1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <net/sock.h> 82 #include <net/sctp/sctp.h> 83 #include <net/sctp/sm.h> 84 85 /* WARNING: Please do not remove the SCTP_STATIC attribute to 86 * any of the functions below as they are used to export functions 87 * used by a project regression testsuite. 88 */ 89 90 /* Forward declarations for internal helper functions. */ 91 static int sctp_writeable(struct sock *sk); 92 static void sctp_wfree(struct sk_buff *skb); 93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 94 size_t msg_len); 95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 97 static int sctp_wait_for_accept(struct sock *sk, long timeo); 98 static void sctp_wait_for_close(struct sock *sk, long timeo); 99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 100 union sctp_addr *addr, int len); 101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf(struct sctp_association *asoc, 106 struct sctp_chunk *chunk); 107 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 108 static int sctp_autobind(struct sock *sk); 109 static void sctp_sock_migrate(struct sock *, struct sock *, 110 struct sctp_association *, sctp_socket_type_t); 111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 112 113 extern struct kmem_cache *sctp_bucket_cachep; 114 extern long sysctl_sctp_mem[3]; 115 extern int sysctl_sctp_rmem[3]; 116 extern int sysctl_sctp_wmem[3]; 117 118 static int sctp_memory_pressure; 119 static atomic_long_t sctp_memory_allocated; 120 struct percpu_counter sctp_sockets_allocated; 121 122 static void sctp_enter_memory_pressure(struct sock *sk) 123 { 124 sctp_memory_pressure = 1; 125 } 126 127 128 /* Get the sndbuf space available at the time on the association. */ 129 static inline int sctp_wspace(struct sctp_association *asoc) 130 { 131 int amt; 132 133 if (asoc->ep->sndbuf_policy) 134 amt = asoc->sndbuf_used; 135 else 136 amt = sk_wmem_alloc_get(asoc->base.sk); 137 138 if (amt >= asoc->base.sk->sk_sndbuf) { 139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 140 amt = 0; 141 else { 142 amt = sk_stream_wspace(asoc->base.sk); 143 if (amt < 0) 144 amt = 0; 145 } 146 } else { 147 amt = asoc->base.sk->sk_sndbuf - amt; 148 } 149 return amt; 150 } 151 152 /* Increment the used sndbuf space count of the corresponding association by 153 * the size of the outgoing data chunk. 154 * Also, set the skb destructor for sndbuf accounting later. 155 * 156 * Since it is always 1-1 between chunk and skb, and also a new skb is always 157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 158 * destructor in the data chunk skb for the purpose of the sndbuf space 159 * tracking. 160 */ 161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 162 { 163 struct sctp_association *asoc = chunk->asoc; 164 struct sock *sk = asoc->base.sk; 165 166 /* The sndbuf space is tracked per association. */ 167 sctp_association_hold(asoc); 168 169 skb_set_owner_w(chunk->skb, sk); 170 171 chunk->skb->destructor = sctp_wfree; 172 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 174 175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 176 sizeof(struct sk_buff) + 177 sizeof(struct sctp_chunk); 178 179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 180 sk->sk_wmem_queued += chunk->skb->truesize; 181 sk_mem_charge(sk, chunk->skb->truesize); 182 } 183 184 /* Verify that this is a valid address. */ 185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 186 int len) 187 { 188 struct sctp_af *af; 189 190 /* Verify basic sockaddr. */ 191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 192 if (!af) 193 return -EINVAL; 194 195 /* Is this a valid SCTP address? */ 196 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 197 return -EINVAL; 198 199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 200 return -EINVAL; 201 202 return 0; 203 } 204 205 /* Look up the association by its id. If this is not a UDP-style 206 * socket, the ID field is always ignored. 207 */ 208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 209 { 210 struct sctp_association *asoc = NULL; 211 212 /* If this is not a UDP-style socket, assoc id should be ignored. */ 213 if (!sctp_style(sk, UDP)) { 214 /* Return NULL if the socket state is not ESTABLISHED. It 215 * could be a TCP-style listening socket or a socket which 216 * hasn't yet called connect() to establish an association. 217 */ 218 if (!sctp_sstate(sk, ESTABLISHED)) 219 return NULL; 220 221 /* Get the first and the only association from the list. */ 222 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 224 struct sctp_association, asocs); 225 return asoc; 226 } 227 228 /* Otherwise this is a UDP-style socket. */ 229 if (!id || (id == (sctp_assoc_t)-1)) 230 return NULL; 231 232 spin_lock_bh(&sctp_assocs_id_lock); 233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 234 spin_unlock_bh(&sctp_assocs_id_lock); 235 236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 237 return NULL; 238 239 return asoc; 240 } 241 242 /* Look up the transport from an address and an assoc id. If both address and 243 * id are specified, the associations matching the address and the id should be 244 * the same. 245 */ 246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 247 struct sockaddr_storage *addr, 248 sctp_assoc_t id) 249 { 250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 251 struct sctp_transport *transport; 252 union sctp_addr *laddr = (union sctp_addr *)addr; 253 254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 255 laddr, 256 &transport); 257 258 if (!addr_asoc) 259 return NULL; 260 261 id_asoc = sctp_id2assoc(sk, id); 262 if (id_asoc && (id_asoc != addr_asoc)) 263 return NULL; 264 265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 266 (union sctp_addr *)addr); 267 268 return transport; 269 } 270 271 /* API 3.1.2 bind() - UDP Style Syntax 272 * The syntax of bind() is, 273 * 274 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 275 * 276 * sd - the socket descriptor returned by socket(). 277 * addr - the address structure (struct sockaddr_in or struct 278 * sockaddr_in6 [RFC 2553]), 279 * addr_len - the size of the address structure. 280 */ 281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 282 { 283 int retval = 0; 284 285 sctp_lock_sock(sk); 286 287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 288 sk, addr, addr_len); 289 290 /* Disallow binding twice. */ 291 if (!sctp_sk(sk)->ep->base.bind_addr.port) 292 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 293 addr_len); 294 else 295 retval = -EINVAL; 296 297 sctp_release_sock(sk); 298 299 return retval; 300 } 301 302 static long sctp_get_port_local(struct sock *, union sctp_addr *); 303 304 /* Verify this is a valid sockaddr. */ 305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 306 union sctp_addr *addr, int len) 307 { 308 struct sctp_af *af; 309 310 /* Check minimum size. */ 311 if (len < sizeof (struct sockaddr)) 312 return NULL; 313 314 /* V4 mapped address are really of AF_INET family */ 315 if (addr->sa.sa_family == AF_INET6 && 316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 317 if (!opt->pf->af_supported(AF_INET, opt)) 318 return NULL; 319 } else { 320 /* Does this PF support this AF? */ 321 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 322 return NULL; 323 } 324 325 /* If we get this far, af is valid. */ 326 af = sctp_get_af_specific(addr->sa.sa_family); 327 328 if (len < af->sockaddr_len) 329 return NULL; 330 331 return af; 332 } 333 334 /* Bind a local address either to an endpoint or to an association. */ 335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 336 { 337 struct sctp_sock *sp = sctp_sk(sk); 338 struct sctp_endpoint *ep = sp->ep; 339 struct sctp_bind_addr *bp = &ep->base.bind_addr; 340 struct sctp_af *af; 341 unsigned short snum; 342 int ret = 0; 343 344 /* Common sockaddr verification. */ 345 af = sctp_sockaddr_af(sp, addr, len); 346 if (!af) { 347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 348 sk, addr, len); 349 return -EINVAL; 350 } 351 352 snum = ntohs(addr->v4.sin_port); 353 354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 355 ", port: %d, new port: %d, len: %d)\n", 356 sk, 357 addr, 358 bp->port, snum, 359 len); 360 361 /* PF specific bind() address verification. */ 362 if (!sp->pf->bind_verify(sp, addr)) 363 return -EADDRNOTAVAIL; 364 365 /* We must either be unbound, or bind to the same port. 366 * It's OK to allow 0 ports if we are already bound. 367 * We'll just inhert an already bound port in this case 368 */ 369 if (bp->port) { 370 if (!snum) 371 snum = bp->port; 372 else if (snum != bp->port) { 373 SCTP_DEBUG_PRINTK("sctp_do_bind:" 374 " New port %d does not match existing port " 375 "%d.\n", snum, bp->port); 376 return -EINVAL; 377 } 378 } 379 380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 381 return -EACCES; 382 383 /* See if the address matches any of the addresses we may have 384 * already bound before checking against other endpoints. 385 */ 386 if (sctp_bind_addr_match(bp, addr, sp)) 387 return -EINVAL; 388 389 /* Make sure we are allowed to bind here. 390 * The function sctp_get_port_local() does duplicate address 391 * detection. 392 */ 393 addr->v4.sin_port = htons(snum); 394 if ((ret = sctp_get_port_local(sk, addr))) { 395 return -EADDRINUSE; 396 } 397 398 /* Refresh ephemeral port. */ 399 if (!bp->port) 400 bp->port = inet_sk(sk)->inet_num; 401 402 /* Add the address to the bind address list. 403 * Use GFP_ATOMIC since BHs will be disabled. 404 */ 405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 406 407 /* Copy back into socket for getsockname() use. */ 408 if (!ret) { 409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 410 af->to_sk_saddr(addr, sk); 411 } 412 413 return ret; 414 } 415 416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 417 * 418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 419 * at any one time. If a sender, after sending an ASCONF chunk, decides 420 * it needs to transfer another ASCONF Chunk, it MUST wait until the 421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 422 * subsequent ASCONF. Note this restriction binds each side, so at any 423 * time two ASCONF may be in-transit on any given association (one sent 424 * from each endpoint). 425 */ 426 static int sctp_send_asconf(struct sctp_association *asoc, 427 struct sctp_chunk *chunk) 428 { 429 int retval = 0; 430 431 /* If there is an outstanding ASCONF chunk, queue it for later 432 * transmission. 433 */ 434 if (asoc->addip_last_asconf) { 435 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 436 goto out; 437 } 438 439 /* Hold the chunk until an ASCONF_ACK is received. */ 440 sctp_chunk_hold(chunk); 441 retval = sctp_primitive_ASCONF(asoc, chunk); 442 if (retval) 443 sctp_chunk_free(chunk); 444 else 445 asoc->addip_last_asconf = chunk; 446 447 out: 448 return retval; 449 } 450 451 /* Add a list of addresses as bind addresses to local endpoint or 452 * association. 453 * 454 * Basically run through each address specified in the addrs/addrcnt 455 * array/length pair, determine if it is IPv6 or IPv4 and call 456 * sctp_do_bind() on it. 457 * 458 * If any of them fails, then the operation will be reversed and the 459 * ones that were added will be removed. 460 * 461 * Only sctp_setsockopt_bindx() is supposed to call this function. 462 */ 463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 464 { 465 int cnt; 466 int retval = 0; 467 void *addr_buf; 468 struct sockaddr *sa_addr; 469 struct sctp_af *af; 470 471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 472 sk, addrs, addrcnt); 473 474 addr_buf = addrs; 475 for (cnt = 0; cnt < addrcnt; cnt++) { 476 /* The list may contain either IPv4 or IPv6 address; 477 * determine the address length for walking thru the list. 478 */ 479 sa_addr = (struct sockaddr *)addr_buf; 480 af = sctp_get_af_specific(sa_addr->sa_family); 481 if (!af) { 482 retval = -EINVAL; 483 goto err_bindx_add; 484 } 485 486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 487 af->sockaddr_len); 488 489 addr_buf += af->sockaddr_len; 490 491 err_bindx_add: 492 if (retval < 0) { 493 /* Failed. Cleanup the ones that have been added */ 494 if (cnt > 0) 495 sctp_bindx_rem(sk, addrs, cnt); 496 return retval; 497 } 498 } 499 500 return retval; 501 } 502 503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 504 * associations that are part of the endpoint indicating that a list of local 505 * addresses are added to the endpoint. 506 * 507 * If any of the addresses is already in the bind address list of the 508 * association, we do not send the chunk for that association. But it will not 509 * affect other associations. 510 * 511 * Only sctp_setsockopt_bindx() is supposed to call this function. 512 */ 513 static int sctp_send_asconf_add_ip(struct sock *sk, 514 struct sockaddr *addrs, 515 int addrcnt) 516 { 517 struct sctp_sock *sp; 518 struct sctp_endpoint *ep; 519 struct sctp_association *asoc; 520 struct sctp_bind_addr *bp; 521 struct sctp_chunk *chunk; 522 struct sctp_sockaddr_entry *laddr; 523 union sctp_addr *addr; 524 union sctp_addr saveaddr; 525 void *addr_buf; 526 struct sctp_af *af; 527 struct list_head *p; 528 int i; 529 int retval = 0; 530 531 if (!sctp_addip_enable) 532 return retval; 533 534 sp = sctp_sk(sk); 535 ep = sp->ep; 536 537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 538 __func__, sk, addrs, addrcnt); 539 540 list_for_each_entry(asoc, &ep->asocs, asocs) { 541 542 if (!asoc->peer.asconf_capable) 543 continue; 544 545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 546 continue; 547 548 if (!sctp_state(asoc, ESTABLISHED)) 549 continue; 550 551 /* Check if any address in the packed array of addresses is 552 * in the bind address list of the association. If so, 553 * do not send the asconf chunk to its peer, but continue with 554 * other associations. 555 */ 556 addr_buf = addrs; 557 for (i = 0; i < addrcnt; i++) { 558 addr = (union sctp_addr *)addr_buf; 559 af = sctp_get_af_specific(addr->v4.sin_family); 560 if (!af) { 561 retval = -EINVAL; 562 goto out; 563 } 564 565 if (sctp_assoc_lookup_laddr(asoc, addr)) 566 break; 567 568 addr_buf += af->sockaddr_len; 569 } 570 if (i < addrcnt) 571 continue; 572 573 /* Use the first valid address in bind addr list of 574 * association as Address Parameter of ASCONF CHUNK. 575 */ 576 bp = &asoc->base.bind_addr; 577 p = bp->address_list.next; 578 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 580 addrcnt, SCTP_PARAM_ADD_IP); 581 if (!chunk) { 582 retval = -ENOMEM; 583 goto out; 584 } 585 586 retval = sctp_send_asconf(asoc, chunk); 587 if (retval) 588 goto out; 589 590 /* Add the new addresses to the bind address list with 591 * use_as_src set to 0. 592 */ 593 addr_buf = addrs; 594 for (i = 0; i < addrcnt; i++) { 595 addr = (union sctp_addr *)addr_buf; 596 af = sctp_get_af_specific(addr->v4.sin_family); 597 memcpy(&saveaddr, addr, af->sockaddr_len); 598 retval = sctp_add_bind_addr(bp, &saveaddr, 599 SCTP_ADDR_NEW, GFP_ATOMIC); 600 addr_buf += af->sockaddr_len; 601 } 602 } 603 604 out: 605 return retval; 606 } 607 608 /* Remove a list of addresses from bind addresses list. Do not remove the 609 * last address. 610 * 611 * Basically run through each address specified in the addrs/addrcnt 612 * array/length pair, determine if it is IPv6 or IPv4 and call 613 * sctp_del_bind() on it. 614 * 615 * If any of them fails, then the operation will be reversed and the 616 * ones that were removed will be added back. 617 * 618 * At least one address has to be left; if only one address is 619 * available, the operation will return -EBUSY. 620 * 621 * Only sctp_setsockopt_bindx() is supposed to call this function. 622 */ 623 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 624 { 625 struct sctp_sock *sp = sctp_sk(sk); 626 struct sctp_endpoint *ep = sp->ep; 627 int cnt; 628 struct sctp_bind_addr *bp = &ep->base.bind_addr; 629 int retval = 0; 630 void *addr_buf; 631 union sctp_addr *sa_addr; 632 struct sctp_af *af; 633 634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 635 sk, addrs, addrcnt); 636 637 addr_buf = addrs; 638 for (cnt = 0; cnt < addrcnt; cnt++) { 639 /* If the bind address list is empty or if there is only one 640 * bind address, there is nothing more to be removed (we need 641 * at least one address here). 642 */ 643 if (list_empty(&bp->address_list) || 644 (sctp_list_single_entry(&bp->address_list))) { 645 retval = -EBUSY; 646 goto err_bindx_rem; 647 } 648 649 sa_addr = (union sctp_addr *)addr_buf; 650 af = sctp_get_af_specific(sa_addr->sa.sa_family); 651 if (!af) { 652 retval = -EINVAL; 653 goto err_bindx_rem; 654 } 655 656 if (!af->addr_valid(sa_addr, sp, NULL)) { 657 retval = -EADDRNOTAVAIL; 658 goto err_bindx_rem; 659 } 660 661 if (sa_addr->v4.sin_port != htons(bp->port)) { 662 retval = -EINVAL; 663 goto err_bindx_rem; 664 } 665 666 /* FIXME - There is probably a need to check if sk->sk_saddr and 667 * sk->sk_rcv_addr are currently set to one of the addresses to 668 * be removed. This is something which needs to be looked into 669 * when we are fixing the outstanding issues with multi-homing 670 * socket routing and failover schemes. Refer to comments in 671 * sctp_do_bind(). -daisy 672 */ 673 retval = sctp_del_bind_addr(bp, sa_addr); 674 675 addr_buf += af->sockaddr_len; 676 err_bindx_rem: 677 if (retval < 0) { 678 /* Failed. Add the ones that has been removed back */ 679 if (cnt > 0) 680 sctp_bindx_add(sk, addrs, cnt); 681 return retval; 682 } 683 } 684 685 return retval; 686 } 687 688 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 689 * the associations that are part of the endpoint indicating that a list of 690 * local addresses are removed from the endpoint. 691 * 692 * If any of the addresses is already in the bind address list of the 693 * association, we do not send the chunk for that association. But it will not 694 * affect other associations. 695 * 696 * Only sctp_setsockopt_bindx() is supposed to call this function. 697 */ 698 static int sctp_send_asconf_del_ip(struct sock *sk, 699 struct sockaddr *addrs, 700 int addrcnt) 701 { 702 struct sctp_sock *sp; 703 struct sctp_endpoint *ep; 704 struct sctp_association *asoc; 705 struct sctp_transport *transport; 706 struct sctp_bind_addr *bp; 707 struct sctp_chunk *chunk; 708 union sctp_addr *laddr; 709 void *addr_buf; 710 struct sctp_af *af; 711 struct sctp_sockaddr_entry *saddr; 712 int i; 713 int retval = 0; 714 715 if (!sctp_addip_enable) 716 return retval; 717 718 sp = sctp_sk(sk); 719 ep = sp->ep; 720 721 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 722 __func__, sk, addrs, addrcnt); 723 724 list_for_each_entry(asoc, &ep->asocs, asocs) { 725 726 if (!asoc->peer.asconf_capable) 727 continue; 728 729 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 730 continue; 731 732 if (!sctp_state(asoc, ESTABLISHED)) 733 continue; 734 735 /* Check if any address in the packed array of addresses is 736 * not present in the bind address list of the association. 737 * If so, do not send the asconf chunk to its peer, but 738 * continue with other associations. 739 */ 740 addr_buf = addrs; 741 for (i = 0; i < addrcnt; i++) { 742 laddr = (union sctp_addr *)addr_buf; 743 af = sctp_get_af_specific(laddr->v4.sin_family); 744 if (!af) { 745 retval = -EINVAL; 746 goto out; 747 } 748 749 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 750 break; 751 752 addr_buf += af->sockaddr_len; 753 } 754 if (i < addrcnt) 755 continue; 756 757 /* Find one address in the association's bind address list 758 * that is not in the packed array of addresses. This is to 759 * make sure that we do not delete all the addresses in the 760 * association. 761 */ 762 bp = &asoc->base.bind_addr; 763 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 764 addrcnt, sp); 765 if (!laddr) 766 continue; 767 768 /* We do not need RCU protection throughout this loop 769 * because this is done under a socket lock from the 770 * setsockopt call. 771 */ 772 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 773 SCTP_PARAM_DEL_IP); 774 if (!chunk) { 775 retval = -ENOMEM; 776 goto out; 777 } 778 779 /* Reset use_as_src flag for the addresses in the bind address 780 * list that are to be deleted. 781 */ 782 addr_buf = addrs; 783 for (i = 0; i < addrcnt; i++) { 784 laddr = (union sctp_addr *)addr_buf; 785 af = sctp_get_af_specific(laddr->v4.sin_family); 786 list_for_each_entry(saddr, &bp->address_list, list) { 787 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 788 saddr->state = SCTP_ADDR_DEL; 789 } 790 addr_buf += af->sockaddr_len; 791 } 792 793 /* Update the route and saddr entries for all the transports 794 * as some of the addresses in the bind address list are 795 * about to be deleted and cannot be used as source addresses. 796 */ 797 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 798 transports) { 799 dst_release(transport->dst); 800 sctp_transport_route(transport, NULL, 801 sctp_sk(asoc->base.sk)); 802 } 803 804 retval = sctp_send_asconf(asoc, chunk); 805 } 806 out: 807 return retval; 808 } 809 810 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 811 * 812 * API 8.1 813 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 814 * int flags); 815 * 816 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 817 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 818 * or IPv6 addresses. 819 * 820 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 821 * Section 3.1.2 for this usage. 822 * 823 * addrs is a pointer to an array of one or more socket addresses. Each 824 * address is contained in its appropriate structure (i.e. struct 825 * sockaddr_in or struct sockaddr_in6) the family of the address type 826 * must be used to distinguish the address length (note that this 827 * representation is termed a "packed array" of addresses). The caller 828 * specifies the number of addresses in the array with addrcnt. 829 * 830 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 831 * -1, and sets errno to the appropriate error code. 832 * 833 * For SCTP, the port given in each socket address must be the same, or 834 * sctp_bindx() will fail, setting errno to EINVAL. 835 * 836 * The flags parameter is formed from the bitwise OR of zero or more of 837 * the following currently defined flags: 838 * 839 * SCTP_BINDX_ADD_ADDR 840 * 841 * SCTP_BINDX_REM_ADDR 842 * 843 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 844 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 845 * addresses from the association. The two flags are mutually exclusive; 846 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 847 * not remove all addresses from an association; sctp_bindx() will 848 * reject such an attempt with EINVAL. 849 * 850 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 851 * additional addresses with an endpoint after calling bind(). Or use 852 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 853 * socket is associated with so that no new association accepted will be 854 * associated with those addresses. If the endpoint supports dynamic 855 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 856 * endpoint to send the appropriate message to the peer to change the 857 * peers address lists. 858 * 859 * Adding and removing addresses from a connected association is 860 * optional functionality. Implementations that do not support this 861 * functionality should return EOPNOTSUPP. 862 * 863 * Basically do nothing but copying the addresses from user to kernel 864 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 865 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 866 * from userspace. 867 * 868 * We don't use copy_from_user() for optimization: we first do the 869 * sanity checks (buffer size -fast- and access check-healthy 870 * pointer); if all of those succeed, then we can alloc the memory 871 * (expensive operation) needed to copy the data to kernel. Then we do 872 * the copying without checking the user space area 873 * (__copy_from_user()). 874 * 875 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 876 * it. 877 * 878 * sk The sk of the socket 879 * addrs The pointer to the addresses in user land 880 * addrssize Size of the addrs buffer 881 * op Operation to perform (add or remove, see the flags of 882 * sctp_bindx) 883 * 884 * Returns 0 if ok, <0 errno code on error. 885 */ 886 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 887 struct sockaddr __user *addrs, 888 int addrs_size, int op) 889 { 890 struct sockaddr *kaddrs; 891 int err; 892 int addrcnt = 0; 893 int walk_size = 0; 894 struct sockaddr *sa_addr; 895 void *addr_buf; 896 struct sctp_af *af; 897 898 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 899 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 900 901 if (unlikely(addrs_size <= 0)) 902 return -EINVAL; 903 904 /* Check the user passed a healthy pointer. */ 905 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 906 return -EFAULT; 907 908 /* Alloc space for the address array in kernel memory. */ 909 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 910 if (unlikely(!kaddrs)) 911 return -ENOMEM; 912 913 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 914 kfree(kaddrs); 915 return -EFAULT; 916 } 917 918 /* Walk through the addrs buffer and count the number of addresses. */ 919 addr_buf = kaddrs; 920 while (walk_size < addrs_size) { 921 if (walk_size + sizeof(sa_family_t) > addrs_size) { 922 kfree(kaddrs); 923 return -EINVAL; 924 } 925 926 sa_addr = (struct sockaddr *)addr_buf; 927 af = sctp_get_af_specific(sa_addr->sa_family); 928 929 /* If the address family is not supported or if this address 930 * causes the address buffer to overflow return EINVAL. 931 */ 932 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 933 kfree(kaddrs); 934 return -EINVAL; 935 } 936 addrcnt++; 937 addr_buf += af->sockaddr_len; 938 walk_size += af->sockaddr_len; 939 } 940 941 /* Do the work. */ 942 switch (op) { 943 case SCTP_BINDX_ADD_ADDR: 944 err = sctp_bindx_add(sk, kaddrs, addrcnt); 945 if (err) 946 goto out; 947 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 948 break; 949 950 case SCTP_BINDX_REM_ADDR: 951 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 952 if (err) 953 goto out; 954 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 955 break; 956 957 default: 958 err = -EINVAL; 959 break; 960 } 961 962 out: 963 kfree(kaddrs); 964 965 return err; 966 } 967 968 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 969 * 970 * Common routine for handling connect() and sctp_connectx(). 971 * Connect will come in with just a single address. 972 */ 973 static int __sctp_connect(struct sock* sk, 974 struct sockaddr *kaddrs, 975 int addrs_size, 976 sctp_assoc_t *assoc_id) 977 { 978 struct sctp_sock *sp; 979 struct sctp_endpoint *ep; 980 struct sctp_association *asoc = NULL; 981 struct sctp_association *asoc2; 982 struct sctp_transport *transport; 983 union sctp_addr to; 984 struct sctp_af *af; 985 sctp_scope_t scope; 986 long timeo; 987 int err = 0; 988 int addrcnt = 0; 989 int walk_size = 0; 990 union sctp_addr *sa_addr = NULL; 991 void *addr_buf; 992 unsigned short port; 993 unsigned int f_flags = 0; 994 995 sp = sctp_sk(sk); 996 ep = sp->ep; 997 998 /* connect() cannot be done on a socket that is already in ESTABLISHED 999 * state - UDP-style peeled off socket or a TCP-style socket that 1000 * is already connected. 1001 * It cannot be done even on a TCP-style listening socket. 1002 */ 1003 if (sctp_sstate(sk, ESTABLISHED) || 1004 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1005 err = -EISCONN; 1006 goto out_free; 1007 } 1008 1009 /* Walk through the addrs buffer and count the number of addresses. */ 1010 addr_buf = kaddrs; 1011 while (walk_size < addrs_size) { 1012 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1013 err = -EINVAL; 1014 goto out_free; 1015 } 1016 1017 sa_addr = (union sctp_addr *)addr_buf; 1018 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1019 1020 /* If the address family is not supported or if this address 1021 * causes the address buffer to overflow return EINVAL. 1022 */ 1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1024 err = -EINVAL; 1025 goto out_free; 1026 } 1027 1028 port = ntohs(sa_addr->v4.sin_port); 1029 1030 /* Save current address so we can work with it */ 1031 memcpy(&to, sa_addr, af->sockaddr_len); 1032 1033 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1034 if (err) 1035 goto out_free; 1036 1037 /* Make sure the destination port is correctly set 1038 * in all addresses. 1039 */ 1040 if (asoc && asoc->peer.port && asoc->peer.port != port) 1041 goto out_free; 1042 1043 1044 /* Check if there already is a matching association on the 1045 * endpoint (other than the one created here). 1046 */ 1047 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1048 if (asoc2 && asoc2 != asoc) { 1049 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1050 err = -EISCONN; 1051 else 1052 err = -EALREADY; 1053 goto out_free; 1054 } 1055 1056 /* If we could not find a matching association on the endpoint, 1057 * make sure that there is no peeled-off association matching 1058 * the peer address even on another socket. 1059 */ 1060 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1061 err = -EADDRNOTAVAIL; 1062 goto out_free; 1063 } 1064 1065 if (!asoc) { 1066 /* If a bind() or sctp_bindx() is not called prior to 1067 * an sctp_connectx() call, the system picks an 1068 * ephemeral port and will choose an address set 1069 * equivalent to binding with a wildcard address. 1070 */ 1071 if (!ep->base.bind_addr.port) { 1072 if (sctp_autobind(sk)) { 1073 err = -EAGAIN; 1074 goto out_free; 1075 } 1076 } else { 1077 /* 1078 * If an unprivileged user inherits a 1-many 1079 * style socket with open associations on a 1080 * privileged port, it MAY be permitted to 1081 * accept new associations, but it SHOULD NOT 1082 * be permitted to open new associations. 1083 */ 1084 if (ep->base.bind_addr.port < PROT_SOCK && 1085 !capable(CAP_NET_BIND_SERVICE)) { 1086 err = -EACCES; 1087 goto out_free; 1088 } 1089 } 1090 1091 scope = sctp_scope(&to); 1092 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1093 if (!asoc) { 1094 err = -ENOMEM; 1095 goto out_free; 1096 } 1097 1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1099 GFP_KERNEL); 1100 if (err < 0) { 1101 goto out_free; 1102 } 1103 1104 } 1105 1106 /* Prime the peer's transport structures. */ 1107 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1108 SCTP_UNKNOWN); 1109 if (!transport) { 1110 err = -ENOMEM; 1111 goto out_free; 1112 } 1113 1114 addrcnt++; 1115 addr_buf += af->sockaddr_len; 1116 walk_size += af->sockaddr_len; 1117 } 1118 1119 /* In case the user of sctp_connectx() wants an association 1120 * id back, assign one now. 1121 */ 1122 if (assoc_id) { 1123 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1124 if (err < 0) 1125 goto out_free; 1126 } 1127 1128 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1129 if (err < 0) { 1130 goto out_free; 1131 } 1132 1133 /* Initialize sk's dport and daddr for getpeername() */ 1134 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1135 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1136 af->to_sk_daddr(sa_addr, sk); 1137 sk->sk_err = 0; 1138 1139 /* in-kernel sockets don't generally have a file allocated to them 1140 * if all they do is call sock_create_kern(). 1141 */ 1142 if (sk->sk_socket->file) 1143 f_flags = sk->sk_socket->file->f_flags; 1144 1145 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1146 1147 err = sctp_wait_for_connect(asoc, &timeo); 1148 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1149 *assoc_id = asoc->assoc_id; 1150 1151 /* Don't free association on exit. */ 1152 asoc = NULL; 1153 1154 out_free: 1155 1156 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1157 " kaddrs: %p err: %d\n", 1158 asoc, kaddrs, err); 1159 if (asoc) 1160 sctp_association_free(asoc); 1161 return err; 1162 } 1163 1164 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1165 * 1166 * API 8.9 1167 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1168 * sctp_assoc_t *asoc); 1169 * 1170 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1171 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1172 * or IPv6 addresses. 1173 * 1174 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1175 * Section 3.1.2 for this usage. 1176 * 1177 * addrs is a pointer to an array of one or more socket addresses. Each 1178 * address is contained in its appropriate structure (i.e. struct 1179 * sockaddr_in or struct sockaddr_in6) the family of the address type 1180 * must be used to distengish the address length (note that this 1181 * representation is termed a "packed array" of addresses). The caller 1182 * specifies the number of addresses in the array with addrcnt. 1183 * 1184 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1185 * the association id of the new association. On failure, sctp_connectx() 1186 * returns -1, and sets errno to the appropriate error code. The assoc_id 1187 * is not touched by the kernel. 1188 * 1189 * For SCTP, the port given in each socket address must be the same, or 1190 * sctp_connectx() will fail, setting errno to EINVAL. 1191 * 1192 * An application can use sctp_connectx to initiate an association with 1193 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1194 * allows a caller to specify multiple addresses at which a peer can be 1195 * reached. The way the SCTP stack uses the list of addresses to set up 1196 * the association is implementation dependant. This function only 1197 * specifies that the stack will try to make use of all the addresses in 1198 * the list when needed. 1199 * 1200 * Note that the list of addresses passed in is only used for setting up 1201 * the association. It does not necessarily equal the set of addresses 1202 * the peer uses for the resulting association. If the caller wants to 1203 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1204 * retrieve them after the association has been set up. 1205 * 1206 * Basically do nothing but copying the addresses from user to kernel 1207 * land and invoking either sctp_connectx(). This is used for tunneling 1208 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1209 * 1210 * We don't use copy_from_user() for optimization: we first do the 1211 * sanity checks (buffer size -fast- and access check-healthy 1212 * pointer); if all of those succeed, then we can alloc the memory 1213 * (expensive operation) needed to copy the data to kernel. Then we do 1214 * the copying without checking the user space area 1215 * (__copy_from_user()). 1216 * 1217 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1218 * it. 1219 * 1220 * sk The sk of the socket 1221 * addrs The pointer to the addresses in user land 1222 * addrssize Size of the addrs buffer 1223 * 1224 * Returns >=0 if ok, <0 errno code on error. 1225 */ 1226 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1227 struct sockaddr __user *addrs, 1228 int addrs_size, 1229 sctp_assoc_t *assoc_id) 1230 { 1231 int err = 0; 1232 struct sockaddr *kaddrs; 1233 1234 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1235 __func__, sk, addrs, addrs_size); 1236 1237 if (unlikely(addrs_size <= 0)) 1238 return -EINVAL; 1239 1240 /* Check the user passed a healthy pointer. */ 1241 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1242 return -EFAULT; 1243 1244 /* Alloc space for the address array in kernel memory. */ 1245 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1246 if (unlikely(!kaddrs)) 1247 return -ENOMEM; 1248 1249 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1250 err = -EFAULT; 1251 } else { 1252 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1253 } 1254 1255 kfree(kaddrs); 1256 1257 return err; 1258 } 1259 1260 /* 1261 * This is an older interface. It's kept for backward compatibility 1262 * to the option that doesn't provide association id. 1263 */ 1264 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1265 struct sockaddr __user *addrs, 1266 int addrs_size) 1267 { 1268 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1269 } 1270 1271 /* 1272 * New interface for the API. The since the API is done with a socket 1273 * option, to make it simple we feed back the association id is as a return 1274 * indication to the call. Error is always negative and association id is 1275 * always positive. 1276 */ 1277 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1278 struct sockaddr __user *addrs, 1279 int addrs_size) 1280 { 1281 sctp_assoc_t assoc_id = 0; 1282 int err = 0; 1283 1284 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1285 1286 if (err) 1287 return err; 1288 else 1289 return assoc_id; 1290 } 1291 1292 /* 1293 * New (hopefully final) interface for the API. 1294 * We use the sctp_getaddrs_old structure so that use-space library 1295 * can avoid any unnecessary allocations. The only defferent part 1296 * is that we store the actual length of the address buffer into the 1297 * addrs_num structure member. That way we can re-use the existing 1298 * code. 1299 */ 1300 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1301 char __user *optval, 1302 int __user *optlen) 1303 { 1304 struct sctp_getaddrs_old param; 1305 sctp_assoc_t assoc_id = 0; 1306 int err = 0; 1307 1308 if (len < sizeof(param)) 1309 return -EINVAL; 1310 1311 if (copy_from_user(¶m, optval, sizeof(param))) 1312 return -EFAULT; 1313 1314 err = __sctp_setsockopt_connectx(sk, 1315 (struct sockaddr __user *)param.addrs, 1316 param.addr_num, &assoc_id); 1317 1318 if (err == 0 || err == -EINPROGRESS) { 1319 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1320 return -EFAULT; 1321 if (put_user(sizeof(assoc_id), optlen)) 1322 return -EFAULT; 1323 } 1324 1325 return err; 1326 } 1327 1328 /* API 3.1.4 close() - UDP Style Syntax 1329 * Applications use close() to perform graceful shutdown (as described in 1330 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1331 * by a UDP-style socket. 1332 * 1333 * The syntax is 1334 * 1335 * ret = close(int sd); 1336 * 1337 * sd - the socket descriptor of the associations to be closed. 1338 * 1339 * To gracefully shutdown a specific association represented by the 1340 * UDP-style socket, an application should use the sendmsg() call, 1341 * passing no user data, but including the appropriate flag in the 1342 * ancillary data (see Section xxxx). 1343 * 1344 * If sd in the close() call is a branched-off socket representing only 1345 * one association, the shutdown is performed on that association only. 1346 * 1347 * 4.1.6 close() - TCP Style Syntax 1348 * 1349 * Applications use close() to gracefully close down an association. 1350 * 1351 * The syntax is: 1352 * 1353 * int close(int sd); 1354 * 1355 * sd - the socket descriptor of the association to be closed. 1356 * 1357 * After an application calls close() on a socket descriptor, no further 1358 * socket operations will succeed on that descriptor. 1359 * 1360 * API 7.1.4 SO_LINGER 1361 * 1362 * An application using the TCP-style socket can use this option to 1363 * perform the SCTP ABORT primitive. The linger option structure is: 1364 * 1365 * struct linger { 1366 * int l_onoff; // option on/off 1367 * int l_linger; // linger time 1368 * }; 1369 * 1370 * To enable the option, set l_onoff to 1. If the l_linger value is set 1371 * to 0, calling close() is the same as the ABORT primitive. If the 1372 * value is set to a negative value, the setsockopt() call will return 1373 * an error. If the value is set to a positive value linger_time, the 1374 * close() can be blocked for at most linger_time ms. If the graceful 1375 * shutdown phase does not finish during this period, close() will 1376 * return but the graceful shutdown phase continues in the system. 1377 */ 1378 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1379 { 1380 struct sctp_endpoint *ep; 1381 struct sctp_association *asoc; 1382 struct list_head *pos, *temp; 1383 1384 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1385 1386 sctp_lock_sock(sk); 1387 sk->sk_shutdown = SHUTDOWN_MASK; 1388 sk->sk_state = SCTP_SS_CLOSING; 1389 1390 ep = sctp_sk(sk)->ep; 1391 1392 /* Walk all associations on an endpoint. */ 1393 list_for_each_safe(pos, temp, &ep->asocs) { 1394 asoc = list_entry(pos, struct sctp_association, asocs); 1395 1396 if (sctp_style(sk, TCP)) { 1397 /* A closed association can still be in the list if 1398 * it belongs to a TCP-style listening socket that is 1399 * not yet accepted. If so, free it. If not, send an 1400 * ABORT or SHUTDOWN based on the linger options. 1401 */ 1402 if (sctp_state(asoc, CLOSED)) { 1403 sctp_unhash_established(asoc); 1404 sctp_association_free(asoc); 1405 continue; 1406 } 1407 } 1408 1409 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1410 struct sctp_chunk *chunk; 1411 1412 chunk = sctp_make_abort_user(asoc, NULL, 0); 1413 if (chunk) 1414 sctp_primitive_ABORT(asoc, chunk); 1415 } else 1416 sctp_primitive_SHUTDOWN(asoc, NULL); 1417 } 1418 1419 /* Clean up any skbs sitting on the receive queue. */ 1420 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1421 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1422 1423 /* On a TCP-style socket, block for at most linger_time if set. */ 1424 if (sctp_style(sk, TCP) && timeout) 1425 sctp_wait_for_close(sk, timeout); 1426 1427 /* This will run the backlog queue. */ 1428 sctp_release_sock(sk); 1429 1430 /* Supposedly, no process has access to the socket, but 1431 * the net layers still may. 1432 */ 1433 sctp_local_bh_disable(); 1434 sctp_bh_lock_sock(sk); 1435 1436 /* Hold the sock, since sk_common_release() will put sock_put() 1437 * and we have just a little more cleanup. 1438 */ 1439 sock_hold(sk); 1440 sk_common_release(sk); 1441 1442 sctp_bh_unlock_sock(sk); 1443 sctp_local_bh_enable(); 1444 1445 sock_put(sk); 1446 1447 SCTP_DBG_OBJCNT_DEC(sock); 1448 } 1449 1450 /* Handle EPIPE error. */ 1451 static int sctp_error(struct sock *sk, int flags, int err) 1452 { 1453 if (err == -EPIPE) 1454 err = sock_error(sk) ? : -EPIPE; 1455 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1456 send_sig(SIGPIPE, current, 0); 1457 return err; 1458 } 1459 1460 /* API 3.1.3 sendmsg() - UDP Style Syntax 1461 * 1462 * An application uses sendmsg() and recvmsg() calls to transmit data to 1463 * and receive data from its peer. 1464 * 1465 * ssize_t sendmsg(int socket, const struct msghdr *message, 1466 * int flags); 1467 * 1468 * socket - the socket descriptor of the endpoint. 1469 * message - pointer to the msghdr structure which contains a single 1470 * user message and possibly some ancillary data. 1471 * 1472 * See Section 5 for complete description of the data 1473 * structures. 1474 * 1475 * flags - flags sent or received with the user message, see Section 1476 * 5 for complete description of the flags. 1477 * 1478 * Note: This function could use a rewrite especially when explicit 1479 * connect support comes in. 1480 */ 1481 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1482 1483 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1484 1485 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1486 struct msghdr *msg, size_t msg_len) 1487 { 1488 struct sctp_sock *sp; 1489 struct sctp_endpoint *ep; 1490 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1491 struct sctp_transport *transport, *chunk_tp; 1492 struct sctp_chunk *chunk; 1493 union sctp_addr to; 1494 struct sockaddr *msg_name = NULL; 1495 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1496 struct sctp_sndrcvinfo *sinfo; 1497 struct sctp_initmsg *sinit; 1498 sctp_assoc_t associd = 0; 1499 sctp_cmsgs_t cmsgs = { NULL }; 1500 int err; 1501 sctp_scope_t scope; 1502 long timeo; 1503 __u16 sinfo_flags = 0; 1504 struct sctp_datamsg *datamsg; 1505 int msg_flags = msg->msg_flags; 1506 1507 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1508 sk, msg, msg_len); 1509 1510 err = 0; 1511 sp = sctp_sk(sk); 1512 ep = sp->ep; 1513 1514 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1515 1516 /* We cannot send a message over a TCP-style listening socket. */ 1517 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1518 err = -EPIPE; 1519 goto out_nounlock; 1520 } 1521 1522 /* Parse out the SCTP CMSGs. */ 1523 err = sctp_msghdr_parse(msg, &cmsgs); 1524 1525 if (err) { 1526 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1527 goto out_nounlock; 1528 } 1529 1530 /* Fetch the destination address for this packet. This 1531 * address only selects the association--it is not necessarily 1532 * the address we will send to. 1533 * For a peeled-off socket, msg_name is ignored. 1534 */ 1535 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1536 int msg_namelen = msg->msg_namelen; 1537 1538 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1539 msg_namelen); 1540 if (err) 1541 return err; 1542 1543 if (msg_namelen > sizeof(to)) 1544 msg_namelen = sizeof(to); 1545 memcpy(&to, msg->msg_name, msg_namelen); 1546 msg_name = msg->msg_name; 1547 } 1548 1549 sinfo = cmsgs.info; 1550 sinit = cmsgs.init; 1551 1552 /* Did the user specify SNDRCVINFO? */ 1553 if (sinfo) { 1554 sinfo_flags = sinfo->sinfo_flags; 1555 associd = sinfo->sinfo_assoc_id; 1556 } 1557 1558 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1559 msg_len, sinfo_flags); 1560 1561 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1562 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1563 err = -EINVAL; 1564 goto out_nounlock; 1565 } 1566 1567 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1568 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1569 * If SCTP_ABORT is set, the message length could be non zero with 1570 * the msg_iov set to the user abort reason. 1571 */ 1572 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1573 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1574 err = -EINVAL; 1575 goto out_nounlock; 1576 } 1577 1578 /* If SCTP_ADDR_OVER is set, there must be an address 1579 * specified in msg_name. 1580 */ 1581 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1582 err = -EINVAL; 1583 goto out_nounlock; 1584 } 1585 1586 transport = NULL; 1587 1588 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1589 1590 sctp_lock_sock(sk); 1591 1592 /* If a msg_name has been specified, assume this is to be used. */ 1593 if (msg_name) { 1594 /* Look for a matching association on the endpoint. */ 1595 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1596 if (!asoc) { 1597 /* If we could not find a matching association on the 1598 * endpoint, make sure that it is not a TCP-style 1599 * socket that already has an association or there is 1600 * no peeled-off association on another socket. 1601 */ 1602 if ((sctp_style(sk, TCP) && 1603 sctp_sstate(sk, ESTABLISHED)) || 1604 sctp_endpoint_is_peeled_off(ep, &to)) { 1605 err = -EADDRNOTAVAIL; 1606 goto out_unlock; 1607 } 1608 } 1609 } else { 1610 asoc = sctp_id2assoc(sk, associd); 1611 if (!asoc) { 1612 err = -EPIPE; 1613 goto out_unlock; 1614 } 1615 } 1616 1617 if (asoc) { 1618 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1619 1620 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1621 * socket that has an association in CLOSED state. This can 1622 * happen when an accepted socket has an association that is 1623 * already CLOSED. 1624 */ 1625 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1626 err = -EPIPE; 1627 goto out_unlock; 1628 } 1629 1630 if (sinfo_flags & SCTP_EOF) { 1631 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1632 asoc); 1633 sctp_primitive_SHUTDOWN(asoc, NULL); 1634 err = 0; 1635 goto out_unlock; 1636 } 1637 if (sinfo_flags & SCTP_ABORT) { 1638 1639 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1640 if (!chunk) { 1641 err = -ENOMEM; 1642 goto out_unlock; 1643 } 1644 1645 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1646 sctp_primitive_ABORT(asoc, chunk); 1647 err = 0; 1648 goto out_unlock; 1649 } 1650 } 1651 1652 /* Do we need to create the association? */ 1653 if (!asoc) { 1654 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1655 1656 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1657 err = -EINVAL; 1658 goto out_unlock; 1659 } 1660 1661 /* Check for invalid stream against the stream counts, 1662 * either the default or the user specified stream counts. 1663 */ 1664 if (sinfo) { 1665 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1666 /* Check against the defaults. */ 1667 if (sinfo->sinfo_stream >= 1668 sp->initmsg.sinit_num_ostreams) { 1669 err = -EINVAL; 1670 goto out_unlock; 1671 } 1672 } else { 1673 /* Check against the requested. */ 1674 if (sinfo->sinfo_stream >= 1675 sinit->sinit_num_ostreams) { 1676 err = -EINVAL; 1677 goto out_unlock; 1678 } 1679 } 1680 } 1681 1682 /* 1683 * API 3.1.2 bind() - UDP Style Syntax 1684 * If a bind() or sctp_bindx() is not called prior to a 1685 * sendmsg() call that initiates a new association, the 1686 * system picks an ephemeral port and will choose an address 1687 * set equivalent to binding with a wildcard address. 1688 */ 1689 if (!ep->base.bind_addr.port) { 1690 if (sctp_autobind(sk)) { 1691 err = -EAGAIN; 1692 goto out_unlock; 1693 } 1694 } else { 1695 /* 1696 * If an unprivileged user inherits a one-to-many 1697 * style socket with open associations on a privileged 1698 * port, it MAY be permitted to accept new associations, 1699 * but it SHOULD NOT be permitted to open new 1700 * associations. 1701 */ 1702 if (ep->base.bind_addr.port < PROT_SOCK && 1703 !capable(CAP_NET_BIND_SERVICE)) { 1704 err = -EACCES; 1705 goto out_unlock; 1706 } 1707 } 1708 1709 scope = sctp_scope(&to); 1710 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1711 if (!new_asoc) { 1712 err = -ENOMEM; 1713 goto out_unlock; 1714 } 1715 asoc = new_asoc; 1716 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1717 if (err < 0) { 1718 err = -ENOMEM; 1719 goto out_free; 1720 } 1721 1722 /* If the SCTP_INIT ancillary data is specified, set all 1723 * the association init values accordingly. 1724 */ 1725 if (sinit) { 1726 if (sinit->sinit_num_ostreams) { 1727 asoc->c.sinit_num_ostreams = 1728 sinit->sinit_num_ostreams; 1729 } 1730 if (sinit->sinit_max_instreams) { 1731 asoc->c.sinit_max_instreams = 1732 sinit->sinit_max_instreams; 1733 } 1734 if (sinit->sinit_max_attempts) { 1735 asoc->max_init_attempts 1736 = sinit->sinit_max_attempts; 1737 } 1738 if (sinit->sinit_max_init_timeo) { 1739 asoc->max_init_timeo = 1740 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1741 } 1742 } 1743 1744 /* Prime the peer's transport structures. */ 1745 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1746 if (!transport) { 1747 err = -ENOMEM; 1748 goto out_free; 1749 } 1750 } 1751 1752 /* ASSERT: we have a valid association at this point. */ 1753 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1754 1755 if (!sinfo) { 1756 /* If the user didn't specify SNDRCVINFO, make up one with 1757 * some defaults. 1758 */ 1759 default_sinfo.sinfo_stream = asoc->default_stream; 1760 default_sinfo.sinfo_flags = asoc->default_flags; 1761 default_sinfo.sinfo_ppid = asoc->default_ppid; 1762 default_sinfo.sinfo_context = asoc->default_context; 1763 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1764 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1765 sinfo = &default_sinfo; 1766 } 1767 1768 /* API 7.1.7, the sndbuf size per association bounds the 1769 * maximum size of data that can be sent in a single send call. 1770 */ 1771 if (msg_len > sk->sk_sndbuf) { 1772 err = -EMSGSIZE; 1773 goto out_free; 1774 } 1775 1776 if (asoc->pmtu_pending) 1777 sctp_assoc_pending_pmtu(asoc); 1778 1779 /* If fragmentation is disabled and the message length exceeds the 1780 * association fragmentation point, return EMSGSIZE. The I-D 1781 * does not specify what this error is, but this looks like 1782 * a great fit. 1783 */ 1784 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1785 err = -EMSGSIZE; 1786 goto out_free; 1787 } 1788 1789 if (sinfo) { 1790 /* Check for invalid stream. */ 1791 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1792 err = -EINVAL; 1793 goto out_free; 1794 } 1795 } 1796 1797 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1798 if (!sctp_wspace(asoc)) { 1799 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1800 if (err) 1801 goto out_free; 1802 } 1803 1804 /* If an address is passed with the sendto/sendmsg call, it is used 1805 * to override the primary destination address in the TCP model, or 1806 * when SCTP_ADDR_OVER flag is set in the UDP model. 1807 */ 1808 if ((sctp_style(sk, TCP) && msg_name) || 1809 (sinfo_flags & SCTP_ADDR_OVER)) { 1810 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1811 if (!chunk_tp) { 1812 err = -EINVAL; 1813 goto out_free; 1814 } 1815 } else 1816 chunk_tp = NULL; 1817 1818 /* Auto-connect, if we aren't connected already. */ 1819 if (sctp_state(asoc, CLOSED)) { 1820 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1821 if (err < 0) 1822 goto out_free; 1823 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1824 } 1825 1826 /* Break the message into multiple chunks of maximum size. */ 1827 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1828 if (!datamsg) { 1829 err = -ENOMEM; 1830 goto out_free; 1831 } 1832 1833 /* Now send the (possibly) fragmented message. */ 1834 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1835 sctp_chunk_hold(chunk); 1836 1837 /* Do accounting for the write space. */ 1838 sctp_set_owner_w(chunk); 1839 1840 chunk->transport = chunk_tp; 1841 } 1842 1843 /* Send it to the lower layers. Note: all chunks 1844 * must either fail or succeed. The lower layer 1845 * works that way today. Keep it that way or this 1846 * breaks. 1847 */ 1848 err = sctp_primitive_SEND(asoc, datamsg); 1849 /* Did the lower layer accept the chunk? */ 1850 if (err) 1851 sctp_datamsg_free(datamsg); 1852 else 1853 sctp_datamsg_put(datamsg); 1854 1855 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1856 1857 if (err) 1858 goto out_free; 1859 else 1860 err = msg_len; 1861 1862 /* If we are already past ASSOCIATE, the lower 1863 * layers are responsible for association cleanup. 1864 */ 1865 goto out_unlock; 1866 1867 out_free: 1868 if (new_asoc) 1869 sctp_association_free(asoc); 1870 out_unlock: 1871 sctp_release_sock(sk); 1872 1873 out_nounlock: 1874 return sctp_error(sk, msg_flags, err); 1875 1876 #if 0 1877 do_sock_err: 1878 if (msg_len) 1879 err = msg_len; 1880 else 1881 err = sock_error(sk); 1882 goto out; 1883 1884 do_interrupted: 1885 if (msg_len) 1886 err = msg_len; 1887 goto out; 1888 #endif /* 0 */ 1889 } 1890 1891 /* This is an extended version of skb_pull() that removes the data from the 1892 * start of a skb even when data is spread across the list of skb's in the 1893 * frag_list. len specifies the total amount of data that needs to be removed. 1894 * when 'len' bytes could be removed from the skb, it returns 0. 1895 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1896 * could not be removed. 1897 */ 1898 static int sctp_skb_pull(struct sk_buff *skb, int len) 1899 { 1900 struct sk_buff *list; 1901 int skb_len = skb_headlen(skb); 1902 int rlen; 1903 1904 if (len <= skb_len) { 1905 __skb_pull(skb, len); 1906 return 0; 1907 } 1908 len -= skb_len; 1909 __skb_pull(skb, skb_len); 1910 1911 skb_walk_frags(skb, list) { 1912 rlen = sctp_skb_pull(list, len); 1913 skb->len -= (len-rlen); 1914 skb->data_len -= (len-rlen); 1915 1916 if (!rlen) 1917 return 0; 1918 1919 len = rlen; 1920 } 1921 1922 return len; 1923 } 1924 1925 /* API 3.1.3 recvmsg() - UDP Style Syntax 1926 * 1927 * ssize_t recvmsg(int socket, struct msghdr *message, 1928 * int flags); 1929 * 1930 * socket - the socket descriptor of the endpoint. 1931 * message - pointer to the msghdr structure which contains a single 1932 * user message and possibly some ancillary data. 1933 * 1934 * See Section 5 for complete description of the data 1935 * structures. 1936 * 1937 * flags - flags sent or received with the user message, see Section 1938 * 5 for complete description of the flags. 1939 */ 1940 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1941 1942 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1943 struct msghdr *msg, size_t len, int noblock, 1944 int flags, int *addr_len) 1945 { 1946 struct sctp_ulpevent *event = NULL; 1947 struct sctp_sock *sp = sctp_sk(sk); 1948 struct sk_buff *skb; 1949 int copied; 1950 int err = 0; 1951 int skb_len; 1952 1953 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1954 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1955 "len", len, "knoblauch", noblock, 1956 "flags", flags, "addr_len", addr_len); 1957 1958 sctp_lock_sock(sk); 1959 1960 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1961 err = -ENOTCONN; 1962 goto out; 1963 } 1964 1965 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1966 if (!skb) 1967 goto out; 1968 1969 /* Get the total length of the skb including any skb's in the 1970 * frag_list. 1971 */ 1972 skb_len = skb->len; 1973 1974 copied = skb_len; 1975 if (copied > len) 1976 copied = len; 1977 1978 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1979 1980 event = sctp_skb2event(skb); 1981 1982 if (err) 1983 goto out_free; 1984 1985 sock_recv_ts_and_drops(msg, sk, skb); 1986 if (sctp_ulpevent_is_notification(event)) { 1987 msg->msg_flags |= MSG_NOTIFICATION; 1988 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1989 } else { 1990 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1991 } 1992 1993 /* Check if we allow SCTP_SNDRCVINFO. */ 1994 if (sp->subscribe.sctp_data_io_event) 1995 sctp_ulpevent_read_sndrcvinfo(event, msg); 1996 #if 0 1997 /* FIXME: we should be calling IP/IPv6 layers. */ 1998 if (sk->sk_protinfo.af_inet.cmsg_flags) 1999 ip_cmsg_recv(msg, skb); 2000 #endif 2001 2002 err = copied; 2003 2004 /* If skb's length exceeds the user's buffer, update the skb and 2005 * push it back to the receive_queue so that the next call to 2006 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2007 */ 2008 if (skb_len > copied) { 2009 msg->msg_flags &= ~MSG_EOR; 2010 if (flags & MSG_PEEK) 2011 goto out_free; 2012 sctp_skb_pull(skb, copied); 2013 skb_queue_head(&sk->sk_receive_queue, skb); 2014 2015 /* When only partial message is copied to the user, increase 2016 * rwnd by that amount. If all the data in the skb is read, 2017 * rwnd is updated when the event is freed. 2018 */ 2019 if (!sctp_ulpevent_is_notification(event)) 2020 sctp_assoc_rwnd_increase(event->asoc, copied); 2021 goto out; 2022 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2023 (event->msg_flags & MSG_EOR)) 2024 msg->msg_flags |= MSG_EOR; 2025 else 2026 msg->msg_flags &= ~MSG_EOR; 2027 2028 out_free: 2029 if (flags & MSG_PEEK) { 2030 /* Release the skb reference acquired after peeking the skb in 2031 * sctp_skb_recv_datagram(). 2032 */ 2033 kfree_skb(skb); 2034 } else { 2035 /* Free the event which includes releasing the reference to 2036 * the owner of the skb, freeing the skb and updating the 2037 * rwnd. 2038 */ 2039 sctp_ulpevent_free(event); 2040 } 2041 out: 2042 sctp_release_sock(sk); 2043 return err; 2044 } 2045 2046 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2047 * 2048 * This option is a on/off flag. If enabled no SCTP message 2049 * fragmentation will be performed. Instead if a message being sent 2050 * exceeds the current PMTU size, the message will NOT be sent and 2051 * instead a error will be indicated to the user. 2052 */ 2053 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2054 char __user *optval, 2055 unsigned int optlen) 2056 { 2057 int val; 2058 2059 if (optlen < sizeof(int)) 2060 return -EINVAL; 2061 2062 if (get_user(val, (int __user *)optval)) 2063 return -EFAULT; 2064 2065 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2066 2067 return 0; 2068 } 2069 2070 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2071 unsigned int optlen) 2072 { 2073 if (optlen > sizeof(struct sctp_event_subscribe)) 2074 return -EINVAL; 2075 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2076 return -EFAULT; 2077 return 0; 2078 } 2079 2080 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2081 * 2082 * This socket option is applicable to the UDP-style socket only. When 2083 * set it will cause associations that are idle for more than the 2084 * specified number of seconds to automatically close. An association 2085 * being idle is defined an association that has NOT sent or received 2086 * user data. The special value of '0' indicates that no automatic 2087 * close of any associations should be performed. The option expects an 2088 * integer defining the number of seconds of idle time before an 2089 * association is closed. 2090 */ 2091 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2092 unsigned int optlen) 2093 { 2094 struct sctp_sock *sp = sctp_sk(sk); 2095 2096 /* Applicable to UDP-style socket only */ 2097 if (sctp_style(sk, TCP)) 2098 return -EOPNOTSUPP; 2099 if (optlen != sizeof(int)) 2100 return -EINVAL; 2101 if (copy_from_user(&sp->autoclose, optval, optlen)) 2102 return -EFAULT; 2103 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */ 2104 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ); 2105 2106 return 0; 2107 } 2108 2109 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2110 * 2111 * Applications can enable or disable heartbeats for any peer address of 2112 * an association, modify an address's heartbeat interval, force a 2113 * heartbeat to be sent immediately, and adjust the address's maximum 2114 * number of retransmissions sent before an address is considered 2115 * unreachable. The following structure is used to access and modify an 2116 * address's parameters: 2117 * 2118 * struct sctp_paddrparams { 2119 * sctp_assoc_t spp_assoc_id; 2120 * struct sockaddr_storage spp_address; 2121 * uint32_t spp_hbinterval; 2122 * uint16_t spp_pathmaxrxt; 2123 * uint32_t spp_pathmtu; 2124 * uint32_t spp_sackdelay; 2125 * uint32_t spp_flags; 2126 * }; 2127 * 2128 * spp_assoc_id - (one-to-many style socket) This is filled in the 2129 * application, and identifies the association for 2130 * this query. 2131 * spp_address - This specifies which address is of interest. 2132 * spp_hbinterval - This contains the value of the heartbeat interval, 2133 * in milliseconds. If a value of zero 2134 * is present in this field then no changes are to 2135 * be made to this parameter. 2136 * spp_pathmaxrxt - This contains the maximum number of 2137 * retransmissions before this address shall be 2138 * considered unreachable. If a value of zero 2139 * is present in this field then no changes are to 2140 * be made to this parameter. 2141 * spp_pathmtu - When Path MTU discovery is disabled the value 2142 * specified here will be the "fixed" path mtu. 2143 * Note that if the spp_address field is empty 2144 * then all associations on this address will 2145 * have this fixed path mtu set upon them. 2146 * 2147 * spp_sackdelay - When delayed sack is enabled, this value specifies 2148 * the number of milliseconds that sacks will be delayed 2149 * for. This value will apply to all addresses of an 2150 * association if the spp_address field is empty. Note 2151 * also, that if delayed sack is enabled and this 2152 * value is set to 0, no change is made to the last 2153 * recorded delayed sack timer value. 2154 * 2155 * spp_flags - These flags are used to control various features 2156 * on an association. The flag field may contain 2157 * zero or more of the following options. 2158 * 2159 * SPP_HB_ENABLE - Enable heartbeats on the 2160 * specified address. Note that if the address 2161 * field is empty all addresses for the association 2162 * have heartbeats enabled upon them. 2163 * 2164 * SPP_HB_DISABLE - Disable heartbeats on the 2165 * speicifed address. Note that if the address 2166 * field is empty all addresses for the association 2167 * will have their heartbeats disabled. Note also 2168 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2169 * mutually exclusive, only one of these two should 2170 * be specified. Enabling both fields will have 2171 * undetermined results. 2172 * 2173 * SPP_HB_DEMAND - Request a user initiated heartbeat 2174 * to be made immediately. 2175 * 2176 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2177 * heartbeat delayis to be set to the value of 0 2178 * milliseconds. 2179 * 2180 * SPP_PMTUD_ENABLE - This field will enable PMTU 2181 * discovery upon the specified address. Note that 2182 * if the address feild is empty then all addresses 2183 * on the association are effected. 2184 * 2185 * SPP_PMTUD_DISABLE - This field will disable PMTU 2186 * discovery upon the specified address. Note that 2187 * if the address feild is empty then all addresses 2188 * on the association are effected. Not also that 2189 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2190 * exclusive. Enabling both will have undetermined 2191 * results. 2192 * 2193 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2194 * on delayed sack. The time specified in spp_sackdelay 2195 * is used to specify the sack delay for this address. Note 2196 * that if spp_address is empty then all addresses will 2197 * enable delayed sack and take on the sack delay 2198 * value specified in spp_sackdelay. 2199 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2200 * off delayed sack. If the spp_address field is blank then 2201 * delayed sack is disabled for the entire association. Note 2202 * also that this field is mutually exclusive to 2203 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2204 * results. 2205 */ 2206 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2207 struct sctp_transport *trans, 2208 struct sctp_association *asoc, 2209 struct sctp_sock *sp, 2210 int hb_change, 2211 int pmtud_change, 2212 int sackdelay_change) 2213 { 2214 int error; 2215 2216 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2217 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2218 if (error) 2219 return error; 2220 } 2221 2222 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2223 * this field is ignored. Note also that a value of zero indicates 2224 * the current setting should be left unchanged. 2225 */ 2226 if (params->spp_flags & SPP_HB_ENABLE) { 2227 2228 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2229 * set. This lets us use 0 value when this flag 2230 * is set. 2231 */ 2232 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2233 params->spp_hbinterval = 0; 2234 2235 if (params->spp_hbinterval || 2236 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2237 if (trans) { 2238 trans->hbinterval = 2239 msecs_to_jiffies(params->spp_hbinterval); 2240 } else if (asoc) { 2241 asoc->hbinterval = 2242 msecs_to_jiffies(params->spp_hbinterval); 2243 } else { 2244 sp->hbinterval = params->spp_hbinterval; 2245 } 2246 } 2247 } 2248 2249 if (hb_change) { 2250 if (trans) { 2251 trans->param_flags = 2252 (trans->param_flags & ~SPP_HB) | hb_change; 2253 } else if (asoc) { 2254 asoc->param_flags = 2255 (asoc->param_flags & ~SPP_HB) | hb_change; 2256 } else { 2257 sp->param_flags = 2258 (sp->param_flags & ~SPP_HB) | hb_change; 2259 } 2260 } 2261 2262 /* When Path MTU discovery is disabled the value specified here will 2263 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2264 * include the flag SPP_PMTUD_DISABLE for this field to have any 2265 * effect). 2266 */ 2267 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2268 if (trans) { 2269 trans->pathmtu = params->spp_pathmtu; 2270 sctp_assoc_sync_pmtu(asoc); 2271 } else if (asoc) { 2272 asoc->pathmtu = params->spp_pathmtu; 2273 sctp_frag_point(asoc, params->spp_pathmtu); 2274 } else { 2275 sp->pathmtu = params->spp_pathmtu; 2276 } 2277 } 2278 2279 if (pmtud_change) { 2280 if (trans) { 2281 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2282 (params->spp_flags & SPP_PMTUD_ENABLE); 2283 trans->param_flags = 2284 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2285 if (update) { 2286 sctp_transport_pmtu(trans); 2287 sctp_assoc_sync_pmtu(asoc); 2288 } 2289 } else if (asoc) { 2290 asoc->param_flags = 2291 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2292 } else { 2293 sp->param_flags = 2294 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2295 } 2296 } 2297 2298 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2299 * value of this field is ignored. Note also that a value of zero 2300 * indicates the current setting should be left unchanged. 2301 */ 2302 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2303 if (trans) { 2304 trans->sackdelay = 2305 msecs_to_jiffies(params->spp_sackdelay); 2306 } else if (asoc) { 2307 asoc->sackdelay = 2308 msecs_to_jiffies(params->spp_sackdelay); 2309 } else { 2310 sp->sackdelay = params->spp_sackdelay; 2311 } 2312 } 2313 2314 if (sackdelay_change) { 2315 if (trans) { 2316 trans->param_flags = 2317 (trans->param_flags & ~SPP_SACKDELAY) | 2318 sackdelay_change; 2319 } else if (asoc) { 2320 asoc->param_flags = 2321 (asoc->param_flags & ~SPP_SACKDELAY) | 2322 sackdelay_change; 2323 } else { 2324 sp->param_flags = 2325 (sp->param_flags & ~SPP_SACKDELAY) | 2326 sackdelay_change; 2327 } 2328 } 2329 2330 /* Note that a value of zero indicates the current setting should be 2331 left unchanged. 2332 */ 2333 if (params->spp_pathmaxrxt) { 2334 if (trans) { 2335 trans->pathmaxrxt = params->spp_pathmaxrxt; 2336 } else if (asoc) { 2337 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2338 } else { 2339 sp->pathmaxrxt = params->spp_pathmaxrxt; 2340 } 2341 } 2342 2343 return 0; 2344 } 2345 2346 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2347 char __user *optval, 2348 unsigned int optlen) 2349 { 2350 struct sctp_paddrparams params; 2351 struct sctp_transport *trans = NULL; 2352 struct sctp_association *asoc = NULL; 2353 struct sctp_sock *sp = sctp_sk(sk); 2354 int error; 2355 int hb_change, pmtud_change, sackdelay_change; 2356 2357 if (optlen != sizeof(struct sctp_paddrparams)) 2358 return - EINVAL; 2359 2360 if (copy_from_user(¶ms, optval, optlen)) 2361 return -EFAULT; 2362 2363 /* Validate flags and value parameters. */ 2364 hb_change = params.spp_flags & SPP_HB; 2365 pmtud_change = params.spp_flags & SPP_PMTUD; 2366 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2367 2368 if (hb_change == SPP_HB || 2369 pmtud_change == SPP_PMTUD || 2370 sackdelay_change == SPP_SACKDELAY || 2371 params.spp_sackdelay > 500 || 2372 (params.spp_pathmtu && 2373 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2374 return -EINVAL; 2375 2376 /* If an address other than INADDR_ANY is specified, and 2377 * no transport is found, then the request is invalid. 2378 */ 2379 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2380 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2381 params.spp_assoc_id); 2382 if (!trans) 2383 return -EINVAL; 2384 } 2385 2386 /* Get association, if assoc_id != 0 and the socket is a one 2387 * to many style socket, and an association was not found, then 2388 * the id was invalid. 2389 */ 2390 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2391 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2392 return -EINVAL; 2393 2394 /* Heartbeat demand can only be sent on a transport or 2395 * association, but not a socket. 2396 */ 2397 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2398 return -EINVAL; 2399 2400 /* Process parameters. */ 2401 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2402 hb_change, pmtud_change, 2403 sackdelay_change); 2404 2405 if (error) 2406 return error; 2407 2408 /* If changes are for association, also apply parameters to each 2409 * transport. 2410 */ 2411 if (!trans && asoc) { 2412 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2413 transports) { 2414 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2415 hb_change, pmtud_change, 2416 sackdelay_change); 2417 } 2418 } 2419 2420 return 0; 2421 } 2422 2423 /* 2424 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2425 * 2426 * This option will effect the way delayed acks are performed. This 2427 * option allows you to get or set the delayed ack time, in 2428 * milliseconds. It also allows changing the delayed ack frequency. 2429 * Changing the frequency to 1 disables the delayed sack algorithm. If 2430 * the assoc_id is 0, then this sets or gets the endpoints default 2431 * values. If the assoc_id field is non-zero, then the set or get 2432 * effects the specified association for the one to many model (the 2433 * assoc_id field is ignored by the one to one model). Note that if 2434 * sack_delay or sack_freq are 0 when setting this option, then the 2435 * current values will remain unchanged. 2436 * 2437 * struct sctp_sack_info { 2438 * sctp_assoc_t sack_assoc_id; 2439 * uint32_t sack_delay; 2440 * uint32_t sack_freq; 2441 * }; 2442 * 2443 * sack_assoc_id - This parameter, indicates which association the user 2444 * is performing an action upon. Note that if this field's value is 2445 * zero then the endpoints default value is changed (effecting future 2446 * associations only). 2447 * 2448 * sack_delay - This parameter contains the number of milliseconds that 2449 * the user is requesting the delayed ACK timer be set to. Note that 2450 * this value is defined in the standard to be between 200 and 500 2451 * milliseconds. 2452 * 2453 * sack_freq - This parameter contains the number of packets that must 2454 * be received before a sack is sent without waiting for the delay 2455 * timer to expire. The default value for this is 2, setting this 2456 * value to 1 will disable the delayed sack algorithm. 2457 */ 2458 2459 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2460 char __user *optval, unsigned int optlen) 2461 { 2462 struct sctp_sack_info params; 2463 struct sctp_transport *trans = NULL; 2464 struct sctp_association *asoc = NULL; 2465 struct sctp_sock *sp = sctp_sk(sk); 2466 2467 if (optlen == sizeof(struct sctp_sack_info)) { 2468 if (copy_from_user(¶ms, optval, optlen)) 2469 return -EFAULT; 2470 2471 if (params.sack_delay == 0 && params.sack_freq == 0) 2472 return 0; 2473 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2474 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2475 pr_warn("Use struct sctp_sack_info instead\n"); 2476 if (copy_from_user(¶ms, optval, optlen)) 2477 return -EFAULT; 2478 2479 if (params.sack_delay == 0) 2480 params.sack_freq = 1; 2481 else 2482 params.sack_freq = 0; 2483 } else 2484 return - EINVAL; 2485 2486 /* Validate value parameter. */ 2487 if (params.sack_delay > 500) 2488 return -EINVAL; 2489 2490 /* Get association, if sack_assoc_id != 0 and the socket is a one 2491 * to many style socket, and an association was not found, then 2492 * the id was invalid. 2493 */ 2494 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2495 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2496 return -EINVAL; 2497 2498 if (params.sack_delay) { 2499 if (asoc) { 2500 asoc->sackdelay = 2501 msecs_to_jiffies(params.sack_delay); 2502 asoc->param_flags = 2503 (asoc->param_flags & ~SPP_SACKDELAY) | 2504 SPP_SACKDELAY_ENABLE; 2505 } else { 2506 sp->sackdelay = params.sack_delay; 2507 sp->param_flags = 2508 (sp->param_flags & ~SPP_SACKDELAY) | 2509 SPP_SACKDELAY_ENABLE; 2510 } 2511 } 2512 2513 if (params.sack_freq == 1) { 2514 if (asoc) { 2515 asoc->param_flags = 2516 (asoc->param_flags & ~SPP_SACKDELAY) | 2517 SPP_SACKDELAY_DISABLE; 2518 } else { 2519 sp->param_flags = 2520 (sp->param_flags & ~SPP_SACKDELAY) | 2521 SPP_SACKDELAY_DISABLE; 2522 } 2523 } else if (params.sack_freq > 1) { 2524 if (asoc) { 2525 asoc->sackfreq = params.sack_freq; 2526 asoc->param_flags = 2527 (asoc->param_flags & ~SPP_SACKDELAY) | 2528 SPP_SACKDELAY_ENABLE; 2529 } else { 2530 sp->sackfreq = params.sack_freq; 2531 sp->param_flags = 2532 (sp->param_flags & ~SPP_SACKDELAY) | 2533 SPP_SACKDELAY_ENABLE; 2534 } 2535 } 2536 2537 /* If change is for association, also apply to each transport. */ 2538 if (asoc) { 2539 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2540 transports) { 2541 if (params.sack_delay) { 2542 trans->sackdelay = 2543 msecs_to_jiffies(params.sack_delay); 2544 trans->param_flags = 2545 (trans->param_flags & ~SPP_SACKDELAY) | 2546 SPP_SACKDELAY_ENABLE; 2547 } 2548 if (params.sack_freq == 1) { 2549 trans->param_flags = 2550 (trans->param_flags & ~SPP_SACKDELAY) | 2551 SPP_SACKDELAY_DISABLE; 2552 } else if (params.sack_freq > 1) { 2553 trans->sackfreq = params.sack_freq; 2554 trans->param_flags = 2555 (trans->param_flags & ~SPP_SACKDELAY) | 2556 SPP_SACKDELAY_ENABLE; 2557 } 2558 } 2559 } 2560 2561 return 0; 2562 } 2563 2564 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2565 * 2566 * Applications can specify protocol parameters for the default association 2567 * initialization. The option name argument to setsockopt() and getsockopt() 2568 * is SCTP_INITMSG. 2569 * 2570 * Setting initialization parameters is effective only on an unconnected 2571 * socket (for UDP-style sockets only future associations are effected 2572 * by the change). With TCP-style sockets, this option is inherited by 2573 * sockets derived from a listener socket. 2574 */ 2575 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2576 { 2577 struct sctp_initmsg sinit; 2578 struct sctp_sock *sp = sctp_sk(sk); 2579 2580 if (optlen != sizeof(struct sctp_initmsg)) 2581 return -EINVAL; 2582 if (copy_from_user(&sinit, optval, optlen)) 2583 return -EFAULT; 2584 2585 if (sinit.sinit_num_ostreams) 2586 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2587 if (sinit.sinit_max_instreams) 2588 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2589 if (sinit.sinit_max_attempts) 2590 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2591 if (sinit.sinit_max_init_timeo) 2592 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2593 2594 return 0; 2595 } 2596 2597 /* 2598 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2599 * 2600 * Applications that wish to use the sendto() system call may wish to 2601 * specify a default set of parameters that would normally be supplied 2602 * through the inclusion of ancillary data. This socket option allows 2603 * such an application to set the default sctp_sndrcvinfo structure. 2604 * The application that wishes to use this socket option simply passes 2605 * in to this call the sctp_sndrcvinfo structure defined in Section 2606 * 5.2.2) The input parameters accepted by this call include 2607 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2608 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2609 * to this call if the caller is using the UDP model. 2610 */ 2611 static int sctp_setsockopt_default_send_param(struct sock *sk, 2612 char __user *optval, 2613 unsigned int optlen) 2614 { 2615 struct sctp_sndrcvinfo info; 2616 struct sctp_association *asoc; 2617 struct sctp_sock *sp = sctp_sk(sk); 2618 2619 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2620 return -EINVAL; 2621 if (copy_from_user(&info, optval, optlen)) 2622 return -EFAULT; 2623 2624 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2625 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2626 return -EINVAL; 2627 2628 if (asoc) { 2629 asoc->default_stream = info.sinfo_stream; 2630 asoc->default_flags = info.sinfo_flags; 2631 asoc->default_ppid = info.sinfo_ppid; 2632 asoc->default_context = info.sinfo_context; 2633 asoc->default_timetolive = info.sinfo_timetolive; 2634 } else { 2635 sp->default_stream = info.sinfo_stream; 2636 sp->default_flags = info.sinfo_flags; 2637 sp->default_ppid = info.sinfo_ppid; 2638 sp->default_context = info.sinfo_context; 2639 sp->default_timetolive = info.sinfo_timetolive; 2640 } 2641 2642 return 0; 2643 } 2644 2645 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2646 * 2647 * Requests that the local SCTP stack use the enclosed peer address as 2648 * the association primary. The enclosed address must be one of the 2649 * association peer's addresses. 2650 */ 2651 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2652 unsigned int optlen) 2653 { 2654 struct sctp_prim prim; 2655 struct sctp_transport *trans; 2656 2657 if (optlen != sizeof(struct sctp_prim)) 2658 return -EINVAL; 2659 2660 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2661 return -EFAULT; 2662 2663 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2664 if (!trans) 2665 return -EINVAL; 2666 2667 sctp_assoc_set_primary(trans->asoc, trans); 2668 2669 return 0; 2670 } 2671 2672 /* 2673 * 7.1.5 SCTP_NODELAY 2674 * 2675 * Turn on/off any Nagle-like algorithm. This means that packets are 2676 * generally sent as soon as possible and no unnecessary delays are 2677 * introduced, at the cost of more packets in the network. Expects an 2678 * integer boolean flag. 2679 */ 2680 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2681 unsigned int optlen) 2682 { 2683 int val; 2684 2685 if (optlen < sizeof(int)) 2686 return -EINVAL; 2687 if (get_user(val, (int __user *)optval)) 2688 return -EFAULT; 2689 2690 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2691 return 0; 2692 } 2693 2694 /* 2695 * 2696 * 7.1.1 SCTP_RTOINFO 2697 * 2698 * The protocol parameters used to initialize and bound retransmission 2699 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2700 * and modify these parameters. 2701 * All parameters are time values, in milliseconds. A value of 0, when 2702 * modifying the parameters, indicates that the current value should not 2703 * be changed. 2704 * 2705 */ 2706 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2707 { 2708 struct sctp_rtoinfo rtoinfo; 2709 struct sctp_association *asoc; 2710 2711 if (optlen != sizeof (struct sctp_rtoinfo)) 2712 return -EINVAL; 2713 2714 if (copy_from_user(&rtoinfo, optval, optlen)) 2715 return -EFAULT; 2716 2717 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2718 2719 /* Set the values to the specific association */ 2720 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2721 return -EINVAL; 2722 2723 if (asoc) { 2724 if (rtoinfo.srto_initial != 0) 2725 asoc->rto_initial = 2726 msecs_to_jiffies(rtoinfo.srto_initial); 2727 if (rtoinfo.srto_max != 0) 2728 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2729 if (rtoinfo.srto_min != 0) 2730 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2731 } else { 2732 /* If there is no association or the association-id = 0 2733 * set the values to the endpoint. 2734 */ 2735 struct sctp_sock *sp = sctp_sk(sk); 2736 2737 if (rtoinfo.srto_initial != 0) 2738 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2739 if (rtoinfo.srto_max != 0) 2740 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2741 if (rtoinfo.srto_min != 0) 2742 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2743 } 2744 2745 return 0; 2746 } 2747 2748 /* 2749 * 2750 * 7.1.2 SCTP_ASSOCINFO 2751 * 2752 * This option is used to tune the maximum retransmission attempts 2753 * of the association. 2754 * Returns an error if the new association retransmission value is 2755 * greater than the sum of the retransmission value of the peer. 2756 * See [SCTP] for more information. 2757 * 2758 */ 2759 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2760 { 2761 2762 struct sctp_assocparams assocparams; 2763 struct sctp_association *asoc; 2764 2765 if (optlen != sizeof(struct sctp_assocparams)) 2766 return -EINVAL; 2767 if (copy_from_user(&assocparams, optval, optlen)) 2768 return -EFAULT; 2769 2770 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2771 2772 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2773 return -EINVAL; 2774 2775 /* Set the values to the specific association */ 2776 if (asoc) { 2777 if (assocparams.sasoc_asocmaxrxt != 0) { 2778 __u32 path_sum = 0; 2779 int paths = 0; 2780 struct sctp_transport *peer_addr; 2781 2782 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2783 transports) { 2784 path_sum += peer_addr->pathmaxrxt; 2785 paths++; 2786 } 2787 2788 /* Only validate asocmaxrxt if we have more than 2789 * one path/transport. We do this because path 2790 * retransmissions are only counted when we have more 2791 * then one path. 2792 */ 2793 if (paths > 1 && 2794 assocparams.sasoc_asocmaxrxt > path_sum) 2795 return -EINVAL; 2796 2797 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2798 } 2799 2800 if (assocparams.sasoc_cookie_life != 0) { 2801 asoc->cookie_life.tv_sec = 2802 assocparams.sasoc_cookie_life / 1000; 2803 asoc->cookie_life.tv_usec = 2804 (assocparams.sasoc_cookie_life % 1000) 2805 * 1000; 2806 } 2807 } else { 2808 /* Set the values to the endpoint */ 2809 struct sctp_sock *sp = sctp_sk(sk); 2810 2811 if (assocparams.sasoc_asocmaxrxt != 0) 2812 sp->assocparams.sasoc_asocmaxrxt = 2813 assocparams.sasoc_asocmaxrxt; 2814 if (assocparams.sasoc_cookie_life != 0) 2815 sp->assocparams.sasoc_cookie_life = 2816 assocparams.sasoc_cookie_life; 2817 } 2818 return 0; 2819 } 2820 2821 /* 2822 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2823 * 2824 * This socket option is a boolean flag which turns on or off mapped V4 2825 * addresses. If this option is turned on and the socket is type 2826 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2827 * If this option is turned off, then no mapping will be done of V4 2828 * addresses and a user will receive both PF_INET6 and PF_INET type 2829 * addresses on the socket. 2830 */ 2831 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2832 { 2833 int val; 2834 struct sctp_sock *sp = sctp_sk(sk); 2835 2836 if (optlen < sizeof(int)) 2837 return -EINVAL; 2838 if (get_user(val, (int __user *)optval)) 2839 return -EFAULT; 2840 if (val) 2841 sp->v4mapped = 1; 2842 else 2843 sp->v4mapped = 0; 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2850 * This option will get or set the maximum size to put in any outgoing 2851 * SCTP DATA chunk. If a message is larger than this size it will be 2852 * fragmented by SCTP into the specified size. Note that the underlying 2853 * SCTP implementation may fragment into smaller sized chunks when the 2854 * PMTU of the underlying association is smaller than the value set by 2855 * the user. The default value for this option is '0' which indicates 2856 * the user is NOT limiting fragmentation and only the PMTU will effect 2857 * SCTP's choice of DATA chunk size. Note also that values set larger 2858 * than the maximum size of an IP datagram will effectively let SCTP 2859 * control fragmentation (i.e. the same as setting this option to 0). 2860 * 2861 * The following structure is used to access and modify this parameter: 2862 * 2863 * struct sctp_assoc_value { 2864 * sctp_assoc_t assoc_id; 2865 * uint32_t assoc_value; 2866 * }; 2867 * 2868 * assoc_id: This parameter is ignored for one-to-one style sockets. 2869 * For one-to-many style sockets this parameter indicates which 2870 * association the user is performing an action upon. Note that if 2871 * this field's value is zero then the endpoints default value is 2872 * changed (effecting future associations only). 2873 * assoc_value: This parameter specifies the maximum size in bytes. 2874 */ 2875 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2876 { 2877 struct sctp_assoc_value params; 2878 struct sctp_association *asoc; 2879 struct sctp_sock *sp = sctp_sk(sk); 2880 int val; 2881 2882 if (optlen == sizeof(int)) { 2883 pr_warn("Use of int in maxseg socket option deprecated\n"); 2884 pr_warn("Use struct sctp_assoc_value instead\n"); 2885 if (copy_from_user(&val, optval, optlen)) 2886 return -EFAULT; 2887 params.assoc_id = 0; 2888 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2889 if (copy_from_user(¶ms, optval, optlen)) 2890 return -EFAULT; 2891 val = params.assoc_value; 2892 } else 2893 return -EINVAL; 2894 2895 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2896 return -EINVAL; 2897 2898 asoc = sctp_id2assoc(sk, params.assoc_id); 2899 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2900 return -EINVAL; 2901 2902 if (asoc) { 2903 if (val == 0) { 2904 val = asoc->pathmtu; 2905 val -= sp->pf->af->net_header_len; 2906 val -= sizeof(struct sctphdr) + 2907 sizeof(struct sctp_data_chunk); 2908 } 2909 asoc->user_frag = val; 2910 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2911 } else { 2912 sp->user_frag = val; 2913 } 2914 2915 return 0; 2916 } 2917 2918 2919 /* 2920 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2921 * 2922 * Requests that the peer mark the enclosed address as the association 2923 * primary. The enclosed address must be one of the association's 2924 * locally bound addresses. The following structure is used to make a 2925 * set primary request: 2926 */ 2927 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2928 unsigned int optlen) 2929 { 2930 struct sctp_sock *sp; 2931 struct sctp_association *asoc = NULL; 2932 struct sctp_setpeerprim prim; 2933 struct sctp_chunk *chunk; 2934 struct sctp_af *af; 2935 int err; 2936 2937 sp = sctp_sk(sk); 2938 2939 if (!sctp_addip_enable) 2940 return -EPERM; 2941 2942 if (optlen != sizeof(struct sctp_setpeerprim)) 2943 return -EINVAL; 2944 2945 if (copy_from_user(&prim, optval, optlen)) 2946 return -EFAULT; 2947 2948 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2949 if (!asoc) 2950 return -EINVAL; 2951 2952 if (!asoc->peer.asconf_capable) 2953 return -EPERM; 2954 2955 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2956 return -EPERM; 2957 2958 if (!sctp_state(asoc, ESTABLISHED)) 2959 return -ENOTCONN; 2960 2961 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 2962 if (!af) 2963 return -EINVAL; 2964 2965 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 2966 return -EADDRNOTAVAIL; 2967 2968 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2969 return -EADDRNOTAVAIL; 2970 2971 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2972 chunk = sctp_make_asconf_set_prim(asoc, 2973 (union sctp_addr *)&prim.sspp_addr); 2974 if (!chunk) 2975 return -ENOMEM; 2976 2977 err = sctp_send_asconf(asoc, chunk); 2978 2979 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2980 2981 return err; 2982 } 2983 2984 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2985 unsigned int optlen) 2986 { 2987 struct sctp_setadaptation adaptation; 2988 2989 if (optlen != sizeof(struct sctp_setadaptation)) 2990 return -EINVAL; 2991 if (copy_from_user(&adaptation, optval, optlen)) 2992 return -EFAULT; 2993 2994 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3001 * 3002 * The context field in the sctp_sndrcvinfo structure is normally only 3003 * used when a failed message is retrieved holding the value that was 3004 * sent down on the actual send call. This option allows the setting of 3005 * a default context on an association basis that will be received on 3006 * reading messages from the peer. This is especially helpful in the 3007 * one-2-many model for an application to keep some reference to an 3008 * internal state machine that is processing messages on the 3009 * association. Note that the setting of this value only effects 3010 * received messages from the peer and does not effect the value that is 3011 * saved with outbound messages. 3012 */ 3013 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3014 unsigned int optlen) 3015 { 3016 struct sctp_assoc_value params; 3017 struct sctp_sock *sp; 3018 struct sctp_association *asoc; 3019 3020 if (optlen != sizeof(struct sctp_assoc_value)) 3021 return -EINVAL; 3022 if (copy_from_user(¶ms, optval, optlen)) 3023 return -EFAULT; 3024 3025 sp = sctp_sk(sk); 3026 3027 if (params.assoc_id != 0) { 3028 asoc = sctp_id2assoc(sk, params.assoc_id); 3029 if (!asoc) 3030 return -EINVAL; 3031 asoc->default_rcv_context = params.assoc_value; 3032 } else { 3033 sp->default_rcv_context = params.assoc_value; 3034 } 3035 3036 return 0; 3037 } 3038 3039 /* 3040 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3041 * 3042 * This options will at a minimum specify if the implementation is doing 3043 * fragmented interleave. Fragmented interleave, for a one to many 3044 * socket, is when subsequent calls to receive a message may return 3045 * parts of messages from different associations. Some implementations 3046 * may allow you to turn this value on or off. If so, when turned off, 3047 * no fragment interleave will occur (which will cause a head of line 3048 * blocking amongst multiple associations sharing the same one to many 3049 * socket). When this option is turned on, then each receive call may 3050 * come from a different association (thus the user must receive data 3051 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3052 * association each receive belongs to. 3053 * 3054 * This option takes a boolean value. A non-zero value indicates that 3055 * fragmented interleave is on. A value of zero indicates that 3056 * fragmented interleave is off. 3057 * 3058 * Note that it is important that an implementation that allows this 3059 * option to be turned on, have it off by default. Otherwise an unaware 3060 * application using the one to many model may become confused and act 3061 * incorrectly. 3062 */ 3063 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3064 char __user *optval, 3065 unsigned int optlen) 3066 { 3067 int val; 3068 3069 if (optlen != sizeof(int)) 3070 return -EINVAL; 3071 if (get_user(val, (int __user *)optval)) 3072 return -EFAULT; 3073 3074 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3075 3076 return 0; 3077 } 3078 3079 /* 3080 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3081 * (SCTP_PARTIAL_DELIVERY_POINT) 3082 * 3083 * This option will set or get the SCTP partial delivery point. This 3084 * point is the size of a message where the partial delivery API will be 3085 * invoked to help free up rwnd space for the peer. Setting this to a 3086 * lower value will cause partial deliveries to happen more often. The 3087 * calls argument is an integer that sets or gets the partial delivery 3088 * point. Note also that the call will fail if the user attempts to set 3089 * this value larger than the socket receive buffer size. 3090 * 3091 * Note that any single message having a length smaller than or equal to 3092 * the SCTP partial delivery point will be delivered in one single read 3093 * call as long as the user provided buffer is large enough to hold the 3094 * message. 3095 */ 3096 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3097 char __user *optval, 3098 unsigned int optlen) 3099 { 3100 u32 val; 3101 3102 if (optlen != sizeof(u32)) 3103 return -EINVAL; 3104 if (get_user(val, (int __user *)optval)) 3105 return -EFAULT; 3106 3107 /* Note: We double the receive buffer from what the user sets 3108 * it to be, also initial rwnd is based on rcvbuf/2. 3109 */ 3110 if (val > (sk->sk_rcvbuf >> 1)) 3111 return -EINVAL; 3112 3113 sctp_sk(sk)->pd_point = val; 3114 3115 return 0; /* is this the right error code? */ 3116 } 3117 3118 /* 3119 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3120 * 3121 * This option will allow a user to change the maximum burst of packets 3122 * that can be emitted by this association. Note that the default value 3123 * is 4, and some implementations may restrict this setting so that it 3124 * can only be lowered. 3125 * 3126 * NOTE: This text doesn't seem right. Do this on a socket basis with 3127 * future associations inheriting the socket value. 3128 */ 3129 static int sctp_setsockopt_maxburst(struct sock *sk, 3130 char __user *optval, 3131 unsigned int optlen) 3132 { 3133 struct sctp_assoc_value params; 3134 struct sctp_sock *sp; 3135 struct sctp_association *asoc; 3136 int val; 3137 int assoc_id = 0; 3138 3139 if (optlen == sizeof(int)) { 3140 pr_warn("Use of int in max_burst socket option deprecated\n"); 3141 pr_warn("Use struct sctp_assoc_value instead\n"); 3142 if (copy_from_user(&val, optval, optlen)) 3143 return -EFAULT; 3144 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3145 if (copy_from_user(¶ms, optval, optlen)) 3146 return -EFAULT; 3147 val = params.assoc_value; 3148 assoc_id = params.assoc_id; 3149 } else 3150 return -EINVAL; 3151 3152 sp = sctp_sk(sk); 3153 3154 if (assoc_id != 0) { 3155 asoc = sctp_id2assoc(sk, assoc_id); 3156 if (!asoc) 3157 return -EINVAL; 3158 asoc->max_burst = val; 3159 } else 3160 sp->max_burst = val; 3161 3162 return 0; 3163 } 3164 3165 /* 3166 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3167 * 3168 * This set option adds a chunk type that the user is requesting to be 3169 * received only in an authenticated way. Changes to the list of chunks 3170 * will only effect future associations on the socket. 3171 */ 3172 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3173 char __user *optval, 3174 unsigned int optlen) 3175 { 3176 struct sctp_authchunk val; 3177 3178 if (!sctp_auth_enable) 3179 return -EACCES; 3180 3181 if (optlen != sizeof(struct sctp_authchunk)) 3182 return -EINVAL; 3183 if (copy_from_user(&val, optval, optlen)) 3184 return -EFAULT; 3185 3186 switch (val.sauth_chunk) { 3187 case SCTP_CID_INIT: 3188 case SCTP_CID_INIT_ACK: 3189 case SCTP_CID_SHUTDOWN_COMPLETE: 3190 case SCTP_CID_AUTH: 3191 return -EINVAL; 3192 } 3193 3194 /* add this chunk id to the endpoint */ 3195 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3196 } 3197 3198 /* 3199 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3200 * 3201 * This option gets or sets the list of HMAC algorithms that the local 3202 * endpoint requires the peer to use. 3203 */ 3204 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3205 char __user *optval, 3206 unsigned int optlen) 3207 { 3208 struct sctp_hmacalgo *hmacs; 3209 u32 idents; 3210 int err; 3211 3212 if (!sctp_auth_enable) 3213 return -EACCES; 3214 3215 if (optlen < sizeof(struct sctp_hmacalgo)) 3216 return -EINVAL; 3217 3218 hmacs = kmalloc(optlen, GFP_KERNEL); 3219 if (!hmacs) 3220 return -ENOMEM; 3221 3222 if (copy_from_user(hmacs, optval, optlen)) { 3223 err = -EFAULT; 3224 goto out; 3225 } 3226 3227 idents = hmacs->shmac_num_idents; 3228 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3229 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3230 err = -EINVAL; 3231 goto out; 3232 } 3233 3234 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3235 out: 3236 kfree(hmacs); 3237 return err; 3238 } 3239 3240 /* 3241 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3242 * 3243 * This option will set a shared secret key which is used to build an 3244 * association shared key. 3245 */ 3246 static int sctp_setsockopt_auth_key(struct sock *sk, 3247 char __user *optval, 3248 unsigned int optlen) 3249 { 3250 struct sctp_authkey *authkey; 3251 struct sctp_association *asoc; 3252 int ret; 3253 3254 if (!sctp_auth_enable) 3255 return -EACCES; 3256 3257 if (optlen <= sizeof(struct sctp_authkey)) 3258 return -EINVAL; 3259 3260 authkey = kmalloc(optlen, GFP_KERNEL); 3261 if (!authkey) 3262 return -ENOMEM; 3263 3264 if (copy_from_user(authkey, optval, optlen)) { 3265 ret = -EFAULT; 3266 goto out; 3267 } 3268 3269 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3270 ret = -EINVAL; 3271 goto out; 3272 } 3273 3274 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3275 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3276 ret = -EINVAL; 3277 goto out; 3278 } 3279 3280 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3281 out: 3282 kfree(authkey); 3283 return ret; 3284 } 3285 3286 /* 3287 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3288 * 3289 * This option will get or set the active shared key to be used to build 3290 * the association shared key. 3291 */ 3292 static int sctp_setsockopt_active_key(struct sock *sk, 3293 char __user *optval, 3294 unsigned int optlen) 3295 { 3296 struct sctp_authkeyid val; 3297 struct sctp_association *asoc; 3298 3299 if (!sctp_auth_enable) 3300 return -EACCES; 3301 3302 if (optlen != sizeof(struct sctp_authkeyid)) 3303 return -EINVAL; 3304 if (copy_from_user(&val, optval, optlen)) 3305 return -EFAULT; 3306 3307 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3308 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3309 return -EINVAL; 3310 3311 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3312 val.scact_keynumber); 3313 } 3314 3315 /* 3316 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3317 * 3318 * This set option will delete a shared secret key from use. 3319 */ 3320 static int sctp_setsockopt_del_key(struct sock *sk, 3321 char __user *optval, 3322 unsigned int optlen) 3323 { 3324 struct sctp_authkeyid val; 3325 struct sctp_association *asoc; 3326 3327 if (!sctp_auth_enable) 3328 return -EACCES; 3329 3330 if (optlen != sizeof(struct sctp_authkeyid)) 3331 return -EINVAL; 3332 if (copy_from_user(&val, optval, optlen)) 3333 return -EFAULT; 3334 3335 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3336 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3337 return -EINVAL; 3338 3339 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3340 val.scact_keynumber); 3341 3342 } 3343 3344 3345 /* API 6.2 setsockopt(), getsockopt() 3346 * 3347 * Applications use setsockopt() and getsockopt() to set or retrieve 3348 * socket options. Socket options are used to change the default 3349 * behavior of sockets calls. They are described in Section 7. 3350 * 3351 * The syntax is: 3352 * 3353 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3354 * int __user *optlen); 3355 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3356 * int optlen); 3357 * 3358 * sd - the socket descript. 3359 * level - set to IPPROTO_SCTP for all SCTP options. 3360 * optname - the option name. 3361 * optval - the buffer to store the value of the option. 3362 * optlen - the size of the buffer. 3363 */ 3364 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3365 char __user *optval, unsigned int optlen) 3366 { 3367 int retval = 0; 3368 3369 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3370 sk, optname); 3371 3372 /* I can hardly begin to describe how wrong this is. This is 3373 * so broken as to be worse than useless. The API draft 3374 * REALLY is NOT helpful here... I am not convinced that the 3375 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3376 * are at all well-founded. 3377 */ 3378 if (level != SOL_SCTP) { 3379 struct sctp_af *af = sctp_sk(sk)->pf->af; 3380 retval = af->setsockopt(sk, level, optname, optval, optlen); 3381 goto out_nounlock; 3382 } 3383 3384 sctp_lock_sock(sk); 3385 3386 switch (optname) { 3387 case SCTP_SOCKOPT_BINDX_ADD: 3388 /* 'optlen' is the size of the addresses buffer. */ 3389 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3390 optlen, SCTP_BINDX_ADD_ADDR); 3391 break; 3392 3393 case SCTP_SOCKOPT_BINDX_REM: 3394 /* 'optlen' is the size of the addresses buffer. */ 3395 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3396 optlen, SCTP_BINDX_REM_ADDR); 3397 break; 3398 3399 case SCTP_SOCKOPT_CONNECTX_OLD: 3400 /* 'optlen' is the size of the addresses buffer. */ 3401 retval = sctp_setsockopt_connectx_old(sk, 3402 (struct sockaddr __user *)optval, 3403 optlen); 3404 break; 3405 3406 case SCTP_SOCKOPT_CONNECTX: 3407 /* 'optlen' is the size of the addresses buffer. */ 3408 retval = sctp_setsockopt_connectx(sk, 3409 (struct sockaddr __user *)optval, 3410 optlen); 3411 break; 3412 3413 case SCTP_DISABLE_FRAGMENTS: 3414 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3415 break; 3416 3417 case SCTP_EVENTS: 3418 retval = sctp_setsockopt_events(sk, optval, optlen); 3419 break; 3420 3421 case SCTP_AUTOCLOSE: 3422 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3423 break; 3424 3425 case SCTP_PEER_ADDR_PARAMS: 3426 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3427 break; 3428 3429 case SCTP_DELAYED_SACK: 3430 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3431 break; 3432 case SCTP_PARTIAL_DELIVERY_POINT: 3433 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3434 break; 3435 3436 case SCTP_INITMSG: 3437 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3438 break; 3439 case SCTP_DEFAULT_SEND_PARAM: 3440 retval = sctp_setsockopt_default_send_param(sk, optval, 3441 optlen); 3442 break; 3443 case SCTP_PRIMARY_ADDR: 3444 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3445 break; 3446 case SCTP_SET_PEER_PRIMARY_ADDR: 3447 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3448 break; 3449 case SCTP_NODELAY: 3450 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3451 break; 3452 case SCTP_RTOINFO: 3453 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3454 break; 3455 case SCTP_ASSOCINFO: 3456 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3457 break; 3458 case SCTP_I_WANT_MAPPED_V4_ADDR: 3459 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3460 break; 3461 case SCTP_MAXSEG: 3462 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3463 break; 3464 case SCTP_ADAPTATION_LAYER: 3465 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3466 break; 3467 case SCTP_CONTEXT: 3468 retval = sctp_setsockopt_context(sk, optval, optlen); 3469 break; 3470 case SCTP_FRAGMENT_INTERLEAVE: 3471 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3472 break; 3473 case SCTP_MAX_BURST: 3474 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3475 break; 3476 case SCTP_AUTH_CHUNK: 3477 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3478 break; 3479 case SCTP_HMAC_IDENT: 3480 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3481 break; 3482 case SCTP_AUTH_KEY: 3483 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3484 break; 3485 case SCTP_AUTH_ACTIVE_KEY: 3486 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3487 break; 3488 case SCTP_AUTH_DELETE_KEY: 3489 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3490 break; 3491 default: 3492 retval = -ENOPROTOOPT; 3493 break; 3494 } 3495 3496 sctp_release_sock(sk); 3497 3498 out_nounlock: 3499 return retval; 3500 } 3501 3502 /* API 3.1.6 connect() - UDP Style Syntax 3503 * 3504 * An application may use the connect() call in the UDP model to initiate an 3505 * association without sending data. 3506 * 3507 * The syntax is: 3508 * 3509 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3510 * 3511 * sd: the socket descriptor to have a new association added to. 3512 * 3513 * nam: the address structure (either struct sockaddr_in or struct 3514 * sockaddr_in6 defined in RFC2553 [7]). 3515 * 3516 * len: the size of the address. 3517 */ 3518 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3519 int addr_len) 3520 { 3521 int err = 0; 3522 struct sctp_af *af; 3523 3524 sctp_lock_sock(sk); 3525 3526 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3527 __func__, sk, addr, addr_len); 3528 3529 /* Validate addr_len before calling common connect/connectx routine. */ 3530 af = sctp_get_af_specific(addr->sa_family); 3531 if (!af || addr_len < af->sockaddr_len) { 3532 err = -EINVAL; 3533 } else { 3534 /* Pass correct addr len to common routine (so it knows there 3535 * is only one address being passed. 3536 */ 3537 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3538 } 3539 3540 sctp_release_sock(sk); 3541 return err; 3542 } 3543 3544 /* FIXME: Write comments. */ 3545 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3546 { 3547 return -EOPNOTSUPP; /* STUB */ 3548 } 3549 3550 /* 4.1.4 accept() - TCP Style Syntax 3551 * 3552 * Applications use accept() call to remove an established SCTP 3553 * association from the accept queue of the endpoint. A new socket 3554 * descriptor will be returned from accept() to represent the newly 3555 * formed association. 3556 */ 3557 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3558 { 3559 struct sctp_sock *sp; 3560 struct sctp_endpoint *ep; 3561 struct sock *newsk = NULL; 3562 struct sctp_association *asoc; 3563 long timeo; 3564 int error = 0; 3565 3566 sctp_lock_sock(sk); 3567 3568 sp = sctp_sk(sk); 3569 ep = sp->ep; 3570 3571 if (!sctp_style(sk, TCP)) { 3572 error = -EOPNOTSUPP; 3573 goto out; 3574 } 3575 3576 if (!sctp_sstate(sk, LISTENING)) { 3577 error = -EINVAL; 3578 goto out; 3579 } 3580 3581 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3582 3583 error = sctp_wait_for_accept(sk, timeo); 3584 if (error) 3585 goto out; 3586 3587 /* We treat the list of associations on the endpoint as the accept 3588 * queue and pick the first association on the list. 3589 */ 3590 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3591 3592 newsk = sp->pf->create_accept_sk(sk, asoc); 3593 if (!newsk) { 3594 error = -ENOMEM; 3595 goto out; 3596 } 3597 3598 /* Populate the fields of the newsk from the oldsk and migrate the 3599 * asoc to the newsk. 3600 */ 3601 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3602 3603 out: 3604 sctp_release_sock(sk); 3605 *err = error; 3606 return newsk; 3607 } 3608 3609 /* The SCTP ioctl handler. */ 3610 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3611 { 3612 int rc = -ENOTCONN; 3613 3614 sctp_lock_sock(sk); 3615 3616 /* 3617 * SEQPACKET-style sockets in LISTENING state are valid, for 3618 * SCTP, so only discard TCP-style sockets in LISTENING state. 3619 */ 3620 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3621 goto out; 3622 3623 switch (cmd) { 3624 case SIOCINQ: { 3625 struct sk_buff *skb; 3626 unsigned int amount = 0; 3627 3628 skb = skb_peek(&sk->sk_receive_queue); 3629 if (skb != NULL) { 3630 /* 3631 * We will only return the amount of this packet since 3632 * that is all that will be read. 3633 */ 3634 amount = skb->len; 3635 } 3636 rc = put_user(amount, (int __user *)arg); 3637 break; 3638 } 3639 default: 3640 rc = -ENOIOCTLCMD; 3641 break; 3642 } 3643 out: 3644 sctp_release_sock(sk); 3645 return rc; 3646 } 3647 3648 /* This is the function which gets called during socket creation to 3649 * initialized the SCTP-specific portion of the sock. 3650 * The sock structure should already be zero-filled memory. 3651 */ 3652 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3653 { 3654 struct sctp_endpoint *ep; 3655 struct sctp_sock *sp; 3656 3657 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3658 3659 sp = sctp_sk(sk); 3660 3661 /* Initialize the SCTP per socket area. */ 3662 switch (sk->sk_type) { 3663 case SOCK_SEQPACKET: 3664 sp->type = SCTP_SOCKET_UDP; 3665 break; 3666 case SOCK_STREAM: 3667 sp->type = SCTP_SOCKET_TCP; 3668 break; 3669 default: 3670 return -ESOCKTNOSUPPORT; 3671 } 3672 3673 /* Initialize default send parameters. These parameters can be 3674 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3675 */ 3676 sp->default_stream = 0; 3677 sp->default_ppid = 0; 3678 sp->default_flags = 0; 3679 sp->default_context = 0; 3680 sp->default_timetolive = 0; 3681 3682 sp->default_rcv_context = 0; 3683 sp->max_burst = sctp_max_burst; 3684 3685 /* Initialize default setup parameters. These parameters 3686 * can be modified with the SCTP_INITMSG socket option or 3687 * overridden by the SCTP_INIT CMSG. 3688 */ 3689 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3690 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3691 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3692 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3693 3694 /* Initialize default RTO related parameters. These parameters can 3695 * be modified for with the SCTP_RTOINFO socket option. 3696 */ 3697 sp->rtoinfo.srto_initial = sctp_rto_initial; 3698 sp->rtoinfo.srto_max = sctp_rto_max; 3699 sp->rtoinfo.srto_min = sctp_rto_min; 3700 3701 /* Initialize default association related parameters. These parameters 3702 * can be modified with the SCTP_ASSOCINFO socket option. 3703 */ 3704 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3705 sp->assocparams.sasoc_number_peer_destinations = 0; 3706 sp->assocparams.sasoc_peer_rwnd = 0; 3707 sp->assocparams.sasoc_local_rwnd = 0; 3708 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3709 3710 /* Initialize default event subscriptions. By default, all the 3711 * options are off. 3712 */ 3713 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3714 3715 /* Default Peer Address Parameters. These defaults can 3716 * be modified via SCTP_PEER_ADDR_PARAMS 3717 */ 3718 sp->hbinterval = sctp_hb_interval; 3719 sp->pathmaxrxt = sctp_max_retrans_path; 3720 sp->pathmtu = 0; // allow default discovery 3721 sp->sackdelay = sctp_sack_timeout; 3722 sp->sackfreq = 2; 3723 sp->param_flags = SPP_HB_ENABLE | 3724 SPP_PMTUD_ENABLE | 3725 SPP_SACKDELAY_ENABLE; 3726 3727 /* If enabled no SCTP message fragmentation will be performed. 3728 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3729 */ 3730 sp->disable_fragments = 0; 3731 3732 /* Enable Nagle algorithm by default. */ 3733 sp->nodelay = 0; 3734 3735 /* Enable by default. */ 3736 sp->v4mapped = 1; 3737 3738 /* Auto-close idle associations after the configured 3739 * number of seconds. A value of 0 disables this 3740 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3741 * for UDP-style sockets only. 3742 */ 3743 sp->autoclose = 0; 3744 3745 /* User specified fragmentation limit. */ 3746 sp->user_frag = 0; 3747 3748 sp->adaptation_ind = 0; 3749 3750 sp->pf = sctp_get_pf_specific(sk->sk_family); 3751 3752 /* Control variables for partial data delivery. */ 3753 atomic_set(&sp->pd_mode, 0); 3754 skb_queue_head_init(&sp->pd_lobby); 3755 sp->frag_interleave = 0; 3756 3757 /* Create a per socket endpoint structure. Even if we 3758 * change the data structure relationships, this may still 3759 * be useful for storing pre-connect address information. 3760 */ 3761 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3762 if (!ep) 3763 return -ENOMEM; 3764 3765 sp->ep = ep; 3766 sp->hmac = NULL; 3767 3768 SCTP_DBG_OBJCNT_INC(sock); 3769 3770 local_bh_disable(); 3771 percpu_counter_inc(&sctp_sockets_allocated); 3772 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3773 local_bh_enable(); 3774 3775 return 0; 3776 } 3777 3778 /* Cleanup any SCTP per socket resources. */ 3779 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3780 { 3781 struct sctp_endpoint *ep; 3782 3783 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3784 3785 /* Release our hold on the endpoint. */ 3786 ep = sctp_sk(sk)->ep; 3787 sctp_endpoint_free(ep); 3788 local_bh_disable(); 3789 percpu_counter_dec(&sctp_sockets_allocated); 3790 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3791 local_bh_enable(); 3792 } 3793 3794 /* API 4.1.7 shutdown() - TCP Style Syntax 3795 * int shutdown(int socket, int how); 3796 * 3797 * sd - the socket descriptor of the association to be closed. 3798 * how - Specifies the type of shutdown. The values are 3799 * as follows: 3800 * SHUT_RD 3801 * Disables further receive operations. No SCTP 3802 * protocol action is taken. 3803 * SHUT_WR 3804 * Disables further send operations, and initiates 3805 * the SCTP shutdown sequence. 3806 * SHUT_RDWR 3807 * Disables further send and receive operations 3808 * and initiates the SCTP shutdown sequence. 3809 */ 3810 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3811 { 3812 struct sctp_endpoint *ep; 3813 struct sctp_association *asoc; 3814 3815 if (!sctp_style(sk, TCP)) 3816 return; 3817 3818 if (how & SEND_SHUTDOWN) { 3819 ep = sctp_sk(sk)->ep; 3820 if (!list_empty(&ep->asocs)) { 3821 asoc = list_entry(ep->asocs.next, 3822 struct sctp_association, asocs); 3823 sctp_primitive_SHUTDOWN(asoc, NULL); 3824 } 3825 } 3826 } 3827 3828 /* 7.2.1 Association Status (SCTP_STATUS) 3829 3830 * Applications can retrieve current status information about an 3831 * association, including association state, peer receiver window size, 3832 * number of unacked data chunks, and number of data chunks pending 3833 * receipt. This information is read-only. 3834 */ 3835 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3836 char __user *optval, 3837 int __user *optlen) 3838 { 3839 struct sctp_status status; 3840 struct sctp_association *asoc = NULL; 3841 struct sctp_transport *transport; 3842 sctp_assoc_t associd; 3843 int retval = 0; 3844 3845 if (len < sizeof(status)) { 3846 retval = -EINVAL; 3847 goto out; 3848 } 3849 3850 len = sizeof(status); 3851 if (copy_from_user(&status, optval, len)) { 3852 retval = -EFAULT; 3853 goto out; 3854 } 3855 3856 associd = status.sstat_assoc_id; 3857 asoc = sctp_id2assoc(sk, associd); 3858 if (!asoc) { 3859 retval = -EINVAL; 3860 goto out; 3861 } 3862 3863 transport = asoc->peer.primary_path; 3864 3865 status.sstat_assoc_id = sctp_assoc2id(asoc); 3866 status.sstat_state = asoc->state; 3867 status.sstat_rwnd = asoc->peer.rwnd; 3868 status.sstat_unackdata = asoc->unack_data; 3869 3870 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3871 status.sstat_instrms = asoc->c.sinit_max_instreams; 3872 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3873 status.sstat_fragmentation_point = asoc->frag_point; 3874 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3875 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3876 transport->af_specific->sockaddr_len); 3877 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3878 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3879 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3880 status.sstat_primary.spinfo_state = transport->state; 3881 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3882 status.sstat_primary.spinfo_srtt = transport->srtt; 3883 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3884 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3885 3886 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3887 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3888 3889 if (put_user(len, optlen)) { 3890 retval = -EFAULT; 3891 goto out; 3892 } 3893 3894 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3895 len, status.sstat_state, status.sstat_rwnd, 3896 status.sstat_assoc_id); 3897 3898 if (copy_to_user(optval, &status, len)) { 3899 retval = -EFAULT; 3900 goto out; 3901 } 3902 3903 out: 3904 return retval; 3905 } 3906 3907 3908 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3909 * 3910 * Applications can retrieve information about a specific peer address 3911 * of an association, including its reachability state, congestion 3912 * window, and retransmission timer values. This information is 3913 * read-only. 3914 */ 3915 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3916 char __user *optval, 3917 int __user *optlen) 3918 { 3919 struct sctp_paddrinfo pinfo; 3920 struct sctp_transport *transport; 3921 int retval = 0; 3922 3923 if (len < sizeof(pinfo)) { 3924 retval = -EINVAL; 3925 goto out; 3926 } 3927 3928 len = sizeof(pinfo); 3929 if (copy_from_user(&pinfo, optval, len)) { 3930 retval = -EFAULT; 3931 goto out; 3932 } 3933 3934 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3935 pinfo.spinfo_assoc_id); 3936 if (!transport) 3937 return -EINVAL; 3938 3939 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3940 pinfo.spinfo_state = transport->state; 3941 pinfo.spinfo_cwnd = transport->cwnd; 3942 pinfo.spinfo_srtt = transport->srtt; 3943 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3944 pinfo.spinfo_mtu = transport->pathmtu; 3945 3946 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3947 pinfo.spinfo_state = SCTP_ACTIVE; 3948 3949 if (put_user(len, optlen)) { 3950 retval = -EFAULT; 3951 goto out; 3952 } 3953 3954 if (copy_to_user(optval, &pinfo, len)) { 3955 retval = -EFAULT; 3956 goto out; 3957 } 3958 3959 out: 3960 return retval; 3961 } 3962 3963 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3964 * 3965 * This option is a on/off flag. If enabled no SCTP message 3966 * fragmentation will be performed. Instead if a message being sent 3967 * exceeds the current PMTU size, the message will NOT be sent and 3968 * instead a error will be indicated to the user. 3969 */ 3970 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3971 char __user *optval, int __user *optlen) 3972 { 3973 int val; 3974 3975 if (len < sizeof(int)) 3976 return -EINVAL; 3977 3978 len = sizeof(int); 3979 val = (sctp_sk(sk)->disable_fragments == 1); 3980 if (put_user(len, optlen)) 3981 return -EFAULT; 3982 if (copy_to_user(optval, &val, len)) 3983 return -EFAULT; 3984 return 0; 3985 } 3986 3987 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3988 * 3989 * This socket option is used to specify various notifications and 3990 * ancillary data the user wishes to receive. 3991 */ 3992 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3993 int __user *optlen) 3994 { 3995 if (len < sizeof(struct sctp_event_subscribe)) 3996 return -EINVAL; 3997 len = sizeof(struct sctp_event_subscribe); 3998 if (put_user(len, optlen)) 3999 return -EFAULT; 4000 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4001 return -EFAULT; 4002 return 0; 4003 } 4004 4005 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4006 * 4007 * This socket option is applicable to the UDP-style socket only. When 4008 * set it will cause associations that are idle for more than the 4009 * specified number of seconds to automatically close. An association 4010 * being idle is defined an association that has NOT sent or received 4011 * user data. The special value of '0' indicates that no automatic 4012 * close of any associations should be performed. The option expects an 4013 * integer defining the number of seconds of idle time before an 4014 * association is closed. 4015 */ 4016 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4017 { 4018 /* Applicable to UDP-style socket only */ 4019 if (sctp_style(sk, TCP)) 4020 return -EOPNOTSUPP; 4021 if (len < sizeof(int)) 4022 return -EINVAL; 4023 len = sizeof(int); 4024 if (put_user(len, optlen)) 4025 return -EFAULT; 4026 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4027 return -EFAULT; 4028 return 0; 4029 } 4030 4031 /* Helper routine to branch off an association to a new socket. */ 4032 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 4033 struct socket **sockp) 4034 { 4035 struct sock *sk = asoc->base.sk; 4036 struct socket *sock; 4037 struct sctp_af *af; 4038 int err = 0; 4039 4040 /* An association cannot be branched off from an already peeled-off 4041 * socket, nor is this supported for tcp style sockets. 4042 */ 4043 if (!sctp_style(sk, UDP)) 4044 return -EINVAL; 4045 4046 /* Create a new socket. */ 4047 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4048 if (err < 0) 4049 return err; 4050 4051 sctp_copy_sock(sock->sk, sk, asoc); 4052 4053 /* Make peeled-off sockets more like 1-1 accepted sockets. 4054 * Set the daddr and initialize id to something more random 4055 */ 4056 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4057 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4058 4059 /* Populate the fields of the newsk from the oldsk and migrate the 4060 * asoc to the newsk. 4061 */ 4062 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4063 4064 *sockp = sock; 4065 4066 return err; 4067 } 4068 4069 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4070 { 4071 sctp_peeloff_arg_t peeloff; 4072 struct socket *newsock; 4073 int retval = 0; 4074 struct sctp_association *asoc; 4075 4076 if (len < sizeof(sctp_peeloff_arg_t)) 4077 return -EINVAL; 4078 len = sizeof(sctp_peeloff_arg_t); 4079 if (copy_from_user(&peeloff, optval, len)) 4080 return -EFAULT; 4081 4082 asoc = sctp_id2assoc(sk, peeloff.associd); 4083 if (!asoc) { 4084 retval = -EINVAL; 4085 goto out; 4086 } 4087 4088 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4089 4090 retval = sctp_do_peeloff(asoc, &newsock); 4091 if (retval < 0) 4092 goto out; 4093 4094 /* Map the socket to an unused fd that can be returned to the user. */ 4095 retval = sock_map_fd(newsock, 0); 4096 if (retval < 0) { 4097 sock_release(newsock); 4098 goto out; 4099 } 4100 4101 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4102 __func__, sk, asoc, newsock->sk, retval); 4103 4104 /* Return the fd mapped to the new socket. */ 4105 peeloff.sd = retval; 4106 if (put_user(len, optlen)) 4107 return -EFAULT; 4108 if (copy_to_user(optval, &peeloff, len)) 4109 retval = -EFAULT; 4110 4111 out: 4112 return retval; 4113 } 4114 4115 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4116 * 4117 * Applications can enable or disable heartbeats for any peer address of 4118 * an association, modify an address's heartbeat interval, force a 4119 * heartbeat to be sent immediately, and adjust the address's maximum 4120 * number of retransmissions sent before an address is considered 4121 * unreachable. The following structure is used to access and modify an 4122 * address's parameters: 4123 * 4124 * struct sctp_paddrparams { 4125 * sctp_assoc_t spp_assoc_id; 4126 * struct sockaddr_storage spp_address; 4127 * uint32_t spp_hbinterval; 4128 * uint16_t spp_pathmaxrxt; 4129 * uint32_t spp_pathmtu; 4130 * uint32_t spp_sackdelay; 4131 * uint32_t spp_flags; 4132 * }; 4133 * 4134 * spp_assoc_id - (one-to-many style socket) This is filled in the 4135 * application, and identifies the association for 4136 * this query. 4137 * spp_address - This specifies which address is of interest. 4138 * spp_hbinterval - This contains the value of the heartbeat interval, 4139 * in milliseconds. If a value of zero 4140 * is present in this field then no changes are to 4141 * be made to this parameter. 4142 * spp_pathmaxrxt - This contains the maximum number of 4143 * retransmissions before this address shall be 4144 * considered unreachable. If a value of zero 4145 * is present in this field then no changes are to 4146 * be made to this parameter. 4147 * spp_pathmtu - When Path MTU discovery is disabled the value 4148 * specified here will be the "fixed" path mtu. 4149 * Note that if the spp_address field is empty 4150 * then all associations on this address will 4151 * have this fixed path mtu set upon them. 4152 * 4153 * spp_sackdelay - When delayed sack is enabled, this value specifies 4154 * the number of milliseconds that sacks will be delayed 4155 * for. This value will apply to all addresses of an 4156 * association if the spp_address field is empty. Note 4157 * also, that if delayed sack is enabled and this 4158 * value is set to 0, no change is made to the last 4159 * recorded delayed sack timer value. 4160 * 4161 * spp_flags - These flags are used to control various features 4162 * on an association. The flag field may contain 4163 * zero or more of the following options. 4164 * 4165 * SPP_HB_ENABLE - Enable heartbeats on the 4166 * specified address. Note that if the address 4167 * field is empty all addresses for the association 4168 * have heartbeats enabled upon them. 4169 * 4170 * SPP_HB_DISABLE - Disable heartbeats on the 4171 * speicifed address. Note that if the address 4172 * field is empty all addresses for the association 4173 * will have their heartbeats disabled. Note also 4174 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4175 * mutually exclusive, only one of these two should 4176 * be specified. Enabling both fields will have 4177 * undetermined results. 4178 * 4179 * SPP_HB_DEMAND - Request a user initiated heartbeat 4180 * to be made immediately. 4181 * 4182 * SPP_PMTUD_ENABLE - This field will enable PMTU 4183 * discovery upon the specified address. Note that 4184 * if the address feild is empty then all addresses 4185 * on the association are effected. 4186 * 4187 * SPP_PMTUD_DISABLE - This field will disable PMTU 4188 * discovery upon the specified address. Note that 4189 * if the address feild is empty then all addresses 4190 * on the association are effected. Not also that 4191 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4192 * exclusive. Enabling both will have undetermined 4193 * results. 4194 * 4195 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4196 * on delayed sack. The time specified in spp_sackdelay 4197 * is used to specify the sack delay for this address. Note 4198 * that if spp_address is empty then all addresses will 4199 * enable delayed sack and take on the sack delay 4200 * value specified in spp_sackdelay. 4201 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4202 * off delayed sack. If the spp_address field is blank then 4203 * delayed sack is disabled for the entire association. Note 4204 * also that this field is mutually exclusive to 4205 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4206 * results. 4207 */ 4208 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4209 char __user *optval, int __user *optlen) 4210 { 4211 struct sctp_paddrparams params; 4212 struct sctp_transport *trans = NULL; 4213 struct sctp_association *asoc = NULL; 4214 struct sctp_sock *sp = sctp_sk(sk); 4215 4216 if (len < sizeof(struct sctp_paddrparams)) 4217 return -EINVAL; 4218 len = sizeof(struct sctp_paddrparams); 4219 if (copy_from_user(¶ms, optval, len)) 4220 return -EFAULT; 4221 4222 /* If an address other than INADDR_ANY is specified, and 4223 * no transport is found, then the request is invalid. 4224 */ 4225 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4226 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4227 params.spp_assoc_id); 4228 if (!trans) { 4229 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4230 return -EINVAL; 4231 } 4232 } 4233 4234 /* Get association, if assoc_id != 0 and the socket is a one 4235 * to many style socket, and an association was not found, then 4236 * the id was invalid. 4237 */ 4238 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4239 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4240 SCTP_DEBUG_PRINTK("Failed no association\n"); 4241 return -EINVAL; 4242 } 4243 4244 if (trans) { 4245 /* Fetch transport values. */ 4246 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4247 params.spp_pathmtu = trans->pathmtu; 4248 params.spp_pathmaxrxt = trans->pathmaxrxt; 4249 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4250 4251 /*draft-11 doesn't say what to return in spp_flags*/ 4252 params.spp_flags = trans->param_flags; 4253 } else if (asoc) { 4254 /* Fetch association values. */ 4255 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4256 params.spp_pathmtu = asoc->pathmtu; 4257 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4258 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4259 4260 /*draft-11 doesn't say what to return in spp_flags*/ 4261 params.spp_flags = asoc->param_flags; 4262 } else { 4263 /* Fetch socket values. */ 4264 params.spp_hbinterval = sp->hbinterval; 4265 params.spp_pathmtu = sp->pathmtu; 4266 params.spp_sackdelay = sp->sackdelay; 4267 params.spp_pathmaxrxt = sp->pathmaxrxt; 4268 4269 /*draft-11 doesn't say what to return in spp_flags*/ 4270 params.spp_flags = sp->param_flags; 4271 } 4272 4273 if (copy_to_user(optval, ¶ms, len)) 4274 return -EFAULT; 4275 4276 if (put_user(len, optlen)) 4277 return -EFAULT; 4278 4279 return 0; 4280 } 4281 4282 /* 4283 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4284 * 4285 * This option will effect the way delayed acks are performed. This 4286 * option allows you to get or set the delayed ack time, in 4287 * milliseconds. It also allows changing the delayed ack frequency. 4288 * Changing the frequency to 1 disables the delayed sack algorithm. If 4289 * the assoc_id is 0, then this sets or gets the endpoints default 4290 * values. If the assoc_id field is non-zero, then the set or get 4291 * effects the specified association for the one to many model (the 4292 * assoc_id field is ignored by the one to one model). Note that if 4293 * sack_delay or sack_freq are 0 when setting this option, then the 4294 * current values will remain unchanged. 4295 * 4296 * struct sctp_sack_info { 4297 * sctp_assoc_t sack_assoc_id; 4298 * uint32_t sack_delay; 4299 * uint32_t sack_freq; 4300 * }; 4301 * 4302 * sack_assoc_id - This parameter, indicates which association the user 4303 * is performing an action upon. Note that if this field's value is 4304 * zero then the endpoints default value is changed (effecting future 4305 * associations only). 4306 * 4307 * sack_delay - This parameter contains the number of milliseconds that 4308 * the user is requesting the delayed ACK timer be set to. Note that 4309 * this value is defined in the standard to be between 200 and 500 4310 * milliseconds. 4311 * 4312 * sack_freq - This parameter contains the number of packets that must 4313 * be received before a sack is sent without waiting for the delay 4314 * timer to expire. The default value for this is 2, setting this 4315 * value to 1 will disable the delayed sack algorithm. 4316 */ 4317 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4318 char __user *optval, 4319 int __user *optlen) 4320 { 4321 struct sctp_sack_info params; 4322 struct sctp_association *asoc = NULL; 4323 struct sctp_sock *sp = sctp_sk(sk); 4324 4325 if (len >= sizeof(struct sctp_sack_info)) { 4326 len = sizeof(struct sctp_sack_info); 4327 4328 if (copy_from_user(¶ms, optval, len)) 4329 return -EFAULT; 4330 } else if (len == sizeof(struct sctp_assoc_value)) { 4331 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4332 pr_warn("Use struct sctp_sack_info instead\n"); 4333 if (copy_from_user(¶ms, optval, len)) 4334 return -EFAULT; 4335 } else 4336 return - EINVAL; 4337 4338 /* Get association, if sack_assoc_id != 0 and the socket is a one 4339 * to many style socket, and an association was not found, then 4340 * the id was invalid. 4341 */ 4342 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4343 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4344 return -EINVAL; 4345 4346 if (asoc) { 4347 /* Fetch association values. */ 4348 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4349 params.sack_delay = jiffies_to_msecs( 4350 asoc->sackdelay); 4351 params.sack_freq = asoc->sackfreq; 4352 4353 } else { 4354 params.sack_delay = 0; 4355 params.sack_freq = 1; 4356 } 4357 } else { 4358 /* Fetch socket values. */ 4359 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4360 params.sack_delay = sp->sackdelay; 4361 params.sack_freq = sp->sackfreq; 4362 } else { 4363 params.sack_delay = 0; 4364 params.sack_freq = 1; 4365 } 4366 } 4367 4368 if (copy_to_user(optval, ¶ms, len)) 4369 return -EFAULT; 4370 4371 if (put_user(len, optlen)) 4372 return -EFAULT; 4373 4374 return 0; 4375 } 4376 4377 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4378 * 4379 * Applications can specify protocol parameters for the default association 4380 * initialization. The option name argument to setsockopt() and getsockopt() 4381 * is SCTP_INITMSG. 4382 * 4383 * Setting initialization parameters is effective only on an unconnected 4384 * socket (for UDP-style sockets only future associations are effected 4385 * by the change). With TCP-style sockets, this option is inherited by 4386 * sockets derived from a listener socket. 4387 */ 4388 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4389 { 4390 if (len < sizeof(struct sctp_initmsg)) 4391 return -EINVAL; 4392 len = sizeof(struct sctp_initmsg); 4393 if (put_user(len, optlen)) 4394 return -EFAULT; 4395 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4396 return -EFAULT; 4397 return 0; 4398 } 4399 4400 4401 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4402 char __user *optval, int __user *optlen) 4403 { 4404 struct sctp_association *asoc; 4405 int cnt = 0; 4406 struct sctp_getaddrs getaddrs; 4407 struct sctp_transport *from; 4408 void __user *to; 4409 union sctp_addr temp; 4410 struct sctp_sock *sp = sctp_sk(sk); 4411 int addrlen; 4412 size_t space_left; 4413 int bytes_copied; 4414 4415 if (len < sizeof(struct sctp_getaddrs)) 4416 return -EINVAL; 4417 4418 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4419 return -EFAULT; 4420 4421 /* For UDP-style sockets, id specifies the association to query. */ 4422 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4423 if (!asoc) 4424 return -EINVAL; 4425 4426 to = optval + offsetof(struct sctp_getaddrs,addrs); 4427 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4428 4429 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4430 transports) { 4431 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4432 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4433 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4434 if (space_left < addrlen) 4435 return -ENOMEM; 4436 if (copy_to_user(to, &temp, addrlen)) 4437 return -EFAULT; 4438 to += addrlen; 4439 cnt++; 4440 space_left -= addrlen; 4441 } 4442 4443 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4444 return -EFAULT; 4445 bytes_copied = ((char __user *)to) - optval; 4446 if (put_user(bytes_copied, optlen)) 4447 return -EFAULT; 4448 4449 return 0; 4450 } 4451 4452 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4453 size_t space_left, int *bytes_copied) 4454 { 4455 struct sctp_sockaddr_entry *addr; 4456 union sctp_addr temp; 4457 int cnt = 0; 4458 int addrlen; 4459 4460 rcu_read_lock(); 4461 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4462 if (!addr->valid) 4463 continue; 4464 4465 if ((PF_INET == sk->sk_family) && 4466 (AF_INET6 == addr->a.sa.sa_family)) 4467 continue; 4468 if ((PF_INET6 == sk->sk_family) && 4469 inet_v6_ipv6only(sk) && 4470 (AF_INET == addr->a.sa.sa_family)) 4471 continue; 4472 memcpy(&temp, &addr->a, sizeof(temp)); 4473 if (!temp.v4.sin_port) 4474 temp.v4.sin_port = htons(port); 4475 4476 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4477 &temp); 4478 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4479 if (space_left < addrlen) { 4480 cnt = -ENOMEM; 4481 break; 4482 } 4483 memcpy(to, &temp, addrlen); 4484 4485 to += addrlen; 4486 cnt ++; 4487 space_left -= addrlen; 4488 *bytes_copied += addrlen; 4489 } 4490 rcu_read_unlock(); 4491 4492 return cnt; 4493 } 4494 4495 4496 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4497 char __user *optval, int __user *optlen) 4498 { 4499 struct sctp_bind_addr *bp; 4500 struct sctp_association *asoc; 4501 int cnt = 0; 4502 struct sctp_getaddrs getaddrs; 4503 struct sctp_sockaddr_entry *addr; 4504 void __user *to; 4505 union sctp_addr temp; 4506 struct sctp_sock *sp = sctp_sk(sk); 4507 int addrlen; 4508 int err = 0; 4509 size_t space_left; 4510 int bytes_copied = 0; 4511 void *addrs; 4512 void *buf; 4513 4514 if (len < sizeof(struct sctp_getaddrs)) 4515 return -EINVAL; 4516 4517 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4518 return -EFAULT; 4519 4520 /* 4521 * For UDP-style sockets, id specifies the association to query. 4522 * If the id field is set to the value '0' then the locally bound 4523 * addresses are returned without regard to any particular 4524 * association. 4525 */ 4526 if (0 == getaddrs.assoc_id) { 4527 bp = &sctp_sk(sk)->ep->base.bind_addr; 4528 } else { 4529 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4530 if (!asoc) 4531 return -EINVAL; 4532 bp = &asoc->base.bind_addr; 4533 } 4534 4535 to = optval + offsetof(struct sctp_getaddrs,addrs); 4536 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4537 4538 addrs = kmalloc(space_left, GFP_KERNEL); 4539 if (!addrs) 4540 return -ENOMEM; 4541 4542 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4543 * addresses from the global local address list. 4544 */ 4545 if (sctp_list_single_entry(&bp->address_list)) { 4546 addr = list_entry(bp->address_list.next, 4547 struct sctp_sockaddr_entry, list); 4548 if (sctp_is_any(sk, &addr->a)) { 4549 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4550 space_left, &bytes_copied); 4551 if (cnt < 0) { 4552 err = cnt; 4553 goto out; 4554 } 4555 goto copy_getaddrs; 4556 } 4557 } 4558 4559 buf = addrs; 4560 /* Protection on the bound address list is not needed since 4561 * in the socket option context we hold a socket lock and 4562 * thus the bound address list can't change. 4563 */ 4564 list_for_each_entry(addr, &bp->address_list, list) { 4565 memcpy(&temp, &addr->a, sizeof(temp)); 4566 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4567 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4568 if (space_left < addrlen) { 4569 err = -ENOMEM; /*fixme: right error?*/ 4570 goto out; 4571 } 4572 memcpy(buf, &temp, addrlen); 4573 buf += addrlen; 4574 bytes_copied += addrlen; 4575 cnt ++; 4576 space_left -= addrlen; 4577 } 4578 4579 copy_getaddrs: 4580 if (copy_to_user(to, addrs, bytes_copied)) { 4581 err = -EFAULT; 4582 goto out; 4583 } 4584 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4585 err = -EFAULT; 4586 goto out; 4587 } 4588 if (put_user(bytes_copied, optlen)) 4589 err = -EFAULT; 4590 out: 4591 kfree(addrs); 4592 return err; 4593 } 4594 4595 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4596 * 4597 * Requests that the local SCTP stack use the enclosed peer address as 4598 * the association primary. The enclosed address must be one of the 4599 * association peer's addresses. 4600 */ 4601 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4602 char __user *optval, int __user *optlen) 4603 { 4604 struct sctp_prim prim; 4605 struct sctp_association *asoc; 4606 struct sctp_sock *sp = sctp_sk(sk); 4607 4608 if (len < sizeof(struct sctp_prim)) 4609 return -EINVAL; 4610 4611 len = sizeof(struct sctp_prim); 4612 4613 if (copy_from_user(&prim, optval, len)) 4614 return -EFAULT; 4615 4616 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4617 if (!asoc) 4618 return -EINVAL; 4619 4620 if (!asoc->peer.primary_path) 4621 return -ENOTCONN; 4622 4623 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4624 asoc->peer.primary_path->af_specific->sockaddr_len); 4625 4626 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4627 (union sctp_addr *)&prim.ssp_addr); 4628 4629 if (put_user(len, optlen)) 4630 return -EFAULT; 4631 if (copy_to_user(optval, &prim, len)) 4632 return -EFAULT; 4633 4634 return 0; 4635 } 4636 4637 /* 4638 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4639 * 4640 * Requests that the local endpoint set the specified Adaptation Layer 4641 * Indication parameter for all future INIT and INIT-ACK exchanges. 4642 */ 4643 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4644 char __user *optval, int __user *optlen) 4645 { 4646 struct sctp_setadaptation adaptation; 4647 4648 if (len < sizeof(struct sctp_setadaptation)) 4649 return -EINVAL; 4650 4651 len = sizeof(struct sctp_setadaptation); 4652 4653 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4654 4655 if (put_user(len, optlen)) 4656 return -EFAULT; 4657 if (copy_to_user(optval, &adaptation, len)) 4658 return -EFAULT; 4659 4660 return 0; 4661 } 4662 4663 /* 4664 * 4665 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4666 * 4667 * Applications that wish to use the sendto() system call may wish to 4668 * specify a default set of parameters that would normally be supplied 4669 * through the inclusion of ancillary data. This socket option allows 4670 * such an application to set the default sctp_sndrcvinfo structure. 4671 4672 4673 * The application that wishes to use this socket option simply passes 4674 * in to this call the sctp_sndrcvinfo structure defined in Section 4675 * 5.2.2) The input parameters accepted by this call include 4676 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4677 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4678 * to this call if the caller is using the UDP model. 4679 * 4680 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4681 */ 4682 static int sctp_getsockopt_default_send_param(struct sock *sk, 4683 int len, char __user *optval, 4684 int __user *optlen) 4685 { 4686 struct sctp_sndrcvinfo info; 4687 struct sctp_association *asoc; 4688 struct sctp_sock *sp = sctp_sk(sk); 4689 4690 if (len < sizeof(struct sctp_sndrcvinfo)) 4691 return -EINVAL; 4692 4693 len = sizeof(struct sctp_sndrcvinfo); 4694 4695 if (copy_from_user(&info, optval, len)) 4696 return -EFAULT; 4697 4698 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4699 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4700 return -EINVAL; 4701 4702 if (asoc) { 4703 info.sinfo_stream = asoc->default_stream; 4704 info.sinfo_flags = asoc->default_flags; 4705 info.sinfo_ppid = asoc->default_ppid; 4706 info.sinfo_context = asoc->default_context; 4707 info.sinfo_timetolive = asoc->default_timetolive; 4708 } else { 4709 info.sinfo_stream = sp->default_stream; 4710 info.sinfo_flags = sp->default_flags; 4711 info.sinfo_ppid = sp->default_ppid; 4712 info.sinfo_context = sp->default_context; 4713 info.sinfo_timetolive = sp->default_timetolive; 4714 } 4715 4716 if (put_user(len, optlen)) 4717 return -EFAULT; 4718 if (copy_to_user(optval, &info, len)) 4719 return -EFAULT; 4720 4721 return 0; 4722 } 4723 4724 /* 4725 * 4726 * 7.1.5 SCTP_NODELAY 4727 * 4728 * Turn on/off any Nagle-like algorithm. This means that packets are 4729 * generally sent as soon as possible and no unnecessary delays are 4730 * introduced, at the cost of more packets in the network. Expects an 4731 * integer boolean flag. 4732 */ 4733 4734 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4735 char __user *optval, int __user *optlen) 4736 { 4737 int val; 4738 4739 if (len < sizeof(int)) 4740 return -EINVAL; 4741 4742 len = sizeof(int); 4743 val = (sctp_sk(sk)->nodelay == 1); 4744 if (put_user(len, optlen)) 4745 return -EFAULT; 4746 if (copy_to_user(optval, &val, len)) 4747 return -EFAULT; 4748 return 0; 4749 } 4750 4751 /* 4752 * 4753 * 7.1.1 SCTP_RTOINFO 4754 * 4755 * The protocol parameters used to initialize and bound retransmission 4756 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4757 * and modify these parameters. 4758 * All parameters are time values, in milliseconds. A value of 0, when 4759 * modifying the parameters, indicates that the current value should not 4760 * be changed. 4761 * 4762 */ 4763 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4764 char __user *optval, 4765 int __user *optlen) { 4766 struct sctp_rtoinfo rtoinfo; 4767 struct sctp_association *asoc; 4768 4769 if (len < sizeof (struct sctp_rtoinfo)) 4770 return -EINVAL; 4771 4772 len = sizeof(struct sctp_rtoinfo); 4773 4774 if (copy_from_user(&rtoinfo, optval, len)) 4775 return -EFAULT; 4776 4777 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4778 4779 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4780 return -EINVAL; 4781 4782 /* Values corresponding to the specific association. */ 4783 if (asoc) { 4784 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4785 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4786 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4787 } else { 4788 /* Values corresponding to the endpoint. */ 4789 struct sctp_sock *sp = sctp_sk(sk); 4790 4791 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4792 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4793 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4794 } 4795 4796 if (put_user(len, optlen)) 4797 return -EFAULT; 4798 4799 if (copy_to_user(optval, &rtoinfo, len)) 4800 return -EFAULT; 4801 4802 return 0; 4803 } 4804 4805 /* 4806 * 4807 * 7.1.2 SCTP_ASSOCINFO 4808 * 4809 * This option is used to tune the maximum retransmission attempts 4810 * of the association. 4811 * Returns an error if the new association retransmission value is 4812 * greater than the sum of the retransmission value of the peer. 4813 * See [SCTP] for more information. 4814 * 4815 */ 4816 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4817 char __user *optval, 4818 int __user *optlen) 4819 { 4820 4821 struct sctp_assocparams assocparams; 4822 struct sctp_association *asoc; 4823 struct list_head *pos; 4824 int cnt = 0; 4825 4826 if (len < sizeof (struct sctp_assocparams)) 4827 return -EINVAL; 4828 4829 len = sizeof(struct sctp_assocparams); 4830 4831 if (copy_from_user(&assocparams, optval, len)) 4832 return -EFAULT; 4833 4834 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4835 4836 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4837 return -EINVAL; 4838 4839 /* Values correspoinding to the specific association */ 4840 if (asoc) { 4841 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4842 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4843 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4844 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4845 * 1000) + 4846 (asoc->cookie_life.tv_usec 4847 / 1000); 4848 4849 list_for_each(pos, &asoc->peer.transport_addr_list) { 4850 cnt ++; 4851 } 4852 4853 assocparams.sasoc_number_peer_destinations = cnt; 4854 } else { 4855 /* Values corresponding to the endpoint */ 4856 struct sctp_sock *sp = sctp_sk(sk); 4857 4858 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4859 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4860 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4861 assocparams.sasoc_cookie_life = 4862 sp->assocparams.sasoc_cookie_life; 4863 assocparams.sasoc_number_peer_destinations = 4864 sp->assocparams. 4865 sasoc_number_peer_destinations; 4866 } 4867 4868 if (put_user(len, optlen)) 4869 return -EFAULT; 4870 4871 if (copy_to_user(optval, &assocparams, len)) 4872 return -EFAULT; 4873 4874 return 0; 4875 } 4876 4877 /* 4878 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4879 * 4880 * This socket option is a boolean flag which turns on or off mapped V4 4881 * addresses. If this option is turned on and the socket is type 4882 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4883 * If this option is turned off, then no mapping will be done of V4 4884 * addresses and a user will receive both PF_INET6 and PF_INET type 4885 * addresses on the socket. 4886 */ 4887 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4888 char __user *optval, int __user *optlen) 4889 { 4890 int val; 4891 struct sctp_sock *sp = sctp_sk(sk); 4892 4893 if (len < sizeof(int)) 4894 return -EINVAL; 4895 4896 len = sizeof(int); 4897 val = sp->v4mapped; 4898 if (put_user(len, optlen)) 4899 return -EFAULT; 4900 if (copy_to_user(optval, &val, len)) 4901 return -EFAULT; 4902 4903 return 0; 4904 } 4905 4906 /* 4907 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4908 * (chapter and verse is quoted at sctp_setsockopt_context()) 4909 */ 4910 static int sctp_getsockopt_context(struct sock *sk, int len, 4911 char __user *optval, int __user *optlen) 4912 { 4913 struct sctp_assoc_value params; 4914 struct sctp_sock *sp; 4915 struct sctp_association *asoc; 4916 4917 if (len < sizeof(struct sctp_assoc_value)) 4918 return -EINVAL; 4919 4920 len = sizeof(struct sctp_assoc_value); 4921 4922 if (copy_from_user(¶ms, optval, len)) 4923 return -EFAULT; 4924 4925 sp = sctp_sk(sk); 4926 4927 if (params.assoc_id != 0) { 4928 asoc = sctp_id2assoc(sk, params.assoc_id); 4929 if (!asoc) 4930 return -EINVAL; 4931 params.assoc_value = asoc->default_rcv_context; 4932 } else { 4933 params.assoc_value = sp->default_rcv_context; 4934 } 4935 4936 if (put_user(len, optlen)) 4937 return -EFAULT; 4938 if (copy_to_user(optval, ¶ms, len)) 4939 return -EFAULT; 4940 4941 return 0; 4942 } 4943 4944 /* 4945 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 4946 * This option will get or set the maximum size to put in any outgoing 4947 * SCTP DATA chunk. If a message is larger than this size it will be 4948 * fragmented by SCTP into the specified size. Note that the underlying 4949 * SCTP implementation may fragment into smaller sized chunks when the 4950 * PMTU of the underlying association is smaller than the value set by 4951 * the user. The default value for this option is '0' which indicates 4952 * the user is NOT limiting fragmentation and only the PMTU will effect 4953 * SCTP's choice of DATA chunk size. Note also that values set larger 4954 * than the maximum size of an IP datagram will effectively let SCTP 4955 * control fragmentation (i.e. the same as setting this option to 0). 4956 * 4957 * The following structure is used to access and modify this parameter: 4958 * 4959 * struct sctp_assoc_value { 4960 * sctp_assoc_t assoc_id; 4961 * uint32_t assoc_value; 4962 * }; 4963 * 4964 * assoc_id: This parameter is ignored for one-to-one style sockets. 4965 * For one-to-many style sockets this parameter indicates which 4966 * association the user is performing an action upon. Note that if 4967 * this field's value is zero then the endpoints default value is 4968 * changed (effecting future associations only). 4969 * assoc_value: This parameter specifies the maximum size in bytes. 4970 */ 4971 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4972 char __user *optval, int __user *optlen) 4973 { 4974 struct sctp_assoc_value params; 4975 struct sctp_association *asoc; 4976 4977 if (len == sizeof(int)) { 4978 pr_warn("Use of int in maxseg socket option deprecated\n"); 4979 pr_warn("Use struct sctp_assoc_value instead\n"); 4980 params.assoc_id = 0; 4981 } else if (len >= sizeof(struct sctp_assoc_value)) { 4982 len = sizeof(struct sctp_assoc_value); 4983 if (copy_from_user(¶ms, optval, sizeof(params))) 4984 return -EFAULT; 4985 } else 4986 return -EINVAL; 4987 4988 asoc = sctp_id2assoc(sk, params.assoc_id); 4989 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4990 return -EINVAL; 4991 4992 if (asoc) 4993 params.assoc_value = asoc->frag_point; 4994 else 4995 params.assoc_value = sctp_sk(sk)->user_frag; 4996 4997 if (put_user(len, optlen)) 4998 return -EFAULT; 4999 if (len == sizeof(int)) { 5000 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5001 return -EFAULT; 5002 } else { 5003 if (copy_to_user(optval, ¶ms, len)) 5004 return -EFAULT; 5005 } 5006 5007 return 0; 5008 } 5009 5010 /* 5011 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5012 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5013 */ 5014 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5015 char __user *optval, int __user *optlen) 5016 { 5017 int val; 5018 5019 if (len < sizeof(int)) 5020 return -EINVAL; 5021 5022 len = sizeof(int); 5023 5024 val = sctp_sk(sk)->frag_interleave; 5025 if (put_user(len, optlen)) 5026 return -EFAULT; 5027 if (copy_to_user(optval, &val, len)) 5028 return -EFAULT; 5029 5030 return 0; 5031 } 5032 5033 /* 5034 * 7.1.25. Set or Get the sctp partial delivery point 5035 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5036 */ 5037 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5038 char __user *optval, 5039 int __user *optlen) 5040 { 5041 u32 val; 5042 5043 if (len < sizeof(u32)) 5044 return -EINVAL; 5045 5046 len = sizeof(u32); 5047 5048 val = sctp_sk(sk)->pd_point; 5049 if (put_user(len, optlen)) 5050 return -EFAULT; 5051 if (copy_to_user(optval, &val, len)) 5052 return -EFAULT; 5053 5054 return 0; 5055 } 5056 5057 /* 5058 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5059 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5060 */ 5061 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5062 char __user *optval, 5063 int __user *optlen) 5064 { 5065 struct sctp_assoc_value params; 5066 struct sctp_sock *sp; 5067 struct sctp_association *asoc; 5068 5069 if (len == sizeof(int)) { 5070 pr_warn("Use of int in max_burst socket option deprecated\n"); 5071 pr_warn("Use struct sctp_assoc_value instead\n"); 5072 params.assoc_id = 0; 5073 } else if (len >= sizeof(struct sctp_assoc_value)) { 5074 len = sizeof(struct sctp_assoc_value); 5075 if (copy_from_user(¶ms, optval, len)) 5076 return -EFAULT; 5077 } else 5078 return -EINVAL; 5079 5080 sp = sctp_sk(sk); 5081 5082 if (params.assoc_id != 0) { 5083 asoc = sctp_id2assoc(sk, params.assoc_id); 5084 if (!asoc) 5085 return -EINVAL; 5086 params.assoc_value = asoc->max_burst; 5087 } else 5088 params.assoc_value = sp->max_burst; 5089 5090 if (len == sizeof(int)) { 5091 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5092 return -EFAULT; 5093 } else { 5094 if (copy_to_user(optval, ¶ms, len)) 5095 return -EFAULT; 5096 } 5097 5098 return 0; 5099 5100 } 5101 5102 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5103 char __user *optval, int __user *optlen) 5104 { 5105 struct sctp_hmacalgo __user *p = (void __user *)optval; 5106 struct sctp_hmac_algo_param *hmacs; 5107 __u16 data_len = 0; 5108 u32 num_idents; 5109 5110 if (!sctp_auth_enable) 5111 return -EACCES; 5112 5113 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5114 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5115 5116 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5117 return -EINVAL; 5118 5119 len = sizeof(struct sctp_hmacalgo) + data_len; 5120 num_idents = data_len / sizeof(u16); 5121 5122 if (put_user(len, optlen)) 5123 return -EFAULT; 5124 if (put_user(num_idents, &p->shmac_num_idents)) 5125 return -EFAULT; 5126 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5127 return -EFAULT; 5128 return 0; 5129 } 5130 5131 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5132 char __user *optval, int __user *optlen) 5133 { 5134 struct sctp_authkeyid val; 5135 struct sctp_association *asoc; 5136 5137 if (!sctp_auth_enable) 5138 return -EACCES; 5139 5140 if (len < sizeof(struct sctp_authkeyid)) 5141 return -EINVAL; 5142 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5143 return -EFAULT; 5144 5145 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5146 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5147 return -EINVAL; 5148 5149 if (asoc) 5150 val.scact_keynumber = asoc->active_key_id; 5151 else 5152 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5153 5154 len = sizeof(struct sctp_authkeyid); 5155 if (put_user(len, optlen)) 5156 return -EFAULT; 5157 if (copy_to_user(optval, &val, len)) 5158 return -EFAULT; 5159 5160 return 0; 5161 } 5162 5163 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5164 char __user *optval, int __user *optlen) 5165 { 5166 struct sctp_authchunks __user *p = (void __user *)optval; 5167 struct sctp_authchunks val; 5168 struct sctp_association *asoc; 5169 struct sctp_chunks_param *ch; 5170 u32 num_chunks = 0; 5171 char __user *to; 5172 5173 if (!sctp_auth_enable) 5174 return -EACCES; 5175 5176 if (len < sizeof(struct sctp_authchunks)) 5177 return -EINVAL; 5178 5179 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5180 return -EFAULT; 5181 5182 to = p->gauth_chunks; 5183 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5184 if (!asoc) 5185 return -EINVAL; 5186 5187 ch = asoc->peer.peer_chunks; 5188 if (!ch) 5189 goto num; 5190 5191 /* See if the user provided enough room for all the data */ 5192 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5193 if (len < num_chunks) 5194 return -EINVAL; 5195 5196 if (copy_to_user(to, ch->chunks, num_chunks)) 5197 return -EFAULT; 5198 num: 5199 len = sizeof(struct sctp_authchunks) + num_chunks; 5200 if (put_user(len, optlen)) return -EFAULT; 5201 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5202 return -EFAULT; 5203 return 0; 5204 } 5205 5206 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5207 char __user *optval, int __user *optlen) 5208 { 5209 struct sctp_authchunks __user *p = (void __user *)optval; 5210 struct sctp_authchunks val; 5211 struct sctp_association *asoc; 5212 struct sctp_chunks_param *ch; 5213 u32 num_chunks = 0; 5214 char __user *to; 5215 5216 if (!sctp_auth_enable) 5217 return -EACCES; 5218 5219 if (len < sizeof(struct sctp_authchunks)) 5220 return -EINVAL; 5221 5222 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5223 return -EFAULT; 5224 5225 to = p->gauth_chunks; 5226 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5227 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5228 return -EINVAL; 5229 5230 if (asoc) 5231 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5232 else 5233 ch = sctp_sk(sk)->ep->auth_chunk_list; 5234 5235 if (!ch) 5236 goto num; 5237 5238 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5239 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5240 return -EINVAL; 5241 5242 if (copy_to_user(to, ch->chunks, num_chunks)) 5243 return -EFAULT; 5244 num: 5245 len = sizeof(struct sctp_authchunks) + num_chunks; 5246 if (put_user(len, optlen)) 5247 return -EFAULT; 5248 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5249 return -EFAULT; 5250 5251 return 0; 5252 } 5253 5254 /* 5255 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5256 * This option gets the current number of associations that are attached 5257 * to a one-to-many style socket. The option value is an uint32_t. 5258 */ 5259 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5260 char __user *optval, int __user *optlen) 5261 { 5262 struct sctp_sock *sp = sctp_sk(sk); 5263 struct sctp_association *asoc; 5264 u32 val = 0; 5265 5266 if (sctp_style(sk, TCP)) 5267 return -EOPNOTSUPP; 5268 5269 if (len < sizeof(u32)) 5270 return -EINVAL; 5271 5272 len = sizeof(u32); 5273 5274 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5275 val++; 5276 } 5277 5278 if (put_user(len, optlen)) 5279 return -EFAULT; 5280 if (copy_to_user(optval, &val, len)) 5281 return -EFAULT; 5282 5283 return 0; 5284 } 5285 5286 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5287 char __user *optval, int __user *optlen) 5288 { 5289 int retval = 0; 5290 int len; 5291 5292 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5293 sk, optname); 5294 5295 /* I can hardly begin to describe how wrong this is. This is 5296 * so broken as to be worse than useless. The API draft 5297 * REALLY is NOT helpful here... I am not convinced that the 5298 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5299 * are at all well-founded. 5300 */ 5301 if (level != SOL_SCTP) { 5302 struct sctp_af *af = sctp_sk(sk)->pf->af; 5303 5304 retval = af->getsockopt(sk, level, optname, optval, optlen); 5305 return retval; 5306 } 5307 5308 if (get_user(len, optlen)) 5309 return -EFAULT; 5310 5311 sctp_lock_sock(sk); 5312 5313 switch (optname) { 5314 case SCTP_STATUS: 5315 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5316 break; 5317 case SCTP_DISABLE_FRAGMENTS: 5318 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5319 optlen); 5320 break; 5321 case SCTP_EVENTS: 5322 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5323 break; 5324 case SCTP_AUTOCLOSE: 5325 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5326 break; 5327 case SCTP_SOCKOPT_PEELOFF: 5328 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5329 break; 5330 case SCTP_PEER_ADDR_PARAMS: 5331 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5332 optlen); 5333 break; 5334 case SCTP_DELAYED_SACK: 5335 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5336 optlen); 5337 break; 5338 case SCTP_INITMSG: 5339 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5340 break; 5341 case SCTP_GET_PEER_ADDRS: 5342 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5343 optlen); 5344 break; 5345 case SCTP_GET_LOCAL_ADDRS: 5346 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5347 optlen); 5348 break; 5349 case SCTP_SOCKOPT_CONNECTX3: 5350 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5351 break; 5352 case SCTP_DEFAULT_SEND_PARAM: 5353 retval = sctp_getsockopt_default_send_param(sk, len, 5354 optval, optlen); 5355 break; 5356 case SCTP_PRIMARY_ADDR: 5357 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5358 break; 5359 case SCTP_NODELAY: 5360 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5361 break; 5362 case SCTP_RTOINFO: 5363 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5364 break; 5365 case SCTP_ASSOCINFO: 5366 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5367 break; 5368 case SCTP_I_WANT_MAPPED_V4_ADDR: 5369 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5370 break; 5371 case SCTP_MAXSEG: 5372 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5373 break; 5374 case SCTP_GET_PEER_ADDR_INFO: 5375 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5376 optlen); 5377 break; 5378 case SCTP_ADAPTATION_LAYER: 5379 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5380 optlen); 5381 break; 5382 case SCTP_CONTEXT: 5383 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5384 break; 5385 case SCTP_FRAGMENT_INTERLEAVE: 5386 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5387 optlen); 5388 break; 5389 case SCTP_PARTIAL_DELIVERY_POINT: 5390 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5391 optlen); 5392 break; 5393 case SCTP_MAX_BURST: 5394 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5395 break; 5396 case SCTP_AUTH_KEY: 5397 case SCTP_AUTH_CHUNK: 5398 case SCTP_AUTH_DELETE_KEY: 5399 retval = -EOPNOTSUPP; 5400 break; 5401 case SCTP_HMAC_IDENT: 5402 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5403 break; 5404 case SCTP_AUTH_ACTIVE_KEY: 5405 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5406 break; 5407 case SCTP_PEER_AUTH_CHUNKS: 5408 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5409 optlen); 5410 break; 5411 case SCTP_LOCAL_AUTH_CHUNKS: 5412 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5413 optlen); 5414 break; 5415 case SCTP_GET_ASSOC_NUMBER: 5416 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5417 break; 5418 default: 5419 retval = -ENOPROTOOPT; 5420 break; 5421 } 5422 5423 sctp_release_sock(sk); 5424 return retval; 5425 } 5426 5427 static void sctp_hash(struct sock *sk) 5428 { 5429 /* STUB */ 5430 } 5431 5432 static void sctp_unhash(struct sock *sk) 5433 { 5434 /* STUB */ 5435 } 5436 5437 /* Check if port is acceptable. Possibly find first available port. 5438 * 5439 * The port hash table (contained in the 'global' SCTP protocol storage 5440 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5441 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5442 * list (the list number is the port number hashed out, so as you 5443 * would expect from a hash function, all the ports in a given list have 5444 * such a number that hashes out to the same list number; you were 5445 * expecting that, right?); so each list has a set of ports, with a 5446 * link to the socket (struct sock) that uses it, the port number and 5447 * a fastreuse flag (FIXME: NPI ipg). 5448 */ 5449 static struct sctp_bind_bucket *sctp_bucket_create( 5450 struct sctp_bind_hashbucket *head, unsigned short snum); 5451 5452 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5453 { 5454 struct sctp_bind_hashbucket *head; /* hash list */ 5455 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5456 struct hlist_node *node; 5457 unsigned short snum; 5458 int ret; 5459 5460 snum = ntohs(addr->v4.sin_port); 5461 5462 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5463 sctp_local_bh_disable(); 5464 5465 if (snum == 0) { 5466 /* Search for an available port. */ 5467 int low, high, remaining, index; 5468 unsigned int rover; 5469 5470 inet_get_local_port_range(&low, &high); 5471 remaining = (high - low) + 1; 5472 rover = net_random() % remaining + low; 5473 5474 do { 5475 rover++; 5476 if ((rover < low) || (rover > high)) 5477 rover = low; 5478 if (inet_is_reserved_local_port(rover)) 5479 continue; 5480 index = sctp_phashfn(rover); 5481 head = &sctp_port_hashtable[index]; 5482 sctp_spin_lock(&head->lock); 5483 sctp_for_each_hentry(pp, node, &head->chain) 5484 if (pp->port == rover) 5485 goto next; 5486 break; 5487 next: 5488 sctp_spin_unlock(&head->lock); 5489 } while (--remaining > 0); 5490 5491 /* Exhausted local port range during search? */ 5492 ret = 1; 5493 if (remaining <= 0) 5494 goto fail; 5495 5496 /* OK, here is the one we will use. HEAD (the port 5497 * hash table list entry) is non-NULL and we hold it's 5498 * mutex. 5499 */ 5500 snum = rover; 5501 } else { 5502 /* We are given an specific port number; we verify 5503 * that it is not being used. If it is used, we will 5504 * exahust the search in the hash list corresponding 5505 * to the port number (snum) - we detect that with the 5506 * port iterator, pp being NULL. 5507 */ 5508 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5509 sctp_spin_lock(&head->lock); 5510 sctp_for_each_hentry(pp, node, &head->chain) { 5511 if (pp->port == snum) 5512 goto pp_found; 5513 } 5514 } 5515 pp = NULL; 5516 goto pp_not_found; 5517 pp_found: 5518 if (!hlist_empty(&pp->owner)) { 5519 /* We had a port hash table hit - there is an 5520 * available port (pp != NULL) and it is being 5521 * used by other socket (pp->owner not empty); that other 5522 * socket is going to be sk2. 5523 */ 5524 int reuse = sk->sk_reuse; 5525 struct sock *sk2; 5526 5527 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5528 if (pp->fastreuse && sk->sk_reuse && 5529 sk->sk_state != SCTP_SS_LISTENING) 5530 goto success; 5531 5532 /* Run through the list of sockets bound to the port 5533 * (pp->port) [via the pointers bind_next and 5534 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5535 * we get the endpoint they describe and run through 5536 * the endpoint's list of IP (v4 or v6) addresses, 5537 * comparing each of the addresses with the address of 5538 * the socket sk. If we find a match, then that means 5539 * that this port/socket (sk) combination are already 5540 * in an endpoint. 5541 */ 5542 sk_for_each_bound(sk2, node, &pp->owner) { 5543 struct sctp_endpoint *ep2; 5544 ep2 = sctp_sk(sk2)->ep; 5545 5546 if (sk == sk2 || 5547 (reuse && sk2->sk_reuse && 5548 sk2->sk_state != SCTP_SS_LISTENING)) 5549 continue; 5550 5551 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5552 sctp_sk(sk2), sctp_sk(sk))) { 5553 ret = (long)sk2; 5554 goto fail_unlock; 5555 } 5556 } 5557 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5558 } 5559 pp_not_found: 5560 /* If there was a hash table miss, create a new port. */ 5561 ret = 1; 5562 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5563 goto fail_unlock; 5564 5565 /* In either case (hit or miss), make sure fastreuse is 1 only 5566 * if sk->sk_reuse is too (that is, if the caller requested 5567 * SO_REUSEADDR on this socket -sk-). 5568 */ 5569 if (hlist_empty(&pp->owner)) { 5570 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5571 pp->fastreuse = 1; 5572 else 5573 pp->fastreuse = 0; 5574 } else if (pp->fastreuse && 5575 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5576 pp->fastreuse = 0; 5577 5578 /* We are set, so fill up all the data in the hash table 5579 * entry, tie the socket list information with the rest of the 5580 * sockets FIXME: Blurry, NPI (ipg). 5581 */ 5582 success: 5583 if (!sctp_sk(sk)->bind_hash) { 5584 inet_sk(sk)->inet_num = snum; 5585 sk_add_bind_node(sk, &pp->owner); 5586 sctp_sk(sk)->bind_hash = pp; 5587 } 5588 ret = 0; 5589 5590 fail_unlock: 5591 sctp_spin_unlock(&head->lock); 5592 5593 fail: 5594 sctp_local_bh_enable(); 5595 return ret; 5596 } 5597 5598 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5599 * port is requested. 5600 */ 5601 static int sctp_get_port(struct sock *sk, unsigned short snum) 5602 { 5603 long ret; 5604 union sctp_addr addr; 5605 struct sctp_af *af = sctp_sk(sk)->pf->af; 5606 5607 /* Set up a dummy address struct from the sk. */ 5608 af->from_sk(&addr, sk); 5609 addr.v4.sin_port = htons(snum); 5610 5611 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5612 ret = sctp_get_port_local(sk, &addr); 5613 5614 return ret ? 1 : 0; 5615 } 5616 5617 /* 5618 * Move a socket to LISTENING state. 5619 */ 5620 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5621 { 5622 struct sctp_sock *sp = sctp_sk(sk); 5623 struct sctp_endpoint *ep = sp->ep; 5624 struct crypto_hash *tfm = NULL; 5625 5626 /* Allocate HMAC for generating cookie. */ 5627 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5628 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5629 if (IS_ERR(tfm)) { 5630 if (net_ratelimit()) { 5631 pr_info("failed to load transform for %s: %ld\n", 5632 sctp_hmac_alg, PTR_ERR(tfm)); 5633 } 5634 return -ENOSYS; 5635 } 5636 sctp_sk(sk)->hmac = tfm; 5637 } 5638 5639 /* 5640 * If a bind() or sctp_bindx() is not called prior to a listen() 5641 * call that allows new associations to be accepted, the system 5642 * picks an ephemeral port and will choose an address set equivalent 5643 * to binding with a wildcard address. 5644 * 5645 * This is not currently spelled out in the SCTP sockets 5646 * extensions draft, but follows the practice as seen in TCP 5647 * sockets. 5648 * 5649 */ 5650 sk->sk_state = SCTP_SS_LISTENING; 5651 if (!ep->base.bind_addr.port) { 5652 if (sctp_autobind(sk)) 5653 return -EAGAIN; 5654 } else { 5655 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5656 sk->sk_state = SCTP_SS_CLOSED; 5657 return -EADDRINUSE; 5658 } 5659 } 5660 5661 sk->sk_max_ack_backlog = backlog; 5662 sctp_hash_endpoint(ep); 5663 return 0; 5664 } 5665 5666 /* 5667 * 4.1.3 / 5.1.3 listen() 5668 * 5669 * By default, new associations are not accepted for UDP style sockets. 5670 * An application uses listen() to mark a socket as being able to 5671 * accept new associations. 5672 * 5673 * On TCP style sockets, applications use listen() to ready the SCTP 5674 * endpoint for accepting inbound associations. 5675 * 5676 * On both types of endpoints a backlog of '0' disables listening. 5677 * 5678 * Move a socket to LISTENING state. 5679 */ 5680 int sctp_inet_listen(struct socket *sock, int backlog) 5681 { 5682 struct sock *sk = sock->sk; 5683 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5684 int err = -EINVAL; 5685 5686 if (unlikely(backlog < 0)) 5687 return err; 5688 5689 sctp_lock_sock(sk); 5690 5691 /* Peeled-off sockets are not allowed to listen(). */ 5692 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5693 goto out; 5694 5695 if (sock->state != SS_UNCONNECTED) 5696 goto out; 5697 5698 /* If backlog is zero, disable listening. */ 5699 if (!backlog) { 5700 if (sctp_sstate(sk, CLOSED)) 5701 goto out; 5702 5703 err = 0; 5704 sctp_unhash_endpoint(ep); 5705 sk->sk_state = SCTP_SS_CLOSED; 5706 if (sk->sk_reuse) 5707 sctp_sk(sk)->bind_hash->fastreuse = 1; 5708 goto out; 5709 } 5710 5711 /* If we are already listening, just update the backlog */ 5712 if (sctp_sstate(sk, LISTENING)) 5713 sk->sk_max_ack_backlog = backlog; 5714 else { 5715 err = sctp_listen_start(sk, backlog); 5716 if (err) 5717 goto out; 5718 } 5719 5720 err = 0; 5721 out: 5722 sctp_release_sock(sk); 5723 return err; 5724 } 5725 5726 /* 5727 * This function is done by modeling the current datagram_poll() and the 5728 * tcp_poll(). Note that, based on these implementations, we don't 5729 * lock the socket in this function, even though it seems that, 5730 * ideally, locking or some other mechanisms can be used to ensure 5731 * the integrity of the counters (sndbuf and wmem_alloc) used 5732 * in this place. We assume that we don't need locks either until proven 5733 * otherwise. 5734 * 5735 * Another thing to note is that we include the Async I/O support 5736 * here, again, by modeling the current TCP/UDP code. We don't have 5737 * a good way to test with it yet. 5738 */ 5739 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5740 { 5741 struct sock *sk = sock->sk; 5742 struct sctp_sock *sp = sctp_sk(sk); 5743 unsigned int mask; 5744 5745 poll_wait(file, sk_sleep(sk), wait); 5746 5747 /* A TCP-style listening socket becomes readable when the accept queue 5748 * is not empty. 5749 */ 5750 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5751 return (!list_empty(&sp->ep->asocs)) ? 5752 (POLLIN | POLLRDNORM) : 0; 5753 5754 mask = 0; 5755 5756 /* Is there any exceptional events? */ 5757 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5758 mask |= POLLERR; 5759 if (sk->sk_shutdown & RCV_SHUTDOWN) 5760 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5761 if (sk->sk_shutdown == SHUTDOWN_MASK) 5762 mask |= POLLHUP; 5763 5764 /* Is it readable? Reconsider this code with TCP-style support. */ 5765 if (!skb_queue_empty(&sk->sk_receive_queue)) 5766 mask |= POLLIN | POLLRDNORM; 5767 5768 /* The association is either gone or not ready. */ 5769 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5770 return mask; 5771 5772 /* Is it writable? */ 5773 if (sctp_writeable(sk)) { 5774 mask |= POLLOUT | POLLWRNORM; 5775 } else { 5776 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5777 /* 5778 * Since the socket is not locked, the buffer 5779 * might be made available after the writeable check and 5780 * before the bit is set. This could cause a lost I/O 5781 * signal. tcp_poll() has a race breaker for this race 5782 * condition. Based on their implementation, we put 5783 * in the following code to cover it as well. 5784 */ 5785 if (sctp_writeable(sk)) 5786 mask |= POLLOUT | POLLWRNORM; 5787 } 5788 return mask; 5789 } 5790 5791 /******************************************************************** 5792 * 2nd Level Abstractions 5793 ********************************************************************/ 5794 5795 static struct sctp_bind_bucket *sctp_bucket_create( 5796 struct sctp_bind_hashbucket *head, unsigned short snum) 5797 { 5798 struct sctp_bind_bucket *pp; 5799 5800 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5801 if (pp) { 5802 SCTP_DBG_OBJCNT_INC(bind_bucket); 5803 pp->port = snum; 5804 pp->fastreuse = 0; 5805 INIT_HLIST_HEAD(&pp->owner); 5806 hlist_add_head(&pp->node, &head->chain); 5807 } 5808 return pp; 5809 } 5810 5811 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5812 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5813 { 5814 if (pp && hlist_empty(&pp->owner)) { 5815 __hlist_del(&pp->node); 5816 kmem_cache_free(sctp_bucket_cachep, pp); 5817 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5818 } 5819 } 5820 5821 /* Release this socket's reference to a local port. */ 5822 static inline void __sctp_put_port(struct sock *sk) 5823 { 5824 struct sctp_bind_hashbucket *head = 5825 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 5826 struct sctp_bind_bucket *pp; 5827 5828 sctp_spin_lock(&head->lock); 5829 pp = sctp_sk(sk)->bind_hash; 5830 __sk_del_bind_node(sk); 5831 sctp_sk(sk)->bind_hash = NULL; 5832 inet_sk(sk)->inet_num = 0; 5833 sctp_bucket_destroy(pp); 5834 sctp_spin_unlock(&head->lock); 5835 } 5836 5837 void sctp_put_port(struct sock *sk) 5838 { 5839 sctp_local_bh_disable(); 5840 __sctp_put_port(sk); 5841 sctp_local_bh_enable(); 5842 } 5843 5844 /* 5845 * The system picks an ephemeral port and choose an address set equivalent 5846 * to binding with a wildcard address. 5847 * One of those addresses will be the primary address for the association. 5848 * This automatically enables the multihoming capability of SCTP. 5849 */ 5850 static int sctp_autobind(struct sock *sk) 5851 { 5852 union sctp_addr autoaddr; 5853 struct sctp_af *af; 5854 __be16 port; 5855 5856 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5857 af = sctp_sk(sk)->pf->af; 5858 5859 port = htons(inet_sk(sk)->inet_num); 5860 af->inaddr_any(&autoaddr, port); 5861 5862 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5863 } 5864 5865 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5866 * 5867 * From RFC 2292 5868 * 4.2 The cmsghdr Structure * 5869 * 5870 * When ancillary data is sent or received, any number of ancillary data 5871 * objects can be specified by the msg_control and msg_controllen members of 5872 * the msghdr structure, because each object is preceded by 5873 * a cmsghdr structure defining the object's length (the cmsg_len member). 5874 * Historically Berkeley-derived implementations have passed only one object 5875 * at a time, but this API allows multiple objects to be 5876 * passed in a single call to sendmsg() or recvmsg(). The following example 5877 * shows two ancillary data objects in a control buffer. 5878 * 5879 * |<--------------------------- msg_controllen -------------------------->| 5880 * | | 5881 * 5882 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5883 * 5884 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5885 * | | | 5886 * 5887 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5888 * 5889 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5890 * | | | | | 5891 * 5892 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5893 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5894 * 5895 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5896 * 5897 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5898 * ^ 5899 * | 5900 * 5901 * msg_control 5902 * points here 5903 */ 5904 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5905 sctp_cmsgs_t *cmsgs) 5906 { 5907 struct cmsghdr *cmsg; 5908 struct msghdr *my_msg = (struct msghdr *)msg; 5909 5910 for (cmsg = CMSG_FIRSTHDR(msg); 5911 cmsg != NULL; 5912 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 5913 if (!CMSG_OK(my_msg, cmsg)) 5914 return -EINVAL; 5915 5916 /* Should we parse this header or ignore? */ 5917 if (cmsg->cmsg_level != IPPROTO_SCTP) 5918 continue; 5919 5920 /* Strictly check lengths following example in SCM code. */ 5921 switch (cmsg->cmsg_type) { 5922 case SCTP_INIT: 5923 /* SCTP Socket API Extension 5924 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5925 * 5926 * This cmsghdr structure provides information for 5927 * initializing new SCTP associations with sendmsg(). 5928 * The SCTP_INITMSG socket option uses this same data 5929 * structure. This structure is not used for 5930 * recvmsg(). 5931 * 5932 * cmsg_level cmsg_type cmsg_data[] 5933 * ------------ ------------ ---------------------- 5934 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5935 */ 5936 if (cmsg->cmsg_len != 5937 CMSG_LEN(sizeof(struct sctp_initmsg))) 5938 return -EINVAL; 5939 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5940 break; 5941 5942 case SCTP_SNDRCV: 5943 /* SCTP Socket API Extension 5944 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5945 * 5946 * This cmsghdr structure specifies SCTP options for 5947 * sendmsg() and describes SCTP header information 5948 * about a received message through recvmsg(). 5949 * 5950 * cmsg_level cmsg_type cmsg_data[] 5951 * ------------ ------------ ---------------------- 5952 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5953 */ 5954 if (cmsg->cmsg_len != 5955 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5956 return -EINVAL; 5957 5958 cmsgs->info = 5959 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5960 5961 /* Minimally, validate the sinfo_flags. */ 5962 if (cmsgs->info->sinfo_flags & 5963 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5964 SCTP_ABORT | SCTP_EOF)) 5965 return -EINVAL; 5966 break; 5967 5968 default: 5969 return -EINVAL; 5970 } 5971 } 5972 return 0; 5973 } 5974 5975 /* 5976 * Wait for a packet.. 5977 * Note: This function is the same function as in core/datagram.c 5978 * with a few modifications to make lksctp work. 5979 */ 5980 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5981 { 5982 int error; 5983 DEFINE_WAIT(wait); 5984 5985 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 5986 5987 /* Socket errors? */ 5988 error = sock_error(sk); 5989 if (error) 5990 goto out; 5991 5992 if (!skb_queue_empty(&sk->sk_receive_queue)) 5993 goto ready; 5994 5995 /* Socket shut down? */ 5996 if (sk->sk_shutdown & RCV_SHUTDOWN) 5997 goto out; 5998 5999 /* Sequenced packets can come disconnected. If so we report the 6000 * problem. 6001 */ 6002 error = -ENOTCONN; 6003 6004 /* Is there a good reason to think that we may receive some data? */ 6005 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6006 goto out; 6007 6008 /* Handle signals. */ 6009 if (signal_pending(current)) 6010 goto interrupted; 6011 6012 /* Let another process have a go. Since we are going to sleep 6013 * anyway. Note: This may cause odd behaviors if the message 6014 * does not fit in the user's buffer, but this seems to be the 6015 * only way to honor MSG_DONTWAIT realistically. 6016 */ 6017 sctp_release_sock(sk); 6018 *timeo_p = schedule_timeout(*timeo_p); 6019 sctp_lock_sock(sk); 6020 6021 ready: 6022 finish_wait(sk_sleep(sk), &wait); 6023 return 0; 6024 6025 interrupted: 6026 error = sock_intr_errno(*timeo_p); 6027 6028 out: 6029 finish_wait(sk_sleep(sk), &wait); 6030 *err = error; 6031 return error; 6032 } 6033 6034 /* Receive a datagram. 6035 * Note: This is pretty much the same routine as in core/datagram.c 6036 * with a few changes to make lksctp work. 6037 */ 6038 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6039 int noblock, int *err) 6040 { 6041 int error; 6042 struct sk_buff *skb; 6043 long timeo; 6044 6045 timeo = sock_rcvtimeo(sk, noblock); 6046 6047 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6048 timeo, MAX_SCHEDULE_TIMEOUT); 6049 6050 do { 6051 /* Again only user level code calls this function, 6052 * so nothing interrupt level 6053 * will suddenly eat the receive_queue. 6054 * 6055 * Look at current nfs client by the way... 6056 * However, this function was correct in any case. 8) 6057 */ 6058 if (flags & MSG_PEEK) { 6059 spin_lock_bh(&sk->sk_receive_queue.lock); 6060 skb = skb_peek(&sk->sk_receive_queue); 6061 if (skb) 6062 atomic_inc(&skb->users); 6063 spin_unlock_bh(&sk->sk_receive_queue.lock); 6064 } else { 6065 skb = skb_dequeue(&sk->sk_receive_queue); 6066 } 6067 6068 if (skb) 6069 return skb; 6070 6071 /* Caller is allowed not to check sk->sk_err before calling. */ 6072 error = sock_error(sk); 6073 if (error) 6074 goto no_packet; 6075 6076 if (sk->sk_shutdown & RCV_SHUTDOWN) 6077 break; 6078 6079 /* User doesn't want to wait. */ 6080 error = -EAGAIN; 6081 if (!timeo) 6082 goto no_packet; 6083 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6084 6085 return NULL; 6086 6087 no_packet: 6088 *err = error; 6089 return NULL; 6090 } 6091 6092 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6093 static void __sctp_write_space(struct sctp_association *asoc) 6094 { 6095 struct sock *sk = asoc->base.sk; 6096 struct socket *sock = sk->sk_socket; 6097 6098 if ((sctp_wspace(asoc) > 0) && sock) { 6099 if (waitqueue_active(&asoc->wait)) 6100 wake_up_interruptible(&asoc->wait); 6101 6102 if (sctp_writeable(sk)) { 6103 wait_queue_head_t *wq = sk_sleep(sk); 6104 6105 if (wq && waitqueue_active(wq)) 6106 wake_up_interruptible(wq); 6107 6108 /* Note that we try to include the Async I/O support 6109 * here by modeling from the current TCP/UDP code. 6110 * We have not tested with it yet. 6111 */ 6112 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6113 sock_wake_async(sock, 6114 SOCK_WAKE_SPACE, POLL_OUT); 6115 } 6116 } 6117 } 6118 6119 /* Do accounting for the sndbuf space. 6120 * Decrement the used sndbuf space of the corresponding association by the 6121 * data size which was just transmitted(freed). 6122 */ 6123 static void sctp_wfree(struct sk_buff *skb) 6124 { 6125 struct sctp_association *asoc; 6126 struct sctp_chunk *chunk; 6127 struct sock *sk; 6128 6129 /* Get the saved chunk pointer. */ 6130 chunk = *((struct sctp_chunk **)(skb->cb)); 6131 asoc = chunk->asoc; 6132 sk = asoc->base.sk; 6133 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6134 sizeof(struct sk_buff) + 6135 sizeof(struct sctp_chunk); 6136 6137 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6138 6139 /* 6140 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6141 */ 6142 sk->sk_wmem_queued -= skb->truesize; 6143 sk_mem_uncharge(sk, skb->truesize); 6144 6145 sock_wfree(skb); 6146 __sctp_write_space(asoc); 6147 6148 sctp_association_put(asoc); 6149 } 6150 6151 /* Do accounting for the receive space on the socket. 6152 * Accounting for the association is done in ulpevent.c 6153 * We set this as a destructor for the cloned data skbs so that 6154 * accounting is done at the correct time. 6155 */ 6156 void sctp_sock_rfree(struct sk_buff *skb) 6157 { 6158 struct sock *sk = skb->sk; 6159 struct sctp_ulpevent *event = sctp_skb2event(skb); 6160 6161 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6162 6163 /* 6164 * Mimic the behavior of sock_rfree 6165 */ 6166 sk_mem_uncharge(sk, event->rmem_len); 6167 } 6168 6169 6170 /* Helper function to wait for space in the sndbuf. */ 6171 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6172 size_t msg_len) 6173 { 6174 struct sock *sk = asoc->base.sk; 6175 int err = 0; 6176 long current_timeo = *timeo_p; 6177 DEFINE_WAIT(wait); 6178 6179 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6180 asoc, (long)(*timeo_p), msg_len); 6181 6182 /* Increment the association's refcnt. */ 6183 sctp_association_hold(asoc); 6184 6185 /* Wait on the association specific sndbuf space. */ 6186 for (;;) { 6187 prepare_to_wait_exclusive(&asoc->wait, &wait, 6188 TASK_INTERRUPTIBLE); 6189 if (!*timeo_p) 6190 goto do_nonblock; 6191 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6192 asoc->base.dead) 6193 goto do_error; 6194 if (signal_pending(current)) 6195 goto do_interrupted; 6196 if (msg_len <= sctp_wspace(asoc)) 6197 break; 6198 6199 /* Let another process have a go. Since we are going 6200 * to sleep anyway. 6201 */ 6202 sctp_release_sock(sk); 6203 current_timeo = schedule_timeout(current_timeo); 6204 BUG_ON(sk != asoc->base.sk); 6205 sctp_lock_sock(sk); 6206 6207 *timeo_p = current_timeo; 6208 } 6209 6210 out: 6211 finish_wait(&asoc->wait, &wait); 6212 6213 /* Release the association's refcnt. */ 6214 sctp_association_put(asoc); 6215 6216 return err; 6217 6218 do_error: 6219 err = -EPIPE; 6220 goto out; 6221 6222 do_interrupted: 6223 err = sock_intr_errno(*timeo_p); 6224 goto out; 6225 6226 do_nonblock: 6227 err = -EAGAIN; 6228 goto out; 6229 } 6230 6231 void sctp_data_ready(struct sock *sk, int len) 6232 { 6233 struct socket_wq *wq; 6234 6235 rcu_read_lock(); 6236 wq = rcu_dereference(sk->sk_wq); 6237 if (wq_has_sleeper(wq)) 6238 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6239 POLLRDNORM | POLLRDBAND); 6240 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6241 rcu_read_unlock(); 6242 } 6243 6244 /* If socket sndbuf has changed, wake up all per association waiters. */ 6245 void sctp_write_space(struct sock *sk) 6246 { 6247 struct sctp_association *asoc; 6248 6249 /* Wake up the tasks in each wait queue. */ 6250 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6251 __sctp_write_space(asoc); 6252 } 6253 } 6254 6255 /* Is there any sndbuf space available on the socket? 6256 * 6257 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6258 * associations on the same socket. For a UDP-style socket with 6259 * multiple associations, it is possible for it to be "unwriteable" 6260 * prematurely. I assume that this is acceptable because 6261 * a premature "unwriteable" is better than an accidental "writeable" which 6262 * would cause an unwanted block under certain circumstances. For the 1-1 6263 * UDP-style sockets or TCP-style sockets, this code should work. 6264 * - Daisy 6265 */ 6266 static int sctp_writeable(struct sock *sk) 6267 { 6268 int amt = 0; 6269 6270 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6271 if (amt < 0) 6272 amt = 0; 6273 return amt; 6274 } 6275 6276 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6277 * returns immediately with EINPROGRESS. 6278 */ 6279 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6280 { 6281 struct sock *sk = asoc->base.sk; 6282 int err = 0; 6283 long current_timeo = *timeo_p; 6284 DEFINE_WAIT(wait); 6285 6286 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6287 (long)(*timeo_p)); 6288 6289 /* Increment the association's refcnt. */ 6290 sctp_association_hold(asoc); 6291 6292 for (;;) { 6293 prepare_to_wait_exclusive(&asoc->wait, &wait, 6294 TASK_INTERRUPTIBLE); 6295 if (!*timeo_p) 6296 goto do_nonblock; 6297 if (sk->sk_shutdown & RCV_SHUTDOWN) 6298 break; 6299 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6300 asoc->base.dead) 6301 goto do_error; 6302 if (signal_pending(current)) 6303 goto do_interrupted; 6304 6305 if (sctp_state(asoc, ESTABLISHED)) 6306 break; 6307 6308 /* Let another process have a go. Since we are going 6309 * to sleep anyway. 6310 */ 6311 sctp_release_sock(sk); 6312 current_timeo = schedule_timeout(current_timeo); 6313 sctp_lock_sock(sk); 6314 6315 *timeo_p = current_timeo; 6316 } 6317 6318 out: 6319 finish_wait(&asoc->wait, &wait); 6320 6321 /* Release the association's refcnt. */ 6322 sctp_association_put(asoc); 6323 6324 return err; 6325 6326 do_error: 6327 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6328 err = -ETIMEDOUT; 6329 else 6330 err = -ECONNREFUSED; 6331 goto out; 6332 6333 do_interrupted: 6334 err = sock_intr_errno(*timeo_p); 6335 goto out; 6336 6337 do_nonblock: 6338 err = -EINPROGRESS; 6339 goto out; 6340 } 6341 6342 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6343 { 6344 struct sctp_endpoint *ep; 6345 int err = 0; 6346 DEFINE_WAIT(wait); 6347 6348 ep = sctp_sk(sk)->ep; 6349 6350 6351 for (;;) { 6352 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6353 TASK_INTERRUPTIBLE); 6354 6355 if (list_empty(&ep->asocs)) { 6356 sctp_release_sock(sk); 6357 timeo = schedule_timeout(timeo); 6358 sctp_lock_sock(sk); 6359 } 6360 6361 err = -EINVAL; 6362 if (!sctp_sstate(sk, LISTENING)) 6363 break; 6364 6365 err = 0; 6366 if (!list_empty(&ep->asocs)) 6367 break; 6368 6369 err = sock_intr_errno(timeo); 6370 if (signal_pending(current)) 6371 break; 6372 6373 err = -EAGAIN; 6374 if (!timeo) 6375 break; 6376 } 6377 6378 finish_wait(sk_sleep(sk), &wait); 6379 6380 return err; 6381 } 6382 6383 static void sctp_wait_for_close(struct sock *sk, long timeout) 6384 { 6385 DEFINE_WAIT(wait); 6386 6387 do { 6388 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6389 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6390 break; 6391 sctp_release_sock(sk); 6392 timeout = schedule_timeout(timeout); 6393 sctp_lock_sock(sk); 6394 } while (!signal_pending(current) && timeout); 6395 6396 finish_wait(sk_sleep(sk), &wait); 6397 } 6398 6399 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6400 { 6401 struct sk_buff *frag; 6402 6403 if (!skb->data_len) 6404 goto done; 6405 6406 /* Don't forget the fragments. */ 6407 skb_walk_frags(skb, frag) 6408 sctp_skb_set_owner_r_frag(frag, sk); 6409 6410 done: 6411 sctp_skb_set_owner_r(skb, sk); 6412 } 6413 6414 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6415 struct sctp_association *asoc) 6416 { 6417 struct inet_sock *inet = inet_sk(sk); 6418 struct inet_sock *newinet; 6419 6420 newsk->sk_type = sk->sk_type; 6421 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6422 newsk->sk_flags = sk->sk_flags; 6423 newsk->sk_no_check = sk->sk_no_check; 6424 newsk->sk_reuse = sk->sk_reuse; 6425 6426 newsk->sk_shutdown = sk->sk_shutdown; 6427 newsk->sk_destruct = inet_sock_destruct; 6428 newsk->sk_family = sk->sk_family; 6429 newsk->sk_protocol = IPPROTO_SCTP; 6430 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6431 newsk->sk_sndbuf = sk->sk_sndbuf; 6432 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6433 newsk->sk_lingertime = sk->sk_lingertime; 6434 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6435 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6436 6437 newinet = inet_sk(newsk); 6438 6439 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6440 * getsockname() and getpeername() 6441 */ 6442 newinet->inet_sport = inet->inet_sport; 6443 newinet->inet_saddr = inet->inet_saddr; 6444 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6445 newinet->inet_dport = htons(asoc->peer.port); 6446 newinet->pmtudisc = inet->pmtudisc; 6447 newinet->inet_id = asoc->next_tsn ^ jiffies; 6448 6449 newinet->uc_ttl = inet->uc_ttl; 6450 newinet->mc_loop = 1; 6451 newinet->mc_ttl = 1; 6452 newinet->mc_index = 0; 6453 newinet->mc_list = NULL; 6454 } 6455 6456 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6457 * and its messages to the newsk. 6458 */ 6459 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6460 struct sctp_association *assoc, 6461 sctp_socket_type_t type) 6462 { 6463 struct sctp_sock *oldsp = sctp_sk(oldsk); 6464 struct sctp_sock *newsp = sctp_sk(newsk); 6465 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6466 struct sctp_endpoint *newep = newsp->ep; 6467 struct sk_buff *skb, *tmp; 6468 struct sctp_ulpevent *event; 6469 struct sctp_bind_hashbucket *head; 6470 6471 /* Migrate socket buffer sizes and all the socket level options to the 6472 * new socket. 6473 */ 6474 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6475 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6476 /* Brute force copy old sctp opt. */ 6477 inet_sk_copy_descendant(newsk, oldsk); 6478 6479 /* Restore the ep value that was overwritten with the above structure 6480 * copy. 6481 */ 6482 newsp->ep = newep; 6483 newsp->hmac = NULL; 6484 6485 /* Hook this new socket in to the bind_hash list. */ 6486 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6487 sctp_local_bh_disable(); 6488 sctp_spin_lock(&head->lock); 6489 pp = sctp_sk(oldsk)->bind_hash; 6490 sk_add_bind_node(newsk, &pp->owner); 6491 sctp_sk(newsk)->bind_hash = pp; 6492 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6493 sctp_spin_unlock(&head->lock); 6494 sctp_local_bh_enable(); 6495 6496 /* Copy the bind_addr list from the original endpoint to the new 6497 * endpoint so that we can handle restarts properly 6498 */ 6499 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6500 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6501 6502 /* Move any messages in the old socket's receive queue that are for the 6503 * peeled off association to the new socket's receive queue. 6504 */ 6505 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6506 event = sctp_skb2event(skb); 6507 if (event->asoc == assoc) { 6508 __skb_unlink(skb, &oldsk->sk_receive_queue); 6509 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6510 sctp_skb_set_owner_r_frag(skb, newsk); 6511 } 6512 } 6513 6514 /* Clean up any messages pending delivery due to partial 6515 * delivery. Three cases: 6516 * 1) No partial deliver; no work. 6517 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6518 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6519 */ 6520 skb_queue_head_init(&newsp->pd_lobby); 6521 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6522 6523 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6524 struct sk_buff_head *queue; 6525 6526 /* Decide which queue to move pd_lobby skbs to. */ 6527 if (assoc->ulpq.pd_mode) { 6528 queue = &newsp->pd_lobby; 6529 } else 6530 queue = &newsk->sk_receive_queue; 6531 6532 /* Walk through the pd_lobby, looking for skbs that 6533 * need moved to the new socket. 6534 */ 6535 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6536 event = sctp_skb2event(skb); 6537 if (event->asoc == assoc) { 6538 __skb_unlink(skb, &oldsp->pd_lobby); 6539 __skb_queue_tail(queue, skb); 6540 sctp_skb_set_owner_r_frag(skb, newsk); 6541 } 6542 } 6543 6544 /* Clear up any skbs waiting for the partial 6545 * delivery to finish. 6546 */ 6547 if (assoc->ulpq.pd_mode) 6548 sctp_clear_pd(oldsk, NULL); 6549 6550 } 6551 6552 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6553 sctp_skb_set_owner_r_frag(skb, newsk); 6554 6555 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6556 sctp_skb_set_owner_r_frag(skb, newsk); 6557 6558 /* Set the type of socket to indicate that it is peeled off from the 6559 * original UDP-style socket or created with the accept() call on a 6560 * TCP-style socket.. 6561 */ 6562 newsp->type = type; 6563 6564 /* Mark the new socket "in-use" by the user so that any packets 6565 * that may arrive on the association after we've moved it are 6566 * queued to the backlog. This prevents a potential race between 6567 * backlog processing on the old socket and new-packet processing 6568 * on the new socket. 6569 * 6570 * The caller has just allocated newsk so we can guarantee that other 6571 * paths won't try to lock it and then oldsk. 6572 */ 6573 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6574 sctp_assoc_migrate(assoc, newsk); 6575 6576 /* If the association on the newsk is already closed before accept() 6577 * is called, set RCV_SHUTDOWN flag. 6578 */ 6579 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6580 newsk->sk_shutdown |= RCV_SHUTDOWN; 6581 6582 newsk->sk_state = SCTP_SS_ESTABLISHED; 6583 sctp_release_sock(newsk); 6584 } 6585 6586 6587 /* This proto struct describes the ULP interface for SCTP. */ 6588 struct proto sctp_prot = { 6589 .name = "SCTP", 6590 .owner = THIS_MODULE, 6591 .close = sctp_close, 6592 .connect = sctp_connect, 6593 .disconnect = sctp_disconnect, 6594 .accept = sctp_accept, 6595 .ioctl = sctp_ioctl, 6596 .init = sctp_init_sock, 6597 .destroy = sctp_destroy_sock, 6598 .shutdown = sctp_shutdown, 6599 .setsockopt = sctp_setsockopt, 6600 .getsockopt = sctp_getsockopt, 6601 .sendmsg = sctp_sendmsg, 6602 .recvmsg = sctp_recvmsg, 6603 .bind = sctp_bind, 6604 .backlog_rcv = sctp_backlog_rcv, 6605 .hash = sctp_hash, 6606 .unhash = sctp_unhash, 6607 .get_port = sctp_get_port, 6608 .obj_size = sizeof(struct sctp_sock), 6609 .sysctl_mem = sysctl_sctp_mem, 6610 .sysctl_rmem = sysctl_sctp_rmem, 6611 .sysctl_wmem = sysctl_sctp_wmem, 6612 .memory_pressure = &sctp_memory_pressure, 6613 .enter_memory_pressure = sctp_enter_memory_pressure, 6614 .memory_allocated = &sctp_memory_allocated, 6615 .sockets_allocated = &sctp_sockets_allocated, 6616 }; 6617 6618 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6619 6620 struct proto sctpv6_prot = { 6621 .name = "SCTPv6", 6622 .owner = THIS_MODULE, 6623 .close = sctp_close, 6624 .connect = sctp_connect, 6625 .disconnect = sctp_disconnect, 6626 .accept = sctp_accept, 6627 .ioctl = sctp_ioctl, 6628 .init = sctp_init_sock, 6629 .destroy = sctp_destroy_sock, 6630 .shutdown = sctp_shutdown, 6631 .setsockopt = sctp_setsockopt, 6632 .getsockopt = sctp_getsockopt, 6633 .sendmsg = sctp_sendmsg, 6634 .recvmsg = sctp_recvmsg, 6635 .bind = sctp_bind, 6636 .backlog_rcv = sctp_backlog_rcv, 6637 .hash = sctp_hash, 6638 .unhash = sctp_unhash, 6639 .get_port = sctp_get_port, 6640 .obj_size = sizeof(struct sctp6_sock), 6641 .sysctl_mem = sysctl_sctp_mem, 6642 .sysctl_rmem = sysctl_sctp_rmem, 6643 .sysctl_wmem = sysctl_sctp_wmem, 6644 .memory_pressure = &sctp_memory_pressure, 6645 .enter_memory_pressure = sctp_enter_memory_pressure, 6646 .memory_allocated = &sctp_memory_allocated, 6647 .sockets_allocated = &sctp_sockets_allocated, 6648 }; 6649 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6650