xref: /openbmc/linux/net/sctp/socket.c (revision 5e29a910)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 extern struct kmem_cache *sctp_bucket_cachep;
106 extern long sysctl_sctp_mem[3];
107 extern int sysctl_sctp_rmem[3];
108 extern int sysctl_sctp_wmem[3];
109 
110 static int sctp_memory_pressure;
111 static atomic_long_t sctp_memory_allocated;
112 struct percpu_counter sctp_sockets_allocated;
113 
114 static void sctp_enter_memory_pressure(struct sock *sk)
115 {
116 	sctp_memory_pressure = 1;
117 }
118 
119 
120 /* Get the sndbuf space available at the time on the association.  */
121 static inline int sctp_wspace(struct sctp_association *asoc)
122 {
123 	int amt;
124 
125 	if (asoc->ep->sndbuf_policy)
126 		amt = asoc->sndbuf_used;
127 	else
128 		amt = sk_wmem_alloc_get(asoc->base.sk);
129 
130 	if (amt >= asoc->base.sk->sk_sndbuf) {
131 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
132 			amt = 0;
133 		else {
134 			amt = sk_stream_wspace(asoc->base.sk);
135 			if (amt < 0)
136 				amt = 0;
137 		}
138 	} else {
139 		amt = asoc->base.sk->sk_sndbuf - amt;
140 	}
141 	return amt;
142 }
143 
144 /* Increment the used sndbuf space count of the corresponding association by
145  * the size of the outgoing data chunk.
146  * Also, set the skb destructor for sndbuf accounting later.
147  *
148  * Since it is always 1-1 between chunk and skb, and also a new skb is always
149  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
150  * destructor in the data chunk skb for the purpose of the sndbuf space
151  * tracking.
152  */
153 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
154 {
155 	struct sctp_association *asoc = chunk->asoc;
156 	struct sock *sk = asoc->base.sk;
157 
158 	/* The sndbuf space is tracked per association.  */
159 	sctp_association_hold(asoc);
160 
161 	skb_set_owner_w(chunk->skb, sk);
162 
163 	chunk->skb->destructor = sctp_wfree;
164 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
165 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
166 
167 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
168 				sizeof(struct sk_buff) +
169 				sizeof(struct sctp_chunk);
170 
171 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
172 	sk->sk_wmem_queued += chunk->skb->truesize;
173 	sk_mem_charge(sk, chunk->skb->truesize);
174 }
175 
176 /* Verify that this is a valid address. */
177 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
178 				   int len)
179 {
180 	struct sctp_af *af;
181 
182 	/* Verify basic sockaddr. */
183 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
184 	if (!af)
185 		return -EINVAL;
186 
187 	/* Is this a valid SCTP address?  */
188 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
189 		return -EINVAL;
190 
191 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
192 		return -EINVAL;
193 
194 	return 0;
195 }
196 
197 /* Look up the association by its id.  If this is not a UDP-style
198  * socket, the ID field is always ignored.
199  */
200 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
201 {
202 	struct sctp_association *asoc = NULL;
203 
204 	/* If this is not a UDP-style socket, assoc id should be ignored. */
205 	if (!sctp_style(sk, UDP)) {
206 		/* Return NULL if the socket state is not ESTABLISHED. It
207 		 * could be a TCP-style listening socket or a socket which
208 		 * hasn't yet called connect() to establish an association.
209 		 */
210 		if (!sctp_sstate(sk, ESTABLISHED))
211 			return NULL;
212 
213 		/* Get the first and the only association from the list. */
214 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
215 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
216 					  struct sctp_association, asocs);
217 		return asoc;
218 	}
219 
220 	/* Otherwise this is a UDP-style socket. */
221 	if (!id || (id == (sctp_assoc_t)-1))
222 		return NULL;
223 
224 	spin_lock_bh(&sctp_assocs_id_lock);
225 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
226 	spin_unlock_bh(&sctp_assocs_id_lock);
227 
228 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
229 		return NULL;
230 
231 	return asoc;
232 }
233 
234 /* Look up the transport from an address and an assoc id. If both address and
235  * id are specified, the associations matching the address and the id should be
236  * the same.
237  */
238 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
239 					      struct sockaddr_storage *addr,
240 					      sctp_assoc_t id)
241 {
242 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
243 	struct sctp_transport *transport;
244 	union sctp_addr *laddr = (union sctp_addr *)addr;
245 
246 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
247 					       laddr,
248 					       &transport);
249 
250 	if (!addr_asoc)
251 		return NULL;
252 
253 	id_asoc = sctp_id2assoc(sk, id);
254 	if (id_asoc && (id_asoc != addr_asoc))
255 		return NULL;
256 
257 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
258 						(union sctp_addr *)addr);
259 
260 	return transport;
261 }
262 
263 /* API 3.1.2 bind() - UDP Style Syntax
264  * The syntax of bind() is,
265  *
266  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
267  *
268  *   sd      - the socket descriptor returned by socket().
269  *   addr    - the address structure (struct sockaddr_in or struct
270  *             sockaddr_in6 [RFC 2553]),
271  *   addr_len - the size of the address structure.
272  */
273 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
274 {
275 	int retval = 0;
276 
277 	lock_sock(sk);
278 
279 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
280 		 addr, addr_len);
281 
282 	/* Disallow binding twice. */
283 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
284 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
285 				      addr_len);
286 	else
287 		retval = -EINVAL;
288 
289 	release_sock(sk);
290 
291 	return retval;
292 }
293 
294 static long sctp_get_port_local(struct sock *, union sctp_addr *);
295 
296 /* Verify this is a valid sockaddr. */
297 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
298 					union sctp_addr *addr, int len)
299 {
300 	struct sctp_af *af;
301 
302 	/* Check minimum size.  */
303 	if (len < sizeof (struct sockaddr))
304 		return NULL;
305 
306 	/* V4 mapped address are really of AF_INET family */
307 	if (addr->sa.sa_family == AF_INET6 &&
308 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
309 		if (!opt->pf->af_supported(AF_INET, opt))
310 			return NULL;
311 	} else {
312 		/* Does this PF support this AF? */
313 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
314 			return NULL;
315 	}
316 
317 	/* If we get this far, af is valid. */
318 	af = sctp_get_af_specific(addr->sa.sa_family);
319 
320 	if (len < af->sockaddr_len)
321 		return NULL;
322 
323 	return af;
324 }
325 
326 /* Bind a local address either to an endpoint or to an association.  */
327 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
328 {
329 	struct net *net = sock_net(sk);
330 	struct sctp_sock *sp = sctp_sk(sk);
331 	struct sctp_endpoint *ep = sp->ep;
332 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
333 	struct sctp_af *af;
334 	unsigned short snum;
335 	int ret = 0;
336 
337 	/* Common sockaddr verification. */
338 	af = sctp_sockaddr_af(sp, addr, len);
339 	if (!af) {
340 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
341 			 __func__, sk, addr, len);
342 		return -EINVAL;
343 	}
344 
345 	snum = ntohs(addr->v4.sin_port);
346 
347 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
348 		 __func__, sk, &addr->sa, bp->port, snum, len);
349 
350 	/* PF specific bind() address verification. */
351 	if (!sp->pf->bind_verify(sp, addr))
352 		return -EADDRNOTAVAIL;
353 
354 	/* We must either be unbound, or bind to the same port.
355 	 * It's OK to allow 0 ports if we are already bound.
356 	 * We'll just inhert an already bound port in this case
357 	 */
358 	if (bp->port) {
359 		if (!snum)
360 			snum = bp->port;
361 		else if (snum != bp->port) {
362 			pr_debug("%s: new port %d doesn't match existing port "
363 				 "%d\n", __func__, snum, bp->port);
364 			return -EINVAL;
365 		}
366 	}
367 
368 	if (snum && snum < PROT_SOCK &&
369 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
370 		return -EACCES;
371 
372 	/* See if the address matches any of the addresses we may have
373 	 * already bound before checking against other endpoints.
374 	 */
375 	if (sctp_bind_addr_match(bp, addr, sp))
376 		return -EINVAL;
377 
378 	/* Make sure we are allowed to bind here.
379 	 * The function sctp_get_port_local() does duplicate address
380 	 * detection.
381 	 */
382 	addr->v4.sin_port = htons(snum);
383 	if ((ret = sctp_get_port_local(sk, addr))) {
384 		return -EADDRINUSE;
385 	}
386 
387 	/* Refresh ephemeral port.  */
388 	if (!bp->port)
389 		bp->port = inet_sk(sk)->inet_num;
390 
391 	/* Add the address to the bind address list.
392 	 * Use GFP_ATOMIC since BHs will be disabled.
393 	 */
394 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
395 
396 	/* Copy back into socket for getsockname() use. */
397 	if (!ret) {
398 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 		sp->pf->to_sk_saddr(addr, sk);
400 	}
401 
402 	return ret;
403 }
404 
405  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406  *
407  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408  * at any one time.  If a sender, after sending an ASCONF chunk, decides
409  * it needs to transfer another ASCONF Chunk, it MUST wait until the
410  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411  * subsequent ASCONF. Note this restriction binds each side, so at any
412  * time two ASCONF may be in-transit on any given association (one sent
413  * from each endpoint).
414  */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 			    struct sctp_chunk *chunk)
417 {
418 	struct net 	*net = sock_net(asoc->base.sk);
419 	int		retval = 0;
420 
421 	/* If there is an outstanding ASCONF chunk, queue it for later
422 	 * transmission.
423 	 */
424 	if (asoc->addip_last_asconf) {
425 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 		goto out;
427 	}
428 
429 	/* Hold the chunk until an ASCONF_ACK is received. */
430 	sctp_chunk_hold(chunk);
431 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 	if (retval)
433 		sctp_chunk_free(chunk);
434 	else
435 		asoc->addip_last_asconf = chunk;
436 
437 out:
438 	return retval;
439 }
440 
441 /* Add a list of addresses as bind addresses to local endpoint or
442  * association.
443  *
444  * Basically run through each address specified in the addrs/addrcnt
445  * array/length pair, determine if it is IPv6 or IPv4 and call
446  * sctp_do_bind() on it.
447  *
448  * If any of them fails, then the operation will be reversed and the
449  * ones that were added will be removed.
450  *
451  * Only sctp_setsockopt_bindx() is supposed to call this function.
452  */
453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454 {
455 	int cnt;
456 	int retval = 0;
457 	void *addr_buf;
458 	struct sockaddr *sa_addr;
459 	struct sctp_af *af;
460 
461 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 		 addrs, addrcnt);
463 
464 	addr_buf = addrs;
465 	for (cnt = 0; cnt < addrcnt; cnt++) {
466 		/* The list may contain either IPv4 or IPv6 address;
467 		 * determine the address length for walking thru the list.
468 		 */
469 		sa_addr = addr_buf;
470 		af = sctp_get_af_specific(sa_addr->sa_family);
471 		if (!af) {
472 			retval = -EINVAL;
473 			goto err_bindx_add;
474 		}
475 
476 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 				      af->sockaddr_len);
478 
479 		addr_buf += af->sockaddr_len;
480 
481 err_bindx_add:
482 		if (retval < 0) {
483 			/* Failed. Cleanup the ones that have been added */
484 			if (cnt > 0)
485 				sctp_bindx_rem(sk, addrs, cnt);
486 			return retval;
487 		}
488 	}
489 
490 	return retval;
491 }
492 
493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494  * associations that are part of the endpoint indicating that a list of local
495  * addresses are added to the endpoint.
496  *
497  * If any of the addresses is already in the bind address list of the
498  * association, we do not send the chunk for that association.  But it will not
499  * affect other associations.
500  *
501  * Only sctp_setsockopt_bindx() is supposed to call this function.
502  */
503 static int sctp_send_asconf_add_ip(struct sock		*sk,
504 				   struct sockaddr	*addrs,
505 				   int 			addrcnt)
506 {
507 	struct net *net = sock_net(sk);
508 	struct sctp_sock		*sp;
509 	struct sctp_endpoint		*ep;
510 	struct sctp_association		*asoc;
511 	struct sctp_bind_addr		*bp;
512 	struct sctp_chunk		*chunk;
513 	struct sctp_sockaddr_entry	*laddr;
514 	union sctp_addr			*addr;
515 	union sctp_addr			saveaddr;
516 	void				*addr_buf;
517 	struct sctp_af			*af;
518 	struct list_head		*p;
519 	int 				i;
520 	int 				retval = 0;
521 
522 	if (!net->sctp.addip_enable)
523 		return retval;
524 
525 	sp = sctp_sk(sk);
526 	ep = sp->ep;
527 
528 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 		 __func__, sk, addrs, addrcnt);
530 
531 	list_for_each_entry(asoc, &ep->asocs, asocs) {
532 		if (!asoc->peer.asconf_capable)
533 			continue;
534 
535 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 			continue;
537 
538 		if (!sctp_state(asoc, ESTABLISHED))
539 			continue;
540 
541 		/* Check if any address in the packed array of addresses is
542 		 * in the bind address list of the association. If so,
543 		 * do not send the asconf chunk to its peer, but continue with
544 		 * other associations.
545 		 */
546 		addr_buf = addrs;
547 		for (i = 0; i < addrcnt; i++) {
548 			addr = addr_buf;
549 			af = sctp_get_af_specific(addr->v4.sin_family);
550 			if (!af) {
551 				retval = -EINVAL;
552 				goto out;
553 			}
554 
555 			if (sctp_assoc_lookup_laddr(asoc, addr))
556 				break;
557 
558 			addr_buf += af->sockaddr_len;
559 		}
560 		if (i < addrcnt)
561 			continue;
562 
563 		/* Use the first valid address in bind addr list of
564 		 * association as Address Parameter of ASCONF CHUNK.
565 		 */
566 		bp = &asoc->base.bind_addr;
567 		p = bp->address_list.next;
568 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 						   addrcnt, SCTP_PARAM_ADD_IP);
571 		if (!chunk) {
572 			retval = -ENOMEM;
573 			goto out;
574 		}
575 
576 		/* Add the new addresses to the bind address list with
577 		 * use_as_src set to 0.
578 		 */
579 		addr_buf = addrs;
580 		for (i = 0; i < addrcnt; i++) {
581 			addr = addr_buf;
582 			af = sctp_get_af_specific(addr->v4.sin_family);
583 			memcpy(&saveaddr, addr, af->sockaddr_len);
584 			retval = sctp_add_bind_addr(bp, &saveaddr,
585 						    SCTP_ADDR_NEW, GFP_ATOMIC);
586 			addr_buf += af->sockaddr_len;
587 		}
588 		if (asoc->src_out_of_asoc_ok) {
589 			struct sctp_transport *trans;
590 
591 			list_for_each_entry(trans,
592 			    &asoc->peer.transport_addr_list, transports) {
593 				/* Clear the source and route cache */
594 				dst_release(trans->dst);
595 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
596 				    2*asoc->pathmtu, 4380));
597 				trans->ssthresh = asoc->peer.i.a_rwnd;
598 				trans->rto = asoc->rto_initial;
599 				sctp_max_rto(asoc, trans);
600 				trans->rtt = trans->srtt = trans->rttvar = 0;
601 				sctp_transport_route(trans, NULL,
602 				    sctp_sk(asoc->base.sk));
603 			}
604 		}
605 		retval = sctp_send_asconf(asoc, chunk);
606 	}
607 
608 out:
609 	return retval;
610 }
611 
612 /* Remove a list of addresses from bind addresses list.  Do not remove the
613  * last address.
614  *
615  * Basically run through each address specified in the addrs/addrcnt
616  * array/length pair, determine if it is IPv6 or IPv4 and call
617  * sctp_del_bind() on it.
618  *
619  * If any of them fails, then the operation will be reversed and the
620  * ones that were removed will be added back.
621  *
622  * At least one address has to be left; if only one address is
623  * available, the operation will return -EBUSY.
624  *
625  * Only sctp_setsockopt_bindx() is supposed to call this function.
626  */
627 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
628 {
629 	struct sctp_sock *sp = sctp_sk(sk);
630 	struct sctp_endpoint *ep = sp->ep;
631 	int cnt;
632 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
633 	int retval = 0;
634 	void *addr_buf;
635 	union sctp_addr *sa_addr;
636 	struct sctp_af *af;
637 
638 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
639 		 __func__, sk, addrs, addrcnt);
640 
641 	addr_buf = addrs;
642 	for (cnt = 0; cnt < addrcnt; cnt++) {
643 		/* If the bind address list is empty or if there is only one
644 		 * bind address, there is nothing more to be removed (we need
645 		 * at least one address here).
646 		 */
647 		if (list_empty(&bp->address_list) ||
648 		    (sctp_list_single_entry(&bp->address_list))) {
649 			retval = -EBUSY;
650 			goto err_bindx_rem;
651 		}
652 
653 		sa_addr = addr_buf;
654 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
655 		if (!af) {
656 			retval = -EINVAL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (!af->addr_valid(sa_addr, sp, NULL)) {
661 			retval = -EADDRNOTAVAIL;
662 			goto err_bindx_rem;
663 		}
664 
665 		if (sa_addr->v4.sin_port &&
666 		    sa_addr->v4.sin_port != htons(bp->port)) {
667 			retval = -EINVAL;
668 			goto err_bindx_rem;
669 		}
670 
671 		if (!sa_addr->v4.sin_port)
672 			sa_addr->v4.sin_port = htons(bp->port);
673 
674 		/* FIXME - There is probably a need to check if sk->sk_saddr and
675 		 * sk->sk_rcv_addr are currently set to one of the addresses to
676 		 * be removed. This is something which needs to be looked into
677 		 * when we are fixing the outstanding issues with multi-homing
678 		 * socket routing and failover schemes. Refer to comments in
679 		 * sctp_do_bind(). -daisy
680 		 */
681 		retval = sctp_del_bind_addr(bp, sa_addr);
682 
683 		addr_buf += af->sockaddr_len;
684 err_bindx_rem:
685 		if (retval < 0) {
686 			/* Failed. Add the ones that has been removed back */
687 			if (cnt > 0)
688 				sctp_bindx_add(sk, addrs, cnt);
689 			return retval;
690 		}
691 	}
692 
693 	return retval;
694 }
695 
696 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
697  * the associations that are part of the endpoint indicating that a list of
698  * local addresses are removed from the endpoint.
699  *
700  * If any of the addresses is already in the bind address list of the
701  * association, we do not send the chunk for that association.  But it will not
702  * affect other associations.
703  *
704  * Only sctp_setsockopt_bindx() is supposed to call this function.
705  */
706 static int sctp_send_asconf_del_ip(struct sock		*sk,
707 				   struct sockaddr	*addrs,
708 				   int			addrcnt)
709 {
710 	struct net *net = sock_net(sk);
711 	struct sctp_sock	*sp;
712 	struct sctp_endpoint	*ep;
713 	struct sctp_association	*asoc;
714 	struct sctp_transport	*transport;
715 	struct sctp_bind_addr	*bp;
716 	struct sctp_chunk	*chunk;
717 	union sctp_addr		*laddr;
718 	void			*addr_buf;
719 	struct sctp_af		*af;
720 	struct sctp_sockaddr_entry *saddr;
721 	int 			i;
722 	int 			retval = 0;
723 	int			stored = 0;
724 
725 	chunk = NULL;
726 	if (!net->sctp.addip_enable)
727 		return retval;
728 
729 	sp = sctp_sk(sk);
730 	ep = sp->ep;
731 
732 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
733 		 __func__, sk, addrs, addrcnt);
734 
735 	list_for_each_entry(asoc, &ep->asocs, asocs) {
736 
737 		if (!asoc->peer.asconf_capable)
738 			continue;
739 
740 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
741 			continue;
742 
743 		if (!sctp_state(asoc, ESTABLISHED))
744 			continue;
745 
746 		/* Check if any address in the packed array of addresses is
747 		 * not present in the bind address list of the association.
748 		 * If so, do not send the asconf chunk to its peer, but
749 		 * continue with other associations.
750 		 */
751 		addr_buf = addrs;
752 		for (i = 0; i < addrcnt; i++) {
753 			laddr = addr_buf;
754 			af = sctp_get_af_specific(laddr->v4.sin_family);
755 			if (!af) {
756 				retval = -EINVAL;
757 				goto out;
758 			}
759 
760 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
761 				break;
762 
763 			addr_buf += af->sockaddr_len;
764 		}
765 		if (i < addrcnt)
766 			continue;
767 
768 		/* Find one address in the association's bind address list
769 		 * that is not in the packed array of addresses. This is to
770 		 * make sure that we do not delete all the addresses in the
771 		 * association.
772 		 */
773 		bp = &asoc->base.bind_addr;
774 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
775 					       addrcnt, sp);
776 		if ((laddr == NULL) && (addrcnt == 1)) {
777 			if (asoc->asconf_addr_del_pending)
778 				continue;
779 			asoc->asconf_addr_del_pending =
780 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
781 			if (asoc->asconf_addr_del_pending == NULL) {
782 				retval = -ENOMEM;
783 				goto out;
784 			}
785 			asoc->asconf_addr_del_pending->sa.sa_family =
786 				    addrs->sa_family;
787 			asoc->asconf_addr_del_pending->v4.sin_port =
788 				    htons(bp->port);
789 			if (addrs->sa_family == AF_INET) {
790 				struct sockaddr_in *sin;
791 
792 				sin = (struct sockaddr_in *)addrs;
793 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
794 			} else if (addrs->sa_family == AF_INET6) {
795 				struct sockaddr_in6 *sin6;
796 
797 				sin6 = (struct sockaddr_in6 *)addrs;
798 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
799 			}
800 
801 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
802 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
803 				 asoc->asconf_addr_del_pending);
804 
805 			asoc->src_out_of_asoc_ok = 1;
806 			stored = 1;
807 			goto skip_mkasconf;
808 		}
809 
810 		if (laddr == NULL)
811 			return -EINVAL;
812 
813 		/* We do not need RCU protection throughout this loop
814 		 * because this is done under a socket lock from the
815 		 * setsockopt call.
816 		 */
817 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
818 						   SCTP_PARAM_DEL_IP);
819 		if (!chunk) {
820 			retval = -ENOMEM;
821 			goto out;
822 		}
823 
824 skip_mkasconf:
825 		/* Reset use_as_src flag for the addresses in the bind address
826 		 * list that are to be deleted.
827 		 */
828 		addr_buf = addrs;
829 		for (i = 0; i < addrcnt; i++) {
830 			laddr = addr_buf;
831 			af = sctp_get_af_specific(laddr->v4.sin_family);
832 			list_for_each_entry(saddr, &bp->address_list, list) {
833 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
834 					saddr->state = SCTP_ADDR_DEL;
835 			}
836 			addr_buf += af->sockaddr_len;
837 		}
838 
839 		/* Update the route and saddr entries for all the transports
840 		 * as some of the addresses in the bind address list are
841 		 * about to be deleted and cannot be used as source addresses.
842 		 */
843 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
844 					transports) {
845 			dst_release(transport->dst);
846 			sctp_transport_route(transport, NULL,
847 					     sctp_sk(asoc->base.sk));
848 		}
849 
850 		if (stored)
851 			/* We don't need to transmit ASCONF */
852 			continue;
853 		retval = sctp_send_asconf(asoc, chunk);
854 	}
855 out:
856 	return retval;
857 }
858 
859 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
860 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
861 {
862 	struct sock *sk = sctp_opt2sk(sp);
863 	union sctp_addr *addr;
864 	struct sctp_af *af;
865 
866 	/* It is safe to write port space in caller. */
867 	addr = &addrw->a;
868 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
869 	af = sctp_get_af_specific(addr->sa.sa_family);
870 	if (!af)
871 		return -EINVAL;
872 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
873 		return -EINVAL;
874 
875 	if (addrw->state == SCTP_ADDR_NEW)
876 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
877 	else
878 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
879 }
880 
881 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
882  *
883  * API 8.1
884  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
885  *                int flags);
886  *
887  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
888  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
889  * or IPv6 addresses.
890  *
891  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
892  * Section 3.1.2 for this usage.
893  *
894  * addrs is a pointer to an array of one or more socket addresses. Each
895  * address is contained in its appropriate structure (i.e. struct
896  * sockaddr_in or struct sockaddr_in6) the family of the address type
897  * must be used to distinguish the address length (note that this
898  * representation is termed a "packed array" of addresses). The caller
899  * specifies the number of addresses in the array with addrcnt.
900  *
901  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
902  * -1, and sets errno to the appropriate error code.
903  *
904  * For SCTP, the port given in each socket address must be the same, or
905  * sctp_bindx() will fail, setting errno to EINVAL.
906  *
907  * The flags parameter is formed from the bitwise OR of zero or more of
908  * the following currently defined flags:
909  *
910  * SCTP_BINDX_ADD_ADDR
911  *
912  * SCTP_BINDX_REM_ADDR
913  *
914  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
915  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
916  * addresses from the association. The two flags are mutually exclusive;
917  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
918  * not remove all addresses from an association; sctp_bindx() will
919  * reject such an attempt with EINVAL.
920  *
921  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
922  * additional addresses with an endpoint after calling bind().  Or use
923  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
924  * socket is associated with so that no new association accepted will be
925  * associated with those addresses. If the endpoint supports dynamic
926  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
927  * endpoint to send the appropriate message to the peer to change the
928  * peers address lists.
929  *
930  * Adding and removing addresses from a connected association is
931  * optional functionality. Implementations that do not support this
932  * functionality should return EOPNOTSUPP.
933  *
934  * Basically do nothing but copying the addresses from user to kernel
935  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
936  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
937  * from userspace.
938  *
939  * We don't use copy_from_user() for optimization: we first do the
940  * sanity checks (buffer size -fast- and access check-healthy
941  * pointer); if all of those succeed, then we can alloc the memory
942  * (expensive operation) needed to copy the data to kernel. Then we do
943  * the copying without checking the user space area
944  * (__copy_from_user()).
945  *
946  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
947  * it.
948  *
949  * sk        The sk of the socket
950  * addrs     The pointer to the addresses in user land
951  * addrssize Size of the addrs buffer
952  * op        Operation to perform (add or remove, see the flags of
953  *           sctp_bindx)
954  *
955  * Returns 0 if ok, <0 errno code on error.
956  */
957 static int sctp_setsockopt_bindx(struct sock *sk,
958 				 struct sockaddr __user *addrs,
959 				 int addrs_size, int op)
960 {
961 	struct sockaddr *kaddrs;
962 	int err;
963 	int addrcnt = 0;
964 	int walk_size = 0;
965 	struct sockaddr *sa_addr;
966 	void *addr_buf;
967 	struct sctp_af *af;
968 
969 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
970 		 __func__, sk, addrs, addrs_size, op);
971 
972 	if (unlikely(addrs_size <= 0))
973 		return -EINVAL;
974 
975 	/* Check the user passed a healthy pointer.  */
976 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
977 		return -EFAULT;
978 
979 	/* Alloc space for the address array in kernel memory.  */
980 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
981 	if (unlikely(!kaddrs))
982 		return -ENOMEM;
983 
984 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
985 		kfree(kaddrs);
986 		return -EFAULT;
987 	}
988 
989 	/* Walk through the addrs buffer and count the number of addresses. */
990 	addr_buf = kaddrs;
991 	while (walk_size < addrs_size) {
992 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
993 			kfree(kaddrs);
994 			return -EINVAL;
995 		}
996 
997 		sa_addr = addr_buf;
998 		af = sctp_get_af_specific(sa_addr->sa_family);
999 
1000 		/* If the address family is not supported or if this address
1001 		 * causes the address buffer to overflow return EINVAL.
1002 		 */
1003 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1004 			kfree(kaddrs);
1005 			return -EINVAL;
1006 		}
1007 		addrcnt++;
1008 		addr_buf += af->sockaddr_len;
1009 		walk_size += af->sockaddr_len;
1010 	}
1011 
1012 	/* Do the work. */
1013 	switch (op) {
1014 	case SCTP_BINDX_ADD_ADDR:
1015 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1016 		if (err)
1017 			goto out;
1018 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1019 		break;
1020 
1021 	case SCTP_BINDX_REM_ADDR:
1022 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1023 		if (err)
1024 			goto out;
1025 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1026 		break;
1027 
1028 	default:
1029 		err = -EINVAL;
1030 		break;
1031 	}
1032 
1033 out:
1034 	kfree(kaddrs);
1035 
1036 	return err;
1037 }
1038 
1039 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1040  *
1041  * Common routine for handling connect() and sctp_connectx().
1042  * Connect will come in with just a single address.
1043  */
1044 static int __sctp_connect(struct sock *sk,
1045 			  struct sockaddr *kaddrs,
1046 			  int addrs_size,
1047 			  sctp_assoc_t *assoc_id)
1048 {
1049 	struct net *net = sock_net(sk);
1050 	struct sctp_sock *sp;
1051 	struct sctp_endpoint *ep;
1052 	struct sctp_association *asoc = NULL;
1053 	struct sctp_association *asoc2;
1054 	struct sctp_transport *transport;
1055 	union sctp_addr to;
1056 	sctp_scope_t scope;
1057 	long timeo;
1058 	int err = 0;
1059 	int addrcnt = 0;
1060 	int walk_size = 0;
1061 	union sctp_addr *sa_addr = NULL;
1062 	void *addr_buf;
1063 	unsigned short port;
1064 	unsigned int f_flags = 0;
1065 
1066 	sp = sctp_sk(sk);
1067 	ep = sp->ep;
1068 
1069 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1070 	 * state - UDP-style peeled off socket or a TCP-style socket that
1071 	 * is already connected.
1072 	 * It cannot be done even on a TCP-style listening socket.
1073 	 */
1074 	if (sctp_sstate(sk, ESTABLISHED) ||
1075 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076 		err = -EISCONN;
1077 		goto out_free;
1078 	}
1079 
1080 	/* Walk through the addrs buffer and count the number of addresses. */
1081 	addr_buf = kaddrs;
1082 	while (walk_size < addrs_size) {
1083 		struct sctp_af *af;
1084 
1085 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1086 			err = -EINVAL;
1087 			goto out_free;
1088 		}
1089 
1090 		sa_addr = addr_buf;
1091 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1092 
1093 		/* If the address family is not supported or if this address
1094 		 * causes the address buffer to overflow return EINVAL.
1095 		 */
1096 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1097 			err = -EINVAL;
1098 			goto out_free;
1099 		}
1100 
1101 		port = ntohs(sa_addr->v4.sin_port);
1102 
1103 		/* Save current address so we can work with it */
1104 		memcpy(&to, sa_addr, af->sockaddr_len);
1105 
1106 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1107 		if (err)
1108 			goto out_free;
1109 
1110 		/* Make sure the destination port is correctly set
1111 		 * in all addresses.
1112 		 */
1113 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1114 			err = -EINVAL;
1115 			goto out_free;
1116 		}
1117 
1118 		/* Check if there already is a matching association on the
1119 		 * endpoint (other than the one created here).
1120 		 */
1121 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1122 		if (asoc2 && asoc2 != asoc) {
1123 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1124 				err = -EISCONN;
1125 			else
1126 				err = -EALREADY;
1127 			goto out_free;
1128 		}
1129 
1130 		/* If we could not find a matching association on the endpoint,
1131 		 * make sure that there is no peeled-off association matching
1132 		 * the peer address even on another socket.
1133 		 */
1134 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1135 			err = -EADDRNOTAVAIL;
1136 			goto out_free;
1137 		}
1138 
1139 		if (!asoc) {
1140 			/* If a bind() or sctp_bindx() is not called prior to
1141 			 * an sctp_connectx() call, the system picks an
1142 			 * ephemeral port and will choose an address set
1143 			 * equivalent to binding with a wildcard address.
1144 			 */
1145 			if (!ep->base.bind_addr.port) {
1146 				if (sctp_autobind(sk)) {
1147 					err = -EAGAIN;
1148 					goto out_free;
1149 				}
1150 			} else {
1151 				/*
1152 				 * If an unprivileged user inherits a 1-many
1153 				 * style socket with open associations on a
1154 				 * privileged port, it MAY be permitted to
1155 				 * accept new associations, but it SHOULD NOT
1156 				 * be permitted to open new associations.
1157 				 */
1158 				if (ep->base.bind_addr.port < PROT_SOCK &&
1159 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1160 					err = -EACCES;
1161 					goto out_free;
1162 				}
1163 			}
1164 
1165 			scope = sctp_scope(&to);
1166 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1167 			if (!asoc) {
1168 				err = -ENOMEM;
1169 				goto out_free;
1170 			}
1171 
1172 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1173 							      GFP_KERNEL);
1174 			if (err < 0) {
1175 				goto out_free;
1176 			}
1177 
1178 		}
1179 
1180 		/* Prime the peer's transport structures.  */
1181 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1182 						SCTP_UNKNOWN);
1183 		if (!transport) {
1184 			err = -ENOMEM;
1185 			goto out_free;
1186 		}
1187 
1188 		addrcnt++;
1189 		addr_buf += af->sockaddr_len;
1190 		walk_size += af->sockaddr_len;
1191 	}
1192 
1193 	/* In case the user of sctp_connectx() wants an association
1194 	 * id back, assign one now.
1195 	 */
1196 	if (assoc_id) {
1197 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1198 		if (err < 0)
1199 			goto out_free;
1200 	}
1201 
1202 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1203 	if (err < 0) {
1204 		goto out_free;
1205 	}
1206 
1207 	/* Initialize sk's dport and daddr for getpeername() */
1208 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1209 	sp->pf->to_sk_daddr(sa_addr, sk);
1210 	sk->sk_err = 0;
1211 
1212 	/* in-kernel sockets don't generally have a file allocated to them
1213 	 * if all they do is call sock_create_kern().
1214 	 */
1215 	if (sk->sk_socket->file)
1216 		f_flags = sk->sk_socket->file->f_flags;
1217 
1218 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1219 
1220 	err = sctp_wait_for_connect(asoc, &timeo);
1221 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1222 		*assoc_id = asoc->assoc_id;
1223 
1224 	/* Don't free association on exit. */
1225 	asoc = NULL;
1226 
1227 out_free:
1228 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1229 		 __func__, asoc, kaddrs, err);
1230 
1231 	if (asoc) {
1232 		/* sctp_primitive_ASSOCIATE may have added this association
1233 		 * To the hash table, try to unhash it, just in case, its a noop
1234 		 * if it wasn't hashed so we're safe
1235 		 */
1236 		sctp_unhash_established(asoc);
1237 		sctp_association_free(asoc);
1238 	}
1239 	return err;
1240 }
1241 
1242 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1243  *
1244  * API 8.9
1245  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1246  * 			sctp_assoc_t *asoc);
1247  *
1248  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1249  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1250  * or IPv6 addresses.
1251  *
1252  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1253  * Section 3.1.2 for this usage.
1254  *
1255  * addrs is a pointer to an array of one or more socket addresses. Each
1256  * address is contained in its appropriate structure (i.e. struct
1257  * sockaddr_in or struct sockaddr_in6) the family of the address type
1258  * must be used to distengish the address length (note that this
1259  * representation is termed a "packed array" of addresses). The caller
1260  * specifies the number of addresses in the array with addrcnt.
1261  *
1262  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1263  * the association id of the new association.  On failure, sctp_connectx()
1264  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1265  * is not touched by the kernel.
1266  *
1267  * For SCTP, the port given in each socket address must be the same, or
1268  * sctp_connectx() will fail, setting errno to EINVAL.
1269  *
1270  * An application can use sctp_connectx to initiate an association with
1271  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1272  * allows a caller to specify multiple addresses at which a peer can be
1273  * reached.  The way the SCTP stack uses the list of addresses to set up
1274  * the association is implementation dependent.  This function only
1275  * specifies that the stack will try to make use of all the addresses in
1276  * the list when needed.
1277  *
1278  * Note that the list of addresses passed in is only used for setting up
1279  * the association.  It does not necessarily equal the set of addresses
1280  * the peer uses for the resulting association.  If the caller wants to
1281  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1282  * retrieve them after the association has been set up.
1283  *
1284  * Basically do nothing but copying the addresses from user to kernel
1285  * land and invoking either sctp_connectx(). This is used for tunneling
1286  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1287  *
1288  * We don't use copy_from_user() for optimization: we first do the
1289  * sanity checks (buffer size -fast- and access check-healthy
1290  * pointer); if all of those succeed, then we can alloc the memory
1291  * (expensive operation) needed to copy the data to kernel. Then we do
1292  * the copying without checking the user space area
1293  * (__copy_from_user()).
1294  *
1295  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1296  * it.
1297  *
1298  * sk        The sk of the socket
1299  * addrs     The pointer to the addresses in user land
1300  * addrssize Size of the addrs buffer
1301  *
1302  * Returns >=0 if ok, <0 errno code on error.
1303  */
1304 static int __sctp_setsockopt_connectx(struct sock *sk,
1305 				      struct sockaddr __user *addrs,
1306 				      int addrs_size,
1307 				      sctp_assoc_t *assoc_id)
1308 {
1309 	int err = 0;
1310 	struct sockaddr *kaddrs;
1311 
1312 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1313 		 __func__, sk, addrs, addrs_size);
1314 
1315 	if (unlikely(addrs_size <= 0))
1316 		return -EINVAL;
1317 
1318 	/* Check the user passed a healthy pointer.  */
1319 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1320 		return -EFAULT;
1321 
1322 	/* Alloc space for the address array in kernel memory.  */
1323 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1324 	if (unlikely(!kaddrs))
1325 		return -ENOMEM;
1326 
1327 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1328 		err = -EFAULT;
1329 	} else {
1330 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1331 	}
1332 
1333 	kfree(kaddrs);
1334 
1335 	return err;
1336 }
1337 
1338 /*
1339  * This is an older interface.  It's kept for backward compatibility
1340  * to the option that doesn't provide association id.
1341  */
1342 static int sctp_setsockopt_connectx_old(struct sock *sk,
1343 					struct sockaddr __user *addrs,
1344 					int addrs_size)
1345 {
1346 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1347 }
1348 
1349 /*
1350  * New interface for the API.  The since the API is done with a socket
1351  * option, to make it simple we feed back the association id is as a return
1352  * indication to the call.  Error is always negative and association id is
1353  * always positive.
1354  */
1355 static int sctp_setsockopt_connectx(struct sock *sk,
1356 				    struct sockaddr __user *addrs,
1357 				    int addrs_size)
1358 {
1359 	sctp_assoc_t assoc_id = 0;
1360 	int err = 0;
1361 
1362 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1363 
1364 	if (err)
1365 		return err;
1366 	else
1367 		return assoc_id;
1368 }
1369 
1370 /*
1371  * New (hopefully final) interface for the API.
1372  * We use the sctp_getaddrs_old structure so that use-space library
1373  * can avoid any unnecessary allocations. The only different part
1374  * is that we store the actual length of the address buffer into the
1375  * addrs_num structure member. That way we can re-use the existing
1376  * code.
1377  */
1378 #ifdef CONFIG_COMPAT
1379 struct compat_sctp_getaddrs_old {
1380 	sctp_assoc_t	assoc_id;
1381 	s32		addr_num;
1382 	compat_uptr_t	addrs;		/* struct sockaddr * */
1383 };
1384 #endif
1385 
1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1387 				     char __user *optval,
1388 				     int __user *optlen)
1389 {
1390 	struct sctp_getaddrs_old param;
1391 	sctp_assoc_t assoc_id = 0;
1392 	int err = 0;
1393 
1394 #ifdef CONFIG_COMPAT
1395 	if (is_compat_task()) {
1396 		struct compat_sctp_getaddrs_old param32;
1397 
1398 		if (len < sizeof(param32))
1399 			return -EINVAL;
1400 		if (copy_from_user(&param32, optval, sizeof(param32)))
1401 			return -EFAULT;
1402 
1403 		param.assoc_id = param32.assoc_id;
1404 		param.addr_num = param32.addr_num;
1405 		param.addrs = compat_ptr(param32.addrs);
1406 	} else
1407 #endif
1408 	{
1409 		if (len < sizeof(param))
1410 			return -EINVAL;
1411 		if (copy_from_user(&param, optval, sizeof(param)))
1412 			return -EFAULT;
1413 	}
1414 
1415 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1416 					 param.addrs, param.addr_num,
1417 					 &assoc_id);
1418 	if (err == 0 || err == -EINPROGRESS) {
1419 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1420 			return -EFAULT;
1421 		if (put_user(sizeof(assoc_id), optlen))
1422 			return -EFAULT;
1423 	}
1424 
1425 	return err;
1426 }
1427 
1428 /* API 3.1.4 close() - UDP Style Syntax
1429  * Applications use close() to perform graceful shutdown (as described in
1430  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1431  * by a UDP-style socket.
1432  *
1433  * The syntax is
1434  *
1435  *   ret = close(int sd);
1436  *
1437  *   sd      - the socket descriptor of the associations to be closed.
1438  *
1439  * To gracefully shutdown a specific association represented by the
1440  * UDP-style socket, an application should use the sendmsg() call,
1441  * passing no user data, but including the appropriate flag in the
1442  * ancillary data (see Section xxxx).
1443  *
1444  * If sd in the close() call is a branched-off socket representing only
1445  * one association, the shutdown is performed on that association only.
1446  *
1447  * 4.1.6 close() - TCP Style Syntax
1448  *
1449  * Applications use close() to gracefully close down an association.
1450  *
1451  * The syntax is:
1452  *
1453  *    int close(int sd);
1454  *
1455  *      sd      - the socket descriptor of the association to be closed.
1456  *
1457  * After an application calls close() on a socket descriptor, no further
1458  * socket operations will succeed on that descriptor.
1459  *
1460  * API 7.1.4 SO_LINGER
1461  *
1462  * An application using the TCP-style socket can use this option to
1463  * perform the SCTP ABORT primitive.  The linger option structure is:
1464  *
1465  *  struct  linger {
1466  *     int     l_onoff;                // option on/off
1467  *     int     l_linger;               // linger time
1468  * };
1469  *
1470  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1471  * to 0, calling close() is the same as the ABORT primitive.  If the
1472  * value is set to a negative value, the setsockopt() call will return
1473  * an error.  If the value is set to a positive value linger_time, the
1474  * close() can be blocked for at most linger_time ms.  If the graceful
1475  * shutdown phase does not finish during this period, close() will
1476  * return but the graceful shutdown phase continues in the system.
1477  */
1478 static void sctp_close(struct sock *sk, long timeout)
1479 {
1480 	struct net *net = sock_net(sk);
1481 	struct sctp_endpoint *ep;
1482 	struct sctp_association *asoc;
1483 	struct list_head *pos, *temp;
1484 	unsigned int data_was_unread;
1485 
1486 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1487 
1488 	lock_sock(sk);
1489 	sk->sk_shutdown = SHUTDOWN_MASK;
1490 	sk->sk_state = SCTP_SS_CLOSING;
1491 
1492 	ep = sctp_sk(sk)->ep;
1493 
1494 	/* Clean up any skbs sitting on the receive queue.  */
1495 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1496 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1497 
1498 	/* Walk all associations on an endpoint.  */
1499 	list_for_each_safe(pos, temp, &ep->asocs) {
1500 		asoc = list_entry(pos, struct sctp_association, asocs);
1501 
1502 		if (sctp_style(sk, TCP)) {
1503 			/* A closed association can still be in the list if
1504 			 * it belongs to a TCP-style listening socket that is
1505 			 * not yet accepted. If so, free it. If not, send an
1506 			 * ABORT or SHUTDOWN based on the linger options.
1507 			 */
1508 			if (sctp_state(asoc, CLOSED)) {
1509 				sctp_unhash_established(asoc);
1510 				sctp_association_free(asoc);
1511 				continue;
1512 			}
1513 		}
1514 
1515 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1516 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1517 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1518 			struct sctp_chunk *chunk;
1519 
1520 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1521 			if (chunk)
1522 				sctp_primitive_ABORT(net, asoc, chunk);
1523 		} else
1524 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1525 	}
1526 
1527 	/* On a TCP-style socket, block for at most linger_time if set. */
1528 	if (sctp_style(sk, TCP) && timeout)
1529 		sctp_wait_for_close(sk, timeout);
1530 
1531 	/* This will run the backlog queue.  */
1532 	release_sock(sk);
1533 
1534 	/* Supposedly, no process has access to the socket, but
1535 	 * the net layers still may.
1536 	 */
1537 	local_bh_disable();
1538 	bh_lock_sock(sk);
1539 
1540 	/* Hold the sock, since sk_common_release() will put sock_put()
1541 	 * and we have just a little more cleanup.
1542 	 */
1543 	sock_hold(sk);
1544 	sk_common_release(sk);
1545 
1546 	bh_unlock_sock(sk);
1547 	local_bh_enable();
1548 
1549 	sock_put(sk);
1550 
1551 	SCTP_DBG_OBJCNT_DEC(sock);
1552 }
1553 
1554 /* Handle EPIPE error. */
1555 static int sctp_error(struct sock *sk, int flags, int err)
1556 {
1557 	if (err == -EPIPE)
1558 		err = sock_error(sk) ? : -EPIPE;
1559 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1560 		send_sig(SIGPIPE, current, 0);
1561 	return err;
1562 }
1563 
1564 /* API 3.1.3 sendmsg() - UDP Style Syntax
1565  *
1566  * An application uses sendmsg() and recvmsg() calls to transmit data to
1567  * and receive data from its peer.
1568  *
1569  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1570  *                  int flags);
1571  *
1572  *  socket  - the socket descriptor of the endpoint.
1573  *  message - pointer to the msghdr structure which contains a single
1574  *            user message and possibly some ancillary data.
1575  *
1576  *            See Section 5 for complete description of the data
1577  *            structures.
1578  *
1579  *  flags   - flags sent or received with the user message, see Section
1580  *            5 for complete description of the flags.
1581  *
1582  * Note:  This function could use a rewrite especially when explicit
1583  * connect support comes in.
1584  */
1585 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1586 
1587 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1588 
1589 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1590 			struct msghdr *msg, size_t msg_len)
1591 {
1592 	struct net *net = sock_net(sk);
1593 	struct sctp_sock *sp;
1594 	struct sctp_endpoint *ep;
1595 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1596 	struct sctp_transport *transport, *chunk_tp;
1597 	struct sctp_chunk *chunk;
1598 	union sctp_addr to;
1599 	struct sockaddr *msg_name = NULL;
1600 	struct sctp_sndrcvinfo default_sinfo;
1601 	struct sctp_sndrcvinfo *sinfo;
1602 	struct sctp_initmsg *sinit;
1603 	sctp_assoc_t associd = 0;
1604 	sctp_cmsgs_t cmsgs = { NULL };
1605 	sctp_scope_t scope;
1606 	bool fill_sinfo_ttl = false, wait_connect = false;
1607 	struct sctp_datamsg *datamsg;
1608 	int msg_flags = msg->msg_flags;
1609 	__u16 sinfo_flags = 0;
1610 	long timeo;
1611 	int err;
1612 
1613 	err = 0;
1614 	sp = sctp_sk(sk);
1615 	ep = sp->ep;
1616 
1617 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1618 		 msg, msg_len, ep);
1619 
1620 	/* We cannot send a message over a TCP-style listening socket. */
1621 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1622 		err = -EPIPE;
1623 		goto out_nounlock;
1624 	}
1625 
1626 	/* Parse out the SCTP CMSGs.  */
1627 	err = sctp_msghdr_parse(msg, &cmsgs);
1628 	if (err) {
1629 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1630 		goto out_nounlock;
1631 	}
1632 
1633 	/* Fetch the destination address for this packet.  This
1634 	 * address only selects the association--it is not necessarily
1635 	 * the address we will send to.
1636 	 * For a peeled-off socket, msg_name is ignored.
1637 	 */
1638 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1639 		int msg_namelen = msg->msg_namelen;
1640 
1641 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1642 				       msg_namelen);
1643 		if (err)
1644 			return err;
1645 
1646 		if (msg_namelen > sizeof(to))
1647 			msg_namelen = sizeof(to);
1648 		memcpy(&to, msg->msg_name, msg_namelen);
1649 		msg_name = msg->msg_name;
1650 	}
1651 
1652 	sinit = cmsgs.init;
1653 	if (cmsgs.sinfo != NULL) {
1654 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1655 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1656 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1657 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1658 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1659 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1660 
1661 		sinfo = &default_sinfo;
1662 		fill_sinfo_ttl = true;
1663 	} else {
1664 		sinfo = cmsgs.srinfo;
1665 	}
1666 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1667 	if (sinfo) {
1668 		sinfo_flags = sinfo->sinfo_flags;
1669 		associd = sinfo->sinfo_assoc_id;
1670 	}
1671 
1672 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1673 		 msg_len, sinfo_flags);
1674 
1675 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1676 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1677 		err = -EINVAL;
1678 		goto out_nounlock;
1679 	}
1680 
1681 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1682 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1683 	 * If SCTP_ABORT is set, the message length could be non zero with
1684 	 * the msg_iov set to the user abort reason.
1685 	 */
1686 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1687 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1688 		err = -EINVAL;
1689 		goto out_nounlock;
1690 	}
1691 
1692 	/* If SCTP_ADDR_OVER is set, there must be an address
1693 	 * specified in msg_name.
1694 	 */
1695 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1696 		err = -EINVAL;
1697 		goto out_nounlock;
1698 	}
1699 
1700 	transport = NULL;
1701 
1702 	pr_debug("%s: about to look up association\n", __func__);
1703 
1704 	lock_sock(sk);
1705 
1706 	/* If a msg_name has been specified, assume this is to be used.  */
1707 	if (msg_name) {
1708 		/* Look for a matching association on the endpoint. */
1709 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1710 		if (!asoc) {
1711 			/* If we could not find a matching association on the
1712 			 * endpoint, make sure that it is not a TCP-style
1713 			 * socket that already has an association or there is
1714 			 * no peeled-off association on another socket.
1715 			 */
1716 			if ((sctp_style(sk, TCP) &&
1717 			     sctp_sstate(sk, ESTABLISHED)) ||
1718 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1719 				err = -EADDRNOTAVAIL;
1720 				goto out_unlock;
1721 			}
1722 		}
1723 	} else {
1724 		asoc = sctp_id2assoc(sk, associd);
1725 		if (!asoc) {
1726 			err = -EPIPE;
1727 			goto out_unlock;
1728 		}
1729 	}
1730 
1731 	if (asoc) {
1732 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1733 
1734 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1735 		 * socket that has an association in CLOSED state. This can
1736 		 * happen when an accepted socket has an association that is
1737 		 * already CLOSED.
1738 		 */
1739 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1740 			err = -EPIPE;
1741 			goto out_unlock;
1742 		}
1743 
1744 		if (sinfo_flags & SCTP_EOF) {
1745 			pr_debug("%s: shutting down association:%p\n",
1746 				 __func__, asoc);
1747 
1748 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1749 			err = 0;
1750 			goto out_unlock;
1751 		}
1752 		if (sinfo_flags & SCTP_ABORT) {
1753 
1754 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1755 			if (!chunk) {
1756 				err = -ENOMEM;
1757 				goto out_unlock;
1758 			}
1759 
1760 			pr_debug("%s: aborting association:%p\n",
1761 				 __func__, asoc);
1762 
1763 			sctp_primitive_ABORT(net, asoc, chunk);
1764 			err = 0;
1765 			goto out_unlock;
1766 		}
1767 	}
1768 
1769 	/* Do we need to create the association?  */
1770 	if (!asoc) {
1771 		pr_debug("%s: there is no association yet\n", __func__);
1772 
1773 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1774 			err = -EINVAL;
1775 			goto out_unlock;
1776 		}
1777 
1778 		/* Check for invalid stream against the stream counts,
1779 		 * either the default or the user specified stream counts.
1780 		 */
1781 		if (sinfo) {
1782 			if (!sinit || !sinit->sinit_num_ostreams) {
1783 				/* Check against the defaults. */
1784 				if (sinfo->sinfo_stream >=
1785 				    sp->initmsg.sinit_num_ostreams) {
1786 					err = -EINVAL;
1787 					goto out_unlock;
1788 				}
1789 			} else {
1790 				/* Check against the requested.  */
1791 				if (sinfo->sinfo_stream >=
1792 				    sinit->sinit_num_ostreams) {
1793 					err = -EINVAL;
1794 					goto out_unlock;
1795 				}
1796 			}
1797 		}
1798 
1799 		/*
1800 		 * API 3.1.2 bind() - UDP Style Syntax
1801 		 * If a bind() or sctp_bindx() is not called prior to a
1802 		 * sendmsg() call that initiates a new association, the
1803 		 * system picks an ephemeral port and will choose an address
1804 		 * set equivalent to binding with a wildcard address.
1805 		 */
1806 		if (!ep->base.bind_addr.port) {
1807 			if (sctp_autobind(sk)) {
1808 				err = -EAGAIN;
1809 				goto out_unlock;
1810 			}
1811 		} else {
1812 			/*
1813 			 * If an unprivileged user inherits a one-to-many
1814 			 * style socket with open associations on a privileged
1815 			 * port, it MAY be permitted to accept new associations,
1816 			 * but it SHOULD NOT be permitted to open new
1817 			 * associations.
1818 			 */
1819 			if (ep->base.bind_addr.port < PROT_SOCK &&
1820 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1821 				err = -EACCES;
1822 				goto out_unlock;
1823 			}
1824 		}
1825 
1826 		scope = sctp_scope(&to);
1827 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1828 		if (!new_asoc) {
1829 			err = -ENOMEM;
1830 			goto out_unlock;
1831 		}
1832 		asoc = new_asoc;
1833 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1834 		if (err < 0) {
1835 			err = -ENOMEM;
1836 			goto out_free;
1837 		}
1838 
1839 		/* If the SCTP_INIT ancillary data is specified, set all
1840 		 * the association init values accordingly.
1841 		 */
1842 		if (sinit) {
1843 			if (sinit->sinit_num_ostreams) {
1844 				asoc->c.sinit_num_ostreams =
1845 					sinit->sinit_num_ostreams;
1846 			}
1847 			if (sinit->sinit_max_instreams) {
1848 				asoc->c.sinit_max_instreams =
1849 					sinit->sinit_max_instreams;
1850 			}
1851 			if (sinit->sinit_max_attempts) {
1852 				asoc->max_init_attempts
1853 					= sinit->sinit_max_attempts;
1854 			}
1855 			if (sinit->sinit_max_init_timeo) {
1856 				asoc->max_init_timeo =
1857 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1858 			}
1859 		}
1860 
1861 		/* Prime the peer's transport structures.  */
1862 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1863 		if (!transport) {
1864 			err = -ENOMEM;
1865 			goto out_free;
1866 		}
1867 	}
1868 
1869 	/* ASSERT: we have a valid association at this point.  */
1870 	pr_debug("%s: we have a valid association\n", __func__);
1871 
1872 	if (!sinfo) {
1873 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1874 		 * one with some defaults.
1875 		 */
1876 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1877 		default_sinfo.sinfo_stream = asoc->default_stream;
1878 		default_sinfo.sinfo_flags = asoc->default_flags;
1879 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1880 		default_sinfo.sinfo_context = asoc->default_context;
1881 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1882 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1883 
1884 		sinfo = &default_sinfo;
1885 	} else if (fill_sinfo_ttl) {
1886 		/* In case SNDINFO was specified, we still need to fill
1887 		 * it with a default ttl from the assoc here.
1888 		 */
1889 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1890 	}
1891 
1892 	/* API 7.1.7, the sndbuf size per association bounds the
1893 	 * maximum size of data that can be sent in a single send call.
1894 	 */
1895 	if (msg_len > sk->sk_sndbuf) {
1896 		err = -EMSGSIZE;
1897 		goto out_free;
1898 	}
1899 
1900 	if (asoc->pmtu_pending)
1901 		sctp_assoc_pending_pmtu(sk, asoc);
1902 
1903 	/* If fragmentation is disabled and the message length exceeds the
1904 	 * association fragmentation point, return EMSGSIZE.  The I-D
1905 	 * does not specify what this error is, but this looks like
1906 	 * a great fit.
1907 	 */
1908 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1909 		err = -EMSGSIZE;
1910 		goto out_free;
1911 	}
1912 
1913 	/* Check for invalid stream. */
1914 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1915 		err = -EINVAL;
1916 		goto out_free;
1917 	}
1918 
1919 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1920 	if (!sctp_wspace(asoc)) {
1921 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1922 		if (err)
1923 			goto out_free;
1924 	}
1925 
1926 	/* If an address is passed with the sendto/sendmsg call, it is used
1927 	 * to override the primary destination address in the TCP model, or
1928 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1929 	 */
1930 	if ((sctp_style(sk, TCP) && msg_name) ||
1931 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1932 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1933 		if (!chunk_tp) {
1934 			err = -EINVAL;
1935 			goto out_free;
1936 		}
1937 	} else
1938 		chunk_tp = NULL;
1939 
1940 	/* Auto-connect, if we aren't connected already. */
1941 	if (sctp_state(asoc, CLOSED)) {
1942 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1943 		if (err < 0)
1944 			goto out_free;
1945 
1946 		wait_connect = true;
1947 		pr_debug("%s: we associated primitively\n", __func__);
1948 	}
1949 
1950 	/* Break the message into multiple chunks of maximum size. */
1951 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1952 	if (IS_ERR(datamsg)) {
1953 		err = PTR_ERR(datamsg);
1954 		goto out_free;
1955 	}
1956 
1957 	/* Now send the (possibly) fragmented message. */
1958 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1959 		sctp_chunk_hold(chunk);
1960 
1961 		/* Do accounting for the write space.  */
1962 		sctp_set_owner_w(chunk);
1963 
1964 		chunk->transport = chunk_tp;
1965 	}
1966 
1967 	/* Send it to the lower layers.  Note:  all chunks
1968 	 * must either fail or succeed.   The lower layer
1969 	 * works that way today.  Keep it that way or this
1970 	 * breaks.
1971 	 */
1972 	err = sctp_primitive_SEND(net, asoc, datamsg);
1973 	/* Did the lower layer accept the chunk? */
1974 	if (err) {
1975 		sctp_datamsg_free(datamsg);
1976 		goto out_free;
1977 	}
1978 
1979 	pr_debug("%s: we sent primitively\n", __func__);
1980 
1981 	sctp_datamsg_put(datamsg);
1982 	err = msg_len;
1983 
1984 	if (unlikely(wait_connect)) {
1985 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1986 		sctp_wait_for_connect(asoc, &timeo);
1987 	}
1988 
1989 	/* If we are already past ASSOCIATE, the lower
1990 	 * layers are responsible for association cleanup.
1991 	 */
1992 	goto out_unlock;
1993 
1994 out_free:
1995 	if (new_asoc) {
1996 		sctp_unhash_established(asoc);
1997 		sctp_association_free(asoc);
1998 	}
1999 out_unlock:
2000 	release_sock(sk);
2001 
2002 out_nounlock:
2003 	return sctp_error(sk, msg_flags, err);
2004 
2005 #if 0
2006 do_sock_err:
2007 	if (msg_len)
2008 		err = msg_len;
2009 	else
2010 		err = sock_error(sk);
2011 	goto out;
2012 
2013 do_interrupted:
2014 	if (msg_len)
2015 		err = msg_len;
2016 	goto out;
2017 #endif /* 0 */
2018 }
2019 
2020 /* This is an extended version of skb_pull() that removes the data from the
2021  * start of a skb even when data is spread across the list of skb's in the
2022  * frag_list. len specifies the total amount of data that needs to be removed.
2023  * when 'len' bytes could be removed from the skb, it returns 0.
2024  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2025  * could not be removed.
2026  */
2027 static int sctp_skb_pull(struct sk_buff *skb, int len)
2028 {
2029 	struct sk_buff *list;
2030 	int skb_len = skb_headlen(skb);
2031 	int rlen;
2032 
2033 	if (len <= skb_len) {
2034 		__skb_pull(skb, len);
2035 		return 0;
2036 	}
2037 	len -= skb_len;
2038 	__skb_pull(skb, skb_len);
2039 
2040 	skb_walk_frags(skb, list) {
2041 		rlen = sctp_skb_pull(list, len);
2042 		skb->len -= (len-rlen);
2043 		skb->data_len -= (len-rlen);
2044 
2045 		if (!rlen)
2046 			return 0;
2047 
2048 		len = rlen;
2049 	}
2050 
2051 	return len;
2052 }
2053 
2054 /* API 3.1.3  recvmsg() - UDP Style Syntax
2055  *
2056  *  ssize_t recvmsg(int socket, struct msghdr *message,
2057  *                    int flags);
2058  *
2059  *  socket  - the socket descriptor of the endpoint.
2060  *  message - pointer to the msghdr structure which contains a single
2061  *            user message and possibly some ancillary data.
2062  *
2063  *            See Section 5 for complete description of the data
2064  *            structures.
2065  *
2066  *  flags   - flags sent or received with the user message, see Section
2067  *            5 for complete description of the flags.
2068  */
2069 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2070 			struct msghdr *msg, size_t len, int noblock,
2071 			int flags, int *addr_len)
2072 {
2073 	struct sctp_ulpevent *event = NULL;
2074 	struct sctp_sock *sp = sctp_sk(sk);
2075 	struct sk_buff *skb;
2076 	int copied;
2077 	int err = 0;
2078 	int skb_len;
2079 
2080 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2081 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2082 		 addr_len);
2083 
2084 	lock_sock(sk);
2085 
2086 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2087 		err = -ENOTCONN;
2088 		goto out;
2089 	}
2090 
2091 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2092 	if (!skb)
2093 		goto out;
2094 
2095 	/* Get the total length of the skb including any skb's in the
2096 	 * frag_list.
2097 	 */
2098 	skb_len = skb->len;
2099 
2100 	copied = skb_len;
2101 	if (copied > len)
2102 		copied = len;
2103 
2104 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2105 
2106 	event = sctp_skb2event(skb);
2107 
2108 	if (err)
2109 		goto out_free;
2110 
2111 	sock_recv_ts_and_drops(msg, sk, skb);
2112 	if (sctp_ulpevent_is_notification(event)) {
2113 		msg->msg_flags |= MSG_NOTIFICATION;
2114 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2115 	} else {
2116 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2117 	}
2118 
2119 	/* Check if we allow SCTP_NXTINFO. */
2120 	if (sp->recvnxtinfo)
2121 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2122 	/* Check if we allow SCTP_RCVINFO. */
2123 	if (sp->recvrcvinfo)
2124 		sctp_ulpevent_read_rcvinfo(event, msg);
2125 	/* Check if we allow SCTP_SNDRCVINFO. */
2126 	if (sp->subscribe.sctp_data_io_event)
2127 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2128 
2129 #if 0
2130 	/* FIXME: we should be calling IP/IPv6 layers.  */
2131 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2132 		ip_cmsg_recv(msg, skb);
2133 #endif
2134 
2135 	err = copied;
2136 
2137 	/* If skb's length exceeds the user's buffer, update the skb and
2138 	 * push it back to the receive_queue so that the next call to
2139 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2140 	 */
2141 	if (skb_len > copied) {
2142 		msg->msg_flags &= ~MSG_EOR;
2143 		if (flags & MSG_PEEK)
2144 			goto out_free;
2145 		sctp_skb_pull(skb, copied);
2146 		skb_queue_head(&sk->sk_receive_queue, skb);
2147 
2148 		/* When only partial message is copied to the user, increase
2149 		 * rwnd by that amount. If all the data in the skb is read,
2150 		 * rwnd is updated when the event is freed.
2151 		 */
2152 		if (!sctp_ulpevent_is_notification(event))
2153 			sctp_assoc_rwnd_increase(event->asoc, copied);
2154 		goto out;
2155 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2156 		   (event->msg_flags & MSG_EOR))
2157 		msg->msg_flags |= MSG_EOR;
2158 	else
2159 		msg->msg_flags &= ~MSG_EOR;
2160 
2161 out_free:
2162 	if (flags & MSG_PEEK) {
2163 		/* Release the skb reference acquired after peeking the skb in
2164 		 * sctp_skb_recv_datagram().
2165 		 */
2166 		kfree_skb(skb);
2167 	} else {
2168 		/* Free the event which includes releasing the reference to
2169 		 * the owner of the skb, freeing the skb and updating the
2170 		 * rwnd.
2171 		 */
2172 		sctp_ulpevent_free(event);
2173 	}
2174 out:
2175 	release_sock(sk);
2176 	return err;
2177 }
2178 
2179 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2180  *
2181  * This option is a on/off flag.  If enabled no SCTP message
2182  * fragmentation will be performed.  Instead if a message being sent
2183  * exceeds the current PMTU size, the message will NOT be sent and
2184  * instead a error will be indicated to the user.
2185  */
2186 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2187 					     char __user *optval,
2188 					     unsigned int optlen)
2189 {
2190 	int val;
2191 
2192 	if (optlen < sizeof(int))
2193 		return -EINVAL;
2194 
2195 	if (get_user(val, (int __user *)optval))
2196 		return -EFAULT;
2197 
2198 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2199 
2200 	return 0;
2201 }
2202 
2203 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2204 				  unsigned int optlen)
2205 {
2206 	struct sctp_association *asoc;
2207 	struct sctp_ulpevent *event;
2208 
2209 	if (optlen > sizeof(struct sctp_event_subscribe))
2210 		return -EINVAL;
2211 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2212 		return -EFAULT;
2213 
2214 	if (sctp_sk(sk)->subscribe.sctp_data_io_event)
2215 		pr_warn_ratelimited(DEPRECATED "%s (pid %d) "
2216 				    "Requested SCTP_SNDRCVINFO event.\n"
2217 				    "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n",
2218 				    current->comm, task_pid_nr(current));
2219 
2220 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2221 	 * if there is no data to be sent or retransmit, the stack will
2222 	 * immediately send up this notification.
2223 	 */
2224 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2225 				       &sctp_sk(sk)->subscribe)) {
2226 		asoc = sctp_id2assoc(sk, 0);
2227 
2228 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2229 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2230 					GFP_ATOMIC);
2231 			if (!event)
2232 				return -ENOMEM;
2233 
2234 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2235 		}
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2242  *
2243  * This socket option is applicable to the UDP-style socket only.  When
2244  * set it will cause associations that are idle for more than the
2245  * specified number of seconds to automatically close.  An association
2246  * being idle is defined an association that has NOT sent or received
2247  * user data.  The special value of '0' indicates that no automatic
2248  * close of any associations should be performed.  The option expects an
2249  * integer defining the number of seconds of idle time before an
2250  * association is closed.
2251  */
2252 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2253 				     unsigned int optlen)
2254 {
2255 	struct sctp_sock *sp = sctp_sk(sk);
2256 	struct net *net = sock_net(sk);
2257 
2258 	/* Applicable to UDP-style socket only */
2259 	if (sctp_style(sk, TCP))
2260 		return -EOPNOTSUPP;
2261 	if (optlen != sizeof(int))
2262 		return -EINVAL;
2263 	if (copy_from_user(&sp->autoclose, optval, optlen))
2264 		return -EFAULT;
2265 
2266 	if (sp->autoclose > net->sctp.max_autoclose)
2267 		sp->autoclose = net->sctp.max_autoclose;
2268 
2269 	return 0;
2270 }
2271 
2272 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2273  *
2274  * Applications can enable or disable heartbeats for any peer address of
2275  * an association, modify an address's heartbeat interval, force a
2276  * heartbeat to be sent immediately, and adjust the address's maximum
2277  * number of retransmissions sent before an address is considered
2278  * unreachable.  The following structure is used to access and modify an
2279  * address's parameters:
2280  *
2281  *  struct sctp_paddrparams {
2282  *     sctp_assoc_t            spp_assoc_id;
2283  *     struct sockaddr_storage spp_address;
2284  *     uint32_t                spp_hbinterval;
2285  *     uint16_t                spp_pathmaxrxt;
2286  *     uint32_t                spp_pathmtu;
2287  *     uint32_t                spp_sackdelay;
2288  *     uint32_t                spp_flags;
2289  * };
2290  *
2291  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2292  *                     application, and identifies the association for
2293  *                     this query.
2294  *   spp_address     - This specifies which address is of interest.
2295  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2296  *                     in milliseconds.  If a  value of zero
2297  *                     is present in this field then no changes are to
2298  *                     be made to this parameter.
2299  *   spp_pathmaxrxt  - This contains the maximum number of
2300  *                     retransmissions before this address shall be
2301  *                     considered unreachable. If a  value of zero
2302  *                     is present in this field then no changes are to
2303  *                     be made to this parameter.
2304  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2305  *                     specified here will be the "fixed" path mtu.
2306  *                     Note that if the spp_address field is empty
2307  *                     then all associations on this address will
2308  *                     have this fixed path mtu set upon them.
2309  *
2310  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2311  *                     the number of milliseconds that sacks will be delayed
2312  *                     for. This value will apply to all addresses of an
2313  *                     association if the spp_address field is empty. Note
2314  *                     also, that if delayed sack is enabled and this
2315  *                     value is set to 0, no change is made to the last
2316  *                     recorded delayed sack timer value.
2317  *
2318  *   spp_flags       - These flags are used to control various features
2319  *                     on an association. The flag field may contain
2320  *                     zero or more of the following options.
2321  *
2322  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2323  *                     specified address. Note that if the address
2324  *                     field is empty all addresses for the association
2325  *                     have heartbeats enabled upon them.
2326  *
2327  *                     SPP_HB_DISABLE - Disable heartbeats on the
2328  *                     speicifed address. Note that if the address
2329  *                     field is empty all addresses for the association
2330  *                     will have their heartbeats disabled. Note also
2331  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2332  *                     mutually exclusive, only one of these two should
2333  *                     be specified. Enabling both fields will have
2334  *                     undetermined results.
2335  *
2336  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2337  *                     to be made immediately.
2338  *
2339  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2340  *                     heartbeat delayis to be set to the value of 0
2341  *                     milliseconds.
2342  *
2343  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2344  *                     discovery upon the specified address. Note that
2345  *                     if the address feild is empty then all addresses
2346  *                     on the association are effected.
2347  *
2348  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2349  *                     discovery upon the specified address. Note that
2350  *                     if the address feild is empty then all addresses
2351  *                     on the association are effected. Not also that
2352  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2353  *                     exclusive. Enabling both will have undetermined
2354  *                     results.
2355  *
2356  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2357  *                     on delayed sack. The time specified in spp_sackdelay
2358  *                     is used to specify the sack delay for this address. Note
2359  *                     that if spp_address is empty then all addresses will
2360  *                     enable delayed sack and take on the sack delay
2361  *                     value specified in spp_sackdelay.
2362  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2363  *                     off delayed sack. If the spp_address field is blank then
2364  *                     delayed sack is disabled for the entire association. Note
2365  *                     also that this field is mutually exclusive to
2366  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2367  *                     results.
2368  */
2369 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2370 				       struct sctp_transport   *trans,
2371 				       struct sctp_association *asoc,
2372 				       struct sctp_sock        *sp,
2373 				       int                      hb_change,
2374 				       int                      pmtud_change,
2375 				       int                      sackdelay_change)
2376 {
2377 	int error;
2378 
2379 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2380 		struct net *net = sock_net(trans->asoc->base.sk);
2381 
2382 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2383 		if (error)
2384 			return error;
2385 	}
2386 
2387 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2388 	 * this field is ignored.  Note also that a value of zero indicates
2389 	 * the current setting should be left unchanged.
2390 	 */
2391 	if (params->spp_flags & SPP_HB_ENABLE) {
2392 
2393 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2394 		 * set.  This lets us use 0 value when this flag
2395 		 * is set.
2396 		 */
2397 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2398 			params->spp_hbinterval = 0;
2399 
2400 		if (params->spp_hbinterval ||
2401 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2402 			if (trans) {
2403 				trans->hbinterval =
2404 				    msecs_to_jiffies(params->spp_hbinterval);
2405 			} else if (asoc) {
2406 				asoc->hbinterval =
2407 				    msecs_to_jiffies(params->spp_hbinterval);
2408 			} else {
2409 				sp->hbinterval = params->spp_hbinterval;
2410 			}
2411 		}
2412 	}
2413 
2414 	if (hb_change) {
2415 		if (trans) {
2416 			trans->param_flags =
2417 				(trans->param_flags & ~SPP_HB) | hb_change;
2418 		} else if (asoc) {
2419 			asoc->param_flags =
2420 				(asoc->param_flags & ~SPP_HB) | hb_change;
2421 		} else {
2422 			sp->param_flags =
2423 				(sp->param_flags & ~SPP_HB) | hb_change;
2424 		}
2425 	}
2426 
2427 	/* When Path MTU discovery is disabled the value specified here will
2428 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2429 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2430 	 * effect).
2431 	 */
2432 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2433 		if (trans) {
2434 			trans->pathmtu = params->spp_pathmtu;
2435 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2436 		} else if (asoc) {
2437 			asoc->pathmtu = params->spp_pathmtu;
2438 			sctp_frag_point(asoc, params->spp_pathmtu);
2439 		} else {
2440 			sp->pathmtu = params->spp_pathmtu;
2441 		}
2442 	}
2443 
2444 	if (pmtud_change) {
2445 		if (trans) {
2446 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2447 				(params->spp_flags & SPP_PMTUD_ENABLE);
2448 			trans->param_flags =
2449 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2450 			if (update) {
2451 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2452 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2453 			}
2454 		} else if (asoc) {
2455 			asoc->param_flags =
2456 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2457 		} else {
2458 			sp->param_flags =
2459 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2460 		}
2461 	}
2462 
2463 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2464 	 * value of this field is ignored.  Note also that a value of zero
2465 	 * indicates the current setting should be left unchanged.
2466 	 */
2467 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2468 		if (trans) {
2469 			trans->sackdelay =
2470 				msecs_to_jiffies(params->spp_sackdelay);
2471 		} else if (asoc) {
2472 			asoc->sackdelay =
2473 				msecs_to_jiffies(params->spp_sackdelay);
2474 		} else {
2475 			sp->sackdelay = params->spp_sackdelay;
2476 		}
2477 	}
2478 
2479 	if (sackdelay_change) {
2480 		if (trans) {
2481 			trans->param_flags =
2482 				(trans->param_flags & ~SPP_SACKDELAY) |
2483 				sackdelay_change;
2484 		} else if (asoc) {
2485 			asoc->param_flags =
2486 				(asoc->param_flags & ~SPP_SACKDELAY) |
2487 				sackdelay_change;
2488 		} else {
2489 			sp->param_flags =
2490 				(sp->param_flags & ~SPP_SACKDELAY) |
2491 				sackdelay_change;
2492 		}
2493 	}
2494 
2495 	/* Note that a value of zero indicates the current setting should be
2496 	   left unchanged.
2497 	 */
2498 	if (params->spp_pathmaxrxt) {
2499 		if (trans) {
2500 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2501 		} else if (asoc) {
2502 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2503 		} else {
2504 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2505 		}
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2512 					    char __user *optval,
2513 					    unsigned int optlen)
2514 {
2515 	struct sctp_paddrparams  params;
2516 	struct sctp_transport   *trans = NULL;
2517 	struct sctp_association *asoc = NULL;
2518 	struct sctp_sock        *sp = sctp_sk(sk);
2519 	int error;
2520 	int hb_change, pmtud_change, sackdelay_change;
2521 
2522 	if (optlen != sizeof(struct sctp_paddrparams))
2523 		return -EINVAL;
2524 
2525 	if (copy_from_user(&params, optval, optlen))
2526 		return -EFAULT;
2527 
2528 	/* Validate flags and value parameters. */
2529 	hb_change        = params.spp_flags & SPP_HB;
2530 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2531 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2532 
2533 	if (hb_change        == SPP_HB ||
2534 	    pmtud_change     == SPP_PMTUD ||
2535 	    sackdelay_change == SPP_SACKDELAY ||
2536 	    params.spp_sackdelay > 500 ||
2537 	    (params.spp_pathmtu &&
2538 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2539 		return -EINVAL;
2540 
2541 	/* If an address other than INADDR_ANY is specified, and
2542 	 * no transport is found, then the request is invalid.
2543 	 */
2544 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2545 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2546 					       params.spp_assoc_id);
2547 		if (!trans)
2548 			return -EINVAL;
2549 	}
2550 
2551 	/* Get association, if assoc_id != 0 and the socket is a one
2552 	 * to many style socket, and an association was not found, then
2553 	 * the id was invalid.
2554 	 */
2555 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2556 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2557 		return -EINVAL;
2558 
2559 	/* Heartbeat demand can only be sent on a transport or
2560 	 * association, but not a socket.
2561 	 */
2562 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2563 		return -EINVAL;
2564 
2565 	/* Process parameters. */
2566 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2567 					    hb_change, pmtud_change,
2568 					    sackdelay_change);
2569 
2570 	if (error)
2571 		return error;
2572 
2573 	/* If changes are for association, also apply parameters to each
2574 	 * transport.
2575 	 */
2576 	if (!trans && asoc) {
2577 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2578 				transports) {
2579 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2580 						    hb_change, pmtud_change,
2581 						    sackdelay_change);
2582 		}
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2589 {
2590 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2591 }
2592 
2593 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2594 {
2595 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2596 }
2597 
2598 /*
2599  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2600  *
2601  * This option will effect the way delayed acks are performed.  This
2602  * option allows you to get or set the delayed ack time, in
2603  * milliseconds.  It also allows changing the delayed ack frequency.
2604  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2605  * the assoc_id is 0, then this sets or gets the endpoints default
2606  * values.  If the assoc_id field is non-zero, then the set or get
2607  * effects the specified association for the one to many model (the
2608  * assoc_id field is ignored by the one to one model).  Note that if
2609  * sack_delay or sack_freq are 0 when setting this option, then the
2610  * current values will remain unchanged.
2611  *
2612  * struct sctp_sack_info {
2613  *     sctp_assoc_t            sack_assoc_id;
2614  *     uint32_t                sack_delay;
2615  *     uint32_t                sack_freq;
2616  * };
2617  *
2618  * sack_assoc_id -  This parameter, indicates which association the user
2619  *    is performing an action upon.  Note that if this field's value is
2620  *    zero then the endpoints default value is changed (effecting future
2621  *    associations only).
2622  *
2623  * sack_delay -  This parameter contains the number of milliseconds that
2624  *    the user is requesting the delayed ACK timer be set to.  Note that
2625  *    this value is defined in the standard to be between 200 and 500
2626  *    milliseconds.
2627  *
2628  * sack_freq -  This parameter contains the number of packets that must
2629  *    be received before a sack is sent without waiting for the delay
2630  *    timer to expire.  The default value for this is 2, setting this
2631  *    value to 1 will disable the delayed sack algorithm.
2632  */
2633 
2634 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2635 				       char __user *optval, unsigned int optlen)
2636 {
2637 	struct sctp_sack_info    params;
2638 	struct sctp_transport   *trans = NULL;
2639 	struct sctp_association *asoc = NULL;
2640 	struct sctp_sock        *sp = sctp_sk(sk);
2641 
2642 	if (optlen == sizeof(struct sctp_sack_info)) {
2643 		if (copy_from_user(&params, optval, optlen))
2644 			return -EFAULT;
2645 
2646 		if (params.sack_delay == 0 && params.sack_freq == 0)
2647 			return 0;
2648 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2649 		pr_warn_ratelimited(DEPRECATED
2650 				    "%s (pid %d) "
2651 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2652 				    "Use struct sctp_sack_info instead\n",
2653 				    current->comm, task_pid_nr(current));
2654 		if (copy_from_user(&params, optval, optlen))
2655 			return -EFAULT;
2656 
2657 		if (params.sack_delay == 0)
2658 			params.sack_freq = 1;
2659 		else
2660 			params.sack_freq = 0;
2661 	} else
2662 		return -EINVAL;
2663 
2664 	/* Validate value parameter. */
2665 	if (params.sack_delay > 500)
2666 		return -EINVAL;
2667 
2668 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2669 	 * to many style socket, and an association was not found, then
2670 	 * the id was invalid.
2671 	 */
2672 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2673 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2674 		return -EINVAL;
2675 
2676 	if (params.sack_delay) {
2677 		if (asoc) {
2678 			asoc->sackdelay =
2679 				msecs_to_jiffies(params.sack_delay);
2680 			asoc->param_flags =
2681 				sctp_spp_sackdelay_enable(asoc->param_flags);
2682 		} else {
2683 			sp->sackdelay = params.sack_delay;
2684 			sp->param_flags =
2685 				sctp_spp_sackdelay_enable(sp->param_flags);
2686 		}
2687 	}
2688 
2689 	if (params.sack_freq == 1) {
2690 		if (asoc) {
2691 			asoc->param_flags =
2692 				sctp_spp_sackdelay_disable(asoc->param_flags);
2693 		} else {
2694 			sp->param_flags =
2695 				sctp_spp_sackdelay_disable(sp->param_flags);
2696 		}
2697 	} else if (params.sack_freq > 1) {
2698 		if (asoc) {
2699 			asoc->sackfreq = params.sack_freq;
2700 			asoc->param_flags =
2701 				sctp_spp_sackdelay_enable(asoc->param_flags);
2702 		} else {
2703 			sp->sackfreq = params.sack_freq;
2704 			sp->param_flags =
2705 				sctp_spp_sackdelay_enable(sp->param_flags);
2706 		}
2707 	}
2708 
2709 	/* If change is for association, also apply to each transport. */
2710 	if (asoc) {
2711 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2712 				transports) {
2713 			if (params.sack_delay) {
2714 				trans->sackdelay =
2715 					msecs_to_jiffies(params.sack_delay);
2716 				trans->param_flags =
2717 					sctp_spp_sackdelay_enable(trans->param_flags);
2718 			}
2719 			if (params.sack_freq == 1) {
2720 				trans->param_flags =
2721 					sctp_spp_sackdelay_disable(trans->param_flags);
2722 			} else if (params.sack_freq > 1) {
2723 				trans->sackfreq = params.sack_freq;
2724 				trans->param_flags =
2725 					sctp_spp_sackdelay_enable(trans->param_flags);
2726 			}
2727 		}
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2734  *
2735  * Applications can specify protocol parameters for the default association
2736  * initialization.  The option name argument to setsockopt() and getsockopt()
2737  * is SCTP_INITMSG.
2738  *
2739  * Setting initialization parameters is effective only on an unconnected
2740  * socket (for UDP-style sockets only future associations are effected
2741  * by the change).  With TCP-style sockets, this option is inherited by
2742  * sockets derived from a listener socket.
2743  */
2744 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2745 {
2746 	struct sctp_initmsg sinit;
2747 	struct sctp_sock *sp = sctp_sk(sk);
2748 
2749 	if (optlen != sizeof(struct sctp_initmsg))
2750 		return -EINVAL;
2751 	if (copy_from_user(&sinit, optval, optlen))
2752 		return -EFAULT;
2753 
2754 	if (sinit.sinit_num_ostreams)
2755 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2756 	if (sinit.sinit_max_instreams)
2757 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2758 	if (sinit.sinit_max_attempts)
2759 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2760 	if (sinit.sinit_max_init_timeo)
2761 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2762 
2763 	return 0;
2764 }
2765 
2766 /*
2767  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2768  *
2769  *   Applications that wish to use the sendto() system call may wish to
2770  *   specify a default set of parameters that would normally be supplied
2771  *   through the inclusion of ancillary data.  This socket option allows
2772  *   such an application to set the default sctp_sndrcvinfo structure.
2773  *   The application that wishes to use this socket option simply passes
2774  *   in to this call the sctp_sndrcvinfo structure defined in Section
2775  *   5.2.2) The input parameters accepted by this call include
2776  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2777  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2778  *   to this call if the caller is using the UDP model.
2779  */
2780 static int sctp_setsockopt_default_send_param(struct sock *sk,
2781 					      char __user *optval,
2782 					      unsigned int optlen)
2783 {
2784 	struct sctp_sock *sp = sctp_sk(sk);
2785 	struct sctp_association *asoc;
2786 	struct sctp_sndrcvinfo info;
2787 
2788 	if (optlen != sizeof(info))
2789 		return -EINVAL;
2790 	if (copy_from_user(&info, optval, optlen))
2791 		return -EFAULT;
2792 	if (info.sinfo_flags &
2793 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2794 	      SCTP_ABORT | SCTP_EOF))
2795 		return -EINVAL;
2796 
2797 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2798 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2799 		return -EINVAL;
2800 	if (asoc) {
2801 		asoc->default_stream = info.sinfo_stream;
2802 		asoc->default_flags = info.sinfo_flags;
2803 		asoc->default_ppid = info.sinfo_ppid;
2804 		asoc->default_context = info.sinfo_context;
2805 		asoc->default_timetolive = info.sinfo_timetolive;
2806 	} else {
2807 		sp->default_stream = info.sinfo_stream;
2808 		sp->default_flags = info.sinfo_flags;
2809 		sp->default_ppid = info.sinfo_ppid;
2810 		sp->default_context = info.sinfo_context;
2811 		sp->default_timetolive = info.sinfo_timetolive;
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2818  * (SCTP_DEFAULT_SNDINFO)
2819  */
2820 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2821 					   char __user *optval,
2822 					   unsigned int optlen)
2823 {
2824 	struct sctp_sock *sp = sctp_sk(sk);
2825 	struct sctp_association *asoc;
2826 	struct sctp_sndinfo info;
2827 
2828 	if (optlen != sizeof(info))
2829 		return -EINVAL;
2830 	if (copy_from_user(&info, optval, optlen))
2831 		return -EFAULT;
2832 	if (info.snd_flags &
2833 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2834 	      SCTP_ABORT | SCTP_EOF))
2835 		return -EINVAL;
2836 
2837 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2838 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2839 		return -EINVAL;
2840 	if (asoc) {
2841 		asoc->default_stream = info.snd_sid;
2842 		asoc->default_flags = info.snd_flags;
2843 		asoc->default_ppid = info.snd_ppid;
2844 		asoc->default_context = info.snd_context;
2845 	} else {
2846 		sp->default_stream = info.snd_sid;
2847 		sp->default_flags = info.snd_flags;
2848 		sp->default_ppid = info.snd_ppid;
2849 		sp->default_context = info.snd_context;
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2856  *
2857  * Requests that the local SCTP stack use the enclosed peer address as
2858  * the association primary.  The enclosed address must be one of the
2859  * association peer's addresses.
2860  */
2861 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2862 					unsigned int optlen)
2863 {
2864 	struct sctp_prim prim;
2865 	struct sctp_transport *trans;
2866 
2867 	if (optlen != sizeof(struct sctp_prim))
2868 		return -EINVAL;
2869 
2870 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2871 		return -EFAULT;
2872 
2873 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2874 	if (!trans)
2875 		return -EINVAL;
2876 
2877 	sctp_assoc_set_primary(trans->asoc, trans);
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * 7.1.5 SCTP_NODELAY
2884  *
2885  * Turn on/off any Nagle-like algorithm.  This means that packets are
2886  * generally sent as soon as possible and no unnecessary delays are
2887  * introduced, at the cost of more packets in the network.  Expects an
2888  *  integer boolean flag.
2889  */
2890 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2891 				   unsigned int optlen)
2892 {
2893 	int val;
2894 
2895 	if (optlen < sizeof(int))
2896 		return -EINVAL;
2897 	if (get_user(val, (int __user *)optval))
2898 		return -EFAULT;
2899 
2900 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2901 	return 0;
2902 }
2903 
2904 /*
2905  *
2906  * 7.1.1 SCTP_RTOINFO
2907  *
2908  * The protocol parameters used to initialize and bound retransmission
2909  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2910  * and modify these parameters.
2911  * All parameters are time values, in milliseconds.  A value of 0, when
2912  * modifying the parameters, indicates that the current value should not
2913  * be changed.
2914  *
2915  */
2916 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2917 {
2918 	struct sctp_rtoinfo rtoinfo;
2919 	struct sctp_association *asoc;
2920 	unsigned long rto_min, rto_max;
2921 	struct sctp_sock *sp = sctp_sk(sk);
2922 
2923 	if (optlen != sizeof (struct sctp_rtoinfo))
2924 		return -EINVAL;
2925 
2926 	if (copy_from_user(&rtoinfo, optval, optlen))
2927 		return -EFAULT;
2928 
2929 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2930 
2931 	/* Set the values to the specific association */
2932 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2933 		return -EINVAL;
2934 
2935 	rto_max = rtoinfo.srto_max;
2936 	rto_min = rtoinfo.srto_min;
2937 
2938 	if (rto_max)
2939 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2940 	else
2941 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2942 
2943 	if (rto_min)
2944 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2945 	else
2946 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2947 
2948 	if (rto_min > rto_max)
2949 		return -EINVAL;
2950 
2951 	if (asoc) {
2952 		if (rtoinfo.srto_initial != 0)
2953 			asoc->rto_initial =
2954 				msecs_to_jiffies(rtoinfo.srto_initial);
2955 		asoc->rto_max = rto_max;
2956 		asoc->rto_min = rto_min;
2957 	} else {
2958 		/* If there is no association or the association-id = 0
2959 		 * set the values to the endpoint.
2960 		 */
2961 		if (rtoinfo.srto_initial != 0)
2962 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2963 		sp->rtoinfo.srto_max = rto_max;
2964 		sp->rtoinfo.srto_min = rto_min;
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 /*
2971  *
2972  * 7.1.2 SCTP_ASSOCINFO
2973  *
2974  * This option is used to tune the maximum retransmission attempts
2975  * of the association.
2976  * Returns an error if the new association retransmission value is
2977  * greater than the sum of the retransmission value  of the peer.
2978  * See [SCTP] for more information.
2979  *
2980  */
2981 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2982 {
2983 
2984 	struct sctp_assocparams assocparams;
2985 	struct sctp_association *asoc;
2986 
2987 	if (optlen != sizeof(struct sctp_assocparams))
2988 		return -EINVAL;
2989 	if (copy_from_user(&assocparams, optval, optlen))
2990 		return -EFAULT;
2991 
2992 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2993 
2994 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2995 		return -EINVAL;
2996 
2997 	/* Set the values to the specific association */
2998 	if (asoc) {
2999 		if (assocparams.sasoc_asocmaxrxt != 0) {
3000 			__u32 path_sum = 0;
3001 			int   paths = 0;
3002 			struct sctp_transport *peer_addr;
3003 
3004 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3005 					transports) {
3006 				path_sum += peer_addr->pathmaxrxt;
3007 				paths++;
3008 			}
3009 
3010 			/* Only validate asocmaxrxt if we have more than
3011 			 * one path/transport.  We do this because path
3012 			 * retransmissions are only counted when we have more
3013 			 * then one path.
3014 			 */
3015 			if (paths > 1 &&
3016 			    assocparams.sasoc_asocmaxrxt > path_sum)
3017 				return -EINVAL;
3018 
3019 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3020 		}
3021 
3022 		if (assocparams.sasoc_cookie_life != 0)
3023 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3024 	} else {
3025 		/* Set the values to the endpoint */
3026 		struct sctp_sock *sp = sctp_sk(sk);
3027 
3028 		if (assocparams.sasoc_asocmaxrxt != 0)
3029 			sp->assocparams.sasoc_asocmaxrxt =
3030 						assocparams.sasoc_asocmaxrxt;
3031 		if (assocparams.sasoc_cookie_life != 0)
3032 			sp->assocparams.sasoc_cookie_life =
3033 						assocparams.sasoc_cookie_life;
3034 	}
3035 	return 0;
3036 }
3037 
3038 /*
3039  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3040  *
3041  * This socket option is a boolean flag which turns on or off mapped V4
3042  * addresses.  If this option is turned on and the socket is type
3043  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3044  * If this option is turned off, then no mapping will be done of V4
3045  * addresses and a user will receive both PF_INET6 and PF_INET type
3046  * addresses on the socket.
3047  */
3048 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3049 {
3050 	int val;
3051 	struct sctp_sock *sp = sctp_sk(sk);
3052 
3053 	if (optlen < sizeof(int))
3054 		return -EINVAL;
3055 	if (get_user(val, (int __user *)optval))
3056 		return -EFAULT;
3057 	if (val)
3058 		sp->v4mapped = 1;
3059 	else
3060 		sp->v4mapped = 0;
3061 
3062 	return 0;
3063 }
3064 
3065 /*
3066  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3067  * This option will get or set the maximum size to put in any outgoing
3068  * SCTP DATA chunk.  If a message is larger than this size it will be
3069  * fragmented by SCTP into the specified size.  Note that the underlying
3070  * SCTP implementation may fragment into smaller sized chunks when the
3071  * PMTU of the underlying association is smaller than the value set by
3072  * the user.  The default value for this option is '0' which indicates
3073  * the user is NOT limiting fragmentation and only the PMTU will effect
3074  * SCTP's choice of DATA chunk size.  Note also that values set larger
3075  * than the maximum size of an IP datagram will effectively let SCTP
3076  * control fragmentation (i.e. the same as setting this option to 0).
3077  *
3078  * The following structure is used to access and modify this parameter:
3079  *
3080  * struct sctp_assoc_value {
3081  *   sctp_assoc_t assoc_id;
3082  *   uint32_t assoc_value;
3083  * };
3084  *
3085  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3086  *    For one-to-many style sockets this parameter indicates which
3087  *    association the user is performing an action upon.  Note that if
3088  *    this field's value is zero then the endpoints default value is
3089  *    changed (effecting future associations only).
3090  * assoc_value:  This parameter specifies the maximum size in bytes.
3091  */
3092 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3093 {
3094 	struct sctp_assoc_value params;
3095 	struct sctp_association *asoc;
3096 	struct sctp_sock *sp = sctp_sk(sk);
3097 	int val;
3098 
3099 	if (optlen == sizeof(int)) {
3100 		pr_warn_ratelimited(DEPRECATED
3101 				    "%s (pid %d) "
3102 				    "Use of int in maxseg socket option.\n"
3103 				    "Use struct sctp_assoc_value instead\n",
3104 				    current->comm, task_pid_nr(current));
3105 		if (copy_from_user(&val, optval, optlen))
3106 			return -EFAULT;
3107 		params.assoc_id = 0;
3108 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3109 		if (copy_from_user(&params, optval, optlen))
3110 			return -EFAULT;
3111 		val = params.assoc_value;
3112 	} else
3113 		return -EINVAL;
3114 
3115 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3116 		return -EINVAL;
3117 
3118 	asoc = sctp_id2assoc(sk, params.assoc_id);
3119 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3120 		return -EINVAL;
3121 
3122 	if (asoc) {
3123 		if (val == 0) {
3124 			val = asoc->pathmtu;
3125 			val -= sp->pf->af->net_header_len;
3126 			val -= sizeof(struct sctphdr) +
3127 					sizeof(struct sctp_data_chunk);
3128 		}
3129 		asoc->user_frag = val;
3130 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3131 	} else {
3132 		sp->user_frag = val;
3133 	}
3134 
3135 	return 0;
3136 }
3137 
3138 
3139 /*
3140  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3141  *
3142  *   Requests that the peer mark the enclosed address as the association
3143  *   primary. The enclosed address must be one of the association's
3144  *   locally bound addresses. The following structure is used to make a
3145  *   set primary request:
3146  */
3147 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3148 					     unsigned int optlen)
3149 {
3150 	struct net *net = sock_net(sk);
3151 	struct sctp_sock	*sp;
3152 	struct sctp_association	*asoc = NULL;
3153 	struct sctp_setpeerprim	prim;
3154 	struct sctp_chunk	*chunk;
3155 	struct sctp_af		*af;
3156 	int 			err;
3157 
3158 	sp = sctp_sk(sk);
3159 
3160 	if (!net->sctp.addip_enable)
3161 		return -EPERM;
3162 
3163 	if (optlen != sizeof(struct sctp_setpeerprim))
3164 		return -EINVAL;
3165 
3166 	if (copy_from_user(&prim, optval, optlen))
3167 		return -EFAULT;
3168 
3169 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3170 	if (!asoc)
3171 		return -EINVAL;
3172 
3173 	if (!asoc->peer.asconf_capable)
3174 		return -EPERM;
3175 
3176 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3177 		return -EPERM;
3178 
3179 	if (!sctp_state(asoc, ESTABLISHED))
3180 		return -ENOTCONN;
3181 
3182 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3183 	if (!af)
3184 		return -EINVAL;
3185 
3186 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3187 		return -EADDRNOTAVAIL;
3188 
3189 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3190 		return -EADDRNOTAVAIL;
3191 
3192 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3193 	chunk = sctp_make_asconf_set_prim(asoc,
3194 					  (union sctp_addr *)&prim.sspp_addr);
3195 	if (!chunk)
3196 		return -ENOMEM;
3197 
3198 	err = sctp_send_asconf(asoc, chunk);
3199 
3200 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3201 
3202 	return err;
3203 }
3204 
3205 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3206 					    unsigned int optlen)
3207 {
3208 	struct sctp_setadaptation adaptation;
3209 
3210 	if (optlen != sizeof(struct sctp_setadaptation))
3211 		return -EINVAL;
3212 	if (copy_from_user(&adaptation, optval, optlen))
3213 		return -EFAULT;
3214 
3215 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3222  *
3223  * The context field in the sctp_sndrcvinfo structure is normally only
3224  * used when a failed message is retrieved holding the value that was
3225  * sent down on the actual send call.  This option allows the setting of
3226  * a default context on an association basis that will be received on
3227  * reading messages from the peer.  This is especially helpful in the
3228  * one-2-many model for an application to keep some reference to an
3229  * internal state machine that is processing messages on the
3230  * association.  Note that the setting of this value only effects
3231  * received messages from the peer and does not effect the value that is
3232  * saved with outbound messages.
3233  */
3234 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3235 				   unsigned int optlen)
3236 {
3237 	struct sctp_assoc_value params;
3238 	struct sctp_sock *sp;
3239 	struct sctp_association *asoc;
3240 
3241 	if (optlen != sizeof(struct sctp_assoc_value))
3242 		return -EINVAL;
3243 	if (copy_from_user(&params, optval, optlen))
3244 		return -EFAULT;
3245 
3246 	sp = sctp_sk(sk);
3247 
3248 	if (params.assoc_id != 0) {
3249 		asoc = sctp_id2assoc(sk, params.assoc_id);
3250 		if (!asoc)
3251 			return -EINVAL;
3252 		asoc->default_rcv_context = params.assoc_value;
3253 	} else {
3254 		sp->default_rcv_context = params.assoc_value;
3255 	}
3256 
3257 	return 0;
3258 }
3259 
3260 /*
3261  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3262  *
3263  * This options will at a minimum specify if the implementation is doing
3264  * fragmented interleave.  Fragmented interleave, for a one to many
3265  * socket, is when subsequent calls to receive a message may return
3266  * parts of messages from different associations.  Some implementations
3267  * may allow you to turn this value on or off.  If so, when turned off,
3268  * no fragment interleave will occur (which will cause a head of line
3269  * blocking amongst multiple associations sharing the same one to many
3270  * socket).  When this option is turned on, then each receive call may
3271  * come from a different association (thus the user must receive data
3272  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3273  * association each receive belongs to.
3274  *
3275  * This option takes a boolean value.  A non-zero value indicates that
3276  * fragmented interleave is on.  A value of zero indicates that
3277  * fragmented interleave is off.
3278  *
3279  * Note that it is important that an implementation that allows this
3280  * option to be turned on, have it off by default.  Otherwise an unaware
3281  * application using the one to many model may become confused and act
3282  * incorrectly.
3283  */
3284 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3285 					       char __user *optval,
3286 					       unsigned int optlen)
3287 {
3288 	int val;
3289 
3290 	if (optlen != sizeof(int))
3291 		return -EINVAL;
3292 	if (get_user(val, (int __user *)optval))
3293 		return -EFAULT;
3294 
3295 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3296 
3297 	return 0;
3298 }
3299 
3300 /*
3301  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3302  *       (SCTP_PARTIAL_DELIVERY_POINT)
3303  *
3304  * This option will set or get the SCTP partial delivery point.  This
3305  * point is the size of a message where the partial delivery API will be
3306  * invoked to help free up rwnd space for the peer.  Setting this to a
3307  * lower value will cause partial deliveries to happen more often.  The
3308  * calls argument is an integer that sets or gets the partial delivery
3309  * point.  Note also that the call will fail if the user attempts to set
3310  * this value larger than the socket receive buffer size.
3311  *
3312  * Note that any single message having a length smaller than or equal to
3313  * the SCTP partial delivery point will be delivered in one single read
3314  * call as long as the user provided buffer is large enough to hold the
3315  * message.
3316  */
3317 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3318 						  char __user *optval,
3319 						  unsigned int optlen)
3320 {
3321 	u32 val;
3322 
3323 	if (optlen != sizeof(u32))
3324 		return -EINVAL;
3325 	if (get_user(val, (int __user *)optval))
3326 		return -EFAULT;
3327 
3328 	/* Note: We double the receive buffer from what the user sets
3329 	 * it to be, also initial rwnd is based on rcvbuf/2.
3330 	 */
3331 	if (val > (sk->sk_rcvbuf >> 1))
3332 		return -EINVAL;
3333 
3334 	sctp_sk(sk)->pd_point = val;
3335 
3336 	return 0; /* is this the right error code? */
3337 }
3338 
3339 /*
3340  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3341  *
3342  * This option will allow a user to change the maximum burst of packets
3343  * that can be emitted by this association.  Note that the default value
3344  * is 4, and some implementations may restrict this setting so that it
3345  * can only be lowered.
3346  *
3347  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3348  * future associations inheriting the socket value.
3349  */
3350 static int sctp_setsockopt_maxburst(struct sock *sk,
3351 				    char __user *optval,
3352 				    unsigned int optlen)
3353 {
3354 	struct sctp_assoc_value params;
3355 	struct sctp_sock *sp;
3356 	struct sctp_association *asoc;
3357 	int val;
3358 	int assoc_id = 0;
3359 
3360 	if (optlen == sizeof(int)) {
3361 		pr_warn_ratelimited(DEPRECATED
3362 				    "%s (pid %d) "
3363 				    "Use of int in max_burst socket option deprecated.\n"
3364 				    "Use struct sctp_assoc_value instead\n",
3365 				    current->comm, task_pid_nr(current));
3366 		if (copy_from_user(&val, optval, optlen))
3367 			return -EFAULT;
3368 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3369 		if (copy_from_user(&params, optval, optlen))
3370 			return -EFAULT;
3371 		val = params.assoc_value;
3372 		assoc_id = params.assoc_id;
3373 	} else
3374 		return -EINVAL;
3375 
3376 	sp = sctp_sk(sk);
3377 
3378 	if (assoc_id != 0) {
3379 		asoc = sctp_id2assoc(sk, assoc_id);
3380 		if (!asoc)
3381 			return -EINVAL;
3382 		asoc->max_burst = val;
3383 	} else
3384 		sp->max_burst = val;
3385 
3386 	return 0;
3387 }
3388 
3389 /*
3390  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3391  *
3392  * This set option adds a chunk type that the user is requesting to be
3393  * received only in an authenticated way.  Changes to the list of chunks
3394  * will only effect future associations on the socket.
3395  */
3396 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3397 				      char __user *optval,
3398 				      unsigned int optlen)
3399 {
3400 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3401 	struct sctp_authchunk val;
3402 
3403 	if (!ep->auth_enable)
3404 		return -EACCES;
3405 
3406 	if (optlen != sizeof(struct sctp_authchunk))
3407 		return -EINVAL;
3408 	if (copy_from_user(&val, optval, optlen))
3409 		return -EFAULT;
3410 
3411 	switch (val.sauth_chunk) {
3412 	case SCTP_CID_INIT:
3413 	case SCTP_CID_INIT_ACK:
3414 	case SCTP_CID_SHUTDOWN_COMPLETE:
3415 	case SCTP_CID_AUTH:
3416 		return -EINVAL;
3417 	}
3418 
3419 	/* add this chunk id to the endpoint */
3420 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3421 }
3422 
3423 /*
3424  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3425  *
3426  * This option gets or sets the list of HMAC algorithms that the local
3427  * endpoint requires the peer to use.
3428  */
3429 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3430 				      char __user *optval,
3431 				      unsigned int optlen)
3432 {
3433 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3434 	struct sctp_hmacalgo *hmacs;
3435 	u32 idents;
3436 	int err;
3437 
3438 	if (!ep->auth_enable)
3439 		return -EACCES;
3440 
3441 	if (optlen < sizeof(struct sctp_hmacalgo))
3442 		return -EINVAL;
3443 
3444 	hmacs = memdup_user(optval, optlen);
3445 	if (IS_ERR(hmacs))
3446 		return PTR_ERR(hmacs);
3447 
3448 	idents = hmacs->shmac_num_idents;
3449 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3450 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3451 		err = -EINVAL;
3452 		goto out;
3453 	}
3454 
3455 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3456 out:
3457 	kfree(hmacs);
3458 	return err;
3459 }
3460 
3461 /*
3462  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3463  *
3464  * This option will set a shared secret key which is used to build an
3465  * association shared key.
3466  */
3467 static int sctp_setsockopt_auth_key(struct sock *sk,
3468 				    char __user *optval,
3469 				    unsigned int optlen)
3470 {
3471 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3472 	struct sctp_authkey *authkey;
3473 	struct sctp_association *asoc;
3474 	int ret;
3475 
3476 	if (!ep->auth_enable)
3477 		return -EACCES;
3478 
3479 	if (optlen <= sizeof(struct sctp_authkey))
3480 		return -EINVAL;
3481 
3482 	authkey = memdup_user(optval, optlen);
3483 	if (IS_ERR(authkey))
3484 		return PTR_ERR(authkey);
3485 
3486 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3487 		ret = -EINVAL;
3488 		goto out;
3489 	}
3490 
3491 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3492 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3493 		ret = -EINVAL;
3494 		goto out;
3495 	}
3496 
3497 	ret = sctp_auth_set_key(ep, asoc, authkey);
3498 out:
3499 	kzfree(authkey);
3500 	return ret;
3501 }
3502 
3503 /*
3504  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3505  *
3506  * This option will get or set the active shared key to be used to build
3507  * the association shared key.
3508  */
3509 static int sctp_setsockopt_active_key(struct sock *sk,
3510 				      char __user *optval,
3511 				      unsigned int optlen)
3512 {
3513 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3514 	struct sctp_authkeyid val;
3515 	struct sctp_association *asoc;
3516 
3517 	if (!ep->auth_enable)
3518 		return -EACCES;
3519 
3520 	if (optlen != sizeof(struct sctp_authkeyid))
3521 		return -EINVAL;
3522 	if (copy_from_user(&val, optval, optlen))
3523 		return -EFAULT;
3524 
3525 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3526 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3527 		return -EINVAL;
3528 
3529 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3530 }
3531 
3532 /*
3533  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3534  *
3535  * This set option will delete a shared secret key from use.
3536  */
3537 static int sctp_setsockopt_del_key(struct sock *sk,
3538 				   char __user *optval,
3539 				   unsigned int optlen)
3540 {
3541 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3542 	struct sctp_authkeyid val;
3543 	struct sctp_association *asoc;
3544 
3545 	if (!ep->auth_enable)
3546 		return -EACCES;
3547 
3548 	if (optlen != sizeof(struct sctp_authkeyid))
3549 		return -EINVAL;
3550 	if (copy_from_user(&val, optval, optlen))
3551 		return -EFAULT;
3552 
3553 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3554 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3555 		return -EINVAL;
3556 
3557 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3558 
3559 }
3560 
3561 /*
3562  * 8.1.23 SCTP_AUTO_ASCONF
3563  *
3564  * This option will enable or disable the use of the automatic generation of
3565  * ASCONF chunks to add and delete addresses to an existing association.  Note
3566  * that this option has two caveats namely: a) it only affects sockets that
3567  * are bound to all addresses available to the SCTP stack, and b) the system
3568  * administrator may have an overriding control that turns the ASCONF feature
3569  * off no matter what setting the socket option may have.
3570  * This option expects an integer boolean flag, where a non-zero value turns on
3571  * the option, and a zero value turns off the option.
3572  * Note. In this implementation, socket operation overrides default parameter
3573  * being set by sysctl as well as FreeBSD implementation
3574  */
3575 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3576 					unsigned int optlen)
3577 {
3578 	int val;
3579 	struct sctp_sock *sp = sctp_sk(sk);
3580 
3581 	if (optlen < sizeof(int))
3582 		return -EINVAL;
3583 	if (get_user(val, (int __user *)optval))
3584 		return -EFAULT;
3585 	if (!sctp_is_ep_boundall(sk) && val)
3586 		return -EINVAL;
3587 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3588 		return 0;
3589 
3590 	if (val == 0 && sp->do_auto_asconf) {
3591 		list_del(&sp->auto_asconf_list);
3592 		sp->do_auto_asconf = 0;
3593 	} else if (val && !sp->do_auto_asconf) {
3594 		list_add_tail(&sp->auto_asconf_list,
3595 		    &sock_net(sk)->sctp.auto_asconf_splist);
3596 		sp->do_auto_asconf = 1;
3597 	}
3598 	return 0;
3599 }
3600 
3601 /*
3602  * SCTP_PEER_ADDR_THLDS
3603  *
3604  * This option allows us to alter the partially failed threshold for one or all
3605  * transports in an association.  See Section 6.1 of:
3606  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3607  */
3608 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3609 					    char __user *optval,
3610 					    unsigned int optlen)
3611 {
3612 	struct sctp_paddrthlds val;
3613 	struct sctp_transport *trans;
3614 	struct sctp_association *asoc;
3615 
3616 	if (optlen < sizeof(struct sctp_paddrthlds))
3617 		return -EINVAL;
3618 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3619 			   sizeof(struct sctp_paddrthlds)))
3620 		return -EFAULT;
3621 
3622 
3623 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3624 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3625 		if (!asoc)
3626 			return -ENOENT;
3627 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3628 				    transports) {
3629 			if (val.spt_pathmaxrxt)
3630 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3631 			trans->pf_retrans = val.spt_pathpfthld;
3632 		}
3633 
3634 		if (val.spt_pathmaxrxt)
3635 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3636 		asoc->pf_retrans = val.spt_pathpfthld;
3637 	} else {
3638 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3639 					       val.spt_assoc_id);
3640 		if (!trans)
3641 			return -ENOENT;
3642 
3643 		if (val.spt_pathmaxrxt)
3644 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3645 		trans->pf_retrans = val.spt_pathpfthld;
3646 	}
3647 
3648 	return 0;
3649 }
3650 
3651 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3652 				       char __user *optval,
3653 				       unsigned int optlen)
3654 {
3655 	int val;
3656 
3657 	if (optlen < sizeof(int))
3658 		return -EINVAL;
3659 	if (get_user(val, (int __user *) optval))
3660 		return -EFAULT;
3661 
3662 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3663 
3664 	return 0;
3665 }
3666 
3667 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3668 				       char __user *optval,
3669 				       unsigned int optlen)
3670 {
3671 	int val;
3672 
3673 	if (optlen < sizeof(int))
3674 		return -EINVAL;
3675 	if (get_user(val, (int __user *) optval))
3676 		return -EFAULT;
3677 
3678 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3679 
3680 	return 0;
3681 }
3682 
3683 /* API 6.2 setsockopt(), getsockopt()
3684  *
3685  * Applications use setsockopt() and getsockopt() to set or retrieve
3686  * socket options.  Socket options are used to change the default
3687  * behavior of sockets calls.  They are described in Section 7.
3688  *
3689  * The syntax is:
3690  *
3691  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3692  *                    int __user *optlen);
3693  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3694  *                    int optlen);
3695  *
3696  *   sd      - the socket descript.
3697  *   level   - set to IPPROTO_SCTP for all SCTP options.
3698  *   optname - the option name.
3699  *   optval  - the buffer to store the value of the option.
3700  *   optlen  - the size of the buffer.
3701  */
3702 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3703 			   char __user *optval, unsigned int optlen)
3704 {
3705 	int retval = 0;
3706 
3707 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3708 
3709 	/* I can hardly begin to describe how wrong this is.  This is
3710 	 * so broken as to be worse than useless.  The API draft
3711 	 * REALLY is NOT helpful here...  I am not convinced that the
3712 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3713 	 * are at all well-founded.
3714 	 */
3715 	if (level != SOL_SCTP) {
3716 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3717 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3718 		goto out_nounlock;
3719 	}
3720 
3721 	lock_sock(sk);
3722 
3723 	switch (optname) {
3724 	case SCTP_SOCKOPT_BINDX_ADD:
3725 		/* 'optlen' is the size of the addresses buffer. */
3726 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3727 					       optlen, SCTP_BINDX_ADD_ADDR);
3728 		break;
3729 
3730 	case SCTP_SOCKOPT_BINDX_REM:
3731 		/* 'optlen' is the size of the addresses buffer. */
3732 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3733 					       optlen, SCTP_BINDX_REM_ADDR);
3734 		break;
3735 
3736 	case SCTP_SOCKOPT_CONNECTX_OLD:
3737 		/* 'optlen' is the size of the addresses buffer. */
3738 		retval = sctp_setsockopt_connectx_old(sk,
3739 					    (struct sockaddr __user *)optval,
3740 					    optlen);
3741 		break;
3742 
3743 	case SCTP_SOCKOPT_CONNECTX:
3744 		/* 'optlen' is the size of the addresses buffer. */
3745 		retval = sctp_setsockopt_connectx(sk,
3746 					    (struct sockaddr __user *)optval,
3747 					    optlen);
3748 		break;
3749 
3750 	case SCTP_DISABLE_FRAGMENTS:
3751 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3752 		break;
3753 
3754 	case SCTP_EVENTS:
3755 		retval = sctp_setsockopt_events(sk, optval, optlen);
3756 		break;
3757 
3758 	case SCTP_AUTOCLOSE:
3759 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3760 		break;
3761 
3762 	case SCTP_PEER_ADDR_PARAMS:
3763 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3764 		break;
3765 
3766 	case SCTP_DELAYED_SACK:
3767 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3768 		break;
3769 	case SCTP_PARTIAL_DELIVERY_POINT:
3770 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3771 		break;
3772 
3773 	case SCTP_INITMSG:
3774 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3775 		break;
3776 	case SCTP_DEFAULT_SEND_PARAM:
3777 		retval = sctp_setsockopt_default_send_param(sk, optval,
3778 							    optlen);
3779 		break;
3780 	case SCTP_DEFAULT_SNDINFO:
3781 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3782 		break;
3783 	case SCTP_PRIMARY_ADDR:
3784 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3785 		break;
3786 	case SCTP_SET_PEER_PRIMARY_ADDR:
3787 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3788 		break;
3789 	case SCTP_NODELAY:
3790 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3791 		break;
3792 	case SCTP_RTOINFO:
3793 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3794 		break;
3795 	case SCTP_ASSOCINFO:
3796 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3797 		break;
3798 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3799 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3800 		break;
3801 	case SCTP_MAXSEG:
3802 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3803 		break;
3804 	case SCTP_ADAPTATION_LAYER:
3805 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3806 		break;
3807 	case SCTP_CONTEXT:
3808 		retval = sctp_setsockopt_context(sk, optval, optlen);
3809 		break;
3810 	case SCTP_FRAGMENT_INTERLEAVE:
3811 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3812 		break;
3813 	case SCTP_MAX_BURST:
3814 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3815 		break;
3816 	case SCTP_AUTH_CHUNK:
3817 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3818 		break;
3819 	case SCTP_HMAC_IDENT:
3820 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3821 		break;
3822 	case SCTP_AUTH_KEY:
3823 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3824 		break;
3825 	case SCTP_AUTH_ACTIVE_KEY:
3826 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3827 		break;
3828 	case SCTP_AUTH_DELETE_KEY:
3829 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3830 		break;
3831 	case SCTP_AUTO_ASCONF:
3832 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3833 		break;
3834 	case SCTP_PEER_ADDR_THLDS:
3835 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3836 		break;
3837 	case SCTP_RECVRCVINFO:
3838 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3839 		break;
3840 	case SCTP_RECVNXTINFO:
3841 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3842 		break;
3843 	default:
3844 		retval = -ENOPROTOOPT;
3845 		break;
3846 	}
3847 
3848 	release_sock(sk);
3849 
3850 out_nounlock:
3851 	return retval;
3852 }
3853 
3854 /* API 3.1.6 connect() - UDP Style Syntax
3855  *
3856  * An application may use the connect() call in the UDP model to initiate an
3857  * association without sending data.
3858  *
3859  * The syntax is:
3860  *
3861  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3862  *
3863  * sd: the socket descriptor to have a new association added to.
3864  *
3865  * nam: the address structure (either struct sockaddr_in or struct
3866  *    sockaddr_in6 defined in RFC2553 [7]).
3867  *
3868  * len: the size of the address.
3869  */
3870 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3871 			int addr_len)
3872 {
3873 	int err = 0;
3874 	struct sctp_af *af;
3875 
3876 	lock_sock(sk);
3877 
3878 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3879 		 addr, addr_len);
3880 
3881 	/* Validate addr_len before calling common connect/connectx routine. */
3882 	af = sctp_get_af_specific(addr->sa_family);
3883 	if (!af || addr_len < af->sockaddr_len) {
3884 		err = -EINVAL;
3885 	} else {
3886 		/* Pass correct addr len to common routine (so it knows there
3887 		 * is only one address being passed.
3888 		 */
3889 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3890 	}
3891 
3892 	release_sock(sk);
3893 	return err;
3894 }
3895 
3896 /* FIXME: Write comments. */
3897 static int sctp_disconnect(struct sock *sk, int flags)
3898 {
3899 	return -EOPNOTSUPP; /* STUB */
3900 }
3901 
3902 /* 4.1.4 accept() - TCP Style Syntax
3903  *
3904  * Applications use accept() call to remove an established SCTP
3905  * association from the accept queue of the endpoint.  A new socket
3906  * descriptor will be returned from accept() to represent the newly
3907  * formed association.
3908  */
3909 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3910 {
3911 	struct sctp_sock *sp;
3912 	struct sctp_endpoint *ep;
3913 	struct sock *newsk = NULL;
3914 	struct sctp_association *asoc;
3915 	long timeo;
3916 	int error = 0;
3917 
3918 	lock_sock(sk);
3919 
3920 	sp = sctp_sk(sk);
3921 	ep = sp->ep;
3922 
3923 	if (!sctp_style(sk, TCP)) {
3924 		error = -EOPNOTSUPP;
3925 		goto out;
3926 	}
3927 
3928 	if (!sctp_sstate(sk, LISTENING)) {
3929 		error = -EINVAL;
3930 		goto out;
3931 	}
3932 
3933 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3934 
3935 	error = sctp_wait_for_accept(sk, timeo);
3936 	if (error)
3937 		goto out;
3938 
3939 	/* We treat the list of associations on the endpoint as the accept
3940 	 * queue and pick the first association on the list.
3941 	 */
3942 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3943 
3944 	newsk = sp->pf->create_accept_sk(sk, asoc);
3945 	if (!newsk) {
3946 		error = -ENOMEM;
3947 		goto out;
3948 	}
3949 
3950 	/* Populate the fields of the newsk from the oldsk and migrate the
3951 	 * asoc to the newsk.
3952 	 */
3953 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3954 
3955 out:
3956 	release_sock(sk);
3957 	*err = error;
3958 	return newsk;
3959 }
3960 
3961 /* The SCTP ioctl handler. */
3962 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3963 {
3964 	int rc = -ENOTCONN;
3965 
3966 	lock_sock(sk);
3967 
3968 	/*
3969 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3970 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3971 	 */
3972 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3973 		goto out;
3974 
3975 	switch (cmd) {
3976 	case SIOCINQ: {
3977 		struct sk_buff *skb;
3978 		unsigned int amount = 0;
3979 
3980 		skb = skb_peek(&sk->sk_receive_queue);
3981 		if (skb != NULL) {
3982 			/*
3983 			 * We will only return the amount of this packet since
3984 			 * that is all that will be read.
3985 			 */
3986 			amount = skb->len;
3987 		}
3988 		rc = put_user(amount, (int __user *)arg);
3989 		break;
3990 	}
3991 	default:
3992 		rc = -ENOIOCTLCMD;
3993 		break;
3994 	}
3995 out:
3996 	release_sock(sk);
3997 	return rc;
3998 }
3999 
4000 /* This is the function which gets called during socket creation to
4001  * initialized the SCTP-specific portion of the sock.
4002  * The sock structure should already be zero-filled memory.
4003  */
4004 static int sctp_init_sock(struct sock *sk)
4005 {
4006 	struct net *net = sock_net(sk);
4007 	struct sctp_sock *sp;
4008 
4009 	pr_debug("%s: sk:%p\n", __func__, sk);
4010 
4011 	sp = sctp_sk(sk);
4012 
4013 	/* Initialize the SCTP per socket area.  */
4014 	switch (sk->sk_type) {
4015 	case SOCK_SEQPACKET:
4016 		sp->type = SCTP_SOCKET_UDP;
4017 		break;
4018 	case SOCK_STREAM:
4019 		sp->type = SCTP_SOCKET_TCP;
4020 		break;
4021 	default:
4022 		return -ESOCKTNOSUPPORT;
4023 	}
4024 
4025 	/* Initialize default send parameters. These parameters can be
4026 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4027 	 */
4028 	sp->default_stream = 0;
4029 	sp->default_ppid = 0;
4030 	sp->default_flags = 0;
4031 	sp->default_context = 0;
4032 	sp->default_timetolive = 0;
4033 
4034 	sp->default_rcv_context = 0;
4035 	sp->max_burst = net->sctp.max_burst;
4036 
4037 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4038 
4039 	/* Initialize default setup parameters. These parameters
4040 	 * can be modified with the SCTP_INITMSG socket option or
4041 	 * overridden by the SCTP_INIT CMSG.
4042 	 */
4043 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4044 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4045 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4046 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4047 
4048 	/* Initialize default RTO related parameters.  These parameters can
4049 	 * be modified for with the SCTP_RTOINFO socket option.
4050 	 */
4051 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4052 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4053 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4054 
4055 	/* Initialize default association related parameters. These parameters
4056 	 * can be modified with the SCTP_ASSOCINFO socket option.
4057 	 */
4058 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4059 	sp->assocparams.sasoc_number_peer_destinations = 0;
4060 	sp->assocparams.sasoc_peer_rwnd = 0;
4061 	sp->assocparams.sasoc_local_rwnd = 0;
4062 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4063 
4064 	/* Initialize default event subscriptions. By default, all the
4065 	 * options are off.
4066 	 */
4067 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4068 
4069 	/* Default Peer Address Parameters.  These defaults can
4070 	 * be modified via SCTP_PEER_ADDR_PARAMS
4071 	 */
4072 	sp->hbinterval  = net->sctp.hb_interval;
4073 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4074 	sp->pathmtu     = 0; /* allow default discovery */
4075 	sp->sackdelay   = net->sctp.sack_timeout;
4076 	sp->sackfreq	= 2;
4077 	sp->param_flags = SPP_HB_ENABLE |
4078 			  SPP_PMTUD_ENABLE |
4079 			  SPP_SACKDELAY_ENABLE;
4080 
4081 	/* If enabled no SCTP message fragmentation will be performed.
4082 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4083 	 */
4084 	sp->disable_fragments = 0;
4085 
4086 	/* Enable Nagle algorithm by default.  */
4087 	sp->nodelay           = 0;
4088 
4089 	sp->recvrcvinfo = 0;
4090 	sp->recvnxtinfo = 0;
4091 
4092 	/* Enable by default. */
4093 	sp->v4mapped          = 1;
4094 
4095 	/* Auto-close idle associations after the configured
4096 	 * number of seconds.  A value of 0 disables this
4097 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4098 	 * for UDP-style sockets only.
4099 	 */
4100 	sp->autoclose         = 0;
4101 
4102 	/* User specified fragmentation limit. */
4103 	sp->user_frag         = 0;
4104 
4105 	sp->adaptation_ind = 0;
4106 
4107 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4108 
4109 	/* Control variables for partial data delivery. */
4110 	atomic_set(&sp->pd_mode, 0);
4111 	skb_queue_head_init(&sp->pd_lobby);
4112 	sp->frag_interleave = 0;
4113 
4114 	/* Create a per socket endpoint structure.  Even if we
4115 	 * change the data structure relationships, this may still
4116 	 * be useful for storing pre-connect address information.
4117 	 */
4118 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4119 	if (!sp->ep)
4120 		return -ENOMEM;
4121 
4122 	sp->hmac = NULL;
4123 
4124 	sk->sk_destruct = sctp_destruct_sock;
4125 
4126 	SCTP_DBG_OBJCNT_INC(sock);
4127 
4128 	local_bh_disable();
4129 	percpu_counter_inc(&sctp_sockets_allocated);
4130 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4131 	if (net->sctp.default_auto_asconf) {
4132 		list_add_tail(&sp->auto_asconf_list,
4133 		    &net->sctp.auto_asconf_splist);
4134 		sp->do_auto_asconf = 1;
4135 	} else
4136 		sp->do_auto_asconf = 0;
4137 	local_bh_enable();
4138 
4139 	return 0;
4140 }
4141 
4142 /* Cleanup any SCTP per socket resources.  */
4143 static void sctp_destroy_sock(struct sock *sk)
4144 {
4145 	struct sctp_sock *sp;
4146 
4147 	pr_debug("%s: sk:%p\n", __func__, sk);
4148 
4149 	/* Release our hold on the endpoint. */
4150 	sp = sctp_sk(sk);
4151 	/* This could happen during socket init, thus we bail out
4152 	 * early, since the rest of the below is not setup either.
4153 	 */
4154 	if (sp->ep == NULL)
4155 		return;
4156 
4157 	if (sp->do_auto_asconf) {
4158 		sp->do_auto_asconf = 0;
4159 		list_del(&sp->auto_asconf_list);
4160 	}
4161 	sctp_endpoint_free(sp->ep);
4162 	local_bh_disable();
4163 	percpu_counter_dec(&sctp_sockets_allocated);
4164 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4165 	local_bh_enable();
4166 }
4167 
4168 /* Triggered when there are no references on the socket anymore */
4169 static void sctp_destruct_sock(struct sock *sk)
4170 {
4171 	struct sctp_sock *sp = sctp_sk(sk);
4172 
4173 	/* Free up the HMAC transform. */
4174 	crypto_free_hash(sp->hmac);
4175 
4176 	inet_sock_destruct(sk);
4177 }
4178 
4179 /* API 4.1.7 shutdown() - TCP Style Syntax
4180  *     int shutdown(int socket, int how);
4181  *
4182  *     sd      - the socket descriptor of the association to be closed.
4183  *     how     - Specifies the type of shutdown.  The  values  are
4184  *               as follows:
4185  *               SHUT_RD
4186  *                     Disables further receive operations. No SCTP
4187  *                     protocol action is taken.
4188  *               SHUT_WR
4189  *                     Disables further send operations, and initiates
4190  *                     the SCTP shutdown sequence.
4191  *               SHUT_RDWR
4192  *                     Disables further send  and  receive  operations
4193  *                     and initiates the SCTP shutdown sequence.
4194  */
4195 static void sctp_shutdown(struct sock *sk, int how)
4196 {
4197 	struct net *net = sock_net(sk);
4198 	struct sctp_endpoint *ep;
4199 	struct sctp_association *asoc;
4200 
4201 	if (!sctp_style(sk, TCP))
4202 		return;
4203 
4204 	if (how & SEND_SHUTDOWN) {
4205 		ep = sctp_sk(sk)->ep;
4206 		if (!list_empty(&ep->asocs)) {
4207 			asoc = list_entry(ep->asocs.next,
4208 					  struct sctp_association, asocs);
4209 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4210 		}
4211 	}
4212 }
4213 
4214 /* 7.2.1 Association Status (SCTP_STATUS)
4215 
4216  * Applications can retrieve current status information about an
4217  * association, including association state, peer receiver window size,
4218  * number of unacked data chunks, and number of data chunks pending
4219  * receipt.  This information is read-only.
4220  */
4221 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4222 				       char __user *optval,
4223 				       int __user *optlen)
4224 {
4225 	struct sctp_status status;
4226 	struct sctp_association *asoc = NULL;
4227 	struct sctp_transport *transport;
4228 	sctp_assoc_t associd;
4229 	int retval = 0;
4230 
4231 	if (len < sizeof(status)) {
4232 		retval = -EINVAL;
4233 		goto out;
4234 	}
4235 
4236 	len = sizeof(status);
4237 	if (copy_from_user(&status, optval, len)) {
4238 		retval = -EFAULT;
4239 		goto out;
4240 	}
4241 
4242 	associd = status.sstat_assoc_id;
4243 	asoc = sctp_id2assoc(sk, associd);
4244 	if (!asoc) {
4245 		retval = -EINVAL;
4246 		goto out;
4247 	}
4248 
4249 	transport = asoc->peer.primary_path;
4250 
4251 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4252 	status.sstat_state = sctp_assoc_to_state(asoc);
4253 	status.sstat_rwnd =  asoc->peer.rwnd;
4254 	status.sstat_unackdata = asoc->unack_data;
4255 
4256 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4257 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4258 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4259 	status.sstat_fragmentation_point = asoc->frag_point;
4260 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4261 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4262 			transport->af_specific->sockaddr_len);
4263 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4264 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4265 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4266 	status.sstat_primary.spinfo_state = transport->state;
4267 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4268 	status.sstat_primary.spinfo_srtt = transport->srtt;
4269 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4270 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4271 
4272 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4273 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4274 
4275 	if (put_user(len, optlen)) {
4276 		retval = -EFAULT;
4277 		goto out;
4278 	}
4279 
4280 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4281 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4282 		 status.sstat_assoc_id);
4283 
4284 	if (copy_to_user(optval, &status, len)) {
4285 		retval = -EFAULT;
4286 		goto out;
4287 	}
4288 
4289 out:
4290 	return retval;
4291 }
4292 
4293 
4294 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4295  *
4296  * Applications can retrieve information about a specific peer address
4297  * of an association, including its reachability state, congestion
4298  * window, and retransmission timer values.  This information is
4299  * read-only.
4300  */
4301 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4302 					  char __user *optval,
4303 					  int __user *optlen)
4304 {
4305 	struct sctp_paddrinfo pinfo;
4306 	struct sctp_transport *transport;
4307 	int retval = 0;
4308 
4309 	if (len < sizeof(pinfo)) {
4310 		retval = -EINVAL;
4311 		goto out;
4312 	}
4313 
4314 	len = sizeof(pinfo);
4315 	if (copy_from_user(&pinfo, optval, len)) {
4316 		retval = -EFAULT;
4317 		goto out;
4318 	}
4319 
4320 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4321 					   pinfo.spinfo_assoc_id);
4322 	if (!transport)
4323 		return -EINVAL;
4324 
4325 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4326 	pinfo.spinfo_state = transport->state;
4327 	pinfo.spinfo_cwnd = transport->cwnd;
4328 	pinfo.spinfo_srtt = transport->srtt;
4329 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4330 	pinfo.spinfo_mtu = transport->pathmtu;
4331 
4332 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4333 		pinfo.spinfo_state = SCTP_ACTIVE;
4334 
4335 	if (put_user(len, optlen)) {
4336 		retval = -EFAULT;
4337 		goto out;
4338 	}
4339 
4340 	if (copy_to_user(optval, &pinfo, len)) {
4341 		retval = -EFAULT;
4342 		goto out;
4343 	}
4344 
4345 out:
4346 	return retval;
4347 }
4348 
4349 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4350  *
4351  * This option is a on/off flag.  If enabled no SCTP message
4352  * fragmentation will be performed.  Instead if a message being sent
4353  * exceeds the current PMTU size, the message will NOT be sent and
4354  * instead a error will be indicated to the user.
4355  */
4356 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4357 					char __user *optval, int __user *optlen)
4358 {
4359 	int val;
4360 
4361 	if (len < sizeof(int))
4362 		return -EINVAL;
4363 
4364 	len = sizeof(int);
4365 	val = (sctp_sk(sk)->disable_fragments == 1);
4366 	if (put_user(len, optlen))
4367 		return -EFAULT;
4368 	if (copy_to_user(optval, &val, len))
4369 		return -EFAULT;
4370 	return 0;
4371 }
4372 
4373 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4374  *
4375  * This socket option is used to specify various notifications and
4376  * ancillary data the user wishes to receive.
4377  */
4378 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4379 				  int __user *optlen)
4380 {
4381 	if (len <= 0)
4382 		return -EINVAL;
4383 	if (len > sizeof(struct sctp_event_subscribe))
4384 		len = sizeof(struct sctp_event_subscribe);
4385 	if (put_user(len, optlen))
4386 		return -EFAULT;
4387 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4388 		return -EFAULT;
4389 	return 0;
4390 }
4391 
4392 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4393  *
4394  * This socket option is applicable to the UDP-style socket only.  When
4395  * set it will cause associations that are idle for more than the
4396  * specified number of seconds to automatically close.  An association
4397  * being idle is defined an association that has NOT sent or received
4398  * user data.  The special value of '0' indicates that no automatic
4399  * close of any associations should be performed.  The option expects an
4400  * integer defining the number of seconds of idle time before an
4401  * association is closed.
4402  */
4403 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4404 {
4405 	/* Applicable to UDP-style socket only */
4406 	if (sctp_style(sk, TCP))
4407 		return -EOPNOTSUPP;
4408 	if (len < sizeof(int))
4409 		return -EINVAL;
4410 	len = sizeof(int);
4411 	if (put_user(len, optlen))
4412 		return -EFAULT;
4413 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4414 		return -EFAULT;
4415 	return 0;
4416 }
4417 
4418 /* Helper routine to branch off an association to a new socket.  */
4419 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4420 {
4421 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4422 	struct sctp_sock *sp = sctp_sk(sk);
4423 	struct socket *sock;
4424 	int err = 0;
4425 
4426 	if (!asoc)
4427 		return -EINVAL;
4428 
4429 	/* An association cannot be branched off from an already peeled-off
4430 	 * socket, nor is this supported for tcp style sockets.
4431 	 */
4432 	if (!sctp_style(sk, UDP))
4433 		return -EINVAL;
4434 
4435 	/* Create a new socket.  */
4436 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4437 	if (err < 0)
4438 		return err;
4439 
4440 	sctp_copy_sock(sock->sk, sk, asoc);
4441 
4442 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4443 	 * Set the daddr and initialize id to something more random
4444 	 */
4445 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4446 
4447 	/* Populate the fields of the newsk from the oldsk and migrate the
4448 	 * asoc to the newsk.
4449 	 */
4450 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4451 
4452 	*sockp = sock;
4453 
4454 	return err;
4455 }
4456 EXPORT_SYMBOL(sctp_do_peeloff);
4457 
4458 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4459 {
4460 	sctp_peeloff_arg_t peeloff;
4461 	struct socket *newsock;
4462 	struct file *newfile;
4463 	int retval = 0;
4464 
4465 	if (len < sizeof(sctp_peeloff_arg_t))
4466 		return -EINVAL;
4467 	len = sizeof(sctp_peeloff_arg_t);
4468 	if (copy_from_user(&peeloff, optval, len))
4469 		return -EFAULT;
4470 
4471 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4472 	if (retval < 0)
4473 		goto out;
4474 
4475 	/* Map the socket to an unused fd that can be returned to the user.  */
4476 	retval = get_unused_fd_flags(0);
4477 	if (retval < 0) {
4478 		sock_release(newsock);
4479 		goto out;
4480 	}
4481 
4482 	newfile = sock_alloc_file(newsock, 0, NULL);
4483 	if (unlikely(IS_ERR(newfile))) {
4484 		put_unused_fd(retval);
4485 		sock_release(newsock);
4486 		return PTR_ERR(newfile);
4487 	}
4488 
4489 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4490 		 retval);
4491 
4492 	/* Return the fd mapped to the new socket.  */
4493 	if (put_user(len, optlen)) {
4494 		fput(newfile);
4495 		put_unused_fd(retval);
4496 		return -EFAULT;
4497 	}
4498 	peeloff.sd = retval;
4499 	if (copy_to_user(optval, &peeloff, len)) {
4500 		fput(newfile);
4501 		put_unused_fd(retval);
4502 		return -EFAULT;
4503 	}
4504 	fd_install(retval, newfile);
4505 out:
4506 	return retval;
4507 }
4508 
4509 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4510  *
4511  * Applications can enable or disable heartbeats for any peer address of
4512  * an association, modify an address's heartbeat interval, force a
4513  * heartbeat to be sent immediately, and adjust the address's maximum
4514  * number of retransmissions sent before an address is considered
4515  * unreachable.  The following structure is used to access and modify an
4516  * address's parameters:
4517  *
4518  *  struct sctp_paddrparams {
4519  *     sctp_assoc_t            spp_assoc_id;
4520  *     struct sockaddr_storage spp_address;
4521  *     uint32_t                spp_hbinterval;
4522  *     uint16_t                spp_pathmaxrxt;
4523  *     uint32_t                spp_pathmtu;
4524  *     uint32_t                spp_sackdelay;
4525  *     uint32_t                spp_flags;
4526  * };
4527  *
4528  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4529  *                     application, and identifies the association for
4530  *                     this query.
4531  *   spp_address     - This specifies which address is of interest.
4532  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4533  *                     in milliseconds.  If a  value of zero
4534  *                     is present in this field then no changes are to
4535  *                     be made to this parameter.
4536  *   spp_pathmaxrxt  - This contains the maximum number of
4537  *                     retransmissions before this address shall be
4538  *                     considered unreachable. If a  value of zero
4539  *                     is present in this field then no changes are to
4540  *                     be made to this parameter.
4541  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4542  *                     specified here will be the "fixed" path mtu.
4543  *                     Note that if the spp_address field is empty
4544  *                     then all associations on this address will
4545  *                     have this fixed path mtu set upon them.
4546  *
4547  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4548  *                     the number of milliseconds that sacks will be delayed
4549  *                     for. This value will apply to all addresses of an
4550  *                     association if the spp_address field is empty. Note
4551  *                     also, that if delayed sack is enabled and this
4552  *                     value is set to 0, no change is made to the last
4553  *                     recorded delayed sack timer value.
4554  *
4555  *   spp_flags       - These flags are used to control various features
4556  *                     on an association. The flag field may contain
4557  *                     zero or more of the following options.
4558  *
4559  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4560  *                     specified address. Note that if the address
4561  *                     field is empty all addresses for the association
4562  *                     have heartbeats enabled upon them.
4563  *
4564  *                     SPP_HB_DISABLE - Disable heartbeats on the
4565  *                     speicifed address. Note that if the address
4566  *                     field is empty all addresses for the association
4567  *                     will have their heartbeats disabled. Note also
4568  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4569  *                     mutually exclusive, only one of these two should
4570  *                     be specified. Enabling both fields will have
4571  *                     undetermined results.
4572  *
4573  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4574  *                     to be made immediately.
4575  *
4576  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4577  *                     discovery upon the specified address. Note that
4578  *                     if the address feild is empty then all addresses
4579  *                     on the association are effected.
4580  *
4581  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4582  *                     discovery upon the specified address. Note that
4583  *                     if the address feild is empty then all addresses
4584  *                     on the association are effected. Not also that
4585  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4586  *                     exclusive. Enabling both will have undetermined
4587  *                     results.
4588  *
4589  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4590  *                     on delayed sack. The time specified in spp_sackdelay
4591  *                     is used to specify the sack delay for this address. Note
4592  *                     that if spp_address is empty then all addresses will
4593  *                     enable delayed sack and take on the sack delay
4594  *                     value specified in spp_sackdelay.
4595  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4596  *                     off delayed sack. If the spp_address field is blank then
4597  *                     delayed sack is disabled for the entire association. Note
4598  *                     also that this field is mutually exclusive to
4599  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4600  *                     results.
4601  */
4602 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4603 					    char __user *optval, int __user *optlen)
4604 {
4605 	struct sctp_paddrparams  params;
4606 	struct sctp_transport   *trans = NULL;
4607 	struct sctp_association *asoc = NULL;
4608 	struct sctp_sock        *sp = sctp_sk(sk);
4609 
4610 	if (len < sizeof(struct sctp_paddrparams))
4611 		return -EINVAL;
4612 	len = sizeof(struct sctp_paddrparams);
4613 	if (copy_from_user(&params, optval, len))
4614 		return -EFAULT;
4615 
4616 	/* If an address other than INADDR_ANY is specified, and
4617 	 * no transport is found, then the request is invalid.
4618 	 */
4619 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4620 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4621 					       params.spp_assoc_id);
4622 		if (!trans) {
4623 			pr_debug("%s: failed no transport\n", __func__);
4624 			return -EINVAL;
4625 		}
4626 	}
4627 
4628 	/* Get association, if assoc_id != 0 and the socket is a one
4629 	 * to many style socket, and an association was not found, then
4630 	 * the id was invalid.
4631 	 */
4632 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4633 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4634 		pr_debug("%s: failed no association\n", __func__);
4635 		return -EINVAL;
4636 	}
4637 
4638 	if (trans) {
4639 		/* Fetch transport values. */
4640 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4641 		params.spp_pathmtu    = trans->pathmtu;
4642 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4643 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4644 
4645 		/*draft-11 doesn't say what to return in spp_flags*/
4646 		params.spp_flags      = trans->param_flags;
4647 	} else if (asoc) {
4648 		/* Fetch association values. */
4649 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4650 		params.spp_pathmtu    = asoc->pathmtu;
4651 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4652 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4653 
4654 		/*draft-11 doesn't say what to return in spp_flags*/
4655 		params.spp_flags      = asoc->param_flags;
4656 	} else {
4657 		/* Fetch socket values. */
4658 		params.spp_hbinterval = sp->hbinterval;
4659 		params.spp_pathmtu    = sp->pathmtu;
4660 		params.spp_sackdelay  = sp->sackdelay;
4661 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4662 
4663 		/*draft-11 doesn't say what to return in spp_flags*/
4664 		params.spp_flags      = sp->param_flags;
4665 	}
4666 
4667 	if (copy_to_user(optval, &params, len))
4668 		return -EFAULT;
4669 
4670 	if (put_user(len, optlen))
4671 		return -EFAULT;
4672 
4673 	return 0;
4674 }
4675 
4676 /*
4677  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4678  *
4679  * This option will effect the way delayed acks are performed.  This
4680  * option allows you to get or set the delayed ack time, in
4681  * milliseconds.  It also allows changing the delayed ack frequency.
4682  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4683  * the assoc_id is 0, then this sets or gets the endpoints default
4684  * values.  If the assoc_id field is non-zero, then the set or get
4685  * effects the specified association for the one to many model (the
4686  * assoc_id field is ignored by the one to one model).  Note that if
4687  * sack_delay or sack_freq are 0 when setting this option, then the
4688  * current values will remain unchanged.
4689  *
4690  * struct sctp_sack_info {
4691  *     sctp_assoc_t            sack_assoc_id;
4692  *     uint32_t                sack_delay;
4693  *     uint32_t                sack_freq;
4694  * };
4695  *
4696  * sack_assoc_id -  This parameter, indicates which association the user
4697  *    is performing an action upon.  Note that if this field's value is
4698  *    zero then the endpoints default value is changed (effecting future
4699  *    associations only).
4700  *
4701  * sack_delay -  This parameter contains the number of milliseconds that
4702  *    the user is requesting the delayed ACK timer be set to.  Note that
4703  *    this value is defined in the standard to be between 200 and 500
4704  *    milliseconds.
4705  *
4706  * sack_freq -  This parameter contains the number of packets that must
4707  *    be received before a sack is sent without waiting for the delay
4708  *    timer to expire.  The default value for this is 2, setting this
4709  *    value to 1 will disable the delayed sack algorithm.
4710  */
4711 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4712 					    char __user *optval,
4713 					    int __user *optlen)
4714 {
4715 	struct sctp_sack_info    params;
4716 	struct sctp_association *asoc = NULL;
4717 	struct sctp_sock        *sp = sctp_sk(sk);
4718 
4719 	if (len >= sizeof(struct sctp_sack_info)) {
4720 		len = sizeof(struct sctp_sack_info);
4721 
4722 		if (copy_from_user(&params, optval, len))
4723 			return -EFAULT;
4724 	} else if (len == sizeof(struct sctp_assoc_value)) {
4725 		pr_warn_ratelimited(DEPRECATED
4726 				    "%s (pid %d) "
4727 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4728 				    "Use struct sctp_sack_info instead\n",
4729 				    current->comm, task_pid_nr(current));
4730 		if (copy_from_user(&params, optval, len))
4731 			return -EFAULT;
4732 	} else
4733 		return -EINVAL;
4734 
4735 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4736 	 * to many style socket, and an association was not found, then
4737 	 * the id was invalid.
4738 	 */
4739 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4740 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4741 		return -EINVAL;
4742 
4743 	if (asoc) {
4744 		/* Fetch association values. */
4745 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4746 			params.sack_delay = jiffies_to_msecs(
4747 				asoc->sackdelay);
4748 			params.sack_freq = asoc->sackfreq;
4749 
4750 		} else {
4751 			params.sack_delay = 0;
4752 			params.sack_freq = 1;
4753 		}
4754 	} else {
4755 		/* Fetch socket values. */
4756 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4757 			params.sack_delay  = sp->sackdelay;
4758 			params.sack_freq = sp->sackfreq;
4759 		} else {
4760 			params.sack_delay  = 0;
4761 			params.sack_freq = 1;
4762 		}
4763 	}
4764 
4765 	if (copy_to_user(optval, &params, len))
4766 		return -EFAULT;
4767 
4768 	if (put_user(len, optlen))
4769 		return -EFAULT;
4770 
4771 	return 0;
4772 }
4773 
4774 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4775  *
4776  * Applications can specify protocol parameters for the default association
4777  * initialization.  The option name argument to setsockopt() and getsockopt()
4778  * is SCTP_INITMSG.
4779  *
4780  * Setting initialization parameters is effective only on an unconnected
4781  * socket (for UDP-style sockets only future associations are effected
4782  * by the change).  With TCP-style sockets, this option is inherited by
4783  * sockets derived from a listener socket.
4784  */
4785 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4786 {
4787 	if (len < sizeof(struct sctp_initmsg))
4788 		return -EINVAL;
4789 	len = sizeof(struct sctp_initmsg);
4790 	if (put_user(len, optlen))
4791 		return -EFAULT;
4792 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4793 		return -EFAULT;
4794 	return 0;
4795 }
4796 
4797 
4798 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4799 				      char __user *optval, int __user *optlen)
4800 {
4801 	struct sctp_association *asoc;
4802 	int cnt = 0;
4803 	struct sctp_getaddrs getaddrs;
4804 	struct sctp_transport *from;
4805 	void __user *to;
4806 	union sctp_addr temp;
4807 	struct sctp_sock *sp = sctp_sk(sk);
4808 	int addrlen;
4809 	size_t space_left;
4810 	int bytes_copied;
4811 
4812 	if (len < sizeof(struct sctp_getaddrs))
4813 		return -EINVAL;
4814 
4815 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4816 		return -EFAULT;
4817 
4818 	/* For UDP-style sockets, id specifies the association to query.  */
4819 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4820 	if (!asoc)
4821 		return -EINVAL;
4822 
4823 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4824 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4825 
4826 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4827 				transports) {
4828 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4829 		addrlen = sctp_get_pf_specific(sk->sk_family)
4830 			      ->addr_to_user(sp, &temp);
4831 		if (space_left < addrlen)
4832 			return -ENOMEM;
4833 		if (copy_to_user(to, &temp, addrlen))
4834 			return -EFAULT;
4835 		to += addrlen;
4836 		cnt++;
4837 		space_left -= addrlen;
4838 	}
4839 
4840 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4841 		return -EFAULT;
4842 	bytes_copied = ((char __user *)to) - optval;
4843 	if (put_user(bytes_copied, optlen))
4844 		return -EFAULT;
4845 
4846 	return 0;
4847 }
4848 
4849 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4850 			    size_t space_left, int *bytes_copied)
4851 {
4852 	struct sctp_sockaddr_entry *addr;
4853 	union sctp_addr temp;
4854 	int cnt = 0;
4855 	int addrlen;
4856 	struct net *net = sock_net(sk);
4857 
4858 	rcu_read_lock();
4859 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4860 		if (!addr->valid)
4861 			continue;
4862 
4863 		if ((PF_INET == sk->sk_family) &&
4864 		    (AF_INET6 == addr->a.sa.sa_family))
4865 			continue;
4866 		if ((PF_INET6 == sk->sk_family) &&
4867 		    inet_v6_ipv6only(sk) &&
4868 		    (AF_INET == addr->a.sa.sa_family))
4869 			continue;
4870 		memcpy(&temp, &addr->a, sizeof(temp));
4871 		if (!temp.v4.sin_port)
4872 			temp.v4.sin_port = htons(port);
4873 
4874 		addrlen = sctp_get_pf_specific(sk->sk_family)
4875 			      ->addr_to_user(sctp_sk(sk), &temp);
4876 
4877 		if (space_left < addrlen) {
4878 			cnt =  -ENOMEM;
4879 			break;
4880 		}
4881 		memcpy(to, &temp, addrlen);
4882 
4883 		to += addrlen;
4884 		cnt++;
4885 		space_left -= addrlen;
4886 		*bytes_copied += addrlen;
4887 	}
4888 	rcu_read_unlock();
4889 
4890 	return cnt;
4891 }
4892 
4893 
4894 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4895 				       char __user *optval, int __user *optlen)
4896 {
4897 	struct sctp_bind_addr *bp;
4898 	struct sctp_association *asoc;
4899 	int cnt = 0;
4900 	struct sctp_getaddrs getaddrs;
4901 	struct sctp_sockaddr_entry *addr;
4902 	void __user *to;
4903 	union sctp_addr temp;
4904 	struct sctp_sock *sp = sctp_sk(sk);
4905 	int addrlen;
4906 	int err = 0;
4907 	size_t space_left;
4908 	int bytes_copied = 0;
4909 	void *addrs;
4910 	void *buf;
4911 
4912 	if (len < sizeof(struct sctp_getaddrs))
4913 		return -EINVAL;
4914 
4915 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4916 		return -EFAULT;
4917 
4918 	/*
4919 	 *  For UDP-style sockets, id specifies the association to query.
4920 	 *  If the id field is set to the value '0' then the locally bound
4921 	 *  addresses are returned without regard to any particular
4922 	 *  association.
4923 	 */
4924 	if (0 == getaddrs.assoc_id) {
4925 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4926 	} else {
4927 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4928 		if (!asoc)
4929 			return -EINVAL;
4930 		bp = &asoc->base.bind_addr;
4931 	}
4932 
4933 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4934 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4935 
4936 	addrs = kmalloc(space_left, GFP_KERNEL);
4937 	if (!addrs)
4938 		return -ENOMEM;
4939 
4940 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4941 	 * addresses from the global local address list.
4942 	 */
4943 	if (sctp_list_single_entry(&bp->address_list)) {
4944 		addr = list_entry(bp->address_list.next,
4945 				  struct sctp_sockaddr_entry, list);
4946 		if (sctp_is_any(sk, &addr->a)) {
4947 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4948 						space_left, &bytes_copied);
4949 			if (cnt < 0) {
4950 				err = cnt;
4951 				goto out;
4952 			}
4953 			goto copy_getaddrs;
4954 		}
4955 	}
4956 
4957 	buf = addrs;
4958 	/* Protection on the bound address list is not needed since
4959 	 * in the socket option context we hold a socket lock and
4960 	 * thus the bound address list can't change.
4961 	 */
4962 	list_for_each_entry(addr, &bp->address_list, list) {
4963 		memcpy(&temp, &addr->a, sizeof(temp));
4964 		addrlen = sctp_get_pf_specific(sk->sk_family)
4965 			      ->addr_to_user(sp, &temp);
4966 		if (space_left < addrlen) {
4967 			err =  -ENOMEM; /*fixme: right error?*/
4968 			goto out;
4969 		}
4970 		memcpy(buf, &temp, addrlen);
4971 		buf += addrlen;
4972 		bytes_copied += addrlen;
4973 		cnt++;
4974 		space_left -= addrlen;
4975 	}
4976 
4977 copy_getaddrs:
4978 	if (copy_to_user(to, addrs, bytes_copied)) {
4979 		err = -EFAULT;
4980 		goto out;
4981 	}
4982 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4983 		err = -EFAULT;
4984 		goto out;
4985 	}
4986 	if (put_user(bytes_copied, optlen))
4987 		err = -EFAULT;
4988 out:
4989 	kfree(addrs);
4990 	return err;
4991 }
4992 
4993 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4994  *
4995  * Requests that the local SCTP stack use the enclosed peer address as
4996  * the association primary.  The enclosed address must be one of the
4997  * association peer's addresses.
4998  */
4999 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5000 					char __user *optval, int __user *optlen)
5001 {
5002 	struct sctp_prim prim;
5003 	struct sctp_association *asoc;
5004 	struct sctp_sock *sp = sctp_sk(sk);
5005 
5006 	if (len < sizeof(struct sctp_prim))
5007 		return -EINVAL;
5008 
5009 	len = sizeof(struct sctp_prim);
5010 
5011 	if (copy_from_user(&prim, optval, len))
5012 		return -EFAULT;
5013 
5014 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5015 	if (!asoc)
5016 		return -EINVAL;
5017 
5018 	if (!asoc->peer.primary_path)
5019 		return -ENOTCONN;
5020 
5021 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5022 		asoc->peer.primary_path->af_specific->sockaddr_len);
5023 
5024 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5025 			(union sctp_addr *)&prim.ssp_addr);
5026 
5027 	if (put_user(len, optlen))
5028 		return -EFAULT;
5029 	if (copy_to_user(optval, &prim, len))
5030 		return -EFAULT;
5031 
5032 	return 0;
5033 }
5034 
5035 /*
5036  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5037  *
5038  * Requests that the local endpoint set the specified Adaptation Layer
5039  * Indication parameter for all future INIT and INIT-ACK exchanges.
5040  */
5041 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5042 				  char __user *optval, int __user *optlen)
5043 {
5044 	struct sctp_setadaptation adaptation;
5045 
5046 	if (len < sizeof(struct sctp_setadaptation))
5047 		return -EINVAL;
5048 
5049 	len = sizeof(struct sctp_setadaptation);
5050 
5051 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5052 
5053 	if (put_user(len, optlen))
5054 		return -EFAULT;
5055 	if (copy_to_user(optval, &adaptation, len))
5056 		return -EFAULT;
5057 
5058 	return 0;
5059 }
5060 
5061 /*
5062  *
5063  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5064  *
5065  *   Applications that wish to use the sendto() system call may wish to
5066  *   specify a default set of parameters that would normally be supplied
5067  *   through the inclusion of ancillary data.  This socket option allows
5068  *   such an application to set the default sctp_sndrcvinfo structure.
5069 
5070 
5071  *   The application that wishes to use this socket option simply passes
5072  *   in to this call the sctp_sndrcvinfo structure defined in Section
5073  *   5.2.2) The input parameters accepted by this call include
5074  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5075  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5076  *   to this call if the caller is using the UDP model.
5077  *
5078  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5079  */
5080 static int sctp_getsockopt_default_send_param(struct sock *sk,
5081 					int len, char __user *optval,
5082 					int __user *optlen)
5083 {
5084 	struct sctp_sock *sp = sctp_sk(sk);
5085 	struct sctp_association *asoc;
5086 	struct sctp_sndrcvinfo info;
5087 
5088 	if (len < sizeof(info))
5089 		return -EINVAL;
5090 
5091 	len = sizeof(info);
5092 
5093 	if (copy_from_user(&info, optval, len))
5094 		return -EFAULT;
5095 
5096 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5097 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5098 		return -EINVAL;
5099 	if (asoc) {
5100 		info.sinfo_stream = asoc->default_stream;
5101 		info.sinfo_flags = asoc->default_flags;
5102 		info.sinfo_ppid = asoc->default_ppid;
5103 		info.sinfo_context = asoc->default_context;
5104 		info.sinfo_timetolive = asoc->default_timetolive;
5105 	} else {
5106 		info.sinfo_stream = sp->default_stream;
5107 		info.sinfo_flags = sp->default_flags;
5108 		info.sinfo_ppid = sp->default_ppid;
5109 		info.sinfo_context = sp->default_context;
5110 		info.sinfo_timetolive = sp->default_timetolive;
5111 	}
5112 
5113 	if (put_user(len, optlen))
5114 		return -EFAULT;
5115 	if (copy_to_user(optval, &info, len))
5116 		return -EFAULT;
5117 
5118 	return 0;
5119 }
5120 
5121 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5122  * (SCTP_DEFAULT_SNDINFO)
5123  */
5124 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5125 					   char __user *optval,
5126 					   int __user *optlen)
5127 {
5128 	struct sctp_sock *sp = sctp_sk(sk);
5129 	struct sctp_association *asoc;
5130 	struct sctp_sndinfo info;
5131 
5132 	if (len < sizeof(info))
5133 		return -EINVAL;
5134 
5135 	len = sizeof(info);
5136 
5137 	if (copy_from_user(&info, optval, len))
5138 		return -EFAULT;
5139 
5140 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5141 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5142 		return -EINVAL;
5143 	if (asoc) {
5144 		info.snd_sid = asoc->default_stream;
5145 		info.snd_flags = asoc->default_flags;
5146 		info.snd_ppid = asoc->default_ppid;
5147 		info.snd_context = asoc->default_context;
5148 	} else {
5149 		info.snd_sid = sp->default_stream;
5150 		info.snd_flags = sp->default_flags;
5151 		info.snd_ppid = sp->default_ppid;
5152 		info.snd_context = sp->default_context;
5153 	}
5154 
5155 	if (put_user(len, optlen))
5156 		return -EFAULT;
5157 	if (copy_to_user(optval, &info, len))
5158 		return -EFAULT;
5159 
5160 	return 0;
5161 }
5162 
5163 /*
5164  *
5165  * 7.1.5 SCTP_NODELAY
5166  *
5167  * Turn on/off any Nagle-like algorithm.  This means that packets are
5168  * generally sent as soon as possible and no unnecessary delays are
5169  * introduced, at the cost of more packets in the network.  Expects an
5170  * integer boolean flag.
5171  */
5172 
5173 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5174 				   char __user *optval, int __user *optlen)
5175 {
5176 	int val;
5177 
5178 	if (len < sizeof(int))
5179 		return -EINVAL;
5180 
5181 	len = sizeof(int);
5182 	val = (sctp_sk(sk)->nodelay == 1);
5183 	if (put_user(len, optlen))
5184 		return -EFAULT;
5185 	if (copy_to_user(optval, &val, len))
5186 		return -EFAULT;
5187 	return 0;
5188 }
5189 
5190 /*
5191  *
5192  * 7.1.1 SCTP_RTOINFO
5193  *
5194  * The protocol parameters used to initialize and bound retransmission
5195  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5196  * and modify these parameters.
5197  * All parameters are time values, in milliseconds.  A value of 0, when
5198  * modifying the parameters, indicates that the current value should not
5199  * be changed.
5200  *
5201  */
5202 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5203 				char __user *optval,
5204 				int __user *optlen) {
5205 	struct sctp_rtoinfo rtoinfo;
5206 	struct sctp_association *asoc;
5207 
5208 	if (len < sizeof (struct sctp_rtoinfo))
5209 		return -EINVAL;
5210 
5211 	len = sizeof(struct sctp_rtoinfo);
5212 
5213 	if (copy_from_user(&rtoinfo, optval, len))
5214 		return -EFAULT;
5215 
5216 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5217 
5218 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5219 		return -EINVAL;
5220 
5221 	/* Values corresponding to the specific association. */
5222 	if (asoc) {
5223 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5224 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5225 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5226 	} else {
5227 		/* Values corresponding to the endpoint. */
5228 		struct sctp_sock *sp = sctp_sk(sk);
5229 
5230 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5231 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5232 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5233 	}
5234 
5235 	if (put_user(len, optlen))
5236 		return -EFAULT;
5237 
5238 	if (copy_to_user(optval, &rtoinfo, len))
5239 		return -EFAULT;
5240 
5241 	return 0;
5242 }
5243 
5244 /*
5245  *
5246  * 7.1.2 SCTP_ASSOCINFO
5247  *
5248  * This option is used to tune the maximum retransmission attempts
5249  * of the association.
5250  * Returns an error if the new association retransmission value is
5251  * greater than the sum of the retransmission value  of the peer.
5252  * See [SCTP] for more information.
5253  *
5254  */
5255 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5256 				     char __user *optval,
5257 				     int __user *optlen)
5258 {
5259 
5260 	struct sctp_assocparams assocparams;
5261 	struct sctp_association *asoc;
5262 	struct list_head *pos;
5263 	int cnt = 0;
5264 
5265 	if (len < sizeof (struct sctp_assocparams))
5266 		return -EINVAL;
5267 
5268 	len = sizeof(struct sctp_assocparams);
5269 
5270 	if (copy_from_user(&assocparams, optval, len))
5271 		return -EFAULT;
5272 
5273 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5274 
5275 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5276 		return -EINVAL;
5277 
5278 	/* Values correspoinding to the specific association */
5279 	if (asoc) {
5280 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5281 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5282 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5283 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5284 
5285 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5286 			cnt++;
5287 		}
5288 
5289 		assocparams.sasoc_number_peer_destinations = cnt;
5290 	} else {
5291 		/* Values corresponding to the endpoint */
5292 		struct sctp_sock *sp = sctp_sk(sk);
5293 
5294 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5295 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5296 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5297 		assocparams.sasoc_cookie_life =
5298 					sp->assocparams.sasoc_cookie_life;
5299 		assocparams.sasoc_number_peer_destinations =
5300 					sp->assocparams.
5301 					sasoc_number_peer_destinations;
5302 	}
5303 
5304 	if (put_user(len, optlen))
5305 		return -EFAULT;
5306 
5307 	if (copy_to_user(optval, &assocparams, len))
5308 		return -EFAULT;
5309 
5310 	return 0;
5311 }
5312 
5313 /*
5314  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5315  *
5316  * This socket option is a boolean flag which turns on or off mapped V4
5317  * addresses.  If this option is turned on and the socket is type
5318  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5319  * If this option is turned off, then no mapping will be done of V4
5320  * addresses and a user will receive both PF_INET6 and PF_INET type
5321  * addresses on the socket.
5322  */
5323 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5324 				    char __user *optval, int __user *optlen)
5325 {
5326 	int val;
5327 	struct sctp_sock *sp = sctp_sk(sk);
5328 
5329 	if (len < sizeof(int))
5330 		return -EINVAL;
5331 
5332 	len = sizeof(int);
5333 	val = sp->v4mapped;
5334 	if (put_user(len, optlen))
5335 		return -EFAULT;
5336 	if (copy_to_user(optval, &val, len))
5337 		return -EFAULT;
5338 
5339 	return 0;
5340 }
5341 
5342 /*
5343  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5344  * (chapter and verse is quoted at sctp_setsockopt_context())
5345  */
5346 static int sctp_getsockopt_context(struct sock *sk, int len,
5347 				   char __user *optval, int __user *optlen)
5348 {
5349 	struct sctp_assoc_value params;
5350 	struct sctp_sock *sp;
5351 	struct sctp_association *asoc;
5352 
5353 	if (len < sizeof(struct sctp_assoc_value))
5354 		return -EINVAL;
5355 
5356 	len = sizeof(struct sctp_assoc_value);
5357 
5358 	if (copy_from_user(&params, optval, len))
5359 		return -EFAULT;
5360 
5361 	sp = sctp_sk(sk);
5362 
5363 	if (params.assoc_id != 0) {
5364 		asoc = sctp_id2assoc(sk, params.assoc_id);
5365 		if (!asoc)
5366 			return -EINVAL;
5367 		params.assoc_value = asoc->default_rcv_context;
5368 	} else {
5369 		params.assoc_value = sp->default_rcv_context;
5370 	}
5371 
5372 	if (put_user(len, optlen))
5373 		return -EFAULT;
5374 	if (copy_to_user(optval, &params, len))
5375 		return -EFAULT;
5376 
5377 	return 0;
5378 }
5379 
5380 /*
5381  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5382  * This option will get or set the maximum size to put in any outgoing
5383  * SCTP DATA chunk.  If a message is larger than this size it will be
5384  * fragmented by SCTP into the specified size.  Note that the underlying
5385  * SCTP implementation may fragment into smaller sized chunks when the
5386  * PMTU of the underlying association is smaller than the value set by
5387  * the user.  The default value for this option is '0' which indicates
5388  * the user is NOT limiting fragmentation and only the PMTU will effect
5389  * SCTP's choice of DATA chunk size.  Note also that values set larger
5390  * than the maximum size of an IP datagram will effectively let SCTP
5391  * control fragmentation (i.e. the same as setting this option to 0).
5392  *
5393  * The following structure is used to access and modify this parameter:
5394  *
5395  * struct sctp_assoc_value {
5396  *   sctp_assoc_t assoc_id;
5397  *   uint32_t assoc_value;
5398  * };
5399  *
5400  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5401  *    For one-to-many style sockets this parameter indicates which
5402  *    association the user is performing an action upon.  Note that if
5403  *    this field's value is zero then the endpoints default value is
5404  *    changed (effecting future associations only).
5405  * assoc_value:  This parameter specifies the maximum size in bytes.
5406  */
5407 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5408 				  char __user *optval, int __user *optlen)
5409 {
5410 	struct sctp_assoc_value params;
5411 	struct sctp_association *asoc;
5412 
5413 	if (len == sizeof(int)) {
5414 		pr_warn_ratelimited(DEPRECATED
5415 				    "%s (pid %d) "
5416 				    "Use of int in maxseg socket option.\n"
5417 				    "Use struct sctp_assoc_value instead\n",
5418 				    current->comm, task_pid_nr(current));
5419 		params.assoc_id = 0;
5420 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5421 		len = sizeof(struct sctp_assoc_value);
5422 		if (copy_from_user(&params, optval, sizeof(params)))
5423 			return -EFAULT;
5424 	} else
5425 		return -EINVAL;
5426 
5427 	asoc = sctp_id2assoc(sk, params.assoc_id);
5428 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5429 		return -EINVAL;
5430 
5431 	if (asoc)
5432 		params.assoc_value = asoc->frag_point;
5433 	else
5434 		params.assoc_value = sctp_sk(sk)->user_frag;
5435 
5436 	if (put_user(len, optlen))
5437 		return -EFAULT;
5438 	if (len == sizeof(int)) {
5439 		if (copy_to_user(optval, &params.assoc_value, len))
5440 			return -EFAULT;
5441 	} else {
5442 		if (copy_to_user(optval, &params, len))
5443 			return -EFAULT;
5444 	}
5445 
5446 	return 0;
5447 }
5448 
5449 /*
5450  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5451  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5452  */
5453 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5454 					       char __user *optval, int __user *optlen)
5455 {
5456 	int val;
5457 
5458 	if (len < sizeof(int))
5459 		return -EINVAL;
5460 
5461 	len = sizeof(int);
5462 
5463 	val = sctp_sk(sk)->frag_interleave;
5464 	if (put_user(len, optlen))
5465 		return -EFAULT;
5466 	if (copy_to_user(optval, &val, len))
5467 		return -EFAULT;
5468 
5469 	return 0;
5470 }
5471 
5472 /*
5473  * 7.1.25.  Set or Get the sctp partial delivery point
5474  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5475  */
5476 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5477 						  char __user *optval,
5478 						  int __user *optlen)
5479 {
5480 	u32 val;
5481 
5482 	if (len < sizeof(u32))
5483 		return -EINVAL;
5484 
5485 	len = sizeof(u32);
5486 
5487 	val = sctp_sk(sk)->pd_point;
5488 	if (put_user(len, optlen))
5489 		return -EFAULT;
5490 	if (copy_to_user(optval, &val, len))
5491 		return -EFAULT;
5492 
5493 	return 0;
5494 }
5495 
5496 /*
5497  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5498  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5499  */
5500 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5501 				    char __user *optval,
5502 				    int __user *optlen)
5503 {
5504 	struct sctp_assoc_value params;
5505 	struct sctp_sock *sp;
5506 	struct sctp_association *asoc;
5507 
5508 	if (len == sizeof(int)) {
5509 		pr_warn_ratelimited(DEPRECATED
5510 				    "%s (pid %d) "
5511 				    "Use of int in max_burst socket option.\n"
5512 				    "Use struct sctp_assoc_value instead\n",
5513 				    current->comm, task_pid_nr(current));
5514 		params.assoc_id = 0;
5515 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5516 		len = sizeof(struct sctp_assoc_value);
5517 		if (copy_from_user(&params, optval, len))
5518 			return -EFAULT;
5519 	} else
5520 		return -EINVAL;
5521 
5522 	sp = sctp_sk(sk);
5523 
5524 	if (params.assoc_id != 0) {
5525 		asoc = sctp_id2assoc(sk, params.assoc_id);
5526 		if (!asoc)
5527 			return -EINVAL;
5528 		params.assoc_value = asoc->max_burst;
5529 	} else
5530 		params.assoc_value = sp->max_burst;
5531 
5532 	if (len == sizeof(int)) {
5533 		if (copy_to_user(optval, &params.assoc_value, len))
5534 			return -EFAULT;
5535 	} else {
5536 		if (copy_to_user(optval, &params, len))
5537 			return -EFAULT;
5538 	}
5539 
5540 	return 0;
5541 
5542 }
5543 
5544 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5545 				    char __user *optval, int __user *optlen)
5546 {
5547 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5548 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5549 	struct sctp_hmac_algo_param *hmacs;
5550 	__u16 data_len = 0;
5551 	u32 num_idents;
5552 
5553 	if (!ep->auth_enable)
5554 		return -EACCES;
5555 
5556 	hmacs = ep->auth_hmacs_list;
5557 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5558 
5559 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5560 		return -EINVAL;
5561 
5562 	len = sizeof(struct sctp_hmacalgo) + data_len;
5563 	num_idents = data_len / sizeof(u16);
5564 
5565 	if (put_user(len, optlen))
5566 		return -EFAULT;
5567 	if (put_user(num_idents, &p->shmac_num_idents))
5568 		return -EFAULT;
5569 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5570 		return -EFAULT;
5571 	return 0;
5572 }
5573 
5574 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5575 				    char __user *optval, int __user *optlen)
5576 {
5577 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5578 	struct sctp_authkeyid val;
5579 	struct sctp_association *asoc;
5580 
5581 	if (!ep->auth_enable)
5582 		return -EACCES;
5583 
5584 	if (len < sizeof(struct sctp_authkeyid))
5585 		return -EINVAL;
5586 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5587 		return -EFAULT;
5588 
5589 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5590 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5591 		return -EINVAL;
5592 
5593 	if (asoc)
5594 		val.scact_keynumber = asoc->active_key_id;
5595 	else
5596 		val.scact_keynumber = ep->active_key_id;
5597 
5598 	len = sizeof(struct sctp_authkeyid);
5599 	if (put_user(len, optlen))
5600 		return -EFAULT;
5601 	if (copy_to_user(optval, &val, len))
5602 		return -EFAULT;
5603 
5604 	return 0;
5605 }
5606 
5607 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5608 				    char __user *optval, int __user *optlen)
5609 {
5610 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5611 	struct sctp_authchunks __user *p = (void __user *)optval;
5612 	struct sctp_authchunks val;
5613 	struct sctp_association *asoc;
5614 	struct sctp_chunks_param *ch;
5615 	u32    num_chunks = 0;
5616 	char __user *to;
5617 
5618 	if (!ep->auth_enable)
5619 		return -EACCES;
5620 
5621 	if (len < sizeof(struct sctp_authchunks))
5622 		return -EINVAL;
5623 
5624 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5625 		return -EFAULT;
5626 
5627 	to = p->gauth_chunks;
5628 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5629 	if (!asoc)
5630 		return -EINVAL;
5631 
5632 	ch = asoc->peer.peer_chunks;
5633 	if (!ch)
5634 		goto num;
5635 
5636 	/* See if the user provided enough room for all the data */
5637 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5638 	if (len < num_chunks)
5639 		return -EINVAL;
5640 
5641 	if (copy_to_user(to, ch->chunks, num_chunks))
5642 		return -EFAULT;
5643 num:
5644 	len = sizeof(struct sctp_authchunks) + num_chunks;
5645 	if (put_user(len, optlen))
5646 		return -EFAULT;
5647 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5648 		return -EFAULT;
5649 	return 0;
5650 }
5651 
5652 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5653 				    char __user *optval, int __user *optlen)
5654 {
5655 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5656 	struct sctp_authchunks __user *p = (void __user *)optval;
5657 	struct sctp_authchunks val;
5658 	struct sctp_association *asoc;
5659 	struct sctp_chunks_param *ch;
5660 	u32    num_chunks = 0;
5661 	char __user *to;
5662 
5663 	if (!ep->auth_enable)
5664 		return -EACCES;
5665 
5666 	if (len < sizeof(struct sctp_authchunks))
5667 		return -EINVAL;
5668 
5669 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5670 		return -EFAULT;
5671 
5672 	to = p->gauth_chunks;
5673 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5674 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5675 		return -EINVAL;
5676 
5677 	if (asoc)
5678 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5679 	else
5680 		ch = ep->auth_chunk_list;
5681 
5682 	if (!ch)
5683 		goto num;
5684 
5685 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5686 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5687 		return -EINVAL;
5688 
5689 	if (copy_to_user(to, ch->chunks, num_chunks))
5690 		return -EFAULT;
5691 num:
5692 	len = sizeof(struct sctp_authchunks) + num_chunks;
5693 	if (put_user(len, optlen))
5694 		return -EFAULT;
5695 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5696 		return -EFAULT;
5697 
5698 	return 0;
5699 }
5700 
5701 /*
5702  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5703  * This option gets the current number of associations that are attached
5704  * to a one-to-many style socket.  The option value is an uint32_t.
5705  */
5706 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5707 				    char __user *optval, int __user *optlen)
5708 {
5709 	struct sctp_sock *sp = sctp_sk(sk);
5710 	struct sctp_association *asoc;
5711 	u32 val = 0;
5712 
5713 	if (sctp_style(sk, TCP))
5714 		return -EOPNOTSUPP;
5715 
5716 	if (len < sizeof(u32))
5717 		return -EINVAL;
5718 
5719 	len = sizeof(u32);
5720 
5721 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5722 		val++;
5723 	}
5724 
5725 	if (put_user(len, optlen))
5726 		return -EFAULT;
5727 	if (copy_to_user(optval, &val, len))
5728 		return -EFAULT;
5729 
5730 	return 0;
5731 }
5732 
5733 /*
5734  * 8.1.23 SCTP_AUTO_ASCONF
5735  * See the corresponding setsockopt entry as description
5736  */
5737 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5738 				   char __user *optval, int __user *optlen)
5739 {
5740 	int val = 0;
5741 
5742 	if (len < sizeof(int))
5743 		return -EINVAL;
5744 
5745 	len = sizeof(int);
5746 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5747 		val = 1;
5748 	if (put_user(len, optlen))
5749 		return -EFAULT;
5750 	if (copy_to_user(optval, &val, len))
5751 		return -EFAULT;
5752 	return 0;
5753 }
5754 
5755 /*
5756  * 8.2.6. Get the Current Identifiers of Associations
5757  *        (SCTP_GET_ASSOC_ID_LIST)
5758  *
5759  * This option gets the current list of SCTP association identifiers of
5760  * the SCTP associations handled by a one-to-many style socket.
5761  */
5762 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5763 				    char __user *optval, int __user *optlen)
5764 {
5765 	struct sctp_sock *sp = sctp_sk(sk);
5766 	struct sctp_association *asoc;
5767 	struct sctp_assoc_ids *ids;
5768 	u32 num = 0;
5769 
5770 	if (sctp_style(sk, TCP))
5771 		return -EOPNOTSUPP;
5772 
5773 	if (len < sizeof(struct sctp_assoc_ids))
5774 		return -EINVAL;
5775 
5776 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5777 		num++;
5778 	}
5779 
5780 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5781 		return -EINVAL;
5782 
5783 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5784 
5785 	ids = kmalloc(len, GFP_KERNEL);
5786 	if (unlikely(!ids))
5787 		return -ENOMEM;
5788 
5789 	ids->gaids_number_of_ids = num;
5790 	num = 0;
5791 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5792 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5793 	}
5794 
5795 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5796 		kfree(ids);
5797 		return -EFAULT;
5798 	}
5799 
5800 	kfree(ids);
5801 	return 0;
5802 }
5803 
5804 /*
5805  * SCTP_PEER_ADDR_THLDS
5806  *
5807  * This option allows us to fetch the partially failed threshold for one or all
5808  * transports in an association.  See Section 6.1 of:
5809  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5810  */
5811 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5812 					    char __user *optval,
5813 					    int len,
5814 					    int __user *optlen)
5815 {
5816 	struct sctp_paddrthlds val;
5817 	struct sctp_transport *trans;
5818 	struct sctp_association *asoc;
5819 
5820 	if (len < sizeof(struct sctp_paddrthlds))
5821 		return -EINVAL;
5822 	len = sizeof(struct sctp_paddrthlds);
5823 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5824 		return -EFAULT;
5825 
5826 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5827 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5828 		if (!asoc)
5829 			return -ENOENT;
5830 
5831 		val.spt_pathpfthld = asoc->pf_retrans;
5832 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5833 	} else {
5834 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5835 					       val.spt_assoc_id);
5836 		if (!trans)
5837 			return -ENOENT;
5838 
5839 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5840 		val.spt_pathpfthld = trans->pf_retrans;
5841 	}
5842 
5843 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5844 		return -EFAULT;
5845 
5846 	return 0;
5847 }
5848 
5849 /*
5850  * SCTP_GET_ASSOC_STATS
5851  *
5852  * This option retrieves local per endpoint statistics. It is modeled
5853  * after OpenSolaris' implementation
5854  */
5855 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5856 				       char __user *optval,
5857 				       int __user *optlen)
5858 {
5859 	struct sctp_assoc_stats sas;
5860 	struct sctp_association *asoc = NULL;
5861 
5862 	/* User must provide at least the assoc id */
5863 	if (len < sizeof(sctp_assoc_t))
5864 		return -EINVAL;
5865 
5866 	/* Allow the struct to grow and fill in as much as possible */
5867 	len = min_t(size_t, len, sizeof(sas));
5868 
5869 	if (copy_from_user(&sas, optval, len))
5870 		return -EFAULT;
5871 
5872 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5873 	if (!asoc)
5874 		return -EINVAL;
5875 
5876 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5877 	sas.sas_gapcnt = asoc->stats.gapcnt;
5878 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5879 	sas.sas_osacks = asoc->stats.osacks;
5880 	sas.sas_isacks = asoc->stats.isacks;
5881 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5882 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5883 	sas.sas_oodchunks = asoc->stats.oodchunks;
5884 	sas.sas_iodchunks = asoc->stats.iodchunks;
5885 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5886 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5887 	sas.sas_idupchunks = asoc->stats.idupchunks;
5888 	sas.sas_opackets = asoc->stats.opackets;
5889 	sas.sas_ipackets = asoc->stats.ipackets;
5890 
5891 	/* New high max rto observed, will return 0 if not a single
5892 	 * RTO update took place. obs_rto_ipaddr will be bogus
5893 	 * in such a case
5894 	 */
5895 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5896 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5897 		sizeof(struct sockaddr_storage));
5898 
5899 	/* Mark beginning of a new observation period */
5900 	asoc->stats.max_obs_rto = asoc->rto_min;
5901 
5902 	if (put_user(len, optlen))
5903 		return -EFAULT;
5904 
5905 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5906 
5907 	if (copy_to_user(optval, &sas, len))
5908 		return -EFAULT;
5909 
5910 	return 0;
5911 }
5912 
5913 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5914 				       char __user *optval,
5915 				       int __user *optlen)
5916 {
5917 	int val = 0;
5918 
5919 	if (len < sizeof(int))
5920 		return -EINVAL;
5921 
5922 	len = sizeof(int);
5923 	if (sctp_sk(sk)->recvrcvinfo)
5924 		val = 1;
5925 	if (put_user(len, optlen))
5926 		return -EFAULT;
5927 	if (copy_to_user(optval, &val, len))
5928 		return -EFAULT;
5929 
5930 	return 0;
5931 }
5932 
5933 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5934 				       char __user *optval,
5935 				       int __user *optlen)
5936 {
5937 	int val = 0;
5938 
5939 	if (len < sizeof(int))
5940 		return -EINVAL;
5941 
5942 	len = sizeof(int);
5943 	if (sctp_sk(sk)->recvnxtinfo)
5944 		val = 1;
5945 	if (put_user(len, optlen))
5946 		return -EFAULT;
5947 	if (copy_to_user(optval, &val, len))
5948 		return -EFAULT;
5949 
5950 	return 0;
5951 }
5952 
5953 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5954 			   char __user *optval, int __user *optlen)
5955 {
5956 	int retval = 0;
5957 	int len;
5958 
5959 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5960 
5961 	/* I can hardly begin to describe how wrong this is.  This is
5962 	 * so broken as to be worse than useless.  The API draft
5963 	 * REALLY is NOT helpful here...  I am not convinced that the
5964 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5965 	 * are at all well-founded.
5966 	 */
5967 	if (level != SOL_SCTP) {
5968 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5969 
5970 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5971 		return retval;
5972 	}
5973 
5974 	if (get_user(len, optlen))
5975 		return -EFAULT;
5976 
5977 	lock_sock(sk);
5978 
5979 	switch (optname) {
5980 	case SCTP_STATUS:
5981 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5982 		break;
5983 	case SCTP_DISABLE_FRAGMENTS:
5984 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5985 							   optlen);
5986 		break;
5987 	case SCTP_EVENTS:
5988 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5989 		break;
5990 	case SCTP_AUTOCLOSE:
5991 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5992 		break;
5993 	case SCTP_SOCKOPT_PEELOFF:
5994 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5995 		break;
5996 	case SCTP_PEER_ADDR_PARAMS:
5997 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5998 							  optlen);
5999 		break;
6000 	case SCTP_DELAYED_SACK:
6001 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6002 							  optlen);
6003 		break;
6004 	case SCTP_INITMSG:
6005 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6006 		break;
6007 	case SCTP_GET_PEER_ADDRS:
6008 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6009 						    optlen);
6010 		break;
6011 	case SCTP_GET_LOCAL_ADDRS:
6012 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6013 						     optlen);
6014 		break;
6015 	case SCTP_SOCKOPT_CONNECTX3:
6016 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6017 		break;
6018 	case SCTP_DEFAULT_SEND_PARAM:
6019 		retval = sctp_getsockopt_default_send_param(sk, len,
6020 							    optval, optlen);
6021 		break;
6022 	case SCTP_DEFAULT_SNDINFO:
6023 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6024 							 optval, optlen);
6025 		break;
6026 	case SCTP_PRIMARY_ADDR:
6027 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6028 		break;
6029 	case SCTP_NODELAY:
6030 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6031 		break;
6032 	case SCTP_RTOINFO:
6033 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6034 		break;
6035 	case SCTP_ASSOCINFO:
6036 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6037 		break;
6038 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6039 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6040 		break;
6041 	case SCTP_MAXSEG:
6042 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6043 		break;
6044 	case SCTP_GET_PEER_ADDR_INFO:
6045 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6046 							optlen);
6047 		break;
6048 	case SCTP_ADAPTATION_LAYER:
6049 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6050 							optlen);
6051 		break;
6052 	case SCTP_CONTEXT:
6053 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6054 		break;
6055 	case SCTP_FRAGMENT_INTERLEAVE:
6056 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6057 							     optlen);
6058 		break;
6059 	case SCTP_PARTIAL_DELIVERY_POINT:
6060 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6061 								optlen);
6062 		break;
6063 	case SCTP_MAX_BURST:
6064 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6065 		break;
6066 	case SCTP_AUTH_KEY:
6067 	case SCTP_AUTH_CHUNK:
6068 	case SCTP_AUTH_DELETE_KEY:
6069 		retval = -EOPNOTSUPP;
6070 		break;
6071 	case SCTP_HMAC_IDENT:
6072 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6073 		break;
6074 	case SCTP_AUTH_ACTIVE_KEY:
6075 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6076 		break;
6077 	case SCTP_PEER_AUTH_CHUNKS:
6078 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6079 							optlen);
6080 		break;
6081 	case SCTP_LOCAL_AUTH_CHUNKS:
6082 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6083 							optlen);
6084 		break;
6085 	case SCTP_GET_ASSOC_NUMBER:
6086 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6087 		break;
6088 	case SCTP_GET_ASSOC_ID_LIST:
6089 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6090 		break;
6091 	case SCTP_AUTO_ASCONF:
6092 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6093 		break;
6094 	case SCTP_PEER_ADDR_THLDS:
6095 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6096 		break;
6097 	case SCTP_GET_ASSOC_STATS:
6098 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6099 		break;
6100 	case SCTP_RECVRCVINFO:
6101 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6102 		break;
6103 	case SCTP_RECVNXTINFO:
6104 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6105 		break;
6106 	default:
6107 		retval = -ENOPROTOOPT;
6108 		break;
6109 	}
6110 
6111 	release_sock(sk);
6112 	return retval;
6113 }
6114 
6115 static void sctp_hash(struct sock *sk)
6116 {
6117 	/* STUB */
6118 }
6119 
6120 static void sctp_unhash(struct sock *sk)
6121 {
6122 	/* STUB */
6123 }
6124 
6125 /* Check if port is acceptable.  Possibly find first available port.
6126  *
6127  * The port hash table (contained in the 'global' SCTP protocol storage
6128  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6129  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6130  * list (the list number is the port number hashed out, so as you
6131  * would expect from a hash function, all the ports in a given list have
6132  * such a number that hashes out to the same list number; you were
6133  * expecting that, right?); so each list has a set of ports, with a
6134  * link to the socket (struct sock) that uses it, the port number and
6135  * a fastreuse flag (FIXME: NPI ipg).
6136  */
6137 static struct sctp_bind_bucket *sctp_bucket_create(
6138 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6139 
6140 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6141 {
6142 	struct sctp_bind_hashbucket *head; /* hash list */
6143 	struct sctp_bind_bucket *pp;
6144 	unsigned short snum;
6145 	int ret;
6146 
6147 	snum = ntohs(addr->v4.sin_port);
6148 
6149 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6150 
6151 	local_bh_disable();
6152 
6153 	if (snum == 0) {
6154 		/* Search for an available port. */
6155 		int low, high, remaining, index;
6156 		unsigned int rover;
6157 		struct net *net = sock_net(sk);
6158 
6159 		inet_get_local_port_range(net, &low, &high);
6160 		remaining = (high - low) + 1;
6161 		rover = prandom_u32() % remaining + low;
6162 
6163 		do {
6164 			rover++;
6165 			if ((rover < low) || (rover > high))
6166 				rover = low;
6167 			if (inet_is_local_reserved_port(net, rover))
6168 				continue;
6169 			index = sctp_phashfn(sock_net(sk), rover);
6170 			head = &sctp_port_hashtable[index];
6171 			spin_lock(&head->lock);
6172 			sctp_for_each_hentry(pp, &head->chain)
6173 				if ((pp->port == rover) &&
6174 				    net_eq(sock_net(sk), pp->net))
6175 					goto next;
6176 			break;
6177 		next:
6178 			spin_unlock(&head->lock);
6179 		} while (--remaining > 0);
6180 
6181 		/* Exhausted local port range during search? */
6182 		ret = 1;
6183 		if (remaining <= 0)
6184 			goto fail;
6185 
6186 		/* OK, here is the one we will use.  HEAD (the port
6187 		 * hash table list entry) is non-NULL and we hold it's
6188 		 * mutex.
6189 		 */
6190 		snum = rover;
6191 	} else {
6192 		/* We are given an specific port number; we verify
6193 		 * that it is not being used. If it is used, we will
6194 		 * exahust the search in the hash list corresponding
6195 		 * to the port number (snum) - we detect that with the
6196 		 * port iterator, pp being NULL.
6197 		 */
6198 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6199 		spin_lock(&head->lock);
6200 		sctp_for_each_hentry(pp, &head->chain) {
6201 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6202 				goto pp_found;
6203 		}
6204 	}
6205 	pp = NULL;
6206 	goto pp_not_found;
6207 pp_found:
6208 	if (!hlist_empty(&pp->owner)) {
6209 		/* We had a port hash table hit - there is an
6210 		 * available port (pp != NULL) and it is being
6211 		 * used by other socket (pp->owner not empty); that other
6212 		 * socket is going to be sk2.
6213 		 */
6214 		int reuse = sk->sk_reuse;
6215 		struct sock *sk2;
6216 
6217 		pr_debug("%s: found a possible match\n", __func__);
6218 
6219 		if (pp->fastreuse && sk->sk_reuse &&
6220 			sk->sk_state != SCTP_SS_LISTENING)
6221 			goto success;
6222 
6223 		/* Run through the list of sockets bound to the port
6224 		 * (pp->port) [via the pointers bind_next and
6225 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6226 		 * we get the endpoint they describe and run through
6227 		 * the endpoint's list of IP (v4 or v6) addresses,
6228 		 * comparing each of the addresses with the address of
6229 		 * the socket sk. If we find a match, then that means
6230 		 * that this port/socket (sk) combination are already
6231 		 * in an endpoint.
6232 		 */
6233 		sk_for_each_bound(sk2, &pp->owner) {
6234 			struct sctp_endpoint *ep2;
6235 			ep2 = sctp_sk(sk2)->ep;
6236 
6237 			if (sk == sk2 ||
6238 			    (reuse && sk2->sk_reuse &&
6239 			     sk2->sk_state != SCTP_SS_LISTENING))
6240 				continue;
6241 
6242 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6243 						 sctp_sk(sk2), sctp_sk(sk))) {
6244 				ret = (long)sk2;
6245 				goto fail_unlock;
6246 			}
6247 		}
6248 
6249 		pr_debug("%s: found a match\n", __func__);
6250 	}
6251 pp_not_found:
6252 	/* If there was a hash table miss, create a new port.  */
6253 	ret = 1;
6254 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6255 		goto fail_unlock;
6256 
6257 	/* In either case (hit or miss), make sure fastreuse is 1 only
6258 	 * if sk->sk_reuse is too (that is, if the caller requested
6259 	 * SO_REUSEADDR on this socket -sk-).
6260 	 */
6261 	if (hlist_empty(&pp->owner)) {
6262 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6263 			pp->fastreuse = 1;
6264 		else
6265 			pp->fastreuse = 0;
6266 	} else if (pp->fastreuse &&
6267 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6268 		pp->fastreuse = 0;
6269 
6270 	/* We are set, so fill up all the data in the hash table
6271 	 * entry, tie the socket list information with the rest of the
6272 	 * sockets FIXME: Blurry, NPI (ipg).
6273 	 */
6274 success:
6275 	if (!sctp_sk(sk)->bind_hash) {
6276 		inet_sk(sk)->inet_num = snum;
6277 		sk_add_bind_node(sk, &pp->owner);
6278 		sctp_sk(sk)->bind_hash = pp;
6279 	}
6280 	ret = 0;
6281 
6282 fail_unlock:
6283 	spin_unlock(&head->lock);
6284 
6285 fail:
6286 	local_bh_enable();
6287 	return ret;
6288 }
6289 
6290 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6291  * port is requested.
6292  */
6293 static int sctp_get_port(struct sock *sk, unsigned short snum)
6294 {
6295 	union sctp_addr addr;
6296 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6297 
6298 	/* Set up a dummy address struct from the sk. */
6299 	af->from_sk(&addr, sk);
6300 	addr.v4.sin_port = htons(snum);
6301 
6302 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6303 	return !!sctp_get_port_local(sk, &addr);
6304 }
6305 
6306 /*
6307  *  Move a socket to LISTENING state.
6308  */
6309 static int sctp_listen_start(struct sock *sk, int backlog)
6310 {
6311 	struct sctp_sock *sp = sctp_sk(sk);
6312 	struct sctp_endpoint *ep = sp->ep;
6313 	struct crypto_hash *tfm = NULL;
6314 	char alg[32];
6315 
6316 	/* Allocate HMAC for generating cookie. */
6317 	if (!sp->hmac && sp->sctp_hmac_alg) {
6318 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6319 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6320 		if (IS_ERR(tfm)) {
6321 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6322 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6323 			return -ENOSYS;
6324 		}
6325 		sctp_sk(sk)->hmac = tfm;
6326 	}
6327 
6328 	/*
6329 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6330 	 * call that allows new associations to be accepted, the system
6331 	 * picks an ephemeral port and will choose an address set equivalent
6332 	 * to binding with a wildcard address.
6333 	 *
6334 	 * This is not currently spelled out in the SCTP sockets
6335 	 * extensions draft, but follows the practice as seen in TCP
6336 	 * sockets.
6337 	 *
6338 	 */
6339 	sk->sk_state = SCTP_SS_LISTENING;
6340 	if (!ep->base.bind_addr.port) {
6341 		if (sctp_autobind(sk))
6342 			return -EAGAIN;
6343 	} else {
6344 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6345 			sk->sk_state = SCTP_SS_CLOSED;
6346 			return -EADDRINUSE;
6347 		}
6348 	}
6349 
6350 	sk->sk_max_ack_backlog = backlog;
6351 	sctp_hash_endpoint(ep);
6352 	return 0;
6353 }
6354 
6355 /*
6356  * 4.1.3 / 5.1.3 listen()
6357  *
6358  *   By default, new associations are not accepted for UDP style sockets.
6359  *   An application uses listen() to mark a socket as being able to
6360  *   accept new associations.
6361  *
6362  *   On TCP style sockets, applications use listen() to ready the SCTP
6363  *   endpoint for accepting inbound associations.
6364  *
6365  *   On both types of endpoints a backlog of '0' disables listening.
6366  *
6367  *  Move a socket to LISTENING state.
6368  */
6369 int sctp_inet_listen(struct socket *sock, int backlog)
6370 {
6371 	struct sock *sk = sock->sk;
6372 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6373 	int err = -EINVAL;
6374 
6375 	if (unlikely(backlog < 0))
6376 		return err;
6377 
6378 	lock_sock(sk);
6379 
6380 	/* Peeled-off sockets are not allowed to listen().  */
6381 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6382 		goto out;
6383 
6384 	if (sock->state != SS_UNCONNECTED)
6385 		goto out;
6386 
6387 	/* If backlog is zero, disable listening. */
6388 	if (!backlog) {
6389 		if (sctp_sstate(sk, CLOSED))
6390 			goto out;
6391 
6392 		err = 0;
6393 		sctp_unhash_endpoint(ep);
6394 		sk->sk_state = SCTP_SS_CLOSED;
6395 		if (sk->sk_reuse)
6396 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6397 		goto out;
6398 	}
6399 
6400 	/* If we are already listening, just update the backlog */
6401 	if (sctp_sstate(sk, LISTENING))
6402 		sk->sk_max_ack_backlog = backlog;
6403 	else {
6404 		err = sctp_listen_start(sk, backlog);
6405 		if (err)
6406 			goto out;
6407 	}
6408 
6409 	err = 0;
6410 out:
6411 	release_sock(sk);
6412 	return err;
6413 }
6414 
6415 /*
6416  * This function is done by modeling the current datagram_poll() and the
6417  * tcp_poll().  Note that, based on these implementations, we don't
6418  * lock the socket in this function, even though it seems that,
6419  * ideally, locking or some other mechanisms can be used to ensure
6420  * the integrity of the counters (sndbuf and wmem_alloc) used
6421  * in this place.  We assume that we don't need locks either until proven
6422  * otherwise.
6423  *
6424  * Another thing to note is that we include the Async I/O support
6425  * here, again, by modeling the current TCP/UDP code.  We don't have
6426  * a good way to test with it yet.
6427  */
6428 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6429 {
6430 	struct sock *sk = sock->sk;
6431 	struct sctp_sock *sp = sctp_sk(sk);
6432 	unsigned int mask;
6433 
6434 	poll_wait(file, sk_sleep(sk), wait);
6435 
6436 	/* A TCP-style listening socket becomes readable when the accept queue
6437 	 * is not empty.
6438 	 */
6439 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6440 		return (!list_empty(&sp->ep->asocs)) ?
6441 			(POLLIN | POLLRDNORM) : 0;
6442 
6443 	mask = 0;
6444 
6445 	/* Is there any exceptional events?  */
6446 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6447 		mask |= POLLERR |
6448 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6449 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6450 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6451 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6452 		mask |= POLLHUP;
6453 
6454 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6455 	if (!skb_queue_empty(&sk->sk_receive_queue))
6456 		mask |= POLLIN | POLLRDNORM;
6457 
6458 	/* The association is either gone or not ready.  */
6459 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6460 		return mask;
6461 
6462 	/* Is it writable?  */
6463 	if (sctp_writeable(sk)) {
6464 		mask |= POLLOUT | POLLWRNORM;
6465 	} else {
6466 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6467 		/*
6468 		 * Since the socket is not locked, the buffer
6469 		 * might be made available after the writeable check and
6470 		 * before the bit is set.  This could cause a lost I/O
6471 		 * signal.  tcp_poll() has a race breaker for this race
6472 		 * condition.  Based on their implementation, we put
6473 		 * in the following code to cover it as well.
6474 		 */
6475 		if (sctp_writeable(sk))
6476 			mask |= POLLOUT | POLLWRNORM;
6477 	}
6478 	return mask;
6479 }
6480 
6481 /********************************************************************
6482  * 2nd Level Abstractions
6483  ********************************************************************/
6484 
6485 static struct sctp_bind_bucket *sctp_bucket_create(
6486 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6487 {
6488 	struct sctp_bind_bucket *pp;
6489 
6490 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6491 	if (pp) {
6492 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6493 		pp->port = snum;
6494 		pp->fastreuse = 0;
6495 		INIT_HLIST_HEAD(&pp->owner);
6496 		pp->net = net;
6497 		hlist_add_head(&pp->node, &head->chain);
6498 	}
6499 	return pp;
6500 }
6501 
6502 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6503 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6504 {
6505 	if (pp && hlist_empty(&pp->owner)) {
6506 		__hlist_del(&pp->node);
6507 		kmem_cache_free(sctp_bucket_cachep, pp);
6508 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6509 	}
6510 }
6511 
6512 /* Release this socket's reference to a local port.  */
6513 static inline void __sctp_put_port(struct sock *sk)
6514 {
6515 	struct sctp_bind_hashbucket *head =
6516 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6517 						  inet_sk(sk)->inet_num)];
6518 	struct sctp_bind_bucket *pp;
6519 
6520 	spin_lock(&head->lock);
6521 	pp = sctp_sk(sk)->bind_hash;
6522 	__sk_del_bind_node(sk);
6523 	sctp_sk(sk)->bind_hash = NULL;
6524 	inet_sk(sk)->inet_num = 0;
6525 	sctp_bucket_destroy(pp);
6526 	spin_unlock(&head->lock);
6527 }
6528 
6529 void sctp_put_port(struct sock *sk)
6530 {
6531 	local_bh_disable();
6532 	__sctp_put_port(sk);
6533 	local_bh_enable();
6534 }
6535 
6536 /*
6537  * The system picks an ephemeral port and choose an address set equivalent
6538  * to binding with a wildcard address.
6539  * One of those addresses will be the primary address for the association.
6540  * This automatically enables the multihoming capability of SCTP.
6541  */
6542 static int sctp_autobind(struct sock *sk)
6543 {
6544 	union sctp_addr autoaddr;
6545 	struct sctp_af *af;
6546 	__be16 port;
6547 
6548 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6549 	af = sctp_sk(sk)->pf->af;
6550 
6551 	port = htons(inet_sk(sk)->inet_num);
6552 	af->inaddr_any(&autoaddr, port);
6553 
6554 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6555 }
6556 
6557 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6558  *
6559  * From RFC 2292
6560  * 4.2 The cmsghdr Structure *
6561  *
6562  * When ancillary data is sent or received, any number of ancillary data
6563  * objects can be specified by the msg_control and msg_controllen members of
6564  * the msghdr structure, because each object is preceded by
6565  * a cmsghdr structure defining the object's length (the cmsg_len member).
6566  * Historically Berkeley-derived implementations have passed only one object
6567  * at a time, but this API allows multiple objects to be
6568  * passed in a single call to sendmsg() or recvmsg(). The following example
6569  * shows two ancillary data objects in a control buffer.
6570  *
6571  *   |<--------------------------- msg_controllen -------------------------->|
6572  *   |                                                                       |
6573  *
6574  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6575  *
6576  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6577  *   |                                   |                                   |
6578  *
6579  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6580  *
6581  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6582  *   |                                |  |                                |  |
6583  *
6584  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6585  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6586  *
6587  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6588  *
6589  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6590  *    ^
6591  *    |
6592  *
6593  * msg_control
6594  * points here
6595  */
6596 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6597 {
6598 	struct cmsghdr *cmsg;
6599 	struct msghdr *my_msg = (struct msghdr *)msg;
6600 
6601 	for_each_cmsghdr(cmsg, my_msg) {
6602 		if (!CMSG_OK(my_msg, cmsg))
6603 			return -EINVAL;
6604 
6605 		/* Should we parse this header or ignore?  */
6606 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6607 			continue;
6608 
6609 		/* Strictly check lengths following example in SCM code.  */
6610 		switch (cmsg->cmsg_type) {
6611 		case SCTP_INIT:
6612 			/* SCTP Socket API Extension
6613 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6614 			 *
6615 			 * This cmsghdr structure provides information for
6616 			 * initializing new SCTP associations with sendmsg().
6617 			 * The SCTP_INITMSG socket option uses this same data
6618 			 * structure.  This structure is not used for
6619 			 * recvmsg().
6620 			 *
6621 			 * cmsg_level    cmsg_type      cmsg_data[]
6622 			 * ------------  ------------   ----------------------
6623 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6624 			 */
6625 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6626 				return -EINVAL;
6627 
6628 			cmsgs->init = CMSG_DATA(cmsg);
6629 			break;
6630 
6631 		case SCTP_SNDRCV:
6632 			/* SCTP Socket API Extension
6633 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6634 			 *
6635 			 * This cmsghdr structure specifies SCTP options for
6636 			 * sendmsg() and describes SCTP header information
6637 			 * about a received message through recvmsg().
6638 			 *
6639 			 * cmsg_level    cmsg_type      cmsg_data[]
6640 			 * ------------  ------------   ----------------------
6641 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6642 			 */
6643 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6644 				return -EINVAL;
6645 
6646 			cmsgs->srinfo = CMSG_DATA(cmsg);
6647 
6648 			if (cmsgs->srinfo->sinfo_flags &
6649 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6650 			      SCTP_ABORT | SCTP_EOF))
6651 				return -EINVAL;
6652 			break;
6653 
6654 		case SCTP_SNDINFO:
6655 			/* SCTP Socket API Extension
6656 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6657 			 *
6658 			 * This cmsghdr structure specifies SCTP options for
6659 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6660 			 * SCTP_SNDRCV which has been deprecated.
6661 			 *
6662 			 * cmsg_level    cmsg_type      cmsg_data[]
6663 			 * ------------  ------------   ---------------------
6664 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6665 			 */
6666 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6667 				return -EINVAL;
6668 
6669 			cmsgs->sinfo = CMSG_DATA(cmsg);
6670 
6671 			if (cmsgs->sinfo->snd_flags &
6672 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6673 			      SCTP_ABORT | SCTP_EOF))
6674 				return -EINVAL;
6675 			break;
6676 		default:
6677 			return -EINVAL;
6678 		}
6679 	}
6680 
6681 	return 0;
6682 }
6683 
6684 /*
6685  * Wait for a packet..
6686  * Note: This function is the same function as in core/datagram.c
6687  * with a few modifications to make lksctp work.
6688  */
6689 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6690 {
6691 	int error;
6692 	DEFINE_WAIT(wait);
6693 
6694 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6695 
6696 	/* Socket errors? */
6697 	error = sock_error(sk);
6698 	if (error)
6699 		goto out;
6700 
6701 	if (!skb_queue_empty(&sk->sk_receive_queue))
6702 		goto ready;
6703 
6704 	/* Socket shut down?  */
6705 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6706 		goto out;
6707 
6708 	/* Sequenced packets can come disconnected.  If so we report the
6709 	 * problem.
6710 	 */
6711 	error = -ENOTCONN;
6712 
6713 	/* Is there a good reason to think that we may receive some data?  */
6714 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6715 		goto out;
6716 
6717 	/* Handle signals.  */
6718 	if (signal_pending(current))
6719 		goto interrupted;
6720 
6721 	/* Let another process have a go.  Since we are going to sleep
6722 	 * anyway.  Note: This may cause odd behaviors if the message
6723 	 * does not fit in the user's buffer, but this seems to be the
6724 	 * only way to honor MSG_DONTWAIT realistically.
6725 	 */
6726 	release_sock(sk);
6727 	*timeo_p = schedule_timeout(*timeo_p);
6728 	lock_sock(sk);
6729 
6730 ready:
6731 	finish_wait(sk_sleep(sk), &wait);
6732 	return 0;
6733 
6734 interrupted:
6735 	error = sock_intr_errno(*timeo_p);
6736 
6737 out:
6738 	finish_wait(sk_sleep(sk), &wait);
6739 	*err = error;
6740 	return error;
6741 }
6742 
6743 /* Receive a datagram.
6744  * Note: This is pretty much the same routine as in core/datagram.c
6745  * with a few changes to make lksctp work.
6746  */
6747 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6748 				       int noblock, int *err)
6749 {
6750 	int error;
6751 	struct sk_buff *skb;
6752 	long timeo;
6753 
6754 	timeo = sock_rcvtimeo(sk, noblock);
6755 
6756 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6757 		 MAX_SCHEDULE_TIMEOUT);
6758 
6759 	do {
6760 		/* Again only user level code calls this function,
6761 		 * so nothing interrupt level
6762 		 * will suddenly eat the receive_queue.
6763 		 *
6764 		 *  Look at current nfs client by the way...
6765 		 *  However, this function was correct in any case. 8)
6766 		 */
6767 		if (flags & MSG_PEEK) {
6768 			spin_lock_bh(&sk->sk_receive_queue.lock);
6769 			skb = skb_peek(&sk->sk_receive_queue);
6770 			if (skb)
6771 				atomic_inc(&skb->users);
6772 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6773 		} else {
6774 			skb = skb_dequeue(&sk->sk_receive_queue);
6775 		}
6776 
6777 		if (skb)
6778 			return skb;
6779 
6780 		/* Caller is allowed not to check sk->sk_err before calling. */
6781 		error = sock_error(sk);
6782 		if (error)
6783 			goto no_packet;
6784 
6785 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6786 			break;
6787 
6788 		if (sk_can_busy_loop(sk) &&
6789 		    sk_busy_loop(sk, noblock))
6790 			continue;
6791 
6792 		/* User doesn't want to wait.  */
6793 		error = -EAGAIN;
6794 		if (!timeo)
6795 			goto no_packet;
6796 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6797 
6798 	return NULL;
6799 
6800 no_packet:
6801 	*err = error;
6802 	return NULL;
6803 }
6804 
6805 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6806 static void __sctp_write_space(struct sctp_association *asoc)
6807 {
6808 	struct sock *sk = asoc->base.sk;
6809 	struct socket *sock = sk->sk_socket;
6810 
6811 	if ((sctp_wspace(asoc) > 0) && sock) {
6812 		if (waitqueue_active(&asoc->wait))
6813 			wake_up_interruptible(&asoc->wait);
6814 
6815 		if (sctp_writeable(sk)) {
6816 			wait_queue_head_t *wq = sk_sleep(sk);
6817 
6818 			if (wq && waitqueue_active(wq))
6819 				wake_up_interruptible(wq);
6820 
6821 			/* Note that we try to include the Async I/O support
6822 			 * here by modeling from the current TCP/UDP code.
6823 			 * We have not tested with it yet.
6824 			 */
6825 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6826 				sock_wake_async(sock,
6827 						SOCK_WAKE_SPACE, POLL_OUT);
6828 		}
6829 	}
6830 }
6831 
6832 static void sctp_wake_up_waiters(struct sock *sk,
6833 				 struct sctp_association *asoc)
6834 {
6835 	struct sctp_association *tmp = asoc;
6836 
6837 	/* We do accounting for the sndbuf space per association,
6838 	 * so we only need to wake our own association.
6839 	 */
6840 	if (asoc->ep->sndbuf_policy)
6841 		return __sctp_write_space(asoc);
6842 
6843 	/* If association goes down and is just flushing its
6844 	 * outq, then just normally notify others.
6845 	 */
6846 	if (asoc->base.dead)
6847 		return sctp_write_space(sk);
6848 
6849 	/* Accounting for the sndbuf space is per socket, so we
6850 	 * need to wake up others, try to be fair and in case of
6851 	 * other associations, let them have a go first instead
6852 	 * of just doing a sctp_write_space() call.
6853 	 *
6854 	 * Note that we reach sctp_wake_up_waiters() only when
6855 	 * associations free up queued chunks, thus we are under
6856 	 * lock and the list of associations on a socket is
6857 	 * guaranteed not to change.
6858 	 */
6859 	for (tmp = list_next_entry(tmp, asocs); 1;
6860 	     tmp = list_next_entry(tmp, asocs)) {
6861 		/* Manually skip the head element. */
6862 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6863 			continue;
6864 		/* Wake up association. */
6865 		__sctp_write_space(tmp);
6866 		/* We've reached the end. */
6867 		if (tmp == asoc)
6868 			break;
6869 	}
6870 }
6871 
6872 /* Do accounting for the sndbuf space.
6873  * Decrement the used sndbuf space of the corresponding association by the
6874  * data size which was just transmitted(freed).
6875  */
6876 static void sctp_wfree(struct sk_buff *skb)
6877 {
6878 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6879 	struct sctp_association *asoc = chunk->asoc;
6880 	struct sock *sk = asoc->base.sk;
6881 
6882 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6883 				sizeof(struct sk_buff) +
6884 				sizeof(struct sctp_chunk);
6885 
6886 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6887 
6888 	/*
6889 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6890 	 */
6891 	sk->sk_wmem_queued   -= skb->truesize;
6892 	sk_mem_uncharge(sk, skb->truesize);
6893 
6894 	sock_wfree(skb);
6895 	sctp_wake_up_waiters(sk, asoc);
6896 
6897 	sctp_association_put(asoc);
6898 }
6899 
6900 /* Do accounting for the receive space on the socket.
6901  * Accounting for the association is done in ulpevent.c
6902  * We set this as a destructor for the cloned data skbs so that
6903  * accounting is done at the correct time.
6904  */
6905 void sctp_sock_rfree(struct sk_buff *skb)
6906 {
6907 	struct sock *sk = skb->sk;
6908 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6909 
6910 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6911 
6912 	/*
6913 	 * Mimic the behavior of sock_rfree
6914 	 */
6915 	sk_mem_uncharge(sk, event->rmem_len);
6916 }
6917 
6918 
6919 /* Helper function to wait for space in the sndbuf.  */
6920 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6921 				size_t msg_len)
6922 {
6923 	struct sock *sk = asoc->base.sk;
6924 	int err = 0;
6925 	long current_timeo = *timeo_p;
6926 	DEFINE_WAIT(wait);
6927 
6928 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6929 		 *timeo_p, msg_len);
6930 
6931 	/* Increment the association's refcnt.  */
6932 	sctp_association_hold(asoc);
6933 
6934 	/* Wait on the association specific sndbuf space. */
6935 	for (;;) {
6936 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6937 					  TASK_INTERRUPTIBLE);
6938 		if (!*timeo_p)
6939 			goto do_nonblock;
6940 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6941 		    asoc->base.dead)
6942 			goto do_error;
6943 		if (signal_pending(current))
6944 			goto do_interrupted;
6945 		if (msg_len <= sctp_wspace(asoc))
6946 			break;
6947 
6948 		/* Let another process have a go.  Since we are going
6949 		 * to sleep anyway.
6950 		 */
6951 		release_sock(sk);
6952 		current_timeo = schedule_timeout(current_timeo);
6953 		BUG_ON(sk != asoc->base.sk);
6954 		lock_sock(sk);
6955 
6956 		*timeo_p = current_timeo;
6957 	}
6958 
6959 out:
6960 	finish_wait(&asoc->wait, &wait);
6961 
6962 	/* Release the association's refcnt.  */
6963 	sctp_association_put(asoc);
6964 
6965 	return err;
6966 
6967 do_error:
6968 	err = -EPIPE;
6969 	goto out;
6970 
6971 do_interrupted:
6972 	err = sock_intr_errno(*timeo_p);
6973 	goto out;
6974 
6975 do_nonblock:
6976 	err = -EAGAIN;
6977 	goto out;
6978 }
6979 
6980 void sctp_data_ready(struct sock *sk)
6981 {
6982 	struct socket_wq *wq;
6983 
6984 	rcu_read_lock();
6985 	wq = rcu_dereference(sk->sk_wq);
6986 	if (wq_has_sleeper(wq))
6987 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6988 						POLLRDNORM | POLLRDBAND);
6989 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6990 	rcu_read_unlock();
6991 }
6992 
6993 /* If socket sndbuf has changed, wake up all per association waiters.  */
6994 void sctp_write_space(struct sock *sk)
6995 {
6996 	struct sctp_association *asoc;
6997 
6998 	/* Wake up the tasks in each wait queue.  */
6999 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7000 		__sctp_write_space(asoc);
7001 	}
7002 }
7003 
7004 /* Is there any sndbuf space available on the socket?
7005  *
7006  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7007  * associations on the same socket.  For a UDP-style socket with
7008  * multiple associations, it is possible for it to be "unwriteable"
7009  * prematurely.  I assume that this is acceptable because
7010  * a premature "unwriteable" is better than an accidental "writeable" which
7011  * would cause an unwanted block under certain circumstances.  For the 1-1
7012  * UDP-style sockets or TCP-style sockets, this code should work.
7013  *  - Daisy
7014  */
7015 static int sctp_writeable(struct sock *sk)
7016 {
7017 	int amt = 0;
7018 
7019 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7020 	if (amt < 0)
7021 		amt = 0;
7022 	return amt;
7023 }
7024 
7025 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7026  * returns immediately with EINPROGRESS.
7027  */
7028 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7029 {
7030 	struct sock *sk = asoc->base.sk;
7031 	int err = 0;
7032 	long current_timeo = *timeo_p;
7033 	DEFINE_WAIT(wait);
7034 
7035 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7036 
7037 	/* Increment the association's refcnt.  */
7038 	sctp_association_hold(asoc);
7039 
7040 	for (;;) {
7041 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7042 					  TASK_INTERRUPTIBLE);
7043 		if (!*timeo_p)
7044 			goto do_nonblock;
7045 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7046 			break;
7047 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7048 		    asoc->base.dead)
7049 			goto do_error;
7050 		if (signal_pending(current))
7051 			goto do_interrupted;
7052 
7053 		if (sctp_state(asoc, ESTABLISHED))
7054 			break;
7055 
7056 		/* Let another process have a go.  Since we are going
7057 		 * to sleep anyway.
7058 		 */
7059 		release_sock(sk);
7060 		current_timeo = schedule_timeout(current_timeo);
7061 		lock_sock(sk);
7062 
7063 		*timeo_p = current_timeo;
7064 	}
7065 
7066 out:
7067 	finish_wait(&asoc->wait, &wait);
7068 
7069 	/* Release the association's refcnt.  */
7070 	sctp_association_put(asoc);
7071 
7072 	return err;
7073 
7074 do_error:
7075 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7076 		err = -ETIMEDOUT;
7077 	else
7078 		err = -ECONNREFUSED;
7079 	goto out;
7080 
7081 do_interrupted:
7082 	err = sock_intr_errno(*timeo_p);
7083 	goto out;
7084 
7085 do_nonblock:
7086 	err = -EINPROGRESS;
7087 	goto out;
7088 }
7089 
7090 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7091 {
7092 	struct sctp_endpoint *ep;
7093 	int err = 0;
7094 	DEFINE_WAIT(wait);
7095 
7096 	ep = sctp_sk(sk)->ep;
7097 
7098 
7099 	for (;;) {
7100 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7101 					  TASK_INTERRUPTIBLE);
7102 
7103 		if (list_empty(&ep->asocs)) {
7104 			release_sock(sk);
7105 			timeo = schedule_timeout(timeo);
7106 			lock_sock(sk);
7107 		}
7108 
7109 		err = -EINVAL;
7110 		if (!sctp_sstate(sk, LISTENING))
7111 			break;
7112 
7113 		err = 0;
7114 		if (!list_empty(&ep->asocs))
7115 			break;
7116 
7117 		err = sock_intr_errno(timeo);
7118 		if (signal_pending(current))
7119 			break;
7120 
7121 		err = -EAGAIN;
7122 		if (!timeo)
7123 			break;
7124 	}
7125 
7126 	finish_wait(sk_sleep(sk), &wait);
7127 
7128 	return err;
7129 }
7130 
7131 static void sctp_wait_for_close(struct sock *sk, long timeout)
7132 {
7133 	DEFINE_WAIT(wait);
7134 
7135 	do {
7136 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7137 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7138 			break;
7139 		release_sock(sk);
7140 		timeout = schedule_timeout(timeout);
7141 		lock_sock(sk);
7142 	} while (!signal_pending(current) && timeout);
7143 
7144 	finish_wait(sk_sleep(sk), &wait);
7145 }
7146 
7147 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7148 {
7149 	struct sk_buff *frag;
7150 
7151 	if (!skb->data_len)
7152 		goto done;
7153 
7154 	/* Don't forget the fragments. */
7155 	skb_walk_frags(skb, frag)
7156 		sctp_skb_set_owner_r_frag(frag, sk);
7157 
7158 done:
7159 	sctp_skb_set_owner_r(skb, sk);
7160 }
7161 
7162 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7163 		    struct sctp_association *asoc)
7164 {
7165 	struct inet_sock *inet = inet_sk(sk);
7166 	struct inet_sock *newinet;
7167 
7168 	newsk->sk_type = sk->sk_type;
7169 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7170 	newsk->sk_flags = sk->sk_flags;
7171 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7172 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7173 	newsk->sk_reuse = sk->sk_reuse;
7174 
7175 	newsk->sk_shutdown = sk->sk_shutdown;
7176 	newsk->sk_destruct = sctp_destruct_sock;
7177 	newsk->sk_family = sk->sk_family;
7178 	newsk->sk_protocol = IPPROTO_SCTP;
7179 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7180 	newsk->sk_sndbuf = sk->sk_sndbuf;
7181 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7182 	newsk->sk_lingertime = sk->sk_lingertime;
7183 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7184 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7185 
7186 	newinet = inet_sk(newsk);
7187 
7188 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7189 	 * getsockname() and getpeername()
7190 	 */
7191 	newinet->inet_sport = inet->inet_sport;
7192 	newinet->inet_saddr = inet->inet_saddr;
7193 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7194 	newinet->inet_dport = htons(asoc->peer.port);
7195 	newinet->pmtudisc = inet->pmtudisc;
7196 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7197 
7198 	newinet->uc_ttl = inet->uc_ttl;
7199 	newinet->mc_loop = 1;
7200 	newinet->mc_ttl = 1;
7201 	newinet->mc_index = 0;
7202 	newinet->mc_list = NULL;
7203 }
7204 
7205 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7206  * and its messages to the newsk.
7207  */
7208 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7209 			      struct sctp_association *assoc,
7210 			      sctp_socket_type_t type)
7211 {
7212 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7213 	struct sctp_sock *newsp = sctp_sk(newsk);
7214 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7215 	struct sctp_endpoint *newep = newsp->ep;
7216 	struct sk_buff *skb, *tmp;
7217 	struct sctp_ulpevent *event;
7218 	struct sctp_bind_hashbucket *head;
7219 	struct list_head tmplist;
7220 
7221 	/* Migrate socket buffer sizes and all the socket level options to the
7222 	 * new socket.
7223 	 */
7224 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7225 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7226 	/* Brute force copy old sctp opt. */
7227 	if (oldsp->do_auto_asconf) {
7228 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
7229 		inet_sk_copy_descendant(newsk, oldsk);
7230 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
7231 	} else
7232 		inet_sk_copy_descendant(newsk, oldsk);
7233 
7234 	/* Restore the ep value that was overwritten with the above structure
7235 	 * copy.
7236 	 */
7237 	newsp->ep = newep;
7238 	newsp->hmac = NULL;
7239 
7240 	/* Hook this new socket in to the bind_hash list. */
7241 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7242 						 inet_sk(oldsk)->inet_num)];
7243 	local_bh_disable();
7244 	spin_lock(&head->lock);
7245 	pp = sctp_sk(oldsk)->bind_hash;
7246 	sk_add_bind_node(newsk, &pp->owner);
7247 	sctp_sk(newsk)->bind_hash = pp;
7248 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7249 	spin_unlock(&head->lock);
7250 	local_bh_enable();
7251 
7252 	/* Copy the bind_addr list from the original endpoint to the new
7253 	 * endpoint so that we can handle restarts properly
7254 	 */
7255 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7256 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7257 
7258 	/* Move any messages in the old socket's receive queue that are for the
7259 	 * peeled off association to the new socket's receive queue.
7260 	 */
7261 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7262 		event = sctp_skb2event(skb);
7263 		if (event->asoc == assoc) {
7264 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7265 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7266 			sctp_skb_set_owner_r_frag(skb, newsk);
7267 		}
7268 	}
7269 
7270 	/* Clean up any messages pending delivery due to partial
7271 	 * delivery.   Three cases:
7272 	 * 1) No partial deliver;  no work.
7273 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7274 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7275 	 */
7276 	skb_queue_head_init(&newsp->pd_lobby);
7277 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7278 
7279 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7280 		struct sk_buff_head *queue;
7281 
7282 		/* Decide which queue to move pd_lobby skbs to. */
7283 		if (assoc->ulpq.pd_mode) {
7284 			queue = &newsp->pd_lobby;
7285 		} else
7286 			queue = &newsk->sk_receive_queue;
7287 
7288 		/* Walk through the pd_lobby, looking for skbs that
7289 		 * need moved to the new socket.
7290 		 */
7291 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7292 			event = sctp_skb2event(skb);
7293 			if (event->asoc == assoc) {
7294 				__skb_unlink(skb, &oldsp->pd_lobby);
7295 				__skb_queue_tail(queue, skb);
7296 				sctp_skb_set_owner_r_frag(skb, newsk);
7297 			}
7298 		}
7299 
7300 		/* Clear up any skbs waiting for the partial
7301 		 * delivery to finish.
7302 		 */
7303 		if (assoc->ulpq.pd_mode)
7304 			sctp_clear_pd(oldsk, NULL);
7305 
7306 	}
7307 
7308 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7309 		sctp_skb_set_owner_r_frag(skb, newsk);
7310 
7311 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7312 		sctp_skb_set_owner_r_frag(skb, newsk);
7313 
7314 	/* Set the type of socket to indicate that it is peeled off from the
7315 	 * original UDP-style socket or created with the accept() call on a
7316 	 * TCP-style socket..
7317 	 */
7318 	newsp->type = type;
7319 
7320 	/* Mark the new socket "in-use" by the user so that any packets
7321 	 * that may arrive on the association after we've moved it are
7322 	 * queued to the backlog.  This prevents a potential race between
7323 	 * backlog processing on the old socket and new-packet processing
7324 	 * on the new socket.
7325 	 *
7326 	 * The caller has just allocated newsk so we can guarantee that other
7327 	 * paths won't try to lock it and then oldsk.
7328 	 */
7329 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7330 	sctp_assoc_migrate(assoc, newsk);
7331 
7332 	/* If the association on the newsk is already closed before accept()
7333 	 * is called, set RCV_SHUTDOWN flag.
7334 	 */
7335 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7336 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7337 
7338 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7339 	release_sock(newsk);
7340 }
7341 
7342 
7343 /* This proto struct describes the ULP interface for SCTP.  */
7344 struct proto sctp_prot = {
7345 	.name        =	"SCTP",
7346 	.owner       =	THIS_MODULE,
7347 	.close       =	sctp_close,
7348 	.connect     =	sctp_connect,
7349 	.disconnect  =	sctp_disconnect,
7350 	.accept      =	sctp_accept,
7351 	.ioctl       =	sctp_ioctl,
7352 	.init        =	sctp_init_sock,
7353 	.destroy     =	sctp_destroy_sock,
7354 	.shutdown    =	sctp_shutdown,
7355 	.setsockopt  =	sctp_setsockopt,
7356 	.getsockopt  =	sctp_getsockopt,
7357 	.sendmsg     =	sctp_sendmsg,
7358 	.recvmsg     =	sctp_recvmsg,
7359 	.bind        =	sctp_bind,
7360 	.backlog_rcv =	sctp_backlog_rcv,
7361 	.hash        =	sctp_hash,
7362 	.unhash      =	sctp_unhash,
7363 	.get_port    =	sctp_get_port,
7364 	.obj_size    =  sizeof(struct sctp_sock),
7365 	.sysctl_mem  =  sysctl_sctp_mem,
7366 	.sysctl_rmem =  sysctl_sctp_rmem,
7367 	.sysctl_wmem =  sysctl_sctp_wmem,
7368 	.memory_pressure = &sctp_memory_pressure,
7369 	.enter_memory_pressure = sctp_enter_memory_pressure,
7370 	.memory_allocated = &sctp_memory_allocated,
7371 	.sockets_allocated = &sctp_sockets_allocated,
7372 };
7373 
7374 #if IS_ENABLED(CONFIG_IPV6)
7375 
7376 struct proto sctpv6_prot = {
7377 	.name		= "SCTPv6",
7378 	.owner		= THIS_MODULE,
7379 	.close		= sctp_close,
7380 	.connect	= sctp_connect,
7381 	.disconnect	= sctp_disconnect,
7382 	.accept		= sctp_accept,
7383 	.ioctl		= sctp_ioctl,
7384 	.init		= sctp_init_sock,
7385 	.destroy	= sctp_destroy_sock,
7386 	.shutdown	= sctp_shutdown,
7387 	.setsockopt	= sctp_setsockopt,
7388 	.getsockopt	= sctp_getsockopt,
7389 	.sendmsg	= sctp_sendmsg,
7390 	.recvmsg	= sctp_recvmsg,
7391 	.bind		= sctp_bind,
7392 	.backlog_rcv	= sctp_backlog_rcv,
7393 	.hash		= sctp_hash,
7394 	.unhash		= sctp_unhash,
7395 	.get_port	= sctp_get_port,
7396 	.obj_size	= sizeof(struct sctp6_sock),
7397 	.sysctl_mem	= sysctl_sctp_mem,
7398 	.sysctl_rmem	= sysctl_sctp_rmem,
7399 	.sysctl_wmem	= sysctl_sctp_wmem,
7400 	.memory_pressure = &sctp_memory_pressure,
7401 	.enter_memory_pressure = sctp_enter_memory_pressure,
7402 	.memory_allocated = &sctp_memory_allocated,
7403 	.sockets_allocated = &sctp_sockets_allocated,
7404 };
7405 #endif /* IS_ENABLED(CONFIG_IPV6) */
7406