xref: /openbmc/linux/net/sctp/socket.c (revision 545e4006)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114 
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
118 
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 	sctp_memory_pressure = 1;
122 }
123 
124 
125 /* Get the sndbuf space available at the time on the association.  */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 	int amt;
129 
130 	if (asoc->ep->sndbuf_policy)
131 		amt = asoc->sndbuf_used;
132 	else
133 		amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134 
135 	if (amt >= asoc->base.sk->sk_sndbuf) {
136 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 			amt = 0;
138 		else {
139 			amt = sk_stream_wspace(asoc->base.sk);
140 			if (amt < 0)
141 				amt = 0;
142 		}
143 	} else {
144 		amt = asoc->base.sk->sk_sndbuf - amt;
145 	}
146 	return amt;
147 }
148 
149 /* Increment the used sndbuf space count of the corresponding association by
150  * the size of the outgoing data chunk.
151  * Also, set the skb destructor for sndbuf accounting later.
152  *
153  * Since it is always 1-1 between chunk and skb, and also a new skb is always
154  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155  * destructor in the data chunk skb for the purpose of the sndbuf space
156  * tracking.
157  */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 	struct sctp_association *asoc = chunk->asoc;
161 	struct sock *sk = asoc->base.sk;
162 
163 	/* The sndbuf space is tracked per association.  */
164 	sctp_association_hold(asoc);
165 
166 	skb_set_owner_w(chunk->skb, sk);
167 
168 	chunk->skb->destructor = sctp_wfree;
169 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
170 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171 
172 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 				sizeof(struct sk_buff) +
174 				sizeof(struct sctp_chunk);
175 
176 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 	sk->sk_wmem_queued += chunk->skb->truesize;
178 	sk_mem_charge(sk, chunk->skb->truesize);
179 }
180 
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 				   int len)
184 {
185 	struct sctp_af *af;
186 
187 	/* Verify basic sockaddr. */
188 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 	if (!af)
190 		return -EINVAL;
191 
192 	/* Is this a valid SCTP address?  */
193 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 		return -EINVAL;
195 
196 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 		return -EINVAL;
198 
199 	return 0;
200 }
201 
202 /* Look up the association by its id.  If this is not a UDP-style
203  * socket, the ID field is always ignored.
204  */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 	struct sctp_association *asoc = NULL;
208 
209 	/* If this is not a UDP-style socket, assoc id should be ignored. */
210 	if (!sctp_style(sk, UDP)) {
211 		/* Return NULL if the socket state is not ESTABLISHED. It
212 		 * could be a TCP-style listening socket or a socket which
213 		 * hasn't yet called connect() to establish an association.
214 		 */
215 		if (!sctp_sstate(sk, ESTABLISHED))
216 			return NULL;
217 
218 		/* Get the first and the only association from the list. */
219 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 					  struct sctp_association, asocs);
222 		return asoc;
223 	}
224 
225 	/* Otherwise this is a UDP-style socket. */
226 	if (!id || (id == (sctp_assoc_t)-1))
227 		return NULL;
228 
229 	spin_lock_bh(&sctp_assocs_id_lock);
230 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 	spin_unlock_bh(&sctp_assocs_id_lock);
232 
233 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 		return NULL;
235 
236 	return asoc;
237 }
238 
239 /* Look up the transport from an address and an assoc id. If both address and
240  * id are specified, the associations matching the address and the id should be
241  * the same.
242  */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 					      struct sockaddr_storage *addr,
245 					      sctp_assoc_t id)
246 {
247 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 	struct sctp_transport *transport;
249 	union sctp_addr *laddr = (union sctp_addr *)addr;
250 
251 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 					       laddr,
253 					       &transport);
254 
255 	if (!addr_asoc)
256 		return NULL;
257 
258 	id_asoc = sctp_id2assoc(sk, id);
259 	if (id_asoc && (id_asoc != addr_asoc))
260 		return NULL;
261 
262 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 						(union sctp_addr *)addr);
264 
265 	return transport;
266 }
267 
268 /* API 3.1.2 bind() - UDP Style Syntax
269  * The syntax of bind() is,
270  *
271  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
272  *
273  *   sd      - the socket descriptor returned by socket().
274  *   addr    - the address structure (struct sockaddr_in or struct
275  *             sockaddr_in6 [RFC 2553]),
276  *   addr_len - the size of the address structure.
277  */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 	int retval = 0;
281 
282 	sctp_lock_sock(sk);
283 
284 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 			  sk, addr, addr_len);
286 
287 	/* Disallow binding twice. */
288 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 				      addr_len);
291 	else
292 		retval = -EINVAL;
293 
294 	sctp_release_sock(sk);
295 
296 	return retval;
297 }
298 
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300 
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 					union sctp_addr *addr, int len)
304 {
305 	struct sctp_af *af;
306 
307 	/* Check minimum size.  */
308 	if (len < sizeof (struct sockaddr))
309 		return NULL;
310 
311 	/* V4 mapped address are really of AF_INET family */
312 	if (addr->sa.sa_family == AF_INET6 &&
313 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 		if (!opt->pf->af_supported(AF_INET, opt))
315 			return NULL;
316 	} else {
317 		/* Does this PF support this AF? */
318 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 			return NULL;
320 	}
321 
322 	/* If we get this far, af is valid. */
323 	af = sctp_get_af_specific(addr->sa.sa_family);
324 
325 	if (len < af->sockaddr_len)
326 		return NULL;
327 
328 	return af;
329 }
330 
331 /* Bind a local address either to an endpoint or to an association.  */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 	struct sctp_sock *sp = sctp_sk(sk);
335 	struct sctp_endpoint *ep = sp->ep;
336 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 	struct sctp_af *af;
338 	unsigned short snum;
339 	int ret = 0;
340 
341 	/* Common sockaddr verification. */
342 	af = sctp_sockaddr_af(sp, addr, len);
343 	if (!af) {
344 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 				  sk, addr, len);
346 		return -EINVAL;
347 	}
348 
349 	snum = ntohs(addr->v4.sin_port);
350 
351 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 				 ", port: %d, new port: %d, len: %d)\n",
353 				 sk,
354 				 addr,
355 				 bp->port, snum,
356 				 len);
357 
358 	/* PF specific bind() address verification. */
359 	if (!sp->pf->bind_verify(sp, addr))
360 		return -EADDRNOTAVAIL;
361 
362 	/* We must either be unbound, or bind to the same port.
363 	 * It's OK to allow 0 ports if we are already bound.
364 	 * We'll just inhert an already bound port in this case
365 	 */
366 	if (bp->port) {
367 		if (!snum)
368 			snum = bp->port;
369 		else if (snum != bp->port) {
370 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 				  " New port %d does not match existing port "
372 				  "%d.\n", snum, bp->port);
373 			return -EINVAL;
374 		}
375 	}
376 
377 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 		return -EACCES;
379 
380 	/* See if the address matches any of the addresses we may have
381 	 * already bound before checking against other endpoints.
382 	 */
383 	if (sctp_bind_addr_match(bp, addr, sp))
384 		return -EINVAL;
385 
386 	/* Make sure we are allowed to bind here.
387 	 * The function sctp_get_port_local() does duplicate address
388 	 * detection.
389 	 */
390 	addr->v4.sin_port = htons(snum);
391 	if ((ret = sctp_get_port_local(sk, addr))) {
392 		return -EADDRINUSE;
393 	}
394 
395 	/* Refresh ephemeral port.  */
396 	if (!bp->port)
397 		bp->port = inet_sk(sk)->num;
398 
399 	/* Add the address to the bind address list.
400 	 * Use GFP_ATOMIC since BHs will be disabled.
401 	 */
402 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403 
404 	/* Copy back into socket for getsockname() use. */
405 	if (!ret) {
406 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 		af->to_sk_saddr(addr, sk);
408 	}
409 
410 	return ret;
411 }
412 
413  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414  *
415  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416  * at any one time.  If a sender, after sending an ASCONF chunk, decides
417  * it needs to transfer another ASCONF Chunk, it MUST wait until the
418  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419  * subsequent ASCONF. Note this restriction binds each side, so at any
420  * time two ASCONF may be in-transit on any given association (one sent
421  * from each endpoint).
422  */
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 			    struct sctp_chunk *chunk)
425 {
426 	int		retval = 0;
427 
428 	/* If there is an outstanding ASCONF chunk, queue it for later
429 	 * transmission.
430 	 */
431 	if (asoc->addip_last_asconf) {
432 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 		goto out;
434 	}
435 
436 	/* Hold the chunk until an ASCONF_ACK is received. */
437 	sctp_chunk_hold(chunk);
438 	retval = sctp_primitive_ASCONF(asoc, chunk);
439 	if (retval)
440 		sctp_chunk_free(chunk);
441 	else
442 		asoc->addip_last_asconf = chunk;
443 
444 out:
445 	return retval;
446 }
447 
448 /* Add a list of addresses as bind addresses to local endpoint or
449  * association.
450  *
451  * Basically run through each address specified in the addrs/addrcnt
452  * array/length pair, determine if it is IPv6 or IPv4 and call
453  * sctp_do_bind() on it.
454  *
455  * If any of them fails, then the operation will be reversed and the
456  * ones that were added will be removed.
457  *
458  * Only sctp_setsockopt_bindx() is supposed to call this function.
459  */
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461 {
462 	int cnt;
463 	int retval = 0;
464 	void *addr_buf;
465 	struct sockaddr *sa_addr;
466 	struct sctp_af *af;
467 
468 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 			  sk, addrs, addrcnt);
470 
471 	addr_buf = addrs;
472 	for (cnt = 0; cnt < addrcnt; cnt++) {
473 		/* The list may contain either IPv4 or IPv6 address;
474 		 * determine the address length for walking thru the list.
475 		 */
476 		sa_addr = (struct sockaddr *)addr_buf;
477 		af = sctp_get_af_specific(sa_addr->sa_family);
478 		if (!af) {
479 			retval = -EINVAL;
480 			goto err_bindx_add;
481 		}
482 
483 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 				      af->sockaddr_len);
485 
486 		addr_buf += af->sockaddr_len;
487 
488 err_bindx_add:
489 		if (retval < 0) {
490 			/* Failed. Cleanup the ones that have been added */
491 			if (cnt > 0)
492 				sctp_bindx_rem(sk, addrs, cnt);
493 			return retval;
494 		}
495 	}
496 
497 	return retval;
498 }
499 
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501  * associations that are part of the endpoint indicating that a list of local
502  * addresses are added to the endpoint.
503  *
504  * If any of the addresses is already in the bind address list of the
505  * association, we do not send the chunk for that association.  But it will not
506  * affect other associations.
507  *
508  * Only sctp_setsockopt_bindx() is supposed to call this function.
509  */
510 static int sctp_send_asconf_add_ip(struct sock		*sk,
511 				   struct sockaddr	*addrs,
512 				   int 			addrcnt)
513 {
514 	struct sctp_sock		*sp;
515 	struct sctp_endpoint		*ep;
516 	struct sctp_association		*asoc;
517 	struct sctp_bind_addr		*bp;
518 	struct sctp_chunk		*chunk;
519 	struct sctp_sockaddr_entry	*laddr;
520 	union sctp_addr			*addr;
521 	union sctp_addr			saveaddr;
522 	void				*addr_buf;
523 	struct sctp_af			*af;
524 	struct list_head		*p;
525 	int 				i;
526 	int 				retval = 0;
527 
528 	if (!sctp_addip_enable)
529 		return retval;
530 
531 	sp = sctp_sk(sk);
532 	ep = sp->ep;
533 
534 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 			  __func__, sk, addrs, addrcnt);
536 
537 	list_for_each_entry(asoc, &ep->asocs, asocs) {
538 
539 		if (!asoc->peer.asconf_capable)
540 			continue;
541 
542 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 			continue;
544 
545 		if (!sctp_state(asoc, ESTABLISHED))
546 			continue;
547 
548 		/* Check if any address in the packed array of addresses is
549 		 * in the bind address list of the association. If so,
550 		 * do not send the asconf chunk to its peer, but continue with
551 		 * other associations.
552 		 */
553 		addr_buf = addrs;
554 		for (i = 0; i < addrcnt; i++) {
555 			addr = (union sctp_addr *)addr_buf;
556 			af = sctp_get_af_specific(addr->v4.sin_family);
557 			if (!af) {
558 				retval = -EINVAL;
559 				goto out;
560 			}
561 
562 			if (sctp_assoc_lookup_laddr(asoc, addr))
563 				break;
564 
565 			addr_buf += af->sockaddr_len;
566 		}
567 		if (i < addrcnt)
568 			continue;
569 
570 		/* Use the first valid address in bind addr list of
571 		 * association as Address Parameter of ASCONF CHUNK.
572 		 */
573 		bp = &asoc->base.bind_addr;
574 		p = bp->address_list.next;
575 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 						   addrcnt, SCTP_PARAM_ADD_IP);
578 		if (!chunk) {
579 			retval = -ENOMEM;
580 			goto out;
581 		}
582 
583 		retval = sctp_send_asconf(asoc, chunk);
584 		if (retval)
585 			goto out;
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = (union sctp_addr *)addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 	}
600 
601 out:
602 	return retval;
603 }
604 
605 /* Remove a list of addresses from bind addresses list.  Do not remove the
606  * last address.
607  *
608  * Basically run through each address specified in the addrs/addrcnt
609  * array/length pair, determine if it is IPv6 or IPv4 and call
610  * sctp_del_bind() on it.
611  *
612  * If any of them fails, then the operation will be reversed and the
613  * ones that were removed will be added back.
614  *
615  * At least one address has to be left; if only one address is
616  * available, the operation will return -EBUSY.
617  *
618  * Only sctp_setsockopt_bindx() is supposed to call this function.
619  */
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621 {
622 	struct sctp_sock *sp = sctp_sk(sk);
623 	struct sctp_endpoint *ep = sp->ep;
624 	int cnt;
625 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 	int retval = 0;
627 	void *addr_buf;
628 	union sctp_addr *sa_addr;
629 	struct sctp_af *af;
630 
631 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 			  sk, addrs, addrcnt);
633 
634 	addr_buf = addrs;
635 	for (cnt = 0; cnt < addrcnt; cnt++) {
636 		/* If the bind address list is empty or if there is only one
637 		 * bind address, there is nothing more to be removed (we need
638 		 * at least one address here).
639 		 */
640 		if (list_empty(&bp->address_list) ||
641 		    (sctp_list_single_entry(&bp->address_list))) {
642 			retval = -EBUSY;
643 			goto err_bindx_rem;
644 		}
645 
646 		sa_addr = (union sctp_addr *)addr_buf;
647 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 		if (!af) {
649 			retval = -EINVAL;
650 			goto err_bindx_rem;
651 		}
652 
653 		if (!af->addr_valid(sa_addr, sp, NULL)) {
654 			retval = -EADDRNOTAVAIL;
655 			goto err_bindx_rem;
656 		}
657 
658 		if (sa_addr->v4.sin_port != htons(bp->port)) {
659 			retval = -EINVAL;
660 			goto err_bindx_rem;
661 		}
662 
663 		/* FIXME - There is probably a need to check if sk->sk_saddr and
664 		 * sk->sk_rcv_addr are currently set to one of the addresses to
665 		 * be removed. This is something which needs to be looked into
666 		 * when we are fixing the outstanding issues with multi-homing
667 		 * socket routing and failover schemes. Refer to comments in
668 		 * sctp_do_bind(). -daisy
669 		 */
670 		retval = sctp_del_bind_addr(bp, sa_addr);
671 
672 		addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 		if (retval < 0) {
675 			/* Failed. Add the ones that has been removed back */
676 			if (cnt > 0)
677 				sctp_bindx_add(sk, addrs, cnt);
678 			return retval;
679 		}
680 	}
681 
682 	return retval;
683 }
684 
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686  * the associations that are part of the endpoint indicating that a list of
687  * local addresses are removed from the endpoint.
688  *
689  * If any of the addresses is already in the bind address list of the
690  * association, we do not send the chunk for that association.  But it will not
691  * affect other associations.
692  *
693  * Only sctp_setsockopt_bindx() is supposed to call this function.
694  */
695 static int sctp_send_asconf_del_ip(struct sock		*sk,
696 				   struct sockaddr	*addrs,
697 				   int			addrcnt)
698 {
699 	struct sctp_sock	*sp;
700 	struct sctp_endpoint	*ep;
701 	struct sctp_association	*asoc;
702 	struct sctp_transport	*transport;
703 	struct sctp_bind_addr	*bp;
704 	struct sctp_chunk	*chunk;
705 	union sctp_addr		*laddr;
706 	void			*addr_buf;
707 	struct sctp_af		*af;
708 	struct sctp_sockaddr_entry *saddr;
709 	int 			i;
710 	int 			retval = 0;
711 
712 	if (!sctp_addip_enable)
713 		return retval;
714 
715 	sp = sctp_sk(sk);
716 	ep = sp->ep;
717 
718 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 			  __func__, sk, addrs, addrcnt);
720 
721 	list_for_each_entry(asoc, &ep->asocs, asocs) {
722 
723 		if (!asoc->peer.asconf_capable)
724 			continue;
725 
726 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 			continue;
728 
729 		if (!sctp_state(asoc, ESTABLISHED))
730 			continue;
731 
732 		/* Check if any address in the packed array of addresses is
733 		 * not present in the bind address list of the association.
734 		 * If so, do not send the asconf chunk to its peer, but
735 		 * continue with other associations.
736 		 */
737 		addr_buf = addrs;
738 		for (i = 0; i < addrcnt; i++) {
739 			laddr = (union sctp_addr *)addr_buf;
740 			af = sctp_get_af_specific(laddr->v4.sin_family);
741 			if (!af) {
742 				retval = -EINVAL;
743 				goto out;
744 			}
745 
746 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 				break;
748 
749 			addr_buf += af->sockaddr_len;
750 		}
751 		if (i < addrcnt)
752 			continue;
753 
754 		/* Find one address in the association's bind address list
755 		 * that is not in the packed array of addresses. This is to
756 		 * make sure that we do not delete all the addresses in the
757 		 * association.
758 		 */
759 		bp = &asoc->base.bind_addr;
760 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 					       addrcnt, sp);
762 		if (!laddr)
763 			continue;
764 
765 		/* We do not need RCU protection throughout this loop
766 		 * because this is done under a socket lock from the
767 		 * setsockopt call.
768 		 */
769 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 						   SCTP_PARAM_DEL_IP);
771 		if (!chunk) {
772 			retval = -ENOMEM;
773 			goto out;
774 		}
775 
776 		/* Reset use_as_src flag for the addresses in the bind address
777 		 * list that are to be deleted.
778 		 */
779 		addr_buf = addrs;
780 		for (i = 0; i < addrcnt; i++) {
781 			laddr = (union sctp_addr *)addr_buf;
782 			af = sctp_get_af_specific(laddr->v4.sin_family);
783 			list_for_each_entry(saddr, &bp->address_list, list) {
784 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 					saddr->state = SCTP_ADDR_DEL;
786 			}
787 			addr_buf += af->sockaddr_len;
788 		}
789 
790 		/* Update the route and saddr entries for all the transports
791 		 * as some of the addresses in the bind address list are
792 		 * about to be deleted and cannot be used as source addresses.
793 		 */
794 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 					transports) {
796 			dst_release(transport->dst);
797 			sctp_transport_route(transport, NULL,
798 					     sctp_sk(asoc->base.sk));
799 		}
800 
801 		retval = sctp_send_asconf(asoc, chunk);
802 	}
803 out:
804 	return retval;
805 }
806 
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808  *
809  * API 8.1
810  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811  *                int flags);
812  *
813  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815  * or IPv6 addresses.
816  *
817  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818  * Section 3.1.2 for this usage.
819  *
820  * addrs is a pointer to an array of one or more socket addresses. Each
821  * address is contained in its appropriate structure (i.e. struct
822  * sockaddr_in or struct sockaddr_in6) the family of the address type
823  * must be used to distinguish the address length (note that this
824  * representation is termed a "packed array" of addresses). The caller
825  * specifies the number of addresses in the array with addrcnt.
826  *
827  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828  * -1, and sets errno to the appropriate error code.
829  *
830  * For SCTP, the port given in each socket address must be the same, or
831  * sctp_bindx() will fail, setting errno to EINVAL.
832  *
833  * The flags parameter is formed from the bitwise OR of zero or more of
834  * the following currently defined flags:
835  *
836  * SCTP_BINDX_ADD_ADDR
837  *
838  * SCTP_BINDX_REM_ADDR
839  *
840  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842  * addresses from the association. The two flags are mutually exclusive;
843  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844  * not remove all addresses from an association; sctp_bindx() will
845  * reject such an attempt with EINVAL.
846  *
847  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848  * additional addresses with an endpoint after calling bind().  Or use
849  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850  * socket is associated with so that no new association accepted will be
851  * associated with those addresses. If the endpoint supports dynamic
852  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853  * endpoint to send the appropriate message to the peer to change the
854  * peers address lists.
855  *
856  * Adding and removing addresses from a connected association is
857  * optional functionality. Implementations that do not support this
858  * functionality should return EOPNOTSUPP.
859  *
860  * Basically do nothing but copying the addresses from user to kernel
861  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863  * from userspace.
864  *
865  * We don't use copy_from_user() for optimization: we first do the
866  * sanity checks (buffer size -fast- and access check-healthy
867  * pointer); if all of those succeed, then we can alloc the memory
868  * (expensive operation) needed to copy the data to kernel. Then we do
869  * the copying without checking the user space area
870  * (__copy_from_user()).
871  *
872  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873  * it.
874  *
875  * sk        The sk of the socket
876  * addrs     The pointer to the addresses in user land
877  * addrssize Size of the addrs buffer
878  * op        Operation to perform (add or remove, see the flags of
879  *           sctp_bindx)
880  *
881  * Returns 0 if ok, <0 errno code on error.
882  */
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 				      struct sockaddr __user *addrs,
885 				      int addrs_size, int op)
886 {
887 	struct sockaddr *kaddrs;
888 	int err;
889 	int addrcnt = 0;
890 	int walk_size = 0;
891 	struct sockaddr *sa_addr;
892 	void *addr_buf;
893 	struct sctp_af *af;
894 
895 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897 
898 	if (unlikely(addrs_size <= 0))
899 		return -EINVAL;
900 
901 	/* Check the user passed a healthy pointer.  */
902 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 		return -EFAULT;
904 
905 	/* Alloc space for the address array in kernel memory.  */
906 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 	if (unlikely(!kaddrs))
908 		return -ENOMEM;
909 
910 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 		kfree(kaddrs);
912 		return -EFAULT;
913 	}
914 
915 	/* Walk through the addrs buffer and count the number of addresses. */
916 	addr_buf = kaddrs;
917 	while (walk_size < addrs_size) {
918 		sa_addr = (struct sockaddr *)addr_buf;
919 		af = sctp_get_af_specific(sa_addr->sa_family);
920 
921 		/* If the address family is not supported or if this address
922 		 * causes the address buffer to overflow return EINVAL.
923 		 */
924 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 			kfree(kaddrs);
926 			return -EINVAL;
927 		}
928 		addrcnt++;
929 		addr_buf += af->sockaddr_len;
930 		walk_size += af->sockaddr_len;
931 	}
932 
933 	/* Do the work. */
934 	switch (op) {
935 	case SCTP_BINDX_ADD_ADDR:
936 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 		if (err)
938 			goto out;
939 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 		break;
941 
942 	case SCTP_BINDX_REM_ADDR:
943 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 		if (err)
945 			goto out;
946 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 		break;
948 
949 	default:
950 		err = -EINVAL;
951 		break;
952 	}
953 
954 out:
955 	kfree(kaddrs);
956 
957 	return err;
958 }
959 
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961  *
962  * Common routine for handling connect() and sctp_connectx().
963  * Connect will come in with just a single address.
964  */
965 static int __sctp_connect(struct sock* sk,
966 			  struct sockaddr *kaddrs,
967 			  int addrs_size,
968 			  sctp_assoc_t *assoc_id)
969 {
970 	struct sctp_sock *sp;
971 	struct sctp_endpoint *ep;
972 	struct sctp_association *asoc = NULL;
973 	struct sctp_association *asoc2;
974 	struct sctp_transport *transport;
975 	union sctp_addr to;
976 	struct sctp_af *af;
977 	sctp_scope_t scope;
978 	long timeo;
979 	int err = 0;
980 	int addrcnt = 0;
981 	int walk_size = 0;
982 	union sctp_addr *sa_addr = NULL;
983 	void *addr_buf;
984 	unsigned short port;
985 	unsigned int f_flags = 0;
986 
987 	sp = sctp_sk(sk);
988 	ep = sp->ep;
989 
990 	/* connect() cannot be done on a socket that is already in ESTABLISHED
991 	 * state - UDP-style peeled off socket or a TCP-style socket that
992 	 * is already connected.
993 	 * It cannot be done even on a TCP-style listening socket.
994 	 */
995 	if (sctp_sstate(sk, ESTABLISHED) ||
996 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 		err = -EISCONN;
998 		goto out_free;
999 	}
1000 
1001 	/* Walk through the addrs buffer and count the number of addresses. */
1002 	addr_buf = kaddrs;
1003 	while (walk_size < addrs_size) {
1004 		sa_addr = (union sctp_addr *)addr_buf;
1005 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 		port = ntohs(sa_addr->v4.sin_port);
1007 
1008 		/* If the address family is not supported or if this address
1009 		 * causes the address buffer to overflow return EINVAL.
1010 		 */
1011 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 			err = -EINVAL;
1013 			goto out_free;
1014 		}
1015 
1016 		/* Save current address so we can work with it */
1017 		memcpy(&to, sa_addr, af->sockaddr_len);
1018 
1019 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 		if (err)
1021 			goto out_free;
1022 
1023 		/* Make sure the destination port is correctly set
1024 		 * in all addresses.
1025 		 */
1026 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 			goto out_free;
1028 
1029 
1030 		/* Check if there already is a matching association on the
1031 		 * endpoint (other than the one created here).
1032 		 */
1033 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 		if (asoc2 && asoc2 != asoc) {
1035 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 				err = -EISCONN;
1037 			else
1038 				err = -EALREADY;
1039 			goto out_free;
1040 		}
1041 
1042 		/* If we could not find a matching association on the endpoint,
1043 		 * make sure that there is no peeled-off association matching
1044 		 * the peer address even on another socket.
1045 		 */
1046 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 			err = -EADDRNOTAVAIL;
1048 			goto out_free;
1049 		}
1050 
1051 		if (!asoc) {
1052 			/* If a bind() or sctp_bindx() is not called prior to
1053 			 * an sctp_connectx() call, the system picks an
1054 			 * ephemeral port and will choose an address set
1055 			 * equivalent to binding with a wildcard address.
1056 			 */
1057 			if (!ep->base.bind_addr.port) {
1058 				if (sctp_autobind(sk)) {
1059 					err = -EAGAIN;
1060 					goto out_free;
1061 				}
1062 			} else {
1063 				/*
1064 				 * If an unprivileged user inherits a 1-many
1065 				 * style socket with open associations on a
1066 				 * privileged port, it MAY be permitted to
1067 				 * accept new associations, but it SHOULD NOT
1068 				 * be permitted to open new associations.
1069 				 */
1070 				if (ep->base.bind_addr.port < PROT_SOCK &&
1071 				    !capable(CAP_NET_BIND_SERVICE)) {
1072 					err = -EACCES;
1073 					goto out_free;
1074 				}
1075 			}
1076 
1077 			scope = sctp_scope(&to);
1078 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 			if (!asoc) {
1080 				err = -ENOMEM;
1081 				goto out_free;
1082 			}
1083 		}
1084 
1085 		/* Prime the peer's transport structures.  */
1086 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 						SCTP_UNKNOWN);
1088 		if (!transport) {
1089 			err = -ENOMEM;
1090 			goto out_free;
1091 		}
1092 
1093 		addrcnt++;
1094 		addr_buf += af->sockaddr_len;
1095 		walk_size += af->sockaddr_len;
1096 	}
1097 
1098 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 	if (err < 0) {
1100 		goto out_free;
1101 	}
1102 
1103 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1104 	if (err < 0) {
1105 		goto out_free;
1106 	}
1107 
1108 	/* Initialize sk's dport and daddr for getpeername() */
1109 	inet_sk(sk)->dport = htons(asoc->peer.port);
1110 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1111 	af->to_sk_daddr(sa_addr, sk);
1112 	sk->sk_err = 0;
1113 
1114 	/* in-kernel sockets don't generally have a file allocated to them
1115 	 * if all they do is call sock_create_kern().
1116 	 */
1117 	if (sk->sk_socket->file)
1118 		f_flags = sk->sk_socket->file->f_flags;
1119 
1120 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1121 
1122 	err = sctp_wait_for_connect(asoc, &timeo);
1123 	if (!err && assoc_id)
1124 		*assoc_id = asoc->assoc_id;
1125 
1126 	/* Don't free association on exit. */
1127 	asoc = NULL;
1128 
1129 out_free:
1130 
1131 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1132 			  " kaddrs: %p err: %d\n",
1133 			  asoc, kaddrs, err);
1134 	if (asoc)
1135 		sctp_association_free(asoc);
1136 	return err;
1137 }
1138 
1139 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1140  *
1141  * API 8.9
1142  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1143  * 			sctp_assoc_t *asoc);
1144  *
1145  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1146  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1147  * or IPv6 addresses.
1148  *
1149  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1150  * Section 3.1.2 for this usage.
1151  *
1152  * addrs is a pointer to an array of one or more socket addresses. Each
1153  * address is contained in its appropriate structure (i.e. struct
1154  * sockaddr_in or struct sockaddr_in6) the family of the address type
1155  * must be used to distengish the address length (note that this
1156  * representation is termed a "packed array" of addresses). The caller
1157  * specifies the number of addresses in the array with addrcnt.
1158  *
1159  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1160  * the association id of the new association.  On failure, sctp_connectx()
1161  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1162  * is not touched by the kernel.
1163  *
1164  * For SCTP, the port given in each socket address must be the same, or
1165  * sctp_connectx() will fail, setting errno to EINVAL.
1166  *
1167  * An application can use sctp_connectx to initiate an association with
1168  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1169  * allows a caller to specify multiple addresses at which a peer can be
1170  * reached.  The way the SCTP stack uses the list of addresses to set up
1171  * the association is implementation dependant.  This function only
1172  * specifies that the stack will try to make use of all the addresses in
1173  * the list when needed.
1174  *
1175  * Note that the list of addresses passed in is only used for setting up
1176  * the association.  It does not necessarily equal the set of addresses
1177  * the peer uses for the resulting association.  If the caller wants to
1178  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1179  * retrieve them after the association has been set up.
1180  *
1181  * Basically do nothing but copying the addresses from user to kernel
1182  * land and invoking either sctp_connectx(). This is used for tunneling
1183  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1184  *
1185  * We don't use copy_from_user() for optimization: we first do the
1186  * sanity checks (buffer size -fast- and access check-healthy
1187  * pointer); if all of those succeed, then we can alloc the memory
1188  * (expensive operation) needed to copy the data to kernel. Then we do
1189  * the copying without checking the user space area
1190  * (__copy_from_user()).
1191  *
1192  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1193  * it.
1194  *
1195  * sk        The sk of the socket
1196  * addrs     The pointer to the addresses in user land
1197  * addrssize Size of the addrs buffer
1198  *
1199  * Returns >=0 if ok, <0 errno code on error.
1200  */
1201 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1202 				      struct sockaddr __user *addrs,
1203 				      int addrs_size,
1204 				      sctp_assoc_t *assoc_id)
1205 {
1206 	int err = 0;
1207 	struct sockaddr *kaddrs;
1208 
1209 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1210 			  __func__, sk, addrs, addrs_size);
1211 
1212 	if (unlikely(addrs_size <= 0))
1213 		return -EINVAL;
1214 
1215 	/* Check the user passed a healthy pointer.  */
1216 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1217 		return -EFAULT;
1218 
1219 	/* Alloc space for the address array in kernel memory.  */
1220 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1221 	if (unlikely(!kaddrs))
1222 		return -ENOMEM;
1223 
1224 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1225 		err = -EFAULT;
1226 	} else {
1227 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1228 	}
1229 
1230 	kfree(kaddrs);
1231 
1232 	return err;
1233 }
1234 
1235 /*
1236  * This is an older interface.  It's kept for backward compatibility
1237  * to the option that doesn't provide association id.
1238  */
1239 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1240 				      struct sockaddr __user *addrs,
1241 				      int addrs_size)
1242 {
1243 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1244 }
1245 
1246 /*
1247  * New interface for the API.  The since the API is done with a socket
1248  * option, to make it simple we feed back the association id is as a return
1249  * indication to the call.  Error is always negative and association id is
1250  * always positive.
1251  */
1252 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1253 				      struct sockaddr __user *addrs,
1254 				      int addrs_size)
1255 {
1256 	sctp_assoc_t assoc_id = 0;
1257 	int err = 0;
1258 
1259 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1260 
1261 	if (err)
1262 		return err;
1263 	else
1264 		return assoc_id;
1265 }
1266 
1267 /* API 3.1.4 close() - UDP Style Syntax
1268  * Applications use close() to perform graceful shutdown (as described in
1269  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1270  * by a UDP-style socket.
1271  *
1272  * The syntax is
1273  *
1274  *   ret = close(int sd);
1275  *
1276  *   sd      - the socket descriptor of the associations to be closed.
1277  *
1278  * To gracefully shutdown a specific association represented by the
1279  * UDP-style socket, an application should use the sendmsg() call,
1280  * passing no user data, but including the appropriate flag in the
1281  * ancillary data (see Section xxxx).
1282  *
1283  * If sd in the close() call is a branched-off socket representing only
1284  * one association, the shutdown is performed on that association only.
1285  *
1286  * 4.1.6 close() - TCP Style Syntax
1287  *
1288  * Applications use close() to gracefully close down an association.
1289  *
1290  * The syntax is:
1291  *
1292  *    int close(int sd);
1293  *
1294  *      sd      - the socket descriptor of the association to be closed.
1295  *
1296  * After an application calls close() on a socket descriptor, no further
1297  * socket operations will succeed on that descriptor.
1298  *
1299  * API 7.1.4 SO_LINGER
1300  *
1301  * An application using the TCP-style socket can use this option to
1302  * perform the SCTP ABORT primitive.  The linger option structure is:
1303  *
1304  *  struct  linger {
1305  *     int     l_onoff;                // option on/off
1306  *     int     l_linger;               // linger time
1307  * };
1308  *
1309  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1310  * to 0, calling close() is the same as the ABORT primitive.  If the
1311  * value is set to a negative value, the setsockopt() call will return
1312  * an error.  If the value is set to a positive value linger_time, the
1313  * close() can be blocked for at most linger_time ms.  If the graceful
1314  * shutdown phase does not finish during this period, close() will
1315  * return but the graceful shutdown phase continues in the system.
1316  */
1317 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1318 {
1319 	struct sctp_endpoint *ep;
1320 	struct sctp_association *asoc;
1321 	struct list_head *pos, *temp;
1322 
1323 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1324 
1325 	sctp_lock_sock(sk);
1326 	sk->sk_shutdown = SHUTDOWN_MASK;
1327 
1328 	ep = sctp_sk(sk)->ep;
1329 
1330 	/* Walk all associations on an endpoint.  */
1331 	list_for_each_safe(pos, temp, &ep->asocs) {
1332 		asoc = list_entry(pos, struct sctp_association, asocs);
1333 
1334 		if (sctp_style(sk, TCP)) {
1335 			/* A closed association can still be in the list if
1336 			 * it belongs to a TCP-style listening socket that is
1337 			 * not yet accepted. If so, free it. If not, send an
1338 			 * ABORT or SHUTDOWN based on the linger options.
1339 			 */
1340 			if (sctp_state(asoc, CLOSED)) {
1341 				sctp_unhash_established(asoc);
1342 				sctp_association_free(asoc);
1343 				continue;
1344 			}
1345 		}
1346 
1347 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1348 			struct sctp_chunk *chunk;
1349 
1350 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1351 			if (chunk)
1352 				sctp_primitive_ABORT(asoc, chunk);
1353 		} else
1354 			sctp_primitive_SHUTDOWN(asoc, NULL);
1355 	}
1356 
1357 	/* Clean up any skbs sitting on the receive queue.  */
1358 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1359 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1360 
1361 	/* On a TCP-style socket, block for at most linger_time if set. */
1362 	if (sctp_style(sk, TCP) && timeout)
1363 		sctp_wait_for_close(sk, timeout);
1364 
1365 	/* This will run the backlog queue.  */
1366 	sctp_release_sock(sk);
1367 
1368 	/* Supposedly, no process has access to the socket, but
1369 	 * the net layers still may.
1370 	 */
1371 	sctp_local_bh_disable();
1372 	sctp_bh_lock_sock(sk);
1373 
1374 	/* Hold the sock, since sk_common_release() will put sock_put()
1375 	 * and we have just a little more cleanup.
1376 	 */
1377 	sock_hold(sk);
1378 	sk_common_release(sk);
1379 
1380 	sctp_bh_unlock_sock(sk);
1381 	sctp_local_bh_enable();
1382 
1383 	sock_put(sk);
1384 
1385 	SCTP_DBG_OBJCNT_DEC(sock);
1386 }
1387 
1388 /* Handle EPIPE error. */
1389 static int sctp_error(struct sock *sk, int flags, int err)
1390 {
1391 	if (err == -EPIPE)
1392 		err = sock_error(sk) ? : -EPIPE;
1393 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1394 		send_sig(SIGPIPE, current, 0);
1395 	return err;
1396 }
1397 
1398 /* API 3.1.3 sendmsg() - UDP Style Syntax
1399  *
1400  * An application uses sendmsg() and recvmsg() calls to transmit data to
1401  * and receive data from its peer.
1402  *
1403  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1404  *                  int flags);
1405  *
1406  *  socket  - the socket descriptor of the endpoint.
1407  *  message - pointer to the msghdr structure which contains a single
1408  *            user message and possibly some ancillary data.
1409  *
1410  *            See Section 5 for complete description of the data
1411  *            structures.
1412  *
1413  *  flags   - flags sent or received with the user message, see Section
1414  *            5 for complete description of the flags.
1415  *
1416  * Note:  This function could use a rewrite especially when explicit
1417  * connect support comes in.
1418  */
1419 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1420 
1421 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1422 
1423 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1424 			     struct msghdr *msg, size_t msg_len)
1425 {
1426 	struct sctp_sock *sp;
1427 	struct sctp_endpoint *ep;
1428 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1429 	struct sctp_transport *transport, *chunk_tp;
1430 	struct sctp_chunk *chunk;
1431 	union sctp_addr to;
1432 	struct sockaddr *msg_name = NULL;
1433 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1434 	struct sctp_sndrcvinfo *sinfo;
1435 	struct sctp_initmsg *sinit;
1436 	sctp_assoc_t associd = 0;
1437 	sctp_cmsgs_t cmsgs = { NULL };
1438 	int err;
1439 	sctp_scope_t scope;
1440 	long timeo;
1441 	__u16 sinfo_flags = 0;
1442 	struct sctp_datamsg *datamsg;
1443 	int msg_flags = msg->msg_flags;
1444 
1445 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1446 			  sk, msg, msg_len);
1447 
1448 	err = 0;
1449 	sp = sctp_sk(sk);
1450 	ep = sp->ep;
1451 
1452 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1453 
1454 	/* We cannot send a message over a TCP-style listening socket. */
1455 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1456 		err = -EPIPE;
1457 		goto out_nounlock;
1458 	}
1459 
1460 	/* Parse out the SCTP CMSGs.  */
1461 	err = sctp_msghdr_parse(msg, &cmsgs);
1462 
1463 	if (err) {
1464 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1465 		goto out_nounlock;
1466 	}
1467 
1468 	/* Fetch the destination address for this packet.  This
1469 	 * address only selects the association--it is not necessarily
1470 	 * the address we will send to.
1471 	 * For a peeled-off socket, msg_name is ignored.
1472 	 */
1473 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1474 		int msg_namelen = msg->msg_namelen;
1475 
1476 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1477 				       msg_namelen);
1478 		if (err)
1479 			return err;
1480 
1481 		if (msg_namelen > sizeof(to))
1482 			msg_namelen = sizeof(to);
1483 		memcpy(&to, msg->msg_name, msg_namelen);
1484 		msg_name = msg->msg_name;
1485 	}
1486 
1487 	sinfo = cmsgs.info;
1488 	sinit = cmsgs.init;
1489 
1490 	/* Did the user specify SNDRCVINFO?  */
1491 	if (sinfo) {
1492 		sinfo_flags = sinfo->sinfo_flags;
1493 		associd = sinfo->sinfo_assoc_id;
1494 	}
1495 
1496 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1497 			  msg_len, sinfo_flags);
1498 
1499 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1500 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1501 		err = -EINVAL;
1502 		goto out_nounlock;
1503 	}
1504 
1505 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1506 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1507 	 * If SCTP_ABORT is set, the message length could be non zero with
1508 	 * the msg_iov set to the user abort reason.
1509 	 */
1510 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1511 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1512 		err = -EINVAL;
1513 		goto out_nounlock;
1514 	}
1515 
1516 	/* If SCTP_ADDR_OVER is set, there must be an address
1517 	 * specified in msg_name.
1518 	 */
1519 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1520 		err = -EINVAL;
1521 		goto out_nounlock;
1522 	}
1523 
1524 	transport = NULL;
1525 
1526 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1527 
1528 	sctp_lock_sock(sk);
1529 
1530 	/* If a msg_name has been specified, assume this is to be used.  */
1531 	if (msg_name) {
1532 		/* Look for a matching association on the endpoint. */
1533 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1534 		if (!asoc) {
1535 			/* If we could not find a matching association on the
1536 			 * endpoint, make sure that it is not a TCP-style
1537 			 * socket that already has an association or there is
1538 			 * no peeled-off association on another socket.
1539 			 */
1540 			if ((sctp_style(sk, TCP) &&
1541 			     sctp_sstate(sk, ESTABLISHED)) ||
1542 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1543 				err = -EADDRNOTAVAIL;
1544 				goto out_unlock;
1545 			}
1546 		}
1547 	} else {
1548 		asoc = sctp_id2assoc(sk, associd);
1549 		if (!asoc) {
1550 			err = -EPIPE;
1551 			goto out_unlock;
1552 		}
1553 	}
1554 
1555 	if (asoc) {
1556 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1557 
1558 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1559 		 * socket that has an association in CLOSED state. This can
1560 		 * happen when an accepted socket has an association that is
1561 		 * already CLOSED.
1562 		 */
1563 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1564 			err = -EPIPE;
1565 			goto out_unlock;
1566 		}
1567 
1568 		if (sinfo_flags & SCTP_EOF) {
1569 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1570 					  asoc);
1571 			sctp_primitive_SHUTDOWN(asoc, NULL);
1572 			err = 0;
1573 			goto out_unlock;
1574 		}
1575 		if (sinfo_flags & SCTP_ABORT) {
1576 
1577 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1578 			if (!chunk) {
1579 				err = -ENOMEM;
1580 				goto out_unlock;
1581 			}
1582 
1583 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1584 			sctp_primitive_ABORT(asoc, chunk);
1585 			err = 0;
1586 			goto out_unlock;
1587 		}
1588 	}
1589 
1590 	/* Do we need to create the association?  */
1591 	if (!asoc) {
1592 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1593 
1594 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1595 			err = -EINVAL;
1596 			goto out_unlock;
1597 		}
1598 
1599 		/* Check for invalid stream against the stream counts,
1600 		 * either the default or the user specified stream counts.
1601 		 */
1602 		if (sinfo) {
1603 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1604 				/* Check against the defaults. */
1605 				if (sinfo->sinfo_stream >=
1606 				    sp->initmsg.sinit_num_ostreams) {
1607 					err = -EINVAL;
1608 					goto out_unlock;
1609 				}
1610 			} else {
1611 				/* Check against the requested.  */
1612 				if (sinfo->sinfo_stream >=
1613 				    sinit->sinit_num_ostreams) {
1614 					err = -EINVAL;
1615 					goto out_unlock;
1616 				}
1617 			}
1618 		}
1619 
1620 		/*
1621 		 * API 3.1.2 bind() - UDP Style Syntax
1622 		 * If a bind() or sctp_bindx() is not called prior to a
1623 		 * sendmsg() call that initiates a new association, the
1624 		 * system picks an ephemeral port and will choose an address
1625 		 * set equivalent to binding with a wildcard address.
1626 		 */
1627 		if (!ep->base.bind_addr.port) {
1628 			if (sctp_autobind(sk)) {
1629 				err = -EAGAIN;
1630 				goto out_unlock;
1631 			}
1632 		} else {
1633 			/*
1634 			 * If an unprivileged user inherits a one-to-many
1635 			 * style socket with open associations on a privileged
1636 			 * port, it MAY be permitted to accept new associations,
1637 			 * but it SHOULD NOT be permitted to open new
1638 			 * associations.
1639 			 */
1640 			if (ep->base.bind_addr.port < PROT_SOCK &&
1641 			    !capable(CAP_NET_BIND_SERVICE)) {
1642 				err = -EACCES;
1643 				goto out_unlock;
1644 			}
1645 		}
1646 
1647 		scope = sctp_scope(&to);
1648 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1649 		if (!new_asoc) {
1650 			err = -ENOMEM;
1651 			goto out_unlock;
1652 		}
1653 		asoc = new_asoc;
1654 
1655 		/* If the SCTP_INIT ancillary data is specified, set all
1656 		 * the association init values accordingly.
1657 		 */
1658 		if (sinit) {
1659 			if (sinit->sinit_num_ostreams) {
1660 				asoc->c.sinit_num_ostreams =
1661 					sinit->sinit_num_ostreams;
1662 			}
1663 			if (sinit->sinit_max_instreams) {
1664 				asoc->c.sinit_max_instreams =
1665 					sinit->sinit_max_instreams;
1666 			}
1667 			if (sinit->sinit_max_attempts) {
1668 				asoc->max_init_attempts
1669 					= sinit->sinit_max_attempts;
1670 			}
1671 			if (sinit->sinit_max_init_timeo) {
1672 				asoc->max_init_timeo =
1673 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1674 			}
1675 		}
1676 
1677 		/* Prime the peer's transport structures.  */
1678 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1679 		if (!transport) {
1680 			err = -ENOMEM;
1681 			goto out_free;
1682 		}
1683 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1684 		if (err < 0) {
1685 			err = -ENOMEM;
1686 			goto out_free;
1687 		}
1688 	}
1689 
1690 	/* ASSERT: we have a valid association at this point.  */
1691 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1692 
1693 	if (!sinfo) {
1694 		/* If the user didn't specify SNDRCVINFO, make up one with
1695 		 * some defaults.
1696 		 */
1697 		default_sinfo.sinfo_stream = asoc->default_stream;
1698 		default_sinfo.sinfo_flags = asoc->default_flags;
1699 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1700 		default_sinfo.sinfo_context = asoc->default_context;
1701 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1702 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1703 		sinfo = &default_sinfo;
1704 	}
1705 
1706 	/* API 7.1.7, the sndbuf size per association bounds the
1707 	 * maximum size of data that can be sent in a single send call.
1708 	 */
1709 	if (msg_len > sk->sk_sndbuf) {
1710 		err = -EMSGSIZE;
1711 		goto out_free;
1712 	}
1713 
1714 	if (asoc->pmtu_pending)
1715 		sctp_assoc_pending_pmtu(asoc);
1716 
1717 	/* If fragmentation is disabled and the message length exceeds the
1718 	 * association fragmentation point, return EMSGSIZE.  The I-D
1719 	 * does not specify what this error is, but this looks like
1720 	 * a great fit.
1721 	 */
1722 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1723 		err = -EMSGSIZE;
1724 		goto out_free;
1725 	}
1726 
1727 	if (sinfo) {
1728 		/* Check for invalid stream. */
1729 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1730 			err = -EINVAL;
1731 			goto out_free;
1732 		}
1733 	}
1734 
1735 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1736 	if (!sctp_wspace(asoc)) {
1737 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1738 		if (err)
1739 			goto out_free;
1740 	}
1741 
1742 	/* If an address is passed with the sendto/sendmsg call, it is used
1743 	 * to override the primary destination address in the TCP model, or
1744 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1745 	 */
1746 	if ((sctp_style(sk, TCP) && msg_name) ||
1747 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1748 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1749 		if (!chunk_tp) {
1750 			err = -EINVAL;
1751 			goto out_free;
1752 		}
1753 	} else
1754 		chunk_tp = NULL;
1755 
1756 	/* Auto-connect, if we aren't connected already. */
1757 	if (sctp_state(asoc, CLOSED)) {
1758 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1759 		if (err < 0)
1760 			goto out_free;
1761 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1762 	}
1763 
1764 	/* Break the message into multiple chunks of maximum size. */
1765 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1766 	if (!datamsg) {
1767 		err = -ENOMEM;
1768 		goto out_free;
1769 	}
1770 
1771 	/* Now send the (possibly) fragmented message. */
1772 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1773 		sctp_chunk_hold(chunk);
1774 
1775 		/* Do accounting for the write space.  */
1776 		sctp_set_owner_w(chunk);
1777 
1778 		chunk->transport = chunk_tp;
1779 
1780 		/* Send it to the lower layers.  Note:  all chunks
1781 		 * must either fail or succeed.   The lower layer
1782 		 * works that way today.  Keep it that way or this
1783 		 * breaks.
1784 		 */
1785 		err = sctp_primitive_SEND(asoc, chunk);
1786 		/* Did the lower layer accept the chunk? */
1787 		if (err)
1788 			sctp_chunk_free(chunk);
1789 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1790 	}
1791 
1792 	sctp_datamsg_put(datamsg);
1793 	if (err)
1794 		goto out_free;
1795 	else
1796 		err = msg_len;
1797 
1798 	/* If we are already past ASSOCIATE, the lower
1799 	 * layers are responsible for association cleanup.
1800 	 */
1801 	goto out_unlock;
1802 
1803 out_free:
1804 	if (new_asoc)
1805 		sctp_association_free(asoc);
1806 out_unlock:
1807 	sctp_release_sock(sk);
1808 
1809 out_nounlock:
1810 	return sctp_error(sk, msg_flags, err);
1811 
1812 #if 0
1813 do_sock_err:
1814 	if (msg_len)
1815 		err = msg_len;
1816 	else
1817 		err = sock_error(sk);
1818 	goto out;
1819 
1820 do_interrupted:
1821 	if (msg_len)
1822 		err = msg_len;
1823 	goto out;
1824 #endif /* 0 */
1825 }
1826 
1827 /* This is an extended version of skb_pull() that removes the data from the
1828  * start of a skb even when data is spread across the list of skb's in the
1829  * frag_list. len specifies the total amount of data that needs to be removed.
1830  * when 'len' bytes could be removed from the skb, it returns 0.
1831  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1832  * could not be removed.
1833  */
1834 static int sctp_skb_pull(struct sk_buff *skb, int len)
1835 {
1836 	struct sk_buff *list;
1837 	int skb_len = skb_headlen(skb);
1838 	int rlen;
1839 
1840 	if (len <= skb_len) {
1841 		__skb_pull(skb, len);
1842 		return 0;
1843 	}
1844 	len -= skb_len;
1845 	__skb_pull(skb, skb_len);
1846 
1847 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1848 		rlen = sctp_skb_pull(list, len);
1849 		skb->len -= (len-rlen);
1850 		skb->data_len -= (len-rlen);
1851 
1852 		if (!rlen)
1853 			return 0;
1854 
1855 		len = rlen;
1856 	}
1857 
1858 	return len;
1859 }
1860 
1861 /* API 3.1.3  recvmsg() - UDP Style Syntax
1862  *
1863  *  ssize_t recvmsg(int socket, struct msghdr *message,
1864  *                    int flags);
1865  *
1866  *  socket  - the socket descriptor of the endpoint.
1867  *  message - pointer to the msghdr structure which contains a single
1868  *            user message and possibly some ancillary data.
1869  *
1870  *            See Section 5 for complete description of the data
1871  *            structures.
1872  *
1873  *  flags   - flags sent or received with the user message, see Section
1874  *            5 for complete description of the flags.
1875  */
1876 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1877 
1878 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1879 			     struct msghdr *msg, size_t len, int noblock,
1880 			     int flags, int *addr_len)
1881 {
1882 	struct sctp_ulpevent *event = NULL;
1883 	struct sctp_sock *sp = sctp_sk(sk);
1884 	struct sk_buff *skb;
1885 	int copied;
1886 	int err = 0;
1887 	int skb_len;
1888 
1889 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1890 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1891 			  "len", len, "knoblauch", noblock,
1892 			  "flags", flags, "addr_len", addr_len);
1893 
1894 	sctp_lock_sock(sk);
1895 
1896 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1897 		err = -ENOTCONN;
1898 		goto out;
1899 	}
1900 
1901 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1902 	if (!skb)
1903 		goto out;
1904 
1905 	/* Get the total length of the skb including any skb's in the
1906 	 * frag_list.
1907 	 */
1908 	skb_len = skb->len;
1909 
1910 	copied = skb_len;
1911 	if (copied > len)
1912 		copied = len;
1913 
1914 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1915 
1916 	event = sctp_skb2event(skb);
1917 
1918 	if (err)
1919 		goto out_free;
1920 
1921 	sock_recv_timestamp(msg, sk, skb);
1922 	if (sctp_ulpevent_is_notification(event)) {
1923 		msg->msg_flags |= MSG_NOTIFICATION;
1924 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1925 	} else {
1926 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1927 	}
1928 
1929 	/* Check if we allow SCTP_SNDRCVINFO. */
1930 	if (sp->subscribe.sctp_data_io_event)
1931 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1932 #if 0
1933 	/* FIXME: we should be calling IP/IPv6 layers.  */
1934 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1935 		ip_cmsg_recv(msg, skb);
1936 #endif
1937 
1938 	err = copied;
1939 
1940 	/* If skb's length exceeds the user's buffer, update the skb and
1941 	 * push it back to the receive_queue so that the next call to
1942 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1943 	 */
1944 	if (skb_len > copied) {
1945 		msg->msg_flags &= ~MSG_EOR;
1946 		if (flags & MSG_PEEK)
1947 			goto out_free;
1948 		sctp_skb_pull(skb, copied);
1949 		skb_queue_head(&sk->sk_receive_queue, skb);
1950 
1951 		/* When only partial message is copied to the user, increase
1952 		 * rwnd by that amount. If all the data in the skb is read,
1953 		 * rwnd is updated when the event is freed.
1954 		 */
1955 		if (!sctp_ulpevent_is_notification(event))
1956 			sctp_assoc_rwnd_increase(event->asoc, copied);
1957 		goto out;
1958 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1959 		   (event->msg_flags & MSG_EOR))
1960 		msg->msg_flags |= MSG_EOR;
1961 	else
1962 		msg->msg_flags &= ~MSG_EOR;
1963 
1964 out_free:
1965 	if (flags & MSG_PEEK) {
1966 		/* Release the skb reference acquired after peeking the skb in
1967 		 * sctp_skb_recv_datagram().
1968 		 */
1969 		kfree_skb(skb);
1970 	} else {
1971 		/* Free the event which includes releasing the reference to
1972 		 * the owner of the skb, freeing the skb and updating the
1973 		 * rwnd.
1974 		 */
1975 		sctp_ulpevent_free(event);
1976 	}
1977 out:
1978 	sctp_release_sock(sk);
1979 	return err;
1980 }
1981 
1982 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1983  *
1984  * This option is a on/off flag.  If enabled no SCTP message
1985  * fragmentation will be performed.  Instead if a message being sent
1986  * exceeds the current PMTU size, the message will NOT be sent and
1987  * instead a error will be indicated to the user.
1988  */
1989 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1990 					    char __user *optval, int optlen)
1991 {
1992 	int val;
1993 
1994 	if (optlen < sizeof(int))
1995 		return -EINVAL;
1996 
1997 	if (get_user(val, (int __user *)optval))
1998 		return -EFAULT;
1999 
2000 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2001 
2002 	return 0;
2003 }
2004 
2005 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2006 					int optlen)
2007 {
2008 	if (optlen > sizeof(struct sctp_event_subscribe))
2009 		return -EINVAL;
2010 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2011 		return -EFAULT;
2012 	return 0;
2013 }
2014 
2015 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2016  *
2017  * This socket option is applicable to the UDP-style socket only.  When
2018  * set it will cause associations that are idle for more than the
2019  * specified number of seconds to automatically close.  An association
2020  * being idle is defined an association that has NOT sent or received
2021  * user data.  The special value of '0' indicates that no automatic
2022  * close of any associations should be performed.  The option expects an
2023  * integer defining the number of seconds of idle time before an
2024  * association is closed.
2025  */
2026 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2027 					    int optlen)
2028 {
2029 	struct sctp_sock *sp = sctp_sk(sk);
2030 
2031 	/* Applicable to UDP-style socket only */
2032 	if (sctp_style(sk, TCP))
2033 		return -EOPNOTSUPP;
2034 	if (optlen != sizeof(int))
2035 		return -EINVAL;
2036 	if (copy_from_user(&sp->autoclose, optval, optlen))
2037 		return -EFAULT;
2038 
2039 	return 0;
2040 }
2041 
2042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2043  *
2044  * Applications can enable or disable heartbeats for any peer address of
2045  * an association, modify an address's heartbeat interval, force a
2046  * heartbeat to be sent immediately, and adjust the address's maximum
2047  * number of retransmissions sent before an address is considered
2048  * unreachable.  The following structure is used to access and modify an
2049  * address's parameters:
2050  *
2051  *  struct sctp_paddrparams {
2052  *     sctp_assoc_t            spp_assoc_id;
2053  *     struct sockaddr_storage spp_address;
2054  *     uint32_t                spp_hbinterval;
2055  *     uint16_t                spp_pathmaxrxt;
2056  *     uint32_t                spp_pathmtu;
2057  *     uint32_t                spp_sackdelay;
2058  *     uint32_t                spp_flags;
2059  * };
2060  *
2061  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2062  *                     application, and identifies the association for
2063  *                     this query.
2064  *   spp_address     - This specifies which address is of interest.
2065  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2066  *                     in milliseconds.  If a  value of zero
2067  *                     is present in this field then no changes are to
2068  *                     be made to this parameter.
2069  *   spp_pathmaxrxt  - This contains the maximum number of
2070  *                     retransmissions before this address shall be
2071  *                     considered unreachable. If a  value of zero
2072  *                     is present in this field then no changes are to
2073  *                     be made to this parameter.
2074  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2075  *                     specified here will be the "fixed" path mtu.
2076  *                     Note that if the spp_address field is empty
2077  *                     then all associations on this address will
2078  *                     have this fixed path mtu set upon them.
2079  *
2080  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2081  *                     the number of milliseconds that sacks will be delayed
2082  *                     for. This value will apply to all addresses of an
2083  *                     association if the spp_address field is empty. Note
2084  *                     also, that if delayed sack is enabled and this
2085  *                     value is set to 0, no change is made to the last
2086  *                     recorded delayed sack timer value.
2087  *
2088  *   spp_flags       - These flags are used to control various features
2089  *                     on an association. The flag field may contain
2090  *                     zero or more of the following options.
2091  *
2092  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2093  *                     specified address. Note that if the address
2094  *                     field is empty all addresses for the association
2095  *                     have heartbeats enabled upon them.
2096  *
2097  *                     SPP_HB_DISABLE - Disable heartbeats on the
2098  *                     speicifed address. Note that if the address
2099  *                     field is empty all addresses for the association
2100  *                     will have their heartbeats disabled. Note also
2101  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2102  *                     mutually exclusive, only one of these two should
2103  *                     be specified. Enabling both fields will have
2104  *                     undetermined results.
2105  *
2106  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2107  *                     to be made immediately.
2108  *
2109  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2110  *                     heartbeat delayis to be set to the value of 0
2111  *                     milliseconds.
2112  *
2113  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2114  *                     discovery upon the specified address. Note that
2115  *                     if the address feild is empty then all addresses
2116  *                     on the association are effected.
2117  *
2118  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2119  *                     discovery upon the specified address. Note that
2120  *                     if the address feild is empty then all addresses
2121  *                     on the association are effected. Not also that
2122  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2123  *                     exclusive. Enabling both will have undetermined
2124  *                     results.
2125  *
2126  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2127  *                     on delayed sack. The time specified in spp_sackdelay
2128  *                     is used to specify the sack delay for this address. Note
2129  *                     that if spp_address is empty then all addresses will
2130  *                     enable delayed sack and take on the sack delay
2131  *                     value specified in spp_sackdelay.
2132  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2133  *                     off delayed sack. If the spp_address field is blank then
2134  *                     delayed sack is disabled for the entire association. Note
2135  *                     also that this field is mutually exclusive to
2136  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2137  *                     results.
2138  */
2139 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2140 				       struct sctp_transport   *trans,
2141 				       struct sctp_association *asoc,
2142 				       struct sctp_sock        *sp,
2143 				       int                      hb_change,
2144 				       int                      pmtud_change,
2145 				       int                      sackdelay_change)
2146 {
2147 	int error;
2148 
2149 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2150 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2151 		if (error)
2152 			return error;
2153 	}
2154 
2155 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2156 	 * this field is ignored.  Note also that a value of zero indicates
2157 	 * the current setting should be left unchanged.
2158 	 */
2159 	if (params->spp_flags & SPP_HB_ENABLE) {
2160 
2161 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2162 		 * set.  This lets us use 0 value when this flag
2163 		 * is set.
2164 		 */
2165 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2166 			params->spp_hbinterval = 0;
2167 
2168 		if (params->spp_hbinterval ||
2169 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2170 			if (trans) {
2171 				trans->hbinterval =
2172 				    msecs_to_jiffies(params->spp_hbinterval);
2173 			} else if (asoc) {
2174 				asoc->hbinterval =
2175 				    msecs_to_jiffies(params->spp_hbinterval);
2176 			} else {
2177 				sp->hbinterval = params->spp_hbinterval;
2178 			}
2179 		}
2180 	}
2181 
2182 	if (hb_change) {
2183 		if (trans) {
2184 			trans->param_flags =
2185 				(trans->param_flags & ~SPP_HB) | hb_change;
2186 		} else if (asoc) {
2187 			asoc->param_flags =
2188 				(asoc->param_flags & ~SPP_HB) | hb_change;
2189 		} else {
2190 			sp->param_flags =
2191 				(sp->param_flags & ~SPP_HB) | hb_change;
2192 		}
2193 	}
2194 
2195 	/* When Path MTU discovery is disabled the value specified here will
2196 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2197 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2198 	 * effect).
2199 	 */
2200 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2201 		if (trans) {
2202 			trans->pathmtu = params->spp_pathmtu;
2203 			sctp_assoc_sync_pmtu(asoc);
2204 		} else if (asoc) {
2205 			asoc->pathmtu = params->spp_pathmtu;
2206 			sctp_frag_point(sp, params->spp_pathmtu);
2207 		} else {
2208 			sp->pathmtu = params->spp_pathmtu;
2209 		}
2210 	}
2211 
2212 	if (pmtud_change) {
2213 		if (trans) {
2214 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2215 				(params->spp_flags & SPP_PMTUD_ENABLE);
2216 			trans->param_flags =
2217 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2218 			if (update) {
2219 				sctp_transport_pmtu(trans);
2220 				sctp_assoc_sync_pmtu(asoc);
2221 			}
2222 		} else if (asoc) {
2223 			asoc->param_flags =
2224 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2225 		} else {
2226 			sp->param_flags =
2227 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2228 		}
2229 	}
2230 
2231 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2232 	 * value of this field is ignored.  Note also that a value of zero
2233 	 * indicates the current setting should be left unchanged.
2234 	 */
2235 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2236 		if (trans) {
2237 			trans->sackdelay =
2238 				msecs_to_jiffies(params->spp_sackdelay);
2239 		} else if (asoc) {
2240 			asoc->sackdelay =
2241 				msecs_to_jiffies(params->spp_sackdelay);
2242 		} else {
2243 			sp->sackdelay = params->spp_sackdelay;
2244 		}
2245 	}
2246 
2247 	if (sackdelay_change) {
2248 		if (trans) {
2249 			trans->param_flags =
2250 				(trans->param_flags & ~SPP_SACKDELAY) |
2251 				sackdelay_change;
2252 		} else if (asoc) {
2253 			asoc->param_flags =
2254 				(asoc->param_flags & ~SPP_SACKDELAY) |
2255 				sackdelay_change;
2256 		} else {
2257 			sp->param_flags =
2258 				(sp->param_flags & ~SPP_SACKDELAY) |
2259 				sackdelay_change;
2260 		}
2261 	}
2262 
2263 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2264 	 * of this field is ignored.  Note also that a value of zero
2265 	 * indicates the current setting should be left unchanged.
2266 	 */
2267 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2268 		if (trans) {
2269 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2270 		} else if (asoc) {
2271 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2272 		} else {
2273 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2274 		}
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2281 					    char __user *optval, int optlen)
2282 {
2283 	struct sctp_paddrparams  params;
2284 	struct sctp_transport   *trans = NULL;
2285 	struct sctp_association *asoc = NULL;
2286 	struct sctp_sock        *sp = sctp_sk(sk);
2287 	int error;
2288 	int hb_change, pmtud_change, sackdelay_change;
2289 
2290 	if (optlen != sizeof(struct sctp_paddrparams))
2291 		return - EINVAL;
2292 
2293 	if (copy_from_user(&params, optval, optlen))
2294 		return -EFAULT;
2295 
2296 	/* Validate flags and value parameters. */
2297 	hb_change        = params.spp_flags & SPP_HB;
2298 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2299 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2300 
2301 	if (hb_change        == SPP_HB ||
2302 	    pmtud_change     == SPP_PMTUD ||
2303 	    sackdelay_change == SPP_SACKDELAY ||
2304 	    params.spp_sackdelay > 500 ||
2305 	    (params.spp_pathmtu
2306 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2307 		return -EINVAL;
2308 
2309 	/* If an address other than INADDR_ANY is specified, and
2310 	 * no transport is found, then the request is invalid.
2311 	 */
2312 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2313 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2314 					       params.spp_assoc_id);
2315 		if (!trans)
2316 			return -EINVAL;
2317 	}
2318 
2319 	/* Get association, if assoc_id != 0 and the socket is a one
2320 	 * to many style socket, and an association was not found, then
2321 	 * the id was invalid.
2322 	 */
2323 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2324 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2325 		return -EINVAL;
2326 
2327 	/* Heartbeat demand can only be sent on a transport or
2328 	 * association, but not a socket.
2329 	 */
2330 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2331 		return -EINVAL;
2332 
2333 	/* Process parameters. */
2334 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2335 					    hb_change, pmtud_change,
2336 					    sackdelay_change);
2337 
2338 	if (error)
2339 		return error;
2340 
2341 	/* If changes are for association, also apply parameters to each
2342 	 * transport.
2343 	 */
2344 	if (!trans && asoc) {
2345 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2346 				transports) {
2347 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2348 						    hb_change, pmtud_change,
2349 						    sackdelay_change);
2350 		}
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /*
2357  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2358  *
2359  * This option will effect the way delayed acks are performed.  This
2360  * option allows you to get or set the delayed ack time, in
2361  * milliseconds.  It also allows changing the delayed ack frequency.
2362  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2363  * the assoc_id is 0, then this sets or gets the endpoints default
2364  * values.  If the assoc_id field is non-zero, then the set or get
2365  * effects the specified association for the one to many model (the
2366  * assoc_id field is ignored by the one to one model).  Note that if
2367  * sack_delay or sack_freq are 0 when setting this option, then the
2368  * current values will remain unchanged.
2369  *
2370  * struct sctp_sack_info {
2371  *     sctp_assoc_t            sack_assoc_id;
2372  *     uint32_t                sack_delay;
2373  *     uint32_t                sack_freq;
2374  * };
2375  *
2376  * sack_assoc_id -  This parameter, indicates which association the user
2377  *    is performing an action upon.  Note that if this field's value is
2378  *    zero then the endpoints default value is changed (effecting future
2379  *    associations only).
2380  *
2381  * sack_delay -  This parameter contains the number of milliseconds that
2382  *    the user is requesting the delayed ACK timer be set to.  Note that
2383  *    this value is defined in the standard to be between 200 and 500
2384  *    milliseconds.
2385  *
2386  * sack_freq -  This parameter contains the number of packets that must
2387  *    be received before a sack is sent without waiting for the delay
2388  *    timer to expire.  The default value for this is 2, setting this
2389  *    value to 1 will disable the delayed sack algorithm.
2390  */
2391 
2392 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2393 					    char __user *optval, int optlen)
2394 {
2395 	struct sctp_sack_info    params;
2396 	struct sctp_transport   *trans = NULL;
2397 	struct sctp_association *asoc = NULL;
2398 	struct sctp_sock        *sp = sctp_sk(sk);
2399 
2400 	if (optlen == sizeof(struct sctp_sack_info)) {
2401 		if (copy_from_user(&params, optval, optlen))
2402 			return -EFAULT;
2403 
2404 		if (params.sack_delay == 0 && params.sack_freq == 0)
2405 			return 0;
2406 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2407 		printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
2408 		       "in delayed_ack socket option deprecated\n");
2409 		printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
2410 		if (copy_from_user(&params, optval, optlen))
2411 			return -EFAULT;
2412 
2413 		if (params.sack_delay == 0)
2414 			params.sack_freq = 1;
2415 		else
2416 			params.sack_freq = 0;
2417 	} else
2418 		return - EINVAL;
2419 
2420 	/* Validate value parameter. */
2421 	if (params.sack_delay > 500)
2422 		return -EINVAL;
2423 
2424 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2425 	 * to many style socket, and an association was not found, then
2426 	 * the id was invalid.
2427 	 */
2428 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2429 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2430 		return -EINVAL;
2431 
2432 	if (params.sack_delay) {
2433 		if (asoc) {
2434 			asoc->sackdelay =
2435 				msecs_to_jiffies(params.sack_delay);
2436 			asoc->param_flags =
2437 				(asoc->param_flags & ~SPP_SACKDELAY) |
2438 				SPP_SACKDELAY_ENABLE;
2439 		} else {
2440 			sp->sackdelay = params.sack_delay;
2441 			sp->param_flags =
2442 				(sp->param_flags & ~SPP_SACKDELAY) |
2443 				SPP_SACKDELAY_ENABLE;
2444 		}
2445 	}
2446 
2447 	if (params.sack_freq == 1) {
2448 		if (asoc) {
2449 			asoc->param_flags =
2450 				(asoc->param_flags & ~SPP_SACKDELAY) |
2451 				SPP_SACKDELAY_DISABLE;
2452 		} else {
2453 			sp->param_flags =
2454 				(sp->param_flags & ~SPP_SACKDELAY) |
2455 				SPP_SACKDELAY_DISABLE;
2456 		}
2457 	} else if (params.sack_freq > 1) {
2458 		if (asoc) {
2459 			asoc->sackfreq = params.sack_freq;
2460 			asoc->param_flags =
2461 				(asoc->param_flags & ~SPP_SACKDELAY) |
2462 				SPP_SACKDELAY_ENABLE;
2463 		} else {
2464 			sp->sackfreq = params.sack_freq;
2465 			sp->param_flags =
2466 				(sp->param_flags & ~SPP_SACKDELAY) |
2467 				SPP_SACKDELAY_ENABLE;
2468 		}
2469 	}
2470 
2471 	/* If change is for association, also apply to each transport. */
2472 	if (asoc) {
2473 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2474 				transports) {
2475 			if (params.sack_delay) {
2476 				trans->sackdelay =
2477 					msecs_to_jiffies(params.sack_delay);
2478 				trans->param_flags =
2479 					(trans->param_flags & ~SPP_SACKDELAY) |
2480 					SPP_SACKDELAY_ENABLE;
2481 			}
2482 			if (params.sack_freq == 1) {
2483 				trans->param_flags =
2484 					(trans->param_flags & ~SPP_SACKDELAY) |
2485 					SPP_SACKDELAY_DISABLE;
2486 			} else if (params.sack_freq > 1) {
2487 				trans->sackfreq = params.sack_freq;
2488 				trans->param_flags =
2489 					(trans->param_flags & ~SPP_SACKDELAY) |
2490 					SPP_SACKDELAY_ENABLE;
2491 			}
2492 		}
2493 	}
2494 
2495 	return 0;
2496 }
2497 
2498 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2499  *
2500  * Applications can specify protocol parameters for the default association
2501  * initialization.  The option name argument to setsockopt() and getsockopt()
2502  * is SCTP_INITMSG.
2503  *
2504  * Setting initialization parameters is effective only on an unconnected
2505  * socket (for UDP-style sockets only future associations are effected
2506  * by the change).  With TCP-style sockets, this option is inherited by
2507  * sockets derived from a listener socket.
2508  */
2509 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2510 {
2511 	struct sctp_initmsg sinit;
2512 	struct sctp_sock *sp = sctp_sk(sk);
2513 
2514 	if (optlen != sizeof(struct sctp_initmsg))
2515 		return -EINVAL;
2516 	if (copy_from_user(&sinit, optval, optlen))
2517 		return -EFAULT;
2518 
2519 	if (sinit.sinit_num_ostreams)
2520 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2521 	if (sinit.sinit_max_instreams)
2522 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2523 	if (sinit.sinit_max_attempts)
2524 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2525 	if (sinit.sinit_max_init_timeo)
2526 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2527 
2528 	return 0;
2529 }
2530 
2531 /*
2532  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2533  *
2534  *   Applications that wish to use the sendto() system call may wish to
2535  *   specify a default set of parameters that would normally be supplied
2536  *   through the inclusion of ancillary data.  This socket option allows
2537  *   such an application to set the default sctp_sndrcvinfo structure.
2538  *   The application that wishes to use this socket option simply passes
2539  *   in to this call the sctp_sndrcvinfo structure defined in Section
2540  *   5.2.2) The input parameters accepted by this call include
2541  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2542  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2543  *   to this call if the caller is using the UDP model.
2544  */
2545 static int sctp_setsockopt_default_send_param(struct sock *sk,
2546 						char __user *optval, int optlen)
2547 {
2548 	struct sctp_sndrcvinfo info;
2549 	struct sctp_association *asoc;
2550 	struct sctp_sock *sp = sctp_sk(sk);
2551 
2552 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2553 		return -EINVAL;
2554 	if (copy_from_user(&info, optval, optlen))
2555 		return -EFAULT;
2556 
2557 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2558 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2559 		return -EINVAL;
2560 
2561 	if (asoc) {
2562 		asoc->default_stream = info.sinfo_stream;
2563 		asoc->default_flags = info.sinfo_flags;
2564 		asoc->default_ppid = info.sinfo_ppid;
2565 		asoc->default_context = info.sinfo_context;
2566 		asoc->default_timetolive = info.sinfo_timetolive;
2567 	} else {
2568 		sp->default_stream = info.sinfo_stream;
2569 		sp->default_flags = info.sinfo_flags;
2570 		sp->default_ppid = info.sinfo_ppid;
2571 		sp->default_context = info.sinfo_context;
2572 		sp->default_timetolive = info.sinfo_timetolive;
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2579  *
2580  * Requests that the local SCTP stack use the enclosed peer address as
2581  * the association primary.  The enclosed address must be one of the
2582  * association peer's addresses.
2583  */
2584 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2585 					int optlen)
2586 {
2587 	struct sctp_prim prim;
2588 	struct sctp_transport *trans;
2589 
2590 	if (optlen != sizeof(struct sctp_prim))
2591 		return -EINVAL;
2592 
2593 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2594 		return -EFAULT;
2595 
2596 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2597 	if (!trans)
2598 		return -EINVAL;
2599 
2600 	sctp_assoc_set_primary(trans->asoc, trans);
2601 
2602 	return 0;
2603 }
2604 
2605 /*
2606  * 7.1.5 SCTP_NODELAY
2607  *
2608  * Turn on/off any Nagle-like algorithm.  This means that packets are
2609  * generally sent as soon as possible and no unnecessary delays are
2610  * introduced, at the cost of more packets in the network.  Expects an
2611  *  integer boolean flag.
2612  */
2613 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2614 					int optlen)
2615 {
2616 	int val;
2617 
2618 	if (optlen < sizeof(int))
2619 		return -EINVAL;
2620 	if (get_user(val, (int __user *)optval))
2621 		return -EFAULT;
2622 
2623 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2624 	return 0;
2625 }
2626 
2627 /*
2628  *
2629  * 7.1.1 SCTP_RTOINFO
2630  *
2631  * The protocol parameters used to initialize and bound retransmission
2632  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2633  * and modify these parameters.
2634  * All parameters are time values, in milliseconds.  A value of 0, when
2635  * modifying the parameters, indicates that the current value should not
2636  * be changed.
2637  *
2638  */
2639 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2640 	struct sctp_rtoinfo rtoinfo;
2641 	struct sctp_association *asoc;
2642 
2643 	if (optlen != sizeof (struct sctp_rtoinfo))
2644 		return -EINVAL;
2645 
2646 	if (copy_from_user(&rtoinfo, optval, optlen))
2647 		return -EFAULT;
2648 
2649 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2650 
2651 	/* Set the values to the specific association */
2652 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2653 		return -EINVAL;
2654 
2655 	if (asoc) {
2656 		if (rtoinfo.srto_initial != 0)
2657 			asoc->rto_initial =
2658 				msecs_to_jiffies(rtoinfo.srto_initial);
2659 		if (rtoinfo.srto_max != 0)
2660 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2661 		if (rtoinfo.srto_min != 0)
2662 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2663 	} else {
2664 		/* If there is no association or the association-id = 0
2665 		 * set the values to the endpoint.
2666 		 */
2667 		struct sctp_sock *sp = sctp_sk(sk);
2668 
2669 		if (rtoinfo.srto_initial != 0)
2670 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2671 		if (rtoinfo.srto_max != 0)
2672 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2673 		if (rtoinfo.srto_min != 0)
2674 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 /*
2681  *
2682  * 7.1.2 SCTP_ASSOCINFO
2683  *
2684  * This option is used to tune the maximum retransmission attempts
2685  * of the association.
2686  * Returns an error if the new association retransmission value is
2687  * greater than the sum of the retransmission value  of the peer.
2688  * See [SCTP] for more information.
2689  *
2690  */
2691 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2692 {
2693 
2694 	struct sctp_assocparams assocparams;
2695 	struct sctp_association *asoc;
2696 
2697 	if (optlen != sizeof(struct sctp_assocparams))
2698 		return -EINVAL;
2699 	if (copy_from_user(&assocparams, optval, optlen))
2700 		return -EFAULT;
2701 
2702 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2703 
2704 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2705 		return -EINVAL;
2706 
2707 	/* Set the values to the specific association */
2708 	if (asoc) {
2709 		if (assocparams.sasoc_asocmaxrxt != 0) {
2710 			__u32 path_sum = 0;
2711 			int   paths = 0;
2712 			struct sctp_transport *peer_addr;
2713 
2714 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2715 					transports) {
2716 				path_sum += peer_addr->pathmaxrxt;
2717 				paths++;
2718 			}
2719 
2720 			/* Only validate asocmaxrxt if we have more then
2721 			 * one path/transport.  We do this because path
2722 			 * retransmissions are only counted when we have more
2723 			 * then one path.
2724 			 */
2725 			if (paths > 1 &&
2726 			    assocparams.sasoc_asocmaxrxt > path_sum)
2727 				return -EINVAL;
2728 
2729 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2730 		}
2731 
2732 		if (assocparams.sasoc_cookie_life != 0) {
2733 			asoc->cookie_life.tv_sec =
2734 					assocparams.sasoc_cookie_life / 1000;
2735 			asoc->cookie_life.tv_usec =
2736 					(assocparams.sasoc_cookie_life % 1000)
2737 					* 1000;
2738 		}
2739 	} else {
2740 		/* Set the values to the endpoint */
2741 		struct sctp_sock *sp = sctp_sk(sk);
2742 
2743 		if (assocparams.sasoc_asocmaxrxt != 0)
2744 			sp->assocparams.sasoc_asocmaxrxt =
2745 						assocparams.sasoc_asocmaxrxt;
2746 		if (assocparams.sasoc_cookie_life != 0)
2747 			sp->assocparams.sasoc_cookie_life =
2748 						assocparams.sasoc_cookie_life;
2749 	}
2750 	return 0;
2751 }
2752 
2753 /*
2754  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2755  *
2756  * This socket option is a boolean flag which turns on or off mapped V4
2757  * addresses.  If this option is turned on and the socket is type
2758  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2759  * If this option is turned off, then no mapping will be done of V4
2760  * addresses and a user will receive both PF_INET6 and PF_INET type
2761  * addresses on the socket.
2762  */
2763 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2764 {
2765 	int val;
2766 	struct sctp_sock *sp = sctp_sk(sk);
2767 
2768 	if (optlen < sizeof(int))
2769 		return -EINVAL;
2770 	if (get_user(val, (int __user *)optval))
2771 		return -EFAULT;
2772 	if (val)
2773 		sp->v4mapped = 1;
2774 	else
2775 		sp->v4mapped = 0;
2776 
2777 	return 0;
2778 }
2779 
2780 /*
2781  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2782  *
2783  * This socket option specifies the maximum size to put in any outgoing
2784  * SCTP chunk.  If a message is larger than this size it will be
2785  * fragmented by SCTP into the specified size.  Note that the underlying
2786  * SCTP implementation may fragment into smaller sized chunks when the
2787  * PMTU of the underlying association is smaller than the value set by
2788  * the user.
2789  */
2790 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2791 {
2792 	struct sctp_association *asoc;
2793 	struct sctp_sock *sp = sctp_sk(sk);
2794 	int val;
2795 
2796 	if (optlen < sizeof(int))
2797 		return -EINVAL;
2798 	if (get_user(val, (int __user *)optval))
2799 		return -EFAULT;
2800 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2801 		return -EINVAL;
2802 	sp->user_frag = val;
2803 
2804 	/* Update the frag_point of the existing associations. */
2805 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2806 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 
2813 /*
2814  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2815  *
2816  *   Requests that the peer mark the enclosed address as the association
2817  *   primary. The enclosed address must be one of the association's
2818  *   locally bound addresses. The following structure is used to make a
2819  *   set primary request:
2820  */
2821 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2822 					     int optlen)
2823 {
2824 	struct sctp_sock	*sp;
2825 	struct sctp_endpoint	*ep;
2826 	struct sctp_association	*asoc = NULL;
2827 	struct sctp_setpeerprim	prim;
2828 	struct sctp_chunk	*chunk;
2829 	int 			err;
2830 
2831 	sp = sctp_sk(sk);
2832 	ep = sp->ep;
2833 
2834 	if (!sctp_addip_enable)
2835 		return -EPERM;
2836 
2837 	if (optlen != sizeof(struct sctp_setpeerprim))
2838 		return -EINVAL;
2839 
2840 	if (copy_from_user(&prim, optval, optlen))
2841 		return -EFAULT;
2842 
2843 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2844 	if (!asoc)
2845 		return -EINVAL;
2846 
2847 	if (!asoc->peer.asconf_capable)
2848 		return -EPERM;
2849 
2850 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2851 		return -EPERM;
2852 
2853 	if (!sctp_state(asoc, ESTABLISHED))
2854 		return -ENOTCONN;
2855 
2856 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2857 		return -EADDRNOTAVAIL;
2858 
2859 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2860 	chunk = sctp_make_asconf_set_prim(asoc,
2861 					  (union sctp_addr *)&prim.sspp_addr);
2862 	if (!chunk)
2863 		return -ENOMEM;
2864 
2865 	err = sctp_send_asconf(asoc, chunk);
2866 
2867 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2868 
2869 	return err;
2870 }
2871 
2872 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2873 					  int optlen)
2874 {
2875 	struct sctp_setadaptation adaptation;
2876 
2877 	if (optlen != sizeof(struct sctp_setadaptation))
2878 		return -EINVAL;
2879 	if (copy_from_user(&adaptation, optval, optlen))
2880 		return -EFAULT;
2881 
2882 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2883 
2884 	return 0;
2885 }
2886 
2887 /*
2888  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2889  *
2890  * The context field in the sctp_sndrcvinfo structure is normally only
2891  * used when a failed message is retrieved holding the value that was
2892  * sent down on the actual send call.  This option allows the setting of
2893  * a default context on an association basis that will be received on
2894  * reading messages from the peer.  This is especially helpful in the
2895  * one-2-many model for an application to keep some reference to an
2896  * internal state machine that is processing messages on the
2897  * association.  Note that the setting of this value only effects
2898  * received messages from the peer and does not effect the value that is
2899  * saved with outbound messages.
2900  */
2901 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2902 				   int optlen)
2903 {
2904 	struct sctp_assoc_value params;
2905 	struct sctp_sock *sp;
2906 	struct sctp_association *asoc;
2907 
2908 	if (optlen != sizeof(struct sctp_assoc_value))
2909 		return -EINVAL;
2910 	if (copy_from_user(&params, optval, optlen))
2911 		return -EFAULT;
2912 
2913 	sp = sctp_sk(sk);
2914 
2915 	if (params.assoc_id != 0) {
2916 		asoc = sctp_id2assoc(sk, params.assoc_id);
2917 		if (!asoc)
2918 			return -EINVAL;
2919 		asoc->default_rcv_context = params.assoc_value;
2920 	} else {
2921 		sp->default_rcv_context = params.assoc_value;
2922 	}
2923 
2924 	return 0;
2925 }
2926 
2927 /*
2928  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2929  *
2930  * This options will at a minimum specify if the implementation is doing
2931  * fragmented interleave.  Fragmented interleave, for a one to many
2932  * socket, is when subsequent calls to receive a message may return
2933  * parts of messages from different associations.  Some implementations
2934  * may allow you to turn this value on or off.  If so, when turned off,
2935  * no fragment interleave will occur (which will cause a head of line
2936  * blocking amongst multiple associations sharing the same one to many
2937  * socket).  When this option is turned on, then each receive call may
2938  * come from a different association (thus the user must receive data
2939  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2940  * association each receive belongs to.
2941  *
2942  * This option takes a boolean value.  A non-zero value indicates that
2943  * fragmented interleave is on.  A value of zero indicates that
2944  * fragmented interleave is off.
2945  *
2946  * Note that it is important that an implementation that allows this
2947  * option to be turned on, have it off by default.  Otherwise an unaware
2948  * application using the one to many model may become confused and act
2949  * incorrectly.
2950  */
2951 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2952 					       char __user *optval,
2953 					       int optlen)
2954 {
2955 	int val;
2956 
2957 	if (optlen != sizeof(int))
2958 		return -EINVAL;
2959 	if (get_user(val, (int __user *)optval))
2960 		return -EFAULT;
2961 
2962 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2963 
2964 	return 0;
2965 }
2966 
2967 /*
2968  * 7.1.25.  Set or Get the sctp partial delivery point
2969  *       (SCTP_PARTIAL_DELIVERY_POINT)
2970  * This option will set or get the SCTP partial delivery point.  This
2971  * point is the size of a message where the partial delivery API will be
2972  * invoked to help free up rwnd space for the peer.  Setting this to a
2973  * lower value will cause partial delivery's to happen more often.  The
2974  * calls argument is an integer that sets or gets the partial delivery
2975  * point.
2976  */
2977 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2978 						  char __user *optval,
2979 						  int optlen)
2980 {
2981 	u32 val;
2982 
2983 	if (optlen != sizeof(u32))
2984 		return -EINVAL;
2985 	if (get_user(val, (int __user *)optval))
2986 		return -EFAULT;
2987 
2988 	sctp_sk(sk)->pd_point = val;
2989 
2990 	return 0; /* is this the right error code? */
2991 }
2992 
2993 /*
2994  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
2995  *
2996  * This option will allow a user to change the maximum burst of packets
2997  * that can be emitted by this association.  Note that the default value
2998  * is 4, and some implementations may restrict this setting so that it
2999  * can only be lowered.
3000  *
3001  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3002  * future associations inheriting the socket value.
3003  */
3004 static int sctp_setsockopt_maxburst(struct sock *sk,
3005 				    char __user *optval,
3006 				    int optlen)
3007 {
3008 	struct sctp_assoc_value params;
3009 	struct sctp_sock *sp;
3010 	struct sctp_association *asoc;
3011 	int val;
3012 	int assoc_id = 0;
3013 
3014 	if (optlen < sizeof(int))
3015 		return -EINVAL;
3016 
3017 	if (optlen == sizeof(int)) {
3018 		printk(KERN_WARNING
3019 		   "SCTP: Use of int in max_burst socket option deprecated\n");
3020 		printk(KERN_WARNING
3021 		   "SCTP: Use struct sctp_assoc_value instead\n");
3022 		if (copy_from_user(&val, optval, optlen))
3023 			return -EFAULT;
3024 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3025 		if (copy_from_user(&params, optval, optlen))
3026 			return -EFAULT;
3027 		val = params.assoc_value;
3028 		assoc_id = params.assoc_id;
3029 	} else
3030 		return -EINVAL;
3031 
3032 	sp = sctp_sk(sk);
3033 
3034 	if (assoc_id != 0) {
3035 		asoc = sctp_id2assoc(sk, assoc_id);
3036 		if (!asoc)
3037 			return -EINVAL;
3038 		asoc->max_burst = val;
3039 	} else
3040 		sp->max_burst = val;
3041 
3042 	return 0;
3043 }
3044 
3045 /*
3046  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3047  *
3048  * This set option adds a chunk type that the user is requesting to be
3049  * received only in an authenticated way.  Changes to the list of chunks
3050  * will only effect future associations on the socket.
3051  */
3052 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3053 				    char __user *optval,
3054 				    int optlen)
3055 {
3056 	struct sctp_authchunk val;
3057 
3058 	if (optlen != sizeof(struct sctp_authchunk))
3059 		return -EINVAL;
3060 	if (copy_from_user(&val, optval, optlen))
3061 		return -EFAULT;
3062 
3063 	switch (val.sauth_chunk) {
3064 		case SCTP_CID_INIT:
3065 		case SCTP_CID_INIT_ACK:
3066 		case SCTP_CID_SHUTDOWN_COMPLETE:
3067 		case SCTP_CID_AUTH:
3068 			return -EINVAL;
3069 	}
3070 
3071 	/* add this chunk id to the endpoint */
3072 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3073 }
3074 
3075 /*
3076  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3077  *
3078  * This option gets or sets the list of HMAC algorithms that the local
3079  * endpoint requires the peer to use.
3080  */
3081 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3082 				    char __user *optval,
3083 				    int optlen)
3084 {
3085 	struct sctp_hmacalgo *hmacs;
3086 	int err;
3087 
3088 	if (optlen < sizeof(struct sctp_hmacalgo))
3089 		return -EINVAL;
3090 
3091 	hmacs = kmalloc(optlen, GFP_KERNEL);
3092 	if (!hmacs)
3093 		return -ENOMEM;
3094 
3095 	if (copy_from_user(hmacs, optval, optlen)) {
3096 		err = -EFAULT;
3097 		goto out;
3098 	}
3099 
3100 	if (hmacs->shmac_num_idents == 0 ||
3101 	    hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
3102 		err = -EINVAL;
3103 		goto out;
3104 	}
3105 
3106 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3107 out:
3108 	kfree(hmacs);
3109 	return err;
3110 }
3111 
3112 /*
3113  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3114  *
3115  * This option will set a shared secret key which is used to build an
3116  * association shared key.
3117  */
3118 static int sctp_setsockopt_auth_key(struct sock *sk,
3119 				    char __user *optval,
3120 				    int optlen)
3121 {
3122 	struct sctp_authkey *authkey;
3123 	struct sctp_association *asoc;
3124 	int ret;
3125 
3126 	if (optlen <= sizeof(struct sctp_authkey))
3127 		return -EINVAL;
3128 
3129 	authkey = kmalloc(optlen, GFP_KERNEL);
3130 	if (!authkey)
3131 		return -ENOMEM;
3132 
3133 	if (copy_from_user(authkey, optval, optlen)) {
3134 		ret = -EFAULT;
3135 		goto out;
3136 	}
3137 
3138 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3139 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3140 		ret = -EINVAL;
3141 		goto out;
3142 	}
3143 
3144 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3145 out:
3146 	kfree(authkey);
3147 	return ret;
3148 }
3149 
3150 /*
3151  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3152  *
3153  * This option will get or set the active shared key to be used to build
3154  * the association shared key.
3155  */
3156 static int sctp_setsockopt_active_key(struct sock *sk,
3157 					char __user *optval,
3158 					int optlen)
3159 {
3160 	struct sctp_authkeyid val;
3161 	struct sctp_association *asoc;
3162 
3163 	if (optlen != sizeof(struct sctp_authkeyid))
3164 		return -EINVAL;
3165 	if (copy_from_user(&val, optval, optlen))
3166 		return -EFAULT;
3167 
3168 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3169 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3170 		return -EINVAL;
3171 
3172 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3173 					val.scact_keynumber);
3174 }
3175 
3176 /*
3177  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3178  *
3179  * This set option will delete a shared secret key from use.
3180  */
3181 static int sctp_setsockopt_del_key(struct sock *sk,
3182 					char __user *optval,
3183 					int optlen)
3184 {
3185 	struct sctp_authkeyid val;
3186 	struct sctp_association *asoc;
3187 
3188 	if (optlen != sizeof(struct sctp_authkeyid))
3189 		return -EINVAL;
3190 	if (copy_from_user(&val, optval, optlen))
3191 		return -EFAULT;
3192 
3193 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3194 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3195 		return -EINVAL;
3196 
3197 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3198 				    val.scact_keynumber);
3199 
3200 }
3201 
3202 
3203 /* API 6.2 setsockopt(), getsockopt()
3204  *
3205  * Applications use setsockopt() and getsockopt() to set or retrieve
3206  * socket options.  Socket options are used to change the default
3207  * behavior of sockets calls.  They are described in Section 7.
3208  *
3209  * The syntax is:
3210  *
3211  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3212  *                    int __user *optlen);
3213  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3214  *                    int optlen);
3215  *
3216  *   sd      - the socket descript.
3217  *   level   - set to IPPROTO_SCTP for all SCTP options.
3218  *   optname - the option name.
3219  *   optval  - the buffer to store the value of the option.
3220  *   optlen  - the size of the buffer.
3221  */
3222 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3223 				char __user *optval, int optlen)
3224 {
3225 	int retval = 0;
3226 
3227 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3228 			  sk, optname);
3229 
3230 	/* I can hardly begin to describe how wrong this is.  This is
3231 	 * so broken as to be worse than useless.  The API draft
3232 	 * REALLY is NOT helpful here...  I am not convinced that the
3233 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3234 	 * are at all well-founded.
3235 	 */
3236 	if (level != SOL_SCTP) {
3237 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3238 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3239 		goto out_nounlock;
3240 	}
3241 
3242 	sctp_lock_sock(sk);
3243 
3244 	switch (optname) {
3245 	case SCTP_SOCKOPT_BINDX_ADD:
3246 		/* 'optlen' is the size of the addresses buffer. */
3247 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3248 					       optlen, SCTP_BINDX_ADD_ADDR);
3249 		break;
3250 
3251 	case SCTP_SOCKOPT_BINDX_REM:
3252 		/* 'optlen' is the size of the addresses buffer. */
3253 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3254 					       optlen, SCTP_BINDX_REM_ADDR);
3255 		break;
3256 
3257 	case SCTP_SOCKOPT_CONNECTX_OLD:
3258 		/* 'optlen' is the size of the addresses buffer. */
3259 		retval = sctp_setsockopt_connectx_old(sk,
3260 					    (struct sockaddr __user *)optval,
3261 					    optlen);
3262 		break;
3263 
3264 	case SCTP_SOCKOPT_CONNECTX:
3265 		/* 'optlen' is the size of the addresses buffer. */
3266 		retval = sctp_setsockopt_connectx(sk,
3267 					    (struct sockaddr __user *)optval,
3268 					    optlen);
3269 		break;
3270 
3271 	case SCTP_DISABLE_FRAGMENTS:
3272 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3273 		break;
3274 
3275 	case SCTP_EVENTS:
3276 		retval = sctp_setsockopt_events(sk, optval, optlen);
3277 		break;
3278 
3279 	case SCTP_AUTOCLOSE:
3280 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3281 		break;
3282 
3283 	case SCTP_PEER_ADDR_PARAMS:
3284 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3285 		break;
3286 
3287 	case SCTP_DELAYED_ACK:
3288 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3289 		break;
3290 	case SCTP_PARTIAL_DELIVERY_POINT:
3291 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3292 		break;
3293 
3294 	case SCTP_INITMSG:
3295 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3296 		break;
3297 	case SCTP_DEFAULT_SEND_PARAM:
3298 		retval = sctp_setsockopt_default_send_param(sk, optval,
3299 							    optlen);
3300 		break;
3301 	case SCTP_PRIMARY_ADDR:
3302 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3303 		break;
3304 	case SCTP_SET_PEER_PRIMARY_ADDR:
3305 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3306 		break;
3307 	case SCTP_NODELAY:
3308 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3309 		break;
3310 	case SCTP_RTOINFO:
3311 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3312 		break;
3313 	case SCTP_ASSOCINFO:
3314 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3315 		break;
3316 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3317 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3318 		break;
3319 	case SCTP_MAXSEG:
3320 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3321 		break;
3322 	case SCTP_ADAPTATION_LAYER:
3323 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3324 		break;
3325 	case SCTP_CONTEXT:
3326 		retval = sctp_setsockopt_context(sk, optval, optlen);
3327 		break;
3328 	case SCTP_FRAGMENT_INTERLEAVE:
3329 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3330 		break;
3331 	case SCTP_MAX_BURST:
3332 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3333 		break;
3334 	case SCTP_AUTH_CHUNK:
3335 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3336 		break;
3337 	case SCTP_HMAC_IDENT:
3338 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3339 		break;
3340 	case SCTP_AUTH_KEY:
3341 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3342 		break;
3343 	case SCTP_AUTH_ACTIVE_KEY:
3344 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3345 		break;
3346 	case SCTP_AUTH_DELETE_KEY:
3347 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3348 		break;
3349 	default:
3350 		retval = -ENOPROTOOPT;
3351 		break;
3352 	}
3353 
3354 	sctp_release_sock(sk);
3355 
3356 out_nounlock:
3357 	return retval;
3358 }
3359 
3360 /* API 3.1.6 connect() - UDP Style Syntax
3361  *
3362  * An application may use the connect() call in the UDP model to initiate an
3363  * association without sending data.
3364  *
3365  * The syntax is:
3366  *
3367  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3368  *
3369  * sd: the socket descriptor to have a new association added to.
3370  *
3371  * nam: the address structure (either struct sockaddr_in or struct
3372  *    sockaddr_in6 defined in RFC2553 [7]).
3373  *
3374  * len: the size of the address.
3375  */
3376 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3377 			     int addr_len)
3378 {
3379 	int err = 0;
3380 	struct sctp_af *af;
3381 
3382 	sctp_lock_sock(sk);
3383 
3384 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3385 			  __func__, sk, addr, addr_len);
3386 
3387 	/* Validate addr_len before calling common connect/connectx routine. */
3388 	af = sctp_get_af_specific(addr->sa_family);
3389 	if (!af || addr_len < af->sockaddr_len) {
3390 		err = -EINVAL;
3391 	} else {
3392 		/* Pass correct addr len to common routine (so it knows there
3393 		 * is only one address being passed.
3394 		 */
3395 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3396 	}
3397 
3398 	sctp_release_sock(sk);
3399 	return err;
3400 }
3401 
3402 /* FIXME: Write comments. */
3403 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3404 {
3405 	return -EOPNOTSUPP; /* STUB */
3406 }
3407 
3408 /* 4.1.4 accept() - TCP Style Syntax
3409  *
3410  * Applications use accept() call to remove an established SCTP
3411  * association from the accept queue of the endpoint.  A new socket
3412  * descriptor will be returned from accept() to represent the newly
3413  * formed association.
3414  */
3415 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3416 {
3417 	struct sctp_sock *sp;
3418 	struct sctp_endpoint *ep;
3419 	struct sock *newsk = NULL;
3420 	struct sctp_association *asoc;
3421 	long timeo;
3422 	int error = 0;
3423 
3424 	sctp_lock_sock(sk);
3425 
3426 	sp = sctp_sk(sk);
3427 	ep = sp->ep;
3428 
3429 	if (!sctp_style(sk, TCP)) {
3430 		error = -EOPNOTSUPP;
3431 		goto out;
3432 	}
3433 
3434 	if (!sctp_sstate(sk, LISTENING)) {
3435 		error = -EINVAL;
3436 		goto out;
3437 	}
3438 
3439 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3440 
3441 	error = sctp_wait_for_accept(sk, timeo);
3442 	if (error)
3443 		goto out;
3444 
3445 	/* We treat the list of associations on the endpoint as the accept
3446 	 * queue and pick the first association on the list.
3447 	 */
3448 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3449 
3450 	newsk = sp->pf->create_accept_sk(sk, asoc);
3451 	if (!newsk) {
3452 		error = -ENOMEM;
3453 		goto out;
3454 	}
3455 
3456 	/* Populate the fields of the newsk from the oldsk and migrate the
3457 	 * asoc to the newsk.
3458 	 */
3459 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3460 
3461 out:
3462 	sctp_release_sock(sk);
3463 	*err = error;
3464 	return newsk;
3465 }
3466 
3467 /* The SCTP ioctl handler. */
3468 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3469 {
3470 	return -ENOIOCTLCMD;
3471 }
3472 
3473 /* This is the function which gets called during socket creation to
3474  * initialized the SCTP-specific portion of the sock.
3475  * The sock structure should already be zero-filled memory.
3476  */
3477 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3478 {
3479 	struct sctp_endpoint *ep;
3480 	struct sctp_sock *sp;
3481 
3482 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3483 
3484 	sp = sctp_sk(sk);
3485 
3486 	/* Initialize the SCTP per socket area.  */
3487 	switch (sk->sk_type) {
3488 	case SOCK_SEQPACKET:
3489 		sp->type = SCTP_SOCKET_UDP;
3490 		break;
3491 	case SOCK_STREAM:
3492 		sp->type = SCTP_SOCKET_TCP;
3493 		break;
3494 	default:
3495 		return -ESOCKTNOSUPPORT;
3496 	}
3497 
3498 	/* Initialize default send parameters. These parameters can be
3499 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3500 	 */
3501 	sp->default_stream = 0;
3502 	sp->default_ppid = 0;
3503 	sp->default_flags = 0;
3504 	sp->default_context = 0;
3505 	sp->default_timetolive = 0;
3506 
3507 	sp->default_rcv_context = 0;
3508 	sp->max_burst = sctp_max_burst;
3509 
3510 	/* Initialize default setup parameters. These parameters
3511 	 * can be modified with the SCTP_INITMSG socket option or
3512 	 * overridden by the SCTP_INIT CMSG.
3513 	 */
3514 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3515 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3516 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3517 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3518 
3519 	/* Initialize default RTO related parameters.  These parameters can
3520 	 * be modified for with the SCTP_RTOINFO socket option.
3521 	 */
3522 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3523 	sp->rtoinfo.srto_max     = sctp_rto_max;
3524 	sp->rtoinfo.srto_min     = sctp_rto_min;
3525 
3526 	/* Initialize default association related parameters. These parameters
3527 	 * can be modified with the SCTP_ASSOCINFO socket option.
3528 	 */
3529 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3530 	sp->assocparams.sasoc_number_peer_destinations = 0;
3531 	sp->assocparams.sasoc_peer_rwnd = 0;
3532 	sp->assocparams.sasoc_local_rwnd = 0;
3533 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3534 
3535 	/* Initialize default event subscriptions. By default, all the
3536 	 * options are off.
3537 	 */
3538 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3539 
3540 	/* Default Peer Address Parameters.  These defaults can
3541 	 * be modified via SCTP_PEER_ADDR_PARAMS
3542 	 */
3543 	sp->hbinterval  = sctp_hb_interval;
3544 	sp->pathmaxrxt  = sctp_max_retrans_path;
3545 	sp->pathmtu     = 0; // allow default discovery
3546 	sp->sackdelay   = sctp_sack_timeout;
3547 	sp->sackfreq	= 2;
3548 	sp->param_flags = SPP_HB_ENABLE |
3549 			  SPP_PMTUD_ENABLE |
3550 			  SPP_SACKDELAY_ENABLE;
3551 
3552 	/* If enabled no SCTP message fragmentation will be performed.
3553 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3554 	 */
3555 	sp->disable_fragments = 0;
3556 
3557 	/* Enable Nagle algorithm by default.  */
3558 	sp->nodelay           = 0;
3559 
3560 	/* Enable by default. */
3561 	sp->v4mapped          = 1;
3562 
3563 	/* Auto-close idle associations after the configured
3564 	 * number of seconds.  A value of 0 disables this
3565 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3566 	 * for UDP-style sockets only.
3567 	 */
3568 	sp->autoclose         = 0;
3569 
3570 	/* User specified fragmentation limit. */
3571 	sp->user_frag         = 0;
3572 
3573 	sp->adaptation_ind = 0;
3574 
3575 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3576 
3577 	/* Control variables for partial data delivery. */
3578 	atomic_set(&sp->pd_mode, 0);
3579 	skb_queue_head_init(&sp->pd_lobby);
3580 	sp->frag_interleave = 0;
3581 
3582 	/* Create a per socket endpoint structure.  Even if we
3583 	 * change the data structure relationships, this may still
3584 	 * be useful for storing pre-connect address information.
3585 	 */
3586 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3587 	if (!ep)
3588 		return -ENOMEM;
3589 
3590 	sp->ep = ep;
3591 	sp->hmac = NULL;
3592 
3593 	SCTP_DBG_OBJCNT_INC(sock);
3594 	atomic_inc(&sctp_sockets_allocated);
3595 	return 0;
3596 }
3597 
3598 /* Cleanup any SCTP per socket resources.  */
3599 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3600 {
3601 	struct sctp_endpoint *ep;
3602 
3603 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3604 
3605 	/* Release our hold on the endpoint. */
3606 	ep = sctp_sk(sk)->ep;
3607 	sctp_endpoint_free(ep);
3608 	atomic_dec(&sctp_sockets_allocated);
3609 }
3610 
3611 /* API 4.1.7 shutdown() - TCP Style Syntax
3612  *     int shutdown(int socket, int how);
3613  *
3614  *     sd      - the socket descriptor of the association to be closed.
3615  *     how     - Specifies the type of shutdown.  The  values  are
3616  *               as follows:
3617  *               SHUT_RD
3618  *                     Disables further receive operations. No SCTP
3619  *                     protocol action is taken.
3620  *               SHUT_WR
3621  *                     Disables further send operations, and initiates
3622  *                     the SCTP shutdown sequence.
3623  *               SHUT_RDWR
3624  *                     Disables further send  and  receive  operations
3625  *                     and initiates the SCTP shutdown sequence.
3626  */
3627 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3628 {
3629 	struct sctp_endpoint *ep;
3630 	struct sctp_association *asoc;
3631 
3632 	if (!sctp_style(sk, TCP))
3633 		return;
3634 
3635 	if (how & SEND_SHUTDOWN) {
3636 		ep = sctp_sk(sk)->ep;
3637 		if (!list_empty(&ep->asocs)) {
3638 			asoc = list_entry(ep->asocs.next,
3639 					  struct sctp_association, asocs);
3640 			sctp_primitive_SHUTDOWN(asoc, NULL);
3641 		}
3642 	}
3643 }
3644 
3645 /* 7.2.1 Association Status (SCTP_STATUS)
3646 
3647  * Applications can retrieve current status information about an
3648  * association, including association state, peer receiver window size,
3649  * number of unacked data chunks, and number of data chunks pending
3650  * receipt.  This information is read-only.
3651  */
3652 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3653 				       char __user *optval,
3654 				       int __user *optlen)
3655 {
3656 	struct sctp_status status;
3657 	struct sctp_association *asoc = NULL;
3658 	struct sctp_transport *transport;
3659 	sctp_assoc_t associd;
3660 	int retval = 0;
3661 
3662 	if (len < sizeof(status)) {
3663 		retval = -EINVAL;
3664 		goto out;
3665 	}
3666 
3667 	len = sizeof(status);
3668 	if (copy_from_user(&status, optval, len)) {
3669 		retval = -EFAULT;
3670 		goto out;
3671 	}
3672 
3673 	associd = status.sstat_assoc_id;
3674 	asoc = sctp_id2assoc(sk, associd);
3675 	if (!asoc) {
3676 		retval = -EINVAL;
3677 		goto out;
3678 	}
3679 
3680 	transport = asoc->peer.primary_path;
3681 
3682 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3683 	status.sstat_state = asoc->state;
3684 	status.sstat_rwnd =  asoc->peer.rwnd;
3685 	status.sstat_unackdata = asoc->unack_data;
3686 
3687 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3688 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3689 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3690 	status.sstat_fragmentation_point = asoc->frag_point;
3691 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3692 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3693 			transport->af_specific->sockaddr_len);
3694 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3695 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3696 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3697 	status.sstat_primary.spinfo_state = transport->state;
3698 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3699 	status.sstat_primary.spinfo_srtt = transport->srtt;
3700 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3701 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3702 
3703 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3704 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3705 
3706 	if (put_user(len, optlen)) {
3707 		retval = -EFAULT;
3708 		goto out;
3709 	}
3710 
3711 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3712 			  len, status.sstat_state, status.sstat_rwnd,
3713 			  status.sstat_assoc_id);
3714 
3715 	if (copy_to_user(optval, &status, len)) {
3716 		retval = -EFAULT;
3717 		goto out;
3718 	}
3719 
3720 out:
3721 	return (retval);
3722 }
3723 
3724 
3725 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3726  *
3727  * Applications can retrieve information about a specific peer address
3728  * of an association, including its reachability state, congestion
3729  * window, and retransmission timer values.  This information is
3730  * read-only.
3731  */
3732 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3733 					  char __user *optval,
3734 					  int __user *optlen)
3735 {
3736 	struct sctp_paddrinfo pinfo;
3737 	struct sctp_transport *transport;
3738 	int retval = 0;
3739 
3740 	if (len < sizeof(pinfo)) {
3741 		retval = -EINVAL;
3742 		goto out;
3743 	}
3744 
3745 	len = sizeof(pinfo);
3746 	if (copy_from_user(&pinfo, optval, len)) {
3747 		retval = -EFAULT;
3748 		goto out;
3749 	}
3750 
3751 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3752 					   pinfo.spinfo_assoc_id);
3753 	if (!transport)
3754 		return -EINVAL;
3755 
3756 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3757 	pinfo.spinfo_state = transport->state;
3758 	pinfo.spinfo_cwnd = transport->cwnd;
3759 	pinfo.spinfo_srtt = transport->srtt;
3760 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3761 	pinfo.spinfo_mtu = transport->pathmtu;
3762 
3763 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3764 		pinfo.spinfo_state = SCTP_ACTIVE;
3765 
3766 	if (put_user(len, optlen)) {
3767 		retval = -EFAULT;
3768 		goto out;
3769 	}
3770 
3771 	if (copy_to_user(optval, &pinfo, len)) {
3772 		retval = -EFAULT;
3773 		goto out;
3774 	}
3775 
3776 out:
3777 	return (retval);
3778 }
3779 
3780 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3781  *
3782  * This option is a on/off flag.  If enabled no SCTP message
3783  * fragmentation will be performed.  Instead if a message being sent
3784  * exceeds the current PMTU size, the message will NOT be sent and
3785  * instead a error will be indicated to the user.
3786  */
3787 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3788 					char __user *optval, int __user *optlen)
3789 {
3790 	int val;
3791 
3792 	if (len < sizeof(int))
3793 		return -EINVAL;
3794 
3795 	len = sizeof(int);
3796 	val = (sctp_sk(sk)->disable_fragments == 1);
3797 	if (put_user(len, optlen))
3798 		return -EFAULT;
3799 	if (copy_to_user(optval, &val, len))
3800 		return -EFAULT;
3801 	return 0;
3802 }
3803 
3804 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3805  *
3806  * This socket option is used to specify various notifications and
3807  * ancillary data the user wishes to receive.
3808  */
3809 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3810 				  int __user *optlen)
3811 {
3812 	if (len < sizeof(struct sctp_event_subscribe))
3813 		return -EINVAL;
3814 	len = sizeof(struct sctp_event_subscribe);
3815 	if (put_user(len, optlen))
3816 		return -EFAULT;
3817 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3818 		return -EFAULT;
3819 	return 0;
3820 }
3821 
3822 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3823  *
3824  * This socket option is applicable to the UDP-style socket only.  When
3825  * set it will cause associations that are idle for more than the
3826  * specified number of seconds to automatically close.  An association
3827  * being idle is defined an association that has NOT sent or received
3828  * user data.  The special value of '0' indicates that no automatic
3829  * close of any associations should be performed.  The option expects an
3830  * integer defining the number of seconds of idle time before an
3831  * association is closed.
3832  */
3833 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3834 {
3835 	/* Applicable to UDP-style socket only */
3836 	if (sctp_style(sk, TCP))
3837 		return -EOPNOTSUPP;
3838 	if (len < sizeof(int))
3839 		return -EINVAL;
3840 	len = sizeof(int);
3841 	if (put_user(len, optlen))
3842 		return -EFAULT;
3843 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3844 		return -EFAULT;
3845 	return 0;
3846 }
3847 
3848 /* Helper routine to branch off an association to a new socket.  */
3849 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3850 				struct socket **sockp)
3851 {
3852 	struct sock *sk = asoc->base.sk;
3853 	struct socket *sock;
3854 	struct inet_sock *inetsk;
3855 	struct sctp_af *af;
3856 	int err = 0;
3857 
3858 	/* An association cannot be branched off from an already peeled-off
3859 	 * socket, nor is this supported for tcp style sockets.
3860 	 */
3861 	if (!sctp_style(sk, UDP))
3862 		return -EINVAL;
3863 
3864 	/* Create a new socket.  */
3865 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3866 	if (err < 0)
3867 		return err;
3868 
3869 	/* Populate the fields of the newsk from the oldsk and migrate the
3870 	 * asoc to the newsk.
3871 	 */
3872 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3873 
3874 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3875 	 * Set the daddr and initialize id to something more random
3876 	 */
3877 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3878 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3879 	inetsk = inet_sk(sock->sk);
3880 	inetsk->id = asoc->next_tsn ^ jiffies;
3881 
3882 	*sockp = sock;
3883 
3884 	return err;
3885 }
3886 
3887 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3888 {
3889 	sctp_peeloff_arg_t peeloff;
3890 	struct socket *newsock;
3891 	int retval = 0;
3892 	struct sctp_association *asoc;
3893 
3894 	if (len < sizeof(sctp_peeloff_arg_t))
3895 		return -EINVAL;
3896 	len = sizeof(sctp_peeloff_arg_t);
3897 	if (copy_from_user(&peeloff, optval, len))
3898 		return -EFAULT;
3899 
3900 	asoc = sctp_id2assoc(sk, peeloff.associd);
3901 	if (!asoc) {
3902 		retval = -EINVAL;
3903 		goto out;
3904 	}
3905 
3906 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3907 
3908 	retval = sctp_do_peeloff(asoc, &newsock);
3909 	if (retval < 0)
3910 		goto out;
3911 
3912 	/* Map the socket to an unused fd that can be returned to the user.  */
3913 	retval = sock_map_fd(newsock, 0);
3914 	if (retval < 0) {
3915 		sock_release(newsock);
3916 		goto out;
3917 	}
3918 
3919 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3920 			  __func__, sk, asoc, newsock->sk, retval);
3921 
3922 	/* Return the fd mapped to the new socket.  */
3923 	peeloff.sd = retval;
3924 	if (put_user(len, optlen))
3925 		return -EFAULT;
3926 	if (copy_to_user(optval, &peeloff, len))
3927 		retval = -EFAULT;
3928 
3929 out:
3930 	return retval;
3931 }
3932 
3933 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3934  *
3935  * Applications can enable or disable heartbeats for any peer address of
3936  * an association, modify an address's heartbeat interval, force a
3937  * heartbeat to be sent immediately, and adjust the address's maximum
3938  * number of retransmissions sent before an address is considered
3939  * unreachable.  The following structure is used to access and modify an
3940  * address's parameters:
3941  *
3942  *  struct sctp_paddrparams {
3943  *     sctp_assoc_t            spp_assoc_id;
3944  *     struct sockaddr_storage spp_address;
3945  *     uint32_t                spp_hbinterval;
3946  *     uint16_t                spp_pathmaxrxt;
3947  *     uint32_t                spp_pathmtu;
3948  *     uint32_t                spp_sackdelay;
3949  *     uint32_t                spp_flags;
3950  * };
3951  *
3952  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3953  *                     application, and identifies the association for
3954  *                     this query.
3955  *   spp_address     - This specifies which address is of interest.
3956  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3957  *                     in milliseconds.  If a  value of zero
3958  *                     is present in this field then no changes are to
3959  *                     be made to this parameter.
3960  *   spp_pathmaxrxt  - This contains the maximum number of
3961  *                     retransmissions before this address shall be
3962  *                     considered unreachable. If a  value of zero
3963  *                     is present in this field then no changes are to
3964  *                     be made to this parameter.
3965  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3966  *                     specified here will be the "fixed" path mtu.
3967  *                     Note that if the spp_address field is empty
3968  *                     then all associations on this address will
3969  *                     have this fixed path mtu set upon them.
3970  *
3971  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3972  *                     the number of milliseconds that sacks will be delayed
3973  *                     for. This value will apply to all addresses of an
3974  *                     association if the spp_address field is empty. Note
3975  *                     also, that if delayed sack is enabled and this
3976  *                     value is set to 0, no change is made to the last
3977  *                     recorded delayed sack timer value.
3978  *
3979  *   spp_flags       - These flags are used to control various features
3980  *                     on an association. The flag field may contain
3981  *                     zero or more of the following options.
3982  *
3983  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3984  *                     specified address. Note that if the address
3985  *                     field is empty all addresses for the association
3986  *                     have heartbeats enabled upon them.
3987  *
3988  *                     SPP_HB_DISABLE - Disable heartbeats on the
3989  *                     speicifed address. Note that if the address
3990  *                     field is empty all addresses for the association
3991  *                     will have their heartbeats disabled. Note also
3992  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3993  *                     mutually exclusive, only one of these two should
3994  *                     be specified. Enabling both fields will have
3995  *                     undetermined results.
3996  *
3997  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3998  *                     to be made immediately.
3999  *
4000  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4001  *                     discovery upon the specified address. Note that
4002  *                     if the address feild is empty then all addresses
4003  *                     on the association are effected.
4004  *
4005  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4006  *                     discovery upon the specified address. Note that
4007  *                     if the address feild is empty then all addresses
4008  *                     on the association are effected. Not also that
4009  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4010  *                     exclusive. Enabling both will have undetermined
4011  *                     results.
4012  *
4013  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4014  *                     on delayed sack. The time specified in spp_sackdelay
4015  *                     is used to specify the sack delay for this address. Note
4016  *                     that if spp_address is empty then all addresses will
4017  *                     enable delayed sack and take on the sack delay
4018  *                     value specified in spp_sackdelay.
4019  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4020  *                     off delayed sack. If the spp_address field is blank then
4021  *                     delayed sack is disabled for the entire association. Note
4022  *                     also that this field is mutually exclusive to
4023  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4024  *                     results.
4025  */
4026 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4027 					    char __user *optval, int __user *optlen)
4028 {
4029 	struct sctp_paddrparams  params;
4030 	struct sctp_transport   *trans = NULL;
4031 	struct sctp_association *asoc = NULL;
4032 	struct sctp_sock        *sp = sctp_sk(sk);
4033 
4034 	if (len < sizeof(struct sctp_paddrparams))
4035 		return -EINVAL;
4036 	len = sizeof(struct sctp_paddrparams);
4037 	if (copy_from_user(&params, optval, len))
4038 		return -EFAULT;
4039 
4040 	/* If an address other than INADDR_ANY is specified, and
4041 	 * no transport is found, then the request is invalid.
4042 	 */
4043 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
4044 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4045 					       params.spp_assoc_id);
4046 		if (!trans) {
4047 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4048 			return -EINVAL;
4049 		}
4050 	}
4051 
4052 	/* Get association, if assoc_id != 0 and the socket is a one
4053 	 * to many style socket, and an association was not found, then
4054 	 * the id was invalid.
4055 	 */
4056 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4057 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4058 		SCTP_DEBUG_PRINTK("Failed no association\n");
4059 		return -EINVAL;
4060 	}
4061 
4062 	if (trans) {
4063 		/* Fetch transport values. */
4064 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4065 		params.spp_pathmtu    = trans->pathmtu;
4066 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4067 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4068 
4069 		/*draft-11 doesn't say what to return in spp_flags*/
4070 		params.spp_flags      = trans->param_flags;
4071 	} else if (asoc) {
4072 		/* Fetch association values. */
4073 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4074 		params.spp_pathmtu    = asoc->pathmtu;
4075 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4076 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4077 
4078 		/*draft-11 doesn't say what to return in spp_flags*/
4079 		params.spp_flags      = asoc->param_flags;
4080 	} else {
4081 		/* Fetch socket values. */
4082 		params.spp_hbinterval = sp->hbinterval;
4083 		params.spp_pathmtu    = sp->pathmtu;
4084 		params.spp_sackdelay  = sp->sackdelay;
4085 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4086 
4087 		/*draft-11 doesn't say what to return in spp_flags*/
4088 		params.spp_flags      = sp->param_flags;
4089 	}
4090 
4091 	if (copy_to_user(optval, &params, len))
4092 		return -EFAULT;
4093 
4094 	if (put_user(len, optlen))
4095 		return -EFAULT;
4096 
4097 	return 0;
4098 }
4099 
4100 /*
4101  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4102  *
4103  * This option will effect the way delayed acks are performed.  This
4104  * option allows you to get or set the delayed ack time, in
4105  * milliseconds.  It also allows changing the delayed ack frequency.
4106  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4107  * the assoc_id is 0, then this sets or gets the endpoints default
4108  * values.  If the assoc_id field is non-zero, then the set or get
4109  * effects the specified association for the one to many model (the
4110  * assoc_id field is ignored by the one to one model).  Note that if
4111  * sack_delay or sack_freq are 0 when setting this option, then the
4112  * current values will remain unchanged.
4113  *
4114  * struct sctp_sack_info {
4115  *     sctp_assoc_t            sack_assoc_id;
4116  *     uint32_t                sack_delay;
4117  *     uint32_t                sack_freq;
4118  * };
4119  *
4120  * sack_assoc_id -  This parameter, indicates which association the user
4121  *    is performing an action upon.  Note that if this field's value is
4122  *    zero then the endpoints default value is changed (effecting future
4123  *    associations only).
4124  *
4125  * sack_delay -  This parameter contains the number of milliseconds that
4126  *    the user is requesting the delayed ACK timer be set to.  Note that
4127  *    this value is defined in the standard to be between 200 and 500
4128  *    milliseconds.
4129  *
4130  * sack_freq -  This parameter contains the number of packets that must
4131  *    be received before a sack is sent without waiting for the delay
4132  *    timer to expire.  The default value for this is 2, setting this
4133  *    value to 1 will disable the delayed sack algorithm.
4134  */
4135 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4136 					    char __user *optval,
4137 					    int __user *optlen)
4138 {
4139 	struct sctp_sack_info    params;
4140 	struct sctp_association *asoc = NULL;
4141 	struct sctp_sock        *sp = sctp_sk(sk);
4142 
4143 	if (len >= sizeof(struct sctp_sack_info)) {
4144 		len = sizeof(struct sctp_sack_info);
4145 
4146 		if (copy_from_user(&params, optval, len))
4147 			return -EFAULT;
4148 	} else if (len == sizeof(struct sctp_assoc_value)) {
4149 		printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
4150 		       "in delayed_ack socket option deprecated\n");
4151 		printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
4152 		if (copy_from_user(&params, optval, len))
4153 			return -EFAULT;
4154 	} else
4155 		return - EINVAL;
4156 
4157 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4158 	 * to many style socket, and an association was not found, then
4159 	 * the id was invalid.
4160 	 */
4161 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4162 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4163 		return -EINVAL;
4164 
4165 	if (asoc) {
4166 		/* Fetch association values. */
4167 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4168 			params.sack_delay = jiffies_to_msecs(
4169 				asoc->sackdelay);
4170 			params.sack_freq = asoc->sackfreq;
4171 
4172 		} else {
4173 			params.sack_delay = 0;
4174 			params.sack_freq = 1;
4175 		}
4176 	} else {
4177 		/* Fetch socket values. */
4178 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4179 			params.sack_delay  = sp->sackdelay;
4180 			params.sack_freq = sp->sackfreq;
4181 		} else {
4182 			params.sack_delay  = 0;
4183 			params.sack_freq = 1;
4184 		}
4185 	}
4186 
4187 	if (copy_to_user(optval, &params, len))
4188 		return -EFAULT;
4189 
4190 	if (put_user(len, optlen))
4191 		return -EFAULT;
4192 
4193 	return 0;
4194 }
4195 
4196 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4197  *
4198  * Applications can specify protocol parameters for the default association
4199  * initialization.  The option name argument to setsockopt() and getsockopt()
4200  * is SCTP_INITMSG.
4201  *
4202  * Setting initialization parameters is effective only on an unconnected
4203  * socket (for UDP-style sockets only future associations are effected
4204  * by the change).  With TCP-style sockets, this option is inherited by
4205  * sockets derived from a listener socket.
4206  */
4207 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4208 {
4209 	if (len < sizeof(struct sctp_initmsg))
4210 		return -EINVAL;
4211 	len = sizeof(struct sctp_initmsg);
4212 	if (put_user(len, optlen))
4213 		return -EFAULT;
4214 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4215 		return -EFAULT;
4216 	return 0;
4217 }
4218 
4219 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4220 					      char __user *optval,
4221 					      int __user *optlen)
4222 {
4223 	sctp_assoc_t id;
4224 	struct sctp_association *asoc;
4225 	struct list_head *pos;
4226 	int cnt = 0;
4227 
4228 	if (len < sizeof(sctp_assoc_t))
4229 		return -EINVAL;
4230 
4231 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4232 		return -EFAULT;
4233 
4234 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4235 			    "socket option deprecated\n");
4236 	/* For UDP-style sockets, id specifies the association to query.  */
4237 	asoc = sctp_id2assoc(sk, id);
4238 	if (!asoc)
4239 		return -EINVAL;
4240 
4241 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4242 		cnt ++;
4243 	}
4244 
4245 	return cnt;
4246 }
4247 
4248 /*
4249  * Old API for getting list of peer addresses. Does not work for 32-bit
4250  * programs running on a 64-bit kernel
4251  */
4252 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4253 					  char __user *optval,
4254 					  int __user *optlen)
4255 {
4256 	struct sctp_association *asoc;
4257 	int cnt = 0;
4258 	struct sctp_getaddrs_old getaddrs;
4259 	struct sctp_transport *from;
4260 	void __user *to;
4261 	union sctp_addr temp;
4262 	struct sctp_sock *sp = sctp_sk(sk);
4263 	int addrlen;
4264 
4265 	if (len < sizeof(struct sctp_getaddrs_old))
4266 		return -EINVAL;
4267 
4268 	len = sizeof(struct sctp_getaddrs_old);
4269 
4270 	if (copy_from_user(&getaddrs, optval, len))
4271 		return -EFAULT;
4272 
4273 	if (getaddrs.addr_num <= 0) return -EINVAL;
4274 
4275 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4276 			    "socket option deprecated\n");
4277 
4278 	/* For UDP-style sockets, id specifies the association to query.  */
4279 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4280 	if (!asoc)
4281 		return -EINVAL;
4282 
4283 	to = (void __user *)getaddrs.addrs;
4284 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4285 				transports) {
4286 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4287 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4288 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4289 		if (copy_to_user(to, &temp, addrlen))
4290 			return -EFAULT;
4291 		to += addrlen ;
4292 		cnt ++;
4293 		if (cnt >= getaddrs.addr_num) break;
4294 	}
4295 	getaddrs.addr_num = cnt;
4296 	if (put_user(len, optlen))
4297 		return -EFAULT;
4298 	if (copy_to_user(optval, &getaddrs, len))
4299 		return -EFAULT;
4300 
4301 	return 0;
4302 }
4303 
4304 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4305 				      char __user *optval, int __user *optlen)
4306 {
4307 	struct sctp_association *asoc;
4308 	int cnt = 0;
4309 	struct sctp_getaddrs getaddrs;
4310 	struct sctp_transport *from;
4311 	void __user *to;
4312 	union sctp_addr temp;
4313 	struct sctp_sock *sp = sctp_sk(sk);
4314 	int addrlen;
4315 	size_t space_left;
4316 	int bytes_copied;
4317 
4318 	if (len < sizeof(struct sctp_getaddrs))
4319 		return -EINVAL;
4320 
4321 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4322 		return -EFAULT;
4323 
4324 	/* For UDP-style sockets, id specifies the association to query.  */
4325 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4326 	if (!asoc)
4327 		return -EINVAL;
4328 
4329 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4330 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4331 
4332 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4333 				transports) {
4334 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4335 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4336 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4337 		if (space_left < addrlen)
4338 			return -ENOMEM;
4339 		if (copy_to_user(to, &temp, addrlen))
4340 			return -EFAULT;
4341 		to += addrlen;
4342 		cnt++;
4343 		space_left -= addrlen;
4344 	}
4345 
4346 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4347 		return -EFAULT;
4348 	bytes_copied = ((char __user *)to) - optval;
4349 	if (put_user(bytes_copied, optlen))
4350 		return -EFAULT;
4351 
4352 	return 0;
4353 }
4354 
4355 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4356 					       char __user *optval,
4357 					       int __user *optlen)
4358 {
4359 	sctp_assoc_t id;
4360 	struct sctp_bind_addr *bp;
4361 	struct sctp_association *asoc;
4362 	struct sctp_sockaddr_entry *addr;
4363 	int cnt = 0;
4364 
4365 	if (len < sizeof(sctp_assoc_t))
4366 		return -EINVAL;
4367 
4368 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4369 		return -EFAULT;
4370 
4371 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4372 			    "socket option deprecated\n");
4373 
4374 	/*
4375 	 *  For UDP-style sockets, id specifies the association to query.
4376 	 *  If the id field is set to the value '0' then the locally bound
4377 	 *  addresses are returned without regard to any particular
4378 	 *  association.
4379 	 */
4380 	if (0 == id) {
4381 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4382 	} else {
4383 		asoc = sctp_id2assoc(sk, id);
4384 		if (!asoc)
4385 			return -EINVAL;
4386 		bp = &asoc->base.bind_addr;
4387 	}
4388 
4389 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4390 	 * addresses from the global local address list.
4391 	 */
4392 	if (sctp_list_single_entry(&bp->address_list)) {
4393 		addr = list_entry(bp->address_list.next,
4394 				  struct sctp_sockaddr_entry, list);
4395 		if (sctp_is_any(&addr->a)) {
4396 			rcu_read_lock();
4397 			list_for_each_entry_rcu(addr,
4398 						&sctp_local_addr_list, list) {
4399 				if (!addr->valid)
4400 					continue;
4401 
4402 				if ((PF_INET == sk->sk_family) &&
4403 				    (AF_INET6 == addr->a.sa.sa_family))
4404 					continue;
4405 
4406 				if ((PF_INET6 == sk->sk_family) &&
4407 				    inet_v6_ipv6only(sk) &&
4408 				    (AF_INET == addr->a.sa.sa_family))
4409 					continue;
4410 
4411 				cnt++;
4412 			}
4413 			rcu_read_unlock();
4414 		} else {
4415 			cnt = 1;
4416 		}
4417 		goto done;
4418 	}
4419 
4420 	/* Protection on the bound address list is not needed,
4421 	 * since in the socket option context we hold the socket lock,
4422 	 * so there is no way that the bound address list can change.
4423 	 */
4424 	list_for_each_entry(addr, &bp->address_list, list) {
4425 		cnt ++;
4426 	}
4427 done:
4428 	return cnt;
4429 }
4430 
4431 /* Helper function that copies local addresses to user and returns the number
4432  * of addresses copied.
4433  */
4434 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4435 					int max_addrs, void *to,
4436 					int *bytes_copied)
4437 {
4438 	struct sctp_sockaddr_entry *addr;
4439 	union sctp_addr temp;
4440 	int cnt = 0;
4441 	int addrlen;
4442 
4443 	rcu_read_lock();
4444 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4445 		if (!addr->valid)
4446 			continue;
4447 
4448 		if ((PF_INET == sk->sk_family) &&
4449 		    (AF_INET6 == addr->a.sa.sa_family))
4450 			continue;
4451 		if ((PF_INET6 == sk->sk_family) &&
4452 		    inet_v6_ipv6only(sk) &&
4453 		    (AF_INET == addr->a.sa.sa_family))
4454 			continue;
4455 		memcpy(&temp, &addr->a, sizeof(temp));
4456 		if (!temp.v4.sin_port)
4457 			temp.v4.sin_port = htons(port);
4458 
4459 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4460 								&temp);
4461 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4462 		memcpy(to, &temp, addrlen);
4463 
4464 		to += addrlen;
4465 		*bytes_copied += addrlen;
4466 		cnt ++;
4467 		if (cnt >= max_addrs) break;
4468 	}
4469 	rcu_read_unlock();
4470 
4471 	return cnt;
4472 }
4473 
4474 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4475 			    size_t space_left, int *bytes_copied)
4476 {
4477 	struct sctp_sockaddr_entry *addr;
4478 	union sctp_addr temp;
4479 	int cnt = 0;
4480 	int addrlen;
4481 
4482 	rcu_read_lock();
4483 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4484 		if (!addr->valid)
4485 			continue;
4486 
4487 		if ((PF_INET == sk->sk_family) &&
4488 		    (AF_INET6 == addr->a.sa.sa_family))
4489 			continue;
4490 		if ((PF_INET6 == sk->sk_family) &&
4491 		    inet_v6_ipv6only(sk) &&
4492 		    (AF_INET == addr->a.sa.sa_family))
4493 			continue;
4494 		memcpy(&temp, &addr->a, sizeof(temp));
4495 		if (!temp.v4.sin_port)
4496 			temp.v4.sin_port = htons(port);
4497 
4498 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4499 								&temp);
4500 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4501 		if (space_left < addrlen) {
4502 			cnt =  -ENOMEM;
4503 			break;
4504 		}
4505 		memcpy(to, &temp, addrlen);
4506 
4507 		to += addrlen;
4508 		cnt ++;
4509 		space_left -= addrlen;
4510 		*bytes_copied += addrlen;
4511 	}
4512 	rcu_read_unlock();
4513 
4514 	return cnt;
4515 }
4516 
4517 /* Old API for getting list of local addresses. Does not work for 32-bit
4518  * programs running on a 64-bit kernel
4519  */
4520 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4521 					   char __user *optval, int __user *optlen)
4522 {
4523 	struct sctp_bind_addr *bp;
4524 	struct sctp_association *asoc;
4525 	int cnt = 0;
4526 	struct sctp_getaddrs_old getaddrs;
4527 	struct sctp_sockaddr_entry *addr;
4528 	void __user *to;
4529 	union sctp_addr temp;
4530 	struct sctp_sock *sp = sctp_sk(sk);
4531 	int addrlen;
4532 	int err = 0;
4533 	void *addrs;
4534 	void *buf;
4535 	int bytes_copied = 0;
4536 
4537 	if (len < sizeof(struct sctp_getaddrs_old))
4538 		return -EINVAL;
4539 
4540 	len = sizeof(struct sctp_getaddrs_old);
4541 	if (copy_from_user(&getaddrs, optval, len))
4542 		return -EFAULT;
4543 
4544 	if (getaddrs.addr_num <= 0 ||
4545 	    getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4546 		return -EINVAL;
4547 
4548 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4549 			    "socket option deprecated\n");
4550 
4551 	/*
4552 	 *  For UDP-style sockets, id specifies the association to query.
4553 	 *  If the id field is set to the value '0' then the locally bound
4554 	 *  addresses are returned without regard to any particular
4555 	 *  association.
4556 	 */
4557 	if (0 == getaddrs.assoc_id) {
4558 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4559 	} else {
4560 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4561 		if (!asoc)
4562 			return -EINVAL;
4563 		bp = &asoc->base.bind_addr;
4564 	}
4565 
4566 	to = getaddrs.addrs;
4567 
4568 	/* Allocate space for a local instance of packed array to hold all
4569 	 * the data.  We store addresses here first and then put write them
4570 	 * to the user in one shot.
4571 	 */
4572 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4573 			GFP_KERNEL);
4574 	if (!addrs)
4575 		return -ENOMEM;
4576 
4577 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4578 	 * addresses from the global local address list.
4579 	 */
4580 	if (sctp_list_single_entry(&bp->address_list)) {
4581 		addr = list_entry(bp->address_list.next,
4582 				  struct sctp_sockaddr_entry, list);
4583 		if (sctp_is_any(&addr->a)) {
4584 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4585 						   getaddrs.addr_num,
4586 						   addrs, &bytes_copied);
4587 			goto copy_getaddrs;
4588 		}
4589 	}
4590 
4591 	buf = addrs;
4592 	/* Protection on the bound address list is not needed since
4593 	 * in the socket option context we hold a socket lock and
4594 	 * thus the bound address list can't change.
4595 	 */
4596 	list_for_each_entry(addr, &bp->address_list, list) {
4597 		memcpy(&temp, &addr->a, sizeof(temp));
4598 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4599 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4600 		memcpy(buf, &temp, addrlen);
4601 		buf += addrlen;
4602 		bytes_copied += addrlen;
4603 		cnt ++;
4604 		if (cnt >= getaddrs.addr_num) break;
4605 	}
4606 
4607 copy_getaddrs:
4608 	/* copy the entire address list into the user provided space */
4609 	if (copy_to_user(to, addrs, bytes_copied)) {
4610 		err = -EFAULT;
4611 		goto error;
4612 	}
4613 
4614 	/* copy the leading structure back to user */
4615 	getaddrs.addr_num = cnt;
4616 	if (copy_to_user(optval, &getaddrs, len))
4617 		err = -EFAULT;
4618 
4619 error:
4620 	kfree(addrs);
4621 	return err;
4622 }
4623 
4624 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4625 				       char __user *optval, int __user *optlen)
4626 {
4627 	struct sctp_bind_addr *bp;
4628 	struct sctp_association *asoc;
4629 	int cnt = 0;
4630 	struct sctp_getaddrs getaddrs;
4631 	struct sctp_sockaddr_entry *addr;
4632 	void __user *to;
4633 	union sctp_addr temp;
4634 	struct sctp_sock *sp = sctp_sk(sk);
4635 	int addrlen;
4636 	int err = 0;
4637 	size_t space_left;
4638 	int bytes_copied = 0;
4639 	void *addrs;
4640 	void *buf;
4641 
4642 	if (len < sizeof(struct sctp_getaddrs))
4643 		return -EINVAL;
4644 
4645 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4646 		return -EFAULT;
4647 
4648 	/*
4649 	 *  For UDP-style sockets, id specifies the association to query.
4650 	 *  If the id field is set to the value '0' then the locally bound
4651 	 *  addresses are returned without regard to any particular
4652 	 *  association.
4653 	 */
4654 	if (0 == getaddrs.assoc_id) {
4655 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4656 	} else {
4657 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4658 		if (!asoc)
4659 			return -EINVAL;
4660 		bp = &asoc->base.bind_addr;
4661 	}
4662 
4663 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4664 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4665 
4666 	addrs = kmalloc(space_left, GFP_KERNEL);
4667 	if (!addrs)
4668 		return -ENOMEM;
4669 
4670 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4671 	 * addresses from the global local address list.
4672 	 */
4673 	if (sctp_list_single_entry(&bp->address_list)) {
4674 		addr = list_entry(bp->address_list.next,
4675 				  struct sctp_sockaddr_entry, list);
4676 		if (sctp_is_any(&addr->a)) {
4677 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4678 						space_left, &bytes_copied);
4679 			if (cnt < 0) {
4680 				err = cnt;
4681 				goto out;
4682 			}
4683 			goto copy_getaddrs;
4684 		}
4685 	}
4686 
4687 	buf = addrs;
4688 	/* Protection on the bound address list is not needed since
4689 	 * in the socket option context we hold a socket lock and
4690 	 * thus the bound address list can't change.
4691 	 */
4692 	list_for_each_entry(addr, &bp->address_list, list) {
4693 		memcpy(&temp, &addr->a, sizeof(temp));
4694 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4695 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4696 		if (space_left < addrlen) {
4697 			err =  -ENOMEM; /*fixme: right error?*/
4698 			goto out;
4699 		}
4700 		memcpy(buf, &temp, addrlen);
4701 		buf += addrlen;
4702 		bytes_copied += addrlen;
4703 		cnt ++;
4704 		space_left -= addrlen;
4705 	}
4706 
4707 copy_getaddrs:
4708 	if (copy_to_user(to, addrs, bytes_copied)) {
4709 		err = -EFAULT;
4710 		goto out;
4711 	}
4712 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4713 		err = -EFAULT;
4714 		goto out;
4715 	}
4716 	if (put_user(bytes_copied, optlen))
4717 		err = -EFAULT;
4718 out:
4719 	kfree(addrs);
4720 	return err;
4721 }
4722 
4723 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4724  *
4725  * Requests that the local SCTP stack use the enclosed peer address as
4726  * the association primary.  The enclosed address must be one of the
4727  * association peer's addresses.
4728  */
4729 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4730 					char __user *optval, int __user *optlen)
4731 {
4732 	struct sctp_prim prim;
4733 	struct sctp_association *asoc;
4734 	struct sctp_sock *sp = sctp_sk(sk);
4735 
4736 	if (len < sizeof(struct sctp_prim))
4737 		return -EINVAL;
4738 
4739 	len = sizeof(struct sctp_prim);
4740 
4741 	if (copy_from_user(&prim, optval, len))
4742 		return -EFAULT;
4743 
4744 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4745 	if (!asoc)
4746 		return -EINVAL;
4747 
4748 	if (!asoc->peer.primary_path)
4749 		return -ENOTCONN;
4750 
4751 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4752 		asoc->peer.primary_path->af_specific->sockaddr_len);
4753 
4754 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4755 			(union sctp_addr *)&prim.ssp_addr);
4756 
4757 	if (put_user(len, optlen))
4758 		return -EFAULT;
4759 	if (copy_to_user(optval, &prim, len))
4760 		return -EFAULT;
4761 
4762 	return 0;
4763 }
4764 
4765 /*
4766  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4767  *
4768  * Requests that the local endpoint set the specified Adaptation Layer
4769  * Indication parameter for all future INIT and INIT-ACK exchanges.
4770  */
4771 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4772 				  char __user *optval, int __user *optlen)
4773 {
4774 	struct sctp_setadaptation adaptation;
4775 
4776 	if (len < sizeof(struct sctp_setadaptation))
4777 		return -EINVAL;
4778 
4779 	len = sizeof(struct sctp_setadaptation);
4780 
4781 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4782 
4783 	if (put_user(len, optlen))
4784 		return -EFAULT;
4785 	if (copy_to_user(optval, &adaptation, len))
4786 		return -EFAULT;
4787 
4788 	return 0;
4789 }
4790 
4791 /*
4792  *
4793  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4794  *
4795  *   Applications that wish to use the sendto() system call may wish to
4796  *   specify a default set of parameters that would normally be supplied
4797  *   through the inclusion of ancillary data.  This socket option allows
4798  *   such an application to set the default sctp_sndrcvinfo structure.
4799 
4800 
4801  *   The application that wishes to use this socket option simply passes
4802  *   in to this call the sctp_sndrcvinfo structure defined in Section
4803  *   5.2.2) The input parameters accepted by this call include
4804  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4805  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4806  *   to this call if the caller is using the UDP model.
4807  *
4808  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4809  */
4810 static int sctp_getsockopt_default_send_param(struct sock *sk,
4811 					int len, char __user *optval,
4812 					int __user *optlen)
4813 {
4814 	struct sctp_sndrcvinfo info;
4815 	struct sctp_association *asoc;
4816 	struct sctp_sock *sp = sctp_sk(sk);
4817 
4818 	if (len < sizeof(struct sctp_sndrcvinfo))
4819 		return -EINVAL;
4820 
4821 	len = sizeof(struct sctp_sndrcvinfo);
4822 
4823 	if (copy_from_user(&info, optval, len))
4824 		return -EFAULT;
4825 
4826 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4827 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4828 		return -EINVAL;
4829 
4830 	if (asoc) {
4831 		info.sinfo_stream = asoc->default_stream;
4832 		info.sinfo_flags = asoc->default_flags;
4833 		info.sinfo_ppid = asoc->default_ppid;
4834 		info.sinfo_context = asoc->default_context;
4835 		info.sinfo_timetolive = asoc->default_timetolive;
4836 	} else {
4837 		info.sinfo_stream = sp->default_stream;
4838 		info.sinfo_flags = sp->default_flags;
4839 		info.sinfo_ppid = sp->default_ppid;
4840 		info.sinfo_context = sp->default_context;
4841 		info.sinfo_timetolive = sp->default_timetolive;
4842 	}
4843 
4844 	if (put_user(len, optlen))
4845 		return -EFAULT;
4846 	if (copy_to_user(optval, &info, len))
4847 		return -EFAULT;
4848 
4849 	return 0;
4850 }
4851 
4852 /*
4853  *
4854  * 7.1.5 SCTP_NODELAY
4855  *
4856  * Turn on/off any Nagle-like algorithm.  This means that packets are
4857  * generally sent as soon as possible and no unnecessary delays are
4858  * introduced, at the cost of more packets in the network.  Expects an
4859  * integer boolean flag.
4860  */
4861 
4862 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4863 				   char __user *optval, int __user *optlen)
4864 {
4865 	int val;
4866 
4867 	if (len < sizeof(int))
4868 		return -EINVAL;
4869 
4870 	len = sizeof(int);
4871 	val = (sctp_sk(sk)->nodelay == 1);
4872 	if (put_user(len, optlen))
4873 		return -EFAULT;
4874 	if (copy_to_user(optval, &val, len))
4875 		return -EFAULT;
4876 	return 0;
4877 }
4878 
4879 /*
4880  *
4881  * 7.1.1 SCTP_RTOINFO
4882  *
4883  * The protocol parameters used to initialize and bound retransmission
4884  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4885  * and modify these parameters.
4886  * All parameters are time values, in milliseconds.  A value of 0, when
4887  * modifying the parameters, indicates that the current value should not
4888  * be changed.
4889  *
4890  */
4891 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4892 				char __user *optval,
4893 				int __user *optlen) {
4894 	struct sctp_rtoinfo rtoinfo;
4895 	struct sctp_association *asoc;
4896 
4897 	if (len < sizeof (struct sctp_rtoinfo))
4898 		return -EINVAL;
4899 
4900 	len = sizeof(struct sctp_rtoinfo);
4901 
4902 	if (copy_from_user(&rtoinfo, optval, len))
4903 		return -EFAULT;
4904 
4905 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4906 
4907 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4908 		return -EINVAL;
4909 
4910 	/* Values corresponding to the specific association. */
4911 	if (asoc) {
4912 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4913 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4914 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4915 	} else {
4916 		/* Values corresponding to the endpoint. */
4917 		struct sctp_sock *sp = sctp_sk(sk);
4918 
4919 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4920 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4921 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4922 	}
4923 
4924 	if (put_user(len, optlen))
4925 		return -EFAULT;
4926 
4927 	if (copy_to_user(optval, &rtoinfo, len))
4928 		return -EFAULT;
4929 
4930 	return 0;
4931 }
4932 
4933 /*
4934  *
4935  * 7.1.2 SCTP_ASSOCINFO
4936  *
4937  * This option is used to tune the maximum retransmission attempts
4938  * of the association.
4939  * Returns an error if the new association retransmission value is
4940  * greater than the sum of the retransmission value  of the peer.
4941  * See [SCTP] for more information.
4942  *
4943  */
4944 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4945 				     char __user *optval,
4946 				     int __user *optlen)
4947 {
4948 
4949 	struct sctp_assocparams assocparams;
4950 	struct sctp_association *asoc;
4951 	struct list_head *pos;
4952 	int cnt = 0;
4953 
4954 	if (len < sizeof (struct sctp_assocparams))
4955 		return -EINVAL;
4956 
4957 	len = sizeof(struct sctp_assocparams);
4958 
4959 	if (copy_from_user(&assocparams, optval, len))
4960 		return -EFAULT;
4961 
4962 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4963 
4964 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4965 		return -EINVAL;
4966 
4967 	/* Values correspoinding to the specific association */
4968 	if (asoc) {
4969 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4970 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4971 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4972 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4973 						* 1000) +
4974 						(asoc->cookie_life.tv_usec
4975 						/ 1000);
4976 
4977 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4978 			cnt ++;
4979 		}
4980 
4981 		assocparams.sasoc_number_peer_destinations = cnt;
4982 	} else {
4983 		/* Values corresponding to the endpoint */
4984 		struct sctp_sock *sp = sctp_sk(sk);
4985 
4986 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4987 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4988 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4989 		assocparams.sasoc_cookie_life =
4990 					sp->assocparams.sasoc_cookie_life;
4991 		assocparams.sasoc_number_peer_destinations =
4992 					sp->assocparams.
4993 					sasoc_number_peer_destinations;
4994 	}
4995 
4996 	if (put_user(len, optlen))
4997 		return -EFAULT;
4998 
4999 	if (copy_to_user(optval, &assocparams, len))
5000 		return -EFAULT;
5001 
5002 	return 0;
5003 }
5004 
5005 /*
5006  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5007  *
5008  * This socket option is a boolean flag which turns on or off mapped V4
5009  * addresses.  If this option is turned on and the socket is type
5010  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5011  * If this option is turned off, then no mapping will be done of V4
5012  * addresses and a user will receive both PF_INET6 and PF_INET type
5013  * addresses on the socket.
5014  */
5015 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5016 				    char __user *optval, int __user *optlen)
5017 {
5018 	int val;
5019 	struct sctp_sock *sp = sctp_sk(sk);
5020 
5021 	if (len < sizeof(int))
5022 		return -EINVAL;
5023 
5024 	len = sizeof(int);
5025 	val = sp->v4mapped;
5026 	if (put_user(len, optlen))
5027 		return -EFAULT;
5028 	if (copy_to_user(optval, &val, len))
5029 		return -EFAULT;
5030 
5031 	return 0;
5032 }
5033 
5034 /*
5035  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5036  * (chapter and verse is quoted at sctp_setsockopt_context())
5037  */
5038 static int sctp_getsockopt_context(struct sock *sk, int len,
5039 				   char __user *optval, int __user *optlen)
5040 {
5041 	struct sctp_assoc_value params;
5042 	struct sctp_sock *sp;
5043 	struct sctp_association *asoc;
5044 
5045 	if (len < sizeof(struct sctp_assoc_value))
5046 		return -EINVAL;
5047 
5048 	len = sizeof(struct sctp_assoc_value);
5049 
5050 	if (copy_from_user(&params, optval, len))
5051 		return -EFAULT;
5052 
5053 	sp = sctp_sk(sk);
5054 
5055 	if (params.assoc_id != 0) {
5056 		asoc = sctp_id2assoc(sk, params.assoc_id);
5057 		if (!asoc)
5058 			return -EINVAL;
5059 		params.assoc_value = asoc->default_rcv_context;
5060 	} else {
5061 		params.assoc_value = sp->default_rcv_context;
5062 	}
5063 
5064 	if (put_user(len, optlen))
5065 		return -EFAULT;
5066 	if (copy_to_user(optval, &params, len))
5067 		return -EFAULT;
5068 
5069 	return 0;
5070 }
5071 
5072 /*
5073  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
5074  *
5075  * This socket option specifies the maximum size to put in any outgoing
5076  * SCTP chunk.  If a message is larger than this size it will be
5077  * fragmented by SCTP into the specified size.  Note that the underlying
5078  * SCTP implementation may fragment into smaller sized chunks when the
5079  * PMTU of the underlying association is smaller than the value set by
5080  * the user.
5081  */
5082 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5083 				  char __user *optval, int __user *optlen)
5084 {
5085 	int val;
5086 
5087 	if (len < sizeof(int))
5088 		return -EINVAL;
5089 
5090 	len = sizeof(int);
5091 
5092 	val = sctp_sk(sk)->user_frag;
5093 	if (put_user(len, optlen))
5094 		return -EFAULT;
5095 	if (copy_to_user(optval, &val, len))
5096 		return -EFAULT;
5097 
5098 	return 0;
5099 }
5100 
5101 /*
5102  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5103  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5104  */
5105 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5106 					       char __user *optval, int __user *optlen)
5107 {
5108 	int val;
5109 
5110 	if (len < sizeof(int))
5111 		return -EINVAL;
5112 
5113 	len = sizeof(int);
5114 
5115 	val = sctp_sk(sk)->frag_interleave;
5116 	if (put_user(len, optlen))
5117 		return -EFAULT;
5118 	if (copy_to_user(optval, &val, len))
5119 		return -EFAULT;
5120 
5121 	return 0;
5122 }
5123 
5124 /*
5125  * 7.1.25.  Set or Get the sctp partial delivery point
5126  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5127  */
5128 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5129 						  char __user *optval,
5130 						  int __user *optlen)
5131 {
5132 	u32 val;
5133 
5134 	if (len < sizeof(u32))
5135 		return -EINVAL;
5136 
5137 	len = sizeof(u32);
5138 
5139 	val = sctp_sk(sk)->pd_point;
5140 	if (put_user(len, optlen))
5141 		return -EFAULT;
5142 	if (copy_to_user(optval, &val, len))
5143 		return -EFAULT;
5144 
5145 	return -ENOTSUPP;
5146 }
5147 
5148 /*
5149  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5150  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5151  */
5152 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5153 				    char __user *optval,
5154 				    int __user *optlen)
5155 {
5156 	struct sctp_assoc_value params;
5157 	struct sctp_sock *sp;
5158 	struct sctp_association *asoc;
5159 
5160 	if (len < sizeof(int))
5161 		return -EINVAL;
5162 
5163 	if (len == sizeof(int)) {
5164 		printk(KERN_WARNING
5165 		   "SCTP: Use of int in max_burst socket option deprecated\n");
5166 		printk(KERN_WARNING
5167 		   "SCTP: Use struct sctp_assoc_value instead\n");
5168 		params.assoc_id = 0;
5169 	} else if (len == sizeof (struct sctp_assoc_value)) {
5170 		if (copy_from_user(&params, optval, len))
5171 			return -EFAULT;
5172 	} else
5173 		return -EINVAL;
5174 
5175 	sp = sctp_sk(sk);
5176 
5177 	if (params.assoc_id != 0) {
5178 		asoc = sctp_id2assoc(sk, params.assoc_id);
5179 		if (!asoc)
5180 			return -EINVAL;
5181 		params.assoc_value = asoc->max_burst;
5182 	} else
5183 		params.assoc_value = sp->max_burst;
5184 
5185 	if (len == sizeof(int)) {
5186 		if (copy_to_user(optval, &params.assoc_value, len))
5187 			return -EFAULT;
5188 	} else {
5189 		if (copy_to_user(optval, &params, len))
5190 			return -EFAULT;
5191 	}
5192 
5193 	return 0;
5194 
5195 }
5196 
5197 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5198 				    char __user *optval, int __user *optlen)
5199 {
5200 	struct sctp_hmac_algo_param *hmacs;
5201 	__u16 param_len;
5202 
5203 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5204 	param_len = ntohs(hmacs->param_hdr.length);
5205 
5206 	if (len < param_len)
5207 		return -EINVAL;
5208 	if (put_user(len, optlen))
5209 		return -EFAULT;
5210 	if (copy_to_user(optval, hmacs->hmac_ids, len))
5211 		return -EFAULT;
5212 
5213 	return 0;
5214 }
5215 
5216 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5217 				    char __user *optval, int __user *optlen)
5218 {
5219 	struct sctp_authkeyid val;
5220 	struct sctp_association *asoc;
5221 
5222 	if (len < sizeof(struct sctp_authkeyid))
5223 		return -EINVAL;
5224 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5225 		return -EFAULT;
5226 
5227 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5228 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5229 		return -EINVAL;
5230 
5231 	if (asoc)
5232 		val.scact_keynumber = asoc->active_key_id;
5233 	else
5234 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5235 
5236 	return 0;
5237 }
5238 
5239 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5240 				    char __user *optval, int __user *optlen)
5241 {
5242 	struct sctp_authchunks __user *p = (void __user *)optval;
5243 	struct sctp_authchunks val;
5244 	struct sctp_association *asoc;
5245 	struct sctp_chunks_param *ch;
5246 	u32    num_chunks;
5247 	char __user *to;
5248 
5249 	if (len <= sizeof(struct sctp_authchunks))
5250 		return -EINVAL;
5251 
5252 	if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5253 		return -EFAULT;
5254 
5255 	to = p->gauth_chunks;
5256 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5257 	if (!asoc)
5258 		return -EINVAL;
5259 
5260 	ch = asoc->peer.peer_chunks;
5261 
5262 	/* See if the user provided enough room for all the data */
5263 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5264 	if (len < num_chunks)
5265 		return -EINVAL;
5266 
5267 	len = num_chunks;
5268 	if (put_user(len, optlen))
5269 		return -EFAULT;
5270 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5271 		return -EFAULT;
5272 	if (copy_to_user(to, ch->chunks, len))
5273 		return -EFAULT;
5274 
5275 	return 0;
5276 }
5277 
5278 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5279 				    char __user *optval, int __user *optlen)
5280 {
5281 	struct sctp_authchunks __user *p = (void __user *)optval;
5282 	struct sctp_authchunks val;
5283 	struct sctp_association *asoc;
5284 	struct sctp_chunks_param *ch;
5285 	u32    num_chunks;
5286 	char __user *to;
5287 
5288 	if (len <= sizeof(struct sctp_authchunks))
5289 		return -EINVAL;
5290 
5291 	if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5292 		return -EFAULT;
5293 
5294 	to = p->gauth_chunks;
5295 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5296 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5297 		return -EINVAL;
5298 
5299 	if (asoc)
5300 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5301 	else
5302 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5303 
5304 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5305 	if (len < num_chunks)
5306 		return -EINVAL;
5307 
5308 	len = num_chunks;
5309 	if (put_user(len, optlen))
5310 		return -EFAULT;
5311 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5312 		return -EFAULT;
5313 	if (copy_to_user(to, ch->chunks, len))
5314 		return -EFAULT;
5315 
5316 	return 0;
5317 }
5318 
5319 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5320 				char __user *optval, int __user *optlen)
5321 {
5322 	int retval = 0;
5323 	int len;
5324 
5325 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5326 			  sk, optname);
5327 
5328 	/* I can hardly begin to describe how wrong this is.  This is
5329 	 * so broken as to be worse than useless.  The API draft
5330 	 * REALLY is NOT helpful here...  I am not convinced that the
5331 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5332 	 * are at all well-founded.
5333 	 */
5334 	if (level != SOL_SCTP) {
5335 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5336 
5337 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5338 		return retval;
5339 	}
5340 
5341 	if (get_user(len, optlen))
5342 		return -EFAULT;
5343 
5344 	sctp_lock_sock(sk);
5345 
5346 	switch (optname) {
5347 	case SCTP_STATUS:
5348 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5349 		break;
5350 	case SCTP_DISABLE_FRAGMENTS:
5351 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5352 							   optlen);
5353 		break;
5354 	case SCTP_EVENTS:
5355 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5356 		break;
5357 	case SCTP_AUTOCLOSE:
5358 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5359 		break;
5360 	case SCTP_SOCKOPT_PEELOFF:
5361 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5362 		break;
5363 	case SCTP_PEER_ADDR_PARAMS:
5364 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5365 							  optlen);
5366 		break;
5367 	case SCTP_DELAYED_ACK:
5368 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5369 							  optlen);
5370 		break;
5371 	case SCTP_INITMSG:
5372 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5373 		break;
5374 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
5375 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5376 							    optlen);
5377 		break;
5378 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5379 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5380 							     optlen);
5381 		break;
5382 	case SCTP_GET_PEER_ADDRS_OLD:
5383 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5384 							optlen);
5385 		break;
5386 	case SCTP_GET_LOCAL_ADDRS_OLD:
5387 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5388 							 optlen);
5389 		break;
5390 	case SCTP_GET_PEER_ADDRS:
5391 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5392 						    optlen);
5393 		break;
5394 	case SCTP_GET_LOCAL_ADDRS:
5395 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5396 						     optlen);
5397 		break;
5398 	case SCTP_DEFAULT_SEND_PARAM:
5399 		retval = sctp_getsockopt_default_send_param(sk, len,
5400 							    optval, optlen);
5401 		break;
5402 	case SCTP_PRIMARY_ADDR:
5403 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5404 		break;
5405 	case SCTP_NODELAY:
5406 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5407 		break;
5408 	case SCTP_RTOINFO:
5409 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5410 		break;
5411 	case SCTP_ASSOCINFO:
5412 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5413 		break;
5414 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5415 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5416 		break;
5417 	case SCTP_MAXSEG:
5418 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5419 		break;
5420 	case SCTP_GET_PEER_ADDR_INFO:
5421 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5422 							optlen);
5423 		break;
5424 	case SCTP_ADAPTATION_LAYER:
5425 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5426 							optlen);
5427 		break;
5428 	case SCTP_CONTEXT:
5429 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5430 		break;
5431 	case SCTP_FRAGMENT_INTERLEAVE:
5432 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5433 							     optlen);
5434 		break;
5435 	case SCTP_PARTIAL_DELIVERY_POINT:
5436 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5437 								optlen);
5438 		break;
5439 	case SCTP_MAX_BURST:
5440 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5441 		break;
5442 	case SCTP_AUTH_KEY:
5443 	case SCTP_AUTH_CHUNK:
5444 	case SCTP_AUTH_DELETE_KEY:
5445 		retval = -EOPNOTSUPP;
5446 		break;
5447 	case SCTP_HMAC_IDENT:
5448 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5449 		break;
5450 	case SCTP_AUTH_ACTIVE_KEY:
5451 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5452 		break;
5453 	case SCTP_PEER_AUTH_CHUNKS:
5454 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5455 							optlen);
5456 		break;
5457 	case SCTP_LOCAL_AUTH_CHUNKS:
5458 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5459 							optlen);
5460 		break;
5461 	default:
5462 		retval = -ENOPROTOOPT;
5463 		break;
5464 	}
5465 
5466 	sctp_release_sock(sk);
5467 	return retval;
5468 }
5469 
5470 static void sctp_hash(struct sock *sk)
5471 {
5472 	/* STUB */
5473 }
5474 
5475 static void sctp_unhash(struct sock *sk)
5476 {
5477 	/* STUB */
5478 }
5479 
5480 /* Check if port is acceptable.  Possibly find first available port.
5481  *
5482  * The port hash table (contained in the 'global' SCTP protocol storage
5483  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5484  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5485  * list (the list number is the port number hashed out, so as you
5486  * would expect from a hash function, all the ports in a given list have
5487  * such a number that hashes out to the same list number; you were
5488  * expecting that, right?); so each list has a set of ports, with a
5489  * link to the socket (struct sock) that uses it, the port number and
5490  * a fastreuse flag (FIXME: NPI ipg).
5491  */
5492 static struct sctp_bind_bucket *sctp_bucket_create(
5493 	struct sctp_bind_hashbucket *head, unsigned short snum);
5494 
5495 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5496 {
5497 	struct sctp_bind_hashbucket *head; /* hash list */
5498 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5499 	struct hlist_node *node;
5500 	unsigned short snum;
5501 	int ret;
5502 
5503 	snum = ntohs(addr->v4.sin_port);
5504 
5505 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5506 	sctp_local_bh_disable();
5507 
5508 	if (snum == 0) {
5509 		/* Search for an available port. */
5510 		int low, high, remaining, index;
5511 		unsigned int rover;
5512 
5513 		inet_get_local_port_range(&low, &high);
5514 		remaining = (high - low) + 1;
5515 		rover = net_random() % remaining + low;
5516 
5517 		do {
5518 			rover++;
5519 			if ((rover < low) || (rover > high))
5520 				rover = low;
5521 			index = sctp_phashfn(rover);
5522 			head = &sctp_port_hashtable[index];
5523 			sctp_spin_lock(&head->lock);
5524 			sctp_for_each_hentry(pp, node, &head->chain)
5525 				if (pp->port == rover)
5526 					goto next;
5527 			break;
5528 		next:
5529 			sctp_spin_unlock(&head->lock);
5530 		} while (--remaining > 0);
5531 
5532 		/* Exhausted local port range during search? */
5533 		ret = 1;
5534 		if (remaining <= 0)
5535 			goto fail;
5536 
5537 		/* OK, here is the one we will use.  HEAD (the port
5538 		 * hash table list entry) is non-NULL and we hold it's
5539 		 * mutex.
5540 		 */
5541 		snum = rover;
5542 	} else {
5543 		/* We are given an specific port number; we verify
5544 		 * that it is not being used. If it is used, we will
5545 		 * exahust the search in the hash list corresponding
5546 		 * to the port number (snum) - we detect that with the
5547 		 * port iterator, pp being NULL.
5548 		 */
5549 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5550 		sctp_spin_lock(&head->lock);
5551 		sctp_for_each_hentry(pp, node, &head->chain) {
5552 			if (pp->port == snum)
5553 				goto pp_found;
5554 		}
5555 	}
5556 	pp = NULL;
5557 	goto pp_not_found;
5558 pp_found:
5559 	if (!hlist_empty(&pp->owner)) {
5560 		/* We had a port hash table hit - there is an
5561 		 * available port (pp != NULL) and it is being
5562 		 * used by other socket (pp->owner not empty); that other
5563 		 * socket is going to be sk2.
5564 		 */
5565 		int reuse = sk->sk_reuse;
5566 		struct sock *sk2;
5567 		struct hlist_node *node;
5568 
5569 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5570 		if (pp->fastreuse && sk->sk_reuse &&
5571 			sk->sk_state != SCTP_SS_LISTENING)
5572 			goto success;
5573 
5574 		/* Run through the list of sockets bound to the port
5575 		 * (pp->port) [via the pointers bind_next and
5576 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5577 		 * we get the endpoint they describe and run through
5578 		 * the endpoint's list of IP (v4 or v6) addresses,
5579 		 * comparing each of the addresses with the address of
5580 		 * the socket sk. If we find a match, then that means
5581 		 * that this port/socket (sk) combination are already
5582 		 * in an endpoint.
5583 		 */
5584 		sk_for_each_bound(sk2, node, &pp->owner) {
5585 			struct sctp_endpoint *ep2;
5586 			ep2 = sctp_sk(sk2)->ep;
5587 
5588 			if (sk == sk2 ||
5589 			    (reuse && sk2->sk_reuse &&
5590 			     sk2->sk_state != SCTP_SS_LISTENING))
5591 				continue;
5592 
5593 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5594 						 sctp_sk(sk2), sctp_sk(sk))) {
5595 				ret = (long)sk2;
5596 				goto fail_unlock;
5597 			}
5598 		}
5599 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5600 	}
5601 pp_not_found:
5602 	/* If there was a hash table miss, create a new port.  */
5603 	ret = 1;
5604 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5605 		goto fail_unlock;
5606 
5607 	/* In either case (hit or miss), make sure fastreuse is 1 only
5608 	 * if sk->sk_reuse is too (that is, if the caller requested
5609 	 * SO_REUSEADDR on this socket -sk-).
5610 	 */
5611 	if (hlist_empty(&pp->owner)) {
5612 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5613 			pp->fastreuse = 1;
5614 		else
5615 			pp->fastreuse = 0;
5616 	} else if (pp->fastreuse &&
5617 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5618 		pp->fastreuse = 0;
5619 
5620 	/* We are set, so fill up all the data in the hash table
5621 	 * entry, tie the socket list information with the rest of the
5622 	 * sockets FIXME: Blurry, NPI (ipg).
5623 	 */
5624 success:
5625 	if (!sctp_sk(sk)->bind_hash) {
5626 		inet_sk(sk)->num = snum;
5627 		sk_add_bind_node(sk, &pp->owner);
5628 		sctp_sk(sk)->bind_hash = pp;
5629 	}
5630 	ret = 0;
5631 
5632 fail_unlock:
5633 	sctp_spin_unlock(&head->lock);
5634 
5635 fail:
5636 	sctp_local_bh_enable();
5637 	return ret;
5638 }
5639 
5640 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5641  * port is requested.
5642  */
5643 static int sctp_get_port(struct sock *sk, unsigned short snum)
5644 {
5645 	long ret;
5646 	union sctp_addr addr;
5647 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5648 
5649 	/* Set up a dummy address struct from the sk. */
5650 	af->from_sk(&addr, sk);
5651 	addr.v4.sin_port = htons(snum);
5652 
5653 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5654 	ret = sctp_get_port_local(sk, &addr);
5655 
5656 	return (ret ? 1 : 0);
5657 }
5658 
5659 /*
5660  * 3.1.3 listen() - UDP Style Syntax
5661  *
5662  *   By default, new associations are not accepted for UDP style sockets.
5663  *   An application uses listen() to mark a socket as being able to
5664  *   accept new associations.
5665  */
5666 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5667 {
5668 	struct sctp_sock *sp = sctp_sk(sk);
5669 	struct sctp_endpoint *ep = sp->ep;
5670 
5671 	/* Only UDP style sockets that are not peeled off are allowed to
5672 	 * listen().
5673 	 */
5674 	if (!sctp_style(sk, UDP))
5675 		return -EINVAL;
5676 
5677 	/* If backlog is zero, disable listening. */
5678 	if (!backlog) {
5679 		if (sctp_sstate(sk, CLOSED))
5680 			return 0;
5681 
5682 		sctp_unhash_endpoint(ep);
5683 		sk->sk_state = SCTP_SS_CLOSED;
5684 		return 0;
5685 	}
5686 
5687 	/* Return if we are already listening. */
5688 	if (sctp_sstate(sk, LISTENING))
5689 		return 0;
5690 
5691 	/*
5692 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5693 	 * call that allows new associations to be accepted, the system
5694 	 * picks an ephemeral port and will choose an address set equivalent
5695 	 * to binding with a wildcard address.
5696 	 *
5697 	 * This is not currently spelled out in the SCTP sockets
5698 	 * extensions draft, but follows the practice as seen in TCP
5699 	 * sockets.
5700 	 *
5701 	 * Additionally, turn off fastreuse flag since we are not listening
5702 	 */
5703 	sk->sk_state = SCTP_SS_LISTENING;
5704 	if (!ep->base.bind_addr.port) {
5705 		if (sctp_autobind(sk))
5706 			return -EAGAIN;
5707 	} else {
5708 		if (sctp_get_port(sk, inet_sk(sk)->num)) {
5709 			sk->sk_state = SCTP_SS_CLOSED;
5710 			return -EADDRINUSE;
5711 		}
5712 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5713 	}
5714 
5715 	sctp_hash_endpoint(ep);
5716 	return 0;
5717 }
5718 
5719 /*
5720  * 4.1.3 listen() - TCP Style Syntax
5721  *
5722  *   Applications uses listen() to ready the SCTP endpoint for accepting
5723  *   inbound associations.
5724  */
5725 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5726 {
5727 	struct sctp_sock *sp = sctp_sk(sk);
5728 	struct sctp_endpoint *ep = sp->ep;
5729 
5730 	/* If backlog is zero, disable listening. */
5731 	if (!backlog) {
5732 		if (sctp_sstate(sk, CLOSED))
5733 			return 0;
5734 
5735 		sctp_unhash_endpoint(ep);
5736 		sk->sk_state = SCTP_SS_CLOSED;
5737 		return 0;
5738 	}
5739 
5740 	if (sctp_sstate(sk, LISTENING))
5741 		return 0;
5742 
5743 	/*
5744 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5745 	 * call that allows new associations to be accepted, the system
5746 	 * picks an ephemeral port and will choose an address set equivalent
5747 	 * to binding with a wildcard address.
5748 	 *
5749 	 * This is not currently spelled out in the SCTP sockets
5750 	 * extensions draft, but follows the practice as seen in TCP
5751 	 * sockets.
5752 	 */
5753 	sk->sk_state = SCTP_SS_LISTENING;
5754 	if (!ep->base.bind_addr.port) {
5755 		if (sctp_autobind(sk))
5756 			return -EAGAIN;
5757 	} else
5758 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5759 
5760 	sk->sk_max_ack_backlog = backlog;
5761 	sctp_hash_endpoint(ep);
5762 	return 0;
5763 }
5764 
5765 /*
5766  *  Move a socket to LISTENING state.
5767  */
5768 int sctp_inet_listen(struct socket *sock, int backlog)
5769 {
5770 	struct sock *sk = sock->sk;
5771 	struct crypto_hash *tfm = NULL;
5772 	int err = -EINVAL;
5773 
5774 	if (unlikely(backlog < 0))
5775 		goto out;
5776 
5777 	sctp_lock_sock(sk);
5778 
5779 	if (sock->state != SS_UNCONNECTED)
5780 		goto out;
5781 
5782 	/* Allocate HMAC for generating cookie. */
5783 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5784 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5785 		if (IS_ERR(tfm)) {
5786 			if (net_ratelimit()) {
5787 				printk(KERN_INFO
5788 				       "SCTP: failed to load transform for %s: %ld\n",
5789 					sctp_hmac_alg, PTR_ERR(tfm));
5790 			}
5791 			err = -ENOSYS;
5792 			goto out;
5793 		}
5794 	}
5795 
5796 	switch (sock->type) {
5797 	case SOCK_SEQPACKET:
5798 		err = sctp_seqpacket_listen(sk, backlog);
5799 		break;
5800 	case SOCK_STREAM:
5801 		err = sctp_stream_listen(sk, backlog);
5802 		break;
5803 	default:
5804 		break;
5805 	}
5806 
5807 	if (err)
5808 		goto cleanup;
5809 
5810 	/* Store away the transform reference. */
5811 	if (!sctp_sk(sk)->hmac)
5812 		sctp_sk(sk)->hmac = tfm;
5813 out:
5814 	sctp_release_sock(sk);
5815 	return err;
5816 cleanup:
5817 	crypto_free_hash(tfm);
5818 	goto out;
5819 }
5820 
5821 /*
5822  * This function is done by modeling the current datagram_poll() and the
5823  * tcp_poll().  Note that, based on these implementations, we don't
5824  * lock the socket in this function, even though it seems that,
5825  * ideally, locking or some other mechanisms can be used to ensure
5826  * the integrity of the counters (sndbuf and wmem_alloc) used
5827  * in this place.  We assume that we don't need locks either until proven
5828  * otherwise.
5829  *
5830  * Another thing to note is that we include the Async I/O support
5831  * here, again, by modeling the current TCP/UDP code.  We don't have
5832  * a good way to test with it yet.
5833  */
5834 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5835 {
5836 	struct sock *sk = sock->sk;
5837 	struct sctp_sock *sp = sctp_sk(sk);
5838 	unsigned int mask;
5839 
5840 	poll_wait(file, sk->sk_sleep, wait);
5841 
5842 	/* A TCP-style listening socket becomes readable when the accept queue
5843 	 * is not empty.
5844 	 */
5845 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5846 		return (!list_empty(&sp->ep->asocs)) ?
5847 			(POLLIN | POLLRDNORM) : 0;
5848 
5849 	mask = 0;
5850 
5851 	/* Is there any exceptional events?  */
5852 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5853 		mask |= POLLERR;
5854 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5855 		mask |= POLLRDHUP;
5856 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5857 		mask |= POLLHUP;
5858 
5859 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5860 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5861 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5862 		mask |= POLLIN | POLLRDNORM;
5863 
5864 	/* The association is either gone or not ready.  */
5865 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5866 		return mask;
5867 
5868 	/* Is it writable?  */
5869 	if (sctp_writeable(sk)) {
5870 		mask |= POLLOUT | POLLWRNORM;
5871 	} else {
5872 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5873 		/*
5874 		 * Since the socket is not locked, the buffer
5875 		 * might be made available after the writeable check and
5876 		 * before the bit is set.  This could cause a lost I/O
5877 		 * signal.  tcp_poll() has a race breaker for this race
5878 		 * condition.  Based on their implementation, we put
5879 		 * in the following code to cover it as well.
5880 		 */
5881 		if (sctp_writeable(sk))
5882 			mask |= POLLOUT | POLLWRNORM;
5883 	}
5884 	return mask;
5885 }
5886 
5887 /********************************************************************
5888  * 2nd Level Abstractions
5889  ********************************************************************/
5890 
5891 static struct sctp_bind_bucket *sctp_bucket_create(
5892 	struct sctp_bind_hashbucket *head, unsigned short snum)
5893 {
5894 	struct sctp_bind_bucket *pp;
5895 
5896 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5897 	if (pp) {
5898 		SCTP_DBG_OBJCNT_INC(bind_bucket);
5899 		pp->port = snum;
5900 		pp->fastreuse = 0;
5901 		INIT_HLIST_HEAD(&pp->owner);
5902 		hlist_add_head(&pp->node, &head->chain);
5903 	}
5904 	return pp;
5905 }
5906 
5907 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5908 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5909 {
5910 	if (pp && hlist_empty(&pp->owner)) {
5911 		__hlist_del(&pp->node);
5912 		kmem_cache_free(sctp_bucket_cachep, pp);
5913 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5914 	}
5915 }
5916 
5917 /* Release this socket's reference to a local port.  */
5918 static inline void __sctp_put_port(struct sock *sk)
5919 {
5920 	struct sctp_bind_hashbucket *head =
5921 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5922 	struct sctp_bind_bucket *pp;
5923 
5924 	sctp_spin_lock(&head->lock);
5925 	pp = sctp_sk(sk)->bind_hash;
5926 	__sk_del_bind_node(sk);
5927 	sctp_sk(sk)->bind_hash = NULL;
5928 	inet_sk(sk)->num = 0;
5929 	sctp_bucket_destroy(pp);
5930 	sctp_spin_unlock(&head->lock);
5931 }
5932 
5933 void sctp_put_port(struct sock *sk)
5934 {
5935 	sctp_local_bh_disable();
5936 	__sctp_put_port(sk);
5937 	sctp_local_bh_enable();
5938 }
5939 
5940 /*
5941  * The system picks an ephemeral port and choose an address set equivalent
5942  * to binding with a wildcard address.
5943  * One of those addresses will be the primary address for the association.
5944  * This automatically enables the multihoming capability of SCTP.
5945  */
5946 static int sctp_autobind(struct sock *sk)
5947 {
5948 	union sctp_addr autoaddr;
5949 	struct sctp_af *af;
5950 	__be16 port;
5951 
5952 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5953 	af = sctp_sk(sk)->pf->af;
5954 
5955 	port = htons(inet_sk(sk)->num);
5956 	af->inaddr_any(&autoaddr, port);
5957 
5958 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5959 }
5960 
5961 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5962  *
5963  * From RFC 2292
5964  * 4.2 The cmsghdr Structure *
5965  *
5966  * When ancillary data is sent or received, any number of ancillary data
5967  * objects can be specified by the msg_control and msg_controllen members of
5968  * the msghdr structure, because each object is preceded by
5969  * a cmsghdr structure defining the object's length (the cmsg_len member).
5970  * Historically Berkeley-derived implementations have passed only one object
5971  * at a time, but this API allows multiple objects to be
5972  * passed in a single call to sendmsg() or recvmsg(). The following example
5973  * shows two ancillary data objects in a control buffer.
5974  *
5975  *   |<--------------------------- msg_controllen -------------------------->|
5976  *   |                                                                       |
5977  *
5978  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5979  *
5980  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5981  *   |                                   |                                   |
5982  *
5983  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5984  *
5985  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5986  *   |                                |  |                                |  |
5987  *
5988  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5989  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5990  *
5991  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5992  *
5993  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5994  *    ^
5995  *    |
5996  *
5997  * msg_control
5998  * points here
5999  */
6000 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6001 				  sctp_cmsgs_t *cmsgs)
6002 {
6003 	struct cmsghdr *cmsg;
6004 	struct msghdr *my_msg = (struct msghdr *)msg;
6005 
6006 	for (cmsg = CMSG_FIRSTHDR(msg);
6007 	     cmsg != NULL;
6008 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6009 		if (!CMSG_OK(my_msg, cmsg))
6010 			return -EINVAL;
6011 
6012 		/* Should we parse this header or ignore?  */
6013 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6014 			continue;
6015 
6016 		/* Strictly check lengths following example in SCM code.  */
6017 		switch (cmsg->cmsg_type) {
6018 		case SCTP_INIT:
6019 			/* SCTP Socket API Extension
6020 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6021 			 *
6022 			 * This cmsghdr structure provides information for
6023 			 * initializing new SCTP associations with sendmsg().
6024 			 * The SCTP_INITMSG socket option uses this same data
6025 			 * structure.  This structure is not used for
6026 			 * recvmsg().
6027 			 *
6028 			 * cmsg_level    cmsg_type      cmsg_data[]
6029 			 * ------------  ------------   ----------------------
6030 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6031 			 */
6032 			if (cmsg->cmsg_len !=
6033 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6034 				return -EINVAL;
6035 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6036 			break;
6037 
6038 		case SCTP_SNDRCV:
6039 			/* SCTP Socket API Extension
6040 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6041 			 *
6042 			 * This cmsghdr structure specifies SCTP options for
6043 			 * sendmsg() and describes SCTP header information
6044 			 * about a received message through recvmsg().
6045 			 *
6046 			 * cmsg_level    cmsg_type      cmsg_data[]
6047 			 * ------------  ------------   ----------------------
6048 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6049 			 */
6050 			if (cmsg->cmsg_len !=
6051 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6052 				return -EINVAL;
6053 
6054 			cmsgs->info =
6055 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6056 
6057 			/* Minimally, validate the sinfo_flags. */
6058 			if (cmsgs->info->sinfo_flags &
6059 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6060 			      SCTP_ABORT | SCTP_EOF))
6061 				return -EINVAL;
6062 			break;
6063 
6064 		default:
6065 			return -EINVAL;
6066 		}
6067 	}
6068 	return 0;
6069 }
6070 
6071 /*
6072  * Wait for a packet..
6073  * Note: This function is the same function as in core/datagram.c
6074  * with a few modifications to make lksctp work.
6075  */
6076 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6077 {
6078 	int error;
6079 	DEFINE_WAIT(wait);
6080 
6081 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6082 
6083 	/* Socket errors? */
6084 	error = sock_error(sk);
6085 	if (error)
6086 		goto out;
6087 
6088 	if (!skb_queue_empty(&sk->sk_receive_queue))
6089 		goto ready;
6090 
6091 	/* Socket shut down?  */
6092 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6093 		goto out;
6094 
6095 	/* Sequenced packets can come disconnected.  If so we report the
6096 	 * problem.
6097 	 */
6098 	error = -ENOTCONN;
6099 
6100 	/* Is there a good reason to think that we may receive some data?  */
6101 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6102 		goto out;
6103 
6104 	/* Handle signals.  */
6105 	if (signal_pending(current))
6106 		goto interrupted;
6107 
6108 	/* Let another process have a go.  Since we are going to sleep
6109 	 * anyway.  Note: This may cause odd behaviors if the message
6110 	 * does not fit in the user's buffer, but this seems to be the
6111 	 * only way to honor MSG_DONTWAIT realistically.
6112 	 */
6113 	sctp_release_sock(sk);
6114 	*timeo_p = schedule_timeout(*timeo_p);
6115 	sctp_lock_sock(sk);
6116 
6117 ready:
6118 	finish_wait(sk->sk_sleep, &wait);
6119 	return 0;
6120 
6121 interrupted:
6122 	error = sock_intr_errno(*timeo_p);
6123 
6124 out:
6125 	finish_wait(sk->sk_sleep, &wait);
6126 	*err = error;
6127 	return error;
6128 }
6129 
6130 /* Receive a datagram.
6131  * Note: This is pretty much the same routine as in core/datagram.c
6132  * with a few changes to make lksctp work.
6133  */
6134 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6135 					      int noblock, int *err)
6136 {
6137 	int error;
6138 	struct sk_buff *skb;
6139 	long timeo;
6140 
6141 	timeo = sock_rcvtimeo(sk, noblock);
6142 
6143 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6144 			  timeo, MAX_SCHEDULE_TIMEOUT);
6145 
6146 	do {
6147 		/* Again only user level code calls this function,
6148 		 * so nothing interrupt level
6149 		 * will suddenly eat the receive_queue.
6150 		 *
6151 		 *  Look at current nfs client by the way...
6152 		 *  However, this function was corrent in any case. 8)
6153 		 */
6154 		if (flags & MSG_PEEK) {
6155 			spin_lock_bh(&sk->sk_receive_queue.lock);
6156 			skb = skb_peek(&sk->sk_receive_queue);
6157 			if (skb)
6158 				atomic_inc(&skb->users);
6159 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6160 		} else {
6161 			skb = skb_dequeue(&sk->sk_receive_queue);
6162 		}
6163 
6164 		if (skb)
6165 			return skb;
6166 
6167 		/* Caller is allowed not to check sk->sk_err before calling. */
6168 		error = sock_error(sk);
6169 		if (error)
6170 			goto no_packet;
6171 
6172 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6173 			break;
6174 
6175 		/* User doesn't want to wait.  */
6176 		error = -EAGAIN;
6177 		if (!timeo)
6178 			goto no_packet;
6179 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6180 
6181 	return NULL;
6182 
6183 no_packet:
6184 	*err = error;
6185 	return NULL;
6186 }
6187 
6188 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6189 static void __sctp_write_space(struct sctp_association *asoc)
6190 {
6191 	struct sock *sk = asoc->base.sk;
6192 	struct socket *sock = sk->sk_socket;
6193 
6194 	if ((sctp_wspace(asoc) > 0) && sock) {
6195 		if (waitqueue_active(&asoc->wait))
6196 			wake_up_interruptible(&asoc->wait);
6197 
6198 		if (sctp_writeable(sk)) {
6199 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6200 				wake_up_interruptible(sk->sk_sleep);
6201 
6202 			/* Note that we try to include the Async I/O support
6203 			 * here by modeling from the current TCP/UDP code.
6204 			 * We have not tested with it yet.
6205 			 */
6206 			if (sock->fasync_list &&
6207 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
6208 				sock_wake_async(sock,
6209 						SOCK_WAKE_SPACE, POLL_OUT);
6210 		}
6211 	}
6212 }
6213 
6214 /* Do accounting for the sndbuf space.
6215  * Decrement the used sndbuf space of the corresponding association by the
6216  * data size which was just transmitted(freed).
6217  */
6218 static void sctp_wfree(struct sk_buff *skb)
6219 {
6220 	struct sctp_association *asoc;
6221 	struct sctp_chunk *chunk;
6222 	struct sock *sk;
6223 
6224 	/* Get the saved chunk pointer.  */
6225 	chunk = *((struct sctp_chunk **)(skb->cb));
6226 	asoc = chunk->asoc;
6227 	sk = asoc->base.sk;
6228 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6229 				sizeof(struct sk_buff) +
6230 				sizeof(struct sctp_chunk);
6231 
6232 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6233 
6234 	/*
6235 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6236 	 */
6237 	sk->sk_wmem_queued   -= skb->truesize;
6238 	sk_mem_uncharge(sk, skb->truesize);
6239 
6240 	sock_wfree(skb);
6241 	__sctp_write_space(asoc);
6242 
6243 	sctp_association_put(asoc);
6244 }
6245 
6246 /* Do accounting for the receive space on the socket.
6247  * Accounting for the association is done in ulpevent.c
6248  * We set this as a destructor for the cloned data skbs so that
6249  * accounting is done at the correct time.
6250  */
6251 void sctp_sock_rfree(struct sk_buff *skb)
6252 {
6253 	struct sock *sk = skb->sk;
6254 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6255 
6256 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6257 
6258 	/*
6259 	 * Mimic the behavior of sock_rfree
6260 	 */
6261 	sk_mem_uncharge(sk, event->rmem_len);
6262 }
6263 
6264 
6265 /* Helper function to wait for space in the sndbuf.  */
6266 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6267 				size_t msg_len)
6268 {
6269 	struct sock *sk = asoc->base.sk;
6270 	int err = 0;
6271 	long current_timeo = *timeo_p;
6272 	DEFINE_WAIT(wait);
6273 
6274 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6275 			  asoc, (long)(*timeo_p), msg_len);
6276 
6277 	/* Increment the association's refcnt.  */
6278 	sctp_association_hold(asoc);
6279 
6280 	/* Wait on the association specific sndbuf space. */
6281 	for (;;) {
6282 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6283 					  TASK_INTERRUPTIBLE);
6284 		if (!*timeo_p)
6285 			goto do_nonblock;
6286 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6287 		    asoc->base.dead)
6288 			goto do_error;
6289 		if (signal_pending(current))
6290 			goto do_interrupted;
6291 		if (msg_len <= sctp_wspace(asoc))
6292 			break;
6293 
6294 		/* Let another process have a go.  Since we are going
6295 		 * to sleep anyway.
6296 		 */
6297 		sctp_release_sock(sk);
6298 		current_timeo = schedule_timeout(current_timeo);
6299 		BUG_ON(sk != asoc->base.sk);
6300 		sctp_lock_sock(sk);
6301 
6302 		*timeo_p = current_timeo;
6303 	}
6304 
6305 out:
6306 	finish_wait(&asoc->wait, &wait);
6307 
6308 	/* Release the association's refcnt.  */
6309 	sctp_association_put(asoc);
6310 
6311 	return err;
6312 
6313 do_error:
6314 	err = -EPIPE;
6315 	goto out;
6316 
6317 do_interrupted:
6318 	err = sock_intr_errno(*timeo_p);
6319 	goto out;
6320 
6321 do_nonblock:
6322 	err = -EAGAIN;
6323 	goto out;
6324 }
6325 
6326 /* If socket sndbuf has changed, wake up all per association waiters.  */
6327 void sctp_write_space(struct sock *sk)
6328 {
6329 	struct sctp_association *asoc;
6330 
6331 	/* Wake up the tasks in each wait queue.  */
6332 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6333 		__sctp_write_space(asoc);
6334 	}
6335 }
6336 
6337 /* Is there any sndbuf space available on the socket?
6338  *
6339  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6340  * associations on the same socket.  For a UDP-style socket with
6341  * multiple associations, it is possible for it to be "unwriteable"
6342  * prematurely.  I assume that this is acceptable because
6343  * a premature "unwriteable" is better than an accidental "writeable" which
6344  * would cause an unwanted block under certain circumstances.  For the 1-1
6345  * UDP-style sockets or TCP-style sockets, this code should work.
6346  *  - Daisy
6347  */
6348 static int sctp_writeable(struct sock *sk)
6349 {
6350 	int amt = 0;
6351 
6352 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6353 	if (amt < 0)
6354 		amt = 0;
6355 	return amt;
6356 }
6357 
6358 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6359  * returns immediately with EINPROGRESS.
6360  */
6361 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6362 {
6363 	struct sock *sk = asoc->base.sk;
6364 	int err = 0;
6365 	long current_timeo = *timeo_p;
6366 	DEFINE_WAIT(wait);
6367 
6368 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6369 			  (long)(*timeo_p));
6370 
6371 	/* Increment the association's refcnt.  */
6372 	sctp_association_hold(asoc);
6373 
6374 	for (;;) {
6375 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6376 					  TASK_INTERRUPTIBLE);
6377 		if (!*timeo_p)
6378 			goto do_nonblock;
6379 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6380 			break;
6381 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6382 		    asoc->base.dead)
6383 			goto do_error;
6384 		if (signal_pending(current))
6385 			goto do_interrupted;
6386 
6387 		if (sctp_state(asoc, ESTABLISHED))
6388 			break;
6389 
6390 		/* Let another process have a go.  Since we are going
6391 		 * to sleep anyway.
6392 		 */
6393 		sctp_release_sock(sk);
6394 		current_timeo = schedule_timeout(current_timeo);
6395 		sctp_lock_sock(sk);
6396 
6397 		*timeo_p = current_timeo;
6398 	}
6399 
6400 out:
6401 	finish_wait(&asoc->wait, &wait);
6402 
6403 	/* Release the association's refcnt.  */
6404 	sctp_association_put(asoc);
6405 
6406 	return err;
6407 
6408 do_error:
6409 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6410 		err = -ETIMEDOUT;
6411 	else
6412 		err = -ECONNREFUSED;
6413 	goto out;
6414 
6415 do_interrupted:
6416 	err = sock_intr_errno(*timeo_p);
6417 	goto out;
6418 
6419 do_nonblock:
6420 	err = -EINPROGRESS;
6421 	goto out;
6422 }
6423 
6424 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6425 {
6426 	struct sctp_endpoint *ep;
6427 	int err = 0;
6428 	DEFINE_WAIT(wait);
6429 
6430 	ep = sctp_sk(sk)->ep;
6431 
6432 
6433 	for (;;) {
6434 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6435 					  TASK_INTERRUPTIBLE);
6436 
6437 		if (list_empty(&ep->asocs)) {
6438 			sctp_release_sock(sk);
6439 			timeo = schedule_timeout(timeo);
6440 			sctp_lock_sock(sk);
6441 		}
6442 
6443 		err = -EINVAL;
6444 		if (!sctp_sstate(sk, LISTENING))
6445 			break;
6446 
6447 		err = 0;
6448 		if (!list_empty(&ep->asocs))
6449 			break;
6450 
6451 		err = sock_intr_errno(timeo);
6452 		if (signal_pending(current))
6453 			break;
6454 
6455 		err = -EAGAIN;
6456 		if (!timeo)
6457 			break;
6458 	}
6459 
6460 	finish_wait(sk->sk_sleep, &wait);
6461 
6462 	return err;
6463 }
6464 
6465 static void sctp_wait_for_close(struct sock *sk, long timeout)
6466 {
6467 	DEFINE_WAIT(wait);
6468 
6469 	do {
6470 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6471 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6472 			break;
6473 		sctp_release_sock(sk);
6474 		timeout = schedule_timeout(timeout);
6475 		sctp_lock_sock(sk);
6476 	} while (!signal_pending(current) && timeout);
6477 
6478 	finish_wait(sk->sk_sleep, &wait);
6479 }
6480 
6481 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6482 {
6483 	struct sk_buff *frag;
6484 
6485 	if (!skb->data_len)
6486 		goto done;
6487 
6488 	/* Don't forget the fragments. */
6489 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6490 		sctp_sock_rfree_frag(frag);
6491 
6492 done:
6493 	sctp_sock_rfree(skb);
6494 }
6495 
6496 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6497 {
6498 	struct sk_buff *frag;
6499 
6500 	if (!skb->data_len)
6501 		goto done;
6502 
6503 	/* Don't forget the fragments. */
6504 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6505 		sctp_skb_set_owner_r_frag(frag, sk);
6506 
6507 done:
6508 	sctp_skb_set_owner_r(skb, sk);
6509 }
6510 
6511 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6512  * and its messages to the newsk.
6513  */
6514 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6515 			      struct sctp_association *assoc,
6516 			      sctp_socket_type_t type)
6517 {
6518 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6519 	struct sctp_sock *newsp = sctp_sk(newsk);
6520 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6521 	struct sctp_endpoint *newep = newsp->ep;
6522 	struct sk_buff *skb, *tmp;
6523 	struct sctp_ulpevent *event;
6524 	struct sctp_bind_hashbucket *head;
6525 
6526 	/* Migrate socket buffer sizes and all the socket level options to the
6527 	 * new socket.
6528 	 */
6529 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6530 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6531 	/* Brute force copy old sctp opt. */
6532 	inet_sk_copy_descendant(newsk, oldsk);
6533 
6534 	/* Restore the ep value that was overwritten with the above structure
6535 	 * copy.
6536 	 */
6537 	newsp->ep = newep;
6538 	newsp->hmac = NULL;
6539 
6540 	/* Hook this new socket in to the bind_hash list. */
6541 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6542 	sctp_local_bh_disable();
6543 	sctp_spin_lock(&head->lock);
6544 	pp = sctp_sk(oldsk)->bind_hash;
6545 	sk_add_bind_node(newsk, &pp->owner);
6546 	sctp_sk(newsk)->bind_hash = pp;
6547 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6548 	sctp_spin_unlock(&head->lock);
6549 	sctp_local_bh_enable();
6550 
6551 	/* Copy the bind_addr list from the original endpoint to the new
6552 	 * endpoint so that we can handle restarts properly
6553 	 */
6554 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6555 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6556 
6557 	/* Move any messages in the old socket's receive queue that are for the
6558 	 * peeled off association to the new socket's receive queue.
6559 	 */
6560 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6561 		event = sctp_skb2event(skb);
6562 		if (event->asoc == assoc) {
6563 			sctp_sock_rfree_frag(skb);
6564 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6565 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6566 			sctp_skb_set_owner_r_frag(skb, newsk);
6567 		}
6568 	}
6569 
6570 	/* Clean up any messages pending delivery due to partial
6571 	 * delivery.   Three cases:
6572 	 * 1) No partial deliver;  no work.
6573 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6574 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6575 	 */
6576 	skb_queue_head_init(&newsp->pd_lobby);
6577 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6578 
6579 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6580 		struct sk_buff_head *queue;
6581 
6582 		/* Decide which queue to move pd_lobby skbs to. */
6583 		if (assoc->ulpq.pd_mode) {
6584 			queue = &newsp->pd_lobby;
6585 		} else
6586 			queue = &newsk->sk_receive_queue;
6587 
6588 		/* Walk through the pd_lobby, looking for skbs that
6589 		 * need moved to the new socket.
6590 		 */
6591 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6592 			event = sctp_skb2event(skb);
6593 			if (event->asoc == assoc) {
6594 				sctp_sock_rfree_frag(skb);
6595 				__skb_unlink(skb, &oldsp->pd_lobby);
6596 				__skb_queue_tail(queue, skb);
6597 				sctp_skb_set_owner_r_frag(skb, newsk);
6598 			}
6599 		}
6600 
6601 		/* Clear up any skbs waiting for the partial
6602 		 * delivery to finish.
6603 		 */
6604 		if (assoc->ulpq.pd_mode)
6605 			sctp_clear_pd(oldsk, NULL);
6606 
6607 	}
6608 
6609 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6610 		sctp_sock_rfree_frag(skb);
6611 		sctp_skb_set_owner_r_frag(skb, newsk);
6612 	}
6613 
6614 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6615 		sctp_sock_rfree_frag(skb);
6616 		sctp_skb_set_owner_r_frag(skb, newsk);
6617 	}
6618 
6619 	/* Set the type of socket to indicate that it is peeled off from the
6620 	 * original UDP-style socket or created with the accept() call on a
6621 	 * TCP-style socket..
6622 	 */
6623 	newsp->type = type;
6624 
6625 	/* Mark the new socket "in-use" by the user so that any packets
6626 	 * that may arrive on the association after we've moved it are
6627 	 * queued to the backlog.  This prevents a potential race between
6628 	 * backlog processing on the old socket and new-packet processing
6629 	 * on the new socket.
6630 	 *
6631 	 * The caller has just allocated newsk so we can guarantee that other
6632 	 * paths won't try to lock it and then oldsk.
6633 	 */
6634 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6635 	sctp_assoc_migrate(assoc, newsk);
6636 
6637 	/* If the association on the newsk is already closed before accept()
6638 	 * is called, set RCV_SHUTDOWN flag.
6639 	 */
6640 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6641 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6642 
6643 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6644 	sctp_release_sock(newsk);
6645 }
6646 
6647 
6648 /* This proto struct describes the ULP interface for SCTP.  */
6649 struct proto sctp_prot = {
6650 	.name        =	"SCTP",
6651 	.owner       =	THIS_MODULE,
6652 	.close       =	sctp_close,
6653 	.connect     =	sctp_connect,
6654 	.disconnect  =	sctp_disconnect,
6655 	.accept      =	sctp_accept,
6656 	.ioctl       =	sctp_ioctl,
6657 	.init        =	sctp_init_sock,
6658 	.destroy     =	sctp_destroy_sock,
6659 	.shutdown    =	sctp_shutdown,
6660 	.setsockopt  =	sctp_setsockopt,
6661 	.getsockopt  =	sctp_getsockopt,
6662 	.sendmsg     =	sctp_sendmsg,
6663 	.recvmsg     =	sctp_recvmsg,
6664 	.bind        =	sctp_bind,
6665 	.backlog_rcv =	sctp_backlog_rcv,
6666 	.hash        =	sctp_hash,
6667 	.unhash      =	sctp_unhash,
6668 	.get_port    =	sctp_get_port,
6669 	.obj_size    =  sizeof(struct sctp_sock),
6670 	.sysctl_mem  =  sysctl_sctp_mem,
6671 	.sysctl_rmem =  sysctl_sctp_rmem,
6672 	.sysctl_wmem =  sysctl_sctp_wmem,
6673 	.memory_pressure = &sctp_memory_pressure,
6674 	.enter_memory_pressure = sctp_enter_memory_pressure,
6675 	.memory_allocated = &sctp_memory_allocated,
6676 	.sockets_allocated = &sctp_sockets_allocated,
6677 };
6678 
6679 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6680 
6681 struct proto sctpv6_prot = {
6682 	.name		= "SCTPv6",
6683 	.owner		= THIS_MODULE,
6684 	.close		= sctp_close,
6685 	.connect	= sctp_connect,
6686 	.disconnect	= sctp_disconnect,
6687 	.accept		= sctp_accept,
6688 	.ioctl		= sctp_ioctl,
6689 	.init		= sctp_init_sock,
6690 	.destroy	= sctp_destroy_sock,
6691 	.shutdown	= sctp_shutdown,
6692 	.setsockopt	= sctp_setsockopt,
6693 	.getsockopt	= sctp_getsockopt,
6694 	.sendmsg	= sctp_sendmsg,
6695 	.recvmsg	= sctp_recvmsg,
6696 	.bind		= sctp_bind,
6697 	.backlog_rcv	= sctp_backlog_rcv,
6698 	.hash		= sctp_hash,
6699 	.unhash		= sctp_unhash,
6700 	.get_port	= sctp_get_port,
6701 	.obj_size	= sizeof(struct sctp6_sock),
6702 	.sysctl_mem	= sysctl_sctp_mem,
6703 	.sysctl_rmem	= sysctl_sctp_rmem,
6704 	.sysctl_wmem	= sysctl_sctp_wmem,
6705 	.memory_pressure = &sctp_memory_pressure,
6706 	.enter_memory_pressure = sctp_enter_memory_pressure,
6707 	.memory_allocated = &sctp_memory_allocated,
6708 	.sockets_allocated = &sctp_sockets_allocated,
6709 };
6710 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6711