1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && inet_port_requires_bind_service(net, snum) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if (sctp_get_port_local(sk, addr)) 418 return -EADDRINUSE; 419 420 /* Refresh ephemeral port. */ 421 if (!bp->port) 422 bp->port = inet_sk(sk)->inet_num; 423 424 /* Add the address to the bind address list. 425 * Use GFP_ATOMIC since BHs will be disabled. 426 */ 427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 428 SCTP_ADDR_SRC, GFP_ATOMIC); 429 430 if (ret) { 431 sctp_put_port(sk); 432 return ret; 433 } 434 /* Copy back into socket for getsockname() use. */ 435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 436 sp->pf->to_sk_saddr(addr, sk); 437 438 return ret; 439 } 440 441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 442 * 443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 444 * at any one time. If a sender, after sending an ASCONF chunk, decides 445 * it needs to transfer another ASCONF Chunk, it MUST wait until the 446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 447 * subsequent ASCONF. Note this restriction binds each side, so at any 448 * time two ASCONF may be in-transit on any given association (one sent 449 * from each endpoint). 450 */ 451 static int sctp_send_asconf(struct sctp_association *asoc, 452 struct sctp_chunk *chunk) 453 { 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct sctp_sock *sp; 543 struct sctp_endpoint *ep; 544 struct sctp_association *asoc; 545 struct sctp_bind_addr *bp; 546 struct sctp_chunk *chunk; 547 struct sctp_sockaddr_entry *laddr; 548 union sctp_addr *addr; 549 union sctp_addr saveaddr; 550 void *addr_buf; 551 struct sctp_af *af; 552 struct list_head *p; 553 int i; 554 int retval = 0; 555 556 sp = sctp_sk(sk); 557 ep = sp->ep; 558 559 if (!ep->asconf_enable) 560 return retval; 561 562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 563 __func__, sk, addrs, addrcnt); 564 565 list_for_each_entry(asoc, &ep->asocs, asocs) { 566 if (!asoc->peer.asconf_capable) 567 continue; 568 569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 570 continue; 571 572 if (!sctp_state(asoc, ESTABLISHED)) 573 continue; 574 575 /* Check if any address in the packed array of addresses is 576 * in the bind address list of the association. If so, 577 * do not send the asconf chunk to its peer, but continue with 578 * other associations. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 if (!af) { 585 retval = -EINVAL; 586 goto out; 587 } 588 589 if (sctp_assoc_lookup_laddr(asoc, addr)) 590 break; 591 592 addr_buf += af->sockaddr_len; 593 } 594 if (i < addrcnt) 595 continue; 596 597 /* Use the first valid address in bind addr list of 598 * association as Address Parameter of ASCONF CHUNK. 599 */ 600 bp = &asoc->base.bind_addr; 601 p = bp->address_list.next; 602 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 604 addrcnt, SCTP_PARAM_ADD_IP); 605 if (!chunk) { 606 retval = -ENOMEM; 607 goto out; 608 } 609 610 /* Add the new addresses to the bind address list with 611 * use_as_src set to 0. 612 */ 613 addr_buf = addrs; 614 for (i = 0; i < addrcnt; i++) { 615 addr = addr_buf; 616 af = sctp_get_af_specific(addr->v4.sin_family); 617 memcpy(&saveaddr, addr, af->sockaddr_len); 618 retval = sctp_add_bind_addr(bp, &saveaddr, 619 sizeof(saveaddr), 620 SCTP_ADDR_NEW, GFP_ATOMIC); 621 addr_buf += af->sockaddr_len; 622 } 623 if (asoc->src_out_of_asoc_ok) { 624 struct sctp_transport *trans; 625 626 list_for_each_entry(trans, 627 &asoc->peer.transport_addr_list, transports) { 628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 629 2*asoc->pathmtu, 4380)); 630 trans->ssthresh = asoc->peer.i.a_rwnd; 631 trans->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, trans); 633 trans->rtt = trans->srtt = trans->rttvar = 0; 634 /* Clear the source and route cache */ 635 sctp_transport_route(trans, NULL, 636 sctp_sk(asoc->base.sk)); 637 } 638 } 639 retval = sctp_send_asconf(asoc, chunk); 640 } 641 642 out: 643 return retval; 644 } 645 646 /* Remove a list of addresses from bind addresses list. Do not remove the 647 * last address. 648 * 649 * Basically run through each address specified in the addrs/addrcnt 650 * array/length pair, determine if it is IPv6 or IPv4 and call 651 * sctp_del_bind() on it. 652 * 653 * If any of them fails, then the operation will be reversed and the 654 * ones that were removed will be added back. 655 * 656 * At least one address has to be left; if only one address is 657 * available, the operation will return -EBUSY. 658 * 659 * Only sctp_setsockopt_bindx() is supposed to call this function. 660 */ 661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 662 { 663 struct sctp_sock *sp = sctp_sk(sk); 664 struct sctp_endpoint *ep = sp->ep; 665 int cnt; 666 struct sctp_bind_addr *bp = &ep->base.bind_addr; 667 int retval = 0; 668 void *addr_buf; 669 union sctp_addr *sa_addr; 670 struct sctp_af *af; 671 672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 673 __func__, sk, addrs, addrcnt); 674 675 addr_buf = addrs; 676 for (cnt = 0; cnt < addrcnt; cnt++) { 677 /* If the bind address list is empty or if there is only one 678 * bind address, there is nothing more to be removed (we need 679 * at least one address here). 680 */ 681 if (list_empty(&bp->address_list) || 682 (sctp_list_single_entry(&bp->address_list))) { 683 retval = -EBUSY; 684 goto err_bindx_rem; 685 } 686 687 sa_addr = addr_buf; 688 af = sctp_get_af_specific(sa_addr->sa.sa_family); 689 if (!af) { 690 retval = -EINVAL; 691 goto err_bindx_rem; 692 } 693 694 if (!af->addr_valid(sa_addr, sp, NULL)) { 695 retval = -EADDRNOTAVAIL; 696 goto err_bindx_rem; 697 } 698 699 if (sa_addr->v4.sin_port && 700 sa_addr->v4.sin_port != htons(bp->port)) { 701 retval = -EINVAL; 702 goto err_bindx_rem; 703 } 704 705 if (!sa_addr->v4.sin_port) 706 sa_addr->v4.sin_port = htons(bp->port); 707 708 /* FIXME - There is probably a need to check if sk->sk_saddr and 709 * sk->sk_rcv_addr are currently set to one of the addresses to 710 * be removed. This is something which needs to be looked into 711 * when we are fixing the outstanding issues with multi-homing 712 * socket routing and failover schemes. Refer to comments in 713 * sctp_do_bind(). -daisy 714 */ 715 retval = sctp_del_bind_addr(bp, sa_addr); 716 717 addr_buf += af->sockaddr_len; 718 err_bindx_rem: 719 if (retval < 0) { 720 /* Failed. Add the ones that has been removed back */ 721 if (cnt > 0) 722 sctp_bindx_add(sk, addrs, cnt); 723 return retval; 724 } 725 } 726 727 return retval; 728 } 729 730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 731 * the associations that are part of the endpoint indicating that a list of 732 * local addresses are removed from the endpoint. 733 * 734 * If any of the addresses is already in the bind address list of the 735 * association, we do not send the chunk for that association. But it will not 736 * affect other associations. 737 * 738 * Only sctp_setsockopt_bindx() is supposed to call this function. 739 */ 740 static int sctp_send_asconf_del_ip(struct sock *sk, 741 struct sockaddr *addrs, 742 int addrcnt) 743 { 744 struct sctp_sock *sp; 745 struct sctp_endpoint *ep; 746 struct sctp_association *asoc; 747 struct sctp_transport *transport; 748 struct sctp_bind_addr *bp; 749 struct sctp_chunk *chunk; 750 union sctp_addr *laddr; 751 void *addr_buf; 752 struct sctp_af *af; 753 struct sctp_sockaddr_entry *saddr; 754 int i; 755 int retval = 0; 756 int stored = 0; 757 758 chunk = NULL; 759 sp = sctp_sk(sk); 760 ep = sp->ep; 761 762 if (!ep->asconf_enable) 763 return retval; 764 765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 766 __func__, sk, addrs, addrcnt); 767 768 list_for_each_entry(asoc, &ep->asocs, asocs) { 769 770 if (!asoc->peer.asconf_capable) 771 continue; 772 773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 774 continue; 775 776 if (!sctp_state(asoc, ESTABLISHED)) 777 continue; 778 779 /* Check if any address in the packed array of addresses is 780 * not present in the bind address list of the association. 781 * If so, do not send the asconf chunk to its peer, but 782 * continue with other associations. 783 */ 784 addr_buf = addrs; 785 for (i = 0; i < addrcnt; i++) { 786 laddr = addr_buf; 787 af = sctp_get_af_specific(laddr->v4.sin_family); 788 if (!af) { 789 retval = -EINVAL; 790 goto out; 791 } 792 793 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 794 break; 795 796 addr_buf += af->sockaddr_len; 797 } 798 if (i < addrcnt) 799 continue; 800 801 /* Find one address in the association's bind address list 802 * that is not in the packed array of addresses. This is to 803 * make sure that we do not delete all the addresses in the 804 * association. 805 */ 806 bp = &asoc->base.bind_addr; 807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 808 addrcnt, sp); 809 if ((laddr == NULL) && (addrcnt == 1)) { 810 if (asoc->asconf_addr_del_pending) 811 continue; 812 asoc->asconf_addr_del_pending = 813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 814 if (asoc->asconf_addr_del_pending == NULL) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 asoc->asconf_addr_del_pending->sa.sa_family = 819 addrs->sa_family; 820 asoc->asconf_addr_del_pending->v4.sin_port = 821 htons(bp->port); 822 if (addrs->sa_family == AF_INET) { 823 struct sockaddr_in *sin; 824 825 sin = (struct sockaddr_in *)addrs; 826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 827 } else if (addrs->sa_family == AF_INET6) { 828 struct sockaddr_in6 *sin6; 829 830 sin6 = (struct sockaddr_in6 *)addrs; 831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 832 } 833 834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 835 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 836 asoc->asconf_addr_del_pending); 837 838 asoc->src_out_of_asoc_ok = 1; 839 stored = 1; 840 goto skip_mkasconf; 841 } 842 843 if (laddr == NULL) 844 return -EINVAL; 845 846 /* We do not need RCU protection throughout this loop 847 * because this is done under a socket lock from the 848 * setsockopt call. 849 */ 850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 851 SCTP_PARAM_DEL_IP); 852 if (!chunk) { 853 retval = -ENOMEM; 854 goto out; 855 } 856 857 skip_mkasconf: 858 /* Reset use_as_src flag for the addresses in the bind address 859 * list that are to be deleted. 860 */ 861 addr_buf = addrs; 862 for (i = 0; i < addrcnt; i++) { 863 laddr = addr_buf; 864 af = sctp_get_af_specific(laddr->v4.sin_family); 865 list_for_each_entry(saddr, &bp->address_list, list) { 866 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 867 saddr->state = SCTP_ADDR_DEL; 868 } 869 addr_buf += af->sockaddr_len; 870 } 871 872 /* Update the route and saddr entries for all the transports 873 * as some of the addresses in the bind address list are 874 * about to be deleted and cannot be used as source addresses. 875 */ 876 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 877 transports) { 878 sctp_transport_route(transport, NULL, 879 sctp_sk(asoc->base.sk)); 880 } 881 882 if (stored) 883 /* We don't need to transmit ASCONF */ 884 continue; 885 retval = sctp_send_asconf(asoc, chunk); 886 } 887 out: 888 return retval; 889 } 890 891 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 893 { 894 struct sock *sk = sctp_opt2sk(sp); 895 union sctp_addr *addr; 896 struct sctp_af *af; 897 898 /* It is safe to write port space in caller. */ 899 addr = &addrw->a; 900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 901 af = sctp_get_af_specific(addr->sa.sa_family); 902 if (!af) 903 return -EINVAL; 904 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 905 return -EINVAL; 906 907 if (addrw->state == SCTP_ADDR_NEW) 908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 909 else 910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 911 } 912 913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 914 * 915 * API 8.1 916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 917 * int flags); 918 * 919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 921 * or IPv6 addresses. 922 * 923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 924 * Section 3.1.2 for this usage. 925 * 926 * addrs is a pointer to an array of one or more socket addresses. Each 927 * address is contained in its appropriate structure (i.e. struct 928 * sockaddr_in or struct sockaddr_in6) the family of the address type 929 * must be used to distinguish the address length (note that this 930 * representation is termed a "packed array" of addresses). The caller 931 * specifies the number of addresses in the array with addrcnt. 932 * 933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 934 * -1, and sets errno to the appropriate error code. 935 * 936 * For SCTP, the port given in each socket address must be the same, or 937 * sctp_bindx() will fail, setting errno to EINVAL. 938 * 939 * The flags parameter is formed from the bitwise OR of zero or more of 940 * the following currently defined flags: 941 * 942 * SCTP_BINDX_ADD_ADDR 943 * 944 * SCTP_BINDX_REM_ADDR 945 * 946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 948 * addresses from the association. The two flags are mutually exclusive; 949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 950 * not remove all addresses from an association; sctp_bindx() will 951 * reject such an attempt with EINVAL. 952 * 953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 954 * additional addresses with an endpoint after calling bind(). Or use 955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 956 * socket is associated with so that no new association accepted will be 957 * associated with those addresses. If the endpoint supports dynamic 958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 959 * endpoint to send the appropriate message to the peer to change the 960 * peers address lists. 961 * 962 * Adding and removing addresses from a connected association is 963 * optional functionality. Implementations that do not support this 964 * functionality should return EOPNOTSUPP. 965 * 966 * Basically do nothing but copying the addresses from user to kernel 967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 969 * from userspace. 970 * 971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 972 * it. 973 * 974 * sk The sk of the socket 975 * addrs The pointer to the addresses 976 * addrssize Size of the addrs buffer 977 * op Operation to perform (add or remove, see the flags of 978 * sctp_bindx) 979 * 980 * Returns 0 if ok, <0 errno code on error. 981 */ 982 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 983 int addrs_size, int op) 984 { 985 int err; 986 int addrcnt = 0; 987 int walk_size = 0; 988 struct sockaddr *sa_addr; 989 void *addr_buf = addrs; 990 struct sctp_af *af; 991 992 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 993 __func__, sk, addr_buf, addrs_size, op); 994 995 if (unlikely(addrs_size <= 0)) 996 return -EINVAL; 997 998 /* Walk through the addrs buffer and count the number of addresses. */ 999 while (walk_size < addrs_size) { 1000 if (walk_size + sizeof(sa_family_t) > addrs_size) 1001 return -EINVAL; 1002 1003 sa_addr = addr_buf; 1004 af = sctp_get_af_specific(sa_addr->sa_family); 1005 1006 /* If the address family is not supported or if this address 1007 * causes the address buffer to overflow return EINVAL. 1008 */ 1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1010 return -EINVAL; 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 /* Allow security module to validate bindx addresses. */ 1020 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1021 addrs, addrs_size); 1022 if (err) 1023 return err; 1024 err = sctp_bindx_add(sk, addrs, addrcnt); 1025 if (err) 1026 return err; 1027 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1028 case SCTP_BINDX_REM_ADDR: 1029 err = sctp_bindx_rem(sk, addrs, addrcnt); 1030 if (err) 1031 return err; 1032 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1033 1034 default: 1035 return -EINVAL; 1036 } 1037 } 1038 1039 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1040 int addrlen) 1041 { 1042 int err; 1043 1044 lock_sock(sk); 1045 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1046 release_sock(sk); 1047 return err; 1048 } 1049 1050 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1051 const union sctp_addr *daddr, 1052 const struct sctp_initmsg *init, 1053 struct sctp_transport **tp) 1054 { 1055 struct sctp_association *asoc; 1056 struct sock *sk = ep->base.sk; 1057 struct net *net = sock_net(sk); 1058 enum sctp_scope scope; 1059 int err; 1060 1061 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1062 return -EADDRNOTAVAIL; 1063 1064 if (!ep->base.bind_addr.port) { 1065 if (sctp_autobind(sk)) 1066 return -EAGAIN; 1067 } else { 1068 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1069 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1070 return -EACCES; 1071 } 1072 1073 scope = sctp_scope(daddr); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) 1076 return -ENOMEM; 1077 1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1079 if (err < 0) 1080 goto free; 1081 1082 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1083 if (!*tp) { 1084 err = -ENOMEM; 1085 goto free; 1086 } 1087 1088 if (!init) 1089 return 0; 1090 1091 if (init->sinit_num_ostreams) { 1092 __u16 outcnt = init->sinit_num_ostreams; 1093 1094 asoc->c.sinit_num_ostreams = outcnt; 1095 /* outcnt has been changed, need to re-init stream */ 1096 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1097 if (err) 1098 goto free; 1099 } 1100 1101 if (init->sinit_max_instreams) 1102 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1103 1104 if (init->sinit_max_attempts) 1105 asoc->max_init_attempts = init->sinit_max_attempts; 1106 1107 if (init->sinit_max_init_timeo) 1108 asoc->max_init_timeo = 1109 msecs_to_jiffies(init->sinit_max_init_timeo); 1110 1111 return 0; 1112 free: 1113 sctp_association_free(asoc); 1114 return err; 1115 } 1116 1117 static int sctp_connect_add_peer(struct sctp_association *asoc, 1118 union sctp_addr *daddr, int addr_len) 1119 { 1120 struct sctp_endpoint *ep = asoc->ep; 1121 struct sctp_association *old; 1122 struct sctp_transport *t; 1123 int err; 1124 1125 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1126 if (err) 1127 return err; 1128 1129 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1130 if (old && old != asoc) 1131 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1132 : -EALREADY; 1133 1134 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1135 return -EADDRNOTAVAIL; 1136 1137 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1138 if (!t) 1139 return -ENOMEM; 1140 1141 return 0; 1142 } 1143 1144 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1145 * 1146 * Common routine for handling connect() and sctp_connectx(). 1147 * Connect will come in with just a single address. 1148 */ 1149 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1150 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1151 { 1152 struct sctp_sock *sp = sctp_sk(sk); 1153 struct sctp_endpoint *ep = sp->ep; 1154 struct sctp_transport *transport; 1155 struct sctp_association *asoc; 1156 void *addr_buf = kaddrs; 1157 union sctp_addr *daddr; 1158 struct sctp_af *af; 1159 int walk_size, err; 1160 long timeo; 1161 1162 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1163 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1164 return -EISCONN; 1165 1166 daddr = addr_buf; 1167 af = sctp_get_af_specific(daddr->sa.sa_family); 1168 if (!af || af->sockaddr_len > addrs_size) 1169 return -EINVAL; 1170 1171 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1172 if (err) 1173 return err; 1174 1175 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1176 if (asoc) 1177 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1178 : -EALREADY; 1179 1180 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1181 if (err) 1182 return err; 1183 asoc = transport->asoc; 1184 1185 addr_buf += af->sockaddr_len; 1186 walk_size = af->sockaddr_len; 1187 while (walk_size < addrs_size) { 1188 err = -EINVAL; 1189 if (walk_size + sizeof(sa_family_t) > addrs_size) 1190 goto out_free; 1191 1192 daddr = addr_buf; 1193 af = sctp_get_af_specific(daddr->sa.sa_family); 1194 if (!af || af->sockaddr_len + walk_size > addrs_size) 1195 goto out_free; 1196 1197 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1198 goto out_free; 1199 1200 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1201 if (err) 1202 goto out_free; 1203 1204 addr_buf += af->sockaddr_len; 1205 walk_size += af->sockaddr_len; 1206 } 1207 1208 /* In case the user of sctp_connectx() wants an association 1209 * id back, assign one now. 1210 */ 1211 if (assoc_id) { 1212 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1213 if (err < 0) 1214 goto out_free; 1215 } 1216 1217 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1218 if (err < 0) 1219 goto out_free; 1220 1221 /* Initialize sk's dport and daddr for getpeername() */ 1222 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1223 sp->pf->to_sk_daddr(daddr, sk); 1224 sk->sk_err = 0; 1225 1226 if (assoc_id) 1227 *assoc_id = asoc->assoc_id; 1228 1229 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1230 return sctp_wait_for_connect(asoc, &timeo); 1231 1232 out_free: 1233 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1234 __func__, asoc, kaddrs, err); 1235 sctp_association_free(asoc); 1236 return err; 1237 } 1238 1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1240 * 1241 * API 8.9 1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1243 * sctp_assoc_t *asoc); 1244 * 1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1247 * or IPv6 addresses. 1248 * 1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1250 * Section 3.1.2 for this usage. 1251 * 1252 * addrs is a pointer to an array of one or more socket addresses. Each 1253 * address is contained in its appropriate structure (i.e. struct 1254 * sockaddr_in or struct sockaddr_in6) the family of the address type 1255 * must be used to distengish the address length (note that this 1256 * representation is termed a "packed array" of addresses). The caller 1257 * specifies the number of addresses in the array with addrcnt. 1258 * 1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1260 * the association id of the new association. On failure, sctp_connectx() 1261 * returns -1, and sets errno to the appropriate error code. The assoc_id 1262 * is not touched by the kernel. 1263 * 1264 * For SCTP, the port given in each socket address must be the same, or 1265 * sctp_connectx() will fail, setting errno to EINVAL. 1266 * 1267 * An application can use sctp_connectx to initiate an association with 1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1269 * allows a caller to specify multiple addresses at which a peer can be 1270 * reached. The way the SCTP stack uses the list of addresses to set up 1271 * the association is implementation dependent. This function only 1272 * specifies that the stack will try to make use of all the addresses in 1273 * the list when needed. 1274 * 1275 * Note that the list of addresses passed in is only used for setting up 1276 * the association. It does not necessarily equal the set of addresses 1277 * the peer uses for the resulting association. If the caller wants to 1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1279 * retrieve them after the association has been set up. 1280 * 1281 * Basically do nothing but copying the addresses from user to kernel 1282 * land and invoking either sctp_connectx(). This is used for tunneling 1283 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1284 * 1285 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1286 * it. 1287 * 1288 * sk The sk of the socket 1289 * addrs The pointer to the addresses 1290 * addrssize Size of the addrs buffer 1291 * 1292 * Returns >=0 if ok, <0 errno code on error. 1293 */ 1294 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1295 int addrs_size, sctp_assoc_t *assoc_id) 1296 { 1297 int err = 0, flags = 0; 1298 1299 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1300 __func__, sk, kaddrs, addrs_size); 1301 1302 /* make sure the 1st addr's sa_family is accessible later */ 1303 if (unlikely(addrs_size < sizeof(sa_family_t))) 1304 return -EINVAL; 1305 1306 /* Allow security module to validate connectx addresses. */ 1307 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1308 (struct sockaddr *)kaddrs, 1309 addrs_size); 1310 if (err) 1311 return err; 1312 1313 /* in-kernel sockets don't generally have a file allocated to them 1314 * if all they do is call sock_create_kern(). 1315 */ 1316 if (sk->sk_socket->file) 1317 flags = sk->sk_socket->file->f_flags; 1318 1319 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1320 } 1321 1322 /* 1323 * This is an older interface. It's kept for backward compatibility 1324 * to the option that doesn't provide association id. 1325 */ 1326 static int sctp_setsockopt_connectx_old(struct sock *sk, 1327 struct sockaddr *kaddrs, 1328 int addrs_size) 1329 { 1330 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1331 } 1332 1333 /* 1334 * New interface for the API. The since the API is done with a socket 1335 * option, to make it simple we feed back the association id is as a return 1336 * indication to the call. Error is always negative and association id is 1337 * always positive. 1338 */ 1339 static int sctp_setsockopt_connectx(struct sock *sk, 1340 struct sockaddr *kaddrs, 1341 int addrs_size) 1342 { 1343 sctp_assoc_t assoc_id = 0; 1344 int err = 0; 1345 1346 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1347 1348 if (err) 1349 return err; 1350 else 1351 return assoc_id; 1352 } 1353 1354 /* 1355 * New (hopefully final) interface for the API. 1356 * We use the sctp_getaddrs_old structure so that use-space library 1357 * can avoid any unnecessary allocations. The only different part 1358 * is that we store the actual length of the address buffer into the 1359 * addrs_num structure member. That way we can re-use the existing 1360 * code. 1361 */ 1362 #ifdef CONFIG_COMPAT 1363 struct compat_sctp_getaddrs_old { 1364 sctp_assoc_t assoc_id; 1365 s32 addr_num; 1366 compat_uptr_t addrs; /* struct sockaddr * */ 1367 }; 1368 #endif 1369 1370 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1371 char __user *optval, 1372 int __user *optlen) 1373 { 1374 struct sctp_getaddrs_old param; 1375 sctp_assoc_t assoc_id = 0; 1376 struct sockaddr *kaddrs; 1377 int err = 0; 1378 1379 #ifdef CONFIG_COMPAT 1380 if (in_compat_syscall()) { 1381 struct compat_sctp_getaddrs_old param32; 1382 1383 if (len < sizeof(param32)) 1384 return -EINVAL; 1385 if (copy_from_user(¶m32, optval, sizeof(param32))) 1386 return -EFAULT; 1387 1388 param.assoc_id = param32.assoc_id; 1389 param.addr_num = param32.addr_num; 1390 param.addrs = compat_ptr(param32.addrs); 1391 } else 1392 #endif 1393 { 1394 if (len < sizeof(param)) 1395 return -EINVAL; 1396 if (copy_from_user(¶m, optval, sizeof(param))) 1397 return -EFAULT; 1398 } 1399 1400 kaddrs = memdup_user(param.addrs, param.addr_num); 1401 if (IS_ERR(kaddrs)) 1402 return PTR_ERR(kaddrs); 1403 1404 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1405 kfree(kaddrs); 1406 if (err == 0 || err == -EINPROGRESS) { 1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1408 return -EFAULT; 1409 if (put_user(sizeof(assoc_id), optlen)) 1410 return -EFAULT; 1411 } 1412 1413 return err; 1414 } 1415 1416 /* API 3.1.4 close() - UDP Style Syntax 1417 * Applications use close() to perform graceful shutdown (as described in 1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1419 * by a UDP-style socket. 1420 * 1421 * The syntax is 1422 * 1423 * ret = close(int sd); 1424 * 1425 * sd - the socket descriptor of the associations to be closed. 1426 * 1427 * To gracefully shutdown a specific association represented by the 1428 * UDP-style socket, an application should use the sendmsg() call, 1429 * passing no user data, but including the appropriate flag in the 1430 * ancillary data (see Section xxxx). 1431 * 1432 * If sd in the close() call is a branched-off socket representing only 1433 * one association, the shutdown is performed on that association only. 1434 * 1435 * 4.1.6 close() - TCP Style Syntax 1436 * 1437 * Applications use close() to gracefully close down an association. 1438 * 1439 * The syntax is: 1440 * 1441 * int close(int sd); 1442 * 1443 * sd - the socket descriptor of the association to be closed. 1444 * 1445 * After an application calls close() on a socket descriptor, no further 1446 * socket operations will succeed on that descriptor. 1447 * 1448 * API 7.1.4 SO_LINGER 1449 * 1450 * An application using the TCP-style socket can use this option to 1451 * perform the SCTP ABORT primitive. The linger option structure is: 1452 * 1453 * struct linger { 1454 * int l_onoff; // option on/off 1455 * int l_linger; // linger time 1456 * }; 1457 * 1458 * To enable the option, set l_onoff to 1. If the l_linger value is set 1459 * to 0, calling close() is the same as the ABORT primitive. If the 1460 * value is set to a negative value, the setsockopt() call will return 1461 * an error. If the value is set to a positive value linger_time, the 1462 * close() can be blocked for at most linger_time ms. If the graceful 1463 * shutdown phase does not finish during this period, close() will 1464 * return but the graceful shutdown phase continues in the system. 1465 */ 1466 static void sctp_close(struct sock *sk, long timeout) 1467 { 1468 struct net *net = sock_net(sk); 1469 struct sctp_endpoint *ep; 1470 struct sctp_association *asoc; 1471 struct list_head *pos, *temp; 1472 unsigned int data_was_unread; 1473 1474 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1475 1476 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1477 sk->sk_shutdown = SHUTDOWN_MASK; 1478 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1479 1480 ep = sctp_sk(sk)->ep; 1481 1482 /* Clean up any skbs sitting on the receive queue. */ 1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1485 1486 /* Walk all associations on an endpoint. */ 1487 list_for_each_safe(pos, temp, &ep->asocs) { 1488 asoc = list_entry(pos, struct sctp_association, asocs); 1489 1490 if (sctp_style(sk, TCP)) { 1491 /* A closed association can still be in the list if 1492 * it belongs to a TCP-style listening socket that is 1493 * not yet accepted. If so, free it. If not, send an 1494 * ABORT or SHUTDOWN based on the linger options. 1495 */ 1496 if (sctp_state(asoc, CLOSED)) { 1497 sctp_association_free(asoc); 1498 continue; 1499 } 1500 } 1501 1502 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1503 !skb_queue_empty(&asoc->ulpq.reasm) || 1504 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1506 struct sctp_chunk *chunk; 1507 1508 chunk = sctp_make_abort_user(asoc, NULL, 0); 1509 sctp_primitive_ABORT(net, asoc, chunk); 1510 } else 1511 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1512 } 1513 1514 /* On a TCP-style socket, block for at most linger_time if set. */ 1515 if (sctp_style(sk, TCP) && timeout) 1516 sctp_wait_for_close(sk, timeout); 1517 1518 /* This will run the backlog queue. */ 1519 release_sock(sk); 1520 1521 /* Supposedly, no process has access to the socket, but 1522 * the net layers still may. 1523 */ 1524 local_bh_disable(); 1525 bh_lock_sock(sk); 1526 1527 /* Hold the sock, since sk_common_release() will put sock_put() 1528 * and we have just a little more cleanup. 1529 */ 1530 sock_hold(sk); 1531 sk_common_release(sk); 1532 1533 bh_unlock_sock(sk); 1534 local_bh_enable(); 1535 1536 sock_put(sk); 1537 1538 SCTP_DBG_OBJCNT_DEC(sock); 1539 } 1540 1541 /* Handle EPIPE error. */ 1542 static int sctp_error(struct sock *sk, int flags, int err) 1543 { 1544 if (err == -EPIPE) 1545 err = sock_error(sk) ? : -EPIPE; 1546 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1547 send_sig(SIGPIPE, current, 0); 1548 return err; 1549 } 1550 1551 /* API 3.1.3 sendmsg() - UDP Style Syntax 1552 * 1553 * An application uses sendmsg() and recvmsg() calls to transmit data to 1554 * and receive data from its peer. 1555 * 1556 * ssize_t sendmsg(int socket, const struct msghdr *message, 1557 * int flags); 1558 * 1559 * socket - the socket descriptor of the endpoint. 1560 * message - pointer to the msghdr structure which contains a single 1561 * user message and possibly some ancillary data. 1562 * 1563 * See Section 5 for complete description of the data 1564 * structures. 1565 * 1566 * flags - flags sent or received with the user message, see Section 1567 * 5 for complete description of the flags. 1568 * 1569 * Note: This function could use a rewrite especially when explicit 1570 * connect support comes in. 1571 */ 1572 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1573 1574 static int sctp_msghdr_parse(const struct msghdr *msg, 1575 struct sctp_cmsgs *cmsgs); 1576 1577 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1578 struct sctp_sndrcvinfo *srinfo, 1579 const struct msghdr *msg, size_t msg_len) 1580 { 1581 __u16 sflags; 1582 int err; 1583 1584 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1585 return -EPIPE; 1586 1587 if (msg_len > sk->sk_sndbuf) 1588 return -EMSGSIZE; 1589 1590 memset(cmsgs, 0, sizeof(*cmsgs)); 1591 err = sctp_msghdr_parse(msg, cmsgs); 1592 if (err) { 1593 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1594 return err; 1595 } 1596 1597 memset(srinfo, 0, sizeof(*srinfo)); 1598 if (cmsgs->srinfo) { 1599 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1600 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1601 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1602 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1603 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1604 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1605 } 1606 1607 if (cmsgs->sinfo) { 1608 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1609 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1610 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1611 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1612 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1613 } 1614 1615 if (cmsgs->prinfo) { 1616 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1617 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1618 cmsgs->prinfo->pr_policy); 1619 } 1620 1621 sflags = srinfo->sinfo_flags; 1622 if (!sflags && msg_len) 1623 return 0; 1624 1625 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1626 return -EINVAL; 1627 1628 if (((sflags & SCTP_EOF) && msg_len > 0) || 1629 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1630 return -EINVAL; 1631 1632 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1633 return -EINVAL; 1634 1635 return 0; 1636 } 1637 1638 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1639 struct sctp_cmsgs *cmsgs, 1640 union sctp_addr *daddr, 1641 struct sctp_transport **tp) 1642 { 1643 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1644 struct sctp_association *asoc; 1645 struct cmsghdr *cmsg; 1646 __be32 flowinfo = 0; 1647 struct sctp_af *af; 1648 int err; 1649 1650 *tp = NULL; 1651 1652 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1653 return -EINVAL; 1654 1655 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1656 sctp_sstate(sk, CLOSING))) 1657 return -EADDRNOTAVAIL; 1658 1659 /* Label connection socket for first association 1-to-many 1660 * style for client sequence socket()->sendmsg(). This 1661 * needs to be done before sctp_assoc_add_peer() as that will 1662 * set up the initial packet that needs to account for any 1663 * security ip options (CIPSO/CALIPSO) added to the packet. 1664 */ 1665 af = sctp_get_af_specific(daddr->sa.sa_family); 1666 if (!af) 1667 return -EINVAL; 1668 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1669 (struct sockaddr *)daddr, 1670 af->sockaddr_len); 1671 if (err < 0) 1672 return err; 1673 1674 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1675 if (err) 1676 return err; 1677 asoc = (*tp)->asoc; 1678 1679 if (!cmsgs->addrs_msg) 1680 return 0; 1681 1682 if (daddr->sa.sa_family == AF_INET6) 1683 flowinfo = daddr->v6.sin6_flowinfo; 1684 1685 /* sendv addr list parse */ 1686 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1687 union sctp_addr _daddr; 1688 int dlen; 1689 1690 if (cmsg->cmsg_level != IPPROTO_SCTP || 1691 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1692 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1693 continue; 1694 1695 daddr = &_daddr; 1696 memset(daddr, 0, sizeof(*daddr)); 1697 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1698 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1699 if (dlen < sizeof(struct in_addr)) { 1700 err = -EINVAL; 1701 goto free; 1702 } 1703 1704 dlen = sizeof(struct in_addr); 1705 daddr->v4.sin_family = AF_INET; 1706 daddr->v4.sin_port = htons(asoc->peer.port); 1707 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1708 } else { 1709 if (dlen < sizeof(struct in6_addr)) { 1710 err = -EINVAL; 1711 goto free; 1712 } 1713 1714 dlen = sizeof(struct in6_addr); 1715 daddr->v6.sin6_flowinfo = flowinfo; 1716 daddr->v6.sin6_family = AF_INET6; 1717 daddr->v6.sin6_port = htons(asoc->peer.port); 1718 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1719 } 1720 1721 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1722 if (err) 1723 goto free; 1724 } 1725 1726 return 0; 1727 1728 free: 1729 sctp_association_free(asoc); 1730 return err; 1731 } 1732 1733 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1734 __u16 sflags, struct msghdr *msg, 1735 size_t msg_len) 1736 { 1737 struct sock *sk = asoc->base.sk; 1738 struct net *net = sock_net(sk); 1739 1740 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1741 return -EPIPE; 1742 1743 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1744 !sctp_state(asoc, ESTABLISHED)) 1745 return 0; 1746 1747 if (sflags & SCTP_EOF) { 1748 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1749 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1750 1751 return 0; 1752 } 1753 1754 if (sflags & SCTP_ABORT) { 1755 struct sctp_chunk *chunk; 1756 1757 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1758 if (!chunk) 1759 return -ENOMEM; 1760 1761 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1762 sctp_primitive_ABORT(net, asoc, chunk); 1763 iov_iter_revert(&msg->msg_iter, msg_len); 1764 1765 return 0; 1766 } 1767 1768 return 1; 1769 } 1770 1771 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1772 struct msghdr *msg, size_t msg_len, 1773 struct sctp_transport *transport, 1774 struct sctp_sndrcvinfo *sinfo) 1775 { 1776 struct sock *sk = asoc->base.sk; 1777 struct sctp_sock *sp = sctp_sk(sk); 1778 struct net *net = sock_net(sk); 1779 struct sctp_datamsg *datamsg; 1780 bool wait_connect = false; 1781 struct sctp_chunk *chunk; 1782 long timeo; 1783 int err; 1784 1785 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1786 err = -EINVAL; 1787 goto err; 1788 } 1789 1790 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1791 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1792 if (err) 1793 goto err; 1794 } 1795 1796 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1797 err = -EMSGSIZE; 1798 goto err; 1799 } 1800 1801 if (asoc->pmtu_pending) { 1802 if (sp->param_flags & SPP_PMTUD_ENABLE) 1803 sctp_assoc_sync_pmtu(asoc); 1804 asoc->pmtu_pending = 0; 1805 } 1806 1807 if (sctp_wspace(asoc) < (int)msg_len) 1808 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1809 1810 if (sk_under_memory_pressure(sk)) 1811 sk_mem_reclaim(sk); 1812 1813 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1814 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1815 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1816 if (err) 1817 goto err; 1818 } 1819 1820 if (sctp_state(asoc, CLOSED)) { 1821 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1822 if (err) 1823 goto err; 1824 1825 if (asoc->ep->intl_enable) { 1826 timeo = sock_sndtimeo(sk, 0); 1827 err = sctp_wait_for_connect(asoc, &timeo); 1828 if (err) { 1829 err = -ESRCH; 1830 goto err; 1831 } 1832 } else { 1833 wait_connect = true; 1834 } 1835 1836 pr_debug("%s: we associated primitively\n", __func__); 1837 } 1838 1839 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1840 if (IS_ERR(datamsg)) { 1841 err = PTR_ERR(datamsg); 1842 goto err; 1843 } 1844 1845 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1846 1847 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1848 sctp_chunk_hold(chunk); 1849 sctp_set_owner_w(chunk); 1850 chunk->transport = transport; 1851 } 1852 1853 err = sctp_primitive_SEND(net, asoc, datamsg); 1854 if (err) { 1855 sctp_datamsg_free(datamsg); 1856 goto err; 1857 } 1858 1859 pr_debug("%s: we sent primitively\n", __func__); 1860 1861 sctp_datamsg_put(datamsg); 1862 1863 if (unlikely(wait_connect)) { 1864 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1865 sctp_wait_for_connect(asoc, &timeo); 1866 } 1867 1868 err = msg_len; 1869 1870 err: 1871 return err; 1872 } 1873 1874 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1875 const struct msghdr *msg, 1876 struct sctp_cmsgs *cmsgs) 1877 { 1878 union sctp_addr *daddr = NULL; 1879 int err; 1880 1881 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1882 int len = msg->msg_namelen; 1883 1884 if (len > sizeof(*daddr)) 1885 len = sizeof(*daddr); 1886 1887 daddr = (union sctp_addr *)msg->msg_name; 1888 1889 err = sctp_verify_addr(sk, daddr, len); 1890 if (err) 1891 return ERR_PTR(err); 1892 } 1893 1894 return daddr; 1895 } 1896 1897 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1898 struct sctp_sndrcvinfo *sinfo, 1899 struct sctp_cmsgs *cmsgs) 1900 { 1901 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1902 sinfo->sinfo_stream = asoc->default_stream; 1903 sinfo->sinfo_ppid = asoc->default_ppid; 1904 sinfo->sinfo_context = asoc->default_context; 1905 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1906 1907 if (!cmsgs->prinfo) 1908 sinfo->sinfo_flags = asoc->default_flags; 1909 } 1910 1911 if (!cmsgs->srinfo && !cmsgs->prinfo) 1912 sinfo->sinfo_timetolive = asoc->default_timetolive; 1913 1914 if (cmsgs->authinfo) { 1915 /* Reuse sinfo_tsn to indicate that authinfo was set and 1916 * sinfo_ssn to save the keyid on tx path. 1917 */ 1918 sinfo->sinfo_tsn = 1; 1919 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1920 } 1921 } 1922 1923 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1924 { 1925 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1926 struct sctp_transport *transport = NULL; 1927 struct sctp_sndrcvinfo _sinfo, *sinfo; 1928 struct sctp_association *asoc, *tmp; 1929 struct sctp_cmsgs cmsgs; 1930 union sctp_addr *daddr; 1931 bool new = false; 1932 __u16 sflags; 1933 int err; 1934 1935 /* Parse and get snd_info */ 1936 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1937 if (err) 1938 goto out; 1939 1940 sinfo = &_sinfo; 1941 sflags = sinfo->sinfo_flags; 1942 1943 /* Get daddr from msg */ 1944 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1945 if (IS_ERR(daddr)) { 1946 err = PTR_ERR(daddr); 1947 goto out; 1948 } 1949 1950 lock_sock(sk); 1951 1952 /* SCTP_SENDALL process */ 1953 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1954 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1955 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1956 msg_len); 1957 if (err == 0) 1958 continue; 1959 if (err < 0) 1960 goto out_unlock; 1961 1962 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1963 1964 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1965 NULL, sinfo); 1966 if (err < 0) 1967 goto out_unlock; 1968 1969 iov_iter_revert(&msg->msg_iter, err); 1970 } 1971 1972 goto out_unlock; 1973 } 1974 1975 /* Get and check or create asoc */ 1976 if (daddr) { 1977 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1978 if (asoc) { 1979 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1980 msg_len); 1981 if (err <= 0) 1982 goto out_unlock; 1983 } else { 1984 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1985 &transport); 1986 if (err) 1987 goto out_unlock; 1988 1989 asoc = transport->asoc; 1990 new = true; 1991 } 1992 1993 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 1994 transport = NULL; 1995 } else { 1996 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 1997 if (!asoc) { 1998 err = -EPIPE; 1999 goto out_unlock; 2000 } 2001 2002 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2003 if (err <= 0) 2004 goto out_unlock; 2005 } 2006 2007 /* Update snd_info with the asoc */ 2008 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2009 2010 /* Send msg to the asoc */ 2011 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2012 if (err < 0 && err != -ESRCH && new) 2013 sctp_association_free(asoc); 2014 2015 out_unlock: 2016 release_sock(sk); 2017 out: 2018 return sctp_error(sk, msg->msg_flags, err); 2019 } 2020 2021 /* This is an extended version of skb_pull() that removes the data from the 2022 * start of a skb even when data is spread across the list of skb's in the 2023 * frag_list. len specifies the total amount of data that needs to be removed. 2024 * when 'len' bytes could be removed from the skb, it returns 0. 2025 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2026 * could not be removed. 2027 */ 2028 static int sctp_skb_pull(struct sk_buff *skb, int len) 2029 { 2030 struct sk_buff *list; 2031 int skb_len = skb_headlen(skb); 2032 int rlen; 2033 2034 if (len <= skb_len) { 2035 __skb_pull(skb, len); 2036 return 0; 2037 } 2038 len -= skb_len; 2039 __skb_pull(skb, skb_len); 2040 2041 skb_walk_frags(skb, list) { 2042 rlen = sctp_skb_pull(list, len); 2043 skb->len -= (len-rlen); 2044 skb->data_len -= (len-rlen); 2045 2046 if (!rlen) 2047 return 0; 2048 2049 len = rlen; 2050 } 2051 2052 return len; 2053 } 2054 2055 /* API 3.1.3 recvmsg() - UDP Style Syntax 2056 * 2057 * ssize_t recvmsg(int socket, struct msghdr *message, 2058 * int flags); 2059 * 2060 * socket - the socket descriptor of the endpoint. 2061 * message - pointer to the msghdr structure which contains a single 2062 * user message and possibly some ancillary data. 2063 * 2064 * See Section 5 for complete description of the data 2065 * structures. 2066 * 2067 * flags - flags sent or received with the user message, see Section 2068 * 5 for complete description of the flags. 2069 */ 2070 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2071 int noblock, int flags, int *addr_len) 2072 { 2073 struct sctp_ulpevent *event = NULL; 2074 struct sctp_sock *sp = sctp_sk(sk); 2075 struct sk_buff *skb, *head_skb; 2076 int copied; 2077 int err = 0; 2078 int skb_len; 2079 2080 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2081 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2082 addr_len); 2083 2084 lock_sock(sk); 2085 2086 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2087 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2088 err = -ENOTCONN; 2089 goto out; 2090 } 2091 2092 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2093 if (!skb) 2094 goto out; 2095 2096 /* Get the total length of the skb including any skb's in the 2097 * frag_list. 2098 */ 2099 skb_len = skb->len; 2100 2101 copied = skb_len; 2102 if (copied > len) 2103 copied = len; 2104 2105 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2106 2107 event = sctp_skb2event(skb); 2108 2109 if (err) 2110 goto out_free; 2111 2112 if (event->chunk && event->chunk->head_skb) 2113 head_skb = event->chunk->head_skb; 2114 else 2115 head_skb = skb; 2116 sock_recv_ts_and_drops(msg, sk, head_skb); 2117 if (sctp_ulpevent_is_notification(event)) { 2118 msg->msg_flags |= MSG_NOTIFICATION; 2119 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2120 } else { 2121 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2122 } 2123 2124 /* Check if we allow SCTP_NXTINFO. */ 2125 if (sp->recvnxtinfo) 2126 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2127 /* Check if we allow SCTP_RCVINFO. */ 2128 if (sp->recvrcvinfo) 2129 sctp_ulpevent_read_rcvinfo(event, msg); 2130 /* Check if we allow SCTP_SNDRCVINFO. */ 2131 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2132 sctp_ulpevent_read_sndrcvinfo(event, msg); 2133 2134 err = copied; 2135 2136 /* If skb's length exceeds the user's buffer, update the skb and 2137 * push it back to the receive_queue so that the next call to 2138 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2139 */ 2140 if (skb_len > copied) { 2141 msg->msg_flags &= ~MSG_EOR; 2142 if (flags & MSG_PEEK) 2143 goto out_free; 2144 sctp_skb_pull(skb, copied); 2145 skb_queue_head(&sk->sk_receive_queue, skb); 2146 2147 /* When only partial message is copied to the user, increase 2148 * rwnd by that amount. If all the data in the skb is read, 2149 * rwnd is updated when the event is freed. 2150 */ 2151 if (!sctp_ulpevent_is_notification(event)) 2152 sctp_assoc_rwnd_increase(event->asoc, copied); 2153 goto out; 2154 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2155 (event->msg_flags & MSG_EOR)) 2156 msg->msg_flags |= MSG_EOR; 2157 else 2158 msg->msg_flags &= ~MSG_EOR; 2159 2160 out_free: 2161 if (flags & MSG_PEEK) { 2162 /* Release the skb reference acquired after peeking the skb in 2163 * sctp_skb_recv_datagram(). 2164 */ 2165 kfree_skb(skb); 2166 } else { 2167 /* Free the event which includes releasing the reference to 2168 * the owner of the skb, freeing the skb and updating the 2169 * rwnd. 2170 */ 2171 sctp_ulpevent_free(event); 2172 } 2173 out: 2174 release_sock(sk); 2175 return err; 2176 } 2177 2178 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2179 * 2180 * This option is a on/off flag. If enabled no SCTP message 2181 * fragmentation will be performed. Instead if a message being sent 2182 * exceeds the current PMTU size, the message will NOT be sent and 2183 * instead a error will be indicated to the user. 2184 */ 2185 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2186 unsigned int optlen) 2187 { 2188 if (optlen < sizeof(int)) 2189 return -EINVAL; 2190 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2191 return 0; 2192 } 2193 2194 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2195 unsigned int optlen) 2196 { 2197 struct sctp_sock *sp = sctp_sk(sk); 2198 struct sctp_association *asoc; 2199 int i; 2200 2201 if (optlen > sizeof(struct sctp_event_subscribe)) 2202 return -EINVAL; 2203 2204 for (i = 0; i < optlen; i++) 2205 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2206 sn_type[i]); 2207 2208 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2209 asoc->subscribe = sctp_sk(sk)->subscribe; 2210 2211 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2212 * if there is no data to be sent or retransmit, the stack will 2213 * immediately send up this notification. 2214 */ 2215 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2216 struct sctp_ulpevent *event; 2217 2218 asoc = sctp_id2assoc(sk, 0); 2219 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2220 event = sctp_ulpevent_make_sender_dry_event(asoc, 2221 GFP_USER | __GFP_NOWARN); 2222 if (!event) 2223 return -ENOMEM; 2224 2225 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2226 } 2227 } 2228 2229 return 0; 2230 } 2231 2232 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2233 * 2234 * This socket option is applicable to the UDP-style socket only. When 2235 * set it will cause associations that are idle for more than the 2236 * specified number of seconds to automatically close. An association 2237 * being idle is defined an association that has NOT sent or received 2238 * user data. The special value of '0' indicates that no automatic 2239 * close of any associations should be performed. The option expects an 2240 * integer defining the number of seconds of idle time before an 2241 * association is closed. 2242 */ 2243 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2244 unsigned int optlen) 2245 { 2246 struct sctp_sock *sp = sctp_sk(sk); 2247 struct net *net = sock_net(sk); 2248 2249 /* Applicable to UDP-style socket only */ 2250 if (sctp_style(sk, TCP)) 2251 return -EOPNOTSUPP; 2252 if (optlen != sizeof(int)) 2253 return -EINVAL; 2254 2255 sp->autoclose = *optval; 2256 if (sp->autoclose > net->sctp.max_autoclose) 2257 sp->autoclose = net->sctp.max_autoclose; 2258 2259 return 0; 2260 } 2261 2262 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2263 * 2264 * Applications can enable or disable heartbeats for any peer address of 2265 * an association, modify an address's heartbeat interval, force a 2266 * heartbeat to be sent immediately, and adjust the address's maximum 2267 * number of retransmissions sent before an address is considered 2268 * unreachable. The following structure is used to access and modify an 2269 * address's parameters: 2270 * 2271 * struct sctp_paddrparams { 2272 * sctp_assoc_t spp_assoc_id; 2273 * struct sockaddr_storage spp_address; 2274 * uint32_t spp_hbinterval; 2275 * uint16_t spp_pathmaxrxt; 2276 * uint32_t spp_pathmtu; 2277 * uint32_t spp_sackdelay; 2278 * uint32_t spp_flags; 2279 * uint32_t spp_ipv6_flowlabel; 2280 * uint8_t spp_dscp; 2281 * }; 2282 * 2283 * spp_assoc_id - (one-to-many style socket) This is filled in the 2284 * application, and identifies the association for 2285 * this query. 2286 * spp_address - This specifies which address is of interest. 2287 * spp_hbinterval - This contains the value of the heartbeat interval, 2288 * in milliseconds. If a value of zero 2289 * is present in this field then no changes are to 2290 * be made to this parameter. 2291 * spp_pathmaxrxt - This contains the maximum number of 2292 * retransmissions before this address shall be 2293 * considered unreachable. If a value of zero 2294 * is present in this field then no changes are to 2295 * be made to this parameter. 2296 * spp_pathmtu - When Path MTU discovery is disabled the value 2297 * specified here will be the "fixed" path mtu. 2298 * Note that if the spp_address field is empty 2299 * then all associations on this address will 2300 * have this fixed path mtu set upon them. 2301 * 2302 * spp_sackdelay - When delayed sack is enabled, this value specifies 2303 * the number of milliseconds that sacks will be delayed 2304 * for. This value will apply to all addresses of an 2305 * association if the spp_address field is empty. Note 2306 * also, that if delayed sack is enabled and this 2307 * value is set to 0, no change is made to the last 2308 * recorded delayed sack timer value. 2309 * 2310 * spp_flags - These flags are used to control various features 2311 * on an association. The flag field may contain 2312 * zero or more of the following options. 2313 * 2314 * SPP_HB_ENABLE - Enable heartbeats on the 2315 * specified address. Note that if the address 2316 * field is empty all addresses for the association 2317 * have heartbeats enabled upon them. 2318 * 2319 * SPP_HB_DISABLE - Disable heartbeats on the 2320 * speicifed address. Note that if the address 2321 * field is empty all addresses for the association 2322 * will have their heartbeats disabled. Note also 2323 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2324 * mutually exclusive, only one of these two should 2325 * be specified. Enabling both fields will have 2326 * undetermined results. 2327 * 2328 * SPP_HB_DEMAND - Request a user initiated heartbeat 2329 * to be made immediately. 2330 * 2331 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2332 * heartbeat delayis to be set to the value of 0 2333 * milliseconds. 2334 * 2335 * SPP_PMTUD_ENABLE - This field will enable PMTU 2336 * discovery upon the specified address. Note that 2337 * if the address feild is empty then all addresses 2338 * on the association are effected. 2339 * 2340 * SPP_PMTUD_DISABLE - This field will disable PMTU 2341 * discovery upon the specified address. Note that 2342 * if the address feild is empty then all addresses 2343 * on the association are effected. Not also that 2344 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2345 * exclusive. Enabling both will have undetermined 2346 * results. 2347 * 2348 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2349 * on delayed sack. The time specified in spp_sackdelay 2350 * is used to specify the sack delay for this address. Note 2351 * that if spp_address is empty then all addresses will 2352 * enable delayed sack and take on the sack delay 2353 * value specified in spp_sackdelay. 2354 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2355 * off delayed sack. If the spp_address field is blank then 2356 * delayed sack is disabled for the entire association. Note 2357 * also that this field is mutually exclusive to 2358 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2359 * results. 2360 * 2361 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2362 * setting of the IPV6 flow label value. The value is 2363 * contained in the spp_ipv6_flowlabel field. 2364 * Upon retrieval, this flag will be set to indicate that 2365 * the spp_ipv6_flowlabel field has a valid value returned. 2366 * If a specific destination address is set (in the 2367 * spp_address field), then the value returned is that of 2368 * the address. If just an association is specified (and 2369 * no address), then the association's default flow label 2370 * is returned. If neither an association nor a destination 2371 * is specified, then the socket's default flow label is 2372 * returned. For non-IPv6 sockets, this flag will be left 2373 * cleared. 2374 * 2375 * SPP_DSCP: Setting this flag enables the setting of the 2376 * Differentiated Services Code Point (DSCP) value 2377 * associated with either the association or a specific 2378 * address. The value is obtained in the spp_dscp field. 2379 * Upon retrieval, this flag will be set to indicate that 2380 * the spp_dscp field has a valid value returned. If a 2381 * specific destination address is set when called (in the 2382 * spp_address field), then that specific destination 2383 * address's DSCP value is returned. If just an association 2384 * is specified, then the association's default DSCP is 2385 * returned. If neither an association nor a destination is 2386 * specified, then the socket's default DSCP is returned. 2387 * 2388 * spp_ipv6_flowlabel 2389 * - This field is used in conjunction with the 2390 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2391 * The 20 least significant bits are used for the flow 2392 * label. This setting has precedence over any IPv6-layer 2393 * setting. 2394 * 2395 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2396 * and contains the DSCP. The 6 most significant bits are 2397 * used for the DSCP. This setting has precedence over any 2398 * IPv4- or IPv6- layer setting. 2399 */ 2400 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2401 struct sctp_transport *trans, 2402 struct sctp_association *asoc, 2403 struct sctp_sock *sp, 2404 int hb_change, 2405 int pmtud_change, 2406 int sackdelay_change) 2407 { 2408 int error; 2409 2410 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2411 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2412 trans->asoc, trans); 2413 if (error) 2414 return error; 2415 } 2416 2417 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2418 * this field is ignored. Note also that a value of zero indicates 2419 * the current setting should be left unchanged. 2420 */ 2421 if (params->spp_flags & SPP_HB_ENABLE) { 2422 2423 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2424 * set. This lets us use 0 value when this flag 2425 * is set. 2426 */ 2427 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2428 params->spp_hbinterval = 0; 2429 2430 if (params->spp_hbinterval || 2431 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2432 if (trans) { 2433 trans->hbinterval = 2434 msecs_to_jiffies(params->spp_hbinterval); 2435 } else if (asoc) { 2436 asoc->hbinterval = 2437 msecs_to_jiffies(params->spp_hbinterval); 2438 } else { 2439 sp->hbinterval = params->spp_hbinterval; 2440 } 2441 } 2442 } 2443 2444 if (hb_change) { 2445 if (trans) { 2446 trans->param_flags = 2447 (trans->param_flags & ~SPP_HB) | hb_change; 2448 } else if (asoc) { 2449 asoc->param_flags = 2450 (asoc->param_flags & ~SPP_HB) | hb_change; 2451 } else { 2452 sp->param_flags = 2453 (sp->param_flags & ~SPP_HB) | hb_change; 2454 } 2455 } 2456 2457 /* When Path MTU discovery is disabled the value specified here will 2458 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2459 * include the flag SPP_PMTUD_DISABLE for this field to have any 2460 * effect). 2461 */ 2462 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2463 if (trans) { 2464 trans->pathmtu = params->spp_pathmtu; 2465 sctp_assoc_sync_pmtu(asoc); 2466 } else if (asoc) { 2467 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2468 } else { 2469 sp->pathmtu = params->spp_pathmtu; 2470 } 2471 } 2472 2473 if (pmtud_change) { 2474 if (trans) { 2475 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2476 (params->spp_flags & SPP_PMTUD_ENABLE); 2477 trans->param_flags = 2478 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2479 if (update) { 2480 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2481 sctp_assoc_sync_pmtu(asoc); 2482 } 2483 } else if (asoc) { 2484 asoc->param_flags = 2485 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2486 } else { 2487 sp->param_flags = 2488 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2489 } 2490 } 2491 2492 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2493 * value of this field is ignored. Note also that a value of zero 2494 * indicates the current setting should be left unchanged. 2495 */ 2496 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2497 if (trans) { 2498 trans->sackdelay = 2499 msecs_to_jiffies(params->spp_sackdelay); 2500 } else if (asoc) { 2501 asoc->sackdelay = 2502 msecs_to_jiffies(params->spp_sackdelay); 2503 } else { 2504 sp->sackdelay = params->spp_sackdelay; 2505 } 2506 } 2507 2508 if (sackdelay_change) { 2509 if (trans) { 2510 trans->param_flags = 2511 (trans->param_flags & ~SPP_SACKDELAY) | 2512 sackdelay_change; 2513 } else if (asoc) { 2514 asoc->param_flags = 2515 (asoc->param_flags & ~SPP_SACKDELAY) | 2516 sackdelay_change; 2517 } else { 2518 sp->param_flags = 2519 (sp->param_flags & ~SPP_SACKDELAY) | 2520 sackdelay_change; 2521 } 2522 } 2523 2524 /* Note that a value of zero indicates the current setting should be 2525 left unchanged. 2526 */ 2527 if (params->spp_pathmaxrxt) { 2528 if (trans) { 2529 trans->pathmaxrxt = params->spp_pathmaxrxt; 2530 } else if (asoc) { 2531 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2532 } else { 2533 sp->pathmaxrxt = params->spp_pathmaxrxt; 2534 } 2535 } 2536 2537 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2538 if (trans) { 2539 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2540 trans->flowlabel = params->spp_ipv6_flowlabel & 2541 SCTP_FLOWLABEL_VAL_MASK; 2542 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2543 } 2544 } else if (asoc) { 2545 struct sctp_transport *t; 2546 2547 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2548 transports) { 2549 if (t->ipaddr.sa.sa_family != AF_INET6) 2550 continue; 2551 t->flowlabel = params->spp_ipv6_flowlabel & 2552 SCTP_FLOWLABEL_VAL_MASK; 2553 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2554 } 2555 asoc->flowlabel = params->spp_ipv6_flowlabel & 2556 SCTP_FLOWLABEL_VAL_MASK; 2557 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2558 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2559 sp->flowlabel = params->spp_ipv6_flowlabel & 2560 SCTP_FLOWLABEL_VAL_MASK; 2561 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2562 } 2563 } 2564 2565 if (params->spp_flags & SPP_DSCP) { 2566 if (trans) { 2567 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2568 trans->dscp |= SCTP_DSCP_SET_MASK; 2569 } else if (asoc) { 2570 struct sctp_transport *t; 2571 2572 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2573 transports) { 2574 t->dscp = params->spp_dscp & 2575 SCTP_DSCP_VAL_MASK; 2576 t->dscp |= SCTP_DSCP_SET_MASK; 2577 } 2578 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2579 asoc->dscp |= SCTP_DSCP_SET_MASK; 2580 } else { 2581 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2582 sp->dscp |= SCTP_DSCP_SET_MASK; 2583 } 2584 } 2585 2586 return 0; 2587 } 2588 2589 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2590 struct sctp_paddrparams *params, 2591 unsigned int optlen) 2592 { 2593 struct sctp_transport *trans = NULL; 2594 struct sctp_association *asoc = NULL; 2595 struct sctp_sock *sp = sctp_sk(sk); 2596 int error; 2597 int hb_change, pmtud_change, sackdelay_change; 2598 2599 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2600 spp_ipv6_flowlabel), 4)) { 2601 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2602 return -EINVAL; 2603 } else if (optlen != sizeof(*params)) { 2604 return -EINVAL; 2605 } 2606 2607 /* Validate flags and value parameters. */ 2608 hb_change = params->spp_flags & SPP_HB; 2609 pmtud_change = params->spp_flags & SPP_PMTUD; 2610 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2611 2612 if (hb_change == SPP_HB || 2613 pmtud_change == SPP_PMTUD || 2614 sackdelay_change == SPP_SACKDELAY || 2615 params->spp_sackdelay > 500 || 2616 (params->spp_pathmtu && 2617 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2618 return -EINVAL; 2619 2620 /* If an address other than INADDR_ANY is specified, and 2621 * no transport is found, then the request is invalid. 2622 */ 2623 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2624 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2625 params->spp_assoc_id); 2626 if (!trans) 2627 return -EINVAL; 2628 } 2629 2630 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2631 * socket is a one to many style socket, and an association 2632 * was not found, then the id was invalid. 2633 */ 2634 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2635 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2636 sctp_style(sk, UDP)) 2637 return -EINVAL; 2638 2639 /* Heartbeat demand can only be sent on a transport or 2640 * association, but not a socket. 2641 */ 2642 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2643 return -EINVAL; 2644 2645 /* Process parameters. */ 2646 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2647 hb_change, pmtud_change, 2648 sackdelay_change); 2649 2650 if (error) 2651 return error; 2652 2653 /* If changes are for association, also apply parameters to each 2654 * transport. 2655 */ 2656 if (!trans && asoc) { 2657 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2658 transports) { 2659 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2660 hb_change, pmtud_change, 2661 sackdelay_change); 2662 } 2663 } 2664 2665 return 0; 2666 } 2667 2668 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2669 { 2670 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2671 } 2672 2673 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2674 { 2675 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2676 } 2677 2678 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2679 struct sctp_association *asoc) 2680 { 2681 struct sctp_transport *trans; 2682 2683 if (params->sack_delay) { 2684 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2685 asoc->param_flags = 2686 sctp_spp_sackdelay_enable(asoc->param_flags); 2687 } 2688 if (params->sack_freq == 1) { 2689 asoc->param_flags = 2690 sctp_spp_sackdelay_disable(asoc->param_flags); 2691 } else if (params->sack_freq > 1) { 2692 asoc->sackfreq = params->sack_freq; 2693 asoc->param_flags = 2694 sctp_spp_sackdelay_enable(asoc->param_flags); 2695 } 2696 2697 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2698 transports) { 2699 if (params->sack_delay) { 2700 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2701 trans->param_flags = 2702 sctp_spp_sackdelay_enable(trans->param_flags); 2703 } 2704 if (params->sack_freq == 1) { 2705 trans->param_flags = 2706 sctp_spp_sackdelay_disable(trans->param_flags); 2707 } else if (params->sack_freq > 1) { 2708 trans->sackfreq = params->sack_freq; 2709 trans->param_flags = 2710 sctp_spp_sackdelay_enable(trans->param_flags); 2711 } 2712 } 2713 } 2714 2715 /* 2716 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2717 * 2718 * This option will effect the way delayed acks are performed. This 2719 * option allows you to get or set the delayed ack time, in 2720 * milliseconds. It also allows changing the delayed ack frequency. 2721 * Changing the frequency to 1 disables the delayed sack algorithm. If 2722 * the assoc_id is 0, then this sets or gets the endpoints default 2723 * values. If the assoc_id field is non-zero, then the set or get 2724 * effects the specified association for the one to many model (the 2725 * assoc_id field is ignored by the one to one model). Note that if 2726 * sack_delay or sack_freq are 0 when setting this option, then the 2727 * current values will remain unchanged. 2728 * 2729 * struct sctp_sack_info { 2730 * sctp_assoc_t sack_assoc_id; 2731 * uint32_t sack_delay; 2732 * uint32_t sack_freq; 2733 * }; 2734 * 2735 * sack_assoc_id - This parameter, indicates which association the user 2736 * is performing an action upon. Note that if this field's value is 2737 * zero then the endpoints default value is changed (effecting future 2738 * associations only). 2739 * 2740 * sack_delay - This parameter contains the number of milliseconds that 2741 * the user is requesting the delayed ACK timer be set to. Note that 2742 * this value is defined in the standard to be between 200 and 500 2743 * milliseconds. 2744 * 2745 * sack_freq - This parameter contains the number of packets that must 2746 * be received before a sack is sent without waiting for the delay 2747 * timer to expire. The default value for this is 2, setting this 2748 * value to 1 will disable the delayed sack algorithm. 2749 */ 2750 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2751 struct sctp_sack_info *params) 2752 { 2753 struct sctp_sock *sp = sctp_sk(sk); 2754 struct sctp_association *asoc; 2755 2756 /* Validate value parameter. */ 2757 if (params->sack_delay > 500) 2758 return -EINVAL; 2759 2760 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2761 * socket is a one to many style socket, and an association 2762 * was not found, then the id was invalid. 2763 */ 2764 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2765 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2766 sctp_style(sk, UDP)) 2767 return -EINVAL; 2768 2769 if (asoc) { 2770 sctp_apply_asoc_delayed_ack(params, asoc); 2771 2772 return 0; 2773 } 2774 2775 if (sctp_style(sk, TCP)) 2776 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2777 2778 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2779 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2780 if (params->sack_delay) { 2781 sp->sackdelay = params->sack_delay; 2782 sp->param_flags = 2783 sctp_spp_sackdelay_enable(sp->param_flags); 2784 } 2785 if (params->sack_freq == 1) { 2786 sp->param_flags = 2787 sctp_spp_sackdelay_disable(sp->param_flags); 2788 } else if (params->sack_freq > 1) { 2789 sp->sackfreq = params->sack_freq; 2790 sp->param_flags = 2791 sctp_spp_sackdelay_enable(sp->param_flags); 2792 } 2793 } 2794 2795 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2796 params->sack_assoc_id == SCTP_ALL_ASSOC) 2797 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2798 sctp_apply_asoc_delayed_ack(params, asoc); 2799 2800 return 0; 2801 } 2802 2803 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2804 struct sctp_sack_info *params, 2805 unsigned int optlen) 2806 { 2807 if (optlen == sizeof(struct sctp_assoc_value)) { 2808 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2809 struct sctp_sack_info p; 2810 2811 pr_warn_ratelimited(DEPRECATED 2812 "%s (pid %d) " 2813 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2814 "Use struct sctp_sack_info instead\n", 2815 current->comm, task_pid_nr(current)); 2816 2817 p.sack_assoc_id = v->assoc_id; 2818 p.sack_delay = v->assoc_value; 2819 p.sack_freq = v->assoc_value ? 0 : 1; 2820 return __sctp_setsockopt_delayed_ack(sk, &p); 2821 } 2822 2823 if (optlen != sizeof(struct sctp_sack_info)) 2824 return -EINVAL; 2825 if (params->sack_delay == 0 && params->sack_freq == 0) 2826 return 0; 2827 return __sctp_setsockopt_delayed_ack(sk, params); 2828 } 2829 2830 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2831 * 2832 * Applications can specify protocol parameters for the default association 2833 * initialization. The option name argument to setsockopt() and getsockopt() 2834 * is SCTP_INITMSG. 2835 * 2836 * Setting initialization parameters is effective only on an unconnected 2837 * socket (for UDP-style sockets only future associations are effected 2838 * by the change). With TCP-style sockets, this option is inherited by 2839 * sockets derived from a listener socket. 2840 */ 2841 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2842 unsigned int optlen) 2843 { 2844 struct sctp_sock *sp = sctp_sk(sk); 2845 2846 if (optlen != sizeof(struct sctp_initmsg)) 2847 return -EINVAL; 2848 2849 if (sinit->sinit_num_ostreams) 2850 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2851 if (sinit->sinit_max_instreams) 2852 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2853 if (sinit->sinit_max_attempts) 2854 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2855 if (sinit->sinit_max_init_timeo) 2856 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2857 2858 return 0; 2859 } 2860 2861 /* 2862 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2863 * 2864 * Applications that wish to use the sendto() system call may wish to 2865 * specify a default set of parameters that would normally be supplied 2866 * through the inclusion of ancillary data. This socket option allows 2867 * such an application to set the default sctp_sndrcvinfo structure. 2868 * The application that wishes to use this socket option simply passes 2869 * in to this call the sctp_sndrcvinfo structure defined in Section 2870 * 5.2.2) The input parameters accepted by this call include 2871 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2872 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2873 * to this call if the caller is using the UDP model. 2874 */ 2875 static int sctp_setsockopt_default_send_param(struct sock *sk, 2876 struct sctp_sndrcvinfo *info, 2877 unsigned int optlen) 2878 { 2879 struct sctp_sock *sp = sctp_sk(sk); 2880 struct sctp_association *asoc; 2881 2882 if (optlen != sizeof(*info)) 2883 return -EINVAL; 2884 if (info->sinfo_flags & 2885 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2886 SCTP_ABORT | SCTP_EOF)) 2887 return -EINVAL; 2888 2889 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2890 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2891 sctp_style(sk, UDP)) 2892 return -EINVAL; 2893 2894 if (asoc) { 2895 asoc->default_stream = info->sinfo_stream; 2896 asoc->default_flags = info->sinfo_flags; 2897 asoc->default_ppid = info->sinfo_ppid; 2898 asoc->default_context = info->sinfo_context; 2899 asoc->default_timetolive = info->sinfo_timetolive; 2900 2901 return 0; 2902 } 2903 2904 if (sctp_style(sk, TCP)) 2905 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2906 2907 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2908 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2909 sp->default_stream = info->sinfo_stream; 2910 sp->default_flags = info->sinfo_flags; 2911 sp->default_ppid = info->sinfo_ppid; 2912 sp->default_context = info->sinfo_context; 2913 sp->default_timetolive = info->sinfo_timetolive; 2914 } 2915 2916 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2917 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2918 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2919 asoc->default_stream = info->sinfo_stream; 2920 asoc->default_flags = info->sinfo_flags; 2921 asoc->default_ppid = info->sinfo_ppid; 2922 asoc->default_context = info->sinfo_context; 2923 asoc->default_timetolive = info->sinfo_timetolive; 2924 } 2925 } 2926 2927 return 0; 2928 } 2929 2930 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2931 * (SCTP_DEFAULT_SNDINFO) 2932 */ 2933 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2934 struct sctp_sndinfo *info, 2935 unsigned int optlen) 2936 { 2937 struct sctp_sock *sp = sctp_sk(sk); 2938 struct sctp_association *asoc; 2939 2940 if (optlen != sizeof(*info)) 2941 return -EINVAL; 2942 if (info->snd_flags & 2943 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2944 SCTP_ABORT | SCTP_EOF)) 2945 return -EINVAL; 2946 2947 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2948 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2949 sctp_style(sk, UDP)) 2950 return -EINVAL; 2951 2952 if (asoc) { 2953 asoc->default_stream = info->snd_sid; 2954 asoc->default_flags = info->snd_flags; 2955 asoc->default_ppid = info->snd_ppid; 2956 asoc->default_context = info->snd_context; 2957 2958 return 0; 2959 } 2960 2961 if (sctp_style(sk, TCP)) 2962 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2963 2964 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2965 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2966 sp->default_stream = info->snd_sid; 2967 sp->default_flags = info->snd_flags; 2968 sp->default_ppid = info->snd_ppid; 2969 sp->default_context = info->snd_context; 2970 } 2971 2972 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2973 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2974 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2975 asoc->default_stream = info->snd_sid; 2976 asoc->default_flags = info->snd_flags; 2977 asoc->default_ppid = info->snd_ppid; 2978 asoc->default_context = info->snd_context; 2979 } 2980 } 2981 2982 return 0; 2983 } 2984 2985 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2986 * 2987 * Requests that the local SCTP stack use the enclosed peer address as 2988 * the association primary. The enclosed address must be one of the 2989 * association peer's addresses. 2990 */ 2991 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 2992 unsigned int optlen) 2993 { 2994 struct sctp_transport *trans; 2995 struct sctp_af *af; 2996 int err; 2997 2998 if (optlen != sizeof(struct sctp_prim)) 2999 return -EINVAL; 3000 3001 /* Allow security module to validate address but need address len. */ 3002 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3003 if (!af) 3004 return -EINVAL; 3005 3006 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3007 (struct sockaddr *)&prim->ssp_addr, 3008 af->sockaddr_len); 3009 if (err) 3010 return err; 3011 3012 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3013 if (!trans) 3014 return -EINVAL; 3015 3016 sctp_assoc_set_primary(trans->asoc, trans); 3017 3018 return 0; 3019 } 3020 3021 /* 3022 * 7.1.5 SCTP_NODELAY 3023 * 3024 * Turn on/off any Nagle-like algorithm. This means that packets are 3025 * generally sent as soon as possible and no unnecessary delays are 3026 * introduced, at the cost of more packets in the network. Expects an 3027 * integer boolean flag. 3028 */ 3029 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3030 unsigned int optlen) 3031 { 3032 if (optlen < sizeof(int)) 3033 return -EINVAL; 3034 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3035 return 0; 3036 } 3037 3038 /* 3039 * 3040 * 7.1.1 SCTP_RTOINFO 3041 * 3042 * The protocol parameters used to initialize and bound retransmission 3043 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3044 * and modify these parameters. 3045 * All parameters are time values, in milliseconds. A value of 0, when 3046 * modifying the parameters, indicates that the current value should not 3047 * be changed. 3048 * 3049 */ 3050 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3051 struct sctp_rtoinfo *rtoinfo, 3052 unsigned int optlen) 3053 { 3054 struct sctp_association *asoc; 3055 unsigned long rto_min, rto_max; 3056 struct sctp_sock *sp = sctp_sk(sk); 3057 3058 if (optlen != sizeof (struct sctp_rtoinfo)) 3059 return -EINVAL; 3060 3061 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3062 3063 /* Set the values to the specific association */ 3064 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3065 sctp_style(sk, UDP)) 3066 return -EINVAL; 3067 3068 rto_max = rtoinfo->srto_max; 3069 rto_min = rtoinfo->srto_min; 3070 3071 if (rto_max) 3072 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3073 else 3074 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3075 3076 if (rto_min) 3077 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3078 else 3079 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3080 3081 if (rto_min > rto_max) 3082 return -EINVAL; 3083 3084 if (asoc) { 3085 if (rtoinfo->srto_initial != 0) 3086 asoc->rto_initial = 3087 msecs_to_jiffies(rtoinfo->srto_initial); 3088 asoc->rto_max = rto_max; 3089 asoc->rto_min = rto_min; 3090 } else { 3091 /* If there is no association or the association-id = 0 3092 * set the values to the endpoint. 3093 */ 3094 if (rtoinfo->srto_initial != 0) 3095 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3096 sp->rtoinfo.srto_max = rto_max; 3097 sp->rtoinfo.srto_min = rto_min; 3098 } 3099 3100 return 0; 3101 } 3102 3103 /* 3104 * 3105 * 7.1.2 SCTP_ASSOCINFO 3106 * 3107 * This option is used to tune the maximum retransmission attempts 3108 * of the association. 3109 * Returns an error if the new association retransmission value is 3110 * greater than the sum of the retransmission value of the peer. 3111 * See [SCTP] for more information. 3112 * 3113 */ 3114 static int sctp_setsockopt_associnfo(struct sock *sk, 3115 struct sctp_assocparams *assocparams, 3116 unsigned int optlen) 3117 { 3118 3119 struct sctp_association *asoc; 3120 3121 if (optlen != sizeof(struct sctp_assocparams)) 3122 return -EINVAL; 3123 3124 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3125 3126 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3127 sctp_style(sk, UDP)) 3128 return -EINVAL; 3129 3130 /* Set the values to the specific association */ 3131 if (asoc) { 3132 if (assocparams->sasoc_asocmaxrxt != 0) { 3133 __u32 path_sum = 0; 3134 int paths = 0; 3135 struct sctp_transport *peer_addr; 3136 3137 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3138 transports) { 3139 path_sum += peer_addr->pathmaxrxt; 3140 paths++; 3141 } 3142 3143 /* Only validate asocmaxrxt if we have more than 3144 * one path/transport. We do this because path 3145 * retransmissions are only counted when we have more 3146 * then one path. 3147 */ 3148 if (paths > 1 && 3149 assocparams->sasoc_asocmaxrxt > path_sum) 3150 return -EINVAL; 3151 3152 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3153 } 3154 3155 if (assocparams->sasoc_cookie_life != 0) 3156 asoc->cookie_life = 3157 ms_to_ktime(assocparams->sasoc_cookie_life); 3158 } else { 3159 /* Set the values to the endpoint */ 3160 struct sctp_sock *sp = sctp_sk(sk); 3161 3162 if (assocparams->sasoc_asocmaxrxt != 0) 3163 sp->assocparams.sasoc_asocmaxrxt = 3164 assocparams->sasoc_asocmaxrxt; 3165 if (assocparams->sasoc_cookie_life != 0) 3166 sp->assocparams.sasoc_cookie_life = 3167 assocparams->sasoc_cookie_life; 3168 } 3169 return 0; 3170 } 3171 3172 /* 3173 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3174 * 3175 * This socket option is a boolean flag which turns on or off mapped V4 3176 * addresses. If this option is turned on and the socket is type 3177 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3178 * If this option is turned off, then no mapping will be done of V4 3179 * addresses and a user will receive both PF_INET6 and PF_INET type 3180 * addresses on the socket. 3181 */ 3182 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3183 unsigned int optlen) 3184 { 3185 struct sctp_sock *sp = sctp_sk(sk); 3186 3187 if (optlen < sizeof(int)) 3188 return -EINVAL; 3189 if (*val) 3190 sp->v4mapped = 1; 3191 else 3192 sp->v4mapped = 0; 3193 3194 return 0; 3195 } 3196 3197 /* 3198 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3199 * This option will get or set the maximum size to put in any outgoing 3200 * SCTP DATA chunk. If a message is larger than this size it will be 3201 * fragmented by SCTP into the specified size. Note that the underlying 3202 * SCTP implementation may fragment into smaller sized chunks when the 3203 * PMTU of the underlying association is smaller than the value set by 3204 * the user. The default value for this option is '0' which indicates 3205 * the user is NOT limiting fragmentation and only the PMTU will effect 3206 * SCTP's choice of DATA chunk size. Note also that values set larger 3207 * than the maximum size of an IP datagram will effectively let SCTP 3208 * control fragmentation (i.e. the same as setting this option to 0). 3209 * 3210 * The following structure is used to access and modify this parameter: 3211 * 3212 * struct sctp_assoc_value { 3213 * sctp_assoc_t assoc_id; 3214 * uint32_t assoc_value; 3215 * }; 3216 * 3217 * assoc_id: This parameter is ignored for one-to-one style sockets. 3218 * For one-to-many style sockets this parameter indicates which 3219 * association the user is performing an action upon. Note that if 3220 * this field's value is zero then the endpoints default value is 3221 * changed (effecting future associations only). 3222 * assoc_value: This parameter specifies the maximum size in bytes. 3223 */ 3224 static int sctp_setsockopt_maxseg(struct sock *sk, 3225 struct sctp_assoc_value *params, 3226 unsigned int optlen) 3227 { 3228 struct sctp_sock *sp = sctp_sk(sk); 3229 struct sctp_association *asoc; 3230 sctp_assoc_t assoc_id; 3231 int val; 3232 3233 if (optlen == sizeof(int)) { 3234 pr_warn_ratelimited(DEPRECATED 3235 "%s (pid %d) " 3236 "Use of int in maxseg socket option.\n" 3237 "Use struct sctp_assoc_value instead\n", 3238 current->comm, task_pid_nr(current)); 3239 assoc_id = SCTP_FUTURE_ASSOC; 3240 val = *(int *)params; 3241 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3242 assoc_id = params->assoc_id; 3243 val = params->assoc_value; 3244 } else { 3245 return -EINVAL; 3246 } 3247 3248 asoc = sctp_id2assoc(sk, assoc_id); 3249 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3250 sctp_style(sk, UDP)) 3251 return -EINVAL; 3252 3253 if (val) { 3254 int min_len, max_len; 3255 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3256 sizeof(struct sctp_data_chunk); 3257 3258 min_len = sctp_min_frag_point(sp, datasize); 3259 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3260 3261 if (val < min_len || val > max_len) 3262 return -EINVAL; 3263 } 3264 3265 if (asoc) { 3266 asoc->user_frag = val; 3267 sctp_assoc_update_frag_point(asoc); 3268 } else { 3269 sp->user_frag = val; 3270 } 3271 3272 return 0; 3273 } 3274 3275 3276 /* 3277 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3278 * 3279 * Requests that the peer mark the enclosed address as the association 3280 * primary. The enclosed address must be one of the association's 3281 * locally bound addresses. The following structure is used to make a 3282 * set primary request: 3283 */ 3284 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3285 struct sctp_setpeerprim *prim, 3286 unsigned int optlen) 3287 { 3288 struct sctp_sock *sp; 3289 struct sctp_association *asoc = NULL; 3290 struct sctp_chunk *chunk; 3291 struct sctp_af *af; 3292 int err; 3293 3294 sp = sctp_sk(sk); 3295 3296 if (!sp->ep->asconf_enable) 3297 return -EPERM; 3298 3299 if (optlen != sizeof(struct sctp_setpeerprim)) 3300 return -EINVAL; 3301 3302 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3303 if (!asoc) 3304 return -EINVAL; 3305 3306 if (!asoc->peer.asconf_capable) 3307 return -EPERM; 3308 3309 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3310 return -EPERM; 3311 3312 if (!sctp_state(asoc, ESTABLISHED)) 3313 return -ENOTCONN; 3314 3315 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3316 if (!af) 3317 return -EINVAL; 3318 3319 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3320 return -EADDRNOTAVAIL; 3321 3322 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3323 return -EADDRNOTAVAIL; 3324 3325 /* Allow security module to validate address. */ 3326 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3327 (struct sockaddr *)&prim->sspp_addr, 3328 af->sockaddr_len); 3329 if (err) 3330 return err; 3331 3332 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3333 chunk = sctp_make_asconf_set_prim(asoc, 3334 (union sctp_addr *)&prim->sspp_addr); 3335 if (!chunk) 3336 return -ENOMEM; 3337 3338 err = sctp_send_asconf(asoc, chunk); 3339 3340 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3341 3342 return err; 3343 } 3344 3345 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3346 struct sctp_setadaptation *adapt, 3347 unsigned int optlen) 3348 { 3349 if (optlen != sizeof(struct sctp_setadaptation)) 3350 return -EINVAL; 3351 3352 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3353 3354 return 0; 3355 } 3356 3357 /* 3358 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3359 * 3360 * The context field in the sctp_sndrcvinfo structure is normally only 3361 * used when a failed message is retrieved holding the value that was 3362 * sent down on the actual send call. This option allows the setting of 3363 * a default context on an association basis that will be received on 3364 * reading messages from the peer. This is especially helpful in the 3365 * one-2-many model for an application to keep some reference to an 3366 * internal state machine that is processing messages on the 3367 * association. Note that the setting of this value only effects 3368 * received messages from the peer and does not effect the value that is 3369 * saved with outbound messages. 3370 */ 3371 static int sctp_setsockopt_context(struct sock *sk, 3372 struct sctp_assoc_value *params, 3373 unsigned int optlen) 3374 { 3375 struct sctp_sock *sp = sctp_sk(sk); 3376 struct sctp_association *asoc; 3377 3378 if (optlen != sizeof(struct sctp_assoc_value)) 3379 return -EINVAL; 3380 3381 asoc = sctp_id2assoc(sk, params->assoc_id); 3382 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3383 sctp_style(sk, UDP)) 3384 return -EINVAL; 3385 3386 if (asoc) { 3387 asoc->default_rcv_context = params->assoc_value; 3388 3389 return 0; 3390 } 3391 3392 if (sctp_style(sk, TCP)) 3393 params->assoc_id = SCTP_FUTURE_ASSOC; 3394 3395 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3396 params->assoc_id == SCTP_ALL_ASSOC) 3397 sp->default_rcv_context = params->assoc_value; 3398 3399 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3400 params->assoc_id == SCTP_ALL_ASSOC) 3401 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3402 asoc->default_rcv_context = params->assoc_value; 3403 3404 return 0; 3405 } 3406 3407 /* 3408 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3409 * 3410 * This options will at a minimum specify if the implementation is doing 3411 * fragmented interleave. Fragmented interleave, for a one to many 3412 * socket, is when subsequent calls to receive a message may return 3413 * parts of messages from different associations. Some implementations 3414 * may allow you to turn this value on or off. If so, when turned off, 3415 * no fragment interleave will occur (which will cause a head of line 3416 * blocking amongst multiple associations sharing the same one to many 3417 * socket). When this option is turned on, then each receive call may 3418 * come from a different association (thus the user must receive data 3419 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3420 * association each receive belongs to. 3421 * 3422 * This option takes a boolean value. A non-zero value indicates that 3423 * fragmented interleave is on. A value of zero indicates that 3424 * fragmented interleave is off. 3425 * 3426 * Note that it is important that an implementation that allows this 3427 * option to be turned on, have it off by default. Otherwise an unaware 3428 * application using the one to many model may become confused and act 3429 * incorrectly. 3430 */ 3431 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3432 unsigned int optlen) 3433 { 3434 if (optlen != sizeof(int)) 3435 return -EINVAL; 3436 3437 sctp_sk(sk)->frag_interleave = !!*val; 3438 3439 if (!sctp_sk(sk)->frag_interleave) 3440 sctp_sk(sk)->ep->intl_enable = 0; 3441 3442 return 0; 3443 } 3444 3445 /* 3446 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3447 * (SCTP_PARTIAL_DELIVERY_POINT) 3448 * 3449 * This option will set or get the SCTP partial delivery point. This 3450 * point is the size of a message where the partial delivery API will be 3451 * invoked to help free up rwnd space for the peer. Setting this to a 3452 * lower value will cause partial deliveries to happen more often. The 3453 * calls argument is an integer that sets or gets the partial delivery 3454 * point. Note also that the call will fail if the user attempts to set 3455 * this value larger than the socket receive buffer size. 3456 * 3457 * Note that any single message having a length smaller than or equal to 3458 * the SCTP partial delivery point will be delivered in one single read 3459 * call as long as the user provided buffer is large enough to hold the 3460 * message. 3461 */ 3462 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3463 unsigned int optlen) 3464 { 3465 if (optlen != sizeof(u32)) 3466 return -EINVAL; 3467 3468 /* Note: We double the receive buffer from what the user sets 3469 * it to be, also initial rwnd is based on rcvbuf/2. 3470 */ 3471 if (*val > (sk->sk_rcvbuf >> 1)) 3472 return -EINVAL; 3473 3474 sctp_sk(sk)->pd_point = *val; 3475 3476 return 0; /* is this the right error code? */ 3477 } 3478 3479 /* 3480 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3481 * 3482 * This option will allow a user to change the maximum burst of packets 3483 * that can be emitted by this association. Note that the default value 3484 * is 4, and some implementations may restrict this setting so that it 3485 * can only be lowered. 3486 * 3487 * NOTE: This text doesn't seem right. Do this on a socket basis with 3488 * future associations inheriting the socket value. 3489 */ 3490 static int sctp_setsockopt_maxburst(struct sock *sk, 3491 struct sctp_assoc_value *params, 3492 unsigned int optlen) 3493 { 3494 struct sctp_sock *sp = sctp_sk(sk); 3495 struct sctp_association *asoc; 3496 sctp_assoc_t assoc_id; 3497 u32 assoc_value; 3498 3499 if (optlen == sizeof(int)) { 3500 pr_warn_ratelimited(DEPRECATED 3501 "%s (pid %d) " 3502 "Use of int in max_burst socket option deprecated.\n" 3503 "Use struct sctp_assoc_value instead\n", 3504 current->comm, task_pid_nr(current)); 3505 assoc_id = SCTP_FUTURE_ASSOC; 3506 assoc_value = *((int *)params); 3507 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3508 assoc_id = params->assoc_id; 3509 assoc_value = params->assoc_value; 3510 } else 3511 return -EINVAL; 3512 3513 asoc = sctp_id2assoc(sk, assoc_id); 3514 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3515 return -EINVAL; 3516 3517 if (asoc) { 3518 asoc->max_burst = assoc_value; 3519 3520 return 0; 3521 } 3522 3523 if (sctp_style(sk, TCP)) 3524 assoc_id = SCTP_FUTURE_ASSOC; 3525 3526 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3527 sp->max_burst = assoc_value; 3528 3529 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3530 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3531 asoc->max_burst = assoc_value; 3532 3533 return 0; 3534 } 3535 3536 /* 3537 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3538 * 3539 * This set option adds a chunk type that the user is requesting to be 3540 * received only in an authenticated way. Changes to the list of chunks 3541 * will only effect future associations on the socket. 3542 */ 3543 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3544 struct sctp_authchunk *val, 3545 unsigned int optlen) 3546 { 3547 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3548 3549 if (!ep->auth_enable) 3550 return -EACCES; 3551 3552 if (optlen != sizeof(struct sctp_authchunk)) 3553 return -EINVAL; 3554 3555 switch (val->sauth_chunk) { 3556 case SCTP_CID_INIT: 3557 case SCTP_CID_INIT_ACK: 3558 case SCTP_CID_SHUTDOWN_COMPLETE: 3559 case SCTP_CID_AUTH: 3560 return -EINVAL; 3561 } 3562 3563 /* add this chunk id to the endpoint */ 3564 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3565 } 3566 3567 /* 3568 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3569 * 3570 * This option gets or sets the list of HMAC algorithms that the local 3571 * endpoint requires the peer to use. 3572 */ 3573 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3574 struct sctp_hmacalgo *hmacs, 3575 unsigned int optlen) 3576 { 3577 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3578 u32 idents; 3579 3580 if (!ep->auth_enable) 3581 return -EACCES; 3582 3583 if (optlen < sizeof(struct sctp_hmacalgo)) 3584 return -EINVAL; 3585 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3586 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3587 3588 idents = hmacs->shmac_num_idents; 3589 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3590 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3591 return -EINVAL; 3592 3593 return sctp_auth_ep_set_hmacs(ep, hmacs); 3594 } 3595 3596 /* 3597 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3598 * 3599 * This option will set a shared secret key which is used to build an 3600 * association shared key. 3601 */ 3602 static int sctp_setsockopt_auth_key(struct sock *sk, 3603 struct sctp_authkey *authkey, 3604 unsigned int optlen) 3605 { 3606 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3607 struct sctp_association *asoc; 3608 int ret = -EINVAL; 3609 3610 if (optlen <= sizeof(struct sctp_authkey)) 3611 return -EINVAL; 3612 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3613 * this. 3614 */ 3615 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3616 3617 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3618 goto out; 3619 3620 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3621 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3622 sctp_style(sk, UDP)) 3623 goto out; 3624 3625 if (asoc) { 3626 ret = sctp_auth_set_key(ep, asoc, authkey); 3627 goto out; 3628 } 3629 3630 if (sctp_style(sk, TCP)) 3631 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3632 3633 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3634 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3635 ret = sctp_auth_set_key(ep, asoc, authkey); 3636 if (ret) 3637 goto out; 3638 } 3639 3640 ret = 0; 3641 3642 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3643 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3644 list_for_each_entry(asoc, &ep->asocs, asocs) { 3645 int res = sctp_auth_set_key(ep, asoc, authkey); 3646 3647 if (res && !ret) 3648 ret = res; 3649 } 3650 } 3651 3652 out: 3653 memzero_explicit(authkey, optlen); 3654 return ret; 3655 } 3656 3657 /* 3658 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3659 * 3660 * This option will get or set the active shared key to be used to build 3661 * the association shared key. 3662 */ 3663 static int sctp_setsockopt_active_key(struct sock *sk, 3664 struct sctp_authkeyid *val, 3665 unsigned int optlen) 3666 { 3667 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3668 struct sctp_association *asoc; 3669 int ret = 0; 3670 3671 if (optlen != sizeof(struct sctp_authkeyid)) 3672 return -EINVAL; 3673 3674 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3675 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3676 sctp_style(sk, UDP)) 3677 return -EINVAL; 3678 3679 if (asoc) 3680 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3681 3682 if (sctp_style(sk, TCP)) 3683 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3684 3685 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3686 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3687 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3688 if (ret) 3689 return ret; 3690 } 3691 3692 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3693 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3694 list_for_each_entry(asoc, &ep->asocs, asocs) { 3695 int res = sctp_auth_set_active_key(ep, asoc, 3696 val->scact_keynumber); 3697 3698 if (res && !ret) 3699 ret = res; 3700 } 3701 } 3702 3703 return ret; 3704 } 3705 3706 /* 3707 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3708 * 3709 * This set option will delete a shared secret key from use. 3710 */ 3711 static int sctp_setsockopt_del_key(struct sock *sk, 3712 struct sctp_authkeyid *val, 3713 unsigned int optlen) 3714 { 3715 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3716 struct sctp_association *asoc; 3717 int ret = 0; 3718 3719 if (optlen != sizeof(struct sctp_authkeyid)) 3720 return -EINVAL; 3721 3722 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3723 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3724 sctp_style(sk, UDP)) 3725 return -EINVAL; 3726 3727 if (asoc) 3728 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3729 3730 if (sctp_style(sk, TCP)) 3731 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3732 3733 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3734 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3735 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3736 if (ret) 3737 return ret; 3738 } 3739 3740 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3741 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3742 list_for_each_entry(asoc, &ep->asocs, asocs) { 3743 int res = sctp_auth_del_key_id(ep, asoc, 3744 val->scact_keynumber); 3745 3746 if (res && !ret) 3747 ret = res; 3748 } 3749 } 3750 3751 return ret; 3752 } 3753 3754 /* 3755 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3756 * 3757 * This set option will deactivate a shared secret key. 3758 */ 3759 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3760 struct sctp_authkeyid *val, 3761 unsigned int optlen) 3762 { 3763 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3764 struct sctp_association *asoc; 3765 int ret = 0; 3766 3767 if (optlen != sizeof(struct sctp_authkeyid)) 3768 return -EINVAL; 3769 3770 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3771 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3772 sctp_style(sk, UDP)) 3773 return -EINVAL; 3774 3775 if (asoc) 3776 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3777 3778 if (sctp_style(sk, TCP)) 3779 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3780 3781 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3782 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3783 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3784 if (ret) 3785 return ret; 3786 } 3787 3788 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3789 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3790 list_for_each_entry(asoc, &ep->asocs, asocs) { 3791 int res = sctp_auth_deact_key_id(ep, asoc, 3792 val->scact_keynumber); 3793 3794 if (res && !ret) 3795 ret = res; 3796 } 3797 } 3798 3799 return ret; 3800 } 3801 3802 /* 3803 * 8.1.23 SCTP_AUTO_ASCONF 3804 * 3805 * This option will enable or disable the use of the automatic generation of 3806 * ASCONF chunks to add and delete addresses to an existing association. Note 3807 * that this option has two caveats namely: a) it only affects sockets that 3808 * are bound to all addresses available to the SCTP stack, and b) the system 3809 * administrator may have an overriding control that turns the ASCONF feature 3810 * off no matter what setting the socket option may have. 3811 * This option expects an integer boolean flag, where a non-zero value turns on 3812 * the option, and a zero value turns off the option. 3813 * Note. In this implementation, socket operation overrides default parameter 3814 * being set by sysctl as well as FreeBSD implementation 3815 */ 3816 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3817 unsigned int optlen) 3818 { 3819 struct sctp_sock *sp = sctp_sk(sk); 3820 3821 if (optlen < sizeof(int)) 3822 return -EINVAL; 3823 if (!sctp_is_ep_boundall(sk) && *val) 3824 return -EINVAL; 3825 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3826 return 0; 3827 3828 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3829 if (*val == 0 && sp->do_auto_asconf) { 3830 list_del(&sp->auto_asconf_list); 3831 sp->do_auto_asconf = 0; 3832 } else if (*val && !sp->do_auto_asconf) { 3833 list_add_tail(&sp->auto_asconf_list, 3834 &sock_net(sk)->sctp.auto_asconf_splist); 3835 sp->do_auto_asconf = 1; 3836 } 3837 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3838 return 0; 3839 } 3840 3841 /* 3842 * SCTP_PEER_ADDR_THLDS 3843 * 3844 * This option allows us to alter the partially failed threshold for one or all 3845 * transports in an association. See Section 6.1 of: 3846 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3847 */ 3848 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3849 struct sctp_paddrthlds_v2 *val, 3850 unsigned int optlen, bool v2) 3851 { 3852 struct sctp_transport *trans; 3853 struct sctp_association *asoc; 3854 int len; 3855 3856 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3857 if (optlen < len) 3858 return -EINVAL; 3859 3860 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3861 return -EINVAL; 3862 3863 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3864 trans = sctp_addr_id2transport(sk, &val->spt_address, 3865 val->spt_assoc_id); 3866 if (!trans) 3867 return -ENOENT; 3868 3869 if (val->spt_pathmaxrxt) 3870 trans->pathmaxrxt = val->spt_pathmaxrxt; 3871 if (v2) 3872 trans->ps_retrans = val->spt_pathcpthld; 3873 trans->pf_retrans = val->spt_pathpfthld; 3874 3875 return 0; 3876 } 3877 3878 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3879 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3880 sctp_style(sk, UDP)) 3881 return -EINVAL; 3882 3883 if (asoc) { 3884 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3885 transports) { 3886 if (val->spt_pathmaxrxt) 3887 trans->pathmaxrxt = val->spt_pathmaxrxt; 3888 if (v2) 3889 trans->ps_retrans = val->spt_pathcpthld; 3890 trans->pf_retrans = val->spt_pathpfthld; 3891 } 3892 3893 if (val->spt_pathmaxrxt) 3894 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3895 if (v2) 3896 asoc->ps_retrans = val->spt_pathcpthld; 3897 asoc->pf_retrans = val->spt_pathpfthld; 3898 } else { 3899 struct sctp_sock *sp = sctp_sk(sk); 3900 3901 if (val->spt_pathmaxrxt) 3902 sp->pathmaxrxt = val->spt_pathmaxrxt; 3903 if (v2) 3904 sp->ps_retrans = val->spt_pathcpthld; 3905 sp->pf_retrans = val->spt_pathpfthld; 3906 } 3907 3908 return 0; 3909 } 3910 3911 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3912 unsigned int optlen) 3913 { 3914 if (optlen < sizeof(int)) 3915 return -EINVAL; 3916 3917 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3918 3919 return 0; 3920 } 3921 3922 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3923 unsigned int optlen) 3924 { 3925 if (optlen < sizeof(int)) 3926 return -EINVAL; 3927 3928 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3929 3930 return 0; 3931 } 3932 3933 static int sctp_setsockopt_pr_supported(struct sock *sk, 3934 struct sctp_assoc_value *params, 3935 unsigned int optlen) 3936 { 3937 struct sctp_association *asoc; 3938 3939 if (optlen != sizeof(*params)) 3940 return -EINVAL; 3941 3942 asoc = sctp_id2assoc(sk, params->assoc_id); 3943 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3944 sctp_style(sk, UDP)) 3945 return -EINVAL; 3946 3947 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3948 3949 return 0; 3950 } 3951 3952 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3953 struct sctp_default_prinfo *info, 3954 unsigned int optlen) 3955 { 3956 struct sctp_sock *sp = sctp_sk(sk); 3957 struct sctp_association *asoc; 3958 int retval = -EINVAL; 3959 3960 if (optlen != sizeof(*info)) 3961 goto out; 3962 3963 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3964 goto out; 3965 3966 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3967 info->pr_value = 0; 3968 3969 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3970 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3971 sctp_style(sk, UDP)) 3972 goto out; 3973 3974 retval = 0; 3975 3976 if (asoc) { 3977 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3978 asoc->default_timetolive = info->pr_value; 3979 goto out; 3980 } 3981 3982 if (sctp_style(sk, TCP)) 3983 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 3984 3985 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 3986 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3987 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 3988 sp->default_timetolive = info->pr_value; 3989 } 3990 3991 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 3992 info->pr_assoc_id == SCTP_ALL_ASSOC) { 3993 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3994 SCTP_PR_SET_POLICY(asoc->default_flags, 3995 info->pr_policy); 3996 asoc->default_timetolive = info->pr_value; 3997 } 3998 } 3999 4000 out: 4001 return retval; 4002 } 4003 4004 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4005 struct sctp_assoc_value *params, 4006 unsigned int optlen) 4007 { 4008 struct sctp_association *asoc; 4009 int retval = -EINVAL; 4010 4011 if (optlen != sizeof(*params)) 4012 goto out; 4013 4014 asoc = sctp_id2assoc(sk, params->assoc_id); 4015 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4016 sctp_style(sk, UDP)) 4017 goto out; 4018 4019 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4020 4021 retval = 0; 4022 4023 out: 4024 return retval; 4025 } 4026 4027 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4028 struct sctp_assoc_value *params, 4029 unsigned int optlen) 4030 { 4031 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4032 struct sctp_association *asoc; 4033 int retval = -EINVAL; 4034 4035 if (optlen != sizeof(*params)) 4036 goto out; 4037 4038 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4039 goto out; 4040 4041 asoc = sctp_id2assoc(sk, params->assoc_id); 4042 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4043 sctp_style(sk, UDP)) 4044 goto out; 4045 4046 retval = 0; 4047 4048 if (asoc) { 4049 asoc->strreset_enable = params->assoc_value; 4050 goto out; 4051 } 4052 4053 if (sctp_style(sk, TCP)) 4054 params->assoc_id = SCTP_FUTURE_ASSOC; 4055 4056 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4057 params->assoc_id == SCTP_ALL_ASSOC) 4058 ep->strreset_enable = params->assoc_value; 4059 4060 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4061 params->assoc_id == SCTP_ALL_ASSOC) 4062 list_for_each_entry(asoc, &ep->asocs, asocs) 4063 asoc->strreset_enable = params->assoc_value; 4064 4065 out: 4066 return retval; 4067 } 4068 4069 static int sctp_setsockopt_reset_streams(struct sock *sk, 4070 struct sctp_reset_streams *params, 4071 unsigned int optlen) 4072 { 4073 struct sctp_association *asoc; 4074 4075 if (optlen < sizeof(*params)) 4076 return -EINVAL; 4077 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4078 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4079 sizeof(__u16) * sizeof(*params)); 4080 4081 if (params->srs_number_streams * sizeof(__u16) > 4082 optlen - sizeof(*params)) 4083 return -EINVAL; 4084 4085 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4086 if (!asoc) 4087 return -EINVAL; 4088 4089 return sctp_send_reset_streams(asoc, params); 4090 } 4091 4092 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4093 unsigned int optlen) 4094 { 4095 struct sctp_association *asoc; 4096 4097 if (optlen != sizeof(*associd)) 4098 return -EINVAL; 4099 4100 asoc = sctp_id2assoc(sk, *associd); 4101 if (!asoc) 4102 return -EINVAL; 4103 4104 return sctp_send_reset_assoc(asoc); 4105 } 4106 4107 static int sctp_setsockopt_add_streams(struct sock *sk, 4108 struct sctp_add_streams *params, 4109 unsigned int optlen) 4110 { 4111 struct sctp_association *asoc; 4112 4113 if (optlen != sizeof(*params)) 4114 return -EINVAL; 4115 4116 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4117 if (!asoc) 4118 return -EINVAL; 4119 4120 return sctp_send_add_streams(asoc, params); 4121 } 4122 4123 static int sctp_setsockopt_scheduler(struct sock *sk, 4124 struct sctp_assoc_value *params, 4125 unsigned int optlen) 4126 { 4127 struct sctp_sock *sp = sctp_sk(sk); 4128 struct sctp_association *asoc; 4129 int retval = 0; 4130 4131 if (optlen < sizeof(*params)) 4132 return -EINVAL; 4133 4134 if (params->assoc_value > SCTP_SS_MAX) 4135 return -EINVAL; 4136 4137 asoc = sctp_id2assoc(sk, params->assoc_id); 4138 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4139 sctp_style(sk, UDP)) 4140 return -EINVAL; 4141 4142 if (asoc) 4143 return sctp_sched_set_sched(asoc, params->assoc_value); 4144 4145 if (sctp_style(sk, TCP)) 4146 params->assoc_id = SCTP_FUTURE_ASSOC; 4147 4148 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4149 params->assoc_id == SCTP_ALL_ASSOC) 4150 sp->default_ss = params->assoc_value; 4151 4152 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4153 params->assoc_id == SCTP_ALL_ASSOC) { 4154 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4155 int ret = sctp_sched_set_sched(asoc, 4156 params->assoc_value); 4157 4158 if (ret && !retval) 4159 retval = ret; 4160 } 4161 } 4162 4163 return retval; 4164 } 4165 4166 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4167 struct sctp_stream_value *params, 4168 unsigned int optlen) 4169 { 4170 struct sctp_association *asoc; 4171 int retval = -EINVAL; 4172 4173 if (optlen < sizeof(*params)) 4174 goto out; 4175 4176 asoc = sctp_id2assoc(sk, params->assoc_id); 4177 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4178 sctp_style(sk, UDP)) 4179 goto out; 4180 4181 if (asoc) { 4182 retval = sctp_sched_set_value(asoc, params->stream_id, 4183 params->stream_value, GFP_KERNEL); 4184 goto out; 4185 } 4186 4187 retval = 0; 4188 4189 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4190 int ret = sctp_sched_set_value(asoc, params->stream_id, 4191 params->stream_value, 4192 GFP_KERNEL); 4193 if (ret && !retval) /* try to return the 1st error. */ 4194 retval = ret; 4195 } 4196 4197 out: 4198 return retval; 4199 } 4200 4201 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4202 struct sctp_assoc_value *p, 4203 unsigned int optlen) 4204 { 4205 struct sctp_sock *sp = sctp_sk(sk); 4206 struct sctp_association *asoc; 4207 4208 if (optlen < sizeof(*p)) 4209 return -EINVAL; 4210 4211 asoc = sctp_id2assoc(sk, p->assoc_id); 4212 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4213 return -EINVAL; 4214 4215 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4216 return -EPERM; 4217 } 4218 4219 sp->ep->intl_enable = !!p->assoc_value; 4220 return 0; 4221 } 4222 4223 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4224 unsigned int optlen) 4225 { 4226 if (!sctp_style(sk, TCP)) 4227 return -EOPNOTSUPP; 4228 4229 if (sctp_sk(sk)->ep->base.bind_addr.port) 4230 return -EFAULT; 4231 4232 if (optlen < sizeof(int)) 4233 return -EINVAL; 4234 4235 sctp_sk(sk)->reuse = !!*val; 4236 4237 return 0; 4238 } 4239 4240 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4241 struct sctp_association *asoc) 4242 { 4243 struct sctp_ulpevent *event; 4244 4245 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4246 4247 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4248 if (sctp_outq_is_empty(&asoc->outqueue)) { 4249 event = sctp_ulpevent_make_sender_dry_event(asoc, 4250 GFP_USER | __GFP_NOWARN); 4251 if (!event) 4252 return -ENOMEM; 4253 4254 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4255 } 4256 } 4257 4258 return 0; 4259 } 4260 4261 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4262 unsigned int optlen) 4263 { 4264 struct sctp_sock *sp = sctp_sk(sk); 4265 struct sctp_association *asoc; 4266 int retval = 0; 4267 4268 if (optlen < sizeof(*param)) 4269 return -EINVAL; 4270 4271 if (param->se_type < SCTP_SN_TYPE_BASE || 4272 param->se_type > SCTP_SN_TYPE_MAX) 4273 return -EINVAL; 4274 4275 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4276 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4277 sctp_style(sk, UDP)) 4278 return -EINVAL; 4279 4280 if (asoc) 4281 return sctp_assoc_ulpevent_type_set(param, asoc); 4282 4283 if (sctp_style(sk, TCP)) 4284 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4285 4286 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4287 param->se_assoc_id == SCTP_ALL_ASSOC) 4288 sctp_ulpevent_type_set(&sp->subscribe, 4289 param->se_type, param->se_on); 4290 4291 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4292 param->se_assoc_id == SCTP_ALL_ASSOC) { 4293 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4294 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4295 4296 if (ret && !retval) 4297 retval = ret; 4298 } 4299 } 4300 4301 return retval; 4302 } 4303 4304 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4305 struct sctp_assoc_value *params, 4306 unsigned int optlen) 4307 { 4308 struct sctp_association *asoc; 4309 struct sctp_endpoint *ep; 4310 int retval = -EINVAL; 4311 4312 if (optlen != sizeof(*params)) 4313 goto out; 4314 4315 asoc = sctp_id2assoc(sk, params->assoc_id); 4316 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4317 sctp_style(sk, UDP)) 4318 goto out; 4319 4320 ep = sctp_sk(sk)->ep; 4321 ep->asconf_enable = !!params->assoc_value; 4322 4323 if (ep->asconf_enable && ep->auth_enable) { 4324 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4325 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4326 } 4327 4328 retval = 0; 4329 4330 out: 4331 return retval; 4332 } 4333 4334 static int sctp_setsockopt_auth_supported(struct sock *sk, 4335 struct sctp_assoc_value *params, 4336 unsigned int optlen) 4337 { 4338 struct sctp_association *asoc; 4339 struct sctp_endpoint *ep; 4340 int retval = -EINVAL; 4341 4342 if (optlen != sizeof(*params)) 4343 goto out; 4344 4345 asoc = sctp_id2assoc(sk, params->assoc_id); 4346 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4347 sctp_style(sk, UDP)) 4348 goto out; 4349 4350 ep = sctp_sk(sk)->ep; 4351 if (params->assoc_value) { 4352 retval = sctp_auth_init(ep, GFP_KERNEL); 4353 if (retval) 4354 goto out; 4355 if (ep->asconf_enable) { 4356 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4357 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4358 } 4359 } 4360 4361 ep->auth_enable = !!params->assoc_value; 4362 retval = 0; 4363 4364 out: 4365 return retval; 4366 } 4367 4368 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4369 struct sctp_assoc_value *params, 4370 unsigned int optlen) 4371 { 4372 struct sctp_association *asoc; 4373 int retval = -EINVAL; 4374 4375 if (optlen != sizeof(*params)) 4376 goto out; 4377 4378 asoc = sctp_id2assoc(sk, params->assoc_id); 4379 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4380 sctp_style(sk, UDP)) 4381 goto out; 4382 4383 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4384 retval = 0; 4385 4386 out: 4387 return retval; 4388 } 4389 4390 static int sctp_setsockopt_pf_expose(struct sock *sk, 4391 struct sctp_assoc_value *params, 4392 unsigned int optlen) 4393 { 4394 struct sctp_association *asoc; 4395 int retval = -EINVAL; 4396 4397 if (optlen != sizeof(*params)) 4398 goto out; 4399 4400 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4401 goto out; 4402 4403 asoc = sctp_id2assoc(sk, params->assoc_id); 4404 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4405 sctp_style(sk, UDP)) 4406 goto out; 4407 4408 if (asoc) 4409 asoc->pf_expose = params->assoc_value; 4410 else 4411 sctp_sk(sk)->pf_expose = params->assoc_value; 4412 retval = 0; 4413 4414 out: 4415 return retval; 4416 } 4417 4418 static int sctp_setsockopt_encap_port(struct sock *sk, 4419 struct sctp_udpencaps *encap, 4420 unsigned int optlen) 4421 { 4422 struct sctp_association *asoc; 4423 struct sctp_transport *t; 4424 __be16 encap_port; 4425 4426 if (optlen != sizeof(*encap)) 4427 return -EINVAL; 4428 4429 /* If an address other than INADDR_ANY is specified, and 4430 * no transport is found, then the request is invalid. 4431 */ 4432 encap_port = (__force __be16)encap->sue_port; 4433 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4434 t = sctp_addr_id2transport(sk, &encap->sue_address, 4435 encap->sue_assoc_id); 4436 if (!t) 4437 return -EINVAL; 4438 4439 t->encap_port = encap_port; 4440 return 0; 4441 } 4442 4443 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4444 * socket is a one to many style socket, and an association 4445 * was not found, then the id was invalid. 4446 */ 4447 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4448 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4449 sctp_style(sk, UDP)) 4450 return -EINVAL; 4451 4452 /* If changes are for association, also apply encap_port to 4453 * each transport. 4454 */ 4455 if (asoc) { 4456 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4457 transports) 4458 t->encap_port = encap_port; 4459 4460 return 0; 4461 } 4462 4463 sctp_sk(sk)->encap_port = encap_port; 4464 return 0; 4465 } 4466 4467 /* API 6.2 setsockopt(), getsockopt() 4468 * 4469 * Applications use setsockopt() and getsockopt() to set or retrieve 4470 * socket options. Socket options are used to change the default 4471 * behavior of sockets calls. They are described in Section 7. 4472 * 4473 * The syntax is: 4474 * 4475 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4476 * int __user *optlen); 4477 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4478 * int optlen); 4479 * 4480 * sd - the socket descript. 4481 * level - set to IPPROTO_SCTP for all SCTP options. 4482 * optname - the option name. 4483 * optval - the buffer to store the value of the option. 4484 * optlen - the size of the buffer. 4485 */ 4486 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4487 sockptr_t optval, unsigned int optlen) 4488 { 4489 void *kopt = NULL; 4490 int retval = 0; 4491 4492 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4493 4494 /* I can hardly begin to describe how wrong this is. This is 4495 * so broken as to be worse than useless. The API draft 4496 * REALLY is NOT helpful here... I am not convinced that the 4497 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4498 * are at all well-founded. 4499 */ 4500 if (level != SOL_SCTP) { 4501 struct sctp_af *af = sctp_sk(sk)->pf->af; 4502 4503 return af->setsockopt(sk, level, optname, optval, optlen); 4504 } 4505 4506 if (optlen > 0) { 4507 kopt = memdup_sockptr(optval, optlen); 4508 if (IS_ERR(kopt)) 4509 return PTR_ERR(kopt); 4510 } 4511 4512 lock_sock(sk); 4513 4514 switch (optname) { 4515 case SCTP_SOCKOPT_BINDX_ADD: 4516 /* 'optlen' is the size of the addresses buffer. */ 4517 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4518 SCTP_BINDX_ADD_ADDR); 4519 break; 4520 4521 case SCTP_SOCKOPT_BINDX_REM: 4522 /* 'optlen' is the size of the addresses buffer. */ 4523 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4524 SCTP_BINDX_REM_ADDR); 4525 break; 4526 4527 case SCTP_SOCKOPT_CONNECTX_OLD: 4528 /* 'optlen' is the size of the addresses buffer. */ 4529 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4530 break; 4531 4532 case SCTP_SOCKOPT_CONNECTX: 4533 /* 'optlen' is the size of the addresses buffer. */ 4534 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4535 break; 4536 4537 case SCTP_DISABLE_FRAGMENTS: 4538 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4539 break; 4540 4541 case SCTP_EVENTS: 4542 retval = sctp_setsockopt_events(sk, kopt, optlen); 4543 break; 4544 4545 case SCTP_AUTOCLOSE: 4546 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4547 break; 4548 4549 case SCTP_PEER_ADDR_PARAMS: 4550 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4551 break; 4552 4553 case SCTP_DELAYED_SACK: 4554 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4555 break; 4556 case SCTP_PARTIAL_DELIVERY_POINT: 4557 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4558 break; 4559 4560 case SCTP_INITMSG: 4561 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4562 break; 4563 case SCTP_DEFAULT_SEND_PARAM: 4564 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4565 break; 4566 case SCTP_DEFAULT_SNDINFO: 4567 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4568 break; 4569 case SCTP_PRIMARY_ADDR: 4570 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4571 break; 4572 case SCTP_SET_PEER_PRIMARY_ADDR: 4573 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4574 break; 4575 case SCTP_NODELAY: 4576 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4577 break; 4578 case SCTP_RTOINFO: 4579 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4580 break; 4581 case SCTP_ASSOCINFO: 4582 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4583 break; 4584 case SCTP_I_WANT_MAPPED_V4_ADDR: 4585 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4586 break; 4587 case SCTP_MAXSEG: 4588 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4589 break; 4590 case SCTP_ADAPTATION_LAYER: 4591 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4592 break; 4593 case SCTP_CONTEXT: 4594 retval = sctp_setsockopt_context(sk, kopt, optlen); 4595 break; 4596 case SCTP_FRAGMENT_INTERLEAVE: 4597 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4598 break; 4599 case SCTP_MAX_BURST: 4600 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4601 break; 4602 case SCTP_AUTH_CHUNK: 4603 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4604 break; 4605 case SCTP_HMAC_IDENT: 4606 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4607 break; 4608 case SCTP_AUTH_KEY: 4609 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4610 break; 4611 case SCTP_AUTH_ACTIVE_KEY: 4612 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4613 break; 4614 case SCTP_AUTH_DELETE_KEY: 4615 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4616 break; 4617 case SCTP_AUTH_DEACTIVATE_KEY: 4618 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4619 break; 4620 case SCTP_AUTO_ASCONF: 4621 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4622 break; 4623 case SCTP_PEER_ADDR_THLDS: 4624 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4625 false); 4626 break; 4627 case SCTP_PEER_ADDR_THLDS_V2: 4628 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4629 true); 4630 break; 4631 case SCTP_RECVRCVINFO: 4632 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4633 break; 4634 case SCTP_RECVNXTINFO: 4635 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4636 break; 4637 case SCTP_PR_SUPPORTED: 4638 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4639 break; 4640 case SCTP_DEFAULT_PRINFO: 4641 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4642 break; 4643 case SCTP_RECONFIG_SUPPORTED: 4644 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4645 break; 4646 case SCTP_ENABLE_STREAM_RESET: 4647 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4648 break; 4649 case SCTP_RESET_STREAMS: 4650 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4651 break; 4652 case SCTP_RESET_ASSOC: 4653 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4654 break; 4655 case SCTP_ADD_STREAMS: 4656 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4657 break; 4658 case SCTP_STREAM_SCHEDULER: 4659 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4660 break; 4661 case SCTP_STREAM_SCHEDULER_VALUE: 4662 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4663 break; 4664 case SCTP_INTERLEAVING_SUPPORTED: 4665 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4666 optlen); 4667 break; 4668 case SCTP_REUSE_PORT: 4669 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4670 break; 4671 case SCTP_EVENT: 4672 retval = sctp_setsockopt_event(sk, kopt, optlen); 4673 break; 4674 case SCTP_ASCONF_SUPPORTED: 4675 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4676 break; 4677 case SCTP_AUTH_SUPPORTED: 4678 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4679 break; 4680 case SCTP_ECN_SUPPORTED: 4681 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4682 break; 4683 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4684 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4685 break; 4686 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4687 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4688 break; 4689 default: 4690 retval = -ENOPROTOOPT; 4691 break; 4692 } 4693 4694 release_sock(sk); 4695 kfree(kopt); 4696 return retval; 4697 } 4698 4699 /* API 3.1.6 connect() - UDP Style Syntax 4700 * 4701 * An application may use the connect() call in the UDP model to initiate an 4702 * association without sending data. 4703 * 4704 * The syntax is: 4705 * 4706 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4707 * 4708 * sd: the socket descriptor to have a new association added to. 4709 * 4710 * nam: the address structure (either struct sockaddr_in or struct 4711 * sockaddr_in6 defined in RFC2553 [7]). 4712 * 4713 * len: the size of the address. 4714 */ 4715 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4716 int addr_len, int flags) 4717 { 4718 struct sctp_af *af; 4719 int err = -EINVAL; 4720 4721 lock_sock(sk); 4722 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4723 addr, addr_len); 4724 4725 /* Validate addr_len before calling common connect/connectx routine. */ 4726 af = sctp_get_af_specific(addr->sa_family); 4727 if (af && addr_len >= af->sockaddr_len) 4728 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4729 4730 release_sock(sk); 4731 return err; 4732 } 4733 4734 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4735 int addr_len, int flags) 4736 { 4737 if (addr_len < sizeof(uaddr->sa_family)) 4738 return -EINVAL; 4739 4740 if (uaddr->sa_family == AF_UNSPEC) 4741 return -EOPNOTSUPP; 4742 4743 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4744 } 4745 4746 /* FIXME: Write comments. */ 4747 static int sctp_disconnect(struct sock *sk, int flags) 4748 { 4749 return -EOPNOTSUPP; /* STUB */ 4750 } 4751 4752 /* 4.1.4 accept() - TCP Style Syntax 4753 * 4754 * Applications use accept() call to remove an established SCTP 4755 * association from the accept queue of the endpoint. A new socket 4756 * descriptor will be returned from accept() to represent the newly 4757 * formed association. 4758 */ 4759 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4760 { 4761 struct sctp_sock *sp; 4762 struct sctp_endpoint *ep; 4763 struct sock *newsk = NULL; 4764 struct sctp_association *asoc; 4765 long timeo; 4766 int error = 0; 4767 4768 lock_sock(sk); 4769 4770 sp = sctp_sk(sk); 4771 ep = sp->ep; 4772 4773 if (!sctp_style(sk, TCP)) { 4774 error = -EOPNOTSUPP; 4775 goto out; 4776 } 4777 4778 if (!sctp_sstate(sk, LISTENING)) { 4779 error = -EINVAL; 4780 goto out; 4781 } 4782 4783 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4784 4785 error = sctp_wait_for_accept(sk, timeo); 4786 if (error) 4787 goto out; 4788 4789 /* We treat the list of associations on the endpoint as the accept 4790 * queue and pick the first association on the list. 4791 */ 4792 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4793 4794 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4795 if (!newsk) { 4796 error = -ENOMEM; 4797 goto out; 4798 } 4799 4800 /* Populate the fields of the newsk from the oldsk and migrate the 4801 * asoc to the newsk. 4802 */ 4803 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4804 if (error) { 4805 sk_common_release(newsk); 4806 newsk = NULL; 4807 } 4808 4809 out: 4810 release_sock(sk); 4811 *err = error; 4812 return newsk; 4813 } 4814 4815 /* The SCTP ioctl handler. */ 4816 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4817 { 4818 int rc = -ENOTCONN; 4819 4820 lock_sock(sk); 4821 4822 /* 4823 * SEQPACKET-style sockets in LISTENING state are valid, for 4824 * SCTP, so only discard TCP-style sockets in LISTENING state. 4825 */ 4826 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4827 goto out; 4828 4829 switch (cmd) { 4830 case SIOCINQ: { 4831 struct sk_buff *skb; 4832 unsigned int amount = 0; 4833 4834 skb = skb_peek(&sk->sk_receive_queue); 4835 if (skb != NULL) { 4836 /* 4837 * We will only return the amount of this packet since 4838 * that is all that will be read. 4839 */ 4840 amount = skb->len; 4841 } 4842 rc = put_user(amount, (int __user *)arg); 4843 break; 4844 } 4845 default: 4846 rc = -ENOIOCTLCMD; 4847 break; 4848 } 4849 out: 4850 release_sock(sk); 4851 return rc; 4852 } 4853 4854 /* This is the function which gets called during socket creation to 4855 * initialized the SCTP-specific portion of the sock. 4856 * The sock structure should already be zero-filled memory. 4857 */ 4858 static int sctp_init_sock(struct sock *sk) 4859 { 4860 struct net *net = sock_net(sk); 4861 struct sctp_sock *sp; 4862 4863 pr_debug("%s: sk:%p\n", __func__, sk); 4864 4865 sp = sctp_sk(sk); 4866 4867 /* Initialize the SCTP per socket area. */ 4868 switch (sk->sk_type) { 4869 case SOCK_SEQPACKET: 4870 sp->type = SCTP_SOCKET_UDP; 4871 break; 4872 case SOCK_STREAM: 4873 sp->type = SCTP_SOCKET_TCP; 4874 break; 4875 default: 4876 return -ESOCKTNOSUPPORT; 4877 } 4878 4879 sk->sk_gso_type = SKB_GSO_SCTP; 4880 4881 /* Initialize default send parameters. These parameters can be 4882 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4883 */ 4884 sp->default_stream = 0; 4885 sp->default_ppid = 0; 4886 sp->default_flags = 0; 4887 sp->default_context = 0; 4888 sp->default_timetolive = 0; 4889 4890 sp->default_rcv_context = 0; 4891 sp->max_burst = net->sctp.max_burst; 4892 4893 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4894 4895 /* Initialize default setup parameters. These parameters 4896 * can be modified with the SCTP_INITMSG socket option or 4897 * overridden by the SCTP_INIT CMSG. 4898 */ 4899 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4900 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4901 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4902 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4903 4904 /* Initialize default RTO related parameters. These parameters can 4905 * be modified for with the SCTP_RTOINFO socket option. 4906 */ 4907 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4908 sp->rtoinfo.srto_max = net->sctp.rto_max; 4909 sp->rtoinfo.srto_min = net->sctp.rto_min; 4910 4911 /* Initialize default association related parameters. These parameters 4912 * can be modified with the SCTP_ASSOCINFO socket option. 4913 */ 4914 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4915 sp->assocparams.sasoc_number_peer_destinations = 0; 4916 sp->assocparams.sasoc_peer_rwnd = 0; 4917 sp->assocparams.sasoc_local_rwnd = 0; 4918 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4919 4920 /* Initialize default event subscriptions. By default, all the 4921 * options are off. 4922 */ 4923 sp->subscribe = 0; 4924 4925 /* Default Peer Address Parameters. These defaults can 4926 * be modified via SCTP_PEER_ADDR_PARAMS 4927 */ 4928 sp->hbinterval = net->sctp.hb_interval; 4929 sp->udp_port = htons(net->sctp.udp_port); 4930 sp->encap_port = htons(net->sctp.encap_port); 4931 sp->pathmaxrxt = net->sctp.max_retrans_path; 4932 sp->pf_retrans = net->sctp.pf_retrans; 4933 sp->ps_retrans = net->sctp.ps_retrans; 4934 sp->pf_expose = net->sctp.pf_expose; 4935 sp->pathmtu = 0; /* allow default discovery */ 4936 sp->sackdelay = net->sctp.sack_timeout; 4937 sp->sackfreq = 2; 4938 sp->param_flags = SPP_HB_ENABLE | 4939 SPP_PMTUD_ENABLE | 4940 SPP_SACKDELAY_ENABLE; 4941 sp->default_ss = SCTP_SS_DEFAULT; 4942 4943 /* If enabled no SCTP message fragmentation will be performed. 4944 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4945 */ 4946 sp->disable_fragments = 0; 4947 4948 /* Enable Nagle algorithm by default. */ 4949 sp->nodelay = 0; 4950 4951 sp->recvrcvinfo = 0; 4952 sp->recvnxtinfo = 0; 4953 4954 /* Enable by default. */ 4955 sp->v4mapped = 1; 4956 4957 /* Auto-close idle associations after the configured 4958 * number of seconds. A value of 0 disables this 4959 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4960 * for UDP-style sockets only. 4961 */ 4962 sp->autoclose = 0; 4963 4964 /* User specified fragmentation limit. */ 4965 sp->user_frag = 0; 4966 4967 sp->adaptation_ind = 0; 4968 4969 sp->pf = sctp_get_pf_specific(sk->sk_family); 4970 4971 /* Control variables for partial data delivery. */ 4972 atomic_set(&sp->pd_mode, 0); 4973 skb_queue_head_init(&sp->pd_lobby); 4974 sp->frag_interleave = 0; 4975 4976 /* Create a per socket endpoint structure. Even if we 4977 * change the data structure relationships, this may still 4978 * be useful for storing pre-connect address information. 4979 */ 4980 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4981 if (!sp->ep) 4982 return -ENOMEM; 4983 4984 sp->hmac = NULL; 4985 4986 sk->sk_destruct = sctp_destruct_sock; 4987 4988 SCTP_DBG_OBJCNT_INC(sock); 4989 4990 local_bh_disable(); 4991 sk_sockets_allocated_inc(sk); 4992 sock_prot_inuse_add(net, sk->sk_prot, 1); 4993 4994 if (net->sctp.default_auto_asconf) { 4995 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4996 list_add_tail(&sp->auto_asconf_list, 4997 &net->sctp.auto_asconf_splist); 4998 sp->do_auto_asconf = 1; 4999 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5000 } else { 5001 sp->do_auto_asconf = 0; 5002 } 5003 5004 local_bh_enable(); 5005 5006 return 0; 5007 } 5008 5009 /* Cleanup any SCTP per socket resources. Must be called with 5010 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5011 */ 5012 static void sctp_destroy_sock(struct sock *sk) 5013 { 5014 struct sctp_sock *sp; 5015 5016 pr_debug("%s: sk:%p\n", __func__, sk); 5017 5018 /* Release our hold on the endpoint. */ 5019 sp = sctp_sk(sk); 5020 /* This could happen during socket init, thus we bail out 5021 * early, since the rest of the below is not setup either. 5022 */ 5023 if (sp->ep == NULL) 5024 return; 5025 5026 if (sp->do_auto_asconf) { 5027 sp->do_auto_asconf = 0; 5028 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 5029 list_del(&sp->auto_asconf_list); 5030 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 5031 } 5032 sctp_endpoint_free(sp->ep); 5033 local_bh_disable(); 5034 sk_sockets_allocated_dec(sk); 5035 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5036 local_bh_enable(); 5037 } 5038 5039 /* Triggered when there are no references on the socket anymore */ 5040 static void sctp_destruct_sock(struct sock *sk) 5041 { 5042 struct sctp_sock *sp = sctp_sk(sk); 5043 5044 /* Free up the HMAC transform. */ 5045 crypto_free_shash(sp->hmac); 5046 5047 inet_sock_destruct(sk); 5048 } 5049 5050 /* API 4.1.7 shutdown() - TCP Style Syntax 5051 * int shutdown(int socket, int how); 5052 * 5053 * sd - the socket descriptor of the association to be closed. 5054 * how - Specifies the type of shutdown. The values are 5055 * as follows: 5056 * SHUT_RD 5057 * Disables further receive operations. No SCTP 5058 * protocol action is taken. 5059 * SHUT_WR 5060 * Disables further send operations, and initiates 5061 * the SCTP shutdown sequence. 5062 * SHUT_RDWR 5063 * Disables further send and receive operations 5064 * and initiates the SCTP shutdown sequence. 5065 */ 5066 static void sctp_shutdown(struct sock *sk, int how) 5067 { 5068 struct net *net = sock_net(sk); 5069 struct sctp_endpoint *ep; 5070 5071 if (!sctp_style(sk, TCP)) 5072 return; 5073 5074 ep = sctp_sk(sk)->ep; 5075 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5076 struct sctp_association *asoc; 5077 5078 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5079 asoc = list_entry(ep->asocs.next, 5080 struct sctp_association, asocs); 5081 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5082 } 5083 } 5084 5085 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5086 struct sctp_info *info) 5087 { 5088 struct sctp_transport *prim; 5089 struct list_head *pos; 5090 int mask; 5091 5092 memset(info, 0, sizeof(*info)); 5093 if (!asoc) { 5094 struct sctp_sock *sp = sctp_sk(sk); 5095 5096 info->sctpi_s_autoclose = sp->autoclose; 5097 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5098 info->sctpi_s_pd_point = sp->pd_point; 5099 info->sctpi_s_nodelay = sp->nodelay; 5100 info->sctpi_s_disable_fragments = sp->disable_fragments; 5101 info->sctpi_s_v4mapped = sp->v4mapped; 5102 info->sctpi_s_frag_interleave = sp->frag_interleave; 5103 info->sctpi_s_type = sp->type; 5104 5105 return 0; 5106 } 5107 5108 info->sctpi_tag = asoc->c.my_vtag; 5109 info->sctpi_state = asoc->state; 5110 info->sctpi_rwnd = asoc->a_rwnd; 5111 info->sctpi_unackdata = asoc->unack_data; 5112 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5113 info->sctpi_instrms = asoc->stream.incnt; 5114 info->sctpi_outstrms = asoc->stream.outcnt; 5115 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5116 info->sctpi_inqueue++; 5117 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5118 info->sctpi_outqueue++; 5119 info->sctpi_overall_error = asoc->overall_error_count; 5120 info->sctpi_max_burst = asoc->max_burst; 5121 info->sctpi_maxseg = asoc->frag_point; 5122 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5123 info->sctpi_peer_tag = asoc->c.peer_vtag; 5124 5125 mask = asoc->peer.ecn_capable << 1; 5126 mask = (mask | asoc->peer.ipv4_address) << 1; 5127 mask = (mask | asoc->peer.ipv6_address) << 1; 5128 mask = (mask | asoc->peer.hostname_address) << 1; 5129 mask = (mask | asoc->peer.asconf_capable) << 1; 5130 mask = (mask | asoc->peer.prsctp_capable) << 1; 5131 mask = (mask | asoc->peer.auth_capable); 5132 info->sctpi_peer_capable = mask; 5133 mask = asoc->peer.sack_needed << 1; 5134 mask = (mask | asoc->peer.sack_generation) << 1; 5135 mask = (mask | asoc->peer.zero_window_announced); 5136 info->sctpi_peer_sack = mask; 5137 5138 info->sctpi_isacks = asoc->stats.isacks; 5139 info->sctpi_osacks = asoc->stats.osacks; 5140 info->sctpi_opackets = asoc->stats.opackets; 5141 info->sctpi_ipackets = asoc->stats.ipackets; 5142 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5143 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5144 info->sctpi_idupchunks = asoc->stats.idupchunks; 5145 info->sctpi_gapcnt = asoc->stats.gapcnt; 5146 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5147 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5148 info->sctpi_oodchunks = asoc->stats.oodchunks; 5149 info->sctpi_iodchunks = asoc->stats.iodchunks; 5150 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5151 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5152 5153 prim = asoc->peer.primary_path; 5154 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5155 info->sctpi_p_state = prim->state; 5156 info->sctpi_p_cwnd = prim->cwnd; 5157 info->sctpi_p_srtt = prim->srtt; 5158 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5159 info->sctpi_p_hbinterval = prim->hbinterval; 5160 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5161 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5162 info->sctpi_p_ssthresh = prim->ssthresh; 5163 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5164 info->sctpi_p_flight_size = prim->flight_size; 5165 info->sctpi_p_error = prim->error_count; 5166 5167 return 0; 5168 } 5169 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5170 5171 /* use callback to avoid exporting the core structure */ 5172 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5173 { 5174 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5175 5176 rhashtable_walk_start(iter); 5177 } 5178 5179 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5180 { 5181 rhashtable_walk_stop(iter); 5182 rhashtable_walk_exit(iter); 5183 } 5184 5185 struct sctp_transport *sctp_transport_get_next(struct net *net, 5186 struct rhashtable_iter *iter) 5187 { 5188 struct sctp_transport *t; 5189 5190 t = rhashtable_walk_next(iter); 5191 for (; t; t = rhashtable_walk_next(iter)) { 5192 if (IS_ERR(t)) { 5193 if (PTR_ERR(t) == -EAGAIN) 5194 continue; 5195 break; 5196 } 5197 5198 if (!sctp_transport_hold(t)) 5199 continue; 5200 5201 if (net_eq(t->asoc->base.net, net) && 5202 t->asoc->peer.primary_path == t) 5203 break; 5204 5205 sctp_transport_put(t); 5206 } 5207 5208 return t; 5209 } 5210 5211 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5212 struct rhashtable_iter *iter, 5213 int pos) 5214 { 5215 struct sctp_transport *t; 5216 5217 if (!pos) 5218 return SEQ_START_TOKEN; 5219 5220 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5221 if (!--pos) 5222 break; 5223 sctp_transport_put(t); 5224 } 5225 5226 return t; 5227 } 5228 5229 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5230 void *p) { 5231 int err = 0; 5232 int hash = 0; 5233 struct sctp_ep_common *epb; 5234 struct sctp_hashbucket *head; 5235 5236 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5237 hash++, head++) { 5238 read_lock_bh(&head->lock); 5239 sctp_for_each_hentry(epb, &head->chain) { 5240 err = cb(sctp_ep(epb), p); 5241 if (err) 5242 break; 5243 } 5244 read_unlock_bh(&head->lock); 5245 } 5246 5247 return err; 5248 } 5249 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5250 5251 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5252 struct net *net, 5253 const union sctp_addr *laddr, 5254 const union sctp_addr *paddr, void *p) 5255 { 5256 struct sctp_transport *transport; 5257 int err; 5258 5259 rcu_read_lock(); 5260 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5261 rcu_read_unlock(); 5262 if (!transport) 5263 return -ENOENT; 5264 5265 err = cb(transport, p); 5266 sctp_transport_put(transport); 5267 5268 return err; 5269 } 5270 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5271 5272 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5273 int (*cb_done)(struct sctp_transport *, void *), 5274 struct net *net, int *pos, void *p) { 5275 struct rhashtable_iter hti; 5276 struct sctp_transport *tsp; 5277 int ret; 5278 5279 again: 5280 ret = 0; 5281 sctp_transport_walk_start(&hti); 5282 5283 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5284 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5285 ret = cb(tsp, p); 5286 if (ret) 5287 break; 5288 (*pos)++; 5289 sctp_transport_put(tsp); 5290 } 5291 sctp_transport_walk_stop(&hti); 5292 5293 if (ret) { 5294 if (cb_done && !cb_done(tsp, p)) { 5295 (*pos)++; 5296 sctp_transport_put(tsp); 5297 goto again; 5298 } 5299 sctp_transport_put(tsp); 5300 } 5301 5302 return ret; 5303 } 5304 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5305 5306 /* 7.2.1 Association Status (SCTP_STATUS) 5307 5308 * Applications can retrieve current status information about an 5309 * association, including association state, peer receiver window size, 5310 * number of unacked data chunks, and number of data chunks pending 5311 * receipt. This information is read-only. 5312 */ 5313 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5314 char __user *optval, 5315 int __user *optlen) 5316 { 5317 struct sctp_status status; 5318 struct sctp_association *asoc = NULL; 5319 struct sctp_transport *transport; 5320 sctp_assoc_t associd; 5321 int retval = 0; 5322 5323 if (len < sizeof(status)) { 5324 retval = -EINVAL; 5325 goto out; 5326 } 5327 5328 len = sizeof(status); 5329 if (copy_from_user(&status, optval, len)) { 5330 retval = -EFAULT; 5331 goto out; 5332 } 5333 5334 associd = status.sstat_assoc_id; 5335 asoc = sctp_id2assoc(sk, associd); 5336 if (!asoc) { 5337 retval = -EINVAL; 5338 goto out; 5339 } 5340 5341 transport = asoc->peer.primary_path; 5342 5343 status.sstat_assoc_id = sctp_assoc2id(asoc); 5344 status.sstat_state = sctp_assoc_to_state(asoc); 5345 status.sstat_rwnd = asoc->peer.rwnd; 5346 status.sstat_unackdata = asoc->unack_data; 5347 5348 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5349 status.sstat_instrms = asoc->stream.incnt; 5350 status.sstat_outstrms = asoc->stream.outcnt; 5351 status.sstat_fragmentation_point = asoc->frag_point; 5352 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5353 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5354 transport->af_specific->sockaddr_len); 5355 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5356 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5357 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5358 status.sstat_primary.spinfo_state = transport->state; 5359 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5360 status.sstat_primary.spinfo_srtt = transport->srtt; 5361 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5362 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5363 5364 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5365 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5366 5367 if (put_user(len, optlen)) { 5368 retval = -EFAULT; 5369 goto out; 5370 } 5371 5372 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5373 __func__, len, status.sstat_state, status.sstat_rwnd, 5374 status.sstat_assoc_id); 5375 5376 if (copy_to_user(optval, &status, len)) { 5377 retval = -EFAULT; 5378 goto out; 5379 } 5380 5381 out: 5382 return retval; 5383 } 5384 5385 5386 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5387 * 5388 * Applications can retrieve information about a specific peer address 5389 * of an association, including its reachability state, congestion 5390 * window, and retransmission timer values. This information is 5391 * read-only. 5392 */ 5393 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5394 char __user *optval, 5395 int __user *optlen) 5396 { 5397 struct sctp_paddrinfo pinfo; 5398 struct sctp_transport *transport; 5399 int retval = 0; 5400 5401 if (len < sizeof(pinfo)) { 5402 retval = -EINVAL; 5403 goto out; 5404 } 5405 5406 len = sizeof(pinfo); 5407 if (copy_from_user(&pinfo, optval, len)) { 5408 retval = -EFAULT; 5409 goto out; 5410 } 5411 5412 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5413 pinfo.spinfo_assoc_id); 5414 if (!transport) { 5415 retval = -EINVAL; 5416 goto out; 5417 } 5418 5419 if (transport->state == SCTP_PF && 5420 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5421 retval = -EACCES; 5422 goto out; 5423 } 5424 5425 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5426 pinfo.spinfo_state = transport->state; 5427 pinfo.spinfo_cwnd = transport->cwnd; 5428 pinfo.spinfo_srtt = transport->srtt; 5429 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5430 pinfo.spinfo_mtu = transport->pathmtu; 5431 5432 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5433 pinfo.spinfo_state = SCTP_ACTIVE; 5434 5435 if (put_user(len, optlen)) { 5436 retval = -EFAULT; 5437 goto out; 5438 } 5439 5440 if (copy_to_user(optval, &pinfo, len)) { 5441 retval = -EFAULT; 5442 goto out; 5443 } 5444 5445 out: 5446 return retval; 5447 } 5448 5449 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5450 * 5451 * This option is a on/off flag. If enabled no SCTP message 5452 * fragmentation will be performed. Instead if a message being sent 5453 * exceeds the current PMTU size, the message will NOT be sent and 5454 * instead a error will be indicated to the user. 5455 */ 5456 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5457 char __user *optval, int __user *optlen) 5458 { 5459 int val; 5460 5461 if (len < sizeof(int)) 5462 return -EINVAL; 5463 5464 len = sizeof(int); 5465 val = (sctp_sk(sk)->disable_fragments == 1); 5466 if (put_user(len, optlen)) 5467 return -EFAULT; 5468 if (copy_to_user(optval, &val, len)) 5469 return -EFAULT; 5470 return 0; 5471 } 5472 5473 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5474 * 5475 * This socket option is used to specify various notifications and 5476 * ancillary data the user wishes to receive. 5477 */ 5478 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5479 int __user *optlen) 5480 { 5481 struct sctp_event_subscribe subscribe; 5482 __u8 *sn_type = (__u8 *)&subscribe; 5483 int i; 5484 5485 if (len == 0) 5486 return -EINVAL; 5487 if (len > sizeof(struct sctp_event_subscribe)) 5488 len = sizeof(struct sctp_event_subscribe); 5489 if (put_user(len, optlen)) 5490 return -EFAULT; 5491 5492 for (i = 0; i < len; i++) 5493 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5494 SCTP_SN_TYPE_BASE + i); 5495 5496 if (copy_to_user(optval, &subscribe, len)) 5497 return -EFAULT; 5498 5499 return 0; 5500 } 5501 5502 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5503 * 5504 * This socket option is applicable to the UDP-style socket only. When 5505 * set it will cause associations that are idle for more than the 5506 * specified number of seconds to automatically close. An association 5507 * being idle is defined an association that has NOT sent or received 5508 * user data. The special value of '0' indicates that no automatic 5509 * close of any associations should be performed. The option expects an 5510 * integer defining the number of seconds of idle time before an 5511 * association is closed. 5512 */ 5513 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5514 { 5515 /* Applicable to UDP-style socket only */ 5516 if (sctp_style(sk, TCP)) 5517 return -EOPNOTSUPP; 5518 if (len < sizeof(int)) 5519 return -EINVAL; 5520 len = sizeof(int); 5521 if (put_user(len, optlen)) 5522 return -EFAULT; 5523 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5524 return -EFAULT; 5525 return 0; 5526 } 5527 5528 /* Helper routine to branch off an association to a new socket. */ 5529 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5530 { 5531 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5532 struct sctp_sock *sp = sctp_sk(sk); 5533 struct socket *sock; 5534 int err = 0; 5535 5536 /* Do not peel off from one netns to another one. */ 5537 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5538 return -EINVAL; 5539 5540 if (!asoc) 5541 return -EINVAL; 5542 5543 /* An association cannot be branched off from an already peeled-off 5544 * socket, nor is this supported for tcp style sockets. 5545 */ 5546 if (!sctp_style(sk, UDP)) 5547 return -EINVAL; 5548 5549 /* Create a new socket. */ 5550 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5551 if (err < 0) 5552 return err; 5553 5554 sctp_copy_sock(sock->sk, sk, asoc); 5555 5556 /* Make peeled-off sockets more like 1-1 accepted sockets. 5557 * Set the daddr and initialize id to something more random and also 5558 * copy over any ip options. 5559 */ 5560 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5561 sp->pf->copy_ip_options(sk, sock->sk); 5562 5563 /* Populate the fields of the newsk from the oldsk and migrate the 5564 * asoc to the newsk. 5565 */ 5566 err = sctp_sock_migrate(sk, sock->sk, asoc, 5567 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5568 if (err) { 5569 sock_release(sock); 5570 sock = NULL; 5571 } 5572 5573 *sockp = sock; 5574 5575 return err; 5576 } 5577 EXPORT_SYMBOL(sctp_do_peeloff); 5578 5579 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5580 struct file **newfile, unsigned flags) 5581 { 5582 struct socket *newsock; 5583 int retval; 5584 5585 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5586 if (retval < 0) 5587 goto out; 5588 5589 /* Map the socket to an unused fd that can be returned to the user. */ 5590 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5591 if (retval < 0) { 5592 sock_release(newsock); 5593 goto out; 5594 } 5595 5596 *newfile = sock_alloc_file(newsock, 0, NULL); 5597 if (IS_ERR(*newfile)) { 5598 put_unused_fd(retval); 5599 retval = PTR_ERR(*newfile); 5600 *newfile = NULL; 5601 return retval; 5602 } 5603 5604 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5605 retval); 5606 5607 peeloff->sd = retval; 5608 5609 if (flags & SOCK_NONBLOCK) 5610 (*newfile)->f_flags |= O_NONBLOCK; 5611 out: 5612 return retval; 5613 } 5614 5615 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5616 { 5617 sctp_peeloff_arg_t peeloff; 5618 struct file *newfile = NULL; 5619 int retval = 0; 5620 5621 if (len < sizeof(sctp_peeloff_arg_t)) 5622 return -EINVAL; 5623 len = sizeof(sctp_peeloff_arg_t); 5624 if (copy_from_user(&peeloff, optval, len)) 5625 return -EFAULT; 5626 5627 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5628 if (retval < 0) 5629 goto out; 5630 5631 /* Return the fd mapped to the new socket. */ 5632 if (put_user(len, optlen)) { 5633 fput(newfile); 5634 put_unused_fd(retval); 5635 return -EFAULT; 5636 } 5637 5638 if (copy_to_user(optval, &peeloff, len)) { 5639 fput(newfile); 5640 put_unused_fd(retval); 5641 return -EFAULT; 5642 } 5643 fd_install(retval, newfile); 5644 out: 5645 return retval; 5646 } 5647 5648 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5649 char __user *optval, int __user *optlen) 5650 { 5651 sctp_peeloff_flags_arg_t peeloff; 5652 struct file *newfile = NULL; 5653 int retval = 0; 5654 5655 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5656 return -EINVAL; 5657 len = sizeof(sctp_peeloff_flags_arg_t); 5658 if (copy_from_user(&peeloff, optval, len)) 5659 return -EFAULT; 5660 5661 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5662 &newfile, peeloff.flags); 5663 if (retval < 0) 5664 goto out; 5665 5666 /* Return the fd mapped to the new socket. */ 5667 if (put_user(len, optlen)) { 5668 fput(newfile); 5669 put_unused_fd(retval); 5670 return -EFAULT; 5671 } 5672 5673 if (copy_to_user(optval, &peeloff, len)) { 5674 fput(newfile); 5675 put_unused_fd(retval); 5676 return -EFAULT; 5677 } 5678 fd_install(retval, newfile); 5679 out: 5680 return retval; 5681 } 5682 5683 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5684 * 5685 * Applications can enable or disable heartbeats for any peer address of 5686 * an association, modify an address's heartbeat interval, force a 5687 * heartbeat to be sent immediately, and adjust the address's maximum 5688 * number of retransmissions sent before an address is considered 5689 * unreachable. The following structure is used to access and modify an 5690 * address's parameters: 5691 * 5692 * struct sctp_paddrparams { 5693 * sctp_assoc_t spp_assoc_id; 5694 * struct sockaddr_storage spp_address; 5695 * uint32_t spp_hbinterval; 5696 * uint16_t spp_pathmaxrxt; 5697 * uint32_t spp_pathmtu; 5698 * uint32_t spp_sackdelay; 5699 * uint32_t spp_flags; 5700 * }; 5701 * 5702 * spp_assoc_id - (one-to-many style socket) This is filled in the 5703 * application, and identifies the association for 5704 * this query. 5705 * spp_address - This specifies which address is of interest. 5706 * spp_hbinterval - This contains the value of the heartbeat interval, 5707 * in milliseconds. If a value of zero 5708 * is present in this field then no changes are to 5709 * be made to this parameter. 5710 * spp_pathmaxrxt - This contains the maximum number of 5711 * retransmissions before this address shall be 5712 * considered unreachable. If a value of zero 5713 * is present in this field then no changes are to 5714 * be made to this parameter. 5715 * spp_pathmtu - When Path MTU discovery is disabled the value 5716 * specified here will be the "fixed" path mtu. 5717 * Note that if the spp_address field is empty 5718 * then all associations on this address will 5719 * have this fixed path mtu set upon them. 5720 * 5721 * spp_sackdelay - When delayed sack is enabled, this value specifies 5722 * the number of milliseconds that sacks will be delayed 5723 * for. This value will apply to all addresses of an 5724 * association if the spp_address field is empty. Note 5725 * also, that if delayed sack is enabled and this 5726 * value is set to 0, no change is made to the last 5727 * recorded delayed sack timer value. 5728 * 5729 * spp_flags - These flags are used to control various features 5730 * on an association. The flag field may contain 5731 * zero or more of the following options. 5732 * 5733 * SPP_HB_ENABLE - Enable heartbeats on the 5734 * specified address. Note that if the address 5735 * field is empty all addresses for the association 5736 * have heartbeats enabled upon them. 5737 * 5738 * SPP_HB_DISABLE - Disable heartbeats on the 5739 * speicifed address. Note that if the address 5740 * field is empty all addresses for the association 5741 * will have their heartbeats disabled. Note also 5742 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5743 * mutually exclusive, only one of these two should 5744 * be specified. Enabling both fields will have 5745 * undetermined results. 5746 * 5747 * SPP_HB_DEMAND - Request a user initiated heartbeat 5748 * to be made immediately. 5749 * 5750 * SPP_PMTUD_ENABLE - This field will enable PMTU 5751 * discovery upon the specified address. Note that 5752 * if the address feild is empty then all addresses 5753 * on the association are effected. 5754 * 5755 * SPP_PMTUD_DISABLE - This field will disable PMTU 5756 * discovery upon the specified address. Note that 5757 * if the address feild is empty then all addresses 5758 * on the association are effected. Not also that 5759 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5760 * exclusive. Enabling both will have undetermined 5761 * results. 5762 * 5763 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5764 * on delayed sack. The time specified in spp_sackdelay 5765 * is used to specify the sack delay for this address. Note 5766 * that if spp_address is empty then all addresses will 5767 * enable delayed sack and take on the sack delay 5768 * value specified in spp_sackdelay. 5769 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5770 * off delayed sack. If the spp_address field is blank then 5771 * delayed sack is disabled for the entire association. Note 5772 * also that this field is mutually exclusive to 5773 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5774 * results. 5775 * 5776 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5777 * setting of the IPV6 flow label value. The value is 5778 * contained in the spp_ipv6_flowlabel field. 5779 * Upon retrieval, this flag will be set to indicate that 5780 * the spp_ipv6_flowlabel field has a valid value returned. 5781 * If a specific destination address is set (in the 5782 * spp_address field), then the value returned is that of 5783 * the address. If just an association is specified (and 5784 * no address), then the association's default flow label 5785 * is returned. If neither an association nor a destination 5786 * is specified, then the socket's default flow label is 5787 * returned. For non-IPv6 sockets, this flag will be left 5788 * cleared. 5789 * 5790 * SPP_DSCP: Setting this flag enables the setting of the 5791 * Differentiated Services Code Point (DSCP) value 5792 * associated with either the association or a specific 5793 * address. The value is obtained in the spp_dscp field. 5794 * Upon retrieval, this flag will be set to indicate that 5795 * the spp_dscp field has a valid value returned. If a 5796 * specific destination address is set when called (in the 5797 * spp_address field), then that specific destination 5798 * address's DSCP value is returned. If just an association 5799 * is specified, then the association's default DSCP is 5800 * returned. If neither an association nor a destination is 5801 * specified, then the socket's default DSCP is returned. 5802 * 5803 * spp_ipv6_flowlabel 5804 * - This field is used in conjunction with the 5805 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5806 * The 20 least significant bits are used for the flow 5807 * label. This setting has precedence over any IPv6-layer 5808 * setting. 5809 * 5810 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5811 * and contains the DSCP. The 6 most significant bits are 5812 * used for the DSCP. This setting has precedence over any 5813 * IPv4- or IPv6- layer setting. 5814 */ 5815 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5816 char __user *optval, int __user *optlen) 5817 { 5818 struct sctp_paddrparams params; 5819 struct sctp_transport *trans = NULL; 5820 struct sctp_association *asoc = NULL; 5821 struct sctp_sock *sp = sctp_sk(sk); 5822 5823 if (len >= sizeof(params)) 5824 len = sizeof(params); 5825 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5826 spp_ipv6_flowlabel), 4)) 5827 len = ALIGN(offsetof(struct sctp_paddrparams, 5828 spp_ipv6_flowlabel), 4); 5829 else 5830 return -EINVAL; 5831 5832 if (copy_from_user(¶ms, optval, len)) 5833 return -EFAULT; 5834 5835 /* If an address other than INADDR_ANY is specified, and 5836 * no transport is found, then the request is invalid. 5837 */ 5838 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5839 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5840 params.spp_assoc_id); 5841 if (!trans) { 5842 pr_debug("%s: failed no transport\n", __func__); 5843 return -EINVAL; 5844 } 5845 } 5846 5847 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5848 * socket is a one to many style socket, and an association 5849 * was not found, then the id was invalid. 5850 */ 5851 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5852 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5853 sctp_style(sk, UDP)) { 5854 pr_debug("%s: failed no association\n", __func__); 5855 return -EINVAL; 5856 } 5857 5858 if (trans) { 5859 /* Fetch transport values. */ 5860 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5861 params.spp_pathmtu = trans->pathmtu; 5862 params.spp_pathmaxrxt = trans->pathmaxrxt; 5863 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5864 5865 /*draft-11 doesn't say what to return in spp_flags*/ 5866 params.spp_flags = trans->param_flags; 5867 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5868 params.spp_ipv6_flowlabel = trans->flowlabel & 5869 SCTP_FLOWLABEL_VAL_MASK; 5870 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5871 } 5872 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5873 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5874 params.spp_flags |= SPP_DSCP; 5875 } 5876 } else if (asoc) { 5877 /* Fetch association values. */ 5878 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5879 params.spp_pathmtu = asoc->pathmtu; 5880 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5881 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5882 5883 /*draft-11 doesn't say what to return in spp_flags*/ 5884 params.spp_flags = asoc->param_flags; 5885 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5886 params.spp_ipv6_flowlabel = asoc->flowlabel & 5887 SCTP_FLOWLABEL_VAL_MASK; 5888 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5889 } 5890 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5891 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5892 params.spp_flags |= SPP_DSCP; 5893 } 5894 } else { 5895 /* Fetch socket values. */ 5896 params.spp_hbinterval = sp->hbinterval; 5897 params.spp_pathmtu = sp->pathmtu; 5898 params.spp_sackdelay = sp->sackdelay; 5899 params.spp_pathmaxrxt = sp->pathmaxrxt; 5900 5901 /*draft-11 doesn't say what to return in spp_flags*/ 5902 params.spp_flags = sp->param_flags; 5903 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5904 params.spp_ipv6_flowlabel = sp->flowlabel & 5905 SCTP_FLOWLABEL_VAL_MASK; 5906 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5907 } 5908 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5909 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5910 params.spp_flags |= SPP_DSCP; 5911 } 5912 } 5913 5914 if (copy_to_user(optval, ¶ms, len)) 5915 return -EFAULT; 5916 5917 if (put_user(len, optlen)) 5918 return -EFAULT; 5919 5920 return 0; 5921 } 5922 5923 /* 5924 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5925 * 5926 * This option will effect the way delayed acks are performed. This 5927 * option allows you to get or set the delayed ack time, in 5928 * milliseconds. It also allows changing the delayed ack frequency. 5929 * Changing the frequency to 1 disables the delayed sack algorithm. If 5930 * the assoc_id is 0, then this sets or gets the endpoints default 5931 * values. If the assoc_id field is non-zero, then the set or get 5932 * effects the specified association for the one to many model (the 5933 * assoc_id field is ignored by the one to one model). Note that if 5934 * sack_delay or sack_freq are 0 when setting this option, then the 5935 * current values will remain unchanged. 5936 * 5937 * struct sctp_sack_info { 5938 * sctp_assoc_t sack_assoc_id; 5939 * uint32_t sack_delay; 5940 * uint32_t sack_freq; 5941 * }; 5942 * 5943 * sack_assoc_id - This parameter, indicates which association the user 5944 * is performing an action upon. Note that if this field's value is 5945 * zero then the endpoints default value is changed (effecting future 5946 * associations only). 5947 * 5948 * sack_delay - This parameter contains the number of milliseconds that 5949 * the user is requesting the delayed ACK timer be set to. Note that 5950 * this value is defined in the standard to be between 200 and 500 5951 * milliseconds. 5952 * 5953 * sack_freq - This parameter contains the number of packets that must 5954 * be received before a sack is sent without waiting for the delay 5955 * timer to expire. The default value for this is 2, setting this 5956 * value to 1 will disable the delayed sack algorithm. 5957 */ 5958 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5959 char __user *optval, 5960 int __user *optlen) 5961 { 5962 struct sctp_sack_info params; 5963 struct sctp_association *asoc = NULL; 5964 struct sctp_sock *sp = sctp_sk(sk); 5965 5966 if (len >= sizeof(struct sctp_sack_info)) { 5967 len = sizeof(struct sctp_sack_info); 5968 5969 if (copy_from_user(¶ms, optval, len)) 5970 return -EFAULT; 5971 } else if (len == sizeof(struct sctp_assoc_value)) { 5972 pr_warn_ratelimited(DEPRECATED 5973 "%s (pid %d) " 5974 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5975 "Use struct sctp_sack_info instead\n", 5976 current->comm, task_pid_nr(current)); 5977 if (copy_from_user(¶ms, optval, len)) 5978 return -EFAULT; 5979 } else 5980 return -EINVAL; 5981 5982 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 5983 * socket is a one to many style socket, and an association 5984 * was not found, then the id was invalid. 5985 */ 5986 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5987 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 5988 sctp_style(sk, UDP)) 5989 return -EINVAL; 5990 5991 if (asoc) { 5992 /* Fetch association values. */ 5993 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5994 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 5995 params.sack_freq = asoc->sackfreq; 5996 5997 } else { 5998 params.sack_delay = 0; 5999 params.sack_freq = 1; 6000 } 6001 } else { 6002 /* Fetch socket values. */ 6003 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6004 params.sack_delay = sp->sackdelay; 6005 params.sack_freq = sp->sackfreq; 6006 } else { 6007 params.sack_delay = 0; 6008 params.sack_freq = 1; 6009 } 6010 } 6011 6012 if (copy_to_user(optval, ¶ms, len)) 6013 return -EFAULT; 6014 6015 if (put_user(len, optlen)) 6016 return -EFAULT; 6017 6018 return 0; 6019 } 6020 6021 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6022 * 6023 * Applications can specify protocol parameters for the default association 6024 * initialization. The option name argument to setsockopt() and getsockopt() 6025 * is SCTP_INITMSG. 6026 * 6027 * Setting initialization parameters is effective only on an unconnected 6028 * socket (for UDP-style sockets only future associations are effected 6029 * by the change). With TCP-style sockets, this option is inherited by 6030 * sockets derived from a listener socket. 6031 */ 6032 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6033 { 6034 if (len < sizeof(struct sctp_initmsg)) 6035 return -EINVAL; 6036 len = sizeof(struct sctp_initmsg); 6037 if (put_user(len, optlen)) 6038 return -EFAULT; 6039 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6040 return -EFAULT; 6041 return 0; 6042 } 6043 6044 6045 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6046 char __user *optval, int __user *optlen) 6047 { 6048 struct sctp_association *asoc; 6049 int cnt = 0; 6050 struct sctp_getaddrs getaddrs; 6051 struct sctp_transport *from; 6052 void __user *to; 6053 union sctp_addr temp; 6054 struct sctp_sock *sp = sctp_sk(sk); 6055 int addrlen; 6056 size_t space_left; 6057 int bytes_copied; 6058 6059 if (len < sizeof(struct sctp_getaddrs)) 6060 return -EINVAL; 6061 6062 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6063 return -EFAULT; 6064 6065 /* For UDP-style sockets, id specifies the association to query. */ 6066 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6067 if (!asoc) 6068 return -EINVAL; 6069 6070 to = optval + offsetof(struct sctp_getaddrs, addrs); 6071 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6072 6073 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6074 transports) { 6075 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6076 addrlen = sctp_get_pf_specific(sk->sk_family) 6077 ->addr_to_user(sp, &temp); 6078 if (space_left < addrlen) 6079 return -ENOMEM; 6080 if (copy_to_user(to, &temp, addrlen)) 6081 return -EFAULT; 6082 to += addrlen; 6083 cnt++; 6084 space_left -= addrlen; 6085 } 6086 6087 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6088 return -EFAULT; 6089 bytes_copied = ((char __user *)to) - optval; 6090 if (put_user(bytes_copied, optlen)) 6091 return -EFAULT; 6092 6093 return 0; 6094 } 6095 6096 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6097 size_t space_left, int *bytes_copied) 6098 { 6099 struct sctp_sockaddr_entry *addr; 6100 union sctp_addr temp; 6101 int cnt = 0; 6102 int addrlen; 6103 struct net *net = sock_net(sk); 6104 6105 rcu_read_lock(); 6106 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6107 if (!addr->valid) 6108 continue; 6109 6110 if ((PF_INET == sk->sk_family) && 6111 (AF_INET6 == addr->a.sa.sa_family)) 6112 continue; 6113 if ((PF_INET6 == sk->sk_family) && 6114 inet_v6_ipv6only(sk) && 6115 (AF_INET == addr->a.sa.sa_family)) 6116 continue; 6117 memcpy(&temp, &addr->a, sizeof(temp)); 6118 if (!temp.v4.sin_port) 6119 temp.v4.sin_port = htons(port); 6120 6121 addrlen = sctp_get_pf_specific(sk->sk_family) 6122 ->addr_to_user(sctp_sk(sk), &temp); 6123 6124 if (space_left < addrlen) { 6125 cnt = -ENOMEM; 6126 break; 6127 } 6128 memcpy(to, &temp, addrlen); 6129 6130 to += addrlen; 6131 cnt++; 6132 space_left -= addrlen; 6133 *bytes_copied += addrlen; 6134 } 6135 rcu_read_unlock(); 6136 6137 return cnt; 6138 } 6139 6140 6141 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6142 char __user *optval, int __user *optlen) 6143 { 6144 struct sctp_bind_addr *bp; 6145 struct sctp_association *asoc; 6146 int cnt = 0; 6147 struct sctp_getaddrs getaddrs; 6148 struct sctp_sockaddr_entry *addr; 6149 void __user *to; 6150 union sctp_addr temp; 6151 struct sctp_sock *sp = sctp_sk(sk); 6152 int addrlen; 6153 int err = 0; 6154 size_t space_left; 6155 int bytes_copied = 0; 6156 void *addrs; 6157 void *buf; 6158 6159 if (len < sizeof(struct sctp_getaddrs)) 6160 return -EINVAL; 6161 6162 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6163 return -EFAULT; 6164 6165 /* 6166 * For UDP-style sockets, id specifies the association to query. 6167 * If the id field is set to the value '0' then the locally bound 6168 * addresses are returned without regard to any particular 6169 * association. 6170 */ 6171 if (0 == getaddrs.assoc_id) { 6172 bp = &sctp_sk(sk)->ep->base.bind_addr; 6173 } else { 6174 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6175 if (!asoc) 6176 return -EINVAL; 6177 bp = &asoc->base.bind_addr; 6178 } 6179 6180 to = optval + offsetof(struct sctp_getaddrs, addrs); 6181 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6182 6183 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6184 if (!addrs) 6185 return -ENOMEM; 6186 6187 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6188 * addresses from the global local address list. 6189 */ 6190 if (sctp_list_single_entry(&bp->address_list)) { 6191 addr = list_entry(bp->address_list.next, 6192 struct sctp_sockaddr_entry, list); 6193 if (sctp_is_any(sk, &addr->a)) { 6194 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6195 space_left, &bytes_copied); 6196 if (cnt < 0) { 6197 err = cnt; 6198 goto out; 6199 } 6200 goto copy_getaddrs; 6201 } 6202 } 6203 6204 buf = addrs; 6205 /* Protection on the bound address list is not needed since 6206 * in the socket option context we hold a socket lock and 6207 * thus the bound address list can't change. 6208 */ 6209 list_for_each_entry(addr, &bp->address_list, list) { 6210 memcpy(&temp, &addr->a, sizeof(temp)); 6211 addrlen = sctp_get_pf_specific(sk->sk_family) 6212 ->addr_to_user(sp, &temp); 6213 if (space_left < addrlen) { 6214 err = -ENOMEM; /*fixme: right error?*/ 6215 goto out; 6216 } 6217 memcpy(buf, &temp, addrlen); 6218 buf += addrlen; 6219 bytes_copied += addrlen; 6220 cnt++; 6221 space_left -= addrlen; 6222 } 6223 6224 copy_getaddrs: 6225 if (copy_to_user(to, addrs, bytes_copied)) { 6226 err = -EFAULT; 6227 goto out; 6228 } 6229 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6230 err = -EFAULT; 6231 goto out; 6232 } 6233 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6234 * but we can't change it anymore. 6235 */ 6236 if (put_user(bytes_copied, optlen)) 6237 err = -EFAULT; 6238 out: 6239 kfree(addrs); 6240 return err; 6241 } 6242 6243 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6244 * 6245 * Requests that the local SCTP stack use the enclosed peer address as 6246 * the association primary. The enclosed address must be one of the 6247 * association peer's addresses. 6248 */ 6249 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6250 char __user *optval, int __user *optlen) 6251 { 6252 struct sctp_prim prim; 6253 struct sctp_association *asoc; 6254 struct sctp_sock *sp = sctp_sk(sk); 6255 6256 if (len < sizeof(struct sctp_prim)) 6257 return -EINVAL; 6258 6259 len = sizeof(struct sctp_prim); 6260 6261 if (copy_from_user(&prim, optval, len)) 6262 return -EFAULT; 6263 6264 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6265 if (!asoc) 6266 return -EINVAL; 6267 6268 if (!asoc->peer.primary_path) 6269 return -ENOTCONN; 6270 6271 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6272 asoc->peer.primary_path->af_specific->sockaddr_len); 6273 6274 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6275 (union sctp_addr *)&prim.ssp_addr); 6276 6277 if (put_user(len, optlen)) 6278 return -EFAULT; 6279 if (copy_to_user(optval, &prim, len)) 6280 return -EFAULT; 6281 6282 return 0; 6283 } 6284 6285 /* 6286 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6287 * 6288 * Requests that the local endpoint set the specified Adaptation Layer 6289 * Indication parameter for all future INIT and INIT-ACK exchanges. 6290 */ 6291 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6292 char __user *optval, int __user *optlen) 6293 { 6294 struct sctp_setadaptation adaptation; 6295 6296 if (len < sizeof(struct sctp_setadaptation)) 6297 return -EINVAL; 6298 6299 len = sizeof(struct sctp_setadaptation); 6300 6301 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6302 6303 if (put_user(len, optlen)) 6304 return -EFAULT; 6305 if (copy_to_user(optval, &adaptation, len)) 6306 return -EFAULT; 6307 6308 return 0; 6309 } 6310 6311 /* 6312 * 6313 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6314 * 6315 * Applications that wish to use the sendto() system call may wish to 6316 * specify a default set of parameters that would normally be supplied 6317 * through the inclusion of ancillary data. This socket option allows 6318 * such an application to set the default sctp_sndrcvinfo structure. 6319 6320 6321 * The application that wishes to use this socket option simply passes 6322 * in to this call the sctp_sndrcvinfo structure defined in Section 6323 * 5.2.2) The input parameters accepted by this call include 6324 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6325 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6326 * to this call if the caller is using the UDP model. 6327 * 6328 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6329 */ 6330 static int sctp_getsockopt_default_send_param(struct sock *sk, 6331 int len, char __user *optval, 6332 int __user *optlen) 6333 { 6334 struct sctp_sock *sp = sctp_sk(sk); 6335 struct sctp_association *asoc; 6336 struct sctp_sndrcvinfo info; 6337 6338 if (len < sizeof(info)) 6339 return -EINVAL; 6340 6341 len = sizeof(info); 6342 6343 if (copy_from_user(&info, optval, len)) 6344 return -EFAULT; 6345 6346 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6347 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6348 sctp_style(sk, UDP)) 6349 return -EINVAL; 6350 6351 if (asoc) { 6352 info.sinfo_stream = asoc->default_stream; 6353 info.sinfo_flags = asoc->default_flags; 6354 info.sinfo_ppid = asoc->default_ppid; 6355 info.sinfo_context = asoc->default_context; 6356 info.sinfo_timetolive = asoc->default_timetolive; 6357 } else { 6358 info.sinfo_stream = sp->default_stream; 6359 info.sinfo_flags = sp->default_flags; 6360 info.sinfo_ppid = sp->default_ppid; 6361 info.sinfo_context = sp->default_context; 6362 info.sinfo_timetolive = sp->default_timetolive; 6363 } 6364 6365 if (put_user(len, optlen)) 6366 return -EFAULT; 6367 if (copy_to_user(optval, &info, len)) 6368 return -EFAULT; 6369 6370 return 0; 6371 } 6372 6373 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6374 * (SCTP_DEFAULT_SNDINFO) 6375 */ 6376 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6377 char __user *optval, 6378 int __user *optlen) 6379 { 6380 struct sctp_sock *sp = sctp_sk(sk); 6381 struct sctp_association *asoc; 6382 struct sctp_sndinfo info; 6383 6384 if (len < sizeof(info)) 6385 return -EINVAL; 6386 6387 len = sizeof(info); 6388 6389 if (copy_from_user(&info, optval, len)) 6390 return -EFAULT; 6391 6392 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6393 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6394 sctp_style(sk, UDP)) 6395 return -EINVAL; 6396 6397 if (asoc) { 6398 info.snd_sid = asoc->default_stream; 6399 info.snd_flags = asoc->default_flags; 6400 info.snd_ppid = asoc->default_ppid; 6401 info.snd_context = asoc->default_context; 6402 } else { 6403 info.snd_sid = sp->default_stream; 6404 info.snd_flags = sp->default_flags; 6405 info.snd_ppid = sp->default_ppid; 6406 info.snd_context = sp->default_context; 6407 } 6408 6409 if (put_user(len, optlen)) 6410 return -EFAULT; 6411 if (copy_to_user(optval, &info, len)) 6412 return -EFAULT; 6413 6414 return 0; 6415 } 6416 6417 /* 6418 * 6419 * 7.1.5 SCTP_NODELAY 6420 * 6421 * Turn on/off any Nagle-like algorithm. This means that packets are 6422 * generally sent as soon as possible and no unnecessary delays are 6423 * introduced, at the cost of more packets in the network. Expects an 6424 * integer boolean flag. 6425 */ 6426 6427 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6428 char __user *optval, int __user *optlen) 6429 { 6430 int val; 6431 6432 if (len < sizeof(int)) 6433 return -EINVAL; 6434 6435 len = sizeof(int); 6436 val = (sctp_sk(sk)->nodelay == 1); 6437 if (put_user(len, optlen)) 6438 return -EFAULT; 6439 if (copy_to_user(optval, &val, len)) 6440 return -EFAULT; 6441 return 0; 6442 } 6443 6444 /* 6445 * 6446 * 7.1.1 SCTP_RTOINFO 6447 * 6448 * The protocol parameters used to initialize and bound retransmission 6449 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6450 * and modify these parameters. 6451 * All parameters are time values, in milliseconds. A value of 0, when 6452 * modifying the parameters, indicates that the current value should not 6453 * be changed. 6454 * 6455 */ 6456 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6457 char __user *optval, 6458 int __user *optlen) { 6459 struct sctp_rtoinfo rtoinfo; 6460 struct sctp_association *asoc; 6461 6462 if (len < sizeof (struct sctp_rtoinfo)) 6463 return -EINVAL; 6464 6465 len = sizeof(struct sctp_rtoinfo); 6466 6467 if (copy_from_user(&rtoinfo, optval, len)) 6468 return -EFAULT; 6469 6470 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6471 6472 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6473 sctp_style(sk, UDP)) 6474 return -EINVAL; 6475 6476 /* Values corresponding to the specific association. */ 6477 if (asoc) { 6478 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6479 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6480 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6481 } else { 6482 /* Values corresponding to the endpoint. */ 6483 struct sctp_sock *sp = sctp_sk(sk); 6484 6485 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6486 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6487 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6488 } 6489 6490 if (put_user(len, optlen)) 6491 return -EFAULT; 6492 6493 if (copy_to_user(optval, &rtoinfo, len)) 6494 return -EFAULT; 6495 6496 return 0; 6497 } 6498 6499 /* 6500 * 6501 * 7.1.2 SCTP_ASSOCINFO 6502 * 6503 * This option is used to tune the maximum retransmission attempts 6504 * of the association. 6505 * Returns an error if the new association retransmission value is 6506 * greater than the sum of the retransmission value of the peer. 6507 * See [SCTP] for more information. 6508 * 6509 */ 6510 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6511 char __user *optval, 6512 int __user *optlen) 6513 { 6514 6515 struct sctp_assocparams assocparams; 6516 struct sctp_association *asoc; 6517 struct list_head *pos; 6518 int cnt = 0; 6519 6520 if (len < sizeof (struct sctp_assocparams)) 6521 return -EINVAL; 6522 6523 len = sizeof(struct sctp_assocparams); 6524 6525 if (copy_from_user(&assocparams, optval, len)) 6526 return -EFAULT; 6527 6528 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6529 6530 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6531 sctp_style(sk, UDP)) 6532 return -EINVAL; 6533 6534 /* Values correspoinding to the specific association */ 6535 if (asoc) { 6536 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6537 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6538 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6539 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6540 6541 list_for_each(pos, &asoc->peer.transport_addr_list) { 6542 cnt++; 6543 } 6544 6545 assocparams.sasoc_number_peer_destinations = cnt; 6546 } else { 6547 /* Values corresponding to the endpoint */ 6548 struct sctp_sock *sp = sctp_sk(sk); 6549 6550 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6551 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6552 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6553 assocparams.sasoc_cookie_life = 6554 sp->assocparams.sasoc_cookie_life; 6555 assocparams.sasoc_number_peer_destinations = 6556 sp->assocparams. 6557 sasoc_number_peer_destinations; 6558 } 6559 6560 if (put_user(len, optlen)) 6561 return -EFAULT; 6562 6563 if (copy_to_user(optval, &assocparams, len)) 6564 return -EFAULT; 6565 6566 return 0; 6567 } 6568 6569 /* 6570 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6571 * 6572 * This socket option is a boolean flag which turns on or off mapped V4 6573 * addresses. If this option is turned on and the socket is type 6574 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6575 * If this option is turned off, then no mapping will be done of V4 6576 * addresses and a user will receive both PF_INET6 and PF_INET type 6577 * addresses on the socket. 6578 */ 6579 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6580 char __user *optval, int __user *optlen) 6581 { 6582 int val; 6583 struct sctp_sock *sp = sctp_sk(sk); 6584 6585 if (len < sizeof(int)) 6586 return -EINVAL; 6587 6588 len = sizeof(int); 6589 val = sp->v4mapped; 6590 if (put_user(len, optlen)) 6591 return -EFAULT; 6592 if (copy_to_user(optval, &val, len)) 6593 return -EFAULT; 6594 6595 return 0; 6596 } 6597 6598 /* 6599 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6600 * (chapter and verse is quoted at sctp_setsockopt_context()) 6601 */ 6602 static int sctp_getsockopt_context(struct sock *sk, int len, 6603 char __user *optval, int __user *optlen) 6604 { 6605 struct sctp_assoc_value params; 6606 struct sctp_association *asoc; 6607 6608 if (len < sizeof(struct sctp_assoc_value)) 6609 return -EINVAL; 6610 6611 len = sizeof(struct sctp_assoc_value); 6612 6613 if (copy_from_user(¶ms, optval, len)) 6614 return -EFAULT; 6615 6616 asoc = sctp_id2assoc(sk, params.assoc_id); 6617 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6618 sctp_style(sk, UDP)) 6619 return -EINVAL; 6620 6621 params.assoc_value = asoc ? asoc->default_rcv_context 6622 : sctp_sk(sk)->default_rcv_context; 6623 6624 if (put_user(len, optlen)) 6625 return -EFAULT; 6626 if (copy_to_user(optval, ¶ms, len)) 6627 return -EFAULT; 6628 6629 return 0; 6630 } 6631 6632 /* 6633 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6634 * This option will get or set the maximum size to put in any outgoing 6635 * SCTP DATA chunk. If a message is larger than this size it will be 6636 * fragmented by SCTP into the specified size. Note that the underlying 6637 * SCTP implementation may fragment into smaller sized chunks when the 6638 * PMTU of the underlying association is smaller than the value set by 6639 * the user. The default value for this option is '0' which indicates 6640 * the user is NOT limiting fragmentation and only the PMTU will effect 6641 * SCTP's choice of DATA chunk size. Note also that values set larger 6642 * than the maximum size of an IP datagram will effectively let SCTP 6643 * control fragmentation (i.e. the same as setting this option to 0). 6644 * 6645 * The following structure is used to access and modify this parameter: 6646 * 6647 * struct sctp_assoc_value { 6648 * sctp_assoc_t assoc_id; 6649 * uint32_t assoc_value; 6650 * }; 6651 * 6652 * assoc_id: This parameter is ignored for one-to-one style sockets. 6653 * For one-to-many style sockets this parameter indicates which 6654 * association the user is performing an action upon. Note that if 6655 * this field's value is zero then the endpoints default value is 6656 * changed (effecting future associations only). 6657 * assoc_value: This parameter specifies the maximum size in bytes. 6658 */ 6659 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6660 char __user *optval, int __user *optlen) 6661 { 6662 struct sctp_assoc_value params; 6663 struct sctp_association *asoc; 6664 6665 if (len == sizeof(int)) { 6666 pr_warn_ratelimited(DEPRECATED 6667 "%s (pid %d) " 6668 "Use of int in maxseg socket option.\n" 6669 "Use struct sctp_assoc_value instead\n", 6670 current->comm, task_pid_nr(current)); 6671 params.assoc_id = SCTP_FUTURE_ASSOC; 6672 } else if (len >= sizeof(struct sctp_assoc_value)) { 6673 len = sizeof(struct sctp_assoc_value); 6674 if (copy_from_user(¶ms, optval, len)) 6675 return -EFAULT; 6676 } else 6677 return -EINVAL; 6678 6679 asoc = sctp_id2assoc(sk, params.assoc_id); 6680 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6681 sctp_style(sk, UDP)) 6682 return -EINVAL; 6683 6684 if (asoc) 6685 params.assoc_value = asoc->frag_point; 6686 else 6687 params.assoc_value = sctp_sk(sk)->user_frag; 6688 6689 if (put_user(len, optlen)) 6690 return -EFAULT; 6691 if (len == sizeof(int)) { 6692 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6693 return -EFAULT; 6694 } else { 6695 if (copy_to_user(optval, ¶ms, len)) 6696 return -EFAULT; 6697 } 6698 6699 return 0; 6700 } 6701 6702 /* 6703 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6704 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6705 */ 6706 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6707 char __user *optval, int __user *optlen) 6708 { 6709 int val; 6710 6711 if (len < sizeof(int)) 6712 return -EINVAL; 6713 6714 len = sizeof(int); 6715 6716 val = sctp_sk(sk)->frag_interleave; 6717 if (put_user(len, optlen)) 6718 return -EFAULT; 6719 if (copy_to_user(optval, &val, len)) 6720 return -EFAULT; 6721 6722 return 0; 6723 } 6724 6725 /* 6726 * 7.1.25. Set or Get the sctp partial delivery point 6727 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6728 */ 6729 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6730 char __user *optval, 6731 int __user *optlen) 6732 { 6733 u32 val; 6734 6735 if (len < sizeof(u32)) 6736 return -EINVAL; 6737 6738 len = sizeof(u32); 6739 6740 val = sctp_sk(sk)->pd_point; 6741 if (put_user(len, optlen)) 6742 return -EFAULT; 6743 if (copy_to_user(optval, &val, len)) 6744 return -EFAULT; 6745 6746 return 0; 6747 } 6748 6749 /* 6750 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6751 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6752 */ 6753 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6754 char __user *optval, 6755 int __user *optlen) 6756 { 6757 struct sctp_assoc_value params; 6758 struct sctp_association *asoc; 6759 6760 if (len == sizeof(int)) { 6761 pr_warn_ratelimited(DEPRECATED 6762 "%s (pid %d) " 6763 "Use of int in max_burst socket option.\n" 6764 "Use struct sctp_assoc_value instead\n", 6765 current->comm, task_pid_nr(current)); 6766 params.assoc_id = SCTP_FUTURE_ASSOC; 6767 } else if (len >= sizeof(struct sctp_assoc_value)) { 6768 len = sizeof(struct sctp_assoc_value); 6769 if (copy_from_user(¶ms, optval, len)) 6770 return -EFAULT; 6771 } else 6772 return -EINVAL; 6773 6774 asoc = sctp_id2assoc(sk, params.assoc_id); 6775 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6776 sctp_style(sk, UDP)) 6777 return -EINVAL; 6778 6779 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6780 6781 if (len == sizeof(int)) { 6782 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6783 return -EFAULT; 6784 } else { 6785 if (copy_to_user(optval, ¶ms, len)) 6786 return -EFAULT; 6787 } 6788 6789 return 0; 6790 6791 } 6792 6793 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6794 char __user *optval, int __user *optlen) 6795 { 6796 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6797 struct sctp_hmacalgo __user *p = (void __user *)optval; 6798 struct sctp_hmac_algo_param *hmacs; 6799 __u16 data_len = 0; 6800 u32 num_idents; 6801 int i; 6802 6803 if (!ep->auth_enable) 6804 return -EACCES; 6805 6806 hmacs = ep->auth_hmacs_list; 6807 data_len = ntohs(hmacs->param_hdr.length) - 6808 sizeof(struct sctp_paramhdr); 6809 6810 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6811 return -EINVAL; 6812 6813 len = sizeof(struct sctp_hmacalgo) + data_len; 6814 num_idents = data_len / sizeof(u16); 6815 6816 if (put_user(len, optlen)) 6817 return -EFAULT; 6818 if (put_user(num_idents, &p->shmac_num_idents)) 6819 return -EFAULT; 6820 for (i = 0; i < num_idents; i++) { 6821 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6822 6823 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6824 return -EFAULT; 6825 } 6826 return 0; 6827 } 6828 6829 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6830 char __user *optval, int __user *optlen) 6831 { 6832 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6833 struct sctp_authkeyid val; 6834 struct sctp_association *asoc; 6835 6836 if (len < sizeof(struct sctp_authkeyid)) 6837 return -EINVAL; 6838 6839 len = sizeof(struct sctp_authkeyid); 6840 if (copy_from_user(&val, optval, len)) 6841 return -EFAULT; 6842 6843 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6844 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6845 return -EINVAL; 6846 6847 if (asoc) { 6848 if (!asoc->peer.auth_capable) 6849 return -EACCES; 6850 val.scact_keynumber = asoc->active_key_id; 6851 } else { 6852 if (!ep->auth_enable) 6853 return -EACCES; 6854 val.scact_keynumber = ep->active_key_id; 6855 } 6856 6857 if (put_user(len, optlen)) 6858 return -EFAULT; 6859 if (copy_to_user(optval, &val, len)) 6860 return -EFAULT; 6861 6862 return 0; 6863 } 6864 6865 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6866 char __user *optval, int __user *optlen) 6867 { 6868 struct sctp_authchunks __user *p = (void __user *)optval; 6869 struct sctp_authchunks val; 6870 struct sctp_association *asoc; 6871 struct sctp_chunks_param *ch; 6872 u32 num_chunks = 0; 6873 char __user *to; 6874 6875 if (len < sizeof(struct sctp_authchunks)) 6876 return -EINVAL; 6877 6878 if (copy_from_user(&val, optval, sizeof(val))) 6879 return -EFAULT; 6880 6881 to = p->gauth_chunks; 6882 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6883 if (!asoc) 6884 return -EINVAL; 6885 6886 if (!asoc->peer.auth_capable) 6887 return -EACCES; 6888 6889 ch = asoc->peer.peer_chunks; 6890 if (!ch) 6891 goto num; 6892 6893 /* See if the user provided enough room for all the data */ 6894 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6895 if (len < num_chunks) 6896 return -EINVAL; 6897 6898 if (copy_to_user(to, ch->chunks, num_chunks)) 6899 return -EFAULT; 6900 num: 6901 len = sizeof(struct sctp_authchunks) + num_chunks; 6902 if (put_user(len, optlen)) 6903 return -EFAULT; 6904 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6905 return -EFAULT; 6906 return 0; 6907 } 6908 6909 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6910 char __user *optval, int __user *optlen) 6911 { 6912 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6913 struct sctp_authchunks __user *p = (void __user *)optval; 6914 struct sctp_authchunks val; 6915 struct sctp_association *asoc; 6916 struct sctp_chunks_param *ch; 6917 u32 num_chunks = 0; 6918 char __user *to; 6919 6920 if (len < sizeof(struct sctp_authchunks)) 6921 return -EINVAL; 6922 6923 if (copy_from_user(&val, optval, sizeof(val))) 6924 return -EFAULT; 6925 6926 to = p->gauth_chunks; 6927 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6928 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 6929 sctp_style(sk, UDP)) 6930 return -EINVAL; 6931 6932 if (asoc) { 6933 if (!asoc->peer.auth_capable) 6934 return -EACCES; 6935 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6936 } else { 6937 if (!ep->auth_enable) 6938 return -EACCES; 6939 ch = ep->auth_chunk_list; 6940 } 6941 if (!ch) 6942 goto num; 6943 6944 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6945 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6946 return -EINVAL; 6947 6948 if (copy_to_user(to, ch->chunks, num_chunks)) 6949 return -EFAULT; 6950 num: 6951 len = sizeof(struct sctp_authchunks) + num_chunks; 6952 if (put_user(len, optlen)) 6953 return -EFAULT; 6954 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6955 return -EFAULT; 6956 6957 return 0; 6958 } 6959 6960 /* 6961 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6962 * This option gets the current number of associations that are attached 6963 * to a one-to-many style socket. The option value is an uint32_t. 6964 */ 6965 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6966 char __user *optval, int __user *optlen) 6967 { 6968 struct sctp_sock *sp = sctp_sk(sk); 6969 struct sctp_association *asoc; 6970 u32 val = 0; 6971 6972 if (sctp_style(sk, TCP)) 6973 return -EOPNOTSUPP; 6974 6975 if (len < sizeof(u32)) 6976 return -EINVAL; 6977 6978 len = sizeof(u32); 6979 6980 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6981 val++; 6982 } 6983 6984 if (put_user(len, optlen)) 6985 return -EFAULT; 6986 if (copy_to_user(optval, &val, len)) 6987 return -EFAULT; 6988 6989 return 0; 6990 } 6991 6992 /* 6993 * 8.1.23 SCTP_AUTO_ASCONF 6994 * See the corresponding setsockopt entry as description 6995 */ 6996 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6997 char __user *optval, int __user *optlen) 6998 { 6999 int val = 0; 7000 7001 if (len < sizeof(int)) 7002 return -EINVAL; 7003 7004 len = sizeof(int); 7005 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7006 val = 1; 7007 if (put_user(len, optlen)) 7008 return -EFAULT; 7009 if (copy_to_user(optval, &val, len)) 7010 return -EFAULT; 7011 return 0; 7012 } 7013 7014 /* 7015 * 8.2.6. Get the Current Identifiers of Associations 7016 * (SCTP_GET_ASSOC_ID_LIST) 7017 * 7018 * This option gets the current list of SCTP association identifiers of 7019 * the SCTP associations handled by a one-to-many style socket. 7020 */ 7021 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7022 char __user *optval, int __user *optlen) 7023 { 7024 struct sctp_sock *sp = sctp_sk(sk); 7025 struct sctp_association *asoc; 7026 struct sctp_assoc_ids *ids; 7027 u32 num = 0; 7028 7029 if (sctp_style(sk, TCP)) 7030 return -EOPNOTSUPP; 7031 7032 if (len < sizeof(struct sctp_assoc_ids)) 7033 return -EINVAL; 7034 7035 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7036 num++; 7037 } 7038 7039 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7040 return -EINVAL; 7041 7042 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7043 7044 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7045 if (unlikely(!ids)) 7046 return -ENOMEM; 7047 7048 ids->gaids_number_of_ids = num; 7049 num = 0; 7050 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7051 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7052 } 7053 7054 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7055 kfree(ids); 7056 return -EFAULT; 7057 } 7058 7059 kfree(ids); 7060 return 0; 7061 } 7062 7063 /* 7064 * SCTP_PEER_ADDR_THLDS 7065 * 7066 * This option allows us to fetch the partially failed threshold for one or all 7067 * transports in an association. See Section 6.1 of: 7068 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7069 */ 7070 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7071 char __user *optval, int len, 7072 int __user *optlen, bool v2) 7073 { 7074 struct sctp_paddrthlds_v2 val; 7075 struct sctp_transport *trans; 7076 struct sctp_association *asoc; 7077 int min; 7078 7079 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7080 if (len < min) 7081 return -EINVAL; 7082 len = min; 7083 if (copy_from_user(&val, optval, len)) 7084 return -EFAULT; 7085 7086 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7087 trans = sctp_addr_id2transport(sk, &val.spt_address, 7088 val.spt_assoc_id); 7089 if (!trans) 7090 return -ENOENT; 7091 7092 val.spt_pathmaxrxt = trans->pathmaxrxt; 7093 val.spt_pathpfthld = trans->pf_retrans; 7094 val.spt_pathcpthld = trans->ps_retrans; 7095 7096 goto out; 7097 } 7098 7099 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7100 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7101 sctp_style(sk, UDP)) 7102 return -EINVAL; 7103 7104 if (asoc) { 7105 val.spt_pathpfthld = asoc->pf_retrans; 7106 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7107 val.spt_pathcpthld = asoc->ps_retrans; 7108 } else { 7109 struct sctp_sock *sp = sctp_sk(sk); 7110 7111 val.spt_pathpfthld = sp->pf_retrans; 7112 val.spt_pathmaxrxt = sp->pathmaxrxt; 7113 val.spt_pathcpthld = sp->ps_retrans; 7114 } 7115 7116 out: 7117 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7118 return -EFAULT; 7119 7120 return 0; 7121 } 7122 7123 /* 7124 * SCTP_GET_ASSOC_STATS 7125 * 7126 * This option retrieves local per endpoint statistics. It is modeled 7127 * after OpenSolaris' implementation 7128 */ 7129 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7130 char __user *optval, 7131 int __user *optlen) 7132 { 7133 struct sctp_assoc_stats sas; 7134 struct sctp_association *asoc = NULL; 7135 7136 /* User must provide at least the assoc id */ 7137 if (len < sizeof(sctp_assoc_t)) 7138 return -EINVAL; 7139 7140 /* Allow the struct to grow and fill in as much as possible */ 7141 len = min_t(size_t, len, sizeof(sas)); 7142 7143 if (copy_from_user(&sas, optval, len)) 7144 return -EFAULT; 7145 7146 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7147 if (!asoc) 7148 return -EINVAL; 7149 7150 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7151 sas.sas_gapcnt = asoc->stats.gapcnt; 7152 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7153 sas.sas_osacks = asoc->stats.osacks; 7154 sas.sas_isacks = asoc->stats.isacks; 7155 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7156 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7157 sas.sas_oodchunks = asoc->stats.oodchunks; 7158 sas.sas_iodchunks = asoc->stats.iodchunks; 7159 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7160 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7161 sas.sas_idupchunks = asoc->stats.idupchunks; 7162 sas.sas_opackets = asoc->stats.opackets; 7163 sas.sas_ipackets = asoc->stats.ipackets; 7164 7165 /* New high max rto observed, will return 0 if not a single 7166 * RTO update took place. obs_rto_ipaddr will be bogus 7167 * in such a case 7168 */ 7169 sas.sas_maxrto = asoc->stats.max_obs_rto; 7170 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7171 sizeof(struct sockaddr_storage)); 7172 7173 /* Mark beginning of a new observation period */ 7174 asoc->stats.max_obs_rto = asoc->rto_min; 7175 7176 if (put_user(len, optlen)) 7177 return -EFAULT; 7178 7179 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7180 7181 if (copy_to_user(optval, &sas, len)) 7182 return -EFAULT; 7183 7184 return 0; 7185 } 7186 7187 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7188 char __user *optval, 7189 int __user *optlen) 7190 { 7191 int val = 0; 7192 7193 if (len < sizeof(int)) 7194 return -EINVAL; 7195 7196 len = sizeof(int); 7197 if (sctp_sk(sk)->recvrcvinfo) 7198 val = 1; 7199 if (put_user(len, optlen)) 7200 return -EFAULT; 7201 if (copy_to_user(optval, &val, len)) 7202 return -EFAULT; 7203 7204 return 0; 7205 } 7206 7207 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7208 char __user *optval, 7209 int __user *optlen) 7210 { 7211 int val = 0; 7212 7213 if (len < sizeof(int)) 7214 return -EINVAL; 7215 7216 len = sizeof(int); 7217 if (sctp_sk(sk)->recvnxtinfo) 7218 val = 1; 7219 if (put_user(len, optlen)) 7220 return -EFAULT; 7221 if (copy_to_user(optval, &val, len)) 7222 return -EFAULT; 7223 7224 return 0; 7225 } 7226 7227 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7228 char __user *optval, 7229 int __user *optlen) 7230 { 7231 struct sctp_assoc_value params; 7232 struct sctp_association *asoc; 7233 int retval = -EFAULT; 7234 7235 if (len < sizeof(params)) { 7236 retval = -EINVAL; 7237 goto out; 7238 } 7239 7240 len = sizeof(params); 7241 if (copy_from_user(¶ms, optval, len)) 7242 goto out; 7243 7244 asoc = sctp_id2assoc(sk, params.assoc_id); 7245 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7246 sctp_style(sk, UDP)) { 7247 retval = -EINVAL; 7248 goto out; 7249 } 7250 7251 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7252 : sctp_sk(sk)->ep->prsctp_enable; 7253 7254 if (put_user(len, optlen)) 7255 goto out; 7256 7257 if (copy_to_user(optval, ¶ms, len)) 7258 goto out; 7259 7260 retval = 0; 7261 7262 out: 7263 return retval; 7264 } 7265 7266 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7267 char __user *optval, 7268 int __user *optlen) 7269 { 7270 struct sctp_default_prinfo info; 7271 struct sctp_association *asoc; 7272 int retval = -EFAULT; 7273 7274 if (len < sizeof(info)) { 7275 retval = -EINVAL; 7276 goto out; 7277 } 7278 7279 len = sizeof(info); 7280 if (copy_from_user(&info, optval, len)) 7281 goto out; 7282 7283 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7284 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7285 sctp_style(sk, UDP)) { 7286 retval = -EINVAL; 7287 goto out; 7288 } 7289 7290 if (asoc) { 7291 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7292 info.pr_value = asoc->default_timetolive; 7293 } else { 7294 struct sctp_sock *sp = sctp_sk(sk); 7295 7296 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7297 info.pr_value = sp->default_timetolive; 7298 } 7299 7300 if (put_user(len, optlen)) 7301 goto out; 7302 7303 if (copy_to_user(optval, &info, len)) 7304 goto out; 7305 7306 retval = 0; 7307 7308 out: 7309 return retval; 7310 } 7311 7312 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7313 char __user *optval, 7314 int __user *optlen) 7315 { 7316 struct sctp_prstatus params; 7317 struct sctp_association *asoc; 7318 int policy; 7319 int retval = -EINVAL; 7320 7321 if (len < sizeof(params)) 7322 goto out; 7323 7324 len = sizeof(params); 7325 if (copy_from_user(¶ms, optval, len)) { 7326 retval = -EFAULT; 7327 goto out; 7328 } 7329 7330 policy = params.sprstat_policy; 7331 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7332 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7333 goto out; 7334 7335 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7336 if (!asoc) 7337 goto out; 7338 7339 if (policy == SCTP_PR_SCTP_ALL) { 7340 params.sprstat_abandoned_unsent = 0; 7341 params.sprstat_abandoned_sent = 0; 7342 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7343 params.sprstat_abandoned_unsent += 7344 asoc->abandoned_unsent[policy]; 7345 params.sprstat_abandoned_sent += 7346 asoc->abandoned_sent[policy]; 7347 } 7348 } else { 7349 params.sprstat_abandoned_unsent = 7350 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7351 params.sprstat_abandoned_sent = 7352 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7353 } 7354 7355 if (put_user(len, optlen)) { 7356 retval = -EFAULT; 7357 goto out; 7358 } 7359 7360 if (copy_to_user(optval, ¶ms, len)) { 7361 retval = -EFAULT; 7362 goto out; 7363 } 7364 7365 retval = 0; 7366 7367 out: 7368 return retval; 7369 } 7370 7371 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7372 char __user *optval, 7373 int __user *optlen) 7374 { 7375 struct sctp_stream_out_ext *streamoute; 7376 struct sctp_association *asoc; 7377 struct sctp_prstatus params; 7378 int retval = -EINVAL; 7379 int policy; 7380 7381 if (len < sizeof(params)) 7382 goto out; 7383 7384 len = sizeof(params); 7385 if (copy_from_user(¶ms, optval, len)) { 7386 retval = -EFAULT; 7387 goto out; 7388 } 7389 7390 policy = params.sprstat_policy; 7391 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7392 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7393 goto out; 7394 7395 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7396 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7397 goto out; 7398 7399 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7400 if (!streamoute) { 7401 /* Not allocated yet, means all stats are 0 */ 7402 params.sprstat_abandoned_unsent = 0; 7403 params.sprstat_abandoned_sent = 0; 7404 retval = 0; 7405 goto out; 7406 } 7407 7408 if (policy == SCTP_PR_SCTP_ALL) { 7409 params.sprstat_abandoned_unsent = 0; 7410 params.sprstat_abandoned_sent = 0; 7411 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7412 params.sprstat_abandoned_unsent += 7413 streamoute->abandoned_unsent[policy]; 7414 params.sprstat_abandoned_sent += 7415 streamoute->abandoned_sent[policy]; 7416 } 7417 } else { 7418 params.sprstat_abandoned_unsent = 7419 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7420 params.sprstat_abandoned_sent = 7421 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7422 } 7423 7424 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7425 retval = -EFAULT; 7426 goto out; 7427 } 7428 7429 retval = 0; 7430 7431 out: 7432 return retval; 7433 } 7434 7435 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7436 char __user *optval, 7437 int __user *optlen) 7438 { 7439 struct sctp_assoc_value params; 7440 struct sctp_association *asoc; 7441 int retval = -EFAULT; 7442 7443 if (len < sizeof(params)) { 7444 retval = -EINVAL; 7445 goto out; 7446 } 7447 7448 len = sizeof(params); 7449 if (copy_from_user(¶ms, optval, len)) 7450 goto out; 7451 7452 asoc = sctp_id2assoc(sk, params.assoc_id); 7453 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7454 sctp_style(sk, UDP)) { 7455 retval = -EINVAL; 7456 goto out; 7457 } 7458 7459 params.assoc_value = asoc ? asoc->peer.reconf_capable 7460 : sctp_sk(sk)->ep->reconf_enable; 7461 7462 if (put_user(len, optlen)) 7463 goto out; 7464 7465 if (copy_to_user(optval, ¶ms, len)) 7466 goto out; 7467 7468 retval = 0; 7469 7470 out: 7471 return retval; 7472 } 7473 7474 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7475 char __user *optval, 7476 int __user *optlen) 7477 { 7478 struct sctp_assoc_value params; 7479 struct sctp_association *asoc; 7480 int retval = -EFAULT; 7481 7482 if (len < sizeof(params)) { 7483 retval = -EINVAL; 7484 goto out; 7485 } 7486 7487 len = sizeof(params); 7488 if (copy_from_user(¶ms, optval, len)) 7489 goto out; 7490 7491 asoc = sctp_id2assoc(sk, params.assoc_id); 7492 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7493 sctp_style(sk, UDP)) { 7494 retval = -EINVAL; 7495 goto out; 7496 } 7497 7498 params.assoc_value = asoc ? asoc->strreset_enable 7499 : sctp_sk(sk)->ep->strreset_enable; 7500 7501 if (put_user(len, optlen)) 7502 goto out; 7503 7504 if (copy_to_user(optval, ¶ms, len)) 7505 goto out; 7506 7507 retval = 0; 7508 7509 out: 7510 return retval; 7511 } 7512 7513 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7514 char __user *optval, 7515 int __user *optlen) 7516 { 7517 struct sctp_assoc_value params; 7518 struct sctp_association *asoc; 7519 int retval = -EFAULT; 7520 7521 if (len < sizeof(params)) { 7522 retval = -EINVAL; 7523 goto out; 7524 } 7525 7526 len = sizeof(params); 7527 if (copy_from_user(¶ms, optval, len)) 7528 goto out; 7529 7530 asoc = sctp_id2assoc(sk, params.assoc_id); 7531 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7532 sctp_style(sk, UDP)) { 7533 retval = -EINVAL; 7534 goto out; 7535 } 7536 7537 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7538 : sctp_sk(sk)->default_ss; 7539 7540 if (put_user(len, optlen)) 7541 goto out; 7542 7543 if (copy_to_user(optval, ¶ms, len)) 7544 goto out; 7545 7546 retval = 0; 7547 7548 out: 7549 return retval; 7550 } 7551 7552 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7553 char __user *optval, 7554 int __user *optlen) 7555 { 7556 struct sctp_stream_value params; 7557 struct sctp_association *asoc; 7558 int retval = -EFAULT; 7559 7560 if (len < sizeof(params)) { 7561 retval = -EINVAL; 7562 goto out; 7563 } 7564 7565 len = sizeof(params); 7566 if (copy_from_user(¶ms, optval, len)) 7567 goto out; 7568 7569 asoc = sctp_id2assoc(sk, params.assoc_id); 7570 if (!asoc) { 7571 retval = -EINVAL; 7572 goto out; 7573 } 7574 7575 retval = sctp_sched_get_value(asoc, params.stream_id, 7576 ¶ms.stream_value); 7577 if (retval) 7578 goto out; 7579 7580 if (put_user(len, optlen)) { 7581 retval = -EFAULT; 7582 goto out; 7583 } 7584 7585 if (copy_to_user(optval, ¶ms, len)) { 7586 retval = -EFAULT; 7587 goto out; 7588 } 7589 7590 out: 7591 return retval; 7592 } 7593 7594 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7595 char __user *optval, 7596 int __user *optlen) 7597 { 7598 struct sctp_assoc_value params; 7599 struct sctp_association *asoc; 7600 int retval = -EFAULT; 7601 7602 if (len < sizeof(params)) { 7603 retval = -EINVAL; 7604 goto out; 7605 } 7606 7607 len = sizeof(params); 7608 if (copy_from_user(¶ms, optval, len)) 7609 goto out; 7610 7611 asoc = sctp_id2assoc(sk, params.assoc_id); 7612 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7613 sctp_style(sk, UDP)) { 7614 retval = -EINVAL; 7615 goto out; 7616 } 7617 7618 params.assoc_value = asoc ? asoc->peer.intl_capable 7619 : sctp_sk(sk)->ep->intl_enable; 7620 7621 if (put_user(len, optlen)) 7622 goto out; 7623 7624 if (copy_to_user(optval, ¶ms, len)) 7625 goto out; 7626 7627 retval = 0; 7628 7629 out: 7630 return retval; 7631 } 7632 7633 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7634 char __user *optval, 7635 int __user *optlen) 7636 { 7637 int val; 7638 7639 if (len < sizeof(int)) 7640 return -EINVAL; 7641 7642 len = sizeof(int); 7643 val = sctp_sk(sk)->reuse; 7644 if (put_user(len, optlen)) 7645 return -EFAULT; 7646 7647 if (copy_to_user(optval, &val, len)) 7648 return -EFAULT; 7649 7650 return 0; 7651 } 7652 7653 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7654 int __user *optlen) 7655 { 7656 struct sctp_association *asoc; 7657 struct sctp_event param; 7658 __u16 subscribe; 7659 7660 if (len < sizeof(param)) 7661 return -EINVAL; 7662 7663 len = sizeof(param); 7664 if (copy_from_user(¶m, optval, len)) 7665 return -EFAULT; 7666 7667 if (param.se_type < SCTP_SN_TYPE_BASE || 7668 param.se_type > SCTP_SN_TYPE_MAX) 7669 return -EINVAL; 7670 7671 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7672 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7673 sctp_style(sk, UDP)) 7674 return -EINVAL; 7675 7676 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7677 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7678 7679 if (put_user(len, optlen)) 7680 return -EFAULT; 7681 7682 if (copy_to_user(optval, ¶m, len)) 7683 return -EFAULT; 7684 7685 return 0; 7686 } 7687 7688 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7689 char __user *optval, 7690 int __user *optlen) 7691 { 7692 struct sctp_assoc_value params; 7693 struct sctp_association *asoc; 7694 int retval = -EFAULT; 7695 7696 if (len < sizeof(params)) { 7697 retval = -EINVAL; 7698 goto out; 7699 } 7700 7701 len = sizeof(params); 7702 if (copy_from_user(¶ms, optval, len)) 7703 goto out; 7704 7705 asoc = sctp_id2assoc(sk, params.assoc_id); 7706 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7707 sctp_style(sk, UDP)) { 7708 retval = -EINVAL; 7709 goto out; 7710 } 7711 7712 params.assoc_value = asoc ? asoc->peer.asconf_capable 7713 : sctp_sk(sk)->ep->asconf_enable; 7714 7715 if (put_user(len, optlen)) 7716 goto out; 7717 7718 if (copy_to_user(optval, ¶ms, len)) 7719 goto out; 7720 7721 retval = 0; 7722 7723 out: 7724 return retval; 7725 } 7726 7727 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7728 char __user *optval, 7729 int __user *optlen) 7730 { 7731 struct sctp_assoc_value params; 7732 struct sctp_association *asoc; 7733 int retval = -EFAULT; 7734 7735 if (len < sizeof(params)) { 7736 retval = -EINVAL; 7737 goto out; 7738 } 7739 7740 len = sizeof(params); 7741 if (copy_from_user(¶ms, optval, len)) 7742 goto out; 7743 7744 asoc = sctp_id2assoc(sk, params.assoc_id); 7745 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7746 sctp_style(sk, UDP)) { 7747 retval = -EINVAL; 7748 goto out; 7749 } 7750 7751 params.assoc_value = asoc ? asoc->peer.auth_capable 7752 : sctp_sk(sk)->ep->auth_enable; 7753 7754 if (put_user(len, optlen)) 7755 goto out; 7756 7757 if (copy_to_user(optval, ¶ms, len)) 7758 goto out; 7759 7760 retval = 0; 7761 7762 out: 7763 return retval; 7764 } 7765 7766 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7767 char __user *optval, 7768 int __user *optlen) 7769 { 7770 struct sctp_assoc_value params; 7771 struct sctp_association *asoc; 7772 int retval = -EFAULT; 7773 7774 if (len < sizeof(params)) { 7775 retval = -EINVAL; 7776 goto out; 7777 } 7778 7779 len = sizeof(params); 7780 if (copy_from_user(¶ms, optval, len)) 7781 goto out; 7782 7783 asoc = sctp_id2assoc(sk, params.assoc_id); 7784 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7785 sctp_style(sk, UDP)) { 7786 retval = -EINVAL; 7787 goto out; 7788 } 7789 7790 params.assoc_value = asoc ? asoc->peer.ecn_capable 7791 : sctp_sk(sk)->ep->ecn_enable; 7792 7793 if (put_user(len, optlen)) 7794 goto out; 7795 7796 if (copy_to_user(optval, ¶ms, len)) 7797 goto out; 7798 7799 retval = 0; 7800 7801 out: 7802 return retval; 7803 } 7804 7805 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7806 char __user *optval, 7807 int __user *optlen) 7808 { 7809 struct sctp_assoc_value params; 7810 struct sctp_association *asoc; 7811 int retval = -EFAULT; 7812 7813 if (len < sizeof(params)) { 7814 retval = -EINVAL; 7815 goto out; 7816 } 7817 7818 len = sizeof(params); 7819 if (copy_from_user(¶ms, optval, len)) 7820 goto out; 7821 7822 asoc = sctp_id2assoc(sk, params.assoc_id); 7823 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7824 sctp_style(sk, UDP)) { 7825 retval = -EINVAL; 7826 goto out; 7827 } 7828 7829 params.assoc_value = asoc ? asoc->pf_expose 7830 : sctp_sk(sk)->pf_expose; 7831 7832 if (put_user(len, optlen)) 7833 goto out; 7834 7835 if (copy_to_user(optval, ¶ms, len)) 7836 goto out; 7837 7838 retval = 0; 7839 7840 out: 7841 return retval; 7842 } 7843 7844 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7845 char __user *optval, int __user *optlen) 7846 { 7847 struct sctp_association *asoc; 7848 struct sctp_udpencaps encap; 7849 struct sctp_transport *t; 7850 __be16 encap_port; 7851 7852 if (len < sizeof(encap)) 7853 return -EINVAL; 7854 7855 len = sizeof(encap); 7856 if (copy_from_user(&encap, optval, len)) 7857 return -EFAULT; 7858 7859 /* If an address other than INADDR_ANY is specified, and 7860 * no transport is found, then the request is invalid. 7861 */ 7862 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7863 t = sctp_addr_id2transport(sk, &encap.sue_address, 7864 encap.sue_assoc_id); 7865 if (!t) { 7866 pr_debug("%s: failed no transport\n", __func__); 7867 return -EINVAL; 7868 } 7869 7870 encap_port = t->encap_port; 7871 goto out; 7872 } 7873 7874 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7875 * socket is a one to many style socket, and an association 7876 * was not found, then the id was invalid. 7877 */ 7878 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7879 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7880 sctp_style(sk, UDP)) { 7881 pr_debug("%s: failed no association\n", __func__); 7882 return -EINVAL; 7883 } 7884 7885 if (asoc) { 7886 encap_port = asoc->encap_port; 7887 goto out; 7888 } 7889 7890 encap_port = sctp_sk(sk)->encap_port; 7891 7892 out: 7893 encap.sue_port = (__force uint16_t)encap_port; 7894 if (copy_to_user(optval, &encap, len)) 7895 return -EFAULT; 7896 7897 if (put_user(len, optlen)) 7898 return -EFAULT; 7899 7900 return 0; 7901 } 7902 7903 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7904 char __user *optval, int __user *optlen) 7905 { 7906 int retval = 0; 7907 int len; 7908 7909 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7910 7911 /* I can hardly begin to describe how wrong this is. This is 7912 * so broken as to be worse than useless. The API draft 7913 * REALLY is NOT helpful here... I am not convinced that the 7914 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7915 * are at all well-founded. 7916 */ 7917 if (level != SOL_SCTP) { 7918 struct sctp_af *af = sctp_sk(sk)->pf->af; 7919 7920 retval = af->getsockopt(sk, level, optname, optval, optlen); 7921 return retval; 7922 } 7923 7924 if (get_user(len, optlen)) 7925 return -EFAULT; 7926 7927 if (len < 0) 7928 return -EINVAL; 7929 7930 lock_sock(sk); 7931 7932 switch (optname) { 7933 case SCTP_STATUS: 7934 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7935 break; 7936 case SCTP_DISABLE_FRAGMENTS: 7937 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7938 optlen); 7939 break; 7940 case SCTP_EVENTS: 7941 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7942 break; 7943 case SCTP_AUTOCLOSE: 7944 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7945 break; 7946 case SCTP_SOCKOPT_PEELOFF: 7947 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7948 break; 7949 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7950 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7951 break; 7952 case SCTP_PEER_ADDR_PARAMS: 7953 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7954 optlen); 7955 break; 7956 case SCTP_DELAYED_SACK: 7957 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7958 optlen); 7959 break; 7960 case SCTP_INITMSG: 7961 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7962 break; 7963 case SCTP_GET_PEER_ADDRS: 7964 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7965 optlen); 7966 break; 7967 case SCTP_GET_LOCAL_ADDRS: 7968 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7969 optlen); 7970 break; 7971 case SCTP_SOCKOPT_CONNECTX3: 7972 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7973 break; 7974 case SCTP_DEFAULT_SEND_PARAM: 7975 retval = sctp_getsockopt_default_send_param(sk, len, 7976 optval, optlen); 7977 break; 7978 case SCTP_DEFAULT_SNDINFO: 7979 retval = sctp_getsockopt_default_sndinfo(sk, len, 7980 optval, optlen); 7981 break; 7982 case SCTP_PRIMARY_ADDR: 7983 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7984 break; 7985 case SCTP_NODELAY: 7986 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7987 break; 7988 case SCTP_RTOINFO: 7989 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7990 break; 7991 case SCTP_ASSOCINFO: 7992 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7993 break; 7994 case SCTP_I_WANT_MAPPED_V4_ADDR: 7995 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7996 break; 7997 case SCTP_MAXSEG: 7998 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7999 break; 8000 case SCTP_GET_PEER_ADDR_INFO: 8001 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8002 optlen); 8003 break; 8004 case SCTP_ADAPTATION_LAYER: 8005 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8006 optlen); 8007 break; 8008 case SCTP_CONTEXT: 8009 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8010 break; 8011 case SCTP_FRAGMENT_INTERLEAVE: 8012 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8013 optlen); 8014 break; 8015 case SCTP_PARTIAL_DELIVERY_POINT: 8016 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8017 optlen); 8018 break; 8019 case SCTP_MAX_BURST: 8020 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8021 break; 8022 case SCTP_AUTH_KEY: 8023 case SCTP_AUTH_CHUNK: 8024 case SCTP_AUTH_DELETE_KEY: 8025 case SCTP_AUTH_DEACTIVATE_KEY: 8026 retval = -EOPNOTSUPP; 8027 break; 8028 case SCTP_HMAC_IDENT: 8029 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8030 break; 8031 case SCTP_AUTH_ACTIVE_KEY: 8032 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8033 break; 8034 case SCTP_PEER_AUTH_CHUNKS: 8035 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8036 optlen); 8037 break; 8038 case SCTP_LOCAL_AUTH_CHUNKS: 8039 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8040 optlen); 8041 break; 8042 case SCTP_GET_ASSOC_NUMBER: 8043 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8044 break; 8045 case SCTP_GET_ASSOC_ID_LIST: 8046 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8047 break; 8048 case SCTP_AUTO_ASCONF: 8049 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8050 break; 8051 case SCTP_PEER_ADDR_THLDS: 8052 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8053 optlen, false); 8054 break; 8055 case SCTP_PEER_ADDR_THLDS_V2: 8056 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8057 optlen, true); 8058 break; 8059 case SCTP_GET_ASSOC_STATS: 8060 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8061 break; 8062 case SCTP_RECVRCVINFO: 8063 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8064 break; 8065 case SCTP_RECVNXTINFO: 8066 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8067 break; 8068 case SCTP_PR_SUPPORTED: 8069 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8070 break; 8071 case SCTP_DEFAULT_PRINFO: 8072 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8073 optlen); 8074 break; 8075 case SCTP_PR_ASSOC_STATUS: 8076 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8077 optlen); 8078 break; 8079 case SCTP_PR_STREAM_STATUS: 8080 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8081 optlen); 8082 break; 8083 case SCTP_RECONFIG_SUPPORTED: 8084 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8085 optlen); 8086 break; 8087 case SCTP_ENABLE_STREAM_RESET: 8088 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8089 optlen); 8090 break; 8091 case SCTP_STREAM_SCHEDULER: 8092 retval = sctp_getsockopt_scheduler(sk, len, optval, 8093 optlen); 8094 break; 8095 case SCTP_STREAM_SCHEDULER_VALUE: 8096 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8097 optlen); 8098 break; 8099 case SCTP_INTERLEAVING_SUPPORTED: 8100 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8101 optlen); 8102 break; 8103 case SCTP_REUSE_PORT: 8104 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8105 break; 8106 case SCTP_EVENT: 8107 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8108 break; 8109 case SCTP_ASCONF_SUPPORTED: 8110 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8111 optlen); 8112 break; 8113 case SCTP_AUTH_SUPPORTED: 8114 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8115 optlen); 8116 break; 8117 case SCTP_ECN_SUPPORTED: 8118 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8119 break; 8120 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8121 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8122 break; 8123 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8124 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8125 break; 8126 default: 8127 retval = -ENOPROTOOPT; 8128 break; 8129 } 8130 8131 release_sock(sk); 8132 return retval; 8133 } 8134 8135 static int sctp_hash(struct sock *sk) 8136 { 8137 /* STUB */ 8138 return 0; 8139 } 8140 8141 static void sctp_unhash(struct sock *sk) 8142 { 8143 /* STUB */ 8144 } 8145 8146 /* Check if port is acceptable. Possibly find first available port. 8147 * 8148 * The port hash table (contained in the 'global' SCTP protocol storage 8149 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8150 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8151 * list (the list number is the port number hashed out, so as you 8152 * would expect from a hash function, all the ports in a given list have 8153 * such a number that hashes out to the same list number; you were 8154 * expecting that, right?); so each list has a set of ports, with a 8155 * link to the socket (struct sock) that uses it, the port number and 8156 * a fastreuse flag (FIXME: NPI ipg). 8157 */ 8158 static struct sctp_bind_bucket *sctp_bucket_create( 8159 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8160 8161 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8162 { 8163 struct sctp_sock *sp = sctp_sk(sk); 8164 bool reuse = (sk->sk_reuse || sp->reuse); 8165 struct sctp_bind_hashbucket *head; /* hash list */ 8166 struct net *net = sock_net(sk); 8167 kuid_t uid = sock_i_uid(sk); 8168 struct sctp_bind_bucket *pp; 8169 unsigned short snum; 8170 int ret; 8171 8172 snum = ntohs(addr->v4.sin_port); 8173 8174 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8175 8176 if (snum == 0) { 8177 /* Search for an available port. */ 8178 int low, high, remaining, index; 8179 unsigned int rover; 8180 8181 inet_get_local_port_range(net, &low, &high); 8182 remaining = (high - low) + 1; 8183 rover = prandom_u32() % remaining + low; 8184 8185 do { 8186 rover++; 8187 if ((rover < low) || (rover > high)) 8188 rover = low; 8189 if (inet_is_local_reserved_port(net, rover)) 8190 continue; 8191 index = sctp_phashfn(net, rover); 8192 head = &sctp_port_hashtable[index]; 8193 spin_lock_bh(&head->lock); 8194 sctp_for_each_hentry(pp, &head->chain) 8195 if ((pp->port == rover) && 8196 net_eq(net, pp->net)) 8197 goto next; 8198 break; 8199 next: 8200 spin_unlock_bh(&head->lock); 8201 cond_resched(); 8202 } while (--remaining > 0); 8203 8204 /* Exhausted local port range during search? */ 8205 ret = 1; 8206 if (remaining <= 0) 8207 return ret; 8208 8209 /* OK, here is the one we will use. HEAD (the port 8210 * hash table list entry) is non-NULL and we hold it's 8211 * mutex. 8212 */ 8213 snum = rover; 8214 } else { 8215 /* We are given an specific port number; we verify 8216 * that it is not being used. If it is used, we will 8217 * exahust the search in the hash list corresponding 8218 * to the port number (snum) - we detect that with the 8219 * port iterator, pp being NULL. 8220 */ 8221 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8222 spin_lock_bh(&head->lock); 8223 sctp_for_each_hentry(pp, &head->chain) { 8224 if ((pp->port == snum) && net_eq(pp->net, net)) 8225 goto pp_found; 8226 } 8227 } 8228 pp = NULL; 8229 goto pp_not_found; 8230 pp_found: 8231 if (!hlist_empty(&pp->owner)) { 8232 /* We had a port hash table hit - there is an 8233 * available port (pp != NULL) and it is being 8234 * used by other socket (pp->owner not empty); that other 8235 * socket is going to be sk2. 8236 */ 8237 struct sock *sk2; 8238 8239 pr_debug("%s: found a possible match\n", __func__); 8240 8241 if ((pp->fastreuse && reuse && 8242 sk->sk_state != SCTP_SS_LISTENING) || 8243 (pp->fastreuseport && sk->sk_reuseport && 8244 uid_eq(pp->fastuid, uid))) 8245 goto success; 8246 8247 /* Run through the list of sockets bound to the port 8248 * (pp->port) [via the pointers bind_next and 8249 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8250 * we get the endpoint they describe and run through 8251 * the endpoint's list of IP (v4 or v6) addresses, 8252 * comparing each of the addresses with the address of 8253 * the socket sk. If we find a match, then that means 8254 * that this port/socket (sk) combination are already 8255 * in an endpoint. 8256 */ 8257 sk_for_each_bound(sk2, &pp->owner) { 8258 struct sctp_sock *sp2 = sctp_sk(sk2); 8259 struct sctp_endpoint *ep2 = sp2->ep; 8260 8261 if (sk == sk2 || 8262 (reuse && (sk2->sk_reuse || sp2->reuse) && 8263 sk2->sk_state != SCTP_SS_LISTENING) || 8264 (sk->sk_reuseport && sk2->sk_reuseport && 8265 uid_eq(uid, sock_i_uid(sk2)))) 8266 continue; 8267 8268 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8269 addr, sp2, sp)) { 8270 ret = 1; 8271 goto fail_unlock; 8272 } 8273 } 8274 8275 pr_debug("%s: found a match\n", __func__); 8276 } 8277 pp_not_found: 8278 /* If there was a hash table miss, create a new port. */ 8279 ret = 1; 8280 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8281 goto fail_unlock; 8282 8283 /* In either case (hit or miss), make sure fastreuse is 1 only 8284 * if sk->sk_reuse is too (that is, if the caller requested 8285 * SO_REUSEADDR on this socket -sk-). 8286 */ 8287 if (hlist_empty(&pp->owner)) { 8288 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8289 pp->fastreuse = 1; 8290 else 8291 pp->fastreuse = 0; 8292 8293 if (sk->sk_reuseport) { 8294 pp->fastreuseport = 1; 8295 pp->fastuid = uid; 8296 } else { 8297 pp->fastreuseport = 0; 8298 } 8299 } else { 8300 if (pp->fastreuse && 8301 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8302 pp->fastreuse = 0; 8303 8304 if (pp->fastreuseport && 8305 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8306 pp->fastreuseport = 0; 8307 } 8308 8309 /* We are set, so fill up all the data in the hash table 8310 * entry, tie the socket list information with the rest of the 8311 * sockets FIXME: Blurry, NPI (ipg). 8312 */ 8313 success: 8314 if (!sp->bind_hash) { 8315 inet_sk(sk)->inet_num = snum; 8316 sk_add_bind_node(sk, &pp->owner); 8317 sp->bind_hash = pp; 8318 } 8319 ret = 0; 8320 8321 fail_unlock: 8322 spin_unlock_bh(&head->lock); 8323 return ret; 8324 } 8325 8326 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8327 * port is requested. 8328 */ 8329 static int sctp_get_port(struct sock *sk, unsigned short snum) 8330 { 8331 union sctp_addr addr; 8332 struct sctp_af *af = sctp_sk(sk)->pf->af; 8333 8334 /* Set up a dummy address struct from the sk. */ 8335 af->from_sk(&addr, sk); 8336 addr.v4.sin_port = htons(snum); 8337 8338 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8339 return sctp_get_port_local(sk, &addr); 8340 } 8341 8342 /* 8343 * Move a socket to LISTENING state. 8344 */ 8345 static int sctp_listen_start(struct sock *sk, int backlog) 8346 { 8347 struct sctp_sock *sp = sctp_sk(sk); 8348 struct sctp_endpoint *ep = sp->ep; 8349 struct crypto_shash *tfm = NULL; 8350 char alg[32]; 8351 8352 /* Allocate HMAC for generating cookie. */ 8353 if (!sp->hmac && sp->sctp_hmac_alg) { 8354 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8355 tfm = crypto_alloc_shash(alg, 0, 0); 8356 if (IS_ERR(tfm)) { 8357 net_info_ratelimited("failed to load transform for %s: %ld\n", 8358 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8359 return -ENOSYS; 8360 } 8361 sctp_sk(sk)->hmac = tfm; 8362 } 8363 8364 /* 8365 * If a bind() or sctp_bindx() is not called prior to a listen() 8366 * call that allows new associations to be accepted, the system 8367 * picks an ephemeral port and will choose an address set equivalent 8368 * to binding with a wildcard address. 8369 * 8370 * This is not currently spelled out in the SCTP sockets 8371 * extensions draft, but follows the practice as seen in TCP 8372 * sockets. 8373 * 8374 */ 8375 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8376 if (!ep->base.bind_addr.port) { 8377 if (sctp_autobind(sk)) 8378 return -EAGAIN; 8379 } else { 8380 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8381 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8382 return -EADDRINUSE; 8383 } 8384 } 8385 8386 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8387 return sctp_hash_endpoint(ep); 8388 } 8389 8390 /* 8391 * 4.1.3 / 5.1.3 listen() 8392 * 8393 * By default, new associations are not accepted for UDP style sockets. 8394 * An application uses listen() to mark a socket as being able to 8395 * accept new associations. 8396 * 8397 * On TCP style sockets, applications use listen() to ready the SCTP 8398 * endpoint for accepting inbound associations. 8399 * 8400 * On both types of endpoints a backlog of '0' disables listening. 8401 * 8402 * Move a socket to LISTENING state. 8403 */ 8404 int sctp_inet_listen(struct socket *sock, int backlog) 8405 { 8406 struct sock *sk = sock->sk; 8407 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8408 int err = -EINVAL; 8409 8410 if (unlikely(backlog < 0)) 8411 return err; 8412 8413 lock_sock(sk); 8414 8415 /* Peeled-off sockets are not allowed to listen(). */ 8416 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8417 goto out; 8418 8419 if (sock->state != SS_UNCONNECTED) 8420 goto out; 8421 8422 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8423 goto out; 8424 8425 /* If backlog is zero, disable listening. */ 8426 if (!backlog) { 8427 if (sctp_sstate(sk, CLOSED)) 8428 goto out; 8429 8430 err = 0; 8431 sctp_unhash_endpoint(ep); 8432 sk->sk_state = SCTP_SS_CLOSED; 8433 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8434 sctp_sk(sk)->bind_hash->fastreuse = 1; 8435 goto out; 8436 } 8437 8438 /* If we are already listening, just update the backlog */ 8439 if (sctp_sstate(sk, LISTENING)) 8440 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8441 else { 8442 err = sctp_listen_start(sk, backlog); 8443 if (err) 8444 goto out; 8445 } 8446 8447 err = 0; 8448 out: 8449 release_sock(sk); 8450 return err; 8451 } 8452 8453 /* 8454 * This function is done by modeling the current datagram_poll() and the 8455 * tcp_poll(). Note that, based on these implementations, we don't 8456 * lock the socket in this function, even though it seems that, 8457 * ideally, locking or some other mechanisms can be used to ensure 8458 * the integrity of the counters (sndbuf and wmem_alloc) used 8459 * in this place. We assume that we don't need locks either until proven 8460 * otherwise. 8461 * 8462 * Another thing to note is that we include the Async I/O support 8463 * here, again, by modeling the current TCP/UDP code. We don't have 8464 * a good way to test with it yet. 8465 */ 8466 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8467 { 8468 struct sock *sk = sock->sk; 8469 struct sctp_sock *sp = sctp_sk(sk); 8470 __poll_t mask; 8471 8472 poll_wait(file, sk_sleep(sk), wait); 8473 8474 sock_rps_record_flow(sk); 8475 8476 /* A TCP-style listening socket becomes readable when the accept queue 8477 * is not empty. 8478 */ 8479 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8480 return (!list_empty(&sp->ep->asocs)) ? 8481 (EPOLLIN | EPOLLRDNORM) : 0; 8482 8483 mask = 0; 8484 8485 /* Is there any exceptional events? */ 8486 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8487 mask |= EPOLLERR | 8488 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8489 if (sk->sk_shutdown & RCV_SHUTDOWN) 8490 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8491 if (sk->sk_shutdown == SHUTDOWN_MASK) 8492 mask |= EPOLLHUP; 8493 8494 /* Is it readable? Reconsider this code with TCP-style support. */ 8495 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8496 mask |= EPOLLIN | EPOLLRDNORM; 8497 8498 /* The association is either gone or not ready. */ 8499 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8500 return mask; 8501 8502 /* Is it writable? */ 8503 if (sctp_writeable(sk)) { 8504 mask |= EPOLLOUT | EPOLLWRNORM; 8505 } else { 8506 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8507 /* 8508 * Since the socket is not locked, the buffer 8509 * might be made available after the writeable check and 8510 * before the bit is set. This could cause a lost I/O 8511 * signal. tcp_poll() has a race breaker for this race 8512 * condition. Based on their implementation, we put 8513 * in the following code to cover it as well. 8514 */ 8515 if (sctp_writeable(sk)) 8516 mask |= EPOLLOUT | EPOLLWRNORM; 8517 } 8518 return mask; 8519 } 8520 8521 /******************************************************************** 8522 * 2nd Level Abstractions 8523 ********************************************************************/ 8524 8525 static struct sctp_bind_bucket *sctp_bucket_create( 8526 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8527 { 8528 struct sctp_bind_bucket *pp; 8529 8530 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8531 if (pp) { 8532 SCTP_DBG_OBJCNT_INC(bind_bucket); 8533 pp->port = snum; 8534 pp->fastreuse = 0; 8535 INIT_HLIST_HEAD(&pp->owner); 8536 pp->net = net; 8537 hlist_add_head(&pp->node, &head->chain); 8538 } 8539 return pp; 8540 } 8541 8542 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8543 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8544 { 8545 if (pp && hlist_empty(&pp->owner)) { 8546 __hlist_del(&pp->node); 8547 kmem_cache_free(sctp_bucket_cachep, pp); 8548 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8549 } 8550 } 8551 8552 /* Release this socket's reference to a local port. */ 8553 static inline void __sctp_put_port(struct sock *sk) 8554 { 8555 struct sctp_bind_hashbucket *head = 8556 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8557 inet_sk(sk)->inet_num)]; 8558 struct sctp_bind_bucket *pp; 8559 8560 spin_lock(&head->lock); 8561 pp = sctp_sk(sk)->bind_hash; 8562 __sk_del_bind_node(sk); 8563 sctp_sk(sk)->bind_hash = NULL; 8564 inet_sk(sk)->inet_num = 0; 8565 sctp_bucket_destroy(pp); 8566 spin_unlock(&head->lock); 8567 } 8568 8569 void sctp_put_port(struct sock *sk) 8570 { 8571 local_bh_disable(); 8572 __sctp_put_port(sk); 8573 local_bh_enable(); 8574 } 8575 8576 /* 8577 * The system picks an ephemeral port and choose an address set equivalent 8578 * to binding with a wildcard address. 8579 * One of those addresses will be the primary address for the association. 8580 * This automatically enables the multihoming capability of SCTP. 8581 */ 8582 static int sctp_autobind(struct sock *sk) 8583 { 8584 union sctp_addr autoaddr; 8585 struct sctp_af *af; 8586 __be16 port; 8587 8588 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8589 af = sctp_sk(sk)->pf->af; 8590 8591 port = htons(inet_sk(sk)->inet_num); 8592 af->inaddr_any(&autoaddr, port); 8593 8594 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8595 } 8596 8597 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8598 * 8599 * From RFC 2292 8600 * 4.2 The cmsghdr Structure * 8601 * 8602 * When ancillary data is sent or received, any number of ancillary data 8603 * objects can be specified by the msg_control and msg_controllen members of 8604 * the msghdr structure, because each object is preceded by 8605 * a cmsghdr structure defining the object's length (the cmsg_len member). 8606 * Historically Berkeley-derived implementations have passed only one object 8607 * at a time, but this API allows multiple objects to be 8608 * passed in a single call to sendmsg() or recvmsg(). The following example 8609 * shows two ancillary data objects in a control buffer. 8610 * 8611 * |<--------------------------- msg_controllen -------------------------->| 8612 * | | 8613 * 8614 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8615 * 8616 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8617 * | | | 8618 * 8619 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8620 * 8621 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8622 * | | | | | 8623 * 8624 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8625 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8626 * 8627 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8628 * 8629 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8630 * ^ 8631 * | 8632 * 8633 * msg_control 8634 * points here 8635 */ 8636 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8637 { 8638 struct msghdr *my_msg = (struct msghdr *)msg; 8639 struct cmsghdr *cmsg; 8640 8641 for_each_cmsghdr(cmsg, my_msg) { 8642 if (!CMSG_OK(my_msg, cmsg)) 8643 return -EINVAL; 8644 8645 /* Should we parse this header or ignore? */ 8646 if (cmsg->cmsg_level != IPPROTO_SCTP) 8647 continue; 8648 8649 /* Strictly check lengths following example in SCM code. */ 8650 switch (cmsg->cmsg_type) { 8651 case SCTP_INIT: 8652 /* SCTP Socket API Extension 8653 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8654 * 8655 * This cmsghdr structure provides information for 8656 * initializing new SCTP associations with sendmsg(). 8657 * The SCTP_INITMSG socket option uses this same data 8658 * structure. This structure is not used for 8659 * recvmsg(). 8660 * 8661 * cmsg_level cmsg_type cmsg_data[] 8662 * ------------ ------------ ---------------------- 8663 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8664 */ 8665 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8666 return -EINVAL; 8667 8668 cmsgs->init = CMSG_DATA(cmsg); 8669 break; 8670 8671 case SCTP_SNDRCV: 8672 /* SCTP Socket API Extension 8673 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8674 * 8675 * This cmsghdr structure specifies SCTP options for 8676 * sendmsg() and describes SCTP header information 8677 * about a received message through recvmsg(). 8678 * 8679 * cmsg_level cmsg_type cmsg_data[] 8680 * ------------ ------------ ---------------------- 8681 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8682 */ 8683 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8684 return -EINVAL; 8685 8686 cmsgs->srinfo = CMSG_DATA(cmsg); 8687 8688 if (cmsgs->srinfo->sinfo_flags & 8689 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8690 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8691 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8692 return -EINVAL; 8693 break; 8694 8695 case SCTP_SNDINFO: 8696 /* SCTP Socket API Extension 8697 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8698 * 8699 * This cmsghdr structure specifies SCTP options for 8700 * sendmsg(). This structure and SCTP_RCVINFO replaces 8701 * SCTP_SNDRCV which has been deprecated. 8702 * 8703 * cmsg_level cmsg_type cmsg_data[] 8704 * ------------ ------------ --------------------- 8705 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8706 */ 8707 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8708 return -EINVAL; 8709 8710 cmsgs->sinfo = CMSG_DATA(cmsg); 8711 8712 if (cmsgs->sinfo->snd_flags & 8713 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8714 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8715 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8716 return -EINVAL; 8717 break; 8718 case SCTP_PRINFO: 8719 /* SCTP Socket API Extension 8720 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8721 * 8722 * This cmsghdr structure specifies SCTP options for sendmsg(). 8723 * 8724 * cmsg_level cmsg_type cmsg_data[] 8725 * ------------ ------------ --------------------- 8726 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8727 */ 8728 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8729 return -EINVAL; 8730 8731 cmsgs->prinfo = CMSG_DATA(cmsg); 8732 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8733 return -EINVAL; 8734 8735 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8736 cmsgs->prinfo->pr_value = 0; 8737 break; 8738 case SCTP_AUTHINFO: 8739 /* SCTP Socket API Extension 8740 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8741 * 8742 * This cmsghdr structure specifies SCTP options for sendmsg(). 8743 * 8744 * cmsg_level cmsg_type cmsg_data[] 8745 * ------------ ------------ --------------------- 8746 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8747 */ 8748 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8749 return -EINVAL; 8750 8751 cmsgs->authinfo = CMSG_DATA(cmsg); 8752 break; 8753 case SCTP_DSTADDRV4: 8754 case SCTP_DSTADDRV6: 8755 /* SCTP Socket API Extension 8756 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8757 * 8758 * This cmsghdr structure specifies SCTP options for sendmsg(). 8759 * 8760 * cmsg_level cmsg_type cmsg_data[] 8761 * ------------ ------------ --------------------- 8762 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8763 * ------------ ------------ --------------------- 8764 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8765 */ 8766 cmsgs->addrs_msg = my_msg; 8767 break; 8768 default: 8769 return -EINVAL; 8770 } 8771 } 8772 8773 return 0; 8774 } 8775 8776 /* 8777 * Wait for a packet.. 8778 * Note: This function is the same function as in core/datagram.c 8779 * with a few modifications to make lksctp work. 8780 */ 8781 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8782 { 8783 int error; 8784 DEFINE_WAIT(wait); 8785 8786 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8787 8788 /* Socket errors? */ 8789 error = sock_error(sk); 8790 if (error) 8791 goto out; 8792 8793 if (!skb_queue_empty(&sk->sk_receive_queue)) 8794 goto ready; 8795 8796 /* Socket shut down? */ 8797 if (sk->sk_shutdown & RCV_SHUTDOWN) 8798 goto out; 8799 8800 /* Sequenced packets can come disconnected. If so we report the 8801 * problem. 8802 */ 8803 error = -ENOTCONN; 8804 8805 /* Is there a good reason to think that we may receive some data? */ 8806 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8807 goto out; 8808 8809 /* Handle signals. */ 8810 if (signal_pending(current)) 8811 goto interrupted; 8812 8813 /* Let another process have a go. Since we are going to sleep 8814 * anyway. Note: This may cause odd behaviors if the message 8815 * does not fit in the user's buffer, but this seems to be the 8816 * only way to honor MSG_DONTWAIT realistically. 8817 */ 8818 release_sock(sk); 8819 *timeo_p = schedule_timeout(*timeo_p); 8820 lock_sock(sk); 8821 8822 ready: 8823 finish_wait(sk_sleep(sk), &wait); 8824 return 0; 8825 8826 interrupted: 8827 error = sock_intr_errno(*timeo_p); 8828 8829 out: 8830 finish_wait(sk_sleep(sk), &wait); 8831 *err = error; 8832 return error; 8833 } 8834 8835 /* Receive a datagram. 8836 * Note: This is pretty much the same routine as in core/datagram.c 8837 * with a few changes to make lksctp work. 8838 */ 8839 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8840 int noblock, int *err) 8841 { 8842 int error; 8843 struct sk_buff *skb; 8844 long timeo; 8845 8846 timeo = sock_rcvtimeo(sk, noblock); 8847 8848 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8849 MAX_SCHEDULE_TIMEOUT); 8850 8851 do { 8852 /* Again only user level code calls this function, 8853 * so nothing interrupt level 8854 * will suddenly eat the receive_queue. 8855 * 8856 * Look at current nfs client by the way... 8857 * However, this function was correct in any case. 8) 8858 */ 8859 if (flags & MSG_PEEK) { 8860 skb = skb_peek(&sk->sk_receive_queue); 8861 if (skb) 8862 refcount_inc(&skb->users); 8863 } else { 8864 skb = __skb_dequeue(&sk->sk_receive_queue); 8865 } 8866 8867 if (skb) 8868 return skb; 8869 8870 /* Caller is allowed not to check sk->sk_err before calling. */ 8871 error = sock_error(sk); 8872 if (error) 8873 goto no_packet; 8874 8875 if (sk->sk_shutdown & RCV_SHUTDOWN) 8876 break; 8877 8878 if (sk_can_busy_loop(sk)) { 8879 sk_busy_loop(sk, noblock); 8880 8881 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8882 continue; 8883 } 8884 8885 /* User doesn't want to wait. */ 8886 error = -EAGAIN; 8887 if (!timeo) 8888 goto no_packet; 8889 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8890 8891 return NULL; 8892 8893 no_packet: 8894 *err = error; 8895 return NULL; 8896 } 8897 8898 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8899 static void __sctp_write_space(struct sctp_association *asoc) 8900 { 8901 struct sock *sk = asoc->base.sk; 8902 8903 if (sctp_wspace(asoc) <= 0) 8904 return; 8905 8906 if (waitqueue_active(&asoc->wait)) 8907 wake_up_interruptible(&asoc->wait); 8908 8909 if (sctp_writeable(sk)) { 8910 struct socket_wq *wq; 8911 8912 rcu_read_lock(); 8913 wq = rcu_dereference(sk->sk_wq); 8914 if (wq) { 8915 if (waitqueue_active(&wq->wait)) 8916 wake_up_interruptible(&wq->wait); 8917 8918 /* Note that we try to include the Async I/O support 8919 * here by modeling from the current TCP/UDP code. 8920 * We have not tested with it yet. 8921 */ 8922 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8923 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8924 } 8925 rcu_read_unlock(); 8926 } 8927 } 8928 8929 static void sctp_wake_up_waiters(struct sock *sk, 8930 struct sctp_association *asoc) 8931 { 8932 struct sctp_association *tmp = asoc; 8933 8934 /* We do accounting for the sndbuf space per association, 8935 * so we only need to wake our own association. 8936 */ 8937 if (asoc->ep->sndbuf_policy) 8938 return __sctp_write_space(asoc); 8939 8940 /* If association goes down and is just flushing its 8941 * outq, then just normally notify others. 8942 */ 8943 if (asoc->base.dead) 8944 return sctp_write_space(sk); 8945 8946 /* Accounting for the sndbuf space is per socket, so we 8947 * need to wake up others, try to be fair and in case of 8948 * other associations, let them have a go first instead 8949 * of just doing a sctp_write_space() call. 8950 * 8951 * Note that we reach sctp_wake_up_waiters() only when 8952 * associations free up queued chunks, thus we are under 8953 * lock and the list of associations on a socket is 8954 * guaranteed not to change. 8955 */ 8956 for (tmp = list_next_entry(tmp, asocs); 1; 8957 tmp = list_next_entry(tmp, asocs)) { 8958 /* Manually skip the head element. */ 8959 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8960 continue; 8961 /* Wake up association. */ 8962 __sctp_write_space(tmp); 8963 /* We've reached the end. */ 8964 if (tmp == asoc) 8965 break; 8966 } 8967 } 8968 8969 /* Do accounting for the sndbuf space. 8970 * Decrement the used sndbuf space of the corresponding association by the 8971 * data size which was just transmitted(freed). 8972 */ 8973 static void sctp_wfree(struct sk_buff *skb) 8974 { 8975 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8976 struct sctp_association *asoc = chunk->asoc; 8977 struct sock *sk = asoc->base.sk; 8978 8979 sk_mem_uncharge(sk, skb->truesize); 8980 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8981 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8982 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8983 &sk->sk_wmem_alloc)); 8984 8985 if (chunk->shkey) { 8986 struct sctp_shared_key *shkey = chunk->shkey; 8987 8988 /* refcnt == 2 and !list_empty mean after this release, it's 8989 * not being used anywhere, and it's time to notify userland 8990 * that this shkey can be freed if it's been deactivated. 8991 */ 8992 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8993 refcount_read(&shkey->refcnt) == 2) { 8994 struct sctp_ulpevent *ev; 8995 8996 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8997 SCTP_AUTH_FREE_KEY, 8998 GFP_KERNEL); 8999 if (ev) 9000 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9001 } 9002 sctp_auth_shkey_release(chunk->shkey); 9003 } 9004 9005 sock_wfree(skb); 9006 sctp_wake_up_waiters(sk, asoc); 9007 9008 sctp_association_put(asoc); 9009 } 9010 9011 /* Do accounting for the receive space on the socket. 9012 * Accounting for the association is done in ulpevent.c 9013 * We set this as a destructor for the cloned data skbs so that 9014 * accounting is done at the correct time. 9015 */ 9016 void sctp_sock_rfree(struct sk_buff *skb) 9017 { 9018 struct sock *sk = skb->sk; 9019 struct sctp_ulpevent *event = sctp_skb2event(skb); 9020 9021 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9022 9023 /* 9024 * Mimic the behavior of sock_rfree 9025 */ 9026 sk_mem_uncharge(sk, event->rmem_len); 9027 } 9028 9029 9030 /* Helper function to wait for space in the sndbuf. */ 9031 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9032 size_t msg_len) 9033 { 9034 struct sock *sk = asoc->base.sk; 9035 long current_timeo = *timeo_p; 9036 DEFINE_WAIT(wait); 9037 int err = 0; 9038 9039 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9040 *timeo_p, msg_len); 9041 9042 /* Increment the association's refcnt. */ 9043 sctp_association_hold(asoc); 9044 9045 /* Wait on the association specific sndbuf space. */ 9046 for (;;) { 9047 prepare_to_wait_exclusive(&asoc->wait, &wait, 9048 TASK_INTERRUPTIBLE); 9049 if (asoc->base.dead) 9050 goto do_dead; 9051 if (!*timeo_p) 9052 goto do_nonblock; 9053 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9054 goto do_error; 9055 if (signal_pending(current)) 9056 goto do_interrupted; 9057 if (sk_under_memory_pressure(sk)) 9058 sk_mem_reclaim(sk); 9059 if ((int)msg_len <= sctp_wspace(asoc) && 9060 sk_wmem_schedule(sk, msg_len)) 9061 break; 9062 9063 /* Let another process have a go. Since we are going 9064 * to sleep anyway. 9065 */ 9066 release_sock(sk); 9067 current_timeo = schedule_timeout(current_timeo); 9068 lock_sock(sk); 9069 if (sk != asoc->base.sk) 9070 goto do_error; 9071 9072 *timeo_p = current_timeo; 9073 } 9074 9075 out: 9076 finish_wait(&asoc->wait, &wait); 9077 9078 /* Release the association's refcnt. */ 9079 sctp_association_put(asoc); 9080 9081 return err; 9082 9083 do_dead: 9084 err = -ESRCH; 9085 goto out; 9086 9087 do_error: 9088 err = -EPIPE; 9089 goto out; 9090 9091 do_interrupted: 9092 err = sock_intr_errno(*timeo_p); 9093 goto out; 9094 9095 do_nonblock: 9096 err = -EAGAIN; 9097 goto out; 9098 } 9099 9100 void sctp_data_ready(struct sock *sk) 9101 { 9102 struct socket_wq *wq; 9103 9104 rcu_read_lock(); 9105 wq = rcu_dereference(sk->sk_wq); 9106 if (skwq_has_sleeper(wq)) 9107 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9108 EPOLLRDNORM | EPOLLRDBAND); 9109 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9110 rcu_read_unlock(); 9111 } 9112 9113 /* If socket sndbuf has changed, wake up all per association waiters. */ 9114 void sctp_write_space(struct sock *sk) 9115 { 9116 struct sctp_association *asoc; 9117 9118 /* Wake up the tasks in each wait queue. */ 9119 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9120 __sctp_write_space(asoc); 9121 } 9122 } 9123 9124 /* Is there any sndbuf space available on the socket? 9125 * 9126 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9127 * associations on the same socket. For a UDP-style socket with 9128 * multiple associations, it is possible for it to be "unwriteable" 9129 * prematurely. I assume that this is acceptable because 9130 * a premature "unwriteable" is better than an accidental "writeable" which 9131 * would cause an unwanted block under certain circumstances. For the 1-1 9132 * UDP-style sockets or TCP-style sockets, this code should work. 9133 * - Daisy 9134 */ 9135 static bool sctp_writeable(struct sock *sk) 9136 { 9137 return sk->sk_sndbuf > sk->sk_wmem_queued; 9138 } 9139 9140 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9141 * returns immediately with EINPROGRESS. 9142 */ 9143 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9144 { 9145 struct sock *sk = asoc->base.sk; 9146 int err = 0; 9147 long current_timeo = *timeo_p; 9148 DEFINE_WAIT(wait); 9149 9150 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9151 9152 /* Increment the association's refcnt. */ 9153 sctp_association_hold(asoc); 9154 9155 for (;;) { 9156 prepare_to_wait_exclusive(&asoc->wait, &wait, 9157 TASK_INTERRUPTIBLE); 9158 if (!*timeo_p) 9159 goto do_nonblock; 9160 if (sk->sk_shutdown & RCV_SHUTDOWN) 9161 break; 9162 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9163 asoc->base.dead) 9164 goto do_error; 9165 if (signal_pending(current)) 9166 goto do_interrupted; 9167 9168 if (sctp_state(asoc, ESTABLISHED)) 9169 break; 9170 9171 /* Let another process have a go. Since we are going 9172 * to sleep anyway. 9173 */ 9174 release_sock(sk); 9175 current_timeo = schedule_timeout(current_timeo); 9176 lock_sock(sk); 9177 9178 *timeo_p = current_timeo; 9179 } 9180 9181 out: 9182 finish_wait(&asoc->wait, &wait); 9183 9184 /* Release the association's refcnt. */ 9185 sctp_association_put(asoc); 9186 9187 return err; 9188 9189 do_error: 9190 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9191 err = -ETIMEDOUT; 9192 else 9193 err = -ECONNREFUSED; 9194 goto out; 9195 9196 do_interrupted: 9197 err = sock_intr_errno(*timeo_p); 9198 goto out; 9199 9200 do_nonblock: 9201 err = -EINPROGRESS; 9202 goto out; 9203 } 9204 9205 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9206 { 9207 struct sctp_endpoint *ep; 9208 int err = 0; 9209 DEFINE_WAIT(wait); 9210 9211 ep = sctp_sk(sk)->ep; 9212 9213 9214 for (;;) { 9215 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9216 TASK_INTERRUPTIBLE); 9217 9218 if (list_empty(&ep->asocs)) { 9219 release_sock(sk); 9220 timeo = schedule_timeout(timeo); 9221 lock_sock(sk); 9222 } 9223 9224 err = -EINVAL; 9225 if (!sctp_sstate(sk, LISTENING)) 9226 break; 9227 9228 err = 0; 9229 if (!list_empty(&ep->asocs)) 9230 break; 9231 9232 err = sock_intr_errno(timeo); 9233 if (signal_pending(current)) 9234 break; 9235 9236 err = -EAGAIN; 9237 if (!timeo) 9238 break; 9239 } 9240 9241 finish_wait(sk_sleep(sk), &wait); 9242 9243 return err; 9244 } 9245 9246 static void sctp_wait_for_close(struct sock *sk, long timeout) 9247 { 9248 DEFINE_WAIT(wait); 9249 9250 do { 9251 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9252 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9253 break; 9254 release_sock(sk); 9255 timeout = schedule_timeout(timeout); 9256 lock_sock(sk); 9257 } while (!signal_pending(current) && timeout); 9258 9259 finish_wait(sk_sleep(sk), &wait); 9260 } 9261 9262 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9263 { 9264 struct sk_buff *frag; 9265 9266 if (!skb->data_len) 9267 goto done; 9268 9269 /* Don't forget the fragments. */ 9270 skb_walk_frags(skb, frag) 9271 sctp_skb_set_owner_r_frag(frag, sk); 9272 9273 done: 9274 sctp_skb_set_owner_r(skb, sk); 9275 } 9276 9277 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9278 struct sctp_association *asoc) 9279 { 9280 struct inet_sock *inet = inet_sk(sk); 9281 struct inet_sock *newinet; 9282 struct sctp_sock *sp = sctp_sk(sk); 9283 struct sctp_endpoint *ep = sp->ep; 9284 9285 newsk->sk_type = sk->sk_type; 9286 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9287 newsk->sk_flags = sk->sk_flags; 9288 newsk->sk_tsflags = sk->sk_tsflags; 9289 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9290 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9291 newsk->sk_reuse = sk->sk_reuse; 9292 sctp_sk(newsk)->reuse = sp->reuse; 9293 9294 newsk->sk_shutdown = sk->sk_shutdown; 9295 newsk->sk_destruct = sctp_destruct_sock; 9296 newsk->sk_family = sk->sk_family; 9297 newsk->sk_protocol = IPPROTO_SCTP; 9298 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9299 newsk->sk_sndbuf = sk->sk_sndbuf; 9300 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9301 newsk->sk_lingertime = sk->sk_lingertime; 9302 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9303 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9304 newsk->sk_rxhash = sk->sk_rxhash; 9305 9306 newinet = inet_sk(newsk); 9307 9308 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9309 * getsockname() and getpeername() 9310 */ 9311 newinet->inet_sport = inet->inet_sport; 9312 newinet->inet_saddr = inet->inet_saddr; 9313 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9314 newinet->inet_dport = htons(asoc->peer.port); 9315 newinet->pmtudisc = inet->pmtudisc; 9316 newinet->inet_id = prandom_u32(); 9317 9318 newinet->uc_ttl = inet->uc_ttl; 9319 newinet->mc_loop = 1; 9320 newinet->mc_ttl = 1; 9321 newinet->mc_index = 0; 9322 newinet->mc_list = NULL; 9323 9324 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9325 net_enable_timestamp(); 9326 9327 /* Set newsk security attributes from original sk and connection 9328 * security attribute from ep. 9329 */ 9330 security_sctp_sk_clone(ep, sk, newsk); 9331 } 9332 9333 static inline void sctp_copy_descendant(struct sock *sk_to, 9334 const struct sock *sk_from) 9335 { 9336 size_t ancestor_size = sizeof(struct inet_sock); 9337 9338 ancestor_size += sk_from->sk_prot->obj_size; 9339 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9340 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9341 } 9342 9343 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9344 * and its messages to the newsk. 9345 */ 9346 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9347 struct sctp_association *assoc, 9348 enum sctp_socket_type type) 9349 { 9350 struct sctp_sock *oldsp = sctp_sk(oldsk); 9351 struct sctp_sock *newsp = sctp_sk(newsk); 9352 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9353 struct sctp_endpoint *newep = newsp->ep; 9354 struct sk_buff *skb, *tmp; 9355 struct sctp_ulpevent *event; 9356 struct sctp_bind_hashbucket *head; 9357 int err; 9358 9359 /* Migrate socket buffer sizes and all the socket level options to the 9360 * new socket. 9361 */ 9362 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9363 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9364 /* Brute force copy old sctp opt. */ 9365 sctp_copy_descendant(newsk, oldsk); 9366 9367 /* Restore the ep value that was overwritten with the above structure 9368 * copy. 9369 */ 9370 newsp->ep = newep; 9371 newsp->hmac = NULL; 9372 9373 /* Hook this new socket in to the bind_hash list. */ 9374 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9375 inet_sk(oldsk)->inet_num)]; 9376 spin_lock_bh(&head->lock); 9377 pp = sctp_sk(oldsk)->bind_hash; 9378 sk_add_bind_node(newsk, &pp->owner); 9379 sctp_sk(newsk)->bind_hash = pp; 9380 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9381 spin_unlock_bh(&head->lock); 9382 9383 /* Copy the bind_addr list from the original endpoint to the new 9384 * endpoint so that we can handle restarts properly 9385 */ 9386 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9387 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9388 if (err) 9389 return err; 9390 9391 /* New ep's auth_hmacs should be set if old ep's is set, in case 9392 * that net->sctp.auth_enable has been changed to 0 by users and 9393 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9394 */ 9395 if (oldsp->ep->auth_hmacs) { 9396 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9397 if (err) 9398 return err; 9399 } 9400 9401 /* Move any messages in the old socket's receive queue that are for the 9402 * peeled off association to the new socket's receive queue. 9403 */ 9404 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9405 event = sctp_skb2event(skb); 9406 if (event->asoc == assoc) { 9407 __skb_unlink(skb, &oldsk->sk_receive_queue); 9408 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9409 sctp_skb_set_owner_r_frag(skb, newsk); 9410 } 9411 } 9412 9413 /* Clean up any messages pending delivery due to partial 9414 * delivery. Three cases: 9415 * 1) No partial deliver; no work. 9416 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9417 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9418 */ 9419 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9420 9421 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9422 struct sk_buff_head *queue; 9423 9424 /* Decide which queue to move pd_lobby skbs to. */ 9425 if (assoc->ulpq.pd_mode) { 9426 queue = &newsp->pd_lobby; 9427 } else 9428 queue = &newsk->sk_receive_queue; 9429 9430 /* Walk through the pd_lobby, looking for skbs that 9431 * need moved to the new socket. 9432 */ 9433 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9434 event = sctp_skb2event(skb); 9435 if (event->asoc == assoc) { 9436 __skb_unlink(skb, &oldsp->pd_lobby); 9437 __skb_queue_tail(queue, skb); 9438 sctp_skb_set_owner_r_frag(skb, newsk); 9439 } 9440 } 9441 9442 /* Clear up any skbs waiting for the partial 9443 * delivery to finish. 9444 */ 9445 if (assoc->ulpq.pd_mode) 9446 sctp_clear_pd(oldsk, NULL); 9447 9448 } 9449 9450 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9451 9452 /* Set the type of socket to indicate that it is peeled off from the 9453 * original UDP-style socket or created with the accept() call on a 9454 * TCP-style socket.. 9455 */ 9456 newsp->type = type; 9457 9458 /* Mark the new socket "in-use" by the user so that any packets 9459 * that may arrive on the association after we've moved it are 9460 * queued to the backlog. This prevents a potential race between 9461 * backlog processing on the old socket and new-packet processing 9462 * on the new socket. 9463 * 9464 * The caller has just allocated newsk so we can guarantee that other 9465 * paths won't try to lock it and then oldsk. 9466 */ 9467 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9468 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9469 sctp_assoc_migrate(assoc, newsk); 9470 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9471 9472 /* If the association on the newsk is already closed before accept() 9473 * is called, set RCV_SHUTDOWN flag. 9474 */ 9475 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9476 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9477 newsk->sk_shutdown |= RCV_SHUTDOWN; 9478 } else { 9479 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9480 } 9481 9482 release_sock(newsk); 9483 9484 return 0; 9485 } 9486 9487 9488 /* This proto struct describes the ULP interface for SCTP. */ 9489 struct proto sctp_prot = { 9490 .name = "SCTP", 9491 .owner = THIS_MODULE, 9492 .close = sctp_close, 9493 .disconnect = sctp_disconnect, 9494 .accept = sctp_accept, 9495 .ioctl = sctp_ioctl, 9496 .init = sctp_init_sock, 9497 .destroy = sctp_destroy_sock, 9498 .shutdown = sctp_shutdown, 9499 .setsockopt = sctp_setsockopt, 9500 .getsockopt = sctp_getsockopt, 9501 .sendmsg = sctp_sendmsg, 9502 .recvmsg = sctp_recvmsg, 9503 .bind = sctp_bind, 9504 .bind_add = sctp_bind_add, 9505 .backlog_rcv = sctp_backlog_rcv, 9506 .hash = sctp_hash, 9507 .unhash = sctp_unhash, 9508 .no_autobind = true, 9509 .obj_size = sizeof(struct sctp_sock), 9510 .useroffset = offsetof(struct sctp_sock, subscribe), 9511 .usersize = offsetof(struct sctp_sock, initmsg) - 9512 offsetof(struct sctp_sock, subscribe) + 9513 sizeof_field(struct sctp_sock, initmsg), 9514 .sysctl_mem = sysctl_sctp_mem, 9515 .sysctl_rmem = sysctl_sctp_rmem, 9516 .sysctl_wmem = sysctl_sctp_wmem, 9517 .memory_pressure = &sctp_memory_pressure, 9518 .enter_memory_pressure = sctp_enter_memory_pressure, 9519 .memory_allocated = &sctp_memory_allocated, 9520 .sockets_allocated = &sctp_sockets_allocated, 9521 }; 9522 9523 #if IS_ENABLED(CONFIG_IPV6) 9524 9525 #include <net/transp_v6.h> 9526 static void sctp_v6_destroy_sock(struct sock *sk) 9527 { 9528 sctp_destroy_sock(sk); 9529 inet6_destroy_sock(sk); 9530 } 9531 9532 struct proto sctpv6_prot = { 9533 .name = "SCTPv6", 9534 .owner = THIS_MODULE, 9535 .close = sctp_close, 9536 .disconnect = sctp_disconnect, 9537 .accept = sctp_accept, 9538 .ioctl = sctp_ioctl, 9539 .init = sctp_init_sock, 9540 .destroy = sctp_v6_destroy_sock, 9541 .shutdown = sctp_shutdown, 9542 .setsockopt = sctp_setsockopt, 9543 .getsockopt = sctp_getsockopt, 9544 .sendmsg = sctp_sendmsg, 9545 .recvmsg = sctp_recvmsg, 9546 .bind = sctp_bind, 9547 .bind_add = sctp_bind_add, 9548 .backlog_rcv = sctp_backlog_rcv, 9549 .hash = sctp_hash, 9550 .unhash = sctp_unhash, 9551 .no_autobind = true, 9552 .obj_size = sizeof(struct sctp6_sock), 9553 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9554 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9555 offsetof(struct sctp6_sock, sctp.subscribe) + 9556 sizeof_field(struct sctp6_sock, sctp.initmsg), 9557 .sysctl_mem = sysctl_sctp_mem, 9558 .sysctl_rmem = sysctl_sctp_rmem, 9559 .sysctl_wmem = sysctl_sctp_wmem, 9560 .memory_pressure = &sctp_memory_pressure, 9561 .enter_memory_pressure = sctp_enter_memory_pressure, 9562 .memory_allocated = &sctp_memory_allocated, 9563 .sockets_allocated = &sctp_sockets_allocated, 9564 }; 9565 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9566