xref: /openbmc/linux/net/sctp/socket.c (revision 5f66f73b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 #define traverse_and_process()	\
151 do {				\
152 	msg = chunk->msg;	\
153 	if (msg == prev_msg)	\
154 		continue;	\
155 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
156 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
157 		    (!clear && asoc->base.sk != c->skb->sk))	\
158 			cb(c);	\
159 	}			\
160 	prev_msg = msg;		\
161 } while (0)
162 
163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 				       bool clear,
165 				       void (*cb)(struct sctp_chunk *))
166 
167 {
168 	struct sctp_datamsg *msg, *prev_msg = NULL;
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_chunk *chunk, *c;
171 	struct sctp_transport *t;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			traverse_and_process();
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		traverse_and_process();
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		traverse_and_process();
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		traverse_and_process();
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		traverse_and_process();
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && inet_port_requires_bind_service(net, snum) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if (sctp_get_port_local(sk, addr))
418 		return -EADDRINUSE;
419 
420 	/* Refresh ephemeral port.  */
421 	if (!bp->port)
422 		bp->port = inet_sk(sk)->inet_num;
423 
424 	/* Add the address to the bind address list.
425 	 * Use GFP_ATOMIC since BHs will be disabled.
426 	 */
427 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
428 				 SCTP_ADDR_SRC, GFP_ATOMIC);
429 
430 	if (ret) {
431 		sctp_put_port(sk);
432 		return ret;
433 	}
434 	/* Copy back into socket for getsockname() use. */
435 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
436 	sp->pf->to_sk_saddr(addr, sk);
437 
438 	return ret;
439 }
440 
441  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
442  *
443  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
444  * at any one time.  If a sender, after sending an ASCONF chunk, decides
445  * it needs to transfer another ASCONF Chunk, it MUST wait until the
446  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
447  * subsequent ASCONF. Note this restriction binds each side, so at any
448  * time two ASCONF may be in-transit on any given association (one sent
449  * from each endpoint).
450  */
451 static int sctp_send_asconf(struct sctp_association *asoc,
452 			    struct sctp_chunk *chunk)
453 {
454 	int retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct sctp_sock		*sp;
543 	struct sctp_endpoint		*ep;
544 	struct sctp_association		*asoc;
545 	struct sctp_bind_addr		*bp;
546 	struct sctp_chunk		*chunk;
547 	struct sctp_sockaddr_entry	*laddr;
548 	union sctp_addr			*addr;
549 	union sctp_addr			saveaddr;
550 	void				*addr_buf;
551 	struct sctp_af			*af;
552 	struct list_head		*p;
553 	int 				i;
554 	int 				retval = 0;
555 
556 	sp = sctp_sk(sk);
557 	ep = sp->ep;
558 
559 	if (!ep->asconf_enable)
560 		return retval;
561 
562 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
563 		 __func__, sk, addrs, addrcnt);
564 
565 	list_for_each_entry(asoc, &ep->asocs, asocs) {
566 		if (!asoc->peer.asconf_capable)
567 			continue;
568 
569 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
570 			continue;
571 
572 		if (!sctp_state(asoc, ESTABLISHED))
573 			continue;
574 
575 		/* Check if any address in the packed array of addresses is
576 		 * in the bind address list of the association. If so,
577 		 * do not send the asconf chunk to its peer, but continue with
578 		 * other associations.
579 		 */
580 		addr_buf = addrs;
581 		for (i = 0; i < addrcnt; i++) {
582 			addr = addr_buf;
583 			af = sctp_get_af_specific(addr->v4.sin_family);
584 			if (!af) {
585 				retval = -EINVAL;
586 				goto out;
587 			}
588 
589 			if (sctp_assoc_lookup_laddr(asoc, addr))
590 				break;
591 
592 			addr_buf += af->sockaddr_len;
593 		}
594 		if (i < addrcnt)
595 			continue;
596 
597 		/* Use the first valid address in bind addr list of
598 		 * association as Address Parameter of ASCONF CHUNK.
599 		 */
600 		bp = &asoc->base.bind_addr;
601 		p = bp->address_list.next;
602 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
603 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
604 						   addrcnt, SCTP_PARAM_ADD_IP);
605 		if (!chunk) {
606 			retval = -ENOMEM;
607 			goto out;
608 		}
609 
610 		/* Add the new addresses to the bind address list with
611 		 * use_as_src set to 0.
612 		 */
613 		addr_buf = addrs;
614 		for (i = 0; i < addrcnt; i++) {
615 			addr = addr_buf;
616 			af = sctp_get_af_specific(addr->v4.sin_family);
617 			memcpy(&saveaddr, addr, af->sockaddr_len);
618 			retval = sctp_add_bind_addr(bp, &saveaddr,
619 						    sizeof(saveaddr),
620 						    SCTP_ADDR_NEW, GFP_ATOMIC);
621 			addr_buf += af->sockaddr_len;
622 		}
623 		if (asoc->src_out_of_asoc_ok) {
624 			struct sctp_transport *trans;
625 
626 			list_for_each_entry(trans,
627 			    &asoc->peer.transport_addr_list, transports) {
628 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 				    2*asoc->pathmtu, 4380));
630 				trans->ssthresh = asoc->peer.i.a_rwnd;
631 				trans->rto = asoc->rto_initial;
632 				sctp_max_rto(asoc, trans);
633 				trans->rtt = trans->srtt = trans->rttvar = 0;
634 				/* Clear the source and route cache */
635 				sctp_transport_route(trans, NULL,
636 						     sctp_sk(asoc->base.sk));
637 			}
638 		}
639 		retval = sctp_send_asconf(asoc, chunk);
640 	}
641 
642 out:
643 	return retval;
644 }
645 
646 /* Remove a list of addresses from bind addresses list.  Do not remove the
647  * last address.
648  *
649  * Basically run through each address specified in the addrs/addrcnt
650  * array/length pair, determine if it is IPv6 or IPv4 and call
651  * sctp_del_bind() on it.
652  *
653  * If any of them fails, then the operation will be reversed and the
654  * ones that were removed will be added back.
655  *
656  * At least one address has to be left; if only one address is
657  * available, the operation will return -EBUSY.
658  *
659  * Only sctp_setsockopt_bindx() is supposed to call this function.
660  */
661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662 {
663 	struct sctp_sock *sp = sctp_sk(sk);
664 	struct sctp_endpoint *ep = sp->ep;
665 	int cnt;
666 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 	int retval = 0;
668 	void *addr_buf;
669 	union sctp_addr *sa_addr;
670 	struct sctp_af *af;
671 
672 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 		 __func__, sk, addrs, addrcnt);
674 
675 	addr_buf = addrs;
676 	for (cnt = 0; cnt < addrcnt; cnt++) {
677 		/* If the bind address list is empty or if there is only one
678 		 * bind address, there is nothing more to be removed (we need
679 		 * at least one address here).
680 		 */
681 		if (list_empty(&bp->address_list) ||
682 		    (sctp_list_single_entry(&bp->address_list))) {
683 			retval = -EBUSY;
684 			goto err_bindx_rem;
685 		}
686 
687 		sa_addr = addr_buf;
688 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 		if (!af) {
690 			retval = -EINVAL;
691 			goto err_bindx_rem;
692 		}
693 
694 		if (!af->addr_valid(sa_addr, sp, NULL)) {
695 			retval = -EADDRNOTAVAIL;
696 			goto err_bindx_rem;
697 		}
698 
699 		if (sa_addr->v4.sin_port &&
700 		    sa_addr->v4.sin_port != htons(bp->port)) {
701 			retval = -EINVAL;
702 			goto err_bindx_rem;
703 		}
704 
705 		if (!sa_addr->v4.sin_port)
706 			sa_addr->v4.sin_port = htons(bp->port);
707 
708 		/* FIXME - There is probably a need to check if sk->sk_saddr and
709 		 * sk->sk_rcv_addr are currently set to one of the addresses to
710 		 * be removed. This is something which needs to be looked into
711 		 * when we are fixing the outstanding issues with multi-homing
712 		 * socket routing and failover schemes. Refer to comments in
713 		 * sctp_do_bind(). -daisy
714 		 */
715 		retval = sctp_del_bind_addr(bp, sa_addr);
716 
717 		addr_buf += af->sockaddr_len;
718 err_bindx_rem:
719 		if (retval < 0) {
720 			/* Failed. Add the ones that has been removed back */
721 			if (cnt > 0)
722 				sctp_bindx_add(sk, addrs, cnt);
723 			return retval;
724 		}
725 	}
726 
727 	return retval;
728 }
729 
730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731  * the associations that are part of the endpoint indicating that a list of
732  * local addresses are removed from the endpoint.
733  *
734  * If any of the addresses is already in the bind address list of the
735  * association, we do not send the chunk for that association.  But it will not
736  * affect other associations.
737  *
738  * Only sctp_setsockopt_bindx() is supposed to call this function.
739  */
740 static int sctp_send_asconf_del_ip(struct sock		*sk,
741 				   struct sockaddr	*addrs,
742 				   int			addrcnt)
743 {
744 	struct sctp_sock	*sp;
745 	struct sctp_endpoint	*ep;
746 	struct sctp_association	*asoc;
747 	struct sctp_transport	*transport;
748 	struct sctp_bind_addr	*bp;
749 	struct sctp_chunk	*chunk;
750 	union sctp_addr		*laddr;
751 	void			*addr_buf;
752 	struct sctp_af		*af;
753 	struct sctp_sockaddr_entry *saddr;
754 	int 			i;
755 	int 			retval = 0;
756 	int			stored = 0;
757 
758 	chunk = NULL;
759 	sp = sctp_sk(sk);
760 	ep = sp->ep;
761 
762 	if (!ep->asconf_enable)
763 		return retval;
764 
765 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 		 __func__, sk, addrs, addrcnt);
767 
768 	list_for_each_entry(asoc, &ep->asocs, asocs) {
769 
770 		if (!asoc->peer.asconf_capable)
771 			continue;
772 
773 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 			continue;
775 
776 		if (!sctp_state(asoc, ESTABLISHED))
777 			continue;
778 
779 		/* Check if any address in the packed array of addresses is
780 		 * not present in the bind address list of the association.
781 		 * If so, do not send the asconf chunk to its peer, but
782 		 * continue with other associations.
783 		 */
784 		addr_buf = addrs;
785 		for (i = 0; i < addrcnt; i++) {
786 			laddr = addr_buf;
787 			af = sctp_get_af_specific(laddr->v4.sin_family);
788 			if (!af) {
789 				retval = -EINVAL;
790 				goto out;
791 			}
792 
793 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 				break;
795 
796 			addr_buf += af->sockaddr_len;
797 		}
798 		if (i < addrcnt)
799 			continue;
800 
801 		/* Find one address in the association's bind address list
802 		 * that is not in the packed array of addresses. This is to
803 		 * make sure that we do not delete all the addresses in the
804 		 * association.
805 		 */
806 		bp = &asoc->base.bind_addr;
807 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 					       addrcnt, sp);
809 		if ((laddr == NULL) && (addrcnt == 1)) {
810 			if (asoc->asconf_addr_del_pending)
811 				continue;
812 			asoc->asconf_addr_del_pending =
813 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 			if (asoc->asconf_addr_del_pending == NULL) {
815 				retval = -ENOMEM;
816 				goto out;
817 			}
818 			asoc->asconf_addr_del_pending->sa.sa_family =
819 				    addrs->sa_family;
820 			asoc->asconf_addr_del_pending->v4.sin_port =
821 				    htons(bp->port);
822 			if (addrs->sa_family == AF_INET) {
823 				struct sockaddr_in *sin;
824 
825 				sin = (struct sockaddr_in *)addrs;
826 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 			} else if (addrs->sa_family == AF_INET6) {
828 				struct sockaddr_in6 *sin6;
829 
830 				sin6 = (struct sockaddr_in6 *)addrs;
831 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 			}
833 
834 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 				 asoc->asconf_addr_del_pending);
837 
838 			asoc->src_out_of_asoc_ok = 1;
839 			stored = 1;
840 			goto skip_mkasconf;
841 		}
842 
843 		if (laddr == NULL)
844 			return -EINVAL;
845 
846 		/* We do not need RCU protection throughout this loop
847 		 * because this is done under a socket lock from the
848 		 * setsockopt call.
849 		 */
850 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 						   SCTP_PARAM_DEL_IP);
852 		if (!chunk) {
853 			retval = -ENOMEM;
854 			goto out;
855 		}
856 
857 skip_mkasconf:
858 		/* Reset use_as_src flag for the addresses in the bind address
859 		 * list that are to be deleted.
860 		 */
861 		addr_buf = addrs;
862 		for (i = 0; i < addrcnt; i++) {
863 			laddr = addr_buf;
864 			af = sctp_get_af_specific(laddr->v4.sin_family);
865 			list_for_each_entry(saddr, &bp->address_list, list) {
866 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 					saddr->state = SCTP_ADDR_DEL;
868 			}
869 			addr_buf += af->sockaddr_len;
870 		}
871 
872 		/* Update the route and saddr entries for all the transports
873 		 * as some of the addresses in the bind address list are
874 		 * about to be deleted and cannot be used as source addresses.
875 		 */
876 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 					transports) {
878 			sctp_transport_route(transport, NULL,
879 					     sctp_sk(asoc->base.sk));
880 		}
881 
882 		if (stored)
883 			/* We don't need to transmit ASCONF */
884 			continue;
885 		retval = sctp_send_asconf(asoc, chunk);
886 	}
887 out:
888 	return retval;
889 }
890 
891 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
893 {
894 	struct sock *sk = sctp_opt2sk(sp);
895 	union sctp_addr *addr;
896 	struct sctp_af *af;
897 
898 	/* It is safe to write port space in caller. */
899 	addr = &addrw->a;
900 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
901 	af = sctp_get_af_specific(addr->sa.sa_family);
902 	if (!af)
903 		return -EINVAL;
904 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
905 		return -EINVAL;
906 
907 	if (addrw->state == SCTP_ADDR_NEW)
908 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
909 	else
910 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
911 }
912 
913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
914  *
915  * API 8.1
916  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
917  *                int flags);
918  *
919  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
920  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
921  * or IPv6 addresses.
922  *
923  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
924  * Section 3.1.2 for this usage.
925  *
926  * addrs is a pointer to an array of one or more socket addresses. Each
927  * address is contained in its appropriate structure (i.e. struct
928  * sockaddr_in or struct sockaddr_in6) the family of the address type
929  * must be used to distinguish the address length (note that this
930  * representation is termed a "packed array" of addresses). The caller
931  * specifies the number of addresses in the array with addrcnt.
932  *
933  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
934  * -1, and sets errno to the appropriate error code.
935  *
936  * For SCTP, the port given in each socket address must be the same, or
937  * sctp_bindx() will fail, setting errno to EINVAL.
938  *
939  * The flags parameter is formed from the bitwise OR of zero or more of
940  * the following currently defined flags:
941  *
942  * SCTP_BINDX_ADD_ADDR
943  *
944  * SCTP_BINDX_REM_ADDR
945  *
946  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
947  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
948  * addresses from the association. The two flags are mutually exclusive;
949  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
950  * not remove all addresses from an association; sctp_bindx() will
951  * reject such an attempt with EINVAL.
952  *
953  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
954  * additional addresses with an endpoint after calling bind().  Or use
955  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
956  * socket is associated with so that no new association accepted will be
957  * associated with those addresses. If the endpoint supports dynamic
958  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
959  * endpoint to send the appropriate message to the peer to change the
960  * peers address lists.
961  *
962  * Adding and removing addresses from a connected association is
963  * optional functionality. Implementations that do not support this
964  * functionality should return EOPNOTSUPP.
965  *
966  * Basically do nothing but copying the addresses from user to kernel
967  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
968  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
969  * from userspace.
970  *
971  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
972  * it.
973  *
974  * sk        The sk of the socket
975  * addrs     The pointer to the addresses
976  * addrssize Size of the addrs buffer
977  * op        Operation to perform (add or remove, see the flags of
978  *           sctp_bindx)
979  *
980  * Returns 0 if ok, <0 errno code on error.
981  */
982 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
983 				 int addrs_size, int op)
984 {
985 	int err;
986 	int addrcnt = 0;
987 	int walk_size = 0;
988 	struct sockaddr *sa_addr;
989 	void *addr_buf = addrs;
990 	struct sctp_af *af;
991 
992 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
993 		 __func__, sk, addr_buf, addrs_size, op);
994 
995 	if (unlikely(addrs_size <= 0))
996 		return -EINVAL;
997 
998 	/* Walk through the addrs buffer and count the number of addresses. */
999 	while (walk_size < addrs_size) {
1000 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1001 			return -EINVAL;
1002 
1003 		sa_addr = addr_buf;
1004 		af = sctp_get_af_specific(sa_addr->sa_family);
1005 
1006 		/* If the address family is not supported or if this address
1007 		 * causes the address buffer to overflow return EINVAL.
1008 		 */
1009 		if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1010 			return -EINVAL;
1011 		addrcnt++;
1012 		addr_buf += af->sockaddr_len;
1013 		walk_size += af->sockaddr_len;
1014 	}
1015 
1016 	/* Do the work. */
1017 	switch (op) {
1018 	case SCTP_BINDX_ADD_ADDR:
1019 		/* Allow security module to validate bindx addresses. */
1020 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1021 						 addrs, addrs_size);
1022 		if (err)
1023 			return err;
1024 		err = sctp_bindx_add(sk, addrs, addrcnt);
1025 		if (err)
1026 			return err;
1027 		return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1028 	case SCTP_BINDX_REM_ADDR:
1029 		err = sctp_bindx_rem(sk, addrs, addrcnt);
1030 		if (err)
1031 			return err;
1032 		return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1033 
1034 	default:
1035 		return -EINVAL;
1036 	}
1037 }
1038 
1039 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1040 		int addrlen)
1041 {
1042 	int err;
1043 
1044 	lock_sock(sk);
1045 	err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1046 	release_sock(sk);
1047 	return err;
1048 }
1049 
1050 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1051 				 const union sctp_addr *daddr,
1052 				 const struct sctp_initmsg *init,
1053 				 struct sctp_transport **tp)
1054 {
1055 	struct sctp_association *asoc;
1056 	struct sock *sk = ep->base.sk;
1057 	struct net *net = sock_net(sk);
1058 	enum sctp_scope scope;
1059 	int err;
1060 
1061 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1062 		return -EADDRNOTAVAIL;
1063 
1064 	if (!ep->base.bind_addr.port) {
1065 		if (sctp_autobind(sk))
1066 			return -EAGAIN;
1067 	} else {
1068 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1069 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1070 			return -EACCES;
1071 	}
1072 
1073 	scope = sctp_scope(daddr);
1074 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 	if (!asoc)
1076 		return -ENOMEM;
1077 
1078 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1079 	if (err < 0)
1080 		goto free;
1081 
1082 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1083 	if (!*tp) {
1084 		err = -ENOMEM;
1085 		goto free;
1086 	}
1087 
1088 	if (!init)
1089 		return 0;
1090 
1091 	if (init->sinit_num_ostreams) {
1092 		__u16 outcnt = init->sinit_num_ostreams;
1093 
1094 		asoc->c.sinit_num_ostreams = outcnt;
1095 		/* outcnt has been changed, need to re-init stream */
1096 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1097 		if (err)
1098 			goto free;
1099 	}
1100 
1101 	if (init->sinit_max_instreams)
1102 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1103 
1104 	if (init->sinit_max_attempts)
1105 		asoc->max_init_attempts = init->sinit_max_attempts;
1106 
1107 	if (init->sinit_max_init_timeo)
1108 		asoc->max_init_timeo =
1109 			msecs_to_jiffies(init->sinit_max_init_timeo);
1110 
1111 	return 0;
1112 free:
1113 	sctp_association_free(asoc);
1114 	return err;
1115 }
1116 
1117 static int sctp_connect_add_peer(struct sctp_association *asoc,
1118 				 union sctp_addr *daddr, int addr_len)
1119 {
1120 	struct sctp_endpoint *ep = asoc->ep;
1121 	struct sctp_association *old;
1122 	struct sctp_transport *t;
1123 	int err;
1124 
1125 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1126 	if (err)
1127 		return err;
1128 
1129 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1130 	if (old && old != asoc)
1131 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1132 							    : -EALREADY;
1133 
1134 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1135 		return -EADDRNOTAVAIL;
1136 
1137 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1138 	if (!t)
1139 		return -ENOMEM;
1140 
1141 	return 0;
1142 }
1143 
1144 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1145  *
1146  * Common routine for handling connect() and sctp_connectx().
1147  * Connect will come in with just a single address.
1148  */
1149 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1150 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1151 {
1152 	struct sctp_sock *sp = sctp_sk(sk);
1153 	struct sctp_endpoint *ep = sp->ep;
1154 	struct sctp_transport *transport;
1155 	struct sctp_association *asoc;
1156 	void *addr_buf = kaddrs;
1157 	union sctp_addr *daddr;
1158 	struct sctp_af *af;
1159 	int walk_size, err;
1160 	long timeo;
1161 
1162 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1163 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1164 		return -EISCONN;
1165 
1166 	daddr = addr_buf;
1167 	af = sctp_get_af_specific(daddr->sa.sa_family);
1168 	if (!af || af->sockaddr_len > addrs_size)
1169 		return -EINVAL;
1170 
1171 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1172 	if (err)
1173 		return err;
1174 
1175 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1176 	if (asoc)
1177 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1178 							     : -EALREADY;
1179 
1180 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1181 	if (err)
1182 		return err;
1183 	asoc = transport->asoc;
1184 
1185 	addr_buf += af->sockaddr_len;
1186 	walk_size = af->sockaddr_len;
1187 	while (walk_size < addrs_size) {
1188 		err = -EINVAL;
1189 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1190 			goto out_free;
1191 
1192 		daddr = addr_buf;
1193 		af = sctp_get_af_specific(daddr->sa.sa_family);
1194 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1195 			goto out_free;
1196 
1197 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1198 			goto out_free;
1199 
1200 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1201 		if (err)
1202 			goto out_free;
1203 
1204 		addr_buf  += af->sockaddr_len;
1205 		walk_size += af->sockaddr_len;
1206 	}
1207 
1208 	/* In case the user of sctp_connectx() wants an association
1209 	 * id back, assign one now.
1210 	 */
1211 	if (assoc_id) {
1212 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1213 		if (err < 0)
1214 			goto out_free;
1215 	}
1216 
1217 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1218 	if (err < 0)
1219 		goto out_free;
1220 
1221 	/* Initialize sk's dport and daddr for getpeername() */
1222 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1223 	sp->pf->to_sk_daddr(daddr, sk);
1224 	sk->sk_err = 0;
1225 
1226 	if (assoc_id)
1227 		*assoc_id = asoc->assoc_id;
1228 
1229 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1230 	return sctp_wait_for_connect(asoc, &timeo);
1231 
1232 out_free:
1233 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1234 		 __func__, asoc, kaddrs, err);
1235 	sctp_association_free(asoc);
1236 	return err;
1237 }
1238 
1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1240  *
1241  * API 8.9
1242  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1243  * 			sctp_assoc_t *asoc);
1244  *
1245  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1246  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1247  * or IPv6 addresses.
1248  *
1249  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1250  * Section 3.1.2 for this usage.
1251  *
1252  * addrs is a pointer to an array of one or more socket addresses. Each
1253  * address is contained in its appropriate structure (i.e. struct
1254  * sockaddr_in or struct sockaddr_in6) the family of the address type
1255  * must be used to distengish the address length (note that this
1256  * representation is termed a "packed array" of addresses). The caller
1257  * specifies the number of addresses in the array with addrcnt.
1258  *
1259  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1260  * the association id of the new association.  On failure, sctp_connectx()
1261  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1262  * is not touched by the kernel.
1263  *
1264  * For SCTP, the port given in each socket address must be the same, or
1265  * sctp_connectx() will fail, setting errno to EINVAL.
1266  *
1267  * An application can use sctp_connectx to initiate an association with
1268  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1269  * allows a caller to specify multiple addresses at which a peer can be
1270  * reached.  The way the SCTP stack uses the list of addresses to set up
1271  * the association is implementation dependent.  This function only
1272  * specifies that the stack will try to make use of all the addresses in
1273  * the list when needed.
1274  *
1275  * Note that the list of addresses passed in is only used for setting up
1276  * the association.  It does not necessarily equal the set of addresses
1277  * the peer uses for the resulting association.  If the caller wants to
1278  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1279  * retrieve them after the association has been set up.
1280  *
1281  * Basically do nothing but copying the addresses from user to kernel
1282  * land and invoking either sctp_connectx(). This is used for tunneling
1283  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1284  *
1285  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1286  * it.
1287  *
1288  * sk        The sk of the socket
1289  * addrs     The pointer to the addresses
1290  * addrssize Size of the addrs buffer
1291  *
1292  * Returns >=0 if ok, <0 errno code on error.
1293  */
1294 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1295 				      int addrs_size, sctp_assoc_t *assoc_id)
1296 {
1297 	int err = 0, flags = 0;
1298 
1299 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1300 		 __func__, sk, kaddrs, addrs_size);
1301 
1302 	/* make sure the 1st addr's sa_family is accessible later */
1303 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1304 		return -EINVAL;
1305 
1306 	/* Allow security module to validate connectx addresses. */
1307 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1308 					 (struct sockaddr *)kaddrs,
1309 					  addrs_size);
1310 	if (err)
1311 		return err;
1312 
1313 	/* in-kernel sockets don't generally have a file allocated to them
1314 	 * if all they do is call sock_create_kern().
1315 	 */
1316 	if (sk->sk_socket->file)
1317 		flags = sk->sk_socket->file->f_flags;
1318 
1319 	return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1320 }
1321 
1322 /*
1323  * This is an older interface.  It's kept for backward compatibility
1324  * to the option that doesn't provide association id.
1325  */
1326 static int sctp_setsockopt_connectx_old(struct sock *sk,
1327 					struct sockaddr *kaddrs,
1328 					int addrs_size)
1329 {
1330 	return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1331 }
1332 
1333 /*
1334  * New interface for the API.  The since the API is done with a socket
1335  * option, to make it simple we feed back the association id is as a return
1336  * indication to the call.  Error is always negative and association id is
1337  * always positive.
1338  */
1339 static int sctp_setsockopt_connectx(struct sock *sk,
1340 				    struct sockaddr *kaddrs,
1341 				    int addrs_size)
1342 {
1343 	sctp_assoc_t assoc_id = 0;
1344 	int err = 0;
1345 
1346 	err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1347 
1348 	if (err)
1349 		return err;
1350 	else
1351 		return assoc_id;
1352 }
1353 
1354 /*
1355  * New (hopefully final) interface for the API.
1356  * We use the sctp_getaddrs_old structure so that use-space library
1357  * can avoid any unnecessary allocations. The only different part
1358  * is that we store the actual length of the address buffer into the
1359  * addrs_num structure member. That way we can re-use the existing
1360  * code.
1361  */
1362 #ifdef CONFIG_COMPAT
1363 struct compat_sctp_getaddrs_old {
1364 	sctp_assoc_t	assoc_id;
1365 	s32		addr_num;
1366 	compat_uptr_t	addrs;		/* struct sockaddr * */
1367 };
1368 #endif
1369 
1370 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1371 				     char __user *optval,
1372 				     int __user *optlen)
1373 {
1374 	struct sctp_getaddrs_old param;
1375 	sctp_assoc_t assoc_id = 0;
1376 	struct sockaddr *kaddrs;
1377 	int err = 0;
1378 
1379 #ifdef CONFIG_COMPAT
1380 	if (in_compat_syscall()) {
1381 		struct compat_sctp_getaddrs_old param32;
1382 
1383 		if (len < sizeof(param32))
1384 			return -EINVAL;
1385 		if (copy_from_user(&param32, optval, sizeof(param32)))
1386 			return -EFAULT;
1387 
1388 		param.assoc_id = param32.assoc_id;
1389 		param.addr_num = param32.addr_num;
1390 		param.addrs = compat_ptr(param32.addrs);
1391 	} else
1392 #endif
1393 	{
1394 		if (len < sizeof(param))
1395 			return -EINVAL;
1396 		if (copy_from_user(&param, optval, sizeof(param)))
1397 			return -EFAULT;
1398 	}
1399 
1400 	kaddrs = memdup_user(param.addrs, param.addr_num);
1401 	if (IS_ERR(kaddrs))
1402 		return PTR_ERR(kaddrs);
1403 
1404 	err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1405 	kfree(kaddrs);
1406 	if (err == 0 || err == -EINPROGRESS) {
1407 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 			return -EFAULT;
1409 		if (put_user(sizeof(assoc_id), optlen))
1410 			return -EFAULT;
1411 	}
1412 
1413 	return err;
1414 }
1415 
1416 /* API 3.1.4 close() - UDP Style Syntax
1417  * Applications use close() to perform graceful shutdown (as described in
1418  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419  * by a UDP-style socket.
1420  *
1421  * The syntax is
1422  *
1423  *   ret = close(int sd);
1424  *
1425  *   sd      - the socket descriptor of the associations to be closed.
1426  *
1427  * To gracefully shutdown a specific association represented by the
1428  * UDP-style socket, an application should use the sendmsg() call,
1429  * passing no user data, but including the appropriate flag in the
1430  * ancillary data (see Section xxxx).
1431  *
1432  * If sd in the close() call is a branched-off socket representing only
1433  * one association, the shutdown is performed on that association only.
1434  *
1435  * 4.1.6 close() - TCP Style Syntax
1436  *
1437  * Applications use close() to gracefully close down an association.
1438  *
1439  * The syntax is:
1440  *
1441  *    int close(int sd);
1442  *
1443  *      sd      - the socket descriptor of the association to be closed.
1444  *
1445  * After an application calls close() on a socket descriptor, no further
1446  * socket operations will succeed on that descriptor.
1447  *
1448  * API 7.1.4 SO_LINGER
1449  *
1450  * An application using the TCP-style socket can use this option to
1451  * perform the SCTP ABORT primitive.  The linger option structure is:
1452  *
1453  *  struct  linger {
1454  *     int     l_onoff;                // option on/off
1455  *     int     l_linger;               // linger time
1456  * };
1457  *
1458  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1459  * to 0, calling close() is the same as the ABORT primitive.  If the
1460  * value is set to a negative value, the setsockopt() call will return
1461  * an error.  If the value is set to a positive value linger_time, the
1462  * close() can be blocked for at most linger_time ms.  If the graceful
1463  * shutdown phase does not finish during this period, close() will
1464  * return but the graceful shutdown phase continues in the system.
1465  */
1466 static void sctp_close(struct sock *sk, long timeout)
1467 {
1468 	struct net *net = sock_net(sk);
1469 	struct sctp_endpoint *ep;
1470 	struct sctp_association *asoc;
1471 	struct list_head *pos, *temp;
1472 	unsigned int data_was_unread;
1473 
1474 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1475 
1476 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1477 	sk->sk_shutdown = SHUTDOWN_MASK;
1478 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1479 
1480 	ep = sctp_sk(sk)->ep;
1481 
1482 	/* Clean up any skbs sitting on the receive queue.  */
1483 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485 
1486 	/* Walk all associations on an endpoint.  */
1487 	list_for_each_safe(pos, temp, &ep->asocs) {
1488 		asoc = list_entry(pos, struct sctp_association, asocs);
1489 
1490 		if (sctp_style(sk, TCP)) {
1491 			/* A closed association can still be in the list if
1492 			 * it belongs to a TCP-style listening socket that is
1493 			 * not yet accepted. If so, free it. If not, send an
1494 			 * ABORT or SHUTDOWN based on the linger options.
1495 			 */
1496 			if (sctp_state(asoc, CLOSED)) {
1497 				sctp_association_free(asoc);
1498 				continue;
1499 			}
1500 		}
1501 
1502 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1503 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1504 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1505 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 			struct sctp_chunk *chunk;
1507 
1508 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 			sctp_primitive_ABORT(net, asoc, chunk);
1510 		} else
1511 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1512 	}
1513 
1514 	/* On a TCP-style socket, block for at most linger_time if set. */
1515 	if (sctp_style(sk, TCP) && timeout)
1516 		sctp_wait_for_close(sk, timeout);
1517 
1518 	/* This will run the backlog queue.  */
1519 	release_sock(sk);
1520 
1521 	/* Supposedly, no process has access to the socket, but
1522 	 * the net layers still may.
1523 	 */
1524 	local_bh_disable();
1525 	bh_lock_sock(sk);
1526 
1527 	/* Hold the sock, since sk_common_release() will put sock_put()
1528 	 * and we have just a little more cleanup.
1529 	 */
1530 	sock_hold(sk);
1531 	sk_common_release(sk);
1532 
1533 	bh_unlock_sock(sk);
1534 	local_bh_enable();
1535 
1536 	sock_put(sk);
1537 
1538 	SCTP_DBG_OBJCNT_DEC(sock);
1539 }
1540 
1541 /* Handle EPIPE error. */
1542 static int sctp_error(struct sock *sk, int flags, int err)
1543 {
1544 	if (err == -EPIPE)
1545 		err = sock_error(sk) ? : -EPIPE;
1546 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1547 		send_sig(SIGPIPE, current, 0);
1548 	return err;
1549 }
1550 
1551 /* API 3.1.3 sendmsg() - UDP Style Syntax
1552  *
1553  * An application uses sendmsg() and recvmsg() calls to transmit data to
1554  * and receive data from its peer.
1555  *
1556  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1557  *                  int flags);
1558  *
1559  *  socket  - the socket descriptor of the endpoint.
1560  *  message - pointer to the msghdr structure which contains a single
1561  *            user message and possibly some ancillary data.
1562  *
1563  *            See Section 5 for complete description of the data
1564  *            structures.
1565  *
1566  *  flags   - flags sent or received with the user message, see Section
1567  *            5 for complete description of the flags.
1568  *
1569  * Note:  This function could use a rewrite especially when explicit
1570  * connect support comes in.
1571  */
1572 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1573 
1574 static int sctp_msghdr_parse(const struct msghdr *msg,
1575 			     struct sctp_cmsgs *cmsgs);
1576 
1577 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1578 			      struct sctp_sndrcvinfo *srinfo,
1579 			      const struct msghdr *msg, size_t msg_len)
1580 {
1581 	__u16 sflags;
1582 	int err;
1583 
1584 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1585 		return -EPIPE;
1586 
1587 	if (msg_len > sk->sk_sndbuf)
1588 		return -EMSGSIZE;
1589 
1590 	memset(cmsgs, 0, sizeof(*cmsgs));
1591 	err = sctp_msghdr_parse(msg, cmsgs);
1592 	if (err) {
1593 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1594 		return err;
1595 	}
1596 
1597 	memset(srinfo, 0, sizeof(*srinfo));
1598 	if (cmsgs->srinfo) {
1599 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1600 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1601 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1602 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1603 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1604 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1605 	}
1606 
1607 	if (cmsgs->sinfo) {
1608 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1609 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1610 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1611 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1612 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1613 	}
1614 
1615 	if (cmsgs->prinfo) {
1616 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1617 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1618 				   cmsgs->prinfo->pr_policy);
1619 	}
1620 
1621 	sflags = srinfo->sinfo_flags;
1622 	if (!sflags && msg_len)
1623 		return 0;
1624 
1625 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1626 		return -EINVAL;
1627 
1628 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1629 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1630 		return -EINVAL;
1631 
1632 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1633 		return -EINVAL;
1634 
1635 	return 0;
1636 }
1637 
1638 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1639 				 struct sctp_cmsgs *cmsgs,
1640 				 union sctp_addr *daddr,
1641 				 struct sctp_transport **tp)
1642 {
1643 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1644 	struct sctp_association *asoc;
1645 	struct cmsghdr *cmsg;
1646 	__be32 flowinfo = 0;
1647 	struct sctp_af *af;
1648 	int err;
1649 
1650 	*tp = NULL;
1651 
1652 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1653 		return -EINVAL;
1654 
1655 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1656 				    sctp_sstate(sk, CLOSING)))
1657 		return -EADDRNOTAVAIL;
1658 
1659 	/* Label connection socket for first association 1-to-many
1660 	 * style for client sequence socket()->sendmsg(). This
1661 	 * needs to be done before sctp_assoc_add_peer() as that will
1662 	 * set up the initial packet that needs to account for any
1663 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1664 	 */
1665 	af = sctp_get_af_specific(daddr->sa.sa_family);
1666 	if (!af)
1667 		return -EINVAL;
1668 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1669 					 (struct sockaddr *)daddr,
1670 					 af->sockaddr_len);
1671 	if (err < 0)
1672 		return err;
1673 
1674 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1675 	if (err)
1676 		return err;
1677 	asoc = (*tp)->asoc;
1678 
1679 	if (!cmsgs->addrs_msg)
1680 		return 0;
1681 
1682 	if (daddr->sa.sa_family == AF_INET6)
1683 		flowinfo = daddr->v6.sin6_flowinfo;
1684 
1685 	/* sendv addr list parse */
1686 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1687 		union sctp_addr _daddr;
1688 		int dlen;
1689 
1690 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1691 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1692 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1693 			continue;
1694 
1695 		daddr = &_daddr;
1696 		memset(daddr, 0, sizeof(*daddr));
1697 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1698 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1699 			if (dlen < sizeof(struct in_addr)) {
1700 				err = -EINVAL;
1701 				goto free;
1702 			}
1703 
1704 			dlen = sizeof(struct in_addr);
1705 			daddr->v4.sin_family = AF_INET;
1706 			daddr->v4.sin_port = htons(asoc->peer.port);
1707 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1708 		} else {
1709 			if (dlen < sizeof(struct in6_addr)) {
1710 				err = -EINVAL;
1711 				goto free;
1712 			}
1713 
1714 			dlen = sizeof(struct in6_addr);
1715 			daddr->v6.sin6_flowinfo = flowinfo;
1716 			daddr->v6.sin6_family = AF_INET6;
1717 			daddr->v6.sin6_port = htons(asoc->peer.port);
1718 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1719 		}
1720 
1721 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1722 		if (err)
1723 			goto free;
1724 	}
1725 
1726 	return 0;
1727 
1728 free:
1729 	sctp_association_free(asoc);
1730 	return err;
1731 }
1732 
1733 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1734 				     __u16 sflags, struct msghdr *msg,
1735 				     size_t msg_len)
1736 {
1737 	struct sock *sk = asoc->base.sk;
1738 	struct net *net = sock_net(sk);
1739 
1740 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1741 		return -EPIPE;
1742 
1743 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1744 	    !sctp_state(asoc, ESTABLISHED))
1745 		return 0;
1746 
1747 	if (sflags & SCTP_EOF) {
1748 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1749 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1750 
1751 		return 0;
1752 	}
1753 
1754 	if (sflags & SCTP_ABORT) {
1755 		struct sctp_chunk *chunk;
1756 
1757 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1758 		if (!chunk)
1759 			return -ENOMEM;
1760 
1761 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1762 		sctp_primitive_ABORT(net, asoc, chunk);
1763 		iov_iter_revert(&msg->msg_iter, msg_len);
1764 
1765 		return 0;
1766 	}
1767 
1768 	return 1;
1769 }
1770 
1771 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1772 				struct msghdr *msg, size_t msg_len,
1773 				struct sctp_transport *transport,
1774 				struct sctp_sndrcvinfo *sinfo)
1775 {
1776 	struct sock *sk = asoc->base.sk;
1777 	struct sctp_sock *sp = sctp_sk(sk);
1778 	struct net *net = sock_net(sk);
1779 	struct sctp_datamsg *datamsg;
1780 	bool wait_connect = false;
1781 	struct sctp_chunk *chunk;
1782 	long timeo;
1783 	int err;
1784 
1785 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1786 		err = -EINVAL;
1787 		goto err;
1788 	}
1789 
1790 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1791 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1792 		if (err)
1793 			goto err;
1794 	}
1795 
1796 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1797 		err = -EMSGSIZE;
1798 		goto err;
1799 	}
1800 
1801 	if (asoc->pmtu_pending) {
1802 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1803 			sctp_assoc_sync_pmtu(asoc);
1804 		asoc->pmtu_pending = 0;
1805 	}
1806 
1807 	if (sctp_wspace(asoc) < (int)msg_len)
1808 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1809 
1810 	if (sk_under_memory_pressure(sk))
1811 		sk_mem_reclaim(sk);
1812 
1813 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1814 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1815 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1816 		if (err)
1817 			goto err;
1818 	}
1819 
1820 	if (sctp_state(asoc, CLOSED)) {
1821 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1822 		if (err)
1823 			goto err;
1824 
1825 		if (asoc->ep->intl_enable) {
1826 			timeo = sock_sndtimeo(sk, 0);
1827 			err = sctp_wait_for_connect(asoc, &timeo);
1828 			if (err) {
1829 				err = -ESRCH;
1830 				goto err;
1831 			}
1832 		} else {
1833 			wait_connect = true;
1834 		}
1835 
1836 		pr_debug("%s: we associated primitively\n", __func__);
1837 	}
1838 
1839 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1840 	if (IS_ERR(datamsg)) {
1841 		err = PTR_ERR(datamsg);
1842 		goto err;
1843 	}
1844 
1845 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1846 
1847 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1848 		sctp_chunk_hold(chunk);
1849 		sctp_set_owner_w(chunk);
1850 		chunk->transport = transport;
1851 	}
1852 
1853 	err = sctp_primitive_SEND(net, asoc, datamsg);
1854 	if (err) {
1855 		sctp_datamsg_free(datamsg);
1856 		goto err;
1857 	}
1858 
1859 	pr_debug("%s: we sent primitively\n", __func__);
1860 
1861 	sctp_datamsg_put(datamsg);
1862 
1863 	if (unlikely(wait_connect)) {
1864 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1865 		sctp_wait_for_connect(asoc, &timeo);
1866 	}
1867 
1868 	err = msg_len;
1869 
1870 err:
1871 	return err;
1872 }
1873 
1874 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1875 					       const struct msghdr *msg,
1876 					       struct sctp_cmsgs *cmsgs)
1877 {
1878 	union sctp_addr *daddr = NULL;
1879 	int err;
1880 
1881 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1882 		int len = msg->msg_namelen;
1883 
1884 		if (len > sizeof(*daddr))
1885 			len = sizeof(*daddr);
1886 
1887 		daddr = (union sctp_addr *)msg->msg_name;
1888 
1889 		err = sctp_verify_addr(sk, daddr, len);
1890 		if (err)
1891 			return ERR_PTR(err);
1892 	}
1893 
1894 	return daddr;
1895 }
1896 
1897 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1898 				      struct sctp_sndrcvinfo *sinfo,
1899 				      struct sctp_cmsgs *cmsgs)
1900 {
1901 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1902 		sinfo->sinfo_stream = asoc->default_stream;
1903 		sinfo->sinfo_ppid = asoc->default_ppid;
1904 		sinfo->sinfo_context = asoc->default_context;
1905 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1906 
1907 		if (!cmsgs->prinfo)
1908 			sinfo->sinfo_flags = asoc->default_flags;
1909 	}
1910 
1911 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1912 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1913 
1914 	if (cmsgs->authinfo) {
1915 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1916 		 * sinfo_ssn to save the keyid on tx path.
1917 		 */
1918 		sinfo->sinfo_tsn = 1;
1919 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1920 	}
1921 }
1922 
1923 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1924 {
1925 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1926 	struct sctp_transport *transport = NULL;
1927 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1928 	struct sctp_association *asoc, *tmp;
1929 	struct sctp_cmsgs cmsgs;
1930 	union sctp_addr *daddr;
1931 	bool new = false;
1932 	__u16 sflags;
1933 	int err;
1934 
1935 	/* Parse and get snd_info */
1936 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1937 	if (err)
1938 		goto out;
1939 
1940 	sinfo  = &_sinfo;
1941 	sflags = sinfo->sinfo_flags;
1942 
1943 	/* Get daddr from msg */
1944 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1945 	if (IS_ERR(daddr)) {
1946 		err = PTR_ERR(daddr);
1947 		goto out;
1948 	}
1949 
1950 	lock_sock(sk);
1951 
1952 	/* SCTP_SENDALL process */
1953 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1954 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1955 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1956 							msg_len);
1957 			if (err == 0)
1958 				continue;
1959 			if (err < 0)
1960 				goto out_unlock;
1961 
1962 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1963 
1964 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1965 						   NULL, sinfo);
1966 			if (err < 0)
1967 				goto out_unlock;
1968 
1969 			iov_iter_revert(&msg->msg_iter, err);
1970 		}
1971 
1972 		goto out_unlock;
1973 	}
1974 
1975 	/* Get and check or create asoc */
1976 	if (daddr) {
1977 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1978 		if (asoc) {
1979 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1980 							msg_len);
1981 			if (err <= 0)
1982 				goto out_unlock;
1983 		} else {
1984 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1985 						    &transport);
1986 			if (err)
1987 				goto out_unlock;
1988 
1989 			asoc = transport->asoc;
1990 			new = true;
1991 		}
1992 
1993 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
1994 			transport = NULL;
1995 	} else {
1996 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
1997 		if (!asoc) {
1998 			err = -EPIPE;
1999 			goto out_unlock;
2000 		}
2001 
2002 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2003 		if (err <= 0)
2004 			goto out_unlock;
2005 	}
2006 
2007 	/* Update snd_info with the asoc */
2008 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2009 
2010 	/* Send msg to the asoc */
2011 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2012 	if (err < 0 && err != -ESRCH && new)
2013 		sctp_association_free(asoc);
2014 
2015 out_unlock:
2016 	release_sock(sk);
2017 out:
2018 	return sctp_error(sk, msg->msg_flags, err);
2019 }
2020 
2021 /* This is an extended version of skb_pull() that removes the data from the
2022  * start of a skb even when data is spread across the list of skb's in the
2023  * frag_list. len specifies the total amount of data that needs to be removed.
2024  * when 'len' bytes could be removed from the skb, it returns 0.
2025  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2026  * could not be removed.
2027  */
2028 static int sctp_skb_pull(struct sk_buff *skb, int len)
2029 {
2030 	struct sk_buff *list;
2031 	int skb_len = skb_headlen(skb);
2032 	int rlen;
2033 
2034 	if (len <= skb_len) {
2035 		__skb_pull(skb, len);
2036 		return 0;
2037 	}
2038 	len -= skb_len;
2039 	__skb_pull(skb, skb_len);
2040 
2041 	skb_walk_frags(skb, list) {
2042 		rlen = sctp_skb_pull(list, len);
2043 		skb->len -= (len-rlen);
2044 		skb->data_len -= (len-rlen);
2045 
2046 		if (!rlen)
2047 			return 0;
2048 
2049 		len = rlen;
2050 	}
2051 
2052 	return len;
2053 }
2054 
2055 /* API 3.1.3  recvmsg() - UDP Style Syntax
2056  *
2057  *  ssize_t recvmsg(int socket, struct msghdr *message,
2058  *                    int flags);
2059  *
2060  *  socket  - the socket descriptor of the endpoint.
2061  *  message - pointer to the msghdr structure which contains a single
2062  *            user message and possibly some ancillary data.
2063  *
2064  *            See Section 5 for complete description of the data
2065  *            structures.
2066  *
2067  *  flags   - flags sent or received with the user message, see Section
2068  *            5 for complete description of the flags.
2069  */
2070 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2071 			int noblock, int flags, int *addr_len)
2072 {
2073 	struct sctp_ulpevent *event = NULL;
2074 	struct sctp_sock *sp = sctp_sk(sk);
2075 	struct sk_buff *skb, *head_skb;
2076 	int copied;
2077 	int err = 0;
2078 	int skb_len;
2079 
2080 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2081 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2082 		 addr_len);
2083 
2084 	lock_sock(sk);
2085 
2086 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2087 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2088 		err = -ENOTCONN;
2089 		goto out;
2090 	}
2091 
2092 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2093 	if (!skb)
2094 		goto out;
2095 
2096 	/* Get the total length of the skb including any skb's in the
2097 	 * frag_list.
2098 	 */
2099 	skb_len = skb->len;
2100 
2101 	copied = skb_len;
2102 	if (copied > len)
2103 		copied = len;
2104 
2105 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2106 
2107 	event = sctp_skb2event(skb);
2108 
2109 	if (err)
2110 		goto out_free;
2111 
2112 	if (event->chunk && event->chunk->head_skb)
2113 		head_skb = event->chunk->head_skb;
2114 	else
2115 		head_skb = skb;
2116 	sock_recv_ts_and_drops(msg, sk, head_skb);
2117 	if (sctp_ulpevent_is_notification(event)) {
2118 		msg->msg_flags |= MSG_NOTIFICATION;
2119 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2120 	} else {
2121 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2122 	}
2123 
2124 	/* Check if we allow SCTP_NXTINFO. */
2125 	if (sp->recvnxtinfo)
2126 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2127 	/* Check if we allow SCTP_RCVINFO. */
2128 	if (sp->recvrcvinfo)
2129 		sctp_ulpevent_read_rcvinfo(event, msg);
2130 	/* Check if we allow SCTP_SNDRCVINFO. */
2131 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2132 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2133 
2134 	err = copied;
2135 
2136 	/* If skb's length exceeds the user's buffer, update the skb and
2137 	 * push it back to the receive_queue so that the next call to
2138 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2139 	 */
2140 	if (skb_len > copied) {
2141 		msg->msg_flags &= ~MSG_EOR;
2142 		if (flags & MSG_PEEK)
2143 			goto out_free;
2144 		sctp_skb_pull(skb, copied);
2145 		skb_queue_head(&sk->sk_receive_queue, skb);
2146 
2147 		/* When only partial message is copied to the user, increase
2148 		 * rwnd by that amount. If all the data in the skb is read,
2149 		 * rwnd is updated when the event is freed.
2150 		 */
2151 		if (!sctp_ulpevent_is_notification(event))
2152 			sctp_assoc_rwnd_increase(event->asoc, copied);
2153 		goto out;
2154 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2155 		   (event->msg_flags & MSG_EOR))
2156 		msg->msg_flags |= MSG_EOR;
2157 	else
2158 		msg->msg_flags &= ~MSG_EOR;
2159 
2160 out_free:
2161 	if (flags & MSG_PEEK) {
2162 		/* Release the skb reference acquired after peeking the skb in
2163 		 * sctp_skb_recv_datagram().
2164 		 */
2165 		kfree_skb(skb);
2166 	} else {
2167 		/* Free the event which includes releasing the reference to
2168 		 * the owner of the skb, freeing the skb and updating the
2169 		 * rwnd.
2170 		 */
2171 		sctp_ulpevent_free(event);
2172 	}
2173 out:
2174 	release_sock(sk);
2175 	return err;
2176 }
2177 
2178 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2179  *
2180  * This option is a on/off flag.  If enabled no SCTP message
2181  * fragmentation will be performed.  Instead if a message being sent
2182  * exceeds the current PMTU size, the message will NOT be sent and
2183  * instead a error will be indicated to the user.
2184  */
2185 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2186 					     unsigned int optlen)
2187 {
2188 	if (optlen < sizeof(int))
2189 		return -EINVAL;
2190 	sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2191 	return 0;
2192 }
2193 
2194 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2195 				  unsigned int optlen)
2196 {
2197 	struct sctp_sock *sp = sctp_sk(sk);
2198 	struct sctp_association *asoc;
2199 	int i;
2200 
2201 	if (optlen > sizeof(struct sctp_event_subscribe))
2202 		return -EINVAL;
2203 
2204 	for (i = 0; i < optlen; i++)
2205 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2206 				       sn_type[i]);
2207 
2208 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2209 		asoc->subscribe = sctp_sk(sk)->subscribe;
2210 
2211 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2212 	 * if there is no data to be sent or retransmit, the stack will
2213 	 * immediately send up this notification.
2214 	 */
2215 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2216 		struct sctp_ulpevent *event;
2217 
2218 		asoc = sctp_id2assoc(sk, 0);
2219 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2220 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2221 					GFP_USER | __GFP_NOWARN);
2222 			if (!event)
2223 				return -ENOMEM;
2224 
2225 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2226 		}
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2233  *
2234  * This socket option is applicable to the UDP-style socket only.  When
2235  * set it will cause associations that are idle for more than the
2236  * specified number of seconds to automatically close.  An association
2237  * being idle is defined an association that has NOT sent or received
2238  * user data.  The special value of '0' indicates that no automatic
2239  * close of any associations should be performed.  The option expects an
2240  * integer defining the number of seconds of idle time before an
2241  * association is closed.
2242  */
2243 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2244 				     unsigned int optlen)
2245 {
2246 	struct sctp_sock *sp = sctp_sk(sk);
2247 	struct net *net = sock_net(sk);
2248 
2249 	/* Applicable to UDP-style socket only */
2250 	if (sctp_style(sk, TCP))
2251 		return -EOPNOTSUPP;
2252 	if (optlen != sizeof(int))
2253 		return -EINVAL;
2254 
2255 	sp->autoclose = *optval;
2256 	if (sp->autoclose > net->sctp.max_autoclose)
2257 		sp->autoclose = net->sctp.max_autoclose;
2258 
2259 	return 0;
2260 }
2261 
2262 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2263  *
2264  * Applications can enable or disable heartbeats for any peer address of
2265  * an association, modify an address's heartbeat interval, force a
2266  * heartbeat to be sent immediately, and adjust the address's maximum
2267  * number of retransmissions sent before an address is considered
2268  * unreachable.  The following structure is used to access and modify an
2269  * address's parameters:
2270  *
2271  *  struct sctp_paddrparams {
2272  *     sctp_assoc_t            spp_assoc_id;
2273  *     struct sockaddr_storage spp_address;
2274  *     uint32_t                spp_hbinterval;
2275  *     uint16_t                spp_pathmaxrxt;
2276  *     uint32_t                spp_pathmtu;
2277  *     uint32_t                spp_sackdelay;
2278  *     uint32_t                spp_flags;
2279  *     uint32_t                spp_ipv6_flowlabel;
2280  *     uint8_t                 spp_dscp;
2281  * };
2282  *
2283  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2284  *                     application, and identifies the association for
2285  *                     this query.
2286  *   spp_address     - This specifies which address is of interest.
2287  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2288  *                     in milliseconds.  If a  value of zero
2289  *                     is present in this field then no changes are to
2290  *                     be made to this parameter.
2291  *   spp_pathmaxrxt  - This contains the maximum number of
2292  *                     retransmissions before this address shall be
2293  *                     considered unreachable. If a  value of zero
2294  *                     is present in this field then no changes are to
2295  *                     be made to this parameter.
2296  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2297  *                     specified here will be the "fixed" path mtu.
2298  *                     Note that if the spp_address field is empty
2299  *                     then all associations on this address will
2300  *                     have this fixed path mtu set upon them.
2301  *
2302  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2303  *                     the number of milliseconds that sacks will be delayed
2304  *                     for. This value will apply to all addresses of an
2305  *                     association if the spp_address field is empty. Note
2306  *                     also, that if delayed sack is enabled and this
2307  *                     value is set to 0, no change is made to the last
2308  *                     recorded delayed sack timer value.
2309  *
2310  *   spp_flags       - These flags are used to control various features
2311  *                     on an association. The flag field may contain
2312  *                     zero or more of the following options.
2313  *
2314  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2315  *                     specified address. Note that if the address
2316  *                     field is empty all addresses for the association
2317  *                     have heartbeats enabled upon them.
2318  *
2319  *                     SPP_HB_DISABLE - Disable heartbeats on the
2320  *                     speicifed address. Note that if the address
2321  *                     field is empty all addresses for the association
2322  *                     will have their heartbeats disabled. Note also
2323  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2324  *                     mutually exclusive, only one of these two should
2325  *                     be specified. Enabling both fields will have
2326  *                     undetermined results.
2327  *
2328  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2329  *                     to be made immediately.
2330  *
2331  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2332  *                     heartbeat delayis to be set to the value of 0
2333  *                     milliseconds.
2334  *
2335  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2336  *                     discovery upon the specified address. Note that
2337  *                     if the address feild is empty then all addresses
2338  *                     on the association are effected.
2339  *
2340  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2341  *                     discovery upon the specified address. Note that
2342  *                     if the address feild is empty then all addresses
2343  *                     on the association are effected. Not also that
2344  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2345  *                     exclusive. Enabling both will have undetermined
2346  *                     results.
2347  *
2348  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2349  *                     on delayed sack. The time specified in spp_sackdelay
2350  *                     is used to specify the sack delay for this address. Note
2351  *                     that if spp_address is empty then all addresses will
2352  *                     enable delayed sack and take on the sack delay
2353  *                     value specified in spp_sackdelay.
2354  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2355  *                     off delayed sack. If the spp_address field is blank then
2356  *                     delayed sack is disabled for the entire association. Note
2357  *                     also that this field is mutually exclusive to
2358  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2359  *                     results.
2360  *
2361  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2362  *                     setting of the IPV6 flow label value.  The value is
2363  *                     contained in the spp_ipv6_flowlabel field.
2364  *                     Upon retrieval, this flag will be set to indicate that
2365  *                     the spp_ipv6_flowlabel field has a valid value returned.
2366  *                     If a specific destination address is set (in the
2367  *                     spp_address field), then the value returned is that of
2368  *                     the address.  If just an association is specified (and
2369  *                     no address), then the association's default flow label
2370  *                     is returned.  If neither an association nor a destination
2371  *                     is specified, then the socket's default flow label is
2372  *                     returned.  For non-IPv6 sockets, this flag will be left
2373  *                     cleared.
2374  *
2375  *                     SPP_DSCP:  Setting this flag enables the setting of the
2376  *                     Differentiated Services Code Point (DSCP) value
2377  *                     associated with either the association or a specific
2378  *                     address.  The value is obtained in the spp_dscp field.
2379  *                     Upon retrieval, this flag will be set to indicate that
2380  *                     the spp_dscp field has a valid value returned.  If a
2381  *                     specific destination address is set when called (in the
2382  *                     spp_address field), then that specific destination
2383  *                     address's DSCP value is returned.  If just an association
2384  *                     is specified, then the association's default DSCP is
2385  *                     returned.  If neither an association nor a destination is
2386  *                     specified, then the socket's default DSCP is returned.
2387  *
2388  *   spp_ipv6_flowlabel
2389  *                   - This field is used in conjunction with the
2390  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2391  *                     The 20 least significant bits are used for the flow
2392  *                     label.  This setting has precedence over any IPv6-layer
2393  *                     setting.
2394  *
2395  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2396  *                     and contains the DSCP.  The 6 most significant bits are
2397  *                     used for the DSCP.  This setting has precedence over any
2398  *                     IPv4- or IPv6- layer setting.
2399  */
2400 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2401 				       struct sctp_transport   *trans,
2402 				       struct sctp_association *asoc,
2403 				       struct sctp_sock        *sp,
2404 				       int                      hb_change,
2405 				       int                      pmtud_change,
2406 				       int                      sackdelay_change)
2407 {
2408 	int error;
2409 
2410 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2411 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2412 							trans->asoc, trans);
2413 		if (error)
2414 			return error;
2415 	}
2416 
2417 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2418 	 * this field is ignored.  Note also that a value of zero indicates
2419 	 * the current setting should be left unchanged.
2420 	 */
2421 	if (params->spp_flags & SPP_HB_ENABLE) {
2422 
2423 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2424 		 * set.  This lets us use 0 value when this flag
2425 		 * is set.
2426 		 */
2427 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2428 			params->spp_hbinterval = 0;
2429 
2430 		if (params->spp_hbinterval ||
2431 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2432 			if (trans) {
2433 				trans->hbinterval =
2434 				    msecs_to_jiffies(params->spp_hbinterval);
2435 			} else if (asoc) {
2436 				asoc->hbinterval =
2437 				    msecs_to_jiffies(params->spp_hbinterval);
2438 			} else {
2439 				sp->hbinterval = params->spp_hbinterval;
2440 			}
2441 		}
2442 	}
2443 
2444 	if (hb_change) {
2445 		if (trans) {
2446 			trans->param_flags =
2447 				(trans->param_flags & ~SPP_HB) | hb_change;
2448 		} else if (asoc) {
2449 			asoc->param_flags =
2450 				(asoc->param_flags & ~SPP_HB) | hb_change;
2451 		} else {
2452 			sp->param_flags =
2453 				(sp->param_flags & ~SPP_HB) | hb_change;
2454 		}
2455 	}
2456 
2457 	/* When Path MTU discovery is disabled the value specified here will
2458 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2459 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2460 	 * effect).
2461 	 */
2462 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2463 		if (trans) {
2464 			trans->pathmtu = params->spp_pathmtu;
2465 			sctp_assoc_sync_pmtu(asoc);
2466 		} else if (asoc) {
2467 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2468 		} else {
2469 			sp->pathmtu = params->spp_pathmtu;
2470 		}
2471 	}
2472 
2473 	if (pmtud_change) {
2474 		if (trans) {
2475 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2476 				(params->spp_flags & SPP_PMTUD_ENABLE);
2477 			trans->param_flags =
2478 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2479 			if (update) {
2480 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2481 				sctp_assoc_sync_pmtu(asoc);
2482 			}
2483 		} else if (asoc) {
2484 			asoc->param_flags =
2485 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2486 		} else {
2487 			sp->param_flags =
2488 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2489 		}
2490 	}
2491 
2492 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2493 	 * value of this field is ignored.  Note also that a value of zero
2494 	 * indicates the current setting should be left unchanged.
2495 	 */
2496 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2497 		if (trans) {
2498 			trans->sackdelay =
2499 				msecs_to_jiffies(params->spp_sackdelay);
2500 		} else if (asoc) {
2501 			asoc->sackdelay =
2502 				msecs_to_jiffies(params->spp_sackdelay);
2503 		} else {
2504 			sp->sackdelay = params->spp_sackdelay;
2505 		}
2506 	}
2507 
2508 	if (sackdelay_change) {
2509 		if (trans) {
2510 			trans->param_flags =
2511 				(trans->param_flags & ~SPP_SACKDELAY) |
2512 				sackdelay_change;
2513 		} else if (asoc) {
2514 			asoc->param_flags =
2515 				(asoc->param_flags & ~SPP_SACKDELAY) |
2516 				sackdelay_change;
2517 		} else {
2518 			sp->param_flags =
2519 				(sp->param_flags & ~SPP_SACKDELAY) |
2520 				sackdelay_change;
2521 		}
2522 	}
2523 
2524 	/* Note that a value of zero indicates the current setting should be
2525 	   left unchanged.
2526 	 */
2527 	if (params->spp_pathmaxrxt) {
2528 		if (trans) {
2529 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2530 		} else if (asoc) {
2531 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2532 		} else {
2533 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2534 		}
2535 	}
2536 
2537 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2538 		if (trans) {
2539 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2540 				trans->flowlabel = params->spp_ipv6_flowlabel &
2541 						   SCTP_FLOWLABEL_VAL_MASK;
2542 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2543 			}
2544 		} else if (asoc) {
2545 			struct sctp_transport *t;
2546 
2547 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2548 					    transports) {
2549 				if (t->ipaddr.sa.sa_family != AF_INET6)
2550 					continue;
2551 				t->flowlabel = params->spp_ipv6_flowlabel &
2552 					       SCTP_FLOWLABEL_VAL_MASK;
2553 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2554 			}
2555 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2556 					  SCTP_FLOWLABEL_VAL_MASK;
2557 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2558 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2559 			sp->flowlabel = params->spp_ipv6_flowlabel &
2560 					SCTP_FLOWLABEL_VAL_MASK;
2561 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2562 		}
2563 	}
2564 
2565 	if (params->spp_flags & SPP_DSCP) {
2566 		if (trans) {
2567 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2568 			trans->dscp |= SCTP_DSCP_SET_MASK;
2569 		} else if (asoc) {
2570 			struct sctp_transport *t;
2571 
2572 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2573 					    transports) {
2574 				t->dscp = params->spp_dscp &
2575 					  SCTP_DSCP_VAL_MASK;
2576 				t->dscp |= SCTP_DSCP_SET_MASK;
2577 			}
2578 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2579 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2580 		} else {
2581 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2582 			sp->dscp |= SCTP_DSCP_SET_MASK;
2583 		}
2584 	}
2585 
2586 	return 0;
2587 }
2588 
2589 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2590 					    struct sctp_paddrparams *params,
2591 					    unsigned int optlen)
2592 {
2593 	struct sctp_transport   *trans = NULL;
2594 	struct sctp_association *asoc = NULL;
2595 	struct sctp_sock        *sp = sctp_sk(sk);
2596 	int error;
2597 	int hb_change, pmtud_change, sackdelay_change;
2598 
2599 	if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2600 					    spp_ipv6_flowlabel), 4)) {
2601 		if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2602 			return -EINVAL;
2603 	} else if (optlen != sizeof(*params)) {
2604 		return -EINVAL;
2605 	}
2606 
2607 	/* Validate flags and value parameters. */
2608 	hb_change        = params->spp_flags & SPP_HB;
2609 	pmtud_change     = params->spp_flags & SPP_PMTUD;
2610 	sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2611 
2612 	if (hb_change        == SPP_HB ||
2613 	    pmtud_change     == SPP_PMTUD ||
2614 	    sackdelay_change == SPP_SACKDELAY ||
2615 	    params->spp_sackdelay > 500 ||
2616 	    (params->spp_pathmtu &&
2617 	     params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2618 		return -EINVAL;
2619 
2620 	/* If an address other than INADDR_ANY is specified, and
2621 	 * no transport is found, then the request is invalid.
2622 	 */
2623 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2624 		trans = sctp_addr_id2transport(sk, &params->spp_address,
2625 					       params->spp_assoc_id);
2626 		if (!trans)
2627 			return -EINVAL;
2628 	}
2629 
2630 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2631 	 * socket is a one to many style socket, and an association
2632 	 * was not found, then the id was invalid.
2633 	 */
2634 	asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2635 	if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2636 	    sctp_style(sk, UDP))
2637 		return -EINVAL;
2638 
2639 	/* Heartbeat demand can only be sent on a transport or
2640 	 * association, but not a socket.
2641 	 */
2642 	if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2643 		return -EINVAL;
2644 
2645 	/* Process parameters. */
2646 	error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2647 					    hb_change, pmtud_change,
2648 					    sackdelay_change);
2649 
2650 	if (error)
2651 		return error;
2652 
2653 	/* If changes are for association, also apply parameters to each
2654 	 * transport.
2655 	 */
2656 	if (!trans && asoc) {
2657 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2658 				transports) {
2659 			sctp_apply_peer_addr_params(params, trans, asoc, sp,
2660 						    hb_change, pmtud_change,
2661 						    sackdelay_change);
2662 		}
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2669 {
2670 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2671 }
2672 
2673 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2674 {
2675 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2676 }
2677 
2678 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2679 					struct sctp_association *asoc)
2680 {
2681 	struct sctp_transport *trans;
2682 
2683 	if (params->sack_delay) {
2684 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2685 		asoc->param_flags =
2686 			sctp_spp_sackdelay_enable(asoc->param_flags);
2687 	}
2688 	if (params->sack_freq == 1) {
2689 		asoc->param_flags =
2690 			sctp_spp_sackdelay_disable(asoc->param_flags);
2691 	} else if (params->sack_freq > 1) {
2692 		asoc->sackfreq = params->sack_freq;
2693 		asoc->param_flags =
2694 			sctp_spp_sackdelay_enable(asoc->param_flags);
2695 	}
2696 
2697 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2698 			    transports) {
2699 		if (params->sack_delay) {
2700 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2701 			trans->param_flags =
2702 				sctp_spp_sackdelay_enable(trans->param_flags);
2703 		}
2704 		if (params->sack_freq == 1) {
2705 			trans->param_flags =
2706 				sctp_spp_sackdelay_disable(trans->param_flags);
2707 		} else if (params->sack_freq > 1) {
2708 			trans->sackfreq = params->sack_freq;
2709 			trans->param_flags =
2710 				sctp_spp_sackdelay_enable(trans->param_flags);
2711 		}
2712 	}
2713 }
2714 
2715 /*
2716  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2717  *
2718  * This option will effect the way delayed acks are performed.  This
2719  * option allows you to get or set the delayed ack time, in
2720  * milliseconds.  It also allows changing the delayed ack frequency.
2721  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2722  * the assoc_id is 0, then this sets or gets the endpoints default
2723  * values.  If the assoc_id field is non-zero, then the set or get
2724  * effects the specified association for the one to many model (the
2725  * assoc_id field is ignored by the one to one model).  Note that if
2726  * sack_delay or sack_freq are 0 when setting this option, then the
2727  * current values will remain unchanged.
2728  *
2729  * struct sctp_sack_info {
2730  *     sctp_assoc_t            sack_assoc_id;
2731  *     uint32_t                sack_delay;
2732  *     uint32_t                sack_freq;
2733  * };
2734  *
2735  * sack_assoc_id -  This parameter, indicates which association the user
2736  *    is performing an action upon.  Note that if this field's value is
2737  *    zero then the endpoints default value is changed (effecting future
2738  *    associations only).
2739  *
2740  * sack_delay -  This parameter contains the number of milliseconds that
2741  *    the user is requesting the delayed ACK timer be set to.  Note that
2742  *    this value is defined in the standard to be between 200 and 500
2743  *    milliseconds.
2744  *
2745  * sack_freq -  This parameter contains the number of packets that must
2746  *    be received before a sack is sent without waiting for the delay
2747  *    timer to expire.  The default value for this is 2, setting this
2748  *    value to 1 will disable the delayed sack algorithm.
2749  */
2750 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2751 					 struct sctp_sack_info *params)
2752 {
2753 	struct sctp_sock *sp = sctp_sk(sk);
2754 	struct sctp_association *asoc;
2755 
2756 	/* Validate value parameter. */
2757 	if (params->sack_delay > 500)
2758 		return -EINVAL;
2759 
2760 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2761 	 * socket is a one to many style socket, and an association
2762 	 * was not found, then the id was invalid.
2763 	 */
2764 	asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2765 	if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2766 	    sctp_style(sk, UDP))
2767 		return -EINVAL;
2768 
2769 	if (asoc) {
2770 		sctp_apply_asoc_delayed_ack(params, asoc);
2771 
2772 		return 0;
2773 	}
2774 
2775 	if (sctp_style(sk, TCP))
2776 		params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2777 
2778 	if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2779 	    params->sack_assoc_id == SCTP_ALL_ASSOC) {
2780 		if (params->sack_delay) {
2781 			sp->sackdelay = params->sack_delay;
2782 			sp->param_flags =
2783 				sctp_spp_sackdelay_enable(sp->param_flags);
2784 		}
2785 		if (params->sack_freq == 1) {
2786 			sp->param_flags =
2787 				sctp_spp_sackdelay_disable(sp->param_flags);
2788 		} else if (params->sack_freq > 1) {
2789 			sp->sackfreq = params->sack_freq;
2790 			sp->param_flags =
2791 				sctp_spp_sackdelay_enable(sp->param_flags);
2792 		}
2793 	}
2794 
2795 	if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2796 	    params->sack_assoc_id == SCTP_ALL_ASSOC)
2797 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2798 			sctp_apply_asoc_delayed_ack(params, asoc);
2799 
2800 	return 0;
2801 }
2802 
2803 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2804 				       struct sctp_sack_info *params,
2805 				       unsigned int optlen)
2806 {
2807 	if (optlen == sizeof(struct sctp_assoc_value)) {
2808 		struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2809 		struct sctp_sack_info p;
2810 
2811 		pr_warn_ratelimited(DEPRECATED
2812 				    "%s (pid %d) "
2813 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2814 				    "Use struct sctp_sack_info instead\n",
2815 				    current->comm, task_pid_nr(current));
2816 
2817 		p.sack_assoc_id = v->assoc_id;
2818 		p.sack_delay = v->assoc_value;
2819 		p.sack_freq = v->assoc_value ? 0 : 1;
2820 		return __sctp_setsockopt_delayed_ack(sk, &p);
2821 	}
2822 
2823 	if (optlen != sizeof(struct sctp_sack_info))
2824 		return -EINVAL;
2825 	if (params->sack_delay == 0 && params->sack_freq == 0)
2826 		return 0;
2827 	return __sctp_setsockopt_delayed_ack(sk, params);
2828 }
2829 
2830 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2831  *
2832  * Applications can specify protocol parameters for the default association
2833  * initialization.  The option name argument to setsockopt() and getsockopt()
2834  * is SCTP_INITMSG.
2835  *
2836  * Setting initialization parameters is effective only on an unconnected
2837  * socket (for UDP-style sockets only future associations are effected
2838  * by the change).  With TCP-style sockets, this option is inherited by
2839  * sockets derived from a listener socket.
2840  */
2841 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2842 				   unsigned int optlen)
2843 {
2844 	struct sctp_sock *sp = sctp_sk(sk);
2845 
2846 	if (optlen != sizeof(struct sctp_initmsg))
2847 		return -EINVAL;
2848 
2849 	if (sinit->sinit_num_ostreams)
2850 		sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2851 	if (sinit->sinit_max_instreams)
2852 		sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2853 	if (sinit->sinit_max_attempts)
2854 		sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2855 	if (sinit->sinit_max_init_timeo)
2856 		sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2857 
2858 	return 0;
2859 }
2860 
2861 /*
2862  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2863  *
2864  *   Applications that wish to use the sendto() system call may wish to
2865  *   specify a default set of parameters that would normally be supplied
2866  *   through the inclusion of ancillary data.  This socket option allows
2867  *   such an application to set the default sctp_sndrcvinfo structure.
2868  *   The application that wishes to use this socket option simply passes
2869  *   in to this call the sctp_sndrcvinfo structure defined in Section
2870  *   5.2.2) The input parameters accepted by this call include
2871  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2872  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2873  *   to this call if the caller is using the UDP model.
2874  */
2875 static int sctp_setsockopt_default_send_param(struct sock *sk,
2876 					      struct sctp_sndrcvinfo *info,
2877 					      unsigned int optlen)
2878 {
2879 	struct sctp_sock *sp = sctp_sk(sk);
2880 	struct sctp_association *asoc;
2881 
2882 	if (optlen != sizeof(*info))
2883 		return -EINVAL;
2884 	if (info->sinfo_flags &
2885 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2886 	      SCTP_ABORT | SCTP_EOF))
2887 		return -EINVAL;
2888 
2889 	asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2890 	if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2891 	    sctp_style(sk, UDP))
2892 		return -EINVAL;
2893 
2894 	if (asoc) {
2895 		asoc->default_stream = info->sinfo_stream;
2896 		asoc->default_flags = info->sinfo_flags;
2897 		asoc->default_ppid = info->sinfo_ppid;
2898 		asoc->default_context = info->sinfo_context;
2899 		asoc->default_timetolive = info->sinfo_timetolive;
2900 
2901 		return 0;
2902 	}
2903 
2904 	if (sctp_style(sk, TCP))
2905 		info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2906 
2907 	if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2908 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2909 		sp->default_stream = info->sinfo_stream;
2910 		sp->default_flags = info->sinfo_flags;
2911 		sp->default_ppid = info->sinfo_ppid;
2912 		sp->default_context = info->sinfo_context;
2913 		sp->default_timetolive = info->sinfo_timetolive;
2914 	}
2915 
2916 	if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2917 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2918 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2919 			asoc->default_stream = info->sinfo_stream;
2920 			asoc->default_flags = info->sinfo_flags;
2921 			asoc->default_ppid = info->sinfo_ppid;
2922 			asoc->default_context = info->sinfo_context;
2923 			asoc->default_timetolive = info->sinfo_timetolive;
2924 		}
2925 	}
2926 
2927 	return 0;
2928 }
2929 
2930 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2931  * (SCTP_DEFAULT_SNDINFO)
2932  */
2933 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2934 					   struct sctp_sndinfo *info,
2935 					   unsigned int optlen)
2936 {
2937 	struct sctp_sock *sp = sctp_sk(sk);
2938 	struct sctp_association *asoc;
2939 
2940 	if (optlen != sizeof(*info))
2941 		return -EINVAL;
2942 	if (info->snd_flags &
2943 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2944 	      SCTP_ABORT | SCTP_EOF))
2945 		return -EINVAL;
2946 
2947 	asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2948 	if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2949 	    sctp_style(sk, UDP))
2950 		return -EINVAL;
2951 
2952 	if (asoc) {
2953 		asoc->default_stream = info->snd_sid;
2954 		asoc->default_flags = info->snd_flags;
2955 		asoc->default_ppid = info->snd_ppid;
2956 		asoc->default_context = info->snd_context;
2957 
2958 		return 0;
2959 	}
2960 
2961 	if (sctp_style(sk, TCP))
2962 		info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2963 
2964 	if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2965 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2966 		sp->default_stream = info->snd_sid;
2967 		sp->default_flags = info->snd_flags;
2968 		sp->default_ppid = info->snd_ppid;
2969 		sp->default_context = info->snd_context;
2970 	}
2971 
2972 	if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2973 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2974 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2975 			asoc->default_stream = info->snd_sid;
2976 			asoc->default_flags = info->snd_flags;
2977 			asoc->default_ppid = info->snd_ppid;
2978 			asoc->default_context = info->snd_context;
2979 		}
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2986  *
2987  * Requests that the local SCTP stack use the enclosed peer address as
2988  * the association primary.  The enclosed address must be one of the
2989  * association peer's addresses.
2990  */
2991 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
2992 					unsigned int optlen)
2993 {
2994 	struct sctp_transport *trans;
2995 	struct sctp_af *af;
2996 	int err;
2997 
2998 	if (optlen != sizeof(struct sctp_prim))
2999 		return -EINVAL;
3000 
3001 	/* Allow security module to validate address but need address len. */
3002 	af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3003 	if (!af)
3004 		return -EINVAL;
3005 
3006 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3007 					 (struct sockaddr *)&prim->ssp_addr,
3008 					 af->sockaddr_len);
3009 	if (err)
3010 		return err;
3011 
3012 	trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3013 	if (!trans)
3014 		return -EINVAL;
3015 
3016 	sctp_assoc_set_primary(trans->asoc, trans);
3017 
3018 	return 0;
3019 }
3020 
3021 /*
3022  * 7.1.5 SCTP_NODELAY
3023  *
3024  * Turn on/off any Nagle-like algorithm.  This means that packets are
3025  * generally sent as soon as possible and no unnecessary delays are
3026  * introduced, at the cost of more packets in the network.  Expects an
3027  *  integer boolean flag.
3028  */
3029 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3030 				   unsigned int optlen)
3031 {
3032 	if (optlen < sizeof(int))
3033 		return -EINVAL;
3034 	sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3035 	return 0;
3036 }
3037 
3038 /*
3039  *
3040  * 7.1.1 SCTP_RTOINFO
3041  *
3042  * The protocol parameters used to initialize and bound retransmission
3043  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3044  * and modify these parameters.
3045  * All parameters are time values, in milliseconds.  A value of 0, when
3046  * modifying the parameters, indicates that the current value should not
3047  * be changed.
3048  *
3049  */
3050 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3051 				   struct sctp_rtoinfo *rtoinfo,
3052 				   unsigned int optlen)
3053 {
3054 	struct sctp_association *asoc;
3055 	unsigned long rto_min, rto_max;
3056 	struct sctp_sock *sp = sctp_sk(sk);
3057 
3058 	if (optlen != sizeof (struct sctp_rtoinfo))
3059 		return -EINVAL;
3060 
3061 	asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3062 
3063 	/* Set the values to the specific association */
3064 	if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3065 	    sctp_style(sk, UDP))
3066 		return -EINVAL;
3067 
3068 	rto_max = rtoinfo->srto_max;
3069 	rto_min = rtoinfo->srto_min;
3070 
3071 	if (rto_max)
3072 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3073 	else
3074 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3075 
3076 	if (rto_min)
3077 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3078 	else
3079 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3080 
3081 	if (rto_min > rto_max)
3082 		return -EINVAL;
3083 
3084 	if (asoc) {
3085 		if (rtoinfo->srto_initial != 0)
3086 			asoc->rto_initial =
3087 				msecs_to_jiffies(rtoinfo->srto_initial);
3088 		asoc->rto_max = rto_max;
3089 		asoc->rto_min = rto_min;
3090 	} else {
3091 		/* If there is no association or the association-id = 0
3092 		 * set the values to the endpoint.
3093 		 */
3094 		if (rtoinfo->srto_initial != 0)
3095 			sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3096 		sp->rtoinfo.srto_max = rto_max;
3097 		sp->rtoinfo.srto_min = rto_min;
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 /*
3104  *
3105  * 7.1.2 SCTP_ASSOCINFO
3106  *
3107  * This option is used to tune the maximum retransmission attempts
3108  * of the association.
3109  * Returns an error if the new association retransmission value is
3110  * greater than the sum of the retransmission value  of the peer.
3111  * See [SCTP] for more information.
3112  *
3113  */
3114 static int sctp_setsockopt_associnfo(struct sock *sk,
3115 				     struct sctp_assocparams *assocparams,
3116 				     unsigned int optlen)
3117 {
3118 
3119 	struct sctp_association *asoc;
3120 
3121 	if (optlen != sizeof(struct sctp_assocparams))
3122 		return -EINVAL;
3123 
3124 	asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3125 
3126 	if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3127 	    sctp_style(sk, UDP))
3128 		return -EINVAL;
3129 
3130 	/* Set the values to the specific association */
3131 	if (asoc) {
3132 		if (assocparams->sasoc_asocmaxrxt != 0) {
3133 			__u32 path_sum = 0;
3134 			int   paths = 0;
3135 			struct sctp_transport *peer_addr;
3136 
3137 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3138 					transports) {
3139 				path_sum += peer_addr->pathmaxrxt;
3140 				paths++;
3141 			}
3142 
3143 			/* Only validate asocmaxrxt if we have more than
3144 			 * one path/transport.  We do this because path
3145 			 * retransmissions are only counted when we have more
3146 			 * then one path.
3147 			 */
3148 			if (paths > 1 &&
3149 			    assocparams->sasoc_asocmaxrxt > path_sum)
3150 				return -EINVAL;
3151 
3152 			asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3153 		}
3154 
3155 		if (assocparams->sasoc_cookie_life != 0)
3156 			asoc->cookie_life =
3157 				ms_to_ktime(assocparams->sasoc_cookie_life);
3158 	} else {
3159 		/* Set the values to the endpoint */
3160 		struct sctp_sock *sp = sctp_sk(sk);
3161 
3162 		if (assocparams->sasoc_asocmaxrxt != 0)
3163 			sp->assocparams.sasoc_asocmaxrxt =
3164 						assocparams->sasoc_asocmaxrxt;
3165 		if (assocparams->sasoc_cookie_life != 0)
3166 			sp->assocparams.sasoc_cookie_life =
3167 						assocparams->sasoc_cookie_life;
3168 	}
3169 	return 0;
3170 }
3171 
3172 /*
3173  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3174  *
3175  * This socket option is a boolean flag which turns on or off mapped V4
3176  * addresses.  If this option is turned on and the socket is type
3177  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3178  * If this option is turned off, then no mapping will be done of V4
3179  * addresses and a user will receive both PF_INET6 and PF_INET type
3180  * addresses on the socket.
3181  */
3182 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3183 				    unsigned int optlen)
3184 {
3185 	struct sctp_sock *sp = sctp_sk(sk);
3186 
3187 	if (optlen < sizeof(int))
3188 		return -EINVAL;
3189 	if (*val)
3190 		sp->v4mapped = 1;
3191 	else
3192 		sp->v4mapped = 0;
3193 
3194 	return 0;
3195 }
3196 
3197 /*
3198  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3199  * This option will get or set the maximum size to put in any outgoing
3200  * SCTP DATA chunk.  If a message is larger than this size it will be
3201  * fragmented by SCTP into the specified size.  Note that the underlying
3202  * SCTP implementation may fragment into smaller sized chunks when the
3203  * PMTU of the underlying association is smaller than the value set by
3204  * the user.  The default value for this option is '0' which indicates
3205  * the user is NOT limiting fragmentation and only the PMTU will effect
3206  * SCTP's choice of DATA chunk size.  Note also that values set larger
3207  * than the maximum size of an IP datagram will effectively let SCTP
3208  * control fragmentation (i.e. the same as setting this option to 0).
3209  *
3210  * The following structure is used to access and modify this parameter:
3211  *
3212  * struct sctp_assoc_value {
3213  *   sctp_assoc_t assoc_id;
3214  *   uint32_t assoc_value;
3215  * };
3216  *
3217  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3218  *    For one-to-many style sockets this parameter indicates which
3219  *    association the user is performing an action upon.  Note that if
3220  *    this field's value is zero then the endpoints default value is
3221  *    changed (effecting future associations only).
3222  * assoc_value:  This parameter specifies the maximum size in bytes.
3223  */
3224 static int sctp_setsockopt_maxseg(struct sock *sk,
3225 				  struct sctp_assoc_value *params,
3226 				  unsigned int optlen)
3227 {
3228 	struct sctp_sock *sp = sctp_sk(sk);
3229 	struct sctp_association *asoc;
3230 	sctp_assoc_t assoc_id;
3231 	int val;
3232 
3233 	if (optlen == sizeof(int)) {
3234 		pr_warn_ratelimited(DEPRECATED
3235 				    "%s (pid %d) "
3236 				    "Use of int in maxseg socket option.\n"
3237 				    "Use struct sctp_assoc_value instead\n",
3238 				    current->comm, task_pid_nr(current));
3239 		assoc_id = SCTP_FUTURE_ASSOC;
3240 		val = *(int *)params;
3241 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3242 		assoc_id = params->assoc_id;
3243 		val = params->assoc_value;
3244 	} else {
3245 		return -EINVAL;
3246 	}
3247 
3248 	asoc = sctp_id2assoc(sk, assoc_id);
3249 	if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3250 	    sctp_style(sk, UDP))
3251 		return -EINVAL;
3252 
3253 	if (val) {
3254 		int min_len, max_len;
3255 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3256 				 sizeof(struct sctp_data_chunk);
3257 
3258 		min_len = sctp_min_frag_point(sp, datasize);
3259 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3260 
3261 		if (val < min_len || val > max_len)
3262 			return -EINVAL;
3263 	}
3264 
3265 	if (asoc) {
3266 		asoc->user_frag = val;
3267 		sctp_assoc_update_frag_point(asoc);
3268 	} else {
3269 		sp->user_frag = val;
3270 	}
3271 
3272 	return 0;
3273 }
3274 
3275 
3276 /*
3277  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3278  *
3279  *   Requests that the peer mark the enclosed address as the association
3280  *   primary. The enclosed address must be one of the association's
3281  *   locally bound addresses. The following structure is used to make a
3282  *   set primary request:
3283  */
3284 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3285 					     struct sctp_setpeerprim *prim,
3286 					     unsigned int optlen)
3287 {
3288 	struct sctp_sock	*sp;
3289 	struct sctp_association	*asoc = NULL;
3290 	struct sctp_chunk	*chunk;
3291 	struct sctp_af		*af;
3292 	int 			err;
3293 
3294 	sp = sctp_sk(sk);
3295 
3296 	if (!sp->ep->asconf_enable)
3297 		return -EPERM;
3298 
3299 	if (optlen != sizeof(struct sctp_setpeerprim))
3300 		return -EINVAL;
3301 
3302 	asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3303 	if (!asoc)
3304 		return -EINVAL;
3305 
3306 	if (!asoc->peer.asconf_capable)
3307 		return -EPERM;
3308 
3309 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3310 		return -EPERM;
3311 
3312 	if (!sctp_state(asoc, ESTABLISHED))
3313 		return -ENOTCONN;
3314 
3315 	af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3316 	if (!af)
3317 		return -EINVAL;
3318 
3319 	if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3320 		return -EADDRNOTAVAIL;
3321 
3322 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3323 		return -EADDRNOTAVAIL;
3324 
3325 	/* Allow security module to validate address. */
3326 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3327 					 (struct sockaddr *)&prim->sspp_addr,
3328 					 af->sockaddr_len);
3329 	if (err)
3330 		return err;
3331 
3332 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3333 	chunk = sctp_make_asconf_set_prim(asoc,
3334 					  (union sctp_addr *)&prim->sspp_addr);
3335 	if (!chunk)
3336 		return -ENOMEM;
3337 
3338 	err = sctp_send_asconf(asoc, chunk);
3339 
3340 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3341 
3342 	return err;
3343 }
3344 
3345 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3346 					    struct sctp_setadaptation *adapt,
3347 					    unsigned int optlen)
3348 {
3349 	if (optlen != sizeof(struct sctp_setadaptation))
3350 		return -EINVAL;
3351 
3352 	sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3353 
3354 	return 0;
3355 }
3356 
3357 /*
3358  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3359  *
3360  * The context field in the sctp_sndrcvinfo structure is normally only
3361  * used when a failed message is retrieved holding the value that was
3362  * sent down on the actual send call.  This option allows the setting of
3363  * a default context on an association basis that will be received on
3364  * reading messages from the peer.  This is especially helpful in the
3365  * one-2-many model for an application to keep some reference to an
3366  * internal state machine that is processing messages on the
3367  * association.  Note that the setting of this value only effects
3368  * received messages from the peer and does not effect the value that is
3369  * saved with outbound messages.
3370  */
3371 static int sctp_setsockopt_context(struct sock *sk,
3372 				   struct sctp_assoc_value *params,
3373 				   unsigned int optlen)
3374 {
3375 	struct sctp_sock *sp = sctp_sk(sk);
3376 	struct sctp_association *asoc;
3377 
3378 	if (optlen != sizeof(struct sctp_assoc_value))
3379 		return -EINVAL;
3380 
3381 	asoc = sctp_id2assoc(sk, params->assoc_id);
3382 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3383 	    sctp_style(sk, UDP))
3384 		return -EINVAL;
3385 
3386 	if (asoc) {
3387 		asoc->default_rcv_context = params->assoc_value;
3388 
3389 		return 0;
3390 	}
3391 
3392 	if (sctp_style(sk, TCP))
3393 		params->assoc_id = SCTP_FUTURE_ASSOC;
3394 
3395 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3396 	    params->assoc_id == SCTP_ALL_ASSOC)
3397 		sp->default_rcv_context = params->assoc_value;
3398 
3399 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3400 	    params->assoc_id == SCTP_ALL_ASSOC)
3401 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3402 			asoc->default_rcv_context = params->assoc_value;
3403 
3404 	return 0;
3405 }
3406 
3407 /*
3408  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3409  *
3410  * This options will at a minimum specify if the implementation is doing
3411  * fragmented interleave.  Fragmented interleave, for a one to many
3412  * socket, is when subsequent calls to receive a message may return
3413  * parts of messages from different associations.  Some implementations
3414  * may allow you to turn this value on or off.  If so, when turned off,
3415  * no fragment interleave will occur (which will cause a head of line
3416  * blocking amongst multiple associations sharing the same one to many
3417  * socket).  When this option is turned on, then each receive call may
3418  * come from a different association (thus the user must receive data
3419  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3420  * association each receive belongs to.
3421  *
3422  * This option takes a boolean value.  A non-zero value indicates that
3423  * fragmented interleave is on.  A value of zero indicates that
3424  * fragmented interleave is off.
3425  *
3426  * Note that it is important that an implementation that allows this
3427  * option to be turned on, have it off by default.  Otherwise an unaware
3428  * application using the one to many model may become confused and act
3429  * incorrectly.
3430  */
3431 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3432 					       unsigned int optlen)
3433 {
3434 	if (optlen != sizeof(int))
3435 		return -EINVAL;
3436 
3437 	sctp_sk(sk)->frag_interleave = !!*val;
3438 
3439 	if (!sctp_sk(sk)->frag_interleave)
3440 		sctp_sk(sk)->ep->intl_enable = 0;
3441 
3442 	return 0;
3443 }
3444 
3445 /*
3446  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3447  *       (SCTP_PARTIAL_DELIVERY_POINT)
3448  *
3449  * This option will set or get the SCTP partial delivery point.  This
3450  * point is the size of a message where the partial delivery API will be
3451  * invoked to help free up rwnd space for the peer.  Setting this to a
3452  * lower value will cause partial deliveries to happen more often.  The
3453  * calls argument is an integer that sets or gets the partial delivery
3454  * point.  Note also that the call will fail if the user attempts to set
3455  * this value larger than the socket receive buffer size.
3456  *
3457  * Note that any single message having a length smaller than or equal to
3458  * the SCTP partial delivery point will be delivered in one single read
3459  * call as long as the user provided buffer is large enough to hold the
3460  * message.
3461  */
3462 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3463 						  unsigned int optlen)
3464 {
3465 	if (optlen != sizeof(u32))
3466 		return -EINVAL;
3467 
3468 	/* Note: We double the receive buffer from what the user sets
3469 	 * it to be, also initial rwnd is based on rcvbuf/2.
3470 	 */
3471 	if (*val > (sk->sk_rcvbuf >> 1))
3472 		return -EINVAL;
3473 
3474 	sctp_sk(sk)->pd_point = *val;
3475 
3476 	return 0; /* is this the right error code? */
3477 }
3478 
3479 /*
3480  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3481  *
3482  * This option will allow a user to change the maximum burst of packets
3483  * that can be emitted by this association.  Note that the default value
3484  * is 4, and some implementations may restrict this setting so that it
3485  * can only be lowered.
3486  *
3487  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3488  * future associations inheriting the socket value.
3489  */
3490 static int sctp_setsockopt_maxburst(struct sock *sk,
3491 				    struct sctp_assoc_value *params,
3492 				    unsigned int optlen)
3493 {
3494 	struct sctp_sock *sp = sctp_sk(sk);
3495 	struct sctp_association *asoc;
3496 	sctp_assoc_t assoc_id;
3497 	u32 assoc_value;
3498 
3499 	if (optlen == sizeof(int)) {
3500 		pr_warn_ratelimited(DEPRECATED
3501 				    "%s (pid %d) "
3502 				    "Use of int in max_burst socket option deprecated.\n"
3503 				    "Use struct sctp_assoc_value instead\n",
3504 				    current->comm, task_pid_nr(current));
3505 		assoc_id = SCTP_FUTURE_ASSOC;
3506 		assoc_value = *((int *)params);
3507 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3508 		assoc_id = params->assoc_id;
3509 		assoc_value = params->assoc_value;
3510 	} else
3511 		return -EINVAL;
3512 
3513 	asoc = sctp_id2assoc(sk, assoc_id);
3514 	if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3515 		return -EINVAL;
3516 
3517 	if (asoc) {
3518 		asoc->max_burst = assoc_value;
3519 
3520 		return 0;
3521 	}
3522 
3523 	if (sctp_style(sk, TCP))
3524 		assoc_id = SCTP_FUTURE_ASSOC;
3525 
3526 	if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3527 		sp->max_burst = assoc_value;
3528 
3529 	if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3530 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3531 			asoc->max_burst = assoc_value;
3532 
3533 	return 0;
3534 }
3535 
3536 /*
3537  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3538  *
3539  * This set option adds a chunk type that the user is requesting to be
3540  * received only in an authenticated way.  Changes to the list of chunks
3541  * will only effect future associations on the socket.
3542  */
3543 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3544 				      struct sctp_authchunk *val,
3545 				      unsigned int optlen)
3546 {
3547 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3548 
3549 	if (!ep->auth_enable)
3550 		return -EACCES;
3551 
3552 	if (optlen != sizeof(struct sctp_authchunk))
3553 		return -EINVAL;
3554 
3555 	switch (val->sauth_chunk) {
3556 	case SCTP_CID_INIT:
3557 	case SCTP_CID_INIT_ACK:
3558 	case SCTP_CID_SHUTDOWN_COMPLETE:
3559 	case SCTP_CID_AUTH:
3560 		return -EINVAL;
3561 	}
3562 
3563 	/* add this chunk id to the endpoint */
3564 	return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3565 }
3566 
3567 /*
3568  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3569  *
3570  * This option gets or sets the list of HMAC algorithms that the local
3571  * endpoint requires the peer to use.
3572  */
3573 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3574 				      struct sctp_hmacalgo *hmacs,
3575 				      unsigned int optlen)
3576 {
3577 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3578 	u32 idents;
3579 
3580 	if (!ep->auth_enable)
3581 		return -EACCES;
3582 
3583 	if (optlen < sizeof(struct sctp_hmacalgo))
3584 		return -EINVAL;
3585 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3586 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3587 
3588 	idents = hmacs->shmac_num_idents;
3589 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3590 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3591 		return -EINVAL;
3592 
3593 	return sctp_auth_ep_set_hmacs(ep, hmacs);
3594 }
3595 
3596 /*
3597  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3598  *
3599  * This option will set a shared secret key which is used to build an
3600  * association shared key.
3601  */
3602 static int sctp_setsockopt_auth_key(struct sock *sk,
3603 				    struct sctp_authkey *authkey,
3604 				    unsigned int optlen)
3605 {
3606 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3607 	struct sctp_association *asoc;
3608 	int ret = -EINVAL;
3609 
3610 	if (optlen <= sizeof(struct sctp_authkey))
3611 		return -EINVAL;
3612 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3613 	 * this.
3614 	 */
3615 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3616 
3617 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3618 		goto out;
3619 
3620 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3621 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3622 	    sctp_style(sk, UDP))
3623 		goto out;
3624 
3625 	if (asoc) {
3626 		ret = sctp_auth_set_key(ep, asoc, authkey);
3627 		goto out;
3628 	}
3629 
3630 	if (sctp_style(sk, TCP))
3631 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3632 
3633 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3634 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3635 		ret = sctp_auth_set_key(ep, asoc, authkey);
3636 		if (ret)
3637 			goto out;
3638 	}
3639 
3640 	ret = 0;
3641 
3642 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3643 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3644 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3645 			int res = sctp_auth_set_key(ep, asoc, authkey);
3646 
3647 			if (res && !ret)
3648 				ret = res;
3649 		}
3650 	}
3651 
3652 out:
3653 	memzero_explicit(authkey, optlen);
3654 	return ret;
3655 }
3656 
3657 /*
3658  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3659  *
3660  * This option will get or set the active shared key to be used to build
3661  * the association shared key.
3662  */
3663 static int sctp_setsockopt_active_key(struct sock *sk,
3664 				      struct sctp_authkeyid *val,
3665 				      unsigned int optlen)
3666 {
3667 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3668 	struct sctp_association *asoc;
3669 	int ret = 0;
3670 
3671 	if (optlen != sizeof(struct sctp_authkeyid))
3672 		return -EINVAL;
3673 
3674 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3675 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3676 	    sctp_style(sk, UDP))
3677 		return -EINVAL;
3678 
3679 	if (asoc)
3680 		return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3681 
3682 	if (sctp_style(sk, TCP))
3683 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3684 
3685 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3686 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3687 		ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3688 		if (ret)
3689 			return ret;
3690 	}
3691 
3692 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3693 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3694 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3695 			int res = sctp_auth_set_active_key(ep, asoc,
3696 							   val->scact_keynumber);
3697 
3698 			if (res && !ret)
3699 				ret = res;
3700 		}
3701 	}
3702 
3703 	return ret;
3704 }
3705 
3706 /*
3707  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3708  *
3709  * This set option will delete a shared secret key from use.
3710  */
3711 static int sctp_setsockopt_del_key(struct sock *sk,
3712 				   struct sctp_authkeyid *val,
3713 				   unsigned int optlen)
3714 {
3715 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3716 	struct sctp_association *asoc;
3717 	int ret = 0;
3718 
3719 	if (optlen != sizeof(struct sctp_authkeyid))
3720 		return -EINVAL;
3721 
3722 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3723 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3724 	    sctp_style(sk, UDP))
3725 		return -EINVAL;
3726 
3727 	if (asoc)
3728 		return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3729 
3730 	if (sctp_style(sk, TCP))
3731 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3732 
3733 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3734 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3735 		ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3736 		if (ret)
3737 			return ret;
3738 	}
3739 
3740 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3741 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3742 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3743 			int res = sctp_auth_del_key_id(ep, asoc,
3744 						       val->scact_keynumber);
3745 
3746 			if (res && !ret)
3747 				ret = res;
3748 		}
3749 	}
3750 
3751 	return ret;
3752 }
3753 
3754 /*
3755  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3756  *
3757  * This set option will deactivate a shared secret key.
3758  */
3759 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3760 					  struct sctp_authkeyid *val,
3761 					  unsigned int optlen)
3762 {
3763 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3764 	struct sctp_association *asoc;
3765 	int ret = 0;
3766 
3767 	if (optlen != sizeof(struct sctp_authkeyid))
3768 		return -EINVAL;
3769 
3770 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3771 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3772 	    sctp_style(sk, UDP))
3773 		return -EINVAL;
3774 
3775 	if (asoc)
3776 		return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3777 
3778 	if (sctp_style(sk, TCP))
3779 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3780 
3781 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3782 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3783 		ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3784 		if (ret)
3785 			return ret;
3786 	}
3787 
3788 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3789 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3790 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3791 			int res = sctp_auth_deact_key_id(ep, asoc,
3792 							 val->scact_keynumber);
3793 
3794 			if (res && !ret)
3795 				ret = res;
3796 		}
3797 	}
3798 
3799 	return ret;
3800 }
3801 
3802 /*
3803  * 8.1.23 SCTP_AUTO_ASCONF
3804  *
3805  * This option will enable or disable the use of the automatic generation of
3806  * ASCONF chunks to add and delete addresses to an existing association.  Note
3807  * that this option has two caveats namely: a) it only affects sockets that
3808  * are bound to all addresses available to the SCTP stack, and b) the system
3809  * administrator may have an overriding control that turns the ASCONF feature
3810  * off no matter what setting the socket option may have.
3811  * This option expects an integer boolean flag, where a non-zero value turns on
3812  * the option, and a zero value turns off the option.
3813  * Note. In this implementation, socket operation overrides default parameter
3814  * being set by sysctl as well as FreeBSD implementation
3815  */
3816 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3817 					unsigned int optlen)
3818 {
3819 	struct sctp_sock *sp = sctp_sk(sk);
3820 
3821 	if (optlen < sizeof(int))
3822 		return -EINVAL;
3823 	if (!sctp_is_ep_boundall(sk) && *val)
3824 		return -EINVAL;
3825 	if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3826 		return 0;
3827 
3828 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3829 	if (*val == 0 && sp->do_auto_asconf) {
3830 		list_del(&sp->auto_asconf_list);
3831 		sp->do_auto_asconf = 0;
3832 	} else if (*val && !sp->do_auto_asconf) {
3833 		list_add_tail(&sp->auto_asconf_list,
3834 		    &sock_net(sk)->sctp.auto_asconf_splist);
3835 		sp->do_auto_asconf = 1;
3836 	}
3837 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3838 	return 0;
3839 }
3840 
3841 /*
3842  * SCTP_PEER_ADDR_THLDS
3843  *
3844  * This option allows us to alter the partially failed threshold for one or all
3845  * transports in an association.  See Section 6.1 of:
3846  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3847  */
3848 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3849 					    struct sctp_paddrthlds_v2 *val,
3850 					    unsigned int optlen, bool v2)
3851 {
3852 	struct sctp_transport *trans;
3853 	struct sctp_association *asoc;
3854 	int len;
3855 
3856 	len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3857 	if (optlen < len)
3858 		return -EINVAL;
3859 
3860 	if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3861 		return -EINVAL;
3862 
3863 	if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3864 		trans = sctp_addr_id2transport(sk, &val->spt_address,
3865 					       val->spt_assoc_id);
3866 		if (!trans)
3867 			return -ENOENT;
3868 
3869 		if (val->spt_pathmaxrxt)
3870 			trans->pathmaxrxt = val->spt_pathmaxrxt;
3871 		if (v2)
3872 			trans->ps_retrans = val->spt_pathcpthld;
3873 		trans->pf_retrans = val->spt_pathpfthld;
3874 
3875 		return 0;
3876 	}
3877 
3878 	asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3879 	if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3880 	    sctp_style(sk, UDP))
3881 		return -EINVAL;
3882 
3883 	if (asoc) {
3884 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3885 				    transports) {
3886 			if (val->spt_pathmaxrxt)
3887 				trans->pathmaxrxt = val->spt_pathmaxrxt;
3888 			if (v2)
3889 				trans->ps_retrans = val->spt_pathcpthld;
3890 			trans->pf_retrans = val->spt_pathpfthld;
3891 		}
3892 
3893 		if (val->spt_pathmaxrxt)
3894 			asoc->pathmaxrxt = val->spt_pathmaxrxt;
3895 		if (v2)
3896 			asoc->ps_retrans = val->spt_pathcpthld;
3897 		asoc->pf_retrans = val->spt_pathpfthld;
3898 	} else {
3899 		struct sctp_sock *sp = sctp_sk(sk);
3900 
3901 		if (val->spt_pathmaxrxt)
3902 			sp->pathmaxrxt = val->spt_pathmaxrxt;
3903 		if (v2)
3904 			sp->ps_retrans = val->spt_pathcpthld;
3905 		sp->pf_retrans = val->spt_pathpfthld;
3906 	}
3907 
3908 	return 0;
3909 }
3910 
3911 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3912 				       unsigned int optlen)
3913 {
3914 	if (optlen < sizeof(int))
3915 		return -EINVAL;
3916 
3917 	sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3918 
3919 	return 0;
3920 }
3921 
3922 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3923 				       unsigned int optlen)
3924 {
3925 	if (optlen < sizeof(int))
3926 		return -EINVAL;
3927 
3928 	sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3929 
3930 	return 0;
3931 }
3932 
3933 static int sctp_setsockopt_pr_supported(struct sock *sk,
3934 					struct sctp_assoc_value *params,
3935 					unsigned int optlen)
3936 {
3937 	struct sctp_association *asoc;
3938 
3939 	if (optlen != sizeof(*params))
3940 		return -EINVAL;
3941 
3942 	asoc = sctp_id2assoc(sk, params->assoc_id);
3943 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3944 	    sctp_style(sk, UDP))
3945 		return -EINVAL;
3946 
3947 	sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3948 
3949 	return 0;
3950 }
3951 
3952 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3953 					  struct sctp_default_prinfo *info,
3954 					  unsigned int optlen)
3955 {
3956 	struct sctp_sock *sp = sctp_sk(sk);
3957 	struct sctp_association *asoc;
3958 	int retval = -EINVAL;
3959 
3960 	if (optlen != sizeof(*info))
3961 		goto out;
3962 
3963 	if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3964 		goto out;
3965 
3966 	if (info->pr_policy == SCTP_PR_SCTP_NONE)
3967 		info->pr_value = 0;
3968 
3969 	asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3970 	if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3971 	    sctp_style(sk, UDP))
3972 		goto out;
3973 
3974 	retval = 0;
3975 
3976 	if (asoc) {
3977 		SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3978 		asoc->default_timetolive = info->pr_value;
3979 		goto out;
3980 	}
3981 
3982 	if (sctp_style(sk, TCP))
3983 		info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3984 
3985 	if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
3986 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
3987 		SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
3988 		sp->default_timetolive = info->pr_value;
3989 	}
3990 
3991 	if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
3992 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
3993 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3994 			SCTP_PR_SET_POLICY(asoc->default_flags,
3995 					   info->pr_policy);
3996 			asoc->default_timetolive = info->pr_value;
3997 		}
3998 	}
3999 
4000 out:
4001 	return retval;
4002 }
4003 
4004 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4005 					      struct sctp_assoc_value *params,
4006 					      unsigned int optlen)
4007 {
4008 	struct sctp_association *asoc;
4009 	int retval = -EINVAL;
4010 
4011 	if (optlen != sizeof(*params))
4012 		goto out;
4013 
4014 	asoc = sctp_id2assoc(sk, params->assoc_id);
4015 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4016 	    sctp_style(sk, UDP))
4017 		goto out;
4018 
4019 	sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4020 
4021 	retval = 0;
4022 
4023 out:
4024 	return retval;
4025 }
4026 
4027 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4028 					   struct sctp_assoc_value *params,
4029 					   unsigned int optlen)
4030 {
4031 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4032 	struct sctp_association *asoc;
4033 	int retval = -EINVAL;
4034 
4035 	if (optlen != sizeof(*params))
4036 		goto out;
4037 
4038 	if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4039 		goto out;
4040 
4041 	asoc = sctp_id2assoc(sk, params->assoc_id);
4042 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4043 	    sctp_style(sk, UDP))
4044 		goto out;
4045 
4046 	retval = 0;
4047 
4048 	if (asoc) {
4049 		asoc->strreset_enable = params->assoc_value;
4050 		goto out;
4051 	}
4052 
4053 	if (sctp_style(sk, TCP))
4054 		params->assoc_id = SCTP_FUTURE_ASSOC;
4055 
4056 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4057 	    params->assoc_id == SCTP_ALL_ASSOC)
4058 		ep->strreset_enable = params->assoc_value;
4059 
4060 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4061 	    params->assoc_id == SCTP_ALL_ASSOC)
4062 		list_for_each_entry(asoc, &ep->asocs, asocs)
4063 			asoc->strreset_enable = params->assoc_value;
4064 
4065 out:
4066 	return retval;
4067 }
4068 
4069 static int sctp_setsockopt_reset_streams(struct sock *sk,
4070 					 struct sctp_reset_streams *params,
4071 					 unsigned int optlen)
4072 {
4073 	struct sctp_association *asoc;
4074 
4075 	if (optlen < sizeof(*params))
4076 		return -EINVAL;
4077 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4078 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4079 					     sizeof(__u16) * sizeof(*params));
4080 
4081 	if (params->srs_number_streams * sizeof(__u16) >
4082 	    optlen - sizeof(*params))
4083 		return -EINVAL;
4084 
4085 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4086 	if (!asoc)
4087 		return -EINVAL;
4088 
4089 	return sctp_send_reset_streams(asoc, params);
4090 }
4091 
4092 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4093 				       unsigned int optlen)
4094 {
4095 	struct sctp_association *asoc;
4096 
4097 	if (optlen != sizeof(*associd))
4098 		return -EINVAL;
4099 
4100 	asoc = sctp_id2assoc(sk, *associd);
4101 	if (!asoc)
4102 		return -EINVAL;
4103 
4104 	return sctp_send_reset_assoc(asoc);
4105 }
4106 
4107 static int sctp_setsockopt_add_streams(struct sock *sk,
4108 				       struct sctp_add_streams *params,
4109 				       unsigned int optlen)
4110 {
4111 	struct sctp_association *asoc;
4112 
4113 	if (optlen != sizeof(*params))
4114 		return -EINVAL;
4115 
4116 	asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4117 	if (!asoc)
4118 		return -EINVAL;
4119 
4120 	return sctp_send_add_streams(asoc, params);
4121 }
4122 
4123 static int sctp_setsockopt_scheduler(struct sock *sk,
4124 				     struct sctp_assoc_value *params,
4125 				     unsigned int optlen)
4126 {
4127 	struct sctp_sock *sp = sctp_sk(sk);
4128 	struct sctp_association *asoc;
4129 	int retval = 0;
4130 
4131 	if (optlen < sizeof(*params))
4132 		return -EINVAL;
4133 
4134 	if (params->assoc_value > SCTP_SS_MAX)
4135 		return -EINVAL;
4136 
4137 	asoc = sctp_id2assoc(sk, params->assoc_id);
4138 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4139 	    sctp_style(sk, UDP))
4140 		return -EINVAL;
4141 
4142 	if (asoc)
4143 		return sctp_sched_set_sched(asoc, params->assoc_value);
4144 
4145 	if (sctp_style(sk, TCP))
4146 		params->assoc_id = SCTP_FUTURE_ASSOC;
4147 
4148 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4149 	    params->assoc_id == SCTP_ALL_ASSOC)
4150 		sp->default_ss = params->assoc_value;
4151 
4152 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4153 	    params->assoc_id == SCTP_ALL_ASSOC) {
4154 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4155 			int ret = sctp_sched_set_sched(asoc,
4156 						       params->assoc_value);
4157 
4158 			if (ret && !retval)
4159 				retval = ret;
4160 		}
4161 	}
4162 
4163 	return retval;
4164 }
4165 
4166 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4167 					   struct sctp_stream_value *params,
4168 					   unsigned int optlen)
4169 {
4170 	struct sctp_association *asoc;
4171 	int retval = -EINVAL;
4172 
4173 	if (optlen < sizeof(*params))
4174 		goto out;
4175 
4176 	asoc = sctp_id2assoc(sk, params->assoc_id);
4177 	if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4178 	    sctp_style(sk, UDP))
4179 		goto out;
4180 
4181 	if (asoc) {
4182 		retval = sctp_sched_set_value(asoc, params->stream_id,
4183 					      params->stream_value, GFP_KERNEL);
4184 		goto out;
4185 	}
4186 
4187 	retval = 0;
4188 
4189 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4190 		int ret = sctp_sched_set_value(asoc, params->stream_id,
4191 					       params->stream_value,
4192 					       GFP_KERNEL);
4193 		if (ret && !retval) /* try to return the 1st error. */
4194 			retval = ret;
4195 	}
4196 
4197 out:
4198 	return retval;
4199 }
4200 
4201 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4202 						  struct sctp_assoc_value *p,
4203 						  unsigned int optlen)
4204 {
4205 	struct sctp_sock *sp = sctp_sk(sk);
4206 	struct sctp_association *asoc;
4207 
4208 	if (optlen < sizeof(*p))
4209 		return -EINVAL;
4210 
4211 	asoc = sctp_id2assoc(sk, p->assoc_id);
4212 	if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4213 		return -EINVAL;
4214 
4215 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4216 		return -EPERM;
4217 	}
4218 
4219 	sp->ep->intl_enable = !!p->assoc_value;
4220 	return 0;
4221 }
4222 
4223 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4224 				      unsigned int optlen)
4225 {
4226 	if (!sctp_style(sk, TCP))
4227 		return -EOPNOTSUPP;
4228 
4229 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4230 		return -EFAULT;
4231 
4232 	if (optlen < sizeof(int))
4233 		return -EINVAL;
4234 
4235 	sctp_sk(sk)->reuse = !!*val;
4236 
4237 	return 0;
4238 }
4239 
4240 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4241 					struct sctp_association *asoc)
4242 {
4243 	struct sctp_ulpevent *event;
4244 
4245 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4246 
4247 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4248 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4249 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4250 					GFP_USER | __GFP_NOWARN);
4251 			if (!event)
4252 				return -ENOMEM;
4253 
4254 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4255 		}
4256 	}
4257 
4258 	return 0;
4259 }
4260 
4261 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4262 				 unsigned int optlen)
4263 {
4264 	struct sctp_sock *sp = sctp_sk(sk);
4265 	struct sctp_association *asoc;
4266 	int retval = 0;
4267 
4268 	if (optlen < sizeof(*param))
4269 		return -EINVAL;
4270 
4271 	if (param->se_type < SCTP_SN_TYPE_BASE ||
4272 	    param->se_type > SCTP_SN_TYPE_MAX)
4273 		return -EINVAL;
4274 
4275 	asoc = sctp_id2assoc(sk, param->se_assoc_id);
4276 	if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4277 	    sctp_style(sk, UDP))
4278 		return -EINVAL;
4279 
4280 	if (asoc)
4281 		return sctp_assoc_ulpevent_type_set(param, asoc);
4282 
4283 	if (sctp_style(sk, TCP))
4284 		param->se_assoc_id = SCTP_FUTURE_ASSOC;
4285 
4286 	if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4287 	    param->se_assoc_id == SCTP_ALL_ASSOC)
4288 		sctp_ulpevent_type_set(&sp->subscribe,
4289 				       param->se_type, param->se_on);
4290 
4291 	if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4292 	    param->se_assoc_id == SCTP_ALL_ASSOC) {
4293 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4294 			int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4295 
4296 			if (ret && !retval)
4297 				retval = ret;
4298 		}
4299 	}
4300 
4301 	return retval;
4302 }
4303 
4304 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4305 					    struct sctp_assoc_value *params,
4306 					    unsigned int optlen)
4307 {
4308 	struct sctp_association *asoc;
4309 	struct sctp_endpoint *ep;
4310 	int retval = -EINVAL;
4311 
4312 	if (optlen != sizeof(*params))
4313 		goto out;
4314 
4315 	asoc = sctp_id2assoc(sk, params->assoc_id);
4316 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4317 	    sctp_style(sk, UDP))
4318 		goto out;
4319 
4320 	ep = sctp_sk(sk)->ep;
4321 	ep->asconf_enable = !!params->assoc_value;
4322 
4323 	if (ep->asconf_enable && ep->auth_enable) {
4324 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4325 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4326 	}
4327 
4328 	retval = 0;
4329 
4330 out:
4331 	return retval;
4332 }
4333 
4334 static int sctp_setsockopt_auth_supported(struct sock *sk,
4335 					  struct sctp_assoc_value *params,
4336 					  unsigned int optlen)
4337 {
4338 	struct sctp_association *asoc;
4339 	struct sctp_endpoint *ep;
4340 	int retval = -EINVAL;
4341 
4342 	if (optlen != sizeof(*params))
4343 		goto out;
4344 
4345 	asoc = sctp_id2assoc(sk, params->assoc_id);
4346 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4347 	    sctp_style(sk, UDP))
4348 		goto out;
4349 
4350 	ep = sctp_sk(sk)->ep;
4351 	if (params->assoc_value) {
4352 		retval = sctp_auth_init(ep, GFP_KERNEL);
4353 		if (retval)
4354 			goto out;
4355 		if (ep->asconf_enable) {
4356 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4357 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4358 		}
4359 	}
4360 
4361 	ep->auth_enable = !!params->assoc_value;
4362 	retval = 0;
4363 
4364 out:
4365 	return retval;
4366 }
4367 
4368 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4369 					 struct sctp_assoc_value *params,
4370 					 unsigned int optlen)
4371 {
4372 	struct sctp_association *asoc;
4373 	int retval = -EINVAL;
4374 
4375 	if (optlen != sizeof(*params))
4376 		goto out;
4377 
4378 	asoc = sctp_id2assoc(sk, params->assoc_id);
4379 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4380 	    sctp_style(sk, UDP))
4381 		goto out;
4382 
4383 	sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4384 	retval = 0;
4385 
4386 out:
4387 	return retval;
4388 }
4389 
4390 static int sctp_setsockopt_pf_expose(struct sock *sk,
4391 				     struct sctp_assoc_value *params,
4392 				     unsigned int optlen)
4393 {
4394 	struct sctp_association *asoc;
4395 	int retval = -EINVAL;
4396 
4397 	if (optlen != sizeof(*params))
4398 		goto out;
4399 
4400 	if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4401 		goto out;
4402 
4403 	asoc = sctp_id2assoc(sk, params->assoc_id);
4404 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4405 	    sctp_style(sk, UDP))
4406 		goto out;
4407 
4408 	if (asoc)
4409 		asoc->pf_expose = params->assoc_value;
4410 	else
4411 		sctp_sk(sk)->pf_expose = params->assoc_value;
4412 	retval = 0;
4413 
4414 out:
4415 	return retval;
4416 }
4417 
4418 static int sctp_setsockopt_encap_port(struct sock *sk,
4419 				      struct sctp_udpencaps *encap,
4420 				      unsigned int optlen)
4421 {
4422 	struct sctp_association *asoc;
4423 	struct sctp_transport *t;
4424 	__be16 encap_port;
4425 
4426 	if (optlen != sizeof(*encap))
4427 		return -EINVAL;
4428 
4429 	/* If an address other than INADDR_ANY is specified, and
4430 	 * no transport is found, then the request is invalid.
4431 	 */
4432 	encap_port = (__force __be16)encap->sue_port;
4433 	if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4434 		t = sctp_addr_id2transport(sk, &encap->sue_address,
4435 					   encap->sue_assoc_id);
4436 		if (!t)
4437 			return -EINVAL;
4438 
4439 		t->encap_port = encap_port;
4440 		return 0;
4441 	}
4442 
4443 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4444 	 * socket is a one to many style socket, and an association
4445 	 * was not found, then the id was invalid.
4446 	 */
4447 	asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4448 	if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4449 	    sctp_style(sk, UDP))
4450 		return -EINVAL;
4451 
4452 	/* If changes are for association, also apply encap_port to
4453 	 * each transport.
4454 	 */
4455 	if (asoc) {
4456 		list_for_each_entry(t, &asoc->peer.transport_addr_list,
4457 				    transports)
4458 			t->encap_port = encap_port;
4459 
4460 		return 0;
4461 	}
4462 
4463 	sctp_sk(sk)->encap_port = encap_port;
4464 	return 0;
4465 }
4466 
4467 /* API 6.2 setsockopt(), getsockopt()
4468  *
4469  * Applications use setsockopt() and getsockopt() to set or retrieve
4470  * socket options.  Socket options are used to change the default
4471  * behavior of sockets calls.  They are described in Section 7.
4472  *
4473  * The syntax is:
4474  *
4475  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4476  *                    int __user *optlen);
4477  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4478  *                    int optlen);
4479  *
4480  *   sd      - the socket descript.
4481  *   level   - set to IPPROTO_SCTP for all SCTP options.
4482  *   optname - the option name.
4483  *   optval  - the buffer to store the value of the option.
4484  *   optlen  - the size of the buffer.
4485  */
4486 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4487 			   sockptr_t optval, unsigned int optlen)
4488 {
4489 	void *kopt = NULL;
4490 	int retval = 0;
4491 
4492 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4493 
4494 	/* I can hardly begin to describe how wrong this is.  This is
4495 	 * so broken as to be worse than useless.  The API draft
4496 	 * REALLY is NOT helpful here...  I am not convinced that the
4497 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4498 	 * are at all well-founded.
4499 	 */
4500 	if (level != SOL_SCTP) {
4501 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4502 
4503 		return af->setsockopt(sk, level, optname, optval, optlen);
4504 	}
4505 
4506 	if (optlen > 0) {
4507 		kopt = memdup_sockptr(optval, optlen);
4508 		if (IS_ERR(kopt))
4509 			return PTR_ERR(kopt);
4510 	}
4511 
4512 	lock_sock(sk);
4513 
4514 	switch (optname) {
4515 	case SCTP_SOCKOPT_BINDX_ADD:
4516 		/* 'optlen' is the size of the addresses buffer. */
4517 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4518 					       SCTP_BINDX_ADD_ADDR);
4519 		break;
4520 
4521 	case SCTP_SOCKOPT_BINDX_REM:
4522 		/* 'optlen' is the size of the addresses buffer. */
4523 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4524 					       SCTP_BINDX_REM_ADDR);
4525 		break;
4526 
4527 	case SCTP_SOCKOPT_CONNECTX_OLD:
4528 		/* 'optlen' is the size of the addresses buffer. */
4529 		retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4530 		break;
4531 
4532 	case SCTP_SOCKOPT_CONNECTX:
4533 		/* 'optlen' is the size of the addresses buffer. */
4534 		retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4535 		break;
4536 
4537 	case SCTP_DISABLE_FRAGMENTS:
4538 		retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4539 		break;
4540 
4541 	case SCTP_EVENTS:
4542 		retval = sctp_setsockopt_events(sk, kopt, optlen);
4543 		break;
4544 
4545 	case SCTP_AUTOCLOSE:
4546 		retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4547 		break;
4548 
4549 	case SCTP_PEER_ADDR_PARAMS:
4550 		retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4551 		break;
4552 
4553 	case SCTP_DELAYED_SACK:
4554 		retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4555 		break;
4556 	case SCTP_PARTIAL_DELIVERY_POINT:
4557 		retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4558 		break;
4559 
4560 	case SCTP_INITMSG:
4561 		retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4562 		break;
4563 	case SCTP_DEFAULT_SEND_PARAM:
4564 		retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4565 		break;
4566 	case SCTP_DEFAULT_SNDINFO:
4567 		retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4568 		break;
4569 	case SCTP_PRIMARY_ADDR:
4570 		retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4571 		break;
4572 	case SCTP_SET_PEER_PRIMARY_ADDR:
4573 		retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4574 		break;
4575 	case SCTP_NODELAY:
4576 		retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4577 		break;
4578 	case SCTP_RTOINFO:
4579 		retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4580 		break;
4581 	case SCTP_ASSOCINFO:
4582 		retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4583 		break;
4584 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4585 		retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4586 		break;
4587 	case SCTP_MAXSEG:
4588 		retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4589 		break;
4590 	case SCTP_ADAPTATION_LAYER:
4591 		retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4592 		break;
4593 	case SCTP_CONTEXT:
4594 		retval = sctp_setsockopt_context(sk, kopt, optlen);
4595 		break;
4596 	case SCTP_FRAGMENT_INTERLEAVE:
4597 		retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4598 		break;
4599 	case SCTP_MAX_BURST:
4600 		retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4601 		break;
4602 	case SCTP_AUTH_CHUNK:
4603 		retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4604 		break;
4605 	case SCTP_HMAC_IDENT:
4606 		retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4607 		break;
4608 	case SCTP_AUTH_KEY:
4609 		retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4610 		break;
4611 	case SCTP_AUTH_ACTIVE_KEY:
4612 		retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4613 		break;
4614 	case SCTP_AUTH_DELETE_KEY:
4615 		retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4616 		break;
4617 	case SCTP_AUTH_DEACTIVATE_KEY:
4618 		retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4619 		break;
4620 	case SCTP_AUTO_ASCONF:
4621 		retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4622 		break;
4623 	case SCTP_PEER_ADDR_THLDS:
4624 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4625 							  false);
4626 		break;
4627 	case SCTP_PEER_ADDR_THLDS_V2:
4628 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4629 							  true);
4630 		break;
4631 	case SCTP_RECVRCVINFO:
4632 		retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4633 		break;
4634 	case SCTP_RECVNXTINFO:
4635 		retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4636 		break;
4637 	case SCTP_PR_SUPPORTED:
4638 		retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4639 		break;
4640 	case SCTP_DEFAULT_PRINFO:
4641 		retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4642 		break;
4643 	case SCTP_RECONFIG_SUPPORTED:
4644 		retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4645 		break;
4646 	case SCTP_ENABLE_STREAM_RESET:
4647 		retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4648 		break;
4649 	case SCTP_RESET_STREAMS:
4650 		retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4651 		break;
4652 	case SCTP_RESET_ASSOC:
4653 		retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4654 		break;
4655 	case SCTP_ADD_STREAMS:
4656 		retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4657 		break;
4658 	case SCTP_STREAM_SCHEDULER:
4659 		retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4660 		break;
4661 	case SCTP_STREAM_SCHEDULER_VALUE:
4662 		retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4663 		break;
4664 	case SCTP_INTERLEAVING_SUPPORTED:
4665 		retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4666 								optlen);
4667 		break;
4668 	case SCTP_REUSE_PORT:
4669 		retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4670 		break;
4671 	case SCTP_EVENT:
4672 		retval = sctp_setsockopt_event(sk, kopt, optlen);
4673 		break;
4674 	case SCTP_ASCONF_SUPPORTED:
4675 		retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4676 		break;
4677 	case SCTP_AUTH_SUPPORTED:
4678 		retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4679 		break;
4680 	case SCTP_ECN_SUPPORTED:
4681 		retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4682 		break;
4683 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4684 		retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4685 		break;
4686 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
4687 		retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4688 		break;
4689 	default:
4690 		retval = -ENOPROTOOPT;
4691 		break;
4692 	}
4693 
4694 	release_sock(sk);
4695 	kfree(kopt);
4696 	return retval;
4697 }
4698 
4699 /* API 3.1.6 connect() - UDP Style Syntax
4700  *
4701  * An application may use the connect() call in the UDP model to initiate an
4702  * association without sending data.
4703  *
4704  * The syntax is:
4705  *
4706  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4707  *
4708  * sd: the socket descriptor to have a new association added to.
4709  *
4710  * nam: the address structure (either struct sockaddr_in or struct
4711  *    sockaddr_in6 defined in RFC2553 [7]).
4712  *
4713  * len: the size of the address.
4714  */
4715 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4716 			int addr_len, int flags)
4717 {
4718 	struct sctp_af *af;
4719 	int err = -EINVAL;
4720 
4721 	lock_sock(sk);
4722 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4723 		 addr, addr_len);
4724 
4725 	/* Validate addr_len before calling common connect/connectx routine. */
4726 	af = sctp_get_af_specific(addr->sa_family);
4727 	if (af && addr_len >= af->sockaddr_len)
4728 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4729 
4730 	release_sock(sk);
4731 	return err;
4732 }
4733 
4734 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4735 		      int addr_len, int flags)
4736 {
4737 	if (addr_len < sizeof(uaddr->sa_family))
4738 		return -EINVAL;
4739 
4740 	if (uaddr->sa_family == AF_UNSPEC)
4741 		return -EOPNOTSUPP;
4742 
4743 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4744 }
4745 
4746 /* FIXME: Write comments. */
4747 static int sctp_disconnect(struct sock *sk, int flags)
4748 {
4749 	return -EOPNOTSUPP; /* STUB */
4750 }
4751 
4752 /* 4.1.4 accept() - TCP Style Syntax
4753  *
4754  * Applications use accept() call to remove an established SCTP
4755  * association from the accept queue of the endpoint.  A new socket
4756  * descriptor will be returned from accept() to represent the newly
4757  * formed association.
4758  */
4759 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4760 {
4761 	struct sctp_sock *sp;
4762 	struct sctp_endpoint *ep;
4763 	struct sock *newsk = NULL;
4764 	struct sctp_association *asoc;
4765 	long timeo;
4766 	int error = 0;
4767 
4768 	lock_sock(sk);
4769 
4770 	sp = sctp_sk(sk);
4771 	ep = sp->ep;
4772 
4773 	if (!sctp_style(sk, TCP)) {
4774 		error = -EOPNOTSUPP;
4775 		goto out;
4776 	}
4777 
4778 	if (!sctp_sstate(sk, LISTENING)) {
4779 		error = -EINVAL;
4780 		goto out;
4781 	}
4782 
4783 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4784 
4785 	error = sctp_wait_for_accept(sk, timeo);
4786 	if (error)
4787 		goto out;
4788 
4789 	/* We treat the list of associations on the endpoint as the accept
4790 	 * queue and pick the first association on the list.
4791 	 */
4792 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4793 
4794 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4795 	if (!newsk) {
4796 		error = -ENOMEM;
4797 		goto out;
4798 	}
4799 
4800 	/* Populate the fields of the newsk from the oldsk and migrate the
4801 	 * asoc to the newsk.
4802 	 */
4803 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4804 	if (error) {
4805 		sk_common_release(newsk);
4806 		newsk = NULL;
4807 	}
4808 
4809 out:
4810 	release_sock(sk);
4811 	*err = error;
4812 	return newsk;
4813 }
4814 
4815 /* The SCTP ioctl handler. */
4816 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4817 {
4818 	int rc = -ENOTCONN;
4819 
4820 	lock_sock(sk);
4821 
4822 	/*
4823 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4824 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4825 	 */
4826 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4827 		goto out;
4828 
4829 	switch (cmd) {
4830 	case SIOCINQ: {
4831 		struct sk_buff *skb;
4832 		unsigned int amount = 0;
4833 
4834 		skb = skb_peek(&sk->sk_receive_queue);
4835 		if (skb != NULL) {
4836 			/*
4837 			 * We will only return the amount of this packet since
4838 			 * that is all that will be read.
4839 			 */
4840 			amount = skb->len;
4841 		}
4842 		rc = put_user(amount, (int __user *)arg);
4843 		break;
4844 	}
4845 	default:
4846 		rc = -ENOIOCTLCMD;
4847 		break;
4848 	}
4849 out:
4850 	release_sock(sk);
4851 	return rc;
4852 }
4853 
4854 /* This is the function which gets called during socket creation to
4855  * initialized the SCTP-specific portion of the sock.
4856  * The sock structure should already be zero-filled memory.
4857  */
4858 static int sctp_init_sock(struct sock *sk)
4859 {
4860 	struct net *net = sock_net(sk);
4861 	struct sctp_sock *sp;
4862 
4863 	pr_debug("%s: sk:%p\n", __func__, sk);
4864 
4865 	sp = sctp_sk(sk);
4866 
4867 	/* Initialize the SCTP per socket area.  */
4868 	switch (sk->sk_type) {
4869 	case SOCK_SEQPACKET:
4870 		sp->type = SCTP_SOCKET_UDP;
4871 		break;
4872 	case SOCK_STREAM:
4873 		sp->type = SCTP_SOCKET_TCP;
4874 		break;
4875 	default:
4876 		return -ESOCKTNOSUPPORT;
4877 	}
4878 
4879 	sk->sk_gso_type = SKB_GSO_SCTP;
4880 
4881 	/* Initialize default send parameters. These parameters can be
4882 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4883 	 */
4884 	sp->default_stream = 0;
4885 	sp->default_ppid = 0;
4886 	sp->default_flags = 0;
4887 	sp->default_context = 0;
4888 	sp->default_timetolive = 0;
4889 
4890 	sp->default_rcv_context = 0;
4891 	sp->max_burst = net->sctp.max_burst;
4892 
4893 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4894 
4895 	/* Initialize default setup parameters. These parameters
4896 	 * can be modified with the SCTP_INITMSG socket option or
4897 	 * overridden by the SCTP_INIT CMSG.
4898 	 */
4899 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4900 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4901 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4902 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4903 
4904 	/* Initialize default RTO related parameters.  These parameters can
4905 	 * be modified for with the SCTP_RTOINFO socket option.
4906 	 */
4907 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4908 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4909 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4910 
4911 	/* Initialize default association related parameters. These parameters
4912 	 * can be modified with the SCTP_ASSOCINFO socket option.
4913 	 */
4914 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4915 	sp->assocparams.sasoc_number_peer_destinations = 0;
4916 	sp->assocparams.sasoc_peer_rwnd = 0;
4917 	sp->assocparams.sasoc_local_rwnd = 0;
4918 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4919 
4920 	/* Initialize default event subscriptions. By default, all the
4921 	 * options are off.
4922 	 */
4923 	sp->subscribe = 0;
4924 
4925 	/* Default Peer Address Parameters.  These defaults can
4926 	 * be modified via SCTP_PEER_ADDR_PARAMS
4927 	 */
4928 	sp->hbinterval  = net->sctp.hb_interval;
4929 	sp->udp_port    = htons(net->sctp.udp_port);
4930 	sp->encap_port  = htons(net->sctp.encap_port);
4931 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4932 	sp->pf_retrans  = net->sctp.pf_retrans;
4933 	sp->ps_retrans  = net->sctp.ps_retrans;
4934 	sp->pf_expose   = net->sctp.pf_expose;
4935 	sp->pathmtu     = 0; /* allow default discovery */
4936 	sp->sackdelay   = net->sctp.sack_timeout;
4937 	sp->sackfreq	= 2;
4938 	sp->param_flags = SPP_HB_ENABLE |
4939 			  SPP_PMTUD_ENABLE |
4940 			  SPP_SACKDELAY_ENABLE;
4941 	sp->default_ss = SCTP_SS_DEFAULT;
4942 
4943 	/* If enabled no SCTP message fragmentation will be performed.
4944 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4945 	 */
4946 	sp->disable_fragments = 0;
4947 
4948 	/* Enable Nagle algorithm by default.  */
4949 	sp->nodelay           = 0;
4950 
4951 	sp->recvrcvinfo = 0;
4952 	sp->recvnxtinfo = 0;
4953 
4954 	/* Enable by default. */
4955 	sp->v4mapped          = 1;
4956 
4957 	/* Auto-close idle associations after the configured
4958 	 * number of seconds.  A value of 0 disables this
4959 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4960 	 * for UDP-style sockets only.
4961 	 */
4962 	sp->autoclose         = 0;
4963 
4964 	/* User specified fragmentation limit. */
4965 	sp->user_frag         = 0;
4966 
4967 	sp->adaptation_ind = 0;
4968 
4969 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4970 
4971 	/* Control variables for partial data delivery. */
4972 	atomic_set(&sp->pd_mode, 0);
4973 	skb_queue_head_init(&sp->pd_lobby);
4974 	sp->frag_interleave = 0;
4975 
4976 	/* Create a per socket endpoint structure.  Even if we
4977 	 * change the data structure relationships, this may still
4978 	 * be useful for storing pre-connect address information.
4979 	 */
4980 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4981 	if (!sp->ep)
4982 		return -ENOMEM;
4983 
4984 	sp->hmac = NULL;
4985 
4986 	sk->sk_destruct = sctp_destruct_sock;
4987 
4988 	SCTP_DBG_OBJCNT_INC(sock);
4989 
4990 	local_bh_disable();
4991 	sk_sockets_allocated_inc(sk);
4992 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4993 
4994 	if (net->sctp.default_auto_asconf) {
4995 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4996 		list_add_tail(&sp->auto_asconf_list,
4997 		    &net->sctp.auto_asconf_splist);
4998 		sp->do_auto_asconf = 1;
4999 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5000 	} else {
5001 		sp->do_auto_asconf = 0;
5002 	}
5003 
5004 	local_bh_enable();
5005 
5006 	return 0;
5007 }
5008 
5009 /* Cleanup any SCTP per socket resources. Must be called with
5010  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5011  */
5012 static void sctp_destroy_sock(struct sock *sk)
5013 {
5014 	struct sctp_sock *sp;
5015 
5016 	pr_debug("%s: sk:%p\n", __func__, sk);
5017 
5018 	/* Release our hold on the endpoint. */
5019 	sp = sctp_sk(sk);
5020 	/* This could happen during socket init, thus we bail out
5021 	 * early, since the rest of the below is not setup either.
5022 	 */
5023 	if (sp->ep == NULL)
5024 		return;
5025 
5026 	if (sp->do_auto_asconf) {
5027 		sp->do_auto_asconf = 0;
5028 		spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
5029 		list_del(&sp->auto_asconf_list);
5030 		spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
5031 	}
5032 	sctp_endpoint_free(sp->ep);
5033 	local_bh_disable();
5034 	sk_sockets_allocated_dec(sk);
5035 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5036 	local_bh_enable();
5037 }
5038 
5039 /* Triggered when there are no references on the socket anymore */
5040 static void sctp_destruct_sock(struct sock *sk)
5041 {
5042 	struct sctp_sock *sp = sctp_sk(sk);
5043 
5044 	/* Free up the HMAC transform. */
5045 	crypto_free_shash(sp->hmac);
5046 
5047 	inet_sock_destruct(sk);
5048 }
5049 
5050 /* API 4.1.7 shutdown() - TCP Style Syntax
5051  *     int shutdown(int socket, int how);
5052  *
5053  *     sd      - the socket descriptor of the association to be closed.
5054  *     how     - Specifies the type of shutdown.  The  values  are
5055  *               as follows:
5056  *               SHUT_RD
5057  *                     Disables further receive operations. No SCTP
5058  *                     protocol action is taken.
5059  *               SHUT_WR
5060  *                     Disables further send operations, and initiates
5061  *                     the SCTP shutdown sequence.
5062  *               SHUT_RDWR
5063  *                     Disables further send  and  receive  operations
5064  *                     and initiates the SCTP shutdown sequence.
5065  */
5066 static void sctp_shutdown(struct sock *sk, int how)
5067 {
5068 	struct net *net = sock_net(sk);
5069 	struct sctp_endpoint *ep;
5070 
5071 	if (!sctp_style(sk, TCP))
5072 		return;
5073 
5074 	ep = sctp_sk(sk)->ep;
5075 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5076 		struct sctp_association *asoc;
5077 
5078 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5079 		asoc = list_entry(ep->asocs.next,
5080 				  struct sctp_association, asocs);
5081 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5082 	}
5083 }
5084 
5085 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5086 		       struct sctp_info *info)
5087 {
5088 	struct sctp_transport *prim;
5089 	struct list_head *pos;
5090 	int mask;
5091 
5092 	memset(info, 0, sizeof(*info));
5093 	if (!asoc) {
5094 		struct sctp_sock *sp = sctp_sk(sk);
5095 
5096 		info->sctpi_s_autoclose = sp->autoclose;
5097 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5098 		info->sctpi_s_pd_point = sp->pd_point;
5099 		info->sctpi_s_nodelay = sp->nodelay;
5100 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5101 		info->sctpi_s_v4mapped = sp->v4mapped;
5102 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5103 		info->sctpi_s_type = sp->type;
5104 
5105 		return 0;
5106 	}
5107 
5108 	info->sctpi_tag = asoc->c.my_vtag;
5109 	info->sctpi_state = asoc->state;
5110 	info->sctpi_rwnd = asoc->a_rwnd;
5111 	info->sctpi_unackdata = asoc->unack_data;
5112 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5113 	info->sctpi_instrms = asoc->stream.incnt;
5114 	info->sctpi_outstrms = asoc->stream.outcnt;
5115 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5116 		info->sctpi_inqueue++;
5117 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5118 		info->sctpi_outqueue++;
5119 	info->sctpi_overall_error = asoc->overall_error_count;
5120 	info->sctpi_max_burst = asoc->max_burst;
5121 	info->sctpi_maxseg = asoc->frag_point;
5122 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5123 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5124 
5125 	mask = asoc->peer.ecn_capable << 1;
5126 	mask = (mask | asoc->peer.ipv4_address) << 1;
5127 	mask = (mask | asoc->peer.ipv6_address) << 1;
5128 	mask = (mask | asoc->peer.hostname_address) << 1;
5129 	mask = (mask | asoc->peer.asconf_capable) << 1;
5130 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5131 	mask = (mask | asoc->peer.auth_capable);
5132 	info->sctpi_peer_capable = mask;
5133 	mask = asoc->peer.sack_needed << 1;
5134 	mask = (mask | asoc->peer.sack_generation) << 1;
5135 	mask = (mask | asoc->peer.zero_window_announced);
5136 	info->sctpi_peer_sack = mask;
5137 
5138 	info->sctpi_isacks = asoc->stats.isacks;
5139 	info->sctpi_osacks = asoc->stats.osacks;
5140 	info->sctpi_opackets = asoc->stats.opackets;
5141 	info->sctpi_ipackets = asoc->stats.ipackets;
5142 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5143 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5144 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5145 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5146 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5147 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5148 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5149 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5150 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5151 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5152 
5153 	prim = asoc->peer.primary_path;
5154 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5155 	info->sctpi_p_state = prim->state;
5156 	info->sctpi_p_cwnd = prim->cwnd;
5157 	info->sctpi_p_srtt = prim->srtt;
5158 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5159 	info->sctpi_p_hbinterval = prim->hbinterval;
5160 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5161 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5162 	info->sctpi_p_ssthresh = prim->ssthresh;
5163 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5164 	info->sctpi_p_flight_size = prim->flight_size;
5165 	info->sctpi_p_error = prim->error_count;
5166 
5167 	return 0;
5168 }
5169 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5170 
5171 /* use callback to avoid exporting the core structure */
5172 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5173 {
5174 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5175 
5176 	rhashtable_walk_start(iter);
5177 }
5178 
5179 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5180 {
5181 	rhashtable_walk_stop(iter);
5182 	rhashtable_walk_exit(iter);
5183 }
5184 
5185 struct sctp_transport *sctp_transport_get_next(struct net *net,
5186 					       struct rhashtable_iter *iter)
5187 {
5188 	struct sctp_transport *t;
5189 
5190 	t = rhashtable_walk_next(iter);
5191 	for (; t; t = rhashtable_walk_next(iter)) {
5192 		if (IS_ERR(t)) {
5193 			if (PTR_ERR(t) == -EAGAIN)
5194 				continue;
5195 			break;
5196 		}
5197 
5198 		if (!sctp_transport_hold(t))
5199 			continue;
5200 
5201 		if (net_eq(t->asoc->base.net, net) &&
5202 		    t->asoc->peer.primary_path == t)
5203 			break;
5204 
5205 		sctp_transport_put(t);
5206 	}
5207 
5208 	return t;
5209 }
5210 
5211 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5212 					      struct rhashtable_iter *iter,
5213 					      int pos)
5214 {
5215 	struct sctp_transport *t;
5216 
5217 	if (!pos)
5218 		return SEQ_START_TOKEN;
5219 
5220 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5221 		if (!--pos)
5222 			break;
5223 		sctp_transport_put(t);
5224 	}
5225 
5226 	return t;
5227 }
5228 
5229 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5230 			   void *p) {
5231 	int err = 0;
5232 	int hash = 0;
5233 	struct sctp_ep_common *epb;
5234 	struct sctp_hashbucket *head;
5235 
5236 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5237 	     hash++, head++) {
5238 		read_lock_bh(&head->lock);
5239 		sctp_for_each_hentry(epb, &head->chain) {
5240 			err = cb(sctp_ep(epb), p);
5241 			if (err)
5242 				break;
5243 		}
5244 		read_unlock_bh(&head->lock);
5245 	}
5246 
5247 	return err;
5248 }
5249 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5250 
5251 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5252 				  struct net *net,
5253 				  const union sctp_addr *laddr,
5254 				  const union sctp_addr *paddr, void *p)
5255 {
5256 	struct sctp_transport *transport;
5257 	int err;
5258 
5259 	rcu_read_lock();
5260 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5261 	rcu_read_unlock();
5262 	if (!transport)
5263 		return -ENOENT;
5264 
5265 	err = cb(transport, p);
5266 	sctp_transport_put(transport);
5267 
5268 	return err;
5269 }
5270 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5271 
5272 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5273 			    int (*cb_done)(struct sctp_transport *, void *),
5274 			    struct net *net, int *pos, void *p) {
5275 	struct rhashtable_iter hti;
5276 	struct sctp_transport *tsp;
5277 	int ret;
5278 
5279 again:
5280 	ret = 0;
5281 	sctp_transport_walk_start(&hti);
5282 
5283 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5284 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5285 		ret = cb(tsp, p);
5286 		if (ret)
5287 			break;
5288 		(*pos)++;
5289 		sctp_transport_put(tsp);
5290 	}
5291 	sctp_transport_walk_stop(&hti);
5292 
5293 	if (ret) {
5294 		if (cb_done && !cb_done(tsp, p)) {
5295 			(*pos)++;
5296 			sctp_transport_put(tsp);
5297 			goto again;
5298 		}
5299 		sctp_transport_put(tsp);
5300 	}
5301 
5302 	return ret;
5303 }
5304 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5305 
5306 /* 7.2.1 Association Status (SCTP_STATUS)
5307 
5308  * Applications can retrieve current status information about an
5309  * association, including association state, peer receiver window size,
5310  * number of unacked data chunks, and number of data chunks pending
5311  * receipt.  This information is read-only.
5312  */
5313 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5314 				       char __user *optval,
5315 				       int __user *optlen)
5316 {
5317 	struct sctp_status status;
5318 	struct sctp_association *asoc = NULL;
5319 	struct sctp_transport *transport;
5320 	sctp_assoc_t associd;
5321 	int retval = 0;
5322 
5323 	if (len < sizeof(status)) {
5324 		retval = -EINVAL;
5325 		goto out;
5326 	}
5327 
5328 	len = sizeof(status);
5329 	if (copy_from_user(&status, optval, len)) {
5330 		retval = -EFAULT;
5331 		goto out;
5332 	}
5333 
5334 	associd = status.sstat_assoc_id;
5335 	asoc = sctp_id2assoc(sk, associd);
5336 	if (!asoc) {
5337 		retval = -EINVAL;
5338 		goto out;
5339 	}
5340 
5341 	transport = asoc->peer.primary_path;
5342 
5343 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5344 	status.sstat_state = sctp_assoc_to_state(asoc);
5345 	status.sstat_rwnd =  asoc->peer.rwnd;
5346 	status.sstat_unackdata = asoc->unack_data;
5347 
5348 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5349 	status.sstat_instrms = asoc->stream.incnt;
5350 	status.sstat_outstrms = asoc->stream.outcnt;
5351 	status.sstat_fragmentation_point = asoc->frag_point;
5352 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5353 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5354 			transport->af_specific->sockaddr_len);
5355 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5356 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5357 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5358 	status.sstat_primary.spinfo_state = transport->state;
5359 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5360 	status.sstat_primary.spinfo_srtt = transport->srtt;
5361 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5362 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5363 
5364 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5365 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5366 
5367 	if (put_user(len, optlen)) {
5368 		retval = -EFAULT;
5369 		goto out;
5370 	}
5371 
5372 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5373 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5374 		 status.sstat_assoc_id);
5375 
5376 	if (copy_to_user(optval, &status, len)) {
5377 		retval = -EFAULT;
5378 		goto out;
5379 	}
5380 
5381 out:
5382 	return retval;
5383 }
5384 
5385 
5386 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5387  *
5388  * Applications can retrieve information about a specific peer address
5389  * of an association, including its reachability state, congestion
5390  * window, and retransmission timer values.  This information is
5391  * read-only.
5392  */
5393 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5394 					  char __user *optval,
5395 					  int __user *optlen)
5396 {
5397 	struct sctp_paddrinfo pinfo;
5398 	struct sctp_transport *transport;
5399 	int retval = 0;
5400 
5401 	if (len < sizeof(pinfo)) {
5402 		retval = -EINVAL;
5403 		goto out;
5404 	}
5405 
5406 	len = sizeof(pinfo);
5407 	if (copy_from_user(&pinfo, optval, len)) {
5408 		retval = -EFAULT;
5409 		goto out;
5410 	}
5411 
5412 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5413 					   pinfo.spinfo_assoc_id);
5414 	if (!transport) {
5415 		retval = -EINVAL;
5416 		goto out;
5417 	}
5418 
5419 	if (transport->state == SCTP_PF &&
5420 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5421 		retval = -EACCES;
5422 		goto out;
5423 	}
5424 
5425 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5426 	pinfo.spinfo_state = transport->state;
5427 	pinfo.spinfo_cwnd = transport->cwnd;
5428 	pinfo.spinfo_srtt = transport->srtt;
5429 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5430 	pinfo.spinfo_mtu = transport->pathmtu;
5431 
5432 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5433 		pinfo.spinfo_state = SCTP_ACTIVE;
5434 
5435 	if (put_user(len, optlen)) {
5436 		retval = -EFAULT;
5437 		goto out;
5438 	}
5439 
5440 	if (copy_to_user(optval, &pinfo, len)) {
5441 		retval = -EFAULT;
5442 		goto out;
5443 	}
5444 
5445 out:
5446 	return retval;
5447 }
5448 
5449 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5450  *
5451  * This option is a on/off flag.  If enabled no SCTP message
5452  * fragmentation will be performed.  Instead if a message being sent
5453  * exceeds the current PMTU size, the message will NOT be sent and
5454  * instead a error will be indicated to the user.
5455  */
5456 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5457 					char __user *optval, int __user *optlen)
5458 {
5459 	int val;
5460 
5461 	if (len < sizeof(int))
5462 		return -EINVAL;
5463 
5464 	len = sizeof(int);
5465 	val = (sctp_sk(sk)->disable_fragments == 1);
5466 	if (put_user(len, optlen))
5467 		return -EFAULT;
5468 	if (copy_to_user(optval, &val, len))
5469 		return -EFAULT;
5470 	return 0;
5471 }
5472 
5473 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5474  *
5475  * This socket option is used to specify various notifications and
5476  * ancillary data the user wishes to receive.
5477  */
5478 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5479 				  int __user *optlen)
5480 {
5481 	struct sctp_event_subscribe subscribe;
5482 	__u8 *sn_type = (__u8 *)&subscribe;
5483 	int i;
5484 
5485 	if (len == 0)
5486 		return -EINVAL;
5487 	if (len > sizeof(struct sctp_event_subscribe))
5488 		len = sizeof(struct sctp_event_subscribe);
5489 	if (put_user(len, optlen))
5490 		return -EFAULT;
5491 
5492 	for (i = 0; i < len; i++)
5493 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5494 							SCTP_SN_TYPE_BASE + i);
5495 
5496 	if (copy_to_user(optval, &subscribe, len))
5497 		return -EFAULT;
5498 
5499 	return 0;
5500 }
5501 
5502 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5503  *
5504  * This socket option is applicable to the UDP-style socket only.  When
5505  * set it will cause associations that are idle for more than the
5506  * specified number of seconds to automatically close.  An association
5507  * being idle is defined an association that has NOT sent or received
5508  * user data.  The special value of '0' indicates that no automatic
5509  * close of any associations should be performed.  The option expects an
5510  * integer defining the number of seconds of idle time before an
5511  * association is closed.
5512  */
5513 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5514 {
5515 	/* Applicable to UDP-style socket only */
5516 	if (sctp_style(sk, TCP))
5517 		return -EOPNOTSUPP;
5518 	if (len < sizeof(int))
5519 		return -EINVAL;
5520 	len = sizeof(int);
5521 	if (put_user(len, optlen))
5522 		return -EFAULT;
5523 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5524 		return -EFAULT;
5525 	return 0;
5526 }
5527 
5528 /* Helper routine to branch off an association to a new socket.  */
5529 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5530 {
5531 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5532 	struct sctp_sock *sp = sctp_sk(sk);
5533 	struct socket *sock;
5534 	int err = 0;
5535 
5536 	/* Do not peel off from one netns to another one. */
5537 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5538 		return -EINVAL;
5539 
5540 	if (!asoc)
5541 		return -EINVAL;
5542 
5543 	/* An association cannot be branched off from an already peeled-off
5544 	 * socket, nor is this supported for tcp style sockets.
5545 	 */
5546 	if (!sctp_style(sk, UDP))
5547 		return -EINVAL;
5548 
5549 	/* Create a new socket.  */
5550 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5551 	if (err < 0)
5552 		return err;
5553 
5554 	sctp_copy_sock(sock->sk, sk, asoc);
5555 
5556 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5557 	 * Set the daddr and initialize id to something more random and also
5558 	 * copy over any ip options.
5559 	 */
5560 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5561 	sp->pf->copy_ip_options(sk, sock->sk);
5562 
5563 	/* Populate the fields of the newsk from the oldsk and migrate the
5564 	 * asoc to the newsk.
5565 	 */
5566 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5567 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5568 	if (err) {
5569 		sock_release(sock);
5570 		sock = NULL;
5571 	}
5572 
5573 	*sockp = sock;
5574 
5575 	return err;
5576 }
5577 EXPORT_SYMBOL(sctp_do_peeloff);
5578 
5579 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5580 					  struct file **newfile, unsigned flags)
5581 {
5582 	struct socket *newsock;
5583 	int retval;
5584 
5585 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5586 	if (retval < 0)
5587 		goto out;
5588 
5589 	/* Map the socket to an unused fd that can be returned to the user.  */
5590 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5591 	if (retval < 0) {
5592 		sock_release(newsock);
5593 		goto out;
5594 	}
5595 
5596 	*newfile = sock_alloc_file(newsock, 0, NULL);
5597 	if (IS_ERR(*newfile)) {
5598 		put_unused_fd(retval);
5599 		retval = PTR_ERR(*newfile);
5600 		*newfile = NULL;
5601 		return retval;
5602 	}
5603 
5604 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5605 		 retval);
5606 
5607 	peeloff->sd = retval;
5608 
5609 	if (flags & SOCK_NONBLOCK)
5610 		(*newfile)->f_flags |= O_NONBLOCK;
5611 out:
5612 	return retval;
5613 }
5614 
5615 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5616 {
5617 	sctp_peeloff_arg_t peeloff;
5618 	struct file *newfile = NULL;
5619 	int retval = 0;
5620 
5621 	if (len < sizeof(sctp_peeloff_arg_t))
5622 		return -EINVAL;
5623 	len = sizeof(sctp_peeloff_arg_t);
5624 	if (copy_from_user(&peeloff, optval, len))
5625 		return -EFAULT;
5626 
5627 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5628 	if (retval < 0)
5629 		goto out;
5630 
5631 	/* Return the fd mapped to the new socket.  */
5632 	if (put_user(len, optlen)) {
5633 		fput(newfile);
5634 		put_unused_fd(retval);
5635 		return -EFAULT;
5636 	}
5637 
5638 	if (copy_to_user(optval, &peeloff, len)) {
5639 		fput(newfile);
5640 		put_unused_fd(retval);
5641 		return -EFAULT;
5642 	}
5643 	fd_install(retval, newfile);
5644 out:
5645 	return retval;
5646 }
5647 
5648 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5649 					 char __user *optval, int __user *optlen)
5650 {
5651 	sctp_peeloff_flags_arg_t peeloff;
5652 	struct file *newfile = NULL;
5653 	int retval = 0;
5654 
5655 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5656 		return -EINVAL;
5657 	len = sizeof(sctp_peeloff_flags_arg_t);
5658 	if (copy_from_user(&peeloff, optval, len))
5659 		return -EFAULT;
5660 
5661 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5662 						&newfile, peeloff.flags);
5663 	if (retval < 0)
5664 		goto out;
5665 
5666 	/* Return the fd mapped to the new socket.  */
5667 	if (put_user(len, optlen)) {
5668 		fput(newfile);
5669 		put_unused_fd(retval);
5670 		return -EFAULT;
5671 	}
5672 
5673 	if (copy_to_user(optval, &peeloff, len)) {
5674 		fput(newfile);
5675 		put_unused_fd(retval);
5676 		return -EFAULT;
5677 	}
5678 	fd_install(retval, newfile);
5679 out:
5680 	return retval;
5681 }
5682 
5683 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5684  *
5685  * Applications can enable or disable heartbeats for any peer address of
5686  * an association, modify an address's heartbeat interval, force a
5687  * heartbeat to be sent immediately, and adjust the address's maximum
5688  * number of retransmissions sent before an address is considered
5689  * unreachable.  The following structure is used to access and modify an
5690  * address's parameters:
5691  *
5692  *  struct sctp_paddrparams {
5693  *     sctp_assoc_t            spp_assoc_id;
5694  *     struct sockaddr_storage spp_address;
5695  *     uint32_t                spp_hbinterval;
5696  *     uint16_t                spp_pathmaxrxt;
5697  *     uint32_t                spp_pathmtu;
5698  *     uint32_t                spp_sackdelay;
5699  *     uint32_t                spp_flags;
5700  * };
5701  *
5702  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5703  *                     application, and identifies the association for
5704  *                     this query.
5705  *   spp_address     - This specifies which address is of interest.
5706  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5707  *                     in milliseconds.  If a  value of zero
5708  *                     is present in this field then no changes are to
5709  *                     be made to this parameter.
5710  *   spp_pathmaxrxt  - This contains the maximum number of
5711  *                     retransmissions before this address shall be
5712  *                     considered unreachable. If a  value of zero
5713  *                     is present in this field then no changes are to
5714  *                     be made to this parameter.
5715  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5716  *                     specified here will be the "fixed" path mtu.
5717  *                     Note that if the spp_address field is empty
5718  *                     then all associations on this address will
5719  *                     have this fixed path mtu set upon them.
5720  *
5721  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5722  *                     the number of milliseconds that sacks will be delayed
5723  *                     for. This value will apply to all addresses of an
5724  *                     association if the spp_address field is empty. Note
5725  *                     also, that if delayed sack is enabled and this
5726  *                     value is set to 0, no change is made to the last
5727  *                     recorded delayed sack timer value.
5728  *
5729  *   spp_flags       - These flags are used to control various features
5730  *                     on an association. The flag field may contain
5731  *                     zero or more of the following options.
5732  *
5733  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5734  *                     specified address. Note that if the address
5735  *                     field is empty all addresses for the association
5736  *                     have heartbeats enabled upon them.
5737  *
5738  *                     SPP_HB_DISABLE - Disable heartbeats on the
5739  *                     speicifed address. Note that if the address
5740  *                     field is empty all addresses for the association
5741  *                     will have their heartbeats disabled. Note also
5742  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5743  *                     mutually exclusive, only one of these two should
5744  *                     be specified. Enabling both fields will have
5745  *                     undetermined results.
5746  *
5747  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5748  *                     to be made immediately.
5749  *
5750  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5751  *                     discovery upon the specified address. Note that
5752  *                     if the address feild is empty then all addresses
5753  *                     on the association are effected.
5754  *
5755  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5756  *                     discovery upon the specified address. Note that
5757  *                     if the address feild is empty then all addresses
5758  *                     on the association are effected. Not also that
5759  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5760  *                     exclusive. Enabling both will have undetermined
5761  *                     results.
5762  *
5763  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5764  *                     on delayed sack. The time specified in spp_sackdelay
5765  *                     is used to specify the sack delay for this address. Note
5766  *                     that if spp_address is empty then all addresses will
5767  *                     enable delayed sack and take on the sack delay
5768  *                     value specified in spp_sackdelay.
5769  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5770  *                     off delayed sack. If the spp_address field is blank then
5771  *                     delayed sack is disabled for the entire association. Note
5772  *                     also that this field is mutually exclusive to
5773  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5774  *                     results.
5775  *
5776  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5777  *                     setting of the IPV6 flow label value.  The value is
5778  *                     contained in the spp_ipv6_flowlabel field.
5779  *                     Upon retrieval, this flag will be set to indicate that
5780  *                     the spp_ipv6_flowlabel field has a valid value returned.
5781  *                     If a specific destination address is set (in the
5782  *                     spp_address field), then the value returned is that of
5783  *                     the address.  If just an association is specified (and
5784  *                     no address), then the association's default flow label
5785  *                     is returned.  If neither an association nor a destination
5786  *                     is specified, then the socket's default flow label is
5787  *                     returned.  For non-IPv6 sockets, this flag will be left
5788  *                     cleared.
5789  *
5790  *                     SPP_DSCP:  Setting this flag enables the setting of the
5791  *                     Differentiated Services Code Point (DSCP) value
5792  *                     associated with either the association or a specific
5793  *                     address.  The value is obtained in the spp_dscp field.
5794  *                     Upon retrieval, this flag will be set to indicate that
5795  *                     the spp_dscp field has a valid value returned.  If a
5796  *                     specific destination address is set when called (in the
5797  *                     spp_address field), then that specific destination
5798  *                     address's DSCP value is returned.  If just an association
5799  *                     is specified, then the association's default DSCP is
5800  *                     returned.  If neither an association nor a destination is
5801  *                     specified, then the socket's default DSCP is returned.
5802  *
5803  *   spp_ipv6_flowlabel
5804  *                   - This field is used in conjunction with the
5805  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5806  *                     The 20 least significant bits are used for the flow
5807  *                     label.  This setting has precedence over any IPv6-layer
5808  *                     setting.
5809  *
5810  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5811  *                     and contains the DSCP.  The 6 most significant bits are
5812  *                     used for the DSCP.  This setting has precedence over any
5813  *                     IPv4- or IPv6- layer setting.
5814  */
5815 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5816 					    char __user *optval, int __user *optlen)
5817 {
5818 	struct sctp_paddrparams  params;
5819 	struct sctp_transport   *trans = NULL;
5820 	struct sctp_association *asoc = NULL;
5821 	struct sctp_sock        *sp = sctp_sk(sk);
5822 
5823 	if (len >= sizeof(params))
5824 		len = sizeof(params);
5825 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5826 				       spp_ipv6_flowlabel), 4))
5827 		len = ALIGN(offsetof(struct sctp_paddrparams,
5828 				     spp_ipv6_flowlabel), 4);
5829 	else
5830 		return -EINVAL;
5831 
5832 	if (copy_from_user(&params, optval, len))
5833 		return -EFAULT;
5834 
5835 	/* If an address other than INADDR_ANY is specified, and
5836 	 * no transport is found, then the request is invalid.
5837 	 */
5838 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5839 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5840 					       params.spp_assoc_id);
5841 		if (!trans) {
5842 			pr_debug("%s: failed no transport\n", __func__);
5843 			return -EINVAL;
5844 		}
5845 	}
5846 
5847 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5848 	 * socket is a one to many style socket, and an association
5849 	 * was not found, then the id was invalid.
5850 	 */
5851 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5852 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5853 	    sctp_style(sk, UDP)) {
5854 		pr_debug("%s: failed no association\n", __func__);
5855 		return -EINVAL;
5856 	}
5857 
5858 	if (trans) {
5859 		/* Fetch transport values. */
5860 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5861 		params.spp_pathmtu    = trans->pathmtu;
5862 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5863 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5864 
5865 		/*draft-11 doesn't say what to return in spp_flags*/
5866 		params.spp_flags      = trans->param_flags;
5867 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5868 			params.spp_ipv6_flowlabel = trans->flowlabel &
5869 						    SCTP_FLOWLABEL_VAL_MASK;
5870 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5871 		}
5872 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5873 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5874 			params.spp_flags |= SPP_DSCP;
5875 		}
5876 	} else if (asoc) {
5877 		/* Fetch association values. */
5878 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5879 		params.spp_pathmtu    = asoc->pathmtu;
5880 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5881 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5882 
5883 		/*draft-11 doesn't say what to return in spp_flags*/
5884 		params.spp_flags      = asoc->param_flags;
5885 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5886 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5887 						    SCTP_FLOWLABEL_VAL_MASK;
5888 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5889 		}
5890 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5891 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5892 			params.spp_flags |= SPP_DSCP;
5893 		}
5894 	} else {
5895 		/* Fetch socket values. */
5896 		params.spp_hbinterval = sp->hbinterval;
5897 		params.spp_pathmtu    = sp->pathmtu;
5898 		params.spp_sackdelay  = sp->sackdelay;
5899 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5900 
5901 		/*draft-11 doesn't say what to return in spp_flags*/
5902 		params.spp_flags      = sp->param_flags;
5903 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5904 			params.spp_ipv6_flowlabel = sp->flowlabel &
5905 						    SCTP_FLOWLABEL_VAL_MASK;
5906 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5907 		}
5908 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5909 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5910 			params.spp_flags |= SPP_DSCP;
5911 		}
5912 	}
5913 
5914 	if (copy_to_user(optval, &params, len))
5915 		return -EFAULT;
5916 
5917 	if (put_user(len, optlen))
5918 		return -EFAULT;
5919 
5920 	return 0;
5921 }
5922 
5923 /*
5924  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5925  *
5926  * This option will effect the way delayed acks are performed.  This
5927  * option allows you to get or set the delayed ack time, in
5928  * milliseconds.  It also allows changing the delayed ack frequency.
5929  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5930  * the assoc_id is 0, then this sets or gets the endpoints default
5931  * values.  If the assoc_id field is non-zero, then the set or get
5932  * effects the specified association for the one to many model (the
5933  * assoc_id field is ignored by the one to one model).  Note that if
5934  * sack_delay or sack_freq are 0 when setting this option, then the
5935  * current values will remain unchanged.
5936  *
5937  * struct sctp_sack_info {
5938  *     sctp_assoc_t            sack_assoc_id;
5939  *     uint32_t                sack_delay;
5940  *     uint32_t                sack_freq;
5941  * };
5942  *
5943  * sack_assoc_id -  This parameter, indicates which association the user
5944  *    is performing an action upon.  Note that if this field's value is
5945  *    zero then the endpoints default value is changed (effecting future
5946  *    associations only).
5947  *
5948  * sack_delay -  This parameter contains the number of milliseconds that
5949  *    the user is requesting the delayed ACK timer be set to.  Note that
5950  *    this value is defined in the standard to be between 200 and 500
5951  *    milliseconds.
5952  *
5953  * sack_freq -  This parameter contains the number of packets that must
5954  *    be received before a sack is sent without waiting for the delay
5955  *    timer to expire.  The default value for this is 2, setting this
5956  *    value to 1 will disable the delayed sack algorithm.
5957  */
5958 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5959 					    char __user *optval,
5960 					    int __user *optlen)
5961 {
5962 	struct sctp_sack_info    params;
5963 	struct sctp_association *asoc = NULL;
5964 	struct sctp_sock        *sp = sctp_sk(sk);
5965 
5966 	if (len >= sizeof(struct sctp_sack_info)) {
5967 		len = sizeof(struct sctp_sack_info);
5968 
5969 		if (copy_from_user(&params, optval, len))
5970 			return -EFAULT;
5971 	} else if (len == sizeof(struct sctp_assoc_value)) {
5972 		pr_warn_ratelimited(DEPRECATED
5973 				    "%s (pid %d) "
5974 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5975 				    "Use struct sctp_sack_info instead\n",
5976 				    current->comm, task_pid_nr(current));
5977 		if (copy_from_user(&params, optval, len))
5978 			return -EFAULT;
5979 	} else
5980 		return -EINVAL;
5981 
5982 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5983 	 * socket is a one to many style socket, and an association
5984 	 * was not found, then the id was invalid.
5985 	 */
5986 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5987 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5988 	    sctp_style(sk, UDP))
5989 		return -EINVAL;
5990 
5991 	if (asoc) {
5992 		/* Fetch association values. */
5993 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5994 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5995 			params.sack_freq = asoc->sackfreq;
5996 
5997 		} else {
5998 			params.sack_delay = 0;
5999 			params.sack_freq = 1;
6000 		}
6001 	} else {
6002 		/* Fetch socket values. */
6003 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6004 			params.sack_delay  = sp->sackdelay;
6005 			params.sack_freq = sp->sackfreq;
6006 		} else {
6007 			params.sack_delay  = 0;
6008 			params.sack_freq = 1;
6009 		}
6010 	}
6011 
6012 	if (copy_to_user(optval, &params, len))
6013 		return -EFAULT;
6014 
6015 	if (put_user(len, optlen))
6016 		return -EFAULT;
6017 
6018 	return 0;
6019 }
6020 
6021 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6022  *
6023  * Applications can specify protocol parameters for the default association
6024  * initialization.  The option name argument to setsockopt() and getsockopt()
6025  * is SCTP_INITMSG.
6026  *
6027  * Setting initialization parameters is effective only on an unconnected
6028  * socket (for UDP-style sockets only future associations are effected
6029  * by the change).  With TCP-style sockets, this option is inherited by
6030  * sockets derived from a listener socket.
6031  */
6032 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6033 {
6034 	if (len < sizeof(struct sctp_initmsg))
6035 		return -EINVAL;
6036 	len = sizeof(struct sctp_initmsg);
6037 	if (put_user(len, optlen))
6038 		return -EFAULT;
6039 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6040 		return -EFAULT;
6041 	return 0;
6042 }
6043 
6044 
6045 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6046 				      char __user *optval, int __user *optlen)
6047 {
6048 	struct sctp_association *asoc;
6049 	int cnt = 0;
6050 	struct sctp_getaddrs getaddrs;
6051 	struct sctp_transport *from;
6052 	void __user *to;
6053 	union sctp_addr temp;
6054 	struct sctp_sock *sp = sctp_sk(sk);
6055 	int addrlen;
6056 	size_t space_left;
6057 	int bytes_copied;
6058 
6059 	if (len < sizeof(struct sctp_getaddrs))
6060 		return -EINVAL;
6061 
6062 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6063 		return -EFAULT;
6064 
6065 	/* For UDP-style sockets, id specifies the association to query.  */
6066 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6067 	if (!asoc)
6068 		return -EINVAL;
6069 
6070 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6071 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6072 
6073 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6074 				transports) {
6075 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6076 		addrlen = sctp_get_pf_specific(sk->sk_family)
6077 			      ->addr_to_user(sp, &temp);
6078 		if (space_left < addrlen)
6079 			return -ENOMEM;
6080 		if (copy_to_user(to, &temp, addrlen))
6081 			return -EFAULT;
6082 		to += addrlen;
6083 		cnt++;
6084 		space_left -= addrlen;
6085 	}
6086 
6087 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6088 		return -EFAULT;
6089 	bytes_copied = ((char __user *)to) - optval;
6090 	if (put_user(bytes_copied, optlen))
6091 		return -EFAULT;
6092 
6093 	return 0;
6094 }
6095 
6096 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6097 			    size_t space_left, int *bytes_copied)
6098 {
6099 	struct sctp_sockaddr_entry *addr;
6100 	union sctp_addr temp;
6101 	int cnt = 0;
6102 	int addrlen;
6103 	struct net *net = sock_net(sk);
6104 
6105 	rcu_read_lock();
6106 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6107 		if (!addr->valid)
6108 			continue;
6109 
6110 		if ((PF_INET == sk->sk_family) &&
6111 		    (AF_INET6 == addr->a.sa.sa_family))
6112 			continue;
6113 		if ((PF_INET6 == sk->sk_family) &&
6114 		    inet_v6_ipv6only(sk) &&
6115 		    (AF_INET == addr->a.sa.sa_family))
6116 			continue;
6117 		memcpy(&temp, &addr->a, sizeof(temp));
6118 		if (!temp.v4.sin_port)
6119 			temp.v4.sin_port = htons(port);
6120 
6121 		addrlen = sctp_get_pf_specific(sk->sk_family)
6122 			      ->addr_to_user(sctp_sk(sk), &temp);
6123 
6124 		if (space_left < addrlen) {
6125 			cnt =  -ENOMEM;
6126 			break;
6127 		}
6128 		memcpy(to, &temp, addrlen);
6129 
6130 		to += addrlen;
6131 		cnt++;
6132 		space_left -= addrlen;
6133 		*bytes_copied += addrlen;
6134 	}
6135 	rcu_read_unlock();
6136 
6137 	return cnt;
6138 }
6139 
6140 
6141 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6142 				       char __user *optval, int __user *optlen)
6143 {
6144 	struct sctp_bind_addr *bp;
6145 	struct sctp_association *asoc;
6146 	int cnt = 0;
6147 	struct sctp_getaddrs getaddrs;
6148 	struct sctp_sockaddr_entry *addr;
6149 	void __user *to;
6150 	union sctp_addr temp;
6151 	struct sctp_sock *sp = sctp_sk(sk);
6152 	int addrlen;
6153 	int err = 0;
6154 	size_t space_left;
6155 	int bytes_copied = 0;
6156 	void *addrs;
6157 	void *buf;
6158 
6159 	if (len < sizeof(struct sctp_getaddrs))
6160 		return -EINVAL;
6161 
6162 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6163 		return -EFAULT;
6164 
6165 	/*
6166 	 *  For UDP-style sockets, id specifies the association to query.
6167 	 *  If the id field is set to the value '0' then the locally bound
6168 	 *  addresses are returned without regard to any particular
6169 	 *  association.
6170 	 */
6171 	if (0 == getaddrs.assoc_id) {
6172 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6173 	} else {
6174 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6175 		if (!asoc)
6176 			return -EINVAL;
6177 		bp = &asoc->base.bind_addr;
6178 	}
6179 
6180 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6181 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6182 
6183 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6184 	if (!addrs)
6185 		return -ENOMEM;
6186 
6187 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6188 	 * addresses from the global local address list.
6189 	 */
6190 	if (sctp_list_single_entry(&bp->address_list)) {
6191 		addr = list_entry(bp->address_list.next,
6192 				  struct sctp_sockaddr_entry, list);
6193 		if (sctp_is_any(sk, &addr->a)) {
6194 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6195 						space_left, &bytes_copied);
6196 			if (cnt < 0) {
6197 				err = cnt;
6198 				goto out;
6199 			}
6200 			goto copy_getaddrs;
6201 		}
6202 	}
6203 
6204 	buf = addrs;
6205 	/* Protection on the bound address list is not needed since
6206 	 * in the socket option context we hold a socket lock and
6207 	 * thus the bound address list can't change.
6208 	 */
6209 	list_for_each_entry(addr, &bp->address_list, list) {
6210 		memcpy(&temp, &addr->a, sizeof(temp));
6211 		addrlen = sctp_get_pf_specific(sk->sk_family)
6212 			      ->addr_to_user(sp, &temp);
6213 		if (space_left < addrlen) {
6214 			err =  -ENOMEM; /*fixme: right error?*/
6215 			goto out;
6216 		}
6217 		memcpy(buf, &temp, addrlen);
6218 		buf += addrlen;
6219 		bytes_copied += addrlen;
6220 		cnt++;
6221 		space_left -= addrlen;
6222 	}
6223 
6224 copy_getaddrs:
6225 	if (copy_to_user(to, addrs, bytes_copied)) {
6226 		err = -EFAULT;
6227 		goto out;
6228 	}
6229 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6230 		err = -EFAULT;
6231 		goto out;
6232 	}
6233 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6234 	 * but we can't change it anymore.
6235 	 */
6236 	if (put_user(bytes_copied, optlen))
6237 		err = -EFAULT;
6238 out:
6239 	kfree(addrs);
6240 	return err;
6241 }
6242 
6243 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6244  *
6245  * Requests that the local SCTP stack use the enclosed peer address as
6246  * the association primary.  The enclosed address must be one of the
6247  * association peer's addresses.
6248  */
6249 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6250 					char __user *optval, int __user *optlen)
6251 {
6252 	struct sctp_prim prim;
6253 	struct sctp_association *asoc;
6254 	struct sctp_sock *sp = sctp_sk(sk);
6255 
6256 	if (len < sizeof(struct sctp_prim))
6257 		return -EINVAL;
6258 
6259 	len = sizeof(struct sctp_prim);
6260 
6261 	if (copy_from_user(&prim, optval, len))
6262 		return -EFAULT;
6263 
6264 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6265 	if (!asoc)
6266 		return -EINVAL;
6267 
6268 	if (!asoc->peer.primary_path)
6269 		return -ENOTCONN;
6270 
6271 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6272 		asoc->peer.primary_path->af_specific->sockaddr_len);
6273 
6274 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6275 			(union sctp_addr *)&prim.ssp_addr);
6276 
6277 	if (put_user(len, optlen))
6278 		return -EFAULT;
6279 	if (copy_to_user(optval, &prim, len))
6280 		return -EFAULT;
6281 
6282 	return 0;
6283 }
6284 
6285 /*
6286  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6287  *
6288  * Requests that the local endpoint set the specified Adaptation Layer
6289  * Indication parameter for all future INIT and INIT-ACK exchanges.
6290  */
6291 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6292 				  char __user *optval, int __user *optlen)
6293 {
6294 	struct sctp_setadaptation adaptation;
6295 
6296 	if (len < sizeof(struct sctp_setadaptation))
6297 		return -EINVAL;
6298 
6299 	len = sizeof(struct sctp_setadaptation);
6300 
6301 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6302 
6303 	if (put_user(len, optlen))
6304 		return -EFAULT;
6305 	if (copy_to_user(optval, &adaptation, len))
6306 		return -EFAULT;
6307 
6308 	return 0;
6309 }
6310 
6311 /*
6312  *
6313  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6314  *
6315  *   Applications that wish to use the sendto() system call may wish to
6316  *   specify a default set of parameters that would normally be supplied
6317  *   through the inclusion of ancillary data.  This socket option allows
6318  *   such an application to set the default sctp_sndrcvinfo structure.
6319 
6320 
6321  *   The application that wishes to use this socket option simply passes
6322  *   in to this call the sctp_sndrcvinfo structure defined in Section
6323  *   5.2.2) The input parameters accepted by this call include
6324  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6325  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6326  *   to this call if the caller is using the UDP model.
6327  *
6328  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6329  */
6330 static int sctp_getsockopt_default_send_param(struct sock *sk,
6331 					int len, char __user *optval,
6332 					int __user *optlen)
6333 {
6334 	struct sctp_sock *sp = sctp_sk(sk);
6335 	struct sctp_association *asoc;
6336 	struct sctp_sndrcvinfo info;
6337 
6338 	if (len < sizeof(info))
6339 		return -EINVAL;
6340 
6341 	len = sizeof(info);
6342 
6343 	if (copy_from_user(&info, optval, len))
6344 		return -EFAULT;
6345 
6346 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6347 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6348 	    sctp_style(sk, UDP))
6349 		return -EINVAL;
6350 
6351 	if (asoc) {
6352 		info.sinfo_stream = asoc->default_stream;
6353 		info.sinfo_flags = asoc->default_flags;
6354 		info.sinfo_ppid = asoc->default_ppid;
6355 		info.sinfo_context = asoc->default_context;
6356 		info.sinfo_timetolive = asoc->default_timetolive;
6357 	} else {
6358 		info.sinfo_stream = sp->default_stream;
6359 		info.sinfo_flags = sp->default_flags;
6360 		info.sinfo_ppid = sp->default_ppid;
6361 		info.sinfo_context = sp->default_context;
6362 		info.sinfo_timetolive = sp->default_timetolive;
6363 	}
6364 
6365 	if (put_user(len, optlen))
6366 		return -EFAULT;
6367 	if (copy_to_user(optval, &info, len))
6368 		return -EFAULT;
6369 
6370 	return 0;
6371 }
6372 
6373 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6374  * (SCTP_DEFAULT_SNDINFO)
6375  */
6376 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6377 					   char __user *optval,
6378 					   int __user *optlen)
6379 {
6380 	struct sctp_sock *sp = sctp_sk(sk);
6381 	struct sctp_association *asoc;
6382 	struct sctp_sndinfo info;
6383 
6384 	if (len < sizeof(info))
6385 		return -EINVAL;
6386 
6387 	len = sizeof(info);
6388 
6389 	if (copy_from_user(&info, optval, len))
6390 		return -EFAULT;
6391 
6392 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6393 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6394 	    sctp_style(sk, UDP))
6395 		return -EINVAL;
6396 
6397 	if (asoc) {
6398 		info.snd_sid = asoc->default_stream;
6399 		info.snd_flags = asoc->default_flags;
6400 		info.snd_ppid = asoc->default_ppid;
6401 		info.snd_context = asoc->default_context;
6402 	} else {
6403 		info.snd_sid = sp->default_stream;
6404 		info.snd_flags = sp->default_flags;
6405 		info.snd_ppid = sp->default_ppid;
6406 		info.snd_context = sp->default_context;
6407 	}
6408 
6409 	if (put_user(len, optlen))
6410 		return -EFAULT;
6411 	if (copy_to_user(optval, &info, len))
6412 		return -EFAULT;
6413 
6414 	return 0;
6415 }
6416 
6417 /*
6418  *
6419  * 7.1.5 SCTP_NODELAY
6420  *
6421  * Turn on/off any Nagle-like algorithm.  This means that packets are
6422  * generally sent as soon as possible and no unnecessary delays are
6423  * introduced, at the cost of more packets in the network.  Expects an
6424  * integer boolean flag.
6425  */
6426 
6427 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6428 				   char __user *optval, int __user *optlen)
6429 {
6430 	int val;
6431 
6432 	if (len < sizeof(int))
6433 		return -EINVAL;
6434 
6435 	len = sizeof(int);
6436 	val = (sctp_sk(sk)->nodelay == 1);
6437 	if (put_user(len, optlen))
6438 		return -EFAULT;
6439 	if (copy_to_user(optval, &val, len))
6440 		return -EFAULT;
6441 	return 0;
6442 }
6443 
6444 /*
6445  *
6446  * 7.1.1 SCTP_RTOINFO
6447  *
6448  * The protocol parameters used to initialize and bound retransmission
6449  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6450  * and modify these parameters.
6451  * All parameters are time values, in milliseconds.  A value of 0, when
6452  * modifying the parameters, indicates that the current value should not
6453  * be changed.
6454  *
6455  */
6456 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6457 				char __user *optval,
6458 				int __user *optlen) {
6459 	struct sctp_rtoinfo rtoinfo;
6460 	struct sctp_association *asoc;
6461 
6462 	if (len < sizeof (struct sctp_rtoinfo))
6463 		return -EINVAL;
6464 
6465 	len = sizeof(struct sctp_rtoinfo);
6466 
6467 	if (copy_from_user(&rtoinfo, optval, len))
6468 		return -EFAULT;
6469 
6470 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6471 
6472 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6473 	    sctp_style(sk, UDP))
6474 		return -EINVAL;
6475 
6476 	/* Values corresponding to the specific association. */
6477 	if (asoc) {
6478 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6479 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6480 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6481 	} else {
6482 		/* Values corresponding to the endpoint. */
6483 		struct sctp_sock *sp = sctp_sk(sk);
6484 
6485 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6486 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6487 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6488 	}
6489 
6490 	if (put_user(len, optlen))
6491 		return -EFAULT;
6492 
6493 	if (copy_to_user(optval, &rtoinfo, len))
6494 		return -EFAULT;
6495 
6496 	return 0;
6497 }
6498 
6499 /*
6500  *
6501  * 7.1.2 SCTP_ASSOCINFO
6502  *
6503  * This option is used to tune the maximum retransmission attempts
6504  * of the association.
6505  * Returns an error if the new association retransmission value is
6506  * greater than the sum of the retransmission value  of the peer.
6507  * See [SCTP] for more information.
6508  *
6509  */
6510 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6511 				     char __user *optval,
6512 				     int __user *optlen)
6513 {
6514 
6515 	struct sctp_assocparams assocparams;
6516 	struct sctp_association *asoc;
6517 	struct list_head *pos;
6518 	int cnt = 0;
6519 
6520 	if (len < sizeof (struct sctp_assocparams))
6521 		return -EINVAL;
6522 
6523 	len = sizeof(struct sctp_assocparams);
6524 
6525 	if (copy_from_user(&assocparams, optval, len))
6526 		return -EFAULT;
6527 
6528 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6529 
6530 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6531 	    sctp_style(sk, UDP))
6532 		return -EINVAL;
6533 
6534 	/* Values correspoinding to the specific association */
6535 	if (asoc) {
6536 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6537 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6538 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6539 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6540 
6541 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6542 			cnt++;
6543 		}
6544 
6545 		assocparams.sasoc_number_peer_destinations = cnt;
6546 	} else {
6547 		/* Values corresponding to the endpoint */
6548 		struct sctp_sock *sp = sctp_sk(sk);
6549 
6550 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6551 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6552 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6553 		assocparams.sasoc_cookie_life =
6554 					sp->assocparams.sasoc_cookie_life;
6555 		assocparams.sasoc_number_peer_destinations =
6556 					sp->assocparams.
6557 					sasoc_number_peer_destinations;
6558 	}
6559 
6560 	if (put_user(len, optlen))
6561 		return -EFAULT;
6562 
6563 	if (copy_to_user(optval, &assocparams, len))
6564 		return -EFAULT;
6565 
6566 	return 0;
6567 }
6568 
6569 /*
6570  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6571  *
6572  * This socket option is a boolean flag which turns on or off mapped V4
6573  * addresses.  If this option is turned on and the socket is type
6574  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6575  * If this option is turned off, then no mapping will be done of V4
6576  * addresses and a user will receive both PF_INET6 and PF_INET type
6577  * addresses on the socket.
6578  */
6579 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6580 				    char __user *optval, int __user *optlen)
6581 {
6582 	int val;
6583 	struct sctp_sock *sp = sctp_sk(sk);
6584 
6585 	if (len < sizeof(int))
6586 		return -EINVAL;
6587 
6588 	len = sizeof(int);
6589 	val = sp->v4mapped;
6590 	if (put_user(len, optlen))
6591 		return -EFAULT;
6592 	if (copy_to_user(optval, &val, len))
6593 		return -EFAULT;
6594 
6595 	return 0;
6596 }
6597 
6598 /*
6599  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6600  * (chapter and verse is quoted at sctp_setsockopt_context())
6601  */
6602 static int sctp_getsockopt_context(struct sock *sk, int len,
6603 				   char __user *optval, int __user *optlen)
6604 {
6605 	struct sctp_assoc_value params;
6606 	struct sctp_association *asoc;
6607 
6608 	if (len < sizeof(struct sctp_assoc_value))
6609 		return -EINVAL;
6610 
6611 	len = sizeof(struct sctp_assoc_value);
6612 
6613 	if (copy_from_user(&params, optval, len))
6614 		return -EFAULT;
6615 
6616 	asoc = sctp_id2assoc(sk, params.assoc_id);
6617 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6618 	    sctp_style(sk, UDP))
6619 		return -EINVAL;
6620 
6621 	params.assoc_value = asoc ? asoc->default_rcv_context
6622 				  : sctp_sk(sk)->default_rcv_context;
6623 
6624 	if (put_user(len, optlen))
6625 		return -EFAULT;
6626 	if (copy_to_user(optval, &params, len))
6627 		return -EFAULT;
6628 
6629 	return 0;
6630 }
6631 
6632 /*
6633  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6634  * This option will get or set the maximum size to put in any outgoing
6635  * SCTP DATA chunk.  If a message is larger than this size it will be
6636  * fragmented by SCTP into the specified size.  Note that the underlying
6637  * SCTP implementation may fragment into smaller sized chunks when the
6638  * PMTU of the underlying association is smaller than the value set by
6639  * the user.  The default value for this option is '0' which indicates
6640  * the user is NOT limiting fragmentation and only the PMTU will effect
6641  * SCTP's choice of DATA chunk size.  Note also that values set larger
6642  * than the maximum size of an IP datagram will effectively let SCTP
6643  * control fragmentation (i.e. the same as setting this option to 0).
6644  *
6645  * The following structure is used to access and modify this parameter:
6646  *
6647  * struct sctp_assoc_value {
6648  *   sctp_assoc_t assoc_id;
6649  *   uint32_t assoc_value;
6650  * };
6651  *
6652  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6653  *    For one-to-many style sockets this parameter indicates which
6654  *    association the user is performing an action upon.  Note that if
6655  *    this field's value is zero then the endpoints default value is
6656  *    changed (effecting future associations only).
6657  * assoc_value:  This parameter specifies the maximum size in bytes.
6658  */
6659 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6660 				  char __user *optval, int __user *optlen)
6661 {
6662 	struct sctp_assoc_value params;
6663 	struct sctp_association *asoc;
6664 
6665 	if (len == sizeof(int)) {
6666 		pr_warn_ratelimited(DEPRECATED
6667 				    "%s (pid %d) "
6668 				    "Use of int in maxseg socket option.\n"
6669 				    "Use struct sctp_assoc_value instead\n",
6670 				    current->comm, task_pid_nr(current));
6671 		params.assoc_id = SCTP_FUTURE_ASSOC;
6672 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6673 		len = sizeof(struct sctp_assoc_value);
6674 		if (copy_from_user(&params, optval, len))
6675 			return -EFAULT;
6676 	} else
6677 		return -EINVAL;
6678 
6679 	asoc = sctp_id2assoc(sk, params.assoc_id);
6680 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6681 	    sctp_style(sk, UDP))
6682 		return -EINVAL;
6683 
6684 	if (asoc)
6685 		params.assoc_value = asoc->frag_point;
6686 	else
6687 		params.assoc_value = sctp_sk(sk)->user_frag;
6688 
6689 	if (put_user(len, optlen))
6690 		return -EFAULT;
6691 	if (len == sizeof(int)) {
6692 		if (copy_to_user(optval, &params.assoc_value, len))
6693 			return -EFAULT;
6694 	} else {
6695 		if (copy_to_user(optval, &params, len))
6696 			return -EFAULT;
6697 	}
6698 
6699 	return 0;
6700 }
6701 
6702 /*
6703  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6704  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6705  */
6706 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6707 					       char __user *optval, int __user *optlen)
6708 {
6709 	int val;
6710 
6711 	if (len < sizeof(int))
6712 		return -EINVAL;
6713 
6714 	len = sizeof(int);
6715 
6716 	val = sctp_sk(sk)->frag_interleave;
6717 	if (put_user(len, optlen))
6718 		return -EFAULT;
6719 	if (copy_to_user(optval, &val, len))
6720 		return -EFAULT;
6721 
6722 	return 0;
6723 }
6724 
6725 /*
6726  * 7.1.25.  Set or Get the sctp partial delivery point
6727  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6728  */
6729 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6730 						  char __user *optval,
6731 						  int __user *optlen)
6732 {
6733 	u32 val;
6734 
6735 	if (len < sizeof(u32))
6736 		return -EINVAL;
6737 
6738 	len = sizeof(u32);
6739 
6740 	val = sctp_sk(sk)->pd_point;
6741 	if (put_user(len, optlen))
6742 		return -EFAULT;
6743 	if (copy_to_user(optval, &val, len))
6744 		return -EFAULT;
6745 
6746 	return 0;
6747 }
6748 
6749 /*
6750  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6751  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6752  */
6753 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6754 				    char __user *optval,
6755 				    int __user *optlen)
6756 {
6757 	struct sctp_assoc_value params;
6758 	struct sctp_association *asoc;
6759 
6760 	if (len == sizeof(int)) {
6761 		pr_warn_ratelimited(DEPRECATED
6762 				    "%s (pid %d) "
6763 				    "Use of int in max_burst socket option.\n"
6764 				    "Use struct sctp_assoc_value instead\n",
6765 				    current->comm, task_pid_nr(current));
6766 		params.assoc_id = SCTP_FUTURE_ASSOC;
6767 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6768 		len = sizeof(struct sctp_assoc_value);
6769 		if (copy_from_user(&params, optval, len))
6770 			return -EFAULT;
6771 	} else
6772 		return -EINVAL;
6773 
6774 	asoc = sctp_id2assoc(sk, params.assoc_id);
6775 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6776 	    sctp_style(sk, UDP))
6777 		return -EINVAL;
6778 
6779 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6780 
6781 	if (len == sizeof(int)) {
6782 		if (copy_to_user(optval, &params.assoc_value, len))
6783 			return -EFAULT;
6784 	} else {
6785 		if (copy_to_user(optval, &params, len))
6786 			return -EFAULT;
6787 	}
6788 
6789 	return 0;
6790 
6791 }
6792 
6793 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6794 				    char __user *optval, int __user *optlen)
6795 {
6796 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6797 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6798 	struct sctp_hmac_algo_param *hmacs;
6799 	__u16 data_len = 0;
6800 	u32 num_idents;
6801 	int i;
6802 
6803 	if (!ep->auth_enable)
6804 		return -EACCES;
6805 
6806 	hmacs = ep->auth_hmacs_list;
6807 	data_len = ntohs(hmacs->param_hdr.length) -
6808 		   sizeof(struct sctp_paramhdr);
6809 
6810 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6811 		return -EINVAL;
6812 
6813 	len = sizeof(struct sctp_hmacalgo) + data_len;
6814 	num_idents = data_len / sizeof(u16);
6815 
6816 	if (put_user(len, optlen))
6817 		return -EFAULT;
6818 	if (put_user(num_idents, &p->shmac_num_idents))
6819 		return -EFAULT;
6820 	for (i = 0; i < num_idents; i++) {
6821 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6822 
6823 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6824 			return -EFAULT;
6825 	}
6826 	return 0;
6827 }
6828 
6829 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6830 				    char __user *optval, int __user *optlen)
6831 {
6832 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6833 	struct sctp_authkeyid val;
6834 	struct sctp_association *asoc;
6835 
6836 	if (len < sizeof(struct sctp_authkeyid))
6837 		return -EINVAL;
6838 
6839 	len = sizeof(struct sctp_authkeyid);
6840 	if (copy_from_user(&val, optval, len))
6841 		return -EFAULT;
6842 
6843 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6844 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6845 		return -EINVAL;
6846 
6847 	if (asoc) {
6848 		if (!asoc->peer.auth_capable)
6849 			return -EACCES;
6850 		val.scact_keynumber = asoc->active_key_id;
6851 	} else {
6852 		if (!ep->auth_enable)
6853 			return -EACCES;
6854 		val.scact_keynumber = ep->active_key_id;
6855 	}
6856 
6857 	if (put_user(len, optlen))
6858 		return -EFAULT;
6859 	if (copy_to_user(optval, &val, len))
6860 		return -EFAULT;
6861 
6862 	return 0;
6863 }
6864 
6865 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6866 				    char __user *optval, int __user *optlen)
6867 {
6868 	struct sctp_authchunks __user *p = (void __user *)optval;
6869 	struct sctp_authchunks val;
6870 	struct sctp_association *asoc;
6871 	struct sctp_chunks_param *ch;
6872 	u32    num_chunks = 0;
6873 	char __user *to;
6874 
6875 	if (len < sizeof(struct sctp_authchunks))
6876 		return -EINVAL;
6877 
6878 	if (copy_from_user(&val, optval, sizeof(val)))
6879 		return -EFAULT;
6880 
6881 	to = p->gauth_chunks;
6882 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6883 	if (!asoc)
6884 		return -EINVAL;
6885 
6886 	if (!asoc->peer.auth_capable)
6887 		return -EACCES;
6888 
6889 	ch = asoc->peer.peer_chunks;
6890 	if (!ch)
6891 		goto num;
6892 
6893 	/* See if the user provided enough room for all the data */
6894 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6895 	if (len < num_chunks)
6896 		return -EINVAL;
6897 
6898 	if (copy_to_user(to, ch->chunks, num_chunks))
6899 		return -EFAULT;
6900 num:
6901 	len = sizeof(struct sctp_authchunks) + num_chunks;
6902 	if (put_user(len, optlen))
6903 		return -EFAULT;
6904 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6905 		return -EFAULT;
6906 	return 0;
6907 }
6908 
6909 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6910 				    char __user *optval, int __user *optlen)
6911 {
6912 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6913 	struct sctp_authchunks __user *p = (void __user *)optval;
6914 	struct sctp_authchunks val;
6915 	struct sctp_association *asoc;
6916 	struct sctp_chunks_param *ch;
6917 	u32    num_chunks = 0;
6918 	char __user *to;
6919 
6920 	if (len < sizeof(struct sctp_authchunks))
6921 		return -EINVAL;
6922 
6923 	if (copy_from_user(&val, optval, sizeof(val)))
6924 		return -EFAULT;
6925 
6926 	to = p->gauth_chunks;
6927 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6928 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6929 	    sctp_style(sk, UDP))
6930 		return -EINVAL;
6931 
6932 	if (asoc) {
6933 		if (!asoc->peer.auth_capable)
6934 			return -EACCES;
6935 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6936 	} else {
6937 		if (!ep->auth_enable)
6938 			return -EACCES;
6939 		ch = ep->auth_chunk_list;
6940 	}
6941 	if (!ch)
6942 		goto num;
6943 
6944 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6945 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6946 		return -EINVAL;
6947 
6948 	if (copy_to_user(to, ch->chunks, num_chunks))
6949 		return -EFAULT;
6950 num:
6951 	len = sizeof(struct sctp_authchunks) + num_chunks;
6952 	if (put_user(len, optlen))
6953 		return -EFAULT;
6954 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6955 		return -EFAULT;
6956 
6957 	return 0;
6958 }
6959 
6960 /*
6961  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6962  * This option gets the current number of associations that are attached
6963  * to a one-to-many style socket.  The option value is an uint32_t.
6964  */
6965 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6966 				    char __user *optval, int __user *optlen)
6967 {
6968 	struct sctp_sock *sp = sctp_sk(sk);
6969 	struct sctp_association *asoc;
6970 	u32 val = 0;
6971 
6972 	if (sctp_style(sk, TCP))
6973 		return -EOPNOTSUPP;
6974 
6975 	if (len < sizeof(u32))
6976 		return -EINVAL;
6977 
6978 	len = sizeof(u32);
6979 
6980 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6981 		val++;
6982 	}
6983 
6984 	if (put_user(len, optlen))
6985 		return -EFAULT;
6986 	if (copy_to_user(optval, &val, len))
6987 		return -EFAULT;
6988 
6989 	return 0;
6990 }
6991 
6992 /*
6993  * 8.1.23 SCTP_AUTO_ASCONF
6994  * See the corresponding setsockopt entry as description
6995  */
6996 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6997 				   char __user *optval, int __user *optlen)
6998 {
6999 	int val = 0;
7000 
7001 	if (len < sizeof(int))
7002 		return -EINVAL;
7003 
7004 	len = sizeof(int);
7005 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7006 		val = 1;
7007 	if (put_user(len, optlen))
7008 		return -EFAULT;
7009 	if (copy_to_user(optval, &val, len))
7010 		return -EFAULT;
7011 	return 0;
7012 }
7013 
7014 /*
7015  * 8.2.6. Get the Current Identifiers of Associations
7016  *        (SCTP_GET_ASSOC_ID_LIST)
7017  *
7018  * This option gets the current list of SCTP association identifiers of
7019  * the SCTP associations handled by a one-to-many style socket.
7020  */
7021 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7022 				    char __user *optval, int __user *optlen)
7023 {
7024 	struct sctp_sock *sp = sctp_sk(sk);
7025 	struct sctp_association *asoc;
7026 	struct sctp_assoc_ids *ids;
7027 	u32 num = 0;
7028 
7029 	if (sctp_style(sk, TCP))
7030 		return -EOPNOTSUPP;
7031 
7032 	if (len < sizeof(struct sctp_assoc_ids))
7033 		return -EINVAL;
7034 
7035 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7036 		num++;
7037 	}
7038 
7039 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7040 		return -EINVAL;
7041 
7042 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7043 
7044 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7045 	if (unlikely(!ids))
7046 		return -ENOMEM;
7047 
7048 	ids->gaids_number_of_ids = num;
7049 	num = 0;
7050 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7051 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7052 	}
7053 
7054 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7055 		kfree(ids);
7056 		return -EFAULT;
7057 	}
7058 
7059 	kfree(ids);
7060 	return 0;
7061 }
7062 
7063 /*
7064  * SCTP_PEER_ADDR_THLDS
7065  *
7066  * This option allows us to fetch the partially failed threshold for one or all
7067  * transports in an association.  See Section 6.1 of:
7068  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7069  */
7070 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7071 					    char __user *optval, int len,
7072 					    int __user *optlen, bool v2)
7073 {
7074 	struct sctp_paddrthlds_v2 val;
7075 	struct sctp_transport *trans;
7076 	struct sctp_association *asoc;
7077 	int min;
7078 
7079 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7080 	if (len < min)
7081 		return -EINVAL;
7082 	len = min;
7083 	if (copy_from_user(&val, optval, len))
7084 		return -EFAULT;
7085 
7086 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7087 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7088 					       val.spt_assoc_id);
7089 		if (!trans)
7090 			return -ENOENT;
7091 
7092 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7093 		val.spt_pathpfthld = trans->pf_retrans;
7094 		val.spt_pathcpthld = trans->ps_retrans;
7095 
7096 		goto out;
7097 	}
7098 
7099 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7100 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7101 	    sctp_style(sk, UDP))
7102 		return -EINVAL;
7103 
7104 	if (asoc) {
7105 		val.spt_pathpfthld = asoc->pf_retrans;
7106 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7107 		val.spt_pathcpthld = asoc->ps_retrans;
7108 	} else {
7109 		struct sctp_sock *sp = sctp_sk(sk);
7110 
7111 		val.spt_pathpfthld = sp->pf_retrans;
7112 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7113 		val.spt_pathcpthld = sp->ps_retrans;
7114 	}
7115 
7116 out:
7117 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7118 		return -EFAULT;
7119 
7120 	return 0;
7121 }
7122 
7123 /*
7124  * SCTP_GET_ASSOC_STATS
7125  *
7126  * This option retrieves local per endpoint statistics. It is modeled
7127  * after OpenSolaris' implementation
7128  */
7129 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7130 				       char __user *optval,
7131 				       int __user *optlen)
7132 {
7133 	struct sctp_assoc_stats sas;
7134 	struct sctp_association *asoc = NULL;
7135 
7136 	/* User must provide at least the assoc id */
7137 	if (len < sizeof(sctp_assoc_t))
7138 		return -EINVAL;
7139 
7140 	/* Allow the struct to grow and fill in as much as possible */
7141 	len = min_t(size_t, len, sizeof(sas));
7142 
7143 	if (copy_from_user(&sas, optval, len))
7144 		return -EFAULT;
7145 
7146 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7147 	if (!asoc)
7148 		return -EINVAL;
7149 
7150 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7151 	sas.sas_gapcnt = asoc->stats.gapcnt;
7152 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7153 	sas.sas_osacks = asoc->stats.osacks;
7154 	sas.sas_isacks = asoc->stats.isacks;
7155 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7156 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7157 	sas.sas_oodchunks = asoc->stats.oodchunks;
7158 	sas.sas_iodchunks = asoc->stats.iodchunks;
7159 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7160 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7161 	sas.sas_idupchunks = asoc->stats.idupchunks;
7162 	sas.sas_opackets = asoc->stats.opackets;
7163 	sas.sas_ipackets = asoc->stats.ipackets;
7164 
7165 	/* New high max rto observed, will return 0 if not a single
7166 	 * RTO update took place. obs_rto_ipaddr will be bogus
7167 	 * in such a case
7168 	 */
7169 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7170 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7171 		sizeof(struct sockaddr_storage));
7172 
7173 	/* Mark beginning of a new observation period */
7174 	asoc->stats.max_obs_rto = asoc->rto_min;
7175 
7176 	if (put_user(len, optlen))
7177 		return -EFAULT;
7178 
7179 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7180 
7181 	if (copy_to_user(optval, &sas, len))
7182 		return -EFAULT;
7183 
7184 	return 0;
7185 }
7186 
7187 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7188 				       char __user *optval,
7189 				       int __user *optlen)
7190 {
7191 	int val = 0;
7192 
7193 	if (len < sizeof(int))
7194 		return -EINVAL;
7195 
7196 	len = sizeof(int);
7197 	if (sctp_sk(sk)->recvrcvinfo)
7198 		val = 1;
7199 	if (put_user(len, optlen))
7200 		return -EFAULT;
7201 	if (copy_to_user(optval, &val, len))
7202 		return -EFAULT;
7203 
7204 	return 0;
7205 }
7206 
7207 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7208 				       char __user *optval,
7209 				       int __user *optlen)
7210 {
7211 	int val = 0;
7212 
7213 	if (len < sizeof(int))
7214 		return -EINVAL;
7215 
7216 	len = sizeof(int);
7217 	if (sctp_sk(sk)->recvnxtinfo)
7218 		val = 1;
7219 	if (put_user(len, optlen))
7220 		return -EFAULT;
7221 	if (copy_to_user(optval, &val, len))
7222 		return -EFAULT;
7223 
7224 	return 0;
7225 }
7226 
7227 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7228 					char __user *optval,
7229 					int __user *optlen)
7230 {
7231 	struct sctp_assoc_value params;
7232 	struct sctp_association *asoc;
7233 	int retval = -EFAULT;
7234 
7235 	if (len < sizeof(params)) {
7236 		retval = -EINVAL;
7237 		goto out;
7238 	}
7239 
7240 	len = sizeof(params);
7241 	if (copy_from_user(&params, optval, len))
7242 		goto out;
7243 
7244 	asoc = sctp_id2assoc(sk, params.assoc_id);
7245 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7246 	    sctp_style(sk, UDP)) {
7247 		retval = -EINVAL;
7248 		goto out;
7249 	}
7250 
7251 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7252 				  : sctp_sk(sk)->ep->prsctp_enable;
7253 
7254 	if (put_user(len, optlen))
7255 		goto out;
7256 
7257 	if (copy_to_user(optval, &params, len))
7258 		goto out;
7259 
7260 	retval = 0;
7261 
7262 out:
7263 	return retval;
7264 }
7265 
7266 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7267 					  char __user *optval,
7268 					  int __user *optlen)
7269 {
7270 	struct sctp_default_prinfo info;
7271 	struct sctp_association *asoc;
7272 	int retval = -EFAULT;
7273 
7274 	if (len < sizeof(info)) {
7275 		retval = -EINVAL;
7276 		goto out;
7277 	}
7278 
7279 	len = sizeof(info);
7280 	if (copy_from_user(&info, optval, len))
7281 		goto out;
7282 
7283 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7284 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7285 	    sctp_style(sk, UDP)) {
7286 		retval = -EINVAL;
7287 		goto out;
7288 	}
7289 
7290 	if (asoc) {
7291 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7292 		info.pr_value = asoc->default_timetolive;
7293 	} else {
7294 		struct sctp_sock *sp = sctp_sk(sk);
7295 
7296 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7297 		info.pr_value = sp->default_timetolive;
7298 	}
7299 
7300 	if (put_user(len, optlen))
7301 		goto out;
7302 
7303 	if (copy_to_user(optval, &info, len))
7304 		goto out;
7305 
7306 	retval = 0;
7307 
7308 out:
7309 	return retval;
7310 }
7311 
7312 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7313 					  char __user *optval,
7314 					  int __user *optlen)
7315 {
7316 	struct sctp_prstatus params;
7317 	struct sctp_association *asoc;
7318 	int policy;
7319 	int retval = -EINVAL;
7320 
7321 	if (len < sizeof(params))
7322 		goto out;
7323 
7324 	len = sizeof(params);
7325 	if (copy_from_user(&params, optval, len)) {
7326 		retval = -EFAULT;
7327 		goto out;
7328 	}
7329 
7330 	policy = params.sprstat_policy;
7331 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7332 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7333 		goto out;
7334 
7335 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7336 	if (!asoc)
7337 		goto out;
7338 
7339 	if (policy == SCTP_PR_SCTP_ALL) {
7340 		params.sprstat_abandoned_unsent = 0;
7341 		params.sprstat_abandoned_sent = 0;
7342 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7343 			params.sprstat_abandoned_unsent +=
7344 				asoc->abandoned_unsent[policy];
7345 			params.sprstat_abandoned_sent +=
7346 				asoc->abandoned_sent[policy];
7347 		}
7348 	} else {
7349 		params.sprstat_abandoned_unsent =
7350 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7351 		params.sprstat_abandoned_sent =
7352 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7353 	}
7354 
7355 	if (put_user(len, optlen)) {
7356 		retval = -EFAULT;
7357 		goto out;
7358 	}
7359 
7360 	if (copy_to_user(optval, &params, len)) {
7361 		retval = -EFAULT;
7362 		goto out;
7363 	}
7364 
7365 	retval = 0;
7366 
7367 out:
7368 	return retval;
7369 }
7370 
7371 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7372 					   char __user *optval,
7373 					   int __user *optlen)
7374 {
7375 	struct sctp_stream_out_ext *streamoute;
7376 	struct sctp_association *asoc;
7377 	struct sctp_prstatus params;
7378 	int retval = -EINVAL;
7379 	int policy;
7380 
7381 	if (len < sizeof(params))
7382 		goto out;
7383 
7384 	len = sizeof(params);
7385 	if (copy_from_user(&params, optval, len)) {
7386 		retval = -EFAULT;
7387 		goto out;
7388 	}
7389 
7390 	policy = params.sprstat_policy;
7391 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7392 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7393 		goto out;
7394 
7395 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7396 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7397 		goto out;
7398 
7399 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7400 	if (!streamoute) {
7401 		/* Not allocated yet, means all stats are 0 */
7402 		params.sprstat_abandoned_unsent = 0;
7403 		params.sprstat_abandoned_sent = 0;
7404 		retval = 0;
7405 		goto out;
7406 	}
7407 
7408 	if (policy == SCTP_PR_SCTP_ALL) {
7409 		params.sprstat_abandoned_unsent = 0;
7410 		params.sprstat_abandoned_sent = 0;
7411 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7412 			params.sprstat_abandoned_unsent +=
7413 				streamoute->abandoned_unsent[policy];
7414 			params.sprstat_abandoned_sent +=
7415 				streamoute->abandoned_sent[policy];
7416 		}
7417 	} else {
7418 		params.sprstat_abandoned_unsent =
7419 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7420 		params.sprstat_abandoned_sent =
7421 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7422 	}
7423 
7424 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7425 		retval = -EFAULT;
7426 		goto out;
7427 	}
7428 
7429 	retval = 0;
7430 
7431 out:
7432 	return retval;
7433 }
7434 
7435 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7436 					      char __user *optval,
7437 					      int __user *optlen)
7438 {
7439 	struct sctp_assoc_value params;
7440 	struct sctp_association *asoc;
7441 	int retval = -EFAULT;
7442 
7443 	if (len < sizeof(params)) {
7444 		retval = -EINVAL;
7445 		goto out;
7446 	}
7447 
7448 	len = sizeof(params);
7449 	if (copy_from_user(&params, optval, len))
7450 		goto out;
7451 
7452 	asoc = sctp_id2assoc(sk, params.assoc_id);
7453 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7454 	    sctp_style(sk, UDP)) {
7455 		retval = -EINVAL;
7456 		goto out;
7457 	}
7458 
7459 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7460 				  : sctp_sk(sk)->ep->reconf_enable;
7461 
7462 	if (put_user(len, optlen))
7463 		goto out;
7464 
7465 	if (copy_to_user(optval, &params, len))
7466 		goto out;
7467 
7468 	retval = 0;
7469 
7470 out:
7471 	return retval;
7472 }
7473 
7474 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7475 					   char __user *optval,
7476 					   int __user *optlen)
7477 {
7478 	struct sctp_assoc_value params;
7479 	struct sctp_association *asoc;
7480 	int retval = -EFAULT;
7481 
7482 	if (len < sizeof(params)) {
7483 		retval = -EINVAL;
7484 		goto out;
7485 	}
7486 
7487 	len = sizeof(params);
7488 	if (copy_from_user(&params, optval, len))
7489 		goto out;
7490 
7491 	asoc = sctp_id2assoc(sk, params.assoc_id);
7492 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7493 	    sctp_style(sk, UDP)) {
7494 		retval = -EINVAL;
7495 		goto out;
7496 	}
7497 
7498 	params.assoc_value = asoc ? asoc->strreset_enable
7499 				  : sctp_sk(sk)->ep->strreset_enable;
7500 
7501 	if (put_user(len, optlen))
7502 		goto out;
7503 
7504 	if (copy_to_user(optval, &params, len))
7505 		goto out;
7506 
7507 	retval = 0;
7508 
7509 out:
7510 	return retval;
7511 }
7512 
7513 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7514 				     char __user *optval,
7515 				     int __user *optlen)
7516 {
7517 	struct sctp_assoc_value params;
7518 	struct sctp_association *asoc;
7519 	int retval = -EFAULT;
7520 
7521 	if (len < sizeof(params)) {
7522 		retval = -EINVAL;
7523 		goto out;
7524 	}
7525 
7526 	len = sizeof(params);
7527 	if (copy_from_user(&params, optval, len))
7528 		goto out;
7529 
7530 	asoc = sctp_id2assoc(sk, params.assoc_id);
7531 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7532 	    sctp_style(sk, UDP)) {
7533 		retval = -EINVAL;
7534 		goto out;
7535 	}
7536 
7537 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7538 				  : sctp_sk(sk)->default_ss;
7539 
7540 	if (put_user(len, optlen))
7541 		goto out;
7542 
7543 	if (copy_to_user(optval, &params, len))
7544 		goto out;
7545 
7546 	retval = 0;
7547 
7548 out:
7549 	return retval;
7550 }
7551 
7552 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7553 					   char __user *optval,
7554 					   int __user *optlen)
7555 {
7556 	struct sctp_stream_value params;
7557 	struct sctp_association *asoc;
7558 	int retval = -EFAULT;
7559 
7560 	if (len < sizeof(params)) {
7561 		retval = -EINVAL;
7562 		goto out;
7563 	}
7564 
7565 	len = sizeof(params);
7566 	if (copy_from_user(&params, optval, len))
7567 		goto out;
7568 
7569 	asoc = sctp_id2assoc(sk, params.assoc_id);
7570 	if (!asoc) {
7571 		retval = -EINVAL;
7572 		goto out;
7573 	}
7574 
7575 	retval = sctp_sched_get_value(asoc, params.stream_id,
7576 				      &params.stream_value);
7577 	if (retval)
7578 		goto out;
7579 
7580 	if (put_user(len, optlen)) {
7581 		retval = -EFAULT;
7582 		goto out;
7583 	}
7584 
7585 	if (copy_to_user(optval, &params, len)) {
7586 		retval = -EFAULT;
7587 		goto out;
7588 	}
7589 
7590 out:
7591 	return retval;
7592 }
7593 
7594 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7595 						  char __user *optval,
7596 						  int __user *optlen)
7597 {
7598 	struct sctp_assoc_value params;
7599 	struct sctp_association *asoc;
7600 	int retval = -EFAULT;
7601 
7602 	if (len < sizeof(params)) {
7603 		retval = -EINVAL;
7604 		goto out;
7605 	}
7606 
7607 	len = sizeof(params);
7608 	if (copy_from_user(&params, optval, len))
7609 		goto out;
7610 
7611 	asoc = sctp_id2assoc(sk, params.assoc_id);
7612 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7613 	    sctp_style(sk, UDP)) {
7614 		retval = -EINVAL;
7615 		goto out;
7616 	}
7617 
7618 	params.assoc_value = asoc ? asoc->peer.intl_capable
7619 				  : sctp_sk(sk)->ep->intl_enable;
7620 
7621 	if (put_user(len, optlen))
7622 		goto out;
7623 
7624 	if (copy_to_user(optval, &params, len))
7625 		goto out;
7626 
7627 	retval = 0;
7628 
7629 out:
7630 	return retval;
7631 }
7632 
7633 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7634 				      char __user *optval,
7635 				      int __user *optlen)
7636 {
7637 	int val;
7638 
7639 	if (len < sizeof(int))
7640 		return -EINVAL;
7641 
7642 	len = sizeof(int);
7643 	val = sctp_sk(sk)->reuse;
7644 	if (put_user(len, optlen))
7645 		return -EFAULT;
7646 
7647 	if (copy_to_user(optval, &val, len))
7648 		return -EFAULT;
7649 
7650 	return 0;
7651 }
7652 
7653 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7654 				 int __user *optlen)
7655 {
7656 	struct sctp_association *asoc;
7657 	struct sctp_event param;
7658 	__u16 subscribe;
7659 
7660 	if (len < sizeof(param))
7661 		return -EINVAL;
7662 
7663 	len = sizeof(param);
7664 	if (copy_from_user(&param, optval, len))
7665 		return -EFAULT;
7666 
7667 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7668 	    param.se_type > SCTP_SN_TYPE_MAX)
7669 		return -EINVAL;
7670 
7671 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7672 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7673 	    sctp_style(sk, UDP))
7674 		return -EINVAL;
7675 
7676 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7677 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7678 
7679 	if (put_user(len, optlen))
7680 		return -EFAULT;
7681 
7682 	if (copy_to_user(optval, &param, len))
7683 		return -EFAULT;
7684 
7685 	return 0;
7686 }
7687 
7688 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7689 					    char __user *optval,
7690 					    int __user *optlen)
7691 {
7692 	struct sctp_assoc_value params;
7693 	struct sctp_association *asoc;
7694 	int retval = -EFAULT;
7695 
7696 	if (len < sizeof(params)) {
7697 		retval = -EINVAL;
7698 		goto out;
7699 	}
7700 
7701 	len = sizeof(params);
7702 	if (copy_from_user(&params, optval, len))
7703 		goto out;
7704 
7705 	asoc = sctp_id2assoc(sk, params.assoc_id);
7706 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7707 	    sctp_style(sk, UDP)) {
7708 		retval = -EINVAL;
7709 		goto out;
7710 	}
7711 
7712 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7713 				  : sctp_sk(sk)->ep->asconf_enable;
7714 
7715 	if (put_user(len, optlen))
7716 		goto out;
7717 
7718 	if (copy_to_user(optval, &params, len))
7719 		goto out;
7720 
7721 	retval = 0;
7722 
7723 out:
7724 	return retval;
7725 }
7726 
7727 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7728 					  char __user *optval,
7729 					  int __user *optlen)
7730 {
7731 	struct sctp_assoc_value params;
7732 	struct sctp_association *asoc;
7733 	int retval = -EFAULT;
7734 
7735 	if (len < sizeof(params)) {
7736 		retval = -EINVAL;
7737 		goto out;
7738 	}
7739 
7740 	len = sizeof(params);
7741 	if (copy_from_user(&params, optval, len))
7742 		goto out;
7743 
7744 	asoc = sctp_id2assoc(sk, params.assoc_id);
7745 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7746 	    sctp_style(sk, UDP)) {
7747 		retval = -EINVAL;
7748 		goto out;
7749 	}
7750 
7751 	params.assoc_value = asoc ? asoc->peer.auth_capable
7752 				  : sctp_sk(sk)->ep->auth_enable;
7753 
7754 	if (put_user(len, optlen))
7755 		goto out;
7756 
7757 	if (copy_to_user(optval, &params, len))
7758 		goto out;
7759 
7760 	retval = 0;
7761 
7762 out:
7763 	return retval;
7764 }
7765 
7766 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7767 					 char __user *optval,
7768 					 int __user *optlen)
7769 {
7770 	struct sctp_assoc_value params;
7771 	struct sctp_association *asoc;
7772 	int retval = -EFAULT;
7773 
7774 	if (len < sizeof(params)) {
7775 		retval = -EINVAL;
7776 		goto out;
7777 	}
7778 
7779 	len = sizeof(params);
7780 	if (copy_from_user(&params, optval, len))
7781 		goto out;
7782 
7783 	asoc = sctp_id2assoc(sk, params.assoc_id);
7784 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7785 	    sctp_style(sk, UDP)) {
7786 		retval = -EINVAL;
7787 		goto out;
7788 	}
7789 
7790 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7791 				  : sctp_sk(sk)->ep->ecn_enable;
7792 
7793 	if (put_user(len, optlen))
7794 		goto out;
7795 
7796 	if (copy_to_user(optval, &params, len))
7797 		goto out;
7798 
7799 	retval = 0;
7800 
7801 out:
7802 	return retval;
7803 }
7804 
7805 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7806 				     char __user *optval,
7807 				     int __user *optlen)
7808 {
7809 	struct sctp_assoc_value params;
7810 	struct sctp_association *asoc;
7811 	int retval = -EFAULT;
7812 
7813 	if (len < sizeof(params)) {
7814 		retval = -EINVAL;
7815 		goto out;
7816 	}
7817 
7818 	len = sizeof(params);
7819 	if (copy_from_user(&params, optval, len))
7820 		goto out;
7821 
7822 	asoc = sctp_id2assoc(sk, params.assoc_id);
7823 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7824 	    sctp_style(sk, UDP)) {
7825 		retval = -EINVAL;
7826 		goto out;
7827 	}
7828 
7829 	params.assoc_value = asoc ? asoc->pf_expose
7830 				  : sctp_sk(sk)->pf_expose;
7831 
7832 	if (put_user(len, optlen))
7833 		goto out;
7834 
7835 	if (copy_to_user(optval, &params, len))
7836 		goto out;
7837 
7838 	retval = 0;
7839 
7840 out:
7841 	return retval;
7842 }
7843 
7844 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7845 				      char __user *optval, int __user *optlen)
7846 {
7847 	struct sctp_association *asoc;
7848 	struct sctp_udpencaps encap;
7849 	struct sctp_transport *t;
7850 	__be16 encap_port;
7851 
7852 	if (len < sizeof(encap))
7853 		return -EINVAL;
7854 
7855 	len = sizeof(encap);
7856 	if (copy_from_user(&encap, optval, len))
7857 		return -EFAULT;
7858 
7859 	/* If an address other than INADDR_ANY is specified, and
7860 	 * no transport is found, then the request is invalid.
7861 	 */
7862 	if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7863 		t = sctp_addr_id2transport(sk, &encap.sue_address,
7864 					   encap.sue_assoc_id);
7865 		if (!t) {
7866 			pr_debug("%s: failed no transport\n", __func__);
7867 			return -EINVAL;
7868 		}
7869 
7870 		encap_port = t->encap_port;
7871 		goto out;
7872 	}
7873 
7874 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7875 	 * socket is a one to many style socket, and an association
7876 	 * was not found, then the id was invalid.
7877 	 */
7878 	asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7879 	if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7880 	    sctp_style(sk, UDP)) {
7881 		pr_debug("%s: failed no association\n", __func__);
7882 		return -EINVAL;
7883 	}
7884 
7885 	if (asoc) {
7886 		encap_port = asoc->encap_port;
7887 		goto out;
7888 	}
7889 
7890 	encap_port = sctp_sk(sk)->encap_port;
7891 
7892 out:
7893 	encap.sue_port = (__force uint16_t)encap_port;
7894 	if (copy_to_user(optval, &encap, len))
7895 		return -EFAULT;
7896 
7897 	if (put_user(len, optlen))
7898 		return -EFAULT;
7899 
7900 	return 0;
7901 }
7902 
7903 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7904 			   char __user *optval, int __user *optlen)
7905 {
7906 	int retval = 0;
7907 	int len;
7908 
7909 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7910 
7911 	/* I can hardly begin to describe how wrong this is.  This is
7912 	 * so broken as to be worse than useless.  The API draft
7913 	 * REALLY is NOT helpful here...  I am not convinced that the
7914 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7915 	 * are at all well-founded.
7916 	 */
7917 	if (level != SOL_SCTP) {
7918 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7919 
7920 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7921 		return retval;
7922 	}
7923 
7924 	if (get_user(len, optlen))
7925 		return -EFAULT;
7926 
7927 	if (len < 0)
7928 		return -EINVAL;
7929 
7930 	lock_sock(sk);
7931 
7932 	switch (optname) {
7933 	case SCTP_STATUS:
7934 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7935 		break;
7936 	case SCTP_DISABLE_FRAGMENTS:
7937 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7938 							   optlen);
7939 		break;
7940 	case SCTP_EVENTS:
7941 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7942 		break;
7943 	case SCTP_AUTOCLOSE:
7944 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7945 		break;
7946 	case SCTP_SOCKOPT_PEELOFF:
7947 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7948 		break;
7949 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7950 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7951 		break;
7952 	case SCTP_PEER_ADDR_PARAMS:
7953 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7954 							  optlen);
7955 		break;
7956 	case SCTP_DELAYED_SACK:
7957 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7958 							  optlen);
7959 		break;
7960 	case SCTP_INITMSG:
7961 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7962 		break;
7963 	case SCTP_GET_PEER_ADDRS:
7964 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7965 						    optlen);
7966 		break;
7967 	case SCTP_GET_LOCAL_ADDRS:
7968 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7969 						     optlen);
7970 		break;
7971 	case SCTP_SOCKOPT_CONNECTX3:
7972 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7973 		break;
7974 	case SCTP_DEFAULT_SEND_PARAM:
7975 		retval = sctp_getsockopt_default_send_param(sk, len,
7976 							    optval, optlen);
7977 		break;
7978 	case SCTP_DEFAULT_SNDINFO:
7979 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7980 							 optval, optlen);
7981 		break;
7982 	case SCTP_PRIMARY_ADDR:
7983 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7984 		break;
7985 	case SCTP_NODELAY:
7986 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7987 		break;
7988 	case SCTP_RTOINFO:
7989 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7990 		break;
7991 	case SCTP_ASSOCINFO:
7992 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7993 		break;
7994 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7995 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7996 		break;
7997 	case SCTP_MAXSEG:
7998 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7999 		break;
8000 	case SCTP_GET_PEER_ADDR_INFO:
8001 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8002 							optlen);
8003 		break;
8004 	case SCTP_ADAPTATION_LAYER:
8005 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8006 							optlen);
8007 		break;
8008 	case SCTP_CONTEXT:
8009 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
8010 		break;
8011 	case SCTP_FRAGMENT_INTERLEAVE:
8012 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8013 							     optlen);
8014 		break;
8015 	case SCTP_PARTIAL_DELIVERY_POINT:
8016 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8017 								optlen);
8018 		break;
8019 	case SCTP_MAX_BURST:
8020 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8021 		break;
8022 	case SCTP_AUTH_KEY:
8023 	case SCTP_AUTH_CHUNK:
8024 	case SCTP_AUTH_DELETE_KEY:
8025 	case SCTP_AUTH_DEACTIVATE_KEY:
8026 		retval = -EOPNOTSUPP;
8027 		break;
8028 	case SCTP_HMAC_IDENT:
8029 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8030 		break;
8031 	case SCTP_AUTH_ACTIVE_KEY:
8032 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8033 		break;
8034 	case SCTP_PEER_AUTH_CHUNKS:
8035 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8036 							optlen);
8037 		break;
8038 	case SCTP_LOCAL_AUTH_CHUNKS:
8039 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8040 							optlen);
8041 		break;
8042 	case SCTP_GET_ASSOC_NUMBER:
8043 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8044 		break;
8045 	case SCTP_GET_ASSOC_ID_LIST:
8046 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8047 		break;
8048 	case SCTP_AUTO_ASCONF:
8049 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8050 		break;
8051 	case SCTP_PEER_ADDR_THLDS:
8052 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8053 							  optlen, false);
8054 		break;
8055 	case SCTP_PEER_ADDR_THLDS_V2:
8056 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8057 							  optlen, true);
8058 		break;
8059 	case SCTP_GET_ASSOC_STATS:
8060 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8061 		break;
8062 	case SCTP_RECVRCVINFO:
8063 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8064 		break;
8065 	case SCTP_RECVNXTINFO:
8066 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8067 		break;
8068 	case SCTP_PR_SUPPORTED:
8069 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8070 		break;
8071 	case SCTP_DEFAULT_PRINFO:
8072 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8073 							optlen);
8074 		break;
8075 	case SCTP_PR_ASSOC_STATUS:
8076 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8077 							optlen);
8078 		break;
8079 	case SCTP_PR_STREAM_STATUS:
8080 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8081 							 optlen);
8082 		break;
8083 	case SCTP_RECONFIG_SUPPORTED:
8084 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8085 							    optlen);
8086 		break;
8087 	case SCTP_ENABLE_STREAM_RESET:
8088 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8089 							 optlen);
8090 		break;
8091 	case SCTP_STREAM_SCHEDULER:
8092 		retval = sctp_getsockopt_scheduler(sk, len, optval,
8093 						   optlen);
8094 		break;
8095 	case SCTP_STREAM_SCHEDULER_VALUE:
8096 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8097 							 optlen);
8098 		break;
8099 	case SCTP_INTERLEAVING_SUPPORTED:
8100 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8101 								optlen);
8102 		break;
8103 	case SCTP_REUSE_PORT:
8104 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8105 		break;
8106 	case SCTP_EVENT:
8107 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8108 		break;
8109 	case SCTP_ASCONF_SUPPORTED:
8110 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8111 							  optlen);
8112 		break;
8113 	case SCTP_AUTH_SUPPORTED:
8114 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
8115 							optlen);
8116 		break;
8117 	case SCTP_ECN_SUPPORTED:
8118 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8119 		break;
8120 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8121 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8122 		break;
8123 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
8124 		retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8125 		break;
8126 	default:
8127 		retval = -ENOPROTOOPT;
8128 		break;
8129 	}
8130 
8131 	release_sock(sk);
8132 	return retval;
8133 }
8134 
8135 static int sctp_hash(struct sock *sk)
8136 {
8137 	/* STUB */
8138 	return 0;
8139 }
8140 
8141 static void sctp_unhash(struct sock *sk)
8142 {
8143 	/* STUB */
8144 }
8145 
8146 /* Check if port is acceptable.  Possibly find first available port.
8147  *
8148  * The port hash table (contained in the 'global' SCTP protocol storage
8149  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8150  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8151  * list (the list number is the port number hashed out, so as you
8152  * would expect from a hash function, all the ports in a given list have
8153  * such a number that hashes out to the same list number; you were
8154  * expecting that, right?); so each list has a set of ports, with a
8155  * link to the socket (struct sock) that uses it, the port number and
8156  * a fastreuse flag (FIXME: NPI ipg).
8157  */
8158 static struct sctp_bind_bucket *sctp_bucket_create(
8159 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8160 
8161 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8162 {
8163 	struct sctp_sock *sp = sctp_sk(sk);
8164 	bool reuse = (sk->sk_reuse || sp->reuse);
8165 	struct sctp_bind_hashbucket *head; /* hash list */
8166 	struct net *net = sock_net(sk);
8167 	kuid_t uid = sock_i_uid(sk);
8168 	struct sctp_bind_bucket *pp;
8169 	unsigned short snum;
8170 	int ret;
8171 
8172 	snum = ntohs(addr->v4.sin_port);
8173 
8174 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8175 
8176 	if (snum == 0) {
8177 		/* Search for an available port. */
8178 		int low, high, remaining, index;
8179 		unsigned int rover;
8180 
8181 		inet_get_local_port_range(net, &low, &high);
8182 		remaining = (high - low) + 1;
8183 		rover = prandom_u32() % remaining + low;
8184 
8185 		do {
8186 			rover++;
8187 			if ((rover < low) || (rover > high))
8188 				rover = low;
8189 			if (inet_is_local_reserved_port(net, rover))
8190 				continue;
8191 			index = sctp_phashfn(net, rover);
8192 			head = &sctp_port_hashtable[index];
8193 			spin_lock_bh(&head->lock);
8194 			sctp_for_each_hentry(pp, &head->chain)
8195 				if ((pp->port == rover) &&
8196 				    net_eq(net, pp->net))
8197 					goto next;
8198 			break;
8199 		next:
8200 			spin_unlock_bh(&head->lock);
8201 			cond_resched();
8202 		} while (--remaining > 0);
8203 
8204 		/* Exhausted local port range during search? */
8205 		ret = 1;
8206 		if (remaining <= 0)
8207 			return ret;
8208 
8209 		/* OK, here is the one we will use.  HEAD (the port
8210 		 * hash table list entry) is non-NULL and we hold it's
8211 		 * mutex.
8212 		 */
8213 		snum = rover;
8214 	} else {
8215 		/* We are given an specific port number; we verify
8216 		 * that it is not being used. If it is used, we will
8217 		 * exahust the search in the hash list corresponding
8218 		 * to the port number (snum) - we detect that with the
8219 		 * port iterator, pp being NULL.
8220 		 */
8221 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8222 		spin_lock_bh(&head->lock);
8223 		sctp_for_each_hentry(pp, &head->chain) {
8224 			if ((pp->port == snum) && net_eq(pp->net, net))
8225 				goto pp_found;
8226 		}
8227 	}
8228 	pp = NULL;
8229 	goto pp_not_found;
8230 pp_found:
8231 	if (!hlist_empty(&pp->owner)) {
8232 		/* We had a port hash table hit - there is an
8233 		 * available port (pp != NULL) and it is being
8234 		 * used by other socket (pp->owner not empty); that other
8235 		 * socket is going to be sk2.
8236 		 */
8237 		struct sock *sk2;
8238 
8239 		pr_debug("%s: found a possible match\n", __func__);
8240 
8241 		if ((pp->fastreuse && reuse &&
8242 		     sk->sk_state != SCTP_SS_LISTENING) ||
8243 		    (pp->fastreuseport && sk->sk_reuseport &&
8244 		     uid_eq(pp->fastuid, uid)))
8245 			goto success;
8246 
8247 		/* Run through the list of sockets bound to the port
8248 		 * (pp->port) [via the pointers bind_next and
8249 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8250 		 * we get the endpoint they describe and run through
8251 		 * the endpoint's list of IP (v4 or v6) addresses,
8252 		 * comparing each of the addresses with the address of
8253 		 * the socket sk. If we find a match, then that means
8254 		 * that this port/socket (sk) combination are already
8255 		 * in an endpoint.
8256 		 */
8257 		sk_for_each_bound(sk2, &pp->owner) {
8258 			struct sctp_sock *sp2 = sctp_sk(sk2);
8259 			struct sctp_endpoint *ep2 = sp2->ep;
8260 
8261 			if (sk == sk2 ||
8262 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8263 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8264 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8265 			     uid_eq(uid, sock_i_uid(sk2))))
8266 				continue;
8267 
8268 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8269 						    addr, sp2, sp)) {
8270 				ret = 1;
8271 				goto fail_unlock;
8272 			}
8273 		}
8274 
8275 		pr_debug("%s: found a match\n", __func__);
8276 	}
8277 pp_not_found:
8278 	/* If there was a hash table miss, create a new port.  */
8279 	ret = 1;
8280 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8281 		goto fail_unlock;
8282 
8283 	/* In either case (hit or miss), make sure fastreuse is 1 only
8284 	 * if sk->sk_reuse is too (that is, if the caller requested
8285 	 * SO_REUSEADDR on this socket -sk-).
8286 	 */
8287 	if (hlist_empty(&pp->owner)) {
8288 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8289 			pp->fastreuse = 1;
8290 		else
8291 			pp->fastreuse = 0;
8292 
8293 		if (sk->sk_reuseport) {
8294 			pp->fastreuseport = 1;
8295 			pp->fastuid = uid;
8296 		} else {
8297 			pp->fastreuseport = 0;
8298 		}
8299 	} else {
8300 		if (pp->fastreuse &&
8301 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8302 			pp->fastreuse = 0;
8303 
8304 		if (pp->fastreuseport &&
8305 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8306 			pp->fastreuseport = 0;
8307 	}
8308 
8309 	/* We are set, so fill up all the data in the hash table
8310 	 * entry, tie the socket list information with the rest of the
8311 	 * sockets FIXME: Blurry, NPI (ipg).
8312 	 */
8313 success:
8314 	if (!sp->bind_hash) {
8315 		inet_sk(sk)->inet_num = snum;
8316 		sk_add_bind_node(sk, &pp->owner);
8317 		sp->bind_hash = pp;
8318 	}
8319 	ret = 0;
8320 
8321 fail_unlock:
8322 	spin_unlock_bh(&head->lock);
8323 	return ret;
8324 }
8325 
8326 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8327  * port is requested.
8328  */
8329 static int sctp_get_port(struct sock *sk, unsigned short snum)
8330 {
8331 	union sctp_addr addr;
8332 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8333 
8334 	/* Set up a dummy address struct from the sk. */
8335 	af->from_sk(&addr, sk);
8336 	addr.v4.sin_port = htons(snum);
8337 
8338 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8339 	return sctp_get_port_local(sk, &addr);
8340 }
8341 
8342 /*
8343  *  Move a socket to LISTENING state.
8344  */
8345 static int sctp_listen_start(struct sock *sk, int backlog)
8346 {
8347 	struct sctp_sock *sp = sctp_sk(sk);
8348 	struct sctp_endpoint *ep = sp->ep;
8349 	struct crypto_shash *tfm = NULL;
8350 	char alg[32];
8351 
8352 	/* Allocate HMAC for generating cookie. */
8353 	if (!sp->hmac && sp->sctp_hmac_alg) {
8354 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8355 		tfm = crypto_alloc_shash(alg, 0, 0);
8356 		if (IS_ERR(tfm)) {
8357 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8358 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8359 			return -ENOSYS;
8360 		}
8361 		sctp_sk(sk)->hmac = tfm;
8362 	}
8363 
8364 	/*
8365 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8366 	 * call that allows new associations to be accepted, the system
8367 	 * picks an ephemeral port and will choose an address set equivalent
8368 	 * to binding with a wildcard address.
8369 	 *
8370 	 * This is not currently spelled out in the SCTP sockets
8371 	 * extensions draft, but follows the practice as seen in TCP
8372 	 * sockets.
8373 	 *
8374 	 */
8375 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8376 	if (!ep->base.bind_addr.port) {
8377 		if (sctp_autobind(sk))
8378 			return -EAGAIN;
8379 	} else {
8380 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8381 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8382 			return -EADDRINUSE;
8383 		}
8384 	}
8385 
8386 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8387 	return sctp_hash_endpoint(ep);
8388 }
8389 
8390 /*
8391  * 4.1.3 / 5.1.3 listen()
8392  *
8393  *   By default, new associations are not accepted for UDP style sockets.
8394  *   An application uses listen() to mark a socket as being able to
8395  *   accept new associations.
8396  *
8397  *   On TCP style sockets, applications use listen() to ready the SCTP
8398  *   endpoint for accepting inbound associations.
8399  *
8400  *   On both types of endpoints a backlog of '0' disables listening.
8401  *
8402  *  Move a socket to LISTENING state.
8403  */
8404 int sctp_inet_listen(struct socket *sock, int backlog)
8405 {
8406 	struct sock *sk = sock->sk;
8407 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8408 	int err = -EINVAL;
8409 
8410 	if (unlikely(backlog < 0))
8411 		return err;
8412 
8413 	lock_sock(sk);
8414 
8415 	/* Peeled-off sockets are not allowed to listen().  */
8416 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8417 		goto out;
8418 
8419 	if (sock->state != SS_UNCONNECTED)
8420 		goto out;
8421 
8422 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8423 		goto out;
8424 
8425 	/* If backlog is zero, disable listening. */
8426 	if (!backlog) {
8427 		if (sctp_sstate(sk, CLOSED))
8428 			goto out;
8429 
8430 		err = 0;
8431 		sctp_unhash_endpoint(ep);
8432 		sk->sk_state = SCTP_SS_CLOSED;
8433 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8434 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8435 		goto out;
8436 	}
8437 
8438 	/* If we are already listening, just update the backlog */
8439 	if (sctp_sstate(sk, LISTENING))
8440 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8441 	else {
8442 		err = sctp_listen_start(sk, backlog);
8443 		if (err)
8444 			goto out;
8445 	}
8446 
8447 	err = 0;
8448 out:
8449 	release_sock(sk);
8450 	return err;
8451 }
8452 
8453 /*
8454  * This function is done by modeling the current datagram_poll() and the
8455  * tcp_poll().  Note that, based on these implementations, we don't
8456  * lock the socket in this function, even though it seems that,
8457  * ideally, locking or some other mechanisms can be used to ensure
8458  * the integrity of the counters (sndbuf and wmem_alloc) used
8459  * in this place.  We assume that we don't need locks either until proven
8460  * otherwise.
8461  *
8462  * Another thing to note is that we include the Async I/O support
8463  * here, again, by modeling the current TCP/UDP code.  We don't have
8464  * a good way to test with it yet.
8465  */
8466 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8467 {
8468 	struct sock *sk = sock->sk;
8469 	struct sctp_sock *sp = sctp_sk(sk);
8470 	__poll_t mask;
8471 
8472 	poll_wait(file, sk_sleep(sk), wait);
8473 
8474 	sock_rps_record_flow(sk);
8475 
8476 	/* A TCP-style listening socket becomes readable when the accept queue
8477 	 * is not empty.
8478 	 */
8479 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8480 		return (!list_empty(&sp->ep->asocs)) ?
8481 			(EPOLLIN | EPOLLRDNORM) : 0;
8482 
8483 	mask = 0;
8484 
8485 	/* Is there any exceptional events?  */
8486 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8487 		mask |= EPOLLERR |
8488 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8489 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8490 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8491 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8492 		mask |= EPOLLHUP;
8493 
8494 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8495 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8496 		mask |= EPOLLIN | EPOLLRDNORM;
8497 
8498 	/* The association is either gone or not ready.  */
8499 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8500 		return mask;
8501 
8502 	/* Is it writable?  */
8503 	if (sctp_writeable(sk)) {
8504 		mask |= EPOLLOUT | EPOLLWRNORM;
8505 	} else {
8506 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8507 		/*
8508 		 * Since the socket is not locked, the buffer
8509 		 * might be made available after the writeable check and
8510 		 * before the bit is set.  This could cause a lost I/O
8511 		 * signal.  tcp_poll() has a race breaker for this race
8512 		 * condition.  Based on their implementation, we put
8513 		 * in the following code to cover it as well.
8514 		 */
8515 		if (sctp_writeable(sk))
8516 			mask |= EPOLLOUT | EPOLLWRNORM;
8517 	}
8518 	return mask;
8519 }
8520 
8521 /********************************************************************
8522  * 2nd Level Abstractions
8523  ********************************************************************/
8524 
8525 static struct sctp_bind_bucket *sctp_bucket_create(
8526 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8527 {
8528 	struct sctp_bind_bucket *pp;
8529 
8530 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8531 	if (pp) {
8532 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8533 		pp->port = snum;
8534 		pp->fastreuse = 0;
8535 		INIT_HLIST_HEAD(&pp->owner);
8536 		pp->net = net;
8537 		hlist_add_head(&pp->node, &head->chain);
8538 	}
8539 	return pp;
8540 }
8541 
8542 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8543 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8544 {
8545 	if (pp && hlist_empty(&pp->owner)) {
8546 		__hlist_del(&pp->node);
8547 		kmem_cache_free(sctp_bucket_cachep, pp);
8548 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8549 	}
8550 }
8551 
8552 /* Release this socket's reference to a local port.  */
8553 static inline void __sctp_put_port(struct sock *sk)
8554 {
8555 	struct sctp_bind_hashbucket *head =
8556 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8557 						  inet_sk(sk)->inet_num)];
8558 	struct sctp_bind_bucket *pp;
8559 
8560 	spin_lock(&head->lock);
8561 	pp = sctp_sk(sk)->bind_hash;
8562 	__sk_del_bind_node(sk);
8563 	sctp_sk(sk)->bind_hash = NULL;
8564 	inet_sk(sk)->inet_num = 0;
8565 	sctp_bucket_destroy(pp);
8566 	spin_unlock(&head->lock);
8567 }
8568 
8569 void sctp_put_port(struct sock *sk)
8570 {
8571 	local_bh_disable();
8572 	__sctp_put_port(sk);
8573 	local_bh_enable();
8574 }
8575 
8576 /*
8577  * The system picks an ephemeral port and choose an address set equivalent
8578  * to binding with a wildcard address.
8579  * One of those addresses will be the primary address for the association.
8580  * This automatically enables the multihoming capability of SCTP.
8581  */
8582 static int sctp_autobind(struct sock *sk)
8583 {
8584 	union sctp_addr autoaddr;
8585 	struct sctp_af *af;
8586 	__be16 port;
8587 
8588 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8589 	af = sctp_sk(sk)->pf->af;
8590 
8591 	port = htons(inet_sk(sk)->inet_num);
8592 	af->inaddr_any(&autoaddr, port);
8593 
8594 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8595 }
8596 
8597 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8598  *
8599  * From RFC 2292
8600  * 4.2 The cmsghdr Structure *
8601  *
8602  * When ancillary data is sent or received, any number of ancillary data
8603  * objects can be specified by the msg_control and msg_controllen members of
8604  * the msghdr structure, because each object is preceded by
8605  * a cmsghdr structure defining the object's length (the cmsg_len member).
8606  * Historically Berkeley-derived implementations have passed only one object
8607  * at a time, but this API allows multiple objects to be
8608  * passed in a single call to sendmsg() or recvmsg(). The following example
8609  * shows two ancillary data objects in a control buffer.
8610  *
8611  *   |<--------------------------- msg_controllen -------------------------->|
8612  *   |                                                                       |
8613  *
8614  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8615  *
8616  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8617  *   |                                   |                                   |
8618  *
8619  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8620  *
8621  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8622  *   |                                |  |                                |  |
8623  *
8624  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8625  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8626  *
8627  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8628  *
8629  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8630  *    ^
8631  *    |
8632  *
8633  * msg_control
8634  * points here
8635  */
8636 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8637 {
8638 	struct msghdr *my_msg = (struct msghdr *)msg;
8639 	struct cmsghdr *cmsg;
8640 
8641 	for_each_cmsghdr(cmsg, my_msg) {
8642 		if (!CMSG_OK(my_msg, cmsg))
8643 			return -EINVAL;
8644 
8645 		/* Should we parse this header or ignore?  */
8646 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8647 			continue;
8648 
8649 		/* Strictly check lengths following example in SCM code.  */
8650 		switch (cmsg->cmsg_type) {
8651 		case SCTP_INIT:
8652 			/* SCTP Socket API Extension
8653 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8654 			 *
8655 			 * This cmsghdr structure provides information for
8656 			 * initializing new SCTP associations with sendmsg().
8657 			 * The SCTP_INITMSG socket option uses this same data
8658 			 * structure.  This structure is not used for
8659 			 * recvmsg().
8660 			 *
8661 			 * cmsg_level    cmsg_type      cmsg_data[]
8662 			 * ------------  ------------   ----------------------
8663 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8664 			 */
8665 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8666 				return -EINVAL;
8667 
8668 			cmsgs->init = CMSG_DATA(cmsg);
8669 			break;
8670 
8671 		case SCTP_SNDRCV:
8672 			/* SCTP Socket API Extension
8673 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8674 			 *
8675 			 * This cmsghdr structure specifies SCTP options for
8676 			 * sendmsg() and describes SCTP header information
8677 			 * about a received message through recvmsg().
8678 			 *
8679 			 * cmsg_level    cmsg_type      cmsg_data[]
8680 			 * ------------  ------------   ----------------------
8681 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8682 			 */
8683 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8684 				return -EINVAL;
8685 
8686 			cmsgs->srinfo = CMSG_DATA(cmsg);
8687 
8688 			if (cmsgs->srinfo->sinfo_flags &
8689 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8690 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8691 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8692 				return -EINVAL;
8693 			break;
8694 
8695 		case SCTP_SNDINFO:
8696 			/* SCTP Socket API Extension
8697 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8698 			 *
8699 			 * This cmsghdr structure specifies SCTP options for
8700 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8701 			 * SCTP_SNDRCV which has been deprecated.
8702 			 *
8703 			 * cmsg_level    cmsg_type      cmsg_data[]
8704 			 * ------------  ------------   ---------------------
8705 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8706 			 */
8707 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8708 				return -EINVAL;
8709 
8710 			cmsgs->sinfo = CMSG_DATA(cmsg);
8711 
8712 			if (cmsgs->sinfo->snd_flags &
8713 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8714 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8715 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8716 				return -EINVAL;
8717 			break;
8718 		case SCTP_PRINFO:
8719 			/* SCTP Socket API Extension
8720 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8721 			 *
8722 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8723 			 *
8724 			 * cmsg_level    cmsg_type      cmsg_data[]
8725 			 * ------------  ------------   ---------------------
8726 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8727 			 */
8728 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8729 				return -EINVAL;
8730 
8731 			cmsgs->prinfo = CMSG_DATA(cmsg);
8732 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8733 				return -EINVAL;
8734 
8735 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8736 				cmsgs->prinfo->pr_value = 0;
8737 			break;
8738 		case SCTP_AUTHINFO:
8739 			/* SCTP Socket API Extension
8740 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8741 			 *
8742 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8743 			 *
8744 			 * cmsg_level    cmsg_type      cmsg_data[]
8745 			 * ------------  ------------   ---------------------
8746 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8747 			 */
8748 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8749 				return -EINVAL;
8750 
8751 			cmsgs->authinfo = CMSG_DATA(cmsg);
8752 			break;
8753 		case SCTP_DSTADDRV4:
8754 		case SCTP_DSTADDRV6:
8755 			/* SCTP Socket API Extension
8756 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8757 			 *
8758 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8759 			 *
8760 			 * cmsg_level    cmsg_type         cmsg_data[]
8761 			 * ------------  ------------   ---------------------
8762 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8763 			 * ------------  ------------   ---------------------
8764 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8765 			 */
8766 			cmsgs->addrs_msg = my_msg;
8767 			break;
8768 		default:
8769 			return -EINVAL;
8770 		}
8771 	}
8772 
8773 	return 0;
8774 }
8775 
8776 /*
8777  * Wait for a packet..
8778  * Note: This function is the same function as in core/datagram.c
8779  * with a few modifications to make lksctp work.
8780  */
8781 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8782 {
8783 	int error;
8784 	DEFINE_WAIT(wait);
8785 
8786 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8787 
8788 	/* Socket errors? */
8789 	error = sock_error(sk);
8790 	if (error)
8791 		goto out;
8792 
8793 	if (!skb_queue_empty(&sk->sk_receive_queue))
8794 		goto ready;
8795 
8796 	/* Socket shut down?  */
8797 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8798 		goto out;
8799 
8800 	/* Sequenced packets can come disconnected.  If so we report the
8801 	 * problem.
8802 	 */
8803 	error = -ENOTCONN;
8804 
8805 	/* Is there a good reason to think that we may receive some data?  */
8806 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8807 		goto out;
8808 
8809 	/* Handle signals.  */
8810 	if (signal_pending(current))
8811 		goto interrupted;
8812 
8813 	/* Let another process have a go.  Since we are going to sleep
8814 	 * anyway.  Note: This may cause odd behaviors if the message
8815 	 * does not fit in the user's buffer, but this seems to be the
8816 	 * only way to honor MSG_DONTWAIT realistically.
8817 	 */
8818 	release_sock(sk);
8819 	*timeo_p = schedule_timeout(*timeo_p);
8820 	lock_sock(sk);
8821 
8822 ready:
8823 	finish_wait(sk_sleep(sk), &wait);
8824 	return 0;
8825 
8826 interrupted:
8827 	error = sock_intr_errno(*timeo_p);
8828 
8829 out:
8830 	finish_wait(sk_sleep(sk), &wait);
8831 	*err = error;
8832 	return error;
8833 }
8834 
8835 /* Receive a datagram.
8836  * Note: This is pretty much the same routine as in core/datagram.c
8837  * with a few changes to make lksctp work.
8838  */
8839 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8840 				       int noblock, int *err)
8841 {
8842 	int error;
8843 	struct sk_buff *skb;
8844 	long timeo;
8845 
8846 	timeo = sock_rcvtimeo(sk, noblock);
8847 
8848 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8849 		 MAX_SCHEDULE_TIMEOUT);
8850 
8851 	do {
8852 		/* Again only user level code calls this function,
8853 		 * so nothing interrupt level
8854 		 * will suddenly eat the receive_queue.
8855 		 *
8856 		 *  Look at current nfs client by the way...
8857 		 *  However, this function was correct in any case. 8)
8858 		 */
8859 		if (flags & MSG_PEEK) {
8860 			skb = skb_peek(&sk->sk_receive_queue);
8861 			if (skb)
8862 				refcount_inc(&skb->users);
8863 		} else {
8864 			skb = __skb_dequeue(&sk->sk_receive_queue);
8865 		}
8866 
8867 		if (skb)
8868 			return skb;
8869 
8870 		/* Caller is allowed not to check sk->sk_err before calling. */
8871 		error = sock_error(sk);
8872 		if (error)
8873 			goto no_packet;
8874 
8875 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8876 			break;
8877 
8878 		if (sk_can_busy_loop(sk)) {
8879 			sk_busy_loop(sk, noblock);
8880 
8881 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8882 				continue;
8883 		}
8884 
8885 		/* User doesn't want to wait.  */
8886 		error = -EAGAIN;
8887 		if (!timeo)
8888 			goto no_packet;
8889 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8890 
8891 	return NULL;
8892 
8893 no_packet:
8894 	*err = error;
8895 	return NULL;
8896 }
8897 
8898 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8899 static void __sctp_write_space(struct sctp_association *asoc)
8900 {
8901 	struct sock *sk = asoc->base.sk;
8902 
8903 	if (sctp_wspace(asoc) <= 0)
8904 		return;
8905 
8906 	if (waitqueue_active(&asoc->wait))
8907 		wake_up_interruptible(&asoc->wait);
8908 
8909 	if (sctp_writeable(sk)) {
8910 		struct socket_wq *wq;
8911 
8912 		rcu_read_lock();
8913 		wq = rcu_dereference(sk->sk_wq);
8914 		if (wq) {
8915 			if (waitqueue_active(&wq->wait))
8916 				wake_up_interruptible(&wq->wait);
8917 
8918 			/* Note that we try to include the Async I/O support
8919 			 * here by modeling from the current TCP/UDP code.
8920 			 * We have not tested with it yet.
8921 			 */
8922 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8923 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8924 		}
8925 		rcu_read_unlock();
8926 	}
8927 }
8928 
8929 static void sctp_wake_up_waiters(struct sock *sk,
8930 				 struct sctp_association *asoc)
8931 {
8932 	struct sctp_association *tmp = asoc;
8933 
8934 	/* We do accounting for the sndbuf space per association,
8935 	 * so we only need to wake our own association.
8936 	 */
8937 	if (asoc->ep->sndbuf_policy)
8938 		return __sctp_write_space(asoc);
8939 
8940 	/* If association goes down and is just flushing its
8941 	 * outq, then just normally notify others.
8942 	 */
8943 	if (asoc->base.dead)
8944 		return sctp_write_space(sk);
8945 
8946 	/* Accounting for the sndbuf space is per socket, so we
8947 	 * need to wake up others, try to be fair and in case of
8948 	 * other associations, let them have a go first instead
8949 	 * of just doing a sctp_write_space() call.
8950 	 *
8951 	 * Note that we reach sctp_wake_up_waiters() only when
8952 	 * associations free up queued chunks, thus we are under
8953 	 * lock and the list of associations on a socket is
8954 	 * guaranteed not to change.
8955 	 */
8956 	for (tmp = list_next_entry(tmp, asocs); 1;
8957 	     tmp = list_next_entry(tmp, asocs)) {
8958 		/* Manually skip the head element. */
8959 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8960 			continue;
8961 		/* Wake up association. */
8962 		__sctp_write_space(tmp);
8963 		/* We've reached the end. */
8964 		if (tmp == asoc)
8965 			break;
8966 	}
8967 }
8968 
8969 /* Do accounting for the sndbuf space.
8970  * Decrement the used sndbuf space of the corresponding association by the
8971  * data size which was just transmitted(freed).
8972  */
8973 static void sctp_wfree(struct sk_buff *skb)
8974 {
8975 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8976 	struct sctp_association *asoc = chunk->asoc;
8977 	struct sock *sk = asoc->base.sk;
8978 
8979 	sk_mem_uncharge(sk, skb->truesize);
8980 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8981 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8982 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8983 				      &sk->sk_wmem_alloc));
8984 
8985 	if (chunk->shkey) {
8986 		struct sctp_shared_key *shkey = chunk->shkey;
8987 
8988 		/* refcnt == 2 and !list_empty mean after this release, it's
8989 		 * not being used anywhere, and it's time to notify userland
8990 		 * that this shkey can be freed if it's been deactivated.
8991 		 */
8992 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8993 		    refcount_read(&shkey->refcnt) == 2) {
8994 			struct sctp_ulpevent *ev;
8995 
8996 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8997 							SCTP_AUTH_FREE_KEY,
8998 							GFP_KERNEL);
8999 			if (ev)
9000 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9001 		}
9002 		sctp_auth_shkey_release(chunk->shkey);
9003 	}
9004 
9005 	sock_wfree(skb);
9006 	sctp_wake_up_waiters(sk, asoc);
9007 
9008 	sctp_association_put(asoc);
9009 }
9010 
9011 /* Do accounting for the receive space on the socket.
9012  * Accounting for the association is done in ulpevent.c
9013  * We set this as a destructor for the cloned data skbs so that
9014  * accounting is done at the correct time.
9015  */
9016 void sctp_sock_rfree(struct sk_buff *skb)
9017 {
9018 	struct sock *sk = skb->sk;
9019 	struct sctp_ulpevent *event = sctp_skb2event(skb);
9020 
9021 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9022 
9023 	/*
9024 	 * Mimic the behavior of sock_rfree
9025 	 */
9026 	sk_mem_uncharge(sk, event->rmem_len);
9027 }
9028 
9029 
9030 /* Helper function to wait for space in the sndbuf.  */
9031 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9032 				size_t msg_len)
9033 {
9034 	struct sock *sk = asoc->base.sk;
9035 	long current_timeo = *timeo_p;
9036 	DEFINE_WAIT(wait);
9037 	int err = 0;
9038 
9039 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9040 		 *timeo_p, msg_len);
9041 
9042 	/* Increment the association's refcnt.  */
9043 	sctp_association_hold(asoc);
9044 
9045 	/* Wait on the association specific sndbuf space. */
9046 	for (;;) {
9047 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9048 					  TASK_INTERRUPTIBLE);
9049 		if (asoc->base.dead)
9050 			goto do_dead;
9051 		if (!*timeo_p)
9052 			goto do_nonblock;
9053 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9054 			goto do_error;
9055 		if (signal_pending(current))
9056 			goto do_interrupted;
9057 		if (sk_under_memory_pressure(sk))
9058 			sk_mem_reclaim(sk);
9059 		if ((int)msg_len <= sctp_wspace(asoc) &&
9060 		    sk_wmem_schedule(sk, msg_len))
9061 			break;
9062 
9063 		/* Let another process have a go.  Since we are going
9064 		 * to sleep anyway.
9065 		 */
9066 		release_sock(sk);
9067 		current_timeo = schedule_timeout(current_timeo);
9068 		lock_sock(sk);
9069 		if (sk != asoc->base.sk)
9070 			goto do_error;
9071 
9072 		*timeo_p = current_timeo;
9073 	}
9074 
9075 out:
9076 	finish_wait(&asoc->wait, &wait);
9077 
9078 	/* Release the association's refcnt.  */
9079 	sctp_association_put(asoc);
9080 
9081 	return err;
9082 
9083 do_dead:
9084 	err = -ESRCH;
9085 	goto out;
9086 
9087 do_error:
9088 	err = -EPIPE;
9089 	goto out;
9090 
9091 do_interrupted:
9092 	err = sock_intr_errno(*timeo_p);
9093 	goto out;
9094 
9095 do_nonblock:
9096 	err = -EAGAIN;
9097 	goto out;
9098 }
9099 
9100 void sctp_data_ready(struct sock *sk)
9101 {
9102 	struct socket_wq *wq;
9103 
9104 	rcu_read_lock();
9105 	wq = rcu_dereference(sk->sk_wq);
9106 	if (skwq_has_sleeper(wq))
9107 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9108 						EPOLLRDNORM | EPOLLRDBAND);
9109 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9110 	rcu_read_unlock();
9111 }
9112 
9113 /* If socket sndbuf has changed, wake up all per association waiters.  */
9114 void sctp_write_space(struct sock *sk)
9115 {
9116 	struct sctp_association *asoc;
9117 
9118 	/* Wake up the tasks in each wait queue.  */
9119 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9120 		__sctp_write_space(asoc);
9121 	}
9122 }
9123 
9124 /* Is there any sndbuf space available on the socket?
9125  *
9126  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9127  * associations on the same socket.  For a UDP-style socket with
9128  * multiple associations, it is possible for it to be "unwriteable"
9129  * prematurely.  I assume that this is acceptable because
9130  * a premature "unwriteable" is better than an accidental "writeable" which
9131  * would cause an unwanted block under certain circumstances.  For the 1-1
9132  * UDP-style sockets or TCP-style sockets, this code should work.
9133  *  - Daisy
9134  */
9135 static bool sctp_writeable(struct sock *sk)
9136 {
9137 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9138 }
9139 
9140 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9141  * returns immediately with EINPROGRESS.
9142  */
9143 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9144 {
9145 	struct sock *sk = asoc->base.sk;
9146 	int err = 0;
9147 	long current_timeo = *timeo_p;
9148 	DEFINE_WAIT(wait);
9149 
9150 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9151 
9152 	/* Increment the association's refcnt.  */
9153 	sctp_association_hold(asoc);
9154 
9155 	for (;;) {
9156 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9157 					  TASK_INTERRUPTIBLE);
9158 		if (!*timeo_p)
9159 			goto do_nonblock;
9160 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9161 			break;
9162 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9163 		    asoc->base.dead)
9164 			goto do_error;
9165 		if (signal_pending(current))
9166 			goto do_interrupted;
9167 
9168 		if (sctp_state(asoc, ESTABLISHED))
9169 			break;
9170 
9171 		/* Let another process have a go.  Since we are going
9172 		 * to sleep anyway.
9173 		 */
9174 		release_sock(sk);
9175 		current_timeo = schedule_timeout(current_timeo);
9176 		lock_sock(sk);
9177 
9178 		*timeo_p = current_timeo;
9179 	}
9180 
9181 out:
9182 	finish_wait(&asoc->wait, &wait);
9183 
9184 	/* Release the association's refcnt.  */
9185 	sctp_association_put(asoc);
9186 
9187 	return err;
9188 
9189 do_error:
9190 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9191 		err = -ETIMEDOUT;
9192 	else
9193 		err = -ECONNREFUSED;
9194 	goto out;
9195 
9196 do_interrupted:
9197 	err = sock_intr_errno(*timeo_p);
9198 	goto out;
9199 
9200 do_nonblock:
9201 	err = -EINPROGRESS;
9202 	goto out;
9203 }
9204 
9205 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9206 {
9207 	struct sctp_endpoint *ep;
9208 	int err = 0;
9209 	DEFINE_WAIT(wait);
9210 
9211 	ep = sctp_sk(sk)->ep;
9212 
9213 
9214 	for (;;) {
9215 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9216 					  TASK_INTERRUPTIBLE);
9217 
9218 		if (list_empty(&ep->asocs)) {
9219 			release_sock(sk);
9220 			timeo = schedule_timeout(timeo);
9221 			lock_sock(sk);
9222 		}
9223 
9224 		err = -EINVAL;
9225 		if (!sctp_sstate(sk, LISTENING))
9226 			break;
9227 
9228 		err = 0;
9229 		if (!list_empty(&ep->asocs))
9230 			break;
9231 
9232 		err = sock_intr_errno(timeo);
9233 		if (signal_pending(current))
9234 			break;
9235 
9236 		err = -EAGAIN;
9237 		if (!timeo)
9238 			break;
9239 	}
9240 
9241 	finish_wait(sk_sleep(sk), &wait);
9242 
9243 	return err;
9244 }
9245 
9246 static void sctp_wait_for_close(struct sock *sk, long timeout)
9247 {
9248 	DEFINE_WAIT(wait);
9249 
9250 	do {
9251 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9252 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9253 			break;
9254 		release_sock(sk);
9255 		timeout = schedule_timeout(timeout);
9256 		lock_sock(sk);
9257 	} while (!signal_pending(current) && timeout);
9258 
9259 	finish_wait(sk_sleep(sk), &wait);
9260 }
9261 
9262 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9263 {
9264 	struct sk_buff *frag;
9265 
9266 	if (!skb->data_len)
9267 		goto done;
9268 
9269 	/* Don't forget the fragments. */
9270 	skb_walk_frags(skb, frag)
9271 		sctp_skb_set_owner_r_frag(frag, sk);
9272 
9273 done:
9274 	sctp_skb_set_owner_r(skb, sk);
9275 }
9276 
9277 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9278 		    struct sctp_association *asoc)
9279 {
9280 	struct inet_sock *inet = inet_sk(sk);
9281 	struct inet_sock *newinet;
9282 	struct sctp_sock *sp = sctp_sk(sk);
9283 	struct sctp_endpoint *ep = sp->ep;
9284 
9285 	newsk->sk_type = sk->sk_type;
9286 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9287 	newsk->sk_flags = sk->sk_flags;
9288 	newsk->sk_tsflags = sk->sk_tsflags;
9289 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9290 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9291 	newsk->sk_reuse = sk->sk_reuse;
9292 	sctp_sk(newsk)->reuse = sp->reuse;
9293 
9294 	newsk->sk_shutdown = sk->sk_shutdown;
9295 	newsk->sk_destruct = sctp_destruct_sock;
9296 	newsk->sk_family = sk->sk_family;
9297 	newsk->sk_protocol = IPPROTO_SCTP;
9298 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9299 	newsk->sk_sndbuf = sk->sk_sndbuf;
9300 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9301 	newsk->sk_lingertime = sk->sk_lingertime;
9302 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9303 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9304 	newsk->sk_rxhash = sk->sk_rxhash;
9305 
9306 	newinet = inet_sk(newsk);
9307 
9308 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9309 	 * getsockname() and getpeername()
9310 	 */
9311 	newinet->inet_sport = inet->inet_sport;
9312 	newinet->inet_saddr = inet->inet_saddr;
9313 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9314 	newinet->inet_dport = htons(asoc->peer.port);
9315 	newinet->pmtudisc = inet->pmtudisc;
9316 	newinet->inet_id = prandom_u32();
9317 
9318 	newinet->uc_ttl = inet->uc_ttl;
9319 	newinet->mc_loop = 1;
9320 	newinet->mc_ttl = 1;
9321 	newinet->mc_index = 0;
9322 	newinet->mc_list = NULL;
9323 
9324 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9325 		net_enable_timestamp();
9326 
9327 	/* Set newsk security attributes from original sk and connection
9328 	 * security attribute from ep.
9329 	 */
9330 	security_sctp_sk_clone(ep, sk, newsk);
9331 }
9332 
9333 static inline void sctp_copy_descendant(struct sock *sk_to,
9334 					const struct sock *sk_from)
9335 {
9336 	size_t ancestor_size = sizeof(struct inet_sock);
9337 
9338 	ancestor_size += sk_from->sk_prot->obj_size;
9339 	ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9340 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9341 }
9342 
9343 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9344  * and its messages to the newsk.
9345  */
9346 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9347 			     struct sctp_association *assoc,
9348 			     enum sctp_socket_type type)
9349 {
9350 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9351 	struct sctp_sock *newsp = sctp_sk(newsk);
9352 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9353 	struct sctp_endpoint *newep = newsp->ep;
9354 	struct sk_buff *skb, *tmp;
9355 	struct sctp_ulpevent *event;
9356 	struct sctp_bind_hashbucket *head;
9357 	int err;
9358 
9359 	/* Migrate socket buffer sizes and all the socket level options to the
9360 	 * new socket.
9361 	 */
9362 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9363 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9364 	/* Brute force copy old sctp opt. */
9365 	sctp_copy_descendant(newsk, oldsk);
9366 
9367 	/* Restore the ep value that was overwritten with the above structure
9368 	 * copy.
9369 	 */
9370 	newsp->ep = newep;
9371 	newsp->hmac = NULL;
9372 
9373 	/* Hook this new socket in to the bind_hash list. */
9374 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9375 						 inet_sk(oldsk)->inet_num)];
9376 	spin_lock_bh(&head->lock);
9377 	pp = sctp_sk(oldsk)->bind_hash;
9378 	sk_add_bind_node(newsk, &pp->owner);
9379 	sctp_sk(newsk)->bind_hash = pp;
9380 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9381 	spin_unlock_bh(&head->lock);
9382 
9383 	/* Copy the bind_addr list from the original endpoint to the new
9384 	 * endpoint so that we can handle restarts properly
9385 	 */
9386 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9387 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9388 	if (err)
9389 		return err;
9390 
9391 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9392 	 * that net->sctp.auth_enable has been changed to 0 by users and
9393 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9394 	 */
9395 	if (oldsp->ep->auth_hmacs) {
9396 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9397 		if (err)
9398 			return err;
9399 	}
9400 
9401 	/* Move any messages in the old socket's receive queue that are for the
9402 	 * peeled off association to the new socket's receive queue.
9403 	 */
9404 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9405 		event = sctp_skb2event(skb);
9406 		if (event->asoc == assoc) {
9407 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9408 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9409 			sctp_skb_set_owner_r_frag(skb, newsk);
9410 		}
9411 	}
9412 
9413 	/* Clean up any messages pending delivery due to partial
9414 	 * delivery.   Three cases:
9415 	 * 1) No partial deliver;  no work.
9416 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9417 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9418 	 */
9419 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9420 
9421 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9422 		struct sk_buff_head *queue;
9423 
9424 		/* Decide which queue to move pd_lobby skbs to. */
9425 		if (assoc->ulpq.pd_mode) {
9426 			queue = &newsp->pd_lobby;
9427 		} else
9428 			queue = &newsk->sk_receive_queue;
9429 
9430 		/* Walk through the pd_lobby, looking for skbs that
9431 		 * need moved to the new socket.
9432 		 */
9433 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9434 			event = sctp_skb2event(skb);
9435 			if (event->asoc == assoc) {
9436 				__skb_unlink(skb, &oldsp->pd_lobby);
9437 				__skb_queue_tail(queue, skb);
9438 				sctp_skb_set_owner_r_frag(skb, newsk);
9439 			}
9440 		}
9441 
9442 		/* Clear up any skbs waiting for the partial
9443 		 * delivery to finish.
9444 		 */
9445 		if (assoc->ulpq.pd_mode)
9446 			sctp_clear_pd(oldsk, NULL);
9447 
9448 	}
9449 
9450 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9451 
9452 	/* Set the type of socket to indicate that it is peeled off from the
9453 	 * original UDP-style socket or created with the accept() call on a
9454 	 * TCP-style socket..
9455 	 */
9456 	newsp->type = type;
9457 
9458 	/* Mark the new socket "in-use" by the user so that any packets
9459 	 * that may arrive on the association after we've moved it are
9460 	 * queued to the backlog.  This prevents a potential race between
9461 	 * backlog processing on the old socket and new-packet processing
9462 	 * on the new socket.
9463 	 *
9464 	 * The caller has just allocated newsk so we can guarantee that other
9465 	 * paths won't try to lock it and then oldsk.
9466 	 */
9467 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9468 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9469 	sctp_assoc_migrate(assoc, newsk);
9470 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9471 
9472 	/* If the association on the newsk is already closed before accept()
9473 	 * is called, set RCV_SHUTDOWN flag.
9474 	 */
9475 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9476 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9477 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9478 	} else {
9479 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9480 	}
9481 
9482 	release_sock(newsk);
9483 
9484 	return 0;
9485 }
9486 
9487 
9488 /* This proto struct describes the ULP interface for SCTP.  */
9489 struct proto sctp_prot = {
9490 	.name        =	"SCTP",
9491 	.owner       =	THIS_MODULE,
9492 	.close       =	sctp_close,
9493 	.disconnect  =	sctp_disconnect,
9494 	.accept      =	sctp_accept,
9495 	.ioctl       =	sctp_ioctl,
9496 	.init        =	sctp_init_sock,
9497 	.destroy     =	sctp_destroy_sock,
9498 	.shutdown    =	sctp_shutdown,
9499 	.setsockopt  =	sctp_setsockopt,
9500 	.getsockopt  =	sctp_getsockopt,
9501 	.sendmsg     =	sctp_sendmsg,
9502 	.recvmsg     =	sctp_recvmsg,
9503 	.bind        =	sctp_bind,
9504 	.bind_add    =  sctp_bind_add,
9505 	.backlog_rcv =	sctp_backlog_rcv,
9506 	.hash        =	sctp_hash,
9507 	.unhash      =	sctp_unhash,
9508 	.no_autobind =	true,
9509 	.obj_size    =  sizeof(struct sctp_sock),
9510 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9511 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9512 				offsetof(struct sctp_sock, subscribe) +
9513 				sizeof_field(struct sctp_sock, initmsg),
9514 	.sysctl_mem  =  sysctl_sctp_mem,
9515 	.sysctl_rmem =  sysctl_sctp_rmem,
9516 	.sysctl_wmem =  sysctl_sctp_wmem,
9517 	.memory_pressure = &sctp_memory_pressure,
9518 	.enter_memory_pressure = sctp_enter_memory_pressure,
9519 	.memory_allocated = &sctp_memory_allocated,
9520 	.sockets_allocated = &sctp_sockets_allocated,
9521 };
9522 
9523 #if IS_ENABLED(CONFIG_IPV6)
9524 
9525 #include <net/transp_v6.h>
9526 static void sctp_v6_destroy_sock(struct sock *sk)
9527 {
9528 	sctp_destroy_sock(sk);
9529 	inet6_destroy_sock(sk);
9530 }
9531 
9532 struct proto sctpv6_prot = {
9533 	.name		= "SCTPv6",
9534 	.owner		= THIS_MODULE,
9535 	.close		= sctp_close,
9536 	.disconnect	= sctp_disconnect,
9537 	.accept		= sctp_accept,
9538 	.ioctl		= sctp_ioctl,
9539 	.init		= sctp_init_sock,
9540 	.destroy	= sctp_v6_destroy_sock,
9541 	.shutdown	= sctp_shutdown,
9542 	.setsockopt	= sctp_setsockopt,
9543 	.getsockopt	= sctp_getsockopt,
9544 	.sendmsg	= sctp_sendmsg,
9545 	.recvmsg	= sctp_recvmsg,
9546 	.bind		= sctp_bind,
9547 	.bind_add	= sctp_bind_add,
9548 	.backlog_rcv	= sctp_backlog_rcv,
9549 	.hash		= sctp_hash,
9550 	.unhash		= sctp_unhash,
9551 	.no_autobind	= true,
9552 	.obj_size	= sizeof(struct sctp6_sock),
9553 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9554 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9555 				offsetof(struct sctp6_sock, sctp.subscribe) +
9556 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9557 	.sysctl_mem	= sysctl_sctp_mem,
9558 	.sysctl_rmem	= sysctl_sctp_rmem,
9559 	.sysctl_wmem	= sysctl_sctp_wmem,
9560 	.memory_pressure = &sctp_memory_pressure,
9561 	.enter_memory_pressure = sctp_enter_memory_pressure,
9562 	.memory_allocated = &sctp_memory_allocated,
9563 	.sockets_allocated = &sctp_sockets_allocated,
9564 };
9565 #endif /* IS_ENABLED(CONFIG_IPV6) */
9566