xref: /openbmc/linux/net/sctp/socket.c (revision 54cbac81)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 #include <linux/file.h>
74 
75 #include <net/ip.h>
76 #include <net/icmp.h>
77 #include <net/route.h>
78 #include <net/ipv6.h>
79 #include <net/inet_common.h>
80 
81 #include <linux/socket.h> /* for sa_family_t */
82 #include <linux/export.h>
83 #include <net/sock.h>
84 #include <net/sctp/sctp.h>
85 #include <net/sctp/sm.h>
86 
87 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
88  * any of the functions below as they are used to export functions
89  * used by a project regression testsuite.
90  */
91 
92 /* Forward declarations for internal helper functions. */
93 static int sctp_writeable(struct sock *sk);
94 static void sctp_wfree(struct sk_buff *skb);
95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
96 				size_t msg_len);
97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
99 static int sctp_wait_for_accept(struct sock *sk, long timeo);
100 static void sctp_wait_for_close(struct sock *sk, long timeo);
101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
102 					union sctp_addr *addr, int len);
103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
107 static int sctp_send_asconf(struct sctp_association *asoc,
108 			    struct sctp_chunk *chunk);
109 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
110 static int sctp_autobind(struct sock *sk);
111 static void sctp_sock_migrate(struct sock *, struct sock *,
112 			      struct sctp_association *, sctp_socket_type_t);
113 
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118 
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122 
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 	sctp_memory_pressure = 1;
126 }
127 
128 
129 /* Get the sndbuf space available at the time on the association.  */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 	int amt;
133 
134 	if (asoc->ep->sndbuf_policy)
135 		amt = asoc->sndbuf_used;
136 	else
137 		amt = sk_wmem_alloc_get(asoc->base.sk);
138 
139 	if (amt >= asoc->base.sk->sk_sndbuf) {
140 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 			amt = 0;
142 		else {
143 			amt = sk_stream_wspace(asoc->base.sk);
144 			if (amt < 0)
145 				amt = 0;
146 		}
147 	} else {
148 		amt = asoc->base.sk->sk_sndbuf - amt;
149 	}
150 	return amt;
151 }
152 
153 /* Increment the used sndbuf space count of the corresponding association by
154  * the size of the outgoing data chunk.
155  * Also, set the skb destructor for sndbuf accounting later.
156  *
157  * Since it is always 1-1 between chunk and skb, and also a new skb is always
158  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159  * destructor in the data chunk skb for the purpose of the sndbuf space
160  * tracking.
161  */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 	struct sctp_association *asoc = chunk->asoc;
165 	struct sock *sk = asoc->base.sk;
166 
167 	/* The sndbuf space is tracked per association.  */
168 	sctp_association_hold(asoc);
169 
170 	skb_set_owner_w(chunk->skb, sk);
171 
172 	chunk->skb->destructor = sctp_wfree;
173 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
174 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175 
176 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 				sizeof(struct sk_buff) +
178 				sizeof(struct sctp_chunk);
179 
180 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 	sk->sk_wmem_queued += chunk->skb->truesize;
182 	sk_mem_charge(sk, chunk->skb->truesize);
183 }
184 
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 				   int len)
188 {
189 	struct sctp_af *af;
190 
191 	/* Verify basic sockaddr. */
192 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 	if (!af)
194 		return -EINVAL;
195 
196 	/* Is this a valid SCTP address?  */
197 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 		return -EINVAL;
199 
200 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 		return -EINVAL;
202 
203 	return 0;
204 }
205 
206 /* Look up the association by its id.  If this is not a UDP-style
207  * socket, the ID field is always ignored.
208  */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 	struct sctp_association *asoc = NULL;
212 
213 	/* If this is not a UDP-style socket, assoc id should be ignored. */
214 	if (!sctp_style(sk, UDP)) {
215 		/* Return NULL if the socket state is not ESTABLISHED. It
216 		 * could be a TCP-style listening socket or a socket which
217 		 * hasn't yet called connect() to establish an association.
218 		 */
219 		if (!sctp_sstate(sk, ESTABLISHED))
220 			return NULL;
221 
222 		/* Get the first and the only association from the list. */
223 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 					  struct sctp_association, asocs);
226 		return asoc;
227 	}
228 
229 	/* Otherwise this is a UDP-style socket. */
230 	if (!id || (id == (sctp_assoc_t)-1))
231 		return NULL;
232 
233 	spin_lock_bh(&sctp_assocs_id_lock);
234 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 	spin_unlock_bh(&sctp_assocs_id_lock);
236 
237 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 		return NULL;
239 
240 	return asoc;
241 }
242 
243 /* Look up the transport from an address and an assoc id. If both address and
244  * id are specified, the associations matching the address and the id should be
245  * the same.
246  */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 					      struct sockaddr_storage *addr,
249 					      sctp_assoc_t id)
250 {
251 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 	struct sctp_transport *transport;
253 	union sctp_addr *laddr = (union sctp_addr *)addr;
254 
255 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 					       laddr,
257 					       &transport);
258 
259 	if (!addr_asoc)
260 		return NULL;
261 
262 	id_asoc = sctp_id2assoc(sk, id);
263 	if (id_asoc && (id_asoc != addr_asoc))
264 		return NULL;
265 
266 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 						(union sctp_addr *)addr);
268 
269 	return transport;
270 }
271 
272 /* API 3.1.2 bind() - UDP Style Syntax
273  * The syntax of bind() is,
274  *
275  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
276  *
277  *   sd      - the socket descriptor returned by socket().
278  *   addr    - the address structure (struct sockaddr_in or struct
279  *             sockaddr_in6 [RFC 2553]),
280  *   addr_len - the size of the address structure.
281  */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 	int retval = 0;
285 
286 	sctp_lock_sock(sk);
287 
288 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 			  sk, addr, addr_len);
290 
291 	/* Disallow binding twice. */
292 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 				      addr_len);
295 	else
296 		retval = -EINVAL;
297 
298 	sctp_release_sock(sk);
299 
300 	return retval;
301 }
302 
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304 
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 					union sctp_addr *addr, int len)
308 {
309 	struct sctp_af *af;
310 
311 	/* Check minimum size.  */
312 	if (len < sizeof (struct sockaddr))
313 		return NULL;
314 
315 	/* V4 mapped address are really of AF_INET family */
316 	if (addr->sa.sa_family == AF_INET6 &&
317 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 		if (!opt->pf->af_supported(AF_INET, opt))
319 			return NULL;
320 	} else {
321 		/* Does this PF support this AF? */
322 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 			return NULL;
324 	}
325 
326 	/* If we get this far, af is valid. */
327 	af = sctp_get_af_specific(addr->sa.sa_family);
328 
329 	if (len < af->sockaddr_len)
330 		return NULL;
331 
332 	return af;
333 }
334 
335 /* Bind a local address either to an endpoint or to an association.  */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 	struct net *net = sock_net(sk);
339 	struct sctp_sock *sp = sctp_sk(sk);
340 	struct sctp_endpoint *ep = sp->ep;
341 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
342 	struct sctp_af *af;
343 	unsigned short snum;
344 	int ret = 0;
345 
346 	/* Common sockaddr verification. */
347 	af = sctp_sockaddr_af(sp, addr, len);
348 	if (!af) {
349 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
350 				  sk, addr, len);
351 		return -EINVAL;
352 	}
353 
354 	snum = ntohs(addr->v4.sin_port);
355 
356 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
357 				 ", port: %d, new port: %d, len: %d)\n",
358 				 sk,
359 				 addr,
360 				 bp->port, snum,
361 				 len);
362 
363 	/* PF specific bind() address verification. */
364 	if (!sp->pf->bind_verify(sp, addr))
365 		return -EADDRNOTAVAIL;
366 
367 	/* We must either be unbound, or bind to the same port.
368 	 * It's OK to allow 0 ports if we are already bound.
369 	 * We'll just inhert an already bound port in this case
370 	 */
371 	if (bp->port) {
372 		if (!snum)
373 			snum = bp->port;
374 		else if (snum != bp->port) {
375 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
376 				  " New port %d does not match existing port "
377 				  "%d.\n", snum, bp->port);
378 			return -EINVAL;
379 		}
380 	}
381 
382 	if (snum && snum < PROT_SOCK &&
383 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
384 		return -EACCES;
385 
386 	/* See if the address matches any of the addresses we may have
387 	 * already bound before checking against other endpoints.
388 	 */
389 	if (sctp_bind_addr_match(bp, addr, sp))
390 		return -EINVAL;
391 
392 	/* Make sure we are allowed to bind here.
393 	 * The function sctp_get_port_local() does duplicate address
394 	 * detection.
395 	 */
396 	addr->v4.sin_port = htons(snum);
397 	if ((ret = sctp_get_port_local(sk, addr))) {
398 		return -EADDRINUSE;
399 	}
400 
401 	/* Refresh ephemeral port.  */
402 	if (!bp->port)
403 		bp->port = inet_sk(sk)->inet_num;
404 
405 	/* Add the address to the bind address list.
406 	 * Use GFP_ATOMIC since BHs will be disabled.
407 	 */
408 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
409 
410 	/* Copy back into socket for getsockname() use. */
411 	if (!ret) {
412 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
413 		af->to_sk_saddr(addr, sk);
414 	}
415 
416 	return ret;
417 }
418 
419  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
420  *
421  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
422  * at any one time.  If a sender, after sending an ASCONF chunk, decides
423  * it needs to transfer another ASCONF Chunk, it MUST wait until the
424  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
425  * subsequent ASCONF. Note this restriction binds each side, so at any
426  * time two ASCONF may be in-transit on any given association (one sent
427  * from each endpoint).
428  */
429 static int sctp_send_asconf(struct sctp_association *asoc,
430 			    struct sctp_chunk *chunk)
431 {
432 	struct net 	*net = sock_net(asoc->base.sk);
433 	int		retval = 0;
434 
435 	/* If there is an outstanding ASCONF chunk, queue it for later
436 	 * transmission.
437 	 */
438 	if (asoc->addip_last_asconf) {
439 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
440 		goto out;
441 	}
442 
443 	/* Hold the chunk until an ASCONF_ACK is received. */
444 	sctp_chunk_hold(chunk);
445 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
446 	if (retval)
447 		sctp_chunk_free(chunk);
448 	else
449 		asoc->addip_last_asconf = chunk;
450 
451 out:
452 	return retval;
453 }
454 
455 /* Add a list of addresses as bind addresses to local endpoint or
456  * association.
457  *
458  * Basically run through each address specified in the addrs/addrcnt
459  * array/length pair, determine if it is IPv6 or IPv4 and call
460  * sctp_do_bind() on it.
461  *
462  * If any of them fails, then the operation will be reversed and the
463  * ones that were added will be removed.
464  *
465  * Only sctp_setsockopt_bindx() is supposed to call this function.
466  */
467 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
468 {
469 	int cnt;
470 	int retval = 0;
471 	void *addr_buf;
472 	struct sockaddr *sa_addr;
473 	struct sctp_af *af;
474 
475 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
476 			  sk, addrs, addrcnt);
477 
478 	addr_buf = addrs;
479 	for (cnt = 0; cnt < addrcnt; cnt++) {
480 		/* The list may contain either IPv4 or IPv6 address;
481 		 * determine the address length for walking thru the list.
482 		 */
483 		sa_addr = addr_buf;
484 		af = sctp_get_af_specific(sa_addr->sa_family);
485 		if (!af) {
486 			retval = -EINVAL;
487 			goto err_bindx_add;
488 		}
489 
490 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
491 				      af->sockaddr_len);
492 
493 		addr_buf += af->sockaddr_len;
494 
495 err_bindx_add:
496 		if (retval < 0) {
497 			/* Failed. Cleanup the ones that have been added */
498 			if (cnt > 0)
499 				sctp_bindx_rem(sk, addrs, cnt);
500 			return retval;
501 		}
502 	}
503 
504 	return retval;
505 }
506 
507 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
508  * associations that are part of the endpoint indicating that a list of local
509  * addresses are added to the endpoint.
510  *
511  * If any of the addresses is already in the bind address list of the
512  * association, we do not send the chunk for that association.  But it will not
513  * affect other associations.
514  *
515  * Only sctp_setsockopt_bindx() is supposed to call this function.
516  */
517 static int sctp_send_asconf_add_ip(struct sock		*sk,
518 				   struct sockaddr	*addrs,
519 				   int 			addrcnt)
520 {
521 	struct net *net = sock_net(sk);
522 	struct sctp_sock		*sp;
523 	struct sctp_endpoint		*ep;
524 	struct sctp_association		*asoc;
525 	struct sctp_bind_addr		*bp;
526 	struct sctp_chunk		*chunk;
527 	struct sctp_sockaddr_entry	*laddr;
528 	union sctp_addr			*addr;
529 	union sctp_addr			saveaddr;
530 	void				*addr_buf;
531 	struct sctp_af			*af;
532 	struct list_head		*p;
533 	int 				i;
534 	int 				retval = 0;
535 
536 	if (!net->sctp.addip_enable)
537 		return retval;
538 
539 	sp = sctp_sk(sk);
540 	ep = sp->ep;
541 
542 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
543 			  __func__, sk, addrs, addrcnt);
544 
545 	list_for_each_entry(asoc, &ep->asocs, asocs) {
546 
547 		if (!asoc->peer.asconf_capable)
548 			continue;
549 
550 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
551 			continue;
552 
553 		if (!sctp_state(asoc, ESTABLISHED))
554 			continue;
555 
556 		/* Check if any address in the packed array of addresses is
557 		 * in the bind address list of the association. If so,
558 		 * do not send the asconf chunk to its peer, but continue with
559 		 * other associations.
560 		 */
561 		addr_buf = addrs;
562 		for (i = 0; i < addrcnt; i++) {
563 			addr = addr_buf;
564 			af = sctp_get_af_specific(addr->v4.sin_family);
565 			if (!af) {
566 				retval = -EINVAL;
567 				goto out;
568 			}
569 
570 			if (sctp_assoc_lookup_laddr(asoc, addr))
571 				break;
572 
573 			addr_buf += af->sockaddr_len;
574 		}
575 		if (i < addrcnt)
576 			continue;
577 
578 		/* Use the first valid address in bind addr list of
579 		 * association as Address Parameter of ASCONF CHUNK.
580 		 */
581 		bp = &asoc->base.bind_addr;
582 		p = bp->address_list.next;
583 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
584 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
585 						   addrcnt, SCTP_PARAM_ADD_IP);
586 		if (!chunk) {
587 			retval = -ENOMEM;
588 			goto out;
589 		}
590 
591 		/* Add the new addresses to the bind address list with
592 		 * use_as_src set to 0.
593 		 */
594 		addr_buf = addrs;
595 		for (i = 0; i < addrcnt; i++) {
596 			addr = addr_buf;
597 			af = sctp_get_af_specific(addr->v4.sin_family);
598 			memcpy(&saveaddr, addr, af->sockaddr_len);
599 			retval = sctp_add_bind_addr(bp, &saveaddr,
600 						    SCTP_ADDR_NEW, GFP_ATOMIC);
601 			addr_buf += af->sockaddr_len;
602 		}
603 		if (asoc->src_out_of_asoc_ok) {
604 			struct sctp_transport *trans;
605 
606 			list_for_each_entry(trans,
607 			    &asoc->peer.transport_addr_list, transports) {
608 				/* Clear the source and route cache */
609 				dst_release(trans->dst);
610 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
611 				    2*asoc->pathmtu, 4380));
612 				trans->ssthresh = asoc->peer.i.a_rwnd;
613 				trans->rto = asoc->rto_initial;
614 				sctp_max_rto(asoc, trans);
615 				trans->rtt = trans->srtt = trans->rttvar = 0;
616 				sctp_transport_route(trans, NULL,
617 				    sctp_sk(asoc->base.sk));
618 			}
619 		}
620 		retval = sctp_send_asconf(asoc, chunk);
621 	}
622 
623 out:
624 	return retval;
625 }
626 
627 /* Remove a list of addresses from bind addresses list.  Do not remove the
628  * last address.
629  *
630  * Basically run through each address specified in the addrs/addrcnt
631  * array/length pair, determine if it is IPv6 or IPv4 and call
632  * sctp_del_bind() on it.
633  *
634  * If any of them fails, then the operation will be reversed and the
635  * ones that were removed will be added back.
636  *
637  * At least one address has to be left; if only one address is
638  * available, the operation will return -EBUSY.
639  *
640  * Only sctp_setsockopt_bindx() is supposed to call this function.
641  */
642 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
643 {
644 	struct sctp_sock *sp = sctp_sk(sk);
645 	struct sctp_endpoint *ep = sp->ep;
646 	int cnt;
647 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
648 	int retval = 0;
649 	void *addr_buf;
650 	union sctp_addr *sa_addr;
651 	struct sctp_af *af;
652 
653 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
654 			  sk, addrs, addrcnt);
655 
656 	addr_buf = addrs;
657 	for (cnt = 0; cnt < addrcnt; cnt++) {
658 		/* If the bind address list is empty or if there is only one
659 		 * bind address, there is nothing more to be removed (we need
660 		 * at least one address here).
661 		 */
662 		if (list_empty(&bp->address_list) ||
663 		    (sctp_list_single_entry(&bp->address_list))) {
664 			retval = -EBUSY;
665 			goto err_bindx_rem;
666 		}
667 
668 		sa_addr = addr_buf;
669 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
670 		if (!af) {
671 			retval = -EINVAL;
672 			goto err_bindx_rem;
673 		}
674 
675 		if (!af->addr_valid(sa_addr, sp, NULL)) {
676 			retval = -EADDRNOTAVAIL;
677 			goto err_bindx_rem;
678 		}
679 
680 		if (sa_addr->v4.sin_port &&
681 		    sa_addr->v4.sin_port != htons(bp->port)) {
682 			retval = -EINVAL;
683 			goto err_bindx_rem;
684 		}
685 
686 		if (!sa_addr->v4.sin_port)
687 			sa_addr->v4.sin_port = htons(bp->port);
688 
689 		/* FIXME - There is probably a need to check if sk->sk_saddr and
690 		 * sk->sk_rcv_addr are currently set to one of the addresses to
691 		 * be removed. This is something which needs to be looked into
692 		 * when we are fixing the outstanding issues with multi-homing
693 		 * socket routing and failover schemes. Refer to comments in
694 		 * sctp_do_bind(). -daisy
695 		 */
696 		retval = sctp_del_bind_addr(bp, sa_addr);
697 
698 		addr_buf += af->sockaddr_len;
699 err_bindx_rem:
700 		if (retval < 0) {
701 			/* Failed. Add the ones that has been removed back */
702 			if (cnt > 0)
703 				sctp_bindx_add(sk, addrs, cnt);
704 			return retval;
705 		}
706 	}
707 
708 	return retval;
709 }
710 
711 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
712  * the associations that are part of the endpoint indicating that a list of
713  * local addresses are removed from the endpoint.
714  *
715  * If any of the addresses is already in the bind address list of the
716  * association, we do not send the chunk for that association.  But it will not
717  * affect other associations.
718  *
719  * Only sctp_setsockopt_bindx() is supposed to call this function.
720  */
721 static int sctp_send_asconf_del_ip(struct sock		*sk,
722 				   struct sockaddr	*addrs,
723 				   int			addrcnt)
724 {
725 	struct net *net = sock_net(sk);
726 	struct sctp_sock	*sp;
727 	struct sctp_endpoint	*ep;
728 	struct sctp_association	*asoc;
729 	struct sctp_transport	*transport;
730 	struct sctp_bind_addr	*bp;
731 	struct sctp_chunk	*chunk;
732 	union sctp_addr		*laddr;
733 	void			*addr_buf;
734 	struct sctp_af		*af;
735 	struct sctp_sockaddr_entry *saddr;
736 	int 			i;
737 	int 			retval = 0;
738 	int			stored = 0;
739 
740 	chunk = NULL;
741 	if (!net->sctp.addip_enable)
742 		return retval;
743 
744 	sp = sctp_sk(sk);
745 	ep = sp->ep;
746 
747 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
748 			  __func__, sk, addrs, addrcnt);
749 
750 	list_for_each_entry(asoc, &ep->asocs, asocs) {
751 
752 		if (!asoc->peer.asconf_capable)
753 			continue;
754 
755 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
756 			continue;
757 
758 		if (!sctp_state(asoc, ESTABLISHED))
759 			continue;
760 
761 		/* Check if any address in the packed array of addresses is
762 		 * not present in the bind address list of the association.
763 		 * If so, do not send the asconf chunk to its peer, but
764 		 * continue with other associations.
765 		 */
766 		addr_buf = addrs;
767 		for (i = 0; i < addrcnt; i++) {
768 			laddr = addr_buf;
769 			af = sctp_get_af_specific(laddr->v4.sin_family);
770 			if (!af) {
771 				retval = -EINVAL;
772 				goto out;
773 			}
774 
775 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
776 				break;
777 
778 			addr_buf += af->sockaddr_len;
779 		}
780 		if (i < addrcnt)
781 			continue;
782 
783 		/* Find one address in the association's bind address list
784 		 * that is not in the packed array of addresses. This is to
785 		 * make sure that we do not delete all the addresses in the
786 		 * association.
787 		 */
788 		bp = &asoc->base.bind_addr;
789 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
790 					       addrcnt, sp);
791 		if ((laddr == NULL) && (addrcnt == 1)) {
792 			if (asoc->asconf_addr_del_pending)
793 				continue;
794 			asoc->asconf_addr_del_pending =
795 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
796 			if (asoc->asconf_addr_del_pending == NULL) {
797 				retval = -ENOMEM;
798 				goto out;
799 			}
800 			asoc->asconf_addr_del_pending->sa.sa_family =
801 				    addrs->sa_family;
802 			asoc->asconf_addr_del_pending->v4.sin_port =
803 				    htons(bp->port);
804 			if (addrs->sa_family == AF_INET) {
805 				struct sockaddr_in *sin;
806 
807 				sin = (struct sockaddr_in *)addrs;
808 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
809 			} else if (addrs->sa_family == AF_INET6) {
810 				struct sockaddr_in6 *sin6;
811 
812 				sin6 = (struct sockaddr_in6 *)addrs;
813 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
814 			}
815 			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
816 			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
817 			    asoc->asconf_addr_del_pending);
818 			asoc->src_out_of_asoc_ok = 1;
819 			stored = 1;
820 			goto skip_mkasconf;
821 		}
822 
823 		/* We do not need RCU protection throughout this loop
824 		 * because this is done under a socket lock from the
825 		 * setsockopt call.
826 		 */
827 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
828 						   SCTP_PARAM_DEL_IP);
829 		if (!chunk) {
830 			retval = -ENOMEM;
831 			goto out;
832 		}
833 
834 skip_mkasconf:
835 		/* Reset use_as_src flag for the addresses in the bind address
836 		 * list that are to be deleted.
837 		 */
838 		addr_buf = addrs;
839 		for (i = 0; i < addrcnt; i++) {
840 			laddr = addr_buf;
841 			af = sctp_get_af_specific(laddr->v4.sin_family);
842 			list_for_each_entry(saddr, &bp->address_list, list) {
843 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
844 					saddr->state = SCTP_ADDR_DEL;
845 			}
846 			addr_buf += af->sockaddr_len;
847 		}
848 
849 		/* Update the route and saddr entries for all the transports
850 		 * as some of the addresses in the bind address list are
851 		 * about to be deleted and cannot be used as source addresses.
852 		 */
853 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
854 					transports) {
855 			dst_release(transport->dst);
856 			sctp_transport_route(transport, NULL,
857 					     sctp_sk(asoc->base.sk));
858 		}
859 
860 		if (stored)
861 			/* We don't need to transmit ASCONF */
862 			continue;
863 		retval = sctp_send_asconf(asoc, chunk);
864 	}
865 out:
866 	return retval;
867 }
868 
869 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
870 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
871 {
872 	struct sock *sk = sctp_opt2sk(sp);
873 	union sctp_addr *addr;
874 	struct sctp_af *af;
875 
876 	/* It is safe to write port space in caller. */
877 	addr = &addrw->a;
878 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
879 	af = sctp_get_af_specific(addr->sa.sa_family);
880 	if (!af)
881 		return -EINVAL;
882 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
883 		return -EINVAL;
884 
885 	if (addrw->state == SCTP_ADDR_NEW)
886 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
887 	else
888 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
889 }
890 
891 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
892  *
893  * API 8.1
894  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
895  *                int flags);
896  *
897  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
898  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
899  * or IPv6 addresses.
900  *
901  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
902  * Section 3.1.2 for this usage.
903  *
904  * addrs is a pointer to an array of one or more socket addresses. Each
905  * address is contained in its appropriate structure (i.e. struct
906  * sockaddr_in or struct sockaddr_in6) the family of the address type
907  * must be used to distinguish the address length (note that this
908  * representation is termed a "packed array" of addresses). The caller
909  * specifies the number of addresses in the array with addrcnt.
910  *
911  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
912  * -1, and sets errno to the appropriate error code.
913  *
914  * For SCTP, the port given in each socket address must be the same, or
915  * sctp_bindx() will fail, setting errno to EINVAL.
916  *
917  * The flags parameter is formed from the bitwise OR of zero or more of
918  * the following currently defined flags:
919  *
920  * SCTP_BINDX_ADD_ADDR
921  *
922  * SCTP_BINDX_REM_ADDR
923  *
924  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
925  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
926  * addresses from the association. The two flags are mutually exclusive;
927  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
928  * not remove all addresses from an association; sctp_bindx() will
929  * reject such an attempt with EINVAL.
930  *
931  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
932  * additional addresses with an endpoint after calling bind().  Or use
933  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
934  * socket is associated with so that no new association accepted will be
935  * associated with those addresses. If the endpoint supports dynamic
936  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
937  * endpoint to send the appropriate message to the peer to change the
938  * peers address lists.
939  *
940  * Adding and removing addresses from a connected association is
941  * optional functionality. Implementations that do not support this
942  * functionality should return EOPNOTSUPP.
943  *
944  * Basically do nothing but copying the addresses from user to kernel
945  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
946  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
947  * from userspace.
948  *
949  * We don't use copy_from_user() for optimization: we first do the
950  * sanity checks (buffer size -fast- and access check-healthy
951  * pointer); if all of those succeed, then we can alloc the memory
952  * (expensive operation) needed to copy the data to kernel. Then we do
953  * the copying without checking the user space area
954  * (__copy_from_user()).
955  *
956  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
957  * it.
958  *
959  * sk        The sk of the socket
960  * addrs     The pointer to the addresses in user land
961  * addrssize Size of the addrs buffer
962  * op        Operation to perform (add or remove, see the flags of
963  *           sctp_bindx)
964  *
965  * Returns 0 if ok, <0 errno code on error.
966  */
967 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
968 				      struct sockaddr __user *addrs,
969 				      int addrs_size, int op)
970 {
971 	struct sockaddr *kaddrs;
972 	int err;
973 	int addrcnt = 0;
974 	int walk_size = 0;
975 	struct sockaddr *sa_addr;
976 	void *addr_buf;
977 	struct sctp_af *af;
978 
979 	SCTP_DEBUG_PRINTK("sctp_setsockopt_bindx: sk %p addrs %p"
980 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
981 
982 	if (unlikely(addrs_size <= 0))
983 		return -EINVAL;
984 
985 	/* Check the user passed a healthy pointer.  */
986 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
987 		return -EFAULT;
988 
989 	/* Alloc space for the address array in kernel memory.  */
990 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
991 	if (unlikely(!kaddrs))
992 		return -ENOMEM;
993 
994 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
995 		kfree(kaddrs);
996 		return -EFAULT;
997 	}
998 
999 	/* Walk through the addrs buffer and count the number of addresses. */
1000 	addr_buf = kaddrs;
1001 	while (walk_size < addrs_size) {
1002 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1003 			kfree(kaddrs);
1004 			return -EINVAL;
1005 		}
1006 
1007 		sa_addr = addr_buf;
1008 		af = sctp_get_af_specific(sa_addr->sa_family);
1009 
1010 		/* If the address family is not supported or if this address
1011 		 * causes the address buffer to overflow return EINVAL.
1012 		 */
1013 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1014 			kfree(kaddrs);
1015 			return -EINVAL;
1016 		}
1017 		addrcnt++;
1018 		addr_buf += af->sockaddr_len;
1019 		walk_size += af->sockaddr_len;
1020 	}
1021 
1022 	/* Do the work. */
1023 	switch (op) {
1024 	case SCTP_BINDX_ADD_ADDR:
1025 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1026 		if (err)
1027 			goto out;
1028 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1029 		break;
1030 
1031 	case SCTP_BINDX_REM_ADDR:
1032 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1033 		if (err)
1034 			goto out;
1035 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1036 		break;
1037 
1038 	default:
1039 		err = -EINVAL;
1040 		break;
1041 	}
1042 
1043 out:
1044 	kfree(kaddrs);
1045 
1046 	return err;
1047 }
1048 
1049 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1050  *
1051  * Common routine for handling connect() and sctp_connectx().
1052  * Connect will come in with just a single address.
1053  */
1054 static int __sctp_connect(struct sock* sk,
1055 			  struct sockaddr *kaddrs,
1056 			  int addrs_size,
1057 			  sctp_assoc_t *assoc_id)
1058 {
1059 	struct net *net = sock_net(sk);
1060 	struct sctp_sock *sp;
1061 	struct sctp_endpoint *ep;
1062 	struct sctp_association *asoc = NULL;
1063 	struct sctp_association *asoc2;
1064 	struct sctp_transport *transport;
1065 	union sctp_addr to;
1066 	struct sctp_af *af;
1067 	sctp_scope_t scope;
1068 	long timeo;
1069 	int err = 0;
1070 	int addrcnt = 0;
1071 	int walk_size = 0;
1072 	union sctp_addr *sa_addr = NULL;
1073 	void *addr_buf;
1074 	unsigned short port;
1075 	unsigned int f_flags = 0;
1076 
1077 	sp = sctp_sk(sk);
1078 	ep = sp->ep;
1079 
1080 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1081 	 * state - UDP-style peeled off socket or a TCP-style socket that
1082 	 * is already connected.
1083 	 * It cannot be done even on a TCP-style listening socket.
1084 	 */
1085 	if (sctp_sstate(sk, ESTABLISHED) ||
1086 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1087 		err = -EISCONN;
1088 		goto out_free;
1089 	}
1090 
1091 	/* Walk through the addrs buffer and count the number of addresses. */
1092 	addr_buf = kaddrs;
1093 	while (walk_size < addrs_size) {
1094 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1095 			err = -EINVAL;
1096 			goto out_free;
1097 		}
1098 
1099 		sa_addr = addr_buf;
1100 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1101 
1102 		/* If the address family is not supported or if this address
1103 		 * causes the address buffer to overflow return EINVAL.
1104 		 */
1105 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1106 			err = -EINVAL;
1107 			goto out_free;
1108 		}
1109 
1110 		port = ntohs(sa_addr->v4.sin_port);
1111 
1112 		/* Save current address so we can work with it */
1113 		memcpy(&to, sa_addr, af->sockaddr_len);
1114 
1115 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1116 		if (err)
1117 			goto out_free;
1118 
1119 		/* Make sure the destination port is correctly set
1120 		 * in all addresses.
1121 		 */
1122 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1123 			goto out_free;
1124 
1125 
1126 		/* Check if there already is a matching association on the
1127 		 * endpoint (other than the one created here).
1128 		 */
1129 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1130 		if (asoc2 && asoc2 != asoc) {
1131 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1132 				err = -EISCONN;
1133 			else
1134 				err = -EALREADY;
1135 			goto out_free;
1136 		}
1137 
1138 		/* If we could not find a matching association on the endpoint,
1139 		 * make sure that there is no peeled-off association matching
1140 		 * the peer address even on another socket.
1141 		 */
1142 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1143 			err = -EADDRNOTAVAIL;
1144 			goto out_free;
1145 		}
1146 
1147 		if (!asoc) {
1148 			/* If a bind() or sctp_bindx() is not called prior to
1149 			 * an sctp_connectx() call, the system picks an
1150 			 * ephemeral port and will choose an address set
1151 			 * equivalent to binding with a wildcard address.
1152 			 */
1153 			if (!ep->base.bind_addr.port) {
1154 				if (sctp_autobind(sk)) {
1155 					err = -EAGAIN;
1156 					goto out_free;
1157 				}
1158 			} else {
1159 				/*
1160 				 * If an unprivileged user inherits a 1-many
1161 				 * style socket with open associations on a
1162 				 * privileged port, it MAY be permitted to
1163 				 * accept new associations, but it SHOULD NOT
1164 				 * be permitted to open new associations.
1165 				 */
1166 				if (ep->base.bind_addr.port < PROT_SOCK &&
1167 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1168 					err = -EACCES;
1169 					goto out_free;
1170 				}
1171 			}
1172 
1173 			scope = sctp_scope(&to);
1174 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1175 			if (!asoc) {
1176 				err = -ENOMEM;
1177 				goto out_free;
1178 			}
1179 
1180 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1181 							      GFP_KERNEL);
1182 			if (err < 0) {
1183 				goto out_free;
1184 			}
1185 
1186 		}
1187 
1188 		/* Prime the peer's transport structures.  */
1189 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1190 						SCTP_UNKNOWN);
1191 		if (!transport) {
1192 			err = -ENOMEM;
1193 			goto out_free;
1194 		}
1195 
1196 		addrcnt++;
1197 		addr_buf += af->sockaddr_len;
1198 		walk_size += af->sockaddr_len;
1199 	}
1200 
1201 	/* In case the user of sctp_connectx() wants an association
1202 	 * id back, assign one now.
1203 	 */
1204 	if (assoc_id) {
1205 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1206 		if (err < 0)
1207 			goto out_free;
1208 	}
1209 
1210 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1211 	if (err < 0) {
1212 		goto out_free;
1213 	}
1214 
1215 	/* Initialize sk's dport and daddr for getpeername() */
1216 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1217 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1218 	af->to_sk_daddr(sa_addr, sk);
1219 	sk->sk_err = 0;
1220 
1221 	/* in-kernel sockets don't generally have a file allocated to them
1222 	 * if all they do is call sock_create_kern().
1223 	 */
1224 	if (sk->sk_socket->file)
1225 		f_flags = sk->sk_socket->file->f_flags;
1226 
1227 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1228 
1229 	err = sctp_wait_for_connect(asoc, &timeo);
1230 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1231 		*assoc_id = asoc->assoc_id;
1232 
1233 	/* Don't free association on exit. */
1234 	asoc = NULL;
1235 
1236 out_free:
1237 
1238 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1239 			  " kaddrs: %p err: %d\n",
1240 			  asoc, kaddrs, err);
1241 	if (asoc) {
1242 		/* sctp_primitive_ASSOCIATE may have added this association
1243 		 * To the hash table, try to unhash it, just in case, its a noop
1244 		 * if it wasn't hashed so we're safe
1245 		 */
1246 		sctp_unhash_established(asoc);
1247 		sctp_association_free(asoc);
1248 	}
1249 	return err;
1250 }
1251 
1252 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1253  *
1254  * API 8.9
1255  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1256  * 			sctp_assoc_t *asoc);
1257  *
1258  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1259  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1260  * or IPv6 addresses.
1261  *
1262  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1263  * Section 3.1.2 for this usage.
1264  *
1265  * addrs is a pointer to an array of one or more socket addresses. Each
1266  * address is contained in its appropriate structure (i.e. struct
1267  * sockaddr_in or struct sockaddr_in6) the family of the address type
1268  * must be used to distengish the address length (note that this
1269  * representation is termed a "packed array" of addresses). The caller
1270  * specifies the number of addresses in the array with addrcnt.
1271  *
1272  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1273  * the association id of the new association.  On failure, sctp_connectx()
1274  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1275  * is not touched by the kernel.
1276  *
1277  * For SCTP, the port given in each socket address must be the same, or
1278  * sctp_connectx() will fail, setting errno to EINVAL.
1279  *
1280  * An application can use sctp_connectx to initiate an association with
1281  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1282  * allows a caller to specify multiple addresses at which a peer can be
1283  * reached.  The way the SCTP stack uses the list of addresses to set up
1284  * the association is implementation dependent.  This function only
1285  * specifies that the stack will try to make use of all the addresses in
1286  * the list when needed.
1287  *
1288  * Note that the list of addresses passed in is only used for setting up
1289  * the association.  It does not necessarily equal the set of addresses
1290  * the peer uses for the resulting association.  If the caller wants to
1291  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1292  * retrieve them after the association has been set up.
1293  *
1294  * Basically do nothing but copying the addresses from user to kernel
1295  * land and invoking either sctp_connectx(). This is used for tunneling
1296  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1297  *
1298  * We don't use copy_from_user() for optimization: we first do the
1299  * sanity checks (buffer size -fast- and access check-healthy
1300  * pointer); if all of those succeed, then we can alloc the memory
1301  * (expensive operation) needed to copy the data to kernel. Then we do
1302  * the copying without checking the user space area
1303  * (__copy_from_user()).
1304  *
1305  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1306  * it.
1307  *
1308  * sk        The sk of the socket
1309  * addrs     The pointer to the addresses in user land
1310  * addrssize Size of the addrs buffer
1311  *
1312  * Returns >=0 if ok, <0 errno code on error.
1313  */
1314 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1315 				      struct sockaddr __user *addrs,
1316 				      int addrs_size,
1317 				      sctp_assoc_t *assoc_id)
1318 {
1319 	int err = 0;
1320 	struct sockaddr *kaddrs;
1321 
1322 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1323 			  __func__, sk, addrs, addrs_size);
1324 
1325 	if (unlikely(addrs_size <= 0))
1326 		return -EINVAL;
1327 
1328 	/* Check the user passed a healthy pointer.  */
1329 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1330 		return -EFAULT;
1331 
1332 	/* Alloc space for the address array in kernel memory.  */
1333 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1334 	if (unlikely(!kaddrs))
1335 		return -ENOMEM;
1336 
1337 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1338 		err = -EFAULT;
1339 	} else {
1340 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1341 	}
1342 
1343 	kfree(kaddrs);
1344 
1345 	return err;
1346 }
1347 
1348 /*
1349  * This is an older interface.  It's kept for backward compatibility
1350  * to the option that doesn't provide association id.
1351  */
1352 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1353 				      struct sockaddr __user *addrs,
1354 				      int addrs_size)
1355 {
1356 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1357 }
1358 
1359 /*
1360  * New interface for the API.  The since the API is done with a socket
1361  * option, to make it simple we feed back the association id is as a return
1362  * indication to the call.  Error is always negative and association id is
1363  * always positive.
1364  */
1365 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1366 				      struct sockaddr __user *addrs,
1367 				      int addrs_size)
1368 {
1369 	sctp_assoc_t assoc_id = 0;
1370 	int err = 0;
1371 
1372 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1373 
1374 	if (err)
1375 		return err;
1376 	else
1377 		return assoc_id;
1378 }
1379 
1380 /*
1381  * New (hopefully final) interface for the API.
1382  * We use the sctp_getaddrs_old structure so that use-space library
1383  * can avoid any unnecessary allocations.   The only defferent part
1384  * is that we store the actual length of the address buffer into the
1385  * addrs_num structure member.  That way we can re-use the existing
1386  * code.
1387  */
1388 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1389 					char __user *optval,
1390 					int __user *optlen)
1391 {
1392 	struct sctp_getaddrs_old param;
1393 	sctp_assoc_t assoc_id = 0;
1394 	int err = 0;
1395 
1396 	if (len < sizeof(param))
1397 		return -EINVAL;
1398 
1399 	if (copy_from_user(&param, optval, sizeof(param)))
1400 		return -EFAULT;
1401 
1402 	err = __sctp_setsockopt_connectx(sk,
1403 			(struct sockaddr __user *)param.addrs,
1404 			param.addr_num, &assoc_id);
1405 
1406 	if (err == 0 || err == -EINPROGRESS) {
1407 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 			return -EFAULT;
1409 		if (put_user(sizeof(assoc_id), optlen))
1410 			return -EFAULT;
1411 	}
1412 
1413 	return err;
1414 }
1415 
1416 /* API 3.1.4 close() - UDP Style Syntax
1417  * Applications use close() to perform graceful shutdown (as described in
1418  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419  * by a UDP-style socket.
1420  *
1421  * The syntax is
1422  *
1423  *   ret = close(int sd);
1424  *
1425  *   sd      - the socket descriptor of the associations to be closed.
1426  *
1427  * To gracefully shutdown a specific association represented by the
1428  * UDP-style socket, an application should use the sendmsg() call,
1429  * passing no user data, but including the appropriate flag in the
1430  * ancillary data (see Section xxxx).
1431  *
1432  * If sd in the close() call is a branched-off socket representing only
1433  * one association, the shutdown is performed on that association only.
1434  *
1435  * 4.1.6 close() - TCP Style Syntax
1436  *
1437  * Applications use close() to gracefully close down an association.
1438  *
1439  * The syntax is:
1440  *
1441  *    int close(int sd);
1442  *
1443  *      sd      - the socket descriptor of the association to be closed.
1444  *
1445  * After an application calls close() on a socket descriptor, no further
1446  * socket operations will succeed on that descriptor.
1447  *
1448  * API 7.1.4 SO_LINGER
1449  *
1450  * An application using the TCP-style socket can use this option to
1451  * perform the SCTP ABORT primitive.  The linger option structure is:
1452  *
1453  *  struct  linger {
1454  *     int     l_onoff;                // option on/off
1455  *     int     l_linger;               // linger time
1456  * };
1457  *
1458  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1459  * to 0, calling close() is the same as the ABORT primitive.  If the
1460  * value is set to a negative value, the setsockopt() call will return
1461  * an error.  If the value is set to a positive value linger_time, the
1462  * close() can be blocked for at most linger_time ms.  If the graceful
1463  * shutdown phase does not finish during this period, close() will
1464  * return but the graceful shutdown phase continues in the system.
1465  */
1466 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1467 {
1468 	struct net *net = sock_net(sk);
1469 	struct sctp_endpoint *ep;
1470 	struct sctp_association *asoc;
1471 	struct list_head *pos, *temp;
1472 	unsigned int data_was_unread;
1473 
1474 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1475 
1476 	sctp_lock_sock(sk);
1477 	sk->sk_shutdown = SHUTDOWN_MASK;
1478 	sk->sk_state = SCTP_SS_CLOSING;
1479 
1480 	ep = sctp_sk(sk)->ep;
1481 
1482 	/* Clean up any skbs sitting on the receive queue.  */
1483 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485 
1486 	/* Walk all associations on an endpoint.  */
1487 	list_for_each_safe(pos, temp, &ep->asocs) {
1488 		asoc = list_entry(pos, struct sctp_association, asocs);
1489 
1490 		if (sctp_style(sk, TCP)) {
1491 			/* A closed association can still be in the list if
1492 			 * it belongs to a TCP-style listening socket that is
1493 			 * not yet accepted. If so, free it. If not, send an
1494 			 * ABORT or SHUTDOWN based on the linger options.
1495 			 */
1496 			if (sctp_state(asoc, CLOSED)) {
1497 				sctp_unhash_established(asoc);
1498 				sctp_association_free(asoc);
1499 				continue;
1500 			}
1501 		}
1502 
1503 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1504 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1505 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 			struct sctp_chunk *chunk;
1507 
1508 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 			if (chunk)
1510 				sctp_primitive_ABORT(net, asoc, chunk);
1511 		} else
1512 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1513 	}
1514 
1515 	/* On a TCP-style socket, block for at most linger_time if set. */
1516 	if (sctp_style(sk, TCP) && timeout)
1517 		sctp_wait_for_close(sk, timeout);
1518 
1519 	/* This will run the backlog queue.  */
1520 	sctp_release_sock(sk);
1521 
1522 	/* Supposedly, no process has access to the socket, but
1523 	 * the net layers still may.
1524 	 */
1525 	sctp_local_bh_disable();
1526 	sctp_bh_lock_sock(sk);
1527 
1528 	/* Hold the sock, since sk_common_release() will put sock_put()
1529 	 * and we have just a little more cleanup.
1530 	 */
1531 	sock_hold(sk);
1532 	sk_common_release(sk);
1533 
1534 	sctp_bh_unlock_sock(sk);
1535 	sctp_local_bh_enable();
1536 
1537 	sock_put(sk);
1538 
1539 	SCTP_DBG_OBJCNT_DEC(sock);
1540 }
1541 
1542 /* Handle EPIPE error. */
1543 static int sctp_error(struct sock *sk, int flags, int err)
1544 {
1545 	if (err == -EPIPE)
1546 		err = sock_error(sk) ? : -EPIPE;
1547 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1548 		send_sig(SIGPIPE, current, 0);
1549 	return err;
1550 }
1551 
1552 /* API 3.1.3 sendmsg() - UDP Style Syntax
1553  *
1554  * An application uses sendmsg() and recvmsg() calls to transmit data to
1555  * and receive data from its peer.
1556  *
1557  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1558  *                  int flags);
1559  *
1560  *  socket  - the socket descriptor of the endpoint.
1561  *  message - pointer to the msghdr structure which contains a single
1562  *            user message and possibly some ancillary data.
1563  *
1564  *            See Section 5 for complete description of the data
1565  *            structures.
1566  *
1567  *  flags   - flags sent or received with the user message, see Section
1568  *            5 for complete description of the flags.
1569  *
1570  * Note:  This function could use a rewrite especially when explicit
1571  * connect support comes in.
1572  */
1573 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1574 
1575 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1576 
1577 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1578 			     struct msghdr *msg, size_t msg_len)
1579 {
1580 	struct net *net = sock_net(sk);
1581 	struct sctp_sock *sp;
1582 	struct sctp_endpoint *ep;
1583 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1584 	struct sctp_transport *transport, *chunk_tp;
1585 	struct sctp_chunk *chunk;
1586 	union sctp_addr to;
1587 	struct sockaddr *msg_name = NULL;
1588 	struct sctp_sndrcvinfo default_sinfo;
1589 	struct sctp_sndrcvinfo *sinfo;
1590 	struct sctp_initmsg *sinit;
1591 	sctp_assoc_t associd = 0;
1592 	sctp_cmsgs_t cmsgs = { NULL };
1593 	int err;
1594 	sctp_scope_t scope;
1595 	long timeo;
1596 	__u16 sinfo_flags = 0;
1597 	struct sctp_datamsg *datamsg;
1598 	int msg_flags = msg->msg_flags;
1599 
1600 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1601 			  sk, msg, msg_len);
1602 
1603 	err = 0;
1604 	sp = sctp_sk(sk);
1605 	ep = sp->ep;
1606 
1607 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1608 
1609 	/* We cannot send a message over a TCP-style listening socket. */
1610 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1611 		err = -EPIPE;
1612 		goto out_nounlock;
1613 	}
1614 
1615 	/* Parse out the SCTP CMSGs.  */
1616 	err = sctp_msghdr_parse(msg, &cmsgs);
1617 
1618 	if (err) {
1619 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1620 		goto out_nounlock;
1621 	}
1622 
1623 	/* Fetch the destination address for this packet.  This
1624 	 * address only selects the association--it is not necessarily
1625 	 * the address we will send to.
1626 	 * For a peeled-off socket, msg_name is ignored.
1627 	 */
1628 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1629 		int msg_namelen = msg->msg_namelen;
1630 
1631 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1632 				       msg_namelen);
1633 		if (err)
1634 			return err;
1635 
1636 		if (msg_namelen > sizeof(to))
1637 			msg_namelen = sizeof(to);
1638 		memcpy(&to, msg->msg_name, msg_namelen);
1639 		msg_name = msg->msg_name;
1640 	}
1641 
1642 	sinfo = cmsgs.info;
1643 	sinit = cmsgs.init;
1644 
1645 	/* Did the user specify SNDRCVINFO?  */
1646 	if (sinfo) {
1647 		sinfo_flags = sinfo->sinfo_flags;
1648 		associd = sinfo->sinfo_assoc_id;
1649 	}
1650 
1651 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1652 			  msg_len, sinfo_flags);
1653 
1654 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1655 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1656 		err = -EINVAL;
1657 		goto out_nounlock;
1658 	}
1659 
1660 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1661 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1662 	 * If SCTP_ABORT is set, the message length could be non zero with
1663 	 * the msg_iov set to the user abort reason.
1664 	 */
1665 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1666 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1667 		err = -EINVAL;
1668 		goto out_nounlock;
1669 	}
1670 
1671 	/* If SCTP_ADDR_OVER is set, there must be an address
1672 	 * specified in msg_name.
1673 	 */
1674 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1675 		err = -EINVAL;
1676 		goto out_nounlock;
1677 	}
1678 
1679 	transport = NULL;
1680 
1681 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1682 
1683 	sctp_lock_sock(sk);
1684 
1685 	/* If a msg_name has been specified, assume this is to be used.  */
1686 	if (msg_name) {
1687 		/* Look for a matching association on the endpoint. */
1688 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1689 		if (!asoc) {
1690 			/* If we could not find a matching association on the
1691 			 * endpoint, make sure that it is not a TCP-style
1692 			 * socket that already has an association or there is
1693 			 * no peeled-off association on another socket.
1694 			 */
1695 			if ((sctp_style(sk, TCP) &&
1696 			     sctp_sstate(sk, ESTABLISHED)) ||
1697 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1698 				err = -EADDRNOTAVAIL;
1699 				goto out_unlock;
1700 			}
1701 		}
1702 	} else {
1703 		asoc = sctp_id2assoc(sk, associd);
1704 		if (!asoc) {
1705 			err = -EPIPE;
1706 			goto out_unlock;
1707 		}
1708 	}
1709 
1710 	if (asoc) {
1711 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1712 
1713 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1714 		 * socket that has an association in CLOSED state. This can
1715 		 * happen when an accepted socket has an association that is
1716 		 * already CLOSED.
1717 		 */
1718 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1719 			err = -EPIPE;
1720 			goto out_unlock;
1721 		}
1722 
1723 		if (sinfo_flags & SCTP_EOF) {
1724 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1725 					  asoc);
1726 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1727 			err = 0;
1728 			goto out_unlock;
1729 		}
1730 		if (sinfo_flags & SCTP_ABORT) {
1731 
1732 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1733 			if (!chunk) {
1734 				err = -ENOMEM;
1735 				goto out_unlock;
1736 			}
1737 
1738 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1739 			sctp_primitive_ABORT(net, asoc, chunk);
1740 			err = 0;
1741 			goto out_unlock;
1742 		}
1743 	}
1744 
1745 	/* Do we need to create the association?  */
1746 	if (!asoc) {
1747 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1748 
1749 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1750 			err = -EINVAL;
1751 			goto out_unlock;
1752 		}
1753 
1754 		/* Check for invalid stream against the stream counts,
1755 		 * either the default or the user specified stream counts.
1756 		 */
1757 		if (sinfo) {
1758 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1759 				/* Check against the defaults. */
1760 				if (sinfo->sinfo_stream >=
1761 				    sp->initmsg.sinit_num_ostreams) {
1762 					err = -EINVAL;
1763 					goto out_unlock;
1764 				}
1765 			} else {
1766 				/* Check against the requested.  */
1767 				if (sinfo->sinfo_stream >=
1768 				    sinit->sinit_num_ostreams) {
1769 					err = -EINVAL;
1770 					goto out_unlock;
1771 				}
1772 			}
1773 		}
1774 
1775 		/*
1776 		 * API 3.1.2 bind() - UDP Style Syntax
1777 		 * If a bind() or sctp_bindx() is not called prior to a
1778 		 * sendmsg() call that initiates a new association, the
1779 		 * system picks an ephemeral port and will choose an address
1780 		 * set equivalent to binding with a wildcard address.
1781 		 */
1782 		if (!ep->base.bind_addr.port) {
1783 			if (sctp_autobind(sk)) {
1784 				err = -EAGAIN;
1785 				goto out_unlock;
1786 			}
1787 		} else {
1788 			/*
1789 			 * If an unprivileged user inherits a one-to-many
1790 			 * style socket with open associations on a privileged
1791 			 * port, it MAY be permitted to accept new associations,
1792 			 * but it SHOULD NOT be permitted to open new
1793 			 * associations.
1794 			 */
1795 			if (ep->base.bind_addr.port < PROT_SOCK &&
1796 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1797 				err = -EACCES;
1798 				goto out_unlock;
1799 			}
1800 		}
1801 
1802 		scope = sctp_scope(&to);
1803 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1804 		if (!new_asoc) {
1805 			err = -ENOMEM;
1806 			goto out_unlock;
1807 		}
1808 		asoc = new_asoc;
1809 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1810 		if (err < 0) {
1811 			err = -ENOMEM;
1812 			goto out_free;
1813 		}
1814 
1815 		/* If the SCTP_INIT ancillary data is specified, set all
1816 		 * the association init values accordingly.
1817 		 */
1818 		if (sinit) {
1819 			if (sinit->sinit_num_ostreams) {
1820 				asoc->c.sinit_num_ostreams =
1821 					sinit->sinit_num_ostreams;
1822 			}
1823 			if (sinit->sinit_max_instreams) {
1824 				asoc->c.sinit_max_instreams =
1825 					sinit->sinit_max_instreams;
1826 			}
1827 			if (sinit->sinit_max_attempts) {
1828 				asoc->max_init_attempts
1829 					= sinit->sinit_max_attempts;
1830 			}
1831 			if (sinit->sinit_max_init_timeo) {
1832 				asoc->max_init_timeo =
1833 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1834 			}
1835 		}
1836 
1837 		/* Prime the peer's transport structures.  */
1838 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1839 		if (!transport) {
1840 			err = -ENOMEM;
1841 			goto out_free;
1842 		}
1843 	}
1844 
1845 	/* ASSERT: we have a valid association at this point.  */
1846 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1847 
1848 	if (!sinfo) {
1849 		/* If the user didn't specify SNDRCVINFO, make up one with
1850 		 * some defaults.
1851 		 */
1852 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1853 		default_sinfo.sinfo_stream = asoc->default_stream;
1854 		default_sinfo.sinfo_flags = asoc->default_flags;
1855 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1856 		default_sinfo.sinfo_context = asoc->default_context;
1857 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1858 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1859 		sinfo = &default_sinfo;
1860 	}
1861 
1862 	/* API 7.1.7, the sndbuf size per association bounds the
1863 	 * maximum size of data that can be sent in a single send call.
1864 	 */
1865 	if (msg_len > sk->sk_sndbuf) {
1866 		err = -EMSGSIZE;
1867 		goto out_free;
1868 	}
1869 
1870 	if (asoc->pmtu_pending)
1871 		sctp_assoc_pending_pmtu(sk, asoc);
1872 
1873 	/* If fragmentation is disabled and the message length exceeds the
1874 	 * association fragmentation point, return EMSGSIZE.  The I-D
1875 	 * does not specify what this error is, but this looks like
1876 	 * a great fit.
1877 	 */
1878 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1879 		err = -EMSGSIZE;
1880 		goto out_free;
1881 	}
1882 
1883 	/* Check for invalid stream. */
1884 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1885 		err = -EINVAL;
1886 		goto out_free;
1887 	}
1888 
1889 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1890 	if (!sctp_wspace(asoc)) {
1891 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1892 		if (err)
1893 			goto out_free;
1894 	}
1895 
1896 	/* If an address is passed with the sendto/sendmsg call, it is used
1897 	 * to override the primary destination address in the TCP model, or
1898 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1899 	 */
1900 	if ((sctp_style(sk, TCP) && msg_name) ||
1901 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1902 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1903 		if (!chunk_tp) {
1904 			err = -EINVAL;
1905 			goto out_free;
1906 		}
1907 	} else
1908 		chunk_tp = NULL;
1909 
1910 	/* Auto-connect, if we aren't connected already. */
1911 	if (sctp_state(asoc, CLOSED)) {
1912 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1913 		if (err < 0)
1914 			goto out_free;
1915 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1916 	}
1917 
1918 	/* Break the message into multiple chunks of maximum size. */
1919 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1920 	if (IS_ERR(datamsg)) {
1921 		err = PTR_ERR(datamsg);
1922 		goto out_free;
1923 	}
1924 
1925 	/* Now send the (possibly) fragmented message. */
1926 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1927 		sctp_chunk_hold(chunk);
1928 
1929 		/* Do accounting for the write space.  */
1930 		sctp_set_owner_w(chunk);
1931 
1932 		chunk->transport = chunk_tp;
1933 	}
1934 
1935 	/* Send it to the lower layers.  Note:  all chunks
1936 	 * must either fail or succeed.   The lower layer
1937 	 * works that way today.  Keep it that way or this
1938 	 * breaks.
1939 	 */
1940 	err = sctp_primitive_SEND(net, asoc, datamsg);
1941 	/* Did the lower layer accept the chunk? */
1942 	if (err)
1943 		sctp_datamsg_free(datamsg);
1944 	else
1945 		sctp_datamsg_put(datamsg);
1946 
1947 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1948 
1949 	if (err)
1950 		goto out_free;
1951 	else
1952 		err = msg_len;
1953 
1954 	/* If we are already past ASSOCIATE, the lower
1955 	 * layers are responsible for association cleanup.
1956 	 */
1957 	goto out_unlock;
1958 
1959 out_free:
1960 	if (new_asoc) {
1961 		sctp_unhash_established(asoc);
1962 		sctp_association_free(asoc);
1963 	}
1964 out_unlock:
1965 	sctp_release_sock(sk);
1966 
1967 out_nounlock:
1968 	return sctp_error(sk, msg_flags, err);
1969 
1970 #if 0
1971 do_sock_err:
1972 	if (msg_len)
1973 		err = msg_len;
1974 	else
1975 		err = sock_error(sk);
1976 	goto out;
1977 
1978 do_interrupted:
1979 	if (msg_len)
1980 		err = msg_len;
1981 	goto out;
1982 #endif /* 0 */
1983 }
1984 
1985 /* This is an extended version of skb_pull() that removes the data from the
1986  * start of a skb even when data is spread across the list of skb's in the
1987  * frag_list. len specifies the total amount of data that needs to be removed.
1988  * when 'len' bytes could be removed from the skb, it returns 0.
1989  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1990  * could not be removed.
1991  */
1992 static int sctp_skb_pull(struct sk_buff *skb, int len)
1993 {
1994 	struct sk_buff *list;
1995 	int skb_len = skb_headlen(skb);
1996 	int rlen;
1997 
1998 	if (len <= skb_len) {
1999 		__skb_pull(skb, len);
2000 		return 0;
2001 	}
2002 	len -= skb_len;
2003 	__skb_pull(skb, skb_len);
2004 
2005 	skb_walk_frags(skb, list) {
2006 		rlen = sctp_skb_pull(list, len);
2007 		skb->len -= (len-rlen);
2008 		skb->data_len -= (len-rlen);
2009 
2010 		if (!rlen)
2011 			return 0;
2012 
2013 		len = rlen;
2014 	}
2015 
2016 	return len;
2017 }
2018 
2019 /* API 3.1.3  recvmsg() - UDP Style Syntax
2020  *
2021  *  ssize_t recvmsg(int socket, struct msghdr *message,
2022  *                    int flags);
2023  *
2024  *  socket  - the socket descriptor of the endpoint.
2025  *  message - pointer to the msghdr structure which contains a single
2026  *            user message and possibly some ancillary data.
2027  *
2028  *            See Section 5 for complete description of the data
2029  *            structures.
2030  *
2031  *  flags   - flags sent or received with the user message, see Section
2032  *            5 for complete description of the flags.
2033  */
2034 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2035 
2036 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2037 			     struct msghdr *msg, size_t len, int noblock,
2038 			     int flags, int *addr_len)
2039 {
2040 	struct sctp_ulpevent *event = NULL;
2041 	struct sctp_sock *sp = sctp_sk(sk);
2042 	struct sk_buff *skb;
2043 	int copied;
2044 	int err = 0;
2045 	int skb_len;
2046 
2047 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2048 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2049 			  "len", len, "knoblauch", noblock,
2050 			  "flags", flags, "addr_len", addr_len);
2051 
2052 	sctp_lock_sock(sk);
2053 
2054 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2055 		err = -ENOTCONN;
2056 		goto out;
2057 	}
2058 
2059 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2060 	if (!skb)
2061 		goto out;
2062 
2063 	/* Get the total length of the skb including any skb's in the
2064 	 * frag_list.
2065 	 */
2066 	skb_len = skb->len;
2067 
2068 	copied = skb_len;
2069 	if (copied > len)
2070 		copied = len;
2071 
2072 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2073 
2074 	event = sctp_skb2event(skb);
2075 
2076 	if (err)
2077 		goto out_free;
2078 
2079 	sock_recv_ts_and_drops(msg, sk, skb);
2080 	if (sctp_ulpevent_is_notification(event)) {
2081 		msg->msg_flags |= MSG_NOTIFICATION;
2082 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2083 	} else {
2084 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2085 	}
2086 
2087 	/* Check if we allow SCTP_SNDRCVINFO. */
2088 	if (sp->subscribe.sctp_data_io_event)
2089 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2090 #if 0
2091 	/* FIXME: we should be calling IP/IPv6 layers.  */
2092 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2093 		ip_cmsg_recv(msg, skb);
2094 #endif
2095 
2096 	err = copied;
2097 
2098 	/* If skb's length exceeds the user's buffer, update the skb and
2099 	 * push it back to the receive_queue so that the next call to
2100 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2101 	 */
2102 	if (skb_len > copied) {
2103 		msg->msg_flags &= ~MSG_EOR;
2104 		if (flags & MSG_PEEK)
2105 			goto out_free;
2106 		sctp_skb_pull(skb, copied);
2107 		skb_queue_head(&sk->sk_receive_queue, skb);
2108 
2109 		/* When only partial message is copied to the user, increase
2110 		 * rwnd by that amount. If all the data in the skb is read,
2111 		 * rwnd is updated when the event is freed.
2112 		 */
2113 		if (!sctp_ulpevent_is_notification(event))
2114 			sctp_assoc_rwnd_increase(event->asoc, copied);
2115 		goto out;
2116 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2117 		   (event->msg_flags & MSG_EOR))
2118 		msg->msg_flags |= MSG_EOR;
2119 	else
2120 		msg->msg_flags &= ~MSG_EOR;
2121 
2122 out_free:
2123 	if (flags & MSG_PEEK) {
2124 		/* Release the skb reference acquired after peeking the skb in
2125 		 * sctp_skb_recv_datagram().
2126 		 */
2127 		kfree_skb(skb);
2128 	} else {
2129 		/* Free the event which includes releasing the reference to
2130 		 * the owner of the skb, freeing the skb and updating the
2131 		 * rwnd.
2132 		 */
2133 		sctp_ulpevent_free(event);
2134 	}
2135 out:
2136 	sctp_release_sock(sk);
2137 	return err;
2138 }
2139 
2140 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2141  *
2142  * This option is a on/off flag.  If enabled no SCTP message
2143  * fragmentation will be performed.  Instead if a message being sent
2144  * exceeds the current PMTU size, the message will NOT be sent and
2145  * instead a error will be indicated to the user.
2146  */
2147 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2148 					     char __user *optval,
2149 					     unsigned int optlen)
2150 {
2151 	int val;
2152 
2153 	if (optlen < sizeof(int))
2154 		return -EINVAL;
2155 
2156 	if (get_user(val, (int __user *)optval))
2157 		return -EFAULT;
2158 
2159 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2160 
2161 	return 0;
2162 }
2163 
2164 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2165 				  unsigned int optlen)
2166 {
2167 	struct sctp_association *asoc;
2168 	struct sctp_ulpevent *event;
2169 
2170 	if (optlen > sizeof(struct sctp_event_subscribe))
2171 		return -EINVAL;
2172 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2173 		return -EFAULT;
2174 
2175 	/*
2176 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2177 	 * if there is no data to be sent or retransmit, the stack will
2178 	 * immediately send up this notification.
2179 	 */
2180 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2181 				       &sctp_sk(sk)->subscribe)) {
2182 		asoc = sctp_id2assoc(sk, 0);
2183 
2184 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2185 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2186 					GFP_ATOMIC);
2187 			if (!event)
2188 				return -ENOMEM;
2189 
2190 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2191 		}
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2198  *
2199  * This socket option is applicable to the UDP-style socket only.  When
2200  * set it will cause associations that are idle for more than the
2201  * specified number of seconds to automatically close.  An association
2202  * being idle is defined an association that has NOT sent or received
2203  * user data.  The special value of '0' indicates that no automatic
2204  * close of any associations should be performed.  The option expects an
2205  * integer defining the number of seconds of idle time before an
2206  * association is closed.
2207  */
2208 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2209 				     unsigned int optlen)
2210 {
2211 	struct sctp_sock *sp = sctp_sk(sk);
2212 
2213 	/* Applicable to UDP-style socket only */
2214 	if (sctp_style(sk, TCP))
2215 		return -EOPNOTSUPP;
2216 	if (optlen != sizeof(int))
2217 		return -EINVAL;
2218 	if (copy_from_user(&sp->autoclose, optval, optlen))
2219 		return -EFAULT;
2220 
2221 	return 0;
2222 }
2223 
2224 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2225  *
2226  * Applications can enable or disable heartbeats for any peer address of
2227  * an association, modify an address's heartbeat interval, force a
2228  * heartbeat to be sent immediately, and adjust the address's maximum
2229  * number of retransmissions sent before an address is considered
2230  * unreachable.  The following structure is used to access and modify an
2231  * address's parameters:
2232  *
2233  *  struct sctp_paddrparams {
2234  *     sctp_assoc_t            spp_assoc_id;
2235  *     struct sockaddr_storage spp_address;
2236  *     uint32_t                spp_hbinterval;
2237  *     uint16_t                spp_pathmaxrxt;
2238  *     uint32_t                spp_pathmtu;
2239  *     uint32_t                spp_sackdelay;
2240  *     uint32_t                spp_flags;
2241  * };
2242  *
2243  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2244  *                     application, and identifies the association for
2245  *                     this query.
2246  *   spp_address     - This specifies which address is of interest.
2247  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2248  *                     in milliseconds.  If a  value of zero
2249  *                     is present in this field then no changes are to
2250  *                     be made to this parameter.
2251  *   spp_pathmaxrxt  - This contains the maximum number of
2252  *                     retransmissions before this address shall be
2253  *                     considered unreachable. If a  value of zero
2254  *                     is present in this field then no changes are to
2255  *                     be made to this parameter.
2256  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2257  *                     specified here will be the "fixed" path mtu.
2258  *                     Note that if the spp_address field is empty
2259  *                     then all associations on this address will
2260  *                     have this fixed path mtu set upon them.
2261  *
2262  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2263  *                     the number of milliseconds that sacks will be delayed
2264  *                     for. This value will apply to all addresses of an
2265  *                     association if the spp_address field is empty. Note
2266  *                     also, that if delayed sack is enabled and this
2267  *                     value is set to 0, no change is made to the last
2268  *                     recorded delayed sack timer value.
2269  *
2270  *   spp_flags       - These flags are used to control various features
2271  *                     on an association. The flag field may contain
2272  *                     zero or more of the following options.
2273  *
2274  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2275  *                     specified address. Note that if the address
2276  *                     field is empty all addresses for the association
2277  *                     have heartbeats enabled upon them.
2278  *
2279  *                     SPP_HB_DISABLE - Disable heartbeats on the
2280  *                     speicifed address. Note that if the address
2281  *                     field is empty all addresses for the association
2282  *                     will have their heartbeats disabled. Note also
2283  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2284  *                     mutually exclusive, only one of these two should
2285  *                     be specified. Enabling both fields will have
2286  *                     undetermined results.
2287  *
2288  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2289  *                     to be made immediately.
2290  *
2291  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2292  *                     heartbeat delayis to be set to the value of 0
2293  *                     milliseconds.
2294  *
2295  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2296  *                     discovery upon the specified address. Note that
2297  *                     if the address feild is empty then all addresses
2298  *                     on the association are effected.
2299  *
2300  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2301  *                     discovery upon the specified address. Note that
2302  *                     if the address feild is empty then all addresses
2303  *                     on the association are effected. Not also that
2304  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2305  *                     exclusive. Enabling both will have undetermined
2306  *                     results.
2307  *
2308  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2309  *                     on delayed sack. The time specified in spp_sackdelay
2310  *                     is used to specify the sack delay for this address. Note
2311  *                     that if spp_address is empty then all addresses will
2312  *                     enable delayed sack and take on the sack delay
2313  *                     value specified in spp_sackdelay.
2314  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2315  *                     off delayed sack. If the spp_address field is blank then
2316  *                     delayed sack is disabled for the entire association. Note
2317  *                     also that this field is mutually exclusive to
2318  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2319  *                     results.
2320  */
2321 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2322 				       struct sctp_transport   *trans,
2323 				       struct sctp_association *asoc,
2324 				       struct sctp_sock        *sp,
2325 				       int                      hb_change,
2326 				       int                      pmtud_change,
2327 				       int                      sackdelay_change)
2328 {
2329 	int error;
2330 
2331 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2332 		struct net *net = sock_net(trans->asoc->base.sk);
2333 
2334 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2335 		if (error)
2336 			return error;
2337 	}
2338 
2339 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2340 	 * this field is ignored.  Note also that a value of zero indicates
2341 	 * the current setting should be left unchanged.
2342 	 */
2343 	if (params->spp_flags & SPP_HB_ENABLE) {
2344 
2345 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2346 		 * set.  This lets us use 0 value when this flag
2347 		 * is set.
2348 		 */
2349 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2350 			params->spp_hbinterval = 0;
2351 
2352 		if (params->spp_hbinterval ||
2353 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2354 			if (trans) {
2355 				trans->hbinterval =
2356 				    msecs_to_jiffies(params->spp_hbinterval);
2357 			} else if (asoc) {
2358 				asoc->hbinterval =
2359 				    msecs_to_jiffies(params->spp_hbinterval);
2360 			} else {
2361 				sp->hbinterval = params->spp_hbinterval;
2362 			}
2363 		}
2364 	}
2365 
2366 	if (hb_change) {
2367 		if (trans) {
2368 			trans->param_flags =
2369 				(trans->param_flags & ~SPP_HB) | hb_change;
2370 		} else if (asoc) {
2371 			asoc->param_flags =
2372 				(asoc->param_flags & ~SPP_HB) | hb_change;
2373 		} else {
2374 			sp->param_flags =
2375 				(sp->param_flags & ~SPP_HB) | hb_change;
2376 		}
2377 	}
2378 
2379 	/* When Path MTU discovery is disabled the value specified here will
2380 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2381 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2382 	 * effect).
2383 	 */
2384 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2385 		if (trans) {
2386 			trans->pathmtu = params->spp_pathmtu;
2387 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2388 		} else if (asoc) {
2389 			asoc->pathmtu = params->spp_pathmtu;
2390 			sctp_frag_point(asoc, params->spp_pathmtu);
2391 		} else {
2392 			sp->pathmtu = params->spp_pathmtu;
2393 		}
2394 	}
2395 
2396 	if (pmtud_change) {
2397 		if (trans) {
2398 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2399 				(params->spp_flags & SPP_PMTUD_ENABLE);
2400 			trans->param_flags =
2401 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2402 			if (update) {
2403 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2404 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2405 			}
2406 		} else if (asoc) {
2407 			asoc->param_flags =
2408 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2409 		} else {
2410 			sp->param_flags =
2411 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2412 		}
2413 	}
2414 
2415 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2416 	 * value of this field is ignored.  Note also that a value of zero
2417 	 * indicates the current setting should be left unchanged.
2418 	 */
2419 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2420 		if (trans) {
2421 			trans->sackdelay =
2422 				msecs_to_jiffies(params->spp_sackdelay);
2423 		} else if (asoc) {
2424 			asoc->sackdelay =
2425 				msecs_to_jiffies(params->spp_sackdelay);
2426 		} else {
2427 			sp->sackdelay = params->spp_sackdelay;
2428 		}
2429 	}
2430 
2431 	if (sackdelay_change) {
2432 		if (trans) {
2433 			trans->param_flags =
2434 				(trans->param_flags & ~SPP_SACKDELAY) |
2435 				sackdelay_change;
2436 		} else if (asoc) {
2437 			asoc->param_flags =
2438 				(asoc->param_flags & ~SPP_SACKDELAY) |
2439 				sackdelay_change;
2440 		} else {
2441 			sp->param_flags =
2442 				(sp->param_flags & ~SPP_SACKDELAY) |
2443 				sackdelay_change;
2444 		}
2445 	}
2446 
2447 	/* Note that a value of zero indicates the current setting should be
2448 	   left unchanged.
2449 	 */
2450 	if (params->spp_pathmaxrxt) {
2451 		if (trans) {
2452 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2453 		} else if (asoc) {
2454 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2455 		} else {
2456 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2457 		}
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2464 					    char __user *optval,
2465 					    unsigned int optlen)
2466 {
2467 	struct sctp_paddrparams  params;
2468 	struct sctp_transport   *trans = NULL;
2469 	struct sctp_association *asoc = NULL;
2470 	struct sctp_sock        *sp = sctp_sk(sk);
2471 	int error;
2472 	int hb_change, pmtud_change, sackdelay_change;
2473 
2474 	if (optlen != sizeof(struct sctp_paddrparams))
2475 		return - EINVAL;
2476 
2477 	if (copy_from_user(&params, optval, optlen))
2478 		return -EFAULT;
2479 
2480 	/* Validate flags and value parameters. */
2481 	hb_change        = params.spp_flags & SPP_HB;
2482 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2483 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2484 
2485 	if (hb_change        == SPP_HB ||
2486 	    pmtud_change     == SPP_PMTUD ||
2487 	    sackdelay_change == SPP_SACKDELAY ||
2488 	    params.spp_sackdelay > 500 ||
2489 	    (params.spp_pathmtu &&
2490 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2491 		return -EINVAL;
2492 
2493 	/* If an address other than INADDR_ANY is specified, and
2494 	 * no transport is found, then the request is invalid.
2495 	 */
2496 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2497 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2498 					       params.spp_assoc_id);
2499 		if (!trans)
2500 			return -EINVAL;
2501 	}
2502 
2503 	/* Get association, if assoc_id != 0 and the socket is a one
2504 	 * to many style socket, and an association was not found, then
2505 	 * the id was invalid.
2506 	 */
2507 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2508 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2509 		return -EINVAL;
2510 
2511 	/* Heartbeat demand can only be sent on a transport or
2512 	 * association, but not a socket.
2513 	 */
2514 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2515 		return -EINVAL;
2516 
2517 	/* Process parameters. */
2518 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2519 					    hb_change, pmtud_change,
2520 					    sackdelay_change);
2521 
2522 	if (error)
2523 		return error;
2524 
2525 	/* If changes are for association, also apply parameters to each
2526 	 * transport.
2527 	 */
2528 	if (!trans && asoc) {
2529 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2530 				transports) {
2531 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2532 						    hb_change, pmtud_change,
2533 						    sackdelay_change);
2534 		}
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 /*
2541  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2542  *
2543  * This option will effect the way delayed acks are performed.  This
2544  * option allows you to get or set the delayed ack time, in
2545  * milliseconds.  It also allows changing the delayed ack frequency.
2546  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2547  * the assoc_id is 0, then this sets or gets the endpoints default
2548  * values.  If the assoc_id field is non-zero, then the set or get
2549  * effects the specified association for the one to many model (the
2550  * assoc_id field is ignored by the one to one model).  Note that if
2551  * sack_delay or sack_freq are 0 when setting this option, then the
2552  * current values will remain unchanged.
2553  *
2554  * struct sctp_sack_info {
2555  *     sctp_assoc_t            sack_assoc_id;
2556  *     uint32_t                sack_delay;
2557  *     uint32_t                sack_freq;
2558  * };
2559  *
2560  * sack_assoc_id -  This parameter, indicates which association the user
2561  *    is performing an action upon.  Note that if this field's value is
2562  *    zero then the endpoints default value is changed (effecting future
2563  *    associations only).
2564  *
2565  * sack_delay -  This parameter contains the number of milliseconds that
2566  *    the user is requesting the delayed ACK timer be set to.  Note that
2567  *    this value is defined in the standard to be between 200 and 500
2568  *    milliseconds.
2569  *
2570  * sack_freq -  This parameter contains the number of packets that must
2571  *    be received before a sack is sent without waiting for the delay
2572  *    timer to expire.  The default value for this is 2, setting this
2573  *    value to 1 will disable the delayed sack algorithm.
2574  */
2575 
2576 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2577 				       char __user *optval, unsigned int optlen)
2578 {
2579 	struct sctp_sack_info    params;
2580 	struct sctp_transport   *trans = NULL;
2581 	struct sctp_association *asoc = NULL;
2582 	struct sctp_sock        *sp = sctp_sk(sk);
2583 
2584 	if (optlen == sizeof(struct sctp_sack_info)) {
2585 		if (copy_from_user(&params, optval, optlen))
2586 			return -EFAULT;
2587 
2588 		if (params.sack_delay == 0 && params.sack_freq == 0)
2589 			return 0;
2590 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2591 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2592 		pr_warn("Use struct sctp_sack_info instead\n");
2593 		if (copy_from_user(&params, optval, optlen))
2594 			return -EFAULT;
2595 
2596 		if (params.sack_delay == 0)
2597 			params.sack_freq = 1;
2598 		else
2599 			params.sack_freq = 0;
2600 	} else
2601 		return - EINVAL;
2602 
2603 	/* Validate value parameter. */
2604 	if (params.sack_delay > 500)
2605 		return -EINVAL;
2606 
2607 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2608 	 * to many style socket, and an association was not found, then
2609 	 * the id was invalid.
2610 	 */
2611 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2612 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2613 		return -EINVAL;
2614 
2615 	if (params.sack_delay) {
2616 		if (asoc) {
2617 			asoc->sackdelay =
2618 				msecs_to_jiffies(params.sack_delay);
2619 			asoc->param_flags =
2620 				(asoc->param_flags & ~SPP_SACKDELAY) |
2621 				SPP_SACKDELAY_ENABLE;
2622 		} else {
2623 			sp->sackdelay = params.sack_delay;
2624 			sp->param_flags =
2625 				(sp->param_flags & ~SPP_SACKDELAY) |
2626 				SPP_SACKDELAY_ENABLE;
2627 		}
2628 	}
2629 
2630 	if (params.sack_freq == 1) {
2631 		if (asoc) {
2632 			asoc->param_flags =
2633 				(asoc->param_flags & ~SPP_SACKDELAY) |
2634 				SPP_SACKDELAY_DISABLE;
2635 		} else {
2636 			sp->param_flags =
2637 				(sp->param_flags & ~SPP_SACKDELAY) |
2638 				SPP_SACKDELAY_DISABLE;
2639 		}
2640 	} else if (params.sack_freq > 1) {
2641 		if (asoc) {
2642 			asoc->sackfreq = params.sack_freq;
2643 			asoc->param_flags =
2644 				(asoc->param_flags & ~SPP_SACKDELAY) |
2645 				SPP_SACKDELAY_ENABLE;
2646 		} else {
2647 			sp->sackfreq = params.sack_freq;
2648 			sp->param_flags =
2649 				(sp->param_flags & ~SPP_SACKDELAY) |
2650 				SPP_SACKDELAY_ENABLE;
2651 		}
2652 	}
2653 
2654 	/* If change is for association, also apply to each transport. */
2655 	if (asoc) {
2656 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2657 				transports) {
2658 			if (params.sack_delay) {
2659 				trans->sackdelay =
2660 					msecs_to_jiffies(params.sack_delay);
2661 				trans->param_flags =
2662 					(trans->param_flags & ~SPP_SACKDELAY) |
2663 					SPP_SACKDELAY_ENABLE;
2664 			}
2665 			if (params.sack_freq == 1) {
2666 				trans->param_flags =
2667 					(trans->param_flags & ~SPP_SACKDELAY) |
2668 					SPP_SACKDELAY_DISABLE;
2669 			} else if (params.sack_freq > 1) {
2670 				trans->sackfreq = params.sack_freq;
2671 				trans->param_flags =
2672 					(trans->param_flags & ~SPP_SACKDELAY) |
2673 					SPP_SACKDELAY_ENABLE;
2674 			}
2675 		}
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2682  *
2683  * Applications can specify protocol parameters for the default association
2684  * initialization.  The option name argument to setsockopt() and getsockopt()
2685  * is SCTP_INITMSG.
2686  *
2687  * Setting initialization parameters is effective only on an unconnected
2688  * socket (for UDP-style sockets only future associations are effected
2689  * by the change).  With TCP-style sockets, this option is inherited by
2690  * sockets derived from a listener socket.
2691  */
2692 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2693 {
2694 	struct sctp_initmsg sinit;
2695 	struct sctp_sock *sp = sctp_sk(sk);
2696 
2697 	if (optlen != sizeof(struct sctp_initmsg))
2698 		return -EINVAL;
2699 	if (copy_from_user(&sinit, optval, optlen))
2700 		return -EFAULT;
2701 
2702 	if (sinit.sinit_num_ostreams)
2703 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2704 	if (sinit.sinit_max_instreams)
2705 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2706 	if (sinit.sinit_max_attempts)
2707 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2708 	if (sinit.sinit_max_init_timeo)
2709 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2710 
2711 	return 0;
2712 }
2713 
2714 /*
2715  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2716  *
2717  *   Applications that wish to use the sendto() system call may wish to
2718  *   specify a default set of parameters that would normally be supplied
2719  *   through the inclusion of ancillary data.  This socket option allows
2720  *   such an application to set the default sctp_sndrcvinfo structure.
2721  *   The application that wishes to use this socket option simply passes
2722  *   in to this call the sctp_sndrcvinfo structure defined in Section
2723  *   5.2.2) The input parameters accepted by this call include
2724  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2725  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2726  *   to this call if the caller is using the UDP model.
2727  */
2728 static int sctp_setsockopt_default_send_param(struct sock *sk,
2729 					      char __user *optval,
2730 					      unsigned int optlen)
2731 {
2732 	struct sctp_sndrcvinfo info;
2733 	struct sctp_association *asoc;
2734 	struct sctp_sock *sp = sctp_sk(sk);
2735 
2736 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2737 		return -EINVAL;
2738 	if (copy_from_user(&info, optval, optlen))
2739 		return -EFAULT;
2740 
2741 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2742 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2743 		return -EINVAL;
2744 
2745 	if (asoc) {
2746 		asoc->default_stream = info.sinfo_stream;
2747 		asoc->default_flags = info.sinfo_flags;
2748 		asoc->default_ppid = info.sinfo_ppid;
2749 		asoc->default_context = info.sinfo_context;
2750 		asoc->default_timetolive = info.sinfo_timetolive;
2751 	} else {
2752 		sp->default_stream = info.sinfo_stream;
2753 		sp->default_flags = info.sinfo_flags;
2754 		sp->default_ppid = info.sinfo_ppid;
2755 		sp->default_context = info.sinfo_context;
2756 		sp->default_timetolive = info.sinfo_timetolive;
2757 	}
2758 
2759 	return 0;
2760 }
2761 
2762 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2763  *
2764  * Requests that the local SCTP stack use the enclosed peer address as
2765  * the association primary.  The enclosed address must be one of the
2766  * association peer's addresses.
2767  */
2768 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2769 					unsigned int optlen)
2770 {
2771 	struct sctp_prim prim;
2772 	struct sctp_transport *trans;
2773 
2774 	if (optlen != sizeof(struct sctp_prim))
2775 		return -EINVAL;
2776 
2777 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2778 		return -EFAULT;
2779 
2780 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2781 	if (!trans)
2782 		return -EINVAL;
2783 
2784 	sctp_assoc_set_primary(trans->asoc, trans);
2785 
2786 	return 0;
2787 }
2788 
2789 /*
2790  * 7.1.5 SCTP_NODELAY
2791  *
2792  * Turn on/off any Nagle-like algorithm.  This means that packets are
2793  * generally sent as soon as possible and no unnecessary delays are
2794  * introduced, at the cost of more packets in the network.  Expects an
2795  *  integer boolean flag.
2796  */
2797 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2798 				   unsigned int optlen)
2799 {
2800 	int val;
2801 
2802 	if (optlen < sizeof(int))
2803 		return -EINVAL;
2804 	if (get_user(val, (int __user *)optval))
2805 		return -EFAULT;
2806 
2807 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2808 	return 0;
2809 }
2810 
2811 /*
2812  *
2813  * 7.1.1 SCTP_RTOINFO
2814  *
2815  * The protocol parameters used to initialize and bound retransmission
2816  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2817  * and modify these parameters.
2818  * All parameters are time values, in milliseconds.  A value of 0, when
2819  * modifying the parameters, indicates that the current value should not
2820  * be changed.
2821  *
2822  */
2823 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2824 {
2825 	struct sctp_rtoinfo rtoinfo;
2826 	struct sctp_association *asoc;
2827 
2828 	if (optlen != sizeof (struct sctp_rtoinfo))
2829 		return -EINVAL;
2830 
2831 	if (copy_from_user(&rtoinfo, optval, optlen))
2832 		return -EFAULT;
2833 
2834 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2835 
2836 	/* Set the values to the specific association */
2837 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2838 		return -EINVAL;
2839 
2840 	if (asoc) {
2841 		if (rtoinfo.srto_initial != 0)
2842 			asoc->rto_initial =
2843 				msecs_to_jiffies(rtoinfo.srto_initial);
2844 		if (rtoinfo.srto_max != 0)
2845 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2846 		if (rtoinfo.srto_min != 0)
2847 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2848 	} else {
2849 		/* If there is no association or the association-id = 0
2850 		 * set the values to the endpoint.
2851 		 */
2852 		struct sctp_sock *sp = sctp_sk(sk);
2853 
2854 		if (rtoinfo.srto_initial != 0)
2855 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2856 		if (rtoinfo.srto_max != 0)
2857 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2858 		if (rtoinfo.srto_min != 0)
2859 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 /*
2866  *
2867  * 7.1.2 SCTP_ASSOCINFO
2868  *
2869  * This option is used to tune the maximum retransmission attempts
2870  * of the association.
2871  * Returns an error if the new association retransmission value is
2872  * greater than the sum of the retransmission value  of the peer.
2873  * See [SCTP] for more information.
2874  *
2875  */
2876 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2877 {
2878 
2879 	struct sctp_assocparams assocparams;
2880 	struct sctp_association *asoc;
2881 
2882 	if (optlen != sizeof(struct sctp_assocparams))
2883 		return -EINVAL;
2884 	if (copy_from_user(&assocparams, optval, optlen))
2885 		return -EFAULT;
2886 
2887 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2888 
2889 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2890 		return -EINVAL;
2891 
2892 	/* Set the values to the specific association */
2893 	if (asoc) {
2894 		if (assocparams.sasoc_asocmaxrxt != 0) {
2895 			__u32 path_sum = 0;
2896 			int   paths = 0;
2897 			struct sctp_transport *peer_addr;
2898 
2899 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2900 					transports) {
2901 				path_sum += peer_addr->pathmaxrxt;
2902 				paths++;
2903 			}
2904 
2905 			/* Only validate asocmaxrxt if we have more than
2906 			 * one path/transport.  We do this because path
2907 			 * retransmissions are only counted when we have more
2908 			 * then one path.
2909 			 */
2910 			if (paths > 1 &&
2911 			    assocparams.sasoc_asocmaxrxt > path_sum)
2912 				return -EINVAL;
2913 
2914 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2915 		}
2916 
2917 		if (assocparams.sasoc_cookie_life != 0) {
2918 			asoc->cookie_life.tv_sec =
2919 					assocparams.sasoc_cookie_life / 1000;
2920 			asoc->cookie_life.tv_usec =
2921 					(assocparams.sasoc_cookie_life % 1000)
2922 					* 1000;
2923 		}
2924 	} else {
2925 		/* Set the values to the endpoint */
2926 		struct sctp_sock *sp = sctp_sk(sk);
2927 
2928 		if (assocparams.sasoc_asocmaxrxt != 0)
2929 			sp->assocparams.sasoc_asocmaxrxt =
2930 						assocparams.sasoc_asocmaxrxt;
2931 		if (assocparams.sasoc_cookie_life != 0)
2932 			sp->assocparams.sasoc_cookie_life =
2933 						assocparams.sasoc_cookie_life;
2934 	}
2935 	return 0;
2936 }
2937 
2938 /*
2939  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2940  *
2941  * This socket option is a boolean flag which turns on or off mapped V4
2942  * addresses.  If this option is turned on and the socket is type
2943  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2944  * If this option is turned off, then no mapping will be done of V4
2945  * addresses and a user will receive both PF_INET6 and PF_INET type
2946  * addresses on the socket.
2947  */
2948 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2949 {
2950 	int val;
2951 	struct sctp_sock *sp = sctp_sk(sk);
2952 
2953 	if (optlen < sizeof(int))
2954 		return -EINVAL;
2955 	if (get_user(val, (int __user *)optval))
2956 		return -EFAULT;
2957 	if (val)
2958 		sp->v4mapped = 1;
2959 	else
2960 		sp->v4mapped = 0;
2961 
2962 	return 0;
2963 }
2964 
2965 /*
2966  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2967  * This option will get or set the maximum size to put in any outgoing
2968  * SCTP DATA chunk.  If a message is larger than this size it will be
2969  * fragmented by SCTP into the specified size.  Note that the underlying
2970  * SCTP implementation may fragment into smaller sized chunks when the
2971  * PMTU of the underlying association is smaller than the value set by
2972  * the user.  The default value for this option is '0' which indicates
2973  * the user is NOT limiting fragmentation and only the PMTU will effect
2974  * SCTP's choice of DATA chunk size.  Note also that values set larger
2975  * than the maximum size of an IP datagram will effectively let SCTP
2976  * control fragmentation (i.e. the same as setting this option to 0).
2977  *
2978  * The following structure is used to access and modify this parameter:
2979  *
2980  * struct sctp_assoc_value {
2981  *   sctp_assoc_t assoc_id;
2982  *   uint32_t assoc_value;
2983  * };
2984  *
2985  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2986  *    For one-to-many style sockets this parameter indicates which
2987  *    association the user is performing an action upon.  Note that if
2988  *    this field's value is zero then the endpoints default value is
2989  *    changed (effecting future associations only).
2990  * assoc_value:  This parameter specifies the maximum size in bytes.
2991  */
2992 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2993 {
2994 	struct sctp_assoc_value params;
2995 	struct sctp_association *asoc;
2996 	struct sctp_sock *sp = sctp_sk(sk);
2997 	int val;
2998 
2999 	if (optlen == sizeof(int)) {
3000 		pr_warn("Use of int in maxseg socket option deprecated\n");
3001 		pr_warn("Use struct sctp_assoc_value instead\n");
3002 		if (copy_from_user(&val, optval, optlen))
3003 			return -EFAULT;
3004 		params.assoc_id = 0;
3005 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3006 		if (copy_from_user(&params, optval, optlen))
3007 			return -EFAULT;
3008 		val = params.assoc_value;
3009 	} else
3010 		return -EINVAL;
3011 
3012 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3013 		return -EINVAL;
3014 
3015 	asoc = sctp_id2assoc(sk, params.assoc_id);
3016 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3017 		return -EINVAL;
3018 
3019 	if (asoc) {
3020 		if (val == 0) {
3021 			val = asoc->pathmtu;
3022 			val -= sp->pf->af->net_header_len;
3023 			val -= sizeof(struct sctphdr) +
3024 					sizeof(struct sctp_data_chunk);
3025 		}
3026 		asoc->user_frag = val;
3027 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3028 	} else {
3029 		sp->user_frag = val;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 
3036 /*
3037  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3038  *
3039  *   Requests that the peer mark the enclosed address as the association
3040  *   primary. The enclosed address must be one of the association's
3041  *   locally bound addresses. The following structure is used to make a
3042  *   set primary request:
3043  */
3044 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3045 					     unsigned int optlen)
3046 {
3047 	struct net *net = sock_net(sk);
3048 	struct sctp_sock	*sp;
3049 	struct sctp_association	*asoc = NULL;
3050 	struct sctp_setpeerprim	prim;
3051 	struct sctp_chunk	*chunk;
3052 	struct sctp_af		*af;
3053 	int 			err;
3054 
3055 	sp = sctp_sk(sk);
3056 
3057 	if (!net->sctp.addip_enable)
3058 		return -EPERM;
3059 
3060 	if (optlen != sizeof(struct sctp_setpeerprim))
3061 		return -EINVAL;
3062 
3063 	if (copy_from_user(&prim, optval, optlen))
3064 		return -EFAULT;
3065 
3066 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3067 	if (!asoc)
3068 		return -EINVAL;
3069 
3070 	if (!asoc->peer.asconf_capable)
3071 		return -EPERM;
3072 
3073 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3074 		return -EPERM;
3075 
3076 	if (!sctp_state(asoc, ESTABLISHED))
3077 		return -ENOTCONN;
3078 
3079 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3080 	if (!af)
3081 		return -EINVAL;
3082 
3083 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3084 		return -EADDRNOTAVAIL;
3085 
3086 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3087 		return -EADDRNOTAVAIL;
3088 
3089 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3090 	chunk = sctp_make_asconf_set_prim(asoc,
3091 					  (union sctp_addr *)&prim.sspp_addr);
3092 	if (!chunk)
3093 		return -ENOMEM;
3094 
3095 	err = sctp_send_asconf(asoc, chunk);
3096 
3097 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3098 
3099 	return err;
3100 }
3101 
3102 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3103 					    unsigned int optlen)
3104 {
3105 	struct sctp_setadaptation adaptation;
3106 
3107 	if (optlen != sizeof(struct sctp_setadaptation))
3108 		return -EINVAL;
3109 	if (copy_from_user(&adaptation, optval, optlen))
3110 		return -EFAULT;
3111 
3112 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3113 
3114 	return 0;
3115 }
3116 
3117 /*
3118  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3119  *
3120  * The context field in the sctp_sndrcvinfo structure is normally only
3121  * used when a failed message is retrieved holding the value that was
3122  * sent down on the actual send call.  This option allows the setting of
3123  * a default context on an association basis that will be received on
3124  * reading messages from the peer.  This is especially helpful in the
3125  * one-2-many model for an application to keep some reference to an
3126  * internal state machine that is processing messages on the
3127  * association.  Note that the setting of this value only effects
3128  * received messages from the peer and does not effect the value that is
3129  * saved with outbound messages.
3130  */
3131 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3132 				   unsigned int optlen)
3133 {
3134 	struct sctp_assoc_value params;
3135 	struct sctp_sock *sp;
3136 	struct sctp_association *asoc;
3137 
3138 	if (optlen != sizeof(struct sctp_assoc_value))
3139 		return -EINVAL;
3140 	if (copy_from_user(&params, optval, optlen))
3141 		return -EFAULT;
3142 
3143 	sp = sctp_sk(sk);
3144 
3145 	if (params.assoc_id != 0) {
3146 		asoc = sctp_id2assoc(sk, params.assoc_id);
3147 		if (!asoc)
3148 			return -EINVAL;
3149 		asoc->default_rcv_context = params.assoc_value;
3150 	} else {
3151 		sp->default_rcv_context = params.assoc_value;
3152 	}
3153 
3154 	return 0;
3155 }
3156 
3157 /*
3158  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3159  *
3160  * This options will at a minimum specify if the implementation is doing
3161  * fragmented interleave.  Fragmented interleave, for a one to many
3162  * socket, is when subsequent calls to receive a message may return
3163  * parts of messages from different associations.  Some implementations
3164  * may allow you to turn this value on or off.  If so, when turned off,
3165  * no fragment interleave will occur (which will cause a head of line
3166  * blocking amongst multiple associations sharing the same one to many
3167  * socket).  When this option is turned on, then each receive call may
3168  * come from a different association (thus the user must receive data
3169  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3170  * association each receive belongs to.
3171  *
3172  * This option takes a boolean value.  A non-zero value indicates that
3173  * fragmented interleave is on.  A value of zero indicates that
3174  * fragmented interleave is off.
3175  *
3176  * Note that it is important that an implementation that allows this
3177  * option to be turned on, have it off by default.  Otherwise an unaware
3178  * application using the one to many model may become confused and act
3179  * incorrectly.
3180  */
3181 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3182 					       char __user *optval,
3183 					       unsigned int optlen)
3184 {
3185 	int val;
3186 
3187 	if (optlen != sizeof(int))
3188 		return -EINVAL;
3189 	if (get_user(val, (int __user *)optval))
3190 		return -EFAULT;
3191 
3192 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3193 
3194 	return 0;
3195 }
3196 
3197 /*
3198  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3199  *       (SCTP_PARTIAL_DELIVERY_POINT)
3200  *
3201  * This option will set or get the SCTP partial delivery point.  This
3202  * point is the size of a message where the partial delivery API will be
3203  * invoked to help free up rwnd space for the peer.  Setting this to a
3204  * lower value will cause partial deliveries to happen more often.  The
3205  * calls argument is an integer that sets or gets the partial delivery
3206  * point.  Note also that the call will fail if the user attempts to set
3207  * this value larger than the socket receive buffer size.
3208  *
3209  * Note that any single message having a length smaller than or equal to
3210  * the SCTP partial delivery point will be delivered in one single read
3211  * call as long as the user provided buffer is large enough to hold the
3212  * message.
3213  */
3214 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3215 						  char __user *optval,
3216 						  unsigned int optlen)
3217 {
3218 	u32 val;
3219 
3220 	if (optlen != sizeof(u32))
3221 		return -EINVAL;
3222 	if (get_user(val, (int __user *)optval))
3223 		return -EFAULT;
3224 
3225 	/* Note: We double the receive buffer from what the user sets
3226 	 * it to be, also initial rwnd is based on rcvbuf/2.
3227 	 */
3228 	if (val > (sk->sk_rcvbuf >> 1))
3229 		return -EINVAL;
3230 
3231 	sctp_sk(sk)->pd_point = val;
3232 
3233 	return 0; /* is this the right error code? */
3234 }
3235 
3236 /*
3237  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3238  *
3239  * This option will allow a user to change the maximum burst of packets
3240  * that can be emitted by this association.  Note that the default value
3241  * is 4, and some implementations may restrict this setting so that it
3242  * can only be lowered.
3243  *
3244  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3245  * future associations inheriting the socket value.
3246  */
3247 static int sctp_setsockopt_maxburst(struct sock *sk,
3248 				    char __user *optval,
3249 				    unsigned int optlen)
3250 {
3251 	struct sctp_assoc_value params;
3252 	struct sctp_sock *sp;
3253 	struct sctp_association *asoc;
3254 	int val;
3255 	int assoc_id = 0;
3256 
3257 	if (optlen == sizeof(int)) {
3258 		pr_warn("Use of int in max_burst socket option deprecated\n");
3259 		pr_warn("Use struct sctp_assoc_value instead\n");
3260 		if (copy_from_user(&val, optval, optlen))
3261 			return -EFAULT;
3262 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3263 		if (copy_from_user(&params, optval, optlen))
3264 			return -EFAULT;
3265 		val = params.assoc_value;
3266 		assoc_id = params.assoc_id;
3267 	} else
3268 		return -EINVAL;
3269 
3270 	sp = sctp_sk(sk);
3271 
3272 	if (assoc_id != 0) {
3273 		asoc = sctp_id2assoc(sk, assoc_id);
3274 		if (!asoc)
3275 			return -EINVAL;
3276 		asoc->max_burst = val;
3277 	} else
3278 		sp->max_burst = val;
3279 
3280 	return 0;
3281 }
3282 
3283 /*
3284  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3285  *
3286  * This set option adds a chunk type that the user is requesting to be
3287  * received only in an authenticated way.  Changes to the list of chunks
3288  * will only effect future associations on the socket.
3289  */
3290 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3291 				      char __user *optval,
3292 				      unsigned int optlen)
3293 {
3294 	struct net *net = sock_net(sk);
3295 	struct sctp_authchunk val;
3296 
3297 	if (!net->sctp.auth_enable)
3298 		return -EACCES;
3299 
3300 	if (optlen != sizeof(struct sctp_authchunk))
3301 		return -EINVAL;
3302 	if (copy_from_user(&val, optval, optlen))
3303 		return -EFAULT;
3304 
3305 	switch (val.sauth_chunk) {
3306 	case SCTP_CID_INIT:
3307 	case SCTP_CID_INIT_ACK:
3308 	case SCTP_CID_SHUTDOWN_COMPLETE:
3309 	case SCTP_CID_AUTH:
3310 		return -EINVAL;
3311 	}
3312 
3313 	/* add this chunk id to the endpoint */
3314 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3315 }
3316 
3317 /*
3318  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3319  *
3320  * This option gets or sets the list of HMAC algorithms that the local
3321  * endpoint requires the peer to use.
3322  */
3323 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3324 				      char __user *optval,
3325 				      unsigned int optlen)
3326 {
3327 	struct net *net = sock_net(sk);
3328 	struct sctp_hmacalgo *hmacs;
3329 	u32 idents;
3330 	int err;
3331 
3332 	if (!net->sctp.auth_enable)
3333 		return -EACCES;
3334 
3335 	if (optlen < sizeof(struct sctp_hmacalgo))
3336 		return -EINVAL;
3337 
3338 	hmacs= memdup_user(optval, optlen);
3339 	if (IS_ERR(hmacs))
3340 		return PTR_ERR(hmacs);
3341 
3342 	idents = hmacs->shmac_num_idents;
3343 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3344 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3345 		err = -EINVAL;
3346 		goto out;
3347 	}
3348 
3349 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3350 out:
3351 	kfree(hmacs);
3352 	return err;
3353 }
3354 
3355 /*
3356  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3357  *
3358  * This option will set a shared secret key which is used to build an
3359  * association shared key.
3360  */
3361 static int sctp_setsockopt_auth_key(struct sock *sk,
3362 				    char __user *optval,
3363 				    unsigned int optlen)
3364 {
3365 	struct net *net = sock_net(sk);
3366 	struct sctp_authkey *authkey;
3367 	struct sctp_association *asoc;
3368 	int ret;
3369 
3370 	if (!net->sctp.auth_enable)
3371 		return -EACCES;
3372 
3373 	if (optlen <= sizeof(struct sctp_authkey))
3374 		return -EINVAL;
3375 
3376 	authkey= memdup_user(optval, optlen);
3377 	if (IS_ERR(authkey))
3378 		return PTR_ERR(authkey);
3379 
3380 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3381 		ret = -EINVAL;
3382 		goto out;
3383 	}
3384 
3385 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3386 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3387 		ret = -EINVAL;
3388 		goto out;
3389 	}
3390 
3391 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3392 out:
3393 	kfree(authkey);
3394 	return ret;
3395 }
3396 
3397 /*
3398  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3399  *
3400  * This option will get or set the active shared key to be used to build
3401  * the association shared key.
3402  */
3403 static int sctp_setsockopt_active_key(struct sock *sk,
3404 				      char __user *optval,
3405 				      unsigned int optlen)
3406 {
3407 	struct net *net = sock_net(sk);
3408 	struct sctp_authkeyid val;
3409 	struct sctp_association *asoc;
3410 
3411 	if (!net->sctp.auth_enable)
3412 		return -EACCES;
3413 
3414 	if (optlen != sizeof(struct sctp_authkeyid))
3415 		return -EINVAL;
3416 	if (copy_from_user(&val, optval, optlen))
3417 		return -EFAULT;
3418 
3419 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3420 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3421 		return -EINVAL;
3422 
3423 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3424 					val.scact_keynumber);
3425 }
3426 
3427 /*
3428  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3429  *
3430  * This set option will delete a shared secret key from use.
3431  */
3432 static int sctp_setsockopt_del_key(struct sock *sk,
3433 				   char __user *optval,
3434 				   unsigned int optlen)
3435 {
3436 	struct net *net = sock_net(sk);
3437 	struct sctp_authkeyid val;
3438 	struct sctp_association *asoc;
3439 
3440 	if (!net->sctp.auth_enable)
3441 		return -EACCES;
3442 
3443 	if (optlen != sizeof(struct sctp_authkeyid))
3444 		return -EINVAL;
3445 	if (copy_from_user(&val, optval, optlen))
3446 		return -EFAULT;
3447 
3448 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3449 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3450 		return -EINVAL;
3451 
3452 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3453 				    val.scact_keynumber);
3454 
3455 }
3456 
3457 /*
3458  * 8.1.23 SCTP_AUTO_ASCONF
3459  *
3460  * This option will enable or disable the use of the automatic generation of
3461  * ASCONF chunks to add and delete addresses to an existing association.  Note
3462  * that this option has two caveats namely: a) it only affects sockets that
3463  * are bound to all addresses available to the SCTP stack, and b) the system
3464  * administrator may have an overriding control that turns the ASCONF feature
3465  * off no matter what setting the socket option may have.
3466  * This option expects an integer boolean flag, where a non-zero value turns on
3467  * the option, and a zero value turns off the option.
3468  * Note. In this implementation, socket operation overrides default parameter
3469  * being set by sysctl as well as FreeBSD implementation
3470  */
3471 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3472 					unsigned int optlen)
3473 {
3474 	int val;
3475 	struct sctp_sock *sp = sctp_sk(sk);
3476 
3477 	if (optlen < sizeof(int))
3478 		return -EINVAL;
3479 	if (get_user(val, (int __user *)optval))
3480 		return -EFAULT;
3481 	if (!sctp_is_ep_boundall(sk) && val)
3482 		return -EINVAL;
3483 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3484 		return 0;
3485 
3486 	if (val == 0 && sp->do_auto_asconf) {
3487 		list_del(&sp->auto_asconf_list);
3488 		sp->do_auto_asconf = 0;
3489 	} else if (val && !sp->do_auto_asconf) {
3490 		list_add_tail(&sp->auto_asconf_list,
3491 		    &sock_net(sk)->sctp.auto_asconf_splist);
3492 		sp->do_auto_asconf = 1;
3493 	}
3494 	return 0;
3495 }
3496 
3497 
3498 /*
3499  * SCTP_PEER_ADDR_THLDS
3500  *
3501  * This option allows us to alter the partially failed threshold for one or all
3502  * transports in an association.  See Section 6.1 of:
3503  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3504  */
3505 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3506 					    char __user *optval,
3507 					    unsigned int optlen)
3508 {
3509 	struct sctp_paddrthlds val;
3510 	struct sctp_transport *trans;
3511 	struct sctp_association *asoc;
3512 
3513 	if (optlen < sizeof(struct sctp_paddrthlds))
3514 		return -EINVAL;
3515 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3516 			   sizeof(struct sctp_paddrthlds)))
3517 		return -EFAULT;
3518 
3519 
3520 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3521 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3522 		if (!asoc)
3523 			return -ENOENT;
3524 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3525 				    transports) {
3526 			if (val.spt_pathmaxrxt)
3527 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3528 			trans->pf_retrans = val.spt_pathpfthld;
3529 		}
3530 
3531 		if (val.spt_pathmaxrxt)
3532 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3533 		asoc->pf_retrans = val.spt_pathpfthld;
3534 	} else {
3535 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3536 					       val.spt_assoc_id);
3537 		if (!trans)
3538 			return -ENOENT;
3539 
3540 		if (val.spt_pathmaxrxt)
3541 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3542 		trans->pf_retrans = val.spt_pathpfthld;
3543 	}
3544 
3545 	return 0;
3546 }
3547 
3548 /* API 6.2 setsockopt(), getsockopt()
3549  *
3550  * Applications use setsockopt() and getsockopt() to set or retrieve
3551  * socket options.  Socket options are used to change the default
3552  * behavior of sockets calls.  They are described in Section 7.
3553  *
3554  * The syntax is:
3555  *
3556  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3557  *                    int __user *optlen);
3558  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3559  *                    int optlen);
3560  *
3561  *   sd      - the socket descript.
3562  *   level   - set to IPPROTO_SCTP for all SCTP options.
3563  *   optname - the option name.
3564  *   optval  - the buffer to store the value of the option.
3565  *   optlen  - the size of the buffer.
3566  */
3567 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3568 				char __user *optval, unsigned int optlen)
3569 {
3570 	int retval = 0;
3571 
3572 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3573 			  sk, optname);
3574 
3575 	/* I can hardly begin to describe how wrong this is.  This is
3576 	 * so broken as to be worse than useless.  The API draft
3577 	 * REALLY is NOT helpful here...  I am not convinced that the
3578 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3579 	 * are at all well-founded.
3580 	 */
3581 	if (level != SOL_SCTP) {
3582 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3583 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3584 		goto out_nounlock;
3585 	}
3586 
3587 	sctp_lock_sock(sk);
3588 
3589 	switch (optname) {
3590 	case SCTP_SOCKOPT_BINDX_ADD:
3591 		/* 'optlen' is the size of the addresses buffer. */
3592 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3593 					       optlen, SCTP_BINDX_ADD_ADDR);
3594 		break;
3595 
3596 	case SCTP_SOCKOPT_BINDX_REM:
3597 		/* 'optlen' is the size of the addresses buffer. */
3598 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3599 					       optlen, SCTP_BINDX_REM_ADDR);
3600 		break;
3601 
3602 	case SCTP_SOCKOPT_CONNECTX_OLD:
3603 		/* 'optlen' is the size of the addresses buffer. */
3604 		retval = sctp_setsockopt_connectx_old(sk,
3605 					    (struct sockaddr __user *)optval,
3606 					    optlen);
3607 		break;
3608 
3609 	case SCTP_SOCKOPT_CONNECTX:
3610 		/* 'optlen' is the size of the addresses buffer. */
3611 		retval = sctp_setsockopt_connectx(sk,
3612 					    (struct sockaddr __user *)optval,
3613 					    optlen);
3614 		break;
3615 
3616 	case SCTP_DISABLE_FRAGMENTS:
3617 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3618 		break;
3619 
3620 	case SCTP_EVENTS:
3621 		retval = sctp_setsockopt_events(sk, optval, optlen);
3622 		break;
3623 
3624 	case SCTP_AUTOCLOSE:
3625 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3626 		break;
3627 
3628 	case SCTP_PEER_ADDR_PARAMS:
3629 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3630 		break;
3631 
3632 	case SCTP_DELAYED_SACK:
3633 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3634 		break;
3635 	case SCTP_PARTIAL_DELIVERY_POINT:
3636 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3637 		break;
3638 
3639 	case SCTP_INITMSG:
3640 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3641 		break;
3642 	case SCTP_DEFAULT_SEND_PARAM:
3643 		retval = sctp_setsockopt_default_send_param(sk, optval,
3644 							    optlen);
3645 		break;
3646 	case SCTP_PRIMARY_ADDR:
3647 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3648 		break;
3649 	case SCTP_SET_PEER_PRIMARY_ADDR:
3650 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3651 		break;
3652 	case SCTP_NODELAY:
3653 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3654 		break;
3655 	case SCTP_RTOINFO:
3656 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3657 		break;
3658 	case SCTP_ASSOCINFO:
3659 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3660 		break;
3661 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3662 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3663 		break;
3664 	case SCTP_MAXSEG:
3665 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3666 		break;
3667 	case SCTP_ADAPTATION_LAYER:
3668 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3669 		break;
3670 	case SCTP_CONTEXT:
3671 		retval = sctp_setsockopt_context(sk, optval, optlen);
3672 		break;
3673 	case SCTP_FRAGMENT_INTERLEAVE:
3674 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3675 		break;
3676 	case SCTP_MAX_BURST:
3677 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3678 		break;
3679 	case SCTP_AUTH_CHUNK:
3680 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3681 		break;
3682 	case SCTP_HMAC_IDENT:
3683 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3684 		break;
3685 	case SCTP_AUTH_KEY:
3686 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3687 		break;
3688 	case SCTP_AUTH_ACTIVE_KEY:
3689 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3690 		break;
3691 	case SCTP_AUTH_DELETE_KEY:
3692 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3693 		break;
3694 	case SCTP_AUTO_ASCONF:
3695 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3696 		break;
3697 	case SCTP_PEER_ADDR_THLDS:
3698 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3699 		break;
3700 	default:
3701 		retval = -ENOPROTOOPT;
3702 		break;
3703 	}
3704 
3705 	sctp_release_sock(sk);
3706 
3707 out_nounlock:
3708 	return retval;
3709 }
3710 
3711 /* API 3.1.6 connect() - UDP Style Syntax
3712  *
3713  * An application may use the connect() call in the UDP model to initiate an
3714  * association without sending data.
3715  *
3716  * The syntax is:
3717  *
3718  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3719  *
3720  * sd: the socket descriptor to have a new association added to.
3721  *
3722  * nam: the address structure (either struct sockaddr_in or struct
3723  *    sockaddr_in6 defined in RFC2553 [7]).
3724  *
3725  * len: the size of the address.
3726  */
3727 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3728 			     int addr_len)
3729 {
3730 	int err = 0;
3731 	struct sctp_af *af;
3732 
3733 	sctp_lock_sock(sk);
3734 
3735 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3736 			  __func__, sk, addr, addr_len);
3737 
3738 	/* Validate addr_len before calling common connect/connectx routine. */
3739 	af = sctp_get_af_specific(addr->sa_family);
3740 	if (!af || addr_len < af->sockaddr_len) {
3741 		err = -EINVAL;
3742 	} else {
3743 		/* Pass correct addr len to common routine (so it knows there
3744 		 * is only one address being passed.
3745 		 */
3746 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3747 	}
3748 
3749 	sctp_release_sock(sk);
3750 	return err;
3751 }
3752 
3753 /* FIXME: Write comments. */
3754 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3755 {
3756 	return -EOPNOTSUPP; /* STUB */
3757 }
3758 
3759 /* 4.1.4 accept() - TCP Style Syntax
3760  *
3761  * Applications use accept() call to remove an established SCTP
3762  * association from the accept queue of the endpoint.  A new socket
3763  * descriptor will be returned from accept() to represent the newly
3764  * formed association.
3765  */
3766 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3767 {
3768 	struct sctp_sock *sp;
3769 	struct sctp_endpoint *ep;
3770 	struct sock *newsk = NULL;
3771 	struct sctp_association *asoc;
3772 	long timeo;
3773 	int error = 0;
3774 
3775 	sctp_lock_sock(sk);
3776 
3777 	sp = sctp_sk(sk);
3778 	ep = sp->ep;
3779 
3780 	if (!sctp_style(sk, TCP)) {
3781 		error = -EOPNOTSUPP;
3782 		goto out;
3783 	}
3784 
3785 	if (!sctp_sstate(sk, LISTENING)) {
3786 		error = -EINVAL;
3787 		goto out;
3788 	}
3789 
3790 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3791 
3792 	error = sctp_wait_for_accept(sk, timeo);
3793 	if (error)
3794 		goto out;
3795 
3796 	/* We treat the list of associations on the endpoint as the accept
3797 	 * queue and pick the first association on the list.
3798 	 */
3799 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3800 
3801 	newsk = sp->pf->create_accept_sk(sk, asoc);
3802 	if (!newsk) {
3803 		error = -ENOMEM;
3804 		goto out;
3805 	}
3806 
3807 	/* Populate the fields of the newsk from the oldsk and migrate the
3808 	 * asoc to the newsk.
3809 	 */
3810 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3811 
3812 out:
3813 	sctp_release_sock(sk);
3814 	*err = error;
3815 	return newsk;
3816 }
3817 
3818 /* The SCTP ioctl handler. */
3819 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3820 {
3821 	int rc = -ENOTCONN;
3822 
3823 	sctp_lock_sock(sk);
3824 
3825 	/*
3826 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3827 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3828 	 */
3829 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3830 		goto out;
3831 
3832 	switch (cmd) {
3833 	case SIOCINQ: {
3834 		struct sk_buff *skb;
3835 		unsigned int amount = 0;
3836 
3837 		skb = skb_peek(&sk->sk_receive_queue);
3838 		if (skb != NULL) {
3839 			/*
3840 			 * We will only return the amount of this packet since
3841 			 * that is all that will be read.
3842 			 */
3843 			amount = skb->len;
3844 		}
3845 		rc = put_user(amount, (int __user *)arg);
3846 		break;
3847 	}
3848 	default:
3849 		rc = -ENOIOCTLCMD;
3850 		break;
3851 	}
3852 out:
3853 	sctp_release_sock(sk);
3854 	return rc;
3855 }
3856 
3857 /* This is the function which gets called during socket creation to
3858  * initialized the SCTP-specific portion of the sock.
3859  * The sock structure should already be zero-filled memory.
3860  */
3861 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3862 {
3863 	struct net *net = sock_net(sk);
3864 	struct sctp_endpoint *ep;
3865 	struct sctp_sock *sp;
3866 
3867 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3868 
3869 	sp = sctp_sk(sk);
3870 
3871 	/* Initialize the SCTP per socket area.  */
3872 	switch (sk->sk_type) {
3873 	case SOCK_SEQPACKET:
3874 		sp->type = SCTP_SOCKET_UDP;
3875 		break;
3876 	case SOCK_STREAM:
3877 		sp->type = SCTP_SOCKET_TCP;
3878 		break;
3879 	default:
3880 		return -ESOCKTNOSUPPORT;
3881 	}
3882 
3883 	/* Initialize default send parameters. These parameters can be
3884 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3885 	 */
3886 	sp->default_stream = 0;
3887 	sp->default_ppid = 0;
3888 	sp->default_flags = 0;
3889 	sp->default_context = 0;
3890 	sp->default_timetolive = 0;
3891 
3892 	sp->default_rcv_context = 0;
3893 	sp->max_burst = net->sctp.max_burst;
3894 
3895 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3896 
3897 	/* Initialize default setup parameters. These parameters
3898 	 * can be modified with the SCTP_INITMSG socket option or
3899 	 * overridden by the SCTP_INIT CMSG.
3900 	 */
3901 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3902 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3903 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3904 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3905 
3906 	/* Initialize default RTO related parameters.  These parameters can
3907 	 * be modified for with the SCTP_RTOINFO socket option.
3908 	 */
3909 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3910 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3911 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3912 
3913 	/* Initialize default association related parameters. These parameters
3914 	 * can be modified with the SCTP_ASSOCINFO socket option.
3915 	 */
3916 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3917 	sp->assocparams.sasoc_number_peer_destinations = 0;
3918 	sp->assocparams.sasoc_peer_rwnd = 0;
3919 	sp->assocparams.sasoc_local_rwnd = 0;
3920 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3921 
3922 	/* Initialize default event subscriptions. By default, all the
3923 	 * options are off.
3924 	 */
3925 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3926 
3927 	/* Default Peer Address Parameters.  These defaults can
3928 	 * be modified via SCTP_PEER_ADDR_PARAMS
3929 	 */
3930 	sp->hbinterval  = net->sctp.hb_interval;
3931 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3932 	sp->pathmtu     = 0; // allow default discovery
3933 	sp->sackdelay   = net->sctp.sack_timeout;
3934 	sp->sackfreq	= 2;
3935 	sp->param_flags = SPP_HB_ENABLE |
3936 			  SPP_PMTUD_ENABLE |
3937 			  SPP_SACKDELAY_ENABLE;
3938 
3939 	/* If enabled no SCTP message fragmentation will be performed.
3940 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3941 	 */
3942 	sp->disable_fragments = 0;
3943 
3944 	/* Enable Nagle algorithm by default.  */
3945 	sp->nodelay           = 0;
3946 
3947 	/* Enable by default. */
3948 	sp->v4mapped          = 1;
3949 
3950 	/* Auto-close idle associations after the configured
3951 	 * number of seconds.  A value of 0 disables this
3952 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3953 	 * for UDP-style sockets only.
3954 	 */
3955 	sp->autoclose         = 0;
3956 
3957 	/* User specified fragmentation limit. */
3958 	sp->user_frag         = 0;
3959 
3960 	sp->adaptation_ind = 0;
3961 
3962 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3963 
3964 	/* Control variables for partial data delivery. */
3965 	atomic_set(&sp->pd_mode, 0);
3966 	skb_queue_head_init(&sp->pd_lobby);
3967 	sp->frag_interleave = 0;
3968 
3969 	/* Create a per socket endpoint structure.  Even if we
3970 	 * change the data structure relationships, this may still
3971 	 * be useful for storing pre-connect address information.
3972 	 */
3973 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3974 	if (!ep)
3975 		return -ENOMEM;
3976 
3977 	sp->ep = ep;
3978 	sp->hmac = NULL;
3979 
3980 	SCTP_DBG_OBJCNT_INC(sock);
3981 
3982 	local_bh_disable();
3983 	percpu_counter_inc(&sctp_sockets_allocated);
3984 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3985 	if (net->sctp.default_auto_asconf) {
3986 		list_add_tail(&sp->auto_asconf_list,
3987 		    &net->sctp.auto_asconf_splist);
3988 		sp->do_auto_asconf = 1;
3989 	} else
3990 		sp->do_auto_asconf = 0;
3991 	local_bh_enable();
3992 
3993 	return 0;
3994 }
3995 
3996 /* Cleanup any SCTP per socket resources.  */
3997 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3998 {
3999 	struct sctp_sock *sp;
4000 
4001 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
4002 
4003 	/* Release our hold on the endpoint. */
4004 	sp = sctp_sk(sk);
4005 	if (sp->do_auto_asconf) {
4006 		sp->do_auto_asconf = 0;
4007 		list_del(&sp->auto_asconf_list);
4008 	}
4009 	sctp_endpoint_free(sp->ep);
4010 	local_bh_disable();
4011 	percpu_counter_dec(&sctp_sockets_allocated);
4012 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4013 	local_bh_enable();
4014 }
4015 
4016 /* API 4.1.7 shutdown() - TCP Style Syntax
4017  *     int shutdown(int socket, int how);
4018  *
4019  *     sd      - the socket descriptor of the association to be closed.
4020  *     how     - Specifies the type of shutdown.  The  values  are
4021  *               as follows:
4022  *               SHUT_RD
4023  *                     Disables further receive operations. No SCTP
4024  *                     protocol action is taken.
4025  *               SHUT_WR
4026  *                     Disables further send operations, and initiates
4027  *                     the SCTP shutdown sequence.
4028  *               SHUT_RDWR
4029  *                     Disables further send  and  receive  operations
4030  *                     and initiates the SCTP shutdown sequence.
4031  */
4032 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
4033 {
4034 	struct net *net = sock_net(sk);
4035 	struct sctp_endpoint *ep;
4036 	struct sctp_association *asoc;
4037 
4038 	if (!sctp_style(sk, TCP))
4039 		return;
4040 
4041 	if (how & SEND_SHUTDOWN) {
4042 		ep = sctp_sk(sk)->ep;
4043 		if (!list_empty(&ep->asocs)) {
4044 			asoc = list_entry(ep->asocs.next,
4045 					  struct sctp_association, asocs);
4046 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4047 		}
4048 	}
4049 }
4050 
4051 /* 7.2.1 Association Status (SCTP_STATUS)
4052 
4053  * Applications can retrieve current status information about an
4054  * association, including association state, peer receiver window size,
4055  * number of unacked data chunks, and number of data chunks pending
4056  * receipt.  This information is read-only.
4057  */
4058 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4059 				       char __user *optval,
4060 				       int __user *optlen)
4061 {
4062 	struct sctp_status status;
4063 	struct sctp_association *asoc = NULL;
4064 	struct sctp_transport *transport;
4065 	sctp_assoc_t associd;
4066 	int retval = 0;
4067 
4068 	if (len < sizeof(status)) {
4069 		retval = -EINVAL;
4070 		goto out;
4071 	}
4072 
4073 	len = sizeof(status);
4074 	if (copy_from_user(&status, optval, len)) {
4075 		retval = -EFAULT;
4076 		goto out;
4077 	}
4078 
4079 	associd = status.sstat_assoc_id;
4080 	asoc = sctp_id2assoc(sk, associd);
4081 	if (!asoc) {
4082 		retval = -EINVAL;
4083 		goto out;
4084 	}
4085 
4086 	transport = asoc->peer.primary_path;
4087 
4088 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4089 	status.sstat_state = asoc->state;
4090 	status.sstat_rwnd =  asoc->peer.rwnd;
4091 	status.sstat_unackdata = asoc->unack_data;
4092 
4093 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4094 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4095 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4096 	status.sstat_fragmentation_point = asoc->frag_point;
4097 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4098 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4099 			transport->af_specific->sockaddr_len);
4100 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4101 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4102 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4103 	status.sstat_primary.spinfo_state = transport->state;
4104 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4105 	status.sstat_primary.spinfo_srtt = transport->srtt;
4106 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4107 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4108 
4109 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4110 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4111 
4112 	if (put_user(len, optlen)) {
4113 		retval = -EFAULT;
4114 		goto out;
4115 	}
4116 
4117 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4118 			  len, status.sstat_state, status.sstat_rwnd,
4119 			  status.sstat_assoc_id);
4120 
4121 	if (copy_to_user(optval, &status, len)) {
4122 		retval = -EFAULT;
4123 		goto out;
4124 	}
4125 
4126 out:
4127 	return retval;
4128 }
4129 
4130 
4131 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4132  *
4133  * Applications can retrieve information about a specific peer address
4134  * of an association, including its reachability state, congestion
4135  * window, and retransmission timer values.  This information is
4136  * read-only.
4137  */
4138 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4139 					  char __user *optval,
4140 					  int __user *optlen)
4141 {
4142 	struct sctp_paddrinfo pinfo;
4143 	struct sctp_transport *transport;
4144 	int retval = 0;
4145 
4146 	if (len < sizeof(pinfo)) {
4147 		retval = -EINVAL;
4148 		goto out;
4149 	}
4150 
4151 	len = sizeof(pinfo);
4152 	if (copy_from_user(&pinfo, optval, len)) {
4153 		retval = -EFAULT;
4154 		goto out;
4155 	}
4156 
4157 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4158 					   pinfo.spinfo_assoc_id);
4159 	if (!transport)
4160 		return -EINVAL;
4161 
4162 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4163 	pinfo.spinfo_state = transport->state;
4164 	pinfo.spinfo_cwnd = transport->cwnd;
4165 	pinfo.spinfo_srtt = transport->srtt;
4166 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4167 	pinfo.spinfo_mtu = transport->pathmtu;
4168 
4169 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4170 		pinfo.spinfo_state = SCTP_ACTIVE;
4171 
4172 	if (put_user(len, optlen)) {
4173 		retval = -EFAULT;
4174 		goto out;
4175 	}
4176 
4177 	if (copy_to_user(optval, &pinfo, len)) {
4178 		retval = -EFAULT;
4179 		goto out;
4180 	}
4181 
4182 out:
4183 	return retval;
4184 }
4185 
4186 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4187  *
4188  * This option is a on/off flag.  If enabled no SCTP message
4189  * fragmentation will be performed.  Instead if a message being sent
4190  * exceeds the current PMTU size, the message will NOT be sent and
4191  * instead a error will be indicated to the user.
4192  */
4193 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4194 					char __user *optval, int __user *optlen)
4195 {
4196 	int val;
4197 
4198 	if (len < sizeof(int))
4199 		return -EINVAL;
4200 
4201 	len = sizeof(int);
4202 	val = (sctp_sk(sk)->disable_fragments == 1);
4203 	if (put_user(len, optlen))
4204 		return -EFAULT;
4205 	if (copy_to_user(optval, &val, len))
4206 		return -EFAULT;
4207 	return 0;
4208 }
4209 
4210 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4211  *
4212  * This socket option is used to specify various notifications and
4213  * ancillary data the user wishes to receive.
4214  */
4215 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4216 				  int __user *optlen)
4217 {
4218 	if (len <= 0)
4219 		return -EINVAL;
4220 	if (len > sizeof(struct sctp_event_subscribe))
4221 		len = sizeof(struct sctp_event_subscribe);
4222 	if (put_user(len, optlen))
4223 		return -EFAULT;
4224 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4225 		return -EFAULT;
4226 	return 0;
4227 }
4228 
4229 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4230  *
4231  * This socket option is applicable to the UDP-style socket only.  When
4232  * set it will cause associations that are idle for more than the
4233  * specified number of seconds to automatically close.  An association
4234  * being idle is defined an association that has NOT sent or received
4235  * user data.  The special value of '0' indicates that no automatic
4236  * close of any associations should be performed.  The option expects an
4237  * integer defining the number of seconds of idle time before an
4238  * association is closed.
4239  */
4240 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4241 {
4242 	/* Applicable to UDP-style socket only */
4243 	if (sctp_style(sk, TCP))
4244 		return -EOPNOTSUPP;
4245 	if (len < sizeof(int))
4246 		return -EINVAL;
4247 	len = sizeof(int);
4248 	if (put_user(len, optlen))
4249 		return -EFAULT;
4250 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4251 		return -EFAULT;
4252 	return 0;
4253 }
4254 
4255 /* Helper routine to branch off an association to a new socket.  */
4256 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4257 {
4258 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4259 	struct socket *sock;
4260 	struct sctp_af *af;
4261 	int err = 0;
4262 
4263 	if (!asoc)
4264 		return -EINVAL;
4265 
4266 	/* An association cannot be branched off from an already peeled-off
4267 	 * socket, nor is this supported for tcp style sockets.
4268 	 */
4269 	if (!sctp_style(sk, UDP))
4270 		return -EINVAL;
4271 
4272 	/* Create a new socket.  */
4273 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4274 	if (err < 0)
4275 		return err;
4276 
4277 	sctp_copy_sock(sock->sk, sk, asoc);
4278 
4279 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4280 	 * Set the daddr and initialize id to something more random
4281 	 */
4282 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4283 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4284 
4285 	/* Populate the fields of the newsk from the oldsk and migrate the
4286 	 * asoc to the newsk.
4287 	 */
4288 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4289 
4290 	*sockp = sock;
4291 
4292 	return err;
4293 }
4294 EXPORT_SYMBOL(sctp_do_peeloff);
4295 
4296 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4297 {
4298 	sctp_peeloff_arg_t peeloff;
4299 	struct socket *newsock;
4300 	struct file *newfile;
4301 	int retval = 0;
4302 
4303 	if (len < sizeof(sctp_peeloff_arg_t))
4304 		return -EINVAL;
4305 	len = sizeof(sctp_peeloff_arg_t);
4306 	if (copy_from_user(&peeloff, optval, len))
4307 		return -EFAULT;
4308 
4309 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4310 	if (retval < 0)
4311 		goto out;
4312 
4313 	/* Map the socket to an unused fd that can be returned to the user.  */
4314 	retval = get_unused_fd();
4315 	if (retval < 0) {
4316 		sock_release(newsock);
4317 		goto out;
4318 	}
4319 
4320 	newfile = sock_alloc_file(newsock, 0, NULL);
4321 	if (unlikely(IS_ERR(newfile))) {
4322 		put_unused_fd(retval);
4323 		sock_release(newsock);
4324 		return PTR_ERR(newfile);
4325 	}
4326 
4327 	SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4328 			  __func__, sk, newsock->sk, retval);
4329 
4330 	/* Return the fd mapped to the new socket.  */
4331 	if (put_user(len, optlen)) {
4332 		fput(newfile);
4333 		put_unused_fd(retval);
4334 		return -EFAULT;
4335 	}
4336 	peeloff.sd = retval;
4337 	if (copy_to_user(optval, &peeloff, len)) {
4338 		fput(newfile);
4339 		put_unused_fd(retval);
4340 		return -EFAULT;
4341 	}
4342 	fd_install(retval, newfile);
4343 out:
4344 	return retval;
4345 }
4346 
4347 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4348  *
4349  * Applications can enable or disable heartbeats for any peer address of
4350  * an association, modify an address's heartbeat interval, force a
4351  * heartbeat to be sent immediately, and adjust the address's maximum
4352  * number of retransmissions sent before an address is considered
4353  * unreachable.  The following structure is used to access and modify an
4354  * address's parameters:
4355  *
4356  *  struct sctp_paddrparams {
4357  *     sctp_assoc_t            spp_assoc_id;
4358  *     struct sockaddr_storage spp_address;
4359  *     uint32_t                spp_hbinterval;
4360  *     uint16_t                spp_pathmaxrxt;
4361  *     uint32_t                spp_pathmtu;
4362  *     uint32_t                spp_sackdelay;
4363  *     uint32_t                spp_flags;
4364  * };
4365  *
4366  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4367  *                     application, and identifies the association for
4368  *                     this query.
4369  *   spp_address     - This specifies which address is of interest.
4370  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4371  *                     in milliseconds.  If a  value of zero
4372  *                     is present in this field then no changes are to
4373  *                     be made to this parameter.
4374  *   spp_pathmaxrxt  - This contains the maximum number of
4375  *                     retransmissions before this address shall be
4376  *                     considered unreachable. If a  value of zero
4377  *                     is present in this field then no changes are to
4378  *                     be made to this parameter.
4379  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4380  *                     specified here will be the "fixed" path mtu.
4381  *                     Note that if the spp_address field is empty
4382  *                     then all associations on this address will
4383  *                     have this fixed path mtu set upon them.
4384  *
4385  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4386  *                     the number of milliseconds that sacks will be delayed
4387  *                     for. This value will apply to all addresses of an
4388  *                     association if the spp_address field is empty. Note
4389  *                     also, that if delayed sack is enabled and this
4390  *                     value is set to 0, no change is made to the last
4391  *                     recorded delayed sack timer value.
4392  *
4393  *   spp_flags       - These flags are used to control various features
4394  *                     on an association. The flag field may contain
4395  *                     zero or more of the following options.
4396  *
4397  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4398  *                     specified address. Note that if the address
4399  *                     field is empty all addresses for the association
4400  *                     have heartbeats enabled upon them.
4401  *
4402  *                     SPP_HB_DISABLE - Disable heartbeats on the
4403  *                     speicifed address. Note that if the address
4404  *                     field is empty all addresses for the association
4405  *                     will have their heartbeats disabled. Note also
4406  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4407  *                     mutually exclusive, only one of these two should
4408  *                     be specified. Enabling both fields will have
4409  *                     undetermined results.
4410  *
4411  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4412  *                     to be made immediately.
4413  *
4414  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4415  *                     discovery upon the specified address. Note that
4416  *                     if the address feild is empty then all addresses
4417  *                     on the association are effected.
4418  *
4419  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4420  *                     discovery upon the specified address. Note that
4421  *                     if the address feild is empty then all addresses
4422  *                     on the association are effected. Not also that
4423  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4424  *                     exclusive. Enabling both will have undetermined
4425  *                     results.
4426  *
4427  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4428  *                     on delayed sack. The time specified in spp_sackdelay
4429  *                     is used to specify the sack delay for this address. Note
4430  *                     that if spp_address is empty then all addresses will
4431  *                     enable delayed sack and take on the sack delay
4432  *                     value specified in spp_sackdelay.
4433  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4434  *                     off delayed sack. If the spp_address field is blank then
4435  *                     delayed sack is disabled for the entire association. Note
4436  *                     also that this field is mutually exclusive to
4437  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4438  *                     results.
4439  */
4440 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4441 					    char __user *optval, int __user *optlen)
4442 {
4443 	struct sctp_paddrparams  params;
4444 	struct sctp_transport   *trans = NULL;
4445 	struct sctp_association *asoc = NULL;
4446 	struct sctp_sock        *sp = sctp_sk(sk);
4447 
4448 	if (len < sizeof(struct sctp_paddrparams))
4449 		return -EINVAL;
4450 	len = sizeof(struct sctp_paddrparams);
4451 	if (copy_from_user(&params, optval, len))
4452 		return -EFAULT;
4453 
4454 	/* If an address other than INADDR_ANY is specified, and
4455 	 * no transport is found, then the request is invalid.
4456 	 */
4457 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4458 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4459 					       params.spp_assoc_id);
4460 		if (!trans) {
4461 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4462 			return -EINVAL;
4463 		}
4464 	}
4465 
4466 	/* Get association, if assoc_id != 0 and the socket is a one
4467 	 * to many style socket, and an association was not found, then
4468 	 * the id was invalid.
4469 	 */
4470 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4471 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4472 		SCTP_DEBUG_PRINTK("Failed no association\n");
4473 		return -EINVAL;
4474 	}
4475 
4476 	if (trans) {
4477 		/* Fetch transport values. */
4478 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4479 		params.spp_pathmtu    = trans->pathmtu;
4480 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4481 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4482 
4483 		/*draft-11 doesn't say what to return in spp_flags*/
4484 		params.spp_flags      = trans->param_flags;
4485 	} else if (asoc) {
4486 		/* Fetch association values. */
4487 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4488 		params.spp_pathmtu    = asoc->pathmtu;
4489 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4490 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4491 
4492 		/*draft-11 doesn't say what to return in spp_flags*/
4493 		params.spp_flags      = asoc->param_flags;
4494 	} else {
4495 		/* Fetch socket values. */
4496 		params.spp_hbinterval = sp->hbinterval;
4497 		params.spp_pathmtu    = sp->pathmtu;
4498 		params.spp_sackdelay  = sp->sackdelay;
4499 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4500 
4501 		/*draft-11 doesn't say what to return in spp_flags*/
4502 		params.spp_flags      = sp->param_flags;
4503 	}
4504 
4505 	if (copy_to_user(optval, &params, len))
4506 		return -EFAULT;
4507 
4508 	if (put_user(len, optlen))
4509 		return -EFAULT;
4510 
4511 	return 0;
4512 }
4513 
4514 /*
4515  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4516  *
4517  * This option will effect the way delayed acks are performed.  This
4518  * option allows you to get or set the delayed ack time, in
4519  * milliseconds.  It also allows changing the delayed ack frequency.
4520  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4521  * the assoc_id is 0, then this sets or gets the endpoints default
4522  * values.  If the assoc_id field is non-zero, then the set or get
4523  * effects the specified association for the one to many model (the
4524  * assoc_id field is ignored by the one to one model).  Note that if
4525  * sack_delay or sack_freq are 0 when setting this option, then the
4526  * current values will remain unchanged.
4527  *
4528  * struct sctp_sack_info {
4529  *     sctp_assoc_t            sack_assoc_id;
4530  *     uint32_t                sack_delay;
4531  *     uint32_t                sack_freq;
4532  * };
4533  *
4534  * sack_assoc_id -  This parameter, indicates which association the user
4535  *    is performing an action upon.  Note that if this field's value is
4536  *    zero then the endpoints default value is changed (effecting future
4537  *    associations only).
4538  *
4539  * sack_delay -  This parameter contains the number of milliseconds that
4540  *    the user is requesting the delayed ACK timer be set to.  Note that
4541  *    this value is defined in the standard to be between 200 and 500
4542  *    milliseconds.
4543  *
4544  * sack_freq -  This parameter contains the number of packets that must
4545  *    be received before a sack is sent without waiting for the delay
4546  *    timer to expire.  The default value for this is 2, setting this
4547  *    value to 1 will disable the delayed sack algorithm.
4548  */
4549 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4550 					    char __user *optval,
4551 					    int __user *optlen)
4552 {
4553 	struct sctp_sack_info    params;
4554 	struct sctp_association *asoc = NULL;
4555 	struct sctp_sock        *sp = sctp_sk(sk);
4556 
4557 	if (len >= sizeof(struct sctp_sack_info)) {
4558 		len = sizeof(struct sctp_sack_info);
4559 
4560 		if (copy_from_user(&params, optval, len))
4561 			return -EFAULT;
4562 	} else if (len == sizeof(struct sctp_assoc_value)) {
4563 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4564 		pr_warn("Use struct sctp_sack_info instead\n");
4565 		if (copy_from_user(&params, optval, len))
4566 			return -EFAULT;
4567 	} else
4568 		return - EINVAL;
4569 
4570 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4571 	 * to many style socket, and an association was not found, then
4572 	 * the id was invalid.
4573 	 */
4574 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4575 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4576 		return -EINVAL;
4577 
4578 	if (asoc) {
4579 		/* Fetch association values. */
4580 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4581 			params.sack_delay = jiffies_to_msecs(
4582 				asoc->sackdelay);
4583 			params.sack_freq = asoc->sackfreq;
4584 
4585 		} else {
4586 			params.sack_delay = 0;
4587 			params.sack_freq = 1;
4588 		}
4589 	} else {
4590 		/* Fetch socket values. */
4591 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4592 			params.sack_delay  = sp->sackdelay;
4593 			params.sack_freq = sp->sackfreq;
4594 		} else {
4595 			params.sack_delay  = 0;
4596 			params.sack_freq = 1;
4597 		}
4598 	}
4599 
4600 	if (copy_to_user(optval, &params, len))
4601 		return -EFAULT;
4602 
4603 	if (put_user(len, optlen))
4604 		return -EFAULT;
4605 
4606 	return 0;
4607 }
4608 
4609 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4610  *
4611  * Applications can specify protocol parameters for the default association
4612  * initialization.  The option name argument to setsockopt() and getsockopt()
4613  * is SCTP_INITMSG.
4614  *
4615  * Setting initialization parameters is effective only on an unconnected
4616  * socket (for UDP-style sockets only future associations are effected
4617  * by the change).  With TCP-style sockets, this option is inherited by
4618  * sockets derived from a listener socket.
4619  */
4620 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4621 {
4622 	if (len < sizeof(struct sctp_initmsg))
4623 		return -EINVAL;
4624 	len = sizeof(struct sctp_initmsg);
4625 	if (put_user(len, optlen))
4626 		return -EFAULT;
4627 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4628 		return -EFAULT;
4629 	return 0;
4630 }
4631 
4632 
4633 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4634 				      char __user *optval, int __user *optlen)
4635 {
4636 	struct sctp_association *asoc;
4637 	int cnt = 0;
4638 	struct sctp_getaddrs getaddrs;
4639 	struct sctp_transport *from;
4640 	void __user *to;
4641 	union sctp_addr temp;
4642 	struct sctp_sock *sp = sctp_sk(sk);
4643 	int addrlen;
4644 	size_t space_left;
4645 	int bytes_copied;
4646 
4647 	if (len < sizeof(struct sctp_getaddrs))
4648 		return -EINVAL;
4649 
4650 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4651 		return -EFAULT;
4652 
4653 	/* For UDP-style sockets, id specifies the association to query.  */
4654 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4655 	if (!asoc)
4656 		return -EINVAL;
4657 
4658 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4659 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4660 
4661 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4662 				transports) {
4663 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4664 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4665 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4666 		if (space_left < addrlen)
4667 			return -ENOMEM;
4668 		if (copy_to_user(to, &temp, addrlen))
4669 			return -EFAULT;
4670 		to += addrlen;
4671 		cnt++;
4672 		space_left -= addrlen;
4673 	}
4674 
4675 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4676 		return -EFAULT;
4677 	bytes_copied = ((char __user *)to) - optval;
4678 	if (put_user(bytes_copied, optlen))
4679 		return -EFAULT;
4680 
4681 	return 0;
4682 }
4683 
4684 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4685 			    size_t space_left, int *bytes_copied)
4686 {
4687 	struct sctp_sockaddr_entry *addr;
4688 	union sctp_addr temp;
4689 	int cnt = 0;
4690 	int addrlen;
4691 	struct net *net = sock_net(sk);
4692 
4693 	rcu_read_lock();
4694 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4695 		if (!addr->valid)
4696 			continue;
4697 
4698 		if ((PF_INET == sk->sk_family) &&
4699 		    (AF_INET6 == addr->a.sa.sa_family))
4700 			continue;
4701 		if ((PF_INET6 == sk->sk_family) &&
4702 		    inet_v6_ipv6only(sk) &&
4703 		    (AF_INET == addr->a.sa.sa_family))
4704 			continue;
4705 		memcpy(&temp, &addr->a, sizeof(temp));
4706 		if (!temp.v4.sin_port)
4707 			temp.v4.sin_port = htons(port);
4708 
4709 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4710 								&temp);
4711 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4712 		if (space_left < addrlen) {
4713 			cnt =  -ENOMEM;
4714 			break;
4715 		}
4716 		memcpy(to, &temp, addrlen);
4717 
4718 		to += addrlen;
4719 		cnt ++;
4720 		space_left -= addrlen;
4721 		*bytes_copied += addrlen;
4722 	}
4723 	rcu_read_unlock();
4724 
4725 	return cnt;
4726 }
4727 
4728 
4729 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4730 				       char __user *optval, int __user *optlen)
4731 {
4732 	struct sctp_bind_addr *bp;
4733 	struct sctp_association *asoc;
4734 	int cnt = 0;
4735 	struct sctp_getaddrs getaddrs;
4736 	struct sctp_sockaddr_entry *addr;
4737 	void __user *to;
4738 	union sctp_addr temp;
4739 	struct sctp_sock *sp = sctp_sk(sk);
4740 	int addrlen;
4741 	int err = 0;
4742 	size_t space_left;
4743 	int bytes_copied = 0;
4744 	void *addrs;
4745 	void *buf;
4746 
4747 	if (len < sizeof(struct sctp_getaddrs))
4748 		return -EINVAL;
4749 
4750 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4751 		return -EFAULT;
4752 
4753 	/*
4754 	 *  For UDP-style sockets, id specifies the association to query.
4755 	 *  If the id field is set to the value '0' then the locally bound
4756 	 *  addresses are returned without regard to any particular
4757 	 *  association.
4758 	 */
4759 	if (0 == getaddrs.assoc_id) {
4760 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4761 	} else {
4762 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4763 		if (!asoc)
4764 			return -EINVAL;
4765 		bp = &asoc->base.bind_addr;
4766 	}
4767 
4768 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4769 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4770 
4771 	addrs = kmalloc(space_left, GFP_KERNEL);
4772 	if (!addrs)
4773 		return -ENOMEM;
4774 
4775 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4776 	 * addresses from the global local address list.
4777 	 */
4778 	if (sctp_list_single_entry(&bp->address_list)) {
4779 		addr = list_entry(bp->address_list.next,
4780 				  struct sctp_sockaddr_entry, list);
4781 		if (sctp_is_any(sk, &addr->a)) {
4782 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4783 						space_left, &bytes_copied);
4784 			if (cnt < 0) {
4785 				err = cnt;
4786 				goto out;
4787 			}
4788 			goto copy_getaddrs;
4789 		}
4790 	}
4791 
4792 	buf = addrs;
4793 	/* Protection on the bound address list is not needed since
4794 	 * in the socket option context we hold a socket lock and
4795 	 * thus the bound address list can't change.
4796 	 */
4797 	list_for_each_entry(addr, &bp->address_list, list) {
4798 		memcpy(&temp, &addr->a, sizeof(temp));
4799 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4800 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4801 		if (space_left < addrlen) {
4802 			err =  -ENOMEM; /*fixme: right error?*/
4803 			goto out;
4804 		}
4805 		memcpy(buf, &temp, addrlen);
4806 		buf += addrlen;
4807 		bytes_copied += addrlen;
4808 		cnt ++;
4809 		space_left -= addrlen;
4810 	}
4811 
4812 copy_getaddrs:
4813 	if (copy_to_user(to, addrs, bytes_copied)) {
4814 		err = -EFAULT;
4815 		goto out;
4816 	}
4817 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4818 		err = -EFAULT;
4819 		goto out;
4820 	}
4821 	if (put_user(bytes_copied, optlen))
4822 		err = -EFAULT;
4823 out:
4824 	kfree(addrs);
4825 	return err;
4826 }
4827 
4828 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4829  *
4830  * Requests that the local SCTP stack use the enclosed peer address as
4831  * the association primary.  The enclosed address must be one of the
4832  * association peer's addresses.
4833  */
4834 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4835 					char __user *optval, int __user *optlen)
4836 {
4837 	struct sctp_prim prim;
4838 	struct sctp_association *asoc;
4839 	struct sctp_sock *sp = sctp_sk(sk);
4840 
4841 	if (len < sizeof(struct sctp_prim))
4842 		return -EINVAL;
4843 
4844 	len = sizeof(struct sctp_prim);
4845 
4846 	if (copy_from_user(&prim, optval, len))
4847 		return -EFAULT;
4848 
4849 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4850 	if (!asoc)
4851 		return -EINVAL;
4852 
4853 	if (!asoc->peer.primary_path)
4854 		return -ENOTCONN;
4855 
4856 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4857 		asoc->peer.primary_path->af_specific->sockaddr_len);
4858 
4859 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4860 			(union sctp_addr *)&prim.ssp_addr);
4861 
4862 	if (put_user(len, optlen))
4863 		return -EFAULT;
4864 	if (copy_to_user(optval, &prim, len))
4865 		return -EFAULT;
4866 
4867 	return 0;
4868 }
4869 
4870 /*
4871  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4872  *
4873  * Requests that the local endpoint set the specified Adaptation Layer
4874  * Indication parameter for all future INIT and INIT-ACK exchanges.
4875  */
4876 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4877 				  char __user *optval, int __user *optlen)
4878 {
4879 	struct sctp_setadaptation adaptation;
4880 
4881 	if (len < sizeof(struct sctp_setadaptation))
4882 		return -EINVAL;
4883 
4884 	len = sizeof(struct sctp_setadaptation);
4885 
4886 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4887 
4888 	if (put_user(len, optlen))
4889 		return -EFAULT;
4890 	if (copy_to_user(optval, &adaptation, len))
4891 		return -EFAULT;
4892 
4893 	return 0;
4894 }
4895 
4896 /*
4897  *
4898  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4899  *
4900  *   Applications that wish to use the sendto() system call may wish to
4901  *   specify a default set of parameters that would normally be supplied
4902  *   through the inclusion of ancillary data.  This socket option allows
4903  *   such an application to set the default sctp_sndrcvinfo structure.
4904 
4905 
4906  *   The application that wishes to use this socket option simply passes
4907  *   in to this call the sctp_sndrcvinfo structure defined in Section
4908  *   5.2.2) The input parameters accepted by this call include
4909  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4910  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4911  *   to this call if the caller is using the UDP model.
4912  *
4913  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4914  */
4915 static int sctp_getsockopt_default_send_param(struct sock *sk,
4916 					int len, char __user *optval,
4917 					int __user *optlen)
4918 {
4919 	struct sctp_sndrcvinfo info;
4920 	struct sctp_association *asoc;
4921 	struct sctp_sock *sp = sctp_sk(sk);
4922 
4923 	if (len < sizeof(struct sctp_sndrcvinfo))
4924 		return -EINVAL;
4925 
4926 	len = sizeof(struct sctp_sndrcvinfo);
4927 
4928 	if (copy_from_user(&info, optval, len))
4929 		return -EFAULT;
4930 
4931 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4932 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4933 		return -EINVAL;
4934 
4935 	if (asoc) {
4936 		info.sinfo_stream = asoc->default_stream;
4937 		info.sinfo_flags = asoc->default_flags;
4938 		info.sinfo_ppid = asoc->default_ppid;
4939 		info.sinfo_context = asoc->default_context;
4940 		info.sinfo_timetolive = asoc->default_timetolive;
4941 	} else {
4942 		info.sinfo_stream = sp->default_stream;
4943 		info.sinfo_flags = sp->default_flags;
4944 		info.sinfo_ppid = sp->default_ppid;
4945 		info.sinfo_context = sp->default_context;
4946 		info.sinfo_timetolive = sp->default_timetolive;
4947 	}
4948 
4949 	if (put_user(len, optlen))
4950 		return -EFAULT;
4951 	if (copy_to_user(optval, &info, len))
4952 		return -EFAULT;
4953 
4954 	return 0;
4955 }
4956 
4957 /*
4958  *
4959  * 7.1.5 SCTP_NODELAY
4960  *
4961  * Turn on/off any Nagle-like algorithm.  This means that packets are
4962  * generally sent as soon as possible and no unnecessary delays are
4963  * introduced, at the cost of more packets in the network.  Expects an
4964  * integer boolean flag.
4965  */
4966 
4967 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4968 				   char __user *optval, int __user *optlen)
4969 {
4970 	int val;
4971 
4972 	if (len < sizeof(int))
4973 		return -EINVAL;
4974 
4975 	len = sizeof(int);
4976 	val = (sctp_sk(sk)->nodelay == 1);
4977 	if (put_user(len, optlen))
4978 		return -EFAULT;
4979 	if (copy_to_user(optval, &val, len))
4980 		return -EFAULT;
4981 	return 0;
4982 }
4983 
4984 /*
4985  *
4986  * 7.1.1 SCTP_RTOINFO
4987  *
4988  * The protocol parameters used to initialize and bound retransmission
4989  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4990  * and modify these parameters.
4991  * All parameters are time values, in milliseconds.  A value of 0, when
4992  * modifying the parameters, indicates that the current value should not
4993  * be changed.
4994  *
4995  */
4996 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4997 				char __user *optval,
4998 				int __user *optlen) {
4999 	struct sctp_rtoinfo rtoinfo;
5000 	struct sctp_association *asoc;
5001 
5002 	if (len < sizeof (struct sctp_rtoinfo))
5003 		return -EINVAL;
5004 
5005 	len = sizeof(struct sctp_rtoinfo);
5006 
5007 	if (copy_from_user(&rtoinfo, optval, len))
5008 		return -EFAULT;
5009 
5010 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5011 
5012 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5013 		return -EINVAL;
5014 
5015 	/* Values corresponding to the specific association. */
5016 	if (asoc) {
5017 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5018 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5019 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5020 	} else {
5021 		/* Values corresponding to the endpoint. */
5022 		struct sctp_sock *sp = sctp_sk(sk);
5023 
5024 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5025 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5026 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5027 	}
5028 
5029 	if (put_user(len, optlen))
5030 		return -EFAULT;
5031 
5032 	if (copy_to_user(optval, &rtoinfo, len))
5033 		return -EFAULT;
5034 
5035 	return 0;
5036 }
5037 
5038 /*
5039  *
5040  * 7.1.2 SCTP_ASSOCINFO
5041  *
5042  * This option is used to tune the maximum retransmission attempts
5043  * of the association.
5044  * Returns an error if the new association retransmission value is
5045  * greater than the sum of the retransmission value  of the peer.
5046  * See [SCTP] for more information.
5047  *
5048  */
5049 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5050 				     char __user *optval,
5051 				     int __user *optlen)
5052 {
5053 
5054 	struct sctp_assocparams assocparams;
5055 	struct sctp_association *asoc;
5056 	struct list_head *pos;
5057 	int cnt = 0;
5058 
5059 	if (len < sizeof (struct sctp_assocparams))
5060 		return -EINVAL;
5061 
5062 	len = sizeof(struct sctp_assocparams);
5063 
5064 	if (copy_from_user(&assocparams, optval, len))
5065 		return -EFAULT;
5066 
5067 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5068 
5069 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5070 		return -EINVAL;
5071 
5072 	/* Values correspoinding to the specific association */
5073 	if (asoc) {
5074 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5075 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5076 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5077 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5078 						* 1000) +
5079 						(asoc->cookie_life.tv_usec
5080 						/ 1000);
5081 
5082 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5083 			cnt ++;
5084 		}
5085 
5086 		assocparams.sasoc_number_peer_destinations = cnt;
5087 	} else {
5088 		/* Values corresponding to the endpoint */
5089 		struct sctp_sock *sp = sctp_sk(sk);
5090 
5091 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5092 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5093 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5094 		assocparams.sasoc_cookie_life =
5095 					sp->assocparams.sasoc_cookie_life;
5096 		assocparams.sasoc_number_peer_destinations =
5097 					sp->assocparams.
5098 					sasoc_number_peer_destinations;
5099 	}
5100 
5101 	if (put_user(len, optlen))
5102 		return -EFAULT;
5103 
5104 	if (copy_to_user(optval, &assocparams, len))
5105 		return -EFAULT;
5106 
5107 	return 0;
5108 }
5109 
5110 /*
5111  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5112  *
5113  * This socket option is a boolean flag which turns on or off mapped V4
5114  * addresses.  If this option is turned on and the socket is type
5115  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5116  * If this option is turned off, then no mapping will be done of V4
5117  * addresses and a user will receive both PF_INET6 and PF_INET type
5118  * addresses on the socket.
5119  */
5120 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5121 				    char __user *optval, int __user *optlen)
5122 {
5123 	int val;
5124 	struct sctp_sock *sp = sctp_sk(sk);
5125 
5126 	if (len < sizeof(int))
5127 		return -EINVAL;
5128 
5129 	len = sizeof(int);
5130 	val = sp->v4mapped;
5131 	if (put_user(len, optlen))
5132 		return -EFAULT;
5133 	if (copy_to_user(optval, &val, len))
5134 		return -EFAULT;
5135 
5136 	return 0;
5137 }
5138 
5139 /*
5140  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5141  * (chapter and verse is quoted at sctp_setsockopt_context())
5142  */
5143 static int sctp_getsockopt_context(struct sock *sk, int len,
5144 				   char __user *optval, int __user *optlen)
5145 {
5146 	struct sctp_assoc_value params;
5147 	struct sctp_sock *sp;
5148 	struct sctp_association *asoc;
5149 
5150 	if (len < sizeof(struct sctp_assoc_value))
5151 		return -EINVAL;
5152 
5153 	len = sizeof(struct sctp_assoc_value);
5154 
5155 	if (copy_from_user(&params, optval, len))
5156 		return -EFAULT;
5157 
5158 	sp = sctp_sk(sk);
5159 
5160 	if (params.assoc_id != 0) {
5161 		asoc = sctp_id2assoc(sk, params.assoc_id);
5162 		if (!asoc)
5163 			return -EINVAL;
5164 		params.assoc_value = asoc->default_rcv_context;
5165 	} else {
5166 		params.assoc_value = sp->default_rcv_context;
5167 	}
5168 
5169 	if (put_user(len, optlen))
5170 		return -EFAULT;
5171 	if (copy_to_user(optval, &params, len))
5172 		return -EFAULT;
5173 
5174 	return 0;
5175 }
5176 
5177 /*
5178  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5179  * This option will get or set the maximum size to put in any outgoing
5180  * SCTP DATA chunk.  If a message is larger than this size it will be
5181  * fragmented by SCTP into the specified size.  Note that the underlying
5182  * SCTP implementation may fragment into smaller sized chunks when the
5183  * PMTU of the underlying association is smaller than the value set by
5184  * the user.  The default value for this option is '0' which indicates
5185  * the user is NOT limiting fragmentation and only the PMTU will effect
5186  * SCTP's choice of DATA chunk size.  Note also that values set larger
5187  * than the maximum size of an IP datagram will effectively let SCTP
5188  * control fragmentation (i.e. the same as setting this option to 0).
5189  *
5190  * The following structure is used to access and modify this parameter:
5191  *
5192  * struct sctp_assoc_value {
5193  *   sctp_assoc_t assoc_id;
5194  *   uint32_t assoc_value;
5195  * };
5196  *
5197  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5198  *    For one-to-many style sockets this parameter indicates which
5199  *    association the user is performing an action upon.  Note that if
5200  *    this field's value is zero then the endpoints default value is
5201  *    changed (effecting future associations only).
5202  * assoc_value:  This parameter specifies the maximum size in bytes.
5203  */
5204 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5205 				  char __user *optval, int __user *optlen)
5206 {
5207 	struct sctp_assoc_value params;
5208 	struct sctp_association *asoc;
5209 
5210 	if (len == sizeof(int)) {
5211 		pr_warn("Use of int in maxseg socket option deprecated\n");
5212 		pr_warn("Use struct sctp_assoc_value instead\n");
5213 		params.assoc_id = 0;
5214 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5215 		len = sizeof(struct sctp_assoc_value);
5216 		if (copy_from_user(&params, optval, sizeof(params)))
5217 			return -EFAULT;
5218 	} else
5219 		return -EINVAL;
5220 
5221 	asoc = sctp_id2assoc(sk, params.assoc_id);
5222 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5223 		return -EINVAL;
5224 
5225 	if (asoc)
5226 		params.assoc_value = asoc->frag_point;
5227 	else
5228 		params.assoc_value = sctp_sk(sk)->user_frag;
5229 
5230 	if (put_user(len, optlen))
5231 		return -EFAULT;
5232 	if (len == sizeof(int)) {
5233 		if (copy_to_user(optval, &params.assoc_value, len))
5234 			return -EFAULT;
5235 	} else {
5236 		if (copy_to_user(optval, &params, len))
5237 			return -EFAULT;
5238 	}
5239 
5240 	return 0;
5241 }
5242 
5243 /*
5244  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5245  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5246  */
5247 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5248 					       char __user *optval, int __user *optlen)
5249 {
5250 	int val;
5251 
5252 	if (len < sizeof(int))
5253 		return -EINVAL;
5254 
5255 	len = sizeof(int);
5256 
5257 	val = sctp_sk(sk)->frag_interleave;
5258 	if (put_user(len, optlen))
5259 		return -EFAULT;
5260 	if (copy_to_user(optval, &val, len))
5261 		return -EFAULT;
5262 
5263 	return 0;
5264 }
5265 
5266 /*
5267  * 7.1.25.  Set or Get the sctp partial delivery point
5268  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5269  */
5270 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5271 						  char __user *optval,
5272 						  int __user *optlen)
5273 {
5274 	u32 val;
5275 
5276 	if (len < sizeof(u32))
5277 		return -EINVAL;
5278 
5279 	len = sizeof(u32);
5280 
5281 	val = sctp_sk(sk)->pd_point;
5282 	if (put_user(len, optlen))
5283 		return -EFAULT;
5284 	if (copy_to_user(optval, &val, len))
5285 		return -EFAULT;
5286 
5287 	return 0;
5288 }
5289 
5290 /*
5291  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5292  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5293  */
5294 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5295 				    char __user *optval,
5296 				    int __user *optlen)
5297 {
5298 	struct sctp_assoc_value params;
5299 	struct sctp_sock *sp;
5300 	struct sctp_association *asoc;
5301 
5302 	if (len == sizeof(int)) {
5303 		pr_warn("Use of int in max_burst socket option deprecated\n");
5304 		pr_warn("Use struct sctp_assoc_value instead\n");
5305 		params.assoc_id = 0;
5306 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5307 		len = sizeof(struct sctp_assoc_value);
5308 		if (copy_from_user(&params, optval, len))
5309 			return -EFAULT;
5310 	} else
5311 		return -EINVAL;
5312 
5313 	sp = sctp_sk(sk);
5314 
5315 	if (params.assoc_id != 0) {
5316 		asoc = sctp_id2assoc(sk, params.assoc_id);
5317 		if (!asoc)
5318 			return -EINVAL;
5319 		params.assoc_value = asoc->max_burst;
5320 	} else
5321 		params.assoc_value = sp->max_burst;
5322 
5323 	if (len == sizeof(int)) {
5324 		if (copy_to_user(optval, &params.assoc_value, len))
5325 			return -EFAULT;
5326 	} else {
5327 		if (copy_to_user(optval, &params, len))
5328 			return -EFAULT;
5329 	}
5330 
5331 	return 0;
5332 
5333 }
5334 
5335 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5336 				    char __user *optval, int __user *optlen)
5337 {
5338 	struct net *net = sock_net(sk);
5339 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5340 	struct sctp_hmac_algo_param *hmacs;
5341 	__u16 data_len = 0;
5342 	u32 num_idents;
5343 
5344 	if (!net->sctp.auth_enable)
5345 		return -EACCES;
5346 
5347 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5348 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5349 
5350 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5351 		return -EINVAL;
5352 
5353 	len = sizeof(struct sctp_hmacalgo) + data_len;
5354 	num_idents = data_len / sizeof(u16);
5355 
5356 	if (put_user(len, optlen))
5357 		return -EFAULT;
5358 	if (put_user(num_idents, &p->shmac_num_idents))
5359 		return -EFAULT;
5360 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5361 		return -EFAULT;
5362 	return 0;
5363 }
5364 
5365 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5366 				    char __user *optval, int __user *optlen)
5367 {
5368 	struct net *net = sock_net(sk);
5369 	struct sctp_authkeyid val;
5370 	struct sctp_association *asoc;
5371 
5372 	if (!net->sctp.auth_enable)
5373 		return -EACCES;
5374 
5375 	if (len < sizeof(struct sctp_authkeyid))
5376 		return -EINVAL;
5377 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5378 		return -EFAULT;
5379 
5380 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5381 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5382 		return -EINVAL;
5383 
5384 	if (asoc)
5385 		val.scact_keynumber = asoc->active_key_id;
5386 	else
5387 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5388 
5389 	len = sizeof(struct sctp_authkeyid);
5390 	if (put_user(len, optlen))
5391 		return -EFAULT;
5392 	if (copy_to_user(optval, &val, len))
5393 		return -EFAULT;
5394 
5395 	return 0;
5396 }
5397 
5398 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5399 				    char __user *optval, int __user *optlen)
5400 {
5401 	struct net *net = sock_net(sk);
5402 	struct sctp_authchunks __user *p = (void __user *)optval;
5403 	struct sctp_authchunks val;
5404 	struct sctp_association *asoc;
5405 	struct sctp_chunks_param *ch;
5406 	u32    num_chunks = 0;
5407 	char __user *to;
5408 
5409 	if (!net->sctp.auth_enable)
5410 		return -EACCES;
5411 
5412 	if (len < sizeof(struct sctp_authchunks))
5413 		return -EINVAL;
5414 
5415 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5416 		return -EFAULT;
5417 
5418 	to = p->gauth_chunks;
5419 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5420 	if (!asoc)
5421 		return -EINVAL;
5422 
5423 	ch = asoc->peer.peer_chunks;
5424 	if (!ch)
5425 		goto num;
5426 
5427 	/* See if the user provided enough room for all the data */
5428 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5429 	if (len < num_chunks)
5430 		return -EINVAL;
5431 
5432 	if (copy_to_user(to, ch->chunks, num_chunks))
5433 		return -EFAULT;
5434 num:
5435 	len = sizeof(struct sctp_authchunks) + num_chunks;
5436 	if (put_user(len, optlen)) return -EFAULT;
5437 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5438 		return -EFAULT;
5439 	return 0;
5440 }
5441 
5442 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5443 				    char __user *optval, int __user *optlen)
5444 {
5445 	struct net *net = sock_net(sk);
5446 	struct sctp_authchunks __user *p = (void __user *)optval;
5447 	struct sctp_authchunks val;
5448 	struct sctp_association *asoc;
5449 	struct sctp_chunks_param *ch;
5450 	u32    num_chunks = 0;
5451 	char __user *to;
5452 
5453 	if (!net->sctp.auth_enable)
5454 		return -EACCES;
5455 
5456 	if (len < sizeof(struct sctp_authchunks))
5457 		return -EINVAL;
5458 
5459 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5460 		return -EFAULT;
5461 
5462 	to = p->gauth_chunks;
5463 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5464 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5465 		return -EINVAL;
5466 
5467 	if (asoc)
5468 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5469 	else
5470 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5471 
5472 	if (!ch)
5473 		goto num;
5474 
5475 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5476 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5477 		return -EINVAL;
5478 
5479 	if (copy_to_user(to, ch->chunks, num_chunks))
5480 		return -EFAULT;
5481 num:
5482 	len = sizeof(struct sctp_authchunks) + num_chunks;
5483 	if (put_user(len, optlen))
5484 		return -EFAULT;
5485 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5486 		return -EFAULT;
5487 
5488 	return 0;
5489 }
5490 
5491 /*
5492  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5493  * This option gets the current number of associations that are attached
5494  * to a one-to-many style socket.  The option value is an uint32_t.
5495  */
5496 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5497 				    char __user *optval, int __user *optlen)
5498 {
5499 	struct sctp_sock *sp = sctp_sk(sk);
5500 	struct sctp_association *asoc;
5501 	u32 val = 0;
5502 
5503 	if (sctp_style(sk, TCP))
5504 		return -EOPNOTSUPP;
5505 
5506 	if (len < sizeof(u32))
5507 		return -EINVAL;
5508 
5509 	len = sizeof(u32);
5510 
5511 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5512 		val++;
5513 	}
5514 
5515 	if (put_user(len, optlen))
5516 		return -EFAULT;
5517 	if (copy_to_user(optval, &val, len))
5518 		return -EFAULT;
5519 
5520 	return 0;
5521 }
5522 
5523 /*
5524  * 8.1.23 SCTP_AUTO_ASCONF
5525  * See the corresponding setsockopt entry as description
5526  */
5527 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5528 				   char __user *optval, int __user *optlen)
5529 {
5530 	int val = 0;
5531 
5532 	if (len < sizeof(int))
5533 		return -EINVAL;
5534 
5535 	len = sizeof(int);
5536 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5537 		val = 1;
5538 	if (put_user(len, optlen))
5539 		return -EFAULT;
5540 	if (copy_to_user(optval, &val, len))
5541 		return -EFAULT;
5542 	return 0;
5543 }
5544 
5545 /*
5546  * 8.2.6. Get the Current Identifiers of Associations
5547  *        (SCTP_GET_ASSOC_ID_LIST)
5548  *
5549  * This option gets the current list of SCTP association identifiers of
5550  * the SCTP associations handled by a one-to-many style socket.
5551  */
5552 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5553 				    char __user *optval, int __user *optlen)
5554 {
5555 	struct sctp_sock *sp = sctp_sk(sk);
5556 	struct sctp_association *asoc;
5557 	struct sctp_assoc_ids *ids;
5558 	u32 num = 0;
5559 
5560 	if (sctp_style(sk, TCP))
5561 		return -EOPNOTSUPP;
5562 
5563 	if (len < sizeof(struct sctp_assoc_ids))
5564 		return -EINVAL;
5565 
5566 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5567 		num++;
5568 	}
5569 
5570 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5571 		return -EINVAL;
5572 
5573 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5574 
5575 	ids = kmalloc(len, GFP_KERNEL);
5576 	if (unlikely(!ids))
5577 		return -ENOMEM;
5578 
5579 	ids->gaids_number_of_ids = num;
5580 	num = 0;
5581 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5582 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5583 	}
5584 
5585 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5586 		kfree(ids);
5587 		return -EFAULT;
5588 	}
5589 
5590 	kfree(ids);
5591 	return 0;
5592 }
5593 
5594 /*
5595  * SCTP_PEER_ADDR_THLDS
5596  *
5597  * This option allows us to fetch the partially failed threshold for one or all
5598  * transports in an association.  See Section 6.1 of:
5599  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5600  */
5601 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5602 					    char __user *optval,
5603 					    int len,
5604 					    int __user *optlen)
5605 {
5606 	struct sctp_paddrthlds val;
5607 	struct sctp_transport *trans;
5608 	struct sctp_association *asoc;
5609 
5610 	if (len < sizeof(struct sctp_paddrthlds))
5611 		return -EINVAL;
5612 	len = sizeof(struct sctp_paddrthlds);
5613 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5614 		return -EFAULT;
5615 
5616 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5617 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5618 		if (!asoc)
5619 			return -ENOENT;
5620 
5621 		val.spt_pathpfthld = asoc->pf_retrans;
5622 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5623 	} else {
5624 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5625 					       val.spt_assoc_id);
5626 		if (!trans)
5627 			return -ENOENT;
5628 
5629 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5630 		val.spt_pathpfthld = trans->pf_retrans;
5631 	}
5632 
5633 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5634 		return -EFAULT;
5635 
5636 	return 0;
5637 }
5638 
5639 /*
5640  * SCTP_GET_ASSOC_STATS
5641  *
5642  * This option retrieves local per endpoint statistics. It is modeled
5643  * after OpenSolaris' implementation
5644  */
5645 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5646 				       char __user *optval,
5647 				       int __user *optlen)
5648 {
5649 	struct sctp_assoc_stats sas;
5650 	struct sctp_association *asoc = NULL;
5651 
5652 	/* User must provide at least the assoc id */
5653 	if (len < sizeof(sctp_assoc_t))
5654 		return -EINVAL;
5655 
5656 	if (copy_from_user(&sas, optval, len))
5657 		return -EFAULT;
5658 
5659 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5660 	if (!asoc)
5661 		return -EINVAL;
5662 
5663 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5664 	sas.sas_gapcnt = asoc->stats.gapcnt;
5665 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5666 	sas.sas_osacks = asoc->stats.osacks;
5667 	sas.sas_isacks = asoc->stats.isacks;
5668 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5669 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5670 	sas.sas_oodchunks = asoc->stats.oodchunks;
5671 	sas.sas_iodchunks = asoc->stats.iodchunks;
5672 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5673 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5674 	sas.sas_idupchunks = asoc->stats.idupchunks;
5675 	sas.sas_opackets = asoc->stats.opackets;
5676 	sas.sas_ipackets = asoc->stats.ipackets;
5677 
5678 	/* New high max rto observed, will return 0 if not a single
5679 	 * RTO update took place. obs_rto_ipaddr will be bogus
5680 	 * in such a case
5681 	 */
5682 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5683 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5684 		sizeof(struct sockaddr_storage));
5685 
5686 	/* Mark beginning of a new observation period */
5687 	asoc->stats.max_obs_rto = asoc->rto_min;
5688 
5689 	/* Allow the struct to grow and fill in as much as possible */
5690 	len = min_t(size_t, len, sizeof(sas));
5691 
5692 	if (put_user(len, optlen))
5693 		return -EFAULT;
5694 
5695 	SCTP_DEBUG_PRINTK("sctp_getsockopt_assoc_stat(%d): %d\n",
5696 			  len, sas.sas_assoc_id);
5697 
5698 	if (copy_to_user(optval, &sas, len))
5699 		return -EFAULT;
5700 
5701 	return 0;
5702 }
5703 
5704 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5705 				char __user *optval, int __user *optlen)
5706 {
5707 	int retval = 0;
5708 	int len;
5709 
5710 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5711 			  sk, optname);
5712 
5713 	/* I can hardly begin to describe how wrong this is.  This is
5714 	 * so broken as to be worse than useless.  The API draft
5715 	 * REALLY is NOT helpful here...  I am not convinced that the
5716 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5717 	 * are at all well-founded.
5718 	 */
5719 	if (level != SOL_SCTP) {
5720 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5721 
5722 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5723 		return retval;
5724 	}
5725 
5726 	if (get_user(len, optlen))
5727 		return -EFAULT;
5728 
5729 	sctp_lock_sock(sk);
5730 
5731 	switch (optname) {
5732 	case SCTP_STATUS:
5733 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5734 		break;
5735 	case SCTP_DISABLE_FRAGMENTS:
5736 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5737 							   optlen);
5738 		break;
5739 	case SCTP_EVENTS:
5740 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5741 		break;
5742 	case SCTP_AUTOCLOSE:
5743 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5744 		break;
5745 	case SCTP_SOCKOPT_PEELOFF:
5746 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5747 		break;
5748 	case SCTP_PEER_ADDR_PARAMS:
5749 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5750 							  optlen);
5751 		break;
5752 	case SCTP_DELAYED_SACK:
5753 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5754 							  optlen);
5755 		break;
5756 	case SCTP_INITMSG:
5757 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5758 		break;
5759 	case SCTP_GET_PEER_ADDRS:
5760 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5761 						    optlen);
5762 		break;
5763 	case SCTP_GET_LOCAL_ADDRS:
5764 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5765 						     optlen);
5766 		break;
5767 	case SCTP_SOCKOPT_CONNECTX3:
5768 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5769 		break;
5770 	case SCTP_DEFAULT_SEND_PARAM:
5771 		retval = sctp_getsockopt_default_send_param(sk, len,
5772 							    optval, optlen);
5773 		break;
5774 	case SCTP_PRIMARY_ADDR:
5775 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5776 		break;
5777 	case SCTP_NODELAY:
5778 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5779 		break;
5780 	case SCTP_RTOINFO:
5781 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5782 		break;
5783 	case SCTP_ASSOCINFO:
5784 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5785 		break;
5786 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5787 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5788 		break;
5789 	case SCTP_MAXSEG:
5790 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5791 		break;
5792 	case SCTP_GET_PEER_ADDR_INFO:
5793 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5794 							optlen);
5795 		break;
5796 	case SCTP_ADAPTATION_LAYER:
5797 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5798 							optlen);
5799 		break;
5800 	case SCTP_CONTEXT:
5801 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5802 		break;
5803 	case SCTP_FRAGMENT_INTERLEAVE:
5804 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5805 							     optlen);
5806 		break;
5807 	case SCTP_PARTIAL_DELIVERY_POINT:
5808 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5809 								optlen);
5810 		break;
5811 	case SCTP_MAX_BURST:
5812 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5813 		break;
5814 	case SCTP_AUTH_KEY:
5815 	case SCTP_AUTH_CHUNK:
5816 	case SCTP_AUTH_DELETE_KEY:
5817 		retval = -EOPNOTSUPP;
5818 		break;
5819 	case SCTP_HMAC_IDENT:
5820 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5821 		break;
5822 	case SCTP_AUTH_ACTIVE_KEY:
5823 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5824 		break;
5825 	case SCTP_PEER_AUTH_CHUNKS:
5826 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5827 							optlen);
5828 		break;
5829 	case SCTP_LOCAL_AUTH_CHUNKS:
5830 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5831 							optlen);
5832 		break;
5833 	case SCTP_GET_ASSOC_NUMBER:
5834 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5835 		break;
5836 	case SCTP_GET_ASSOC_ID_LIST:
5837 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5838 		break;
5839 	case SCTP_AUTO_ASCONF:
5840 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5841 		break;
5842 	case SCTP_PEER_ADDR_THLDS:
5843 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5844 		break;
5845 	case SCTP_GET_ASSOC_STATS:
5846 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5847 		break;
5848 	default:
5849 		retval = -ENOPROTOOPT;
5850 		break;
5851 	}
5852 
5853 	sctp_release_sock(sk);
5854 	return retval;
5855 }
5856 
5857 static void sctp_hash(struct sock *sk)
5858 {
5859 	/* STUB */
5860 }
5861 
5862 static void sctp_unhash(struct sock *sk)
5863 {
5864 	/* STUB */
5865 }
5866 
5867 /* Check if port is acceptable.  Possibly find first available port.
5868  *
5869  * The port hash table (contained in the 'global' SCTP protocol storage
5870  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5871  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5872  * list (the list number is the port number hashed out, so as you
5873  * would expect from a hash function, all the ports in a given list have
5874  * such a number that hashes out to the same list number; you were
5875  * expecting that, right?); so each list has a set of ports, with a
5876  * link to the socket (struct sock) that uses it, the port number and
5877  * a fastreuse flag (FIXME: NPI ipg).
5878  */
5879 static struct sctp_bind_bucket *sctp_bucket_create(
5880 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5881 
5882 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5883 {
5884 	struct sctp_bind_hashbucket *head; /* hash list */
5885 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5886 	struct hlist_node *node;
5887 	unsigned short snum;
5888 	int ret;
5889 
5890 	snum = ntohs(addr->v4.sin_port);
5891 
5892 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5893 	sctp_local_bh_disable();
5894 
5895 	if (snum == 0) {
5896 		/* Search for an available port. */
5897 		int low, high, remaining, index;
5898 		unsigned int rover;
5899 
5900 		inet_get_local_port_range(&low, &high);
5901 		remaining = (high - low) + 1;
5902 		rover = net_random() % remaining + low;
5903 
5904 		do {
5905 			rover++;
5906 			if ((rover < low) || (rover > high))
5907 				rover = low;
5908 			if (inet_is_reserved_local_port(rover))
5909 				continue;
5910 			index = sctp_phashfn(sock_net(sk), rover);
5911 			head = &sctp_port_hashtable[index];
5912 			sctp_spin_lock(&head->lock);
5913 			sctp_for_each_hentry(pp, node, &head->chain)
5914 				if ((pp->port == rover) &&
5915 				    net_eq(sock_net(sk), pp->net))
5916 					goto next;
5917 			break;
5918 		next:
5919 			sctp_spin_unlock(&head->lock);
5920 		} while (--remaining > 0);
5921 
5922 		/* Exhausted local port range during search? */
5923 		ret = 1;
5924 		if (remaining <= 0)
5925 			goto fail;
5926 
5927 		/* OK, here is the one we will use.  HEAD (the port
5928 		 * hash table list entry) is non-NULL and we hold it's
5929 		 * mutex.
5930 		 */
5931 		snum = rover;
5932 	} else {
5933 		/* We are given an specific port number; we verify
5934 		 * that it is not being used. If it is used, we will
5935 		 * exahust the search in the hash list corresponding
5936 		 * to the port number (snum) - we detect that with the
5937 		 * port iterator, pp being NULL.
5938 		 */
5939 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5940 		sctp_spin_lock(&head->lock);
5941 		sctp_for_each_hentry(pp, node, &head->chain) {
5942 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5943 				goto pp_found;
5944 		}
5945 	}
5946 	pp = NULL;
5947 	goto pp_not_found;
5948 pp_found:
5949 	if (!hlist_empty(&pp->owner)) {
5950 		/* We had a port hash table hit - there is an
5951 		 * available port (pp != NULL) and it is being
5952 		 * used by other socket (pp->owner not empty); that other
5953 		 * socket is going to be sk2.
5954 		 */
5955 		int reuse = sk->sk_reuse;
5956 		struct sock *sk2;
5957 
5958 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5959 		if (pp->fastreuse && sk->sk_reuse &&
5960 			sk->sk_state != SCTP_SS_LISTENING)
5961 			goto success;
5962 
5963 		/* Run through the list of sockets bound to the port
5964 		 * (pp->port) [via the pointers bind_next and
5965 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5966 		 * we get the endpoint they describe and run through
5967 		 * the endpoint's list of IP (v4 or v6) addresses,
5968 		 * comparing each of the addresses with the address of
5969 		 * the socket sk. If we find a match, then that means
5970 		 * that this port/socket (sk) combination are already
5971 		 * in an endpoint.
5972 		 */
5973 		sk_for_each_bound(sk2, node, &pp->owner) {
5974 			struct sctp_endpoint *ep2;
5975 			ep2 = sctp_sk(sk2)->ep;
5976 
5977 			if (sk == sk2 ||
5978 			    (reuse && sk2->sk_reuse &&
5979 			     sk2->sk_state != SCTP_SS_LISTENING))
5980 				continue;
5981 
5982 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5983 						 sctp_sk(sk2), sctp_sk(sk))) {
5984 				ret = (long)sk2;
5985 				goto fail_unlock;
5986 			}
5987 		}
5988 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5989 	}
5990 pp_not_found:
5991 	/* If there was a hash table miss, create a new port.  */
5992 	ret = 1;
5993 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5994 		goto fail_unlock;
5995 
5996 	/* In either case (hit or miss), make sure fastreuse is 1 only
5997 	 * if sk->sk_reuse is too (that is, if the caller requested
5998 	 * SO_REUSEADDR on this socket -sk-).
5999 	 */
6000 	if (hlist_empty(&pp->owner)) {
6001 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6002 			pp->fastreuse = 1;
6003 		else
6004 			pp->fastreuse = 0;
6005 	} else if (pp->fastreuse &&
6006 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6007 		pp->fastreuse = 0;
6008 
6009 	/* We are set, so fill up all the data in the hash table
6010 	 * entry, tie the socket list information with the rest of the
6011 	 * sockets FIXME: Blurry, NPI (ipg).
6012 	 */
6013 success:
6014 	if (!sctp_sk(sk)->bind_hash) {
6015 		inet_sk(sk)->inet_num = snum;
6016 		sk_add_bind_node(sk, &pp->owner);
6017 		sctp_sk(sk)->bind_hash = pp;
6018 	}
6019 	ret = 0;
6020 
6021 fail_unlock:
6022 	sctp_spin_unlock(&head->lock);
6023 
6024 fail:
6025 	sctp_local_bh_enable();
6026 	return ret;
6027 }
6028 
6029 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6030  * port is requested.
6031  */
6032 static int sctp_get_port(struct sock *sk, unsigned short snum)
6033 {
6034 	long ret;
6035 	union sctp_addr addr;
6036 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6037 
6038 	/* Set up a dummy address struct from the sk. */
6039 	af->from_sk(&addr, sk);
6040 	addr.v4.sin_port = htons(snum);
6041 
6042 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6043 	ret = sctp_get_port_local(sk, &addr);
6044 
6045 	return ret ? 1 : 0;
6046 }
6047 
6048 /*
6049  *  Move a socket to LISTENING state.
6050  */
6051 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
6052 {
6053 	struct sctp_sock *sp = sctp_sk(sk);
6054 	struct sctp_endpoint *ep = sp->ep;
6055 	struct crypto_hash *tfm = NULL;
6056 	char alg[32];
6057 
6058 	/* Allocate HMAC for generating cookie. */
6059 	if (!sp->hmac && sp->sctp_hmac_alg) {
6060 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6061 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6062 		if (IS_ERR(tfm)) {
6063 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6064 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6065 			return -ENOSYS;
6066 		}
6067 		sctp_sk(sk)->hmac = tfm;
6068 	}
6069 
6070 	/*
6071 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6072 	 * call that allows new associations to be accepted, the system
6073 	 * picks an ephemeral port and will choose an address set equivalent
6074 	 * to binding with a wildcard address.
6075 	 *
6076 	 * This is not currently spelled out in the SCTP sockets
6077 	 * extensions draft, but follows the practice as seen in TCP
6078 	 * sockets.
6079 	 *
6080 	 */
6081 	sk->sk_state = SCTP_SS_LISTENING;
6082 	if (!ep->base.bind_addr.port) {
6083 		if (sctp_autobind(sk))
6084 			return -EAGAIN;
6085 	} else {
6086 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6087 			sk->sk_state = SCTP_SS_CLOSED;
6088 			return -EADDRINUSE;
6089 		}
6090 	}
6091 
6092 	sk->sk_max_ack_backlog = backlog;
6093 	sctp_hash_endpoint(ep);
6094 	return 0;
6095 }
6096 
6097 /*
6098  * 4.1.3 / 5.1.3 listen()
6099  *
6100  *   By default, new associations are not accepted for UDP style sockets.
6101  *   An application uses listen() to mark a socket as being able to
6102  *   accept new associations.
6103  *
6104  *   On TCP style sockets, applications use listen() to ready the SCTP
6105  *   endpoint for accepting inbound associations.
6106  *
6107  *   On both types of endpoints a backlog of '0' disables listening.
6108  *
6109  *  Move a socket to LISTENING state.
6110  */
6111 int sctp_inet_listen(struct socket *sock, int backlog)
6112 {
6113 	struct sock *sk = sock->sk;
6114 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6115 	int err = -EINVAL;
6116 
6117 	if (unlikely(backlog < 0))
6118 		return err;
6119 
6120 	sctp_lock_sock(sk);
6121 
6122 	/* Peeled-off sockets are not allowed to listen().  */
6123 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6124 		goto out;
6125 
6126 	if (sock->state != SS_UNCONNECTED)
6127 		goto out;
6128 
6129 	/* If backlog is zero, disable listening. */
6130 	if (!backlog) {
6131 		if (sctp_sstate(sk, CLOSED))
6132 			goto out;
6133 
6134 		err = 0;
6135 		sctp_unhash_endpoint(ep);
6136 		sk->sk_state = SCTP_SS_CLOSED;
6137 		if (sk->sk_reuse)
6138 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6139 		goto out;
6140 	}
6141 
6142 	/* If we are already listening, just update the backlog */
6143 	if (sctp_sstate(sk, LISTENING))
6144 		sk->sk_max_ack_backlog = backlog;
6145 	else {
6146 		err = sctp_listen_start(sk, backlog);
6147 		if (err)
6148 			goto out;
6149 	}
6150 
6151 	err = 0;
6152 out:
6153 	sctp_release_sock(sk);
6154 	return err;
6155 }
6156 
6157 /*
6158  * This function is done by modeling the current datagram_poll() and the
6159  * tcp_poll().  Note that, based on these implementations, we don't
6160  * lock the socket in this function, even though it seems that,
6161  * ideally, locking or some other mechanisms can be used to ensure
6162  * the integrity of the counters (sndbuf and wmem_alloc) used
6163  * in this place.  We assume that we don't need locks either until proven
6164  * otherwise.
6165  *
6166  * Another thing to note is that we include the Async I/O support
6167  * here, again, by modeling the current TCP/UDP code.  We don't have
6168  * a good way to test with it yet.
6169  */
6170 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6171 {
6172 	struct sock *sk = sock->sk;
6173 	struct sctp_sock *sp = sctp_sk(sk);
6174 	unsigned int mask;
6175 
6176 	poll_wait(file, sk_sleep(sk), wait);
6177 
6178 	/* A TCP-style listening socket becomes readable when the accept queue
6179 	 * is not empty.
6180 	 */
6181 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6182 		return (!list_empty(&sp->ep->asocs)) ?
6183 			(POLLIN | POLLRDNORM) : 0;
6184 
6185 	mask = 0;
6186 
6187 	/* Is there any exceptional events?  */
6188 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6189 		mask |= POLLERR;
6190 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6191 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6192 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6193 		mask |= POLLHUP;
6194 
6195 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6196 	if (!skb_queue_empty(&sk->sk_receive_queue))
6197 		mask |= POLLIN | POLLRDNORM;
6198 
6199 	/* The association is either gone or not ready.  */
6200 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6201 		return mask;
6202 
6203 	/* Is it writable?  */
6204 	if (sctp_writeable(sk)) {
6205 		mask |= POLLOUT | POLLWRNORM;
6206 	} else {
6207 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6208 		/*
6209 		 * Since the socket is not locked, the buffer
6210 		 * might be made available after the writeable check and
6211 		 * before the bit is set.  This could cause a lost I/O
6212 		 * signal.  tcp_poll() has a race breaker for this race
6213 		 * condition.  Based on their implementation, we put
6214 		 * in the following code to cover it as well.
6215 		 */
6216 		if (sctp_writeable(sk))
6217 			mask |= POLLOUT | POLLWRNORM;
6218 	}
6219 	return mask;
6220 }
6221 
6222 /********************************************************************
6223  * 2nd Level Abstractions
6224  ********************************************************************/
6225 
6226 static struct sctp_bind_bucket *sctp_bucket_create(
6227 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6228 {
6229 	struct sctp_bind_bucket *pp;
6230 
6231 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6232 	if (pp) {
6233 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6234 		pp->port = snum;
6235 		pp->fastreuse = 0;
6236 		INIT_HLIST_HEAD(&pp->owner);
6237 		pp->net = net;
6238 		hlist_add_head(&pp->node, &head->chain);
6239 	}
6240 	return pp;
6241 }
6242 
6243 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6244 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6245 {
6246 	if (pp && hlist_empty(&pp->owner)) {
6247 		__hlist_del(&pp->node);
6248 		kmem_cache_free(sctp_bucket_cachep, pp);
6249 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6250 	}
6251 }
6252 
6253 /* Release this socket's reference to a local port.  */
6254 static inline void __sctp_put_port(struct sock *sk)
6255 {
6256 	struct sctp_bind_hashbucket *head =
6257 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6258 						  inet_sk(sk)->inet_num)];
6259 	struct sctp_bind_bucket *pp;
6260 
6261 	sctp_spin_lock(&head->lock);
6262 	pp = sctp_sk(sk)->bind_hash;
6263 	__sk_del_bind_node(sk);
6264 	sctp_sk(sk)->bind_hash = NULL;
6265 	inet_sk(sk)->inet_num = 0;
6266 	sctp_bucket_destroy(pp);
6267 	sctp_spin_unlock(&head->lock);
6268 }
6269 
6270 void sctp_put_port(struct sock *sk)
6271 {
6272 	sctp_local_bh_disable();
6273 	__sctp_put_port(sk);
6274 	sctp_local_bh_enable();
6275 }
6276 
6277 /*
6278  * The system picks an ephemeral port and choose an address set equivalent
6279  * to binding with a wildcard address.
6280  * One of those addresses will be the primary address for the association.
6281  * This automatically enables the multihoming capability of SCTP.
6282  */
6283 static int sctp_autobind(struct sock *sk)
6284 {
6285 	union sctp_addr autoaddr;
6286 	struct sctp_af *af;
6287 	__be16 port;
6288 
6289 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6290 	af = sctp_sk(sk)->pf->af;
6291 
6292 	port = htons(inet_sk(sk)->inet_num);
6293 	af->inaddr_any(&autoaddr, port);
6294 
6295 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6296 }
6297 
6298 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6299  *
6300  * From RFC 2292
6301  * 4.2 The cmsghdr Structure *
6302  *
6303  * When ancillary data is sent or received, any number of ancillary data
6304  * objects can be specified by the msg_control and msg_controllen members of
6305  * the msghdr structure, because each object is preceded by
6306  * a cmsghdr structure defining the object's length (the cmsg_len member).
6307  * Historically Berkeley-derived implementations have passed only one object
6308  * at a time, but this API allows multiple objects to be
6309  * passed in a single call to sendmsg() or recvmsg(). The following example
6310  * shows two ancillary data objects in a control buffer.
6311  *
6312  *   |<--------------------------- msg_controllen -------------------------->|
6313  *   |                                                                       |
6314  *
6315  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6316  *
6317  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6318  *   |                                   |                                   |
6319  *
6320  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6321  *
6322  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6323  *   |                                |  |                                |  |
6324  *
6325  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6326  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6327  *
6328  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6329  *
6330  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6331  *    ^
6332  *    |
6333  *
6334  * msg_control
6335  * points here
6336  */
6337 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6338 				  sctp_cmsgs_t *cmsgs)
6339 {
6340 	struct cmsghdr *cmsg;
6341 	struct msghdr *my_msg = (struct msghdr *)msg;
6342 
6343 	for (cmsg = CMSG_FIRSTHDR(msg);
6344 	     cmsg != NULL;
6345 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6346 		if (!CMSG_OK(my_msg, cmsg))
6347 			return -EINVAL;
6348 
6349 		/* Should we parse this header or ignore?  */
6350 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6351 			continue;
6352 
6353 		/* Strictly check lengths following example in SCM code.  */
6354 		switch (cmsg->cmsg_type) {
6355 		case SCTP_INIT:
6356 			/* SCTP Socket API Extension
6357 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6358 			 *
6359 			 * This cmsghdr structure provides information for
6360 			 * initializing new SCTP associations with sendmsg().
6361 			 * The SCTP_INITMSG socket option uses this same data
6362 			 * structure.  This structure is not used for
6363 			 * recvmsg().
6364 			 *
6365 			 * cmsg_level    cmsg_type      cmsg_data[]
6366 			 * ------------  ------------   ----------------------
6367 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6368 			 */
6369 			if (cmsg->cmsg_len !=
6370 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6371 				return -EINVAL;
6372 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6373 			break;
6374 
6375 		case SCTP_SNDRCV:
6376 			/* SCTP Socket API Extension
6377 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6378 			 *
6379 			 * This cmsghdr structure specifies SCTP options for
6380 			 * sendmsg() and describes SCTP header information
6381 			 * about a received message through recvmsg().
6382 			 *
6383 			 * cmsg_level    cmsg_type      cmsg_data[]
6384 			 * ------------  ------------   ----------------------
6385 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6386 			 */
6387 			if (cmsg->cmsg_len !=
6388 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6389 				return -EINVAL;
6390 
6391 			cmsgs->info =
6392 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6393 
6394 			/* Minimally, validate the sinfo_flags. */
6395 			if (cmsgs->info->sinfo_flags &
6396 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6397 			      SCTP_ABORT | SCTP_EOF))
6398 				return -EINVAL;
6399 			break;
6400 
6401 		default:
6402 			return -EINVAL;
6403 		}
6404 	}
6405 	return 0;
6406 }
6407 
6408 /*
6409  * Wait for a packet..
6410  * Note: This function is the same function as in core/datagram.c
6411  * with a few modifications to make lksctp work.
6412  */
6413 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6414 {
6415 	int error;
6416 	DEFINE_WAIT(wait);
6417 
6418 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6419 
6420 	/* Socket errors? */
6421 	error = sock_error(sk);
6422 	if (error)
6423 		goto out;
6424 
6425 	if (!skb_queue_empty(&sk->sk_receive_queue))
6426 		goto ready;
6427 
6428 	/* Socket shut down?  */
6429 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6430 		goto out;
6431 
6432 	/* Sequenced packets can come disconnected.  If so we report the
6433 	 * problem.
6434 	 */
6435 	error = -ENOTCONN;
6436 
6437 	/* Is there a good reason to think that we may receive some data?  */
6438 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6439 		goto out;
6440 
6441 	/* Handle signals.  */
6442 	if (signal_pending(current))
6443 		goto interrupted;
6444 
6445 	/* Let another process have a go.  Since we are going to sleep
6446 	 * anyway.  Note: This may cause odd behaviors if the message
6447 	 * does not fit in the user's buffer, but this seems to be the
6448 	 * only way to honor MSG_DONTWAIT realistically.
6449 	 */
6450 	sctp_release_sock(sk);
6451 	*timeo_p = schedule_timeout(*timeo_p);
6452 	sctp_lock_sock(sk);
6453 
6454 ready:
6455 	finish_wait(sk_sleep(sk), &wait);
6456 	return 0;
6457 
6458 interrupted:
6459 	error = sock_intr_errno(*timeo_p);
6460 
6461 out:
6462 	finish_wait(sk_sleep(sk), &wait);
6463 	*err = error;
6464 	return error;
6465 }
6466 
6467 /* Receive a datagram.
6468  * Note: This is pretty much the same routine as in core/datagram.c
6469  * with a few changes to make lksctp work.
6470  */
6471 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6472 					      int noblock, int *err)
6473 {
6474 	int error;
6475 	struct sk_buff *skb;
6476 	long timeo;
6477 
6478 	timeo = sock_rcvtimeo(sk, noblock);
6479 
6480 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6481 			  timeo, MAX_SCHEDULE_TIMEOUT);
6482 
6483 	do {
6484 		/* Again only user level code calls this function,
6485 		 * so nothing interrupt level
6486 		 * will suddenly eat the receive_queue.
6487 		 *
6488 		 *  Look at current nfs client by the way...
6489 		 *  However, this function was correct in any case. 8)
6490 		 */
6491 		if (flags & MSG_PEEK) {
6492 			spin_lock_bh(&sk->sk_receive_queue.lock);
6493 			skb = skb_peek(&sk->sk_receive_queue);
6494 			if (skb)
6495 				atomic_inc(&skb->users);
6496 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6497 		} else {
6498 			skb = skb_dequeue(&sk->sk_receive_queue);
6499 		}
6500 
6501 		if (skb)
6502 			return skb;
6503 
6504 		/* Caller is allowed not to check sk->sk_err before calling. */
6505 		error = sock_error(sk);
6506 		if (error)
6507 			goto no_packet;
6508 
6509 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6510 			break;
6511 
6512 		/* User doesn't want to wait.  */
6513 		error = -EAGAIN;
6514 		if (!timeo)
6515 			goto no_packet;
6516 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6517 
6518 	return NULL;
6519 
6520 no_packet:
6521 	*err = error;
6522 	return NULL;
6523 }
6524 
6525 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6526 static void __sctp_write_space(struct sctp_association *asoc)
6527 {
6528 	struct sock *sk = asoc->base.sk;
6529 	struct socket *sock = sk->sk_socket;
6530 
6531 	if ((sctp_wspace(asoc) > 0) && sock) {
6532 		if (waitqueue_active(&asoc->wait))
6533 			wake_up_interruptible(&asoc->wait);
6534 
6535 		if (sctp_writeable(sk)) {
6536 			wait_queue_head_t *wq = sk_sleep(sk);
6537 
6538 			if (wq && waitqueue_active(wq))
6539 				wake_up_interruptible(wq);
6540 
6541 			/* Note that we try to include the Async I/O support
6542 			 * here by modeling from the current TCP/UDP code.
6543 			 * We have not tested with it yet.
6544 			 */
6545 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6546 				sock_wake_async(sock,
6547 						SOCK_WAKE_SPACE, POLL_OUT);
6548 		}
6549 	}
6550 }
6551 
6552 /* Do accounting for the sndbuf space.
6553  * Decrement the used sndbuf space of the corresponding association by the
6554  * data size which was just transmitted(freed).
6555  */
6556 static void sctp_wfree(struct sk_buff *skb)
6557 {
6558 	struct sctp_association *asoc;
6559 	struct sctp_chunk *chunk;
6560 	struct sock *sk;
6561 
6562 	/* Get the saved chunk pointer.  */
6563 	chunk = *((struct sctp_chunk **)(skb->cb));
6564 	asoc = chunk->asoc;
6565 	sk = asoc->base.sk;
6566 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6567 				sizeof(struct sk_buff) +
6568 				sizeof(struct sctp_chunk);
6569 
6570 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6571 
6572 	/*
6573 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6574 	 */
6575 	sk->sk_wmem_queued   -= skb->truesize;
6576 	sk_mem_uncharge(sk, skb->truesize);
6577 
6578 	sock_wfree(skb);
6579 	__sctp_write_space(asoc);
6580 
6581 	sctp_association_put(asoc);
6582 }
6583 
6584 /* Do accounting for the receive space on the socket.
6585  * Accounting for the association is done in ulpevent.c
6586  * We set this as a destructor for the cloned data skbs so that
6587  * accounting is done at the correct time.
6588  */
6589 void sctp_sock_rfree(struct sk_buff *skb)
6590 {
6591 	struct sock *sk = skb->sk;
6592 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6593 
6594 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6595 
6596 	/*
6597 	 * Mimic the behavior of sock_rfree
6598 	 */
6599 	sk_mem_uncharge(sk, event->rmem_len);
6600 }
6601 
6602 
6603 /* Helper function to wait for space in the sndbuf.  */
6604 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6605 				size_t msg_len)
6606 {
6607 	struct sock *sk = asoc->base.sk;
6608 	int err = 0;
6609 	long current_timeo = *timeo_p;
6610 	DEFINE_WAIT(wait);
6611 
6612 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6613 			  asoc, (long)(*timeo_p), msg_len);
6614 
6615 	/* Increment the association's refcnt.  */
6616 	sctp_association_hold(asoc);
6617 
6618 	/* Wait on the association specific sndbuf space. */
6619 	for (;;) {
6620 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6621 					  TASK_INTERRUPTIBLE);
6622 		if (!*timeo_p)
6623 			goto do_nonblock;
6624 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6625 		    asoc->base.dead)
6626 			goto do_error;
6627 		if (signal_pending(current))
6628 			goto do_interrupted;
6629 		if (msg_len <= sctp_wspace(asoc))
6630 			break;
6631 
6632 		/* Let another process have a go.  Since we are going
6633 		 * to sleep anyway.
6634 		 */
6635 		sctp_release_sock(sk);
6636 		current_timeo = schedule_timeout(current_timeo);
6637 		BUG_ON(sk != asoc->base.sk);
6638 		sctp_lock_sock(sk);
6639 
6640 		*timeo_p = current_timeo;
6641 	}
6642 
6643 out:
6644 	finish_wait(&asoc->wait, &wait);
6645 
6646 	/* Release the association's refcnt.  */
6647 	sctp_association_put(asoc);
6648 
6649 	return err;
6650 
6651 do_error:
6652 	err = -EPIPE;
6653 	goto out;
6654 
6655 do_interrupted:
6656 	err = sock_intr_errno(*timeo_p);
6657 	goto out;
6658 
6659 do_nonblock:
6660 	err = -EAGAIN;
6661 	goto out;
6662 }
6663 
6664 void sctp_data_ready(struct sock *sk, int len)
6665 {
6666 	struct socket_wq *wq;
6667 
6668 	rcu_read_lock();
6669 	wq = rcu_dereference(sk->sk_wq);
6670 	if (wq_has_sleeper(wq))
6671 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6672 						POLLRDNORM | POLLRDBAND);
6673 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6674 	rcu_read_unlock();
6675 }
6676 
6677 /* If socket sndbuf has changed, wake up all per association waiters.  */
6678 void sctp_write_space(struct sock *sk)
6679 {
6680 	struct sctp_association *asoc;
6681 
6682 	/* Wake up the tasks in each wait queue.  */
6683 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6684 		__sctp_write_space(asoc);
6685 	}
6686 }
6687 
6688 /* Is there any sndbuf space available on the socket?
6689  *
6690  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6691  * associations on the same socket.  For a UDP-style socket with
6692  * multiple associations, it is possible for it to be "unwriteable"
6693  * prematurely.  I assume that this is acceptable because
6694  * a premature "unwriteable" is better than an accidental "writeable" which
6695  * would cause an unwanted block under certain circumstances.  For the 1-1
6696  * UDP-style sockets or TCP-style sockets, this code should work.
6697  *  - Daisy
6698  */
6699 static int sctp_writeable(struct sock *sk)
6700 {
6701 	int amt = 0;
6702 
6703 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6704 	if (amt < 0)
6705 		amt = 0;
6706 	return amt;
6707 }
6708 
6709 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6710  * returns immediately with EINPROGRESS.
6711  */
6712 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6713 {
6714 	struct sock *sk = asoc->base.sk;
6715 	int err = 0;
6716 	long current_timeo = *timeo_p;
6717 	DEFINE_WAIT(wait);
6718 
6719 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6720 			  (long)(*timeo_p));
6721 
6722 	/* Increment the association's refcnt.  */
6723 	sctp_association_hold(asoc);
6724 
6725 	for (;;) {
6726 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6727 					  TASK_INTERRUPTIBLE);
6728 		if (!*timeo_p)
6729 			goto do_nonblock;
6730 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6731 			break;
6732 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6733 		    asoc->base.dead)
6734 			goto do_error;
6735 		if (signal_pending(current))
6736 			goto do_interrupted;
6737 
6738 		if (sctp_state(asoc, ESTABLISHED))
6739 			break;
6740 
6741 		/* Let another process have a go.  Since we are going
6742 		 * to sleep anyway.
6743 		 */
6744 		sctp_release_sock(sk);
6745 		current_timeo = schedule_timeout(current_timeo);
6746 		sctp_lock_sock(sk);
6747 
6748 		*timeo_p = current_timeo;
6749 	}
6750 
6751 out:
6752 	finish_wait(&asoc->wait, &wait);
6753 
6754 	/* Release the association's refcnt.  */
6755 	sctp_association_put(asoc);
6756 
6757 	return err;
6758 
6759 do_error:
6760 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6761 		err = -ETIMEDOUT;
6762 	else
6763 		err = -ECONNREFUSED;
6764 	goto out;
6765 
6766 do_interrupted:
6767 	err = sock_intr_errno(*timeo_p);
6768 	goto out;
6769 
6770 do_nonblock:
6771 	err = -EINPROGRESS;
6772 	goto out;
6773 }
6774 
6775 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6776 {
6777 	struct sctp_endpoint *ep;
6778 	int err = 0;
6779 	DEFINE_WAIT(wait);
6780 
6781 	ep = sctp_sk(sk)->ep;
6782 
6783 
6784 	for (;;) {
6785 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6786 					  TASK_INTERRUPTIBLE);
6787 
6788 		if (list_empty(&ep->asocs)) {
6789 			sctp_release_sock(sk);
6790 			timeo = schedule_timeout(timeo);
6791 			sctp_lock_sock(sk);
6792 		}
6793 
6794 		err = -EINVAL;
6795 		if (!sctp_sstate(sk, LISTENING))
6796 			break;
6797 
6798 		err = 0;
6799 		if (!list_empty(&ep->asocs))
6800 			break;
6801 
6802 		err = sock_intr_errno(timeo);
6803 		if (signal_pending(current))
6804 			break;
6805 
6806 		err = -EAGAIN;
6807 		if (!timeo)
6808 			break;
6809 	}
6810 
6811 	finish_wait(sk_sleep(sk), &wait);
6812 
6813 	return err;
6814 }
6815 
6816 static void sctp_wait_for_close(struct sock *sk, long timeout)
6817 {
6818 	DEFINE_WAIT(wait);
6819 
6820 	do {
6821 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6822 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6823 			break;
6824 		sctp_release_sock(sk);
6825 		timeout = schedule_timeout(timeout);
6826 		sctp_lock_sock(sk);
6827 	} while (!signal_pending(current) && timeout);
6828 
6829 	finish_wait(sk_sleep(sk), &wait);
6830 }
6831 
6832 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6833 {
6834 	struct sk_buff *frag;
6835 
6836 	if (!skb->data_len)
6837 		goto done;
6838 
6839 	/* Don't forget the fragments. */
6840 	skb_walk_frags(skb, frag)
6841 		sctp_skb_set_owner_r_frag(frag, sk);
6842 
6843 done:
6844 	sctp_skb_set_owner_r(skb, sk);
6845 }
6846 
6847 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6848 		    struct sctp_association *asoc)
6849 {
6850 	struct inet_sock *inet = inet_sk(sk);
6851 	struct inet_sock *newinet;
6852 
6853 	newsk->sk_type = sk->sk_type;
6854 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6855 	newsk->sk_flags = sk->sk_flags;
6856 	newsk->sk_no_check = sk->sk_no_check;
6857 	newsk->sk_reuse = sk->sk_reuse;
6858 
6859 	newsk->sk_shutdown = sk->sk_shutdown;
6860 	newsk->sk_destruct = inet_sock_destruct;
6861 	newsk->sk_family = sk->sk_family;
6862 	newsk->sk_protocol = IPPROTO_SCTP;
6863 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6864 	newsk->sk_sndbuf = sk->sk_sndbuf;
6865 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6866 	newsk->sk_lingertime = sk->sk_lingertime;
6867 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6868 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6869 
6870 	newinet = inet_sk(newsk);
6871 
6872 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6873 	 * getsockname() and getpeername()
6874 	 */
6875 	newinet->inet_sport = inet->inet_sport;
6876 	newinet->inet_saddr = inet->inet_saddr;
6877 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6878 	newinet->inet_dport = htons(asoc->peer.port);
6879 	newinet->pmtudisc = inet->pmtudisc;
6880 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6881 
6882 	newinet->uc_ttl = inet->uc_ttl;
6883 	newinet->mc_loop = 1;
6884 	newinet->mc_ttl = 1;
6885 	newinet->mc_index = 0;
6886 	newinet->mc_list = NULL;
6887 }
6888 
6889 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6890  * and its messages to the newsk.
6891  */
6892 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6893 			      struct sctp_association *assoc,
6894 			      sctp_socket_type_t type)
6895 {
6896 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6897 	struct sctp_sock *newsp = sctp_sk(newsk);
6898 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6899 	struct sctp_endpoint *newep = newsp->ep;
6900 	struct sk_buff *skb, *tmp;
6901 	struct sctp_ulpevent *event;
6902 	struct sctp_bind_hashbucket *head;
6903 	struct list_head tmplist;
6904 
6905 	/* Migrate socket buffer sizes and all the socket level options to the
6906 	 * new socket.
6907 	 */
6908 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6909 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6910 	/* Brute force copy old sctp opt. */
6911 	if (oldsp->do_auto_asconf) {
6912 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6913 		inet_sk_copy_descendant(newsk, oldsk);
6914 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6915 	} else
6916 		inet_sk_copy_descendant(newsk, oldsk);
6917 
6918 	/* Restore the ep value that was overwritten with the above structure
6919 	 * copy.
6920 	 */
6921 	newsp->ep = newep;
6922 	newsp->hmac = NULL;
6923 
6924 	/* Hook this new socket in to the bind_hash list. */
6925 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6926 						 inet_sk(oldsk)->inet_num)];
6927 	sctp_local_bh_disable();
6928 	sctp_spin_lock(&head->lock);
6929 	pp = sctp_sk(oldsk)->bind_hash;
6930 	sk_add_bind_node(newsk, &pp->owner);
6931 	sctp_sk(newsk)->bind_hash = pp;
6932 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6933 	sctp_spin_unlock(&head->lock);
6934 	sctp_local_bh_enable();
6935 
6936 	/* Copy the bind_addr list from the original endpoint to the new
6937 	 * endpoint so that we can handle restarts properly
6938 	 */
6939 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6940 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6941 
6942 	/* Move any messages in the old socket's receive queue that are for the
6943 	 * peeled off association to the new socket's receive queue.
6944 	 */
6945 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6946 		event = sctp_skb2event(skb);
6947 		if (event->asoc == assoc) {
6948 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6949 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6950 			sctp_skb_set_owner_r_frag(skb, newsk);
6951 		}
6952 	}
6953 
6954 	/* Clean up any messages pending delivery due to partial
6955 	 * delivery.   Three cases:
6956 	 * 1) No partial deliver;  no work.
6957 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6958 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6959 	 */
6960 	skb_queue_head_init(&newsp->pd_lobby);
6961 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6962 
6963 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6964 		struct sk_buff_head *queue;
6965 
6966 		/* Decide which queue to move pd_lobby skbs to. */
6967 		if (assoc->ulpq.pd_mode) {
6968 			queue = &newsp->pd_lobby;
6969 		} else
6970 			queue = &newsk->sk_receive_queue;
6971 
6972 		/* Walk through the pd_lobby, looking for skbs that
6973 		 * need moved to the new socket.
6974 		 */
6975 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6976 			event = sctp_skb2event(skb);
6977 			if (event->asoc == assoc) {
6978 				__skb_unlink(skb, &oldsp->pd_lobby);
6979 				__skb_queue_tail(queue, skb);
6980 				sctp_skb_set_owner_r_frag(skb, newsk);
6981 			}
6982 		}
6983 
6984 		/* Clear up any skbs waiting for the partial
6985 		 * delivery to finish.
6986 		 */
6987 		if (assoc->ulpq.pd_mode)
6988 			sctp_clear_pd(oldsk, NULL);
6989 
6990 	}
6991 
6992 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6993 		sctp_skb_set_owner_r_frag(skb, newsk);
6994 
6995 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6996 		sctp_skb_set_owner_r_frag(skb, newsk);
6997 
6998 	/* Set the type of socket to indicate that it is peeled off from the
6999 	 * original UDP-style socket or created with the accept() call on a
7000 	 * TCP-style socket..
7001 	 */
7002 	newsp->type = type;
7003 
7004 	/* Mark the new socket "in-use" by the user so that any packets
7005 	 * that may arrive on the association after we've moved it are
7006 	 * queued to the backlog.  This prevents a potential race between
7007 	 * backlog processing on the old socket and new-packet processing
7008 	 * on the new socket.
7009 	 *
7010 	 * The caller has just allocated newsk so we can guarantee that other
7011 	 * paths won't try to lock it and then oldsk.
7012 	 */
7013 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7014 	sctp_assoc_migrate(assoc, newsk);
7015 
7016 	/* If the association on the newsk is already closed before accept()
7017 	 * is called, set RCV_SHUTDOWN flag.
7018 	 */
7019 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7020 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7021 
7022 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7023 	sctp_release_sock(newsk);
7024 }
7025 
7026 
7027 /* This proto struct describes the ULP interface for SCTP.  */
7028 struct proto sctp_prot = {
7029 	.name        =	"SCTP",
7030 	.owner       =	THIS_MODULE,
7031 	.close       =	sctp_close,
7032 	.connect     =	sctp_connect,
7033 	.disconnect  =	sctp_disconnect,
7034 	.accept      =	sctp_accept,
7035 	.ioctl       =	sctp_ioctl,
7036 	.init        =	sctp_init_sock,
7037 	.destroy     =	sctp_destroy_sock,
7038 	.shutdown    =	sctp_shutdown,
7039 	.setsockopt  =	sctp_setsockopt,
7040 	.getsockopt  =	sctp_getsockopt,
7041 	.sendmsg     =	sctp_sendmsg,
7042 	.recvmsg     =	sctp_recvmsg,
7043 	.bind        =	sctp_bind,
7044 	.backlog_rcv =	sctp_backlog_rcv,
7045 	.hash        =	sctp_hash,
7046 	.unhash      =	sctp_unhash,
7047 	.get_port    =	sctp_get_port,
7048 	.obj_size    =  sizeof(struct sctp_sock),
7049 	.sysctl_mem  =  sysctl_sctp_mem,
7050 	.sysctl_rmem =  sysctl_sctp_rmem,
7051 	.sysctl_wmem =  sysctl_sctp_wmem,
7052 	.memory_pressure = &sctp_memory_pressure,
7053 	.enter_memory_pressure = sctp_enter_memory_pressure,
7054 	.memory_allocated = &sctp_memory_allocated,
7055 	.sockets_allocated = &sctp_sockets_allocated,
7056 };
7057 
7058 #if IS_ENABLED(CONFIG_IPV6)
7059 
7060 struct proto sctpv6_prot = {
7061 	.name		= "SCTPv6",
7062 	.owner		= THIS_MODULE,
7063 	.close		= sctp_close,
7064 	.connect	= sctp_connect,
7065 	.disconnect	= sctp_disconnect,
7066 	.accept		= sctp_accept,
7067 	.ioctl		= sctp_ioctl,
7068 	.init		= sctp_init_sock,
7069 	.destroy	= sctp_destroy_sock,
7070 	.shutdown	= sctp_shutdown,
7071 	.setsockopt	= sctp_setsockopt,
7072 	.getsockopt	= sctp_getsockopt,
7073 	.sendmsg	= sctp_sendmsg,
7074 	.recvmsg	= sctp_recvmsg,
7075 	.bind		= sctp_bind,
7076 	.backlog_rcv	= sctp_backlog_rcv,
7077 	.hash		= sctp_hash,
7078 	.unhash		= sctp_unhash,
7079 	.get_port	= sctp_get_port,
7080 	.obj_size	= sizeof(struct sctp6_sock),
7081 	.sysctl_mem	= sysctl_sctp_mem,
7082 	.sysctl_rmem	= sysctl_sctp_rmem,
7083 	.sysctl_wmem	= sysctl_sctp_wmem,
7084 	.memory_pressure = &sctp_memory_pressure,
7085 	.enter_memory_pressure = sctp_enter_memory_pressure,
7086 	.memory_allocated = &sctp_memory_allocated,
7087 	.sockets_allocated = &sctp_sockets_allocated,
7088 };
7089 #endif /* IS_ENABLED(CONFIG_IPV6) */
7090