xref: /openbmc/linux/net/sctp/socket.c (revision 600a711c)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 #include <linux/file.h>
74 
75 #include <net/ip.h>
76 #include <net/icmp.h>
77 #include <net/route.h>
78 #include <net/ipv6.h>
79 #include <net/inet_common.h>
80 
81 #include <linux/socket.h> /* for sa_family_t */
82 #include <linux/export.h>
83 #include <net/sock.h>
84 #include <net/sctp/sctp.h>
85 #include <net/sctp/sm.h>
86 
87 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
88  * any of the functions below as they are used to export functions
89  * used by a project regression testsuite.
90  */
91 
92 /* Forward declarations for internal helper functions. */
93 static int sctp_writeable(struct sock *sk);
94 static void sctp_wfree(struct sk_buff *skb);
95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
96 				size_t msg_len);
97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
99 static int sctp_wait_for_accept(struct sock *sk, long timeo);
100 static void sctp_wait_for_close(struct sock *sk, long timeo);
101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
102 					union sctp_addr *addr, int len);
103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
107 static int sctp_send_asconf(struct sctp_association *asoc,
108 			    struct sctp_chunk *chunk);
109 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
110 static int sctp_autobind(struct sock *sk);
111 static void sctp_sock_migrate(struct sock *, struct sock *,
112 			      struct sctp_association *, sctp_socket_type_t);
113 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
114 
115 extern struct kmem_cache *sctp_bucket_cachep;
116 extern long sysctl_sctp_mem[3];
117 extern int sysctl_sctp_rmem[3];
118 extern int sysctl_sctp_wmem[3];
119 
120 static int sctp_memory_pressure;
121 static atomic_long_t sctp_memory_allocated;
122 struct percpu_counter sctp_sockets_allocated;
123 
124 static void sctp_enter_memory_pressure(struct sock *sk)
125 {
126 	sctp_memory_pressure = 1;
127 }
128 
129 
130 /* Get the sndbuf space available at the time on the association.  */
131 static inline int sctp_wspace(struct sctp_association *asoc)
132 {
133 	int amt;
134 
135 	if (asoc->ep->sndbuf_policy)
136 		amt = asoc->sndbuf_used;
137 	else
138 		amt = sk_wmem_alloc_get(asoc->base.sk);
139 
140 	if (amt >= asoc->base.sk->sk_sndbuf) {
141 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
142 			amt = 0;
143 		else {
144 			amt = sk_stream_wspace(asoc->base.sk);
145 			if (amt < 0)
146 				amt = 0;
147 		}
148 	} else {
149 		amt = asoc->base.sk->sk_sndbuf - amt;
150 	}
151 	return amt;
152 }
153 
154 /* Increment the used sndbuf space count of the corresponding association by
155  * the size of the outgoing data chunk.
156  * Also, set the skb destructor for sndbuf accounting later.
157  *
158  * Since it is always 1-1 between chunk and skb, and also a new skb is always
159  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
160  * destructor in the data chunk skb for the purpose of the sndbuf space
161  * tracking.
162  */
163 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
164 {
165 	struct sctp_association *asoc = chunk->asoc;
166 	struct sock *sk = asoc->base.sk;
167 
168 	/* The sndbuf space is tracked per association.  */
169 	sctp_association_hold(asoc);
170 
171 	skb_set_owner_w(chunk->skb, sk);
172 
173 	chunk->skb->destructor = sctp_wfree;
174 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
175 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
176 
177 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
178 				sizeof(struct sk_buff) +
179 				sizeof(struct sctp_chunk);
180 
181 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
182 	sk->sk_wmem_queued += chunk->skb->truesize;
183 	sk_mem_charge(sk, chunk->skb->truesize);
184 }
185 
186 /* Verify that this is a valid address. */
187 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
188 				   int len)
189 {
190 	struct sctp_af *af;
191 
192 	/* Verify basic sockaddr. */
193 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
194 	if (!af)
195 		return -EINVAL;
196 
197 	/* Is this a valid SCTP address?  */
198 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
199 		return -EINVAL;
200 
201 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /* Look up the association by its id.  If this is not a UDP-style
208  * socket, the ID field is always ignored.
209  */
210 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
211 {
212 	struct sctp_association *asoc = NULL;
213 
214 	/* If this is not a UDP-style socket, assoc id should be ignored. */
215 	if (!sctp_style(sk, UDP)) {
216 		/* Return NULL if the socket state is not ESTABLISHED. It
217 		 * could be a TCP-style listening socket or a socket which
218 		 * hasn't yet called connect() to establish an association.
219 		 */
220 		if (!sctp_sstate(sk, ESTABLISHED))
221 			return NULL;
222 
223 		/* Get the first and the only association from the list. */
224 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
225 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
226 					  struct sctp_association, asocs);
227 		return asoc;
228 	}
229 
230 	/* Otherwise this is a UDP-style socket. */
231 	if (!id || (id == (sctp_assoc_t)-1))
232 		return NULL;
233 
234 	spin_lock_bh(&sctp_assocs_id_lock);
235 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
236 	spin_unlock_bh(&sctp_assocs_id_lock);
237 
238 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
239 		return NULL;
240 
241 	return asoc;
242 }
243 
244 /* Look up the transport from an address and an assoc id. If both address and
245  * id are specified, the associations matching the address and the id should be
246  * the same.
247  */
248 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
249 					      struct sockaddr_storage *addr,
250 					      sctp_assoc_t id)
251 {
252 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
253 	struct sctp_transport *transport;
254 	union sctp_addr *laddr = (union sctp_addr *)addr;
255 
256 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
257 					       laddr,
258 					       &transport);
259 
260 	if (!addr_asoc)
261 		return NULL;
262 
263 	id_asoc = sctp_id2assoc(sk, id);
264 	if (id_asoc && (id_asoc != addr_asoc))
265 		return NULL;
266 
267 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
268 						(union sctp_addr *)addr);
269 
270 	return transport;
271 }
272 
273 /* API 3.1.2 bind() - UDP Style Syntax
274  * The syntax of bind() is,
275  *
276  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
277  *
278  *   sd      - the socket descriptor returned by socket().
279  *   addr    - the address structure (struct sockaddr_in or struct
280  *             sockaddr_in6 [RFC 2553]),
281  *   addr_len - the size of the address structure.
282  */
283 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
284 {
285 	int retval = 0;
286 
287 	sctp_lock_sock(sk);
288 
289 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
290 			  sk, addr, addr_len);
291 
292 	/* Disallow binding twice. */
293 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
294 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
295 				      addr_len);
296 	else
297 		retval = -EINVAL;
298 
299 	sctp_release_sock(sk);
300 
301 	return retval;
302 }
303 
304 static long sctp_get_port_local(struct sock *, union sctp_addr *);
305 
306 /* Verify this is a valid sockaddr. */
307 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
308 					union sctp_addr *addr, int len)
309 {
310 	struct sctp_af *af;
311 
312 	/* Check minimum size.  */
313 	if (len < sizeof (struct sockaddr))
314 		return NULL;
315 
316 	/* V4 mapped address are really of AF_INET family */
317 	if (addr->sa.sa_family == AF_INET6 &&
318 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
319 		if (!opt->pf->af_supported(AF_INET, opt))
320 			return NULL;
321 	} else {
322 		/* Does this PF support this AF? */
323 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
324 			return NULL;
325 	}
326 
327 	/* If we get this far, af is valid. */
328 	af = sctp_get_af_specific(addr->sa.sa_family);
329 
330 	if (len < af->sockaddr_len)
331 		return NULL;
332 
333 	return af;
334 }
335 
336 /* Bind a local address either to an endpoint or to an association.  */
337 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
338 {
339 	struct sctp_sock *sp = sctp_sk(sk);
340 	struct sctp_endpoint *ep = sp->ep;
341 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
342 	struct sctp_af *af;
343 	unsigned short snum;
344 	int ret = 0;
345 
346 	/* Common sockaddr verification. */
347 	af = sctp_sockaddr_af(sp, addr, len);
348 	if (!af) {
349 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
350 				  sk, addr, len);
351 		return -EINVAL;
352 	}
353 
354 	snum = ntohs(addr->v4.sin_port);
355 
356 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
357 				 ", port: %d, new port: %d, len: %d)\n",
358 				 sk,
359 				 addr,
360 				 bp->port, snum,
361 				 len);
362 
363 	/* PF specific bind() address verification. */
364 	if (!sp->pf->bind_verify(sp, addr))
365 		return -EADDRNOTAVAIL;
366 
367 	/* We must either be unbound, or bind to the same port.
368 	 * It's OK to allow 0 ports if we are already bound.
369 	 * We'll just inhert an already bound port in this case
370 	 */
371 	if (bp->port) {
372 		if (!snum)
373 			snum = bp->port;
374 		else if (snum != bp->port) {
375 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
376 				  " New port %d does not match existing port "
377 				  "%d.\n", snum, bp->port);
378 			return -EINVAL;
379 		}
380 	}
381 
382 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
383 		return -EACCES;
384 
385 	/* See if the address matches any of the addresses we may have
386 	 * already bound before checking against other endpoints.
387 	 */
388 	if (sctp_bind_addr_match(bp, addr, sp))
389 		return -EINVAL;
390 
391 	/* Make sure we are allowed to bind here.
392 	 * The function sctp_get_port_local() does duplicate address
393 	 * detection.
394 	 */
395 	addr->v4.sin_port = htons(snum);
396 	if ((ret = sctp_get_port_local(sk, addr))) {
397 		return -EADDRINUSE;
398 	}
399 
400 	/* Refresh ephemeral port.  */
401 	if (!bp->port)
402 		bp->port = inet_sk(sk)->inet_num;
403 
404 	/* Add the address to the bind address list.
405 	 * Use GFP_ATOMIC since BHs will be disabled.
406 	 */
407 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
408 
409 	/* Copy back into socket for getsockname() use. */
410 	if (!ret) {
411 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
412 		af->to_sk_saddr(addr, sk);
413 	}
414 
415 	return ret;
416 }
417 
418  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
419  *
420  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
421  * at any one time.  If a sender, after sending an ASCONF chunk, decides
422  * it needs to transfer another ASCONF Chunk, it MUST wait until the
423  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
424  * subsequent ASCONF. Note this restriction binds each side, so at any
425  * time two ASCONF may be in-transit on any given association (one sent
426  * from each endpoint).
427  */
428 static int sctp_send_asconf(struct sctp_association *asoc,
429 			    struct sctp_chunk *chunk)
430 {
431 	struct net 	*net = sock_net(asoc->base.sk);
432 	int		retval = 0;
433 
434 	/* If there is an outstanding ASCONF chunk, queue it for later
435 	 * transmission.
436 	 */
437 	if (asoc->addip_last_asconf) {
438 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
439 		goto out;
440 	}
441 
442 	/* Hold the chunk until an ASCONF_ACK is received. */
443 	sctp_chunk_hold(chunk);
444 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
445 	if (retval)
446 		sctp_chunk_free(chunk);
447 	else
448 		asoc->addip_last_asconf = chunk;
449 
450 out:
451 	return retval;
452 }
453 
454 /* Add a list of addresses as bind addresses to local endpoint or
455  * association.
456  *
457  * Basically run through each address specified in the addrs/addrcnt
458  * array/length pair, determine if it is IPv6 or IPv4 and call
459  * sctp_do_bind() on it.
460  *
461  * If any of them fails, then the operation will be reversed and the
462  * ones that were added will be removed.
463  *
464  * Only sctp_setsockopt_bindx() is supposed to call this function.
465  */
466 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
467 {
468 	int cnt;
469 	int retval = 0;
470 	void *addr_buf;
471 	struct sockaddr *sa_addr;
472 	struct sctp_af *af;
473 
474 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
475 			  sk, addrs, addrcnt);
476 
477 	addr_buf = addrs;
478 	for (cnt = 0; cnt < addrcnt; cnt++) {
479 		/* The list may contain either IPv4 or IPv6 address;
480 		 * determine the address length for walking thru the list.
481 		 */
482 		sa_addr = addr_buf;
483 		af = sctp_get_af_specific(sa_addr->sa_family);
484 		if (!af) {
485 			retval = -EINVAL;
486 			goto err_bindx_add;
487 		}
488 
489 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
490 				      af->sockaddr_len);
491 
492 		addr_buf += af->sockaddr_len;
493 
494 err_bindx_add:
495 		if (retval < 0) {
496 			/* Failed. Cleanup the ones that have been added */
497 			if (cnt > 0)
498 				sctp_bindx_rem(sk, addrs, cnt);
499 			return retval;
500 		}
501 	}
502 
503 	return retval;
504 }
505 
506 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
507  * associations that are part of the endpoint indicating that a list of local
508  * addresses are added to the endpoint.
509  *
510  * If any of the addresses is already in the bind address list of the
511  * association, we do not send the chunk for that association.  But it will not
512  * affect other associations.
513  *
514  * Only sctp_setsockopt_bindx() is supposed to call this function.
515  */
516 static int sctp_send_asconf_add_ip(struct sock		*sk,
517 				   struct sockaddr	*addrs,
518 				   int 			addrcnt)
519 {
520 	struct net *net = sock_net(sk);
521 	struct sctp_sock		*sp;
522 	struct sctp_endpoint		*ep;
523 	struct sctp_association		*asoc;
524 	struct sctp_bind_addr		*bp;
525 	struct sctp_chunk		*chunk;
526 	struct sctp_sockaddr_entry	*laddr;
527 	union sctp_addr			*addr;
528 	union sctp_addr			saveaddr;
529 	void				*addr_buf;
530 	struct sctp_af			*af;
531 	struct list_head		*p;
532 	int 				i;
533 	int 				retval = 0;
534 
535 	if (!net->sctp.addip_enable)
536 		return retval;
537 
538 	sp = sctp_sk(sk);
539 	ep = sp->ep;
540 
541 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
542 			  __func__, sk, addrs, addrcnt);
543 
544 	list_for_each_entry(asoc, &ep->asocs, asocs) {
545 
546 		if (!asoc->peer.asconf_capable)
547 			continue;
548 
549 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
550 			continue;
551 
552 		if (!sctp_state(asoc, ESTABLISHED))
553 			continue;
554 
555 		/* Check if any address in the packed array of addresses is
556 		 * in the bind address list of the association. If so,
557 		 * do not send the asconf chunk to its peer, but continue with
558 		 * other associations.
559 		 */
560 		addr_buf = addrs;
561 		for (i = 0; i < addrcnt; i++) {
562 			addr = addr_buf;
563 			af = sctp_get_af_specific(addr->v4.sin_family);
564 			if (!af) {
565 				retval = -EINVAL;
566 				goto out;
567 			}
568 
569 			if (sctp_assoc_lookup_laddr(asoc, addr))
570 				break;
571 
572 			addr_buf += af->sockaddr_len;
573 		}
574 		if (i < addrcnt)
575 			continue;
576 
577 		/* Use the first valid address in bind addr list of
578 		 * association as Address Parameter of ASCONF CHUNK.
579 		 */
580 		bp = &asoc->base.bind_addr;
581 		p = bp->address_list.next;
582 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
583 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
584 						   addrcnt, SCTP_PARAM_ADD_IP);
585 		if (!chunk) {
586 			retval = -ENOMEM;
587 			goto out;
588 		}
589 
590 		/* Add the new addresses to the bind address list with
591 		 * use_as_src set to 0.
592 		 */
593 		addr_buf = addrs;
594 		for (i = 0; i < addrcnt; i++) {
595 			addr = addr_buf;
596 			af = sctp_get_af_specific(addr->v4.sin_family);
597 			memcpy(&saveaddr, addr, af->sockaddr_len);
598 			retval = sctp_add_bind_addr(bp, &saveaddr,
599 						    SCTP_ADDR_NEW, GFP_ATOMIC);
600 			addr_buf += af->sockaddr_len;
601 		}
602 		if (asoc->src_out_of_asoc_ok) {
603 			struct sctp_transport *trans;
604 
605 			list_for_each_entry(trans,
606 			    &asoc->peer.transport_addr_list, transports) {
607 				/* Clear the source and route cache */
608 				dst_release(trans->dst);
609 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
610 				    2*asoc->pathmtu, 4380));
611 				trans->ssthresh = asoc->peer.i.a_rwnd;
612 				trans->rto = asoc->rto_initial;
613 				trans->rtt = trans->srtt = trans->rttvar = 0;
614 				sctp_transport_route(trans, NULL,
615 				    sctp_sk(asoc->base.sk));
616 			}
617 		}
618 		retval = sctp_send_asconf(asoc, chunk);
619 	}
620 
621 out:
622 	return retval;
623 }
624 
625 /* Remove a list of addresses from bind addresses list.  Do not remove the
626  * last address.
627  *
628  * Basically run through each address specified in the addrs/addrcnt
629  * array/length pair, determine if it is IPv6 or IPv4 and call
630  * sctp_del_bind() on it.
631  *
632  * If any of them fails, then the operation will be reversed and the
633  * ones that were removed will be added back.
634  *
635  * At least one address has to be left; if only one address is
636  * available, the operation will return -EBUSY.
637  *
638  * Only sctp_setsockopt_bindx() is supposed to call this function.
639  */
640 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
641 {
642 	struct sctp_sock *sp = sctp_sk(sk);
643 	struct sctp_endpoint *ep = sp->ep;
644 	int cnt;
645 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
646 	int retval = 0;
647 	void *addr_buf;
648 	union sctp_addr *sa_addr;
649 	struct sctp_af *af;
650 
651 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
652 			  sk, addrs, addrcnt);
653 
654 	addr_buf = addrs;
655 	for (cnt = 0; cnt < addrcnt; cnt++) {
656 		/* If the bind address list is empty or if there is only one
657 		 * bind address, there is nothing more to be removed (we need
658 		 * at least one address here).
659 		 */
660 		if (list_empty(&bp->address_list) ||
661 		    (sctp_list_single_entry(&bp->address_list))) {
662 			retval = -EBUSY;
663 			goto err_bindx_rem;
664 		}
665 
666 		sa_addr = addr_buf;
667 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
668 		if (!af) {
669 			retval = -EINVAL;
670 			goto err_bindx_rem;
671 		}
672 
673 		if (!af->addr_valid(sa_addr, sp, NULL)) {
674 			retval = -EADDRNOTAVAIL;
675 			goto err_bindx_rem;
676 		}
677 
678 		if (sa_addr->v4.sin_port &&
679 		    sa_addr->v4.sin_port != htons(bp->port)) {
680 			retval = -EINVAL;
681 			goto err_bindx_rem;
682 		}
683 
684 		if (!sa_addr->v4.sin_port)
685 			sa_addr->v4.sin_port = htons(bp->port);
686 
687 		/* FIXME - There is probably a need to check if sk->sk_saddr and
688 		 * sk->sk_rcv_addr are currently set to one of the addresses to
689 		 * be removed. This is something which needs to be looked into
690 		 * when we are fixing the outstanding issues with multi-homing
691 		 * socket routing and failover schemes. Refer to comments in
692 		 * sctp_do_bind(). -daisy
693 		 */
694 		retval = sctp_del_bind_addr(bp, sa_addr);
695 
696 		addr_buf += af->sockaddr_len;
697 err_bindx_rem:
698 		if (retval < 0) {
699 			/* Failed. Add the ones that has been removed back */
700 			if (cnt > 0)
701 				sctp_bindx_add(sk, addrs, cnt);
702 			return retval;
703 		}
704 	}
705 
706 	return retval;
707 }
708 
709 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
710  * the associations that are part of the endpoint indicating that a list of
711  * local addresses are removed from the endpoint.
712  *
713  * If any of the addresses is already in the bind address list of the
714  * association, we do not send the chunk for that association.  But it will not
715  * affect other associations.
716  *
717  * Only sctp_setsockopt_bindx() is supposed to call this function.
718  */
719 static int sctp_send_asconf_del_ip(struct sock		*sk,
720 				   struct sockaddr	*addrs,
721 				   int			addrcnt)
722 {
723 	struct net *net = sock_net(sk);
724 	struct sctp_sock	*sp;
725 	struct sctp_endpoint	*ep;
726 	struct sctp_association	*asoc;
727 	struct sctp_transport	*transport;
728 	struct sctp_bind_addr	*bp;
729 	struct sctp_chunk	*chunk;
730 	union sctp_addr		*laddr;
731 	void			*addr_buf;
732 	struct sctp_af		*af;
733 	struct sctp_sockaddr_entry *saddr;
734 	int 			i;
735 	int 			retval = 0;
736 	int			stored = 0;
737 
738 	chunk = NULL;
739 	if (!net->sctp.addip_enable)
740 		return retval;
741 
742 	sp = sctp_sk(sk);
743 	ep = sp->ep;
744 
745 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
746 			  __func__, sk, addrs, addrcnt);
747 
748 	list_for_each_entry(asoc, &ep->asocs, asocs) {
749 
750 		if (!asoc->peer.asconf_capable)
751 			continue;
752 
753 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
754 			continue;
755 
756 		if (!sctp_state(asoc, ESTABLISHED))
757 			continue;
758 
759 		/* Check if any address in the packed array of addresses is
760 		 * not present in the bind address list of the association.
761 		 * If so, do not send the asconf chunk to its peer, but
762 		 * continue with other associations.
763 		 */
764 		addr_buf = addrs;
765 		for (i = 0; i < addrcnt; i++) {
766 			laddr = addr_buf;
767 			af = sctp_get_af_specific(laddr->v4.sin_family);
768 			if (!af) {
769 				retval = -EINVAL;
770 				goto out;
771 			}
772 
773 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
774 				break;
775 
776 			addr_buf += af->sockaddr_len;
777 		}
778 		if (i < addrcnt)
779 			continue;
780 
781 		/* Find one address in the association's bind address list
782 		 * that is not in the packed array of addresses. This is to
783 		 * make sure that we do not delete all the addresses in the
784 		 * association.
785 		 */
786 		bp = &asoc->base.bind_addr;
787 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
788 					       addrcnt, sp);
789 		if ((laddr == NULL) && (addrcnt == 1)) {
790 			if (asoc->asconf_addr_del_pending)
791 				continue;
792 			asoc->asconf_addr_del_pending =
793 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
794 			if (asoc->asconf_addr_del_pending == NULL) {
795 				retval = -ENOMEM;
796 				goto out;
797 			}
798 			asoc->asconf_addr_del_pending->sa.sa_family =
799 				    addrs->sa_family;
800 			asoc->asconf_addr_del_pending->v4.sin_port =
801 				    htons(bp->port);
802 			if (addrs->sa_family == AF_INET) {
803 				struct sockaddr_in *sin;
804 
805 				sin = (struct sockaddr_in *)addrs;
806 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
807 			} else if (addrs->sa_family == AF_INET6) {
808 				struct sockaddr_in6 *sin6;
809 
810 				sin6 = (struct sockaddr_in6 *)addrs;
811 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
812 			}
813 			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
814 			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
815 			    asoc->asconf_addr_del_pending);
816 			asoc->src_out_of_asoc_ok = 1;
817 			stored = 1;
818 			goto skip_mkasconf;
819 		}
820 
821 		/* We do not need RCU protection throughout this loop
822 		 * because this is done under a socket lock from the
823 		 * setsockopt call.
824 		 */
825 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
826 						   SCTP_PARAM_DEL_IP);
827 		if (!chunk) {
828 			retval = -ENOMEM;
829 			goto out;
830 		}
831 
832 skip_mkasconf:
833 		/* Reset use_as_src flag for the addresses in the bind address
834 		 * list that are to be deleted.
835 		 */
836 		addr_buf = addrs;
837 		for (i = 0; i < addrcnt; i++) {
838 			laddr = addr_buf;
839 			af = sctp_get_af_specific(laddr->v4.sin_family);
840 			list_for_each_entry(saddr, &bp->address_list, list) {
841 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
842 					saddr->state = SCTP_ADDR_DEL;
843 			}
844 			addr_buf += af->sockaddr_len;
845 		}
846 
847 		/* Update the route and saddr entries for all the transports
848 		 * as some of the addresses in the bind address list are
849 		 * about to be deleted and cannot be used as source addresses.
850 		 */
851 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
852 					transports) {
853 			dst_release(transport->dst);
854 			sctp_transport_route(transport, NULL,
855 					     sctp_sk(asoc->base.sk));
856 		}
857 
858 		if (stored)
859 			/* We don't need to transmit ASCONF */
860 			continue;
861 		retval = sctp_send_asconf(asoc, chunk);
862 	}
863 out:
864 	return retval;
865 }
866 
867 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
868 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
869 {
870 	struct sock *sk = sctp_opt2sk(sp);
871 	union sctp_addr *addr;
872 	struct sctp_af *af;
873 
874 	/* It is safe to write port space in caller. */
875 	addr = &addrw->a;
876 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
877 	af = sctp_get_af_specific(addr->sa.sa_family);
878 	if (!af)
879 		return -EINVAL;
880 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
881 		return -EINVAL;
882 
883 	if (addrw->state == SCTP_ADDR_NEW)
884 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
885 	else
886 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
887 }
888 
889 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
890  *
891  * API 8.1
892  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
893  *                int flags);
894  *
895  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
896  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
897  * or IPv6 addresses.
898  *
899  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
900  * Section 3.1.2 for this usage.
901  *
902  * addrs is a pointer to an array of one or more socket addresses. Each
903  * address is contained in its appropriate structure (i.e. struct
904  * sockaddr_in or struct sockaddr_in6) the family of the address type
905  * must be used to distinguish the address length (note that this
906  * representation is termed a "packed array" of addresses). The caller
907  * specifies the number of addresses in the array with addrcnt.
908  *
909  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
910  * -1, and sets errno to the appropriate error code.
911  *
912  * For SCTP, the port given in each socket address must be the same, or
913  * sctp_bindx() will fail, setting errno to EINVAL.
914  *
915  * The flags parameter is formed from the bitwise OR of zero or more of
916  * the following currently defined flags:
917  *
918  * SCTP_BINDX_ADD_ADDR
919  *
920  * SCTP_BINDX_REM_ADDR
921  *
922  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
923  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
924  * addresses from the association. The two flags are mutually exclusive;
925  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
926  * not remove all addresses from an association; sctp_bindx() will
927  * reject such an attempt with EINVAL.
928  *
929  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
930  * additional addresses with an endpoint after calling bind().  Or use
931  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
932  * socket is associated with so that no new association accepted will be
933  * associated with those addresses. If the endpoint supports dynamic
934  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
935  * endpoint to send the appropriate message to the peer to change the
936  * peers address lists.
937  *
938  * Adding and removing addresses from a connected association is
939  * optional functionality. Implementations that do not support this
940  * functionality should return EOPNOTSUPP.
941  *
942  * Basically do nothing but copying the addresses from user to kernel
943  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
944  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
945  * from userspace.
946  *
947  * We don't use copy_from_user() for optimization: we first do the
948  * sanity checks (buffer size -fast- and access check-healthy
949  * pointer); if all of those succeed, then we can alloc the memory
950  * (expensive operation) needed to copy the data to kernel. Then we do
951  * the copying without checking the user space area
952  * (__copy_from_user()).
953  *
954  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
955  * it.
956  *
957  * sk        The sk of the socket
958  * addrs     The pointer to the addresses in user land
959  * addrssize Size of the addrs buffer
960  * op        Operation to perform (add or remove, see the flags of
961  *           sctp_bindx)
962  *
963  * Returns 0 if ok, <0 errno code on error.
964  */
965 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
966 				      struct sockaddr __user *addrs,
967 				      int addrs_size, int op)
968 {
969 	struct sockaddr *kaddrs;
970 	int err;
971 	int addrcnt = 0;
972 	int walk_size = 0;
973 	struct sockaddr *sa_addr;
974 	void *addr_buf;
975 	struct sctp_af *af;
976 
977 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
978 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
979 
980 	if (unlikely(addrs_size <= 0))
981 		return -EINVAL;
982 
983 	/* Check the user passed a healthy pointer.  */
984 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
985 		return -EFAULT;
986 
987 	/* Alloc space for the address array in kernel memory.  */
988 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
989 	if (unlikely(!kaddrs))
990 		return -ENOMEM;
991 
992 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
993 		kfree(kaddrs);
994 		return -EFAULT;
995 	}
996 
997 	/* Walk through the addrs buffer and count the number of addresses. */
998 	addr_buf = kaddrs;
999 	while (walk_size < addrs_size) {
1000 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1001 			kfree(kaddrs);
1002 			return -EINVAL;
1003 		}
1004 
1005 		sa_addr = addr_buf;
1006 		af = sctp_get_af_specific(sa_addr->sa_family);
1007 
1008 		/* If the address family is not supported or if this address
1009 		 * causes the address buffer to overflow return EINVAL.
1010 		 */
1011 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 			kfree(kaddrs);
1013 			return -EINVAL;
1014 		}
1015 		addrcnt++;
1016 		addr_buf += af->sockaddr_len;
1017 		walk_size += af->sockaddr_len;
1018 	}
1019 
1020 	/* Do the work. */
1021 	switch (op) {
1022 	case SCTP_BINDX_ADD_ADDR:
1023 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1024 		if (err)
1025 			goto out;
1026 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1027 		break;
1028 
1029 	case SCTP_BINDX_REM_ADDR:
1030 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1031 		if (err)
1032 			goto out;
1033 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1034 		break;
1035 
1036 	default:
1037 		err = -EINVAL;
1038 		break;
1039 	}
1040 
1041 out:
1042 	kfree(kaddrs);
1043 
1044 	return err;
1045 }
1046 
1047 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1048  *
1049  * Common routine for handling connect() and sctp_connectx().
1050  * Connect will come in with just a single address.
1051  */
1052 static int __sctp_connect(struct sock* sk,
1053 			  struct sockaddr *kaddrs,
1054 			  int addrs_size,
1055 			  sctp_assoc_t *assoc_id)
1056 {
1057 	struct net *net = sock_net(sk);
1058 	struct sctp_sock *sp;
1059 	struct sctp_endpoint *ep;
1060 	struct sctp_association *asoc = NULL;
1061 	struct sctp_association *asoc2;
1062 	struct sctp_transport *transport;
1063 	union sctp_addr to;
1064 	struct sctp_af *af;
1065 	sctp_scope_t scope;
1066 	long timeo;
1067 	int err = 0;
1068 	int addrcnt = 0;
1069 	int walk_size = 0;
1070 	union sctp_addr *sa_addr = NULL;
1071 	void *addr_buf;
1072 	unsigned short port;
1073 	unsigned int f_flags = 0;
1074 
1075 	sp = sctp_sk(sk);
1076 	ep = sp->ep;
1077 
1078 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1079 	 * state - UDP-style peeled off socket or a TCP-style socket that
1080 	 * is already connected.
1081 	 * It cannot be done even on a TCP-style listening socket.
1082 	 */
1083 	if (sctp_sstate(sk, ESTABLISHED) ||
1084 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1085 		err = -EISCONN;
1086 		goto out_free;
1087 	}
1088 
1089 	/* Walk through the addrs buffer and count the number of addresses. */
1090 	addr_buf = kaddrs;
1091 	while (walk_size < addrs_size) {
1092 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1093 			err = -EINVAL;
1094 			goto out_free;
1095 		}
1096 
1097 		sa_addr = addr_buf;
1098 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1099 
1100 		/* If the address family is not supported or if this address
1101 		 * causes the address buffer to overflow return EINVAL.
1102 		 */
1103 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1104 			err = -EINVAL;
1105 			goto out_free;
1106 		}
1107 
1108 		port = ntohs(sa_addr->v4.sin_port);
1109 
1110 		/* Save current address so we can work with it */
1111 		memcpy(&to, sa_addr, af->sockaddr_len);
1112 
1113 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1114 		if (err)
1115 			goto out_free;
1116 
1117 		/* Make sure the destination port is correctly set
1118 		 * in all addresses.
1119 		 */
1120 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1121 			goto out_free;
1122 
1123 
1124 		/* Check if there already is a matching association on the
1125 		 * endpoint (other than the one created here).
1126 		 */
1127 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1128 		if (asoc2 && asoc2 != asoc) {
1129 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1130 				err = -EISCONN;
1131 			else
1132 				err = -EALREADY;
1133 			goto out_free;
1134 		}
1135 
1136 		/* If we could not find a matching association on the endpoint,
1137 		 * make sure that there is no peeled-off association matching
1138 		 * the peer address even on another socket.
1139 		 */
1140 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1141 			err = -EADDRNOTAVAIL;
1142 			goto out_free;
1143 		}
1144 
1145 		if (!asoc) {
1146 			/* If a bind() or sctp_bindx() is not called prior to
1147 			 * an sctp_connectx() call, the system picks an
1148 			 * ephemeral port and will choose an address set
1149 			 * equivalent to binding with a wildcard address.
1150 			 */
1151 			if (!ep->base.bind_addr.port) {
1152 				if (sctp_autobind(sk)) {
1153 					err = -EAGAIN;
1154 					goto out_free;
1155 				}
1156 			} else {
1157 				/*
1158 				 * If an unprivileged user inherits a 1-many
1159 				 * style socket with open associations on a
1160 				 * privileged port, it MAY be permitted to
1161 				 * accept new associations, but it SHOULD NOT
1162 				 * be permitted to open new associations.
1163 				 */
1164 				if (ep->base.bind_addr.port < PROT_SOCK &&
1165 				    !capable(CAP_NET_BIND_SERVICE)) {
1166 					err = -EACCES;
1167 					goto out_free;
1168 				}
1169 			}
1170 
1171 			scope = sctp_scope(&to);
1172 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1173 			if (!asoc) {
1174 				err = -ENOMEM;
1175 				goto out_free;
1176 			}
1177 
1178 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1179 							      GFP_KERNEL);
1180 			if (err < 0) {
1181 				goto out_free;
1182 			}
1183 
1184 		}
1185 
1186 		/* Prime the peer's transport structures.  */
1187 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1188 						SCTP_UNKNOWN);
1189 		if (!transport) {
1190 			err = -ENOMEM;
1191 			goto out_free;
1192 		}
1193 
1194 		addrcnt++;
1195 		addr_buf += af->sockaddr_len;
1196 		walk_size += af->sockaddr_len;
1197 	}
1198 
1199 	/* In case the user of sctp_connectx() wants an association
1200 	 * id back, assign one now.
1201 	 */
1202 	if (assoc_id) {
1203 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1204 		if (err < 0)
1205 			goto out_free;
1206 	}
1207 
1208 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1209 	if (err < 0) {
1210 		goto out_free;
1211 	}
1212 
1213 	/* Initialize sk's dport and daddr for getpeername() */
1214 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1215 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1216 	af->to_sk_daddr(sa_addr, sk);
1217 	sk->sk_err = 0;
1218 
1219 	/* in-kernel sockets don't generally have a file allocated to them
1220 	 * if all they do is call sock_create_kern().
1221 	 */
1222 	if (sk->sk_socket->file)
1223 		f_flags = sk->sk_socket->file->f_flags;
1224 
1225 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1226 
1227 	err = sctp_wait_for_connect(asoc, &timeo);
1228 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1229 		*assoc_id = asoc->assoc_id;
1230 
1231 	/* Don't free association on exit. */
1232 	asoc = NULL;
1233 
1234 out_free:
1235 
1236 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1237 			  " kaddrs: %p err: %d\n",
1238 			  asoc, kaddrs, err);
1239 	if (asoc) {
1240 		/* sctp_primitive_ASSOCIATE may have added this association
1241 		 * To the hash table, try to unhash it, just in case, its a noop
1242 		 * if it wasn't hashed so we're safe
1243 		 */
1244 		sctp_unhash_established(asoc);
1245 		sctp_association_free(asoc);
1246 	}
1247 	return err;
1248 }
1249 
1250 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1251  *
1252  * API 8.9
1253  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1254  * 			sctp_assoc_t *asoc);
1255  *
1256  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1257  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1258  * or IPv6 addresses.
1259  *
1260  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1261  * Section 3.1.2 for this usage.
1262  *
1263  * addrs is a pointer to an array of one or more socket addresses. Each
1264  * address is contained in its appropriate structure (i.e. struct
1265  * sockaddr_in or struct sockaddr_in6) the family of the address type
1266  * must be used to distengish the address length (note that this
1267  * representation is termed a "packed array" of addresses). The caller
1268  * specifies the number of addresses in the array with addrcnt.
1269  *
1270  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1271  * the association id of the new association.  On failure, sctp_connectx()
1272  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1273  * is not touched by the kernel.
1274  *
1275  * For SCTP, the port given in each socket address must be the same, or
1276  * sctp_connectx() will fail, setting errno to EINVAL.
1277  *
1278  * An application can use sctp_connectx to initiate an association with
1279  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1280  * allows a caller to specify multiple addresses at which a peer can be
1281  * reached.  The way the SCTP stack uses the list of addresses to set up
1282  * the association is implementation dependent.  This function only
1283  * specifies that the stack will try to make use of all the addresses in
1284  * the list when needed.
1285  *
1286  * Note that the list of addresses passed in is only used for setting up
1287  * the association.  It does not necessarily equal the set of addresses
1288  * the peer uses for the resulting association.  If the caller wants to
1289  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1290  * retrieve them after the association has been set up.
1291  *
1292  * Basically do nothing but copying the addresses from user to kernel
1293  * land and invoking either sctp_connectx(). This is used for tunneling
1294  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1295  *
1296  * We don't use copy_from_user() for optimization: we first do the
1297  * sanity checks (buffer size -fast- and access check-healthy
1298  * pointer); if all of those succeed, then we can alloc the memory
1299  * (expensive operation) needed to copy the data to kernel. Then we do
1300  * the copying without checking the user space area
1301  * (__copy_from_user()).
1302  *
1303  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1304  * it.
1305  *
1306  * sk        The sk of the socket
1307  * addrs     The pointer to the addresses in user land
1308  * addrssize Size of the addrs buffer
1309  *
1310  * Returns >=0 if ok, <0 errno code on error.
1311  */
1312 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1313 				      struct sockaddr __user *addrs,
1314 				      int addrs_size,
1315 				      sctp_assoc_t *assoc_id)
1316 {
1317 	int err = 0;
1318 	struct sockaddr *kaddrs;
1319 
1320 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1321 			  __func__, sk, addrs, addrs_size);
1322 
1323 	if (unlikely(addrs_size <= 0))
1324 		return -EINVAL;
1325 
1326 	/* Check the user passed a healthy pointer.  */
1327 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1328 		return -EFAULT;
1329 
1330 	/* Alloc space for the address array in kernel memory.  */
1331 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1332 	if (unlikely(!kaddrs))
1333 		return -ENOMEM;
1334 
1335 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1336 		err = -EFAULT;
1337 	} else {
1338 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1339 	}
1340 
1341 	kfree(kaddrs);
1342 
1343 	return err;
1344 }
1345 
1346 /*
1347  * This is an older interface.  It's kept for backward compatibility
1348  * to the option that doesn't provide association id.
1349  */
1350 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1351 				      struct sockaddr __user *addrs,
1352 				      int addrs_size)
1353 {
1354 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1355 }
1356 
1357 /*
1358  * New interface for the API.  The since the API is done with a socket
1359  * option, to make it simple we feed back the association id is as a return
1360  * indication to the call.  Error is always negative and association id is
1361  * always positive.
1362  */
1363 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1364 				      struct sockaddr __user *addrs,
1365 				      int addrs_size)
1366 {
1367 	sctp_assoc_t assoc_id = 0;
1368 	int err = 0;
1369 
1370 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1371 
1372 	if (err)
1373 		return err;
1374 	else
1375 		return assoc_id;
1376 }
1377 
1378 /*
1379  * New (hopefully final) interface for the API.
1380  * We use the sctp_getaddrs_old structure so that use-space library
1381  * can avoid any unnecessary allocations.   The only defferent part
1382  * is that we store the actual length of the address buffer into the
1383  * addrs_num structure member.  That way we can re-use the existing
1384  * code.
1385  */
1386 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1387 					char __user *optval,
1388 					int __user *optlen)
1389 {
1390 	struct sctp_getaddrs_old param;
1391 	sctp_assoc_t assoc_id = 0;
1392 	int err = 0;
1393 
1394 	if (len < sizeof(param))
1395 		return -EINVAL;
1396 
1397 	if (copy_from_user(&param, optval, sizeof(param)))
1398 		return -EFAULT;
1399 
1400 	err = __sctp_setsockopt_connectx(sk,
1401 			(struct sockaddr __user *)param.addrs,
1402 			param.addr_num, &assoc_id);
1403 
1404 	if (err == 0 || err == -EINPROGRESS) {
1405 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1406 			return -EFAULT;
1407 		if (put_user(sizeof(assoc_id), optlen))
1408 			return -EFAULT;
1409 	}
1410 
1411 	return err;
1412 }
1413 
1414 /* API 3.1.4 close() - UDP Style Syntax
1415  * Applications use close() to perform graceful shutdown (as described in
1416  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1417  * by a UDP-style socket.
1418  *
1419  * The syntax is
1420  *
1421  *   ret = close(int sd);
1422  *
1423  *   sd      - the socket descriptor of the associations to be closed.
1424  *
1425  * To gracefully shutdown a specific association represented by the
1426  * UDP-style socket, an application should use the sendmsg() call,
1427  * passing no user data, but including the appropriate flag in the
1428  * ancillary data (see Section xxxx).
1429  *
1430  * If sd in the close() call is a branched-off socket representing only
1431  * one association, the shutdown is performed on that association only.
1432  *
1433  * 4.1.6 close() - TCP Style Syntax
1434  *
1435  * Applications use close() to gracefully close down an association.
1436  *
1437  * The syntax is:
1438  *
1439  *    int close(int sd);
1440  *
1441  *      sd      - the socket descriptor of the association to be closed.
1442  *
1443  * After an application calls close() on a socket descriptor, no further
1444  * socket operations will succeed on that descriptor.
1445  *
1446  * API 7.1.4 SO_LINGER
1447  *
1448  * An application using the TCP-style socket can use this option to
1449  * perform the SCTP ABORT primitive.  The linger option structure is:
1450  *
1451  *  struct  linger {
1452  *     int     l_onoff;                // option on/off
1453  *     int     l_linger;               // linger time
1454  * };
1455  *
1456  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1457  * to 0, calling close() is the same as the ABORT primitive.  If the
1458  * value is set to a negative value, the setsockopt() call will return
1459  * an error.  If the value is set to a positive value linger_time, the
1460  * close() can be blocked for at most linger_time ms.  If the graceful
1461  * shutdown phase does not finish during this period, close() will
1462  * return but the graceful shutdown phase continues in the system.
1463  */
1464 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1465 {
1466 	struct net *net = sock_net(sk);
1467 	struct sctp_endpoint *ep;
1468 	struct sctp_association *asoc;
1469 	struct list_head *pos, *temp;
1470 	unsigned int data_was_unread;
1471 
1472 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1473 
1474 	sctp_lock_sock(sk);
1475 	sk->sk_shutdown = SHUTDOWN_MASK;
1476 	sk->sk_state = SCTP_SS_CLOSING;
1477 
1478 	ep = sctp_sk(sk)->ep;
1479 
1480 	/* Clean up any skbs sitting on the receive queue.  */
1481 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1482 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1483 
1484 	/* Walk all associations on an endpoint.  */
1485 	list_for_each_safe(pos, temp, &ep->asocs) {
1486 		asoc = list_entry(pos, struct sctp_association, asocs);
1487 
1488 		if (sctp_style(sk, TCP)) {
1489 			/* A closed association can still be in the list if
1490 			 * it belongs to a TCP-style listening socket that is
1491 			 * not yet accepted. If so, free it. If not, send an
1492 			 * ABORT or SHUTDOWN based on the linger options.
1493 			 */
1494 			if (sctp_state(asoc, CLOSED)) {
1495 				sctp_unhash_established(asoc);
1496 				sctp_association_free(asoc);
1497 				continue;
1498 			}
1499 		}
1500 
1501 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1502 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1503 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1504 			struct sctp_chunk *chunk;
1505 
1506 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1507 			if (chunk)
1508 				sctp_primitive_ABORT(net, asoc, chunk);
1509 		} else
1510 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1511 	}
1512 
1513 	/* On a TCP-style socket, block for at most linger_time if set. */
1514 	if (sctp_style(sk, TCP) && timeout)
1515 		sctp_wait_for_close(sk, timeout);
1516 
1517 	/* This will run the backlog queue.  */
1518 	sctp_release_sock(sk);
1519 
1520 	/* Supposedly, no process has access to the socket, but
1521 	 * the net layers still may.
1522 	 */
1523 	sctp_local_bh_disable();
1524 	sctp_bh_lock_sock(sk);
1525 
1526 	/* Hold the sock, since sk_common_release() will put sock_put()
1527 	 * and we have just a little more cleanup.
1528 	 */
1529 	sock_hold(sk);
1530 	sk_common_release(sk);
1531 
1532 	sctp_bh_unlock_sock(sk);
1533 	sctp_local_bh_enable();
1534 
1535 	sock_put(sk);
1536 
1537 	SCTP_DBG_OBJCNT_DEC(sock);
1538 }
1539 
1540 /* Handle EPIPE error. */
1541 static int sctp_error(struct sock *sk, int flags, int err)
1542 {
1543 	if (err == -EPIPE)
1544 		err = sock_error(sk) ? : -EPIPE;
1545 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1546 		send_sig(SIGPIPE, current, 0);
1547 	return err;
1548 }
1549 
1550 /* API 3.1.3 sendmsg() - UDP Style Syntax
1551  *
1552  * An application uses sendmsg() and recvmsg() calls to transmit data to
1553  * and receive data from its peer.
1554  *
1555  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1556  *                  int flags);
1557  *
1558  *  socket  - the socket descriptor of the endpoint.
1559  *  message - pointer to the msghdr structure which contains a single
1560  *            user message and possibly some ancillary data.
1561  *
1562  *            See Section 5 for complete description of the data
1563  *            structures.
1564  *
1565  *  flags   - flags sent or received with the user message, see Section
1566  *            5 for complete description of the flags.
1567  *
1568  * Note:  This function could use a rewrite especially when explicit
1569  * connect support comes in.
1570  */
1571 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1572 
1573 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1574 
1575 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1576 			     struct msghdr *msg, size_t msg_len)
1577 {
1578 	struct net *net = sock_net(sk);
1579 	struct sctp_sock *sp;
1580 	struct sctp_endpoint *ep;
1581 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1582 	struct sctp_transport *transport, *chunk_tp;
1583 	struct sctp_chunk *chunk;
1584 	union sctp_addr to;
1585 	struct sockaddr *msg_name = NULL;
1586 	struct sctp_sndrcvinfo default_sinfo;
1587 	struct sctp_sndrcvinfo *sinfo;
1588 	struct sctp_initmsg *sinit;
1589 	sctp_assoc_t associd = 0;
1590 	sctp_cmsgs_t cmsgs = { NULL };
1591 	int err;
1592 	sctp_scope_t scope;
1593 	long timeo;
1594 	__u16 sinfo_flags = 0;
1595 	struct sctp_datamsg *datamsg;
1596 	int msg_flags = msg->msg_flags;
1597 
1598 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1599 			  sk, msg, msg_len);
1600 
1601 	err = 0;
1602 	sp = sctp_sk(sk);
1603 	ep = sp->ep;
1604 
1605 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1606 
1607 	/* We cannot send a message over a TCP-style listening socket. */
1608 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1609 		err = -EPIPE;
1610 		goto out_nounlock;
1611 	}
1612 
1613 	/* Parse out the SCTP CMSGs.  */
1614 	err = sctp_msghdr_parse(msg, &cmsgs);
1615 
1616 	if (err) {
1617 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1618 		goto out_nounlock;
1619 	}
1620 
1621 	/* Fetch the destination address for this packet.  This
1622 	 * address only selects the association--it is not necessarily
1623 	 * the address we will send to.
1624 	 * For a peeled-off socket, msg_name is ignored.
1625 	 */
1626 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1627 		int msg_namelen = msg->msg_namelen;
1628 
1629 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1630 				       msg_namelen);
1631 		if (err)
1632 			return err;
1633 
1634 		if (msg_namelen > sizeof(to))
1635 			msg_namelen = sizeof(to);
1636 		memcpy(&to, msg->msg_name, msg_namelen);
1637 		msg_name = msg->msg_name;
1638 	}
1639 
1640 	sinfo = cmsgs.info;
1641 	sinit = cmsgs.init;
1642 
1643 	/* Did the user specify SNDRCVINFO?  */
1644 	if (sinfo) {
1645 		sinfo_flags = sinfo->sinfo_flags;
1646 		associd = sinfo->sinfo_assoc_id;
1647 	}
1648 
1649 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1650 			  msg_len, sinfo_flags);
1651 
1652 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1653 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1654 		err = -EINVAL;
1655 		goto out_nounlock;
1656 	}
1657 
1658 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1659 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1660 	 * If SCTP_ABORT is set, the message length could be non zero with
1661 	 * the msg_iov set to the user abort reason.
1662 	 */
1663 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1664 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1665 		err = -EINVAL;
1666 		goto out_nounlock;
1667 	}
1668 
1669 	/* If SCTP_ADDR_OVER is set, there must be an address
1670 	 * specified in msg_name.
1671 	 */
1672 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1673 		err = -EINVAL;
1674 		goto out_nounlock;
1675 	}
1676 
1677 	transport = NULL;
1678 
1679 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1680 
1681 	sctp_lock_sock(sk);
1682 
1683 	/* If a msg_name has been specified, assume this is to be used.  */
1684 	if (msg_name) {
1685 		/* Look for a matching association on the endpoint. */
1686 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1687 		if (!asoc) {
1688 			/* If we could not find a matching association on the
1689 			 * endpoint, make sure that it is not a TCP-style
1690 			 * socket that already has an association or there is
1691 			 * no peeled-off association on another socket.
1692 			 */
1693 			if ((sctp_style(sk, TCP) &&
1694 			     sctp_sstate(sk, ESTABLISHED)) ||
1695 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1696 				err = -EADDRNOTAVAIL;
1697 				goto out_unlock;
1698 			}
1699 		}
1700 	} else {
1701 		asoc = sctp_id2assoc(sk, associd);
1702 		if (!asoc) {
1703 			err = -EPIPE;
1704 			goto out_unlock;
1705 		}
1706 	}
1707 
1708 	if (asoc) {
1709 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1710 
1711 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1712 		 * socket that has an association in CLOSED state. This can
1713 		 * happen when an accepted socket has an association that is
1714 		 * already CLOSED.
1715 		 */
1716 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1717 			err = -EPIPE;
1718 			goto out_unlock;
1719 		}
1720 
1721 		if (sinfo_flags & SCTP_EOF) {
1722 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1723 					  asoc);
1724 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1725 			err = 0;
1726 			goto out_unlock;
1727 		}
1728 		if (sinfo_flags & SCTP_ABORT) {
1729 
1730 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1731 			if (!chunk) {
1732 				err = -ENOMEM;
1733 				goto out_unlock;
1734 			}
1735 
1736 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1737 			sctp_primitive_ABORT(net, asoc, chunk);
1738 			err = 0;
1739 			goto out_unlock;
1740 		}
1741 	}
1742 
1743 	/* Do we need to create the association?  */
1744 	if (!asoc) {
1745 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1746 
1747 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1748 			err = -EINVAL;
1749 			goto out_unlock;
1750 		}
1751 
1752 		/* Check for invalid stream against the stream counts,
1753 		 * either the default or the user specified stream counts.
1754 		 */
1755 		if (sinfo) {
1756 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1757 				/* Check against the defaults. */
1758 				if (sinfo->sinfo_stream >=
1759 				    sp->initmsg.sinit_num_ostreams) {
1760 					err = -EINVAL;
1761 					goto out_unlock;
1762 				}
1763 			} else {
1764 				/* Check against the requested.  */
1765 				if (sinfo->sinfo_stream >=
1766 				    sinit->sinit_num_ostreams) {
1767 					err = -EINVAL;
1768 					goto out_unlock;
1769 				}
1770 			}
1771 		}
1772 
1773 		/*
1774 		 * API 3.1.2 bind() - UDP Style Syntax
1775 		 * If a bind() or sctp_bindx() is not called prior to a
1776 		 * sendmsg() call that initiates a new association, the
1777 		 * system picks an ephemeral port and will choose an address
1778 		 * set equivalent to binding with a wildcard address.
1779 		 */
1780 		if (!ep->base.bind_addr.port) {
1781 			if (sctp_autobind(sk)) {
1782 				err = -EAGAIN;
1783 				goto out_unlock;
1784 			}
1785 		} else {
1786 			/*
1787 			 * If an unprivileged user inherits a one-to-many
1788 			 * style socket with open associations on a privileged
1789 			 * port, it MAY be permitted to accept new associations,
1790 			 * but it SHOULD NOT be permitted to open new
1791 			 * associations.
1792 			 */
1793 			if (ep->base.bind_addr.port < PROT_SOCK &&
1794 			    !capable(CAP_NET_BIND_SERVICE)) {
1795 				err = -EACCES;
1796 				goto out_unlock;
1797 			}
1798 		}
1799 
1800 		scope = sctp_scope(&to);
1801 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1802 		if (!new_asoc) {
1803 			err = -ENOMEM;
1804 			goto out_unlock;
1805 		}
1806 		asoc = new_asoc;
1807 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1808 		if (err < 0) {
1809 			err = -ENOMEM;
1810 			goto out_free;
1811 		}
1812 
1813 		/* If the SCTP_INIT ancillary data is specified, set all
1814 		 * the association init values accordingly.
1815 		 */
1816 		if (sinit) {
1817 			if (sinit->sinit_num_ostreams) {
1818 				asoc->c.sinit_num_ostreams =
1819 					sinit->sinit_num_ostreams;
1820 			}
1821 			if (sinit->sinit_max_instreams) {
1822 				asoc->c.sinit_max_instreams =
1823 					sinit->sinit_max_instreams;
1824 			}
1825 			if (sinit->sinit_max_attempts) {
1826 				asoc->max_init_attempts
1827 					= sinit->sinit_max_attempts;
1828 			}
1829 			if (sinit->sinit_max_init_timeo) {
1830 				asoc->max_init_timeo =
1831 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1832 			}
1833 		}
1834 
1835 		/* Prime the peer's transport structures.  */
1836 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1837 		if (!transport) {
1838 			err = -ENOMEM;
1839 			goto out_free;
1840 		}
1841 	}
1842 
1843 	/* ASSERT: we have a valid association at this point.  */
1844 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1845 
1846 	if (!sinfo) {
1847 		/* If the user didn't specify SNDRCVINFO, make up one with
1848 		 * some defaults.
1849 		 */
1850 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1851 		default_sinfo.sinfo_stream = asoc->default_stream;
1852 		default_sinfo.sinfo_flags = asoc->default_flags;
1853 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1854 		default_sinfo.sinfo_context = asoc->default_context;
1855 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1856 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1857 		sinfo = &default_sinfo;
1858 	}
1859 
1860 	/* API 7.1.7, the sndbuf size per association bounds the
1861 	 * maximum size of data that can be sent in a single send call.
1862 	 */
1863 	if (msg_len > sk->sk_sndbuf) {
1864 		err = -EMSGSIZE;
1865 		goto out_free;
1866 	}
1867 
1868 	if (asoc->pmtu_pending)
1869 		sctp_assoc_pending_pmtu(sk, asoc);
1870 
1871 	/* If fragmentation is disabled and the message length exceeds the
1872 	 * association fragmentation point, return EMSGSIZE.  The I-D
1873 	 * does not specify what this error is, but this looks like
1874 	 * a great fit.
1875 	 */
1876 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1877 		err = -EMSGSIZE;
1878 		goto out_free;
1879 	}
1880 
1881 	/* Check for invalid stream. */
1882 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1883 		err = -EINVAL;
1884 		goto out_free;
1885 	}
1886 
1887 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1888 	if (!sctp_wspace(asoc)) {
1889 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1890 		if (err)
1891 			goto out_free;
1892 	}
1893 
1894 	/* If an address is passed with the sendto/sendmsg call, it is used
1895 	 * to override the primary destination address in the TCP model, or
1896 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1897 	 */
1898 	if ((sctp_style(sk, TCP) && msg_name) ||
1899 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1900 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1901 		if (!chunk_tp) {
1902 			err = -EINVAL;
1903 			goto out_free;
1904 		}
1905 	} else
1906 		chunk_tp = NULL;
1907 
1908 	/* Auto-connect, if we aren't connected already. */
1909 	if (sctp_state(asoc, CLOSED)) {
1910 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1911 		if (err < 0)
1912 			goto out_free;
1913 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1914 	}
1915 
1916 	/* Break the message into multiple chunks of maximum size. */
1917 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1918 	if (!datamsg) {
1919 		err = -ENOMEM;
1920 		goto out_free;
1921 	}
1922 
1923 	/* Now send the (possibly) fragmented message. */
1924 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1925 		sctp_chunk_hold(chunk);
1926 
1927 		/* Do accounting for the write space.  */
1928 		sctp_set_owner_w(chunk);
1929 
1930 		chunk->transport = chunk_tp;
1931 	}
1932 
1933 	/* Send it to the lower layers.  Note:  all chunks
1934 	 * must either fail or succeed.   The lower layer
1935 	 * works that way today.  Keep it that way or this
1936 	 * breaks.
1937 	 */
1938 	err = sctp_primitive_SEND(net, asoc, datamsg);
1939 	/* Did the lower layer accept the chunk? */
1940 	if (err)
1941 		sctp_datamsg_free(datamsg);
1942 	else
1943 		sctp_datamsg_put(datamsg);
1944 
1945 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1946 
1947 	if (err)
1948 		goto out_free;
1949 	else
1950 		err = msg_len;
1951 
1952 	/* If we are already past ASSOCIATE, the lower
1953 	 * layers are responsible for association cleanup.
1954 	 */
1955 	goto out_unlock;
1956 
1957 out_free:
1958 	if (new_asoc) {
1959 		sctp_unhash_established(asoc);
1960 		sctp_association_free(asoc);
1961 	}
1962 out_unlock:
1963 	sctp_release_sock(sk);
1964 
1965 out_nounlock:
1966 	return sctp_error(sk, msg_flags, err);
1967 
1968 #if 0
1969 do_sock_err:
1970 	if (msg_len)
1971 		err = msg_len;
1972 	else
1973 		err = sock_error(sk);
1974 	goto out;
1975 
1976 do_interrupted:
1977 	if (msg_len)
1978 		err = msg_len;
1979 	goto out;
1980 #endif /* 0 */
1981 }
1982 
1983 /* This is an extended version of skb_pull() that removes the data from the
1984  * start of a skb even when data is spread across the list of skb's in the
1985  * frag_list. len specifies the total amount of data that needs to be removed.
1986  * when 'len' bytes could be removed from the skb, it returns 0.
1987  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1988  * could not be removed.
1989  */
1990 static int sctp_skb_pull(struct sk_buff *skb, int len)
1991 {
1992 	struct sk_buff *list;
1993 	int skb_len = skb_headlen(skb);
1994 	int rlen;
1995 
1996 	if (len <= skb_len) {
1997 		__skb_pull(skb, len);
1998 		return 0;
1999 	}
2000 	len -= skb_len;
2001 	__skb_pull(skb, skb_len);
2002 
2003 	skb_walk_frags(skb, list) {
2004 		rlen = sctp_skb_pull(list, len);
2005 		skb->len -= (len-rlen);
2006 		skb->data_len -= (len-rlen);
2007 
2008 		if (!rlen)
2009 			return 0;
2010 
2011 		len = rlen;
2012 	}
2013 
2014 	return len;
2015 }
2016 
2017 /* API 3.1.3  recvmsg() - UDP Style Syntax
2018  *
2019  *  ssize_t recvmsg(int socket, struct msghdr *message,
2020  *                    int flags);
2021  *
2022  *  socket  - the socket descriptor of the endpoint.
2023  *  message - pointer to the msghdr structure which contains a single
2024  *            user message and possibly some ancillary data.
2025  *
2026  *            See Section 5 for complete description of the data
2027  *            structures.
2028  *
2029  *  flags   - flags sent or received with the user message, see Section
2030  *            5 for complete description of the flags.
2031  */
2032 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2033 
2034 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2035 			     struct msghdr *msg, size_t len, int noblock,
2036 			     int flags, int *addr_len)
2037 {
2038 	struct sctp_ulpevent *event = NULL;
2039 	struct sctp_sock *sp = sctp_sk(sk);
2040 	struct sk_buff *skb;
2041 	int copied;
2042 	int err = 0;
2043 	int skb_len;
2044 
2045 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2046 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2047 			  "len", len, "knoblauch", noblock,
2048 			  "flags", flags, "addr_len", addr_len);
2049 
2050 	sctp_lock_sock(sk);
2051 
2052 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2053 		err = -ENOTCONN;
2054 		goto out;
2055 	}
2056 
2057 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2058 	if (!skb)
2059 		goto out;
2060 
2061 	/* Get the total length of the skb including any skb's in the
2062 	 * frag_list.
2063 	 */
2064 	skb_len = skb->len;
2065 
2066 	copied = skb_len;
2067 	if (copied > len)
2068 		copied = len;
2069 
2070 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2071 
2072 	event = sctp_skb2event(skb);
2073 
2074 	if (err)
2075 		goto out_free;
2076 
2077 	sock_recv_ts_and_drops(msg, sk, skb);
2078 	if (sctp_ulpevent_is_notification(event)) {
2079 		msg->msg_flags |= MSG_NOTIFICATION;
2080 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2081 	} else {
2082 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2083 	}
2084 
2085 	/* Check if we allow SCTP_SNDRCVINFO. */
2086 	if (sp->subscribe.sctp_data_io_event)
2087 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2088 #if 0
2089 	/* FIXME: we should be calling IP/IPv6 layers.  */
2090 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2091 		ip_cmsg_recv(msg, skb);
2092 #endif
2093 
2094 	err = copied;
2095 
2096 	/* If skb's length exceeds the user's buffer, update the skb and
2097 	 * push it back to the receive_queue so that the next call to
2098 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2099 	 */
2100 	if (skb_len > copied) {
2101 		msg->msg_flags &= ~MSG_EOR;
2102 		if (flags & MSG_PEEK)
2103 			goto out_free;
2104 		sctp_skb_pull(skb, copied);
2105 		skb_queue_head(&sk->sk_receive_queue, skb);
2106 
2107 		/* When only partial message is copied to the user, increase
2108 		 * rwnd by that amount. If all the data in the skb is read,
2109 		 * rwnd is updated when the event is freed.
2110 		 */
2111 		if (!sctp_ulpevent_is_notification(event))
2112 			sctp_assoc_rwnd_increase(event->asoc, copied);
2113 		goto out;
2114 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2115 		   (event->msg_flags & MSG_EOR))
2116 		msg->msg_flags |= MSG_EOR;
2117 	else
2118 		msg->msg_flags &= ~MSG_EOR;
2119 
2120 out_free:
2121 	if (flags & MSG_PEEK) {
2122 		/* Release the skb reference acquired after peeking the skb in
2123 		 * sctp_skb_recv_datagram().
2124 		 */
2125 		kfree_skb(skb);
2126 	} else {
2127 		/* Free the event which includes releasing the reference to
2128 		 * the owner of the skb, freeing the skb and updating the
2129 		 * rwnd.
2130 		 */
2131 		sctp_ulpevent_free(event);
2132 	}
2133 out:
2134 	sctp_release_sock(sk);
2135 	return err;
2136 }
2137 
2138 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2139  *
2140  * This option is a on/off flag.  If enabled no SCTP message
2141  * fragmentation will be performed.  Instead if a message being sent
2142  * exceeds the current PMTU size, the message will NOT be sent and
2143  * instead a error will be indicated to the user.
2144  */
2145 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2146 					     char __user *optval,
2147 					     unsigned int optlen)
2148 {
2149 	int val;
2150 
2151 	if (optlen < sizeof(int))
2152 		return -EINVAL;
2153 
2154 	if (get_user(val, (int __user *)optval))
2155 		return -EFAULT;
2156 
2157 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2158 
2159 	return 0;
2160 }
2161 
2162 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2163 				  unsigned int optlen)
2164 {
2165 	struct sctp_association *asoc;
2166 	struct sctp_ulpevent *event;
2167 
2168 	if (optlen > sizeof(struct sctp_event_subscribe))
2169 		return -EINVAL;
2170 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2171 		return -EFAULT;
2172 
2173 	/*
2174 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2175 	 * if there is no data to be sent or retransmit, the stack will
2176 	 * immediately send up this notification.
2177 	 */
2178 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2179 				       &sctp_sk(sk)->subscribe)) {
2180 		asoc = sctp_id2assoc(sk, 0);
2181 
2182 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2183 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2184 					GFP_ATOMIC);
2185 			if (!event)
2186 				return -ENOMEM;
2187 
2188 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2189 		}
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2196  *
2197  * This socket option is applicable to the UDP-style socket only.  When
2198  * set it will cause associations that are idle for more than the
2199  * specified number of seconds to automatically close.  An association
2200  * being idle is defined an association that has NOT sent or received
2201  * user data.  The special value of '0' indicates that no automatic
2202  * close of any associations should be performed.  The option expects an
2203  * integer defining the number of seconds of idle time before an
2204  * association is closed.
2205  */
2206 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2207 				     unsigned int optlen)
2208 {
2209 	struct sctp_sock *sp = sctp_sk(sk);
2210 
2211 	/* Applicable to UDP-style socket only */
2212 	if (sctp_style(sk, TCP))
2213 		return -EOPNOTSUPP;
2214 	if (optlen != sizeof(int))
2215 		return -EINVAL;
2216 	if (copy_from_user(&sp->autoclose, optval, optlen))
2217 		return -EFAULT;
2218 
2219 	return 0;
2220 }
2221 
2222 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2223  *
2224  * Applications can enable or disable heartbeats for any peer address of
2225  * an association, modify an address's heartbeat interval, force a
2226  * heartbeat to be sent immediately, and adjust the address's maximum
2227  * number of retransmissions sent before an address is considered
2228  * unreachable.  The following structure is used to access and modify an
2229  * address's parameters:
2230  *
2231  *  struct sctp_paddrparams {
2232  *     sctp_assoc_t            spp_assoc_id;
2233  *     struct sockaddr_storage spp_address;
2234  *     uint32_t                spp_hbinterval;
2235  *     uint16_t                spp_pathmaxrxt;
2236  *     uint32_t                spp_pathmtu;
2237  *     uint32_t                spp_sackdelay;
2238  *     uint32_t                spp_flags;
2239  * };
2240  *
2241  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2242  *                     application, and identifies the association for
2243  *                     this query.
2244  *   spp_address     - This specifies which address is of interest.
2245  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2246  *                     in milliseconds.  If a  value of zero
2247  *                     is present in this field then no changes are to
2248  *                     be made to this parameter.
2249  *   spp_pathmaxrxt  - This contains the maximum number of
2250  *                     retransmissions before this address shall be
2251  *                     considered unreachable. If a  value of zero
2252  *                     is present in this field then no changes are to
2253  *                     be made to this parameter.
2254  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2255  *                     specified here will be the "fixed" path mtu.
2256  *                     Note that if the spp_address field is empty
2257  *                     then all associations on this address will
2258  *                     have this fixed path mtu set upon them.
2259  *
2260  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2261  *                     the number of milliseconds that sacks will be delayed
2262  *                     for. This value will apply to all addresses of an
2263  *                     association if the spp_address field is empty. Note
2264  *                     also, that if delayed sack is enabled and this
2265  *                     value is set to 0, no change is made to the last
2266  *                     recorded delayed sack timer value.
2267  *
2268  *   spp_flags       - These flags are used to control various features
2269  *                     on an association. The flag field may contain
2270  *                     zero or more of the following options.
2271  *
2272  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2273  *                     specified address. Note that if the address
2274  *                     field is empty all addresses for the association
2275  *                     have heartbeats enabled upon them.
2276  *
2277  *                     SPP_HB_DISABLE - Disable heartbeats on the
2278  *                     speicifed address. Note that if the address
2279  *                     field is empty all addresses for the association
2280  *                     will have their heartbeats disabled. Note also
2281  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2282  *                     mutually exclusive, only one of these two should
2283  *                     be specified. Enabling both fields will have
2284  *                     undetermined results.
2285  *
2286  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2287  *                     to be made immediately.
2288  *
2289  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2290  *                     heartbeat delayis to be set to the value of 0
2291  *                     milliseconds.
2292  *
2293  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2294  *                     discovery upon the specified address. Note that
2295  *                     if the address feild is empty then all addresses
2296  *                     on the association are effected.
2297  *
2298  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2299  *                     discovery upon the specified address. Note that
2300  *                     if the address feild is empty then all addresses
2301  *                     on the association are effected. Not also that
2302  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2303  *                     exclusive. Enabling both will have undetermined
2304  *                     results.
2305  *
2306  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2307  *                     on delayed sack. The time specified in spp_sackdelay
2308  *                     is used to specify the sack delay for this address. Note
2309  *                     that if spp_address is empty then all addresses will
2310  *                     enable delayed sack and take on the sack delay
2311  *                     value specified in spp_sackdelay.
2312  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2313  *                     off delayed sack. If the spp_address field is blank then
2314  *                     delayed sack is disabled for the entire association. Note
2315  *                     also that this field is mutually exclusive to
2316  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2317  *                     results.
2318  */
2319 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2320 				       struct sctp_transport   *trans,
2321 				       struct sctp_association *asoc,
2322 				       struct sctp_sock        *sp,
2323 				       int                      hb_change,
2324 				       int                      pmtud_change,
2325 				       int                      sackdelay_change)
2326 {
2327 	int error;
2328 
2329 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2330 		struct net *net = sock_net(trans->asoc->base.sk);
2331 
2332 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2333 		if (error)
2334 			return error;
2335 	}
2336 
2337 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2338 	 * this field is ignored.  Note also that a value of zero indicates
2339 	 * the current setting should be left unchanged.
2340 	 */
2341 	if (params->spp_flags & SPP_HB_ENABLE) {
2342 
2343 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2344 		 * set.  This lets us use 0 value when this flag
2345 		 * is set.
2346 		 */
2347 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2348 			params->spp_hbinterval = 0;
2349 
2350 		if (params->spp_hbinterval ||
2351 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2352 			if (trans) {
2353 				trans->hbinterval =
2354 				    msecs_to_jiffies(params->spp_hbinterval);
2355 			} else if (asoc) {
2356 				asoc->hbinterval =
2357 				    msecs_to_jiffies(params->spp_hbinterval);
2358 			} else {
2359 				sp->hbinterval = params->spp_hbinterval;
2360 			}
2361 		}
2362 	}
2363 
2364 	if (hb_change) {
2365 		if (trans) {
2366 			trans->param_flags =
2367 				(trans->param_flags & ~SPP_HB) | hb_change;
2368 		} else if (asoc) {
2369 			asoc->param_flags =
2370 				(asoc->param_flags & ~SPP_HB) | hb_change;
2371 		} else {
2372 			sp->param_flags =
2373 				(sp->param_flags & ~SPP_HB) | hb_change;
2374 		}
2375 	}
2376 
2377 	/* When Path MTU discovery is disabled the value specified here will
2378 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2379 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2380 	 * effect).
2381 	 */
2382 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2383 		if (trans) {
2384 			trans->pathmtu = params->spp_pathmtu;
2385 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2386 		} else if (asoc) {
2387 			asoc->pathmtu = params->spp_pathmtu;
2388 			sctp_frag_point(asoc, params->spp_pathmtu);
2389 		} else {
2390 			sp->pathmtu = params->spp_pathmtu;
2391 		}
2392 	}
2393 
2394 	if (pmtud_change) {
2395 		if (trans) {
2396 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2397 				(params->spp_flags & SPP_PMTUD_ENABLE);
2398 			trans->param_flags =
2399 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2400 			if (update) {
2401 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2402 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2403 			}
2404 		} else if (asoc) {
2405 			asoc->param_flags =
2406 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2407 		} else {
2408 			sp->param_flags =
2409 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2410 		}
2411 	}
2412 
2413 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2414 	 * value of this field is ignored.  Note also that a value of zero
2415 	 * indicates the current setting should be left unchanged.
2416 	 */
2417 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2418 		if (trans) {
2419 			trans->sackdelay =
2420 				msecs_to_jiffies(params->spp_sackdelay);
2421 		} else if (asoc) {
2422 			asoc->sackdelay =
2423 				msecs_to_jiffies(params->spp_sackdelay);
2424 		} else {
2425 			sp->sackdelay = params->spp_sackdelay;
2426 		}
2427 	}
2428 
2429 	if (sackdelay_change) {
2430 		if (trans) {
2431 			trans->param_flags =
2432 				(trans->param_flags & ~SPP_SACKDELAY) |
2433 				sackdelay_change;
2434 		} else if (asoc) {
2435 			asoc->param_flags =
2436 				(asoc->param_flags & ~SPP_SACKDELAY) |
2437 				sackdelay_change;
2438 		} else {
2439 			sp->param_flags =
2440 				(sp->param_flags & ~SPP_SACKDELAY) |
2441 				sackdelay_change;
2442 		}
2443 	}
2444 
2445 	/* Note that a value of zero indicates the current setting should be
2446 	   left unchanged.
2447 	 */
2448 	if (params->spp_pathmaxrxt) {
2449 		if (trans) {
2450 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2451 		} else if (asoc) {
2452 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2453 		} else {
2454 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2455 		}
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2462 					    char __user *optval,
2463 					    unsigned int optlen)
2464 {
2465 	struct sctp_paddrparams  params;
2466 	struct sctp_transport   *trans = NULL;
2467 	struct sctp_association *asoc = NULL;
2468 	struct sctp_sock        *sp = sctp_sk(sk);
2469 	int error;
2470 	int hb_change, pmtud_change, sackdelay_change;
2471 
2472 	if (optlen != sizeof(struct sctp_paddrparams))
2473 		return - EINVAL;
2474 
2475 	if (copy_from_user(&params, optval, optlen))
2476 		return -EFAULT;
2477 
2478 	/* Validate flags and value parameters. */
2479 	hb_change        = params.spp_flags & SPP_HB;
2480 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2481 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2482 
2483 	if (hb_change        == SPP_HB ||
2484 	    pmtud_change     == SPP_PMTUD ||
2485 	    sackdelay_change == SPP_SACKDELAY ||
2486 	    params.spp_sackdelay > 500 ||
2487 	    (params.spp_pathmtu &&
2488 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2489 		return -EINVAL;
2490 
2491 	/* If an address other than INADDR_ANY is specified, and
2492 	 * no transport is found, then the request is invalid.
2493 	 */
2494 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2495 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2496 					       params.spp_assoc_id);
2497 		if (!trans)
2498 			return -EINVAL;
2499 	}
2500 
2501 	/* Get association, if assoc_id != 0 and the socket is a one
2502 	 * to many style socket, and an association was not found, then
2503 	 * the id was invalid.
2504 	 */
2505 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2506 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2507 		return -EINVAL;
2508 
2509 	/* Heartbeat demand can only be sent on a transport or
2510 	 * association, but not a socket.
2511 	 */
2512 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2513 		return -EINVAL;
2514 
2515 	/* Process parameters. */
2516 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2517 					    hb_change, pmtud_change,
2518 					    sackdelay_change);
2519 
2520 	if (error)
2521 		return error;
2522 
2523 	/* If changes are for association, also apply parameters to each
2524 	 * transport.
2525 	 */
2526 	if (!trans && asoc) {
2527 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2528 				transports) {
2529 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2530 						    hb_change, pmtud_change,
2531 						    sackdelay_change);
2532 		}
2533 	}
2534 
2535 	return 0;
2536 }
2537 
2538 /*
2539  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2540  *
2541  * This option will effect the way delayed acks are performed.  This
2542  * option allows you to get or set the delayed ack time, in
2543  * milliseconds.  It also allows changing the delayed ack frequency.
2544  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2545  * the assoc_id is 0, then this sets or gets the endpoints default
2546  * values.  If the assoc_id field is non-zero, then the set or get
2547  * effects the specified association for the one to many model (the
2548  * assoc_id field is ignored by the one to one model).  Note that if
2549  * sack_delay or sack_freq are 0 when setting this option, then the
2550  * current values will remain unchanged.
2551  *
2552  * struct sctp_sack_info {
2553  *     sctp_assoc_t            sack_assoc_id;
2554  *     uint32_t                sack_delay;
2555  *     uint32_t                sack_freq;
2556  * };
2557  *
2558  * sack_assoc_id -  This parameter, indicates which association the user
2559  *    is performing an action upon.  Note that if this field's value is
2560  *    zero then the endpoints default value is changed (effecting future
2561  *    associations only).
2562  *
2563  * sack_delay -  This parameter contains the number of milliseconds that
2564  *    the user is requesting the delayed ACK timer be set to.  Note that
2565  *    this value is defined in the standard to be between 200 and 500
2566  *    milliseconds.
2567  *
2568  * sack_freq -  This parameter contains the number of packets that must
2569  *    be received before a sack is sent without waiting for the delay
2570  *    timer to expire.  The default value for this is 2, setting this
2571  *    value to 1 will disable the delayed sack algorithm.
2572  */
2573 
2574 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2575 				       char __user *optval, unsigned int optlen)
2576 {
2577 	struct sctp_sack_info    params;
2578 	struct sctp_transport   *trans = NULL;
2579 	struct sctp_association *asoc = NULL;
2580 	struct sctp_sock        *sp = sctp_sk(sk);
2581 
2582 	if (optlen == sizeof(struct sctp_sack_info)) {
2583 		if (copy_from_user(&params, optval, optlen))
2584 			return -EFAULT;
2585 
2586 		if (params.sack_delay == 0 && params.sack_freq == 0)
2587 			return 0;
2588 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2589 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2590 		pr_warn("Use struct sctp_sack_info instead\n");
2591 		if (copy_from_user(&params, optval, optlen))
2592 			return -EFAULT;
2593 
2594 		if (params.sack_delay == 0)
2595 			params.sack_freq = 1;
2596 		else
2597 			params.sack_freq = 0;
2598 	} else
2599 		return - EINVAL;
2600 
2601 	/* Validate value parameter. */
2602 	if (params.sack_delay > 500)
2603 		return -EINVAL;
2604 
2605 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2606 	 * to many style socket, and an association was not found, then
2607 	 * the id was invalid.
2608 	 */
2609 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2610 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2611 		return -EINVAL;
2612 
2613 	if (params.sack_delay) {
2614 		if (asoc) {
2615 			asoc->sackdelay =
2616 				msecs_to_jiffies(params.sack_delay);
2617 			asoc->param_flags =
2618 				(asoc->param_flags & ~SPP_SACKDELAY) |
2619 				SPP_SACKDELAY_ENABLE;
2620 		} else {
2621 			sp->sackdelay = params.sack_delay;
2622 			sp->param_flags =
2623 				(sp->param_flags & ~SPP_SACKDELAY) |
2624 				SPP_SACKDELAY_ENABLE;
2625 		}
2626 	}
2627 
2628 	if (params.sack_freq == 1) {
2629 		if (asoc) {
2630 			asoc->param_flags =
2631 				(asoc->param_flags & ~SPP_SACKDELAY) |
2632 				SPP_SACKDELAY_DISABLE;
2633 		} else {
2634 			sp->param_flags =
2635 				(sp->param_flags & ~SPP_SACKDELAY) |
2636 				SPP_SACKDELAY_DISABLE;
2637 		}
2638 	} else if (params.sack_freq > 1) {
2639 		if (asoc) {
2640 			asoc->sackfreq = params.sack_freq;
2641 			asoc->param_flags =
2642 				(asoc->param_flags & ~SPP_SACKDELAY) |
2643 				SPP_SACKDELAY_ENABLE;
2644 		} else {
2645 			sp->sackfreq = params.sack_freq;
2646 			sp->param_flags =
2647 				(sp->param_flags & ~SPP_SACKDELAY) |
2648 				SPP_SACKDELAY_ENABLE;
2649 		}
2650 	}
2651 
2652 	/* If change is for association, also apply to each transport. */
2653 	if (asoc) {
2654 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2655 				transports) {
2656 			if (params.sack_delay) {
2657 				trans->sackdelay =
2658 					msecs_to_jiffies(params.sack_delay);
2659 				trans->param_flags =
2660 					(trans->param_flags & ~SPP_SACKDELAY) |
2661 					SPP_SACKDELAY_ENABLE;
2662 			}
2663 			if (params.sack_freq == 1) {
2664 				trans->param_flags =
2665 					(trans->param_flags & ~SPP_SACKDELAY) |
2666 					SPP_SACKDELAY_DISABLE;
2667 			} else if (params.sack_freq > 1) {
2668 				trans->sackfreq = params.sack_freq;
2669 				trans->param_flags =
2670 					(trans->param_flags & ~SPP_SACKDELAY) |
2671 					SPP_SACKDELAY_ENABLE;
2672 			}
2673 		}
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2680  *
2681  * Applications can specify protocol parameters for the default association
2682  * initialization.  The option name argument to setsockopt() and getsockopt()
2683  * is SCTP_INITMSG.
2684  *
2685  * Setting initialization parameters is effective only on an unconnected
2686  * socket (for UDP-style sockets only future associations are effected
2687  * by the change).  With TCP-style sockets, this option is inherited by
2688  * sockets derived from a listener socket.
2689  */
2690 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2691 {
2692 	struct sctp_initmsg sinit;
2693 	struct sctp_sock *sp = sctp_sk(sk);
2694 
2695 	if (optlen != sizeof(struct sctp_initmsg))
2696 		return -EINVAL;
2697 	if (copy_from_user(&sinit, optval, optlen))
2698 		return -EFAULT;
2699 
2700 	if (sinit.sinit_num_ostreams)
2701 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2702 	if (sinit.sinit_max_instreams)
2703 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2704 	if (sinit.sinit_max_attempts)
2705 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2706 	if (sinit.sinit_max_init_timeo)
2707 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2708 
2709 	return 0;
2710 }
2711 
2712 /*
2713  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2714  *
2715  *   Applications that wish to use the sendto() system call may wish to
2716  *   specify a default set of parameters that would normally be supplied
2717  *   through the inclusion of ancillary data.  This socket option allows
2718  *   such an application to set the default sctp_sndrcvinfo structure.
2719  *   The application that wishes to use this socket option simply passes
2720  *   in to this call the sctp_sndrcvinfo structure defined in Section
2721  *   5.2.2) The input parameters accepted by this call include
2722  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2723  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2724  *   to this call if the caller is using the UDP model.
2725  */
2726 static int sctp_setsockopt_default_send_param(struct sock *sk,
2727 					      char __user *optval,
2728 					      unsigned int optlen)
2729 {
2730 	struct sctp_sndrcvinfo info;
2731 	struct sctp_association *asoc;
2732 	struct sctp_sock *sp = sctp_sk(sk);
2733 
2734 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2735 		return -EINVAL;
2736 	if (copy_from_user(&info, optval, optlen))
2737 		return -EFAULT;
2738 
2739 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2740 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2741 		return -EINVAL;
2742 
2743 	if (asoc) {
2744 		asoc->default_stream = info.sinfo_stream;
2745 		asoc->default_flags = info.sinfo_flags;
2746 		asoc->default_ppid = info.sinfo_ppid;
2747 		asoc->default_context = info.sinfo_context;
2748 		asoc->default_timetolive = info.sinfo_timetolive;
2749 	} else {
2750 		sp->default_stream = info.sinfo_stream;
2751 		sp->default_flags = info.sinfo_flags;
2752 		sp->default_ppid = info.sinfo_ppid;
2753 		sp->default_context = info.sinfo_context;
2754 		sp->default_timetolive = info.sinfo_timetolive;
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2761  *
2762  * Requests that the local SCTP stack use the enclosed peer address as
2763  * the association primary.  The enclosed address must be one of the
2764  * association peer's addresses.
2765  */
2766 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2767 					unsigned int optlen)
2768 {
2769 	struct sctp_prim prim;
2770 	struct sctp_transport *trans;
2771 
2772 	if (optlen != sizeof(struct sctp_prim))
2773 		return -EINVAL;
2774 
2775 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2776 		return -EFAULT;
2777 
2778 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2779 	if (!trans)
2780 		return -EINVAL;
2781 
2782 	sctp_assoc_set_primary(trans->asoc, trans);
2783 
2784 	return 0;
2785 }
2786 
2787 /*
2788  * 7.1.5 SCTP_NODELAY
2789  *
2790  * Turn on/off any Nagle-like algorithm.  This means that packets are
2791  * generally sent as soon as possible and no unnecessary delays are
2792  * introduced, at the cost of more packets in the network.  Expects an
2793  *  integer boolean flag.
2794  */
2795 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2796 				   unsigned int optlen)
2797 {
2798 	int val;
2799 
2800 	if (optlen < sizeof(int))
2801 		return -EINVAL;
2802 	if (get_user(val, (int __user *)optval))
2803 		return -EFAULT;
2804 
2805 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2806 	return 0;
2807 }
2808 
2809 /*
2810  *
2811  * 7.1.1 SCTP_RTOINFO
2812  *
2813  * The protocol parameters used to initialize and bound retransmission
2814  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2815  * and modify these parameters.
2816  * All parameters are time values, in milliseconds.  A value of 0, when
2817  * modifying the parameters, indicates that the current value should not
2818  * be changed.
2819  *
2820  */
2821 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2822 {
2823 	struct sctp_rtoinfo rtoinfo;
2824 	struct sctp_association *asoc;
2825 
2826 	if (optlen != sizeof (struct sctp_rtoinfo))
2827 		return -EINVAL;
2828 
2829 	if (copy_from_user(&rtoinfo, optval, optlen))
2830 		return -EFAULT;
2831 
2832 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2833 
2834 	/* Set the values to the specific association */
2835 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2836 		return -EINVAL;
2837 
2838 	if (asoc) {
2839 		if (rtoinfo.srto_initial != 0)
2840 			asoc->rto_initial =
2841 				msecs_to_jiffies(rtoinfo.srto_initial);
2842 		if (rtoinfo.srto_max != 0)
2843 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2844 		if (rtoinfo.srto_min != 0)
2845 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2846 	} else {
2847 		/* If there is no association or the association-id = 0
2848 		 * set the values to the endpoint.
2849 		 */
2850 		struct sctp_sock *sp = sctp_sk(sk);
2851 
2852 		if (rtoinfo.srto_initial != 0)
2853 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2854 		if (rtoinfo.srto_max != 0)
2855 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2856 		if (rtoinfo.srto_min != 0)
2857 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2858 	}
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  *
2865  * 7.1.2 SCTP_ASSOCINFO
2866  *
2867  * This option is used to tune the maximum retransmission attempts
2868  * of the association.
2869  * Returns an error if the new association retransmission value is
2870  * greater than the sum of the retransmission value  of the peer.
2871  * See [SCTP] for more information.
2872  *
2873  */
2874 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2875 {
2876 
2877 	struct sctp_assocparams assocparams;
2878 	struct sctp_association *asoc;
2879 
2880 	if (optlen != sizeof(struct sctp_assocparams))
2881 		return -EINVAL;
2882 	if (copy_from_user(&assocparams, optval, optlen))
2883 		return -EFAULT;
2884 
2885 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2886 
2887 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2888 		return -EINVAL;
2889 
2890 	/* Set the values to the specific association */
2891 	if (asoc) {
2892 		if (assocparams.sasoc_asocmaxrxt != 0) {
2893 			__u32 path_sum = 0;
2894 			int   paths = 0;
2895 			struct sctp_transport *peer_addr;
2896 
2897 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2898 					transports) {
2899 				path_sum += peer_addr->pathmaxrxt;
2900 				paths++;
2901 			}
2902 
2903 			/* Only validate asocmaxrxt if we have more than
2904 			 * one path/transport.  We do this because path
2905 			 * retransmissions are only counted when we have more
2906 			 * then one path.
2907 			 */
2908 			if (paths > 1 &&
2909 			    assocparams.sasoc_asocmaxrxt > path_sum)
2910 				return -EINVAL;
2911 
2912 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2913 		}
2914 
2915 		if (assocparams.sasoc_cookie_life != 0) {
2916 			asoc->cookie_life.tv_sec =
2917 					assocparams.sasoc_cookie_life / 1000;
2918 			asoc->cookie_life.tv_usec =
2919 					(assocparams.sasoc_cookie_life % 1000)
2920 					* 1000;
2921 		}
2922 	} else {
2923 		/* Set the values to the endpoint */
2924 		struct sctp_sock *sp = sctp_sk(sk);
2925 
2926 		if (assocparams.sasoc_asocmaxrxt != 0)
2927 			sp->assocparams.sasoc_asocmaxrxt =
2928 						assocparams.sasoc_asocmaxrxt;
2929 		if (assocparams.sasoc_cookie_life != 0)
2930 			sp->assocparams.sasoc_cookie_life =
2931 						assocparams.sasoc_cookie_life;
2932 	}
2933 	return 0;
2934 }
2935 
2936 /*
2937  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2938  *
2939  * This socket option is a boolean flag which turns on or off mapped V4
2940  * addresses.  If this option is turned on and the socket is type
2941  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2942  * If this option is turned off, then no mapping will be done of V4
2943  * addresses and a user will receive both PF_INET6 and PF_INET type
2944  * addresses on the socket.
2945  */
2946 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2947 {
2948 	int val;
2949 	struct sctp_sock *sp = sctp_sk(sk);
2950 
2951 	if (optlen < sizeof(int))
2952 		return -EINVAL;
2953 	if (get_user(val, (int __user *)optval))
2954 		return -EFAULT;
2955 	if (val)
2956 		sp->v4mapped = 1;
2957 	else
2958 		sp->v4mapped = 0;
2959 
2960 	return 0;
2961 }
2962 
2963 /*
2964  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2965  * This option will get or set the maximum size to put in any outgoing
2966  * SCTP DATA chunk.  If a message is larger than this size it will be
2967  * fragmented by SCTP into the specified size.  Note that the underlying
2968  * SCTP implementation may fragment into smaller sized chunks when the
2969  * PMTU of the underlying association is smaller than the value set by
2970  * the user.  The default value for this option is '0' which indicates
2971  * the user is NOT limiting fragmentation and only the PMTU will effect
2972  * SCTP's choice of DATA chunk size.  Note also that values set larger
2973  * than the maximum size of an IP datagram will effectively let SCTP
2974  * control fragmentation (i.e. the same as setting this option to 0).
2975  *
2976  * The following structure is used to access and modify this parameter:
2977  *
2978  * struct sctp_assoc_value {
2979  *   sctp_assoc_t assoc_id;
2980  *   uint32_t assoc_value;
2981  * };
2982  *
2983  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2984  *    For one-to-many style sockets this parameter indicates which
2985  *    association the user is performing an action upon.  Note that if
2986  *    this field's value is zero then the endpoints default value is
2987  *    changed (effecting future associations only).
2988  * assoc_value:  This parameter specifies the maximum size in bytes.
2989  */
2990 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2991 {
2992 	struct sctp_assoc_value params;
2993 	struct sctp_association *asoc;
2994 	struct sctp_sock *sp = sctp_sk(sk);
2995 	int val;
2996 
2997 	if (optlen == sizeof(int)) {
2998 		pr_warn("Use of int in maxseg socket option deprecated\n");
2999 		pr_warn("Use struct sctp_assoc_value instead\n");
3000 		if (copy_from_user(&val, optval, optlen))
3001 			return -EFAULT;
3002 		params.assoc_id = 0;
3003 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3004 		if (copy_from_user(&params, optval, optlen))
3005 			return -EFAULT;
3006 		val = params.assoc_value;
3007 	} else
3008 		return -EINVAL;
3009 
3010 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3011 		return -EINVAL;
3012 
3013 	asoc = sctp_id2assoc(sk, params.assoc_id);
3014 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3015 		return -EINVAL;
3016 
3017 	if (asoc) {
3018 		if (val == 0) {
3019 			val = asoc->pathmtu;
3020 			val -= sp->pf->af->net_header_len;
3021 			val -= sizeof(struct sctphdr) +
3022 					sizeof(struct sctp_data_chunk);
3023 		}
3024 		asoc->user_frag = val;
3025 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3026 	} else {
3027 		sp->user_frag = val;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 
3034 /*
3035  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3036  *
3037  *   Requests that the peer mark the enclosed address as the association
3038  *   primary. The enclosed address must be one of the association's
3039  *   locally bound addresses. The following structure is used to make a
3040  *   set primary request:
3041  */
3042 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3043 					     unsigned int optlen)
3044 {
3045 	struct net *net = sock_net(sk);
3046 	struct sctp_sock	*sp;
3047 	struct sctp_association	*asoc = NULL;
3048 	struct sctp_setpeerprim	prim;
3049 	struct sctp_chunk	*chunk;
3050 	struct sctp_af		*af;
3051 	int 			err;
3052 
3053 	sp = sctp_sk(sk);
3054 
3055 	if (!net->sctp.addip_enable)
3056 		return -EPERM;
3057 
3058 	if (optlen != sizeof(struct sctp_setpeerprim))
3059 		return -EINVAL;
3060 
3061 	if (copy_from_user(&prim, optval, optlen))
3062 		return -EFAULT;
3063 
3064 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3065 	if (!asoc)
3066 		return -EINVAL;
3067 
3068 	if (!asoc->peer.asconf_capable)
3069 		return -EPERM;
3070 
3071 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3072 		return -EPERM;
3073 
3074 	if (!sctp_state(asoc, ESTABLISHED))
3075 		return -ENOTCONN;
3076 
3077 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3078 	if (!af)
3079 		return -EINVAL;
3080 
3081 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3082 		return -EADDRNOTAVAIL;
3083 
3084 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3085 		return -EADDRNOTAVAIL;
3086 
3087 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3088 	chunk = sctp_make_asconf_set_prim(asoc,
3089 					  (union sctp_addr *)&prim.sspp_addr);
3090 	if (!chunk)
3091 		return -ENOMEM;
3092 
3093 	err = sctp_send_asconf(asoc, chunk);
3094 
3095 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3096 
3097 	return err;
3098 }
3099 
3100 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3101 					    unsigned int optlen)
3102 {
3103 	struct sctp_setadaptation adaptation;
3104 
3105 	if (optlen != sizeof(struct sctp_setadaptation))
3106 		return -EINVAL;
3107 	if (copy_from_user(&adaptation, optval, optlen))
3108 		return -EFAULT;
3109 
3110 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3111 
3112 	return 0;
3113 }
3114 
3115 /*
3116  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3117  *
3118  * The context field in the sctp_sndrcvinfo structure is normally only
3119  * used when a failed message is retrieved holding the value that was
3120  * sent down on the actual send call.  This option allows the setting of
3121  * a default context on an association basis that will be received on
3122  * reading messages from the peer.  This is especially helpful in the
3123  * one-2-many model for an application to keep some reference to an
3124  * internal state machine that is processing messages on the
3125  * association.  Note that the setting of this value only effects
3126  * received messages from the peer and does not effect the value that is
3127  * saved with outbound messages.
3128  */
3129 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3130 				   unsigned int optlen)
3131 {
3132 	struct sctp_assoc_value params;
3133 	struct sctp_sock *sp;
3134 	struct sctp_association *asoc;
3135 
3136 	if (optlen != sizeof(struct sctp_assoc_value))
3137 		return -EINVAL;
3138 	if (copy_from_user(&params, optval, optlen))
3139 		return -EFAULT;
3140 
3141 	sp = sctp_sk(sk);
3142 
3143 	if (params.assoc_id != 0) {
3144 		asoc = sctp_id2assoc(sk, params.assoc_id);
3145 		if (!asoc)
3146 			return -EINVAL;
3147 		asoc->default_rcv_context = params.assoc_value;
3148 	} else {
3149 		sp->default_rcv_context = params.assoc_value;
3150 	}
3151 
3152 	return 0;
3153 }
3154 
3155 /*
3156  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3157  *
3158  * This options will at a minimum specify if the implementation is doing
3159  * fragmented interleave.  Fragmented interleave, for a one to many
3160  * socket, is when subsequent calls to receive a message may return
3161  * parts of messages from different associations.  Some implementations
3162  * may allow you to turn this value on or off.  If so, when turned off,
3163  * no fragment interleave will occur (which will cause a head of line
3164  * blocking amongst multiple associations sharing the same one to many
3165  * socket).  When this option is turned on, then each receive call may
3166  * come from a different association (thus the user must receive data
3167  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3168  * association each receive belongs to.
3169  *
3170  * This option takes a boolean value.  A non-zero value indicates that
3171  * fragmented interleave is on.  A value of zero indicates that
3172  * fragmented interleave is off.
3173  *
3174  * Note that it is important that an implementation that allows this
3175  * option to be turned on, have it off by default.  Otherwise an unaware
3176  * application using the one to many model may become confused and act
3177  * incorrectly.
3178  */
3179 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3180 					       char __user *optval,
3181 					       unsigned int optlen)
3182 {
3183 	int val;
3184 
3185 	if (optlen != sizeof(int))
3186 		return -EINVAL;
3187 	if (get_user(val, (int __user *)optval))
3188 		return -EFAULT;
3189 
3190 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3191 
3192 	return 0;
3193 }
3194 
3195 /*
3196  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3197  *       (SCTP_PARTIAL_DELIVERY_POINT)
3198  *
3199  * This option will set or get the SCTP partial delivery point.  This
3200  * point is the size of a message where the partial delivery API will be
3201  * invoked to help free up rwnd space for the peer.  Setting this to a
3202  * lower value will cause partial deliveries to happen more often.  The
3203  * calls argument is an integer that sets or gets the partial delivery
3204  * point.  Note also that the call will fail if the user attempts to set
3205  * this value larger than the socket receive buffer size.
3206  *
3207  * Note that any single message having a length smaller than or equal to
3208  * the SCTP partial delivery point will be delivered in one single read
3209  * call as long as the user provided buffer is large enough to hold the
3210  * message.
3211  */
3212 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3213 						  char __user *optval,
3214 						  unsigned int optlen)
3215 {
3216 	u32 val;
3217 
3218 	if (optlen != sizeof(u32))
3219 		return -EINVAL;
3220 	if (get_user(val, (int __user *)optval))
3221 		return -EFAULT;
3222 
3223 	/* Note: We double the receive buffer from what the user sets
3224 	 * it to be, also initial rwnd is based on rcvbuf/2.
3225 	 */
3226 	if (val > (sk->sk_rcvbuf >> 1))
3227 		return -EINVAL;
3228 
3229 	sctp_sk(sk)->pd_point = val;
3230 
3231 	return 0; /* is this the right error code? */
3232 }
3233 
3234 /*
3235  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3236  *
3237  * This option will allow a user to change the maximum burst of packets
3238  * that can be emitted by this association.  Note that the default value
3239  * is 4, and some implementations may restrict this setting so that it
3240  * can only be lowered.
3241  *
3242  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3243  * future associations inheriting the socket value.
3244  */
3245 static int sctp_setsockopt_maxburst(struct sock *sk,
3246 				    char __user *optval,
3247 				    unsigned int optlen)
3248 {
3249 	struct sctp_assoc_value params;
3250 	struct sctp_sock *sp;
3251 	struct sctp_association *asoc;
3252 	int val;
3253 	int assoc_id = 0;
3254 
3255 	if (optlen == sizeof(int)) {
3256 		pr_warn("Use of int in max_burst socket option deprecated\n");
3257 		pr_warn("Use struct sctp_assoc_value instead\n");
3258 		if (copy_from_user(&val, optval, optlen))
3259 			return -EFAULT;
3260 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3261 		if (copy_from_user(&params, optval, optlen))
3262 			return -EFAULT;
3263 		val = params.assoc_value;
3264 		assoc_id = params.assoc_id;
3265 	} else
3266 		return -EINVAL;
3267 
3268 	sp = sctp_sk(sk);
3269 
3270 	if (assoc_id != 0) {
3271 		asoc = sctp_id2assoc(sk, assoc_id);
3272 		if (!asoc)
3273 			return -EINVAL;
3274 		asoc->max_burst = val;
3275 	} else
3276 		sp->max_burst = val;
3277 
3278 	return 0;
3279 }
3280 
3281 /*
3282  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3283  *
3284  * This set option adds a chunk type that the user is requesting to be
3285  * received only in an authenticated way.  Changes to the list of chunks
3286  * will only effect future associations on the socket.
3287  */
3288 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3289 				      char __user *optval,
3290 				      unsigned int optlen)
3291 {
3292 	struct net *net = sock_net(sk);
3293 	struct sctp_authchunk val;
3294 
3295 	if (!net->sctp.auth_enable)
3296 		return -EACCES;
3297 
3298 	if (optlen != sizeof(struct sctp_authchunk))
3299 		return -EINVAL;
3300 	if (copy_from_user(&val, optval, optlen))
3301 		return -EFAULT;
3302 
3303 	switch (val.sauth_chunk) {
3304 	case SCTP_CID_INIT:
3305 	case SCTP_CID_INIT_ACK:
3306 	case SCTP_CID_SHUTDOWN_COMPLETE:
3307 	case SCTP_CID_AUTH:
3308 		return -EINVAL;
3309 	}
3310 
3311 	/* add this chunk id to the endpoint */
3312 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3313 }
3314 
3315 /*
3316  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3317  *
3318  * This option gets or sets the list of HMAC algorithms that the local
3319  * endpoint requires the peer to use.
3320  */
3321 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3322 				      char __user *optval,
3323 				      unsigned int optlen)
3324 {
3325 	struct net *net = sock_net(sk);
3326 	struct sctp_hmacalgo *hmacs;
3327 	u32 idents;
3328 	int err;
3329 
3330 	if (!net->sctp.auth_enable)
3331 		return -EACCES;
3332 
3333 	if (optlen < sizeof(struct sctp_hmacalgo))
3334 		return -EINVAL;
3335 
3336 	hmacs= memdup_user(optval, optlen);
3337 	if (IS_ERR(hmacs))
3338 		return PTR_ERR(hmacs);
3339 
3340 	idents = hmacs->shmac_num_idents;
3341 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3342 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3343 		err = -EINVAL;
3344 		goto out;
3345 	}
3346 
3347 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3348 out:
3349 	kfree(hmacs);
3350 	return err;
3351 }
3352 
3353 /*
3354  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3355  *
3356  * This option will set a shared secret key which is used to build an
3357  * association shared key.
3358  */
3359 static int sctp_setsockopt_auth_key(struct sock *sk,
3360 				    char __user *optval,
3361 				    unsigned int optlen)
3362 {
3363 	struct net *net = sock_net(sk);
3364 	struct sctp_authkey *authkey;
3365 	struct sctp_association *asoc;
3366 	int ret;
3367 
3368 	if (!net->sctp.auth_enable)
3369 		return -EACCES;
3370 
3371 	if (optlen <= sizeof(struct sctp_authkey))
3372 		return -EINVAL;
3373 
3374 	authkey= memdup_user(optval, optlen);
3375 	if (IS_ERR(authkey))
3376 		return PTR_ERR(authkey);
3377 
3378 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3379 		ret = -EINVAL;
3380 		goto out;
3381 	}
3382 
3383 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3384 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3385 		ret = -EINVAL;
3386 		goto out;
3387 	}
3388 
3389 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3390 out:
3391 	kfree(authkey);
3392 	return ret;
3393 }
3394 
3395 /*
3396  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3397  *
3398  * This option will get or set the active shared key to be used to build
3399  * the association shared key.
3400  */
3401 static int sctp_setsockopt_active_key(struct sock *sk,
3402 				      char __user *optval,
3403 				      unsigned int optlen)
3404 {
3405 	struct net *net = sock_net(sk);
3406 	struct sctp_authkeyid val;
3407 	struct sctp_association *asoc;
3408 
3409 	if (!net->sctp.auth_enable)
3410 		return -EACCES;
3411 
3412 	if (optlen != sizeof(struct sctp_authkeyid))
3413 		return -EINVAL;
3414 	if (copy_from_user(&val, optval, optlen))
3415 		return -EFAULT;
3416 
3417 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3418 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3419 		return -EINVAL;
3420 
3421 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3422 					val.scact_keynumber);
3423 }
3424 
3425 /*
3426  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3427  *
3428  * This set option will delete a shared secret key from use.
3429  */
3430 static int sctp_setsockopt_del_key(struct sock *sk,
3431 				   char __user *optval,
3432 				   unsigned int optlen)
3433 {
3434 	struct net *net = sock_net(sk);
3435 	struct sctp_authkeyid val;
3436 	struct sctp_association *asoc;
3437 
3438 	if (!net->sctp.auth_enable)
3439 		return -EACCES;
3440 
3441 	if (optlen != sizeof(struct sctp_authkeyid))
3442 		return -EINVAL;
3443 	if (copy_from_user(&val, optval, optlen))
3444 		return -EFAULT;
3445 
3446 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3447 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3448 		return -EINVAL;
3449 
3450 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3451 				    val.scact_keynumber);
3452 
3453 }
3454 
3455 /*
3456  * 8.1.23 SCTP_AUTO_ASCONF
3457  *
3458  * This option will enable or disable the use of the automatic generation of
3459  * ASCONF chunks to add and delete addresses to an existing association.  Note
3460  * that this option has two caveats namely: a) it only affects sockets that
3461  * are bound to all addresses available to the SCTP stack, and b) the system
3462  * administrator may have an overriding control that turns the ASCONF feature
3463  * off no matter what setting the socket option may have.
3464  * This option expects an integer boolean flag, where a non-zero value turns on
3465  * the option, and a zero value turns off the option.
3466  * Note. In this implementation, socket operation overrides default parameter
3467  * being set by sysctl as well as FreeBSD implementation
3468  */
3469 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3470 					unsigned int optlen)
3471 {
3472 	int val;
3473 	struct sctp_sock *sp = sctp_sk(sk);
3474 
3475 	if (optlen < sizeof(int))
3476 		return -EINVAL;
3477 	if (get_user(val, (int __user *)optval))
3478 		return -EFAULT;
3479 	if (!sctp_is_ep_boundall(sk) && val)
3480 		return -EINVAL;
3481 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3482 		return 0;
3483 
3484 	if (val == 0 && sp->do_auto_asconf) {
3485 		list_del(&sp->auto_asconf_list);
3486 		sp->do_auto_asconf = 0;
3487 	} else if (val && !sp->do_auto_asconf) {
3488 		list_add_tail(&sp->auto_asconf_list,
3489 		    &sock_net(sk)->sctp.auto_asconf_splist);
3490 		sp->do_auto_asconf = 1;
3491 	}
3492 	return 0;
3493 }
3494 
3495 
3496 /*
3497  * SCTP_PEER_ADDR_THLDS
3498  *
3499  * This option allows us to alter the partially failed threshold for one or all
3500  * transports in an association.  See Section 6.1 of:
3501  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3502  */
3503 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3504 					    char __user *optval,
3505 					    unsigned int optlen)
3506 {
3507 	struct sctp_paddrthlds val;
3508 	struct sctp_transport *trans;
3509 	struct sctp_association *asoc;
3510 
3511 	if (optlen < sizeof(struct sctp_paddrthlds))
3512 		return -EINVAL;
3513 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3514 			   sizeof(struct sctp_paddrthlds)))
3515 		return -EFAULT;
3516 
3517 
3518 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3519 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3520 		if (!asoc)
3521 			return -ENOENT;
3522 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3523 				    transports) {
3524 			if (val.spt_pathmaxrxt)
3525 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3526 			trans->pf_retrans = val.spt_pathpfthld;
3527 		}
3528 
3529 		if (val.spt_pathmaxrxt)
3530 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3531 		asoc->pf_retrans = val.spt_pathpfthld;
3532 	} else {
3533 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3534 					       val.spt_assoc_id);
3535 		if (!trans)
3536 			return -ENOENT;
3537 
3538 		if (val.spt_pathmaxrxt)
3539 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3540 		trans->pf_retrans = val.spt_pathpfthld;
3541 	}
3542 
3543 	return 0;
3544 }
3545 
3546 /* API 6.2 setsockopt(), getsockopt()
3547  *
3548  * Applications use setsockopt() and getsockopt() to set or retrieve
3549  * socket options.  Socket options are used to change the default
3550  * behavior of sockets calls.  They are described in Section 7.
3551  *
3552  * The syntax is:
3553  *
3554  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3555  *                    int __user *optlen);
3556  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3557  *                    int optlen);
3558  *
3559  *   sd      - the socket descript.
3560  *   level   - set to IPPROTO_SCTP for all SCTP options.
3561  *   optname - the option name.
3562  *   optval  - the buffer to store the value of the option.
3563  *   optlen  - the size of the buffer.
3564  */
3565 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3566 				char __user *optval, unsigned int optlen)
3567 {
3568 	int retval = 0;
3569 
3570 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3571 			  sk, optname);
3572 
3573 	/* I can hardly begin to describe how wrong this is.  This is
3574 	 * so broken as to be worse than useless.  The API draft
3575 	 * REALLY is NOT helpful here...  I am not convinced that the
3576 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3577 	 * are at all well-founded.
3578 	 */
3579 	if (level != SOL_SCTP) {
3580 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3581 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3582 		goto out_nounlock;
3583 	}
3584 
3585 	sctp_lock_sock(sk);
3586 
3587 	switch (optname) {
3588 	case SCTP_SOCKOPT_BINDX_ADD:
3589 		/* 'optlen' is the size of the addresses buffer. */
3590 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3591 					       optlen, SCTP_BINDX_ADD_ADDR);
3592 		break;
3593 
3594 	case SCTP_SOCKOPT_BINDX_REM:
3595 		/* 'optlen' is the size of the addresses buffer. */
3596 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3597 					       optlen, SCTP_BINDX_REM_ADDR);
3598 		break;
3599 
3600 	case SCTP_SOCKOPT_CONNECTX_OLD:
3601 		/* 'optlen' is the size of the addresses buffer. */
3602 		retval = sctp_setsockopt_connectx_old(sk,
3603 					    (struct sockaddr __user *)optval,
3604 					    optlen);
3605 		break;
3606 
3607 	case SCTP_SOCKOPT_CONNECTX:
3608 		/* 'optlen' is the size of the addresses buffer. */
3609 		retval = sctp_setsockopt_connectx(sk,
3610 					    (struct sockaddr __user *)optval,
3611 					    optlen);
3612 		break;
3613 
3614 	case SCTP_DISABLE_FRAGMENTS:
3615 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3616 		break;
3617 
3618 	case SCTP_EVENTS:
3619 		retval = sctp_setsockopt_events(sk, optval, optlen);
3620 		break;
3621 
3622 	case SCTP_AUTOCLOSE:
3623 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3624 		break;
3625 
3626 	case SCTP_PEER_ADDR_PARAMS:
3627 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3628 		break;
3629 
3630 	case SCTP_DELAYED_SACK:
3631 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3632 		break;
3633 	case SCTP_PARTIAL_DELIVERY_POINT:
3634 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3635 		break;
3636 
3637 	case SCTP_INITMSG:
3638 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3639 		break;
3640 	case SCTP_DEFAULT_SEND_PARAM:
3641 		retval = sctp_setsockopt_default_send_param(sk, optval,
3642 							    optlen);
3643 		break;
3644 	case SCTP_PRIMARY_ADDR:
3645 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3646 		break;
3647 	case SCTP_SET_PEER_PRIMARY_ADDR:
3648 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3649 		break;
3650 	case SCTP_NODELAY:
3651 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3652 		break;
3653 	case SCTP_RTOINFO:
3654 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3655 		break;
3656 	case SCTP_ASSOCINFO:
3657 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3658 		break;
3659 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3660 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3661 		break;
3662 	case SCTP_MAXSEG:
3663 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3664 		break;
3665 	case SCTP_ADAPTATION_LAYER:
3666 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3667 		break;
3668 	case SCTP_CONTEXT:
3669 		retval = sctp_setsockopt_context(sk, optval, optlen);
3670 		break;
3671 	case SCTP_FRAGMENT_INTERLEAVE:
3672 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3673 		break;
3674 	case SCTP_MAX_BURST:
3675 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3676 		break;
3677 	case SCTP_AUTH_CHUNK:
3678 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3679 		break;
3680 	case SCTP_HMAC_IDENT:
3681 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3682 		break;
3683 	case SCTP_AUTH_KEY:
3684 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3685 		break;
3686 	case SCTP_AUTH_ACTIVE_KEY:
3687 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3688 		break;
3689 	case SCTP_AUTH_DELETE_KEY:
3690 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3691 		break;
3692 	case SCTP_AUTO_ASCONF:
3693 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3694 		break;
3695 	case SCTP_PEER_ADDR_THLDS:
3696 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3697 		break;
3698 	default:
3699 		retval = -ENOPROTOOPT;
3700 		break;
3701 	}
3702 
3703 	sctp_release_sock(sk);
3704 
3705 out_nounlock:
3706 	return retval;
3707 }
3708 
3709 /* API 3.1.6 connect() - UDP Style Syntax
3710  *
3711  * An application may use the connect() call in the UDP model to initiate an
3712  * association without sending data.
3713  *
3714  * The syntax is:
3715  *
3716  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3717  *
3718  * sd: the socket descriptor to have a new association added to.
3719  *
3720  * nam: the address structure (either struct sockaddr_in or struct
3721  *    sockaddr_in6 defined in RFC2553 [7]).
3722  *
3723  * len: the size of the address.
3724  */
3725 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3726 			     int addr_len)
3727 {
3728 	int err = 0;
3729 	struct sctp_af *af;
3730 
3731 	sctp_lock_sock(sk);
3732 
3733 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3734 			  __func__, sk, addr, addr_len);
3735 
3736 	/* Validate addr_len before calling common connect/connectx routine. */
3737 	af = sctp_get_af_specific(addr->sa_family);
3738 	if (!af || addr_len < af->sockaddr_len) {
3739 		err = -EINVAL;
3740 	} else {
3741 		/* Pass correct addr len to common routine (so it knows there
3742 		 * is only one address being passed.
3743 		 */
3744 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3745 	}
3746 
3747 	sctp_release_sock(sk);
3748 	return err;
3749 }
3750 
3751 /* FIXME: Write comments. */
3752 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3753 {
3754 	return -EOPNOTSUPP; /* STUB */
3755 }
3756 
3757 /* 4.1.4 accept() - TCP Style Syntax
3758  *
3759  * Applications use accept() call to remove an established SCTP
3760  * association from the accept queue of the endpoint.  A new socket
3761  * descriptor will be returned from accept() to represent the newly
3762  * formed association.
3763  */
3764 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3765 {
3766 	struct sctp_sock *sp;
3767 	struct sctp_endpoint *ep;
3768 	struct sock *newsk = NULL;
3769 	struct sctp_association *asoc;
3770 	long timeo;
3771 	int error = 0;
3772 
3773 	sctp_lock_sock(sk);
3774 
3775 	sp = sctp_sk(sk);
3776 	ep = sp->ep;
3777 
3778 	if (!sctp_style(sk, TCP)) {
3779 		error = -EOPNOTSUPP;
3780 		goto out;
3781 	}
3782 
3783 	if (!sctp_sstate(sk, LISTENING)) {
3784 		error = -EINVAL;
3785 		goto out;
3786 	}
3787 
3788 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3789 
3790 	error = sctp_wait_for_accept(sk, timeo);
3791 	if (error)
3792 		goto out;
3793 
3794 	/* We treat the list of associations on the endpoint as the accept
3795 	 * queue and pick the first association on the list.
3796 	 */
3797 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3798 
3799 	newsk = sp->pf->create_accept_sk(sk, asoc);
3800 	if (!newsk) {
3801 		error = -ENOMEM;
3802 		goto out;
3803 	}
3804 
3805 	/* Populate the fields of the newsk from the oldsk and migrate the
3806 	 * asoc to the newsk.
3807 	 */
3808 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3809 
3810 out:
3811 	sctp_release_sock(sk);
3812 	*err = error;
3813 	return newsk;
3814 }
3815 
3816 /* The SCTP ioctl handler. */
3817 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3818 {
3819 	int rc = -ENOTCONN;
3820 
3821 	sctp_lock_sock(sk);
3822 
3823 	/*
3824 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3825 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3826 	 */
3827 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3828 		goto out;
3829 
3830 	switch (cmd) {
3831 	case SIOCINQ: {
3832 		struct sk_buff *skb;
3833 		unsigned int amount = 0;
3834 
3835 		skb = skb_peek(&sk->sk_receive_queue);
3836 		if (skb != NULL) {
3837 			/*
3838 			 * We will only return the amount of this packet since
3839 			 * that is all that will be read.
3840 			 */
3841 			amount = skb->len;
3842 		}
3843 		rc = put_user(amount, (int __user *)arg);
3844 		break;
3845 	}
3846 	default:
3847 		rc = -ENOIOCTLCMD;
3848 		break;
3849 	}
3850 out:
3851 	sctp_release_sock(sk);
3852 	return rc;
3853 }
3854 
3855 /* This is the function which gets called during socket creation to
3856  * initialized the SCTP-specific portion of the sock.
3857  * The sock structure should already be zero-filled memory.
3858  */
3859 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3860 {
3861 	struct net *net = sock_net(sk);
3862 	struct sctp_endpoint *ep;
3863 	struct sctp_sock *sp;
3864 
3865 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3866 
3867 	sp = sctp_sk(sk);
3868 
3869 	/* Initialize the SCTP per socket area.  */
3870 	switch (sk->sk_type) {
3871 	case SOCK_SEQPACKET:
3872 		sp->type = SCTP_SOCKET_UDP;
3873 		break;
3874 	case SOCK_STREAM:
3875 		sp->type = SCTP_SOCKET_TCP;
3876 		break;
3877 	default:
3878 		return -ESOCKTNOSUPPORT;
3879 	}
3880 
3881 	/* Initialize default send parameters. These parameters can be
3882 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3883 	 */
3884 	sp->default_stream = 0;
3885 	sp->default_ppid = 0;
3886 	sp->default_flags = 0;
3887 	sp->default_context = 0;
3888 	sp->default_timetolive = 0;
3889 
3890 	sp->default_rcv_context = 0;
3891 	sp->max_burst = net->sctp.max_burst;
3892 
3893 	/* Initialize default setup parameters. These parameters
3894 	 * can be modified with the SCTP_INITMSG socket option or
3895 	 * overridden by the SCTP_INIT CMSG.
3896 	 */
3897 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3898 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3899 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3900 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3901 
3902 	/* Initialize default RTO related parameters.  These parameters can
3903 	 * be modified for with the SCTP_RTOINFO socket option.
3904 	 */
3905 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3906 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3907 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3908 
3909 	/* Initialize default association related parameters. These parameters
3910 	 * can be modified with the SCTP_ASSOCINFO socket option.
3911 	 */
3912 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3913 	sp->assocparams.sasoc_number_peer_destinations = 0;
3914 	sp->assocparams.sasoc_peer_rwnd = 0;
3915 	sp->assocparams.sasoc_local_rwnd = 0;
3916 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3917 
3918 	/* Initialize default event subscriptions. By default, all the
3919 	 * options are off.
3920 	 */
3921 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3922 
3923 	/* Default Peer Address Parameters.  These defaults can
3924 	 * be modified via SCTP_PEER_ADDR_PARAMS
3925 	 */
3926 	sp->hbinterval  = net->sctp.hb_interval;
3927 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3928 	sp->pathmtu     = 0; // allow default discovery
3929 	sp->sackdelay   = net->sctp.sack_timeout;
3930 	sp->sackfreq	= 2;
3931 	sp->param_flags = SPP_HB_ENABLE |
3932 			  SPP_PMTUD_ENABLE |
3933 			  SPP_SACKDELAY_ENABLE;
3934 
3935 	/* If enabled no SCTP message fragmentation will be performed.
3936 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3937 	 */
3938 	sp->disable_fragments = 0;
3939 
3940 	/* Enable Nagle algorithm by default.  */
3941 	sp->nodelay           = 0;
3942 
3943 	/* Enable by default. */
3944 	sp->v4mapped          = 1;
3945 
3946 	/* Auto-close idle associations after the configured
3947 	 * number of seconds.  A value of 0 disables this
3948 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3949 	 * for UDP-style sockets only.
3950 	 */
3951 	sp->autoclose         = 0;
3952 
3953 	/* User specified fragmentation limit. */
3954 	sp->user_frag         = 0;
3955 
3956 	sp->adaptation_ind = 0;
3957 
3958 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3959 
3960 	/* Control variables for partial data delivery. */
3961 	atomic_set(&sp->pd_mode, 0);
3962 	skb_queue_head_init(&sp->pd_lobby);
3963 	sp->frag_interleave = 0;
3964 
3965 	/* Create a per socket endpoint structure.  Even if we
3966 	 * change the data structure relationships, this may still
3967 	 * be useful for storing pre-connect address information.
3968 	 */
3969 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3970 	if (!ep)
3971 		return -ENOMEM;
3972 
3973 	sp->ep = ep;
3974 	sp->hmac = NULL;
3975 
3976 	SCTP_DBG_OBJCNT_INC(sock);
3977 
3978 	local_bh_disable();
3979 	percpu_counter_inc(&sctp_sockets_allocated);
3980 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3981 	if (net->sctp.default_auto_asconf) {
3982 		list_add_tail(&sp->auto_asconf_list,
3983 		    &net->sctp.auto_asconf_splist);
3984 		sp->do_auto_asconf = 1;
3985 	} else
3986 		sp->do_auto_asconf = 0;
3987 	local_bh_enable();
3988 
3989 	return 0;
3990 }
3991 
3992 /* Cleanup any SCTP per socket resources.  */
3993 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3994 {
3995 	struct sctp_sock *sp;
3996 
3997 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3998 
3999 	/* Release our hold on the endpoint. */
4000 	sp = sctp_sk(sk);
4001 	if (sp->do_auto_asconf) {
4002 		sp->do_auto_asconf = 0;
4003 		list_del(&sp->auto_asconf_list);
4004 	}
4005 	sctp_endpoint_free(sp->ep);
4006 	local_bh_disable();
4007 	percpu_counter_dec(&sctp_sockets_allocated);
4008 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4009 	local_bh_enable();
4010 }
4011 
4012 /* API 4.1.7 shutdown() - TCP Style Syntax
4013  *     int shutdown(int socket, int how);
4014  *
4015  *     sd      - the socket descriptor of the association to be closed.
4016  *     how     - Specifies the type of shutdown.  The  values  are
4017  *               as follows:
4018  *               SHUT_RD
4019  *                     Disables further receive operations. No SCTP
4020  *                     protocol action is taken.
4021  *               SHUT_WR
4022  *                     Disables further send operations, and initiates
4023  *                     the SCTP shutdown sequence.
4024  *               SHUT_RDWR
4025  *                     Disables further send  and  receive  operations
4026  *                     and initiates the SCTP shutdown sequence.
4027  */
4028 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
4029 {
4030 	struct net *net = sock_net(sk);
4031 	struct sctp_endpoint *ep;
4032 	struct sctp_association *asoc;
4033 
4034 	if (!sctp_style(sk, TCP))
4035 		return;
4036 
4037 	if (how & SEND_SHUTDOWN) {
4038 		ep = sctp_sk(sk)->ep;
4039 		if (!list_empty(&ep->asocs)) {
4040 			asoc = list_entry(ep->asocs.next,
4041 					  struct sctp_association, asocs);
4042 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4043 		}
4044 	}
4045 }
4046 
4047 /* 7.2.1 Association Status (SCTP_STATUS)
4048 
4049  * Applications can retrieve current status information about an
4050  * association, including association state, peer receiver window size,
4051  * number of unacked data chunks, and number of data chunks pending
4052  * receipt.  This information is read-only.
4053  */
4054 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4055 				       char __user *optval,
4056 				       int __user *optlen)
4057 {
4058 	struct sctp_status status;
4059 	struct sctp_association *asoc = NULL;
4060 	struct sctp_transport *transport;
4061 	sctp_assoc_t associd;
4062 	int retval = 0;
4063 
4064 	if (len < sizeof(status)) {
4065 		retval = -EINVAL;
4066 		goto out;
4067 	}
4068 
4069 	len = sizeof(status);
4070 	if (copy_from_user(&status, optval, len)) {
4071 		retval = -EFAULT;
4072 		goto out;
4073 	}
4074 
4075 	associd = status.sstat_assoc_id;
4076 	asoc = sctp_id2assoc(sk, associd);
4077 	if (!asoc) {
4078 		retval = -EINVAL;
4079 		goto out;
4080 	}
4081 
4082 	transport = asoc->peer.primary_path;
4083 
4084 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4085 	status.sstat_state = asoc->state;
4086 	status.sstat_rwnd =  asoc->peer.rwnd;
4087 	status.sstat_unackdata = asoc->unack_data;
4088 
4089 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4090 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4091 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4092 	status.sstat_fragmentation_point = asoc->frag_point;
4093 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4094 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4095 			transport->af_specific->sockaddr_len);
4096 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4097 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4098 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4099 	status.sstat_primary.spinfo_state = transport->state;
4100 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4101 	status.sstat_primary.spinfo_srtt = transport->srtt;
4102 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4103 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4104 
4105 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4106 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4107 
4108 	if (put_user(len, optlen)) {
4109 		retval = -EFAULT;
4110 		goto out;
4111 	}
4112 
4113 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4114 			  len, status.sstat_state, status.sstat_rwnd,
4115 			  status.sstat_assoc_id);
4116 
4117 	if (copy_to_user(optval, &status, len)) {
4118 		retval = -EFAULT;
4119 		goto out;
4120 	}
4121 
4122 out:
4123 	return retval;
4124 }
4125 
4126 
4127 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4128  *
4129  * Applications can retrieve information about a specific peer address
4130  * of an association, including its reachability state, congestion
4131  * window, and retransmission timer values.  This information is
4132  * read-only.
4133  */
4134 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4135 					  char __user *optval,
4136 					  int __user *optlen)
4137 {
4138 	struct sctp_paddrinfo pinfo;
4139 	struct sctp_transport *transport;
4140 	int retval = 0;
4141 
4142 	if (len < sizeof(pinfo)) {
4143 		retval = -EINVAL;
4144 		goto out;
4145 	}
4146 
4147 	len = sizeof(pinfo);
4148 	if (copy_from_user(&pinfo, optval, len)) {
4149 		retval = -EFAULT;
4150 		goto out;
4151 	}
4152 
4153 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4154 					   pinfo.spinfo_assoc_id);
4155 	if (!transport)
4156 		return -EINVAL;
4157 
4158 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4159 	pinfo.spinfo_state = transport->state;
4160 	pinfo.spinfo_cwnd = transport->cwnd;
4161 	pinfo.spinfo_srtt = transport->srtt;
4162 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4163 	pinfo.spinfo_mtu = transport->pathmtu;
4164 
4165 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4166 		pinfo.spinfo_state = SCTP_ACTIVE;
4167 
4168 	if (put_user(len, optlen)) {
4169 		retval = -EFAULT;
4170 		goto out;
4171 	}
4172 
4173 	if (copy_to_user(optval, &pinfo, len)) {
4174 		retval = -EFAULT;
4175 		goto out;
4176 	}
4177 
4178 out:
4179 	return retval;
4180 }
4181 
4182 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4183  *
4184  * This option is a on/off flag.  If enabled no SCTP message
4185  * fragmentation will be performed.  Instead if a message being sent
4186  * exceeds the current PMTU size, the message will NOT be sent and
4187  * instead a error will be indicated to the user.
4188  */
4189 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4190 					char __user *optval, int __user *optlen)
4191 {
4192 	int val;
4193 
4194 	if (len < sizeof(int))
4195 		return -EINVAL;
4196 
4197 	len = sizeof(int);
4198 	val = (sctp_sk(sk)->disable_fragments == 1);
4199 	if (put_user(len, optlen))
4200 		return -EFAULT;
4201 	if (copy_to_user(optval, &val, len))
4202 		return -EFAULT;
4203 	return 0;
4204 }
4205 
4206 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4207  *
4208  * This socket option is used to specify various notifications and
4209  * ancillary data the user wishes to receive.
4210  */
4211 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4212 				  int __user *optlen)
4213 {
4214 	if (len <= 0)
4215 		return -EINVAL;
4216 	if (len > sizeof(struct sctp_event_subscribe))
4217 		len = sizeof(struct sctp_event_subscribe);
4218 	if (put_user(len, optlen))
4219 		return -EFAULT;
4220 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4221 		return -EFAULT;
4222 	return 0;
4223 }
4224 
4225 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4226  *
4227  * This socket option is applicable to the UDP-style socket only.  When
4228  * set it will cause associations that are idle for more than the
4229  * specified number of seconds to automatically close.  An association
4230  * being idle is defined an association that has NOT sent or received
4231  * user data.  The special value of '0' indicates that no automatic
4232  * close of any associations should be performed.  The option expects an
4233  * integer defining the number of seconds of idle time before an
4234  * association is closed.
4235  */
4236 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4237 {
4238 	/* Applicable to UDP-style socket only */
4239 	if (sctp_style(sk, TCP))
4240 		return -EOPNOTSUPP;
4241 	if (len < sizeof(int))
4242 		return -EINVAL;
4243 	len = sizeof(int);
4244 	if (put_user(len, optlen))
4245 		return -EFAULT;
4246 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4247 		return -EFAULT;
4248 	return 0;
4249 }
4250 
4251 /* Helper routine to branch off an association to a new socket.  */
4252 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4253 {
4254 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4255 	struct socket *sock;
4256 	struct sctp_af *af;
4257 	int err = 0;
4258 
4259 	if (!asoc)
4260 		return -EINVAL;
4261 
4262 	/* An association cannot be branched off from an already peeled-off
4263 	 * socket, nor is this supported for tcp style sockets.
4264 	 */
4265 	if (!sctp_style(sk, UDP))
4266 		return -EINVAL;
4267 
4268 	/* Create a new socket.  */
4269 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4270 	if (err < 0)
4271 		return err;
4272 
4273 	sctp_copy_sock(sock->sk, sk, asoc);
4274 
4275 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4276 	 * Set the daddr and initialize id to something more random
4277 	 */
4278 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4279 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4280 
4281 	/* Populate the fields of the newsk from the oldsk and migrate the
4282 	 * asoc to the newsk.
4283 	 */
4284 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4285 
4286 	*sockp = sock;
4287 
4288 	return err;
4289 }
4290 EXPORT_SYMBOL(sctp_do_peeloff);
4291 
4292 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4293 {
4294 	sctp_peeloff_arg_t peeloff;
4295 	struct socket *newsock;
4296 	struct file *newfile;
4297 	int retval = 0;
4298 
4299 	if (len < sizeof(sctp_peeloff_arg_t))
4300 		return -EINVAL;
4301 	len = sizeof(sctp_peeloff_arg_t);
4302 	if (copy_from_user(&peeloff, optval, len))
4303 		return -EFAULT;
4304 
4305 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4306 	if (retval < 0)
4307 		goto out;
4308 
4309 	/* Map the socket to an unused fd that can be returned to the user.  */
4310 	retval = get_unused_fd();
4311 	if (retval < 0) {
4312 		sock_release(newsock);
4313 		goto out;
4314 	}
4315 
4316 	newfile = sock_alloc_file(newsock, 0, NULL);
4317 	if (unlikely(IS_ERR(newfile))) {
4318 		put_unused_fd(retval);
4319 		sock_release(newsock);
4320 		return PTR_ERR(newfile);
4321 	}
4322 
4323 	SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4324 			  __func__, sk, newsock->sk, retval);
4325 
4326 	/* Return the fd mapped to the new socket.  */
4327 	if (put_user(len, optlen)) {
4328 		fput(newfile);
4329 		put_unused_fd(retval);
4330 		return -EFAULT;
4331 	}
4332 	peeloff.sd = retval;
4333 	if (copy_to_user(optval, &peeloff, len)) {
4334 		fput(newfile);
4335 		put_unused_fd(retval);
4336 		return -EFAULT;
4337 	}
4338 	fd_install(retval, newfile);
4339 out:
4340 	return retval;
4341 }
4342 
4343 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4344  *
4345  * Applications can enable or disable heartbeats for any peer address of
4346  * an association, modify an address's heartbeat interval, force a
4347  * heartbeat to be sent immediately, and adjust the address's maximum
4348  * number of retransmissions sent before an address is considered
4349  * unreachable.  The following structure is used to access and modify an
4350  * address's parameters:
4351  *
4352  *  struct sctp_paddrparams {
4353  *     sctp_assoc_t            spp_assoc_id;
4354  *     struct sockaddr_storage spp_address;
4355  *     uint32_t                spp_hbinterval;
4356  *     uint16_t                spp_pathmaxrxt;
4357  *     uint32_t                spp_pathmtu;
4358  *     uint32_t                spp_sackdelay;
4359  *     uint32_t                spp_flags;
4360  * };
4361  *
4362  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4363  *                     application, and identifies the association for
4364  *                     this query.
4365  *   spp_address     - This specifies which address is of interest.
4366  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4367  *                     in milliseconds.  If a  value of zero
4368  *                     is present in this field then no changes are to
4369  *                     be made to this parameter.
4370  *   spp_pathmaxrxt  - This contains the maximum number of
4371  *                     retransmissions before this address shall be
4372  *                     considered unreachable. If a  value of zero
4373  *                     is present in this field then no changes are to
4374  *                     be made to this parameter.
4375  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4376  *                     specified here will be the "fixed" path mtu.
4377  *                     Note that if the spp_address field is empty
4378  *                     then all associations on this address will
4379  *                     have this fixed path mtu set upon them.
4380  *
4381  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4382  *                     the number of milliseconds that sacks will be delayed
4383  *                     for. This value will apply to all addresses of an
4384  *                     association if the spp_address field is empty. Note
4385  *                     also, that if delayed sack is enabled and this
4386  *                     value is set to 0, no change is made to the last
4387  *                     recorded delayed sack timer value.
4388  *
4389  *   spp_flags       - These flags are used to control various features
4390  *                     on an association. The flag field may contain
4391  *                     zero or more of the following options.
4392  *
4393  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4394  *                     specified address. Note that if the address
4395  *                     field is empty all addresses for the association
4396  *                     have heartbeats enabled upon them.
4397  *
4398  *                     SPP_HB_DISABLE - Disable heartbeats on the
4399  *                     speicifed address. Note that if the address
4400  *                     field is empty all addresses for the association
4401  *                     will have their heartbeats disabled. Note also
4402  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4403  *                     mutually exclusive, only one of these two should
4404  *                     be specified. Enabling both fields will have
4405  *                     undetermined results.
4406  *
4407  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4408  *                     to be made immediately.
4409  *
4410  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4411  *                     discovery upon the specified address. Note that
4412  *                     if the address feild is empty then all addresses
4413  *                     on the association are effected.
4414  *
4415  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4416  *                     discovery upon the specified address. Note that
4417  *                     if the address feild is empty then all addresses
4418  *                     on the association are effected. Not also that
4419  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4420  *                     exclusive. Enabling both will have undetermined
4421  *                     results.
4422  *
4423  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4424  *                     on delayed sack. The time specified in spp_sackdelay
4425  *                     is used to specify the sack delay for this address. Note
4426  *                     that if spp_address is empty then all addresses will
4427  *                     enable delayed sack and take on the sack delay
4428  *                     value specified in spp_sackdelay.
4429  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4430  *                     off delayed sack. If the spp_address field is blank then
4431  *                     delayed sack is disabled for the entire association. Note
4432  *                     also that this field is mutually exclusive to
4433  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4434  *                     results.
4435  */
4436 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4437 					    char __user *optval, int __user *optlen)
4438 {
4439 	struct sctp_paddrparams  params;
4440 	struct sctp_transport   *trans = NULL;
4441 	struct sctp_association *asoc = NULL;
4442 	struct sctp_sock        *sp = sctp_sk(sk);
4443 
4444 	if (len < sizeof(struct sctp_paddrparams))
4445 		return -EINVAL;
4446 	len = sizeof(struct sctp_paddrparams);
4447 	if (copy_from_user(&params, optval, len))
4448 		return -EFAULT;
4449 
4450 	/* If an address other than INADDR_ANY is specified, and
4451 	 * no transport is found, then the request is invalid.
4452 	 */
4453 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4454 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4455 					       params.spp_assoc_id);
4456 		if (!trans) {
4457 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4458 			return -EINVAL;
4459 		}
4460 	}
4461 
4462 	/* Get association, if assoc_id != 0 and the socket is a one
4463 	 * to many style socket, and an association was not found, then
4464 	 * the id was invalid.
4465 	 */
4466 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4467 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4468 		SCTP_DEBUG_PRINTK("Failed no association\n");
4469 		return -EINVAL;
4470 	}
4471 
4472 	if (trans) {
4473 		/* Fetch transport values. */
4474 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4475 		params.spp_pathmtu    = trans->pathmtu;
4476 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4477 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4478 
4479 		/*draft-11 doesn't say what to return in spp_flags*/
4480 		params.spp_flags      = trans->param_flags;
4481 	} else if (asoc) {
4482 		/* Fetch association values. */
4483 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4484 		params.spp_pathmtu    = asoc->pathmtu;
4485 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4486 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4487 
4488 		/*draft-11 doesn't say what to return in spp_flags*/
4489 		params.spp_flags      = asoc->param_flags;
4490 	} else {
4491 		/* Fetch socket values. */
4492 		params.spp_hbinterval = sp->hbinterval;
4493 		params.spp_pathmtu    = sp->pathmtu;
4494 		params.spp_sackdelay  = sp->sackdelay;
4495 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4496 
4497 		/*draft-11 doesn't say what to return in spp_flags*/
4498 		params.spp_flags      = sp->param_flags;
4499 	}
4500 
4501 	if (copy_to_user(optval, &params, len))
4502 		return -EFAULT;
4503 
4504 	if (put_user(len, optlen))
4505 		return -EFAULT;
4506 
4507 	return 0;
4508 }
4509 
4510 /*
4511  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4512  *
4513  * This option will effect the way delayed acks are performed.  This
4514  * option allows you to get or set the delayed ack time, in
4515  * milliseconds.  It also allows changing the delayed ack frequency.
4516  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4517  * the assoc_id is 0, then this sets or gets the endpoints default
4518  * values.  If the assoc_id field is non-zero, then the set or get
4519  * effects the specified association for the one to many model (the
4520  * assoc_id field is ignored by the one to one model).  Note that if
4521  * sack_delay or sack_freq are 0 when setting this option, then the
4522  * current values will remain unchanged.
4523  *
4524  * struct sctp_sack_info {
4525  *     sctp_assoc_t            sack_assoc_id;
4526  *     uint32_t                sack_delay;
4527  *     uint32_t                sack_freq;
4528  * };
4529  *
4530  * sack_assoc_id -  This parameter, indicates which association the user
4531  *    is performing an action upon.  Note that if this field's value is
4532  *    zero then the endpoints default value is changed (effecting future
4533  *    associations only).
4534  *
4535  * sack_delay -  This parameter contains the number of milliseconds that
4536  *    the user is requesting the delayed ACK timer be set to.  Note that
4537  *    this value is defined in the standard to be between 200 and 500
4538  *    milliseconds.
4539  *
4540  * sack_freq -  This parameter contains the number of packets that must
4541  *    be received before a sack is sent without waiting for the delay
4542  *    timer to expire.  The default value for this is 2, setting this
4543  *    value to 1 will disable the delayed sack algorithm.
4544  */
4545 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4546 					    char __user *optval,
4547 					    int __user *optlen)
4548 {
4549 	struct sctp_sack_info    params;
4550 	struct sctp_association *asoc = NULL;
4551 	struct sctp_sock        *sp = sctp_sk(sk);
4552 
4553 	if (len >= sizeof(struct sctp_sack_info)) {
4554 		len = sizeof(struct sctp_sack_info);
4555 
4556 		if (copy_from_user(&params, optval, len))
4557 			return -EFAULT;
4558 	} else if (len == sizeof(struct sctp_assoc_value)) {
4559 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4560 		pr_warn("Use struct sctp_sack_info instead\n");
4561 		if (copy_from_user(&params, optval, len))
4562 			return -EFAULT;
4563 	} else
4564 		return - EINVAL;
4565 
4566 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4567 	 * to many style socket, and an association was not found, then
4568 	 * the id was invalid.
4569 	 */
4570 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4571 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4572 		return -EINVAL;
4573 
4574 	if (asoc) {
4575 		/* Fetch association values. */
4576 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4577 			params.sack_delay = jiffies_to_msecs(
4578 				asoc->sackdelay);
4579 			params.sack_freq = asoc->sackfreq;
4580 
4581 		} else {
4582 			params.sack_delay = 0;
4583 			params.sack_freq = 1;
4584 		}
4585 	} else {
4586 		/* Fetch socket values. */
4587 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4588 			params.sack_delay  = sp->sackdelay;
4589 			params.sack_freq = sp->sackfreq;
4590 		} else {
4591 			params.sack_delay  = 0;
4592 			params.sack_freq = 1;
4593 		}
4594 	}
4595 
4596 	if (copy_to_user(optval, &params, len))
4597 		return -EFAULT;
4598 
4599 	if (put_user(len, optlen))
4600 		return -EFAULT;
4601 
4602 	return 0;
4603 }
4604 
4605 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4606  *
4607  * Applications can specify protocol parameters for the default association
4608  * initialization.  The option name argument to setsockopt() and getsockopt()
4609  * is SCTP_INITMSG.
4610  *
4611  * Setting initialization parameters is effective only on an unconnected
4612  * socket (for UDP-style sockets only future associations are effected
4613  * by the change).  With TCP-style sockets, this option is inherited by
4614  * sockets derived from a listener socket.
4615  */
4616 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4617 {
4618 	if (len < sizeof(struct sctp_initmsg))
4619 		return -EINVAL;
4620 	len = sizeof(struct sctp_initmsg);
4621 	if (put_user(len, optlen))
4622 		return -EFAULT;
4623 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4624 		return -EFAULT;
4625 	return 0;
4626 }
4627 
4628 
4629 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4630 				      char __user *optval, int __user *optlen)
4631 {
4632 	struct sctp_association *asoc;
4633 	int cnt = 0;
4634 	struct sctp_getaddrs getaddrs;
4635 	struct sctp_transport *from;
4636 	void __user *to;
4637 	union sctp_addr temp;
4638 	struct sctp_sock *sp = sctp_sk(sk);
4639 	int addrlen;
4640 	size_t space_left;
4641 	int bytes_copied;
4642 
4643 	if (len < sizeof(struct sctp_getaddrs))
4644 		return -EINVAL;
4645 
4646 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4647 		return -EFAULT;
4648 
4649 	/* For UDP-style sockets, id specifies the association to query.  */
4650 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4651 	if (!asoc)
4652 		return -EINVAL;
4653 
4654 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4655 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4656 
4657 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4658 				transports) {
4659 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4660 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4661 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4662 		if (space_left < addrlen)
4663 			return -ENOMEM;
4664 		if (copy_to_user(to, &temp, addrlen))
4665 			return -EFAULT;
4666 		to += addrlen;
4667 		cnt++;
4668 		space_left -= addrlen;
4669 	}
4670 
4671 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4672 		return -EFAULT;
4673 	bytes_copied = ((char __user *)to) - optval;
4674 	if (put_user(bytes_copied, optlen))
4675 		return -EFAULT;
4676 
4677 	return 0;
4678 }
4679 
4680 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4681 			    size_t space_left, int *bytes_copied)
4682 {
4683 	struct sctp_sockaddr_entry *addr;
4684 	union sctp_addr temp;
4685 	int cnt = 0;
4686 	int addrlen;
4687 	struct net *net = sock_net(sk);
4688 
4689 	rcu_read_lock();
4690 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4691 		if (!addr->valid)
4692 			continue;
4693 
4694 		if ((PF_INET == sk->sk_family) &&
4695 		    (AF_INET6 == addr->a.sa.sa_family))
4696 			continue;
4697 		if ((PF_INET6 == sk->sk_family) &&
4698 		    inet_v6_ipv6only(sk) &&
4699 		    (AF_INET == addr->a.sa.sa_family))
4700 			continue;
4701 		memcpy(&temp, &addr->a, sizeof(temp));
4702 		if (!temp.v4.sin_port)
4703 			temp.v4.sin_port = htons(port);
4704 
4705 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4706 								&temp);
4707 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4708 		if (space_left < addrlen) {
4709 			cnt =  -ENOMEM;
4710 			break;
4711 		}
4712 		memcpy(to, &temp, addrlen);
4713 
4714 		to += addrlen;
4715 		cnt ++;
4716 		space_left -= addrlen;
4717 		*bytes_copied += addrlen;
4718 	}
4719 	rcu_read_unlock();
4720 
4721 	return cnt;
4722 }
4723 
4724 
4725 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4726 				       char __user *optval, int __user *optlen)
4727 {
4728 	struct sctp_bind_addr *bp;
4729 	struct sctp_association *asoc;
4730 	int cnt = 0;
4731 	struct sctp_getaddrs getaddrs;
4732 	struct sctp_sockaddr_entry *addr;
4733 	void __user *to;
4734 	union sctp_addr temp;
4735 	struct sctp_sock *sp = sctp_sk(sk);
4736 	int addrlen;
4737 	int err = 0;
4738 	size_t space_left;
4739 	int bytes_copied = 0;
4740 	void *addrs;
4741 	void *buf;
4742 
4743 	if (len < sizeof(struct sctp_getaddrs))
4744 		return -EINVAL;
4745 
4746 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4747 		return -EFAULT;
4748 
4749 	/*
4750 	 *  For UDP-style sockets, id specifies the association to query.
4751 	 *  If the id field is set to the value '0' then the locally bound
4752 	 *  addresses are returned without regard to any particular
4753 	 *  association.
4754 	 */
4755 	if (0 == getaddrs.assoc_id) {
4756 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4757 	} else {
4758 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4759 		if (!asoc)
4760 			return -EINVAL;
4761 		bp = &asoc->base.bind_addr;
4762 	}
4763 
4764 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4765 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4766 
4767 	addrs = kmalloc(space_left, GFP_KERNEL);
4768 	if (!addrs)
4769 		return -ENOMEM;
4770 
4771 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4772 	 * addresses from the global local address list.
4773 	 */
4774 	if (sctp_list_single_entry(&bp->address_list)) {
4775 		addr = list_entry(bp->address_list.next,
4776 				  struct sctp_sockaddr_entry, list);
4777 		if (sctp_is_any(sk, &addr->a)) {
4778 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4779 						space_left, &bytes_copied);
4780 			if (cnt < 0) {
4781 				err = cnt;
4782 				goto out;
4783 			}
4784 			goto copy_getaddrs;
4785 		}
4786 	}
4787 
4788 	buf = addrs;
4789 	/* Protection on the bound address list is not needed since
4790 	 * in the socket option context we hold a socket lock and
4791 	 * thus the bound address list can't change.
4792 	 */
4793 	list_for_each_entry(addr, &bp->address_list, list) {
4794 		memcpy(&temp, &addr->a, sizeof(temp));
4795 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4796 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4797 		if (space_left < addrlen) {
4798 			err =  -ENOMEM; /*fixme: right error?*/
4799 			goto out;
4800 		}
4801 		memcpy(buf, &temp, addrlen);
4802 		buf += addrlen;
4803 		bytes_copied += addrlen;
4804 		cnt ++;
4805 		space_left -= addrlen;
4806 	}
4807 
4808 copy_getaddrs:
4809 	if (copy_to_user(to, addrs, bytes_copied)) {
4810 		err = -EFAULT;
4811 		goto out;
4812 	}
4813 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4814 		err = -EFAULT;
4815 		goto out;
4816 	}
4817 	if (put_user(bytes_copied, optlen))
4818 		err = -EFAULT;
4819 out:
4820 	kfree(addrs);
4821 	return err;
4822 }
4823 
4824 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4825  *
4826  * Requests that the local SCTP stack use the enclosed peer address as
4827  * the association primary.  The enclosed address must be one of the
4828  * association peer's addresses.
4829  */
4830 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4831 					char __user *optval, int __user *optlen)
4832 {
4833 	struct sctp_prim prim;
4834 	struct sctp_association *asoc;
4835 	struct sctp_sock *sp = sctp_sk(sk);
4836 
4837 	if (len < sizeof(struct sctp_prim))
4838 		return -EINVAL;
4839 
4840 	len = sizeof(struct sctp_prim);
4841 
4842 	if (copy_from_user(&prim, optval, len))
4843 		return -EFAULT;
4844 
4845 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4846 	if (!asoc)
4847 		return -EINVAL;
4848 
4849 	if (!asoc->peer.primary_path)
4850 		return -ENOTCONN;
4851 
4852 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4853 		asoc->peer.primary_path->af_specific->sockaddr_len);
4854 
4855 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4856 			(union sctp_addr *)&prim.ssp_addr);
4857 
4858 	if (put_user(len, optlen))
4859 		return -EFAULT;
4860 	if (copy_to_user(optval, &prim, len))
4861 		return -EFAULT;
4862 
4863 	return 0;
4864 }
4865 
4866 /*
4867  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4868  *
4869  * Requests that the local endpoint set the specified Adaptation Layer
4870  * Indication parameter for all future INIT and INIT-ACK exchanges.
4871  */
4872 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4873 				  char __user *optval, int __user *optlen)
4874 {
4875 	struct sctp_setadaptation adaptation;
4876 
4877 	if (len < sizeof(struct sctp_setadaptation))
4878 		return -EINVAL;
4879 
4880 	len = sizeof(struct sctp_setadaptation);
4881 
4882 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4883 
4884 	if (put_user(len, optlen))
4885 		return -EFAULT;
4886 	if (copy_to_user(optval, &adaptation, len))
4887 		return -EFAULT;
4888 
4889 	return 0;
4890 }
4891 
4892 /*
4893  *
4894  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4895  *
4896  *   Applications that wish to use the sendto() system call may wish to
4897  *   specify a default set of parameters that would normally be supplied
4898  *   through the inclusion of ancillary data.  This socket option allows
4899  *   such an application to set the default sctp_sndrcvinfo structure.
4900 
4901 
4902  *   The application that wishes to use this socket option simply passes
4903  *   in to this call the sctp_sndrcvinfo structure defined in Section
4904  *   5.2.2) The input parameters accepted by this call include
4905  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4906  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4907  *   to this call if the caller is using the UDP model.
4908  *
4909  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4910  */
4911 static int sctp_getsockopt_default_send_param(struct sock *sk,
4912 					int len, char __user *optval,
4913 					int __user *optlen)
4914 {
4915 	struct sctp_sndrcvinfo info;
4916 	struct sctp_association *asoc;
4917 	struct sctp_sock *sp = sctp_sk(sk);
4918 
4919 	if (len < sizeof(struct sctp_sndrcvinfo))
4920 		return -EINVAL;
4921 
4922 	len = sizeof(struct sctp_sndrcvinfo);
4923 
4924 	if (copy_from_user(&info, optval, len))
4925 		return -EFAULT;
4926 
4927 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4928 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4929 		return -EINVAL;
4930 
4931 	if (asoc) {
4932 		info.sinfo_stream = asoc->default_stream;
4933 		info.sinfo_flags = asoc->default_flags;
4934 		info.sinfo_ppid = asoc->default_ppid;
4935 		info.sinfo_context = asoc->default_context;
4936 		info.sinfo_timetolive = asoc->default_timetolive;
4937 	} else {
4938 		info.sinfo_stream = sp->default_stream;
4939 		info.sinfo_flags = sp->default_flags;
4940 		info.sinfo_ppid = sp->default_ppid;
4941 		info.sinfo_context = sp->default_context;
4942 		info.sinfo_timetolive = sp->default_timetolive;
4943 	}
4944 
4945 	if (put_user(len, optlen))
4946 		return -EFAULT;
4947 	if (copy_to_user(optval, &info, len))
4948 		return -EFAULT;
4949 
4950 	return 0;
4951 }
4952 
4953 /*
4954  *
4955  * 7.1.5 SCTP_NODELAY
4956  *
4957  * Turn on/off any Nagle-like algorithm.  This means that packets are
4958  * generally sent as soon as possible and no unnecessary delays are
4959  * introduced, at the cost of more packets in the network.  Expects an
4960  * integer boolean flag.
4961  */
4962 
4963 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4964 				   char __user *optval, int __user *optlen)
4965 {
4966 	int val;
4967 
4968 	if (len < sizeof(int))
4969 		return -EINVAL;
4970 
4971 	len = sizeof(int);
4972 	val = (sctp_sk(sk)->nodelay == 1);
4973 	if (put_user(len, optlen))
4974 		return -EFAULT;
4975 	if (copy_to_user(optval, &val, len))
4976 		return -EFAULT;
4977 	return 0;
4978 }
4979 
4980 /*
4981  *
4982  * 7.1.1 SCTP_RTOINFO
4983  *
4984  * The protocol parameters used to initialize and bound retransmission
4985  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4986  * and modify these parameters.
4987  * All parameters are time values, in milliseconds.  A value of 0, when
4988  * modifying the parameters, indicates that the current value should not
4989  * be changed.
4990  *
4991  */
4992 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4993 				char __user *optval,
4994 				int __user *optlen) {
4995 	struct sctp_rtoinfo rtoinfo;
4996 	struct sctp_association *asoc;
4997 
4998 	if (len < sizeof (struct sctp_rtoinfo))
4999 		return -EINVAL;
5000 
5001 	len = sizeof(struct sctp_rtoinfo);
5002 
5003 	if (copy_from_user(&rtoinfo, optval, len))
5004 		return -EFAULT;
5005 
5006 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5007 
5008 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5009 		return -EINVAL;
5010 
5011 	/* Values corresponding to the specific association. */
5012 	if (asoc) {
5013 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5014 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5015 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5016 	} else {
5017 		/* Values corresponding to the endpoint. */
5018 		struct sctp_sock *sp = sctp_sk(sk);
5019 
5020 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5021 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5022 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5023 	}
5024 
5025 	if (put_user(len, optlen))
5026 		return -EFAULT;
5027 
5028 	if (copy_to_user(optval, &rtoinfo, len))
5029 		return -EFAULT;
5030 
5031 	return 0;
5032 }
5033 
5034 /*
5035  *
5036  * 7.1.2 SCTP_ASSOCINFO
5037  *
5038  * This option is used to tune the maximum retransmission attempts
5039  * of the association.
5040  * Returns an error if the new association retransmission value is
5041  * greater than the sum of the retransmission value  of the peer.
5042  * See [SCTP] for more information.
5043  *
5044  */
5045 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5046 				     char __user *optval,
5047 				     int __user *optlen)
5048 {
5049 
5050 	struct sctp_assocparams assocparams;
5051 	struct sctp_association *asoc;
5052 	struct list_head *pos;
5053 	int cnt = 0;
5054 
5055 	if (len < sizeof (struct sctp_assocparams))
5056 		return -EINVAL;
5057 
5058 	len = sizeof(struct sctp_assocparams);
5059 
5060 	if (copy_from_user(&assocparams, optval, len))
5061 		return -EFAULT;
5062 
5063 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5064 
5065 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5066 		return -EINVAL;
5067 
5068 	/* Values correspoinding to the specific association */
5069 	if (asoc) {
5070 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5071 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5072 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5073 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5074 						* 1000) +
5075 						(asoc->cookie_life.tv_usec
5076 						/ 1000);
5077 
5078 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5079 			cnt ++;
5080 		}
5081 
5082 		assocparams.sasoc_number_peer_destinations = cnt;
5083 	} else {
5084 		/* Values corresponding to the endpoint */
5085 		struct sctp_sock *sp = sctp_sk(sk);
5086 
5087 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5088 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5089 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5090 		assocparams.sasoc_cookie_life =
5091 					sp->assocparams.sasoc_cookie_life;
5092 		assocparams.sasoc_number_peer_destinations =
5093 					sp->assocparams.
5094 					sasoc_number_peer_destinations;
5095 	}
5096 
5097 	if (put_user(len, optlen))
5098 		return -EFAULT;
5099 
5100 	if (copy_to_user(optval, &assocparams, len))
5101 		return -EFAULT;
5102 
5103 	return 0;
5104 }
5105 
5106 /*
5107  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5108  *
5109  * This socket option is a boolean flag which turns on or off mapped V4
5110  * addresses.  If this option is turned on and the socket is type
5111  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5112  * If this option is turned off, then no mapping will be done of V4
5113  * addresses and a user will receive both PF_INET6 and PF_INET type
5114  * addresses on the socket.
5115  */
5116 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5117 				    char __user *optval, int __user *optlen)
5118 {
5119 	int val;
5120 	struct sctp_sock *sp = sctp_sk(sk);
5121 
5122 	if (len < sizeof(int))
5123 		return -EINVAL;
5124 
5125 	len = sizeof(int);
5126 	val = sp->v4mapped;
5127 	if (put_user(len, optlen))
5128 		return -EFAULT;
5129 	if (copy_to_user(optval, &val, len))
5130 		return -EFAULT;
5131 
5132 	return 0;
5133 }
5134 
5135 /*
5136  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5137  * (chapter and verse is quoted at sctp_setsockopt_context())
5138  */
5139 static int sctp_getsockopt_context(struct sock *sk, int len,
5140 				   char __user *optval, int __user *optlen)
5141 {
5142 	struct sctp_assoc_value params;
5143 	struct sctp_sock *sp;
5144 	struct sctp_association *asoc;
5145 
5146 	if (len < sizeof(struct sctp_assoc_value))
5147 		return -EINVAL;
5148 
5149 	len = sizeof(struct sctp_assoc_value);
5150 
5151 	if (copy_from_user(&params, optval, len))
5152 		return -EFAULT;
5153 
5154 	sp = sctp_sk(sk);
5155 
5156 	if (params.assoc_id != 0) {
5157 		asoc = sctp_id2assoc(sk, params.assoc_id);
5158 		if (!asoc)
5159 			return -EINVAL;
5160 		params.assoc_value = asoc->default_rcv_context;
5161 	} else {
5162 		params.assoc_value = sp->default_rcv_context;
5163 	}
5164 
5165 	if (put_user(len, optlen))
5166 		return -EFAULT;
5167 	if (copy_to_user(optval, &params, len))
5168 		return -EFAULT;
5169 
5170 	return 0;
5171 }
5172 
5173 /*
5174  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5175  * This option will get or set the maximum size to put in any outgoing
5176  * SCTP DATA chunk.  If a message is larger than this size it will be
5177  * fragmented by SCTP into the specified size.  Note that the underlying
5178  * SCTP implementation may fragment into smaller sized chunks when the
5179  * PMTU of the underlying association is smaller than the value set by
5180  * the user.  The default value for this option is '0' which indicates
5181  * the user is NOT limiting fragmentation and only the PMTU will effect
5182  * SCTP's choice of DATA chunk size.  Note also that values set larger
5183  * than the maximum size of an IP datagram will effectively let SCTP
5184  * control fragmentation (i.e. the same as setting this option to 0).
5185  *
5186  * The following structure is used to access and modify this parameter:
5187  *
5188  * struct sctp_assoc_value {
5189  *   sctp_assoc_t assoc_id;
5190  *   uint32_t assoc_value;
5191  * };
5192  *
5193  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5194  *    For one-to-many style sockets this parameter indicates which
5195  *    association the user is performing an action upon.  Note that if
5196  *    this field's value is zero then the endpoints default value is
5197  *    changed (effecting future associations only).
5198  * assoc_value:  This parameter specifies the maximum size in bytes.
5199  */
5200 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5201 				  char __user *optval, int __user *optlen)
5202 {
5203 	struct sctp_assoc_value params;
5204 	struct sctp_association *asoc;
5205 
5206 	if (len == sizeof(int)) {
5207 		pr_warn("Use of int in maxseg socket option deprecated\n");
5208 		pr_warn("Use struct sctp_assoc_value instead\n");
5209 		params.assoc_id = 0;
5210 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5211 		len = sizeof(struct sctp_assoc_value);
5212 		if (copy_from_user(&params, optval, sizeof(params)))
5213 			return -EFAULT;
5214 	} else
5215 		return -EINVAL;
5216 
5217 	asoc = sctp_id2assoc(sk, params.assoc_id);
5218 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5219 		return -EINVAL;
5220 
5221 	if (asoc)
5222 		params.assoc_value = asoc->frag_point;
5223 	else
5224 		params.assoc_value = sctp_sk(sk)->user_frag;
5225 
5226 	if (put_user(len, optlen))
5227 		return -EFAULT;
5228 	if (len == sizeof(int)) {
5229 		if (copy_to_user(optval, &params.assoc_value, len))
5230 			return -EFAULT;
5231 	} else {
5232 		if (copy_to_user(optval, &params, len))
5233 			return -EFAULT;
5234 	}
5235 
5236 	return 0;
5237 }
5238 
5239 /*
5240  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5241  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5242  */
5243 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5244 					       char __user *optval, int __user *optlen)
5245 {
5246 	int val;
5247 
5248 	if (len < sizeof(int))
5249 		return -EINVAL;
5250 
5251 	len = sizeof(int);
5252 
5253 	val = sctp_sk(sk)->frag_interleave;
5254 	if (put_user(len, optlen))
5255 		return -EFAULT;
5256 	if (copy_to_user(optval, &val, len))
5257 		return -EFAULT;
5258 
5259 	return 0;
5260 }
5261 
5262 /*
5263  * 7.1.25.  Set or Get the sctp partial delivery point
5264  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5265  */
5266 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5267 						  char __user *optval,
5268 						  int __user *optlen)
5269 {
5270 	u32 val;
5271 
5272 	if (len < sizeof(u32))
5273 		return -EINVAL;
5274 
5275 	len = sizeof(u32);
5276 
5277 	val = sctp_sk(sk)->pd_point;
5278 	if (put_user(len, optlen))
5279 		return -EFAULT;
5280 	if (copy_to_user(optval, &val, len))
5281 		return -EFAULT;
5282 
5283 	return 0;
5284 }
5285 
5286 /*
5287  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5288  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5289  */
5290 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5291 				    char __user *optval,
5292 				    int __user *optlen)
5293 {
5294 	struct sctp_assoc_value params;
5295 	struct sctp_sock *sp;
5296 	struct sctp_association *asoc;
5297 
5298 	if (len == sizeof(int)) {
5299 		pr_warn("Use of int in max_burst socket option deprecated\n");
5300 		pr_warn("Use struct sctp_assoc_value instead\n");
5301 		params.assoc_id = 0;
5302 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5303 		len = sizeof(struct sctp_assoc_value);
5304 		if (copy_from_user(&params, optval, len))
5305 			return -EFAULT;
5306 	} else
5307 		return -EINVAL;
5308 
5309 	sp = sctp_sk(sk);
5310 
5311 	if (params.assoc_id != 0) {
5312 		asoc = sctp_id2assoc(sk, params.assoc_id);
5313 		if (!asoc)
5314 			return -EINVAL;
5315 		params.assoc_value = asoc->max_burst;
5316 	} else
5317 		params.assoc_value = sp->max_burst;
5318 
5319 	if (len == sizeof(int)) {
5320 		if (copy_to_user(optval, &params.assoc_value, len))
5321 			return -EFAULT;
5322 	} else {
5323 		if (copy_to_user(optval, &params, len))
5324 			return -EFAULT;
5325 	}
5326 
5327 	return 0;
5328 
5329 }
5330 
5331 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5332 				    char __user *optval, int __user *optlen)
5333 {
5334 	struct net *net = sock_net(sk);
5335 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5336 	struct sctp_hmac_algo_param *hmacs;
5337 	__u16 data_len = 0;
5338 	u32 num_idents;
5339 
5340 	if (!net->sctp.auth_enable)
5341 		return -EACCES;
5342 
5343 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5344 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5345 
5346 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5347 		return -EINVAL;
5348 
5349 	len = sizeof(struct sctp_hmacalgo) + data_len;
5350 	num_idents = data_len / sizeof(u16);
5351 
5352 	if (put_user(len, optlen))
5353 		return -EFAULT;
5354 	if (put_user(num_idents, &p->shmac_num_idents))
5355 		return -EFAULT;
5356 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5357 		return -EFAULT;
5358 	return 0;
5359 }
5360 
5361 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5362 				    char __user *optval, int __user *optlen)
5363 {
5364 	struct net *net = sock_net(sk);
5365 	struct sctp_authkeyid val;
5366 	struct sctp_association *asoc;
5367 
5368 	if (!net->sctp.auth_enable)
5369 		return -EACCES;
5370 
5371 	if (len < sizeof(struct sctp_authkeyid))
5372 		return -EINVAL;
5373 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5374 		return -EFAULT;
5375 
5376 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5377 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5378 		return -EINVAL;
5379 
5380 	if (asoc)
5381 		val.scact_keynumber = asoc->active_key_id;
5382 	else
5383 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5384 
5385 	len = sizeof(struct sctp_authkeyid);
5386 	if (put_user(len, optlen))
5387 		return -EFAULT;
5388 	if (copy_to_user(optval, &val, len))
5389 		return -EFAULT;
5390 
5391 	return 0;
5392 }
5393 
5394 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5395 				    char __user *optval, int __user *optlen)
5396 {
5397 	struct net *net = sock_net(sk);
5398 	struct sctp_authchunks __user *p = (void __user *)optval;
5399 	struct sctp_authchunks val;
5400 	struct sctp_association *asoc;
5401 	struct sctp_chunks_param *ch;
5402 	u32    num_chunks = 0;
5403 	char __user *to;
5404 
5405 	if (!net->sctp.auth_enable)
5406 		return -EACCES;
5407 
5408 	if (len < sizeof(struct sctp_authchunks))
5409 		return -EINVAL;
5410 
5411 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5412 		return -EFAULT;
5413 
5414 	to = p->gauth_chunks;
5415 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5416 	if (!asoc)
5417 		return -EINVAL;
5418 
5419 	ch = asoc->peer.peer_chunks;
5420 	if (!ch)
5421 		goto num;
5422 
5423 	/* See if the user provided enough room for all the data */
5424 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5425 	if (len < num_chunks)
5426 		return -EINVAL;
5427 
5428 	if (copy_to_user(to, ch->chunks, num_chunks))
5429 		return -EFAULT;
5430 num:
5431 	len = sizeof(struct sctp_authchunks) + num_chunks;
5432 	if (put_user(len, optlen)) return -EFAULT;
5433 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5434 		return -EFAULT;
5435 	return 0;
5436 }
5437 
5438 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5439 				    char __user *optval, int __user *optlen)
5440 {
5441 	struct net *net = sock_net(sk);
5442 	struct sctp_authchunks __user *p = (void __user *)optval;
5443 	struct sctp_authchunks val;
5444 	struct sctp_association *asoc;
5445 	struct sctp_chunks_param *ch;
5446 	u32    num_chunks = 0;
5447 	char __user *to;
5448 
5449 	if (!net->sctp.auth_enable)
5450 		return -EACCES;
5451 
5452 	if (len < sizeof(struct sctp_authchunks))
5453 		return -EINVAL;
5454 
5455 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5456 		return -EFAULT;
5457 
5458 	to = p->gauth_chunks;
5459 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5460 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5461 		return -EINVAL;
5462 
5463 	if (asoc)
5464 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5465 	else
5466 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5467 
5468 	if (!ch)
5469 		goto num;
5470 
5471 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5472 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5473 		return -EINVAL;
5474 
5475 	if (copy_to_user(to, ch->chunks, num_chunks))
5476 		return -EFAULT;
5477 num:
5478 	len = sizeof(struct sctp_authchunks) + num_chunks;
5479 	if (put_user(len, optlen))
5480 		return -EFAULT;
5481 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5482 		return -EFAULT;
5483 
5484 	return 0;
5485 }
5486 
5487 /*
5488  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5489  * This option gets the current number of associations that are attached
5490  * to a one-to-many style socket.  The option value is an uint32_t.
5491  */
5492 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5493 				    char __user *optval, int __user *optlen)
5494 {
5495 	struct sctp_sock *sp = sctp_sk(sk);
5496 	struct sctp_association *asoc;
5497 	u32 val = 0;
5498 
5499 	if (sctp_style(sk, TCP))
5500 		return -EOPNOTSUPP;
5501 
5502 	if (len < sizeof(u32))
5503 		return -EINVAL;
5504 
5505 	len = sizeof(u32);
5506 
5507 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5508 		val++;
5509 	}
5510 
5511 	if (put_user(len, optlen))
5512 		return -EFAULT;
5513 	if (copy_to_user(optval, &val, len))
5514 		return -EFAULT;
5515 
5516 	return 0;
5517 }
5518 
5519 /*
5520  * 8.1.23 SCTP_AUTO_ASCONF
5521  * See the corresponding setsockopt entry as description
5522  */
5523 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5524 				   char __user *optval, int __user *optlen)
5525 {
5526 	int val = 0;
5527 
5528 	if (len < sizeof(int))
5529 		return -EINVAL;
5530 
5531 	len = sizeof(int);
5532 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5533 		val = 1;
5534 	if (put_user(len, optlen))
5535 		return -EFAULT;
5536 	if (copy_to_user(optval, &val, len))
5537 		return -EFAULT;
5538 	return 0;
5539 }
5540 
5541 /*
5542  * 8.2.6. Get the Current Identifiers of Associations
5543  *        (SCTP_GET_ASSOC_ID_LIST)
5544  *
5545  * This option gets the current list of SCTP association identifiers of
5546  * the SCTP associations handled by a one-to-many style socket.
5547  */
5548 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5549 				    char __user *optval, int __user *optlen)
5550 {
5551 	struct sctp_sock *sp = sctp_sk(sk);
5552 	struct sctp_association *asoc;
5553 	struct sctp_assoc_ids *ids;
5554 	u32 num = 0;
5555 
5556 	if (sctp_style(sk, TCP))
5557 		return -EOPNOTSUPP;
5558 
5559 	if (len < sizeof(struct sctp_assoc_ids))
5560 		return -EINVAL;
5561 
5562 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5563 		num++;
5564 	}
5565 
5566 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5567 		return -EINVAL;
5568 
5569 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5570 
5571 	ids = kmalloc(len, GFP_KERNEL);
5572 	if (unlikely(!ids))
5573 		return -ENOMEM;
5574 
5575 	ids->gaids_number_of_ids = num;
5576 	num = 0;
5577 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5578 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5579 	}
5580 
5581 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5582 		kfree(ids);
5583 		return -EFAULT;
5584 	}
5585 
5586 	kfree(ids);
5587 	return 0;
5588 }
5589 
5590 /*
5591  * SCTP_PEER_ADDR_THLDS
5592  *
5593  * This option allows us to fetch the partially failed threshold for one or all
5594  * transports in an association.  See Section 6.1 of:
5595  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5596  */
5597 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5598 					    char __user *optval,
5599 					    int len,
5600 					    int __user *optlen)
5601 {
5602 	struct sctp_paddrthlds val;
5603 	struct sctp_transport *trans;
5604 	struct sctp_association *asoc;
5605 
5606 	if (len < sizeof(struct sctp_paddrthlds))
5607 		return -EINVAL;
5608 	len = sizeof(struct sctp_paddrthlds);
5609 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5610 		return -EFAULT;
5611 
5612 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5613 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5614 		if (!asoc)
5615 			return -ENOENT;
5616 
5617 		val.spt_pathpfthld = asoc->pf_retrans;
5618 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5619 	} else {
5620 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5621 					       val.spt_assoc_id);
5622 		if (!trans)
5623 			return -ENOENT;
5624 
5625 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5626 		val.spt_pathpfthld = trans->pf_retrans;
5627 	}
5628 
5629 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5630 		return -EFAULT;
5631 
5632 	return 0;
5633 }
5634 
5635 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5636 				char __user *optval, int __user *optlen)
5637 {
5638 	int retval = 0;
5639 	int len;
5640 
5641 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5642 			  sk, optname);
5643 
5644 	/* I can hardly begin to describe how wrong this is.  This is
5645 	 * so broken as to be worse than useless.  The API draft
5646 	 * REALLY is NOT helpful here...  I am not convinced that the
5647 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5648 	 * are at all well-founded.
5649 	 */
5650 	if (level != SOL_SCTP) {
5651 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5652 
5653 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5654 		return retval;
5655 	}
5656 
5657 	if (get_user(len, optlen))
5658 		return -EFAULT;
5659 
5660 	sctp_lock_sock(sk);
5661 
5662 	switch (optname) {
5663 	case SCTP_STATUS:
5664 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5665 		break;
5666 	case SCTP_DISABLE_FRAGMENTS:
5667 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5668 							   optlen);
5669 		break;
5670 	case SCTP_EVENTS:
5671 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5672 		break;
5673 	case SCTP_AUTOCLOSE:
5674 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5675 		break;
5676 	case SCTP_SOCKOPT_PEELOFF:
5677 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5678 		break;
5679 	case SCTP_PEER_ADDR_PARAMS:
5680 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5681 							  optlen);
5682 		break;
5683 	case SCTP_DELAYED_SACK:
5684 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5685 							  optlen);
5686 		break;
5687 	case SCTP_INITMSG:
5688 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5689 		break;
5690 	case SCTP_GET_PEER_ADDRS:
5691 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5692 						    optlen);
5693 		break;
5694 	case SCTP_GET_LOCAL_ADDRS:
5695 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5696 						     optlen);
5697 		break;
5698 	case SCTP_SOCKOPT_CONNECTX3:
5699 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5700 		break;
5701 	case SCTP_DEFAULT_SEND_PARAM:
5702 		retval = sctp_getsockopt_default_send_param(sk, len,
5703 							    optval, optlen);
5704 		break;
5705 	case SCTP_PRIMARY_ADDR:
5706 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5707 		break;
5708 	case SCTP_NODELAY:
5709 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5710 		break;
5711 	case SCTP_RTOINFO:
5712 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5713 		break;
5714 	case SCTP_ASSOCINFO:
5715 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5716 		break;
5717 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5718 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5719 		break;
5720 	case SCTP_MAXSEG:
5721 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5722 		break;
5723 	case SCTP_GET_PEER_ADDR_INFO:
5724 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5725 							optlen);
5726 		break;
5727 	case SCTP_ADAPTATION_LAYER:
5728 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5729 							optlen);
5730 		break;
5731 	case SCTP_CONTEXT:
5732 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5733 		break;
5734 	case SCTP_FRAGMENT_INTERLEAVE:
5735 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5736 							     optlen);
5737 		break;
5738 	case SCTP_PARTIAL_DELIVERY_POINT:
5739 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5740 								optlen);
5741 		break;
5742 	case SCTP_MAX_BURST:
5743 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5744 		break;
5745 	case SCTP_AUTH_KEY:
5746 	case SCTP_AUTH_CHUNK:
5747 	case SCTP_AUTH_DELETE_KEY:
5748 		retval = -EOPNOTSUPP;
5749 		break;
5750 	case SCTP_HMAC_IDENT:
5751 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5752 		break;
5753 	case SCTP_AUTH_ACTIVE_KEY:
5754 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5755 		break;
5756 	case SCTP_PEER_AUTH_CHUNKS:
5757 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5758 							optlen);
5759 		break;
5760 	case SCTP_LOCAL_AUTH_CHUNKS:
5761 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5762 							optlen);
5763 		break;
5764 	case SCTP_GET_ASSOC_NUMBER:
5765 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5766 		break;
5767 	case SCTP_GET_ASSOC_ID_LIST:
5768 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5769 		break;
5770 	case SCTP_AUTO_ASCONF:
5771 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5772 		break;
5773 	case SCTP_PEER_ADDR_THLDS:
5774 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5775 		break;
5776 	default:
5777 		retval = -ENOPROTOOPT;
5778 		break;
5779 	}
5780 
5781 	sctp_release_sock(sk);
5782 	return retval;
5783 }
5784 
5785 static void sctp_hash(struct sock *sk)
5786 {
5787 	/* STUB */
5788 }
5789 
5790 static void sctp_unhash(struct sock *sk)
5791 {
5792 	/* STUB */
5793 }
5794 
5795 /* Check if port is acceptable.  Possibly find first available port.
5796  *
5797  * The port hash table (contained in the 'global' SCTP protocol storage
5798  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5799  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5800  * list (the list number is the port number hashed out, so as you
5801  * would expect from a hash function, all the ports in a given list have
5802  * such a number that hashes out to the same list number; you were
5803  * expecting that, right?); so each list has a set of ports, with a
5804  * link to the socket (struct sock) that uses it, the port number and
5805  * a fastreuse flag (FIXME: NPI ipg).
5806  */
5807 static struct sctp_bind_bucket *sctp_bucket_create(
5808 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5809 
5810 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5811 {
5812 	struct sctp_bind_hashbucket *head; /* hash list */
5813 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5814 	struct hlist_node *node;
5815 	unsigned short snum;
5816 	int ret;
5817 
5818 	snum = ntohs(addr->v4.sin_port);
5819 
5820 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5821 	sctp_local_bh_disable();
5822 
5823 	if (snum == 0) {
5824 		/* Search for an available port. */
5825 		int low, high, remaining, index;
5826 		unsigned int rover;
5827 
5828 		inet_get_local_port_range(&low, &high);
5829 		remaining = (high - low) + 1;
5830 		rover = net_random() % remaining + low;
5831 
5832 		do {
5833 			rover++;
5834 			if ((rover < low) || (rover > high))
5835 				rover = low;
5836 			if (inet_is_reserved_local_port(rover))
5837 				continue;
5838 			index = sctp_phashfn(sock_net(sk), rover);
5839 			head = &sctp_port_hashtable[index];
5840 			sctp_spin_lock(&head->lock);
5841 			sctp_for_each_hentry(pp, node, &head->chain)
5842 				if ((pp->port == rover) &&
5843 				    net_eq(sock_net(sk), pp->net))
5844 					goto next;
5845 			break;
5846 		next:
5847 			sctp_spin_unlock(&head->lock);
5848 		} while (--remaining > 0);
5849 
5850 		/* Exhausted local port range during search? */
5851 		ret = 1;
5852 		if (remaining <= 0)
5853 			goto fail;
5854 
5855 		/* OK, here is the one we will use.  HEAD (the port
5856 		 * hash table list entry) is non-NULL and we hold it's
5857 		 * mutex.
5858 		 */
5859 		snum = rover;
5860 	} else {
5861 		/* We are given an specific port number; we verify
5862 		 * that it is not being used. If it is used, we will
5863 		 * exahust the search in the hash list corresponding
5864 		 * to the port number (snum) - we detect that with the
5865 		 * port iterator, pp being NULL.
5866 		 */
5867 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5868 		sctp_spin_lock(&head->lock);
5869 		sctp_for_each_hentry(pp, node, &head->chain) {
5870 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5871 				goto pp_found;
5872 		}
5873 	}
5874 	pp = NULL;
5875 	goto pp_not_found;
5876 pp_found:
5877 	if (!hlist_empty(&pp->owner)) {
5878 		/* We had a port hash table hit - there is an
5879 		 * available port (pp != NULL) and it is being
5880 		 * used by other socket (pp->owner not empty); that other
5881 		 * socket is going to be sk2.
5882 		 */
5883 		int reuse = sk->sk_reuse;
5884 		struct sock *sk2;
5885 
5886 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5887 		if (pp->fastreuse && sk->sk_reuse &&
5888 			sk->sk_state != SCTP_SS_LISTENING)
5889 			goto success;
5890 
5891 		/* Run through the list of sockets bound to the port
5892 		 * (pp->port) [via the pointers bind_next and
5893 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5894 		 * we get the endpoint they describe and run through
5895 		 * the endpoint's list of IP (v4 or v6) addresses,
5896 		 * comparing each of the addresses with the address of
5897 		 * the socket sk. If we find a match, then that means
5898 		 * that this port/socket (sk) combination are already
5899 		 * in an endpoint.
5900 		 */
5901 		sk_for_each_bound(sk2, node, &pp->owner) {
5902 			struct sctp_endpoint *ep2;
5903 			ep2 = sctp_sk(sk2)->ep;
5904 
5905 			if (sk == sk2 ||
5906 			    (reuse && sk2->sk_reuse &&
5907 			     sk2->sk_state != SCTP_SS_LISTENING))
5908 				continue;
5909 
5910 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5911 						 sctp_sk(sk2), sctp_sk(sk))) {
5912 				ret = (long)sk2;
5913 				goto fail_unlock;
5914 			}
5915 		}
5916 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5917 	}
5918 pp_not_found:
5919 	/* If there was a hash table miss, create a new port.  */
5920 	ret = 1;
5921 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5922 		goto fail_unlock;
5923 
5924 	/* In either case (hit or miss), make sure fastreuse is 1 only
5925 	 * if sk->sk_reuse is too (that is, if the caller requested
5926 	 * SO_REUSEADDR on this socket -sk-).
5927 	 */
5928 	if (hlist_empty(&pp->owner)) {
5929 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5930 			pp->fastreuse = 1;
5931 		else
5932 			pp->fastreuse = 0;
5933 	} else if (pp->fastreuse &&
5934 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5935 		pp->fastreuse = 0;
5936 
5937 	/* We are set, so fill up all the data in the hash table
5938 	 * entry, tie the socket list information with the rest of the
5939 	 * sockets FIXME: Blurry, NPI (ipg).
5940 	 */
5941 success:
5942 	if (!sctp_sk(sk)->bind_hash) {
5943 		inet_sk(sk)->inet_num = snum;
5944 		sk_add_bind_node(sk, &pp->owner);
5945 		sctp_sk(sk)->bind_hash = pp;
5946 	}
5947 	ret = 0;
5948 
5949 fail_unlock:
5950 	sctp_spin_unlock(&head->lock);
5951 
5952 fail:
5953 	sctp_local_bh_enable();
5954 	return ret;
5955 }
5956 
5957 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5958  * port is requested.
5959  */
5960 static int sctp_get_port(struct sock *sk, unsigned short snum)
5961 {
5962 	long ret;
5963 	union sctp_addr addr;
5964 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5965 
5966 	/* Set up a dummy address struct from the sk. */
5967 	af->from_sk(&addr, sk);
5968 	addr.v4.sin_port = htons(snum);
5969 
5970 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5971 	ret = sctp_get_port_local(sk, &addr);
5972 
5973 	return ret ? 1 : 0;
5974 }
5975 
5976 /*
5977  *  Move a socket to LISTENING state.
5978  */
5979 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5980 {
5981 	struct sctp_sock *sp = sctp_sk(sk);
5982 	struct sctp_endpoint *ep = sp->ep;
5983 	struct crypto_hash *tfm = NULL;
5984 
5985 	/* Allocate HMAC for generating cookie. */
5986 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5987 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5988 		if (IS_ERR(tfm)) {
5989 			net_info_ratelimited("failed to load transform for %s: %ld\n",
5990 					     sctp_hmac_alg, PTR_ERR(tfm));
5991 			return -ENOSYS;
5992 		}
5993 		sctp_sk(sk)->hmac = tfm;
5994 	}
5995 
5996 	/*
5997 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5998 	 * call that allows new associations to be accepted, the system
5999 	 * picks an ephemeral port and will choose an address set equivalent
6000 	 * to binding with a wildcard address.
6001 	 *
6002 	 * This is not currently spelled out in the SCTP sockets
6003 	 * extensions draft, but follows the practice as seen in TCP
6004 	 * sockets.
6005 	 *
6006 	 */
6007 	sk->sk_state = SCTP_SS_LISTENING;
6008 	if (!ep->base.bind_addr.port) {
6009 		if (sctp_autobind(sk))
6010 			return -EAGAIN;
6011 	} else {
6012 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6013 			sk->sk_state = SCTP_SS_CLOSED;
6014 			return -EADDRINUSE;
6015 		}
6016 	}
6017 
6018 	sk->sk_max_ack_backlog = backlog;
6019 	sctp_hash_endpoint(ep);
6020 	return 0;
6021 }
6022 
6023 /*
6024  * 4.1.3 / 5.1.3 listen()
6025  *
6026  *   By default, new associations are not accepted for UDP style sockets.
6027  *   An application uses listen() to mark a socket as being able to
6028  *   accept new associations.
6029  *
6030  *   On TCP style sockets, applications use listen() to ready the SCTP
6031  *   endpoint for accepting inbound associations.
6032  *
6033  *   On both types of endpoints a backlog of '0' disables listening.
6034  *
6035  *  Move a socket to LISTENING state.
6036  */
6037 int sctp_inet_listen(struct socket *sock, int backlog)
6038 {
6039 	struct sock *sk = sock->sk;
6040 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6041 	int err = -EINVAL;
6042 
6043 	if (unlikely(backlog < 0))
6044 		return err;
6045 
6046 	sctp_lock_sock(sk);
6047 
6048 	/* Peeled-off sockets are not allowed to listen().  */
6049 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6050 		goto out;
6051 
6052 	if (sock->state != SS_UNCONNECTED)
6053 		goto out;
6054 
6055 	/* If backlog is zero, disable listening. */
6056 	if (!backlog) {
6057 		if (sctp_sstate(sk, CLOSED))
6058 			goto out;
6059 
6060 		err = 0;
6061 		sctp_unhash_endpoint(ep);
6062 		sk->sk_state = SCTP_SS_CLOSED;
6063 		if (sk->sk_reuse)
6064 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6065 		goto out;
6066 	}
6067 
6068 	/* If we are already listening, just update the backlog */
6069 	if (sctp_sstate(sk, LISTENING))
6070 		sk->sk_max_ack_backlog = backlog;
6071 	else {
6072 		err = sctp_listen_start(sk, backlog);
6073 		if (err)
6074 			goto out;
6075 	}
6076 
6077 	err = 0;
6078 out:
6079 	sctp_release_sock(sk);
6080 	return err;
6081 }
6082 
6083 /*
6084  * This function is done by modeling the current datagram_poll() and the
6085  * tcp_poll().  Note that, based on these implementations, we don't
6086  * lock the socket in this function, even though it seems that,
6087  * ideally, locking or some other mechanisms can be used to ensure
6088  * the integrity of the counters (sndbuf and wmem_alloc) used
6089  * in this place.  We assume that we don't need locks either until proven
6090  * otherwise.
6091  *
6092  * Another thing to note is that we include the Async I/O support
6093  * here, again, by modeling the current TCP/UDP code.  We don't have
6094  * a good way to test with it yet.
6095  */
6096 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6097 {
6098 	struct sock *sk = sock->sk;
6099 	struct sctp_sock *sp = sctp_sk(sk);
6100 	unsigned int mask;
6101 
6102 	poll_wait(file, sk_sleep(sk), wait);
6103 
6104 	/* A TCP-style listening socket becomes readable when the accept queue
6105 	 * is not empty.
6106 	 */
6107 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6108 		return (!list_empty(&sp->ep->asocs)) ?
6109 			(POLLIN | POLLRDNORM) : 0;
6110 
6111 	mask = 0;
6112 
6113 	/* Is there any exceptional events?  */
6114 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6115 		mask |= POLLERR;
6116 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6117 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6118 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6119 		mask |= POLLHUP;
6120 
6121 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6122 	if (!skb_queue_empty(&sk->sk_receive_queue))
6123 		mask |= POLLIN | POLLRDNORM;
6124 
6125 	/* The association is either gone or not ready.  */
6126 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6127 		return mask;
6128 
6129 	/* Is it writable?  */
6130 	if (sctp_writeable(sk)) {
6131 		mask |= POLLOUT | POLLWRNORM;
6132 	} else {
6133 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6134 		/*
6135 		 * Since the socket is not locked, the buffer
6136 		 * might be made available after the writeable check and
6137 		 * before the bit is set.  This could cause a lost I/O
6138 		 * signal.  tcp_poll() has a race breaker for this race
6139 		 * condition.  Based on their implementation, we put
6140 		 * in the following code to cover it as well.
6141 		 */
6142 		if (sctp_writeable(sk))
6143 			mask |= POLLOUT | POLLWRNORM;
6144 	}
6145 	return mask;
6146 }
6147 
6148 /********************************************************************
6149  * 2nd Level Abstractions
6150  ********************************************************************/
6151 
6152 static struct sctp_bind_bucket *sctp_bucket_create(
6153 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6154 {
6155 	struct sctp_bind_bucket *pp;
6156 
6157 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6158 	if (pp) {
6159 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6160 		pp->port = snum;
6161 		pp->fastreuse = 0;
6162 		INIT_HLIST_HEAD(&pp->owner);
6163 		pp->net = net;
6164 		hlist_add_head(&pp->node, &head->chain);
6165 	}
6166 	return pp;
6167 }
6168 
6169 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6170 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6171 {
6172 	if (pp && hlist_empty(&pp->owner)) {
6173 		__hlist_del(&pp->node);
6174 		kmem_cache_free(sctp_bucket_cachep, pp);
6175 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6176 	}
6177 }
6178 
6179 /* Release this socket's reference to a local port.  */
6180 static inline void __sctp_put_port(struct sock *sk)
6181 {
6182 	struct sctp_bind_hashbucket *head =
6183 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6184 						  inet_sk(sk)->inet_num)];
6185 	struct sctp_bind_bucket *pp;
6186 
6187 	sctp_spin_lock(&head->lock);
6188 	pp = sctp_sk(sk)->bind_hash;
6189 	__sk_del_bind_node(sk);
6190 	sctp_sk(sk)->bind_hash = NULL;
6191 	inet_sk(sk)->inet_num = 0;
6192 	sctp_bucket_destroy(pp);
6193 	sctp_spin_unlock(&head->lock);
6194 }
6195 
6196 void sctp_put_port(struct sock *sk)
6197 {
6198 	sctp_local_bh_disable();
6199 	__sctp_put_port(sk);
6200 	sctp_local_bh_enable();
6201 }
6202 
6203 /*
6204  * The system picks an ephemeral port and choose an address set equivalent
6205  * to binding with a wildcard address.
6206  * One of those addresses will be the primary address for the association.
6207  * This automatically enables the multihoming capability of SCTP.
6208  */
6209 static int sctp_autobind(struct sock *sk)
6210 {
6211 	union sctp_addr autoaddr;
6212 	struct sctp_af *af;
6213 	__be16 port;
6214 
6215 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6216 	af = sctp_sk(sk)->pf->af;
6217 
6218 	port = htons(inet_sk(sk)->inet_num);
6219 	af->inaddr_any(&autoaddr, port);
6220 
6221 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6222 }
6223 
6224 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6225  *
6226  * From RFC 2292
6227  * 4.2 The cmsghdr Structure *
6228  *
6229  * When ancillary data is sent or received, any number of ancillary data
6230  * objects can be specified by the msg_control and msg_controllen members of
6231  * the msghdr structure, because each object is preceded by
6232  * a cmsghdr structure defining the object's length (the cmsg_len member).
6233  * Historically Berkeley-derived implementations have passed only one object
6234  * at a time, but this API allows multiple objects to be
6235  * passed in a single call to sendmsg() or recvmsg(). The following example
6236  * shows two ancillary data objects in a control buffer.
6237  *
6238  *   |<--------------------------- msg_controllen -------------------------->|
6239  *   |                                                                       |
6240  *
6241  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6242  *
6243  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6244  *   |                                   |                                   |
6245  *
6246  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6247  *
6248  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6249  *   |                                |  |                                |  |
6250  *
6251  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6252  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6253  *
6254  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6255  *
6256  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6257  *    ^
6258  *    |
6259  *
6260  * msg_control
6261  * points here
6262  */
6263 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6264 				  sctp_cmsgs_t *cmsgs)
6265 {
6266 	struct cmsghdr *cmsg;
6267 	struct msghdr *my_msg = (struct msghdr *)msg;
6268 
6269 	for (cmsg = CMSG_FIRSTHDR(msg);
6270 	     cmsg != NULL;
6271 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6272 		if (!CMSG_OK(my_msg, cmsg))
6273 			return -EINVAL;
6274 
6275 		/* Should we parse this header or ignore?  */
6276 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6277 			continue;
6278 
6279 		/* Strictly check lengths following example in SCM code.  */
6280 		switch (cmsg->cmsg_type) {
6281 		case SCTP_INIT:
6282 			/* SCTP Socket API Extension
6283 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6284 			 *
6285 			 * This cmsghdr structure provides information for
6286 			 * initializing new SCTP associations with sendmsg().
6287 			 * The SCTP_INITMSG socket option uses this same data
6288 			 * structure.  This structure is not used for
6289 			 * recvmsg().
6290 			 *
6291 			 * cmsg_level    cmsg_type      cmsg_data[]
6292 			 * ------------  ------------   ----------------------
6293 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6294 			 */
6295 			if (cmsg->cmsg_len !=
6296 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6297 				return -EINVAL;
6298 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6299 			break;
6300 
6301 		case SCTP_SNDRCV:
6302 			/* SCTP Socket API Extension
6303 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6304 			 *
6305 			 * This cmsghdr structure specifies SCTP options for
6306 			 * sendmsg() and describes SCTP header information
6307 			 * about a received message through recvmsg().
6308 			 *
6309 			 * cmsg_level    cmsg_type      cmsg_data[]
6310 			 * ------------  ------------   ----------------------
6311 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6312 			 */
6313 			if (cmsg->cmsg_len !=
6314 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6315 				return -EINVAL;
6316 
6317 			cmsgs->info =
6318 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6319 
6320 			/* Minimally, validate the sinfo_flags. */
6321 			if (cmsgs->info->sinfo_flags &
6322 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6323 			      SCTP_ABORT | SCTP_EOF))
6324 				return -EINVAL;
6325 			break;
6326 
6327 		default:
6328 			return -EINVAL;
6329 		}
6330 	}
6331 	return 0;
6332 }
6333 
6334 /*
6335  * Wait for a packet..
6336  * Note: This function is the same function as in core/datagram.c
6337  * with a few modifications to make lksctp work.
6338  */
6339 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6340 {
6341 	int error;
6342 	DEFINE_WAIT(wait);
6343 
6344 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6345 
6346 	/* Socket errors? */
6347 	error = sock_error(sk);
6348 	if (error)
6349 		goto out;
6350 
6351 	if (!skb_queue_empty(&sk->sk_receive_queue))
6352 		goto ready;
6353 
6354 	/* Socket shut down?  */
6355 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6356 		goto out;
6357 
6358 	/* Sequenced packets can come disconnected.  If so we report the
6359 	 * problem.
6360 	 */
6361 	error = -ENOTCONN;
6362 
6363 	/* Is there a good reason to think that we may receive some data?  */
6364 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6365 		goto out;
6366 
6367 	/* Handle signals.  */
6368 	if (signal_pending(current))
6369 		goto interrupted;
6370 
6371 	/* Let another process have a go.  Since we are going to sleep
6372 	 * anyway.  Note: This may cause odd behaviors if the message
6373 	 * does not fit in the user's buffer, but this seems to be the
6374 	 * only way to honor MSG_DONTWAIT realistically.
6375 	 */
6376 	sctp_release_sock(sk);
6377 	*timeo_p = schedule_timeout(*timeo_p);
6378 	sctp_lock_sock(sk);
6379 
6380 ready:
6381 	finish_wait(sk_sleep(sk), &wait);
6382 	return 0;
6383 
6384 interrupted:
6385 	error = sock_intr_errno(*timeo_p);
6386 
6387 out:
6388 	finish_wait(sk_sleep(sk), &wait);
6389 	*err = error;
6390 	return error;
6391 }
6392 
6393 /* Receive a datagram.
6394  * Note: This is pretty much the same routine as in core/datagram.c
6395  * with a few changes to make lksctp work.
6396  */
6397 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6398 					      int noblock, int *err)
6399 {
6400 	int error;
6401 	struct sk_buff *skb;
6402 	long timeo;
6403 
6404 	timeo = sock_rcvtimeo(sk, noblock);
6405 
6406 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6407 			  timeo, MAX_SCHEDULE_TIMEOUT);
6408 
6409 	do {
6410 		/* Again only user level code calls this function,
6411 		 * so nothing interrupt level
6412 		 * will suddenly eat the receive_queue.
6413 		 *
6414 		 *  Look at current nfs client by the way...
6415 		 *  However, this function was correct in any case. 8)
6416 		 */
6417 		if (flags & MSG_PEEK) {
6418 			spin_lock_bh(&sk->sk_receive_queue.lock);
6419 			skb = skb_peek(&sk->sk_receive_queue);
6420 			if (skb)
6421 				atomic_inc(&skb->users);
6422 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6423 		} else {
6424 			skb = skb_dequeue(&sk->sk_receive_queue);
6425 		}
6426 
6427 		if (skb)
6428 			return skb;
6429 
6430 		/* Caller is allowed not to check sk->sk_err before calling. */
6431 		error = sock_error(sk);
6432 		if (error)
6433 			goto no_packet;
6434 
6435 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6436 			break;
6437 
6438 		/* User doesn't want to wait.  */
6439 		error = -EAGAIN;
6440 		if (!timeo)
6441 			goto no_packet;
6442 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6443 
6444 	return NULL;
6445 
6446 no_packet:
6447 	*err = error;
6448 	return NULL;
6449 }
6450 
6451 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6452 static void __sctp_write_space(struct sctp_association *asoc)
6453 {
6454 	struct sock *sk = asoc->base.sk;
6455 	struct socket *sock = sk->sk_socket;
6456 
6457 	if ((sctp_wspace(asoc) > 0) && sock) {
6458 		if (waitqueue_active(&asoc->wait))
6459 			wake_up_interruptible(&asoc->wait);
6460 
6461 		if (sctp_writeable(sk)) {
6462 			wait_queue_head_t *wq = sk_sleep(sk);
6463 
6464 			if (wq && waitqueue_active(wq))
6465 				wake_up_interruptible(wq);
6466 
6467 			/* Note that we try to include the Async I/O support
6468 			 * here by modeling from the current TCP/UDP code.
6469 			 * We have not tested with it yet.
6470 			 */
6471 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6472 				sock_wake_async(sock,
6473 						SOCK_WAKE_SPACE, POLL_OUT);
6474 		}
6475 	}
6476 }
6477 
6478 /* Do accounting for the sndbuf space.
6479  * Decrement the used sndbuf space of the corresponding association by the
6480  * data size which was just transmitted(freed).
6481  */
6482 static void sctp_wfree(struct sk_buff *skb)
6483 {
6484 	struct sctp_association *asoc;
6485 	struct sctp_chunk *chunk;
6486 	struct sock *sk;
6487 
6488 	/* Get the saved chunk pointer.  */
6489 	chunk = *((struct sctp_chunk **)(skb->cb));
6490 	asoc = chunk->asoc;
6491 	sk = asoc->base.sk;
6492 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6493 				sizeof(struct sk_buff) +
6494 				sizeof(struct sctp_chunk);
6495 
6496 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6497 
6498 	/*
6499 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6500 	 */
6501 	sk->sk_wmem_queued   -= skb->truesize;
6502 	sk_mem_uncharge(sk, skb->truesize);
6503 
6504 	sock_wfree(skb);
6505 	__sctp_write_space(asoc);
6506 
6507 	sctp_association_put(asoc);
6508 }
6509 
6510 /* Do accounting for the receive space on the socket.
6511  * Accounting for the association is done in ulpevent.c
6512  * We set this as a destructor for the cloned data skbs so that
6513  * accounting is done at the correct time.
6514  */
6515 void sctp_sock_rfree(struct sk_buff *skb)
6516 {
6517 	struct sock *sk = skb->sk;
6518 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6519 
6520 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6521 
6522 	/*
6523 	 * Mimic the behavior of sock_rfree
6524 	 */
6525 	sk_mem_uncharge(sk, event->rmem_len);
6526 }
6527 
6528 
6529 /* Helper function to wait for space in the sndbuf.  */
6530 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6531 				size_t msg_len)
6532 {
6533 	struct sock *sk = asoc->base.sk;
6534 	int err = 0;
6535 	long current_timeo = *timeo_p;
6536 	DEFINE_WAIT(wait);
6537 
6538 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6539 			  asoc, (long)(*timeo_p), msg_len);
6540 
6541 	/* Increment the association's refcnt.  */
6542 	sctp_association_hold(asoc);
6543 
6544 	/* Wait on the association specific sndbuf space. */
6545 	for (;;) {
6546 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6547 					  TASK_INTERRUPTIBLE);
6548 		if (!*timeo_p)
6549 			goto do_nonblock;
6550 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6551 		    asoc->base.dead)
6552 			goto do_error;
6553 		if (signal_pending(current))
6554 			goto do_interrupted;
6555 		if (msg_len <= sctp_wspace(asoc))
6556 			break;
6557 
6558 		/* Let another process have a go.  Since we are going
6559 		 * to sleep anyway.
6560 		 */
6561 		sctp_release_sock(sk);
6562 		current_timeo = schedule_timeout(current_timeo);
6563 		BUG_ON(sk != asoc->base.sk);
6564 		sctp_lock_sock(sk);
6565 
6566 		*timeo_p = current_timeo;
6567 	}
6568 
6569 out:
6570 	finish_wait(&asoc->wait, &wait);
6571 
6572 	/* Release the association's refcnt.  */
6573 	sctp_association_put(asoc);
6574 
6575 	return err;
6576 
6577 do_error:
6578 	err = -EPIPE;
6579 	goto out;
6580 
6581 do_interrupted:
6582 	err = sock_intr_errno(*timeo_p);
6583 	goto out;
6584 
6585 do_nonblock:
6586 	err = -EAGAIN;
6587 	goto out;
6588 }
6589 
6590 void sctp_data_ready(struct sock *sk, int len)
6591 {
6592 	struct socket_wq *wq;
6593 
6594 	rcu_read_lock();
6595 	wq = rcu_dereference(sk->sk_wq);
6596 	if (wq_has_sleeper(wq))
6597 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6598 						POLLRDNORM | POLLRDBAND);
6599 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6600 	rcu_read_unlock();
6601 }
6602 
6603 /* If socket sndbuf has changed, wake up all per association waiters.  */
6604 void sctp_write_space(struct sock *sk)
6605 {
6606 	struct sctp_association *asoc;
6607 
6608 	/* Wake up the tasks in each wait queue.  */
6609 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6610 		__sctp_write_space(asoc);
6611 	}
6612 }
6613 
6614 /* Is there any sndbuf space available on the socket?
6615  *
6616  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6617  * associations on the same socket.  For a UDP-style socket with
6618  * multiple associations, it is possible for it to be "unwriteable"
6619  * prematurely.  I assume that this is acceptable because
6620  * a premature "unwriteable" is better than an accidental "writeable" which
6621  * would cause an unwanted block under certain circumstances.  For the 1-1
6622  * UDP-style sockets or TCP-style sockets, this code should work.
6623  *  - Daisy
6624  */
6625 static int sctp_writeable(struct sock *sk)
6626 {
6627 	int amt = 0;
6628 
6629 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6630 	if (amt < 0)
6631 		amt = 0;
6632 	return amt;
6633 }
6634 
6635 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6636  * returns immediately with EINPROGRESS.
6637  */
6638 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6639 {
6640 	struct sock *sk = asoc->base.sk;
6641 	int err = 0;
6642 	long current_timeo = *timeo_p;
6643 	DEFINE_WAIT(wait);
6644 
6645 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6646 			  (long)(*timeo_p));
6647 
6648 	/* Increment the association's refcnt.  */
6649 	sctp_association_hold(asoc);
6650 
6651 	for (;;) {
6652 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6653 					  TASK_INTERRUPTIBLE);
6654 		if (!*timeo_p)
6655 			goto do_nonblock;
6656 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6657 			break;
6658 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6659 		    asoc->base.dead)
6660 			goto do_error;
6661 		if (signal_pending(current))
6662 			goto do_interrupted;
6663 
6664 		if (sctp_state(asoc, ESTABLISHED))
6665 			break;
6666 
6667 		/* Let another process have a go.  Since we are going
6668 		 * to sleep anyway.
6669 		 */
6670 		sctp_release_sock(sk);
6671 		current_timeo = schedule_timeout(current_timeo);
6672 		sctp_lock_sock(sk);
6673 
6674 		*timeo_p = current_timeo;
6675 	}
6676 
6677 out:
6678 	finish_wait(&asoc->wait, &wait);
6679 
6680 	/* Release the association's refcnt.  */
6681 	sctp_association_put(asoc);
6682 
6683 	return err;
6684 
6685 do_error:
6686 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6687 		err = -ETIMEDOUT;
6688 	else
6689 		err = -ECONNREFUSED;
6690 	goto out;
6691 
6692 do_interrupted:
6693 	err = sock_intr_errno(*timeo_p);
6694 	goto out;
6695 
6696 do_nonblock:
6697 	err = -EINPROGRESS;
6698 	goto out;
6699 }
6700 
6701 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6702 {
6703 	struct sctp_endpoint *ep;
6704 	int err = 0;
6705 	DEFINE_WAIT(wait);
6706 
6707 	ep = sctp_sk(sk)->ep;
6708 
6709 
6710 	for (;;) {
6711 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6712 					  TASK_INTERRUPTIBLE);
6713 
6714 		if (list_empty(&ep->asocs)) {
6715 			sctp_release_sock(sk);
6716 			timeo = schedule_timeout(timeo);
6717 			sctp_lock_sock(sk);
6718 		}
6719 
6720 		err = -EINVAL;
6721 		if (!sctp_sstate(sk, LISTENING))
6722 			break;
6723 
6724 		err = 0;
6725 		if (!list_empty(&ep->asocs))
6726 			break;
6727 
6728 		err = sock_intr_errno(timeo);
6729 		if (signal_pending(current))
6730 			break;
6731 
6732 		err = -EAGAIN;
6733 		if (!timeo)
6734 			break;
6735 	}
6736 
6737 	finish_wait(sk_sleep(sk), &wait);
6738 
6739 	return err;
6740 }
6741 
6742 static void sctp_wait_for_close(struct sock *sk, long timeout)
6743 {
6744 	DEFINE_WAIT(wait);
6745 
6746 	do {
6747 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6748 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6749 			break;
6750 		sctp_release_sock(sk);
6751 		timeout = schedule_timeout(timeout);
6752 		sctp_lock_sock(sk);
6753 	} while (!signal_pending(current) && timeout);
6754 
6755 	finish_wait(sk_sleep(sk), &wait);
6756 }
6757 
6758 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6759 {
6760 	struct sk_buff *frag;
6761 
6762 	if (!skb->data_len)
6763 		goto done;
6764 
6765 	/* Don't forget the fragments. */
6766 	skb_walk_frags(skb, frag)
6767 		sctp_skb_set_owner_r_frag(frag, sk);
6768 
6769 done:
6770 	sctp_skb_set_owner_r(skb, sk);
6771 }
6772 
6773 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6774 		    struct sctp_association *asoc)
6775 {
6776 	struct inet_sock *inet = inet_sk(sk);
6777 	struct inet_sock *newinet;
6778 
6779 	newsk->sk_type = sk->sk_type;
6780 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6781 	newsk->sk_flags = sk->sk_flags;
6782 	newsk->sk_no_check = sk->sk_no_check;
6783 	newsk->sk_reuse = sk->sk_reuse;
6784 
6785 	newsk->sk_shutdown = sk->sk_shutdown;
6786 	newsk->sk_destruct = inet_sock_destruct;
6787 	newsk->sk_family = sk->sk_family;
6788 	newsk->sk_protocol = IPPROTO_SCTP;
6789 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6790 	newsk->sk_sndbuf = sk->sk_sndbuf;
6791 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6792 	newsk->sk_lingertime = sk->sk_lingertime;
6793 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6794 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6795 
6796 	newinet = inet_sk(newsk);
6797 
6798 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6799 	 * getsockname() and getpeername()
6800 	 */
6801 	newinet->inet_sport = inet->inet_sport;
6802 	newinet->inet_saddr = inet->inet_saddr;
6803 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6804 	newinet->inet_dport = htons(asoc->peer.port);
6805 	newinet->pmtudisc = inet->pmtudisc;
6806 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6807 
6808 	newinet->uc_ttl = inet->uc_ttl;
6809 	newinet->mc_loop = 1;
6810 	newinet->mc_ttl = 1;
6811 	newinet->mc_index = 0;
6812 	newinet->mc_list = NULL;
6813 }
6814 
6815 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6816  * and its messages to the newsk.
6817  */
6818 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6819 			      struct sctp_association *assoc,
6820 			      sctp_socket_type_t type)
6821 {
6822 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6823 	struct sctp_sock *newsp = sctp_sk(newsk);
6824 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6825 	struct sctp_endpoint *newep = newsp->ep;
6826 	struct sk_buff *skb, *tmp;
6827 	struct sctp_ulpevent *event;
6828 	struct sctp_bind_hashbucket *head;
6829 	struct list_head tmplist;
6830 
6831 	/* Migrate socket buffer sizes and all the socket level options to the
6832 	 * new socket.
6833 	 */
6834 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6835 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6836 	/* Brute force copy old sctp opt. */
6837 	if (oldsp->do_auto_asconf) {
6838 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6839 		inet_sk_copy_descendant(newsk, oldsk);
6840 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6841 	} else
6842 		inet_sk_copy_descendant(newsk, oldsk);
6843 
6844 	/* Restore the ep value that was overwritten with the above structure
6845 	 * copy.
6846 	 */
6847 	newsp->ep = newep;
6848 	newsp->hmac = NULL;
6849 
6850 	/* Hook this new socket in to the bind_hash list. */
6851 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6852 						 inet_sk(oldsk)->inet_num)];
6853 	sctp_local_bh_disable();
6854 	sctp_spin_lock(&head->lock);
6855 	pp = sctp_sk(oldsk)->bind_hash;
6856 	sk_add_bind_node(newsk, &pp->owner);
6857 	sctp_sk(newsk)->bind_hash = pp;
6858 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6859 	sctp_spin_unlock(&head->lock);
6860 	sctp_local_bh_enable();
6861 
6862 	/* Copy the bind_addr list from the original endpoint to the new
6863 	 * endpoint so that we can handle restarts properly
6864 	 */
6865 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6866 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6867 
6868 	/* Move any messages in the old socket's receive queue that are for the
6869 	 * peeled off association to the new socket's receive queue.
6870 	 */
6871 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6872 		event = sctp_skb2event(skb);
6873 		if (event->asoc == assoc) {
6874 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6875 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6876 			sctp_skb_set_owner_r_frag(skb, newsk);
6877 		}
6878 	}
6879 
6880 	/* Clean up any messages pending delivery due to partial
6881 	 * delivery.   Three cases:
6882 	 * 1) No partial deliver;  no work.
6883 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6884 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6885 	 */
6886 	skb_queue_head_init(&newsp->pd_lobby);
6887 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6888 
6889 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6890 		struct sk_buff_head *queue;
6891 
6892 		/* Decide which queue to move pd_lobby skbs to. */
6893 		if (assoc->ulpq.pd_mode) {
6894 			queue = &newsp->pd_lobby;
6895 		} else
6896 			queue = &newsk->sk_receive_queue;
6897 
6898 		/* Walk through the pd_lobby, looking for skbs that
6899 		 * need moved to the new socket.
6900 		 */
6901 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6902 			event = sctp_skb2event(skb);
6903 			if (event->asoc == assoc) {
6904 				__skb_unlink(skb, &oldsp->pd_lobby);
6905 				__skb_queue_tail(queue, skb);
6906 				sctp_skb_set_owner_r_frag(skb, newsk);
6907 			}
6908 		}
6909 
6910 		/* Clear up any skbs waiting for the partial
6911 		 * delivery to finish.
6912 		 */
6913 		if (assoc->ulpq.pd_mode)
6914 			sctp_clear_pd(oldsk, NULL);
6915 
6916 	}
6917 
6918 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6919 		sctp_skb_set_owner_r_frag(skb, newsk);
6920 
6921 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6922 		sctp_skb_set_owner_r_frag(skb, newsk);
6923 
6924 	/* Set the type of socket to indicate that it is peeled off from the
6925 	 * original UDP-style socket or created with the accept() call on a
6926 	 * TCP-style socket..
6927 	 */
6928 	newsp->type = type;
6929 
6930 	/* Mark the new socket "in-use" by the user so that any packets
6931 	 * that may arrive on the association after we've moved it are
6932 	 * queued to the backlog.  This prevents a potential race between
6933 	 * backlog processing on the old socket and new-packet processing
6934 	 * on the new socket.
6935 	 *
6936 	 * The caller has just allocated newsk so we can guarantee that other
6937 	 * paths won't try to lock it and then oldsk.
6938 	 */
6939 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6940 	sctp_assoc_migrate(assoc, newsk);
6941 
6942 	/* If the association on the newsk is already closed before accept()
6943 	 * is called, set RCV_SHUTDOWN flag.
6944 	 */
6945 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6946 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6947 
6948 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6949 	sctp_release_sock(newsk);
6950 }
6951 
6952 
6953 /* This proto struct describes the ULP interface for SCTP.  */
6954 struct proto sctp_prot = {
6955 	.name        =	"SCTP",
6956 	.owner       =	THIS_MODULE,
6957 	.close       =	sctp_close,
6958 	.connect     =	sctp_connect,
6959 	.disconnect  =	sctp_disconnect,
6960 	.accept      =	sctp_accept,
6961 	.ioctl       =	sctp_ioctl,
6962 	.init        =	sctp_init_sock,
6963 	.destroy     =	sctp_destroy_sock,
6964 	.shutdown    =	sctp_shutdown,
6965 	.setsockopt  =	sctp_setsockopt,
6966 	.getsockopt  =	sctp_getsockopt,
6967 	.sendmsg     =	sctp_sendmsg,
6968 	.recvmsg     =	sctp_recvmsg,
6969 	.bind        =	sctp_bind,
6970 	.backlog_rcv =	sctp_backlog_rcv,
6971 	.hash        =	sctp_hash,
6972 	.unhash      =	sctp_unhash,
6973 	.get_port    =	sctp_get_port,
6974 	.obj_size    =  sizeof(struct sctp_sock),
6975 	.sysctl_mem  =  sysctl_sctp_mem,
6976 	.sysctl_rmem =  sysctl_sctp_rmem,
6977 	.sysctl_wmem =  sysctl_sctp_wmem,
6978 	.memory_pressure = &sctp_memory_pressure,
6979 	.enter_memory_pressure = sctp_enter_memory_pressure,
6980 	.memory_allocated = &sctp_memory_allocated,
6981 	.sockets_allocated = &sctp_sockets_allocated,
6982 };
6983 
6984 #if IS_ENABLED(CONFIG_IPV6)
6985 
6986 struct proto sctpv6_prot = {
6987 	.name		= "SCTPv6",
6988 	.owner		= THIS_MODULE,
6989 	.close		= sctp_close,
6990 	.connect	= sctp_connect,
6991 	.disconnect	= sctp_disconnect,
6992 	.accept		= sctp_accept,
6993 	.ioctl		= sctp_ioctl,
6994 	.init		= sctp_init_sock,
6995 	.destroy	= sctp_destroy_sock,
6996 	.shutdown	= sctp_shutdown,
6997 	.setsockopt	= sctp_setsockopt,
6998 	.getsockopt	= sctp_getsockopt,
6999 	.sendmsg	= sctp_sendmsg,
7000 	.recvmsg	= sctp_recvmsg,
7001 	.bind		= sctp_bind,
7002 	.backlog_rcv	= sctp_backlog_rcv,
7003 	.hash		= sctp_hash,
7004 	.unhash		= sctp_unhash,
7005 	.get_port	= sctp_get_port,
7006 	.obj_size	= sizeof(struct sctp6_sock),
7007 	.sysctl_mem	= sysctl_sctp_mem,
7008 	.sysctl_rmem	= sysctl_sctp_rmem,
7009 	.sysctl_wmem	= sysctl_sctp_wmem,
7010 	.memory_pressure = &sctp_memory_pressure,
7011 	.enter_memory_pressure = sctp_enter_memory_pressure,
7012 	.memory_allocated = &sctp_memory_allocated,
7013 	.sockets_allocated = &sctp_sockets_allocated,
7014 };
7015 #endif /* IS_ENABLED(CONFIG_IPV6) */
7016