1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 static atomic_t sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(struct sock *sk) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* V4 mapped address are really of AF_INET family */ 312 if (addr->sa.sa_family == AF_INET6 && 313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 314 if (!opt->pf->af_supported(AF_INET, opt)) 315 return NULL; 316 } else { 317 /* Does this PF support this AF? */ 318 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 319 return NULL; 320 } 321 322 /* If we get this far, af is valid. */ 323 af = sctp_get_af_specific(addr->sa.sa_family); 324 325 if (len < af->sockaddr_len) 326 return NULL; 327 328 return af; 329 } 330 331 /* Bind a local address either to an endpoint or to an association. */ 332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 333 { 334 struct sctp_sock *sp = sctp_sk(sk); 335 struct sctp_endpoint *ep = sp->ep; 336 struct sctp_bind_addr *bp = &ep->base.bind_addr; 337 struct sctp_af *af; 338 unsigned short snum; 339 int ret = 0; 340 341 /* Common sockaddr verification. */ 342 af = sctp_sockaddr_af(sp, addr, len); 343 if (!af) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 345 sk, addr, len); 346 return -EINVAL; 347 } 348 349 snum = ntohs(addr->v4.sin_port); 350 351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 352 ", port: %d, new port: %d, len: %d)\n", 353 sk, 354 addr, 355 bp->port, snum, 356 len); 357 358 /* PF specific bind() address verification. */ 359 if (!sp->pf->bind_verify(sp, addr)) 360 return -EADDRNOTAVAIL; 361 362 /* We must either be unbound, or bind to the same port. 363 * It's OK to allow 0 ports if we are already bound. 364 * We'll just inhert an already bound port in this case 365 */ 366 if (bp->port) { 367 if (!snum) 368 snum = bp->port; 369 else if (snum != bp->port) { 370 SCTP_DEBUG_PRINTK("sctp_do_bind:" 371 " New port %d does not match existing port " 372 "%d.\n", snum, bp->port); 373 return -EINVAL; 374 } 375 } 376 377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 378 return -EACCES; 379 380 /* See if the address matches any of the addresses we may have 381 * already bound before checking against other endpoints. 382 */ 383 if (sctp_bind_addr_match(bp, addr, sp)) 384 return -EINVAL; 385 386 /* Make sure we are allowed to bind here. 387 * The function sctp_get_port_local() does duplicate address 388 * detection. 389 */ 390 addr->v4.sin_port = htons(snum); 391 if ((ret = sctp_get_port_local(sk, addr))) { 392 return -EADDRINUSE; 393 } 394 395 /* Refresh ephemeral port. */ 396 if (!bp->port) 397 bp->port = inet_sk(sk)->num; 398 399 /* Add the address to the bind address list. 400 * Use GFP_ATOMIC since BHs will be disabled. 401 */ 402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 403 404 /* Copy back into socket for getsockname() use. */ 405 if (!ret) { 406 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 407 af->to_sk_saddr(addr, sk); 408 } 409 410 return ret; 411 } 412 413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 414 * 415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 416 * at any one time. If a sender, after sending an ASCONF chunk, decides 417 * it needs to transfer another ASCONF Chunk, it MUST wait until the 418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 419 * subsequent ASCONF. Note this restriction binds each side, so at any 420 * time two ASCONF may be in-transit on any given association (one sent 421 * from each endpoint). 422 */ 423 static int sctp_send_asconf(struct sctp_association *asoc, 424 struct sctp_chunk *chunk) 425 { 426 int retval = 0; 427 428 /* If there is an outstanding ASCONF chunk, queue it for later 429 * transmission. 430 */ 431 if (asoc->addip_last_asconf) { 432 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 433 goto out; 434 } 435 436 /* Hold the chunk until an ASCONF_ACK is received. */ 437 sctp_chunk_hold(chunk); 438 retval = sctp_primitive_ASCONF(asoc, chunk); 439 if (retval) 440 sctp_chunk_free(chunk); 441 else 442 asoc->addip_last_asconf = chunk; 443 444 out: 445 return retval; 446 } 447 448 /* Add a list of addresses as bind addresses to local endpoint or 449 * association. 450 * 451 * Basically run through each address specified in the addrs/addrcnt 452 * array/length pair, determine if it is IPv6 or IPv4 and call 453 * sctp_do_bind() on it. 454 * 455 * If any of them fails, then the operation will be reversed and the 456 * ones that were added will be removed. 457 * 458 * Only sctp_setsockopt_bindx() is supposed to call this function. 459 */ 460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 461 { 462 int cnt; 463 int retval = 0; 464 void *addr_buf; 465 struct sockaddr *sa_addr; 466 struct sctp_af *af; 467 468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 469 sk, addrs, addrcnt); 470 471 addr_buf = addrs; 472 for (cnt = 0; cnt < addrcnt; cnt++) { 473 /* The list may contain either IPv4 or IPv6 address; 474 * determine the address length for walking thru the list. 475 */ 476 sa_addr = (struct sockaddr *)addr_buf; 477 af = sctp_get_af_specific(sa_addr->sa_family); 478 if (!af) { 479 retval = -EINVAL; 480 goto err_bindx_add; 481 } 482 483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 484 af->sockaddr_len); 485 486 addr_buf += af->sockaddr_len; 487 488 err_bindx_add: 489 if (retval < 0) { 490 /* Failed. Cleanup the ones that have been added */ 491 if (cnt > 0) 492 sctp_bindx_rem(sk, addrs, cnt); 493 return retval; 494 } 495 } 496 497 return retval; 498 } 499 500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 501 * associations that are part of the endpoint indicating that a list of local 502 * addresses are added to the endpoint. 503 * 504 * If any of the addresses is already in the bind address list of the 505 * association, we do not send the chunk for that association. But it will not 506 * affect other associations. 507 * 508 * Only sctp_setsockopt_bindx() is supposed to call this function. 509 */ 510 static int sctp_send_asconf_add_ip(struct sock *sk, 511 struct sockaddr *addrs, 512 int addrcnt) 513 { 514 struct sctp_sock *sp; 515 struct sctp_endpoint *ep; 516 struct sctp_association *asoc; 517 struct sctp_bind_addr *bp; 518 struct sctp_chunk *chunk; 519 struct sctp_sockaddr_entry *laddr; 520 union sctp_addr *addr; 521 union sctp_addr saveaddr; 522 void *addr_buf; 523 struct sctp_af *af; 524 struct list_head *p; 525 int i; 526 int retval = 0; 527 528 if (!sctp_addip_enable) 529 return retval; 530 531 sp = sctp_sk(sk); 532 ep = sp->ep; 533 534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 535 __func__, sk, addrs, addrcnt); 536 537 list_for_each_entry(asoc, &ep->asocs, asocs) { 538 539 if (!asoc->peer.asconf_capable) 540 continue; 541 542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 543 continue; 544 545 if (!sctp_state(asoc, ESTABLISHED)) 546 continue; 547 548 /* Check if any address in the packed array of addresses is 549 * in the bind address list of the association. If so, 550 * do not send the asconf chunk to its peer, but continue with 551 * other associations. 552 */ 553 addr_buf = addrs; 554 for (i = 0; i < addrcnt; i++) { 555 addr = (union sctp_addr *)addr_buf; 556 af = sctp_get_af_specific(addr->v4.sin_family); 557 if (!af) { 558 retval = -EINVAL; 559 goto out; 560 } 561 562 if (sctp_assoc_lookup_laddr(asoc, addr)) 563 break; 564 565 addr_buf += af->sockaddr_len; 566 } 567 if (i < addrcnt) 568 continue; 569 570 /* Use the first valid address in bind addr list of 571 * association as Address Parameter of ASCONF CHUNK. 572 */ 573 bp = &asoc->base.bind_addr; 574 p = bp->address_list.next; 575 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 577 addrcnt, SCTP_PARAM_ADD_IP); 578 if (!chunk) { 579 retval = -ENOMEM; 580 goto out; 581 } 582 583 retval = sctp_send_asconf(asoc, chunk); 584 if (retval) 585 goto out; 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = (union sctp_addr *)addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 } 600 601 out: 602 return retval; 603 } 604 605 /* Remove a list of addresses from bind addresses list. Do not remove the 606 * last address. 607 * 608 * Basically run through each address specified in the addrs/addrcnt 609 * array/length pair, determine if it is IPv6 or IPv4 and call 610 * sctp_del_bind() on it. 611 * 612 * If any of them fails, then the operation will be reversed and the 613 * ones that were removed will be added back. 614 * 615 * At least one address has to be left; if only one address is 616 * available, the operation will return -EBUSY. 617 * 618 * Only sctp_setsockopt_bindx() is supposed to call this function. 619 */ 620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 621 { 622 struct sctp_sock *sp = sctp_sk(sk); 623 struct sctp_endpoint *ep = sp->ep; 624 int cnt; 625 struct sctp_bind_addr *bp = &ep->base.bind_addr; 626 int retval = 0; 627 void *addr_buf; 628 union sctp_addr *sa_addr; 629 struct sctp_af *af; 630 631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 632 sk, addrs, addrcnt); 633 634 addr_buf = addrs; 635 for (cnt = 0; cnt < addrcnt; cnt++) { 636 /* If the bind address list is empty or if there is only one 637 * bind address, there is nothing more to be removed (we need 638 * at least one address here). 639 */ 640 if (list_empty(&bp->address_list) || 641 (sctp_list_single_entry(&bp->address_list))) { 642 retval = -EBUSY; 643 goto err_bindx_rem; 644 } 645 646 sa_addr = (union sctp_addr *)addr_buf; 647 af = sctp_get_af_specific(sa_addr->sa.sa_family); 648 if (!af) { 649 retval = -EINVAL; 650 goto err_bindx_rem; 651 } 652 653 if (!af->addr_valid(sa_addr, sp, NULL)) { 654 retval = -EADDRNOTAVAIL; 655 goto err_bindx_rem; 656 } 657 658 if (sa_addr->v4.sin_port != htons(bp->port)) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 /* FIXME - There is probably a need to check if sk->sk_saddr and 664 * sk->sk_rcv_addr are currently set to one of the addresses to 665 * be removed. This is something which needs to be looked into 666 * when we are fixing the outstanding issues with multi-homing 667 * socket routing and failover schemes. Refer to comments in 668 * sctp_do_bind(). -daisy 669 */ 670 retval = sctp_del_bind_addr(bp, sa_addr); 671 672 addr_buf += af->sockaddr_len; 673 err_bindx_rem: 674 if (retval < 0) { 675 /* Failed. Add the ones that has been removed back */ 676 if (cnt > 0) 677 sctp_bindx_add(sk, addrs, cnt); 678 return retval; 679 } 680 } 681 682 return retval; 683 } 684 685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 686 * the associations that are part of the endpoint indicating that a list of 687 * local addresses are removed from the endpoint. 688 * 689 * If any of the addresses is already in the bind address list of the 690 * association, we do not send the chunk for that association. But it will not 691 * affect other associations. 692 * 693 * Only sctp_setsockopt_bindx() is supposed to call this function. 694 */ 695 static int sctp_send_asconf_del_ip(struct sock *sk, 696 struct sockaddr *addrs, 697 int addrcnt) 698 { 699 struct sctp_sock *sp; 700 struct sctp_endpoint *ep; 701 struct sctp_association *asoc; 702 struct sctp_transport *transport; 703 struct sctp_bind_addr *bp; 704 struct sctp_chunk *chunk; 705 union sctp_addr *laddr; 706 void *addr_buf; 707 struct sctp_af *af; 708 struct sctp_sockaddr_entry *saddr; 709 int i; 710 int retval = 0; 711 712 if (!sctp_addip_enable) 713 return retval; 714 715 sp = sctp_sk(sk); 716 ep = sp->ep; 717 718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 719 __func__, sk, addrs, addrcnt); 720 721 list_for_each_entry(asoc, &ep->asocs, asocs) { 722 723 if (!asoc->peer.asconf_capable) 724 continue; 725 726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 727 continue; 728 729 if (!sctp_state(asoc, ESTABLISHED)) 730 continue; 731 732 /* Check if any address in the packed array of addresses is 733 * not present in the bind address list of the association. 734 * If so, do not send the asconf chunk to its peer, but 735 * continue with other associations. 736 */ 737 addr_buf = addrs; 738 for (i = 0; i < addrcnt; i++) { 739 laddr = (union sctp_addr *)addr_buf; 740 af = sctp_get_af_specific(laddr->v4.sin_family); 741 if (!af) { 742 retval = -EINVAL; 743 goto out; 744 } 745 746 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 747 break; 748 749 addr_buf += af->sockaddr_len; 750 } 751 if (i < addrcnt) 752 continue; 753 754 /* Find one address in the association's bind address list 755 * that is not in the packed array of addresses. This is to 756 * make sure that we do not delete all the addresses in the 757 * association. 758 */ 759 bp = &asoc->base.bind_addr; 760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 761 addrcnt, sp); 762 if (!laddr) 763 continue; 764 765 /* We do not need RCU protection throughout this loop 766 * because this is done under a socket lock from the 767 * setsockopt call. 768 */ 769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 770 SCTP_PARAM_DEL_IP); 771 if (!chunk) { 772 retval = -ENOMEM; 773 goto out; 774 } 775 776 /* Reset use_as_src flag for the addresses in the bind address 777 * list that are to be deleted. 778 */ 779 addr_buf = addrs; 780 for (i = 0; i < addrcnt; i++) { 781 laddr = (union sctp_addr *)addr_buf; 782 af = sctp_get_af_specific(laddr->v4.sin_family); 783 list_for_each_entry(saddr, &bp->address_list, list) { 784 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 785 saddr->state = SCTP_ADDR_DEL; 786 } 787 addr_buf += af->sockaddr_len; 788 } 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 795 transports) { 796 dst_release(transport->dst); 797 sctp_transport_route(transport, NULL, 798 sctp_sk(asoc->base.sk)); 799 } 800 801 retval = sctp_send_asconf(asoc, chunk); 802 } 803 out: 804 return retval; 805 } 806 807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 808 * 809 * API 8.1 810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 811 * int flags); 812 * 813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 815 * or IPv6 addresses. 816 * 817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 818 * Section 3.1.2 for this usage. 819 * 820 * addrs is a pointer to an array of one or more socket addresses. Each 821 * address is contained in its appropriate structure (i.e. struct 822 * sockaddr_in or struct sockaddr_in6) the family of the address type 823 * must be used to distinguish the address length (note that this 824 * representation is termed a "packed array" of addresses). The caller 825 * specifies the number of addresses in the array with addrcnt. 826 * 827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 828 * -1, and sets errno to the appropriate error code. 829 * 830 * For SCTP, the port given in each socket address must be the same, or 831 * sctp_bindx() will fail, setting errno to EINVAL. 832 * 833 * The flags parameter is formed from the bitwise OR of zero or more of 834 * the following currently defined flags: 835 * 836 * SCTP_BINDX_ADD_ADDR 837 * 838 * SCTP_BINDX_REM_ADDR 839 * 840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 842 * addresses from the association. The two flags are mutually exclusive; 843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 844 * not remove all addresses from an association; sctp_bindx() will 845 * reject such an attempt with EINVAL. 846 * 847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 848 * additional addresses with an endpoint after calling bind(). Or use 849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 850 * socket is associated with so that no new association accepted will be 851 * associated with those addresses. If the endpoint supports dynamic 852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 853 * endpoint to send the appropriate message to the peer to change the 854 * peers address lists. 855 * 856 * Adding and removing addresses from a connected association is 857 * optional functionality. Implementations that do not support this 858 * functionality should return EOPNOTSUPP. 859 * 860 * Basically do nothing but copying the addresses from user to kernel 861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 863 * from userspace. 864 * 865 * We don't use copy_from_user() for optimization: we first do the 866 * sanity checks (buffer size -fast- and access check-healthy 867 * pointer); if all of those succeed, then we can alloc the memory 868 * (expensive operation) needed to copy the data to kernel. Then we do 869 * the copying without checking the user space area 870 * (__copy_from_user()). 871 * 872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 873 * it. 874 * 875 * sk The sk of the socket 876 * addrs The pointer to the addresses in user land 877 * addrssize Size of the addrs buffer 878 * op Operation to perform (add or remove, see the flags of 879 * sctp_bindx) 880 * 881 * Returns 0 if ok, <0 errno code on error. 882 */ 883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 884 struct sockaddr __user *addrs, 885 int addrs_size, int op) 886 { 887 struct sockaddr *kaddrs; 888 int err; 889 int addrcnt = 0; 890 int walk_size = 0; 891 struct sockaddr *sa_addr; 892 void *addr_buf; 893 struct sctp_af *af; 894 895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 897 898 if (unlikely(addrs_size <= 0)) 899 return -EINVAL; 900 901 /* Check the user passed a healthy pointer. */ 902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 903 return -EFAULT; 904 905 /* Alloc space for the address array in kernel memory. */ 906 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 907 if (unlikely(!kaddrs)) 908 return -ENOMEM; 909 910 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 911 kfree(kaddrs); 912 return -EFAULT; 913 } 914 915 /* Walk through the addrs buffer and count the number of addresses. */ 916 addr_buf = kaddrs; 917 while (walk_size < addrs_size) { 918 sa_addr = (struct sockaddr *)addr_buf; 919 af = sctp_get_af_specific(sa_addr->sa_family); 920 921 /* If the address family is not supported or if this address 922 * causes the address buffer to overflow return EINVAL. 923 */ 924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 925 kfree(kaddrs); 926 return -EINVAL; 927 } 928 addrcnt++; 929 addr_buf += af->sockaddr_len; 930 walk_size += af->sockaddr_len; 931 } 932 933 /* Do the work. */ 934 switch (op) { 935 case SCTP_BINDX_ADD_ADDR: 936 err = sctp_bindx_add(sk, kaddrs, addrcnt); 937 if (err) 938 goto out; 939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 940 break; 941 942 case SCTP_BINDX_REM_ADDR: 943 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 944 if (err) 945 goto out; 946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 947 break; 948 949 default: 950 err = -EINVAL; 951 break; 952 } 953 954 out: 955 kfree(kaddrs); 956 957 return err; 958 } 959 960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 961 * 962 * Common routine for handling connect() and sctp_connectx(). 963 * Connect will come in with just a single address. 964 */ 965 static int __sctp_connect(struct sock* sk, 966 struct sockaddr *kaddrs, 967 int addrs_size, 968 sctp_assoc_t *assoc_id) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 union sctp_addr *sa_addr = NULL; 983 void *addr_buf; 984 unsigned short port; 985 unsigned int f_flags = 0; 986 987 sp = sctp_sk(sk); 988 ep = sp->ep; 989 990 /* connect() cannot be done on a socket that is already in ESTABLISHED 991 * state - UDP-style peeled off socket or a TCP-style socket that 992 * is already connected. 993 * It cannot be done even on a TCP-style listening socket. 994 */ 995 if (sctp_sstate(sk, ESTABLISHED) || 996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 997 err = -EISCONN; 998 goto out_free; 999 } 1000 1001 /* Walk through the addrs buffer and count the number of addresses. */ 1002 addr_buf = kaddrs; 1003 while (walk_size < addrs_size) { 1004 sa_addr = (union sctp_addr *)addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1006 port = ntohs(sa_addr->v4.sin_port); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 1016 /* Save current address so we can work with it */ 1017 memcpy(&to, sa_addr, af->sockaddr_len); 1018 1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1020 if (err) 1021 goto out_free; 1022 1023 /* Make sure the destination port is correctly set 1024 * in all addresses. 1025 */ 1026 if (asoc && asoc->peer.port && asoc->peer.port != port) 1027 goto out_free; 1028 1029 1030 /* Check if there already is a matching association on the 1031 * endpoint (other than the one created here). 1032 */ 1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1034 if (asoc2 && asoc2 != asoc) { 1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1036 err = -EISCONN; 1037 else 1038 err = -EALREADY; 1039 goto out_free; 1040 } 1041 1042 /* If we could not find a matching association on the endpoint, 1043 * make sure that there is no peeled-off association matching 1044 * the peer address even on another socket. 1045 */ 1046 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1047 err = -EADDRNOTAVAIL; 1048 goto out_free; 1049 } 1050 1051 if (!asoc) { 1052 /* If a bind() or sctp_bindx() is not called prior to 1053 * an sctp_connectx() call, the system picks an 1054 * ephemeral port and will choose an address set 1055 * equivalent to binding with a wildcard address. 1056 */ 1057 if (!ep->base.bind_addr.port) { 1058 if (sctp_autobind(sk)) { 1059 err = -EAGAIN; 1060 goto out_free; 1061 } 1062 } else { 1063 /* 1064 * If an unprivileged user inherits a 1-many 1065 * style socket with open associations on a 1066 * privileged port, it MAY be permitted to 1067 * accept new associations, but it SHOULD NOT 1068 * be permitted to open new associations. 1069 */ 1070 if (ep->base.bind_addr.port < PROT_SOCK && 1071 !capable(CAP_NET_BIND_SERVICE)) { 1072 err = -EACCES; 1073 goto out_free; 1074 } 1075 } 1076 1077 scope = sctp_scope(&to); 1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1079 if (!asoc) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 } 1084 1085 /* Prime the peer's transport structures. */ 1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1087 SCTP_UNKNOWN); 1088 if (!transport) { 1089 err = -ENOMEM; 1090 goto out_free; 1091 } 1092 1093 addrcnt++; 1094 addr_buf += af->sockaddr_len; 1095 walk_size += af->sockaddr_len; 1096 } 1097 1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1099 if (err < 0) { 1100 goto out_free; 1101 } 1102 1103 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1104 if (err < 0) { 1105 goto out_free; 1106 } 1107 1108 /* Initialize sk's dport and daddr for getpeername() */ 1109 inet_sk(sk)->dport = htons(asoc->peer.port); 1110 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1111 af->to_sk_daddr(sa_addr, sk); 1112 sk->sk_err = 0; 1113 1114 /* in-kernel sockets don't generally have a file allocated to them 1115 * if all they do is call sock_create_kern(). 1116 */ 1117 if (sk->sk_socket->file) 1118 f_flags = sk->sk_socket->file->f_flags; 1119 1120 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1121 1122 err = sctp_wait_for_connect(asoc, &timeo); 1123 if (!err && assoc_id) 1124 *assoc_id = asoc->assoc_id; 1125 1126 /* Don't free association on exit. */ 1127 asoc = NULL; 1128 1129 out_free: 1130 1131 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1132 " kaddrs: %p err: %d\n", 1133 asoc, kaddrs, err); 1134 if (asoc) 1135 sctp_association_free(asoc); 1136 return err; 1137 } 1138 1139 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1140 * 1141 * API 8.9 1142 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1143 * sctp_assoc_t *asoc); 1144 * 1145 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1146 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1147 * or IPv6 addresses. 1148 * 1149 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1150 * Section 3.1.2 for this usage. 1151 * 1152 * addrs is a pointer to an array of one or more socket addresses. Each 1153 * address is contained in its appropriate structure (i.e. struct 1154 * sockaddr_in or struct sockaddr_in6) the family of the address type 1155 * must be used to distengish the address length (note that this 1156 * representation is termed a "packed array" of addresses). The caller 1157 * specifies the number of addresses in the array with addrcnt. 1158 * 1159 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1160 * the association id of the new association. On failure, sctp_connectx() 1161 * returns -1, and sets errno to the appropriate error code. The assoc_id 1162 * is not touched by the kernel. 1163 * 1164 * For SCTP, the port given in each socket address must be the same, or 1165 * sctp_connectx() will fail, setting errno to EINVAL. 1166 * 1167 * An application can use sctp_connectx to initiate an association with 1168 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1169 * allows a caller to specify multiple addresses at which a peer can be 1170 * reached. The way the SCTP stack uses the list of addresses to set up 1171 * the association is implementation dependant. This function only 1172 * specifies that the stack will try to make use of all the addresses in 1173 * the list when needed. 1174 * 1175 * Note that the list of addresses passed in is only used for setting up 1176 * the association. It does not necessarily equal the set of addresses 1177 * the peer uses for the resulting association. If the caller wants to 1178 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1179 * retrieve them after the association has been set up. 1180 * 1181 * Basically do nothing but copying the addresses from user to kernel 1182 * land and invoking either sctp_connectx(). This is used for tunneling 1183 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1184 * 1185 * We don't use copy_from_user() for optimization: we first do the 1186 * sanity checks (buffer size -fast- and access check-healthy 1187 * pointer); if all of those succeed, then we can alloc the memory 1188 * (expensive operation) needed to copy the data to kernel. Then we do 1189 * the copying without checking the user space area 1190 * (__copy_from_user()). 1191 * 1192 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1193 * it. 1194 * 1195 * sk The sk of the socket 1196 * addrs The pointer to the addresses in user land 1197 * addrssize Size of the addrs buffer 1198 * 1199 * Returns >=0 if ok, <0 errno code on error. 1200 */ 1201 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1202 struct sockaddr __user *addrs, 1203 int addrs_size, 1204 sctp_assoc_t *assoc_id) 1205 { 1206 int err = 0; 1207 struct sockaddr *kaddrs; 1208 1209 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1210 __func__, sk, addrs, addrs_size); 1211 1212 if (unlikely(addrs_size <= 0)) 1213 return -EINVAL; 1214 1215 /* Check the user passed a healthy pointer. */ 1216 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1217 return -EFAULT; 1218 1219 /* Alloc space for the address array in kernel memory. */ 1220 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1221 if (unlikely(!kaddrs)) 1222 return -ENOMEM; 1223 1224 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1225 err = -EFAULT; 1226 } else { 1227 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1228 } 1229 1230 kfree(kaddrs); 1231 1232 return err; 1233 } 1234 1235 /* 1236 * This is an older interface. It's kept for backward compatibility 1237 * to the option that doesn't provide association id. 1238 */ 1239 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1240 struct sockaddr __user *addrs, 1241 int addrs_size) 1242 { 1243 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1244 } 1245 1246 /* 1247 * New interface for the API. The since the API is done with a socket 1248 * option, to make it simple we feed back the association id is as a return 1249 * indication to the call. Error is always negative and association id is 1250 * always positive. 1251 */ 1252 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1253 struct sockaddr __user *addrs, 1254 int addrs_size) 1255 { 1256 sctp_assoc_t assoc_id = 0; 1257 int err = 0; 1258 1259 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1260 1261 if (err) 1262 return err; 1263 else 1264 return assoc_id; 1265 } 1266 1267 /* API 3.1.4 close() - UDP Style Syntax 1268 * Applications use close() to perform graceful shutdown (as described in 1269 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1270 * by a UDP-style socket. 1271 * 1272 * The syntax is 1273 * 1274 * ret = close(int sd); 1275 * 1276 * sd - the socket descriptor of the associations to be closed. 1277 * 1278 * To gracefully shutdown a specific association represented by the 1279 * UDP-style socket, an application should use the sendmsg() call, 1280 * passing no user data, but including the appropriate flag in the 1281 * ancillary data (see Section xxxx). 1282 * 1283 * If sd in the close() call is a branched-off socket representing only 1284 * one association, the shutdown is performed on that association only. 1285 * 1286 * 4.1.6 close() - TCP Style Syntax 1287 * 1288 * Applications use close() to gracefully close down an association. 1289 * 1290 * The syntax is: 1291 * 1292 * int close(int sd); 1293 * 1294 * sd - the socket descriptor of the association to be closed. 1295 * 1296 * After an application calls close() on a socket descriptor, no further 1297 * socket operations will succeed on that descriptor. 1298 * 1299 * API 7.1.4 SO_LINGER 1300 * 1301 * An application using the TCP-style socket can use this option to 1302 * perform the SCTP ABORT primitive. The linger option structure is: 1303 * 1304 * struct linger { 1305 * int l_onoff; // option on/off 1306 * int l_linger; // linger time 1307 * }; 1308 * 1309 * To enable the option, set l_onoff to 1. If the l_linger value is set 1310 * to 0, calling close() is the same as the ABORT primitive. If the 1311 * value is set to a negative value, the setsockopt() call will return 1312 * an error. If the value is set to a positive value linger_time, the 1313 * close() can be blocked for at most linger_time ms. If the graceful 1314 * shutdown phase does not finish during this period, close() will 1315 * return but the graceful shutdown phase continues in the system. 1316 */ 1317 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1318 { 1319 struct sctp_endpoint *ep; 1320 struct sctp_association *asoc; 1321 struct list_head *pos, *temp; 1322 1323 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1324 1325 sctp_lock_sock(sk); 1326 sk->sk_shutdown = SHUTDOWN_MASK; 1327 1328 ep = sctp_sk(sk)->ep; 1329 1330 /* Walk all associations on an endpoint. */ 1331 list_for_each_safe(pos, temp, &ep->asocs) { 1332 asoc = list_entry(pos, struct sctp_association, asocs); 1333 1334 if (sctp_style(sk, TCP)) { 1335 /* A closed association can still be in the list if 1336 * it belongs to a TCP-style listening socket that is 1337 * not yet accepted. If so, free it. If not, send an 1338 * ABORT or SHUTDOWN based on the linger options. 1339 */ 1340 if (sctp_state(asoc, CLOSED)) { 1341 sctp_unhash_established(asoc); 1342 sctp_association_free(asoc); 1343 continue; 1344 } 1345 } 1346 1347 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1348 struct sctp_chunk *chunk; 1349 1350 chunk = sctp_make_abort_user(asoc, NULL, 0); 1351 if (chunk) 1352 sctp_primitive_ABORT(asoc, chunk); 1353 } else 1354 sctp_primitive_SHUTDOWN(asoc, NULL); 1355 } 1356 1357 /* Clean up any skbs sitting on the receive queue. */ 1358 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1359 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1360 1361 /* On a TCP-style socket, block for at most linger_time if set. */ 1362 if (sctp_style(sk, TCP) && timeout) 1363 sctp_wait_for_close(sk, timeout); 1364 1365 /* This will run the backlog queue. */ 1366 sctp_release_sock(sk); 1367 1368 /* Supposedly, no process has access to the socket, but 1369 * the net layers still may. 1370 */ 1371 sctp_local_bh_disable(); 1372 sctp_bh_lock_sock(sk); 1373 1374 /* Hold the sock, since sk_common_release() will put sock_put() 1375 * and we have just a little more cleanup. 1376 */ 1377 sock_hold(sk); 1378 sk_common_release(sk); 1379 1380 sctp_bh_unlock_sock(sk); 1381 sctp_local_bh_enable(); 1382 1383 sock_put(sk); 1384 1385 SCTP_DBG_OBJCNT_DEC(sock); 1386 } 1387 1388 /* Handle EPIPE error. */ 1389 static int sctp_error(struct sock *sk, int flags, int err) 1390 { 1391 if (err == -EPIPE) 1392 err = sock_error(sk) ? : -EPIPE; 1393 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1394 send_sig(SIGPIPE, current, 0); 1395 return err; 1396 } 1397 1398 /* API 3.1.3 sendmsg() - UDP Style Syntax 1399 * 1400 * An application uses sendmsg() and recvmsg() calls to transmit data to 1401 * and receive data from its peer. 1402 * 1403 * ssize_t sendmsg(int socket, const struct msghdr *message, 1404 * int flags); 1405 * 1406 * socket - the socket descriptor of the endpoint. 1407 * message - pointer to the msghdr structure which contains a single 1408 * user message and possibly some ancillary data. 1409 * 1410 * See Section 5 for complete description of the data 1411 * structures. 1412 * 1413 * flags - flags sent or received with the user message, see Section 1414 * 5 for complete description of the flags. 1415 * 1416 * Note: This function could use a rewrite especially when explicit 1417 * connect support comes in. 1418 */ 1419 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1420 1421 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1422 1423 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1424 struct msghdr *msg, size_t msg_len) 1425 { 1426 struct sctp_sock *sp; 1427 struct sctp_endpoint *ep; 1428 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1429 struct sctp_transport *transport, *chunk_tp; 1430 struct sctp_chunk *chunk; 1431 union sctp_addr to; 1432 struct sockaddr *msg_name = NULL; 1433 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1434 struct sctp_sndrcvinfo *sinfo; 1435 struct sctp_initmsg *sinit; 1436 sctp_assoc_t associd = 0; 1437 sctp_cmsgs_t cmsgs = { NULL }; 1438 int err; 1439 sctp_scope_t scope; 1440 long timeo; 1441 __u16 sinfo_flags = 0; 1442 struct sctp_datamsg *datamsg; 1443 int msg_flags = msg->msg_flags; 1444 1445 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1446 sk, msg, msg_len); 1447 1448 err = 0; 1449 sp = sctp_sk(sk); 1450 ep = sp->ep; 1451 1452 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1453 1454 /* We cannot send a message over a TCP-style listening socket. */ 1455 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1456 err = -EPIPE; 1457 goto out_nounlock; 1458 } 1459 1460 /* Parse out the SCTP CMSGs. */ 1461 err = sctp_msghdr_parse(msg, &cmsgs); 1462 1463 if (err) { 1464 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1465 goto out_nounlock; 1466 } 1467 1468 /* Fetch the destination address for this packet. This 1469 * address only selects the association--it is not necessarily 1470 * the address we will send to. 1471 * For a peeled-off socket, msg_name is ignored. 1472 */ 1473 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1474 int msg_namelen = msg->msg_namelen; 1475 1476 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1477 msg_namelen); 1478 if (err) 1479 return err; 1480 1481 if (msg_namelen > sizeof(to)) 1482 msg_namelen = sizeof(to); 1483 memcpy(&to, msg->msg_name, msg_namelen); 1484 msg_name = msg->msg_name; 1485 } 1486 1487 sinfo = cmsgs.info; 1488 sinit = cmsgs.init; 1489 1490 /* Did the user specify SNDRCVINFO? */ 1491 if (sinfo) { 1492 sinfo_flags = sinfo->sinfo_flags; 1493 associd = sinfo->sinfo_assoc_id; 1494 } 1495 1496 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1497 msg_len, sinfo_flags); 1498 1499 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1500 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1501 err = -EINVAL; 1502 goto out_nounlock; 1503 } 1504 1505 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1506 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1507 * If SCTP_ABORT is set, the message length could be non zero with 1508 * the msg_iov set to the user abort reason. 1509 */ 1510 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1511 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1512 err = -EINVAL; 1513 goto out_nounlock; 1514 } 1515 1516 /* If SCTP_ADDR_OVER is set, there must be an address 1517 * specified in msg_name. 1518 */ 1519 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1520 err = -EINVAL; 1521 goto out_nounlock; 1522 } 1523 1524 transport = NULL; 1525 1526 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1527 1528 sctp_lock_sock(sk); 1529 1530 /* If a msg_name has been specified, assume this is to be used. */ 1531 if (msg_name) { 1532 /* Look for a matching association on the endpoint. */ 1533 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1534 if (!asoc) { 1535 /* If we could not find a matching association on the 1536 * endpoint, make sure that it is not a TCP-style 1537 * socket that already has an association or there is 1538 * no peeled-off association on another socket. 1539 */ 1540 if ((sctp_style(sk, TCP) && 1541 sctp_sstate(sk, ESTABLISHED)) || 1542 sctp_endpoint_is_peeled_off(ep, &to)) { 1543 err = -EADDRNOTAVAIL; 1544 goto out_unlock; 1545 } 1546 } 1547 } else { 1548 asoc = sctp_id2assoc(sk, associd); 1549 if (!asoc) { 1550 err = -EPIPE; 1551 goto out_unlock; 1552 } 1553 } 1554 1555 if (asoc) { 1556 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1557 1558 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1559 * socket that has an association in CLOSED state. This can 1560 * happen when an accepted socket has an association that is 1561 * already CLOSED. 1562 */ 1563 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1564 err = -EPIPE; 1565 goto out_unlock; 1566 } 1567 1568 if (sinfo_flags & SCTP_EOF) { 1569 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1570 asoc); 1571 sctp_primitive_SHUTDOWN(asoc, NULL); 1572 err = 0; 1573 goto out_unlock; 1574 } 1575 if (sinfo_flags & SCTP_ABORT) { 1576 1577 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1578 if (!chunk) { 1579 err = -ENOMEM; 1580 goto out_unlock; 1581 } 1582 1583 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1584 sctp_primitive_ABORT(asoc, chunk); 1585 err = 0; 1586 goto out_unlock; 1587 } 1588 } 1589 1590 /* Do we need to create the association? */ 1591 if (!asoc) { 1592 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1593 1594 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1595 err = -EINVAL; 1596 goto out_unlock; 1597 } 1598 1599 /* Check for invalid stream against the stream counts, 1600 * either the default or the user specified stream counts. 1601 */ 1602 if (sinfo) { 1603 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1604 /* Check against the defaults. */ 1605 if (sinfo->sinfo_stream >= 1606 sp->initmsg.sinit_num_ostreams) { 1607 err = -EINVAL; 1608 goto out_unlock; 1609 } 1610 } else { 1611 /* Check against the requested. */ 1612 if (sinfo->sinfo_stream >= 1613 sinit->sinit_num_ostreams) { 1614 err = -EINVAL; 1615 goto out_unlock; 1616 } 1617 } 1618 } 1619 1620 /* 1621 * API 3.1.2 bind() - UDP Style Syntax 1622 * If a bind() or sctp_bindx() is not called prior to a 1623 * sendmsg() call that initiates a new association, the 1624 * system picks an ephemeral port and will choose an address 1625 * set equivalent to binding with a wildcard address. 1626 */ 1627 if (!ep->base.bind_addr.port) { 1628 if (sctp_autobind(sk)) { 1629 err = -EAGAIN; 1630 goto out_unlock; 1631 } 1632 } else { 1633 /* 1634 * If an unprivileged user inherits a one-to-many 1635 * style socket with open associations on a privileged 1636 * port, it MAY be permitted to accept new associations, 1637 * but it SHOULD NOT be permitted to open new 1638 * associations. 1639 */ 1640 if (ep->base.bind_addr.port < PROT_SOCK && 1641 !capable(CAP_NET_BIND_SERVICE)) { 1642 err = -EACCES; 1643 goto out_unlock; 1644 } 1645 } 1646 1647 scope = sctp_scope(&to); 1648 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1649 if (!new_asoc) { 1650 err = -ENOMEM; 1651 goto out_unlock; 1652 } 1653 asoc = new_asoc; 1654 1655 /* If the SCTP_INIT ancillary data is specified, set all 1656 * the association init values accordingly. 1657 */ 1658 if (sinit) { 1659 if (sinit->sinit_num_ostreams) { 1660 asoc->c.sinit_num_ostreams = 1661 sinit->sinit_num_ostreams; 1662 } 1663 if (sinit->sinit_max_instreams) { 1664 asoc->c.sinit_max_instreams = 1665 sinit->sinit_max_instreams; 1666 } 1667 if (sinit->sinit_max_attempts) { 1668 asoc->max_init_attempts 1669 = sinit->sinit_max_attempts; 1670 } 1671 if (sinit->sinit_max_init_timeo) { 1672 asoc->max_init_timeo = 1673 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1674 } 1675 } 1676 1677 /* Prime the peer's transport structures. */ 1678 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1679 if (!transport) { 1680 err = -ENOMEM; 1681 goto out_free; 1682 } 1683 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1684 if (err < 0) { 1685 err = -ENOMEM; 1686 goto out_free; 1687 } 1688 } 1689 1690 /* ASSERT: we have a valid association at this point. */ 1691 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1692 1693 if (!sinfo) { 1694 /* If the user didn't specify SNDRCVINFO, make up one with 1695 * some defaults. 1696 */ 1697 default_sinfo.sinfo_stream = asoc->default_stream; 1698 default_sinfo.sinfo_flags = asoc->default_flags; 1699 default_sinfo.sinfo_ppid = asoc->default_ppid; 1700 default_sinfo.sinfo_context = asoc->default_context; 1701 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1702 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1703 sinfo = &default_sinfo; 1704 } 1705 1706 /* API 7.1.7, the sndbuf size per association bounds the 1707 * maximum size of data that can be sent in a single send call. 1708 */ 1709 if (msg_len > sk->sk_sndbuf) { 1710 err = -EMSGSIZE; 1711 goto out_free; 1712 } 1713 1714 if (asoc->pmtu_pending) 1715 sctp_assoc_pending_pmtu(asoc); 1716 1717 /* If fragmentation is disabled and the message length exceeds the 1718 * association fragmentation point, return EMSGSIZE. The I-D 1719 * does not specify what this error is, but this looks like 1720 * a great fit. 1721 */ 1722 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1723 err = -EMSGSIZE; 1724 goto out_free; 1725 } 1726 1727 if (sinfo) { 1728 /* Check for invalid stream. */ 1729 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1730 err = -EINVAL; 1731 goto out_free; 1732 } 1733 } 1734 1735 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1736 if (!sctp_wspace(asoc)) { 1737 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1738 if (err) 1739 goto out_free; 1740 } 1741 1742 /* If an address is passed with the sendto/sendmsg call, it is used 1743 * to override the primary destination address in the TCP model, or 1744 * when SCTP_ADDR_OVER flag is set in the UDP model. 1745 */ 1746 if ((sctp_style(sk, TCP) && msg_name) || 1747 (sinfo_flags & SCTP_ADDR_OVER)) { 1748 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1749 if (!chunk_tp) { 1750 err = -EINVAL; 1751 goto out_free; 1752 } 1753 } else 1754 chunk_tp = NULL; 1755 1756 /* Auto-connect, if we aren't connected already. */ 1757 if (sctp_state(asoc, CLOSED)) { 1758 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1759 if (err < 0) 1760 goto out_free; 1761 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1762 } 1763 1764 /* Break the message into multiple chunks of maximum size. */ 1765 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1766 if (!datamsg) { 1767 err = -ENOMEM; 1768 goto out_free; 1769 } 1770 1771 /* Now send the (possibly) fragmented message. */ 1772 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1773 sctp_chunk_hold(chunk); 1774 1775 /* Do accounting for the write space. */ 1776 sctp_set_owner_w(chunk); 1777 1778 chunk->transport = chunk_tp; 1779 1780 /* Send it to the lower layers. Note: all chunks 1781 * must either fail or succeed. The lower layer 1782 * works that way today. Keep it that way or this 1783 * breaks. 1784 */ 1785 err = sctp_primitive_SEND(asoc, chunk); 1786 /* Did the lower layer accept the chunk? */ 1787 if (err) 1788 sctp_chunk_free(chunk); 1789 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1790 } 1791 1792 sctp_datamsg_put(datamsg); 1793 if (err) 1794 goto out_free; 1795 else 1796 err = msg_len; 1797 1798 /* If we are already past ASSOCIATE, the lower 1799 * layers are responsible for association cleanup. 1800 */ 1801 goto out_unlock; 1802 1803 out_free: 1804 if (new_asoc) 1805 sctp_association_free(asoc); 1806 out_unlock: 1807 sctp_release_sock(sk); 1808 1809 out_nounlock: 1810 return sctp_error(sk, msg_flags, err); 1811 1812 #if 0 1813 do_sock_err: 1814 if (msg_len) 1815 err = msg_len; 1816 else 1817 err = sock_error(sk); 1818 goto out; 1819 1820 do_interrupted: 1821 if (msg_len) 1822 err = msg_len; 1823 goto out; 1824 #endif /* 0 */ 1825 } 1826 1827 /* This is an extended version of skb_pull() that removes the data from the 1828 * start of a skb even when data is spread across the list of skb's in the 1829 * frag_list. len specifies the total amount of data that needs to be removed. 1830 * when 'len' bytes could be removed from the skb, it returns 0. 1831 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1832 * could not be removed. 1833 */ 1834 static int sctp_skb_pull(struct sk_buff *skb, int len) 1835 { 1836 struct sk_buff *list; 1837 int skb_len = skb_headlen(skb); 1838 int rlen; 1839 1840 if (len <= skb_len) { 1841 __skb_pull(skb, len); 1842 return 0; 1843 } 1844 len -= skb_len; 1845 __skb_pull(skb, skb_len); 1846 1847 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1848 rlen = sctp_skb_pull(list, len); 1849 skb->len -= (len-rlen); 1850 skb->data_len -= (len-rlen); 1851 1852 if (!rlen) 1853 return 0; 1854 1855 len = rlen; 1856 } 1857 1858 return len; 1859 } 1860 1861 /* API 3.1.3 recvmsg() - UDP Style Syntax 1862 * 1863 * ssize_t recvmsg(int socket, struct msghdr *message, 1864 * int flags); 1865 * 1866 * socket - the socket descriptor of the endpoint. 1867 * message - pointer to the msghdr structure which contains a single 1868 * user message and possibly some ancillary data. 1869 * 1870 * See Section 5 for complete description of the data 1871 * structures. 1872 * 1873 * flags - flags sent or received with the user message, see Section 1874 * 5 for complete description of the flags. 1875 */ 1876 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1877 1878 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1879 struct msghdr *msg, size_t len, int noblock, 1880 int flags, int *addr_len) 1881 { 1882 struct sctp_ulpevent *event = NULL; 1883 struct sctp_sock *sp = sctp_sk(sk); 1884 struct sk_buff *skb; 1885 int copied; 1886 int err = 0; 1887 int skb_len; 1888 1889 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1890 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1891 "len", len, "knoblauch", noblock, 1892 "flags", flags, "addr_len", addr_len); 1893 1894 sctp_lock_sock(sk); 1895 1896 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1897 err = -ENOTCONN; 1898 goto out; 1899 } 1900 1901 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1902 if (!skb) 1903 goto out; 1904 1905 /* Get the total length of the skb including any skb's in the 1906 * frag_list. 1907 */ 1908 skb_len = skb->len; 1909 1910 copied = skb_len; 1911 if (copied > len) 1912 copied = len; 1913 1914 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1915 1916 event = sctp_skb2event(skb); 1917 1918 if (err) 1919 goto out_free; 1920 1921 sock_recv_timestamp(msg, sk, skb); 1922 if (sctp_ulpevent_is_notification(event)) { 1923 msg->msg_flags |= MSG_NOTIFICATION; 1924 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1925 } else { 1926 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1927 } 1928 1929 /* Check if we allow SCTP_SNDRCVINFO. */ 1930 if (sp->subscribe.sctp_data_io_event) 1931 sctp_ulpevent_read_sndrcvinfo(event, msg); 1932 #if 0 1933 /* FIXME: we should be calling IP/IPv6 layers. */ 1934 if (sk->sk_protinfo.af_inet.cmsg_flags) 1935 ip_cmsg_recv(msg, skb); 1936 #endif 1937 1938 err = copied; 1939 1940 /* If skb's length exceeds the user's buffer, update the skb and 1941 * push it back to the receive_queue so that the next call to 1942 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1943 */ 1944 if (skb_len > copied) { 1945 msg->msg_flags &= ~MSG_EOR; 1946 if (flags & MSG_PEEK) 1947 goto out_free; 1948 sctp_skb_pull(skb, copied); 1949 skb_queue_head(&sk->sk_receive_queue, skb); 1950 1951 /* When only partial message is copied to the user, increase 1952 * rwnd by that amount. If all the data in the skb is read, 1953 * rwnd is updated when the event is freed. 1954 */ 1955 if (!sctp_ulpevent_is_notification(event)) 1956 sctp_assoc_rwnd_increase(event->asoc, copied); 1957 goto out; 1958 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1959 (event->msg_flags & MSG_EOR)) 1960 msg->msg_flags |= MSG_EOR; 1961 else 1962 msg->msg_flags &= ~MSG_EOR; 1963 1964 out_free: 1965 if (flags & MSG_PEEK) { 1966 /* Release the skb reference acquired after peeking the skb in 1967 * sctp_skb_recv_datagram(). 1968 */ 1969 kfree_skb(skb); 1970 } else { 1971 /* Free the event which includes releasing the reference to 1972 * the owner of the skb, freeing the skb and updating the 1973 * rwnd. 1974 */ 1975 sctp_ulpevent_free(event); 1976 } 1977 out: 1978 sctp_release_sock(sk); 1979 return err; 1980 } 1981 1982 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1983 * 1984 * This option is a on/off flag. If enabled no SCTP message 1985 * fragmentation will be performed. Instead if a message being sent 1986 * exceeds the current PMTU size, the message will NOT be sent and 1987 * instead a error will be indicated to the user. 1988 */ 1989 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1990 char __user *optval, int optlen) 1991 { 1992 int val; 1993 1994 if (optlen < sizeof(int)) 1995 return -EINVAL; 1996 1997 if (get_user(val, (int __user *)optval)) 1998 return -EFAULT; 1999 2000 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2001 2002 return 0; 2003 } 2004 2005 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2006 int optlen) 2007 { 2008 if (optlen > sizeof(struct sctp_event_subscribe)) 2009 return -EINVAL; 2010 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2011 return -EFAULT; 2012 return 0; 2013 } 2014 2015 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2016 * 2017 * This socket option is applicable to the UDP-style socket only. When 2018 * set it will cause associations that are idle for more than the 2019 * specified number of seconds to automatically close. An association 2020 * being idle is defined an association that has NOT sent or received 2021 * user data. The special value of '0' indicates that no automatic 2022 * close of any associations should be performed. The option expects an 2023 * integer defining the number of seconds of idle time before an 2024 * association is closed. 2025 */ 2026 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2027 int optlen) 2028 { 2029 struct sctp_sock *sp = sctp_sk(sk); 2030 2031 /* Applicable to UDP-style socket only */ 2032 if (sctp_style(sk, TCP)) 2033 return -EOPNOTSUPP; 2034 if (optlen != sizeof(int)) 2035 return -EINVAL; 2036 if (copy_from_user(&sp->autoclose, optval, optlen)) 2037 return -EFAULT; 2038 2039 return 0; 2040 } 2041 2042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2043 * 2044 * Applications can enable or disable heartbeats for any peer address of 2045 * an association, modify an address's heartbeat interval, force a 2046 * heartbeat to be sent immediately, and adjust the address's maximum 2047 * number of retransmissions sent before an address is considered 2048 * unreachable. The following structure is used to access and modify an 2049 * address's parameters: 2050 * 2051 * struct sctp_paddrparams { 2052 * sctp_assoc_t spp_assoc_id; 2053 * struct sockaddr_storage spp_address; 2054 * uint32_t spp_hbinterval; 2055 * uint16_t spp_pathmaxrxt; 2056 * uint32_t spp_pathmtu; 2057 * uint32_t spp_sackdelay; 2058 * uint32_t spp_flags; 2059 * }; 2060 * 2061 * spp_assoc_id - (one-to-many style socket) This is filled in the 2062 * application, and identifies the association for 2063 * this query. 2064 * spp_address - This specifies which address is of interest. 2065 * spp_hbinterval - This contains the value of the heartbeat interval, 2066 * in milliseconds. If a value of zero 2067 * is present in this field then no changes are to 2068 * be made to this parameter. 2069 * spp_pathmaxrxt - This contains the maximum number of 2070 * retransmissions before this address shall be 2071 * considered unreachable. If a value of zero 2072 * is present in this field then no changes are to 2073 * be made to this parameter. 2074 * spp_pathmtu - When Path MTU discovery is disabled the value 2075 * specified here will be the "fixed" path mtu. 2076 * Note that if the spp_address field is empty 2077 * then all associations on this address will 2078 * have this fixed path mtu set upon them. 2079 * 2080 * spp_sackdelay - When delayed sack is enabled, this value specifies 2081 * the number of milliseconds that sacks will be delayed 2082 * for. This value will apply to all addresses of an 2083 * association if the spp_address field is empty. Note 2084 * also, that if delayed sack is enabled and this 2085 * value is set to 0, no change is made to the last 2086 * recorded delayed sack timer value. 2087 * 2088 * spp_flags - These flags are used to control various features 2089 * on an association. The flag field may contain 2090 * zero or more of the following options. 2091 * 2092 * SPP_HB_ENABLE - Enable heartbeats on the 2093 * specified address. Note that if the address 2094 * field is empty all addresses for the association 2095 * have heartbeats enabled upon them. 2096 * 2097 * SPP_HB_DISABLE - Disable heartbeats on the 2098 * speicifed address. Note that if the address 2099 * field is empty all addresses for the association 2100 * will have their heartbeats disabled. Note also 2101 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2102 * mutually exclusive, only one of these two should 2103 * be specified. Enabling both fields will have 2104 * undetermined results. 2105 * 2106 * SPP_HB_DEMAND - Request a user initiated heartbeat 2107 * to be made immediately. 2108 * 2109 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2110 * heartbeat delayis to be set to the value of 0 2111 * milliseconds. 2112 * 2113 * SPP_PMTUD_ENABLE - This field will enable PMTU 2114 * discovery upon the specified address. Note that 2115 * if the address feild is empty then all addresses 2116 * on the association are effected. 2117 * 2118 * SPP_PMTUD_DISABLE - This field will disable PMTU 2119 * discovery upon the specified address. Note that 2120 * if the address feild is empty then all addresses 2121 * on the association are effected. Not also that 2122 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2123 * exclusive. Enabling both will have undetermined 2124 * results. 2125 * 2126 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2127 * on delayed sack. The time specified in spp_sackdelay 2128 * is used to specify the sack delay for this address. Note 2129 * that if spp_address is empty then all addresses will 2130 * enable delayed sack and take on the sack delay 2131 * value specified in spp_sackdelay. 2132 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2133 * off delayed sack. If the spp_address field is blank then 2134 * delayed sack is disabled for the entire association. Note 2135 * also that this field is mutually exclusive to 2136 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2137 * results. 2138 */ 2139 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2140 struct sctp_transport *trans, 2141 struct sctp_association *asoc, 2142 struct sctp_sock *sp, 2143 int hb_change, 2144 int pmtud_change, 2145 int sackdelay_change) 2146 { 2147 int error; 2148 2149 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2150 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2151 if (error) 2152 return error; 2153 } 2154 2155 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2156 * this field is ignored. Note also that a value of zero indicates 2157 * the current setting should be left unchanged. 2158 */ 2159 if (params->spp_flags & SPP_HB_ENABLE) { 2160 2161 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2162 * set. This lets us use 0 value when this flag 2163 * is set. 2164 */ 2165 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2166 params->spp_hbinterval = 0; 2167 2168 if (params->spp_hbinterval || 2169 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2170 if (trans) { 2171 trans->hbinterval = 2172 msecs_to_jiffies(params->spp_hbinterval); 2173 } else if (asoc) { 2174 asoc->hbinterval = 2175 msecs_to_jiffies(params->spp_hbinterval); 2176 } else { 2177 sp->hbinterval = params->spp_hbinterval; 2178 } 2179 } 2180 } 2181 2182 if (hb_change) { 2183 if (trans) { 2184 trans->param_flags = 2185 (trans->param_flags & ~SPP_HB) | hb_change; 2186 } else if (asoc) { 2187 asoc->param_flags = 2188 (asoc->param_flags & ~SPP_HB) | hb_change; 2189 } else { 2190 sp->param_flags = 2191 (sp->param_flags & ~SPP_HB) | hb_change; 2192 } 2193 } 2194 2195 /* When Path MTU discovery is disabled the value specified here will 2196 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2197 * include the flag SPP_PMTUD_DISABLE for this field to have any 2198 * effect). 2199 */ 2200 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2201 if (trans) { 2202 trans->pathmtu = params->spp_pathmtu; 2203 sctp_assoc_sync_pmtu(asoc); 2204 } else if (asoc) { 2205 asoc->pathmtu = params->spp_pathmtu; 2206 sctp_frag_point(sp, params->spp_pathmtu); 2207 } else { 2208 sp->pathmtu = params->spp_pathmtu; 2209 } 2210 } 2211 2212 if (pmtud_change) { 2213 if (trans) { 2214 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2215 (params->spp_flags & SPP_PMTUD_ENABLE); 2216 trans->param_flags = 2217 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2218 if (update) { 2219 sctp_transport_pmtu(trans); 2220 sctp_assoc_sync_pmtu(asoc); 2221 } 2222 } else if (asoc) { 2223 asoc->param_flags = 2224 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2225 } else { 2226 sp->param_flags = 2227 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2228 } 2229 } 2230 2231 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2232 * value of this field is ignored. Note also that a value of zero 2233 * indicates the current setting should be left unchanged. 2234 */ 2235 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2236 if (trans) { 2237 trans->sackdelay = 2238 msecs_to_jiffies(params->spp_sackdelay); 2239 } else if (asoc) { 2240 asoc->sackdelay = 2241 msecs_to_jiffies(params->spp_sackdelay); 2242 } else { 2243 sp->sackdelay = params->spp_sackdelay; 2244 } 2245 } 2246 2247 if (sackdelay_change) { 2248 if (trans) { 2249 trans->param_flags = 2250 (trans->param_flags & ~SPP_SACKDELAY) | 2251 sackdelay_change; 2252 } else if (asoc) { 2253 asoc->param_flags = 2254 (asoc->param_flags & ~SPP_SACKDELAY) | 2255 sackdelay_change; 2256 } else { 2257 sp->param_flags = 2258 (sp->param_flags & ~SPP_SACKDELAY) | 2259 sackdelay_change; 2260 } 2261 } 2262 2263 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2264 * of this field is ignored. Note also that a value of zero 2265 * indicates the current setting should be left unchanged. 2266 */ 2267 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2268 if (trans) { 2269 trans->pathmaxrxt = params->spp_pathmaxrxt; 2270 } else if (asoc) { 2271 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2272 } else { 2273 sp->pathmaxrxt = params->spp_pathmaxrxt; 2274 } 2275 } 2276 2277 return 0; 2278 } 2279 2280 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2281 char __user *optval, int optlen) 2282 { 2283 struct sctp_paddrparams params; 2284 struct sctp_transport *trans = NULL; 2285 struct sctp_association *asoc = NULL; 2286 struct sctp_sock *sp = sctp_sk(sk); 2287 int error; 2288 int hb_change, pmtud_change, sackdelay_change; 2289 2290 if (optlen != sizeof(struct sctp_paddrparams)) 2291 return - EINVAL; 2292 2293 if (copy_from_user(¶ms, optval, optlen)) 2294 return -EFAULT; 2295 2296 /* Validate flags and value parameters. */ 2297 hb_change = params.spp_flags & SPP_HB; 2298 pmtud_change = params.spp_flags & SPP_PMTUD; 2299 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2300 2301 if (hb_change == SPP_HB || 2302 pmtud_change == SPP_PMTUD || 2303 sackdelay_change == SPP_SACKDELAY || 2304 params.spp_sackdelay > 500 || 2305 (params.spp_pathmtu 2306 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2307 return -EINVAL; 2308 2309 /* If an address other than INADDR_ANY is specified, and 2310 * no transport is found, then the request is invalid. 2311 */ 2312 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2313 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2314 params.spp_assoc_id); 2315 if (!trans) 2316 return -EINVAL; 2317 } 2318 2319 /* Get association, if assoc_id != 0 and the socket is a one 2320 * to many style socket, and an association was not found, then 2321 * the id was invalid. 2322 */ 2323 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2324 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2325 return -EINVAL; 2326 2327 /* Heartbeat demand can only be sent on a transport or 2328 * association, but not a socket. 2329 */ 2330 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2331 return -EINVAL; 2332 2333 /* Process parameters. */ 2334 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2335 hb_change, pmtud_change, 2336 sackdelay_change); 2337 2338 if (error) 2339 return error; 2340 2341 /* If changes are for association, also apply parameters to each 2342 * transport. 2343 */ 2344 if (!trans && asoc) { 2345 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2346 transports) { 2347 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2348 hb_change, pmtud_change, 2349 sackdelay_change); 2350 } 2351 } 2352 2353 return 0; 2354 } 2355 2356 /* 2357 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2358 * 2359 * This option will effect the way delayed acks are performed. This 2360 * option allows you to get or set the delayed ack time, in 2361 * milliseconds. It also allows changing the delayed ack frequency. 2362 * Changing the frequency to 1 disables the delayed sack algorithm. If 2363 * the assoc_id is 0, then this sets or gets the endpoints default 2364 * values. If the assoc_id field is non-zero, then the set or get 2365 * effects the specified association for the one to many model (the 2366 * assoc_id field is ignored by the one to one model). Note that if 2367 * sack_delay or sack_freq are 0 when setting this option, then the 2368 * current values will remain unchanged. 2369 * 2370 * struct sctp_sack_info { 2371 * sctp_assoc_t sack_assoc_id; 2372 * uint32_t sack_delay; 2373 * uint32_t sack_freq; 2374 * }; 2375 * 2376 * sack_assoc_id - This parameter, indicates which association the user 2377 * is performing an action upon. Note that if this field's value is 2378 * zero then the endpoints default value is changed (effecting future 2379 * associations only). 2380 * 2381 * sack_delay - This parameter contains the number of milliseconds that 2382 * the user is requesting the delayed ACK timer be set to. Note that 2383 * this value is defined in the standard to be between 200 and 500 2384 * milliseconds. 2385 * 2386 * sack_freq - This parameter contains the number of packets that must 2387 * be received before a sack is sent without waiting for the delay 2388 * timer to expire. The default value for this is 2, setting this 2389 * value to 1 will disable the delayed sack algorithm. 2390 */ 2391 2392 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2393 char __user *optval, int optlen) 2394 { 2395 struct sctp_sack_info params; 2396 struct sctp_transport *trans = NULL; 2397 struct sctp_association *asoc = NULL; 2398 struct sctp_sock *sp = sctp_sk(sk); 2399 2400 if (optlen == sizeof(struct sctp_sack_info)) { 2401 if (copy_from_user(¶ms, optval, optlen)) 2402 return -EFAULT; 2403 2404 if (params.sack_delay == 0 && params.sack_freq == 0) 2405 return 0; 2406 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2407 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info " 2408 "in delayed_ack socket option deprecated\n"); 2409 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n"); 2410 if (copy_from_user(¶ms, optval, optlen)) 2411 return -EFAULT; 2412 2413 if (params.sack_delay == 0) 2414 params.sack_freq = 1; 2415 else 2416 params.sack_freq = 0; 2417 } else 2418 return - EINVAL; 2419 2420 /* Validate value parameter. */ 2421 if (params.sack_delay > 500) 2422 return -EINVAL; 2423 2424 /* Get association, if sack_assoc_id != 0 and the socket is a one 2425 * to many style socket, and an association was not found, then 2426 * the id was invalid. 2427 */ 2428 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2429 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2430 return -EINVAL; 2431 2432 if (params.sack_delay) { 2433 if (asoc) { 2434 asoc->sackdelay = 2435 msecs_to_jiffies(params.sack_delay); 2436 asoc->param_flags = 2437 (asoc->param_flags & ~SPP_SACKDELAY) | 2438 SPP_SACKDELAY_ENABLE; 2439 } else { 2440 sp->sackdelay = params.sack_delay; 2441 sp->param_flags = 2442 (sp->param_flags & ~SPP_SACKDELAY) | 2443 SPP_SACKDELAY_ENABLE; 2444 } 2445 } 2446 2447 if (params.sack_freq == 1) { 2448 if (asoc) { 2449 asoc->param_flags = 2450 (asoc->param_flags & ~SPP_SACKDELAY) | 2451 SPP_SACKDELAY_DISABLE; 2452 } else { 2453 sp->param_flags = 2454 (sp->param_flags & ~SPP_SACKDELAY) | 2455 SPP_SACKDELAY_DISABLE; 2456 } 2457 } else if (params.sack_freq > 1) { 2458 if (asoc) { 2459 asoc->sackfreq = params.sack_freq; 2460 asoc->param_flags = 2461 (asoc->param_flags & ~SPP_SACKDELAY) | 2462 SPP_SACKDELAY_ENABLE; 2463 } else { 2464 sp->sackfreq = params.sack_freq; 2465 sp->param_flags = 2466 (sp->param_flags & ~SPP_SACKDELAY) | 2467 SPP_SACKDELAY_ENABLE; 2468 } 2469 } 2470 2471 /* If change is for association, also apply to each transport. */ 2472 if (asoc) { 2473 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2474 transports) { 2475 if (params.sack_delay) { 2476 trans->sackdelay = 2477 msecs_to_jiffies(params.sack_delay); 2478 trans->param_flags = 2479 (trans->param_flags & ~SPP_SACKDELAY) | 2480 SPP_SACKDELAY_ENABLE; 2481 } 2482 if (params.sack_freq == 1) { 2483 trans->param_flags = 2484 (trans->param_flags & ~SPP_SACKDELAY) | 2485 SPP_SACKDELAY_DISABLE; 2486 } else if (params.sack_freq > 1) { 2487 trans->sackfreq = params.sack_freq; 2488 trans->param_flags = 2489 (trans->param_flags & ~SPP_SACKDELAY) | 2490 SPP_SACKDELAY_ENABLE; 2491 } 2492 } 2493 } 2494 2495 return 0; 2496 } 2497 2498 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2499 * 2500 * Applications can specify protocol parameters for the default association 2501 * initialization. The option name argument to setsockopt() and getsockopt() 2502 * is SCTP_INITMSG. 2503 * 2504 * Setting initialization parameters is effective only on an unconnected 2505 * socket (for UDP-style sockets only future associations are effected 2506 * by the change). With TCP-style sockets, this option is inherited by 2507 * sockets derived from a listener socket. 2508 */ 2509 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2510 { 2511 struct sctp_initmsg sinit; 2512 struct sctp_sock *sp = sctp_sk(sk); 2513 2514 if (optlen != sizeof(struct sctp_initmsg)) 2515 return -EINVAL; 2516 if (copy_from_user(&sinit, optval, optlen)) 2517 return -EFAULT; 2518 2519 if (sinit.sinit_num_ostreams) 2520 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2521 if (sinit.sinit_max_instreams) 2522 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2523 if (sinit.sinit_max_attempts) 2524 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2525 if (sinit.sinit_max_init_timeo) 2526 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2527 2528 return 0; 2529 } 2530 2531 /* 2532 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2533 * 2534 * Applications that wish to use the sendto() system call may wish to 2535 * specify a default set of parameters that would normally be supplied 2536 * through the inclusion of ancillary data. This socket option allows 2537 * such an application to set the default sctp_sndrcvinfo structure. 2538 * The application that wishes to use this socket option simply passes 2539 * in to this call the sctp_sndrcvinfo structure defined in Section 2540 * 5.2.2) The input parameters accepted by this call include 2541 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2542 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2543 * to this call if the caller is using the UDP model. 2544 */ 2545 static int sctp_setsockopt_default_send_param(struct sock *sk, 2546 char __user *optval, int optlen) 2547 { 2548 struct sctp_sndrcvinfo info; 2549 struct sctp_association *asoc; 2550 struct sctp_sock *sp = sctp_sk(sk); 2551 2552 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2553 return -EINVAL; 2554 if (copy_from_user(&info, optval, optlen)) 2555 return -EFAULT; 2556 2557 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2558 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2559 return -EINVAL; 2560 2561 if (asoc) { 2562 asoc->default_stream = info.sinfo_stream; 2563 asoc->default_flags = info.sinfo_flags; 2564 asoc->default_ppid = info.sinfo_ppid; 2565 asoc->default_context = info.sinfo_context; 2566 asoc->default_timetolive = info.sinfo_timetolive; 2567 } else { 2568 sp->default_stream = info.sinfo_stream; 2569 sp->default_flags = info.sinfo_flags; 2570 sp->default_ppid = info.sinfo_ppid; 2571 sp->default_context = info.sinfo_context; 2572 sp->default_timetolive = info.sinfo_timetolive; 2573 } 2574 2575 return 0; 2576 } 2577 2578 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2579 * 2580 * Requests that the local SCTP stack use the enclosed peer address as 2581 * the association primary. The enclosed address must be one of the 2582 * association peer's addresses. 2583 */ 2584 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2585 int optlen) 2586 { 2587 struct sctp_prim prim; 2588 struct sctp_transport *trans; 2589 2590 if (optlen != sizeof(struct sctp_prim)) 2591 return -EINVAL; 2592 2593 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2594 return -EFAULT; 2595 2596 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2597 if (!trans) 2598 return -EINVAL; 2599 2600 sctp_assoc_set_primary(trans->asoc, trans); 2601 2602 return 0; 2603 } 2604 2605 /* 2606 * 7.1.5 SCTP_NODELAY 2607 * 2608 * Turn on/off any Nagle-like algorithm. This means that packets are 2609 * generally sent as soon as possible and no unnecessary delays are 2610 * introduced, at the cost of more packets in the network. Expects an 2611 * integer boolean flag. 2612 */ 2613 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2614 int optlen) 2615 { 2616 int val; 2617 2618 if (optlen < sizeof(int)) 2619 return -EINVAL; 2620 if (get_user(val, (int __user *)optval)) 2621 return -EFAULT; 2622 2623 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2624 return 0; 2625 } 2626 2627 /* 2628 * 2629 * 7.1.1 SCTP_RTOINFO 2630 * 2631 * The protocol parameters used to initialize and bound retransmission 2632 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2633 * and modify these parameters. 2634 * All parameters are time values, in milliseconds. A value of 0, when 2635 * modifying the parameters, indicates that the current value should not 2636 * be changed. 2637 * 2638 */ 2639 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2640 struct sctp_rtoinfo rtoinfo; 2641 struct sctp_association *asoc; 2642 2643 if (optlen != sizeof (struct sctp_rtoinfo)) 2644 return -EINVAL; 2645 2646 if (copy_from_user(&rtoinfo, optval, optlen)) 2647 return -EFAULT; 2648 2649 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2650 2651 /* Set the values to the specific association */ 2652 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2653 return -EINVAL; 2654 2655 if (asoc) { 2656 if (rtoinfo.srto_initial != 0) 2657 asoc->rto_initial = 2658 msecs_to_jiffies(rtoinfo.srto_initial); 2659 if (rtoinfo.srto_max != 0) 2660 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2661 if (rtoinfo.srto_min != 0) 2662 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2663 } else { 2664 /* If there is no association or the association-id = 0 2665 * set the values to the endpoint. 2666 */ 2667 struct sctp_sock *sp = sctp_sk(sk); 2668 2669 if (rtoinfo.srto_initial != 0) 2670 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2671 if (rtoinfo.srto_max != 0) 2672 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2673 if (rtoinfo.srto_min != 0) 2674 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2675 } 2676 2677 return 0; 2678 } 2679 2680 /* 2681 * 2682 * 7.1.2 SCTP_ASSOCINFO 2683 * 2684 * This option is used to tune the maximum retransmission attempts 2685 * of the association. 2686 * Returns an error if the new association retransmission value is 2687 * greater than the sum of the retransmission value of the peer. 2688 * See [SCTP] for more information. 2689 * 2690 */ 2691 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2692 { 2693 2694 struct sctp_assocparams assocparams; 2695 struct sctp_association *asoc; 2696 2697 if (optlen != sizeof(struct sctp_assocparams)) 2698 return -EINVAL; 2699 if (copy_from_user(&assocparams, optval, optlen)) 2700 return -EFAULT; 2701 2702 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2703 2704 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2705 return -EINVAL; 2706 2707 /* Set the values to the specific association */ 2708 if (asoc) { 2709 if (assocparams.sasoc_asocmaxrxt != 0) { 2710 __u32 path_sum = 0; 2711 int paths = 0; 2712 struct sctp_transport *peer_addr; 2713 2714 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2715 transports) { 2716 path_sum += peer_addr->pathmaxrxt; 2717 paths++; 2718 } 2719 2720 /* Only validate asocmaxrxt if we have more then 2721 * one path/transport. We do this because path 2722 * retransmissions are only counted when we have more 2723 * then one path. 2724 */ 2725 if (paths > 1 && 2726 assocparams.sasoc_asocmaxrxt > path_sum) 2727 return -EINVAL; 2728 2729 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2730 } 2731 2732 if (assocparams.sasoc_cookie_life != 0) { 2733 asoc->cookie_life.tv_sec = 2734 assocparams.sasoc_cookie_life / 1000; 2735 asoc->cookie_life.tv_usec = 2736 (assocparams.sasoc_cookie_life % 1000) 2737 * 1000; 2738 } 2739 } else { 2740 /* Set the values to the endpoint */ 2741 struct sctp_sock *sp = sctp_sk(sk); 2742 2743 if (assocparams.sasoc_asocmaxrxt != 0) 2744 sp->assocparams.sasoc_asocmaxrxt = 2745 assocparams.sasoc_asocmaxrxt; 2746 if (assocparams.sasoc_cookie_life != 0) 2747 sp->assocparams.sasoc_cookie_life = 2748 assocparams.sasoc_cookie_life; 2749 } 2750 return 0; 2751 } 2752 2753 /* 2754 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2755 * 2756 * This socket option is a boolean flag which turns on or off mapped V4 2757 * addresses. If this option is turned on and the socket is type 2758 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2759 * If this option is turned off, then no mapping will be done of V4 2760 * addresses and a user will receive both PF_INET6 and PF_INET type 2761 * addresses on the socket. 2762 */ 2763 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2764 { 2765 int val; 2766 struct sctp_sock *sp = sctp_sk(sk); 2767 2768 if (optlen < sizeof(int)) 2769 return -EINVAL; 2770 if (get_user(val, (int __user *)optval)) 2771 return -EFAULT; 2772 if (val) 2773 sp->v4mapped = 1; 2774 else 2775 sp->v4mapped = 0; 2776 2777 return 0; 2778 } 2779 2780 /* 2781 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2782 * 2783 * This socket option specifies the maximum size to put in any outgoing 2784 * SCTP chunk. If a message is larger than this size it will be 2785 * fragmented by SCTP into the specified size. Note that the underlying 2786 * SCTP implementation may fragment into smaller sized chunks when the 2787 * PMTU of the underlying association is smaller than the value set by 2788 * the user. 2789 */ 2790 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2791 { 2792 struct sctp_association *asoc; 2793 struct sctp_sock *sp = sctp_sk(sk); 2794 int val; 2795 2796 if (optlen < sizeof(int)) 2797 return -EINVAL; 2798 if (get_user(val, (int __user *)optval)) 2799 return -EFAULT; 2800 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2801 return -EINVAL; 2802 sp->user_frag = val; 2803 2804 /* Update the frag_point of the existing associations. */ 2805 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 2806 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2807 } 2808 2809 return 0; 2810 } 2811 2812 2813 /* 2814 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2815 * 2816 * Requests that the peer mark the enclosed address as the association 2817 * primary. The enclosed address must be one of the association's 2818 * locally bound addresses. The following structure is used to make a 2819 * set primary request: 2820 */ 2821 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2822 int optlen) 2823 { 2824 struct sctp_sock *sp; 2825 struct sctp_endpoint *ep; 2826 struct sctp_association *asoc = NULL; 2827 struct sctp_setpeerprim prim; 2828 struct sctp_chunk *chunk; 2829 int err; 2830 2831 sp = sctp_sk(sk); 2832 ep = sp->ep; 2833 2834 if (!sctp_addip_enable) 2835 return -EPERM; 2836 2837 if (optlen != sizeof(struct sctp_setpeerprim)) 2838 return -EINVAL; 2839 2840 if (copy_from_user(&prim, optval, optlen)) 2841 return -EFAULT; 2842 2843 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2844 if (!asoc) 2845 return -EINVAL; 2846 2847 if (!asoc->peer.asconf_capable) 2848 return -EPERM; 2849 2850 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2851 return -EPERM; 2852 2853 if (!sctp_state(asoc, ESTABLISHED)) 2854 return -ENOTCONN; 2855 2856 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2857 return -EADDRNOTAVAIL; 2858 2859 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2860 chunk = sctp_make_asconf_set_prim(asoc, 2861 (union sctp_addr *)&prim.sspp_addr); 2862 if (!chunk) 2863 return -ENOMEM; 2864 2865 err = sctp_send_asconf(asoc, chunk); 2866 2867 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2868 2869 return err; 2870 } 2871 2872 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2873 int optlen) 2874 { 2875 struct sctp_setadaptation adaptation; 2876 2877 if (optlen != sizeof(struct sctp_setadaptation)) 2878 return -EINVAL; 2879 if (copy_from_user(&adaptation, optval, optlen)) 2880 return -EFAULT; 2881 2882 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2883 2884 return 0; 2885 } 2886 2887 /* 2888 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2889 * 2890 * The context field in the sctp_sndrcvinfo structure is normally only 2891 * used when a failed message is retrieved holding the value that was 2892 * sent down on the actual send call. This option allows the setting of 2893 * a default context on an association basis that will be received on 2894 * reading messages from the peer. This is especially helpful in the 2895 * one-2-many model for an application to keep some reference to an 2896 * internal state machine that is processing messages on the 2897 * association. Note that the setting of this value only effects 2898 * received messages from the peer and does not effect the value that is 2899 * saved with outbound messages. 2900 */ 2901 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2902 int optlen) 2903 { 2904 struct sctp_assoc_value params; 2905 struct sctp_sock *sp; 2906 struct sctp_association *asoc; 2907 2908 if (optlen != sizeof(struct sctp_assoc_value)) 2909 return -EINVAL; 2910 if (copy_from_user(¶ms, optval, optlen)) 2911 return -EFAULT; 2912 2913 sp = sctp_sk(sk); 2914 2915 if (params.assoc_id != 0) { 2916 asoc = sctp_id2assoc(sk, params.assoc_id); 2917 if (!asoc) 2918 return -EINVAL; 2919 asoc->default_rcv_context = params.assoc_value; 2920 } else { 2921 sp->default_rcv_context = params.assoc_value; 2922 } 2923 2924 return 0; 2925 } 2926 2927 /* 2928 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2929 * 2930 * This options will at a minimum specify if the implementation is doing 2931 * fragmented interleave. Fragmented interleave, for a one to many 2932 * socket, is when subsequent calls to receive a message may return 2933 * parts of messages from different associations. Some implementations 2934 * may allow you to turn this value on or off. If so, when turned off, 2935 * no fragment interleave will occur (which will cause a head of line 2936 * blocking amongst multiple associations sharing the same one to many 2937 * socket). When this option is turned on, then each receive call may 2938 * come from a different association (thus the user must receive data 2939 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2940 * association each receive belongs to. 2941 * 2942 * This option takes a boolean value. A non-zero value indicates that 2943 * fragmented interleave is on. A value of zero indicates that 2944 * fragmented interleave is off. 2945 * 2946 * Note that it is important that an implementation that allows this 2947 * option to be turned on, have it off by default. Otherwise an unaware 2948 * application using the one to many model may become confused and act 2949 * incorrectly. 2950 */ 2951 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2952 char __user *optval, 2953 int optlen) 2954 { 2955 int val; 2956 2957 if (optlen != sizeof(int)) 2958 return -EINVAL; 2959 if (get_user(val, (int __user *)optval)) 2960 return -EFAULT; 2961 2962 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2963 2964 return 0; 2965 } 2966 2967 /* 2968 * 7.1.25. Set or Get the sctp partial delivery point 2969 * (SCTP_PARTIAL_DELIVERY_POINT) 2970 * This option will set or get the SCTP partial delivery point. This 2971 * point is the size of a message where the partial delivery API will be 2972 * invoked to help free up rwnd space for the peer. Setting this to a 2973 * lower value will cause partial delivery's to happen more often. The 2974 * calls argument is an integer that sets or gets the partial delivery 2975 * point. 2976 */ 2977 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2978 char __user *optval, 2979 int optlen) 2980 { 2981 u32 val; 2982 2983 if (optlen != sizeof(u32)) 2984 return -EINVAL; 2985 if (get_user(val, (int __user *)optval)) 2986 return -EFAULT; 2987 2988 sctp_sk(sk)->pd_point = val; 2989 2990 return 0; /* is this the right error code? */ 2991 } 2992 2993 /* 2994 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2995 * 2996 * This option will allow a user to change the maximum burst of packets 2997 * that can be emitted by this association. Note that the default value 2998 * is 4, and some implementations may restrict this setting so that it 2999 * can only be lowered. 3000 * 3001 * NOTE: This text doesn't seem right. Do this on a socket basis with 3002 * future associations inheriting the socket value. 3003 */ 3004 static int sctp_setsockopt_maxburst(struct sock *sk, 3005 char __user *optval, 3006 int optlen) 3007 { 3008 struct sctp_assoc_value params; 3009 struct sctp_sock *sp; 3010 struct sctp_association *asoc; 3011 int val; 3012 int assoc_id = 0; 3013 3014 if (optlen < sizeof(int)) 3015 return -EINVAL; 3016 3017 if (optlen == sizeof(int)) { 3018 printk(KERN_WARNING 3019 "SCTP: Use of int in max_burst socket option deprecated\n"); 3020 printk(KERN_WARNING 3021 "SCTP: Use struct sctp_assoc_value instead\n"); 3022 if (copy_from_user(&val, optval, optlen)) 3023 return -EFAULT; 3024 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3025 if (copy_from_user(¶ms, optval, optlen)) 3026 return -EFAULT; 3027 val = params.assoc_value; 3028 assoc_id = params.assoc_id; 3029 } else 3030 return -EINVAL; 3031 3032 sp = sctp_sk(sk); 3033 3034 if (assoc_id != 0) { 3035 asoc = sctp_id2assoc(sk, assoc_id); 3036 if (!asoc) 3037 return -EINVAL; 3038 asoc->max_burst = val; 3039 } else 3040 sp->max_burst = val; 3041 3042 return 0; 3043 } 3044 3045 /* 3046 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3047 * 3048 * This set option adds a chunk type that the user is requesting to be 3049 * received only in an authenticated way. Changes to the list of chunks 3050 * will only effect future associations on the socket. 3051 */ 3052 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3053 char __user *optval, 3054 int optlen) 3055 { 3056 struct sctp_authchunk val; 3057 3058 if (optlen != sizeof(struct sctp_authchunk)) 3059 return -EINVAL; 3060 if (copy_from_user(&val, optval, optlen)) 3061 return -EFAULT; 3062 3063 switch (val.sauth_chunk) { 3064 case SCTP_CID_INIT: 3065 case SCTP_CID_INIT_ACK: 3066 case SCTP_CID_SHUTDOWN_COMPLETE: 3067 case SCTP_CID_AUTH: 3068 return -EINVAL; 3069 } 3070 3071 /* add this chunk id to the endpoint */ 3072 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3073 } 3074 3075 /* 3076 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3077 * 3078 * This option gets or sets the list of HMAC algorithms that the local 3079 * endpoint requires the peer to use. 3080 */ 3081 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3082 char __user *optval, 3083 int optlen) 3084 { 3085 struct sctp_hmacalgo *hmacs; 3086 int err; 3087 3088 if (optlen < sizeof(struct sctp_hmacalgo)) 3089 return -EINVAL; 3090 3091 hmacs = kmalloc(optlen, GFP_KERNEL); 3092 if (!hmacs) 3093 return -ENOMEM; 3094 3095 if (copy_from_user(hmacs, optval, optlen)) { 3096 err = -EFAULT; 3097 goto out; 3098 } 3099 3100 if (hmacs->shmac_num_idents == 0 || 3101 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) { 3102 err = -EINVAL; 3103 goto out; 3104 } 3105 3106 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3107 out: 3108 kfree(hmacs); 3109 return err; 3110 } 3111 3112 /* 3113 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3114 * 3115 * This option will set a shared secret key which is used to build an 3116 * association shared key. 3117 */ 3118 static int sctp_setsockopt_auth_key(struct sock *sk, 3119 char __user *optval, 3120 int optlen) 3121 { 3122 struct sctp_authkey *authkey; 3123 struct sctp_association *asoc; 3124 int ret; 3125 3126 if (optlen <= sizeof(struct sctp_authkey)) 3127 return -EINVAL; 3128 3129 authkey = kmalloc(optlen, GFP_KERNEL); 3130 if (!authkey) 3131 return -ENOMEM; 3132 3133 if (copy_from_user(authkey, optval, optlen)) { 3134 ret = -EFAULT; 3135 goto out; 3136 } 3137 3138 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3139 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3140 ret = -EINVAL; 3141 goto out; 3142 } 3143 3144 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3145 out: 3146 kfree(authkey); 3147 return ret; 3148 } 3149 3150 /* 3151 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3152 * 3153 * This option will get or set the active shared key to be used to build 3154 * the association shared key. 3155 */ 3156 static int sctp_setsockopt_active_key(struct sock *sk, 3157 char __user *optval, 3158 int optlen) 3159 { 3160 struct sctp_authkeyid val; 3161 struct sctp_association *asoc; 3162 3163 if (optlen != sizeof(struct sctp_authkeyid)) 3164 return -EINVAL; 3165 if (copy_from_user(&val, optval, optlen)) 3166 return -EFAULT; 3167 3168 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3169 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3170 return -EINVAL; 3171 3172 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3173 val.scact_keynumber); 3174 } 3175 3176 /* 3177 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3178 * 3179 * This set option will delete a shared secret key from use. 3180 */ 3181 static int sctp_setsockopt_del_key(struct sock *sk, 3182 char __user *optval, 3183 int optlen) 3184 { 3185 struct sctp_authkeyid val; 3186 struct sctp_association *asoc; 3187 3188 if (optlen != sizeof(struct sctp_authkeyid)) 3189 return -EINVAL; 3190 if (copy_from_user(&val, optval, optlen)) 3191 return -EFAULT; 3192 3193 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3194 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3195 return -EINVAL; 3196 3197 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3198 val.scact_keynumber); 3199 3200 } 3201 3202 3203 /* API 6.2 setsockopt(), getsockopt() 3204 * 3205 * Applications use setsockopt() and getsockopt() to set or retrieve 3206 * socket options. Socket options are used to change the default 3207 * behavior of sockets calls. They are described in Section 7. 3208 * 3209 * The syntax is: 3210 * 3211 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3212 * int __user *optlen); 3213 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3214 * int optlen); 3215 * 3216 * sd - the socket descript. 3217 * level - set to IPPROTO_SCTP for all SCTP options. 3218 * optname - the option name. 3219 * optval - the buffer to store the value of the option. 3220 * optlen - the size of the buffer. 3221 */ 3222 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3223 char __user *optval, int optlen) 3224 { 3225 int retval = 0; 3226 3227 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3228 sk, optname); 3229 3230 /* I can hardly begin to describe how wrong this is. This is 3231 * so broken as to be worse than useless. The API draft 3232 * REALLY is NOT helpful here... I am not convinced that the 3233 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3234 * are at all well-founded. 3235 */ 3236 if (level != SOL_SCTP) { 3237 struct sctp_af *af = sctp_sk(sk)->pf->af; 3238 retval = af->setsockopt(sk, level, optname, optval, optlen); 3239 goto out_nounlock; 3240 } 3241 3242 sctp_lock_sock(sk); 3243 3244 switch (optname) { 3245 case SCTP_SOCKOPT_BINDX_ADD: 3246 /* 'optlen' is the size of the addresses buffer. */ 3247 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3248 optlen, SCTP_BINDX_ADD_ADDR); 3249 break; 3250 3251 case SCTP_SOCKOPT_BINDX_REM: 3252 /* 'optlen' is the size of the addresses buffer. */ 3253 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3254 optlen, SCTP_BINDX_REM_ADDR); 3255 break; 3256 3257 case SCTP_SOCKOPT_CONNECTX_OLD: 3258 /* 'optlen' is the size of the addresses buffer. */ 3259 retval = sctp_setsockopt_connectx_old(sk, 3260 (struct sockaddr __user *)optval, 3261 optlen); 3262 break; 3263 3264 case SCTP_SOCKOPT_CONNECTX: 3265 /* 'optlen' is the size of the addresses buffer. */ 3266 retval = sctp_setsockopt_connectx(sk, 3267 (struct sockaddr __user *)optval, 3268 optlen); 3269 break; 3270 3271 case SCTP_DISABLE_FRAGMENTS: 3272 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3273 break; 3274 3275 case SCTP_EVENTS: 3276 retval = sctp_setsockopt_events(sk, optval, optlen); 3277 break; 3278 3279 case SCTP_AUTOCLOSE: 3280 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3281 break; 3282 3283 case SCTP_PEER_ADDR_PARAMS: 3284 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3285 break; 3286 3287 case SCTP_DELAYED_ACK: 3288 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3289 break; 3290 case SCTP_PARTIAL_DELIVERY_POINT: 3291 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3292 break; 3293 3294 case SCTP_INITMSG: 3295 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3296 break; 3297 case SCTP_DEFAULT_SEND_PARAM: 3298 retval = sctp_setsockopt_default_send_param(sk, optval, 3299 optlen); 3300 break; 3301 case SCTP_PRIMARY_ADDR: 3302 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3303 break; 3304 case SCTP_SET_PEER_PRIMARY_ADDR: 3305 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3306 break; 3307 case SCTP_NODELAY: 3308 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3309 break; 3310 case SCTP_RTOINFO: 3311 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3312 break; 3313 case SCTP_ASSOCINFO: 3314 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3315 break; 3316 case SCTP_I_WANT_MAPPED_V4_ADDR: 3317 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3318 break; 3319 case SCTP_MAXSEG: 3320 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3321 break; 3322 case SCTP_ADAPTATION_LAYER: 3323 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3324 break; 3325 case SCTP_CONTEXT: 3326 retval = sctp_setsockopt_context(sk, optval, optlen); 3327 break; 3328 case SCTP_FRAGMENT_INTERLEAVE: 3329 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3330 break; 3331 case SCTP_MAX_BURST: 3332 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3333 break; 3334 case SCTP_AUTH_CHUNK: 3335 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3336 break; 3337 case SCTP_HMAC_IDENT: 3338 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3339 break; 3340 case SCTP_AUTH_KEY: 3341 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3342 break; 3343 case SCTP_AUTH_ACTIVE_KEY: 3344 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3345 break; 3346 case SCTP_AUTH_DELETE_KEY: 3347 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3348 break; 3349 default: 3350 retval = -ENOPROTOOPT; 3351 break; 3352 } 3353 3354 sctp_release_sock(sk); 3355 3356 out_nounlock: 3357 return retval; 3358 } 3359 3360 /* API 3.1.6 connect() - UDP Style Syntax 3361 * 3362 * An application may use the connect() call in the UDP model to initiate an 3363 * association without sending data. 3364 * 3365 * The syntax is: 3366 * 3367 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3368 * 3369 * sd: the socket descriptor to have a new association added to. 3370 * 3371 * nam: the address structure (either struct sockaddr_in or struct 3372 * sockaddr_in6 defined in RFC2553 [7]). 3373 * 3374 * len: the size of the address. 3375 */ 3376 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3377 int addr_len) 3378 { 3379 int err = 0; 3380 struct sctp_af *af; 3381 3382 sctp_lock_sock(sk); 3383 3384 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3385 __func__, sk, addr, addr_len); 3386 3387 /* Validate addr_len before calling common connect/connectx routine. */ 3388 af = sctp_get_af_specific(addr->sa_family); 3389 if (!af || addr_len < af->sockaddr_len) { 3390 err = -EINVAL; 3391 } else { 3392 /* Pass correct addr len to common routine (so it knows there 3393 * is only one address being passed. 3394 */ 3395 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3396 } 3397 3398 sctp_release_sock(sk); 3399 return err; 3400 } 3401 3402 /* FIXME: Write comments. */ 3403 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3404 { 3405 return -EOPNOTSUPP; /* STUB */ 3406 } 3407 3408 /* 4.1.4 accept() - TCP Style Syntax 3409 * 3410 * Applications use accept() call to remove an established SCTP 3411 * association from the accept queue of the endpoint. A new socket 3412 * descriptor will be returned from accept() to represent the newly 3413 * formed association. 3414 */ 3415 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3416 { 3417 struct sctp_sock *sp; 3418 struct sctp_endpoint *ep; 3419 struct sock *newsk = NULL; 3420 struct sctp_association *asoc; 3421 long timeo; 3422 int error = 0; 3423 3424 sctp_lock_sock(sk); 3425 3426 sp = sctp_sk(sk); 3427 ep = sp->ep; 3428 3429 if (!sctp_style(sk, TCP)) { 3430 error = -EOPNOTSUPP; 3431 goto out; 3432 } 3433 3434 if (!sctp_sstate(sk, LISTENING)) { 3435 error = -EINVAL; 3436 goto out; 3437 } 3438 3439 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3440 3441 error = sctp_wait_for_accept(sk, timeo); 3442 if (error) 3443 goto out; 3444 3445 /* We treat the list of associations on the endpoint as the accept 3446 * queue and pick the first association on the list. 3447 */ 3448 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3449 3450 newsk = sp->pf->create_accept_sk(sk, asoc); 3451 if (!newsk) { 3452 error = -ENOMEM; 3453 goto out; 3454 } 3455 3456 /* Populate the fields of the newsk from the oldsk and migrate the 3457 * asoc to the newsk. 3458 */ 3459 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3460 3461 out: 3462 sctp_release_sock(sk); 3463 *err = error; 3464 return newsk; 3465 } 3466 3467 /* The SCTP ioctl handler. */ 3468 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3469 { 3470 return -ENOIOCTLCMD; 3471 } 3472 3473 /* This is the function which gets called during socket creation to 3474 * initialized the SCTP-specific portion of the sock. 3475 * The sock structure should already be zero-filled memory. 3476 */ 3477 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3478 { 3479 struct sctp_endpoint *ep; 3480 struct sctp_sock *sp; 3481 3482 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3483 3484 sp = sctp_sk(sk); 3485 3486 /* Initialize the SCTP per socket area. */ 3487 switch (sk->sk_type) { 3488 case SOCK_SEQPACKET: 3489 sp->type = SCTP_SOCKET_UDP; 3490 break; 3491 case SOCK_STREAM: 3492 sp->type = SCTP_SOCKET_TCP; 3493 break; 3494 default: 3495 return -ESOCKTNOSUPPORT; 3496 } 3497 3498 /* Initialize default send parameters. These parameters can be 3499 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3500 */ 3501 sp->default_stream = 0; 3502 sp->default_ppid = 0; 3503 sp->default_flags = 0; 3504 sp->default_context = 0; 3505 sp->default_timetolive = 0; 3506 3507 sp->default_rcv_context = 0; 3508 sp->max_burst = sctp_max_burst; 3509 3510 /* Initialize default setup parameters. These parameters 3511 * can be modified with the SCTP_INITMSG socket option or 3512 * overridden by the SCTP_INIT CMSG. 3513 */ 3514 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3515 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3516 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3517 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3518 3519 /* Initialize default RTO related parameters. These parameters can 3520 * be modified for with the SCTP_RTOINFO socket option. 3521 */ 3522 sp->rtoinfo.srto_initial = sctp_rto_initial; 3523 sp->rtoinfo.srto_max = sctp_rto_max; 3524 sp->rtoinfo.srto_min = sctp_rto_min; 3525 3526 /* Initialize default association related parameters. These parameters 3527 * can be modified with the SCTP_ASSOCINFO socket option. 3528 */ 3529 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3530 sp->assocparams.sasoc_number_peer_destinations = 0; 3531 sp->assocparams.sasoc_peer_rwnd = 0; 3532 sp->assocparams.sasoc_local_rwnd = 0; 3533 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3534 3535 /* Initialize default event subscriptions. By default, all the 3536 * options are off. 3537 */ 3538 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3539 3540 /* Default Peer Address Parameters. These defaults can 3541 * be modified via SCTP_PEER_ADDR_PARAMS 3542 */ 3543 sp->hbinterval = sctp_hb_interval; 3544 sp->pathmaxrxt = sctp_max_retrans_path; 3545 sp->pathmtu = 0; // allow default discovery 3546 sp->sackdelay = sctp_sack_timeout; 3547 sp->sackfreq = 2; 3548 sp->param_flags = SPP_HB_ENABLE | 3549 SPP_PMTUD_ENABLE | 3550 SPP_SACKDELAY_ENABLE; 3551 3552 /* If enabled no SCTP message fragmentation will be performed. 3553 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3554 */ 3555 sp->disable_fragments = 0; 3556 3557 /* Enable Nagle algorithm by default. */ 3558 sp->nodelay = 0; 3559 3560 /* Enable by default. */ 3561 sp->v4mapped = 1; 3562 3563 /* Auto-close idle associations after the configured 3564 * number of seconds. A value of 0 disables this 3565 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3566 * for UDP-style sockets only. 3567 */ 3568 sp->autoclose = 0; 3569 3570 /* User specified fragmentation limit. */ 3571 sp->user_frag = 0; 3572 3573 sp->adaptation_ind = 0; 3574 3575 sp->pf = sctp_get_pf_specific(sk->sk_family); 3576 3577 /* Control variables for partial data delivery. */ 3578 atomic_set(&sp->pd_mode, 0); 3579 skb_queue_head_init(&sp->pd_lobby); 3580 sp->frag_interleave = 0; 3581 3582 /* Create a per socket endpoint structure. Even if we 3583 * change the data structure relationships, this may still 3584 * be useful for storing pre-connect address information. 3585 */ 3586 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3587 if (!ep) 3588 return -ENOMEM; 3589 3590 sp->ep = ep; 3591 sp->hmac = NULL; 3592 3593 SCTP_DBG_OBJCNT_INC(sock); 3594 atomic_inc(&sctp_sockets_allocated); 3595 return 0; 3596 } 3597 3598 /* Cleanup any SCTP per socket resources. */ 3599 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3600 { 3601 struct sctp_endpoint *ep; 3602 3603 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3604 3605 /* Release our hold on the endpoint. */ 3606 ep = sctp_sk(sk)->ep; 3607 sctp_endpoint_free(ep); 3608 atomic_dec(&sctp_sockets_allocated); 3609 } 3610 3611 /* API 4.1.7 shutdown() - TCP Style Syntax 3612 * int shutdown(int socket, int how); 3613 * 3614 * sd - the socket descriptor of the association to be closed. 3615 * how - Specifies the type of shutdown. The values are 3616 * as follows: 3617 * SHUT_RD 3618 * Disables further receive operations. No SCTP 3619 * protocol action is taken. 3620 * SHUT_WR 3621 * Disables further send operations, and initiates 3622 * the SCTP shutdown sequence. 3623 * SHUT_RDWR 3624 * Disables further send and receive operations 3625 * and initiates the SCTP shutdown sequence. 3626 */ 3627 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3628 { 3629 struct sctp_endpoint *ep; 3630 struct sctp_association *asoc; 3631 3632 if (!sctp_style(sk, TCP)) 3633 return; 3634 3635 if (how & SEND_SHUTDOWN) { 3636 ep = sctp_sk(sk)->ep; 3637 if (!list_empty(&ep->asocs)) { 3638 asoc = list_entry(ep->asocs.next, 3639 struct sctp_association, asocs); 3640 sctp_primitive_SHUTDOWN(asoc, NULL); 3641 } 3642 } 3643 } 3644 3645 /* 7.2.1 Association Status (SCTP_STATUS) 3646 3647 * Applications can retrieve current status information about an 3648 * association, including association state, peer receiver window size, 3649 * number of unacked data chunks, and number of data chunks pending 3650 * receipt. This information is read-only. 3651 */ 3652 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3653 char __user *optval, 3654 int __user *optlen) 3655 { 3656 struct sctp_status status; 3657 struct sctp_association *asoc = NULL; 3658 struct sctp_transport *transport; 3659 sctp_assoc_t associd; 3660 int retval = 0; 3661 3662 if (len < sizeof(status)) { 3663 retval = -EINVAL; 3664 goto out; 3665 } 3666 3667 len = sizeof(status); 3668 if (copy_from_user(&status, optval, len)) { 3669 retval = -EFAULT; 3670 goto out; 3671 } 3672 3673 associd = status.sstat_assoc_id; 3674 asoc = sctp_id2assoc(sk, associd); 3675 if (!asoc) { 3676 retval = -EINVAL; 3677 goto out; 3678 } 3679 3680 transport = asoc->peer.primary_path; 3681 3682 status.sstat_assoc_id = sctp_assoc2id(asoc); 3683 status.sstat_state = asoc->state; 3684 status.sstat_rwnd = asoc->peer.rwnd; 3685 status.sstat_unackdata = asoc->unack_data; 3686 3687 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3688 status.sstat_instrms = asoc->c.sinit_max_instreams; 3689 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3690 status.sstat_fragmentation_point = asoc->frag_point; 3691 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3692 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3693 transport->af_specific->sockaddr_len); 3694 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3695 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3696 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3697 status.sstat_primary.spinfo_state = transport->state; 3698 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3699 status.sstat_primary.spinfo_srtt = transport->srtt; 3700 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3701 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3702 3703 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3704 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3705 3706 if (put_user(len, optlen)) { 3707 retval = -EFAULT; 3708 goto out; 3709 } 3710 3711 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3712 len, status.sstat_state, status.sstat_rwnd, 3713 status.sstat_assoc_id); 3714 3715 if (copy_to_user(optval, &status, len)) { 3716 retval = -EFAULT; 3717 goto out; 3718 } 3719 3720 out: 3721 return (retval); 3722 } 3723 3724 3725 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3726 * 3727 * Applications can retrieve information about a specific peer address 3728 * of an association, including its reachability state, congestion 3729 * window, and retransmission timer values. This information is 3730 * read-only. 3731 */ 3732 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3733 char __user *optval, 3734 int __user *optlen) 3735 { 3736 struct sctp_paddrinfo pinfo; 3737 struct sctp_transport *transport; 3738 int retval = 0; 3739 3740 if (len < sizeof(pinfo)) { 3741 retval = -EINVAL; 3742 goto out; 3743 } 3744 3745 len = sizeof(pinfo); 3746 if (copy_from_user(&pinfo, optval, len)) { 3747 retval = -EFAULT; 3748 goto out; 3749 } 3750 3751 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3752 pinfo.spinfo_assoc_id); 3753 if (!transport) 3754 return -EINVAL; 3755 3756 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3757 pinfo.spinfo_state = transport->state; 3758 pinfo.spinfo_cwnd = transport->cwnd; 3759 pinfo.spinfo_srtt = transport->srtt; 3760 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3761 pinfo.spinfo_mtu = transport->pathmtu; 3762 3763 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3764 pinfo.spinfo_state = SCTP_ACTIVE; 3765 3766 if (put_user(len, optlen)) { 3767 retval = -EFAULT; 3768 goto out; 3769 } 3770 3771 if (copy_to_user(optval, &pinfo, len)) { 3772 retval = -EFAULT; 3773 goto out; 3774 } 3775 3776 out: 3777 return (retval); 3778 } 3779 3780 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3781 * 3782 * This option is a on/off flag. If enabled no SCTP message 3783 * fragmentation will be performed. Instead if a message being sent 3784 * exceeds the current PMTU size, the message will NOT be sent and 3785 * instead a error will be indicated to the user. 3786 */ 3787 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3788 char __user *optval, int __user *optlen) 3789 { 3790 int val; 3791 3792 if (len < sizeof(int)) 3793 return -EINVAL; 3794 3795 len = sizeof(int); 3796 val = (sctp_sk(sk)->disable_fragments == 1); 3797 if (put_user(len, optlen)) 3798 return -EFAULT; 3799 if (copy_to_user(optval, &val, len)) 3800 return -EFAULT; 3801 return 0; 3802 } 3803 3804 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3805 * 3806 * This socket option is used to specify various notifications and 3807 * ancillary data the user wishes to receive. 3808 */ 3809 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3810 int __user *optlen) 3811 { 3812 if (len < sizeof(struct sctp_event_subscribe)) 3813 return -EINVAL; 3814 len = sizeof(struct sctp_event_subscribe); 3815 if (put_user(len, optlen)) 3816 return -EFAULT; 3817 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3818 return -EFAULT; 3819 return 0; 3820 } 3821 3822 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3823 * 3824 * This socket option is applicable to the UDP-style socket only. When 3825 * set it will cause associations that are idle for more than the 3826 * specified number of seconds to automatically close. An association 3827 * being idle is defined an association that has NOT sent or received 3828 * user data. The special value of '0' indicates that no automatic 3829 * close of any associations should be performed. The option expects an 3830 * integer defining the number of seconds of idle time before an 3831 * association is closed. 3832 */ 3833 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3834 { 3835 /* Applicable to UDP-style socket only */ 3836 if (sctp_style(sk, TCP)) 3837 return -EOPNOTSUPP; 3838 if (len < sizeof(int)) 3839 return -EINVAL; 3840 len = sizeof(int); 3841 if (put_user(len, optlen)) 3842 return -EFAULT; 3843 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3844 return -EFAULT; 3845 return 0; 3846 } 3847 3848 /* Helper routine to branch off an association to a new socket. */ 3849 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3850 struct socket **sockp) 3851 { 3852 struct sock *sk = asoc->base.sk; 3853 struct socket *sock; 3854 struct inet_sock *inetsk; 3855 struct sctp_af *af; 3856 int err = 0; 3857 3858 /* An association cannot be branched off from an already peeled-off 3859 * socket, nor is this supported for tcp style sockets. 3860 */ 3861 if (!sctp_style(sk, UDP)) 3862 return -EINVAL; 3863 3864 /* Create a new socket. */ 3865 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3866 if (err < 0) 3867 return err; 3868 3869 /* Populate the fields of the newsk from the oldsk and migrate the 3870 * asoc to the newsk. 3871 */ 3872 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3873 3874 /* Make peeled-off sockets more like 1-1 accepted sockets. 3875 * Set the daddr and initialize id to something more random 3876 */ 3877 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3878 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3879 inetsk = inet_sk(sock->sk); 3880 inetsk->id = asoc->next_tsn ^ jiffies; 3881 3882 *sockp = sock; 3883 3884 return err; 3885 } 3886 3887 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3888 { 3889 sctp_peeloff_arg_t peeloff; 3890 struct socket *newsock; 3891 int retval = 0; 3892 struct sctp_association *asoc; 3893 3894 if (len < sizeof(sctp_peeloff_arg_t)) 3895 return -EINVAL; 3896 len = sizeof(sctp_peeloff_arg_t); 3897 if (copy_from_user(&peeloff, optval, len)) 3898 return -EFAULT; 3899 3900 asoc = sctp_id2assoc(sk, peeloff.associd); 3901 if (!asoc) { 3902 retval = -EINVAL; 3903 goto out; 3904 } 3905 3906 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 3907 3908 retval = sctp_do_peeloff(asoc, &newsock); 3909 if (retval < 0) 3910 goto out; 3911 3912 /* Map the socket to an unused fd that can be returned to the user. */ 3913 retval = sock_map_fd(newsock, 0); 3914 if (retval < 0) { 3915 sock_release(newsock); 3916 goto out; 3917 } 3918 3919 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3920 __func__, sk, asoc, newsock->sk, retval); 3921 3922 /* Return the fd mapped to the new socket. */ 3923 peeloff.sd = retval; 3924 if (put_user(len, optlen)) 3925 return -EFAULT; 3926 if (copy_to_user(optval, &peeloff, len)) 3927 retval = -EFAULT; 3928 3929 out: 3930 return retval; 3931 } 3932 3933 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3934 * 3935 * Applications can enable or disable heartbeats for any peer address of 3936 * an association, modify an address's heartbeat interval, force a 3937 * heartbeat to be sent immediately, and adjust the address's maximum 3938 * number of retransmissions sent before an address is considered 3939 * unreachable. The following structure is used to access and modify an 3940 * address's parameters: 3941 * 3942 * struct sctp_paddrparams { 3943 * sctp_assoc_t spp_assoc_id; 3944 * struct sockaddr_storage spp_address; 3945 * uint32_t spp_hbinterval; 3946 * uint16_t spp_pathmaxrxt; 3947 * uint32_t spp_pathmtu; 3948 * uint32_t spp_sackdelay; 3949 * uint32_t spp_flags; 3950 * }; 3951 * 3952 * spp_assoc_id - (one-to-many style socket) This is filled in the 3953 * application, and identifies the association for 3954 * this query. 3955 * spp_address - This specifies which address is of interest. 3956 * spp_hbinterval - This contains the value of the heartbeat interval, 3957 * in milliseconds. If a value of zero 3958 * is present in this field then no changes are to 3959 * be made to this parameter. 3960 * spp_pathmaxrxt - This contains the maximum number of 3961 * retransmissions before this address shall be 3962 * considered unreachable. If a value of zero 3963 * is present in this field then no changes are to 3964 * be made to this parameter. 3965 * spp_pathmtu - When Path MTU discovery is disabled the value 3966 * specified here will be the "fixed" path mtu. 3967 * Note that if the spp_address field is empty 3968 * then all associations on this address will 3969 * have this fixed path mtu set upon them. 3970 * 3971 * spp_sackdelay - When delayed sack is enabled, this value specifies 3972 * the number of milliseconds that sacks will be delayed 3973 * for. This value will apply to all addresses of an 3974 * association if the spp_address field is empty. Note 3975 * also, that if delayed sack is enabled and this 3976 * value is set to 0, no change is made to the last 3977 * recorded delayed sack timer value. 3978 * 3979 * spp_flags - These flags are used to control various features 3980 * on an association. The flag field may contain 3981 * zero or more of the following options. 3982 * 3983 * SPP_HB_ENABLE - Enable heartbeats on the 3984 * specified address. Note that if the address 3985 * field is empty all addresses for the association 3986 * have heartbeats enabled upon them. 3987 * 3988 * SPP_HB_DISABLE - Disable heartbeats on the 3989 * speicifed address. Note that if the address 3990 * field is empty all addresses for the association 3991 * will have their heartbeats disabled. Note also 3992 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3993 * mutually exclusive, only one of these two should 3994 * be specified. Enabling both fields will have 3995 * undetermined results. 3996 * 3997 * SPP_HB_DEMAND - Request a user initiated heartbeat 3998 * to be made immediately. 3999 * 4000 * SPP_PMTUD_ENABLE - This field will enable PMTU 4001 * discovery upon the specified address. Note that 4002 * if the address feild is empty then all addresses 4003 * on the association are effected. 4004 * 4005 * SPP_PMTUD_DISABLE - This field will disable PMTU 4006 * discovery upon the specified address. Note that 4007 * if the address feild is empty then all addresses 4008 * on the association are effected. Not also that 4009 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4010 * exclusive. Enabling both will have undetermined 4011 * results. 4012 * 4013 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4014 * on delayed sack. The time specified in spp_sackdelay 4015 * is used to specify the sack delay for this address. Note 4016 * that if spp_address is empty then all addresses will 4017 * enable delayed sack and take on the sack delay 4018 * value specified in spp_sackdelay. 4019 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4020 * off delayed sack. If the spp_address field is blank then 4021 * delayed sack is disabled for the entire association. Note 4022 * also that this field is mutually exclusive to 4023 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4024 * results. 4025 */ 4026 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4027 char __user *optval, int __user *optlen) 4028 { 4029 struct sctp_paddrparams params; 4030 struct sctp_transport *trans = NULL; 4031 struct sctp_association *asoc = NULL; 4032 struct sctp_sock *sp = sctp_sk(sk); 4033 4034 if (len < sizeof(struct sctp_paddrparams)) 4035 return -EINVAL; 4036 len = sizeof(struct sctp_paddrparams); 4037 if (copy_from_user(¶ms, optval, len)) 4038 return -EFAULT; 4039 4040 /* If an address other than INADDR_ANY is specified, and 4041 * no transport is found, then the request is invalid. 4042 */ 4043 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 4044 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4045 params.spp_assoc_id); 4046 if (!trans) { 4047 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4048 return -EINVAL; 4049 } 4050 } 4051 4052 /* Get association, if assoc_id != 0 and the socket is a one 4053 * to many style socket, and an association was not found, then 4054 * the id was invalid. 4055 */ 4056 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4057 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4058 SCTP_DEBUG_PRINTK("Failed no association\n"); 4059 return -EINVAL; 4060 } 4061 4062 if (trans) { 4063 /* Fetch transport values. */ 4064 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4065 params.spp_pathmtu = trans->pathmtu; 4066 params.spp_pathmaxrxt = trans->pathmaxrxt; 4067 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4068 4069 /*draft-11 doesn't say what to return in spp_flags*/ 4070 params.spp_flags = trans->param_flags; 4071 } else if (asoc) { 4072 /* Fetch association values. */ 4073 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4074 params.spp_pathmtu = asoc->pathmtu; 4075 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4076 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4077 4078 /*draft-11 doesn't say what to return in spp_flags*/ 4079 params.spp_flags = asoc->param_flags; 4080 } else { 4081 /* Fetch socket values. */ 4082 params.spp_hbinterval = sp->hbinterval; 4083 params.spp_pathmtu = sp->pathmtu; 4084 params.spp_sackdelay = sp->sackdelay; 4085 params.spp_pathmaxrxt = sp->pathmaxrxt; 4086 4087 /*draft-11 doesn't say what to return in spp_flags*/ 4088 params.spp_flags = sp->param_flags; 4089 } 4090 4091 if (copy_to_user(optval, ¶ms, len)) 4092 return -EFAULT; 4093 4094 if (put_user(len, optlen)) 4095 return -EFAULT; 4096 4097 return 0; 4098 } 4099 4100 /* 4101 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4102 * 4103 * This option will effect the way delayed acks are performed. This 4104 * option allows you to get or set the delayed ack time, in 4105 * milliseconds. It also allows changing the delayed ack frequency. 4106 * Changing the frequency to 1 disables the delayed sack algorithm. If 4107 * the assoc_id is 0, then this sets or gets the endpoints default 4108 * values. If the assoc_id field is non-zero, then the set or get 4109 * effects the specified association for the one to many model (the 4110 * assoc_id field is ignored by the one to one model). Note that if 4111 * sack_delay or sack_freq are 0 when setting this option, then the 4112 * current values will remain unchanged. 4113 * 4114 * struct sctp_sack_info { 4115 * sctp_assoc_t sack_assoc_id; 4116 * uint32_t sack_delay; 4117 * uint32_t sack_freq; 4118 * }; 4119 * 4120 * sack_assoc_id - This parameter, indicates which association the user 4121 * is performing an action upon. Note that if this field's value is 4122 * zero then the endpoints default value is changed (effecting future 4123 * associations only). 4124 * 4125 * sack_delay - This parameter contains the number of milliseconds that 4126 * the user is requesting the delayed ACK timer be set to. Note that 4127 * this value is defined in the standard to be between 200 and 500 4128 * milliseconds. 4129 * 4130 * sack_freq - This parameter contains the number of packets that must 4131 * be received before a sack is sent without waiting for the delay 4132 * timer to expire. The default value for this is 2, setting this 4133 * value to 1 will disable the delayed sack algorithm. 4134 */ 4135 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4136 char __user *optval, 4137 int __user *optlen) 4138 { 4139 struct sctp_sack_info params; 4140 struct sctp_association *asoc = NULL; 4141 struct sctp_sock *sp = sctp_sk(sk); 4142 4143 if (len >= sizeof(struct sctp_sack_info)) { 4144 len = sizeof(struct sctp_sack_info); 4145 4146 if (copy_from_user(¶ms, optval, len)) 4147 return -EFAULT; 4148 } else if (len == sizeof(struct sctp_assoc_value)) { 4149 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info " 4150 "in delayed_ack socket option deprecated\n"); 4151 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n"); 4152 if (copy_from_user(¶ms, optval, len)) 4153 return -EFAULT; 4154 } else 4155 return - EINVAL; 4156 4157 /* Get association, if sack_assoc_id != 0 and the socket is a one 4158 * to many style socket, and an association was not found, then 4159 * the id was invalid. 4160 */ 4161 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4162 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4163 return -EINVAL; 4164 4165 if (asoc) { 4166 /* Fetch association values. */ 4167 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4168 params.sack_delay = jiffies_to_msecs( 4169 asoc->sackdelay); 4170 params.sack_freq = asoc->sackfreq; 4171 4172 } else { 4173 params.sack_delay = 0; 4174 params.sack_freq = 1; 4175 } 4176 } else { 4177 /* Fetch socket values. */ 4178 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4179 params.sack_delay = sp->sackdelay; 4180 params.sack_freq = sp->sackfreq; 4181 } else { 4182 params.sack_delay = 0; 4183 params.sack_freq = 1; 4184 } 4185 } 4186 4187 if (copy_to_user(optval, ¶ms, len)) 4188 return -EFAULT; 4189 4190 if (put_user(len, optlen)) 4191 return -EFAULT; 4192 4193 return 0; 4194 } 4195 4196 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4197 * 4198 * Applications can specify protocol parameters for the default association 4199 * initialization. The option name argument to setsockopt() and getsockopt() 4200 * is SCTP_INITMSG. 4201 * 4202 * Setting initialization parameters is effective only on an unconnected 4203 * socket (for UDP-style sockets only future associations are effected 4204 * by the change). With TCP-style sockets, this option is inherited by 4205 * sockets derived from a listener socket. 4206 */ 4207 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4208 { 4209 if (len < sizeof(struct sctp_initmsg)) 4210 return -EINVAL; 4211 len = sizeof(struct sctp_initmsg); 4212 if (put_user(len, optlen)) 4213 return -EFAULT; 4214 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4215 return -EFAULT; 4216 return 0; 4217 } 4218 4219 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4220 char __user *optval, 4221 int __user *optlen) 4222 { 4223 sctp_assoc_t id; 4224 struct sctp_association *asoc; 4225 struct list_head *pos; 4226 int cnt = 0; 4227 4228 if (len < sizeof(sctp_assoc_t)) 4229 return -EINVAL; 4230 4231 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4232 return -EFAULT; 4233 4234 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD " 4235 "socket option deprecated\n"); 4236 /* For UDP-style sockets, id specifies the association to query. */ 4237 asoc = sctp_id2assoc(sk, id); 4238 if (!asoc) 4239 return -EINVAL; 4240 4241 list_for_each(pos, &asoc->peer.transport_addr_list) { 4242 cnt ++; 4243 } 4244 4245 return cnt; 4246 } 4247 4248 /* 4249 * Old API for getting list of peer addresses. Does not work for 32-bit 4250 * programs running on a 64-bit kernel 4251 */ 4252 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4253 char __user *optval, 4254 int __user *optlen) 4255 { 4256 struct sctp_association *asoc; 4257 int cnt = 0; 4258 struct sctp_getaddrs_old getaddrs; 4259 struct sctp_transport *from; 4260 void __user *to; 4261 union sctp_addr temp; 4262 struct sctp_sock *sp = sctp_sk(sk); 4263 int addrlen; 4264 4265 if (len < sizeof(struct sctp_getaddrs_old)) 4266 return -EINVAL; 4267 4268 len = sizeof(struct sctp_getaddrs_old); 4269 4270 if (copy_from_user(&getaddrs, optval, len)) 4271 return -EFAULT; 4272 4273 if (getaddrs.addr_num <= 0) return -EINVAL; 4274 4275 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD " 4276 "socket option deprecated\n"); 4277 4278 /* For UDP-style sockets, id specifies the association to query. */ 4279 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4280 if (!asoc) 4281 return -EINVAL; 4282 4283 to = (void __user *)getaddrs.addrs; 4284 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4285 transports) { 4286 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4287 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4288 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4289 if (copy_to_user(to, &temp, addrlen)) 4290 return -EFAULT; 4291 to += addrlen ; 4292 cnt ++; 4293 if (cnt >= getaddrs.addr_num) break; 4294 } 4295 getaddrs.addr_num = cnt; 4296 if (put_user(len, optlen)) 4297 return -EFAULT; 4298 if (copy_to_user(optval, &getaddrs, len)) 4299 return -EFAULT; 4300 4301 return 0; 4302 } 4303 4304 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4305 char __user *optval, int __user *optlen) 4306 { 4307 struct sctp_association *asoc; 4308 int cnt = 0; 4309 struct sctp_getaddrs getaddrs; 4310 struct sctp_transport *from; 4311 void __user *to; 4312 union sctp_addr temp; 4313 struct sctp_sock *sp = sctp_sk(sk); 4314 int addrlen; 4315 size_t space_left; 4316 int bytes_copied; 4317 4318 if (len < sizeof(struct sctp_getaddrs)) 4319 return -EINVAL; 4320 4321 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4322 return -EFAULT; 4323 4324 /* For UDP-style sockets, id specifies the association to query. */ 4325 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4326 if (!asoc) 4327 return -EINVAL; 4328 4329 to = optval + offsetof(struct sctp_getaddrs,addrs); 4330 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4331 4332 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4333 transports) { 4334 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4335 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4336 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4337 if (space_left < addrlen) 4338 return -ENOMEM; 4339 if (copy_to_user(to, &temp, addrlen)) 4340 return -EFAULT; 4341 to += addrlen; 4342 cnt++; 4343 space_left -= addrlen; 4344 } 4345 4346 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4347 return -EFAULT; 4348 bytes_copied = ((char __user *)to) - optval; 4349 if (put_user(bytes_copied, optlen)) 4350 return -EFAULT; 4351 4352 return 0; 4353 } 4354 4355 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4356 char __user *optval, 4357 int __user *optlen) 4358 { 4359 sctp_assoc_t id; 4360 struct sctp_bind_addr *bp; 4361 struct sctp_association *asoc; 4362 struct sctp_sockaddr_entry *addr; 4363 int cnt = 0; 4364 4365 if (len < sizeof(sctp_assoc_t)) 4366 return -EINVAL; 4367 4368 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4369 return -EFAULT; 4370 4371 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD " 4372 "socket option deprecated\n"); 4373 4374 /* 4375 * For UDP-style sockets, id specifies the association to query. 4376 * If the id field is set to the value '0' then the locally bound 4377 * addresses are returned without regard to any particular 4378 * association. 4379 */ 4380 if (0 == id) { 4381 bp = &sctp_sk(sk)->ep->base.bind_addr; 4382 } else { 4383 asoc = sctp_id2assoc(sk, id); 4384 if (!asoc) 4385 return -EINVAL; 4386 bp = &asoc->base.bind_addr; 4387 } 4388 4389 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4390 * addresses from the global local address list. 4391 */ 4392 if (sctp_list_single_entry(&bp->address_list)) { 4393 addr = list_entry(bp->address_list.next, 4394 struct sctp_sockaddr_entry, list); 4395 if (sctp_is_any(&addr->a)) { 4396 rcu_read_lock(); 4397 list_for_each_entry_rcu(addr, 4398 &sctp_local_addr_list, list) { 4399 if (!addr->valid) 4400 continue; 4401 4402 if ((PF_INET == sk->sk_family) && 4403 (AF_INET6 == addr->a.sa.sa_family)) 4404 continue; 4405 4406 if ((PF_INET6 == sk->sk_family) && 4407 inet_v6_ipv6only(sk) && 4408 (AF_INET == addr->a.sa.sa_family)) 4409 continue; 4410 4411 cnt++; 4412 } 4413 rcu_read_unlock(); 4414 } else { 4415 cnt = 1; 4416 } 4417 goto done; 4418 } 4419 4420 /* Protection on the bound address list is not needed, 4421 * since in the socket option context we hold the socket lock, 4422 * so there is no way that the bound address list can change. 4423 */ 4424 list_for_each_entry(addr, &bp->address_list, list) { 4425 cnt ++; 4426 } 4427 done: 4428 return cnt; 4429 } 4430 4431 /* Helper function that copies local addresses to user and returns the number 4432 * of addresses copied. 4433 */ 4434 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4435 int max_addrs, void *to, 4436 int *bytes_copied) 4437 { 4438 struct sctp_sockaddr_entry *addr; 4439 union sctp_addr temp; 4440 int cnt = 0; 4441 int addrlen; 4442 4443 rcu_read_lock(); 4444 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4445 if (!addr->valid) 4446 continue; 4447 4448 if ((PF_INET == sk->sk_family) && 4449 (AF_INET6 == addr->a.sa.sa_family)) 4450 continue; 4451 if ((PF_INET6 == sk->sk_family) && 4452 inet_v6_ipv6only(sk) && 4453 (AF_INET == addr->a.sa.sa_family)) 4454 continue; 4455 memcpy(&temp, &addr->a, sizeof(temp)); 4456 if (!temp.v4.sin_port) 4457 temp.v4.sin_port = htons(port); 4458 4459 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4460 &temp); 4461 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4462 memcpy(to, &temp, addrlen); 4463 4464 to += addrlen; 4465 *bytes_copied += addrlen; 4466 cnt ++; 4467 if (cnt >= max_addrs) break; 4468 } 4469 rcu_read_unlock(); 4470 4471 return cnt; 4472 } 4473 4474 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4475 size_t space_left, int *bytes_copied) 4476 { 4477 struct sctp_sockaddr_entry *addr; 4478 union sctp_addr temp; 4479 int cnt = 0; 4480 int addrlen; 4481 4482 rcu_read_lock(); 4483 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4484 if (!addr->valid) 4485 continue; 4486 4487 if ((PF_INET == sk->sk_family) && 4488 (AF_INET6 == addr->a.sa.sa_family)) 4489 continue; 4490 if ((PF_INET6 == sk->sk_family) && 4491 inet_v6_ipv6only(sk) && 4492 (AF_INET == addr->a.sa.sa_family)) 4493 continue; 4494 memcpy(&temp, &addr->a, sizeof(temp)); 4495 if (!temp.v4.sin_port) 4496 temp.v4.sin_port = htons(port); 4497 4498 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4499 &temp); 4500 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4501 if (space_left < addrlen) { 4502 cnt = -ENOMEM; 4503 break; 4504 } 4505 memcpy(to, &temp, addrlen); 4506 4507 to += addrlen; 4508 cnt ++; 4509 space_left -= addrlen; 4510 *bytes_copied += addrlen; 4511 } 4512 rcu_read_unlock(); 4513 4514 return cnt; 4515 } 4516 4517 /* Old API for getting list of local addresses. Does not work for 32-bit 4518 * programs running on a 64-bit kernel 4519 */ 4520 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4521 char __user *optval, int __user *optlen) 4522 { 4523 struct sctp_bind_addr *bp; 4524 struct sctp_association *asoc; 4525 int cnt = 0; 4526 struct sctp_getaddrs_old getaddrs; 4527 struct sctp_sockaddr_entry *addr; 4528 void __user *to; 4529 union sctp_addr temp; 4530 struct sctp_sock *sp = sctp_sk(sk); 4531 int addrlen; 4532 int err = 0; 4533 void *addrs; 4534 void *buf; 4535 int bytes_copied = 0; 4536 4537 if (len < sizeof(struct sctp_getaddrs_old)) 4538 return -EINVAL; 4539 4540 len = sizeof(struct sctp_getaddrs_old); 4541 if (copy_from_user(&getaddrs, optval, len)) 4542 return -EFAULT; 4543 4544 if (getaddrs.addr_num <= 0 || 4545 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr))) 4546 return -EINVAL; 4547 4548 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD " 4549 "socket option deprecated\n"); 4550 4551 /* 4552 * For UDP-style sockets, id specifies the association to query. 4553 * If the id field is set to the value '0' then the locally bound 4554 * addresses are returned without regard to any particular 4555 * association. 4556 */ 4557 if (0 == getaddrs.assoc_id) { 4558 bp = &sctp_sk(sk)->ep->base.bind_addr; 4559 } else { 4560 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4561 if (!asoc) 4562 return -EINVAL; 4563 bp = &asoc->base.bind_addr; 4564 } 4565 4566 to = getaddrs.addrs; 4567 4568 /* Allocate space for a local instance of packed array to hold all 4569 * the data. We store addresses here first and then put write them 4570 * to the user in one shot. 4571 */ 4572 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4573 GFP_KERNEL); 4574 if (!addrs) 4575 return -ENOMEM; 4576 4577 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4578 * addresses from the global local address list. 4579 */ 4580 if (sctp_list_single_entry(&bp->address_list)) { 4581 addr = list_entry(bp->address_list.next, 4582 struct sctp_sockaddr_entry, list); 4583 if (sctp_is_any(&addr->a)) { 4584 cnt = sctp_copy_laddrs_old(sk, bp->port, 4585 getaddrs.addr_num, 4586 addrs, &bytes_copied); 4587 goto copy_getaddrs; 4588 } 4589 } 4590 4591 buf = addrs; 4592 /* Protection on the bound address list is not needed since 4593 * in the socket option context we hold a socket lock and 4594 * thus the bound address list can't change. 4595 */ 4596 list_for_each_entry(addr, &bp->address_list, list) { 4597 memcpy(&temp, &addr->a, sizeof(temp)); 4598 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4599 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4600 memcpy(buf, &temp, addrlen); 4601 buf += addrlen; 4602 bytes_copied += addrlen; 4603 cnt ++; 4604 if (cnt >= getaddrs.addr_num) break; 4605 } 4606 4607 copy_getaddrs: 4608 /* copy the entire address list into the user provided space */ 4609 if (copy_to_user(to, addrs, bytes_copied)) { 4610 err = -EFAULT; 4611 goto error; 4612 } 4613 4614 /* copy the leading structure back to user */ 4615 getaddrs.addr_num = cnt; 4616 if (copy_to_user(optval, &getaddrs, len)) 4617 err = -EFAULT; 4618 4619 error: 4620 kfree(addrs); 4621 return err; 4622 } 4623 4624 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4625 char __user *optval, int __user *optlen) 4626 { 4627 struct sctp_bind_addr *bp; 4628 struct sctp_association *asoc; 4629 int cnt = 0; 4630 struct sctp_getaddrs getaddrs; 4631 struct sctp_sockaddr_entry *addr; 4632 void __user *to; 4633 union sctp_addr temp; 4634 struct sctp_sock *sp = sctp_sk(sk); 4635 int addrlen; 4636 int err = 0; 4637 size_t space_left; 4638 int bytes_copied = 0; 4639 void *addrs; 4640 void *buf; 4641 4642 if (len < sizeof(struct sctp_getaddrs)) 4643 return -EINVAL; 4644 4645 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4646 return -EFAULT; 4647 4648 /* 4649 * For UDP-style sockets, id specifies the association to query. 4650 * If the id field is set to the value '0' then the locally bound 4651 * addresses are returned without regard to any particular 4652 * association. 4653 */ 4654 if (0 == getaddrs.assoc_id) { 4655 bp = &sctp_sk(sk)->ep->base.bind_addr; 4656 } else { 4657 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4658 if (!asoc) 4659 return -EINVAL; 4660 bp = &asoc->base.bind_addr; 4661 } 4662 4663 to = optval + offsetof(struct sctp_getaddrs,addrs); 4664 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4665 4666 addrs = kmalloc(space_left, GFP_KERNEL); 4667 if (!addrs) 4668 return -ENOMEM; 4669 4670 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4671 * addresses from the global local address list. 4672 */ 4673 if (sctp_list_single_entry(&bp->address_list)) { 4674 addr = list_entry(bp->address_list.next, 4675 struct sctp_sockaddr_entry, list); 4676 if (sctp_is_any(&addr->a)) { 4677 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4678 space_left, &bytes_copied); 4679 if (cnt < 0) { 4680 err = cnt; 4681 goto out; 4682 } 4683 goto copy_getaddrs; 4684 } 4685 } 4686 4687 buf = addrs; 4688 /* Protection on the bound address list is not needed since 4689 * in the socket option context we hold a socket lock and 4690 * thus the bound address list can't change. 4691 */ 4692 list_for_each_entry(addr, &bp->address_list, list) { 4693 memcpy(&temp, &addr->a, sizeof(temp)); 4694 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4695 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4696 if (space_left < addrlen) { 4697 err = -ENOMEM; /*fixme: right error?*/ 4698 goto out; 4699 } 4700 memcpy(buf, &temp, addrlen); 4701 buf += addrlen; 4702 bytes_copied += addrlen; 4703 cnt ++; 4704 space_left -= addrlen; 4705 } 4706 4707 copy_getaddrs: 4708 if (copy_to_user(to, addrs, bytes_copied)) { 4709 err = -EFAULT; 4710 goto out; 4711 } 4712 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4713 err = -EFAULT; 4714 goto out; 4715 } 4716 if (put_user(bytes_copied, optlen)) 4717 err = -EFAULT; 4718 out: 4719 kfree(addrs); 4720 return err; 4721 } 4722 4723 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4724 * 4725 * Requests that the local SCTP stack use the enclosed peer address as 4726 * the association primary. The enclosed address must be one of the 4727 * association peer's addresses. 4728 */ 4729 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4730 char __user *optval, int __user *optlen) 4731 { 4732 struct sctp_prim prim; 4733 struct sctp_association *asoc; 4734 struct sctp_sock *sp = sctp_sk(sk); 4735 4736 if (len < sizeof(struct sctp_prim)) 4737 return -EINVAL; 4738 4739 len = sizeof(struct sctp_prim); 4740 4741 if (copy_from_user(&prim, optval, len)) 4742 return -EFAULT; 4743 4744 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4745 if (!asoc) 4746 return -EINVAL; 4747 4748 if (!asoc->peer.primary_path) 4749 return -ENOTCONN; 4750 4751 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4752 asoc->peer.primary_path->af_specific->sockaddr_len); 4753 4754 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4755 (union sctp_addr *)&prim.ssp_addr); 4756 4757 if (put_user(len, optlen)) 4758 return -EFAULT; 4759 if (copy_to_user(optval, &prim, len)) 4760 return -EFAULT; 4761 4762 return 0; 4763 } 4764 4765 /* 4766 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4767 * 4768 * Requests that the local endpoint set the specified Adaptation Layer 4769 * Indication parameter for all future INIT and INIT-ACK exchanges. 4770 */ 4771 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4772 char __user *optval, int __user *optlen) 4773 { 4774 struct sctp_setadaptation adaptation; 4775 4776 if (len < sizeof(struct sctp_setadaptation)) 4777 return -EINVAL; 4778 4779 len = sizeof(struct sctp_setadaptation); 4780 4781 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4782 4783 if (put_user(len, optlen)) 4784 return -EFAULT; 4785 if (copy_to_user(optval, &adaptation, len)) 4786 return -EFAULT; 4787 4788 return 0; 4789 } 4790 4791 /* 4792 * 4793 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4794 * 4795 * Applications that wish to use the sendto() system call may wish to 4796 * specify a default set of parameters that would normally be supplied 4797 * through the inclusion of ancillary data. This socket option allows 4798 * such an application to set the default sctp_sndrcvinfo structure. 4799 4800 4801 * The application that wishes to use this socket option simply passes 4802 * in to this call the sctp_sndrcvinfo structure defined in Section 4803 * 5.2.2) The input parameters accepted by this call include 4804 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4805 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4806 * to this call if the caller is using the UDP model. 4807 * 4808 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4809 */ 4810 static int sctp_getsockopt_default_send_param(struct sock *sk, 4811 int len, char __user *optval, 4812 int __user *optlen) 4813 { 4814 struct sctp_sndrcvinfo info; 4815 struct sctp_association *asoc; 4816 struct sctp_sock *sp = sctp_sk(sk); 4817 4818 if (len < sizeof(struct sctp_sndrcvinfo)) 4819 return -EINVAL; 4820 4821 len = sizeof(struct sctp_sndrcvinfo); 4822 4823 if (copy_from_user(&info, optval, len)) 4824 return -EFAULT; 4825 4826 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4827 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4828 return -EINVAL; 4829 4830 if (asoc) { 4831 info.sinfo_stream = asoc->default_stream; 4832 info.sinfo_flags = asoc->default_flags; 4833 info.sinfo_ppid = asoc->default_ppid; 4834 info.sinfo_context = asoc->default_context; 4835 info.sinfo_timetolive = asoc->default_timetolive; 4836 } else { 4837 info.sinfo_stream = sp->default_stream; 4838 info.sinfo_flags = sp->default_flags; 4839 info.sinfo_ppid = sp->default_ppid; 4840 info.sinfo_context = sp->default_context; 4841 info.sinfo_timetolive = sp->default_timetolive; 4842 } 4843 4844 if (put_user(len, optlen)) 4845 return -EFAULT; 4846 if (copy_to_user(optval, &info, len)) 4847 return -EFAULT; 4848 4849 return 0; 4850 } 4851 4852 /* 4853 * 4854 * 7.1.5 SCTP_NODELAY 4855 * 4856 * Turn on/off any Nagle-like algorithm. This means that packets are 4857 * generally sent as soon as possible and no unnecessary delays are 4858 * introduced, at the cost of more packets in the network. Expects an 4859 * integer boolean flag. 4860 */ 4861 4862 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4863 char __user *optval, int __user *optlen) 4864 { 4865 int val; 4866 4867 if (len < sizeof(int)) 4868 return -EINVAL; 4869 4870 len = sizeof(int); 4871 val = (sctp_sk(sk)->nodelay == 1); 4872 if (put_user(len, optlen)) 4873 return -EFAULT; 4874 if (copy_to_user(optval, &val, len)) 4875 return -EFAULT; 4876 return 0; 4877 } 4878 4879 /* 4880 * 4881 * 7.1.1 SCTP_RTOINFO 4882 * 4883 * The protocol parameters used to initialize and bound retransmission 4884 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4885 * and modify these parameters. 4886 * All parameters are time values, in milliseconds. A value of 0, when 4887 * modifying the parameters, indicates that the current value should not 4888 * be changed. 4889 * 4890 */ 4891 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4892 char __user *optval, 4893 int __user *optlen) { 4894 struct sctp_rtoinfo rtoinfo; 4895 struct sctp_association *asoc; 4896 4897 if (len < sizeof (struct sctp_rtoinfo)) 4898 return -EINVAL; 4899 4900 len = sizeof(struct sctp_rtoinfo); 4901 4902 if (copy_from_user(&rtoinfo, optval, len)) 4903 return -EFAULT; 4904 4905 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4906 4907 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4908 return -EINVAL; 4909 4910 /* Values corresponding to the specific association. */ 4911 if (asoc) { 4912 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4913 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4914 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4915 } else { 4916 /* Values corresponding to the endpoint. */ 4917 struct sctp_sock *sp = sctp_sk(sk); 4918 4919 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4920 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4921 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4922 } 4923 4924 if (put_user(len, optlen)) 4925 return -EFAULT; 4926 4927 if (copy_to_user(optval, &rtoinfo, len)) 4928 return -EFAULT; 4929 4930 return 0; 4931 } 4932 4933 /* 4934 * 4935 * 7.1.2 SCTP_ASSOCINFO 4936 * 4937 * This option is used to tune the maximum retransmission attempts 4938 * of the association. 4939 * Returns an error if the new association retransmission value is 4940 * greater than the sum of the retransmission value of the peer. 4941 * See [SCTP] for more information. 4942 * 4943 */ 4944 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4945 char __user *optval, 4946 int __user *optlen) 4947 { 4948 4949 struct sctp_assocparams assocparams; 4950 struct sctp_association *asoc; 4951 struct list_head *pos; 4952 int cnt = 0; 4953 4954 if (len < sizeof (struct sctp_assocparams)) 4955 return -EINVAL; 4956 4957 len = sizeof(struct sctp_assocparams); 4958 4959 if (copy_from_user(&assocparams, optval, len)) 4960 return -EFAULT; 4961 4962 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4963 4964 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4965 return -EINVAL; 4966 4967 /* Values correspoinding to the specific association */ 4968 if (asoc) { 4969 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4970 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4971 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4972 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4973 * 1000) + 4974 (asoc->cookie_life.tv_usec 4975 / 1000); 4976 4977 list_for_each(pos, &asoc->peer.transport_addr_list) { 4978 cnt ++; 4979 } 4980 4981 assocparams.sasoc_number_peer_destinations = cnt; 4982 } else { 4983 /* Values corresponding to the endpoint */ 4984 struct sctp_sock *sp = sctp_sk(sk); 4985 4986 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4987 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4988 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4989 assocparams.sasoc_cookie_life = 4990 sp->assocparams.sasoc_cookie_life; 4991 assocparams.sasoc_number_peer_destinations = 4992 sp->assocparams. 4993 sasoc_number_peer_destinations; 4994 } 4995 4996 if (put_user(len, optlen)) 4997 return -EFAULT; 4998 4999 if (copy_to_user(optval, &assocparams, len)) 5000 return -EFAULT; 5001 5002 return 0; 5003 } 5004 5005 /* 5006 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5007 * 5008 * This socket option is a boolean flag which turns on or off mapped V4 5009 * addresses. If this option is turned on and the socket is type 5010 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5011 * If this option is turned off, then no mapping will be done of V4 5012 * addresses and a user will receive both PF_INET6 and PF_INET type 5013 * addresses on the socket. 5014 */ 5015 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5016 char __user *optval, int __user *optlen) 5017 { 5018 int val; 5019 struct sctp_sock *sp = sctp_sk(sk); 5020 5021 if (len < sizeof(int)) 5022 return -EINVAL; 5023 5024 len = sizeof(int); 5025 val = sp->v4mapped; 5026 if (put_user(len, optlen)) 5027 return -EFAULT; 5028 if (copy_to_user(optval, &val, len)) 5029 return -EFAULT; 5030 5031 return 0; 5032 } 5033 5034 /* 5035 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5036 * (chapter and verse is quoted at sctp_setsockopt_context()) 5037 */ 5038 static int sctp_getsockopt_context(struct sock *sk, int len, 5039 char __user *optval, int __user *optlen) 5040 { 5041 struct sctp_assoc_value params; 5042 struct sctp_sock *sp; 5043 struct sctp_association *asoc; 5044 5045 if (len < sizeof(struct sctp_assoc_value)) 5046 return -EINVAL; 5047 5048 len = sizeof(struct sctp_assoc_value); 5049 5050 if (copy_from_user(¶ms, optval, len)) 5051 return -EFAULT; 5052 5053 sp = sctp_sk(sk); 5054 5055 if (params.assoc_id != 0) { 5056 asoc = sctp_id2assoc(sk, params.assoc_id); 5057 if (!asoc) 5058 return -EINVAL; 5059 params.assoc_value = asoc->default_rcv_context; 5060 } else { 5061 params.assoc_value = sp->default_rcv_context; 5062 } 5063 5064 if (put_user(len, optlen)) 5065 return -EFAULT; 5066 if (copy_to_user(optval, ¶ms, len)) 5067 return -EFAULT; 5068 5069 return 0; 5070 } 5071 5072 /* 5073 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 5074 * 5075 * This socket option specifies the maximum size to put in any outgoing 5076 * SCTP chunk. If a message is larger than this size it will be 5077 * fragmented by SCTP into the specified size. Note that the underlying 5078 * SCTP implementation may fragment into smaller sized chunks when the 5079 * PMTU of the underlying association is smaller than the value set by 5080 * the user. 5081 */ 5082 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5083 char __user *optval, int __user *optlen) 5084 { 5085 int val; 5086 5087 if (len < sizeof(int)) 5088 return -EINVAL; 5089 5090 len = sizeof(int); 5091 5092 val = sctp_sk(sk)->user_frag; 5093 if (put_user(len, optlen)) 5094 return -EFAULT; 5095 if (copy_to_user(optval, &val, len)) 5096 return -EFAULT; 5097 5098 return 0; 5099 } 5100 5101 /* 5102 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5103 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5104 */ 5105 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5106 char __user *optval, int __user *optlen) 5107 { 5108 int val; 5109 5110 if (len < sizeof(int)) 5111 return -EINVAL; 5112 5113 len = sizeof(int); 5114 5115 val = sctp_sk(sk)->frag_interleave; 5116 if (put_user(len, optlen)) 5117 return -EFAULT; 5118 if (copy_to_user(optval, &val, len)) 5119 return -EFAULT; 5120 5121 return 0; 5122 } 5123 5124 /* 5125 * 7.1.25. Set or Get the sctp partial delivery point 5126 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5127 */ 5128 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5129 char __user *optval, 5130 int __user *optlen) 5131 { 5132 u32 val; 5133 5134 if (len < sizeof(u32)) 5135 return -EINVAL; 5136 5137 len = sizeof(u32); 5138 5139 val = sctp_sk(sk)->pd_point; 5140 if (put_user(len, optlen)) 5141 return -EFAULT; 5142 if (copy_to_user(optval, &val, len)) 5143 return -EFAULT; 5144 5145 return -ENOTSUPP; 5146 } 5147 5148 /* 5149 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5150 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5151 */ 5152 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5153 char __user *optval, 5154 int __user *optlen) 5155 { 5156 struct sctp_assoc_value params; 5157 struct sctp_sock *sp; 5158 struct sctp_association *asoc; 5159 5160 if (len < sizeof(int)) 5161 return -EINVAL; 5162 5163 if (len == sizeof(int)) { 5164 printk(KERN_WARNING 5165 "SCTP: Use of int in max_burst socket option deprecated\n"); 5166 printk(KERN_WARNING 5167 "SCTP: Use struct sctp_assoc_value instead\n"); 5168 params.assoc_id = 0; 5169 } else if (len == sizeof (struct sctp_assoc_value)) { 5170 if (copy_from_user(¶ms, optval, len)) 5171 return -EFAULT; 5172 } else 5173 return -EINVAL; 5174 5175 sp = sctp_sk(sk); 5176 5177 if (params.assoc_id != 0) { 5178 asoc = sctp_id2assoc(sk, params.assoc_id); 5179 if (!asoc) 5180 return -EINVAL; 5181 params.assoc_value = asoc->max_burst; 5182 } else 5183 params.assoc_value = sp->max_burst; 5184 5185 if (len == sizeof(int)) { 5186 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5187 return -EFAULT; 5188 } else { 5189 if (copy_to_user(optval, ¶ms, len)) 5190 return -EFAULT; 5191 } 5192 5193 return 0; 5194 5195 } 5196 5197 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5198 char __user *optval, int __user *optlen) 5199 { 5200 struct sctp_hmac_algo_param *hmacs; 5201 __u16 param_len; 5202 5203 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5204 param_len = ntohs(hmacs->param_hdr.length); 5205 5206 if (len < param_len) 5207 return -EINVAL; 5208 if (put_user(len, optlen)) 5209 return -EFAULT; 5210 if (copy_to_user(optval, hmacs->hmac_ids, len)) 5211 return -EFAULT; 5212 5213 return 0; 5214 } 5215 5216 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5217 char __user *optval, int __user *optlen) 5218 { 5219 struct sctp_authkeyid val; 5220 struct sctp_association *asoc; 5221 5222 if (len < sizeof(struct sctp_authkeyid)) 5223 return -EINVAL; 5224 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5225 return -EFAULT; 5226 5227 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5228 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5229 return -EINVAL; 5230 5231 if (asoc) 5232 val.scact_keynumber = asoc->active_key_id; 5233 else 5234 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5235 5236 return 0; 5237 } 5238 5239 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5240 char __user *optval, int __user *optlen) 5241 { 5242 struct sctp_authchunks __user *p = (void __user *)optval; 5243 struct sctp_authchunks val; 5244 struct sctp_association *asoc; 5245 struct sctp_chunks_param *ch; 5246 u32 num_chunks; 5247 char __user *to; 5248 5249 if (len <= sizeof(struct sctp_authchunks)) 5250 return -EINVAL; 5251 5252 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5253 return -EFAULT; 5254 5255 to = p->gauth_chunks; 5256 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5257 if (!asoc) 5258 return -EINVAL; 5259 5260 ch = asoc->peer.peer_chunks; 5261 5262 /* See if the user provided enough room for all the data */ 5263 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5264 if (len < num_chunks) 5265 return -EINVAL; 5266 5267 len = num_chunks; 5268 if (put_user(len, optlen)) 5269 return -EFAULT; 5270 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5271 return -EFAULT; 5272 if (copy_to_user(to, ch->chunks, len)) 5273 return -EFAULT; 5274 5275 return 0; 5276 } 5277 5278 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5279 char __user *optval, int __user *optlen) 5280 { 5281 struct sctp_authchunks __user *p = (void __user *)optval; 5282 struct sctp_authchunks val; 5283 struct sctp_association *asoc; 5284 struct sctp_chunks_param *ch; 5285 u32 num_chunks; 5286 char __user *to; 5287 5288 if (len <= sizeof(struct sctp_authchunks)) 5289 return -EINVAL; 5290 5291 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5292 return -EFAULT; 5293 5294 to = p->gauth_chunks; 5295 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5296 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5297 return -EINVAL; 5298 5299 if (asoc) 5300 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5301 else 5302 ch = sctp_sk(sk)->ep->auth_chunk_list; 5303 5304 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5305 if (len < num_chunks) 5306 return -EINVAL; 5307 5308 len = num_chunks; 5309 if (put_user(len, optlen)) 5310 return -EFAULT; 5311 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5312 return -EFAULT; 5313 if (copy_to_user(to, ch->chunks, len)) 5314 return -EFAULT; 5315 5316 return 0; 5317 } 5318 5319 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5320 char __user *optval, int __user *optlen) 5321 { 5322 int retval = 0; 5323 int len; 5324 5325 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5326 sk, optname); 5327 5328 /* I can hardly begin to describe how wrong this is. This is 5329 * so broken as to be worse than useless. The API draft 5330 * REALLY is NOT helpful here... I am not convinced that the 5331 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5332 * are at all well-founded. 5333 */ 5334 if (level != SOL_SCTP) { 5335 struct sctp_af *af = sctp_sk(sk)->pf->af; 5336 5337 retval = af->getsockopt(sk, level, optname, optval, optlen); 5338 return retval; 5339 } 5340 5341 if (get_user(len, optlen)) 5342 return -EFAULT; 5343 5344 sctp_lock_sock(sk); 5345 5346 switch (optname) { 5347 case SCTP_STATUS: 5348 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5349 break; 5350 case SCTP_DISABLE_FRAGMENTS: 5351 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5352 optlen); 5353 break; 5354 case SCTP_EVENTS: 5355 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5356 break; 5357 case SCTP_AUTOCLOSE: 5358 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5359 break; 5360 case SCTP_SOCKOPT_PEELOFF: 5361 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5362 break; 5363 case SCTP_PEER_ADDR_PARAMS: 5364 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5365 optlen); 5366 break; 5367 case SCTP_DELAYED_ACK: 5368 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5369 optlen); 5370 break; 5371 case SCTP_INITMSG: 5372 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5373 break; 5374 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5375 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5376 optlen); 5377 break; 5378 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5379 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5380 optlen); 5381 break; 5382 case SCTP_GET_PEER_ADDRS_OLD: 5383 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5384 optlen); 5385 break; 5386 case SCTP_GET_LOCAL_ADDRS_OLD: 5387 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5388 optlen); 5389 break; 5390 case SCTP_GET_PEER_ADDRS: 5391 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5392 optlen); 5393 break; 5394 case SCTP_GET_LOCAL_ADDRS: 5395 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5396 optlen); 5397 break; 5398 case SCTP_DEFAULT_SEND_PARAM: 5399 retval = sctp_getsockopt_default_send_param(sk, len, 5400 optval, optlen); 5401 break; 5402 case SCTP_PRIMARY_ADDR: 5403 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5404 break; 5405 case SCTP_NODELAY: 5406 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5407 break; 5408 case SCTP_RTOINFO: 5409 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5410 break; 5411 case SCTP_ASSOCINFO: 5412 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5413 break; 5414 case SCTP_I_WANT_MAPPED_V4_ADDR: 5415 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5416 break; 5417 case SCTP_MAXSEG: 5418 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5419 break; 5420 case SCTP_GET_PEER_ADDR_INFO: 5421 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5422 optlen); 5423 break; 5424 case SCTP_ADAPTATION_LAYER: 5425 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5426 optlen); 5427 break; 5428 case SCTP_CONTEXT: 5429 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5430 break; 5431 case SCTP_FRAGMENT_INTERLEAVE: 5432 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5433 optlen); 5434 break; 5435 case SCTP_PARTIAL_DELIVERY_POINT: 5436 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5437 optlen); 5438 break; 5439 case SCTP_MAX_BURST: 5440 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5441 break; 5442 case SCTP_AUTH_KEY: 5443 case SCTP_AUTH_CHUNK: 5444 case SCTP_AUTH_DELETE_KEY: 5445 retval = -EOPNOTSUPP; 5446 break; 5447 case SCTP_HMAC_IDENT: 5448 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5449 break; 5450 case SCTP_AUTH_ACTIVE_KEY: 5451 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5452 break; 5453 case SCTP_PEER_AUTH_CHUNKS: 5454 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5455 optlen); 5456 break; 5457 case SCTP_LOCAL_AUTH_CHUNKS: 5458 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5459 optlen); 5460 break; 5461 default: 5462 retval = -ENOPROTOOPT; 5463 break; 5464 } 5465 5466 sctp_release_sock(sk); 5467 return retval; 5468 } 5469 5470 static void sctp_hash(struct sock *sk) 5471 { 5472 /* STUB */ 5473 } 5474 5475 static void sctp_unhash(struct sock *sk) 5476 { 5477 /* STUB */ 5478 } 5479 5480 /* Check if port is acceptable. Possibly find first available port. 5481 * 5482 * The port hash table (contained in the 'global' SCTP protocol storage 5483 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5484 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5485 * list (the list number is the port number hashed out, so as you 5486 * would expect from a hash function, all the ports in a given list have 5487 * such a number that hashes out to the same list number; you were 5488 * expecting that, right?); so each list has a set of ports, with a 5489 * link to the socket (struct sock) that uses it, the port number and 5490 * a fastreuse flag (FIXME: NPI ipg). 5491 */ 5492 static struct sctp_bind_bucket *sctp_bucket_create( 5493 struct sctp_bind_hashbucket *head, unsigned short snum); 5494 5495 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5496 { 5497 struct sctp_bind_hashbucket *head; /* hash list */ 5498 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5499 struct hlist_node *node; 5500 unsigned short snum; 5501 int ret; 5502 5503 snum = ntohs(addr->v4.sin_port); 5504 5505 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5506 sctp_local_bh_disable(); 5507 5508 if (snum == 0) { 5509 /* Search for an available port. */ 5510 int low, high, remaining, index; 5511 unsigned int rover; 5512 5513 inet_get_local_port_range(&low, &high); 5514 remaining = (high - low) + 1; 5515 rover = net_random() % remaining + low; 5516 5517 do { 5518 rover++; 5519 if ((rover < low) || (rover > high)) 5520 rover = low; 5521 index = sctp_phashfn(rover); 5522 head = &sctp_port_hashtable[index]; 5523 sctp_spin_lock(&head->lock); 5524 sctp_for_each_hentry(pp, node, &head->chain) 5525 if (pp->port == rover) 5526 goto next; 5527 break; 5528 next: 5529 sctp_spin_unlock(&head->lock); 5530 } while (--remaining > 0); 5531 5532 /* Exhausted local port range during search? */ 5533 ret = 1; 5534 if (remaining <= 0) 5535 goto fail; 5536 5537 /* OK, here is the one we will use. HEAD (the port 5538 * hash table list entry) is non-NULL and we hold it's 5539 * mutex. 5540 */ 5541 snum = rover; 5542 } else { 5543 /* We are given an specific port number; we verify 5544 * that it is not being used. If it is used, we will 5545 * exahust the search in the hash list corresponding 5546 * to the port number (snum) - we detect that with the 5547 * port iterator, pp being NULL. 5548 */ 5549 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5550 sctp_spin_lock(&head->lock); 5551 sctp_for_each_hentry(pp, node, &head->chain) { 5552 if (pp->port == snum) 5553 goto pp_found; 5554 } 5555 } 5556 pp = NULL; 5557 goto pp_not_found; 5558 pp_found: 5559 if (!hlist_empty(&pp->owner)) { 5560 /* We had a port hash table hit - there is an 5561 * available port (pp != NULL) and it is being 5562 * used by other socket (pp->owner not empty); that other 5563 * socket is going to be sk2. 5564 */ 5565 int reuse = sk->sk_reuse; 5566 struct sock *sk2; 5567 struct hlist_node *node; 5568 5569 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5570 if (pp->fastreuse && sk->sk_reuse && 5571 sk->sk_state != SCTP_SS_LISTENING) 5572 goto success; 5573 5574 /* Run through the list of sockets bound to the port 5575 * (pp->port) [via the pointers bind_next and 5576 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5577 * we get the endpoint they describe and run through 5578 * the endpoint's list of IP (v4 or v6) addresses, 5579 * comparing each of the addresses with the address of 5580 * the socket sk. If we find a match, then that means 5581 * that this port/socket (sk) combination are already 5582 * in an endpoint. 5583 */ 5584 sk_for_each_bound(sk2, node, &pp->owner) { 5585 struct sctp_endpoint *ep2; 5586 ep2 = sctp_sk(sk2)->ep; 5587 5588 if (sk == sk2 || 5589 (reuse && sk2->sk_reuse && 5590 sk2->sk_state != SCTP_SS_LISTENING)) 5591 continue; 5592 5593 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5594 sctp_sk(sk2), sctp_sk(sk))) { 5595 ret = (long)sk2; 5596 goto fail_unlock; 5597 } 5598 } 5599 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5600 } 5601 pp_not_found: 5602 /* If there was a hash table miss, create a new port. */ 5603 ret = 1; 5604 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5605 goto fail_unlock; 5606 5607 /* In either case (hit or miss), make sure fastreuse is 1 only 5608 * if sk->sk_reuse is too (that is, if the caller requested 5609 * SO_REUSEADDR on this socket -sk-). 5610 */ 5611 if (hlist_empty(&pp->owner)) { 5612 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5613 pp->fastreuse = 1; 5614 else 5615 pp->fastreuse = 0; 5616 } else if (pp->fastreuse && 5617 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5618 pp->fastreuse = 0; 5619 5620 /* We are set, so fill up all the data in the hash table 5621 * entry, tie the socket list information with the rest of the 5622 * sockets FIXME: Blurry, NPI (ipg). 5623 */ 5624 success: 5625 if (!sctp_sk(sk)->bind_hash) { 5626 inet_sk(sk)->num = snum; 5627 sk_add_bind_node(sk, &pp->owner); 5628 sctp_sk(sk)->bind_hash = pp; 5629 } 5630 ret = 0; 5631 5632 fail_unlock: 5633 sctp_spin_unlock(&head->lock); 5634 5635 fail: 5636 sctp_local_bh_enable(); 5637 return ret; 5638 } 5639 5640 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5641 * port is requested. 5642 */ 5643 static int sctp_get_port(struct sock *sk, unsigned short snum) 5644 { 5645 long ret; 5646 union sctp_addr addr; 5647 struct sctp_af *af = sctp_sk(sk)->pf->af; 5648 5649 /* Set up a dummy address struct from the sk. */ 5650 af->from_sk(&addr, sk); 5651 addr.v4.sin_port = htons(snum); 5652 5653 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5654 ret = sctp_get_port_local(sk, &addr); 5655 5656 return (ret ? 1 : 0); 5657 } 5658 5659 /* 5660 * 3.1.3 listen() - UDP Style Syntax 5661 * 5662 * By default, new associations are not accepted for UDP style sockets. 5663 * An application uses listen() to mark a socket as being able to 5664 * accept new associations. 5665 */ 5666 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5667 { 5668 struct sctp_sock *sp = sctp_sk(sk); 5669 struct sctp_endpoint *ep = sp->ep; 5670 5671 /* Only UDP style sockets that are not peeled off are allowed to 5672 * listen(). 5673 */ 5674 if (!sctp_style(sk, UDP)) 5675 return -EINVAL; 5676 5677 /* If backlog is zero, disable listening. */ 5678 if (!backlog) { 5679 if (sctp_sstate(sk, CLOSED)) 5680 return 0; 5681 5682 sctp_unhash_endpoint(ep); 5683 sk->sk_state = SCTP_SS_CLOSED; 5684 return 0; 5685 } 5686 5687 /* Return if we are already listening. */ 5688 if (sctp_sstate(sk, LISTENING)) 5689 return 0; 5690 5691 /* 5692 * If a bind() or sctp_bindx() is not called prior to a listen() 5693 * call that allows new associations to be accepted, the system 5694 * picks an ephemeral port and will choose an address set equivalent 5695 * to binding with a wildcard address. 5696 * 5697 * This is not currently spelled out in the SCTP sockets 5698 * extensions draft, but follows the practice as seen in TCP 5699 * sockets. 5700 * 5701 * Additionally, turn off fastreuse flag since we are not listening 5702 */ 5703 sk->sk_state = SCTP_SS_LISTENING; 5704 if (!ep->base.bind_addr.port) { 5705 if (sctp_autobind(sk)) 5706 return -EAGAIN; 5707 } else { 5708 if (sctp_get_port(sk, inet_sk(sk)->num)) { 5709 sk->sk_state = SCTP_SS_CLOSED; 5710 return -EADDRINUSE; 5711 } 5712 sctp_sk(sk)->bind_hash->fastreuse = 0; 5713 } 5714 5715 sctp_hash_endpoint(ep); 5716 return 0; 5717 } 5718 5719 /* 5720 * 4.1.3 listen() - TCP Style Syntax 5721 * 5722 * Applications uses listen() to ready the SCTP endpoint for accepting 5723 * inbound associations. 5724 */ 5725 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5726 { 5727 struct sctp_sock *sp = sctp_sk(sk); 5728 struct sctp_endpoint *ep = sp->ep; 5729 5730 /* If backlog is zero, disable listening. */ 5731 if (!backlog) { 5732 if (sctp_sstate(sk, CLOSED)) 5733 return 0; 5734 5735 sctp_unhash_endpoint(ep); 5736 sk->sk_state = SCTP_SS_CLOSED; 5737 return 0; 5738 } 5739 5740 if (sctp_sstate(sk, LISTENING)) 5741 return 0; 5742 5743 /* 5744 * If a bind() or sctp_bindx() is not called prior to a listen() 5745 * call that allows new associations to be accepted, the system 5746 * picks an ephemeral port and will choose an address set equivalent 5747 * to binding with a wildcard address. 5748 * 5749 * This is not currently spelled out in the SCTP sockets 5750 * extensions draft, but follows the practice as seen in TCP 5751 * sockets. 5752 */ 5753 sk->sk_state = SCTP_SS_LISTENING; 5754 if (!ep->base.bind_addr.port) { 5755 if (sctp_autobind(sk)) 5756 return -EAGAIN; 5757 } else 5758 sctp_sk(sk)->bind_hash->fastreuse = 0; 5759 5760 sk->sk_max_ack_backlog = backlog; 5761 sctp_hash_endpoint(ep); 5762 return 0; 5763 } 5764 5765 /* 5766 * Move a socket to LISTENING state. 5767 */ 5768 int sctp_inet_listen(struct socket *sock, int backlog) 5769 { 5770 struct sock *sk = sock->sk; 5771 struct crypto_hash *tfm = NULL; 5772 int err = -EINVAL; 5773 5774 if (unlikely(backlog < 0)) 5775 goto out; 5776 5777 sctp_lock_sock(sk); 5778 5779 if (sock->state != SS_UNCONNECTED) 5780 goto out; 5781 5782 /* Allocate HMAC for generating cookie. */ 5783 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5784 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5785 if (IS_ERR(tfm)) { 5786 if (net_ratelimit()) { 5787 printk(KERN_INFO 5788 "SCTP: failed to load transform for %s: %ld\n", 5789 sctp_hmac_alg, PTR_ERR(tfm)); 5790 } 5791 err = -ENOSYS; 5792 goto out; 5793 } 5794 } 5795 5796 switch (sock->type) { 5797 case SOCK_SEQPACKET: 5798 err = sctp_seqpacket_listen(sk, backlog); 5799 break; 5800 case SOCK_STREAM: 5801 err = sctp_stream_listen(sk, backlog); 5802 break; 5803 default: 5804 break; 5805 } 5806 5807 if (err) 5808 goto cleanup; 5809 5810 /* Store away the transform reference. */ 5811 if (!sctp_sk(sk)->hmac) 5812 sctp_sk(sk)->hmac = tfm; 5813 out: 5814 sctp_release_sock(sk); 5815 return err; 5816 cleanup: 5817 crypto_free_hash(tfm); 5818 goto out; 5819 } 5820 5821 /* 5822 * This function is done by modeling the current datagram_poll() and the 5823 * tcp_poll(). Note that, based on these implementations, we don't 5824 * lock the socket in this function, even though it seems that, 5825 * ideally, locking or some other mechanisms can be used to ensure 5826 * the integrity of the counters (sndbuf and wmem_alloc) used 5827 * in this place. We assume that we don't need locks either until proven 5828 * otherwise. 5829 * 5830 * Another thing to note is that we include the Async I/O support 5831 * here, again, by modeling the current TCP/UDP code. We don't have 5832 * a good way to test with it yet. 5833 */ 5834 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5835 { 5836 struct sock *sk = sock->sk; 5837 struct sctp_sock *sp = sctp_sk(sk); 5838 unsigned int mask; 5839 5840 poll_wait(file, sk->sk_sleep, wait); 5841 5842 /* A TCP-style listening socket becomes readable when the accept queue 5843 * is not empty. 5844 */ 5845 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5846 return (!list_empty(&sp->ep->asocs)) ? 5847 (POLLIN | POLLRDNORM) : 0; 5848 5849 mask = 0; 5850 5851 /* Is there any exceptional events? */ 5852 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5853 mask |= POLLERR; 5854 if (sk->sk_shutdown & RCV_SHUTDOWN) 5855 mask |= POLLRDHUP; 5856 if (sk->sk_shutdown == SHUTDOWN_MASK) 5857 mask |= POLLHUP; 5858 5859 /* Is it readable? Reconsider this code with TCP-style support. */ 5860 if (!skb_queue_empty(&sk->sk_receive_queue) || 5861 (sk->sk_shutdown & RCV_SHUTDOWN)) 5862 mask |= POLLIN | POLLRDNORM; 5863 5864 /* The association is either gone or not ready. */ 5865 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5866 return mask; 5867 5868 /* Is it writable? */ 5869 if (sctp_writeable(sk)) { 5870 mask |= POLLOUT | POLLWRNORM; 5871 } else { 5872 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5873 /* 5874 * Since the socket is not locked, the buffer 5875 * might be made available after the writeable check and 5876 * before the bit is set. This could cause a lost I/O 5877 * signal. tcp_poll() has a race breaker for this race 5878 * condition. Based on their implementation, we put 5879 * in the following code to cover it as well. 5880 */ 5881 if (sctp_writeable(sk)) 5882 mask |= POLLOUT | POLLWRNORM; 5883 } 5884 return mask; 5885 } 5886 5887 /******************************************************************** 5888 * 2nd Level Abstractions 5889 ********************************************************************/ 5890 5891 static struct sctp_bind_bucket *sctp_bucket_create( 5892 struct sctp_bind_hashbucket *head, unsigned short snum) 5893 { 5894 struct sctp_bind_bucket *pp; 5895 5896 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5897 if (pp) { 5898 SCTP_DBG_OBJCNT_INC(bind_bucket); 5899 pp->port = snum; 5900 pp->fastreuse = 0; 5901 INIT_HLIST_HEAD(&pp->owner); 5902 hlist_add_head(&pp->node, &head->chain); 5903 } 5904 return pp; 5905 } 5906 5907 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5908 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5909 { 5910 if (pp && hlist_empty(&pp->owner)) { 5911 __hlist_del(&pp->node); 5912 kmem_cache_free(sctp_bucket_cachep, pp); 5913 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5914 } 5915 } 5916 5917 /* Release this socket's reference to a local port. */ 5918 static inline void __sctp_put_port(struct sock *sk) 5919 { 5920 struct sctp_bind_hashbucket *head = 5921 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5922 struct sctp_bind_bucket *pp; 5923 5924 sctp_spin_lock(&head->lock); 5925 pp = sctp_sk(sk)->bind_hash; 5926 __sk_del_bind_node(sk); 5927 sctp_sk(sk)->bind_hash = NULL; 5928 inet_sk(sk)->num = 0; 5929 sctp_bucket_destroy(pp); 5930 sctp_spin_unlock(&head->lock); 5931 } 5932 5933 void sctp_put_port(struct sock *sk) 5934 { 5935 sctp_local_bh_disable(); 5936 __sctp_put_port(sk); 5937 sctp_local_bh_enable(); 5938 } 5939 5940 /* 5941 * The system picks an ephemeral port and choose an address set equivalent 5942 * to binding with a wildcard address. 5943 * One of those addresses will be the primary address for the association. 5944 * This automatically enables the multihoming capability of SCTP. 5945 */ 5946 static int sctp_autobind(struct sock *sk) 5947 { 5948 union sctp_addr autoaddr; 5949 struct sctp_af *af; 5950 __be16 port; 5951 5952 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5953 af = sctp_sk(sk)->pf->af; 5954 5955 port = htons(inet_sk(sk)->num); 5956 af->inaddr_any(&autoaddr, port); 5957 5958 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5959 } 5960 5961 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5962 * 5963 * From RFC 2292 5964 * 4.2 The cmsghdr Structure * 5965 * 5966 * When ancillary data is sent or received, any number of ancillary data 5967 * objects can be specified by the msg_control and msg_controllen members of 5968 * the msghdr structure, because each object is preceded by 5969 * a cmsghdr structure defining the object's length (the cmsg_len member). 5970 * Historically Berkeley-derived implementations have passed only one object 5971 * at a time, but this API allows multiple objects to be 5972 * passed in a single call to sendmsg() or recvmsg(). The following example 5973 * shows two ancillary data objects in a control buffer. 5974 * 5975 * |<--------------------------- msg_controllen -------------------------->| 5976 * | | 5977 * 5978 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5979 * 5980 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5981 * | | | 5982 * 5983 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5984 * 5985 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5986 * | | | | | 5987 * 5988 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5989 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5990 * 5991 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5992 * 5993 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5994 * ^ 5995 * | 5996 * 5997 * msg_control 5998 * points here 5999 */ 6000 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6001 sctp_cmsgs_t *cmsgs) 6002 { 6003 struct cmsghdr *cmsg; 6004 struct msghdr *my_msg = (struct msghdr *)msg; 6005 6006 for (cmsg = CMSG_FIRSTHDR(msg); 6007 cmsg != NULL; 6008 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6009 if (!CMSG_OK(my_msg, cmsg)) 6010 return -EINVAL; 6011 6012 /* Should we parse this header or ignore? */ 6013 if (cmsg->cmsg_level != IPPROTO_SCTP) 6014 continue; 6015 6016 /* Strictly check lengths following example in SCM code. */ 6017 switch (cmsg->cmsg_type) { 6018 case SCTP_INIT: 6019 /* SCTP Socket API Extension 6020 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6021 * 6022 * This cmsghdr structure provides information for 6023 * initializing new SCTP associations with sendmsg(). 6024 * The SCTP_INITMSG socket option uses this same data 6025 * structure. This structure is not used for 6026 * recvmsg(). 6027 * 6028 * cmsg_level cmsg_type cmsg_data[] 6029 * ------------ ------------ ---------------------- 6030 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6031 */ 6032 if (cmsg->cmsg_len != 6033 CMSG_LEN(sizeof(struct sctp_initmsg))) 6034 return -EINVAL; 6035 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6036 break; 6037 6038 case SCTP_SNDRCV: 6039 /* SCTP Socket API Extension 6040 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6041 * 6042 * This cmsghdr structure specifies SCTP options for 6043 * sendmsg() and describes SCTP header information 6044 * about a received message through recvmsg(). 6045 * 6046 * cmsg_level cmsg_type cmsg_data[] 6047 * ------------ ------------ ---------------------- 6048 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6049 */ 6050 if (cmsg->cmsg_len != 6051 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6052 return -EINVAL; 6053 6054 cmsgs->info = 6055 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6056 6057 /* Minimally, validate the sinfo_flags. */ 6058 if (cmsgs->info->sinfo_flags & 6059 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6060 SCTP_ABORT | SCTP_EOF)) 6061 return -EINVAL; 6062 break; 6063 6064 default: 6065 return -EINVAL; 6066 } 6067 } 6068 return 0; 6069 } 6070 6071 /* 6072 * Wait for a packet.. 6073 * Note: This function is the same function as in core/datagram.c 6074 * with a few modifications to make lksctp work. 6075 */ 6076 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6077 { 6078 int error; 6079 DEFINE_WAIT(wait); 6080 6081 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6082 6083 /* Socket errors? */ 6084 error = sock_error(sk); 6085 if (error) 6086 goto out; 6087 6088 if (!skb_queue_empty(&sk->sk_receive_queue)) 6089 goto ready; 6090 6091 /* Socket shut down? */ 6092 if (sk->sk_shutdown & RCV_SHUTDOWN) 6093 goto out; 6094 6095 /* Sequenced packets can come disconnected. If so we report the 6096 * problem. 6097 */ 6098 error = -ENOTCONN; 6099 6100 /* Is there a good reason to think that we may receive some data? */ 6101 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6102 goto out; 6103 6104 /* Handle signals. */ 6105 if (signal_pending(current)) 6106 goto interrupted; 6107 6108 /* Let another process have a go. Since we are going to sleep 6109 * anyway. Note: This may cause odd behaviors if the message 6110 * does not fit in the user's buffer, but this seems to be the 6111 * only way to honor MSG_DONTWAIT realistically. 6112 */ 6113 sctp_release_sock(sk); 6114 *timeo_p = schedule_timeout(*timeo_p); 6115 sctp_lock_sock(sk); 6116 6117 ready: 6118 finish_wait(sk->sk_sleep, &wait); 6119 return 0; 6120 6121 interrupted: 6122 error = sock_intr_errno(*timeo_p); 6123 6124 out: 6125 finish_wait(sk->sk_sleep, &wait); 6126 *err = error; 6127 return error; 6128 } 6129 6130 /* Receive a datagram. 6131 * Note: This is pretty much the same routine as in core/datagram.c 6132 * with a few changes to make lksctp work. 6133 */ 6134 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6135 int noblock, int *err) 6136 { 6137 int error; 6138 struct sk_buff *skb; 6139 long timeo; 6140 6141 timeo = sock_rcvtimeo(sk, noblock); 6142 6143 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6144 timeo, MAX_SCHEDULE_TIMEOUT); 6145 6146 do { 6147 /* Again only user level code calls this function, 6148 * so nothing interrupt level 6149 * will suddenly eat the receive_queue. 6150 * 6151 * Look at current nfs client by the way... 6152 * However, this function was corrent in any case. 8) 6153 */ 6154 if (flags & MSG_PEEK) { 6155 spin_lock_bh(&sk->sk_receive_queue.lock); 6156 skb = skb_peek(&sk->sk_receive_queue); 6157 if (skb) 6158 atomic_inc(&skb->users); 6159 spin_unlock_bh(&sk->sk_receive_queue.lock); 6160 } else { 6161 skb = skb_dequeue(&sk->sk_receive_queue); 6162 } 6163 6164 if (skb) 6165 return skb; 6166 6167 /* Caller is allowed not to check sk->sk_err before calling. */ 6168 error = sock_error(sk); 6169 if (error) 6170 goto no_packet; 6171 6172 if (sk->sk_shutdown & RCV_SHUTDOWN) 6173 break; 6174 6175 /* User doesn't want to wait. */ 6176 error = -EAGAIN; 6177 if (!timeo) 6178 goto no_packet; 6179 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6180 6181 return NULL; 6182 6183 no_packet: 6184 *err = error; 6185 return NULL; 6186 } 6187 6188 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6189 static void __sctp_write_space(struct sctp_association *asoc) 6190 { 6191 struct sock *sk = asoc->base.sk; 6192 struct socket *sock = sk->sk_socket; 6193 6194 if ((sctp_wspace(asoc) > 0) && sock) { 6195 if (waitqueue_active(&asoc->wait)) 6196 wake_up_interruptible(&asoc->wait); 6197 6198 if (sctp_writeable(sk)) { 6199 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6200 wake_up_interruptible(sk->sk_sleep); 6201 6202 /* Note that we try to include the Async I/O support 6203 * here by modeling from the current TCP/UDP code. 6204 * We have not tested with it yet. 6205 */ 6206 if (sock->fasync_list && 6207 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6208 sock_wake_async(sock, 6209 SOCK_WAKE_SPACE, POLL_OUT); 6210 } 6211 } 6212 } 6213 6214 /* Do accounting for the sndbuf space. 6215 * Decrement the used sndbuf space of the corresponding association by the 6216 * data size which was just transmitted(freed). 6217 */ 6218 static void sctp_wfree(struct sk_buff *skb) 6219 { 6220 struct sctp_association *asoc; 6221 struct sctp_chunk *chunk; 6222 struct sock *sk; 6223 6224 /* Get the saved chunk pointer. */ 6225 chunk = *((struct sctp_chunk **)(skb->cb)); 6226 asoc = chunk->asoc; 6227 sk = asoc->base.sk; 6228 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6229 sizeof(struct sk_buff) + 6230 sizeof(struct sctp_chunk); 6231 6232 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6233 6234 /* 6235 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6236 */ 6237 sk->sk_wmem_queued -= skb->truesize; 6238 sk_mem_uncharge(sk, skb->truesize); 6239 6240 sock_wfree(skb); 6241 __sctp_write_space(asoc); 6242 6243 sctp_association_put(asoc); 6244 } 6245 6246 /* Do accounting for the receive space on the socket. 6247 * Accounting for the association is done in ulpevent.c 6248 * We set this as a destructor for the cloned data skbs so that 6249 * accounting is done at the correct time. 6250 */ 6251 void sctp_sock_rfree(struct sk_buff *skb) 6252 { 6253 struct sock *sk = skb->sk; 6254 struct sctp_ulpevent *event = sctp_skb2event(skb); 6255 6256 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6257 6258 /* 6259 * Mimic the behavior of sock_rfree 6260 */ 6261 sk_mem_uncharge(sk, event->rmem_len); 6262 } 6263 6264 6265 /* Helper function to wait for space in the sndbuf. */ 6266 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6267 size_t msg_len) 6268 { 6269 struct sock *sk = asoc->base.sk; 6270 int err = 0; 6271 long current_timeo = *timeo_p; 6272 DEFINE_WAIT(wait); 6273 6274 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6275 asoc, (long)(*timeo_p), msg_len); 6276 6277 /* Increment the association's refcnt. */ 6278 sctp_association_hold(asoc); 6279 6280 /* Wait on the association specific sndbuf space. */ 6281 for (;;) { 6282 prepare_to_wait_exclusive(&asoc->wait, &wait, 6283 TASK_INTERRUPTIBLE); 6284 if (!*timeo_p) 6285 goto do_nonblock; 6286 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6287 asoc->base.dead) 6288 goto do_error; 6289 if (signal_pending(current)) 6290 goto do_interrupted; 6291 if (msg_len <= sctp_wspace(asoc)) 6292 break; 6293 6294 /* Let another process have a go. Since we are going 6295 * to sleep anyway. 6296 */ 6297 sctp_release_sock(sk); 6298 current_timeo = schedule_timeout(current_timeo); 6299 BUG_ON(sk != asoc->base.sk); 6300 sctp_lock_sock(sk); 6301 6302 *timeo_p = current_timeo; 6303 } 6304 6305 out: 6306 finish_wait(&asoc->wait, &wait); 6307 6308 /* Release the association's refcnt. */ 6309 sctp_association_put(asoc); 6310 6311 return err; 6312 6313 do_error: 6314 err = -EPIPE; 6315 goto out; 6316 6317 do_interrupted: 6318 err = sock_intr_errno(*timeo_p); 6319 goto out; 6320 6321 do_nonblock: 6322 err = -EAGAIN; 6323 goto out; 6324 } 6325 6326 /* If socket sndbuf has changed, wake up all per association waiters. */ 6327 void sctp_write_space(struct sock *sk) 6328 { 6329 struct sctp_association *asoc; 6330 6331 /* Wake up the tasks in each wait queue. */ 6332 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6333 __sctp_write_space(asoc); 6334 } 6335 } 6336 6337 /* Is there any sndbuf space available on the socket? 6338 * 6339 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6340 * associations on the same socket. For a UDP-style socket with 6341 * multiple associations, it is possible for it to be "unwriteable" 6342 * prematurely. I assume that this is acceptable because 6343 * a premature "unwriteable" is better than an accidental "writeable" which 6344 * would cause an unwanted block under certain circumstances. For the 1-1 6345 * UDP-style sockets or TCP-style sockets, this code should work. 6346 * - Daisy 6347 */ 6348 static int sctp_writeable(struct sock *sk) 6349 { 6350 int amt = 0; 6351 6352 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 6353 if (amt < 0) 6354 amt = 0; 6355 return amt; 6356 } 6357 6358 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6359 * returns immediately with EINPROGRESS. 6360 */ 6361 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6362 { 6363 struct sock *sk = asoc->base.sk; 6364 int err = 0; 6365 long current_timeo = *timeo_p; 6366 DEFINE_WAIT(wait); 6367 6368 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6369 (long)(*timeo_p)); 6370 6371 /* Increment the association's refcnt. */ 6372 sctp_association_hold(asoc); 6373 6374 for (;;) { 6375 prepare_to_wait_exclusive(&asoc->wait, &wait, 6376 TASK_INTERRUPTIBLE); 6377 if (!*timeo_p) 6378 goto do_nonblock; 6379 if (sk->sk_shutdown & RCV_SHUTDOWN) 6380 break; 6381 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6382 asoc->base.dead) 6383 goto do_error; 6384 if (signal_pending(current)) 6385 goto do_interrupted; 6386 6387 if (sctp_state(asoc, ESTABLISHED)) 6388 break; 6389 6390 /* Let another process have a go. Since we are going 6391 * to sleep anyway. 6392 */ 6393 sctp_release_sock(sk); 6394 current_timeo = schedule_timeout(current_timeo); 6395 sctp_lock_sock(sk); 6396 6397 *timeo_p = current_timeo; 6398 } 6399 6400 out: 6401 finish_wait(&asoc->wait, &wait); 6402 6403 /* Release the association's refcnt. */ 6404 sctp_association_put(asoc); 6405 6406 return err; 6407 6408 do_error: 6409 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6410 err = -ETIMEDOUT; 6411 else 6412 err = -ECONNREFUSED; 6413 goto out; 6414 6415 do_interrupted: 6416 err = sock_intr_errno(*timeo_p); 6417 goto out; 6418 6419 do_nonblock: 6420 err = -EINPROGRESS; 6421 goto out; 6422 } 6423 6424 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6425 { 6426 struct sctp_endpoint *ep; 6427 int err = 0; 6428 DEFINE_WAIT(wait); 6429 6430 ep = sctp_sk(sk)->ep; 6431 6432 6433 for (;;) { 6434 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6435 TASK_INTERRUPTIBLE); 6436 6437 if (list_empty(&ep->asocs)) { 6438 sctp_release_sock(sk); 6439 timeo = schedule_timeout(timeo); 6440 sctp_lock_sock(sk); 6441 } 6442 6443 err = -EINVAL; 6444 if (!sctp_sstate(sk, LISTENING)) 6445 break; 6446 6447 err = 0; 6448 if (!list_empty(&ep->asocs)) 6449 break; 6450 6451 err = sock_intr_errno(timeo); 6452 if (signal_pending(current)) 6453 break; 6454 6455 err = -EAGAIN; 6456 if (!timeo) 6457 break; 6458 } 6459 6460 finish_wait(sk->sk_sleep, &wait); 6461 6462 return err; 6463 } 6464 6465 static void sctp_wait_for_close(struct sock *sk, long timeout) 6466 { 6467 DEFINE_WAIT(wait); 6468 6469 do { 6470 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6471 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6472 break; 6473 sctp_release_sock(sk); 6474 timeout = schedule_timeout(timeout); 6475 sctp_lock_sock(sk); 6476 } while (!signal_pending(current) && timeout); 6477 6478 finish_wait(sk->sk_sleep, &wait); 6479 } 6480 6481 static void sctp_sock_rfree_frag(struct sk_buff *skb) 6482 { 6483 struct sk_buff *frag; 6484 6485 if (!skb->data_len) 6486 goto done; 6487 6488 /* Don't forget the fragments. */ 6489 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6490 sctp_sock_rfree_frag(frag); 6491 6492 done: 6493 sctp_sock_rfree(skb); 6494 } 6495 6496 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6497 { 6498 struct sk_buff *frag; 6499 6500 if (!skb->data_len) 6501 goto done; 6502 6503 /* Don't forget the fragments. */ 6504 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6505 sctp_skb_set_owner_r_frag(frag, sk); 6506 6507 done: 6508 sctp_skb_set_owner_r(skb, sk); 6509 } 6510 6511 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6512 * and its messages to the newsk. 6513 */ 6514 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6515 struct sctp_association *assoc, 6516 sctp_socket_type_t type) 6517 { 6518 struct sctp_sock *oldsp = sctp_sk(oldsk); 6519 struct sctp_sock *newsp = sctp_sk(newsk); 6520 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6521 struct sctp_endpoint *newep = newsp->ep; 6522 struct sk_buff *skb, *tmp; 6523 struct sctp_ulpevent *event; 6524 struct sctp_bind_hashbucket *head; 6525 6526 /* Migrate socket buffer sizes and all the socket level options to the 6527 * new socket. 6528 */ 6529 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6530 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6531 /* Brute force copy old sctp opt. */ 6532 inet_sk_copy_descendant(newsk, oldsk); 6533 6534 /* Restore the ep value that was overwritten with the above structure 6535 * copy. 6536 */ 6537 newsp->ep = newep; 6538 newsp->hmac = NULL; 6539 6540 /* Hook this new socket in to the bind_hash list. */ 6541 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6542 sctp_local_bh_disable(); 6543 sctp_spin_lock(&head->lock); 6544 pp = sctp_sk(oldsk)->bind_hash; 6545 sk_add_bind_node(newsk, &pp->owner); 6546 sctp_sk(newsk)->bind_hash = pp; 6547 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6548 sctp_spin_unlock(&head->lock); 6549 sctp_local_bh_enable(); 6550 6551 /* Copy the bind_addr list from the original endpoint to the new 6552 * endpoint so that we can handle restarts properly 6553 */ 6554 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6555 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6556 6557 /* Move any messages in the old socket's receive queue that are for the 6558 * peeled off association to the new socket's receive queue. 6559 */ 6560 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6561 event = sctp_skb2event(skb); 6562 if (event->asoc == assoc) { 6563 sctp_sock_rfree_frag(skb); 6564 __skb_unlink(skb, &oldsk->sk_receive_queue); 6565 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6566 sctp_skb_set_owner_r_frag(skb, newsk); 6567 } 6568 } 6569 6570 /* Clean up any messages pending delivery due to partial 6571 * delivery. Three cases: 6572 * 1) No partial deliver; no work. 6573 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6574 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6575 */ 6576 skb_queue_head_init(&newsp->pd_lobby); 6577 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6578 6579 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6580 struct sk_buff_head *queue; 6581 6582 /* Decide which queue to move pd_lobby skbs to. */ 6583 if (assoc->ulpq.pd_mode) { 6584 queue = &newsp->pd_lobby; 6585 } else 6586 queue = &newsk->sk_receive_queue; 6587 6588 /* Walk through the pd_lobby, looking for skbs that 6589 * need moved to the new socket. 6590 */ 6591 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6592 event = sctp_skb2event(skb); 6593 if (event->asoc == assoc) { 6594 sctp_sock_rfree_frag(skb); 6595 __skb_unlink(skb, &oldsp->pd_lobby); 6596 __skb_queue_tail(queue, skb); 6597 sctp_skb_set_owner_r_frag(skb, newsk); 6598 } 6599 } 6600 6601 /* Clear up any skbs waiting for the partial 6602 * delivery to finish. 6603 */ 6604 if (assoc->ulpq.pd_mode) 6605 sctp_clear_pd(oldsk, NULL); 6606 6607 } 6608 6609 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6610 sctp_sock_rfree_frag(skb); 6611 sctp_skb_set_owner_r_frag(skb, newsk); 6612 } 6613 6614 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6615 sctp_sock_rfree_frag(skb); 6616 sctp_skb_set_owner_r_frag(skb, newsk); 6617 } 6618 6619 /* Set the type of socket to indicate that it is peeled off from the 6620 * original UDP-style socket or created with the accept() call on a 6621 * TCP-style socket.. 6622 */ 6623 newsp->type = type; 6624 6625 /* Mark the new socket "in-use" by the user so that any packets 6626 * that may arrive on the association after we've moved it are 6627 * queued to the backlog. This prevents a potential race between 6628 * backlog processing on the old socket and new-packet processing 6629 * on the new socket. 6630 * 6631 * The caller has just allocated newsk so we can guarantee that other 6632 * paths won't try to lock it and then oldsk. 6633 */ 6634 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6635 sctp_assoc_migrate(assoc, newsk); 6636 6637 /* If the association on the newsk is already closed before accept() 6638 * is called, set RCV_SHUTDOWN flag. 6639 */ 6640 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6641 newsk->sk_shutdown |= RCV_SHUTDOWN; 6642 6643 newsk->sk_state = SCTP_SS_ESTABLISHED; 6644 sctp_release_sock(newsk); 6645 } 6646 6647 6648 /* This proto struct describes the ULP interface for SCTP. */ 6649 struct proto sctp_prot = { 6650 .name = "SCTP", 6651 .owner = THIS_MODULE, 6652 .close = sctp_close, 6653 .connect = sctp_connect, 6654 .disconnect = sctp_disconnect, 6655 .accept = sctp_accept, 6656 .ioctl = sctp_ioctl, 6657 .init = sctp_init_sock, 6658 .destroy = sctp_destroy_sock, 6659 .shutdown = sctp_shutdown, 6660 .setsockopt = sctp_setsockopt, 6661 .getsockopt = sctp_getsockopt, 6662 .sendmsg = sctp_sendmsg, 6663 .recvmsg = sctp_recvmsg, 6664 .bind = sctp_bind, 6665 .backlog_rcv = sctp_backlog_rcv, 6666 .hash = sctp_hash, 6667 .unhash = sctp_unhash, 6668 .get_port = sctp_get_port, 6669 .obj_size = sizeof(struct sctp_sock), 6670 .sysctl_mem = sysctl_sctp_mem, 6671 .sysctl_rmem = sysctl_sctp_rmem, 6672 .sysctl_wmem = sysctl_sctp_wmem, 6673 .memory_pressure = &sctp_memory_pressure, 6674 .enter_memory_pressure = sctp_enter_memory_pressure, 6675 .memory_allocated = &sctp_memory_allocated, 6676 .sockets_allocated = &sctp_sockets_allocated, 6677 }; 6678 6679 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6680 6681 struct proto sctpv6_prot = { 6682 .name = "SCTPv6", 6683 .owner = THIS_MODULE, 6684 .close = sctp_close, 6685 .connect = sctp_connect, 6686 .disconnect = sctp_disconnect, 6687 .accept = sctp_accept, 6688 .ioctl = sctp_ioctl, 6689 .init = sctp_init_sock, 6690 .destroy = sctp_destroy_sock, 6691 .shutdown = sctp_shutdown, 6692 .setsockopt = sctp_setsockopt, 6693 .getsockopt = sctp_getsockopt, 6694 .sendmsg = sctp_sendmsg, 6695 .recvmsg = sctp_recvmsg, 6696 .bind = sctp_bind, 6697 .backlog_rcv = sctp_backlog_rcv, 6698 .hash = sctp_hash, 6699 .unhash = sctp_unhash, 6700 .get_port = sctp_get_port, 6701 .obj_size = sizeof(struct sctp6_sock), 6702 .sysctl_mem = sysctl_sctp_mem, 6703 .sysctl_rmem = sysctl_sctp_rmem, 6704 .sysctl_wmem = sysctl_sctp_wmem, 6705 .memory_pressure = &sctp_memory_pressure, 6706 .enter_memory_pressure = sctp_enter_memory_pressure, 6707 .memory_allocated = &sctp_memory_allocated, 6708 .sockets_allocated = &sctp_sockets_allocated, 6709 }; 6710 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6711