1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/wait.h> 58 #include <linux/time.h> 59 #include <linux/ip.h> 60 #include <linux/capability.h> 61 #include <linux/fcntl.h> 62 #include <linux/poll.h> 63 #include <linux/init.h> 64 #include <linux/crypto.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 #include <net/busy_poll.h> 75 76 #include <linux/socket.h> /* for sa_family_t */ 77 #include <linux/export.h> 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* Forward declarations for internal helper functions. */ 83 static int sctp_writeable(struct sock *sk); 84 static void sctp_wfree(struct sk_buff *skb); 85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89 static int sctp_wait_for_accept(struct sock *sk, long timeo); 90 static void sctp_wait_for_close(struct sock *sk, long timeo); 91 static void sctp_destruct_sock(struct sock *sk); 92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101 static int sctp_autobind(struct sock *sk); 102 static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105 extern struct kmem_cache *sctp_bucket_cachep; 106 extern long sysctl_sctp_mem[3]; 107 extern int sysctl_sctp_rmem[3]; 108 extern int sysctl_sctp_wmem[3]; 109 110 static int sctp_memory_pressure; 111 static atomic_long_t sctp_memory_allocated; 112 struct percpu_counter sctp_sockets_allocated; 113 114 static void sctp_enter_memory_pressure(struct sock *sk) 115 { 116 sctp_memory_pressure = 1; 117 } 118 119 120 /* Get the sndbuf space available at the time on the association. */ 121 static inline int sctp_wspace(struct sctp_association *asoc) 122 { 123 int amt; 124 125 if (asoc->ep->sndbuf_policy) 126 amt = asoc->sndbuf_used; 127 else 128 amt = sk_wmem_alloc_get(asoc->base.sk); 129 130 if (amt >= asoc->base.sk->sk_sndbuf) { 131 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 132 amt = 0; 133 else { 134 amt = sk_stream_wspace(asoc->base.sk); 135 if (amt < 0) 136 amt = 0; 137 } 138 } else { 139 amt = asoc->base.sk->sk_sndbuf - amt; 140 } 141 return amt; 142 } 143 144 /* Increment the used sndbuf space count of the corresponding association by 145 * the size of the outgoing data chunk. 146 * Also, set the skb destructor for sndbuf accounting later. 147 * 148 * Since it is always 1-1 between chunk and skb, and also a new skb is always 149 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 150 * destructor in the data chunk skb for the purpose of the sndbuf space 151 * tracking. 152 */ 153 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 154 { 155 struct sctp_association *asoc = chunk->asoc; 156 struct sock *sk = asoc->base.sk; 157 158 /* The sndbuf space is tracked per association. */ 159 sctp_association_hold(asoc); 160 161 skb_set_owner_w(chunk->skb, sk); 162 163 chunk->skb->destructor = sctp_wfree; 164 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 165 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 166 167 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 168 sizeof(struct sk_buff) + 169 sizeof(struct sctp_chunk); 170 171 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 172 sk->sk_wmem_queued += chunk->skb->truesize; 173 sk_mem_charge(sk, chunk->skb->truesize); 174 } 175 176 /* Verify that this is a valid address. */ 177 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 178 int len) 179 { 180 struct sctp_af *af; 181 182 /* Verify basic sockaddr. */ 183 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 184 if (!af) 185 return -EINVAL; 186 187 /* Is this a valid SCTP address? */ 188 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 189 return -EINVAL; 190 191 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 192 return -EINVAL; 193 194 return 0; 195 } 196 197 /* Look up the association by its id. If this is not a UDP-style 198 * socket, the ID field is always ignored. 199 */ 200 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 201 { 202 struct sctp_association *asoc = NULL; 203 204 /* If this is not a UDP-style socket, assoc id should be ignored. */ 205 if (!sctp_style(sk, UDP)) { 206 /* Return NULL if the socket state is not ESTABLISHED. It 207 * could be a TCP-style listening socket or a socket which 208 * hasn't yet called connect() to establish an association. 209 */ 210 if (!sctp_sstate(sk, ESTABLISHED)) 211 return NULL; 212 213 /* Get the first and the only association from the list. */ 214 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 215 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 216 struct sctp_association, asocs); 217 return asoc; 218 } 219 220 /* Otherwise this is a UDP-style socket. */ 221 if (!id || (id == (sctp_assoc_t)-1)) 222 return NULL; 223 224 spin_lock_bh(&sctp_assocs_id_lock); 225 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 226 spin_unlock_bh(&sctp_assocs_id_lock); 227 228 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 229 return NULL; 230 231 return asoc; 232 } 233 234 /* Look up the transport from an address and an assoc id. If both address and 235 * id are specified, the associations matching the address and the id should be 236 * the same. 237 */ 238 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 239 struct sockaddr_storage *addr, 240 sctp_assoc_t id) 241 { 242 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 243 struct sctp_transport *transport; 244 union sctp_addr *laddr = (union sctp_addr *)addr; 245 246 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 247 laddr, 248 &transport); 249 250 if (!addr_asoc) 251 return NULL; 252 253 id_asoc = sctp_id2assoc(sk, id); 254 if (id_asoc && (id_asoc != addr_asoc)) 255 return NULL; 256 257 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 258 (union sctp_addr *)addr); 259 260 return transport; 261 } 262 263 /* API 3.1.2 bind() - UDP Style Syntax 264 * The syntax of bind() is, 265 * 266 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 267 * 268 * sd - the socket descriptor returned by socket(). 269 * addr - the address structure (struct sockaddr_in or struct 270 * sockaddr_in6 [RFC 2553]), 271 * addr_len - the size of the address structure. 272 */ 273 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 274 { 275 int retval = 0; 276 277 lock_sock(sk); 278 279 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 280 addr, addr_len); 281 282 /* Disallow binding twice. */ 283 if (!sctp_sk(sk)->ep->base.bind_addr.port) 284 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 285 addr_len); 286 else 287 retval = -EINVAL; 288 289 release_sock(sk); 290 291 return retval; 292 } 293 294 static long sctp_get_port_local(struct sock *, union sctp_addr *); 295 296 /* Verify this is a valid sockaddr. */ 297 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 298 union sctp_addr *addr, int len) 299 { 300 struct sctp_af *af; 301 302 /* Check minimum size. */ 303 if (len < sizeof (struct sockaddr)) 304 return NULL; 305 306 /* V4 mapped address are really of AF_INET family */ 307 if (addr->sa.sa_family == AF_INET6 && 308 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 309 if (!opt->pf->af_supported(AF_INET, opt)) 310 return NULL; 311 } else { 312 /* Does this PF support this AF? */ 313 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 314 return NULL; 315 } 316 317 /* If we get this far, af is valid. */ 318 af = sctp_get_af_specific(addr->sa.sa_family); 319 320 if (len < af->sockaddr_len) 321 return NULL; 322 323 return af; 324 } 325 326 /* Bind a local address either to an endpoint or to an association. */ 327 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 328 { 329 struct net *net = sock_net(sk); 330 struct sctp_sock *sp = sctp_sk(sk); 331 struct sctp_endpoint *ep = sp->ep; 332 struct sctp_bind_addr *bp = &ep->base.bind_addr; 333 struct sctp_af *af; 334 unsigned short snum; 335 int ret = 0; 336 337 /* Common sockaddr verification. */ 338 af = sctp_sockaddr_af(sp, addr, len); 339 if (!af) { 340 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 341 __func__, sk, addr, len); 342 return -EINVAL; 343 } 344 345 snum = ntohs(addr->v4.sin_port); 346 347 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 348 __func__, sk, &addr->sa, bp->port, snum, len); 349 350 /* PF specific bind() address verification. */ 351 if (!sp->pf->bind_verify(sp, addr)) 352 return -EADDRNOTAVAIL; 353 354 /* We must either be unbound, or bind to the same port. 355 * It's OK to allow 0 ports if we are already bound. 356 * We'll just inhert an already bound port in this case 357 */ 358 if (bp->port) { 359 if (!snum) 360 snum = bp->port; 361 else if (snum != bp->port) { 362 pr_debug("%s: new port %d doesn't match existing port " 363 "%d\n", __func__, snum, bp->port); 364 return -EINVAL; 365 } 366 } 367 368 if (snum && snum < PROT_SOCK && 369 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 370 return -EACCES; 371 372 /* See if the address matches any of the addresses we may have 373 * already bound before checking against other endpoints. 374 */ 375 if (sctp_bind_addr_match(bp, addr, sp)) 376 return -EINVAL; 377 378 /* Make sure we are allowed to bind here. 379 * The function sctp_get_port_local() does duplicate address 380 * detection. 381 */ 382 addr->v4.sin_port = htons(snum); 383 if ((ret = sctp_get_port_local(sk, addr))) { 384 return -EADDRINUSE; 385 } 386 387 /* Refresh ephemeral port. */ 388 if (!bp->port) 389 bp->port = inet_sk(sk)->inet_num; 390 391 /* Add the address to the bind address list. 392 * Use GFP_ATOMIC since BHs will be disabled. 393 */ 394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 395 396 /* Copy back into socket for getsockname() use. */ 397 if (!ret) { 398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 399 sp->pf->to_sk_saddr(addr, sk); 400 } 401 402 return ret; 403 } 404 405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 406 * 407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 408 * at any one time. If a sender, after sending an ASCONF chunk, decides 409 * it needs to transfer another ASCONF Chunk, it MUST wait until the 410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 411 * subsequent ASCONF. Note this restriction binds each side, so at any 412 * time two ASCONF may be in-transit on any given association (one sent 413 * from each endpoint). 414 */ 415 static int sctp_send_asconf(struct sctp_association *asoc, 416 struct sctp_chunk *chunk) 417 { 418 struct net *net = sock_net(asoc->base.sk); 419 int retval = 0; 420 421 /* If there is an outstanding ASCONF chunk, queue it for later 422 * transmission. 423 */ 424 if (asoc->addip_last_asconf) { 425 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 426 goto out; 427 } 428 429 /* Hold the chunk until an ASCONF_ACK is received. */ 430 sctp_chunk_hold(chunk); 431 retval = sctp_primitive_ASCONF(net, asoc, chunk); 432 if (retval) 433 sctp_chunk_free(chunk); 434 else 435 asoc->addip_last_asconf = chunk; 436 437 out: 438 return retval; 439 } 440 441 /* Add a list of addresses as bind addresses to local endpoint or 442 * association. 443 * 444 * Basically run through each address specified in the addrs/addrcnt 445 * array/length pair, determine if it is IPv6 or IPv4 and call 446 * sctp_do_bind() on it. 447 * 448 * If any of them fails, then the operation will be reversed and the 449 * ones that were added will be removed. 450 * 451 * Only sctp_setsockopt_bindx() is supposed to call this function. 452 */ 453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 454 { 455 int cnt; 456 int retval = 0; 457 void *addr_buf; 458 struct sockaddr *sa_addr; 459 struct sctp_af *af; 460 461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 462 addrs, addrcnt); 463 464 addr_buf = addrs; 465 for (cnt = 0; cnt < addrcnt; cnt++) { 466 /* The list may contain either IPv4 or IPv6 address; 467 * determine the address length for walking thru the list. 468 */ 469 sa_addr = addr_buf; 470 af = sctp_get_af_specific(sa_addr->sa_family); 471 if (!af) { 472 retval = -EINVAL; 473 goto err_bindx_add; 474 } 475 476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 477 af->sockaddr_len); 478 479 addr_buf += af->sockaddr_len; 480 481 err_bindx_add: 482 if (retval < 0) { 483 /* Failed. Cleanup the ones that have been added */ 484 if (cnt > 0) 485 sctp_bindx_rem(sk, addrs, cnt); 486 return retval; 487 } 488 } 489 490 return retval; 491 } 492 493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 494 * associations that are part of the endpoint indicating that a list of local 495 * addresses are added to the endpoint. 496 * 497 * If any of the addresses is already in the bind address list of the 498 * association, we do not send the chunk for that association. But it will not 499 * affect other associations. 500 * 501 * Only sctp_setsockopt_bindx() is supposed to call this function. 502 */ 503 static int sctp_send_asconf_add_ip(struct sock *sk, 504 struct sockaddr *addrs, 505 int addrcnt) 506 { 507 struct net *net = sock_net(sk); 508 struct sctp_sock *sp; 509 struct sctp_endpoint *ep; 510 struct sctp_association *asoc; 511 struct sctp_bind_addr *bp; 512 struct sctp_chunk *chunk; 513 struct sctp_sockaddr_entry *laddr; 514 union sctp_addr *addr; 515 union sctp_addr saveaddr; 516 void *addr_buf; 517 struct sctp_af *af; 518 struct list_head *p; 519 int i; 520 int retval = 0; 521 522 if (!net->sctp.addip_enable) 523 return retval; 524 525 sp = sctp_sk(sk); 526 ep = sp->ep; 527 528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 529 __func__, sk, addrs, addrcnt); 530 531 list_for_each_entry(asoc, &ep->asocs, asocs) { 532 if (!asoc->peer.asconf_capable) 533 continue; 534 535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 536 continue; 537 538 if (!sctp_state(asoc, ESTABLISHED)) 539 continue; 540 541 /* Check if any address in the packed array of addresses is 542 * in the bind address list of the association. If so, 543 * do not send the asconf chunk to its peer, but continue with 544 * other associations. 545 */ 546 addr_buf = addrs; 547 for (i = 0; i < addrcnt; i++) { 548 addr = addr_buf; 549 af = sctp_get_af_specific(addr->v4.sin_family); 550 if (!af) { 551 retval = -EINVAL; 552 goto out; 553 } 554 555 if (sctp_assoc_lookup_laddr(asoc, addr)) 556 break; 557 558 addr_buf += af->sockaddr_len; 559 } 560 if (i < addrcnt) 561 continue; 562 563 /* Use the first valid address in bind addr list of 564 * association as Address Parameter of ASCONF CHUNK. 565 */ 566 bp = &asoc->base.bind_addr; 567 p = bp->address_list.next; 568 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 570 addrcnt, SCTP_PARAM_ADD_IP); 571 if (!chunk) { 572 retval = -ENOMEM; 573 goto out; 574 } 575 576 /* Add the new addresses to the bind address list with 577 * use_as_src set to 0. 578 */ 579 addr_buf = addrs; 580 for (i = 0; i < addrcnt; i++) { 581 addr = addr_buf; 582 af = sctp_get_af_specific(addr->v4.sin_family); 583 memcpy(&saveaddr, addr, af->sockaddr_len); 584 retval = sctp_add_bind_addr(bp, &saveaddr, 585 SCTP_ADDR_NEW, GFP_ATOMIC); 586 addr_buf += af->sockaddr_len; 587 } 588 if (asoc->src_out_of_asoc_ok) { 589 struct sctp_transport *trans; 590 591 list_for_each_entry(trans, 592 &asoc->peer.transport_addr_list, transports) { 593 /* Clear the source and route cache */ 594 dst_release(trans->dst); 595 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 596 2*asoc->pathmtu, 4380)); 597 trans->ssthresh = asoc->peer.i.a_rwnd; 598 trans->rto = asoc->rto_initial; 599 sctp_max_rto(asoc, trans); 600 trans->rtt = trans->srtt = trans->rttvar = 0; 601 sctp_transport_route(trans, NULL, 602 sctp_sk(asoc->base.sk)); 603 } 604 } 605 retval = sctp_send_asconf(asoc, chunk); 606 } 607 608 out: 609 return retval; 610 } 611 612 /* Remove a list of addresses from bind addresses list. Do not remove the 613 * last address. 614 * 615 * Basically run through each address specified in the addrs/addrcnt 616 * array/length pair, determine if it is IPv6 or IPv4 and call 617 * sctp_del_bind() on it. 618 * 619 * If any of them fails, then the operation will be reversed and the 620 * ones that were removed will be added back. 621 * 622 * At least one address has to be left; if only one address is 623 * available, the operation will return -EBUSY. 624 * 625 * Only sctp_setsockopt_bindx() is supposed to call this function. 626 */ 627 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 628 { 629 struct sctp_sock *sp = sctp_sk(sk); 630 struct sctp_endpoint *ep = sp->ep; 631 int cnt; 632 struct sctp_bind_addr *bp = &ep->base.bind_addr; 633 int retval = 0; 634 void *addr_buf; 635 union sctp_addr *sa_addr; 636 struct sctp_af *af; 637 638 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 639 __func__, sk, addrs, addrcnt); 640 641 addr_buf = addrs; 642 for (cnt = 0; cnt < addrcnt; cnt++) { 643 /* If the bind address list is empty or if there is only one 644 * bind address, there is nothing more to be removed (we need 645 * at least one address here). 646 */ 647 if (list_empty(&bp->address_list) || 648 (sctp_list_single_entry(&bp->address_list))) { 649 retval = -EBUSY; 650 goto err_bindx_rem; 651 } 652 653 sa_addr = addr_buf; 654 af = sctp_get_af_specific(sa_addr->sa.sa_family); 655 if (!af) { 656 retval = -EINVAL; 657 goto err_bindx_rem; 658 } 659 660 if (!af->addr_valid(sa_addr, sp, NULL)) { 661 retval = -EADDRNOTAVAIL; 662 goto err_bindx_rem; 663 } 664 665 if (sa_addr->v4.sin_port && 666 sa_addr->v4.sin_port != htons(bp->port)) { 667 retval = -EINVAL; 668 goto err_bindx_rem; 669 } 670 671 if (!sa_addr->v4.sin_port) 672 sa_addr->v4.sin_port = htons(bp->port); 673 674 /* FIXME - There is probably a need to check if sk->sk_saddr and 675 * sk->sk_rcv_addr are currently set to one of the addresses to 676 * be removed. This is something which needs to be looked into 677 * when we are fixing the outstanding issues with multi-homing 678 * socket routing and failover schemes. Refer to comments in 679 * sctp_do_bind(). -daisy 680 */ 681 retval = sctp_del_bind_addr(bp, sa_addr); 682 683 addr_buf += af->sockaddr_len; 684 err_bindx_rem: 685 if (retval < 0) { 686 /* Failed. Add the ones that has been removed back */ 687 if (cnt > 0) 688 sctp_bindx_add(sk, addrs, cnt); 689 return retval; 690 } 691 } 692 693 return retval; 694 } 695 696 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 697 * the associations that are part of the endpoint indicating that a list of 698 * local addresses are removed from the endpoint. 699 * 700 * If any of the addresses is already in the bind address list of the 701 * association, we do not send the chunk for that association. But it will not 702 * affect other associations. 703 * 704 * Only sctp_setsockopt_bindx() is supposed to call this function. 705 */ 706 static int sctp_send_asconf_del_ip(struct sock *sk, 707 struct sockaddr *addrs, 708 int addrcnt) 709 { 710 struct net *net = sock_net(sk); 711 struct sctp_sock *sp; 712 struct sctp_endpoint *ep; 713 struct sctp_association *asoc; 714 struct sctp_transport *transport; 715 struct sctp_bind_addr *bp; 716 struct sctp_chunk *chunk; 717 union sctp_addr *laddr; 718 void *addr_buf; 719 struct sctp_af *af; 720 struct sctp_sockaddr_entry *saddr; 721 int i; 722 int retval = 0; 723 int stored = 0; 724 725 chunk = NULL; 726 if (!net->sctp.addip_enable) 727 return retval; 728 729 sp = sctp_sk(sk); 730 ep = sp->ep; 731 732 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 733 __func__, sk, addrs, addrcnt); 734 735 list_for_each_entry(asoc, &ep->asocs, asocs) { 736 737 if (!asoc->peer.asconf_capable) 738 continue; 739 740 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 741 continue; 742 743 if (!sctp_state(asoc, ESTABLISHED)) 744 continue; 745 746 /* Check if any address in the packed array of addresses is 747 * not present in the bind address list of the association. 748 * If so, do not send the asconf chunk to its peer, but 749 * continue with other associations. 750 */ 751 addr_buf = addrs; 752 for (i = 0; i < addrcnt; i++) { 753 laddr = addr_buf; 754 af = sctp_get_af_specific(laddr->v4.sin_family); 755 if (!af) { 756 retval = -EINVAL; 757 goto out; 758 } 759 760 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 761 break; 762 763 addr_buf += af->sockaddr_len; 764 } 765 if (i < addrcnt) 766 continue; 767 768 /* Find one address in the association's bind address list 769 * that is not in the packed array of addresses. This is to 770 * make sure that we do not delete all the addresses in the 771 * association. 772 */ 773 bp = &asoc->base.bind_addr; 774 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 775 addrcnt, sp); 776 if ((laddr == NULL) && (addrcnt == 1)) { 777 if (asoc->asconf_addr_del_pending) 778 continue; 779 asoc->asconf_addr_del_pending = 780 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 781 if (asoc->asconf_addr_del_pending == NULL) { 782 retval = -ENOMEM; 783 goto out; 784 } 785 asoc->asconf_addr_del_pending->sa.sa_family = 786 addrs->sa_family; 787 asoc->asconf_addr_del_pending->v4.sin_port = 788 htons(bp->port); 789 if (addrs->sa_family == AF_INET) { 790 struct sockaddr_in *sin; 791 792 sin = (struct sockaddr_in *)addrs; 793 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 794 } else if (addrs->sa_family == AF_INET6) { 795 struct sockaddr_in6 *sin6; 796 797 sin6 = (struct sockaddr_in6 *)addrs; 798 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 799 } 800 801 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 802 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 803 asoc->asconf_addr_del_pending); 804 805 asoc->src_out_of_asoc_ok = 1; 806 stored = 1; 807 goto skip_mkasconf; 808 } 809 810 if (laddr == NULL) 811 return -EINVAL; 812 813 /* We do not need RCU protection throughout this loop 814 * because this is done under a socket lock from the 815 * setsockopt call. 816 */ 817 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 818 SCTP_PARAM_DEL_IP); 819 if (!chunk) { 820 retval = -ENOMEM; 821 goto out; 822 } 823 824 skip_mkasconf: 825 /* Reset use_as_src flag for the addresses in the bind address 826 * list that are to be deleted. 827 */ 828 addr_buf = addrs; 829 for (i = 0; i < addrcnt; i++) { 830 laddr = addr_buf; 831 af = sctp_get_af_specific(laddr->v4.sin_family); 832 list_for_each_entry(saddr, &bp->address_list, list) { 833 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 834 saddr->state = SCTP_ADDR_DEL; 835 } 836 addr_buf += af->sockaddr_len; 837 } 838 839 /* Update the route and saddr entries for all the transports 840 * as some of the addresses in the bind address list are 841 * about to be deleted and cannot be used as source addresses. 842 */ 843 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 844 transports) { 845 dst_release(transport->dst); 846 sctp_transport_route(transport, NULL, 847 sctp_sk(asoc->base.sk)); 848 } 849 850 if (stored) 851 /* We don't need to transmit ASCONF */ 852 continue; 853 retval = sctp_send_asconf(asoc, chunk); 854 } 855 out: 856 return retval; 857 } 858 859 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 860 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 861 { 862 struct sock *sk = sctp_opt2sk(sp); 863 union sctp_addr *addr; 864 struct sctp_af *af; 865 866 /* It is safe to write port space in caller. */ 867 addr = &addrw->a; 868 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 869 af = sctp_get_af_specific(addr->sa.sa_family); 870 if (!af) 871 return -EINVAL; 872 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 873 return -EINVAL; 874 875 if (addrw->state == SCTP_ADDR_NEW) 876 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 877 else 878 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 879 } 880 881 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 882 * 883 * API 8.1 884 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 885 * int flags); 886 * 887 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 888 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 889 * or IPv6 addresses. 890 * 891 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 892 * Section 3.1.2 for this usage. 893 * 894 * addrs is a pointer to an array of one or more socket addresses. Each 895 * address is contained in its appropriate structure (i.e. struct 896 * sockaddr_in or struct sockaddr_in6) the family of the address type 897 * must be used to distinguish the address length (note that this 898 * representation is termed a "packed array" of addresses). The caller 899 * specifies the number of addresses in the array with addrcnt. 900 * 901 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 902 * -1, and sets errno to the appropriate error code. 903 * 904 * For SCTP, the port given in each socket address must be the same, or 905 * sctp_bindx() will fail, setting errno to EINVAL. 906 * 907 * The flags parameter is formed from the bitwise OR of zero or more of 908 * the following currently defined flags: 909 * 910 * SCTP_BINDX_ADD_ADDR 911 * 912 * SCTP_BINDX_REM_ADDR 913 * 914 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 915 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 916 * addresses from the association. The two flags are mutually exclusive; 917 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 918 * not remove all addresses from an association; sctp_bindx() will 919 * reject such an attempt with EINVAL. 920 * 921 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 922 * additional addresses with an endpoint after calling bind(). Or use 923 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 924 * socket is associated with so that no new association accepted will be 925 * associated with those addresses. If the endpoint supports dynamic 926 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 927 * endpoint to send the appropriate message to the peer to change the 928 * peers address lists. 929 * 930 * Adding and removing addresses from a connected association is 931 * optional functionality. Implementations that do not support this 932 * functionality should return EOPNOTSUPP. 933 * 934 * Basically do nothing but copying the addresses from user to kernel 935 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 936 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 937 * from userspace. 938 * 939 * We don't use copy_from_user() for optimization: we first do the 940 * sanity checks (buffer size -fast- and access check-healthy 941 * pointer); if all of those succeed, then we can alloc the memory 942 * (expensive operation) needed to copy the data to kernel. Then we do 943 * the copying without checking the user space area 944 * (__copy_from_user()). 945 * 946 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 947 * it. 948 * 949 * sk The sk of the socket 950 * addrs The pointer to the addresses in user land 951 * addrssize Size of the addrs buffer 952 * op Operation to perform (add or remove, see the flags of 953 * sctp_bindx) 954 * 955 * Returns 0 if ok, <0 errno code on error. 956 */ 957 static int sctp_setsockopt_bindx(struct sock *sk, 958 struct sockaddr __user *addrs, 959 int addrs_size, int op) 960 { 961 struct sockaddr *kaddrs; 962 int err; 963 int addrcnt = 0; 964 int walk_size = 0; 965 struct sockaddr *sa_addr; 966 void *addr_buf; 967 struct sctp_af *af; 968 969 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 970 __func__, sk, addrs, addrs_size, op); 971 972 if (unlikely(addrs_size <= 0)) 973 return -EINVAL; 974 975 /* Check the user passed a healthy pointer. */ 976 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 977 return -EFAULT; 978 979 /* Alloc space for the address array in kernel memory. */ 980 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 981 if (unlikely(!kaddrs)) 982 return -ENOMEM; 983 984 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 985 kfree(kaddrs); 986 return -EFAULT; 987 } 988 989 /* Walk through the addrs buffer and count the number of addresses. */ 990 addr_buf = kaddrs; 991 while (walk_size < addrs_size) { 992 if (walk_size + sizeof(sa_family_t) > addrs_size) { 993 kfree(kaddrs); 994 return -EINVAL; 995 } 996 997 sa_addr = addr_buf; 998 af = sctp_get_af_specific(sa_addr->sa_family); 999 1000 /* If the address family is not supported or if this address 1001 * causes the address buffer to overflow return EINVAL. 1002 */ 1003 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1004 kfree(kaddrs); 1005 return -EINVAL; 1006 } 1007 addrcnt++; 1008 addr_buf += af->sockaddr_len; 1009 walk_size += af->sockaddr_len; 1010 } 1011 1012 /* Do the work. */ 1013 switch (op) { 1014 case SCTP_BINDX_ADD_ADDR: 1015 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1016 if (err) 1017 goto out; 1018 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1019 break; 1020 1021 case SCTP_BINDX_REM_ADDR: 1022 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1023 if (err) 1024 goto out; 1025 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1026 break; 1027 1028 default: 1029 err = -EINVAL; 1030 break; 1031 } 1032 1033 out: 1034 kfree(kaddrs); 1035 1036 return err; 1037 } 1038 1039 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1040 * 1041 * Common routine for handling connect() and sctp_connectx(). 1042 * Connect will come in with just a single address. 1043 */ 1044 static int __sctp_connect(struct sock *sk, 1045 struct sockaddr *kaddrs, 1046 int addrs_size, 1047 sctp_assoc_t *assoc_id) 1048 { 1049 struct net *net = sock_net(sk); 1050 struct sctp_sock *sp; 1051 struct sctp_endpoint *ep; 1052 struct sctp_association *asoc = NULL; 1053 struct sctp_association *asoc2; 1054 struct sctp_transport *transport; 1055 union sctp_addr to; 1056 sctp_scope_t scope; 1057 long timeo; 1058 int err = 0; 1059 int addrcnt = 0; 1060 int walk_size = 0; 1061 union sctp_addr *sa_addr = NULL; 1062 void *addr_buf; 1063 unsigned short port; 1064 unsigned int f_flags = 0; 1065 1066 sp = sctp_sk(sk); 1067 ep = sp->ep; 1068 1069 /* connect() cannot be done on a socket that is already in ESTABLISHED 1070 * state - UDP-style peeled off socket or a TCP-style socket that 1071 * is already connected. 1072 * It cannot be done even on a TCP-style listening socket. 1073 */ 1074 if (sctp_sstate(sk, ESTABLISHED) || 1075 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1076 err = -EISCONN; 1077 goto out_free; 1078 } 1079 1080 /* Walk through the addrs buffer and count the number of addresses. */ 1081 addr_buf = kaddrs; 1082 while (walk_size < addrs_size) { 1083 struct sctp_af *af; 1084 1085 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1086 err = -EINVAL; 1087 goto out_free; 1088 } 1089 1090 sa_addr = addr_buf; 1091 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1092 1093 /* If the address family is not supported or if this address 1094 * causes the address buffer to overflow return EINVAL. 1095 */ 1096 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1097 err = -EINVAL; 1098 goto out_free; 1099 } 1100 1101 port = ntohs(sa_addr->v4.sin_port); 1102 1103 /* Save current address so we can work with it */ 1104 memcpy(&to, sa_addr, af->sockaddr_len); 1105 1106 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1107 if (err) 1108 goto out_free; 1109 1110 /* Make sure the destination port is correctly set 1111 * in all addresses. 1112 */ 1113 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1114 err = -EINVAL; 1115 goto out_free; 1116 } 1117 1118 /* Check if there already is a matching association on the 1119 * endpoint (other than the one created here). 1120 */ 1121 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1122 if (asoc2 && asoc2 != asoc) { 1123 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1124 err = -EISCONN; 1125 else 1126 err = -EALREADY; 1127 goto out_free; 1128 } 1129 1130 /* If we could not find a matching association on the endpoint, 1131 * make sure that there is no peeled-off association matching 1132 * the peer address even on another socket. 1133 */ 1134 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1135 err = -EADDRNOTAVAIL; 1136 goto out_free; 1137 } 1138 1139 if (!asoc) { 1140 /* If a bind() or sctp_bindx() is not called prior to 1141 * an sctp_connectx() call, the system picks an 1142 * ephemeral port and will choose an address set 1143 * equivalent to binding with a wildcard address. 1144 */ 1145 if (!ep->base.bind_addr.port) { 1146 if (sctp_autobind(sk)) { 1147 err = -EAGAIN; 1148 goto out_free; 1149 } 1150 } else { 1151 /* 1152 * If an unprivileged user inherits a 1-many 1153 * style socket with open associations on a 1154 * privileged port, it MAY be permitted to 1155 * accept new associations, but it SHOULD NOT 1156 * be permitted to open new associations. 1157 */ 1158 if (ep->base.bind_addr.port < PROT_SOCK && 1159 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1160 err = -EACCES; 1161 goto out_free; 1162 } 1163 } 1164 1165 scope = sctp_scope(&to); 1166 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1167 if (!asoc) { 1168 err = -ENOMEM; 1169 goto out_free; 1170 } 1171 1172 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1173 GFP_KERNEL); 1174 if (err < 0) { 1175 goto out_free; 1176 } 1177 1178 } 1179 1180 /* Prime the peer's transport structures. */ 1181 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1182 SCTP_UNKNOWN); 1183 if (!transport) { 1184 err = -ENOMEM; 1185 goto out_free; 1186 } 1187 1188 addrcnt++; 1189 addr_buf += af->sockaddr_len; 1190 walk_size += af->sockaddr_len; 1191 } 1192 1193 /* In case the user of sctp_connectx() wants an association 1194 * id back, assign one now. 1195 */ 1196 if (assoc_id) { 1197 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1198 if (err < 0) 1199 goto out_free; 1200 } 1201 1202 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1203 if (err < 0) { 1204 goto out_free; 1205 } 1206 1207 /* Initialize sk's dport and daddr for getpeername() */ 1208 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1209 sp->pf->to_sk_daddr(sa_addr, sk); 1210 sk->sk_err = 0; 1211 1212 /* in-kernel sockets don't generally have a file allocated to them 1213 * if all they do is call sock_create_kern(). 1214 */ 1215 if (sk->sk_socket->file) 1216 f_flags = sk->sk_socket->file->f_flags; 1217 1218 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1219 1220 err = sctp_wait_for_connect(asoc, &timeo); 1221 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1222 *assoc_id = asoc->assoc_id; 1223 1224 /* Don't free association on exit. */ 1225 asoc = NULL; 1226 1227 out_free: 1228 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1229 __func__, asoc, kaddrs, err); 1230 1231 if (asoc) { 1232 /* sctp_primitive_ASSOCIATE may have added this association 1233 * To the hash table, try to unhash it, just in case, its a noop 1234 * if it wasn't hashed so we're safe 1235 */ 1236 sctp_unhash_established(asoc); 1237 sctp_association_free(asoc); 1238 } 1239 return err; 1240 } 1241 1242 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1243 * 1244 * API 8.9 1245 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1246 * sctp_assoc_t *asoc); 1247 * 1248 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1249 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1250 * or IPv6 addresses. 1251 * 1252 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1253 * Section 3.1.2 for this usage. 1254 * 1255 * addrs is a pointer to an array of one or more socket addresses. Each 1256 * address is contained in its appropriate structure (i.e. struct 1257 * sockaddr_in or struct sockaddr_in6) the family of the address type 1258 * must be used to distengish the address length (note that this 1259 * representation is termed a "packed array" of addresses). The caller 1260 * specifies the number of addresses in the array with addrcnt. 1261 * 1262 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1263 * the association id of the new association. On failure, sctp_connectx() 1264 * returns -1, and sets errno to the appropriate error code. The assoc_id 1265 * is not touched by the kernel. 1266 * 1267 * For SCTP, the port given in each socket address must be the same, or 1268 * sctp_connectx() will fail, setting errno to EINVAL. 1269 * 1270 * An application can use sctp_connectx to initiate an association with 1271 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1272 * allows a caller to specify multiple addresses at which a peer can be 1273 * reached. The way the SCTP stack uses the list of addresses to set up 1274 * the association is implementation dependent. This function only 1275 * specifies that the stack will try to make use of all the addresses in 1276 * the list when needed. 1277 * 1278 * Note that the list of addresses passed in is only used for setting up 1279 * the association. It does not necessarily equal the set of addresses 1280 * the peer uses for the resulting association. If the caller wants to 1281 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1282 * retrieve them after the association has been set up. 1283 * 1284 * Basically do nothing but copying the addresses from user to kernel 1285 * land and invoking either sctp_connectx(). This is used for tunneling 1286 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1287 * 1288 * We don't use copy_from_user() for optimization: we first do the 1289 * sanity checks (buffer size -fast- and access check-healthy 1290 * pointer); if all of those succeed, then we can alloc the memory 1291 * (expensive operation) needed to copy the data to kernel. Then we do 1292 * the copying without checking the user space area 1293 * (__copy_from_user()). 1294 * 1295 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1296 * it. 1297 * 1298 * sk The sk of the socket 1299 * addrs The pointer to the addresses in user land 1300 * addrssize Size of the addrs buffer 1301 * 1302 * Returns >=0 if ok, <0 errno code on error. 1303 */ 1304 static int __sctp_setsockopt_connectx(struct sock *sk, 1305 struct sockaddr __user *addrs, 1306 int addrs_size, 1307 sctp_assoc_t *assoc_id) 1308 { 1309 int err = 0; 1310 struct sockaddr *kaddrs; 1311 1312 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1313 __func__, sk, addrs, addrs_size); 1314 1315 if (unlikely(addrs_size <= 0)) 1316 return -EINVAL; 1317 1318 /* Check the user passed a healthy pointer. */ 1319 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1320 return -EFAULT; 1321 1322 /* Alloc space for the address array in kernel memory. */ 1323 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1324 if (unlikely(!kaddrs)) 1325 return -ENOMEM; 1326 1327 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1328 err = -EFAULT; 1329 } else { 1330 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1331 } 1332 1333 kfree(kaddrs); 1334 1335 return err; 1336 } 1337 1338 /* 1339 * This is an older interface. It's kept for backward compatibility 1340 * to the option that doesn't provide association id. 1341 */ 1342 static int sctp_setsockopt_connectx_old(struct sock *sk, 1343 struct sockaddr __user *addrs, 1344 int addrs_size) 1345 { 1346 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1347 } 1348 1349 /* 1350 * New interface for the API. The since the API is done with a socket 1351 * option, to make it simple we feed back the association id is as a return 1352 * indication to the call. Error is always negative and association id is 1353 * always positive. 1354 */ 1355 static int sctp_setsockopt_connectx(struct sock *sk, 1356 struct sockaddr __user *addrs, 1357 int addrs_size) 1358 { 1359 sctp_assoc_t assoc_id = 0; 1360 int err = 0; 1361 1362 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1363 1364 if (err) 1365 return err; 1366 else 1367 return assoc_id; 1368 } 1369 1370 /* 1371 * New (hopefully final) interface for the API. 1372 * We use the sctp_getaddrs_old structure so that use-space library 1373 * can avoid any unnecessary allocations. The only different part 1374 * is that we store the actual length of the address buffer into the 1375 * addrs_num structure member. That way we can re-use the existing 1376 * code. 1377 */ 1378 #ifdef CONFIG_COMPAT 1379 struct compat_sctp_getaddrs_old { 1380 sctp_assoc_t assoc_id; 1381 s32 addr_num; 1382 compat_uptr_t addrs; /* struct sockaddr * */ 1383 }; 1384 #endif 1385 1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1387 char __user *optval, 1388 int __user *optlen) 1389 { 1390 struct sctp_getaddrs_old param; 1391 sctp_assoc_t assoc_id = 0; 1392 int err = 0; 1393 1394 #ifdef CONFIG_COMPAT 1395 if (is_compat_task()) { 1396 struct compat_sctp_getaddrs_old param32; 1397 1398 if (len < sizeof(param32)) 1399 return -EINVAL; 1400 if (copy_from_user(¶m32, optval, sizeof(param32))) 1401 return -EFAULT; 1402 1403 param.assoc_id = param32.assoc_id; 1404 param.addr_num = param32.addr_num; 1405 param.addrs = compat_ptr(param32.addrs); 1406 } else 1407 #endif 1408 { 1409 if (len < sizeof(param)) 1410 return -EINVAL; 1411 if (copy_from_user(¶m, optval, sizeof(param))) 1412 return -EFAULT; 1413 } 1414 1415 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1416 param.addrs, param.addr_num, 1417 &assoc_id); 1418 if (err == 0 || err == -EINPROGRESS) { 1419 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1420 return -EFAULT; 1421 if (put_user(sizeof(assoc_id), optlen)) 1422 return -EFAULT; 1423 } 1424 1425 return err; 1426 } 1427 1428 /* API 3.1.4 close() - UDP Style Syntax 1429 * Applications use close() to perform graceful shutdown (as described in 1430 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1431 * by a UDP-style socket. 1432 * 1433 * The syntax is 1434 * 1435 * ret = close(int sd); 1436 * 1437 * sd - the socket descriptor of the associations to be closed. 1438 * 1439 * To gracefully shutdown a specific association represented by the 1440 * UDP-style socket, an application should use the sendmsg() call, 1441 * passing no user data, but including the appropriate flag in the 1442 * ancillary data (see Section xxxx). 1443 * 1444 * If sd in the close() call is a branched-off socket representing only 1445 * one association, the shutdown is performed on that association only. 1446 * 1447 * 4.1.6 close() - TCP Style Syntax 1448 * 1449 * Applications use close() to gracefully close down an association. 1450 * 1451 * The syntax is: 1452 * 1453 * int close(int sd); 1454 * 1455 * sd - the socket descriptor of the association to be closed. 1456 * 1457 * After an application calls close() on a socket descriptor, no further 1458 * socket operations will succeed on that descriptor. 1459 * 1460 * API 7.1.4 SO_LINGER 1461 * 1462 * An application using the TCP-style socket can use this option to 1463 * perform the SCTP ABORT primitive. The linger option structure is: 1464 * 1465 * struct linger { 1466 * int l_onoff; // option on/off 1467 * int l_linger; // linger time 1468 * }; 1469 * 1470 * To enable the option, set l_onoff to 1. If the l_linger value is set 1471 * to 0, calling close() is the same as the ABORT primitive. If the 1472 * value is set to a negative value, the setsockopt() call will return 1473 * an error. If the value is set to a positive value linger_time, the 1474 * close() can be blocked for at most linger_time ms. If the graceful 1475 * shutdown phase does not finish during this period, close() will 1476 * return but the graceful shutdown phase continues in the system. 1477 */ 1478 static void sctp_close(struct sock *sk, long timeout) 1479 { 1480 struct net *net = sock_net(sk); 1481 struct sctp_endpoint *ep; 1482 struct sctp_association *asoc; 1483 struct list_head *pos, *temp; 1484 unsigned int data_was_unread; 1485 1486 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1487 1488 lock_sock(sk); 1489 sk->sk_shutdown = SHUTDOWN_MASK; 1490 sk->sk_state = SCTP_SS_CLOSING; 1491 1492 ep = sctp_sk(sk)->ep; 1493 1494 /* Clean up any skbs sitting on the receive queue. */ 1495 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1496 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1497 1498 /* Walk all associations on an endpoint. */ 1499 list_for_each_safe(pos, temp, &ep->asocs) { 1500 asoc = list_entry(pos, struct sctp_association, asocs); 1501 1502 if (sctp_style(sk, TCP)) { 1503 /* A closed association can still be in the list if 1504 * it belongs to a TCP-style listening socket that is 1505 * not yet accepted. If so, free it. If not, send an 1506 * ABORT or SHUTDOWN based on the linger options. 1507 */ 1508 if (sctp_state(asoc, CLOSED)) { 1509 sctp_unhash_established(asoc); 1510 sctp_association_free(asoc); 1511 continue; 1512 } 1513 } 1514 1515 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1516 !skb_queue_empty(&asoc->ulpq.reasm) || 1517 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1518 struct sctp_chunk *chunk; 1519 1520 chunk = sctp_make_abort_user(asoc, NULL, 0); 1521 if (chunk) 1522 sctp_primitive_ABORT(net, asoc, chunk); 1523 } else 1524 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1525 } 1526 1527 /* On a TCP-style socket, block for at most linger_time if set. */ 1528 if (sctp_style(sk, TCP) && timeout) 1529 sctp_wait_for_close(sk, timeout); 1530 1531 /* This will run the backlog queue. */ 1532 release_sock(sk); 1533 1534 /* Supposedly, no process has access to the socket, but 1535 * the net layers still may. 1536 */ 1537 local_bh_disable(); 1538 bh_lock_sock(sk); 1539 1540 /* Hold the sock, since sk_common_release() will put sock_put() 1541 * and we have just a little more cleanup. 1542 */ 1543 sock_hold(sk); 1544 sk_common_release(sk); 1545 1546 bh_unlock_sock(sk); 1547 local_bh_enable(); 1548 1549 sock_put(sk); 1550 1551 SCTP_DBG_OBJCNT_DEC(sock); 1552 } 1553 1554 /* Handle EPIPE error. */ 1555 static int sctp_error(struct sock *sk, int flags, int err) 1556 { 1557 if (err == -EPIPE) 1558 err = sock_error(sk) ? : -EPIPE; 1559 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1560 send_sig(SIGPIPE, current, 0); 1561 return err; 1562 } 1563 1564 /* API 3.1.3 sendmsg() - UDP Style Syntax 1565 * 1566 * An application uses sendmsg() and recvmsg() calls to transmit data to 1567 * and receive data from its peer. 1568 * 1569 * ssize_t sendmsg(int socket, const struct msghdr *message, 1570 * int flags); 1571 * 1572 * socket - the socket descriptor of the endpoint. 1573 * message - pointer to the msghdr structure which contains a single 1574 * user message and possibly some ancillary data. 1575 * 1576 * See Section 5 for complete description of the data 1577 * structures. 1578 * 1579 * flags - flags sent or received with the user message, see Section 1580 * 5 for complete description of the flags. 1581 * 1582 * Note: This function could use a rewrite especially when explicit 1583 * connect support comes in. 1584 */ 1585 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1586 1587 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1588 1589 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1590 struct msghdr *msg, size_t msg_len) 1591 { 1592 struct net *net = sock_net(sk); 1593 struct sctp_sock *sp; 1594 struct sctp_endpoint *ep; 1595 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1596 struct sctp_transport *transport, *chunk_tp; 1597 struct sctp_chunk *chunk; 1598 union sctp_addr to; 1599 struct sockaddr *msg_name = NULL; 1600 struct sctp_sndrcvinfo default_sinfo; 1601 struct sctp_sndrcvinfo *sinfo; 1602 struct sctp_initmsg *sinit; 1603 sctp_assoc_t associd = 0; 1604 sctp_cmsgs_t cmsgs = { NULL }; 1605 sctp_scope_t scope; 1606 bool fill_sinfo_ttl = false; 1607 struct sctp_datamsg *datamsg; 1608 int msg_flags = msg->msg_flags; 1609 __u16 sinfo_flags = 0; 1610 long timeo; 1611 int err; 1612 1613 err = 0; 1614 sp = sctp_sk(sk); 1615 ep = sp->ep; 1616 1617 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1618 msg, msg_len, ep); 1619 1620 /* We cannot send a message over a TCP-style listening socket. */ 1621 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1622 err = -EPIPE; 1623 goto out_nounlock; 1624 } 1625 1626 /* Parse out the SCTP CMSGs. */ 1627 err = sctp_msghdr_parse(msg, &cmsgs); 1628 if (err) { 1629 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1630 goto out_nounlock; 1631 } 1632 1633 /* Fetch the destination address for this packet. This 1634 * address only selects the association--it is not necessarily 1635 * the address we will send to. 1636 * For a peeled-off socket, msg_name is ignored. 1637 */ 1638 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1639 int msg_namelen = msg->msg_namelen; 1640 1641 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1642 msg_namelen); 1643 if (err) 1644 return err; 1645 1646 if (msg_namelen > sizeof(to)) 1647 msg_namelen = sizeof(to); 1648 memcpy(&to, msg->msg_name, msg_namelen); 1649 msg_name = msg->msg_name; 1650 } 1651 1652 sinit = cmsgs.init; 1653 if (cmsgs.sinfo != NULL) { 1654 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1655 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1656 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1657 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1658 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1659 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1660 1661 sinfo = &default_sinfo; 1662 fill_sinfo_ttl = true; 1663 } else { 1664 sinfo = cmsgs.srinfo; 1665 } 1666 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1667 if (sinfo) { 1668 sinfo_flags = sinfo->sinfo_flags; 1669 associd = sinfo->sinfo_assoc_id; 1670 } 1671 1672 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1673 msg_len, sinfo_flags); 1674 1675 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1676 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1677 err = -EINVAL; 1678 goto out_nounlock; 1679 } 1680 1681 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1682 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1683 * If SCTP_ABORT is set, the message length could be non zero with 1684 * the msg_iov set to the user abort reason. 1685 */ 1686 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1687 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1688 err = -EINVAL; 1689 goto out_nounlock; 1690 } 1691 1692 /* If SCTP_ADDR_OVER is set, there must be an address 1693 * specified in msg_name. 1694 */ 1695 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1696 err = -EINVAL; 1697 goto out_nounlock; 1698 } 1699 1700 transport = NULL; 1701 1702 pr_debug("%s: about to look up association\n", __func__); 1703 1704 lock_sock(sk); 1705 1706 /* If a msg_name has been specified, assume this is to be used. */ 1707 if (msg_name) { 1708 /* Look for a matching association on the endpoint. */ 1709 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1710 if (!asoc) { 1711 /* If we could not find a matching association on the 1712 * endpoint, make sure that it is not a TCP-style 1713 * socket that already has an association or there is 1714 * no peeled-off association on another socket. 1715 */ 1716 if ((sctp_style(sk, TCP) && 1717 sctp_sstate(sk, ESTABLISHED)) || 1718 sctp_endpoint_is_peeled_off(ep, &to)) { 1719 err = -EADDRNOTAVAIL; 1720 goto out_unlock; 1721 } 1722 } 1723 } else { 1724 asoc = sctp_id2assoc(sk, associd); 1725 if (!asoc) { 1726 err = -EPIPE; 1727 goto out_unlock; 1728 } 1729 } 1730 1731 if (asoc) { 1732 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1733 1734 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1735 * socket that has an association in CLOSED state. This can 1736 * happen when an accepted socket has an association that is 1737 * already CLOSED. 1738 */ 1739 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1740 err = -EPIPE; 1741 goto out_unlock; 1742 } 1743 1744 if (sinfo_flags & SCTP_EOF) { 1745 pr_debug("%s: shutting down association:%p\n", 1746 __func__, asoc); 1747 1748 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1749 err = 0; 1750 goto out_unlock; 1751 } 1752 if (sinfo_flags & SCTP_ABORT) { 1753 1754 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1755 if (!chunk) { 1756 err = -ENOMEM; 1757 goto out_unlock; 1758 } 1759 1760 pr_debug("%s: aborting association:%p\n", 1761 __func__, asoc); 1762 1763 sctp_primitive_ABORT(net, asoc, chunk); 1764 err = 0; 1765 goto out_unlock; 1766 } 1767 } 1768 1769 /* Do we need to create the association? */ 1770 if (!asoc) { 1771 pr_debug("%s: there is no association yet\n", __func__); 1772 1773 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1774 err = -EINVAL; 1775 goto out_unlock; 1776 } 1777 1778 /* Check for invalid stream against the stream counts, 1779 * either the default or the user specified stream counts. 1780 */ 1781 if (sinfo) { 1782 if (!sinit || !sinit->sinit_num_ostreams) { 1783 /* Check against the defaults. */ 1784 if (sinfo->sinfo_stream >= 1785 sp->initmsg.sinit_num_ostreams) { 1786 err = -EINVAL; 1787 goto out_unlock; 1788 } 1789 } else { 1790 /* Check against the requested. */ 1791 if (sinfo->sinfo_stream >= 1792 sinit->sinit_num_ostreams) { 1793 err = -EINVAL; 1794 goto out_unlock; 1795 } 1796 } 1797 } 1798 1799 /* 1800 * API 3.1.2 bind() - UDP Style Syntax 1801 * If a bind() or sctp_bindx() is not called prior to a 1802 * sendmsg() call that initiates a new association, the 1803 * system picks an ephemeral port and will choose an address 1804 * set equivalent to binding with a wildcard address. 1805 */ 1806 if (!ep->base.bind_addr.port) { 1807 if (sctp_autobind(sk)) { 1808 err = -EAGAIN; 1809 goto out_unlock; 1810 } 1811 } else { 1812 /* 1813 * If an unprivileged user inherits a one-to-many 1814 * style socket with open associations on a privileged 1815 * port, it MAY be permitted to accept new associations, 1816 * but it SHOULD NOT be permitted to open new 1817 * associations. 1818 */ 1819 if (ep->base.bind_addr.port < PROT_SOCK && 1820 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1821 err = -EACCES; 1822 goto out_unlock; 1823 } 1824 } 1825 1826 scope = sctp_scope(&to); 1827 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1828 if (!new_asoc) { 1829 err = -ENOMEM; 1830 goto out_unlock; 1831 } 1832 asoc = new_asoc; 1833 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1834 if (err < 0) { 1835 err = -ENOMEM; 1836 goto out_free; 1837 } 1838 1839 /* If the SCTP_INIT ancillary data is specified, set all 1840 * the association init values accordingly. 1841 */ 1842 if (sinit) { 1843 if (sinit->sinit_num_ostreams) { 1844 asoc->c.sinit_num_ostreams = 1845 sinit->sinit_num_ostreams; 1846 } 1847 if (sinit->sinit_max_instreams) { 1848 asoc->c.sinit_max_instreams = 1849 sinit->sinit_max_instreams; 1850 } 1851 if (sinit->sinit_max_attempts) { 1852 asoc->max_init_attempts 1853 = sinit->sinit_max_attempts; 1854 } 1855 if (sinit->sinit_max_init_timeo) { 1856 asoc->max_init_timeo = 1857 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1858 } 1859 } 1860 1861 /* Prime the peer's transport structures. */ 1862 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1863 if (!transport) { 1864 err = -ENOMEM; 1865 goto out_free; 1866 } 1867 } 1868 1869 /* ASSERT: we have a valid association at this point. */ 1870 pr_debug("%s: we have a valid association\n", __func__); 1871 1872 if (!sinfo) { 1873 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1874 * one with some defaults. 1875 */ 1876 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1877 default_sinfo.sinfo_stream = asoc->default_stream; 1878 default_sinfo.sinfo_flags = asoc->default_flags; 1879 default_sinfo.sinfo_ppid = asoc->default_ppid; 1880 default_sinfo.sinfo_context = asoc->default_context; 1881 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1882 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1883 1884 sinfo = &default_sinfo; 1885 } else if (fill_sinfo_ttl) { 1886 /* In case SNDINFO was specified, we still need to fill 1887 * it with a default ttl from the assoc here. 1888 */ 1889 sinfo->sinfo_timetolive = asoc->default_timetolive; 1890 } 1891 1892 /* API 7.1.7, the sndbuf size per association bounds the 1893 * maximum size of data that can be sent in a single send call. 1894 */ 1895 if (msg_len > sk->sk_sndbuf) { 1896 err = -EMSGSIZE; 1897 goto out_free; 1898 } 1899 1900 if (asoc->pmtu_pending) 1901 sctp_assoc_pending_pmtu(sk, asoc); 1902 1903 /* If fragmentation is disabled and the message length exceeds the 1904 * association fragmentation point, return EMSGSIZE. The I-D 1905 * does not specify what this error is, but this looks like 1906 * a great fit. 1907 */ 1908 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1909 err = -EMSGSIZE; 1910 goto out_free; 1911 } 1912 1913 /* Check for invalid stream. */ 1914 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1915 err = -EINVAL; 1916 goto out_free; 1917 } 1918 1919 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1920 if (!sctp_wspace(asoc)) { 1921 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1922 if (err) 1923 goto out_free; 1924 } 1925 1926 /* If an address is passed with the sendto/sendmsg call, it is used 1927 * to override the primary destination address in the TCP model, or 1928 * when SCTP_ADDR_OVER flag is set in the UDP model. 1929 */ 1930 if ((sctp_style(sk, TCP) && msg_name) || 1931 (sinfo_flags & SCTP_ADDR_OVER)) { 1932 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1933 if (!chunk_tp) { 1934 err = -EINVAL; 1935 goto out_free; 1936 } 1937 } else 1938 chunk_tp = NULL; 1939 1940 /* Auto-connect, if we aren't connected already. */ 1941 if (sctp_state(asoc, CLOSED)) { 1942 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1943 if (err < 0) 1944 goto out_free; 1945 1946 pr_debug("%s: we associated primitively\n", __func__); 1947 } 1948 1949 /* Break the message into multiple chunks of maximum size. */ 1950 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1951 if (IS_ERR(datamsg)) { 1952 err = PTR_ERR(datamsg); 1953 goto out_free; 1954 } 1955 1956 /* Now send the (possibly) fragmented message. */ 1957 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1958 sctp_chunk_hold(chunk); 1959 1960 /* Do accounting for the write space. */ 1961 sctp_set_owner_w(chunk); 1962 1963 chunk->transport = chunk_tp; 1964 } 1965 1966 /* Send it to the lower layers. Note: all chunks 1967 * must either fail or succeed. The lower layer 1968 * works that way today. Keep it that way or this 1969 * breaks. 1970 */ 1971 err = sctp_primitive_SEND(net, asoc, datamsg); 1972 /* Did the lower layer accept the chunk? */ 1973 if (err) { 1974 sctp_datamsg_free(datamsg); 1975 goto out_free; 1976 } 1977 1978 pr_debug("%s: we sent primitively\n", __func__); 1979 1980 sctp_datamsg_put(datamsg); 1981 err = msg_len; 1982 1983 /* If we are already past ASSOCIATE, the lower 1984 * layers are responsible for association cleanup. 1985 */ 1986 goto out_unlock; 1987 1988 out_free: 1989 if (new_asoc) { 1990 sctp_unhash_established(asoc); 1991 sctp_association_free(asoc); 1992 } 1993 out_unlock: 1994 release_sock(sk); 1995 1996 out_nounlock: 1997 return sctp_error(sk, msg_flags, err); 1998 1999 #if 0 2000 do_sock_err: 2001 if (msg_len) 2002 err = msg_len; 2003 else 2004 err = sock_error(sk); 2005 goto out; 2006 2007 do_interrupted: 2008 if (msg_len) 2009 err = msg_len; 2010 goto out; 2011 #endif /* 0 */ 2012 } 2013 2014 /* This is an extended version of skb_pull() that removes the data from the 2015 * start of a skb even when data is spread across the list of skb's in the 2016 * frag_list. len specifies the total amount of data that needs to be removed. 2017 * when 'len' bytes could be removed from the skb, it returns 0. 2018 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2019 * could not be removed. 2020 */ 2021 static int sctp_skb_pull(struct sk_buff *skb, int len) 2022 { 2023 struct sk_buff *list; 2024 int skb_len = skb_headlen(skb); 2025 int rlen; 2026 2027 if (len <= skb_len) { 2028 __skb_pull(skb, len); 2029 return 0; 2030 } 2031 len -= skb_len; 2032 __skb_pull(skb, skb_len); 2033 2034 skb_walk_frags(skb, list) { 2035 rlen = sctp_skb_pull(list, len); 2036 skb->len -= (len-rlen); 2037 skb->data_len -= (len-rlen); 2038 2039 if (!rlen) 2040 return 0; 2041 2042 len = rlen; 2043 } 2044 2045 return len; 2046 } 2047 2048 /* API 3.1.3 recvmsg() - UDP Style Syntax 2049 * 2050 * ssize_t recvmsg(int socket, struct msghdr *message, 2051 * int flags); 2052 * 2053 * socket - the socket descriptor of the endpoint. 2054 * message - pointer to the msghdr structure which contains a single 2055 * user message and possibly some ancillary data. 2056 * 2057 * See Section 5 for complete description of the data 2058 * structures. 2059 * 2060 * flags - flags sent or received with the user message, see Section 2061 * 5 for complete description of the flags. 2062 */ 2063 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2064 struct msghdr *msg, size_t len, int noblock, 2065 int flags, int *addr_len) 2066 { 2067 struct sctp_ulpevent *event = NULL; 2068 struct sctp_sock *sp = sctp_sk(sk); 2069 struct sk_buff *skb; 2070 int copied; 2071 int err = 0; 2072 int skb_len; 2073 2074 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2075 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2076 addr_len); 2077 2078 lock_sock(sk); 2079 2080 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2081 err = -ENOTCONN; 2082 goto out; 2083 } 2084 2085 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2086 if (!skb) 2087 goto out; 2088 2089 /* Get the total length of the skb including any skb's in the 2090 * frag_list. 2091 */ 2092 skb_len = skb->len; 2093 2094 copied = skb_len; 2095 if (copied > len) 2096 copied = len; 2097 2098 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2099 2100 event = sctp_skb2event(skb); 2101 2102 if (err) 2103 goto out_free; 2104 2105 sock_recv_ts_and_drops(msg, sk, skb); 2106 if (sctp_ulpevent_is_notification(event)) { 2107 msg->msg_flags |= MSG_NOTIFICATION; 2108 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2109 } else { 2110 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2111 } 2112 2113 /* Check if we allow SCTP_NXTINFO. */ 2114 if (sp->recvnxtinfo) 2115 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2116 /* Check if we allow SCTP_RCVINFO. */ 2117 if (sp->recvrcvinfo) 2118 sctp_ulpevent_read_rcvinfo(event, msg); 2119 /* Check if we allow SCTP_SNDRCVINFO. */ 2120 if (sp->subscribe.sctp_data_io_event) 2121 sctp_ulpevent_read_sndrcvinfo(event, msg); 2122 2123 #if 0 2124 /* FIXME: we should be calling IP/IPv6 layers. */ 2125 if (sk->sk_protinfo.af_inet.cmsg_flags) 2126 ip_cmsg_recv(msg, skb); 2127 #endif 2128 2129 err = copied; 2130 2131 /* If skb's length exceeds the user's buffer, update the skb and 2132 * push it back to the receive_queue so that the next call to 2133 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2134 */ 2135 if (skb_len > copied) { 2136 msg->msg_flags &= ~MSG_EOR; 2137 if (flags & MSG_PEEK) 2138 goto out_free; 2139 sctp_skb_pull(skb, copied); 2140 skb_queue_head(&sk->sk_receive_queue, skb); 2141 2142 /* When only partial message is copied to the user, increase 2143 * rwnd by that amount. If all the data in the skb is read, 2144 * rwnd is updated when the event is freed. 2145 */ 2146 if (!sctp_ulpevent_is_notification(event)) 2147 sctp_assoc_rwnd_increase(event->asoc, copied); 2148 goto out; 2149 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2150 (event->msg_flags & MSG_EOR)) 2151 msg->msg_flags |= MSG_EOR; 2152 else 2153 msg->msg_flags &= ~MSG_EOR; 2154 2155 out_free: 2156 if (flags & MSG_PEEK) { 2157 /* Release the skb reference acquired after peeking the skb in 2158 * sctp_skb_recv_datagram(). 2159 */ 2160 kfree_skb(skb); 2161 } else { 2162 /* Free the event which includes releasing the reference to 2163 * the owner of the skb, freeing the skb and updating the 2164 * rwnd. 2165 */ 2166 sctp_ulpevent_free(event); 2167 } 2168 out: 2169 release_sock(sk); 2170 return err; 2171 } 2172 2173 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2174 * 2175 * This option is a on/off flag. If enabled no SCTP message 2176 * fragmentation will be performed. Instead if a message being sent 2177 * exceeds the current PMTU size, the message will NOT be sent and 2178 * instead a error will be indicated to the user. 2179 */ 2180 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2181 char __user *optval, 2182 unsigned int optlen) 2183 { 2184 int val; 2185 2186 if (optlen < sizeof(int)) 2187 return -EINVAL; 2188 2189 if (get_user(val, (int __user *)optval)) 2190 return -EFAULT; 2191 2192 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2193 2194 return 0; 2195 } 2196 2197 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2198 unsigned int optlen) 2199 { 2200 struct sctp_association *asoc; 2201 struct sctp_ulpevent *event; 2202 2203 if (optlen > sizeof(struct sctp_event_subscribe)) 2204 return -EINVAL; 2205 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2206 return -EFAULT; 2207 2208 if (sctp_sk(sk)->subscribe.sctp_data_io_event) 2209 pr_warn_ratelimited(DEPRECATED "%s (pid %d) " 2210 "Requested SCTP_SNDRCVINFO event.\n" 2211 "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n", 2212 current->comm, task_pid_nr(current)); 2213 2214 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2215 * if there is no data to be sent or retransmit, the stack will 2216 * immediately send up this notification. 2217 */ 2218 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2219 &sctp_sk(sk)->subscribe)) { 2220 asoc = sctp_id2assoc(sk, 0); 2221 2222 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2223 event = sctp_ulpevent_make_sender_dry_event(asoc, 2224 GFP_ATOMIC); 2225 if (!event) 2226 return -ENOMEM; 2227 2228 sctp_ulpq_tail_event(&asoc->ulpq, event); 2229 } 2230 } 2231 2232 return 0; 2233 } 2234 2235 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2236 * 2237 * This socket option is applicable to the UDP-style socket only. When 2238 * set it will cause associations that are idle for more than the 2239 * specified number of seconds to automatically close. An association 2240 * being idle is defined an association that has NOT sent or received 2241 * user data. The special value of '0' indicates that no automatic 2242 * close of any associations should be performed. The option expects an 2243 * integer defining the number of seconds of idle time before an 2244 * association is closed. 2245 */ 2246 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2247 unsigned int optlen) 2248 { 2249 struct sctp_sock *sp = sctp_sk(sk); 2250 struct net *net = sock_net(sk); 2251 2252 /* Applicable to UDP-style socket only */ 2253 if (sctp_style(sk, TCP)) 2254 return -EOPNOTSUPP; 2255 if (optlen != sizeof(int)) 2256 return -EINVAL; 2257 if (copy_from_user(&sp->autoclose, optval, optlen)) 2258 return -EFAULT; 2259 2260 if (sp->autoclose > net->sctp.max_autoclose) 2261 sp->autoclose = net->sctp.max_autoclose; 2262 2263 return 0; 2264 } 2265 2266 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2267 * 2268 * Applications can enable or disable heartbeats for any peer address of 2269 * an association, modify an address's heartbeat interval, force a 2270 * heartbeat to be sent immediately, and adjust the address's maximum 2271 * number of retransmissions sent before an address is considered 2272 * unreachable. The following structure is used to access and modify an 2273 * address's parameters: 2274 * 2275 * struct sctp_paddrparams { 2276 * sctp_assoc_t spp_assoc_id; 2277 * struct sockaddr_storage spp_address; 2278 * uint32_t spp_hbinterval; 2279 * uint16_t spp_pathmaxrxt; 2280 * uint32_t spp_pathmtu; 2281 * uint32_t spp_sackdelay; 2282 * uint32_t spp_flags; 2283 * }; 2284 * 2285 * spp_assoc_id - (one-to-many style socket) This is filled in the 2286 * application, and identifies the association for 2287 * this query. 2288 * spp_address - This specifies which address is of interest. 2289 * spp_hbinterval - This contains the value of the heartbeat interval, 2290 * in milliseconds. If a value of zero 2291 * is present in this field then no changes are to 2292 * be made to this parameter. 2293 * spp_pathmaxrxt - This contains the maximum number of 2294 * retransmissions before this address shall be 2295 * considered unreachable. If a value of zero 2296 * is present in this field then no changes are to 2297 * be made to this parameter. 2298 * spp_pathmtu - When Path MTU discovery is disabled the value 2299 * specified here will be the "fixed" path mtu. 2300 * Note that if the spp_address field is empty 2301 * then all associations on this address will 2302 * have this fixed path mtu set upon them. 2303 * 2304 * spp_sackdelay - When delayed sack is enabled, this value specifies 2305 * the number of milliseconds that sacks will be delayed 2306 * for. This value will apply to all addresses of an 2307 * association if the spp_address field is empty. Note 2308 * also, that if delayed sack is enabled and this 2309 * value is set to 0, no change is made to the last 2310 * recorded delayed sack timer value. 2311 * 2312 * spp_flags - These flags are used to control various features 2313 * on an association. The flag field may contain 2314 * zero or more of the following options. 2315 * 2316 * SPP_HB_ENABLE - Enable heartbeats on the 2317 * specified address. Note that if the address 2318 * field is empty all addresses for the association 2319 * have heartbeats enabled upon them. 2320 * 2321 * SPP_HB_DISABLE - Disable heartbeats on the 2322 * speicifed address. Note that if the address 2323 * field is empty all addresses for the association 2324 * will have their heartbeats disabled. Note also 2325 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2326 * mutually exclusive, only one of these two should 2327 * be specified. Enabling both fields will have 2328 * undetermined results. 2329 * 2330 * SPP_HB_DEMAND - Request a user initiated heartbeat 2331 * to be made immediately. 2332 * 2333 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2334 * heartbeat delayis to be set to the value of 0 2335 * milliseconds. 2336 * 2337 * SPP_PMTUD_ENABLE - This field will enable PMTU 2338 * discovery upon the specified address. Note that 2339 * if the address feild is empty then all addresses 2340 * on the association are effected. 2341 * 2342 * SPP_PMTUD_DISABLE - This field will disable PMTU 2343 * discovery upon the specified address. Note that 2344 * if the address feild is empty then all addresses 2345 * on the association are effected. Not also that 2346 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2347 * exclusive. Enabling both will have undetermined 2348 * results. 2349 * 2350 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2351 * on delayed sack. The time specified in spp_sackdelay 2352 * is used to specify the sack delay for this address. Note 2353 * that if spp_address is empty then all addresses will 2354 * enable delayed sack and take on the sack delay 2355 * value specified in spp_sackdelay. 2356 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2357 * off delayed sack. If the spp_address field is blank then 2358 * delayed sack is disabled for the entire association. Note 2359 * also that this field is mutually exclusive to 2360 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2361 * results. 2362 */ 2363 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2364 struct sctp_transport *trans, 2365 struct sctp_association *asoc, 2366 struct sctp_sock *sp, 2367 int hb_change, 2368 int pmtud_change, 2369 int sackdelay_change) 2370 { 2371 int error; 2372 2373 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2374 struct net *net = sock_net(trans->asoc->base.sk); 2375 2376 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2377 if (error) 2378 return error; 2379 } 2380 2381 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2382 * this field is ignored. Note also that a value of zero indicates 2383 * the current setting should be left unchanged. 2384 */ 2385 if (params->spp_flags & SPP_HB_ENABLE) { 2386 2387 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2388 * set. This lets us use 0 value when this flag 2389 * is set. 2390 */ 2391 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2392 params->spp_hbinterval = 0; 2393 2394 if (params->spp_hbinterval || 2395 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2396 if (trans) { 2397 trans->hbinterval = 2398 msecs_to_jiffies(params->spp_hbinterval); 2399 } else if (asoc) { 2400 asoc->hbinterval = 2401 msecs_to_jiffies(params->spp_hbinterval); 2402 } else { 2403 sp->hbinterval = params->spp_hbinterval; 2404 } 2405 } 2406 } 2407 2408 if (hb_change) { 2409 if (trans) { 2410 trans->param_flags = 2411 (trans->param_flags & ~SPP_HB) | hb_change; 2412 } else if (asoc) { 2413 asoc->param_flags = 2414 (asoc->param_flags & ~SPP_HB) | hb_change; 2415 } else { 2416 sp->param_flags = 2417 (sp->param_flags & ~SPP_HB) | hb_change; 2418 } 2419 } 2420 2421 /* When Path MTU discovery is disabled the value specified here will 2422 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2423 * include the flag SPP_PMTUD_DISABLE for this field to have any 2424 * effect). 2425 */ 2426 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2427 if (trans) { 2428 trans->pathmtu = params->spp_pathmtu; 2429 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2430 } else if (asoc) { 2431 asoc->pathmtu = params->spp_pathmtu; 2432 sctp_frag_point(asoc, params->spp_pathmtu); 2433 } else { 2434 sp->pathmtu = params->spp_pathmtu; 2435 } 2436 } 2437 2438 if (pmtud_change) { 2439 if (trans) { 2440 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2441 (params->spp_flags & SPP_PMTUD_ENABLE); 2442 trans->param_flags = 2443 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2444 if (update) { 2445 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2446 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2447 } 2448 } else if (asoc) { 2449 asoc->param_flags = 2450 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2451 } else { 2452 sp->param_flags = 2453 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2454 } 2455 } 2456 2457 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2458 * value of this field is ignored. Note also that a value of zero 2459 * indicates the current setting should be left unchanged. 2460 */ 2461 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2462 if (trans) { 2463 trans->sackdelay = 2464 msecs_to_jiffies(params->spp_sackdelay); 2465 } else if (asoc) { 2466 asoc->sackdelay = 2467 msecs_to_jiffies(params->spp_sackdelay); 2468 } else { 2469 sp->sackdelay = params->spp_sackdelay; 2470 } 2471 } 2472 2473 if (sackdelay_change) { 2474 if (trans) { 2475 trans->param_flags = 2476 (trans->param_flags & ~SPP_SACKDELAY) | 2477 sackdelay_change; 2478 } else if (asoc) { 2479 asoc->param_flags = 2480 (asoc->param_flags & ~SPP_SACKDELAY) | 2481 sackdelay_change; 2482 } else { 2483 sp->param_flags = 2484 (sp->param_flags & ~SPP_SACKDELAY) | 2485 sackdelay_change; 2486 } 2487 } 2488 2489 /* Note that a value of zero indicates the current setting should be 2490 left unchanged. 2491 */ 2492 if (params->spp_pathmaxrxt) { 2493 if (trans) { 2494 trans->pathmaxrxt = params->spp_pathmaxrxt; 2495 } else if (asoc) { 2496 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2497 } else { 2498 sp->pathmaxrxt = params->spp_pathmaxrxt; 2499 } 2500 } 2501 2502 return 0; 2503 } 2504 2505 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2506 char __user *optval, 2507 unsigned int optlen) 2508 { 2509 struct sctp_paddrparams params; 2510 struct sctp_transport *trans = NULL; 2511 struct sctp_association *asoc = NULL; 2512 struct sctp_sock *sp = sctp_sk(sk); 2513 int error; 2514 int hb_change, pmtud_change, sackdelay_change; 2515 2516 if (optlen != sizeof(struct sctp_paddrparams)) 2517 return -EINVAL; 2518 2519 if (copy_from_user(¶ms, optval, optlen)) 2520 return -EFAULT; 2521 2522 /* Validate flags and value parameters. */ 2523 hb_change = params.spp_flags & SPP_HB; 2524 pmtud_change = params.spp_flags & SPP_PMTUD; 2525 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2526 2527 if (hb_change == SPP_HB || 2528 pmtud_change == SPP_PMTUD || 2529 sackdelay_change == SPP_SACKDELAY || 2530 params.spp_sackdelay > 500 || 2531 (params.spp_pathmtu && 2532 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2533 return -EINVAL; 2534 2535 /* If an address other than INADDR_ANY is specified, and 2536 * no transport is found, then the request is invalid. 2537 */ 2538 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2539 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2540 params.spp_assoc_id); 2541 if (!trans) 2542 return -EINVAL; 2543 } 2544 2545 /* Get association, if assoc_id != 0 and the socket is a one 2546 * to many style socket, and an association was not found, then 2547 * the id was invalid. 2548 */ 2549 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2550 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2551 return -EINVAL; 2552 2553 /* Heartbeat demand can only be sent on a transport or 2554 * association, but not a socket. 2555 */ 2556 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2557 return -EINVAL; 2558 2559 /* Process parameters. */ 2560 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2561 hb_change, pmtud_change, 2562 sackdelay_change); 2563 2564 if (error) 2565 return error; 2566 2567 /* If changes are for association, also apply parameters to each 2568 * transport. 2569 */ 2570 if (!trans && asoc) { 2571 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2572 transports) { 2573 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2574 hb_change, pmtud_change, 2575 sackdelay_change); 2576 } 2577 } 2578 2579 return 0; 2580 } 2581 2582 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2583 { 2584 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2585 } 2586 2587 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2588 { 2589 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2590 } 2591 2592 /* 2593 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2594 * 2595 * This option will effect the way delayed acks are performed. This 2596 * option allows you to get or set the delayed ack time, in 2597 * milliseconds. It also allows changing the delayed ack frequency. 2598 * Changing the frequency to 1 disables the delayed sack algorithm. If 2599 * the assoc_id is 0, then this sets or gets the endpoints default 2600 * values. If the assoc_id field is non-zero, then the set or get 2601 * effects the specified association for the one to many model (the 2602 * assoc_id field is ignored by the one to one model). Note that if 2603 * sack_delay or sack_freq are 0 when setting this option, then the 2604 * current values will remain unchanged. 2605 * 2606 * struct sctp_sack_info { 2607 * sctp_assoc_t sack_assoc_id; 2608 * uint32_t sack_delay; 2609 * uint32_t sack_freq; 2610 * }; 2611 * 2612 * sack_assoc_id - This parameter, indicates which association the user 2613 * is performing an action upon. Note that if this field's value is 2614 * zero then the endpoints default value is changed (effecting future 2615 * associations only). 2616 * 2617 * sack_delay - This parameter contains the number of milliseconds that 2618 * the user is requesting the delayed ACK timer be set to. Note that 2619 * this value is defined in the standard to be between 200 and 500 2620 * milliseconds. 2621 * 2622 * sack_freq - This parameter contains the number of packets that must 2623 * be received before a sack is sent without waiting for the delay 2624 * timer to expire. The default value for this is 2, setting this 2625 * value to 1 will disable the delayed sack algorithm. 2626 */ 2627 2628 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2629 char __user *optval, unsigned int optlen) 2630 { 2631 struct sctp_sack_info params; 2632 struct sctp_transport *trans = NULL; 2633 struct sctp_association *asoc = NULL; 2634 struct sctp_sock *sp = sctp_sk(sk); 2635 2636 if (optlen == sizeof(struct sctp_sack_info)) { 2637 if (copy_from_user(¶ms, optval, optlen)) 2638 return -EFAULT; 2639 2640 if (params.sack_delay == 0 && params.sack_freq == 0) 2641 return 0; 2642 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2643 pr_warn_ratelimited(DEPRECATED 2644 "%s (pid %d) " 2645 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2646 "Use struct sctp_sack_info instead\n", 2647 current->comm, task_pid_nr(current)); 2648 if (copy_from_user(¶ms, optval, optlen)) 2649 return -EFAULT; 2650 2651 if (params.sack_delay == 0) 2652 params.sack_freq = 1; 2653 else 2654 params.sack_freq = 0; 2655 } else 2656 return -EINVAL; 2657 2658 /* Validate value parameter. */ 2659 if (params.sack_delay > 500) 2660 return -EINVAL; 2661 2662 /* Get association, if sack_assoc_id != 0 and the socket is a one 2663 * to many style socket, and an association was not found, then 2664 * the id was invalid. 2665 */ 2666 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2667 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2668 return -EINVAL; 2669 2670 if (params.sack_delay) { 2671 if (asoc) { 2672 asoc->sackdelay = 2673 msecs_to_jiffies(params.sack_delay); 2674 asoc->param_flags = 2675 sctp_spp_sackdelay_enable(asoc->param_flags); 2676 } else { 2677 sp->sackdelay = params.sack_delay; 2678 sp->param_flags = 2679 sctp_spp_sackdelay_enable(sp->param_flags); 2680 } 2681 } 2682 2683 if (params.sack_freq == 1) { 2684 if (asoc) { 2685 asoc->param_flags = 2686 sctp_spp_sackdelay_disable(asoc->param_flags); 2687 } else { 2688 sp->param_flags = 2689 sctp_spp_sackdelay_disable(sp->param_flags); 2690 } 2691 } else if (params.sack_freq > 1) { 2692 if (asoc) { 2693 asoc->sackfreq = params.sack_freq; 2694 asoc->param_flags = 2695 sctp_spp_sackdelay_enable(asoc->param_flags); 2696 } else { 2697 sp->sackfreq = params.sack_freq; 2698 sp->param_flags = 2699 sctp_spp_sackdelay_enable(sp->param_flags); 2700 } 2701 } 2702 2703 /* If change is for association, also apply to each transport. */ 2704 if (asoc) { 2705 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2706 transports) { 2707 if (params.sack_delay) { 2708 trans->sackdelay = 2709 msecs_to_jiffies(params.sack_delay); 2710 trans->param_flags = 2711 sctp_spp_sackdelay_enable(trans->param_flags); 2712 } 2713 if (params.sack_freq == 1) { 2714 trans->param_flags = 2715 sctp_spp_sackdelay_disable(trans->param_flags); 2716 } else if (params.sack_freq > 1) { 2717 trans->sackfreq = params.sack_freq; 2718 trans->param_flags = 2719 sctp_spp_sackdelay_enable(trans->param_flags); 2720 } 2721 } 2722 } 2723 2724 return 0; 2725 } 2726 2727 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2728 * 2729 * Applications can specify protocol parameters for the default association 2730 * initialization. The option name argument to setsockopt() and getsockopt() 2731 * is SCTP_INITMSG. 2732 * 2733 * Setting initialization parameters is effective only on an unconnected 2734 * socket (for UDP-style sockets only future associations are effected 2735 * by the change). With TCP-style sockets, this option is inherited by 2736 * sockets derived from a listener socket. 2737 */ 2738 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2739 { 2740 struct sctp_initmsg sinit; 2741 struct sctp_sock *sp = sctp_sk(sk); 2742 2743 if (optlen != sizeof(struct sctp_initmsg)) 2744 return -EINVAL; 2745 if (copy_from_user(&sinit, optval, optlen)) 2746 return -EFAULT; 2747 2748 if (sinit.sinit_num_ostreams) 2749 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2750 if (sinit.sinit_max_instreams) 2751 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2752 if (sinit.sinit_max_attempts) 2753 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2754 if (sinit.sinit_max_init_timeo) 2755 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2756 2757 return 0; 2758 } 2759 2760 /* 2761 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2762 * 2763 * Applications that wish to use the sendto() system call may wish to 2764 * specify a default set of parameters that would normally be supplied 2765 * through the inclusion of ancillary data. This socket option allows 2766 * such an application to set the default sctp_sndrcvinfo structure. 2767 * The application that wishes to use this socket option simply passes 2768 * in to this call the sctp_sndrcvinfo structure defined in Section 2769 * 5.2.2) The input parameters accepted by this call include 2770 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2771 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2772 * to this call if the caller is using the UDP model. 2773 */ 2774 static int sctp_setsockopt_default_send_param(struct sock *sk, 2775 char __user *optval, 2776 unsigned int optlen) 2777 { 2778 struct sctp_sock *sp = sctp_sk(sk); 2779 struct sctp_association *asoc; 2780 struct sctp_sndrcvinfo info; 2781 2782 if (optlen != sizeof(info)) 2783 return -EINVAL; 2784 if (copy_from_user(&info, optval, optlen)) 2785 return -EFAULT; 2786 if (info.sinfo_flags & 2787 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2788 SCTP_ABORT | SCTP_EOF)) 2789 return -EINVAL; 2790 2791 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2792 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2793 return -EINVAL; 2794 if (asoc) { 2795 asoc->default_stream = info.sinfo_stream; 2796 asoc->default_flags = info.sinfo_flags; 2797 asoc->default_ppid = info.sinfo_ppid; 2798 asoc->default_context = info.sinfo_context; 2799 asoc->default_timetolive = info.sinfo_timetolive; 2800 } else { 2801 sp->default_stream = info.sinfo_stream; 2802 sp->default_flags = info.sinfo_flags; 2803 sp->default_ppid = info.sinfo_ppid; 2804 sp->default_context = info.sinfo_context; 2805 sp->default_timetolive = info.sinfo_timetolive; 2806 } 2807 2808 return 0; 2809 } 2810 2811 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2812 * (SCTP_DEFAULT_SNDINFO) 2813 */ 2814 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2815 char __user *optval, 2816 unsigned int optlen) 2817 { 2818 struct sctp_sock *sp = sctp_sk(sk); 2819 struct sctp_association *asoc; 2820 struct sctp_sndinfo info; 2821 2822 if (optlen != sizeof(info)) 2823 return -EINVAL; 2824 if (copy_from_user(&info, optval, optlen)) 2825 return -EFAULT; 2826 if (info.snd_flags & 2827 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2828 SCTP_ABORT | SCTP_EOF)) 2829 return -EINVAL; 2830 2831 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2832 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2833 return -EINVAL; 2834 if (asoc) { 2835 asoc->default_stream = info.snd_sid; 2836 asoc->default_flags = info.snd_flags; 2837 asoc->default_ppid = info.snd_ppid; 2838 asoc->default_context = info.snd_context; 2839 } else { 2840 sp->default_stream = info.snd_sid; 2841 sp->default_flags = info.snd_flags; 2842 sp->default_ppid = info.snd_ppid; 2843 sp->default_context = info.snd_context; 2844 } 2845 2846 return 0; 2847 } 2848 2849 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2850 * 2851 * Requests that the local SCTP stack use the enclosed peer address as 2852 * the association primary. The enclosed address must be one of the 2853 * association peer's addresses. 2854 */ 2855 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2856 unsigned int optlen) 2857 { 2858 struct sctp_prim prim; 2859 struct sctp_transport *trans; 2860 2861 if (optlen != sizeof(struct sctp_prim)) 2862 return -EINVAL; 2863 2864 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2865 return -EFAULT; 2866 2867 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2868 if (!trans) 2869 return -EINVAL; 2870 2871 sctp_assoc_set_primary(trans->asoc, trans); 2872 2873 return 0; 2874 } 2875 2876 /* 2877 * 7.1.5 SCTP_NODELAY 2878 * 2879 * Turn on/off any Nagle-like algorithm. This means that packets are 2880 * generally sent as soon as possible and no unnecessary delays are 2881 * introduced, at the cost of more packets in the network. Expects an 2882 * integer boolean flag. 2883 */ 2884 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2885 unsigned int optlen) 2886 { 2887 int val; 2888 2889 if (optlen < sizeof(int)) 2890 return -EINVAL; 2891 if (get_user(val, (int __user *)optval)) 2892 return -EFAULT; 2893 2894 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2895 return 0; 2896 } 2897 2898 /* 2899 * 2900 * 7.1.1 SCTP_RTOINFO 2901 * 2902 * The protocol parameters used to initialize and bound retransmission 2903 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2904 * and modify these parameters. 2905 * All parameters are time values, in milliseconds. A value of 0, when 2906 * modifying the parameters, indicates that the current value should not 2907 * be changed. 2908 * 2909 */ 2910 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2911 { 2912 struct sctp_rtoinfo rtoinfo; 2913 struct sctp_association *asoc; 2914 unsigned long rto_min, rto_max; 2915 struct sctp_sock *sp = sctp_sk(sk); 2916 2917 if (optlen != sizeof (struct sctp_rtoinfo)) 2918 return -EINVAL; 2919 2920 if (copy_from_user(&rtoinfo, optval, optlen)) 2921 return -EFAULT; 2922 2923 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2924 2925 /* Set the values to the specific association */ 2926 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2927 return -EINVAL; 2928 2929 rto_max = rtoinfo.srto_max; 2930 rto_min = rtoinfo.srto_min; 2931 2932 if (rto_max) 2933 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2934 else 2935 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2936 2937 if (rto_min) 2938 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2939 else 2940 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2941 2942 if (rto_min > rto_max) 2943 return -EINVAL; 2944 2945 if (asoc) { 2946 if (rtoinfo.srto_initial != 0) 2947 asoc->rto_initial = 2948 msecs_to_jiffies(rtoinfo.srto_initial); 2949 asoc->rto_max = rto_max; 2950 asoc->rto_min = rto_min; 2951 } else { 2952 /* If there is no association or the association-id = 0 2953 * set the values to the endpoint. 2954 */ 2955 if (rtoinfo.srto_initial != 0) 2956 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2957 sp->rtoinfo.srto_max = rto_max; 2958 sp->rtoinfo.srto_min = rto_min; 2959 } 2960 2961 return 0; 2962 } 2963 2964 /* 2965 * 2966 * 7.1.2 SCTP_ASSOCINFO 2967 * 2968 * This option is used to tune the maximum retransmission attempts 2969 * of the association. 2970 * Returns an error if the new association retransmission value is 2971 * greater than the sum of the retransmission value of the peer. 2972 * See [SCTP] for more information. 2973 * 2974 */ 2975 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2976 { 2977 2978 struct sctp_assocparams assocparams; 2979 struct sctp_association *asoc; 2980 2981 if (optlen != sizeof(struct sctp_assocparams)) 2982 return -EINVAL; 2983 if (copy_from_user(&assocparams, optval, optlen)) 2984 return -EFAULT; 2985 2986 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2987 2988 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2989 return -EINVAL; 2990 2991 /* Set the values to the specific association */ 2992 if (asoc) { 2993 if (assocparams.sasoc_asocmaxrxt != 0) { 2994 __u32 path_sum = 0; 2995 int paths = 0; 2996 struct sctp_transport *peer_addr; 2997 2998 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2999 transports) { 3000 path_sum += peer_addr->pathmaxrxt; 3001 paths++; 3002 } 3003 3004 /* Only validate asocmaxrxt if we have more than 3005 * one path/transport. We do this because path 3006 * retransmissions are only counted when we have more 3007 * then one path. 3008 */ 3009 if (paths > 1 && 3010 assocparams.sasoc_asocmaxrxt > path_sum) 3011 return -EINVAL; 3012 3013 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3014 } 3015 3016 if (assocparams.sasoc_cookie_life != 0) 3017 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3018 } else { 3019 /* Set the values to the endpoint */ 3020 struct sctp_sock *sp = sctp_sk(sk); 3021 3022 if (assocparams.sasoc_asocmaxrxt != 0) 3023 sp->assocparams.sasoc_asocmaxrxt = 3024 assocparams.sasoc_asocmaxrxt; 3025 if (assocparams.sasoc_cookie_life != 0) 3026 sp->assocparams.sasoc_cookie_life = 3027 assocparams.sasoc_cookie_life; 3028 } 3029 return 0; 3030 } 3031 3032 /* 3033 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3034 * 3035 * This socket option is a boolean flag which turns on or off mapped V4 3036 * addresses. If this option is turned on and the socket is type 3037 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3038 * If this option is turned off, then no mapping will be done of V4 3039 * addresses and a user will receive both PF_INET6 and PF_INET type 3040 * addresses on the socket. 3041 */ 3042 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3043 { 3044 int val; 3045 struct sctp_sock *sp = sctp_sk(sk); 3046 3047 if (optlen < sizeof(int)) 3048 return -EINVAL; 3049 if (get_user(val, (int __user *)optval)) 3050 return -EFAULT; 3051 if (val) 3052 sp->v4mapped = 1; 3053 else 3054 sp->v4mapped = 0; 3055 3056 return 0; 3057 } 3058 3059 /* 3060 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3061 * This option will get or set the maximum size to put in any outgoing 3062 * SCTP DATA chunk. If a message is larger than this size it will be 3063 * fragmented by SCTP into the specified size. Note that the underlying 3064 * SCTP implementation may fragment into smaller sized chunks when the 3065 * PMTU of the underlying association is smaller than the value set by 3066 * the user. The default value for this option is '0' which indicates 3067 * the user is NOT limiting fragmentation and only the PMTU will effect 3068 * SCTP's choice of DATA chunk size. Note also that values set larger 3069 * than the maximum size of an IP datagram will effectively let SCTP 3070 * control fragmentation (i.e. the same as setting this option to 0). 3071 * 3072 * The following structure is used to access and modify this parameter: 3073 * 3074 * struct sctp_assoc_value { 3075 * sctp_assoc_t assoc_id; 3076 * uint32_t assoc_value; 3077 * }; 3078 * 3079 * assoc_id: This parameter is ignored for one-to-one style sockets. 3080 * For one-to-many style sockets this parameter indicates which 3081 * association the user is performing an action upon. Note that if 3082 * this field's value is zero then the endpoints default value is 3083 * changed (effecting future associations only). 3084 * assoc_value: This parameter specifies the maximum size in bytes. 3085 */ 3086 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3087 { 3088 struct sctp_assoc_value params; 3089 struct sctp_association *asoc; 3090 struct sctp_sock *sp = sctp_sk(sk); 3091 int val; 3092 3093 if (optlen == sizeof(int)) { 3094 pr_warn_ratelimited(DEPRECATED 3095 "%s (pid %d) " 3096 "Use of int in maxseg socket option.\n" 3097 "Use struct sctp_assoc_value instead\n", 3098 current->comm, task_pid_nr(current)); 3099 if (copy_from_user(&val, optval, optlen)) 3100 return -EFAULT; 3101 params.assoc_id = 0; 3102 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3103 if (copy_from_user(¶ms, optval, optlen)) 3104 return -EFAULT; 3105 val = params.assoc_value; 3106 } else 3107 return -EINVAL; 3108 3109 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3110 return -EINVAL; 3111 3112 asoc = sctp_id2assoc(sk, params.assoc_id); 3113 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3114 return -EINVAL; 3115 3116 if (asoc) { 3117 if (val == 0) { 3118 val = asoc->pathmtu; 3119 val -= sp->pf->af->net_header_len; 3120 val -= sizeof(struct sctphdr) + 3121 sizeof(struct sctp_data_chunk); 3122 } 3123 asoc->user_frag = val; 3124 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3125 } else { 3126 sp->user_frag = val; 3127 } 3128 3129 return 0; 3130 } 3131 3132 3133 /* 3134 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3135 * 3136 * Requests that the peer mark the enclosed address as the association 3137 * primary. The enclosed address must be one of the association's 3138 * locally bound addresses. The following structure is used to make a 3139 * set primary request: 3140 */ 3141 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3142 unsigned int optlen) 3143 { 3144 struct net *net = sock_net(sk); 3145 struct sctp_sock *sp; 3146 struct sctp_association *asoc = NULL; 3147 struct sctp_setpeerprim prim; 3148 struct sctp_chunk *chunk; 3149 struct sctp_af *af; 3150 int err; 3151 3152 sp = sctp_sk(sk); 3153 3154 if (!net->sctp.addip_enable) 3155 return -EPERM; 3156 3157 if (optlen != sizeof(struct sctp_setpeerprim)) 3158 return -EINVAL; 3159 3160 if (copy_from_user(&prim, optval, optlen)) 3161 return -EFAULT; 3162 3163 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3164 if (!asoc) 3165 return -EINVAL; 3166 3167 if (!asoc->peer.asconf_capable) 3168 return -EPERM; 3169 3170 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3171 return -EPERM; 3172 3173 if (!sctp_state(asoc, ESTABLISHED)) 3174 return -ENOTCONN; 3175 3176 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3177 if (!af) 3178 return -EINVAL; 3179 3180 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3181 return -EADDRNOTAVAIL; 3182 3183 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3184 return -EADDRNOTAVAIL; 3185 3186 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3187 chunk = sctp_make_asconf_set_prim(asoc, 3188 (union sctp_addr *)&prim.sspp_addr); 3189 if (!chunk) 3190 return -ENOMEM; 3191 3192 err = sctp_send_asconf(asoc, chunk); 3193 3194 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3195 3196 return err; 3197 } 3198 3199 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3200 unsigned int optlen) 3201 { 3202 struct sctp_setadaptation adaptation; 3203 3204 if (optlen != sizeof(struct sctp_setadaptation)) 3205 return -EINVAL; 3206 if (copy_from_user(&adaptation, optval, optlen)) 3207 return -EFAULT; 3208 3209 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3210 3211 return 0; 3212 } 3213 3214 /* 3215 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3216 * 3217 * The context field in the sctp_sndrcvinfo structure is normally only 3218 * used when a failed message is retrieved holding the value that was 3219 * sent down on the actual send call. This option allows the setting of 3220 * a default context on an association basis that will be received on 3221 * reading messages from the peer. This is especially helpful in the 3222 * one-2-many model for an application to keep some reference to an 3223 * internal state machine that is processing messages on the 3224 * association. Note that the setting of this value only effects 3225 * received messages from the peer and does not effect the value that is 3226 * saved with outbound messages. 3227 */ 3228 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3229 unsigned int optlen) 3230 { 3231 struct sctp_assoc_value params; 3232 struct sctp_sock *sp; 3233 struct sctp_association *asoc; 3234 3235 if (optlen != sizeof(struct sctp_assoc_value)) 3236 return -EINVAL; 3237 if (copy_from_user(¶ms, optval, optlen)) 3238 return -EFAULT; 3239 3240 sp = sctp_sk(sk); 3241 3242 if (params.assoc_id != 0) { 3243 asoc = sctp_id2assoc(sk, params.assoc_id); 3244 if (!asoc) 3245 return -EINVAL; 3246 asoc->default_rcv_context = params.assoc_value; 3247 } else { 3248 sp->default_rcv_context = params.assoc_value; 3249 } 3250 3251 return 0; 3252 } 3253 3254 /* 3255 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3256 * 3257 * This options will at a minimum specify if the implementation is doing 3258 * fragmented interleave. Fragmented interleave, for a one to many 3259 * socket, is when subsequent calls to receive a message may return 3260 * parts of messages from different associations. Some implementations 3261 * may allow you to turn this value on or off. If so, when turned off, 3262 * no fragment interleave will occur (which will cause a head of line 3263 * blocking amongst multiple associations sharing the same one to many 3264 * socket). When this option is turned on, then each receive call may 3265 * come from a different association (thus the user must receive data 3266 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3267 * association each receive belongs to. 3268 * 3269 * This option takes a boolean value. A non-zero value indicates that 3270 * fragmented interleave is on. A value of zero indicates that 3271 * fragmented interleave is off. 3272 * 3273 * Note that it is important that an implementation that allows this 3274 * option to be turned on, have it off by default. Otherwise an unaware 3275 * application using the one to many model may become confused and act 3276 * incorrectly. 3277 */ 3278 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3279 char __user *optval, 3280 unsigned int optlen) 3281 { 3282 int val; 3283 3284 if (optlen != sizeof(int)) 3285 return -EINVAL; 3286 if (get_user(val, (int __user *)optval)) 3287 return -EFAULT; 3288 3289 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3290 3291 return 0; 3292 } 3293 3294 /* 3295 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3296 * (SCTP_PARTIAL_DELIVERY_POINT) 3297 * 3298 * This option will set or get the SCTP partial delivery point. This 3299 * point is the size of a message where the partial delivery API will be 3300 * invoked to help free up rwnd space for the peer. Setting this to a 3301 * lower value will cause partial deliveries to happen more often. The 3302 * calls argument is an integer that sets or gets the partial delivery 3303 * point. Note also that the call will fail if the user attempts to set 3304 * this value larger than the socket receive buffer size. 3305 * 3306 * Note that any single message having a length smaller than or equal to 3307 * the SCTP partial delivery point will be delivered in one single read 3308 * call as long as the user provided buffer is large enough to hold the 3309 * message. 3310 */ 3311 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3312 char __user *optval, 3313 unsigned int optlen) 3314 { 3315 u32 val; 3316 3317 if (optlen != sizeof(u32)) 3318 return -EINVAL; 3319 if (get_user(val, (int __user *)optval)) 3320 return -EFAULT; 3321 3322 /* Note: We double the receive buffer from what the user sets 3323 * it to be, also initial rwnd is based on rcvbuf/2. 3324 */ 3325 if (val > (sk->sk_rcvbuf >> 1)) 3326 return -EINVAL; 3327 3328 sctp_sk(sk)->pd_point = val; 3329 3330 return 0; /* is this the right error code? */ 3331 } 3332 3333 /* 3334 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3335 * 3336 * This option will allow a user to change the maximum burst of packets 3337 * that can be emitted by this association. Note that the default value 3338 * is 4, and some implementations may restrict this setting so that it 3339 * can only be lowered. 3340 * 3341 * NOTE: This text doesn't seem right. Do this on a socket basis with 3342 * future associations inheriting the socket value. 3343 */ 3344 static int sctp_setsockopt_maxburst(struct sock *sk, 3345 char __user *optval, 3346 unsigned int optlen) 3347 { 3348 struct sctp_assoc_value params; 3349 struct sctp_sock *sp; 3350 struct sctp_association *asoc; 3351 int val; 3352 int assoc_id = 0; 3353 3354 if (optlen == sizeof(int)) { 3355 pr_warn_ratelimited(DEPRECATED 3356 "%s (pid %d) " 3357 "Use of int in max_burst socket option deprecated.\n" 3358 "Use struct sctp_assoc_value instead\n", 3359 current->comm, task_pid_nr(current)); 3360 if (copy_from_user(&val, optval, optlen)) 3361 return -EFAULT; 3362 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3363 if (copy_from_user(¶ms, optval, optlen)) 3364 return -EFAULT; 3365 val = params.assoc_value; 3366 assoc_id = params.assoc_id; 3367 } else 3368 return -EINVAL; 3369 3370 sp = sctp_sk(sk); 3371 3372 if (assoc_id != 0) { 3373 asoc = sctp_id2assoc(sk, assoc_id); 3374 if (!asoc) 3375 return -EINVAL; 3376 asoc->max_burst = val; 3377 } else 3378 sp->max_burst = val; 3379 3380 return 0; 3381 } 3382 3383 /* 3384 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3385 * 3386 * This set option adds a chunk type that the user is requesting to be 3387 * received only in an authenticated way. Changes to the list of chunks 3388 * will only effect future associations on the socket. 3389 */ 3390 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3391 char __user *optval, 3392 unsigned int optlen) 3393 { 3394 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3395 struct sctp_authchunk val; 3396 3397 if (!ep->auth_enable) 3398 return -EACCES; 3399 3400 if (optlen != sizeof(struct sctp_authchunk)) 3401 return -EINVAL; 3402 if (copy_from_user(&val, optval, optlen)) 3403 return -EFAULT; 3404 3405 switch (val.sauth_chunk) { 3406 case SCTP_CID_INIT: 3407 case SCTP_CID_INIT_ACK: 3408 case SCTP_CID_SHUTDOWN_COMPLETE: 3409 case SCTP_CID_AUTH: 3410 return -EINVAL; 3411 } 3412 3413 /* add this chunk id to the endpoint */ 3414 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3415 } 3416 3417 /* 3418 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3419 * 3420 * This option gets or sets the list of HMAC algorithms that the local 3421 * endpoint requires the peer to use. 3422 */ 3423 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3424 char __user *optval, 3425 unsigned int optlen) 3426 { 3427 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3428 struct sctp_hmacalgo *hmacs; 3429 u32 idents; 3430 int err; 3431 3432 if (!ep->auth_enable) 3433 return -EACCES; 3434 3435 if (optlen < sizeof(struct sctp_hmacalgo)) 3436 return -EINVAL; 3437 3438 hmacs = memdup_user(optval, optlen); 3439 if (IS_ERR(hmacs)) 3440 return PTR_ERR(hmacs); 3441 3442 idents = hmacs->shmac_num_idents; 3443 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3444 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3445 err = -EINVAL; 3446 goto out; 3447 } 3448 3449 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3450 out: 3451 kfree(hmacs); 3452 return err; 3453 } 3454 3455 /* 3456 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3457 * 3458 * This option will set a shared secret key which is used to build an 3459 * association shared key. 3460 */ 3461 static int sctp_setsockopt_auth_key(struct sock *sk, 3462 char __user *optval, 3463 unsigned int optlen) 3464 { 3465 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3466 struct sctp_authkey *authkey; 3467 struct sctp_association *asoc; 3468 int ret; 3469 3470 if (!ep->auth_enable) 3471 return -EACCES; 3472 3473 if (optlen <= sizeof(struct sctp_authkey)) 3474 return -EINVAL; 3475 3476 authkey = memdup_user(optval, optlen); 3477 if (IS_ERR(authkey)) 3478 return PTR_ERR(authkey); 3479 3480 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3481 ret = -EINVAL; 3482 goto out; 3483 } 3484 3485 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3486 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3487 ret = -EINVAL; 3488 goto out; 3489 } 3490 3491 ret = sctp_auth_set_key(ep, asoc, authkey); 3492 out: 3493 kzfree(authkey); 3494 return ret; 3495 } 3496 3497 /* 3498 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3499 * 3500 * This option will get or set the active shared key to be used to build 3501 * the association shared key. 3502 */ 3503 static int sctp_setsockopt_active_key(struct sock *sk, 3504 char __user *optval, 3505 unsigned int optlen) 3506 { 3507 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3508 struct sctp_authkeyid val; 3509 struct sctp_association *asoc; 3510 3511 if (!ep->auth_enable) 3512 return -EACCES; 3513 3514 if (optlen != sizeof(struct sctp_authkeyid)) 3515 return -EINVAL; 3516 if (copy_from_user(&val, optval, optlen)) 3517 return -EFAULT; 3518 3519 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3520 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3521 return -EINVAL; 3522 3523 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3524 } 3525 3526 /* 3527 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3528 * 3529 * This set option will delete a shared secret key from use. 3530 */ 3531 static int sctp_setsockopt_del_key(struct sock *sk, 3532 char __user *optval, 3533 unsigned int optlen) 3534 { 3535 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3536 struct sctp_authkeyid val; 3537 struct sctp_association *asoc; 3538 3539 if (!ep->auth_enable) 3540 return -EACCES; 3541 3542 if (optlen != sizeof(struct sctp_authkeyid)) 3543 return -EINVAL; 3544 if (copy_from_user(&val, optval, optlen)) 3545 return -EFAULT; 3546 3547 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3548 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3549 return -EINVAL; 3550 3551 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3552 3553 } 3554 3555 /* 3556 * 8.1.23 SCTP_AUTO_ASCONF 3557 * 3558 * This option will enable or disable the use of the automatic generation of 3559 * ASCONF chunks to add and delete addresses to an existing association. Note 3560 * that this option has two caveats namely: a) it only affects sockets that 3561 * are bound to all addresses available to the SCTP stack, and b) the system 3562 * administrator may have an overriding control that turns the ASCONF feature 3563 * off no matter what setting the socket option may have. 3564 * This option expects an integer boolean flag, where a non-zero value turns on 3565 * the option, and a zero value turns off the option. 3566 * Note. In this implementation, socket operation overrides default parameter 3567 * being set by sysctl as well as FreeBSD implementation 3568 */ 3569 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3570 unsigned int optlen) 3571 { 3572 int val; 3573 struct sctp_sock *sp = sctp_sk(sk); 3574 3575 if (optlen < sizeof(int)) 3576 return -EINVAL; 3577 if (get_user(val, (int __user *)optval)) 3578 return -EFAULT; 3579 if (!sctp_is_ep_boundall(sk) && val) 3580 return -EINVAL; 3581 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3582 return 0; 3583 3584 if (val == 0 && sp->do_auto_asconf) { 3585 list_del(&sp->auto_asconf_list); 3586 sp->do_auto_asconf = 0; 3587 } else if (val && !sp->do_auto_asconf) { 3588 list_add_tail(&sp->auto_asconf_list, 3589 &sock_net(sk)->sctp.auto_asconf_splist); 3590 sp->do_auto_asconf = 1; 3591 } 3592 return 0; 3593 } 3594 3595 /* 3596 * SCTP_PEER_ADDR_THLDS 3597 * 3598 * This option allows us to alter the partially failed threshold for one or all 3599 * transports in an association. See Section 6.1 of: 3600 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3601 */ 3602 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3603 char __user *optval, 3604 unsigned int optlen) 3605 { 3606 struct sctp_paddrthlds val; 3607 struct sctp_transport *trans; 3608 struct sctp_association *asoc; 3609 3610 if (optlen < sizeof(struct sctp_paddrthlds)) 3611 return -EINVAL; 3612 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3613 sizeof(struct sctp_paddrthlds))) 3614 return -EFAULT; 3615 3616 3617 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3618 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3619 if (!asoc) 3620 return -ENOENT; 3621 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3622 transports) { 3623 if (val.spt_pathmaxrxt) 3624 trans->pathmaxrxt = val.spt_pathmaxrxt; 3625 trans->pf_retrans = val.spt_pathpfthld; 3626 } 3627 3628 if (val.spt_pathmaxrxt) 3629 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3630 asoc->pf_retrans = val.spt_pathpfthld; 3631 } else { 3632 trans = sctp_addr_id2transport(sk, &val.spt_address, 3633 val.spt_assoc_id); 3634 if (!trans) 3635 return -ENOENT; 3636 3637 if (val.spt_pathmaxrxt) 3638 trans->pathmaxrxt = val.spt_pathmaxrxt; 3639 trans->pf_retrans = val.spt_pathpfthld; 3640 } 3641 3642 return 0; 3643 } 3644 3645 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3646 char __user *optval, 3647 unsigned int optlen) 3648 { 3649 int val; 3650 3651 if (optlen < sizeof(int)) 3652 return -EINVAL; 3653 if (get_user(val, (int __user *) optval)) 3654 return -EFAULT; 3655 3656 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3657 3658 return 0; 3659 } 3660 3661 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3662 char __user *optval, 3663 unsigned int optlen) 3664 { 3665 int val; 3666 3667 if (optlen < sizeof(int)) 3668 return -EINVAL; 3669 if (get_user(val, (int __user *) optval)) 3670 return -EFAULT; 3671 3672 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3673 3674 return 0; 3675 } 3676 3677 /* API 6.2 setsockopt(), getsockopt() 3678 * 3679 * Applications use setsockopt() and getsockopt() to set or retrieve 3680 * socket options. Socket options are used to change the default 3681 * behavior of sockets calls. They are described in Section 7. 3682 * 3683 * The syntax is: 3684 * 3685 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3686 * int __user *optlen); 3687 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3688 * int optlen); 3689 * 3690 * sd - the socket descript. 3691 * level - set to IPPROTO_SCTP for all SCTP options. 3692 * optname - the option name. 3693 * optval - the buffer to store the value of the option. 3694 * optlen - the size of the buffer. 3695 */ 3696 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3697 char __user *optval, unsigned int optlen) 3698 { 3699 int retval = 0; 3700 3701 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3702 3703 /* I can hardly begin to describe how wrong this is. This is 3704 * so broken as to be worse than useless. The API draft 3705 * REALLY is NOT helpful here... I am not convinced that the 3706 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3707 * are at all well-founded. 3708 */ 3709 if (level != SOL_SCTP) { 3710 struct sctp_af *af = sctp_sk(sk)->pf->af; 3711 retval = af->setsockopt(sk, level, optname, optval, optlen); 3712 goto out_nounlock; 3713 } 3714 3715 lock_sock(sk); 3716 3717 switch (optname) { 3718 case SCTP_SOCKOPT_BINDX_ADD: 3719 /* 'optlen' is the size of the addresses buffer. */ 3720 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3721 optlen, SCTP_BINDX_ADD_ADDR); 3722 break; 3723 3724 case SCTP_SOCKOPT_BINDX_REM: 3725 /* 'optlen' is the size of the addresses buffer. */ 3726 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3727 optlen, SCTP_BINDX_REM_ADDR); 3728 break; 3729 3730 case SCTP_SOCKOPT_CONNECTX_OLD: 3731 /* 'optlen' is the size of the addresses buffer. */ 3732 retval = sctp_setsockopt_connectx_old(sk, 3733 (struct sockaddr __user *)optval, 3734 optlen); 3735 break; 3736 3737 case SCTP_SOCKOPT_CONNECTX: 3738 /* 'optlen' is the size of the addresses buffer. */ 3739 retval = sctp_setsockopt_connectx(sk, 3740 (struct sockaddr __user *)optval, 3741 optlen); 3742 break; 3743 3744 case SCTP_DISABLE_FRAGMENTS: 3745 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3746 break; 3747 3748 case SCTP_EVENTS: 3749 retval = sctp_setsockopt_events(sk, optval, optlen); 3750 break; 3751 3752 case SCTP_AUTOCLOSE: 3753 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3754 break; 3755 3756 case SCTP_PEER_ADDR_PARAMS: 3757 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3758 break; 3759 3760 case SCTP_DELAYED_SACK: 3761 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3762 break; 3763 case SCTP_PARTIAL_DELIVERY_POINT: 3764 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3765 break; 3766 3767 case SCTP_INITMSG: 3768 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3769 break; 3770 case SCTP_DEFAULT_SEND_PARAM: 3771 retval = sctp_setsockopt_default_send_param(sk, optval, 3772 optlen); 3773 break; 3774 case SCTP_DEFAULT_SNDINFO: 3775 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3776 break; 3777 case SCTP_PRIMARY_ADDR: 3778 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3779 break; 3780 case SCTP_SET_PEER_PRIMARY_ADDR: 3781 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3782 break; 3783 case SCTP_NODELAY: 3784 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3785 break; 3786 case SCTP_RTOINFO: 3787 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3788 break; 3789 case SCTP_ASSOCINFO: 3790 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3791 break; 3792 case SCTP_I_WANT_MAPPED_V4_ADDR: 3793 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3794 break; 3795 case SCTP_MAXSEG: 3796 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3797 break; 3798 case SCTP_ADAPTATION_LAYER: 3799 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3800 break; 3801 case SCTP_CONTEXT: 3802 retval = sctp_setsockopt_context(sk, optval, optlen); 3803 break; 3804 case SCTP_FRAGMENT_INTERLEAVE: 3805 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3806 break; 3807 case SCTP_MAX_BURST: 3808 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3809 break; 3810 case SCTP_AUTH_CHUNK: 3811 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3812 break; 3813 case SCTP_HMAC_IDENT: 3814 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3815 break; 3816 case SCTP_AUTH_KEY: 3817 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3818 break; 3819 case SCTP_AUTH_ACTIVE_KEY: 3820 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3821 break; 3822 case SCTP_AUTH_DELETE_KEY: 3823 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3824 break; 3825 case SCTP_AUTO_ASCONF: 3826 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3827 break; 3828 case SCTP_PEER_ADDR_THLDS: 3829 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3830 break; 3831 case SCTP_RECVRCVINFO: 3832 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 3833 break; 3834 case SCTP_RECVNXTINFO: 3835 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 3836 break; 3837 default: 3838 retval = -ENOPROTOOPT; 3839 break; 3840 } 3841 3842 release_sock(sk); 3843 3844 out_nounlock: 3845 return retval; 3846 } 3847 3848 /* API 3.1.6 connect() - UDP Style Syntax 3849 * 3850 * An application may use the connect() call in the UDP model to initiate an 3851 * association without sending data. 3852 * 3853 * The syntax is: 3854 * 3855 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3856 * 3857 * sd: the socket descriptor to have a new association added to. 3858 * 3859 * nam: the address structure (either struct sockaddr_in or struct 3860 * sockaddr_in6 defined in RFC2553 [7]). 3861 * 3862 * len: the size of the address. 3863 */ 3864 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3865 int addr_len) 3866 { 3867 int err = 0; 3868 struct sctp_af *af; 3869 3870 lock_sock(sk); 3871 3872 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3873 addr, addr_len); 3874 3875 /* Validate addr_len before calling common connect/connectx routine. */ 3876 af = sctp_get_af_specific(addr->sa_family); 3877 if (!af || addr_len < af->sockaddr_len) { 3878 err = -EINVAL; 3879 } else { 3880 /* Pass correct addr len to common routine (so it knows there 3881 * is only one address being passed. 3882 */ 3883 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3884 } 3885 3886 release_sock(sk); 3887 return err; 3888 } 3889 3890 /* FIXME: Write comments. */ 3891 static int sctp_disconnect(struct sock *sk, int flags) 3892 { 3893 return -EOPNOTSUPP; /* STUB */ 3894 } 3895 3896 /* 4.1.4 accept() - TCP Style Syntax 3897 * 3898 * Applications use accept() call to remove an established SCTP 3899 * association from the accept queue of the endpoint. A new socket 3900 * descriptor will be returned from accept() to represent the newly 3901 * formed association. 3902 */ 3903 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3904 { 3905 struct sctp_sock *sp; 3906 struct sctp_endpoint *ep; 3907 struct sock *newsk = NULL; 3908 struct sctp_association *asoc; 3909 long timeo; 3910 int error = 0; 3911 3912 lock_sock(sk); 3913 3914 sp = sctp_sk(sk); 3915 ep = sp->ep; 3916 3917 if (!sctp_style(sk, TCP)) { 3918 error = -EOPNOTSUPP; 3919 goto out; 3920 } 3921 3922 if (!sctp_sstate(sk, LISTENING)) { 3923 error = -EINVAL; 3924 goto out; 3925 } 3926 3927 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3928 3929 error = sctp_wait_for_accept(sk, timeo); 3930 if (error) 3931 goto out; 3932 3933 /* We treat the list of associations on the endpoint as the accept 3934 * queue and pick the first association on the list. 3935 */ 3936 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3937 3938 newsk = sp->pf->create_accept_sk(sk, asoc); 3939 if (!newsk) { 3940 error = -ENOMEM; 3941 goto out; 3942 } 3943 3944 /* Populate the fields of the newsk from the oldsk and migrate the 3945 * asoc to the newsk. 3946 */ 3947 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3948 3949 out: 3950 release_sock(sk); 3951 *err = error; 3952 return newsk; 3953 } 3954 3955 /* The SCTP ioctl handler. */ 3956 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3957 { 3958 int rc = -ENOTCONN; 3959 3960 lock_sock(sk); 3961 3962 /* 3963 * SEQPACKET-style sockets in LISTENING state are valid, for 3964 * SCTP, so only discard TCP-style sockets in LISTENING state. 3965 */ 3966 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3967 goto out; 3968 3969 switch (cmd) { 3970 case SIOCINQ: { 3971 struct sk_buff *skb; 3972 unsigned int amount = 0; 3973 3974 skb = skb_peek(&sk->sk_receive_queue); 3975 if (skb != NULL) { 3976 /* 3977 * We will only return the amount of this packet since 3978 * that is all that will be read. 3979 */ 3980 amount = skb->len; 3981 } 3982 rc = put_user(amount, (int __user *)arg); 3983 break; 3984 } 3985 default: 3986 rc = -ENOIOCTLCMD; 3987 break; 3988 } 3989 out: 3990 release_sock(sk); 3991 return rc; 3992 } 3993 3994 /* This is the function which gets called during socket creation to 3995 * initialized the SCTP-specific portion of the sock. 3996 * The sock structure should already be zero-filled memory. 3997 */ 3998 static int sctp_init_sock(struct sock *sk) 3999 { 4000 struct net *net = sock_net(sk); 4001 struct sctp_sock *sp; 4002 4003 pr_debug("%s: sk:%p\n", __func__, sk); 4004 4005 sp = sctp_sk(sk); 4006 4007 /* Initialize the SCTP per socket area. */ 4008 switch (sk->sk_type) { 4009 case SOCK_SEQPACKET: 4010 sp->type = SCTP_SOCKET_UDP; 4011 break; 4012 case SOCK_STREAM: 4013 sp->type = SCTP_SOCKET_TCP; 4014 break; 4015 default: 4016 return -ESOCKTNOSUPPORT; 4017 } 4018 4019 /* Initialize default send parameters. These parameters can be 4020 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4021 */ 4022 sp->default_stream = 0; 4023 sp->default_ppid = 0; 4024 sp->default_flags = 0; 4025 sp->default_context = 0; 4026 sp->default_timetolive = 0; 4027 4028 sp->default_rcv_context = 0; 4029 sp->max_burst = net->sctp.max_burst; 4030 4031 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4032 4033 /* Initialize default setup parameters. These parameters 4034 * can be modified with the SCTP_INITMSG socket option or 4035 * overridden by the SCTP_INIT CMSG. 4036 */ 4037 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4038 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4039 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4040 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4041 4042 /* Initialize default RTO related parameters. These parameters can 4043 * be modified for with the SCTP_RTOINFO socket option. 4044 */ 4045 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4046 sp->rtoinfo.srto_max = net->sctp.rto_max; 4047 sp->rtoinfo.srto_min = net->sctp.rto_min; 4048 4049 /* Initialize default association related parameters. These parameters 4050 * can be modified with the SCTP_ASSOCINFO socket option. 4051 */ 4052 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4053 sp->assocparams.sasoc_number_peer_destinations = 0; 4054 sp->assocparams.sasoc_peer_rwnd = 0; 4055 sp->assocparams.sasoc_local_rwnd = 0; 4056 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4057 4058 /* Initialize default event subscriptions. By default, all the 4059 * options are off. 4060 */ 4061 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4062 4063 /* Default Peer Address Parameters. These defaults can 4064 * be modified via SCTP_PEER_ADDR_PARAMS 4065 */ 4066 sp->hbinterval = net->sctp.hb_interval; 4067 sp->pathmaxrxt = net->sctp.max_retrans_path; 4068 sp->pathmtu = 0; /* allow default discovery */ 4069 sp->sackdelay = net->sctp.sack_timeout; 4070 sp->sackfreq = 2; 4071 sp->param_flags = SPP_HB_ENABLE | 4072 SPP_PMTUD_ENABLE | 4073 SPP_SACKDELAY_ENABLE; 4074 4075 /* If enabled no SCTP message fragmentation will be performed. 4076 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4077 */ 4078 sp->disable_fragments = 0; 4079 4080 /* Enable Nagle algorithm by default. */ 4081 sp->nodelay = 0; 4082 4083 sp->recvrcvinfo = 0; 4084 sp->recvnxtinfo = 0; 4085 4086 /* Enable by default. */ 4087 sp->v4mapped = 1; 4088 4089 /* Auto-close idle associations after the configured 4090 * number of seconds. A value of 0 disables this 4091 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4092 * for UDP-style sockets only. 4093 */ 4094 sp->autoclose = 0; 4095 4096 /* User specified fragmentation limit. */ 4097 sp->user_frag = 0; 4098 4099 sp->adaptation_ind = 0; 4100 4101 sp->pf = sctp_get_pf_specific(sk->sk_family); 4102 4103 /* Control variables for partial data delivery. */ 4104 atomic_set(&sp->pd_mode, 0); 4105 skb_queue_head_init(&sp->pd_lobby); 4106 sp->frag_interleave = 0; 4107 4108 /* Create a per socket endpoint structure. Even if we 4109 * change the data structure relationships, this may still 4110 * be useful for storing pre-connect address information. 4111 */ 4112 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4113 if (!sp->ep) 4114 return -ENOMEM; 4115 4116 sp->hmac = NULL; 4117 4118 sk->sk_destruct = sctp_destruct_sock; 4119 4120 SCTP_DBG_OBJCNT_INC(sock); 4121 4122 local_bh_disable(); 4123 percpu_counter_inc(&sctp_sockets_allocated); 4124 sock_prot_inuse_add(net, sk->sk_prot, 1); 4125 if (net->sctp.default_auto_asconf) { 4126 list_add_tail(&sp->auto_asconf_list, 4127 &net->sctp.auto_asconf_splist); 4128 sp->do_auto_asconf = 1; 4129 } else 4130 sp->do_auto_asconf = 0; 4131 local_bh_enable(); 4132 4133 return 0; 4134 } 4135 4136 /* Cleanup any SCTP per socket resources. */ 4137 static void sctp_destroy_sock(struct sock *sk) 4138 { 4139 struct sctp_sock *sp; 4140 4141 pr_debug("%s: sk:%p\n", __func__, sk); 4142 4143 /* Release our hold on the endpoint. */ 4144 sp = sctp_sk(sk); 4145 /* This could happen during socket init, thus we bail out 4146 * early, since the rest of the below is not setup either. 4147 */ 4148 if (sp->ep == NULL) 4149 return; 4150 4151 if (sp->do_auto_asconf) { 4152 sp->do_auto_asconf = 0; 4153 list_del(&sp->auto_asconf_list); 4154 } 4155 sctp_endpoint_free(sp->ep); 4156 local_bh_disable(); 4157 percpu_counter_dec(&sctp_sockets_allocated); 4158 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4159 local_bh_enable(); 4160 } 4161 4162 /* Triggered when there are no references on the socket anymore */ 4163 static void sctp_destruct_sock(struct sock *sk) 4164 { 4165 struct sctp_sock *sp = sctp_sk(sk); 4166 4167 /* Free up the HMAC transform. */ 4168 crypto_free_hash(sp->hmac); 4169 4170 inet_sock_destruct(sk); 4171 } 4172 4173 /* API 4.1.7 shutdown() - TCP Style Syntax 4174 * int shutdown(int socket, int how); 4175 * 4176 * sd - the socket descriptor of the association to be closed. 4177 * how - Specifies the type of shutdown. The values are 4178 * as follows: 4179 * SHUT_RD 4180 * Disables further receive operations. No SCTP 4181 * protocol action is taken. 4182 * SHUT_WR 4183 * Disables further send operations, and initiates 4184 * the SCTP shutdown sequence. 4185 * SHUT_RDWR 4186 * Disables further send and receive operations 4187 * and initiates the SCTP shutdown sequence. 4188 */ 4189 static void sctp_shutdown(struct sock *sk, int how) 4190 { 4191 struct net *net = sock_net(sk); 4192 struct sctp_endpoint *ep; 4193 struct sctp_association *asoc; 4194 4195 if (!sctp_style(sk, TCP)) 4196 return; 4197 4198 if (how & SEND_SHUTDOWN) { 4199 ep = sctp_sk(sk)->ep; 4200 if (!list_empty(&ep->asocs)) { 4201 asoc = list_entry(ep->asocs.next, 4202 struct sctp_association, asocs); 4203 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4204 } 4205 } 4206 } 4207 4208 /* 7.2.1 Association Status (SCTP_STATUS) 4209 4210 * Applications can retrieve current status information about an 4211 * association, including association state, peer receiver window size, 4212 * number of unacked data chunks, and number of data chunks pending 4213 * receipt. This information is read-only. 4214 */ 4215 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4216 char __user *optval, 4217 int __user *optlen) 4218 { 4219 struct sctp_status status; 4220 struct sctp_association *asoc = NULL; 4221 struct sctp_transport *transport; 4222 sctp_assoc_t associd; 4223 int retval = 0; 4224 4225 if (len < sizeof(status)) { 4226 retval = -EINVAL; 4227 goto out; 4228 } 4229 4230 len = sizeof(status); 4231 if (copy_from_user(&status, optval, len)) { 4232 retval = -EFAULT; 4233 goto out; 4234 } 4235 4236 associd = status.sstat_assoc_id; 4237 asoc = sctp_id2assoc(sk, associd); 4238 if (!asoc) { 4239 retval = -EINVAL; 4240 goto out; 4241 } 4242 4243 transport = asoc->peer.primary_path; 4244 4245 status.sstat_assoc_id = sctp_assoc2id(asoc); 4246 status.sstat_state = asoc->state; 4247 status.sstat_rwnd = asoc->peer.rwnd; 4248 status.sstat_unackdata = asoc->unack_data; 4249 4250 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4251 status.sstat_instrms = asoc->c.sinit_max_instreams; 4252 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4253 status.sstat_fragmentation_point = asoc->frag_point; 4254 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4255 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4256 transport->af_specific->sockaddr_len); 4257 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4258 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4259 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4260 status.sstat_primary.spinfo_state = transport->state; 4261 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4262 status.sstat_primary.spinfo_srtt = transport->srtt; 4263 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4264 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4265 4266 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4267 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4268 4269 if (put_user(len, optlen)) { 4270 retval = -EFAULT; 4271 goto out; 4272 } 4273 4274 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4275 __func__, len, status.sstat_state, status.sstat_rwnd, 4276 status.sstat_assoc_id); 4277 4278 if (copy_to_user(optval, &status, len)) { 4279 retval = -EFAULT; 4280 goto out; 4281 } 4282 4283 out: 4284 return retval; 4285 } 4286 4287 4288 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4289 * 4290 * Applications can retrieve information about a specific peer address 4291 * of an association, including its reachability state, congestion 4292 * window, and retransmission timer values. This information is 4293 * read-only. 4294 */ 4295 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4296 char __user *optval, 4297 int __user *optlen) 4298 { 4299 struct sctp_paddrinfo pinfo; 4300 struct sctp_transport *transport; 4301 int retval = 0; 4302 4303 if (len < sizeof(pinfo)) { 4304 retval = -EINVAL; 4305 goto out; 4306 } 4307 4308 len = sizeof(pinfo); 4309 if (copy_from_user(&pinfo, optval, len)) { 4310 retval = -EFAULT; 4311 goto out; 4312 } 4313 4314 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4315 pinfo.spinfo_assoc_id); 4316 if (!transport) 4317 return -EINVAL; 4318 4319 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4320 pinfo.spinfo_state = transport->state; 4321 pinfo.spinfo_cwnd = transport->cwnd; 4322 pinfo.spinfo_srtt = transport->srtt; 4323 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4324 pinfo.spinfo_mtu = transport->pathmtu; 4325 4326 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4327 pinfo.spinfo_state = SCTP_ACTIVE; 4328 4329 if (put_user(len, optlen)) { 4330 retval = -EFAULT; 4331 goto out; 4332 } 4333 4334 if (copy_to_user(optval, &pinfo, len)) { 4335 retval = -EFAULT; 4336 goto out; 4337 } 4338 4339 out: 4340 return retval; 4341 } 4342 4343 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4344 * 4345 * This option is a on/off flag. If enabled no SCTP message 4346 * fragmentation will be performed. Instead if a message being sent 4347 * exceeds the current PMTU size, the message will NOT be sent and 4348 * instead a error will be indicated to the user. 4349 */ 4350 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4351 char __user *optval, int __user *optlen) 4352 { 4353 int val; 4354 4355 if (len < sizeof(int)) 4356 return -EINVAL; 4357 4358 len = sizeof(int); 4359 val = (sctp_sk(sk)->disable_fragments == 1); 4360 if (put_user(len, optlen)) 4361 return -EFAULT; 4362 if (copy_to_user(optval, &val, len)) 4363 return -EFAULT; 4364 return 0; 4365 } 4366 4367 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4368 * 4369 * This socket option is used to specify various notifications and 4370 * ancillary data the user wishes to receive. 4371 */ 4372 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4373 int __user *optlen) 4374 { 4375 if (len <= 0) 4376 return -EINVAL; 4377 if (len > sizeof(struct sctp_event_subscribe)) 4378 len = sizeof(struct sctp_event_subscribe); 4379 if (put_user(len, optlen)) 4380 return -EFAULT; 4381 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4382 return -EFAULT; 4383 return 0; 4384 } 4385 4386 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4387 * 4388 * This socket option is applicable to the UDP-style socket only. When 4389 * set it will cause associations that are idle for more than the 4390 * specified number of seconds to automatically close. An association 4391 * being idle is defined an association that has NOT sent or received 4392 * user data. The special value of '0' indicates that no automatic 4393 * close of any associations should be performed. The option expects an 4394 * integer defining the number of seconds of idle time before an 4395 * association is closed. 4396 */ 4397 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4398 { 4399 /* Applicable to UDP-style socket only */ 4400 if (sctp_style(sk, TCP)) 4401 return -EOPNOTSUPP; 4402 if (len < sizeof(int)) 4403 return -EINVAL; 4404 len = sizeof(int); 4405 if (put_user(len, optlen)) 4406 return -EFAULT; 4407 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4408 return -EFAULT; 4409 return 0; 4410 } 4411 4412 /* Helper routine to branch off an association to a new socket. */ 4413 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4414 { 4415 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4416 struct sctp_sock *sp = sctp_sk(sk); 4417 struct socket *sock; 4418 int err = 0; 4419 4420 if (!asoc) 4421 return -EINVAL; 4422 4423 /* An association cannot be branched off from an already peeled-off 4424 * socket, nor is this supported for tcp style sockets. 4425 */ 4426 if (!sctp_style(sk, UDP)) 4427 return -EINVAL; 4428 4429 /* Create a new socket. */ 4430 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4431 if (err < 0) 4432 return err; 4433 4434 sctp_copy_sock(sock->sk, sk, asoc); 4435 4436 /* Make peeled-off sockets more like 1-1 accepted sockets. 4437 * Set the daddr and initialize id to something more random 4438 */ 4439 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4440 4441 /* Populate the fields of the newsk from the oldsk and migrate the 4442 * asoc to the newsk. 4443 */ 4444 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4445 4446 *sockp = sock; 4447 4448 return err; 4449 } 4450 EXPORT_SYMBOL(sctp_do_peeloff); 4451 4452 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4453 { 4454 sctp_peeloff_arg_t peeloff; 4455 struct socket *newsock; 4456 struct file *newfile; 4457 int retval = 0; 4458 4459 if (len < sizeof(sctp_peeloff_arg_t)) 4460 return -EINVAL; 4461 len = sizeof(sctp_peeloff_arg_t); 4462 if (copy_from_user(&peeloff, optval, len)) 4463 return -EFAULT; 4464 4465 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4466 if (retval < 0) 4467 goto out; 4468 4469 /* Map the socket to an unused fd that can be returned to the user. */ 4470 retval = get_unused_fd_flags(0); 4471 if (retval < 0) { 4472 sock_release(newsock); 4473 goto out; 4474 } 4475 4476 newfile = sock_alloc_file(newsock, 0, NULL); 4477 if (unlikely(IS_ERR(newfile))) { 4478 put_unused_fd(retval); 4479 sock_release(newsock); 4480 return PTR_ERR(newfile); 4481 } 4482 4483 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4484 retval); 4485 4486 /* Return the fd mapped to the new socket. */ 4487 if (put_user(len, optlen)) { 4488 fput(newfile); 4489 put_unused_fd(retval); 4490 return -EFAULT; 4491 } 4492 peeloff.sd = retval; 4493 if (copy_to_user(optval, &peeloff, len)) { 4494 fput(newfile); 4495 put_unused_fd(retval); 4496 return -EFAULT; 4497 } 4498 fd_install(retval, newfile); 4499 out: 4500 return retval; 4501 } 4502 4503 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4504 * 4505 * Applications can enable or disable heartbeats for any peer address of 4506 * an association, modify an address's heartbeat interval, force a 4507 * heartbeat to be sent immediately, and adjust the address's maximum 4508 * number of retransmissions sent before an address is considered 4509 * unreachable. The following structure is used to access and modify an 4510 * address's parameters: 4511 * 4512 * struct sctp_paddrparams { 4513 * sctp_assoc_t spp_assoc_id; 4514 * struct sockaddr_storage spp_address; 4515 * uint32_t spp_hbinterval; 4516 * uint16_t spp_pathmaxrxt; 4517 * uint32_t spp_pathmtu; 4518 * uint32_t spp_sackdelay; 4519 * uint32_t spp_flags; 4520 * }; 4521 * 4522 * spp_assoc_id - (one-to-many style socket) This is filled in the 4523 * application, and identifies the association for 4524 * this query. 4525 * spp_address - This specifies which address is of interest. 4526 * spp_hbinterval - This contains the value of the heartbeat interval, 4527 * in milliseconds. If a value of zero 4528 * is present in this field then no changes are to 4529 * be made to this parameter. 4530 * spp_pathmaxrxt - This contains the maximum number of 4531 * retransmissions before this address shall be 4532 * considered unreachable. If a value of zero 4533 * is present in this field then no changes are to 4534 * be made to this parameter. 4535 * spp_pathmtu - When Path MTU discovery is disabled the value 4536 * specified here will be the "fixed" path mtu. 4537 * Note that if the spp_address field is empty 4538 * then all associations on this address will 4539 * have this fixed path mtu set upon them. 4540 * 4541 * spp_sackdelay - When delayed sack is enabled, this value specifies 4542 * the number of milliseconds that sacks will be delayed 4543 * for. This value will apply to all addresses of an 4544 * association if the spp_address field is empty. Note 4545 * also, that if delayed sack is enabled and this 4546 * value is set to 0, no change is made to the last 4547 * recorded delayed sack timer value. 4548 * 4549 * spp_flags - These flags are used to control various features 4550 * on an association. The flag field may contain 4551 * zero or more of the following options. 4552 * 4553 * SPP_HB_ENABLE - Enable heartbeats on the 4554 * specified address. Note that if the address 4555 * field is empty all addresses for the association 4556 * have heartbeats enabled upon them. 4557 * 4558 * SPP_HB_DISABLE - Disable heartbeats on the 4559 * speicifed address. Note that if the address 4560 * field is empty all addresses for the association 4561 * will have their heartbeats disabled. Note also 4562 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4563 * mutually exclusive, only one of these two should 4564 * be specified. Enabling both fields will have 4565 * undetermined results. 4566 * 4567 * SPP_HB_DEMAND - Request a user initiated heartbeat 4568 * to be made immediately. 4569 * 4570 * SPP_PMTUD_ENABLE - This field will enable PMTU 4571 * discovery upon the specified address. Note that 4572 * if the address feild is empty then all addresses 4573 * on the association are effected. 4574 * 4575 * SPP_PMTUD_DISABLE - This field will disable PMTU 4576 * discovery upon the specified address. Note that 4577 * if the address feild is empty then all addresses 4578 * on the association are effected. Not also that 4579 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4580 * exclusive. Enabling both will have undetermined 4581 * results. 4582 * 4583 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4584 * on delayed sack. The time specified in spp_sackdelay 4585 * is used to specify the sack delay for this address. Note 4586 * that if spp_address is empty then all addresses will 4587 * enable delayed sack and take on the sack delay 4588 * value specified in spp_sackdelay. 4589 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4590 * off delayed sack. If the spp_address field is blank then 4591 * delayed sack is disabled for the entire association. Note 4592 * also that this field is mutually exclusive to 4593 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4594 * results. 4595 */ 4596 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4597 char __user *optval, int __user *optlen) 4598 { 4599 struct sctp_paddrparams params; 4600 struct sctp_transport *trans = NULL; 4601 struct sctp_association *asoc = NULL; 4602 struct sctp_sock *sp = sctp_sk(sk); 4603 4604 if (len < sizeof(struct sctp_paddrparams)) 4605 return -EINVAL; 4606 len = sizeof(struct sctp_paddrparams); 4607 if (copy_from_user(¶ms, optval, len)) 4608 return -EFAULT; 4609 4610 /* If an address other than INADDR_ANY is specified, and 4611 * no transport is found, then the request is invalid. 4612 */ 4613 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4614 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4615 params.spp_assoc_id); 4616 if (!trans) { 4617 pr_debug("%s: failed no transport\n", __func__); 4618 return -EINVAL; 4619 } 4620 } 4621 4622 /* Get association, if assoc_id != 0 and the socket is a one 4623 * to many style socket, and an association was not found, then 4624 * the id was invalid. 4625 */ 4626 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4627 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4628 pr_debug("%s: failed no association\n", __func__); 4629 return -EINVAL; 4630 } 4631 4632 if (trans) { 4633 /* Fetch transport values. */ 4634 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4635 params.spp_pathmtu = trans->pathmtu; 4636 params.spp_pathmaxrxt = trans->pathmaxrxt; 4637 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4638 4639 /*draft-11 doesn't say what to return in spp_flags*/ 4640 params.spp_flags = trans->param_flags; 4641 } else if (asoc) { 4642 /* Fetch association values. */ 4643 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4644 params.spp_pathmtu = asoc->pathmtu; 4645 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4646 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4647 4648 /*draft-11 doesn't say what to return in spp_flags*/ 4649 params.spp_flags = asoc->param_flags; 4650 } else { 4651 /* Fetch socket values. */ 4652 params.spp_hbinterval = sp->hbinterval; 4653 params.spp_pathmtu = sp->pathmtu; 4654 params.spp_sackdelay = sp->sackdelay; 4655 params.spp_pathmaxrxt = sp->pathmaxrxt; 4656 4657 /*draft-11 doesn't say what to return in spp_flags*/ 4658 params.spp_flags = sp->param_flags; 4659 } 4660 4661 if (copy_to_user(optval, ¶ms, len)) 4662 return -EFAULT; 4663 4664 if (put_user(len, optlen)) 4665 return -EFAULT; 4666 4667 return 0; 4668 } 4669 4670 /* 4671 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4672 * 4673 * This option will effect the way delayed acks are performed. This 4674 * option allows you to get or set the delayed ack time, in 4675 * milliseconds. It also allows changing the delayed ack frequency. 4676 * Changing the frequency to 1 disables the delayed sack algorithm. If 4677 * the assoc_id is 0, then this sets or gets the endpoints default 4678 * values. If the assoc_id field is non-zero, then the set or get 4679 * effects the specified association for the one to many model (the 4680 * assoc_id field is ignored by the one to one model). Note that if 4681 * sack_delay or sack_freq are 0 when setting this option, then the 4682 * current values will remain unchanged. 4683 * 4684 * struct sctp_sack_info { 4685 * sctp_assoc_t sack_assoc_id; 4686 * uint32_t sack_delay; 4687 * uint32_t sack_freq; 4688 * }; 4689 * 4690 * sack_assoc_id - This parameter, indicates which association the user 4691 * is performing an action upon. Note that if this field's value is 4692 * zero then the endpoints default value is changed (effecting future 4693 * associations only). 4694 * 4695 * sack_delay - This parameter contains the number of milliseconds that 4696 * the user is requesting the delayed ACK timer be set to. Note that 4697 * this value is defined in the standard to be between 200 and 500 4698 * milliseconds. 4699 * 4700 * sack_freq - This parameter contains the number of packets that must 4701 * be received before a sack is sent without waiting for the delay 4702 * timer to expire. The default value for this is 2, setting this 4703 * value to 1 will disable the delayed sack algorithm. 4704 */ 4705 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4706 char __user *optval, 4707 int __user *optlen) 4708 { 4709 struct sctp_sack_info params; 4710 struct sctp_association *asoc = NULL; 4711 struct sctp_sock *sp = sctp_sk(sk); 4712 4713 if (len >= sizeof(struct sctp_sack_info)) { 4714 len = sizeof(struct sctp_sack_info); 4715 4716 if (copy_from_user(¶ms, optval, len)) 4717 return -EFAULT; 4718 } else if (len == sizeof(struct sctp_assoc_value)) { 4719 pr_warn_ratelimited(DEPRECATED 4720 "%s (pid %d) " 4721 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 4722 "Use struct sctp_sack_info instead\n", 4723 current->comm, task_pid_nr(current)); 4724 if (copy_from_user(¶ms, optval, len)) 4725 return -EFAULT; 4726 } else 4727 return -EINVAL; 4728 4729 /* Get association, if sack_assoc_id != 0 and the socket is a one 4730 * to many style socket, and an association was not found, then 4731 * the id was invalid. 4732 */ 4733 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4734 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4735 return -EINVAL; 4736 4737 if (asoc) { 4738 /* Fetch association values. */ 4739 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4740 params.sack_delay = jiffies_to_msecs( 4741 asoc->sackdelay); 4742 params.sack_freq = asoc->sackfreq; 4743 4744 } else { 4745 params.sack_delay = 0; 4746 params.sack_freq = 1; 4747 } 4748 } else { 4749 /* Fetch socket values. */ 4750 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4751 params.sack_delay = sp->sackdelay; 4752 params.sack_freq = sp->sackfreq; 4753 } else { 4754 params.sack_delay = 0; 4755 params.sack_freq = 1; 4756 } 4757 } 4758 4759 if (copy_to_user(optval, ¶ms, len)) 4760 return -EFAULT; 4761 4762 if (put_user(len, optlen)) 4763 return -EFAULT; 4764 4765 return 0; 4766 } 4767 4768 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4769 * 4770 * Applications can specify protocol parameters for the default association 4771 * initialization. The option name argument to setsockopt() and getsockopt() 4772 * is SCTP_INITMSG. 4773 * 4774 * Setting initialization parameters is effective only on an unconnected 4775 * socket (for UDP-style sockets only future associations are effected 4776 * by the change). With TCP-style sockets, this option is inherited by 4777 * sockets derived from a listener socket. 4778 */ 4779 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4780 { 4781 if (len < sizeof(struct sctp_initmsg)) 4782 return -EINVAL; 4783 len = sizeof(struct sctp_initmsg); 4784 if (put_user(len, optlen)) 4785 return -EFAULT; 4786 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4787 return -EFAULT; 4788 return 0; 4789 } 4790 4791 4792 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4793 char __user *optval, int __user *optlen) 4794 { 4795 struct sctp_association *asoc; 4796 int cnt = 0; 4797 struct sctp_getaddrs getaddrs; 4798 struct sctp_transport *from; 4799 void __user *to; 4800 union sctp_addr temp; 4801 struct sctp_sock *sp = sctp_sk(sk); 4802 int addrlen; 4803 size_t space_left; 4804 int bytes_copied; 4805 4806 if (len < sizeof(struct sctp_getaddrs)) 4807 return -EINVAL; 4808 4809 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4810 return -EFAULT; 4811 4812 /* For UDP-style sockets, id specifies the association to query. */ 4813 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4814 if (!asoc) 4815 return -EINVAL; 4816 4817 to = optval + offsetof(struct sctp_getaddrs, addrs); 4818 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4819 4820 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4821 transports) { 4822 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4823 addrlen = sctp_get_pf_specific(sk->sk_family) 4824 ->addr_to_user(sp, &temp); 4825 if (space_left < addrlen) 4826 return -ENOMEM; 4827 if (copy_to_user(to, &temp, addrlen)) 4828 return -EFAULT; 4829 to += addrlen; 4830 cnt++; 4831 space_left -= addrlen; 4832 } 4833 4834 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4835 return -EFAULT; 4836 bytes_copied = ((char __user *)to) - optval; 4837 if (put_user(bytes_copied, optlen)) 4838 return -EFAULT; 4839 4840 return 0; 4841 } 4842 4843 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4844 size_t space_left, int *bytes_copied) 4845 { 4846 struct sctp_sockaddr_entry *addr; 4847 union sctp_addr temp; 4848 int cnt = 0; 4849 int addrlen; 4850 struct net *net = sock_net(sk); 4851 4852 rcu_read_lock(); 4853 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4854 if (!addr->valid) 4855 continue; 4856 4857 if ((PF_INET == sk->sk_family) && 4858 (AF_INET6 == addr->a.sa.sa_family)) 4859 continue; 4860 if ((PF_INET6 == sk->sk_family) && 4861 inet_v6_ipv6only(sk) && 4862 (AF_INET == addr->a.sa.sa_family)) 4863 continue; 4864 memcpy(&temp, &addr->a, sizeof(temp)); 4865 if (!temp.v4.sin_port) 4866 temp.v4.sin_port = htons(port); 4867 4868 addrlen = sctp_get_pf_specific(sk->sk_family) 4869 ->addr_to_user(sctp_sk(sk), &temp); 4870 4871 if (space_left < addrlen) { 4872 cnt = -ENOMEM; 4873 break; 4874 } 4875 memcpy(to, &temp, addrlen); 4876 4877 to += addrlen; 4878 cnt++; 4879 space_left -= addrlen; 4880 *bytes_copied += addrlen; 4881 } 4882 rcu_read_unlock(); 4883 4884 return cnt; 4885 } 4886 4887 4888 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4889 char __user *optval, int __user *optlen) 4890 { 4891 struct sctp_bind_addr *bp; 4892 struct sctp_association *asoc; 4893 int cnt = 0; 4894 struct sctp_getaddrs getaddrs; 4895 struct sctp_sockaddr_entry *addr; 4896 void __user *to; 4897 union sctp_addr temp; 4898 struct sctp_sock *sp = sctp_sk(sk); 4899 int addrlen; 4900 int err = 0; 4901 size_t space_left; 4902 int bytes_copied = 0; 4903 void *addrs; 4904 void *buf; 4905 4906 if (len < sizeof(struct sctp_getaddrs)) 4907 return -EINVAL; 4908 4909 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4910 return -EFAULT; 4911 4912 /* 4913 * For UDP-style sockets, id specifies the association to query. 4914 * If the id field is set to the value '0' then the locally bound 4915 * addresses are returned without regard to any particular 4916 * association. 4917 */ 4918 if (0 == getaddrs.assoc_id) { 4919 bp = &sctp_sk(sk)->ep->base.bind_addr; 4920 } else { 4921 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4922 if (!asoc) 4923 return -EINVAL; 4924 bp = &asoc->base.bind_addr; 4925 } 4926 4927 to = optval + offsetof(struct sctp_getaddrs, addrs); 4928 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4929 4930 addrs = kmalloc(space_left, GFP_KERNEL); 4931 if (!addrs) 4932 return -ENOMEM; 4933 4934 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4935 * addresses from the global local address list. 4936 */ 4937 if (sctp_list_single_entry(&bp->address_list)) { 4938 addr = list_entry(bp->address_list.next, 4939 struct sctp_sockaddr_entry, list); 4940 if (sctp_is_any(sk, &addr->a)) { 4941 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4942 space_left, &bytes_copied); 4943 if (cnt < 0) { 4944 err = cnt; 4945 goto out; 4946 } 4947 goto copy_getaddrs; 4948 } 4949 } 4950 4951 buf = addrs; 4952 /* Protection on the bound address list is not needed since 4953 * in the socket option context we hold a socket lock and 4954 * thus the bound address list can't change. 4955 */ 4956 list_for_each_entry(addr, &bp->address_list, list) { 4957 memcpy(&temp, &addr->a, sizeof(temp)); 4958 addrlen = sctp_get_pf_specific(sk->sk_family) 4959 ->addr_to_user(sp, &temp); 4960 if (space_left < addrlen) { 4961 err = -ENOMEM; /*fixme: right error?*/ 4962 goto out; 4963 } 4964 memcpy(buf, &temp, addrlen); 4965 buf += addrlen; 4966 bytes_copied += addrlen; 4967 cnt++; 4968 space_left -= addrlen; 4969 } 4970 4971 copy_getaddrs: 4972 if (copy_to_user(to, addrs, bytes_copied)) { 4973 err = -EFAULT; 4974 goto out; 4975 } 4976 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4977 err = -EFAULT; 4978 goto out; 4979 } 4980 if (put_user(bytes_copied, optlen)) 4981 err = -EFAULT; 4982 out: 4983 kfree(addrs); 4984 return err; 4985 } 4986 4987 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4988 * 4989 * Requests that the local SCTP stack use the enclosed peer address as 4990 * the association primary. The enclosed address must be one of the 4991 * association peer's addresses. 4992 */ 4993 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4994 char __user *optval, int __user *optlen) 4995 { 4996 struct sctp_prim prim; 4997 struct sctp_association *asoc; 4998 struct sctp_sock *sp = sctp_sk(sk); 4999 5000 if (len < sizeof(struct sctp_prim)) 5001 return -EINVAL; 5002 5003 len = sizeof(struct sctp_prim); 5004 5005 if (copy_from_user(&prim, optval, len)) 5006 return -EFAULT; 5007 5008 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5009 if (!asoc) 5010 return -EINVAL; 5011 5012 if (!asoc->peer.primary_path) 5013 return -ENOTCONN; 5014 5015 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5016 asoc->peer.primary_path->af_specific->sockaddr_len); 5017 5018 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5019 (union sctp_addr *)&prim.ssp_addr); 5020 5021 if (put_user(len, optlen)) 5022 return -EFAULT; 5023 if (copy_to_user(optval, &prim, len)) 5024 return -EFAULT; 5025 5026 return 0; 5027 } 5028 5029 /* 5030 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5031 * 5032 * Requests that the local endpoint set the specified Adaptation Layer 5033 * Indication parameter for all future INIT and INIT-ACK exchanges. 5034 */ 5035 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5036 char __user *optval, int __user *optlen) 5037 { 5038 struct sctp_setadaptation adaptation; 5039 5040 if (len < sizeof(struct sctp_setadaptation)) 5041 return -EINVAL; 5042 5043 len = sizeof(struct sctp_setadaptation); 5044 5045 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5046 5047 if (put_user(len, optlen)) 5048 return -EFAULT; 5049 if (copy_to_user(optval, &adaptation, len)) 5050 return -EFAULT; 5051 5052 return 0; 5053 } 5054 5055 /* 5056 * 5057 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5058 * 5059 * Applications that wish to use the sendto() system call may wish to 5060 * specify a default set of parameters that would normally be supplied 5061 * through the inclusion of ancillary data. This socket option allows 5062 * such an application to set the default sctp_sndrcvinfo structure. 5063 5064 5065 * The application that wishes to use this socket option simply passes 5066 * in to this call the sctp_sndrcvinfo structure defined in Section 5067 * 5.2.2) The input parameters accepted by this call include 5068 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5069 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5070 * to this call if the caller is using the UDP model. 5071 * 5072 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5073 */ 5074 static int sctp_getsockopt_default_send_param(struct sock *sk, 5075 int len, char __user *optval, 5076 int __user *optlen) 5077 { 5078 struct sctp_sock *sp = sctp_sk(sk); 5079 struct sctp_association *asoc; 5080 struct sctp_sndrcvinfo info; 5081 5082 if (len < sizeof(info)) 5083 return -EINVAL; 5084 5085 len = sizeof(info); 5086 5087 if (copy_from_user(&info, optval, len)) 5088 return -EFAULT; 5089 5090 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5091 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5092 return -EINVAL; 5093 if (asoc) { 5094 info.sinfo_stream = asoc->default_stream; 5095 info.sinfo_flags = asoc->default_flags; 5096 info.sinfo_ppid = asoc->default_ppid; 5097 info.sinfo_context = asoc->default_context; 5098 info.sinfo_timetolive = asoc->default_timetolive; 5099 } else { 5100 info.sinfo_stream = sp->default_stream; 5101 info.sinfo_flags = sp->default_flags; 5102 info.sinfo_ppid = sp->default_ppid; 5103 info.sinfo_context = sp->default_context; 5104 info.sinfo_timetolive = sp->default_timetolive; 5105 } 5106 5107 if (put_user(len, optlen)) 5108 return -EFAULT; 5109 if (copy_to_user(optval, &info, len)) 5110 return -EFAULT; 5111 5112 return 0; 5113 } 5114 5115 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5116 * (SCTP_DEFAULT_SNDINFO) 5117 */ 5118 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5119 char __user *optval, 5120 int __user *optlen) 5121 { 5122 struct sctp_sock *sp = sctp_sk(sk); 5123 struct sctp_association *asoc; 5124 struct sctp_sndinfo info; 5125 5126 if (len < sizeof(info)) 5127 return -EINVAL; 5128 5129 len = sizeof(info); 5130 5131 if (copy_from_user(&info, optval, len)) 5132 return -EFAULT; 5133 5134 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5135 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5136 return -EINVAL; 5137 if (asoc) { 5138 info.snd_sid = asoc->default_stream; 5139 info.snd_flags = asoc->default_flags; 5140 info.snd_ppid = asoc->default_ppid; 5141 info.snd_context = asoc->default_context; 5142 } else { 5143 info.snd_sid = sp->default_stream; 5144 info.snd_flags = sp->default_flags; 5145 info.snd_ppid = sp->default_ppid; 5146 info.snd_context = sp->default_context; 5147 } 5148 5149 if (put_user(len, optlen)) 5150 return -EFAULT; 5151 if (copy_to_user(optval, &info, len)) 5152 return -EFAULT; 5153 5154 return 0; 5155 } 5156 5157 /* 5158 * 5159 * 7.1.5 SCTP_NODELAY 5160 * 5161 * Turn on/off any Nagle-like algorithm. This means that packets are 5162 * generally sent as soon as possible and no unnecessary delays are 5163 * introduced, at the cost of more packets in the network. Expects an 5164 * integer boolean flag. 5165 */ 5166 5167 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5168 char __user *optval, int __user *optlen) 5169 { 5170 int val; 5171 5172 if (len < sizeof(int)) 5173 return -EINVAL; 5174 5175 len = sizeof(int); 5176 val = (sctp_sk(sk)->nodelay == 1); 5177 if (put_user(len, optlen)) 5178 return -EFAULT; 5179 if (copy_to_user(optval, &val, len)) 5180 return -EFAULT; 5181 return 0; 5182 } 5183 5184 /* 5185 * 5186 * 7.1.1 SCTP_RTOINFO 5187 * 5188 * The protocol parameters used to initialize and bound retransmission 5189 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5190 * and modify these parameters. 5191 * All parameters are time values, in milliseconds. A value of 0, when 5192 * modifying the parameters, indicates that the current value should not 5193 * be changed. 5194 * 5195 */ 5196 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5197 char __user *optval, 5198 int __user *optlen) { 5199 struct sctp_rtoinfo rtoinfo; 5200 struct sctp_association *asoc; 5201 5202 if (len < sizeof (struct sctp_rtoinfo)) 5203 return -EINVAL; 5204 5205 len = sizeof(struct sctp_rtoinfo); 5206 5207 if (copy_from_user(&rtoinfo, optval, len)) 5208 return -EFAULT; 5209 5210 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5211 5212 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5213 return -EINVAL; 5214 5215 /* Values corresponding to the specific association. */ 5216 if (asoc) { 5217 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5218 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5219 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5220 } else { 5221 /* Values corresponding to the endpoint. */ 5222 struct sctp_sock *sp = sctp_sk(sk); 5223 5224 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5225 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5226 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5227 } 5228 5229 if (put_user(len, optlen)) 5230 return -EFAULT; 5231 5232 if (copy_to_user(optval, &rtoinfo, len)) 5233 return -EFAULT; 5234 5235 return 0; 5236 } 5237 5238 /* 5239 * 5240 * 7.1.2 SCTP_ASSOCINFO 5241 * 5242 * This option is used to tune the maximum retransmission attempts 5243 * of the association. 5244 * Returns an error if the new association retransmission value is 5245 * greater than the sum of the retransmission value of the peer. 5246 * See [SCTP] for more information. 5247 * 5248 */ 5249 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5250 char __user *optval, 5251 int __user *optlen) 5252 { 5253 5254 struct sctp_assocparams assocparams; 5255 struct sctp_association *asoc; 5256 struct list_head *pos; 5257 int cnt = 0; 5258 5259 if (len < sizeof (struct sctp_assocparams)) 5260 return -EINVAL; 5261 5262 len = sizeof(struct sctp_assocparams); 5263 5264 if (copy_from_user(&assocparams, optval, len)) 5265 return -EFAULT; 5266 5267 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5268 5269 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5270 return -EINVAL; 5271 5272 /* Values correspoinding to the specific association */ 5273 if (asoc) { 5274 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5275 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5276 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5277 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5278 5279 list_for_each(pos, &asoc->peer.transport_addr_list) { 5280 cnt++; 5281 } 5282 5283 assocparams.sasoc_number_peer_destinations = cnt; 5284 } else { 5285 /* Values corresponding to the endpoint */ 5286 struct sctp_sock *sp = sctp_sk(sk); 5287 5288 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5289 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5290 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5291 assocparams.sasoc_cookie_life = 5292 sp->assocparams.sasoc_cookie_life; 5293 assocparams.sasoc_number_peer_destinations = 5294 sp->assocparams. 5295 sasoc_number_peer_destinations; 5296 } 5297 5298 if (put_user(len, optlen)) 5299 return -EFAULT; 5300 5301 if (copy_to_user(optval, &assocparams, len)) 5302 return -EFAULT; 5303 5304 return 0; 5305 } 5306 5307 /* 5308 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5309 * 5310 * This socket option is a boolean flag which turns on or off mapped V4 5311 * addresses. If this option is turned on and the socket is type 5312 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5313 * If this option is turned off, then no mapping will be done of V4 5314 * addresses and a user will receive both PF_INET6 and PF_INET type 5315 * addresses on the socket. 5316 */ 5317 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5318 char __user *optval, int __user *optlen) 5319 { 5320 int val; 5321 struct sctp_sock *sp = sctp_sk(sk); 5322 5323 if (len < sizeof(int)) 5324 return -EINVAL; 5325 5326 len = sizeof(int); 5327 val = sp->v4mapped; 5328 if (put_user(len, optlen)) 5329 return -EFAULT; 5330 if (copy_to_user(optval, &val, len)) 5331 return -EFAULT; 5332 5333 return 0; 5334 } 5335 5336 /* 5337 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5338 * (chapter and verse is quoted at sctp_setsockopt_context()) 5339 */ 5340 static int sctp_getsockopt_context(struct sock *sk, int len, 5341 char __user *optval, int __user *optlen) 5342 { 5343 struct sctp_assoc_value params; 5344 struct sctp_sock *sp; 5345 struct sctp_association *asoc; 5346 5347 if (len < sizeof(struct sctp_assoc_value)) 5348 return -EINVAL; 5349 5350 len = sizeof(struct sctp_assoc_value); 5351 5352 if (copy_from_user(¶ms, optval, len)) 5353 return -EFAULT; 5354 5355 sp = sctp_sk(sk); 5356 5357 if (params.assoc_id != 0) { 5358 asoc = sctp_id2assoc(sk, params.assoc_id); 5359 if (!asoc) 5360 return -EINVAL; 5361 params.assoc_value = asoc->default_rcv_context; 5362 } else { 5363 params.assoc_value = sp->default_rcv_context; 5364 } 5365 5366 if (put_user(len, optlen)) 5367 return -EFAULT; 5368 if (copy_to_user(optval, ¶ms, len)) 5369 return -EFAULT; 5370 5371 return 0; 5372 } 5373 5374 /* 5375 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5376 * This option will get or set the maximum size to put in any outgoing 5377 * SCTP DATA chunk. If a message is larger than this size it will be 5378 * fragmented by SCTP into the specified size. Note that the underlying 5379 * SCTP implementation may fragment into smaller sized chunks when the 5380 * PMTU of the underlying association is smaller than the value set by 5381 * the user. The default value for this option is '0' which indicates 5382 * the user is NOT limiting fragmentation and only the PMTU will effect 5383 * SCTP's choice of DATA chunk size. Note also that values set larger 5384 * than the maximum size of an IP datagram will effectively let SCTP 5385 * control fragmentation (i.e. the same as setting this option to 0). 5386 * 5387 * The following structure is used to access and modify this parameter: 5388 * 5389 * struct sctp_assoc_value { 5390 * sctp_assoc_t assoc_id; 5391 * uint32_t assoc_value; 5392 * }; 5393 * 5394 * assoc_id: This parameter is ignored for one-to-one style sockets. 5395 * For one-to-many style sockets this parameter indicates which 5396 * association the user is performing an action upon. Note that if 5397 * this field's value is zero then the endpoints default value is 5398 * changed (effecting future associations only). 5399 * assoc_value: This parameter specifies the maximum size in bytes. 5400 */ 5401 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5402 char __user *optval, int __user *optlen) 5403 { 5404 struct sctp_assoc_value params; 5405 struct sctp_association *asoc; 5406 5407 if (len == sizeof(int)) { 5408 pr_warn_ratelimited(DEPRECATED 5409 "%s (pid %d) " 5410 "Use of int in maxseg socket option.\n" 5411 "Use struct sctp_assoc_value instead\n", 5412 current->comm, task_pid_nr(current)); 5413 params.assoc_id = 0; 5414 } else if (len >= sizeof(struct sctp_assoc_value)) { 5415 len = sizeof(struct sctp_assoc_value); 5416 if (copy_from_user(¶ms, optval, sizeof(params))) 5417 return -EFAULT; 5418 } else 5419 return -EINVAL; 5420 5421 asoc = sctp_id2assoc(sk, params.assoc_id); 5422 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5423 return -EINVAL; 5424 5425 if (asoc) 5426 params.assoc_value = asoc->frag_point; 5427 else 5428 params.assoc_value = sctp_sk(sk)->user_frag; 5429 5430 if (put_user(len, optlen)) 5431 return -EFAULT; 5432 if (len == sizeof(int)) { 5433 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5434 return -EFAULT; 5435 } else { 5436 if (copy_to_user(optval, ¶ms, len)) 5437 return -EFAULT; 5438 } 5439 5440 return 0; 5441 } 5442 5443 /* 5444 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5445 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5446 */ 5447 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5448 char __user *optval, int __user *optlen) 5449 { 5450 int val; 5451 5452 if (len < sizeof(int)) 5453 return -EINVAL; 5454 5455 len = sizeof(int); 5456 5457 val = sctp_sk(sk)->frag_interleave; 5458 if (put_user(len, optlen)) 5459 return -EFAULT; 5460 if (copy_to_user(optval, &val, len)) 5461 return -EFAULT; 5462 5463 return 0; 5464 } 5465 5466 /* 5467 * 7.1.25. Set or Get the sctp partial delivery point 5468 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5469 */ 5470 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5471 char __user *optval, 5472 int __user *optlen) 5473 { 5474 u32 val; 5475 5476 if (len < sizeof(u32)) 5477 return -EINVAL; 5478 5479 len = sizeof(u32); 5480 5481 val = sctp_sk(sk)->pd_point; 5482 if (put_user(len, optlen)) 5483 return -EFAULT; 5484 if (copy_to_user(optval, &val, len)) 5485 return -EFAULT; 5486 5487 return 0; 5488 } 5489 5490 /* 5491 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5492 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5493 */ 5494 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5495 char __user *optval, 5496 int __user *optlen) 5497 { 5498 struct sctp_assoc_value params; 5499 struct sctp_sock *sp; 5500 struct sctp_association *asoc; 5501 5502 if (len == sizeof(int)) { 5503 pr_warn_ratelimited(DEPRECATED 5504 "%s (pid %d) " 5505 "Use of int in max_burst socket option.\n" 5506 "Use struct sctp_assoc_value instead\n", 5507 current->comm, task_pid_nr(current)); 5508 params.assoc_id = 0; 5509 } else if (len >= sizeof(struct sctp_assoc_value)) { 5510 len = sizeof(struct sctp_assoc_value); 5511 if (copy_from_user(¶ms, optval, len)) 5512 return -EFAULT; 5513 } else 5514 return -EINVAL; 5515 5516 sp = sctp_sk(sk); 5517 5518 if (params.assoc_id != 0) { 5519 asoc = sctp_id2assoc(sk, params.assoc_id); 5520 if (!asoc) 5521 return -EINVAL; 5522 params.assoc_value = asoc->max_burst; 5523 } else 5524 params.assoc_value = sp->max_burst; 5525 5526 if (len == sizeof(int)) { 5527 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5528 return -EFAULT; 5529 } else { 5530 if (copy_to_user(optval, ¶ms, len)) 5531 return -EFAULT; 5532 } 5533 5534 return 0; 5535 5536 } 5537 5538 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5539 char __user *optval, int __user *optlen) 5540 { 5541 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5542 struct sctp_hmacalgo __user *p = (void __user *)optval; 5543 struct sctp_hmac_algo_param *hmacs; 5544 __u16 data_len = 0; 5545 u32 num_idents; 5546 5547 if (!ep->auth_enable) 5548 return -EACCES; 5549 5550 hmacs = ep->auth_hmacs_list; 5551 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5552 5553 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5554 return -EINVAL; 5555 5556 len = sizeof(struct sctp_hmacalgo) + data_len; 5557 num_idents = data_len / sizeof(u16); 5558 5559 if (put_user(len, optlen)) 5560 return -EFAULT; 5561 if (put_user(num_idents, &p->shmac_num_idents)) 5562 return -EFAULT; 5563 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5564 return -EFAULT; 5565 return 0; 5566 } 5567 5568 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5569 char __user *optval, int __user *optlen) 5570 { 5571 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5572 struct sctp_authkeyid val; 5573 struct sctp_association *asoc; 5574 5575 if (!ep->auth_enable) 5576 return -EACCES; 5577 5578 if (len < sizeof(struct sctp_authkeyid)) 5579 return -EINVAL; 5580 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5581 return -EFAULT; 5582 5583 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5584 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5585 return -EINVAL; 5586 5587 if (asoc) 5588 val.scact_keynumber = asoc->active_key_id; 5589 else 5590 val.scact_keynumber = ep->active_key_id; 5591 5592 len = sizeof(struct sctp_authkeyid); 5593 if (put_user(len, optlen)) 5594 return -EFAULT; 5595 if (copy_to_user(optval, &val, len)) 5596 return -EFAULT; 5597 5598 return 0; 5599 } 5600 5601 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5602 char __user *optval, int __user *optlen) 5603 { 5604 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5605 struct sctp_authchunks __user *p = (void __user *)optval; 5606 struct sctp_authchunks val; 5607 struct sctp_association *asoc; 5608 struct sctp_chunks_param *ch; 5609 u32 num_chunks = 0; 5610 char __user *to; 5611 5612 if (!ep->auth_enable) 5613 return -EACCES; 5614 5615 if (len < sizeof(struct sctp_authchunks)) 5616 return -EINVAL; 5617 5618 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5619 return -EFAULT; 5620 5621 to = p->gauth_chunks; 5622 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5623 if (!asoc) 5624 return -EINVAL; 5625 5626 ch = asoc->peer.peer_chunks; 5627 if (!ch) 5628 goto num; 5629 5630 /* See if the user provided enough room for all the data */ 5631 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5632 if (len < num_chunks) 5633 return -EINVAL; 5634 5635 if (copy_to_user(to, ch->chunks, num_chunks)) 5636 return -EFAULT; 5637 num: 5638 len = sizeof(struct sctp_authchunks) + num_chunks; 5639 if (put_user(len, optlen)) 5640 return -EFAULT; 5641 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5642 return -EFAULT; 5643 return 0; 5644 } 5645 5646 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5647 char __user *optval, int __user *optlen) 5648 { 5649 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5650 struct sctp_authchunks __user *p = (void __user *)optval; 5651 struct sctp_authchunks val; 5652 struct sctp_association *asoc; 5653 struct sctp_chunks_param *ch; 5654 u32 num_chunks = 0; 5655 char __user *to; 5656 5657 if (!ep->auth_enable) 5658 return -EACCES; 5659 5660 if (len < sizeof(struct sctp_authchunks)) 5661 return -EINVAL; 5662 5663 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5664 return -EFAULT; 5665 5666 to = p->gauth_chunks; 5667 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5668 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5669 return -EINVAL; 5670 5671 if (asoc) 5672 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5673 else 5674 ch = ep->auth_chunk_list; 5675 5676 if (!ch) 5677 goto num; 5678 5679 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5680 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5681 return -EINVAL; 5682 5683 if (copy_to_user(to, ch->chunks, num_chunks)) 5684 return -EFAULT; 5685 num: 5686 len = sizeof(struct sctp_authchunks) + num_chunks; 5687 if (put_user(len, optlen)) 5688 return -EFAULT; 5689 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5690 return -EFAULT; 5691 5692 return 0; 5693 } 5694 5695 /* 5696 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5697 * This option gets the current number of associations that are attached 5698 * to a one-to-many style socket. The option value is an uint32_t. 5699 */ 5700 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5701 char __user *optval, int __user *optlen) 5702 { 5703 struct sctp_sock *sp = sctp_sk(sk); 5704 struct sctp_association *asoc; 5705 u32 val = 0; 5706 5707 if (sctp_style(sk, TCP)) 5708 return -EOPNOTSUPP; 5709 5710 if (len < sizeof(u32)) 5711 return -EINVAL; 5712 5713 len = sizeof(u32); 5714 5715 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5716 val++; 5717 } 5718 5719 if (put_user(len, optlen)) 5720 return -EFAULT; 5721 if (copy_to_user(optval, &val, len)) 5722 return -EFAULT; 5723 5724 return 0; 5725 } 5726 5727 /* 5728 * 8.1.23 SCTP_AUTO_ASCONF 5729 * See the corresponding setsockopt entry as description 5730 */ 5731 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5732 char __user *optval, int __user *optlen) 5733 { 5734 int val = 0; 5735 5736 if (len < sizeof(int)) 5737 return -EINVAL; 5738 5739 len = sizeof(int); 5740 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5741 val = 1; 5742 if (put_user(len, optlen)) 5743 return -EFAULT; 5744 if (copy_to_user(optval, &val, len)) 5745 return -EFAULT; 5746 return 0; 5747 } 5748 5749 /* 5750 * 8.2.6. Get the Current Identifiers of Associations 5751 * (SCTP_GET_ASSOC_ID_LIST) 5752 * 5753 * This option gets the current list of SCTP association identifiers of 5754 * the SCTP associations handled by a one-to-many style socket. 5755 */ 5756 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5757 char __user *optval, int __user *optlen) 5758 { 5759 struct sctp_sock *sp = sctp_sk(sk); 5760 struct sctp_association *asoc; 5761 struct sctp_assoc_ids *ids; 5762 u32 num = 0; 5763 5764 if (sctp_style(sk, TCP)) 5765 return -EOPNOTSUPP; 5766 5767 if (len < sizeof(struct sctp_assoc_ids)) 5768 return -EINVAL; 5769 5770 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5771 num++; 5772 } 5773 5774 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5775 return -EINVAL; 5776 5777 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5778 5779 ids = kmalloc(len, GFP_KERNEL); 5780 if (unlikely(!ids)) 5781 return -ENOMEM; 5782 5783 ids->gaids_number_of_ids = num; 5784 num = 0; 5785 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5786 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5787 } 5788 5789 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5790 kfree(ids); 5791 return -EFAULT; 5792 } 5793 5794 kfree(ids); 5795 return 0; 5796 } 5797 5798 /* 5799 * SCTP_PEER_ADDR_THLDS 5800 * 5801 * This option allows us to fetch the partially failed threshold for one or all 5802 * transports in an association. See Section 6.1 of: 5803 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5804 */ 5805 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5806 char __user *optval, 5807 int len, 5808 int __user *optlen) 5809 { 5810 struct sctp_paddrthlds val; 5811 struct sctp_transport *trans; 5812 struct sctp_association *asoc; 5813 5814 if (len < sizeof(struct sctp_paddrthlds)) 5815 return -EINVAL; 5816 len = sizeof(struct sctp_paddrthlds); 5817 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5818 return -EFAULT; 5819 5820 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5821 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5822 if (!asoc) 5823 return -ENOENT; 5824 5825 val.spt_pathpfthld = asoc->pf_retrans; 5826 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5827 } else { 5828 trans = sctp_addr_id2transport(sk, &val.spt_address, 5829 val.spt_assoc_id); 5830 if (!trans) 5831 return -ENOENT; 5832 5833 val.spt_pathmaxrxt = trans->pathmaxrxt; 5834 val.spt_pathpfthld = trans->pf_retrans; 5835 } 5836 5837 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5838 return -EFAULT; 5839 5840 return 0; 5841 } 5842 5843 /* 5844 * SCTP_GET_ASSOC_STATS 5845 * 5846 * This option retrieves local per endpoint statistics. It is modeled 5847 * after OpenSolaris' implementation 5848 */ 5849 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5850 char __user *optval, 5851 int __user *optlen) 5852 { 5853 struct sctp_assoc_stats sas; 5854 struct sctp_association *asoc = NULL; 5855 5856 /* User must provide at least the assoc id */ 5857 if (len < sizeof(sctp_assoc_t)) 5858 return -EINVAL; 5859 5860 /* Allow the struct to grow and fill in as much as possible */ 5861 len = min_t(size_t, len, sizeof(sas)); 5862 5863 if (copy_from_user(&sas, optval, len)) 5864 return -EFAULT; 5865 5866 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5867 if (!asoc) 5868 return -EINVAL; 5869 5870 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5871 sas.sas_gapcnt = asoc->stats.gapcnt; 5872 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5873 sas.sas_osacks = asoc->stats.osacks; 5874 sas.sas_isacks = asoc->stats.isacks; 5875 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5876 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5877 sas.sas_oodchunks = asoc->stats.oodchunks; 5878 sas.sas_iodchunks = asoc->stats.iodchunks; 5879 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5880 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5881 sas.sas_idupchunks = asoc->stats.idupchunks; 5882 sas.sas_opackets = asoc->stats.opackets; 5883 sas.sas_ipackets = asoc->stats.ipackets; 5884 5885 /* New high max rto observed, will return 0 if not a single 5886 * RTO update took place. obs_rto_ipaddr will be bogus 5887 * in such a case 5888 */ 5889 sas.sas_maxrto = asoc->stats.max_obs_rto; 5890 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5891 sizeof(struct sockaddr_storage)); 5892 5893 /* Mark beginning of a new observation period */ 5894 asoc->stats.max_obs_rto = asoc->rto_min; 5895 5896 if (put_user(len, optlen)) 5897 return -EFAULT; 5898 5899 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 5900 5901 if (copy_to_user(optval, &sas, len)) 5902 return -EFAULT; 5903 5904 return 0; 5905 } 5906 5907 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 5908 char __user *optval, 5909 int __user *optlen) 5910 { 5911 int val = 0; 5912 5913 if (len < sizeof(int)) 5914 return -EINVAL; 5915 5916 len = sizeof(int); 5917 if (sctp_sk(sk)->recvrcvinfo) 5918 val = 1; 5919 if (put_user(len, optlen)) 5920 return -EFAULT; 5921 if (copy_to_user(optval, &val, len)) 5922 return -EFAULT; 5923 5924 return 0; 5925 } 5926 5927 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 5928 char __user *optval, 5929 int __user *optlen) 5930 { 5931 int val = 0; 5932 5933 if (len < sizeof(int)) 5934 return -EINVAL; 5935 5936 len = sizeof(int); 5937 if (sctp_sk(sk)->recvnxtinfo) 5938 val = 1; 5939 if (put_user(len, optlen)) 5940 return -EFAULT; 5941 if (copy_to_user(optval, &val, len)) 5942 return -EFAULT; 5943 5944 return 0; 5945 } 5946 5947 static int sctp_getsockopt(struct sock *sk, int level, int optname, 5948 char __user *optval, int __user *optlen) 5949 { 5950 int retval = 0; 5951 int len; 5952 5953 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 5954 5955 /* I can hardly begin to describe how wrong this is. This is 5956 * so broken as to be worse than useless. The API draft 5957 * REALLY is NOT helpful here... I am not convinced that the 5958 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5959 * are at all well-founded. 5960 */ 5961 if (level != SOL_SCTP) { 5962 struct sctp_af *af = sctp_sk(sk)->pf->af; 5963 5964 retval = af->getsockopt(sk, level, optname, optval, optlen); 5965 return retval; 5966 } 5967 5968 if (get_user(len, optlen)) 5969 return -EFAULT; 5970 5971 lock_sock(sk); 5972 5973 switch (optname) { 5974 case SCTP_STATUS: 5975 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5976 break; 5977 case SCTP_DISABLE_FRAGMENTS: 5978 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5979 optlen); 5980 break; 5981 case SCTP_EVENTS: 5982 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5983 break; 5984 case SCTP_AUTOCLOSE: 5985 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5986 break; 5987 case SCTP_SOCKOPT_PEELOFF: 5988 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5989 break; 5990 case SCTP_PEER_ADDR_PARAMS: 5991 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5992 optlen); 5993 break; 5994 case SCTP_DELAYED_SACK: 5995 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5996 optlen); 5997 break; 5998 case SCTP_INITMSG: 5999 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6000 break; 6001 case SCTP_GET_PEER_ADDRS: 6002 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6003 optlen); 6004 break; 6005 case SCTP_GET_LOCAL_ADDRS: 6006 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6007 optlen); 6008 break; 6009 case SCTP_SOCKOPT_CONNECTX3: 6010 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6011 break; 6012 case SCTP_DEFAULT_SEND_PARAM: 6013 retval = sctp_getsockopt_default_send_param(sk, len, 6014 optval, optlen); 6015 break; 6016 case SCTP_DEFAULT_SNDINFO: 6017 retval = sctp_getsockopt_default_sndinfo(sk, len, 6018 optval, optlen); 6019 break; 6020 case SCTP_PRIMARY_ADDR: 6021 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6022 break; 6023 case SCTP_NODELAY: 6024 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6025 break; 6026 case SCTP_RTOINFO: 6027 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6028 break; 6029 case SCTP_ASSOCINFO: 6030 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6031 break; 6032 case SCTP_I_WANT_MAPPED_V4_ADDR: 6033 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6034 break; 6035 case SCTP_MAXSEG: 6036 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6037 break; 6038 case SCTP_GET_PEER_ADDR_INFO: 6039 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6040 optlen); 6041 break; 6042 case SCTP_ADAPTATION_LAYER: 6043 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6044 optlen); 6045 break; 6046 case SCTP_CONTEXT: 6047 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6048 break; 6049 case SCTP_FRAGMENT_INTERLEAVE: 6050 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6051 optlen); 6052 break; 6053 case SCTP_PARTIAL_DELIVERY_POINT: 6054 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6055 optlen); 6056 break; 6057 case SCTP_MAX_BURST: 6058 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6059 break; 6060 case SCTP_AUTH_KEY: 6061 case SCTP_AUTH_CHUNK: 6062 case SCTP_AUTH_DELETE_KEY: 6063 retval = -EOPNOTSUPP; 6064 break; 6065 case SCTP_HMAC_IDENT: 6066 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6067 break; 6068 case SCTP_AUTH_ACTIVE_KEY: 6069 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6070 break; 6071 case SCTP_PEER_AUTH_CHUNKS: 6072 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6073 optlen); 6074 break; 6075 case SCTP_LOCAL_AUTH_CHUNKS: 6076 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6077 optlen); 6078 break; 6079 case SCTP_GET_ASSOC_NUMBER: 6080 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6081 break; 6082 case SCTP_GET_ASSOC_ID_LIST: 6083 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6084 break; 6085 case SCTP_AUTO_ASCONF: 6086 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6087 break; 6088 case SCTP_PEER_ADDR_THLDS: 6089 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6090 break; 6091 case SCTP_GET_ASSOC_STATS: 6092 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6093 break; 6094 case SCTP_RECVRCVINFO: 6095 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6096 break; 6097 case SCTP_RECVNXTINFO: 6098 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6099 break; 6100 default: 6101 retval = -ENOPROTOOPT; 6102 break; 6103 } 6104 6105 release_sock(sk); 6106 return retval; 6107 } 6108 6109 static void sctp_hash(struct sock *sk) 6110 { 6111 /* STUB */ 6112 } 6113 6114 static void sctp_unhash(struct sock *sk) 6115 { 6116 /* STUB */ 6117 } 6118 6119 /* Check if port is acceptable. Possibly find first available port. 6120 * 6121 * The port hash table (contained in the 'global' SCTP protocol storage 6122 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6123 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6124 * list (the list number is the port number hashed out, so as you 6125 * would expect from a hash function, all the ports in a given list have 6126 * such a number that hashes out to the same list number; you were 6127 * expecting that, right?); so each list has a set of ports, with a 6128 * link to the socket (struct sock) that uses it, the port number and 6129 * a fastreuse flag (FIXME: NPI ipg). 6130 */ 6131 static struct sctp_bind_bucket *sctp_bucket_create( 6132 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6133 6134 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6135 { 6136 struct sctp_bind_hashbucket *head; /* hash list */ 6137 struct sctp_bind_bucket *pp; 6138 unsigned short snum; 6139 int ret; 6140 6141 snum = ntohs(addr->v4.sin_port); 6142 6143 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6144 6145 local_bh_disable(); 6146 6147 if (snum == 0) { 6148 /* Search for an available port. */ 6149 int low, high, remaining, index; 6150 unsigned int rover; 6151 struct net *net = sock_net(sk); 6152 6153 inet_get_local_port_range(net, &low, &high); 6154 remaining = (high - low) + 1; 6155 rover = prandom_u32() % remaining + low; 6156 6157 do { 6158 rover++; 6159 if ((rover < low) || (rover > high)) 6160 rover = low; 6161 if (inet_is_local_reserved_port(net, rover)) 6162 continue; 6163 index = sctp_phashfn(sock_net(sk), rover); 6164 head = &sctp_port_hashtable[index]; 6165 spin_lock(&head->lock); 6166 sctp_for_each_hentry(pp, &head->chain) 6167 if ((pp->port == rover) && 6168 net_eq(sock_net(sk), pp->net)) 6169 goto next; 6170 break; 6171 next: 6172 spin_unlock(&head->lock); 6173 } while (--remaining > 0); 6174 6175 /* Exhausted local port range during search? */ 6176 ret = 1; 6177 if (remaining <= 0) 6178 goto fail; 6179 6180 /* OK, here is the one we will use. HEAD (the port 6181 * hash table list entry) is non-NULL and we hold it's 6182 * mutex. 6183 */ 6184 snum = rover; 6185 } else { 6186 /* We are given an specific port number; we verify 6187 * that it is not being used. If it is used, we will 6188 * exahust the search in the hash list corresponding 6189 * to the port number (snum) - we detect that with the 6190 * port iterator, pp being NULL. 6191 */ 6192 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6193 spin_lock(&head->lock); 6194 sctp_for_each_hentry(pp, &head->chain) { 6195 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6196 goto pp_found; 6197 } 6198 } 6199 pp = NULL; 6200 goto pp_not_found; 6201 pp_found: 6202 if (!hlist_empty(&pp->owner)) { 6203 /* We had a port hash table hit - there is an 6204 * available port (pp != NULL) and it is being 6205 * used by other socket (pp->owner not empty); that other 6206 * socket is going to be sk2. 6207 */ 6208 int reuse = sk->sk_reuse; 6209 struct sock *sk2; 6210 6211 pr_debug("%s: found a possible match\n", __func__); 6212 6213 if (pp->fastreuse && sk->sk_reuse && 6214 sk->sk_state != SCTP_SS_LISTENING) 6215 goto success; 6216 6217 /* Run through the list of sockets bound to the port 6218 * (pp->port) [via the pointers bind_next and 6219 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6220 * we get the endpoint they describe and run through 6221 * the endpoint's list of IP (v4 or v6) addresses, 6222 * comparing each of the addresses with the address of 6223 * the socket sk. If we find a match, then that means 6224 * that this port/socket (sk) combination are already 6225 * in an endpoint. 6226 */ 6227 sk_for_each_bound(sk2, &pp->owner) { 6228 struct sctp_endpoint *ep2; 6229 ep2 = sctp_sk(sk2)->ep; 6230 6231 if (sk == sk2 || 6232 (reuse && sk2->sk_reuse && 6233 sk2->sk_state != SCTP_SS_LISTENING)) 6234 continue; 6235 6236 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6237 sctp_sk(sk2), sctp_sk(sk))) { 6238 ret = (long)sk2; 6239 goto fail_unlock; 6240 } 6241 } 6242 6243 pr_debug("%s: found a match\n", __func__); 6244 } 6245 pp_not_found: 6246 /* If there was a hash table miss, create a new port. */ 6247 ret = 1; 6248 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6249 goto fail_unlock; 6250 6251 /* In either case (hit or miss), make sure fastreuse is 1 only 6252 * if sk->sk_reuse is too (that is, if the caller requested 6253 * SO_REUSEADDR on this socket -sk-). 6254 */ 6255 if (hlist_empty(&pp->owner)) { 6256 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6257 pp->fastreuse = 1; 6258 else 6259 pp->fastreuse = 0; 6260 } else if (pp->fastreuse && 6261 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6262 pp->fastreuse = 0; 6263 6264 /* We are set, so fill up all the data in the hash table 6265 * entry, tie the socket list information with the rest of the 6266 * sockets FIXME: Blurry, NPI (ipg). 6267 */ 6268 success: 6269 if (!sctp_sk(sk)->bind_hash) { 6270 inet_sk(sk)->inet_num = snum; 6271 sk_add_bind_node(sk, &pp->owner); 6272 sctp_sk(sk)->bind_hash = pp; 6273 } 6274 ret = 0; 6275 6276 fail_unlock: 6277 spin_unlock(&head->lock); 6278 6279 fail: 6280 local_bh_enable(); 6281 return ret; 6282 } 6283 6284 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6285 * port is requested. 6286 */ 6287 static int sctp_get_port(struct sock *sk, unsigned short snum) 6288 { 6289 union sctp_addr addr; 6290 struct sctp_af *af = sctp_sk(sk)->pf->af; 6291 6292 /* Set up a dummy address struct from the sk. */ 6293 af->from_sk(&addr, sk); 6294 addr.v4.sin_port = htons(snum); 6295 6296 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6297 return !!sctp_get_port_local(sk, &addr); 6298 } 6299 6300 /* 6301 * Move a socket to LISTENING state. 6302 */ 6303 static int sctp_listen_start(struct sock *sk, int backlog) 6304 { 6305 struct sctp_sock *sp = sctp_sk(sk); 6306 struct sctp_endpoint *ep = sp->ep; 6307 struct crypto_hash *tfm = NULL; 6308 char alg[32]; 6309 6310 /* Allocate HMAC for generating cookie. */ 6311 if (!sp->hmac && sp->sctp_hmac_alg) { 6312 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6313 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6314 if (IS_ERR(tfm)) { 6315 net_info_ratelimited("failed to load transform for %s: %ld\n", 6316 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6317 return -ENOSYS; 6318 } 6319 sctp_sk(sk)->hmac = tfm; 6320 } 6321 6322 /* 6323 * If a bind() or sctp_bindx() is not called prior to a listen() 6324 * call that allows new associations to be accepted, the system 6325 * picks an ephemeral port and will choose an address set equivalent 6326 * to binding with a wildcard address. 6327 * 6328 * This is not currently spelled out in the SCTP sockets 6329 * extensions draft, but follows the practice as seen in TCP 6330 * sockets. 6331 * 6332 */ 6333 sk->sk_state = SCTP_SS_LISTENING; 6334 if (!ep->base.bind_addr.port) { 6335 if (sctp_autobind(sk)) 6336 return -EAGAIN; 6337 } else { 6338 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6339 sk->sk_state = SCTP_SS_CLOSED; 6340 return -EADDRINUSE; 6341 } 6342 } 6343 6344 sk->sk_max_ack_backlog = backlog; 6345 sctp_hash_endpoint(ep); 6346 return 0; 6347 } 6348 6349 /* 6350 * 4.1.3 / 5.1.3 listen() 6351 * 6352 * By default, new associations are not accepted for UDP style sockets. 6353 * An application uses listen() to mark a socket as being able to 6354 * accept new associations. 6355 * 6356 * On TCP style sockets, applications use listen() to ready the SCTP 6357 * endpoint for accepting inbound associations. 6358 * 6359 * On both types of endpoints a backlog of '0' disables listening. 6360 * 6361 * Move a socket to LISTENING state. 6362 */ 6363 int sctp_inet_listen(struct socket *sock, int backlog) 6364 { 6365 struct sock *sk = sock->sk; 6366 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6367 int err = -EINVAL; 6368 6369 if (unlikely(backlog < 0)) 6370 return err; 6371 6372 lock_sock(sk); 6373 6374 /* Peeled-off sockets are not allowed to listen(). */ 6375 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6376 goto out; 6377 6378 if (sock->state != SS_UNCONNECTED) 6379 goto out; 6380 6381 /* If backlog is zero, disable listening. */ 6382 if (!backlog) { 6383 if (sctp_sstate(sk, CLOSED)) 6384 goto out; 6385 6386 err = 0; 6387 sctp_unhash_endpoint(ep); 6388 sk->sk_state = SCTP_SS_CLOSED; 6389 if (sk->sk_reuse) 6390 sctp_sk(sk)->bind_hash->fastreuse = 1; 6391 goto out; 6392 } 6393 6394 /* If we are already listening, just update the backlog */ 6395 if (sctp_sstate(sk, LISTENING)) 6396 sk->sk_max_ack_backlog = backlog; 6397 else { 6398 err = sctp_listen_start(sk, backlog); 6399 if (err) 6400 goto out; 6401 } 6402 6403 err = 0; 6404 out: 6405 release_sock(sk); 6406 return err; 6407 } 6408 6409 /* 6410 * This function is done by modeling the current datagram_poll() and the 6411 * tcp_poll(). Note that, based on these implementations, we don't 6412 * lock the socket in this function, even though it seems that, 6413 * ideally, locking or some other mechanisms can be used to ensure 6414 * the integrity of the counters (sndbuf and wmem_alloc) used 6415 * in this place. We assume that we don't need locks either until proven 6416 * otherwise. 6417 * 6418 * Another thing to note is that we include the Async I/O support 6419 * here, again, by modeling the current TCP/UDP code. We don't have 6420 * a good way to test with it yet. 6421 */ 6422 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6423 { 6424 struct sock *sk = sock->sk; 6425 struct sctp_sock *sp = sctp_sk(sk); 6426 unsigned int mask; 6427 6428 poll_wait(file, sk_sleep(sk), wait); 6429 6430 /* A TCP-style listening socket becomes readable when the accept queue 6431 * is not empty. 6432 */ 6433 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6434 return (!list_empty(&sp->ep->asocs)) ? 6435 (POLLIN | POLLRDNORM) : 0; 6436 6437 mask = 0; 6438 6439 /* Is there any exceptional events? */ 6440 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6441 mask |= POLLERR | 6442 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6443 if (sk->sk_shutdown & RCV_SHUTDOWN) 6444 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6445 if (sk->sk_shutdown == SHUTDOWN_MASK) 6446 mask |= POLLHUP; 6447 6448 /* Is it readable? Reconsider this code with TCP-style support. */ 6449 if (!skb_queue_empty(&sk->sk_receive_queue)) 6450 mask |= POLLIN | POLLRDNORM; 6451 6452 /* The association is either gone or not ready. */ 6453 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6454 return mask; 6455 6456 /* Is it writable? */ 6457 if (sctp_writeable(sk)) { 6458 mask |= POLLOUT | POLLWRNORM; 6459 } else { 6460 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6461 /* 6462 * Since the socket is not locked, the buffer 6463 * might be made available after the writeable check and 6464 * before the bit is set. This could cause a lost I/O 6465 * signal. tcp_poll() has a race breaker for this race 6466 * condition. Based on their implementation, we put 6467 * in the following code to cover it as well. 6468 */ 6469 if (sctp_writeable(sk)) 6470 mask |= POLLOUT | POLLWRNORM; 6471 } 6472 return mask; 6473 } 6474 6475 /******************************************************************** 6476 * 2nd Level Abstractions 6477 ********************************************************************/ 6478 6479 static struct sctp_bind_bucket *sctp_bucket_create( 6480 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6481 { 6482 struct sctp_bind_bucket *pp; 6483 6484 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6485 if (pp) { 6486 SCTP_DBG_OBJCNT_INC(bind_bucket); 6487 pp->port = snum; 6488 pp->fastreuse = 0; 6489 INIT_HLIST_HEAD(&pp->owner); 6490 pp->net = net; 6491 hlist_add_head(&pp->node, &head->chain); 6492 } 6493 return pp; 6494 } 6495 6496 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6497 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6498 { 6499 if (pp && hlist_empty(&pp->owner)) { 6500 __hlist_del(&pp->node); 6501 kmem_cache_free(sctp_bucket_cachep, pp); 6502 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6503 } 6504 } 6505 6506 /* Release this socket's reference to a local port. */ 6507 static inline void __sctp_put_port(struct sock *sk) 6508 { 6509 struct sctp_bind_hashbucket *head = 6510 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6511 inet_sk(sk)->inet_num)]; 6512 struct sctp_bind_bucket *pp; 6513 6514 spin_lock(&head->lock); 6515 pp = sctp_sk(sk)->bind_hash; 6516 __sk_del_bind_node(sk); 6517 sctp_sk(sk)->bind_hash = NULL; 6518 inet_sk(sk)->inet_num = 0; 6519 sctp_bucket_destroy(pp); 6520 spin_unlock(&head->lock); 6521 } 6522 6523 void sctp_put_port(struct sock *sk) 6524 { 6525 local_bh_disable(); 6526 __sctp_put_port(sk); 6527 local_bh_enable(); 6528 } 6529 6530 /* 6531 * The system picks an ephemeral port and choose an address set equivalent 6532 * to binding with a wildcard address. 6533 * One of those addresses will be the primary address for the association. 6534 * This automatically enables the multihoming capability of SCTP. 6535 */ 6536 static int sctp_autobind(struct sock *sk) 6537 { 6538 union sctp_addr autoaddr; 6539 struct sctp_af *af; 6540 __be16 port; 6541 6542 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6543 af = sctp_sk(sk)->pf->af; 6544 6545 port = htons(inet_sk(sk)->inet_num); 6546 af->inaddr_any(&autoaddr, port); 6547 6548 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6549 } 6550 6551 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6552 * 6553 * From RFC 2292 6554 * 4.2 The cmsghdr Structure * 6555 * 6556 * When ancillary data is sent or received, any number of ancillary data 6557 * objects can be specified by the msg_control and msg_controllen members of 6558 * the msghdr structure, because each object is preceded by 6559 * a cmsghdr structure defining the object's length (the cmsg_len member). 6560 * Historically Berkeley-derived implementations have passed only one object 6561 * at a time, but this API allows multiple objects to be 6562 * passed in a single call to sendmsg() or recvmsg(). The following example 6563 * shows two ancillary data objects in a control buffer. 6564 * 6565 * |<--------------------------- msg_controllen -------------------------->| 6566 * | | 6567 * 6568 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6569 * 6570 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6571 * | | | 6572 * 6573 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6574 * 6575 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6576 * | | | | | 6577 * 6578 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6579 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6580 * 6581 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6582 * 6583 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6584 * ^ 6585 * | 6586 * 6587 * msg_control 6588 * points here 6589 */ 6590 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6591 { 6592 struct cmsghdr *cmsg; 6593 struct msghdr *my_msg = (struct msghdr *)msg; 6594 6595 for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL; 6596 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6597 if (!CMSG_OK(my_msg, cmsg)) 6598 return -EINVAL; 6599 6600 /* Should we parse this header or ignore? */ 6601 if (cmsg->cmsg_level != IPPROTO_SCTP) 6602 continue; 6603 6604 /* Strictly check lengths following example in SCM code. */ 6605 switch (cmsg->cmsg_type) { 6606 case SCTP_INIT: 6607 /* SCTP Socket API Extension 6608 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 6609 * 6610 * This cmsghdr structure provides information for 6611 * initializing new SCTP associations with sendmsg(). 6612 * The SCTP_INITMSG socket option uses this same data 6613 * structure. This structure is not used for 6614 * recvmsg(). 6615 * 6616 * cmsg_level cmsg_type cmsg_data[] 6617 * ------------ ------------ ---------------------- 6618 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6619 */ 6620 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 6621 return -EINVAL; 6622 6623 cmsgs->init = CMSG_DATA(cmsg); 6624 break; 6625 6626 case SCTP_SNDRCV: 6627 /* SCTP Socket API Extension 6628 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 6629 * 6630 * This cmsghdr structure specifies SCTP options for 6631 * sendmsg() and describes SCTP header information 6632 * about a received message through recvmsg(). 6633 * 6634 * cmsg_level cmsg_type cmsg_data[] 6635 * ------------ ------------ ---------------------- 6636 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6637 */ 6638 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6639 return -EINVAL; 6640 6641 cmsgs->srinfo = CMSG_DATA(cmsg); 6642 6643 if (cmsgs->srinfo->sinfo_flags & 6644 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6645 SCTP_ABORT | SCTP_EOF)) 6646 return -EINVAL; 6647 break; 6648 6649 case SCTP_SNDINFO: 6650 /* SCTP Socket API Extension 6651 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 6652 * 6653 * This cmsghdr structure specifies SCTP options for 6654 * sendmsg(). This structure and SCTP_RCVINFO replaces 6655 * SCTP_SNDRCV which has been deprecated. 6656 * 6657 * cmsg_level cmsg_type cmsg_data[] 6658 * ------------ ------------ --------------------- 6659 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 6660 */ 6661 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 6662 return -EINVAL; 6663 6664 cmsgs->sinfo = CMSG_DATA(cmsg); 6665 6666 if (cmsgs->sinfo->snd_flags & 6667 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6668 SCTP_ABORT | SCTP_EOF)) 6669 return -EINVAL; 6670 break; 6671 default: 6672 return -EINVAL; 6673 } 6674 } 6675 6676 return 0; 6677 } 6678 6679 /* 6680 * Wait for a packet.. 6681 * Note: This function is the same function as in core/datagram.c 6682 * with a few modifications to make lksctp work. 6683 */ 6684 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 6685 { 6686 int error; 6687 DEFINE_WAIT(wait); 6688 6689 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6690 6691 /* Socket errors? */ 6692 error = sock_error(sk); 6693 if (error) 6694 goto out; 6695 6696 if (!skb_queue_empty(&sk->sk_receive_queue)) 6697 goto ready; 6698 6699 /* Socket shut down? */ 6700 if (sk->sk_shutdown & RCV_SHUTDOWN) 6701 goto out; 6702 6703 /* Sequenced packets can come disconnected. If so we report the 6704 * problem. 6705 */ 6706 error = -ENOTCONN; 6707 6708 /* Is there a good reason to think that we may receive some data? */ 6709 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6710 goto out; 6711 6712 /* Handle signals. */ 6713 if (signal_pending(current)) 6714 goto interrupted; 6715 6716 /* Let another process have a go. Since we are going to sleep 6717 * anyway. Note: This may cause odd behaviors if the message 6718 * does not fit in the user's buffer, but this seems to be the 6719 * only way to honor MSG_DONTWAIT realistically. 6720 */ 6721 release_sock(sk); 6722 *timeo_p = schedule_timeout(*timeo_p); 6723 lock_sock(sk); 6724 6725 ready: 6726 finish_wait(sk_sleep(sk), &wait); 6727 return 0; 6728 6729 interrupted: 6730 error = sock_intr_errno(*timeo_p); 6731 6732 out: 6733 finish_wait(sk_sleep(sk), &wait); 6734 *err = error; 6735 return error; 6736 } 6737 6738 /* Receive a datagram. 6739 * Note: This is pretty much the same routine as in core/datagram.c 6740 * with a few changes to make lksctp work. 6741 */ 6742 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6743 int noblock, int *err) 6744 { 6745 int error; 6746 struct sk_buff *skb; 6747 long timeo; 6748 6749 timeo = sock_rcvtimeo(sk, noblock); 6750 6751 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6752 MAX_SCHEDULE_TIMEOUT); 6753 6754 do { 6755 /* Again only user level code calls this function, 6756 * so nothing interrupt level 6757 * will suddenly eat the receive_queue. 6758 * 6759 * Look at current nfs client by the way... 6760 * However, this function was correct in any case. 8) 6761 */ 6762 if (flags & MSG_PEEK) { 6763 spin_lock_bh(&sk->sk_receive_queue.lock); 6764 skb = skb_peek(&sk->sk_receive_queue); 6765 if (skb) 6766 atomic_inc(&skb->users); 6767 spin_unlock_bh(&sk->sk_receive_queue.lock); 6768 } else { 6769 skb = skb_dequeue(&sk->sk_receive_queue); 6770 } 6771 6772 if (skb) 6773 return skb; 6774 6775 /* Caller is allowed not to check sk->sk_err before calling. */ 6776 error = sock_error(sk); 6777 if (error) 6778 goto no_packet; 6779 6780 if (sk->sk_shutdown & RCV_SHUTDOWN) 6781 break; 6782 6783 if (sk_can_busy_loop(sk) && 6784 sk_busy_loop(sk, noblock)) 6785 continue; 6786 6787 /* User doesn't want to wait. */ 6788 error = -EAGAIN; 6789 if (!timeo) 6790 goto no_packet; 6791 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6792 6793 return NULL; 6794 6795 no_packet: 6796 *err = error; 6797 return NULL; 6798 } 6799 6800 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6801 static void __sctp_write_space(struct sctp_association *asoc) 6802 { 6803 struct sock *sk = asoc->base.sk; 6804 struct socket *sock = sk->sk_socket; 6805 6806 if ((sctp_wspace(asoc) > 0) && sock) { 6807 if (waitqueue_active(&asoc->wait)) 6808 wake_up_interruptible(&asoc->wait); 6809 6810 if (sctp_writeable(sk)) { 6811 wait_queue_head_t *wq = sk_sleep(sk); 6812 6813 if (wq && waitqueue_active(wq)) 6814 wake_up_interruptible(wq); 6815 6816 /* Note that we try to include the Async I/O support 6817 * here by modeling from the current TCP/UDP code. 6818 * We have not tested with it yet. 6819 */ 6820 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6821 sock_wake_async(sock, 6822 SOCK_WAKE_SPACE, POLL_OUT); 6823 } 6824 } 6825 } 6826 6827 static void sctp_wake_up_waiters(struct sock *sk, 6828 struct sctp_association *asoc) 6829 { 6830 struct sctp_association *tmp = asoc; 6831 6832 /* We do accounting for the sndbuf space per association, 6833 * so we only need to wake our own association. 6834 */ 6835 if (asoc->ep->sndbuf_policy) 6836 return __sctp_write_space(asoc); 6837 6838 /* If association goes down and is just flushing its 6839 * outq, then just normally notify others. 6840 */ 6841 if (asoc->base.dead) 6842 return sctp_write_space(sk); 6843 6844 /* Accounting for the sndbuf space is per socket, so we 6845 * need to wake up others, try to be fair and in case of 6846 * other associations, let them have a go first instead 6847 * of just doing a sctp_write_space() call. 6848 * 6849 * Note that we reach sctp_wake_up_waiters() only when 6850 * associations free up queued chunks, thus we are under 6851 * lock and the list of associations on a socket is 6852 * guaranteed not to change. 6853 */ 6854 for (tmp = list_next_entry(tmp, asocs); 1; 6855 tmp = list_next_entry(tmp, asocs)) { 6856 /* Manually skip the head element. */ 6857 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 6858 continue; 6859 /* Wake up association. */ 6860 __sctp_write_space(tmp); 6861 /* We've reached the end. */ 6862 if (tmp == asoc) 6863 break; 6864 } 6865 } 6866 6867 /* Do accounting for the sndbuf space. 6868 * Decrement the used sndbuf space of the corresponding association by the 6869 * data size which was just transmitted(freed). 6870 */ 6871 static void sctp_wfree(struct sk_buff *skb) 6872 { 6873 struct sctp_association *asoc; 6874 struct sctp_chunk *chunk; 6875 struct sock *sk; 6876 6877 /* Get the saved chunk pointer. */ 6878 chunk = *((struct sctp_chunk **)(skb->cb)); 6879 asoc = chunk->asoc; 6880 sk = asoc->base.sk; 6881 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6882 sizeof(struct sk_buff) + 6883 sizeof(struct sctp_chunk); 6884 6885 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6886 6887 /* 6888 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6889 */ 6890 sk->sk_wmem_queued -= skb->truesize; 6891 sk_mem_uncharge(sk, skb->truesize); 6892 6893 sock_wfree(skb); 6894 sctp_wake_up_waiters(sk, asoc); 6895 6896 sctp_association_put(asoc); 6897 } 6898 6899 /* Do accounting for the receive space on the socket. 6900 * Accounting for the association is done in ulpevent.c 6901 * We set this as a destructor for the cloned data skbs so that 6902 * accounting is done at the correct time. 6903 */ 6904 void sctp_sock_rfree(struct sk_buff *skb) 6905 { 6906 struct sock *sk = skb->sk; 6907 struct sctp_ulpevent *event = sctp_skb2event(skb); 6908 6909 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6910 6911 /* 6912 * Mimic the behavior of sock_rfree 6913 */ 6914 sk_mem_uncharge(sk, event->rmem_len); 6915 } 6916 6917 6918 /* Helper function to wait for space in the sndbuf. */ 6919 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6920 size_t msg_len) 6921 { 6922 struct sock *sk = asoc->base.sk; 6923 int err = 0; 6924 long current_timeo = *timeo_p; 6925 DEFINE_WAIT(wait); 6926 6927 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 6928 *timeo_p, msg_len); 6929 6930 /* Increment the association's refcnt. */ 6931 sctp_association_hold(asoc); 6932 6933 /* Wait on the association specific sndbuf space. */ 6934 for (;;) { 6935 prepare_to_wait_exclusive(&asoc->wait, &wait, 6936 TASK_INTERRUPTIBLE); 6937 if (!*timeo_p) 6938 goto do_nonblock; 6939 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6940 asoc->base.dead) 6941 goto do_error; 6942 if (signal_pending(current)) 6943 goto do_interrupted; 6944 if (msg_len <= sctp_wspace(asoc)) 6945 break; 6946 6947 /* Let another process have a go. Since we are going 6948 * to sleep anyway. 6949 */ 6950 release_sock(sk); 6951 current_timeo = schedule_timeout(current_timeo); 6952 BUG_ON(sk != asoc->base.sk); 6953 lock_sock(sk); 6954 6955 *timeo_p = current_timeo; 6956 } 6957 6958 out: 6959 finish_wait(&asoc->wait, &wait); 6960 6961 /* Release the association's refcnt. */ 6962 sctp_association_put(asoc); 6963 6964 return err; 6965 6966 do_error: 6967 err = -EPIPE; 6968 goto out; 6969 6970 do_interrupted: 6971 err = sock_intr_errno(*timeo_p); 6972 goto out; 6973 6974 do_nonblock: 6975 err = -EAGAIN; 6976 goto out; 6977 } 6978 6979 void sctp_data_ready(struct sock *sk) 6980 { 6981 struct socket_wq *wq; 6982 6983 rcu_read_lock(); 6984 wq = rcu_dereference(sk->sk_wq); 6985 if (wq_has_sleeper(wq)) 6986 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6987 POLLRDNORM | POLLRDBAND); 6988 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6989 rcu_read_unlock(); 6990 } 6991 6992 /* If socket sndbuf has changed, wake up all per association waiters. */ 6993 void sctp_write_space(struct sock *sk) 6994 { 6995 struct sctp_association *asoc; 6996 6997 /* Wake up the tasks in each wait queue. */ 6998 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6999 __sctp_write_space(asoc); 7000 } 7001 } 7002 7003 /* Is there any sndbuf space available on the socket? 7004 * 7005 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7006 * associations on the same socket. For a UDP-style socket with 7007 * multiple associations, it is possible for it to be "unwriteable" 7008 * prematurely. I assume that this is acceptable because 7009 * a premature "unwriteable" is better than an accidental "writeable" which 7010 * would cause an unwanted block under certain circumstances. For the 1-1 7011 * UDP-style sockets or TCP-style sockets, this code should work. 7012 * - Daisy 7013 */ 7014 static int sctp_writeable(struct sock *sk) 7015 { 7016 int amt = 0; 7017 7018 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7019 if (amt < 0) 7020 amt = 0; 7021 return amt; 7022 } 7023 7024 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7025 * returns immediately with EINPROGRESS. 7026 */ 7027 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7028 { 7029 struct sock *sk = asoc->base.sk; 7030 int err = 0; 7031 long current_timeo = *timeo_p; 7032 DEFINE_WAIT(wait); 7033 7034 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7035 7036 /* Increment the association's refcnt. */ 7037 sctp_association_hold(asoc); 7038 7039 for (;;) { 7040 prepare_to_wait_exclusive(&asoc->wait, &wait, 7041 TASK_INTERRUPTIBLE); 7042 if (!*timeo_p) 7043 goto do_nonblock; 7044 if (sk->sk_shutdown & RCV_SHUTDOWN) 7045 break; 7046 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7047 asoc->base.dead) 7048 goto do_error; 7049 if (signal_pending(current)) 7050 goto do_interrupted; 7051 7052 if (sctp_state(asoc, ESTABLISHED)) 7053 break; 7054 7055 /* Let another process have a go. Since we are going 7056 * to sleep anyway. 7057 */ 7058 release_sock(sk); 7059 current_timeo = schedule_timeout(current_timeo); 7060 lock_sock(sk); 7061 7062 *timeo_p = current_timeo; 7063 } 7064 7065 out: 7066 finish_wait(&asoc->wait, &wait); 7067 7068 /* Release the association's refcnt. */ 7069 sctp_association_put(asoc); 7070 7071 return err; 7072 7073 do_error: 7074 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7075 err = -ETIMEDOUT; 7076 else 7077 err = -ECONNREFUSED; 7078 goto out; 7079 7080 do_interrupted: 7081 err = sock_intr_errno(*timeo_p); 7082 goto out; 7083 7084 do_nonblock: 7085 err = -EINPROGRESS; 7086 goto out; 7087 } 7088 7089 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7090 { 7091 struct sctp_endpoint *ep; 7092 int err = 0; 7093 DEFINE_WAIT(wait); 7094 7095 ep = sctp_sk(sk)->ep; 7096 7097 7098 for (;;) { 7099 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7100 TASK_INTERRUPTIBLE); 7101 7102 if (list_empty(&ep->asocs)) { 7103 release_sock(sk); 7104 timeo = schedule_timeout(timeo); 7105 lock_sock(sk); 7106 } 7107 7108 err = -EINVAL; 7109 if (!sctp_sstate(sk, LISTENING)) 7110 break; 7111 7112 err = 0; 7113 if (!list_empty(&ep->asocs)) 7114 break; 7115 7116 err = sock_intr_errno(timeo); 7117 if (signal_pending(current)) 7118 break; 7119 7120 err = -EAGAIN; 7121 if (!timeo) 7122 break; 7123 } 7124 7125 finish_wait(sk_sleep(sk), &wait); 7126 7127 return err; 7128 } 7129 7130 static void sctp_wait_for_close(struct sock *sk, long timeout) 7131 { 7132 DEFINE_WAIT(wait); 7133 7134 do { 7135 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7136 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7137 break; 7138 release_sock(sk); 7139 timeout = schedule_timeout(timeout); 7140 lock_sock(sk); 7141 } while (!signal_pending(current) && timeout); 7142 7143 finish_wait(sk_sleep(sk), &wait); 7144 } 7145 7146 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7147 { 7148 struct sk_buff *frag; 7149 7150 if (!skb->data_len) 7151 goto done; 7152 7153 /* Don't forget the fragments. */ 7154 skb_walk_frags(skb, frag) 7155 sctp_skb_set_owner_r_frag(frag, sk); 7156 7157 done: 7158 sctp_skb_set_owner_r(skb, sk); 7159 } 7160 7161 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7162 struct sctp_association *asoc) 7163 { 7164 struct inet_sock *inet = inet_sk(sk); 7165 struct inet_sock *newinet; 7166 7167 newsk->sk_type = sk->sk_type; 7168 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7169 newsk->sk_flags = sk->sk_flags; 7170 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7171 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7172 newsk->sk_reuse = sk->sk_reuse; 7173 7174 newsk->sk_shutdown = sk->sk_shutdown; 7175 newsk->sk_destruct = sctp_destruct_sock; 7176 newsk->sk_family = sk->sk_family; 7177 newsk->sk_protocol = IPPROTO_SCTP; 7178 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7179 newsk->sk_sndbuf = sk->sk_sndbuf; 7180 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7181 newsk->sk_lingertime = sk->sk_lingertime; 7182 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7183 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7184 7185 newinet = inet_sk(newsk); 7186 7187 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7188 * getsockname() and getpeername() 7189 */ 7190 newinet->inet_sport = inet->inet_sport; 7191 newinet->inet_saddr = inet->inet_saddr; 7192 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7193 newinet->inet_dport = htons(asoc->peer.port); 7194 newinet->pmtudisc = inet->pmtudisc; 7195 newinet->inet_id = asoc->next_tsn ^ jiffies; 7196 7197 newinet->uc_ttl = inet->uc_ttl; 7198 newinet->mc_loop = 1; 7199 newinet->mc_ttl = 1; 7200 newinet->mc_index = 0; 7201 newinet->mc_list = NULL; 7202 } 7203 7204 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7205 * and its messages to the newsk. 7206 */ 7207 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7208 struct sctp_association *assoc, 7209 sctp_socket_type_t type) 7210 { 7211 struct sctp_sock *oldsp = sctp_sk(oldsk); 7212 struct sctp_sock *newsp = sctp_sk(newsk); 7213 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7214 struct sctp_endpoint *newep = newsp->ep; 7215 struct sk_buff *skb, *tmp; 7216 struct sctp_ulpevent *event; 7217 struct sctp_bind_hashbucket *head; 7218 struct list_head tmplist; 7219 7220 /* Migrate socket buffer sizes and all the socket level options to the 7221 * new socket. 7222 */ 7223 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7224 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7225 /* Brute force copy old sctp opt. */ 7226 if (oldsp->do_auto_asconf) { 7227 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 7228 inet_sk_copy_descendant(newsk, oldsk); 7229 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 7230 } else 7231 inet_sk_copy_descendant(newsk, oldsk); 7232 7233 /* Restore the ep value that was overwritten with the above structure 7234 * copy. 7235 */ 7236 newsp->ep = newep; 7237 newsp->hmac = NULL; 7238 7239 /* Hook this new socket in to the bind_hash list. */ 7240 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7241 inet_sk(oldsk)->inet_num)]; 7242 local_bh_disable(); 7243 spin_lock(&head->lock); 7244 pp = sctp_sk(oldsk)->bind_hash; 7245 sk_add_bind_node(newsk, &pp->owner); 7246 sctp_sk(newsk)->bind_hash = pp; 7247 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7248 spin_unlock(&head->lock); 7249 local_bh_enable(); 7250 7251 /* Copy the bind_addr list from the original endpoint to the new 7252 * endpoint so that we can handle restarts properly 7253 */ 7254 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7255 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7256 7257 /* Move any messages in the old socket's receive queue that are for the 7258 * peeled off association to the new socket's receive queue. 7259 */ 7260 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7261 event = sctp_skb2event(skb); 7262 if (event->asoc == assoc) { 7263 __skb_unlink(skb, &oldsk->sk_receive_queue); 7264 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7265 sctp_skb_set_owner_r_frag(skb, newsk); 7266 } 7267 } 7268 7269 /* Clean up any messages pending delivery due to partial 7270 * delivery. Three cases: 7271 * 1) No partial deliver; no work. 7272 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7273 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7274 */ 7275 skb_queue_head_init(&newsp->pd_lobby); 7276 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7277 7278 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7279 struct sk_buff_head *queue; 7280 7281 /* Decide which queue to move pd_lobby skbs to. */ 7282 if (assoc->ulpq.pd_mode) { 7283 queue = &newsp->pd_lobby; 7284 } else 7285 queue = &newsk->sk_receive_queue; 7286 7287 /* Walk through the pd_lobby, looking for skbs that 7288 * need moved to the new socket. 7289 */ 7290 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7291 event = sctp_skb2event(skb); 7292 if (event->asoc == assoc) { 7293 __skb_unlink(skb, &oldsp->pd_lobby); 7294 __skb_queue_tail(queue, skb); 7295 sctp_skb_set_owner_r_frag(skb, newsk); 7296 } 7297 } 7298 7299 /* Clear up any skbs waiting for the partial 7300 * delivery to finish. 7301 */ 7302 if (assoc->ulpq.pd_mode) 7303 sctp_clear_pd(oldsk, NULL); 7304 7305 } 7306 7307 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7308 sctp_skb_set_owner_r_frag(skb, newsk); 7309 7310 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7311 sctp_skb_set_owner_r_frag(skb, newsk); 7312 7313 /* Set the type of socket to indicate that it is peeled off from the 7314 * original UDP-style socket or created with the accept() call on a 7315 * TCP-style socket.. 7316 */ 7317 newsp->type = type; 7318 7319 /* Mark the new socket "in-use" by the user so that any packets 7320 * that may arrive on the association after we've moved it are 7321 * queued to the backlog. This prevents a potential race between 7322 * backlog processing on the old socket and new-packet processing 7323 * on the new socket. 7324 * 7325 * The caller has just allocated newsk so we can guarantee that other 7326 * paths won't try to lock it and then oldsk. 7327 */ 7328 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7329 sctp_assoc_migrate(assoc, newsk); 7330 7331 /* If the association on the newsk is already closed before accept() 7332 * is called, set RCV_SHUTDOWN flag. 7333 */ 7334 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7335 newsk->sk_shutdown |= RCV_SHUTDOWN; 7336 7337 newsk->sk_state = SCTP_SS_ESTABLISHED; 7338 release_sock(newsk); 7339 } 7340 7341 7342 /* This proto struct describes the ULP interface for SCTP. */ 7343 struct proto sctp_prot = { 7344 .name = "SCTP", 7345 .owner = THIS_MODULE, 7346 .close = sctp_close, 7347 .connect = sctp_connect, 7348 .disconnect = sctp_disconnect, 7349 .accept = sctp_accept, 7350 .ioctl = sctp_ioctl, 7351 .init = sctp_init_sock, 7352 .destroy = sctp_destroy_sock, 7353 .shutdown = sctp_shutdown, 7354 .setsockopt = sctp_setsockopt, 7355 .getsockopt = sctp_getsockopt, 7356 .sendmsg = sctp_sendmsg, 7357 .recvmsg = sctp_recvmsg, 7358 .bind = sctp_bind, 7359 .backlog_rcv = sctp_backlog_rcv, 7360 .hash = sctp_hash, 7361 .unhash = sctp_unhash, 7362 .get_port = sctp_get_port, 7363 .obj_size = sizeof(struct sctp_sock), 7364 .sysctl_mem = sysctl_sctp_mem, 7365 .sysctl_rmem = sysctl_sctp_rmem, 7366 .sysctl_wmem = sysctl_sctp_wmem, 7367 .memory_pressure = &sctp_memory_pressure, 7368 .enter_memory_pressure = sctp_enter_memory_pressure, 7369 .memory_allocated = &sctp_memory_allocated, 7370 .sockets_allocated = &sctp_sockets_allocated, 7371 }; 7372 7373 #if IS_ENABLED(CONFIG_IPV6) 7374 7375 struct proto sctpv6_prot = { 7376 .name = "SCTPv6", 7377 .owner = THIS_MODULE, 7378 .close = sctp_close, 7379 .connect = sctp_connect, 7380 .disconnect = sctp_disconnect, 7381 .accept = sctp_accept, 7382 .ioctl = sctp_ioctl, 7383 .init = sctp_init_sock, 7384 .destroy = sctp_destroy_sock, 7385 .shutdown = sctp_shutdown, 7386 .setsockopt = sctp_setsockopt, 7387 .getsockopt = sctp_getsockopt, 7388 .sendmsg = sctp_sendmsg, 7389 .recvmsg = sctp_recvmsg, 7390 .bind = sctp_bind, 7391 .backlog_rcv = sctp_backlog_rcv, 7392 .hash = sctp_hash, 7393 .unhash = sctp_unhash, 7394 .get_port = sctp_get_port, 7395 .obj_size = sizeof(struct sctp6_sock), 7396 .sysctl_mem = sysctl_sctp_mem, 7397 .sysctl_rmem = sysctl_sctp_rmem, 7398 .sysctl_wmem = sysctl_sctp_wmem, 7399 .memory_pressure = &sctp_memory_pressure, 7400 .enter_memory_pressure = sctp_enter_memory_pressure, 7401 .memory_allocated = &sctp_memory_allocated, 7402 .sockets_allocated = &sctp_sockets_allocated, 7403 }; 7404 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7405