3171 3172 case SCTP_EVENTS: 3173 retval = sctp_setsockopt_events(sk, optval, optlen); 3174 break; 3175 3176 case SCTP_AUTOCLOSE: 3177 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3178 break; 3179 3180 case SCTP_PEER_ADDR_PARAMS: 3181 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3182 break; 3183 3184 case SCTP_DELAYED_ACK_TIME: 3185 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3186 break; 3187 case SCTP_PARTIAL_DELIVERY_POINT: 3188 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3189 break; 3190 3191 case SCTP_INITMSG: 3192 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3193 break; 3194 case SCTP_DEFAULT_SEND_PARAM: 3195 retval = sctp_setsockopt_default_send_param(sk, optval, 3196 optlen); 3197 break; 3198 case SCTP_PRIMARY_ADDR: 3199 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3200 break; 3201 case SCTP_SET_PEER_PRIMARY_ADDR: 3202 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3203 break; 3204 case SCTP_NODELAY: 3205 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3206 break; 3207 case SCTP_RTOINFO: 3208 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3209 break; 3210 case SCTP_ASSOCINFO: 3211 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3212 break; 3213 case SCTP_I_WANT_MAPPED_V4_ADDR: 3214 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3215 break; 3216 case SCTP_MAXSEG: 3217 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3218 break; 3219 case SCTP_ADAPTATION_LAYER: 3220 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3221 break; 3222 case SCTP_CONTEXT: 3223 retval = sctp_setsockopt_context(sk, optval, optlen); 3224 break; 3225 case SCTP_FRAGMENT_INTERLEAVE: 3226 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3227 break; 3228 case SCTP_MAX_BURST: 3229 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3230 break; 3231 case SCTP_AUTH_CHUNK: 3232 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3233 break; 3234 case SCTP_HMAC_IDENT: 3235 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3236 break; 3237 case SCTP_AUTH_KEY: 3238 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3239 break; 3240 case SCTP_AUTH_ACTIVE_KEY: 3241 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3242 break; 3243 case SCTP_AUTH_DELETE_KEY: 3244 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3245 break; 3246 default: 3247 retval = -ENOPROTOOPT; 3248 break; 3249 } 3250 3251 sctp_release_sock(sk); 3252 3253 out_nounlock: 3254 return retval; 3255 } 3256 3257 /* API 3.1.6 connect() - UDP Style Syntax 3258 * 3259 * An application may use the connect() call in the UDP model to initiate an 3260 * association without sending data. 3261 * 3262 * The syntax is: 3263 * 3264 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3265 * 3266 * sd: the socket descriptor to have a new association added to. 3267 * 3268 * nam: the address structure (either struct sockaddr_in or struct 3269 * sockaddr_in6 defined in RFC2553 [7]). 3270 * 3271 * len: the size of the address. 3272 */ 3273 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3274 int addr_len) 3275 { 3276 int err = 0; 3277 struct sctp_af *af; 3278 3279 sctp_lock_sock(sk); 3280 3281 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3282 __FUNCTION__, sk, addr, addr_len); 3283 3284 /* Validate addr_len before calling common connect/connectx routine. */ 3285 af = sctp_get_af_specific(addr->sa_family); 3286 if (!af || addr_len < af->sockaddr_len) { 3287 err = -EINVAL; 3288 } else { 3289 /* Pass correct addr len to common routine (so it knows there 3290 * is only one address being passed. 3291 */ 3292 err = __sctp_connect(sk, addr, af->sockaddr_len); 3293 } 3294 3295 sctp_release_sock(sk); 3296 return err; 3297 } 3298 3299 /* FIXME: Write comments. */ 3300 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3301 { 3302 return -EOPNOTSUPP; /* STUB */ 3303 } 3304 3305 /* 4.1.4 accept() - TCP Style Syntax 3306 * 3307 * Applications use accept() call to remove an established SCTP 3308 * association from the accept queue of the endpoint. A new socket 3309 * descriptor will be returned from accept() to represent the newly 3310 * formed association. 3311 */ 3312 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3313 { 3314 struct sctp_sock *sp; 3315 struct sctp_endpoint *ep; 3316 struct sock *newsk = NULL; 3317 struct sctp_association *asoc; 3318 long timeo; 3319 int error = 0; 3320 3321 sctp_lock_sock(sk); 3322 3323 sp = sctp_sk(sk); 3324 ep = sp->ep; 3325 3326 if (!sctp_style(sk, TCP)) { 3327 error = -EOPNOTSUPP; 3328 goto out; 3329 } 3330 3331 if (!sctp_sstate(sk, LISTENING)) { 3332 error = -EINVAL; 3333 goto out; 3334 } 3335 3336 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3337 3338 error = sctp_wait_for_accept(sk, timeo); 3339 if (error) 3340 goto out; 3341 3342 /* We treat the list of associations on the endpoint as the accept 3343 * queue and pick the first association on the list. 3344 */ 3345 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3346 3347 newsk = sp->pf->create_accept_sk(sk, asoc); 3348 if (!newsk) { 3349 error = -ENOMEM; 3350 goto out; 3351 } 3352 3353 /* Populate the fields of the newsk from the oldsk and migrate the 3354 * asoc to the newsk. 3355 */ 3356 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3357 3358 out: 3359 sctp_release_sock(sk); 3360 *err = error; 3361 return newsk; 3362 } 3363 3364 /* The SCTP ioctl handler. */ 3365 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3366 { 3367 return -ENOIOCTLCMD; 3368 } 3369 3370 /* This is the function which gets called during socket creation to 3371 * initialized the SCTP-specific portion of the sock. 3372 * The sock structure should already be zero-filled memory. 3373 */ 3374 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3375 { 3376 struct sctp_endpoint *ep; 3377 struct sctp_sock *sp; 3378 3379 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3380 3381 sp = sctp_sk(sk); 3382 3383 /* Initialize the SCTP per socket area. */ 3384 switch (sk->sk_type) { 3385 case SOCK_SEQPACKET: 3386 sp->type = SCTP_SOCKET_UDP; 3387 break; 3388 case SOCK_STREAM: 3389 sp->type = SCTP_SOCKET_TCP; 3390 break; 3391 default: 3392 return -ESOCKTNOSUPPORT; 3393 } 3394 3395 /* Initialize default send parameters. These parameters can be 3396 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3397 */ 3398 sp->default_stream = 0; 3399 sp->default_ppid = 0; 3400 sp->default_flags = 0; 3401 sp->default_context = 0; 3402 sp->default_timetolive = 0; 3403 3404 sp->default_rcv_context = 0; 3405 sp->max_burst = sctp_max_burst; 3406 3407 /* Initialize default setup parameters. These parameters 3408 * can be modified with the SCTP_INITMSG socket option or 3409 * overridden by the SCTP_INIT CMSG. 3410 */ 3411 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3412 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3413 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3414 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3415 3416 /* Initialize default RTO related parameters. These parameters can 3417 * be modified for with the SCTP_RTOINFO socket option. 3418 */ 3419 sp->rtoinfo.srto_initial = sctp_rto_initial; 3420 sp->rtoinfo.srto_max = sctp_rto_max; 3421 sp->rtoinfo.srto_min = sctp_rto_min; 3422 3423 /* Initialize default association related parameters. These parameters 3424 * can be modified with the SCTP_ASSOCINFO socket option. 3425 */ 3426 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3427 sp->assocparams.sasoc_number_peer_destinations = 0; 3428 sp->assocparams.sasoc_peer_rwnd = 0; 3429 sp->assocparams.sasoc_local_rwnd = 0; 3430 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3431 3432 /* Initialize default event subscriptions. By default, all the 3433 * options are off. 3434 */ 3435 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3436 3437 /* Default Peer Address Parameters. These defaults can 3438 * be modified via SCTP_PEER_ADDR_PARAMS 3439 */ 3440 sp->hbinterval = sctp_hb_interval; 3441 sp->pathmaxrxt = sctp_max_retrans_path; 3442 sp->pathmtu = 0; // allow default discovery 3443 sp->sackdelay = sctp_sack_timeout; 3444 sp->param_flags = SPP_HB_ENABLE | 3445 SPP_PMTUD_ENABLE | 3446 SPP_SACKDELAY_ENABLE; 3447 3448 /* If enabled no SCTP message fragmentation will be performed. 3449 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3450 */ 3451 sp->disable_fragments = 0; 3452 3453 /* Enable Nagle algorithm by default. */ 3454 sp->nodelay = 0; 3455 3456 /* Enable by default. */ 3457 sp->v4mapped = 1; 3458 3459 /* Auto-close idle associations after the configured 3460 * number of seconds. A value of 0 disables this 3461 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3462 * for UDP-style sockets only. 3463 */ 3464 sp->autoclose = 0; 3465 3466 /* User specified fragmentation limit. */ 3467 sp->user_frag = 0; 3468 3469 sp->adaptation_ind = 0; 3470 3471 sp->pf = sctp_get_pf_specific(sk->sk_family); 3472 3473 /* Control variables for partial data delivery. */ 3474 atomic_set(&sp->pd_mode, 0); 3475 skb_queue_head_init(&sp->pd_lobby); 3476 sp->frag_interleave = 0; 3477 3478 /* Create a per socket endpoint structure. Even if we 3479 * change the data structure relationships, this may still 3480 * be useful for storing pre-connect address information. 3481 */ 3482 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3483 if (!ep) 3484 return -ENOMEM; 3485 3486 sp->ep = ep; 3487 sp->hmac = NULL; 3488 3489 SCTP_DBG_OBJCNT_INC(sock); 3490 atomic_inc(&sctp_sockets_allocated); 3491 return 0; 3492 } 3493 3494 /* Cleanup any SCTP per socket resources. */ 3495 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3496 { 3497 struct sctp_endpoint *ep; 3498 3499 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3500 3501 /* Release our hold on the endpoint. */ 3502 ep = sctp_sk(sk)->ep; 3503 sctp_endpoint_free(ep); 3504 atomic_dec(&sctp_sockets_allocated); 3505 return 0; 3506 } 3507 3508 /* API 4.1.7 shutdown() - TCP Style Syntax 3509 * int shutdown(int socket, int how); 3510 * 3511 * sd - the socket descriptor of the association to be closed. 3512 * how - Specifies the type of shutdown. The values are 3513 * as follows: 3514 * SHUT_RD 3515 * Disables further receive operations. No SCTP 3516 * protocol action is taken. 3517 * SHUT_WR 3518 * Disables further send operations, and initiates 3519 * the SCTP shutdown sequence. 3520 * SHUT_RDWR 3521 * Disables further send and receive operations 3522 * and initiates the SCTP shutdown sequence. 3523 */ 3524 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3525 { 3526 struct sctp_endpoint *ep; 3527 struct sctp_association *asoc; 3528 3529 if (!sctp_style(sk, TCP)) 3530 return; 3531 3532 if (how & SEND_SHUTDOWN) { 3533 ep = sctp_sk(sk)->ep; 3534 if (!list_empty(&ep->asocs)) { 3535 asoc = list_entry(ep->asocs.next, 3536 struct sctp_association, asocs); 3537 sctp_primitive_SHUTDOWN(asoc, NULL); 3538 } 3539 } 3540 } 3541 3542 /* 7.2.1 Association Status (SCTP_STATUS) 3543 3544 * Applications can retrieve current status information about an 3545 * association, including association state, peer receiver window size, 3546 * number of unacked data chunks, and number of data chunks pending 3547 * receipt. This information is read-only. 3548 */ 3549 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3550 char __user *optval, 3551 int __user *optlen) 3552 { 3553 struct sctp_status status; 3554 struct sctp_association *asoc = NULL; 3555 struct sctp_transport *transport; 3556 sctp_assoc_t associd; 3557 int retval = 0; 3558 3559 if (len < sizeof(status)) { 3560 retval = -EINVAL; 3561 goto out; 3562 } 3563 3564 len = sizeof(status); 3565 if (copy_from_user(&status, optval, len)) { 3566 retval = -EFAULT; 3567 goto out; 3568 } 3569 3570 associd = status.sstat_assoc_id; 3571 asoc = sctp_id2assoc(sk, associd); 3572 if (!asoc) { 3573 retval = -EINVAL; 3574 goto out; 3575 } 3576 3577 transport = asoc->peer.primary_path; 3578 3579 status.sstat_assoc_id = sctp_assoc2id(asoc); 3580 status.sstat_state = asoc->state; 3581 status.sstat_rwnd = asoc->peer.rwnd; 3582 status.sstat_unackdata = asoc->unack_data; 3583 3584 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3585 status.sstat_instrms = asoc->c.sinit_max_instreams; 3586 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3587 status.sstat_fragmentation_point = asoc->frag_point; 3588 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3589 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3590 transport->af_specific->sockaddr_len); 3591 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3592 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3593 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3594 status.sstat_primary.spinfo_state = transport->state; 3595 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3596 status.sstat_primary.spinfo_srtt = transport->srtt; 3597 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3598 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3599 3600 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3601 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3602 3603 if (put_user(len, optlen)) { 3604 retval = -EFAULT; 3605 goto out; 3606 } 3607 3608 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3609 len, status.sstat_state, status.sstat_rwnd, 3610 status.sstat_assoc_id); 3611 3612 if (copy_to_user(optval, &status, len)) { 3613 retval = -EFAULT; 3614 goto out; 3615 } 3616 3617 out: 3618 return (retval); 3619 } 3620 3621 3622 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3623 * 3624 * Applications can retrieve information about a specific peer address 3625 * of an association, including its reachability state, congestion 3626 * window, and retransmission timer values. This information is 3627 * read-only. 3628 */ 3629 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3630 char __user *optval, 3631 int __user *optlen) 3632 { 3633 struct sctp_paddrinfo pinfo; 3634 struct sctp_transport *transport; 3635 int retval = 0; 3636 3637 if (len < sizeof(pinfo)) { 3638 retval = -EINVAL; 3639 goto out; 3640 } 3641 3642 len = sizeof(pinfo); 3643 if (copy_from_user(&pinfo, optval, len)) { 3644 retval = -EFAULT; 3645 goto out; 3646 } 3647 3648 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3649 pinfo.spinfo_assoc_id); 3650 if (!transport) 3651 return -EINVAL; 3652 3653 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3654 pinfo.spinfo_state = transport->state; 3655 pinfo.spinfo_cwnd = transport->cwnd; 3656 pinfo.spinfo_srtt = transport->srtt; 3657 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3658 pinfo.spinfo_mtu = transport->pathmtu; 3659 3660 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3661 pinfo.spinfo_state = SCTP_ACTIVE; 3662 3663 if (put_user(len, optlen)) { 3664 retval = -EFAULT; 3665 goto out; 3666 } 3667 3668 if (copy_to_user(optval, &pinfo, len)) { 3669 retval = -EFAULT; 3670 goto out; 3671 } 3672 3673 out: 3674 return (retval); 3675 } 3676 3677 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3678 * 3679 * This option is a on/off flag. If enabled no SCTP message 3680 * fragmentation will be performed. Instead if a message being sent 3681 * exceeds the current PMTU size, the message will NOT be sent and 3682 * instead a error will be indicated to the user. 3683 */ 3684 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3685 char __user *optval, int __user *optlen) 3686 { 3687 int val; 3688 3689 if (len < sizeof(int)) 3690 return -EINVAL; 3691 3692 len = sizeof(int); 3693 val = (sctp_sk(sk)->disable_fragments == 1); 3694 if (put_user(len, optlen)) 3695 return -EFAULT; 3696 if (copy_to_user(optval, &val, len)) 3697 return -EFAULT; 3698 return 0; 3699 } 3700 3701 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3702 * 3703 * This socket option is used to specify various notifications and 3704 * ancillary data the user wishes to receive. 3705 */ 3706 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3707 int __user *optlen) 3708 { 3709 if (len < sizeof(struct sctp_event_subscribe)) 3710 return -EINVAL; 3711 len = sizeof(struct sctp_event_subscribe); 3712 if (put_user(len, optlen)) 3713 return -EFAULT; 3714 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3715 return -EFAULT; 3716 return 0; 3717 } 3718 3719 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3720 * 3721 * This socket option is applicable to the UDP-style socket only. When 3722 * set it will cause associations that are idle for more than the 3723 * specified number of seconds to automatically close. An association 3724 * being idle is defined an association that has NOT sent or received 3725 * user data. The special value of '0' indicates that no automatic 3726 * close of any associations should be performed. The option expects an 3727 * integer defining the number of seconds of idle time before an 3728 * association is closed. 3729 */ 3730 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3731 { 3732 /* Applicable to UDP-style socket only */ 3733 if (sctp_style(sk, TCP)) 3734 return -EOPNOTSUPP; 3735 if (len < sizeof(int)) 3736 return -EINVAL; 3737 len = sizeof(int); 3738 if (put_user(len, optlen)) 3739 return -EFAULT; 3740 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3741 return -EFAULT; 3742 return 0; 3743 } 3744 3745 /* Helper routine to branch off an association to a new socket. */ 3746 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3747 struct socket **sockp) 3748 { 3749 struct sock *sk = asoc->base.sk; 3750 struct socket *sock; 3751 struct inet_sock *inetsk; 3752 struct sctp_af *af; 3753 int err = 0; 3754 3755 /* An association cannot be branched off from an already peeled-off 3756 * socket, nor is this supported for tcp style sockets. 3757 */ 3758 if (!sctp_style(sk, UDP)) 3759 return -EINVAL; 3760 3761 /* Create a new socket. */ 3762 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3763 if (err < 0) 3764 return err; 3765 3766 /* Populate the fields of the newsk from the oldsk and migrate the 3767 * asoc to the newsk. 3768 */ 3769 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3770 3771 /* Make peeled-off sockets more like 1-1 accepted sockets. 3772 * Set the daddr and initialize id to something more random 3773 */ 3774 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3775 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3776 inetsk = inet_sk(sock->sk); 3777 inetsk->id = asoc->next_tsn ^ jiffies; 3778 3779 *sockp = sock; 3780 3781 return err; 3782 } 3783 3784 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3785 { 3786 sctp_peeloff_arg_t peeloff; 3787 struct socket *newsock; 3788 int retval = 0; 3789 struct sctp_association *asoc; 3790 3791 if (len < sizeof(sctp_peeloff_arg_t)) 3792 return -EINVAL; 3793 len = sizeof(sctp_peeloff_arg_t); 3794 if (copy_from_user(&peeloff, optval, len)) 3795 return -EFAULT; 3796 3797 asoc = sctp_id2assoc(sk, peeloff.associd); 3798 if (!asoc) { 3799 retval = -EINVAL; 3800 goto out; 3801 } 3802 3803 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3804 3805 retval = sctp_do_peeloff(asoc, &newsock); 3806 if (retval < 0) 3807 goto out; 3808 3809 /* Map the socket to an unused fd that can be returned to the user. */ 3810 retval = sock_map_fd(newsock); 3811 if (retval < 0) { 3812 sock_release(newsock); 3813 goto out; 3814 } 3815 3816 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3817 __FUNCTION__, sk, asoc, newsock->sk, retval); 3818 3819 /* Return the fd mapped to the new socket. */ 3820 peeloff.sd = retval; 3821 if (put_user(len, optlen)) 3822 return -EFAULT; 3823 if (copy_to_user(optval, &peeloff, len)) 3824 retval = -EFAULT; 3825 3826 out: 3827 return retval; 3828 } 3829 3830 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3831 * 3832 * Applications can enable or disable heartbeats for any peer address of 3833 * an association, modify an address's heartbeat interval, force a 3834 * heartbeat to be sent immediately, and adjust the address's maximum 3835 * number of retransmissions sent before an address is considered 3836 * unreachable. The following structure is used to access and modify an 3837 * address's parameters: 3838 * 3839 * struct sctp_paddrparams { 3840 * sctp_assoc_t spp_assoc_id; 3841 * struct sockaddr_storage spp_address; 3842 * uint32_t spp_hbinterval; 3843 * uint16_t spp_pathmaxrxt; 3844 * uint32_t spp_pathmtu; 3845 * uint32_t spp_sackdelay; 3846 * uint32_t spp_flags; 3847 * }; 3848 * 3849 * spp_assoc_id - (one-to-many style socket) This is filled in the 3850 * application, and identifies the association for 3851 * this query. 3852 * spp_address - This specifies which address is of interest. 3853 * spp_hbinterval - This contains the value of the heartbeat interval, 3854 * in milliseconds. If a value of zero 3855 * is present in this field then no changes are to 3856 * be made to this parameter. 3857 * spp_pathmaxrxt - This contains the maximum number of 3858 * retransmissions before this address shall be 3859 * considered unreachable. If a value of zero 3860 * is present in this field then no changes are to 3861 * be made to this parameter. 3862 * spp_pathmtu - When Path MTU discovery is disabled the value 3863 * specified here will be the "fixed" path mtu. 3864 * Note that if the spp_address field is empty 3865 * then all associations on this address will 3866 * have this fixed path mtu set upon them. 3867 * 3868 * spp_sackdelay - When delayed sack is enabled, this value specifies 3869 * the number of milliseconds that sacks will be delayed 3870 * for. This value will apply to all addresses of an 3871 * association if the spp_address field is empty. Note 3872 * also, that if delayed sack is enabled and this 3873 * value is set to 0, no change is made to the last 3874 * recorded delayed sack timer value. 3875 * 3876 * spp_flags - These flags are used to control various features 3877 * on an association. The flag field may contain 3878 * zero or more of the following options. 3879 * 3880 * SPP_HB_ENABLE - Enable heartbeats on the 3881 * specified address. Note that if the address 3882 * field is empty all addresses for the association 3883 * have heartbeats enabled upon them. 3884 * 3885 * SPP_HB_DISABLE - Disable heartbeats on the 3886 * speicifed address. Note that if the address 3887 * field is empty all addresses for the association 3888 * will have their heartbeats disabled. Note also 3889 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3890 * mutually exclusive, only one of these two should 3891 * be specified. Enabling both fields will have 3892 * undetermined results. 3893 * 3894 * SPP_HB_DEMAND - Request a user initiated heartbeat 3895 * to be made immediately. 3896 * 3897 * SPP_PMTUD_ENABLE - This field will enable PMTU 3898 * discovery upon the specified address. Note that 3899 * if the address feild is empty then all addresses 3900 * on the association are effected. 3901 * 3902 * SPP_PMTUD_DISABLE - This field will disable PMTU 3903 * discovery upon the specified address. Note that 3904 * if the address feild is empty then all addresses 3905 * on the association are effected. Not also that 3906 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3907 * exclusive. Enabling both will have undetermined 3908 * results. 3909 * 3910 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3911 * on delayed sack. The time specified in spp_sackdelay 3912 * is used to specify the sack delay for this address. Note 3913 * that if spp_address is empty then all addresses will 3914 * enable delayed sack and take on the sack delay 3915 * value specified in spp_sackdelay. 3916 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3917 * off delayed sack. If the spp_address field is blank then 3918 * delayed sack is disabled for the entire association. Note 3919 * also that this field is mutually exclusive to 3920 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3921 * results. 3922 */ 3923 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3924 char __user *optval, int __user *optlen) 3925 { 3926 struct sctp_paddrparams params; 3927 struct sctp_transport *trans = NULL; 3928 struct sctp_association *asoc = NULL; 3929 struct sctp_sock *sp = sctp_sk(sk); 3930 3931 if (len < sizeof(struct sctp_paddrparams)) 3932 return -EINVAL; 3933 len = sizeof(struct sctp_paddrparams); 3934 if (copy_from_user(¶ms, optval, len)) 3935 return -EFAULT; 3936 3937 /* If an address other than INADDR_ANY is specified, and 3938 * no transport is found, then the request is invalid. 3939 */ 3940 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3941 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3942 params.spp_assoc_id); 3943 if (!trans) { 3944 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3945 return -EINVAL; 3946 } 3947 } 3948 3949 /* Get association, if assoc_id != 0 and the socket is a one 3950 * to many style socket, and an association was not found, then 3951 * the id was invalid. 3952 */ 3953 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3954 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3955 SCTP_DEBUG_PRINTK("Failed no association\n"); 3956 return -EINVAL; 3957 } 3958 3959 if (trans) { 3960 /* Fetch transport values. */ 3961 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3962 params.spp_pathmtu = trans->pathmtu; 3963 params.spp_pathmaxrxt = trans->pathmaxrxt; 3964 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3965 3966 /*draft-11 doesn't say what to return in spp_flags*/ 3967 params.spp_flags = trans->param_flags; 3968 } else if (asoc) { 3969 /* Fetch association values. */ 3970 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3971 params.spp_pathmtu = asoc->pathmtu; 3972 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3973 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3974 3975 /*draft-11 doesn't say what to return in spp_flags*/ 3976 params.spp_flags = asoc->param_flags; 3977 } else { 3978 /* Fetch socket values. */ 3979 params.spp_hbinterval = sp->hbinterval; 3980 params.spp_pathmtu = sp->pathmtu; 3981 params.spp_sackdelay = sp->sackdelay; 3982 params.spp_pathmaxrxt = sp->pathmaxrxt; 3983 3984 /*draft-11 doesn't say what to return in spp_flags*/ 3985 params.spp_flags = sp->param_flags; 3986 } 3987 3988 if (copy_to_user(optval, ¶ms, len)) 3989 return -EFAULT; 3990 3991 if (put_user(len, optlen)) 3992 return -EFAULT; 3993 3994 return 0; 3995 } 3996 3997 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3998 * 3999 * This options will get or set the delayed ack timer. The time is set 4000 * in milliseconds. If the assoc_id is 0, then this sets or gets the 4001 * endpoints default delayed ack timer value. If the assoc_id field is 4002 * non-zero, then the set or get effects the specified association. 4003 * 4004 * struct sctp_assoc_value { 4005 * sctp_assoc_t assoc_id; 4006 * uint32_t assoc_value; 4007 * }; 4008 * 4009 * assoc_id - This parameter, indicates which association the 4010 * user is preforming an action upon. Note that if 4011 * this field's value is zero then the endpoints 4012 * default value is changed (effecting future 4013 * associations only). 4014 * 4015 * assoc_value - This parameter contains the number of milliseconds 4016 * that the user is requesting the delayed ACK timer 4017 * be set to. Note that this value is defined in 4018 * the standard to be between 200 and 500 milliseconds. 4019 * 4020 * Note: a value of zero will leave the value alone, 4021 * but disable SACK delay. A non-zero value will also 4022 * enable SACK delay. 4023 */ 4024 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 4025 char __user *optval, 4026 int __user *optlen) 4027 { 4028 struct sctp_assoc_value params; 4029 struct sctp_association *asoc = NULL; 4030 struct sctp_sock *sp = sctp_sk(sk); 4031 4032 if (len < sizeof(struct sctp_assoc_value)) 4033 return - EINVAL; 4034 4035 len = sizeof(struct sctp_assoc_value); 4036 4037 if (copy_from_user(¶ms, optval, len)) 4038 return -EFAULT; 4039 4040 /* Get association, if assoc_id != 0 and the socket is a one 4041 * to many style socket, and an association was not found, then 4042 * the id was invalid. 4043 */ 4044 asoc = sctp_id2assoc(sk, params.assoc_id); 4045 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4046 return -EINVAL; 4047 4048 if (asoc) { 4049 /* Fetch association values. */ 4050 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 4051 params.assoc_value = jiffies_to_msecs( 4052 asoc->sackdelay); 4053 else 4054 params.assoc_value = 0; 4055 } else { 4056 /* Fetch socket values. */ 4057 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 4058 params.assoc_value = sp->sackdelay; 4059 else 4060 params.assoc_value = 0; 4061 } 4062 4063 if (copy_to_user(optval, ¶ms, len)) 4064 return -EFAULT; 4065 4066 if (put_user(len, optlen)) 4067 return -EFAULT; 4068 4069 return 0; 4070 } 4071 4072 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4073 * 4074 * Applications can specify protocol parameters for the default association 4075 * initialization. The option name argument to setsockopt() and getsockopt() 4076 * is SCTP_INITMSG. 4077 * 4078 * Setting initialization parameters is effective only on an unconnected 4079 * socket (for UDP-style sockets only future associations are effected 4080 * by the change). With TCP-style sockets, this option is inherited by 4081 * sockets derived from a listener socket. 4082 */ 4083 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4084 { 4085 if (len < sizeof(struct sctp_initmsg)) 4086 return -EINVAL; 4087 len = sizeof(struct sctp_initmsg); 4088 if (put_user(len, optlen)) 4089 return -EFAULT; 4090 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4091 return -EFAULT; 4092 return 0; 4093 } 4094 4095 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4096 char __user *optval, 4097 int __user *optlen) 4098 { 4099 sctp_assoc_t id; 4100 struct sctp_association *asoc; 4101 struct list_head *pos; 4102 int cnt = 0; 4103 4104 if (len < sizeof(sctp_assoc_t)) 4105 return -EINVAL; 4106 4107 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4108 return -EFAULT; 4109 4110 /* For UDP-style sockets, id specifies the association to query. */ 4111 asoc = sctp_id2assoc(sk, id); 4112 if (!asoc) 4113 return -EINVAL; 4114 4115 list_for_each(pos, &asoc->peer.transport_addr_list) { 4116 cnt ++; 4117 } 4118 4119 return cnt; 4120 } 4121 4122 /* 4123 * Old API for getting list of peer addresses. Does not work for 32-bit 4124 * programs running on a 64-bit kernel 4125 */ 4126 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4127 char __user *optval, 4128 int __user *optlen) 4129 { 4130 struct sctp_association *asoc; 4131 struct list_head *pos; 4132 int cnt = 0; 4133 struct sctp_getaddrs_old getaddrs; 4134 struct sctp_transport *from; 4135 void __user *to; 4136 union sctp_addr temp; 4137 struct sctp_sock *sp = sctp_sk(sk); 4138 int addrlen; 4139 4140 if (len < sizeof(struct sctp_getaddrs_old)) 4141 return -EINVAL; 4142 4143 len = sizeof(struct sctp_getaddrs_old); 4144 4145 if (copy_from_user(&getaddrs, optval, len)) 4146 return -EFAULT; 4147 4148 if (getaddrs.addr_num <= 0) return -EINVAL; 4149 4150 /* For UDP-style sockets, id specifies the association to query. */ 4151 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4152 if (!asoc) 4153 return -EINVAL; 4154 4155 to = (void __user *)getaddrs.addrs; 4156 list_for_each(pos, &asoc->peer.transport_addr_list) { 4157 from = list_entry(pos, struct sctp_transport, transports); 4158 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4159 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4160 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4161 if (copy_to_user(to, &temp, addrlen)) 4162 return -EFAULT; 4163 to += addrlen ; 4164 cnt ++; 4165 if (cnt >= getaddrs.addr_num) break; 4166 } 4167 getaddrs.addr_num = cnt; 4168 if (put_user(len, optlen)) 4169 return -EFAULT; 4170 if (copy_to_user(optval, &getaddrs, len)) 4171 return -EFAULT; 4172 4173 return 0; 4174 } 4175 4176 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4177 char __user *optval, int __user *optlen) 4178 { 4179 struct sctp_association *asoc; 4180 struct list_head *pos; 4181 int cnt = 0; 4182 struct sctp_getaddrs getaddrs; 4183 struct sctp_transport *from; 4184 void __user *to; 4185 union sctp_addr temp; 4186 struct sctp_sock *sp = sctp_sk(sk); 4187 int addrlen; 4188 size_t space_left; 4189 int bytes_copied; 4190 4191 if (len < sizeof(struct sctp_getaddrs)) 4192 return -EINVAL; 4193 4194 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4195 return -EFAULT; 4196 4197 /* For UDP-style sockets, id specifies the association to query. */ 4198 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4199 if (!asoc) 4200 return -EINVAL; 4201 4202 to = optval + offsetof(struct sctp_getaddrs,addrs); 4203 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4204 4205 list_for_each(pos, &asoc->peer.transport_addr_list) { 4206 from = list_entry(pos, struct sctp_transport, transports); 4207 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4208 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4209 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4210 if (space_left < addrlen) 4211 return -ENOMEM; 4212 if (copy_to_user(to, &temp, addrlen)) 4213 return -EFAULT; 4214 to += addrlen; 4215 cnt++; 4216 space_left -= addrlen; 4217 } 4218 4219 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4220 return -EFAULT; 4221 bytes_copied = ((char __user *)to) - optval; 4222 if (put_user(bytes_copied, optlen)) 4223 return -EFAULT; 4224 4225 return 0; 4226 } 4227 4228 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4229 char __user *optval, 4230 int __user *optlen) 4231 { 4232 sctp_assoc_t id; 4233 struct sctp_bind_addr *bp; 4234 struct sctp_association *asoc; 4235 struct sctp_sockaddr_entry *addr; 4236 int cnt = 0; 4237 4238 if (len < sizeof(sctp_assoc_t)) 4239 return -EINVAL; 4240 4241 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4242 return -EFAULT; 4243 4244 /* 4245 * For UDP-style sockets, id specifies the association to query. 4246 * If the id field is set to the value '0' then the locally bound 4247 * addresses are returned without regard to any particular 4248 * association. 4249 */ 4250 if (0 == id) { 4251 bp = &sctp_sk(sk)->ep->base.bind_addr; 4252 } else { 4253 asoc = sctp_id2assoc(sk, id); 4254 if (!asoc) 4255 return -EINVAL; 4256 bp = &asoc->base.bind_addr; 4257 } 4258 4259 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4260 * addresses from the global local address list. 4261 */ 4262 if (sctp_list_single_entry(&bp->address_list)) { 4263 addr = list_entry(bp->address_list.next, 4264 struct sctp_sockaddr_entry, list); 4265 if (sctp_is_any(&addr->a)) { 4266 rcu_read_lock(); 4267 list_for_each_entry_rcu(addr, 4268 &sctp_local_addr_list, list) { 4269 if (!addr->valid) 4270 continue; 4271 4272 if ((PF_INET == sk->sk_family) && 4273 (AF_INET6 == addr->a.sa.sa_family)) 4274 continue; 4275 4276 cnt++; 4277 } 4278 rcu_read_unlock(); 4279 } else { 4280 cnt = 1; 4281 } 4282 goto done; 4283 } 4284 4285 /* Protection on the bound address list is not needed, 4286 * since in the socket option context we hold the socket lock, 4287 * so there is no way that the bound address list can change. 4288 */ 4289 list_for_each_entry(addr, &bp->address_list, list) { 4290 cnt ++; 4291 } 4292 done: 4293 return cnt; 4294 } 4295 4296 /* Helper function that copies local addresses to user and returns the number 4297 * of addresses copied. 4298 */ 4299 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4300 int max_addrs, void *to, 4301 int *bytes_copied) 4302 { 4303 struct sctp_sockaddr_entry *addr; 4304 union sctp_addr temp; 4305 int cnt = 0; 4306 int addrlen; 4307 4308 rcu_read_lock(); 4309 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4310 if (!addr->valid) 4311 continue; 4312 4313 if ((PF_INET == sk->sk_family) && 4314 (AF_INET6 == addr->a.sa.sa_family)) 4315 continue; 4316 memcpy(&temp, &addr->a, sizeof(temp)); 4317 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4318 &temp); 4319 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4320 memcpy(to, &temp, addrlen); 4321 4322 to += addrlen; 4323 *bytes_copied += addrlen; 4324 cnt ++; 4325 if (cnt >= max_addrs) break; 4326 } 4327 rcu_read_unlock(); 4328 4329 return cnt; 4330 } 4331 4332 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4333 size_t space_left, int *bytes_copied) 4334 { 4335 struct sctp_sockaddr_entry *addr; 4336 union sctp_addr temp; 4337 int cnt = 0; 4338 int addrlen; 4339 4340 rcu_read_lock(); 4341 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4342 if (!addr->valid) 4343 continue; 4344 4345 if ((PF_INET == sk->sk_family) && 4346 (AF_INET6 == addr->a.sa.sa_family)) 4347 continue; 4348 memcpy(&temp, &addr->a, sizeof(temp)); 4349 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4350 &temp); 4351 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4352 if (space_left < addrlen) { 4353 cnt = -ENOMEM; 4354 break; 4355 } 4356 memcpy(to, &temp, addrlen); 4357 4358 to += addrlen; 4359 cnt ++; 4360 space_left -= addrlen; 4361 *bytes_copied += addrlen; 4362 } 4363 rcu_read_unlock(); 4364 4365 return cnt; 4366 } 4367 4368 /* Old API for getting list of local addresses. Does not work for 32-bit 4369 * programs running on a 64-bit kernel 4370 */ 4371 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4372 char __user *optval, int __user *optlen) 4373 { 4374 struct sctp_bind_addr *bp; 4375 struct sctp_association *asoc; 4376 int cnt = 0; 4377 struct sctp_getaddrs_old getaddrs; 4378 struct sctp_sockaddr_entry *addr; 4379 void __user *to; 4380 union sctp_addr temp; 4381 struct sctp_sock *sp = sctp_sk(sk); 4382 int addrlen; 4383 int err = 0; 4384 void *addrs; 4385 void *buf; 4386 int bytes_copied = 0; 4387 4388 if (len < sizeof(struct sctp_getaddrs_old)) 4389 return -EINVAL; 4390 4391 len = sizeof(struct sctp_getaddrs_old); 4392 if (copy_from_user(&getaddrs, optval, len)) 4393 return -EFAULT; 4394 4395 if (getaddrs.addr_num <= 0) return -EINVAL; 4396 /* 4397 * For UDP-style sockets, id specifies the association to query. 4398 * If the id field is set to the value '0' then the locally bound 4399 * addresses are returned without regard to any particular 4400 * association. 4401 */ 4402 if (0 == getaddrs.assoc_id) { 4403 bp = &sctp_sk(sk)->ep->base.bind_addr; 4404 } else { 4405 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4406 if (!asoc) 4407 return -EINVAL; 4408 bp = &asoc->base.bind_addr; 4409 } 4410 4411 to = getaddrs.addrs; 4412 4413 /* Allocate space for a local instance of packed array to hold all 4414 * the data. We store addresses here first and then put write them 4415 * to the user in one shot. 4416 */ 4417 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4418 GFP_KERNEL); 4419 if (!addrs) 4420 return -ENOMEM; 4421 4422 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4423 * addresses from the global local address list. 4424 */ 4425 if (sctp_list_single_entry(&bp->address_list)) { 4426 addr = list_entry(bp->address_list.next, 4427 struct sctp_sockaddr_entry, list); 4428 if (sctp_is_any(&addr->a)) { 4429 cnt = sctp_copy_laddrs_old(sk, bp->port, 4430 getaddrs.addr_num, 4431 addrs, &bytes_copied); 4432 goto copy_getaddrs; 4433 } 4434 } 4435 4436 buf = addrs; 4437 /* Protection on the bound address list is not needed since 4438 * in the socket option context we hold a socket lock and 4439 * thus the bound address list can't change. 4440 */ 4441 list_for_each_entry(addr, &bp->address_list, list) { 4442 memcpy(&temp, &addr->a, sizeof(temp)); 4443 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4444 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4445 memcpy(buf, &temp, addrlen); 4446 buf += addrlen; 4447 bytes_copied += addrlen; 4448 cnt ++; 4449 if (cnt >= getaddrs.addr_num) break; 4450 } 4451 4452 copy_getaddrs: 4453 /* copy the entire address list into the user provided space */ 4454 if (copy_to_user(to, addrs, bytes_copied)) { 4455 err = -EFAULT; 4456 goto error; 4457 } 4458 4459 /* copy the leading structure back to user */ 4460 getaddrs.addr_num = cnt; 4461 if (copy_to_user(optval, &getaddrs, len)) 4462 err = -EFAULT; 4463 4464 error: 4465 kfree(addrs); 4466 return err; 4467 } 4468 4469 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4470 char __user *optval, int __user *optlen) 4471 { 4472 struct sctp_bind_addr *bp; 4473 struct sctp_association *asoc; 4474 int cnt = 0; 4475 struct sctp_getaddrs getaddrs; 4476 struct sctp_sockaddr_entry *addr; 4477 void __user *to; 4478 union sctp_addr temp; 4479 struct sctp_sock *sp = sctp_sk(sk); 4480 int addrlen; 4481 int err = 0; 4482 size_t space_left; 4483 int bytes_copied = 0; 4484 void *addrs; 4485 void *buf; 4486 4487 if (len < sizeof(struct sctp_getaddrs)) 4488 return -EINVAL; 4489 4490 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4491 return -EFAULT; 4492 4493 /* 4494 * For UDP-style sockets, id specifies the association to query. 4495 * If the id field is set to the value '0' then the locally bound 4496 * addresses are returned without regard to any particular 4497 * association. 4498 */ 4499 if (0 == getaddrs.assoc_id) { 4500 bp = &sctp_sk(sk)->ep->base.bind_addr; 4501 } else { 4502 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4503 if (!asoc) 4504 return -EINVAL; 4505 bp = &asoc->base.bind_addr; 4506 } 4507 4508 to = optval + offsetof(struct sctp_getaddrs,addrs); 4509 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4510 4511 addrs = kmalloc(space_left, GFP_KERNEL); 4512 if (!addrs) 4513 return -ENOMEM; 4514 4515 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4516 * addresses from the global local address list. 4517 */ 4518 if (sctp_list_single_entry(&bp->address_list)) { 4519 addr = list_entry(bp->address_list.next, 4520 struct sctp_sockaddr_entry, list); 4521 if (sctp_is_any(&addr->a)) { 4522 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4523 space_left, &bytes_copied); 4524 if (cnt < 0) { 4525 err = cnt; 4526 goto out; 4527 } 4528 goto copy_getaddrs; 4529 } 4530 } 4531 4532 buf = addrs; 4533 /* Protection on the bound address list is not needed since 4534 * in the socket option context we hold a socket lock and 4535 * thus the bound address list can't change. 4536 */ 4537 list_for_each_entry(addr, &bp->address_list, list) { 4538 memcpy(&temp, &addr->a, sizeof(temp)); 4539 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4540 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4541 if (space_left < addrlen) { 4542 err = -ENOMEM; /*fixme: right error?*/ 4543 goto out; 4544 } 4545 memcpy(buf, &temp, addrlen); 4546 buf += addrlen; 4547 bytes_copied += addrlen; 4548 cnt ++; 4549 space_left -= addrlen; 4550 } 4551 4552 copy_getaddrs: 4553 if (copy_to_user(to, addrs, bytes_copied)) { 4554 err = -EFAULT; 4555 goto out; 4556 } 4557 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4558 err = -EFAULT; 4559 goto out; 4560 } 4561 if (put_user(bytes_copied, optlen)) 4562 err = -EFAULT; 4563 out: 4564 kfree(addrs); 4565 return err; 4566 } 4567 4568 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4569 * 4570 * Requests that the local SCTP stack use the enclosed peer address as 4571 * the association primary. The enclosed address must be one of the 4572 * association peer's addresses. 4573 */ 4574 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4575 char __user *optval, int __user *optlen) 4576 { 4577 struct sctp_prim prim; 4578 struct sctp_association *asoc; 4579 struct sctp_sock *sp = sctp_sk(sk); 4580 4581 if (len < sizeof(struct sctp_prim)) 4582 return -EINVAL; 4583 4584 len = sizeof(struct sctp_prim); 4585 4586 if (copy_from_user(&prim, optval, len)) 4587 return -EFAULT; 4588 4589 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4590 if (!asoc) 4591 return -EINVAL; 4592 4593 if (!asoc->peer.primary_path) 4594 return -ENOTCONN; 4595 4596 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4597 asoc->peer.primary_path->af_specific->sockaddr_len); 4598 4599 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4600 (union sctp_addr *)&prim.ssp_addr); 4601 4602 if (put_user(len, optlen)) 4603 return -EFAULT; 4604 if (copy_to_user(optval, &prim, len)) 4605 return -EFAULT; 4606 4607 return 0; 4608 } 4609 4610 /* 4611 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4612 * 4613 * Requests that the local endpoint set the specified Adaptation Layer 4614 * Indication parameter for all future INIT and INIT-ACK exchanges. 4615 */ 4616 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4617 char __user *optval, int __user *optlen) 4618 { 4619 struct sctp_setadaptation adaptation; 4620 4621 if (len < sizeof(struct sctp_setadaptation)) 4622 return -EINVAL; 4623 4624 len = sizeof(struct sctp_setadaptation); 4625 4626 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4627 4628 if (put_user(len, optlen)) 4629 return -EFAULT; 4630 if (copy_to_user(optval, &adaptation, len)) 4631 return -EFAULT; 4632 4633 return 0; 4634 } 4635 4636 /* 4637 * 4638 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4639 * 4640 * Applications that wish to use the sendto() system call may wish to 4641 * specify a default set of parameters that would normally be supplied 4642 * through the inclusion of ancillary data. This socket option allows 4643 * such an application to set the default sctp_sndrcvinfo structure. 4644 4645 4646 * The application that wishes to use this socket option simply passes 4647 * in to this call the sctp_sndrcvinfo structure defined in Section 4648 * 5.2.2) The input parameters accepted by this call include 4649 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4650 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4651 * to this call if the caller is using the UDP model. 4652 * 4653 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4654 */ 4655 static int sctp_getsockopt_default_send_param(struct sock *sk, 4656 int len, char __user *optval, 4657 int __user *optlen) 4658 { 4659 struct sctp_sndrcvinfo info; 4660 struct sctp_association *asoc; 4661 struct sctp_sock *sp = sctp_sk(sk); 4662 4663 if (len < sizeof(struct sctp_sndrcvinfo)) 4664 return -EINVAL; 4665 4666 len = sizeof(struct sctp_sndrcvinfo); 4667 4668 if (copy_from_user(&info, optval, len)) 4669 return -EFAULT; 4670 4671 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4672 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4673 return -EINVAL; 4674 4675 if (asoc) { 4676 info.sinfo_stream = asoc->default_stream; 4677 info.sinfo_flags = asoc->default_flags; 4678 info.sinfo_ppid = asoc->default_ppid; 4679 info.sinfo_context = asoc->default_context; 4680 info.sinfo_timetolive = asoc->default_timetolive; 4681 } else { 4682 info.sinfo_stream = sp->default_stream; 4683 info.sinfo_flags = sp->default_flags; 4684 info.sinfo_ppid = sp->default_ppid; 4685 info.sinfo_context = sp->default_context; 4686 info.sinfo_timetolive = sp->default_timetolive; 4687 } 4688 4689 if (put_user(len, optlen)) 4690 return -EFAULT; 4691 if (copy_to_user(optval, &info, len)) 4692 return -EFAULT; 4693 4694 return 0; 4695 } 4696 4697 /* 4698 * 4699 * 7.1.5 SCTP_NODELAY 4700 * 4701 * Turn on/off any Nagle-like algorithm. This means that packets are 4702 * generally sent as soon as possible and no unnecessary delays are 4703 * introduced, at the cost of more packets in the network. Expects an 4704 * integer boolean flag. 4705 */ 4706 4707 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4708 char __user *optval, int __user *optlen) 4709 { 4710 int val; 4711 4712 if (len < sizeof(int)) 4713 return -EINVAL; 4714 4715 len = sizeof(int); 4716 val = (sctp_sk(sk)->nodelay == 1); 4717 if (put_user(len, optlen)) 4718 return -EFAULT; 4719 if (copy_to_user(optval, &val, len)) 4720 return -EFAULT; 4721 return 0; 4722 } 4723 4724 /* 4725 * 4726 * 7.1.1 SCTP_RTOINFO 4727 * 4728 * The protocol parameters used to initialize and bound retransmission 4729 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4730 * and modify these parameters. 4731 * All parameters are time values, in milliseconds. A value of 0, when 4732 * modifying the parameters, indicates that the current value should not 4733 * be changed. 4734 * 4735 */ 4736 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4737 char __user *optval, 4738 int __user *optlen) { 4739 struct sctp_rtoinfo rtoinfo; 4740 struct sctp_association *asoc; 4741 4742 if (len < sizeof (struct sctp_rtoinfo)) 4743 return -EINVAL; 4744 4745 len = sizeof(struct sctp_rtoinfo); 4746 4747 if (copy_from_user(&rtoinfo, optval, len)) 4748 return -EFAULT; 4749 4750 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4751 4752 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4753 return -EINVAL; 4754 4755 /* Values corresponding to the specific association. */ 4756 if (asoc) { 4757 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4758 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4759 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4760 } else { 4761 /* Values corresponding to the endpoint. */ 4762 struct sctp_sock *sp = sctp_sk(sk); 4763 4764 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4765 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4766 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4767 } 4768 4769 if (put_user(len, optlen)) 4770 return -EFAULT; 4771 4772 if (copy_to_user(optval, &rtoinfo, len)) 4773 return -EFAULT; 4774 4775 return 0; 4776 } 4777 4778 /* 4779 * 4780 * 7.1.2 SCTP_ASSOCINFO 4781 * 4782 * This option is used to tune the maximum retransmission attempts 4783 * of the association. 4784 * Returns an error if the new association retransmission value is 4785 * greater than the sum of the retransmission value of the peer. 4786 * See [SCTP] for more information. 4787 * 4788 */ 4789 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4790 char __user *optval, 4791 int __user *optlen) 4792 { 4793 4794 struct sctp_assocparams assocparams; 4795 struct sctp_association *asoc; 4796 struct list_head *pos; 4797 int cnt = 0; 4798 4799 if (len < sizeof (struct sctp_assocparams)) 4800 return -EINVAL; 4801 4802 len = sizeof(struct sctp_assocparams); 4803 4804 if (copy_from_user(&assocparams, optval, len)) 4805 return -EFAULT; 4806 4807 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4808 4809 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4810 return -EINVAL; 4811 4812 /* Values correspoinding to the specific association */ 4813 if (asoc) { 4814 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4815 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4816 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4817 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4818 * 1000) + 4819 (asoc->cookie_life.tv_usec 4820 / 1000); 4821 4822 list_for_each(pos, &asoc->peer.transport_addr_list) { 4823 cnt ++; 4824 } 4825 4826 assocparams.sasoc_number_peer_destinations = cnt; 4827 } else { 4828 /* Values corresponding to the endpoint */ 4829 struct sctp_sock *sp = sctp_sk(sk); 4830 4831 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4832 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4833 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4834 assocparams.sasoc_cookie_life = 4835 sp->assocparams.sasoc_cookie_life; 4836 assocparams.sasoc_number_peer_destinations = 4837 sp->assocparams. 4838 sasoc_number_peer_destinations; 4839 } 4840 4841 if (put_user(len, optlen)) 4842 return -EFAULT; 4843 4844 if (copy_to_user(optval, &assocparams, len)) 4845 return -EFAULT; 4846 4847 return 0; 4848 } 4849 4850 /* 4851 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4852 * 4853 * This socket option is a boolean flag which turns on or off mapped V4 4854 * addresses. If this option is turned on and the socket is type 4855 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4856 * If this option is turned off, then no mapping will be done of V4 4857 * addresses and a user will receive both PF_INET6 and PF_INET type 4858 * addresses on the socket. 4859 */ 4860 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4861 char __user *optval, int __user *optlen) 4862 { 4863 int val; 4864 struct sctp_sock *sp = sctp_sk(sk); 4865 4866 if (len < sizeof(int)) 4867 return -EINVAL; 4868 4869 len = sizeof(int); 4870 val = sp->v4mapped; 4871 if (put_user(len, optlen)) 4872 return -EFAULT; 4873 if (copy_to_user(optval, &val, len)) 4874 return -EFAULT; 4875 4876 return 0; 4877 } 4878 4879 /* 4880 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4881 * (chapter and verse is quoted at sctp_setsockopt_context()) 4882 */ 4883 static int sctp_getsockopt_context(struct sock *sk, int len, 4884 char __user *optval, int __user *optlen) 4885 { 4886 struct sctp_assoc_value params; 4887 struct sctp_sock *sp; 4888 struct sctp_association *asoc; 4889 4890 if (len < sizeof(struct sctp_assoc_value)) 4891 return -EINVAL; 4892 4893 len = sizeof(struct sctp_assoc_value); 4894 4895 if (copy_from_user(¶ms, optval, len)) 4896 return -EFAULT; 4897 4898 sp = sctp_sk(sk); 4899 4900 if (params.assoc_id != 0) { 4901 asoc = sctp_id2assoc(sk, params.assoc_id); 4902 if (!asoc) 4903 return -EINVAL; 4904 params.assoc_value = asoc->default_rcv_context; 4905 } else { 4906 params.assoc_value = sp->default_rcv_context; 4907 } 4908 4909 if (put_user(len, optlen)) 4910 return -EFAULT; 4911 if (copy_to_user(optval, ¶ms, len)) 4912 return -EFAULT; 4913 4914 return 0; 4915 } 4916 4917 /* 4918 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4919 * 4920 * This socket option specifies the maximum size to put in any outgoing 4921 * SCTP chunk. If a message is larger than this size it will be 4922 * fragmented by SCTP into the specified size. Note that the underlying 4923 * SCTP implementation may fragment into smaller sized chunks when the 4924 * PMTU of the underlying association is smaller than the value set by 4925 * the user. 4926 */ 4927 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4928 char __user *optval, int __user *optlen) 4929 { 4930 int val; 4931 4932 if (len < sizeof(int)) 4933 return -EINVAL; 4934 4935 len = sizeof(int); 4936 4937 val = sctp_sk(sk)->user_frag; 4938 if (put_user(len, optlen)) 4939 return -EFAULT; 4940 if (copy_to_user(optval, &val, len)) 4941 return -EFAULT; 4942 4943 return 0; 4944 } 4945 4946 /* 4947 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4948 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4949 */ 4950 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4951 char __user *optval, int __user *optlen) 4952 { 4953 int val; 4954 4955 if (len < sizeof(int)) 4956 return -EINVAL; 4957 4958 len = sizeof(int); 4959 4960 val = sctp_sk(sk)->frag_interleave; 4961 if (put_user(len, optlen)) 4962 return -EFAULT; 4963 if (copy_to_user(optval, &val, len)) 4964 return -EFAULT; 4965 4966 return 0; 4967 } 4968 4969 /* 4970 * 7.1.25. Set or Get the sctp partial delivery point 4971 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4972 */ 4973 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4974 char __user *optval, 4975 int __user *optlen) 4976 { 4977 u32 val; 4978 4979 if (len < sizeof(u32)) 4980 return -EINVAL; 4981 4982 len = sizeof(u32); 4983 4984 val = sctp_sk(sk)->pd_point; 4985 if (put_user(len, optlen)) 4986 return -EFAULT; 4987 if (copy_to_user(optval, &val, len)) 4988 return -EFAULT; 4989 4990 return -ENOTSUPP; 4991 } 4992 4993 /* 4994 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 4995 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 4996 */ 4997 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 4998 char __user *optval, 4999 int __user *optlen) 5000 { 5001 int val; 5002 5003 if (len < sizeof(int)) 5004 return -EINVAL; 5005 5006 len = sizeof(int); 5007 5008 val = sctp_sk(sk)->max_burst; 5009 if (put_user(len, optlen)) 5010 return -EFAULT; 5011 if (copy_to_user(optval, &val, len)) 5012 return -EFAULT; 5013 5014 return -ENOTSUPP; 5015 } 5016 5017 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5018 char __user *optval, int __user *optlen) 5019 { 5020 struct sctp_hmac_algo_param *hmacs; 5021 __u16 param_len; 5022 5023 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5024 param_len = ntohs(hmacs->param_hdr.length); 5025 5026 if (len < param_len) 5027 return -EINVAL; 5028 if (put_user(len, optlen)) 5029 return -EFAULT; 5030 if (copy_to_user(optval, hmacs->hmac_ids, len)) 5031 return -EFAULT; 5032 5033 return 0; 5034 } 5035 5036 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5037 char __user *optval, int __user *optlen) 5038 { 5039 struct sctp_authkeyid val; 5040 struct sctp_association *asoc; 5041 5042 if (len < sizeof(struct sctp_authkeyid)) 5043 return -EINVAL; 5044 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5045 return -EFAULT; 5046 5047 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5048 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5049 return -EINVAL; 5050 5051 if (asoc) 5052 val.scact_keynumber = asoc->active_key_id; 5053 else 5054 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5055 5056 return 0; 5057 } 5058 5059 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5060 char __user *optval, int __user *optlen) 5061 { 5062 struct sctp_authchunks __user *p = (void __user *)optval; 5063 struct sctp_authchunks val; 5064 struct sctp_association *asoc; 5065 struct sctp_chunks_param *ch; 5066 char __user *to; 5067 5068 if (len <= sizeof(struct sctp_authchunks)) 5069 return -EINVAL; 5070 5071 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5072 return -EFAULT; 5073 5074 to = p->gauth_chunks; 5075 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5076 if (!asoc) 5077 return -EINVAL; 5078 5079 ch = asoc->peer.peer_chunks; 5080 5081 /* See if the user provided enough room for all the data */ 5082 if (len < ntohs(ch->param_hdr.length)) 5083 return -EINVAL; 5084 5085 len = ntohs(ch->param_hdr.length); 5086 if (put_user(len, optlen)) 5087 return -EFAULT; 5088 if (copy_to_user(to, ch->chunks, len)) 5089 return -EFAULT; 5090 5091 return 0; 5092 } 5093 5094 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5095 char __user *optval, int __user *optlen) 5096 { 5097 struct sctp_authchunks __user *p = (void __user *)optval; 5098 struct sctp_authchunks val; 5099 struct sctp_association *asoc; 5100 struct sctp_chunks_param *ch; 5101 char __user *to; 5102 5103 if (len <= sizeof(struct sctp_authchunks)) 5104 return -EINVAL; 5105 5106 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5107 return -EFAULT; 5108 5109 to = p->gauth_chunks; 5110 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5111 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5112 return -EINVAL; 5113 5114 if (asoc) 5115 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5116 else 5117 ch = sctp_sk(sk)->ep->auth_chunk_list; 5118 5119 if (len < ntohs(ch->param_hdr.length)) 5120 return -EINVAL; 5121 5122 len = ntohs(ch->param_hdr.length); 5123 if (put_user(len, optlen)) 5124 return -EFAULT; 5125 if (copy_to_user(to, ch->chunks, len)) 5126 return -EFAULT; 5127 5128 return 0; 5129 } 5130 5131 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5132 char __user *optval, int __user *optlen) 5133 { 5134 int retval = 0; 5135 int len; 5136 5137 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5138 sk, optname); 5139 5140 /* I can hardly begin to describe how wrong this is. This is 5141 * so broken as to be worse than useless. The API draft 5142 * REALLY is NOT helpful here... I am not convinced that the 5143 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5144 * are at all well-founded. 5145 */ 5146 if (level != SOL_SCTP) { 5147 struct sctp_af *af = sctp_sk(sk)->pf->af; 5148 5149 retval = af->getsockopt(sk, level, optname, optval, optlen); 5150 return retval; 5151 } 5152 5153 if (get_user(len, optlen)) 5154 return -EFAULT; 5155 5156 sctp_lock_sock(sk); 5157 5158 switch (optname) { 5159 case SCTP_STATUS: 5160 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5161 break; 5162 case SCTP_DISABLE_FRAGMENTS: 5163 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5164 optlen); 5165 break; 5166 case SCTP_EVENTS: 5167 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5168 break; 5169 case SCTP_AUTOCLOSE: 5170 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5171 break; 5172 case SCTP_SOCKOPT_PEELOFF: 5173 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5174 break; 5175 case SCTP_PEER_ADDR_PARAMS: 5176 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5177 optlen); 5178 break; 5179 case SCTP_DELAYED_ACK_TIME: 5180 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 5181 optlen); 5182 break; 5183 case SCTP_INITMSG: 5184 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5185 break; 5186 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5187 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5188 optlen); 5189 break; 5190 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5191 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5192 optlen); 5193 break; 5194 case SCTP_GET_PEER_ADDRS_OLD: 5195 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5196 optlen); 5197 break; 5198 case SCTP_GET_LOCAL_ADDRS_OLD: 5199 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5200 optlen); 5201 break; 5202 case SCTP_GET_PEER_ADDRS: 5203 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5204 optlen); 5205 break; 5206 case SCTP_GET_LOCAL_ADDRS: 5207 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5208 optlen); 5209 break; 5210 case SCTP_DEFAULT_SEND_PARAM: 5211 retval = sctp_getsockopt_default_send_param(sk, len, 5212 optval, optlen); 5213 break; 5214 case SCTP_PRIMARY_ADDR: 5215 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5216 break; 5217 case SCTP_NODELAY: 5218 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5219 break; 5220 case SCTP_RTOINFO: 5221 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5222 break; 5223 case SCTP_ASSOCINFO: 5224 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5225 break; 5226 case SCTP_I_WANT_MAPPED_V4_ADDR: 5227 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5228 break; 5229 case SCTP_MAXSEG: 5230 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5231 break; 5232 case SCTP_GET_PEER_ADDR_INFO: 5233 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5234 optlen); 5235 break; 5236 case SCTP_ADAPTATION_LAYER: 5237 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5238 optlen); 5239 break; 5240 case SCTP_CONTEXT: 5241 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5242 break; 5243 case SCTP_FRAGMENT_INTERLEAVE: 5244 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5245 optlen); 5246 break; 5247 case SCTP_PARTIAL_DELIVERY_POINT: 5248 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5249 optlen); 5250 break; 5251 case SCTP_MAX_BURST: 5252 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5253 break; 5254 case SCTP_AUTH_KEY: 5255 case SCTP_AUTH_CHUNK: 5256 case SCTP_AUTH_DELETE_KEY: 5257 retval = -EOPNOTSUPP; 5258 break; 5259 case SCTP_HMAC_IDENT: 5260 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5261 break; 5262 case SCTP_AUTH_ACTIVE_KEY: 5263 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5264 break; 5265 case SCTP_PEER_AUTH_CHUNKS: 5266 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5267 optlen); 5268 break; 5269 case SCTP_LOCAL_AUTH_CHUNKS: 5270 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5271 optlen); 5272 break; 5273 default: 5274 retval = -ENOPROTOOPT; 5275 break; 5276 } 5277 5278 sctp_release_sock(sk); 5279 return retval; 5280 } 5281 5282 static void sctp_hash(struct sock *sk) 5283 { 5284 /* STUB */ 5285 } 5286 5287 static void sctp_unhash(struct sock *sk) 5288 { 5289 /* STUB */ 5290 } 5291 5292 /* Check if port is acceptable. Possibly find first available port. 5293 * 5294 * The port hash table (contained in the 'global' SCTP protocol storage 5295 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5296 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5297 * list (the list number is the port number hashed out, so as you 5298 * would expect from a hash function, all the ports in a given list have 5299 * such a number that hashes out to the same list number; you were 5300 * expecting that, right?); so each list has a set of ports, with a 5301 * link to the socket (struct sock) that uses it, the port number and 5302 * a fastreuse flag (FIXME: NPI ipg). 5303 */ 5304 static struct sctp_bind_bucket *sctp_bucket_create( 5305 struct sctp_bind_hashbucket *head, unsigned short snum); 5306 5307 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5308 { 5309 struct sctp_bind_hashbucket *head; /* hash list */ 5310 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5311 struct hlist_node *node; 5312 unsigned short snum; 5313 int ret; 5314 5315 snum = ntohs(addr->v4.sin_port); 5316 5317 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5318 sctp_local_bh_disable(); 5319 5320 if (snum == 0) { 5321 /* Search for an available port. */ 5322 int low, high, remaining, index; 5323 unsigned int rover; 5324 5325 inet_get_local_port_range(&low, &high); 5326 remaining = (high - low) + 1; 5327 rover = net_random() % remaining + low; 5328 5329 do { 5330 rover++; 5331 if ((rover < low) || (rover > high)) 5332 rover = low; 5333 index = sctp_phashfn(rover); 5334 head = &sctp_port_hashtable[index]; 5335 sctp_spin_lock(&head->lock); 5336 sctp_for_each_hentry(pp, node, &head->chain) 5337 if (pp->port == rover) 5338 goto next; 5339 break; 5340 next: 5341 sctp_spin_unlock(&head->lock); 5342 } while (--remaining > 0); 5343 5344 /* Exhausted local port range during search? */ 5345 ret = 1; 5346 if (remaining <= 0) 5347 goto fail; 5348 5349 /* OK, here is the one we will use. HEAD (the port 5350 * hash table list entry) is non-NULL and we hold it's 5351 * mutex. 5352 */ 5353 snum = rover; 5354 } else { 5355 /* We are given an specific port number; we verify 5356 * that it is not being used. If it is used, we will 5357 * exahust the search in the hash list corresponding 5358 * to the port number (snum) - we detect that with the 5359 * port iterator, pp being NULL. 5360 */ 5361 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5362 sctp_spin_lock(&head->lock); 5363 sctp_for_each_hentry(pp, node, &head->chain) { 5364 if (pp->port == snum) 5365 goto pp_found; 5366 } 5367 } 5368 pp = NULL; 5369 goto pp_not_found; 5370 pp_found: 5371 if (!hlist_empty(&pp->owner)) { 5372 /* We had a port hash table hit - there is an 5373 * available port (pp != NULL) and it is being 5374 * used by other socket (pp->owner not empty); that other 5375 * socket is going to be sk2. 5376 */ 5377 int reuse = sk->sk_reuse; 5378 struct sock *sk2; 5379 struct hlist_node *node; 5380 5381 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5382 if (pp->fastreuse && sk->sk_reuse && 5383 sk->sk_state != SCTP_SS_LISTENING) 5384 goto success; 5385 5386 /* Run through the list of sockets bound to the port 5387 * (pp->port) [via the pointers bind_next and 5388 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5389 * we get the endpoint they describe and run through 5390 * the endpoint's list of IP (v4 or v6) addresses, 5391 * comparing each of the addresses with the address of 5392 * the socket sk. If we find a match, then that means 5393 * that this port/socket (sk) combination are already 5394 * in an endpoint. 5395 */ 5396 sk_for_each_bound(sk2, node, &pp->owner) { 5397 struct sctp_endpoint *ep2; 5398 ep2 = sctp_sk(sk2)->ep; 5399 5400 if (reuse && sk2->sk_reuse && 5401 sk2->sk_state != SCTP_SS_LISTENING) 5402 continue; 5403 5404 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5405 sctp_sk(sk))) { 5406 ret = (long)sk2; 5407 goto fail_unlock; 5408 } 5409 } 5410 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5411 } 5412 pp_not_found: 5413 /* If there was a hash table miss, create a new port. */ 5414 ret = 1; 5415 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5416 goto fail_unlock; 5417 5418 /* In either case (hit or miss), make sure fastreuse is 1 only 5419 * if sk->sk_reuse is too (that is, if the caller requested 5420 * SO_REUSEADDR on this socket -sk-). 5421 */ 5422 if (hlist_empty(&pp->owner)) { 5423 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5424 pp->fastreuse = 1; 5425 else 5426 pp->fastreuse = 0; 5427 } else if (pp->fastreuse && 5428 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5429 pp->fastreuse = 0; 5430 5431 /* We are set, so fill up all the data in the hash table 5432 * entry, tie the socket list information with the rest of the 5433 * sockets FIXME: Blurry, NPI (ipg). 5434 */ 5435 success: 5436 if (!sctp_sk(sk)->bind_hash) { 5437 inet_sk(sk)->num = snum; 5438 sk_add_bind_node(sk, &pp->owner); 5439 sctp_sk(sk)->bind_hash = pp; 5440 } 5441 ret = 0; 5442 5443 fail_unlock: 5444 sctp_spin_unlock(&head->lock); 5445 5446 fail: 5447 sctp_local_bh_enable(); 5448 return ret; 5449 } 5450 5451 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5452 * port is requested. 5453 */ 5454 static int sctp_get_port(struct sock *sk, unsigned short snum) 5455 { 5456 long ret; 5457 union sctp_addr addr; 5458 struct sctp_af *af = sctp_sk(sk)->pf->af; 5459 5460 /* Set up a dummy address struct from the sk. */ 5461 af->from_sk(&addr, sk); 5462 addr.v4.sin_port = htons(snum); 5463 5464 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5465 ret = sctp_get_port_local(sk, &addr); 5466 5467 return (ret ? 1 : 0); 5468 } 5469 5470 /* 5471 * 3.1.3 listen() - UDP Style Syntax 5472 * 5473 * By default, new associations are not accepted for UDP style sockets. 5474 * An application uses listen() to mark a socket as being able to 5475 * accept new associations. 5476 */ 5477 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5478 { 5479 struct sctp_sock *sp = sctp_sk(sk); 5480 struct sctp_endpoint *ep = sp->ep; 5481 5482 /* Only UDP style sockets that are not peeled off are allowed to 5483 * listen(). 5484 */ 5485 if (!sctp_style(sk, UDP)) 5486 return -EINVAL; 5487 5488 /* If backlog is zero, disable listening. */ 5489 if (!backlog) { 5490 if (sctp_sstate(sk, CLOSED)) 5491 return 0; 5492 5493 sctp_unhash_endpoint(ep); 5494 sk->sk_state = SCTP_SS_CLOSED; 5495 return 0; 5496 } 5497 5498 /* Return if we are already listening. */ 5499 if (sctp_sstate(sk, LISTENING)) 5500 return 0; 5501 5502 /* 5503 * If a bind() or sctp_bindx() is not called prior to a listen() 5504 * call that allows new associations to be accepted, the system 5505 * picks an ephemeral port and will choose an address set equivalent 5506 * to binding with a wildcard address. 5507 * 5508 * This is not currently spelled out in the SCTP sockets 5509 * extensions draft, but follows the practice as seen in TCP 5510 * sockets. 5511 * 5512 * Additionally, turn off fastreuse flag since we are not listening 5513 */ 5514 sk->sk_state = SCTP_SS_LISTENING; 5515 if (!ep->base.bind_addr.port) { 5516 if (sctp_autobind(sk)) 5517 return -EAGAIN; 5518 } else 5519 sctp_sk(sk)->bind_hash->fastreuse = 0; 5520 5521 sctp_hash_endpoint(ep); 5522 return 0; 5523 } 5524 5525 /* 5526 * 4.1.3 listen() - TCP Style Syntax 5527 * 5528 * Applications uses listen() to ready the SCTP endpoint for accepting 5529 * inbound associations. 5530 */ 5531 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5532 { 5533 struct sctp_sock *sp = sctp_sk(sk); 5534 struct sctp_endpoint *ep = sp->ep; 5535 5536 /* If backlog is zero, disable listening. */ 5537 if (!backlog) { 5538 if (sctp_sstate(sk, CLOSED)) 5539 return 0; 5540 5541 sctp_unhash_endpoint(ep); 5542 sk->sk_state = SCTP_SS_CLOSED; 5543 return 0; 5544 } 5545 5546 if (sctp_sstate(sk, LISTENING)) 5547 return 0; 5548 5549 /* 5550 * If a bind() or sctp_bindx() is not called prior to a listen() 5551 * call that allows new associations to be accepted, the system 5552 * picks an ephemeral port and will choose an address set equivalent 5553 * to binding with a wildcard address. 5554 * 5555 * This is not currently spelled out in the SCTP sockets 5556 * extensions draft, but follows the practice as seen in TCP 5557 * sockets. 5558 */ 5559 sk->sk_state = SCTP_SS_LISTENING; 5560 if (!ep->base.bind_addr.port) { 5561 if (sctp_autobind(sk)) 5562 return -EAGAIN; 5563 } else 5564 sctp_sk(sk)->bind_hash->fastreuse = 0; 5565 5566 sk->sk_max_ack_backlog = backlog; 5567 sctp_hash_endpoint(ep); 5568 return 0; 5569 } 5570 5571 /* 5572 * Move a socket to LISTENING state. 5573 */ 5574 int sctp_inet_listen(struct socket *sock, int backlog) 5575 { 5576 struct sock *sk = sock->sk; 5577 struct crypto_hash *tfm = NULL; 5578 int err = -EINVAL; 5579 5580 if (unlikely(backlog < 0)) 5581 goto out; 5582 5583 sctp_lock_sock(sk); 5584 5585 if (sock->state != SS_UNCONNECTED) 5586 goto out; 5587 5588 /* Allocate HMAC for generating cookie. */ 5589 if (sctp_hmac_alg) { 5590 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5591 if (IS_ERR(tfm)) { 5592 if (net_ratelimit()) { 5593 printk(KERN_INFO 5594 "SCTP: failed to load transform for %s: %ld\n", 5595 sctp_hmac_alg, PTR_ERR(tfm)); 5596 } 5597 err = -ENOSYS; 5598 goto out; 5599 } 5600 } 5601 5602 switch (sock->type) { 5603 case SOCK_SEQPACKET: 5604 err = sctp_seqpacket_listen(sk, backlog); 5605 break; 5606 case SOCK_STREAM: 5607 err = sctp_stream_listen(sk, backlog); 5608 break; 5609 default: 5610 break; 5611 } 5612 5613 if (err) 5614 goto cleanup; 5615 5616 /* Store away the transform reference. */ 5617 sctp_sk(sk)->hmac = tfm; 5618 out: 5619 sctp_release_sock(sk); 5620 return err; 5621 cleanup: 5622 crypto_free_hash(tfm); 5623 goto out; 5624 } 5625 5626 /* 5627 * This function is done by modeling the current datagram_poll() and the 5628 * tcp_poll(). Note that, based on these implementations, we don't 5629 * lock the socket in this function, even though it seems that, 5630 * ideally, locking or some other mechanisms can be used to ensure 5631 * the integrity of the counters (sndbuf and wmem_alloc) used 5632 * in this place. We assume that we don't need locks either until proven 5633 * otherwise. 5634 * 5635 * Another thing to note is that we include the Async I/O support 5636 * here, again, by modeling the current TCP/UDP code. We don't have 5637 * a good way to test with it yet. 5638 */ 5639 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5640 { 5641 struct sock *sk = sock->sk; 5642 struct sctp_sock *sp = sctp_sk(sk); 5643 unsigned int mask; 5644 5645 poll_wait(file, sk->sk_sleep, wait); 5646 5647 /* A TCP-style listening socket becomes readable when the accept queue 5648 * is not empty. 5649 */ 5650 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5651 return (!list_empty(&sp->ep->asocs)) ? 5652 (POLLIN | POLLRDNORM) : 0; 5653 5654 mask = 0; 5655 5656 /* Is there any exceptional events? */ 5657 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5658 mask |= POLLERR; 5659 if (sk->sk_shutdown & RCV_SHUTDOWN) 5660 mask |= POLLRDHUP; 5661 if (sk->sk_shutdown == SHUTDOWN_MASK) 5662 mask |= POLLHUP; 5663 5664 /* Is it readable? Reconsider this code with TCP-style support. */ 5665 if (!skb_queue_empty(&sk->sk_receive_queue) || 5666 (sk->sk_shutdown & RCV_SHUTDOWN)) 5667 mask |= POLLIN | POLLRDNORM; 5668 5669 /* The association is either gone or not ready. */ 5670 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5671 return mask; 5672 5673 /* Is it writable? */ 5674 if (sctp_writeable(sk)) { 5675 mask |= POLLOUT | POLLWRNORM; 5676 } else { 5677 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5678 /* 5679 * Since the socket is not locked, the buffer 5680 * might be made available after the writeable check and 5681 * before the bit is set. This could cause a lost I/O 5682 * signal. tcp_poll() has a race breaker for this race 5683 * condition. Based on their implementation, we put 5684 * in the following code to cover it as well. 5685 */ 5686 if (sctp_writeable(sk)) 5687 mask |= POLLOUT | POLLWRNORM; 5688 } 5689 return mask; 5690 } 5691 5692 /******************************************************************** 5693 * 2nd Level Abstractions 5694 ********************************************************************/ 5695 5696 static struct sctp_bind_bucket *sctp_bucket_create( 5697 struct sctp_bind_hashbucket *head, unsigned short snum) 5698 { 5699 struct sctp_bind_bucket *pp; 5700 5701 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5702 SCTP_DBG_OBJCNT_INC(bind_bucket); 5703 if (pp) { 5704 pp->port = snum; 5705 pp->fastreuse = 0; 5706 INIT_HLIST_HEAD(&pp->owner); 5707 hlist_add_head(&pp->node, &head->chain); 5708 } 5709 return pp; 5710 } 5711 5712 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5713 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5714 { 5715 if (pp && hlist_empty(&pp->owner)) { 5716 __hlist_del(&pp->node); 5717 kmem_cache_free(sctp_bucket_cachep, pp); 5718 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5719 } 5720 } 5721 5722 /* Release this socket's reference to a local port. */ 5723 static inline void __sctp_put_port(struct sock *sk) 5724 { 5725 struct sctp_bind_hashbucket *head = 5726 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5727 struct sctp_bind_bucket *pp; 5728 5729 sctp_spin_lock(&head->lock); 5730 pp = sctp_sk(sk)->bind_hash; 5731 __sk_del_bind_node(sk); 5732 sctp_sk(sk)->bind_hash = NULL; 5733 inet_sk(sk)->num = 0; 5734 sctp_bucket_destroy(pp); 5735 sctp_spin_unlock(&head->lock); 5736 } 5737 5738 void sctp_put_port(struct sock *sk) 5739 { 5740 sctp_local_bh_disable(); 5741 __sctp_put_port(sk); 5742 sctp_local_bh_enable(); 5743 } 5744 5745 /* 5746 * The system picks an ephemeral port and choose an address set equivalent 5747 * to binding with a wildcard address. 5748 * One of those addresses will be the primary address for the association. 5749 * This automatically enables the multihoming capability of SCTP. 5750 */ 5751 static int sctp_autobind(struct sock *sk) 5752 { 5753 union sctp_addr autoaddr; 5754 struct sctp_af *af; 5755 __be16 port; 5756 5757 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5758 af = sctp_sk(sk)->pf->af; 5759 5760 port = htons(inet_sk(sk)->num); 5761 af->inaddr_any(&autoaddr, port); 5762 5763 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5764 } 5765 5766 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5767 * 5768 * From RFC 2292 5769 * 4.2 The cmsghdr Structure * 5770 * 5771 * When ancillary data is sent or received, any number of ancillary data 5772 * objects can be specified by the msg_control and msg_controllen members of 5773 * the msghdr structure, because each object is preceded by 5774 * a cmsghdr structure defining the object's length (the cmsg_len member). 5775 * Historically Berkeley-derived implementations have passed only one object 5776 * at a time, but this API allows multiple objects to be 5777 * passed in a single call to sendmsg() or recvmsg(). The following example 5778 * shows two ancillary data objects in a control buffer. 5779 * 5780 * |<--------------------------- msg_controllen -------------------------->| 5781 * | | 5782 * 5783 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5784 * 5785 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5786 * | | | 5787 * 5788 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5789 * 5790 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5791 * | | | | | 5792 * 5793 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5794 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5795 * 5796 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5797 * 5798 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5799 * ^ 5800 * | 5801 * 5802 * msg_control 5803 * points here 5804 */ 5805 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5806 sctp_cmsgs_t *cmsgs) 5807 { 5808 struct cmsghdr *cmsg; 5809 5810 for (cmsg = CMSG_FIRSTHDR(msg); 5811 cmsg != NULL; 5812 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5813 if (!CMSG_OK(msg, cmsg)) 5814 return -EINVAL; 5815 5816 /* Should we parse this header or ignore? */ 5817 if (cmsg->cmsg_level != IPPROTO_SCTP) 5818 continue; 5819 5820 /* Strictly check lengths following example in SCM code. */ 5821 switch (cmsg->cmsg_type) { 5822 case SCTP_INIT: 5823 /* SCTP Socket API Extension 5824 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5825 * 5826 * This cmsghdr structure provides information for 5827 * initializing new SCTP associations with sendmsg(). 5828 * The SCTP_INITMSG socket option uses this same data 5829 * structure. This structure is not used for 5830 * recvmsg(). 5831 * 5832 * cmsg_level cmsg_type cmsg_data[] 5833 * ------------ ------------ ---------------------- 5834 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5835 */ 5836 if (cmsg->cmsg_len != 5837 CMSG_LEN(sizeof(struct sctp_initmsg))) 5838 return -EINVAL; 5839 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5840 break; 5841 5842 case SCTP_SNDRCV: 5843 /* SCTP Socket API Extension 5844 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5845 * 5846 * This cmsghdr structure specifies SCTP options for 5847 * sendmsg() and describes SCTP header information 5848 * about a received message through recvmsg(). 5849 * 5850 * cmsg_level cmsg_type cmsg_data[] 5851 * ------------ ------------ ---------------------- 5852 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5853 */ 5854 if (cmsg->cmsg_len != 5855 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5856 return -EINVAL; 5857 5858 cmsgs->info = 5859 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5860 5861 /* Minimally, validate the sinfo_flags. */ 5862 if (cmsgs->info->sinfo_flags & 5863 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5864 SCTP_ABORT | SCTP_EOF)) 5865 return -EINVAL; 5866 break; 5867 5868 default: 5869 return -EINVAL; 5870 } 5871 } 5872 return 0; 5873 } 5874 5875 /* 5876 * Wait for a packet.. 5877 * Note: This function is the same function as in core/datagram.c 5878 * with a few modifications to make lksctp work. 5879 */ 5880 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5881 { 5882 int error; 5883 DEFINE_WAIT(wait); 5884 5885 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5886 5887 /* Socket errors? */ 5888 error = sock_error(sk); 5889 if (error) 5890 goto out; 5891 5892 if (!skb_queue_empty(&sk->sk_receive_queue)) 5893 goto ready; 5894 5895 /* Socket shut down? */ 5896 if (sk->sk_shutdown & RCV_SHUTDOWN) 5897 goto out; 5898 5899 /* Sequenced packets can come disconnected. If so we report the 5900 * problem. 5901 */ 5902 error = -ENOTCONN; 5903 5904 /* Is there a good reason to think that we may receive some data? */ 5905 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5906 goto out; 5907 5908 /* Handle signals. */ 5909 if (signal_pending(current)) 5910 goto interrupted; 5911 5912 /* Let another process have a go. Since we are going to sleep 5913 * anyway. Note: This may cause odd behaviors if the message 5914 * does not fit in the user's buffer, but this seems to be the 5915 * only way to honor MSG_DONTWAIT realistically. 5916 */ 5917 sctp_release_sock(sk); 5918 *timeo_p = schedule_timeout(*timeo_p); 5919 sctp_lock_sock(sk); 5920 5921 ready: 5922 finish_wait(sk->sk_sleep, &wait); 5923 return 0; 5924 5925 interrupted: 5926 error = sock_intr_errno(*timeo_p); 5927 5928 out: 5929 finish_wait(sk->sk_sleep, &wait); 5930 *err = error; 5931 return error; 5932 } 5933 5934 /* Receive a datagram. 5935 * Note: This is pretty much the same routine as in core/datagram.c 5936 * with a few changes to make lksctp work. 5937 */ 5938 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5939 int noblock, int *err) 5940 { 5941 int error; 5942 struct sk_buff *skb; 5943 long timeo; 5944 5945 timeo = sock_rcvtimeo(sk, noblock); 5946 5947 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5948 timeo, MAX_SCHEDULE_TIMEOUT); 5949 5950 do { 5951 /* Again only user level code calls this function, 5952 * so nothing interrupt level 5953 * will suddenly eat the receive_queue. 5954 * 5955 * Look at current nfs client by the way... 5956 * However, this function was corrent in any case. 8) 5957 */ 5958 if (flags & MSG_PEEK) { 5959 spin_lock_bh(&sk->sk_receive_queue.lock); 5960 skb = skb_peek(&sk->sk_receive_queue); 5961 if (skb) 5962 atomic_inc(&skb->users); 5963 spin_unlock_bh(&sk->sk_receive_queue.lock); 5964 } else { 5965 skb = skb_dequeue(&sk->sk_receive_queue); 5966 } 5967 5968 if (skb) 5969 return skb; 5970 5971 /* Caller is allowed not to check sk->sk_err before calling. */ 5972 error = sock_error(sk); 5973 if (error) 5974 goto no_packet; 5975 5976 if (sk->sk_shutdown & RCV_SHUTDOWN) 5977 break; 5978 5979 /* User doesn't want to wait. */ 5980 error = -EAGAIN; 5981 if (!timeo) 5982 goto no_packet; 5983 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5984 5985 return NULL; 5986 5987 no_packet: 5988 *err = error; 5989 return NULL; 5990 } 5991 5992 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5993 static void __sctp_write_space(struct sctp_association *asoc) 5994 { 5995 struct sock *sk = asoc->base.sk; 5996 struct socket *sock = sk->sk_socket; 5997 5998 if ((sctp_wspace(asoc) > 0) && sock) { 5999 if (waitqueue_active(&asoc->wait)) 6000 wake_up_interruptible(&asoc->wait); 6001 6002 if (sctp_writeable(sk)) { 6003 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6004 wake_up_interruptible(sk->sk_sleep); 6005 6006 /* Note that we try to include the Async I/O support 6007 * here by modeling from the current TCP/UDP code. 6008 * We have not tested with it yet. 6009 */ 6010 if (sock->fasync_list && 6011 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6012 sock_wake_async(sock, 6013 SOCK_WAKE_SPACE, POLL_OUT); 6014 } 6015 } 6016 } 6017 6018 /* Do accounting for the sndbuf space. 6019 * Decrement the used sndbuf space of the corresponding association by the 6020 * data size which was just transmitted(freed). 6021 */ 6022 static void sctp_wfree(struct sk_buff *skb) 6023 { 6024 struct sctp_association *asoc; 6025 struct sctp_chunk *chunk; 6026 struct sock *sk; 6027 6028 /* Get the saved chunk pointer. */ 6029 chunk = *((struct sctp_chunk **)(skb->cb)); 6030 asoc = chunk->asoc; 6031 sk = asoc->base.sk; 6032 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6033 sizeof(struct sk_buff) + 6034 sizeof(struct sctp_chunk); 6035 6036 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6037 6038 /* 6039 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6040 */ 6041 sk->sk_wmem_queued -= skb->truesize; 6042 sk_mem_uncharge(sk, skb->truesize); 6043 6044 sock_wfree(skb); 6045 __sctp_write_space(asoc); 6046 6047 sctp_association_put(asoc); 6048 } 6049 6050 /* Do accounting for the receive space on the socket. 6051 * Accounting for the association is done in ulpevent.c 6052 * We set this as a destructor for the cloned data skbs so that 6053 * accounting is done at the correct time. 6054 */ 6055 void sctp_sock_rfree(struct sk_buff *skb) 6056 { 6057 struct sock *sk = skb->sk; 6058 struct sctp_ulpevent *event = sctp_skb2event(skb); 6059 6060 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6061 6062 /* 6063 * Mimic the behavior of sock_rfree 6064 */ 6065 sk_mem_uncharge(sk, event->rmem_len); 6066 } 6067 6068 6069 /* Helper function to wait for space in the sndbuf. */ 6070 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6071 size_t msg_len) 6072 { 6073 struct sock *sk = asoc->base.sk; 6074 int err = 0; 6075 long current_timeo = *timeo_p; 6076 DEFINE_WAIT(wait); 6077 6078 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6079 asoc, (long)(*timeo_p), msg_len); 6080 6081 /* Increment the association's refcnt. */ 6082 sctp_association_hold(asoc); 6083 6084 /* Wait on the association specific sndbuf space. */ 6085 for (;;) { 6086 prepare_to_wait_exclusive(&asoc->wait, &wait, 6087 TASK_INTERRUPTIBLE); 6088 if (!*timeo_p) 6089 goto do_nonblock; 6090 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6091 asoc->base.dead) 6092 goto do_error; 6093 if (signal_pending(current)) 6094 goto do_interrupted; 6095 if (msg_len <= sctp_wspace(asoc)) 6096 break; 6097 6098 /* Let another process have a go. Since we are going 6099 * to sleep anyway. 6100 */ 6101 sctp_release_sock(sk); 6102 current_timeo = schedule_timeout(current_timeo); 6103 BUG_ON(sk != asoc->base.sk); 6104 sctp_lock_sock(sk); 6105 6106 *timeo_p = current_timeo; 6107 } 6108 6109 out: 6110 finish_wait(&asoc->wait, &wait); 6111 6112 /* Release the association's refcnt. */ 6113 sctp_association_put(asoc); 6114 6115 return err; 6116 6117 do_error: 6118 err = -EPIPE; 6119 goto out; 6120 6121 do_interrupted: 6122 err = sock_intr_errno(*timeo_p); 6123 goto out; 6124 6125 do_nonblock: 6126 err = -EAGAIN; 6127 goto out; 6128 } 6129 6130 /* If socket sndbuf has changed, wake up all per association waiters. */ 6131 void sctp_write_space(struct sock *sk) 6132 { 6133 struct sctp_association *asoc; 6134 struct list_head *pos; 6135 6136 /* Wake up the tasks in each wait queue. */ 6137 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 6138 asoc = list_entry(pos, struct sctp_association, asocs); 6139 __sctp_write_space(asoc); 6140 } 6141 } 6142 6143 /* Is there any sndbuf space available on the socket? 6144 * 6145 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6146 * associations on the same socket. For a UDP-style socket with 6147 * multiple associations, it is possible for it to be "unwriteable" 6148 * prematurely. I assume that this is acceptable because 6149 * a premature "unwriteable" is better than an accidental "writeable" which 6150 * would cause an unwanted block under certain circumstances. For the 1-1 6151 * UDP-style sockets or TCP-style sockets, this code should work. 6152 * - Daisy 6153 */ 6154 static int sctp_writeable(struct sock *sk) 6155 { 6156 int amt = 0; 6157 6158 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 6159 if (amt < 0) 6160 amt = 0; 6161 return amt; 6162 } 6163 6164 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6165 * returns immediately with EINPROGRESS. 6166 */ 6167 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6168 { 6169 struct sock *sk = asoc->base.sk; 6170 int err = 0; 6171 long current_timeo = *timeo_p; 6172 DEFINE_WAIT(wait); 6173 6174 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 6175 (long)(*timeo_p)); 6176 6177 /* Increment the association's refcnt. */ 6178 sctp_association_hold(asoc); 6179 6180 for (;;) { 6181 prepare_to_wait_exclusive(&asoc->wait, &wait, 6182 TASK_INTERRUPTIBLE); 6183 if (!*timeo_p) 6184 goto do_nonblock; 6185 if (sk->sk_shutdown & RCV_SHUTDOWN) 6186 break; 6187 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6188 asoc->base.dead) 6189 goto do_error; 6190 if (signal_pending(current)) 6191 goto do_interrupted; 6192 6193 if (sctp_state(asoc, ESTABLISHED)) 6194 break; 6195 6196 /* Let another process have a go. Since we are going 6197 * to sleep anyway. 6198 */ 6199 sctp_release_sock(sk); 6200 current_timeo = schedule_timeout(current_timeo); 6201 sctp_lock_sock(sk); 6202 6203 *timeo_p = current_timeo; 6204 } 6205 6206 out: 6207 finish_wait(&asoc->wait, &wait); 6208 6209 /* Release the association's refcnt. */ 6210 sctp_association_put(asoc); 6211 6212 return err; 6213 6214 do_error: 6215 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6216 err = -ETIMEDOUT; 6217 else 6218 err = -ECONNREFUSED; 6219 goto out; 6220 6221 do_interrupted: 6222 err = sock_intr_errno(*timeo_p); 6223 goto out; 6224 6225 do_nonblock: 6226 err = -EINPROGRESS; 6227 goto out; 6228 } 6229 6230 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6231 { 6232 struct sctp_endpoint *ep; 6233 int err = 0; 6234 DEFINE_WAIT(wait); 6235 6236 ep = sctp_sk(sk)->ep; 6237 6238 6239 for (;;) { 6240 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6241 TASK_INTERRUPTIBLE); 6242 6243 if (list_empty(&ep->asocs)) { 6244 sctp_release_sock(sk); 6245 timeo = schedule_timeout(timeo); 6246 sctp_lock_sock(sk); 6247 } 6248 6249 err = -EINVAL; 6250 if (!sctp_sstate(sk, LISTENING)) 6251 break; 6252 6253 err = 0; 6254 if (!list_empty(&ep->asocs)) 6255 break; 6256 6257 err = sock_intr_errno(timeo); 6258 if (signal_pending(current)) 6259 break; 6260 6261 err = -EAGAIN; 6262 if (!timeo) 6263 break; 6264 } 6265 6266 finish_wait(sk->sk_sleep, &wait); 6267 6268 return err; 6269 } 6270 6271 static void sctp_wait_for_close(struct sock *sk, long timeout) 6272 { 6273 DEFINE_WAIT(wait); 6274 6275 do { 6276 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6277 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6278 break; 6279 sctp_release_sock(sk); 6280 timeout = schedule_timeout(timeout); 6281 sctp_lock_sock(sk); 6282 } while (!signal_pending(current) && timeout); 6283 6284 finish_wait(sk->sk_sleep, &wait); 6285 } 6286 6287 static void sctp_sock_rfree_frag(struct sk_buff *skb) 6288 { 6289 struct sk_buff *frag; 6290 6291 if (!skb->data_len) 6292 goto done; 6293 6294 /* Don't forget the fragments. */ 6295 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6296 sctp_sock_rfree_frag(frag); 6297 6298 done: 6299 sctp_sock_rfree(skb); 6300 } 6301 6302 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6303 { 6304 struct sk_buff *frag; 6305 6306 if (!skb->data_len) 6307 goto done; 6308 6309 /* Don't forget the fragments. */ 6310 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6311 sctp_skb_set_owner_r_frag(frag, sk); 6312 6313 done: 6314 sctp_skb_set_owner_r(skb, sk); 6315 } 6316 6317 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6318 * and its messages to the newsk. 6319 */ 6320 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6321 struct sctp_association *assoc, 6322 sctp_socket_type_t type) 6323 { 6324 struct sctp_sock *oldsp = sctp_sk(oldsk); 6325 struct sctp_sock *newsp = sctp_sk(newsk); 6326 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6327 struct sctp_endpoint *newep = newsp->ep; 6328 struct sk_buff *skb, *tmp; 6329 struct sctp_ulpevent *event; 6330 struct sctp_bind_hashbucket *head; 6331 6332 /* Migrate socket buffer sizes and all the socket level options to the 6333 * new socket. 6334 */ 6335 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6336 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6337 /* Brute force copy old sctp opt. */ 6338 inet_sk_copy_descendant(newsk, oldsk); 6339 6340 /* Restore the ep value that was overwritten with the above structure 6341 * copy. 6342 */ 6343 newsp->ep = newep; 6344 newsp->hmac = NULL; 6345 6346 /* Hook this new socket in to the bind_hash list. */ 6347 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6348 sctp_local_bh_disable(); 6349 sctp_spin_lock(&head->lock); 6350 pp = sctp_sk(oldsk)->bind_hash; 6351 sk_add_bind_node(newsk, &pp->owner); 6352 sctp_sk(newsk)->bind_hash = pp; 6353 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6354 sctp_spin_unlock(&head->lock); 6355 sctp_local_bh_enable(); 6356 6357 /* Copy the bind_addr list from the original endpoint to the new 6358 * endpoint so that we can handle restarts properly 6359 */ 6360 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6361 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6362 6363 /* Move any messages in the old socket's receive queue that are for the 6364 * peeled off association to the new socket's receive queue. 6365 */ 6366 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6367 event = sctp_skb2event(skb); 6368 if (event->asoc == assoc) { 6369 sctp_sock_rfree_frag(skb); 6370 __skb_unlink(skb, &oldsk->sk_receive_queue); 6371 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6372 sctp_skb_set_owner_r_frag(skb, newsk); 6373 } 6374 } 6375 6376 /* Clean up any messages pending delivery due to partial 6377 * delivery. Three cases: 6378 * 1) No partial deliver; no work. 6379 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6380 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6381 */ 6382 skb_queue_head_init(&newsp->pd_lobby); 6383 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6384 6385 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6386 struct sk_buff_head *queue; 6387 6388 /* Decide which queue to move pd_lobby skbs to. */ 6389 if (assoc->ulpq.pd_mode) { 6390 queue = &newsp->pd_lobby; 6391 } else 6392 queue = &newsk->sk_receive_queue; 6393 6394 /* Walk through the pd_lobby, looking for skbs that 6395 * need moved to the new socket. 6396 */ 6397 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6398 event = sctp_skb2event(skb); 6399 if (event->asoc == assoc) { 6400 sctp_sock_rfree_frag(skb); 6401 __skb_unlink(skb, &oldsp->pd_lobby); 6402 __skb_queue_tail(queue, skb); 6403 sctp_skb_set_owner_r_frag(skb, newsk); 6404 } 6405 } 6406 6407 /* Clear up any skbs waiting for the partial 6408 * delivery to finish. 6409 */ 6410 if (assoc->ulpq.pd_mode) 6411 sctp_clear_pd(oldsk, NULL); 6412 6413 } 6414 6415 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6416 sctp_sock_rfree_frag(skb); 6417 sctp_skb_set_owner_r_frag(skb, newsk); 6418 } 6419 6420 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6421 sctp_sock_rfree_frag(skb); 6422 sctp_skb_set_owner_r_frag(skb, newsk); 6423 } 6424 6425 /* Set the type of socket to indicate that it is peeled off from the 6426 * original UDP-style socket or created with the accept() call on a 6427 * TCP-style socket.. 6428 */ 6429 newsp->type = type; 6430 6431 /* Mark the new socket "in-use" by the user so that any packets 6432 * that may arrive on the association after we've moved it are 6433 * queued to the backlog. This prevents a potential race between 6434 * backlog processing on the old socket and new-packet processing 6435 * on the new socket. 6436 * 6437 * The caller has just allocated newsk so we can guarantee that other 6438 * paths won't try to lock it and then oldsk. 6439 */ 6440 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6441 sctp_assoc_migrate(assoc, newsk); 6442 6443 /* If the association on the newsk is already closed before accept() 6444 * is called, set RCV_SHUTDOWN flag. 6445 */ 6446 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6447 newsk->sk_shutdown |= RCV_SHUTDOWN; 6448 6449 newsk->sk_state = SCTP_SS_ESTABLISHED; 6450 sctp_release_sock(newsk); 6451 } 6452 6453 6454 DEFINE_PROTO_INUSE(sctp) 6455 6456 /* This proto struct describes the ULP interface for SCTP. */ 6457 struct proto sctp_prot = { 6458 .name = "SCTP", 6459 .owner = THIS_MODULE, 6460 .close = sctp_close, 6461 .connect = sctp_connect, 6462 .disconnect = sctp_disconnect, 6463 .accept = sctp_accept, 6464 .ioctl = sctp_ioctl, 6465 .init = sctp_init_sock, 6466 .destroy = sctp_destroy_sock, 6467 .shutdown = sctp_shutdown, 6468 .setsockopt = sctp_setsockopt, 6469 .getsockopt = sctp_getsockopt, 6470 .sendmsg = sctp_sendmsg, 6471 .recvmsg = sctp_recvmsg, 6472 .bind = sctp_bind, 6473 .backlog_rcv = sctp_backlog_rcv, 6474 .hash = sctp_hash, 6475 .unhash = sctp_unhash, 6476 .get_port = sctp_get_port, 6477 .obj_size = sizeof(struct sctp_sock), 6478 .sysctl_mem = sysctl_sctp_mem, 6479 .sysctl_rmem = sysctl_sctp_rmem, 6480 .sysctl_wmem = sysctl_sctp_wmem, 6481 .memory_pressure = &sctp_memory_pressure, 6482 .enter_memory_pressure = sctp_enter_memory_pressure, 6483 .memory_allocated = &sctp_memory_allocated, 6484 REF_PROTO_INUSE(sctp) 6485 }; 6486 6487 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6488 DEFINE_PROTO_INUSE(sctpv6) 6489 6490 struct proto sctpv6_prot = { 6491 .name = "SCTPv6", 6492 .owner = THIS_MODULE, 6493 .close = sctp_close, 6494 .connect = sctp_connect, 6495 .disconnect = sctp_disconnect, 6496 .accept = sctp_accept, 6497 .ioctl = sctp_ioctl, 6498 .init = sctp_init_sock, 6499 .destroy = sctp_destroy_sock, 6500 .shutdown = sctp_shutdown, 6501 .setsockopt = sctp_setsockopt, 6502 .getsockopt = sctp_getsockopt, 6503 .sendmsg = sctp_sendmsg, 6504 .recvmsg = sctp_recvmsg, 6505 .bind = sctp_bind, 6506 .backlog_rcv = sctp_backlog_rcv, 6507 .hash = sctp_hash, 6508 .unhash = sctp_unhash, 6509 .get_port = sctp_get_port, 6510 .obj_size = sizeof(struct sctp6_sock), 6511 .sysctl_mem = sysctl_sctp_mem, 6512 .sysctl_rmem = sysctl_sctp_rmem, 6513 .sysctl_wmem = sysctl_sctp_wmem, 6514 .memory_pressure = &sctp_memory_pressure, 6515 .enter_memory_pressure = sctp_enter_memory_pressure, 6516 .memory_allocated = &sctp_memory_allocated, 6517 REF_PROTO_INUSE(sctpv6) 6518 }; 6519 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6520