1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/ip.h> 61 #include <linux/capability.h> 62 #include <linux/fcntl.h> 63 #include <linux/poll.h> 64 #include <linux/init.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 #include <net/busy_poll.h> 75 76 #include <linux/socket.h> /* for sa_family_t */ 77 #include <linux/export.h> 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* Forward declarations for internal helper functions. */ 83 static int sctp_writeable(struct sock *sk); 84 static void sctp_wfree(struct sk_buff *skb); 85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89 static int sctp_wait_for_accept(struct sock *sk, long timeo); 90 static void sctp_wait_for_close(struct sock *sk, long timeo); 91 static void sctp_destruct_sock(struct sock *sk); 92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101 static int sctp_autobind(struct sock *sk); 102 static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105 static int sctp_memory_pressure; 106 static atomic_long_t sctp_memory_allocated; 107 struct percpu_counter sctp_sockets_allocated; 108 109 static void sctp_enter_memory_pressure(struct sock *sk) 110 { 111 sctp_memory_pressure = 1; 112 } 113 114 115 /* Get the sndbuf space available at the time on the association. */ 116 static inline int sctp_wspace(struct sctp_association *asoc) 117 { 118 int amt; 119 120 if (asoc->ep->sndbuf_policy) 121 amt = asoc->sndbuf_used; 122 else 123 amt = sk_wmem_alloc_get(asoc->base.sk); 124 125 if (amt >= asoc->base.sk->sk_sndbuf) { 126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 127 amt = 0; 128 else { 129 amt = sk_stream_wspace(asoc->base.sk); 130 if (amt < 0) 131 amt = 0; 132 } 133 } else { 134 amt = asoc->base.sk->sk_sndbuf - amt; 135 } 136 return amt; 137 } 138 139 /* Increment the used sndbuf space count of the corresponding association by 140 * the size of the outgoing data chunk. 141 * Also, set the skb destructor for sndbuf accounting later. 142 * 143 * Since it is always 1-1 between chunk and skb, and also a new skb is always 144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 145 * destructor in the data chunk skb for the purpose of the sndbuf space 146 * tracking. 147 */ 148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 149 { 150 struct sctp_association *asoc = chunk->asoc; 151 struct sock *sk = asoc->base.sk; 152 153 /* The sndbuf space is tracked per association. */ 154 sctp_association_hold(asoc); 155 156 skb_set_owner_w(chunk->skb, sk); 157 158 chunk->skb->destructor = sctp_wfree; 159 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 160 skb_shinfo(chunk->skb)->destructor_arg = chunk; 161 162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 163 sizeof(struct sk_buff) + 164 sizeof(struct sctp_chunk); 165 166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 167 sk->sk_wmem_queued += chunk->skb->truesize; 168 sk_mem_charge(sk, chunk->skb->truesize); 169 } 170 171 /* Verify that this is a valid address. */ 172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 173 int len) 174 { 175 struct sctp_af *af; 176 177 /* Verify basic sockaddr. */ 178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 179 if (!af) 180 return -EINVAL; 181 182 /* Is this a valid SCTP address? */ 183 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 184 return -EINVAL; 185 186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /* Look up the association by its id. If this is not a UDP-style 193 * socket, the ID field is always ignored. 194 */ 195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 196 { 197 struct sctp_association *asoc = NULL; 198 199 /* If this is not a UDP-style socket, assoc id should be ignored. */ 200 if (!sctp_style(sk, UDP)) { 201 /* Return NULL if the socket state is not ESTABLISHED. It 202 * could be a TCP-style listening socket or a socket which 203 * hasn't yet called connect() to establish an association. 204 */ 205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 206 return NULL; 207 208 /* Get the first and the only association from the list. */ 209 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 211 struct sctp_association, asocs); 212 return asoc; 213 } 214 215 /* Otherwise this is a UDP-style socket. */ 216 if (!id || (id == (sctp_assoc_t)-1)) 217 return NULL; 218 219 spin_lock_bh(&sctp_assocs_id_lock); 220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 221 spin_unlock_bh(&sctp_assocs_id_lock); 222 223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 224 return NULL; 225 226 return asoc; 227 } 228 229 /* Look up the transport from an address and an assoc id. If both address and 230 * id are specified, the associations matching the address and the id should be 231 * the same. 232 */ 233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 234 struct sockaddr_storage *addr, 235 sctp_assoc_t id) 236 { 237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 238 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 239 union sctp_addr *laddr = (union sctp_addr *)addr; 240 struct sctp_transport *transport; 241 242 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 243 return NULL; 244 245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 246 laddr, 247 &transport); 248 249 if (!addr_asoc) 250 return NULL; 251 252 id_asoc = sctp_id2assoc(sk, id); 253 if (id_asoc && (id_asoc != addr_asoc)) 254 return NULL; 255 256 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 257 (union sctp_addr *)addr); 258 259 return transport; 260 } 261 262 /* API 3.1.2 bind() - UDP Style Syntax 263 * The syntax of bind() is, 264 * 265 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 266 * 267 * sd - the socket descriptor returned by socket(). 268 * addr - the address structure (struct sockaddr_in or struct 269 * sockaddr_in6 [RFC 2553]), 270 * addr_len - the size of the address structure. 271 */ 272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 273 { 274 int retval = 0; 275 276 lock_sock(sk); 277 278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 279 addr, addr_len); 280 281 /* Disallow binding twice. */ 282 if (!sctp_sk(sk)->ep->base.bind_addr.port) 283 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 284 addr_len); 285 else 286 retval = -EINVAL; 287 288 release_sock(sk); 289 290 return retval; 291 } 292 293 static long sctp_get_port_local(struct sock *, union sctp_addr *); 294 295 /* Verify this is a valid sockaddr. */ 296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 297 union sctp_addr *addr, int len) 298 { 299 struct sctp_af *af; 300 301 /* Check minimum size. */ 302 if (len < sizeof (struct sockaddr)) 303 return NULL; 304 305 /* V4 mapped address are really of AF_INET family */ 306 if (addr->sa.sa_family == AF_INET6 && 307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 308 if (!opt->pf->af_supported(AF_INET, opt)) 309 return NULL; 310 } else { 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 } 315 316 /* If we get this far, af is valid. */ 317 af = sctp_get_af_specific(addr->sa.sa_family); 318 319 if (len < af->sockaddr_len) 320 return NULL; 321 322 return af; 323 } 324 325 /* Bind a local address either to an endpoint or to an association. */ 326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 327 { 328 struct net *net = sock_net(sk); 329 struct sctp_sock *sp = sctp_sk(sk); 330 struct sctp_endpoint *ep = sp->ep; 331 struct sctp_bind_addr *bp = &ep->base.bind_addr; 332 struct sctp_af *af; 333 unsigned short snum; 334 int ret = 0; 335 336 /* Common sockaddr verification. */ 337 af = sctp_sockaddr_af(sp, addr, len); 338 if (!af) { 339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 340 __func__, sk, addr, len); 341 return -EINVAL; 342 } 343 344 snum = ntohs(addr->v4.sin_port); 345 346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 347 __func__, sk, &addr->sa, bp->port, snum, len); 348 349 /* PF specific bind() address verification. */ 350 if (!sp->pf->bind_verify(sp, addr)) 351 return -EADDRNOTAVAIL; 352 353 /* We must either be unbound, or bind to the same port. 354 * It's OK to allow 0 ports if we are already bound. 355 * We'll just inhert an already bound port in this case 356 */ 357 if (bp->port) { 358 if (!snum) 359 snum = bp->port; 360 else if (snum != bp->port) { 361 pr_debug("%s: new port %d doesn't match existing port " 362 "%d\n", __func__, snum, bp->port); 363 return -EINVAL; 364 } 365 } 366 367 if (snum && snum < inet_prot_sock(net) && 368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 369 return -EACCES; 370 371 /* See if the address matches any of the addresses we may have 372 * already bound before checking against other endpoints. 373 */ 374 if (sctp_bind_addr_match(bp, addr, sp)) 375 return -EINVAL; 376 377 /* Make sure we are allowed to bind here. 378 * The function sctp_get_port_local() does duplicate address 379 * detection. 380 */ 381 addr->v4.sin_port = htons(snum); 382 if ((ret = sctp_get_port_local(sk, addr))) { 383 return -EADDRINUSE; 384 } 385 386 /* Refresh ephemeral port. */ 387 if (!bp->port) 388 bp->port = inet_sk(sk)->inet_num; 389 390 /* Add the address to the bind address list. 391 * Use GFP_ATOMIC since BHs will be disabled. 392 */ 393 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 394 SCTP_ADDR_SRC, GFP_ATOMIC); 395 396 /* Copy back into socket for getsockname() use. */ 397 if (!ret) { 398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 399 sp->pf->to_sk_saddr(addr, sk); 400 } 401 402 return ret; 403 } 404 405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 406 * 407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 408 * at any one time. If a sender, after sending an ASCONF chunk, decides 409 * it needs to transfer another ASCONF Chunk, it MUST wait until the 410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 411 * subsequent ASCONF. Note this restriction binds each side, so at any 412 * time two ASCONF may be in-transit on any given association (one sent 413 * from each endpoint). 414 */ 415 static int sctp_send_asconf(struct sctp_association *asoc, 416 struct sctp_chunk *chunk) 417 { 418 struct net *net = sock_net(asoc->base.sk); 419 int retval = 0; 420 421 /* If there is an outstanding ASCONF chunk, queue it for later 422 * transmission. 423 */ 424 if (asoc->addip_last_asconf) { 425 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 426 goto out; 427 } 428 429 /* Hold the chunk until an ASCONF_ACK is received. */ 430 sctp_chunk_hold(chunk); 431 retval = sctp_primitive_ASCONF(net, asoc, chunk); 432 if (retval) 433 sctp_chunk_free(chunk); 434 else 435 asoc->addip_last_asconf = chunk; 436 437 out: 438 return retval; 439 } 440 441 /* Add a list of addresses as bind addresses to local endpoint or 442 * association. 443 * 444 * Basically run through each address specified in the addrs/addrcnt 445 * array/length pair, determine if it is IPv6 or IPv4 and call 446 * sctp_do_bind() on it. 447 * 448 * If any of them fails, then the operation will be reversed and the 449 * ones that were added will be removed. 450 * 451 * Only sctp_setsockopt_bindx() is supposed to call this function. 452 */ 453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 454 { 455 int cnt; 456 int retval = 0; 457 void *addr_buf; 458 struct sockaddr *sa_addr; 459 struct sctp_af *af; 460 461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 462 addrs, addrcnt); 463 464 addr_buf = addrs; 465 for (cnt = 0; cnt < addrcnt; cnt++) { 466 /* The list may contain either IPv4 or IPv6 address; 467 * determine the address length for walking thru the list. 468 */ 469 sa_addr = addr_buf; 470 af = sctp_get_af_specific(sa_addr->sa_family); 471 if (!af) { 472 retval = -EINVAL; 473 goto err_bindx_add; 474 } 475 476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 477 af->sockaddr_len); 478 479 addr_buf += af->sockaddr_len; 480 481 err_bindx_add: 482 if (retval < 0) { 483 /* Failed. Cleanup the ones that have been added */ 484 if (cnt > 0) 485 sctp_bindx_rem(sk, addrs, cnt); 486 return retval; 487 } 488 } 489 490 return retval; 491 } 492 493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 494 * associations that are part of the endpoint indicating that a list of local 495 * addresses are added to the endpoint. 496 * 497 * If any of the addresses is already in the bind address list of the 498 * association, we do not send the chunk for that association. But it will not 499 * affect other associations. 500 * 501 * Only sctp_setsockopt_bindx() is supposed to call this function. 502 */ 503 static int sctp_send_asconf_add_ip(struct sock *sk, 504 struct sockaddr *addrs, 505 int addrcnt) 506 { 507 struct net *net = sock_net(sk); 508 struct sctp_sock *sp; 509 struct sctp_endpoint *ep; 510 struct sctp_association *asoc; 511 struct sctp_bind_addr *bp; 512 struct sctp_chunk *chunk; 513 struct sctp_sockaddr_entry *laddr; 514 union sctp_addr *addr; 515 union sctp_addr saveaddr; 516 void *addr_buf; 517 struct sctp_af *af; 518 struct list_head *p; 519 int i; 520 int retval = 0; 521 522 if (!net->sctp.addip_enable) 523 return retval; 524 525 sp = sctp_sk(sk); 526 ep = sp->ep; 527 528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 529 __func__, sk, addrs, addrcnt); 530 531 list_for_each_entry(asoc, &ep->asocs, asocs) { 532 if (!asoc->peer.asconf_capable) 533 continue; 534 535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 536 continue; 537 538 if (!sctp_state(asoc, ESTABLISHED)) 539 continue; 540 541 /* Check if any address in the packed array of addresses is 542 * in the bind address list of the association. If so, 543 * do not send the asconf chunk to its peer, but continue with 544 * other associations. 545 */ 546 addr_buf = addrs; 547 for (i = 0; i < addrcnt; i++) { 548 addr = addr_buf; 549 af = sctp_get_af_specific(addr->v4.sin_family); 550 if (!af) { 551 retval = -EINVAL; 552 goto out; 553 } 554 555 if (sctp_assoc_lookup_laddr(asoc, addr)) 556 break; 557 558 addr_buf += af->sockaddr_len; 559 } 560 if (i < addrcnt) 561 continue; 562 563 /* Use the first valid address in bind addr list of 564 * association as Address Parameter of ASCONF CHUNK. 565 */ 566 bp = &asoc->base.bind_addr; 567 p = bp->address_list.next; 568 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 570 addrcnt, SCTP_PARAM_ADD_IP); 571 if (!chunk) { 572 retval = -ENOMEM; 573 goto out; 574 } 575 576 /* Add the new addresses to the bind address list with 577 * use_as_src set to 0. 578 */ 579 addr_buf = addrs; 580 for (i = 0; i < addrcnt; i++) { 581 addr = addr_buf; 582 af = sctp_get_af_specific(addr->v4.sin_family); 583 memcpy(&saveaddr, addr, af->sockaddr_len); 584 retval = sctp_add_bind_addr(bp, &saveaddr, 585 sizeof(saveaddr), 586 SCTP_ADDR_NEW, GFP_ATOMIC); 587 addr_buf += af->sockaddr_len; 588 } 589 if (asoc->src_out_of_asoc_ok) { 590 struct sctp_transport *trans; 591 592 list_for_each_entry(trans, 593 &asoc->peer.transport_addr_list, transports) { 594 /* Clear the source and route cache */ 595 sctp_transport_dst_release(trans); 596 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 597 2*asoc->pathmtu, 4380)); 598 trans->ssthresh = asoc->peer.i.a_rwnd; 599 trans->rto = asoc->rto_initial; 600 sctp_max_rto(asoc, trans); 601 trans->rtt = trans->srtt = trans->rttvar = 0; 602 sctp_transport_route(trans, NULL, 603 sctp_sk(asoc->base.sk)); 604 } 605 } 606 retval = sctp_send_asconf(asoc, chunk); 607 } 608 609 out: 610 return retval; 611 } 612 613 /* Remove a list of addresses from bind addresses list. Do not remove the 614 * last address. 615 * 616 * Basically run through each address specified in the addrs/addrcnt 617 * array/length pair, determine if it is IPv6 or IPv4 and call 618 * sctp_del_bind() on it. 619 * 620 * If any of them fails, then the operation will be reversed and the 621 * ones that were removed will be added back. 622 * 623 * At least one address has to be left; if only one address is 624 * available, the operation will return -EBUSY. 625 * 626 * Only sctp_setsockopt_bindx() is supposed to call this function. 627 */ 628 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 629 { 630 struct sctp_sock *sp = sctp_sk(sk); 631 struct sctp_endpoint *ep = sp->ep; 632 int cnt; 633 struct sctp_bind_addr *bp = &ep->base.bind_addr; 634 int retval = 0; 635 void *addr_buf; 636 union sctp_addr *sa_addr; 637 struct sctp_af *af; 638 639 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 640 __func__, sk, addrs, addrcnt); 641 642 addr_buf = addrs; 643 for (cnt = 0; cnt < addrcnt; cnt++) { 644 /* If the bind address list is empty or if there is only one 645 * bind address, there is nothing more to be removed (we need 646 * at least one address here). 647 */ 648 if (list_empty(&bp->address_list) || 649 (sctp_list_single_entry(&bp->address_list))) { 650 retval = -EBUSY; 651 goto err_bindx_rem; 652 } 653 654 sa_addr = addr_buf; 655 af = sctp_get_af_specific(sa_addr->sa.sa_family); 656 if (!af) { 657 retval = -EINVAL; 658 goto err_bindx_rem; 659 } 660 661 if (!af->addr_valid(sa_addr, sp, NULL)) { 662 retval = -EADDRNOTAVAIL; 663 goto err_bindx_rem; 664 } 665 666 if (sa_addr->v4.sin_port && 667 sa_addr->v4.sin_port != htons(bp->port)) { 668 retval = -EINVAL; 669 goto err_bindx_rem; 670 } 671 672 if (!sa_addr->v4.sin_port) 673 sa_addr->v4.sin_port = htons(bp->port); 674 675 /* FIXME - There is probably a need to check if sk->sk_saddr and 676 * sk->sk_rcv_addr are currently set to one of the addresses to 677 * be removed. This is something which needs to be looked into 678 * when we are fixing the outstanding issues with multi-homing 679 * socket routing and failover schemes. Refer to comments in 680 * sctp_do_bind(). -daisy 681 */ 682 retval = sctp_del_bind_addr(bp, sa_addr); 683 684 addr_buf += af->sockaddr_len; 685 err_bindx_rem: 686 if (retval < 0) { 687 /* Failed. Add the ones that has been removed back */ 688 if (cnt > 0) 689 sctp_bindx_add(sk, addrs, cnt); 690 return retval; 691 } 692 } 693 694 return retval; 695 } 696 697 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 698 * the associations that are part of the endpoint indicating that a list of 699 * local addresses are removed from the endpoint. 700 * 701 * If any of the addresses is already in the bind address list of the 702 * association, we do not send the chunk for that association. But it will not 703 * affect other associations. 704 * 705 * Only sctp_setsockopt_bindx() is supposed to call this function. 706 */ 707 static int sctp_send_asconf_del_ip(struct sock *sk, 708 struct sockaddr *addrs, 709 int addrcnt) 710 { 711 struct net *net = sock_net(sk); 712 struct sctp_sock *sp; 713 struct sctp_endpoint *ep; 714 struct sctp_association *asoc; 715 struct sctp_transport *transport; 716 struct sctp_bind_addr *bp; 717 struct sctp_chunk *chunk; 718 union sctp_addr *laddr; 719 void *addr_buf; 720 struct sctp_af *af; 721 struct sctp_sockaddr_entry *saddr; 722 int i; 723 int retval = 0; 724 int stored = 0; 725 726 chunk = NULL; 727 if (!net->sctp.addip_enable) 728 return retval; 729 730 sp = sctp_sk(sk); 731 ep = sp->ep; 732 733 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 734 __func__, sk, addrs, addrcnt); 735 736 list_for_each_entry(asoc, &ep->asocs, asocs) { 737 738 if (!asoc->peer.asconf_capable) 739 continue; 740 741 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 742 continue; 743 744 if (!sctp_state(asoc, ESTABLISHED)) 745 continue; 746 747 /* Check if any address in the packed array of addresses is 748 * not present in the bind address list of the association. 749 * If so, do not send the asconf chunk to its peer, but 750 * continue with other associations. 751 */ 752 addr_buf = addrs; 753 for (i = 0; i < addrcnt; i++) { 754 laddr = addr_buf; 755 af = sctp_get_af_specific(laddr->v4.sin_family); 756 if (!af) { 757 retval = -EINVAL; 758 goto out; 759 } 760 761 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 762 break; 763 764 addr_buf += af->sockaddr_len; 765 } 766 if (i < addrcnt) 767 continue; 768 769 /* Find one address in the association's bind address list 770 * that is not in the packed array of addresses. This is to 771 * make sure that we do not delete all the addresses in the 772 * association. 773 */ 774 bp = &asoc->base.bind_addr; 775 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 776 addrcnt, sp); 777 if ((laddr == NULL) && (addrcnt == 1)) { 778 if (asoc->asconf_addr_del_pending) 779 continue; 780 asoc->asconf_addr_del_pending = 781 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 782 if (asoc->asconf_addr_del_pending == NULL) { 783 retval = -ENOMEM; 784 goto out; 785 } 786 asoc->asconf_addr_del_pending->sa.sa_family = 787 addrs->sa_family; 788 asoc->asconf_addr_del_pending->v4.sin_port = 789 htons(bp->port); 790 if (addrs->sa_family == AF_INET) { 791 struct sockaddr_in *sin; 792 793 sin = (struct sockaddr_in *)addrs; 794 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 795 } else if (addrs->sa_family == AF_INET6) { 796 struct sockaddr_in6 *sin6; 797 798 sin6 = (struct sockaddr_in6 *)addrs; 799 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 800 } 801 802 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 803 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 804 asoc->asconf_addr_del_pending); 805 806 asoc->src_out_of_asoc_ok = 1; 807 stored = 1; 808 goto skip_mkasconf; 809 } 810 811 if (laddr == NULL) 812 return -EINVAL; 813 814 /* We do not need RCU protection throughout this loop 815 * because this is done under a socket lock from the 816 * setsockopt call. 817 */ 818 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 819 SCTP_PARAM_DEL_IP); 820 if (!chunk) { 821 retval = -ENOMEM; 822 goto out; 823 } 824 825 skip_mkasconf: 826 /* Reset use_as_src flag for the addresses in the bind address 827 * list that are to be deleted. 828 */ 829 addr_buf = addrs; 830 for (i = 0; i < addrcnt; i++) { 831 laddr = addr_buf; 832 af = sctp_get_af_specific(laddr->v4.sin_family); 833 list_for_each_entry(saddr, &bp->address_list, list) { 834 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 835 saddr->state = SCTP_ADDR_DEL; 836 } 837 addr_buf += af->sockaddr_len; 838 } 839 840 /* Update the route and saddr entries for all the transports 841 * as some of the addresses in the bind address list are 842 * about to be deleted and cannot be used as source addresses. 843 */ 844 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 845 transports) { 846 sctp_transport_dst_release(transport); 847 sctp_transport_route(transport, NULL, 848 sctp_sk(asoc->base.sk)); 849 } 850 851 if (stored) 852 /* We don't need to transmit ASCONF */ 853 continue; 854 retval = sctp_send_asconf(asoc, chunk); 855 } 856 out: 857 return retval; 858 } 859 860 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 861 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 862 { 863 struct sock *sk = sctp_opt2sk(sp); 864 union sctp_addr *addr; 865 struct sctp_af *af; 866 867 /* It is safe to write port space in caller. */ 868 addr = &addrw->a; 869 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 870 af = sctp_get_af_specific(addr->sa.sa_family); 871 if (!af) 872 return -EINVAL; 873 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 874 return -EINVAL; 875 876 if (addrw->state == SCTP_ADDR_NEW) 877 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 878 else 879 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 880 } 881 882 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 883 * 884 * API 8.1 885 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 886 * int flags); 887 * 888 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 889 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 890 * or IPv6 addresses. 891 * 892 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 893 * Section 3.1.2 for this usage. 894 * 895 * addrs is a pointer to an array of one or more socket addresses. Each 896 * address is contained in its appropriate structure (i.e. struct 897 * sockaddr_in or struct sockaddr_in6) the family of the address type 898 * must be used to distinguish the address length (note that this 899 * representation is termed a "packed array" of addresses). The caller 900 * specifies the number of addresses in the array with addrcnt. 901 * 902 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 903 * -1, and sets errno to the appropriate error code. 904 * 905 * For SCTP, the port given in each socket address must be the same, or 906 * sctp_bindx() will fail, setting errno to EINVAL. 907 * 908 * The flags parameter is formed from the bitwise OR of zero or more of 909 * the following currently defined flags: 910 * 911 * SCTP_BINDX_ADD_ADDR 912 * 913 * SCTP_BINDX_REM_ADDR 914 * 915 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 916 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 917 * addresses from the association. The two flags are mutually exclusive; 918 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 919 * not remove all addresses from an association; sctp_bindx() will 920 * reject such an attempt with EINVAL. 921 * 922 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 923 * additional addresses with an endpoint after calling bind(). Or use 924 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 925 * socket is associated with so that no new association accepted will be 926 * associated with those addresses. If the endpoint supports dynamic 927 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 928 * endpoint to send the appropriate message to the peer to change the 929 * peers address lists. 930 * 931 * Adding and removing addresses from a connected association is 932 * optional functionality. Implementations that do not support this 933 * functionality should return EOPNOTSUPP. 934 * 935 * Basically do nothing but copying the addresses from user to kernel 936 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 937 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 938 * from userspace. 939 * 940 * We don't use copy_from_user() for optimization: we first do the 941 * sanity checks (buffer size -fast- and access check-healthy 942 * pointer); if all of those succeed, then we can alloc the memory 943 * (expensive operation) needed to copy the data to kernel. Then we do 944 * the copying without checking the user space area 945 * (__copy_from_user()). 946 * 947 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 948 * it. 949 * 950 * sk The sk of the socket 951 * addrs The pointer to the addresses in user land 952 * addrssize Size of the addrs buffer 953 * op Operation to perform (add or remove, see the flags of 954 * sctp_bindx) 955 * 956 * Returns 0 if ok, <0 errno code on error. 957 */ 958 static int sctp_setsockopt_bindx(struct sock *sk, 959 struct sockaddr __user *addrs, 960 int addrs_size, int op) 961 { 962 struct sockaddr *kaddrs; 963 int err; 964 int addrcnt = 0; 965 int walk_size = 0; 966 struct sockaddr *sa_addr; 967 void *addr_buf; 968 struct sctp_af *af; 969 970 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 971 __func__, sk, addrs, addrs_size, op); 972 973 if (unlikely(addrs_size <= 0)) 974 return -EINVAL; 975 976 /* Check the user passed a healthy pointer. */ 977 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 978 return -EFAULT; 979 980 /* Alloc space for the address array in kernel memory. */ 981 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 982 if (unlikely(!kaddrs)) 983 return -ENOMEM; 984 985 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 986 kfree(kaddrs); 987 return -EFAULT; 988 } 989 990 /* Walk through the addrs buffer and count the number of addresses. */ 991 addr_buf = kaddrs; 992 while (walk_size < addrs_size) { 993 if (walk_size + sizeof(sa_family_t) > addrs_size) { 994 kfree(kaddrs); 995 return -EINVAL; 996 } 997 998 sa_addr = addr_buf; 999 af = sctp_get_af_specific(sa_addr->sa_family); 1000 1001 /* If the address family is not supported or if this address 1002 * causes the address buffer to overflow return EINVAL. 1003 */ 1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1005 kfree(kaddrs); 1006 return -EINVAL; 1007 } 1008 addrcnt++; 1009 addr_buf += af->sockaddr_len; 1010 walk_size += af->sockaddr_len; 1011 } 1012 1013 /* Do the work. */ 1014 switch (op) { 1015 case SCTP_BINDX_ADD_ADDR: 1016 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1017 if (err) 1018 goto out; 1019 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1020 break; 1021 1022 case SCTP_BINDX_REM_ADDR: 1023 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1024 if (err) 1025 goto out; 1026 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1027 break; 1028 1029 default: 1030 err = -EINVAL; 1031 break; 1032 } 1033 1034 out: 1035 kfree(kaddrs); 1036 1037 return err; 1038 } 1039 1040 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1041 * 1042 * Common routine for handling connect() and sctp_connectx(). 1043 * Connect will come in with just a single address. 1044 */ 1045 static int __sctp_connect(struct sock *sk, 1046 struct sockaddr *kaddrs, 1047 int addrs_size, 1048 sctp_assoc_t *assoc_id) 1049 { 1050 struct net *net = sock_net(sk); 1051 struct sctp_sock *sp; 1052 struct sctp_endpoint *ep; 1053 struct sctp_association *asoc = NULL; 1054 struct sctp_association *asoc2; 1055 struct sctp_transport *transport; 1056 union sctp_addr to; 1057 sctp_scope_t scope; 1058 long timeo; 1059 int err = 0; 1060 int addrcnt = 0; 1061 int walk_size = 0; 1062 union sctp_addr *sa_addr = NULL; 1063 void *addr_buf; 1064 unsigned short port; 1065 unsigned int f_flags = 0; 1066 1067 sp = sctp_sk(sk); 1068 ep = sp->ep; 1069 1070 /* connect() cannot be done on a socket that is already in ESTABLISHED 1071 * state - UDP-style peeled off socket or a TCP-style socket that 1072 * is already connected. 1073 * It cannot be done even on a TCP-style listening socket. 1074 */ 1075 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1077 err = -EISCONN; 1078 goto out_free; 1079 } 1080 1081 /* Walk through the addrs buffer and count the number of addresses. */ 1082 addr_buf = kaddrs; 1083 while (walk_size < addrs_size) { 1084 struct sctp_af *af; 1085 1086 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1087 err = -EINVAL; 1088 goto out_free; 1089 } 1090 1091 sa_addr = addr_buf; 1092 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1093 1094 /* If the address family is not supported or if this address 1095 * causes the address buffer to overflow return EINVAL. 1096 */ 1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1098 err = -EINVAL; 1099 goto out_free; 1100 } 1101 1102 port = ntohs(sa_addr->v4.sin_port); 1103 1104 /* Save current address so we can work with it */ 1105 memcpy(&to, sa_addr, af->sockaddr_len); 1106 1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1108 if (err) 1109 goto out_free; 1110 1111 /* Make sure the destination port is correctly set 1112 * in all addresses. 1113 */ 1114 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1115 err = -EINVAL; 1116 goto out_free; 1117 } 1118 1119 /* Check if there already is a matching association on the 1120 * endpoint (other than the one created here). 1121 */ 1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1123 if (asoc2 && asoc2 != asoc) { 1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1125 err = -EISCONN; 1126 else 1127 err = -EALREADY; 1128 goto out_free; 1129 } 1130 1131 /* If we could not find a matching association on the endpoint, 1132 * make sure that there is no peeled-off association matching 1133 * the peer address even on another socket. 1134 */ 1135 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1136 err = -EADDRNOTAVAIL; 1137 goto out_free; 1138 } 1139 1140 if (!asoc) { 1141 /* If a bind() or sctp_bindx() is not called prior to 1142 * an sctp_connectx() call, the system picks an 1143 * ephemeral port and will choose an address set 1144 * equivalent to binding with a wildcard address. 1145 */ 1146 if (!ep->base.bind_addr.port) { 1147 if (sctp_autobind(sk)) { 1148 err = -EAGAIN; 1149 goto out_free; 1150 } 1151 } else { 1152 /* 1153 * If an unprivileged user inherits a 1-many 1154 * style socket with open associations on a 1155 * privileged port, it MAY be permitted to 1156 * accept new associations, but it SHOULD NOT 1157 * be permitted to open new associations. 1158 */ 1159 if (ep->base.bind_addr.port < 1160 inet_prot_sock(net) && 1161 !ns_capable(net->user_ns, 1162 CAP_NET_BIND_SERVICE)) { 1163 err = -EACCES; 1164 goto out_free; 1165 } 1166 } 1167 1168 scope = sctp_scope(&to); 1169 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1170 if (!asoc) { 1171 err = -ENOMEM; 1172 goto out_free; 1173 } 1174 1175 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1176 GFP_KERNEL); 1177 if (err < 0) { 1178 goto out_free; 1179 } 1180 1181 } 1182 1183 /* Prime the peer's transport structures. */ 1184 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1185 SCTP_UNKNOWN); 1186 if (!transport) { 1187 err = -ENOMEM; 1188 goto out_free; 1189 } 1190 1191 addrcnt++; 1192 addr_buf += af->sockaddr_len; 1193 walk_size += af->sockaddr_len; 1194 } 1195 1196 /* In case the user of sctp_connectx() wants an association 1197 * id back, assign one now. 1198 */ 1199 if (assoc_id) { 1200 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1201 if (err < 0) 1202 goto out_free; 1203 } 1204 1205 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1206 if (err < 0) { 1207 goto out_free; 1208 } 1209 1210 /* Initialize sk's dport and daddr for getpeername() */ 1211 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1212 sp->pf->to_sk_daddr(sa_addr, sk); 1213 sk->sk_err = 0; 1214 1215 /* in-kernel sockets don't generally have a file allocated to them 1216 * if all they do is call sock_create_kern(). 1217 */ 1218 if (sk->sk_socket->file) 1219 f_flags = sk->sk_socket->file->f_flags; 1220 1221 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1222 1223 if (assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 err = sctp_wait_for_connect(asoc, &timeo); 1226 /* Note: the asoc may be freed after the return of 1227 * sctp_wait_for_connect. 1228 */ 1229 1230 /* Don't free association on exit. */ 1231 asoc = NULL; 1232 1233 out_free: 1234 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1235 __func__, asoc, kaddrs, err); 1236 1237 if (asoc) { 1238 /* sctp_primitive_ASSOCIATE may have added this association 1239 * To the hash table, try to unhash it, just in case, its a noop 1240 * if it wasn't hashed so we're safe 1241 */ 1242 sctp_association_free(asoc); 1243 } 1244 return err; 1245 } 1246 1247 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1248 * 1249 * API 8.9 1250 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1251 * sctp_assoc_t *asoc); 1252 * 1253 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1254 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1255 * or IPv6 addresses. 1256 * 1257 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1258 * Section 3.1.2 for this usage. 1259 * 1260 * addrs is a pointer to an array of one or more socket addresses. Each 1261 * address is contained in its appropriate structure (i.e. struct 1262 * sockaddr_in or struct sockaddr_in6) the family of the address type 1263 * must be used to distengish the address length (note that this 1264 * representation is termed a "packed array" of addresses). The caller 1265 * specifies the number of addresses in the array with addrcnt. 1266 * 1267 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1268 * the association id of the new association. On failure, sctp_connectx() 1269 * returns -1, and sets errno to the appropriate error code. The assoc_id 1270 * is not touched by the kernel. 1271 * 1272 * For SCTP, the port given in each socket address must be the same, or 1273 * sctp_connectx() will fail, setting errno to EINVAL. 1274 * 1275 * An application can use sctp_connectx to initiate an association with 1276 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1277 * allows a caller to specify multiple addresses at which a peer can be 1278 * reached. The way the SCTP stack uses the list of addresses to set up 1279 * the association is implementation dependent. This function only 1280 * specifies that the stack will try to make use of all the addresses in 1281 * the list when needed. 1282 * 1283 * Note that the list of addresses passed in is only used for setting up 1284 * the association. It does not necessarily equal the set of addresses 1285 * the peer uses for the resulting association. If the caller wants to 1286 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1287 * retrieve them after the association has been set up. 1288 * 1289 * Basically do nothing but copying the addresses from user to kernel 1290 * land and invoking either sctp_connectx(). This is used for tunneling 1291 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1292 * 1293 * We don't use copy_from_user() for optimization: we first do the 1294 * sanity checks (buffer size -fast- and access check-healthy 1295 * pointer); if all of those succeed, then we can alloc the memory 1296 * (expensive operation) needed to copy the data to kernel. Then we do 1297 * the copying without checking the user space area 1298 * (__copy_from_user()). 1299 * 1300 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1301 * it. 1302 * 1303 * sk The sk of the socket 1304 * addrs The pointer to the addresses in user land 1305 * addrssize Size of the addrs buffer 1306 * 1307 * Returns >=0 if ok, <0 errno code on error. 1308 */ 1309 static int __sctp_setsockopt_connectx(struct sock *sk, 1310 struct sockaddr __user *addrs, 1311 int addrs_size, 1312 sctp_assoc_t *assoc_id) 1313 { 1314 struct sockaddr *kaddrs; 1315 gfp_t gfp = GFP_KERNEL; 1316 int err = 0; 1317 1318 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1319 __func__, sk, addrs, addrs_size); 1320 1321 if (unlikely(addrs_size <= 0)) 1322 return -EINVAL; 1323 1324 /* Check the user passed a healthy pointer. */ 1325 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1326 return -EFAULT; 1327 1328 /* Alloc space for the address array in kernel memory. */ 1329 if (sk->sk_socket->file) 1330 gfp = GFP_USER | __GFP_NOWARN; 1331 kaddrs = kmalloc(addrs_size, gfp); 1332 if (unlikely(!kaddrs)) 1333 return -ENOMEM; 1334 1335 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1336 err = -EFAULT; 1337 } else { 1338 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1339 } 1340 1341 kfree(kaddrs); 1342 1343 return err; 1344 } 1345 1346 /* 1347 * This is an older interface. It's kept for backward compatibility 1348 * to the option that doesn't provide association id. 1349 */ 1350 static int sctp_setsockopt_connectx_old(struct sock *sk, 1351 struct sockaddr __user *addrs, 1352 int addrs_size) 1353 { 1354 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1355 } 1356 1357 /* 1358 * New interface for the API. The since the API is done with a socket 1359 * option, to make it simple we feed back the association id is as a return 1360 * indication to the call. Error is always negative and association id is 1361 * always positive. 1362 */ 1363 static int sctp_setsockopt_connectx(struct sock *sk, 1364 struct sockaddr __user *addrs, 1365 int addrs_size) 1366 { 1367 sctp_assoc_t assoc_id = 0; 1368 int err = 0; 1369 1370 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1371 1372 if (err) 1373 return err; 1374 else 1375 return assoc_id; 1376 } 1377 1378 /* 1379 * New (hopefully final) interface for the API. 1380 * We use the sctp_getaddrs_old structure so that use-space library 1381 * can avoid any unnecessary allocations. The only different part 1382 * is that we store the actual length of the address buffer into the 1383 * addrs_num structure member. That way we can re-use the existing 1384 * code. 1385 */ 1386 #ifdef CONFIG_COMPAT 1387 struct compat_sctp_getaddrs_old { 1388 sctp_assoc_t assoc_id; 1389 s32 addr_num; 1390 compat_uptr_t addrs; /* struct sockaddr * */ 1391 }; 1392 #endif 1393 1394 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1395 char __user *optval, 1396 int __user *optlen) 1397 { 1398 struct sctp_getaddrs_old param; 1399 sctp_assoc_t assoc_id = 0; 1400 int err = 0; 1401 1402 #ifdef CONFIG_COMPAT 1403 if (in_compat_syscall()) { 1404 struct compat_sctp_getaddrs_old param32; 1405 1406 if (len < sizeof(param32)) 1407 return -EINVAL; 1408 if (copy_from_user(¶m32, optval, sizeof(param32))) 1409 return -EFAULT; 1410 1411 param.assoc_id = param32.assoc_id; 1412 param.addr_num = param32.addr_num; 1413 param.addrs = compat_ptr(param32.addrs); 1414 } else 1415 #endif 1416 { 1417 if (len < sizeof(param)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m, optval, sizeof(param))) 1420 return -EFAULT; 1421 } 1422 1423 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1424 param.addrs, param.addr_num, 1425 &assoc_id); 1426 if (err == 0 || err == -EINPROGRESS) { 1427 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1428 return -EFAULT; 1429 if (put_user(sizeof(assoc_id), optlen)) 1430 return -EFAULT; 1431 } 1432 1433 return err; 1434 } 1435 1436 /* API 3.1.4 close() - UDP Style Syntax 1437 * Applications use close() to perform graceful shutdown (as described in 1438 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1439 * by a UDP-style socket. 1440 * 1441 * The syntax is 1442 * 1443 * ret = close(int sd); 1444 * 1445 * sd - the socket descriptor of the associations to be closed. 1446 * 1447 * To gracefully shutdown a specific association represented by the 1448 * UDP-style socket, an application should use the sendmsg() call, 1449 * passing no user data, but including the appropriate flag in the 1450 * ancillary data (see Section xxxx). 1451 * 1452 * If sd in the close() call is a branched-off socket representing only 1453 * one association, the shutdown is performed on that association only. 1454 * 1455 * 4.1.6 close() - TCP Style Syntax 1456 * 1457 * Applications use close() to gracefully close down an association. 1458 * 1459 * The syntax is: 1460 * 1461 * int close(int sd); 1462 * 1463 * sd - the socket descriptor of the association to be closed. 1464 * 1465 * After an application calls close() on a socket descriptor, no further 1466 * socket operations will succeed on that descriptor. 1467 * 1468 * API 7.1.4 SO_LINGER 1469 * 1470 * An application using the TCP-style socket can use this option to 1471 * perform the SCTP ABORT primitive. The linger option structure is: 1472 * 1473 * struct linger { 1474 * int l_onoff; // option on/off 1475 * int l_linger; // linger time 1476 * }; 1477 * 1478 * To enable the option, set l_onoff to 1. If the l_linger value is set 1479 * to 0, calling close() is the same as the ABORT primitive. If the 1480 * value is set to a negative value, the setsockopt() call will return 1481 * an error. If the value is set to a positive value linger_time, the 1482 * close() can be blocked for at most linger_time ms. If the graceful 1483 * shutdown phase does not finish during this period, close() will 1484 * return but the graceful shutdown phase continues in the system. 1485 */ 1486 static void sctp_close(struct sock *sk, long timeout) 1487 { 1488 struct net *net = sock_net(sk); 1489 struct sctp_endpoint *ep; 1490 struct sctp_association *asoc; 1491 struct list_head *pos, *temp; 1492 unsigned int data_was_unread; 1493 1494 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1495 1496 lock_sock(sk); 1497 sk->sk_shutdown = SHUTDOWN_MASK; 1498 sk->sk_state = SCTP_SS_CLOSING; 1499 1500 ep = sctp_sk(sk)->ep; 1501 1502 /* Clean up any skbs sitting on the receive queue. */ 1503 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1504 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1505 1506 /* Walk all associations on an endpoint. */ 1507 list_for_each_safe(pos, temp, &ep->asocs) { 1508 asoc = list_entry(pos, struct sctp_association, asocs); 1509 1510 if (sctp_style(sk, TCP)) { 1511 /* A closed association can still be in the list if 1512 * it belongs to a TCP-style listening socket that is 1513 * not yet accepted. If so, free it. If not, send an 1514 * ABORT or SHUTDOWN based on the linger options. 1515 */ 1516 if (sctp_state(asoc, CLOSED)) { 1517 sctp_association_free(asoc); 1518 continue; 1519 } 1520 } 1521 1522 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1523 !skb_queue_empty(&asoc->ulpq.reasm) || 1524 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1525 struct sctp_chunk *chunk; 1526 1527 chunk = sctp_make_abort_user(asoc, NULL, 0); 1528 sctp_primitive_ABORT(net, asoc, chunk); 1529 } else 1530 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1531 } 1532 1533 /* On a TCP-style socket, block for at most linger_time if set. */ 1534 if (sctp_style(sk, TCP) && timeout) 1535 sctp_wait_for_close(sk, timeout); 1536 1537 /* This will run the backlog queue. */ 1538 release_sock(sk); 1539 1540 /* Supposedly, no process has access to the socket, but 1541 * the net layers still may. 1542 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1543 * held and that should be grabbed before socket lock. 1544 */ 1545 spin_lock_bh(&net->sctp.addr_wq_lock); 1546 bh_lock_sock(sk); 1547 1548 /* Hold the sock, since sk_common_release() will put sock_put() 1549 * and we have just a little more cleanup. 1550 */ 1551 sock_hold(sk); 1552 sk_common_release(sk); 1553 1554 bh_unlock_sock(sk); 1555 spin_unlock_bh(&net->sctp.addr_wq_lock); 1556 1557 sock_put(sk); 1558 1559 SCTP_DBG_OBJCNT_DEC(sock); 1560 } 1561 1562 /* Handle EPIPE error. */ 1563 static int sctp_error(struct sock *sk, int flags, int err) 1564 { 1565 if (err == -EPIPE) 1566 err = sock_error(sk) ? : -EPIPE; 1567 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1568 send_sig(SIGPIPE, current, 0); 1569 return err; 1570 } 1571 1572 /* API 3.1.3 sendmsg() - UDP Style Syntax 1573 * 1574 * An application uses sendmsg() and recvmsg() calls to transmit data to 1575 * and receive data from its peer. 1576 * 1577 * ssize_t sendmsg(int socket, const struct msghdr *message, 1578 * int flags); 1579 * 1580 * socket - the socket descriptor of the endpoint. 1581 * message - pointer to the msghdr structure which contains a single 1582 * user message and possibly some ancillary data. 1583 * 1584 * See Section 5 for complete description of the data 1585 * structures. 1586 * 1587 * flags - flags sent or received with the user message, see Section 1588 * 5 for complete description of the flags. 1589 * 1590 * Note: This function could use a rewrite especially when explicit 1591 * connect support comes in. 1592 */ 1593 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1594 1595 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1596 1597 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1598 { 1599 struct net *net = sock_net(sk); 1600 struct sctp_sock *sp; 1601 struct sctp_endpoint *ep; 1602 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1603 struct sctp_transport *transport, *chunk_tp; 1604 struct sctp_chunk *chunk; 1605 union sctp_addr to; 1606 struct sockaddr *msg_name = NULL; 1607 struct sctp_sndrcvinfo default_sinfo; 1608 struct sctp_sndrcvinfo *sinfo; 1609 struct sctp_initmsg *sinit; 1610 sctp_assoc_t associd = 0; 1611 sctp_cmsgs_t cmsgs = { NULL }; 1612 sctp_scope_t scope; 1613 bool fill_sinfo_ttl = false, wait_connect = false; 1614 struct sctp_datamsg *datamsg; 1615 int msg_flags = msg->msg_flags; 1616 __u16 sinfo_flags = 0; 1617 long timeo; 1618 int err; 1619 1620 err = 0; 1621 sp = sctp_sk(sk); 1622 ep = sp->ep; 1623 1624 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1625 msg, msg_len, ep); 1626 1627 /* We cannot send a message over a TCP-style listening socket. */ 1628 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1629 err = -EPIPE; 1630 goto out_nounlock; 1631 } 1632 1633 /* Parse out the SCTP CMSGs. */ 1634 err = sctp_msghdr_parse(msg, &cmsgs); 1635 if (err) { 1636 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1637 goto out_nounlock; 1638 } 1639 1640 /* Fetch the destination address for this packet. This 1641 * address only selects the association--it is not necessarily 1642 * the address we will send to. 1643 * For a peeled-off socket, msg_name is ignored. 1644 */ 1645 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1646 int msg_namelen = msg->msg_namelen; 1647 1648 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1649 msg_namelen); 1650 if (err) 1651 return err; 1652 1653 if (msg_namelen > sizeof(to)) 1654 msg_namelen = sizeof(to); 1655 memcpy(&to, msg->msg_name, msg_namelen); 1656 msg_name = msg->msg_name; 1657 } 1658 1659 sinit = cmsgs.init; 1660 if (cmsgs.sinfo != NULL) { 1661 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1662 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1663 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1664 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1665 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1666 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1667 1668 sinfo = &default_sinfo; 1669 fill_sinfo_ttl = true; 1670 } else { 1671 sinfo = cmsgs.srinfo; 1672 } 1673 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1674 if (sinfo) { 1675 sinfo_flags = sinfo->sinfo_flags; 1676 associd = sinfo->sinfo_assoc_id; 1677 } 1678 1679 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1680 msg_len, sinfo_flags); 1681 1682 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1683 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1684 err = -EINVAL; 1685 goto out_nounlock; 1686 } 1687 1688 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1689 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1690 * If SCTP_ABORT is set, the message length could be non zero with 1691 * the msg_iov set to the user abort reason. 1692 */ 1693 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1694 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1695 err = -EINVAL; 1696 goto out_nounlock; 1697 } 1698 1699 /* If SCTP_ADDR_OVER is set, there must be an address 1700 * specified in msg_name. 1701 */ 1702 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1703 err = -EINVAL; 1704 goto out_nounlock; 1705 } 1706 1707 transport = NULL; 1708 1709 pr_debug("%s: about to look up association\n", __func__); 1710 1711 lock_sock(sk); 1712 1713 /* If a msg_name has been specified, assume this is to be used. */ 1714 if (msg_name) { 1715 /* Look for a matching association on the endpoint. */ 1716 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1717 1718 /* If we could not find a matching association on the 1719 * endpoint, make sure that it is not a TCP-style 1720 * socket that already has an association or there is 1721 * no peeled-off association on another socket. 1722 */ 1723 if (!asoc && 1724 ((sctp_style(sk, TCP) && 1725 (sctp_sstate(sk, ESTABLISHED) || 1726 sctp_sstate(sk, CLOSING))) || 1727 sctp_endpoint_is_peeled_off(ep, &to))) { 1728 err = -EADDRNOTAVAIL; 1729 goto out_unlock; 1730 } 1731 } else { 1732 asoc = sctp_id2assoc(sk, associd); 1733 if (!asoc) { 1734 err = -EPIPE; 1735 goto out_unlock; 1736 } 1737 } 1738 1739 if (asoc) { 1740 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1741 1742 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1743 * socket that has an association in CLOSED state. This can 1744 * happen when an accepted socket has an association that is 1745 * already CLOSED. 1746 */ 1747 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1748 err = -EPIPE; 1749 goto out_unlock; 1750 } 1751 1752 if (sinfo_flags & SCTP_EOF) { 1753 pr_debug("%s: shutting down association:%p\n", 1754 __func__, asoc); 1755 1756 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1757 err = 0; 1758 goto out_unlock; 1759 } 1760 if (sinfo_flags & SCTP_ABORT) { 1761 1762 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1763 if (!chunk) { 1764 err = -ENOMEM; 1765 goto out_unlock; 1766 } 1767 1768 pr_debug("%s: aborting association:%p\n", 1769 __func__, asoc); 1770 1771 sctp_primitive_ABORT(net, asoc, chunk); 1772 err = 0; 1773 goto out_unlock; 1774 } 1775 } 1776 1777 /* Do we need to create the association? */ 1778 if (!asoc) { 1779 pr_debug("%s: there is no association yet\n", __func__); 1780 1781 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1782 err = -EINVAL; 1783 goto out_unlock; 1784 } 1785 1786 /* Check for invalid stream against the stream counts, 1787 * either the default or the user specified stream counts. 1788 */ 1789 if (sinfo) { 1790 if (!sinit || !sinit->sinit_num_ostreams) { 1791 /* Check against the defaults. */ 1792 if (sinfo->sinfo_stream >= 1793 sp->initmsg.sinit_num_ostreams) { 1794 err = -EINVAL; 1795 goto out_unlock; 1796 } 1797 } else { 1798 /* Check against the requested. */ 1799 if (sinfo->sinfo_stream >= 1800 sinit->sinit_num_ostreams) { 1801 err = -EINVAL; 1802 goto out_unlock; 1803 } 1804 } 1805 } 1806 1807 /* 1808 * API 3.1.2 bind() - UDP Style Syntax 1809 * If a bind() or sctp_bindx() is not called prior to a 1810 * sendmsg() call that initiates a new association, the 1811 * system picks an ephemeral port and will choose an address 1812 * set equivalent to binding with a wildcard address. 1813 */ 1814 if (!ep->base.bind_addr.port) { 1815 if (sctp_autobind(sk)) { 1816 err = -EAGAIN; 1817 goto out_unlock; 1818 } 1819 } else { 1820 /* 1821 * If an unprivileged user inherits a one-to-many 1822 * style socket with open associations on a privileged 1823 * port, it MAY be permitted to accept new associations, 1824 * but it SHOULD NOT be permitted to open new 1825 * associations. 1826 */ 1827 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1828 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1829 err = -EACCES; 1830 goto out_unlock; 1831 } 1832 } 1833 1834 scope = sctp_scope(&to); 1835 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1836 if (!new_asoc) { 1837 err = -ENOMEM; 1838 goto out_unlock; 1839 } 1840 asoc = new_asoc; 1841 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1842 if (err < 0) { 1843 err = -ENOMEM; 1844 goto out_free; 1845 } 1846 1847 /* If the SCTP_INIT ancillary data is specified, set all 1848 * the association init values accordingly. 1849 */ 1850 if (sinit) { 1851 if (sinit->sinit_num_ostreams) { 1852 asoc->c.sinit_num_ostreams = 1853 sinit->sinit_num_ostreams; 1854 } 1855 if (sinit->sinit_max_instreams) { 1856 asoc->c.sinit_max_instreams = 1857 sinit->sinit_max_instreams; 1858 } 1859 if (sinit->sinit_max_attempts) { 1860 asoc->max_init_attempts 1861 = sinit->sinit_max_attempts; 1862 } 1863 if (sinit->sinit_max_init_timeo) { 1864 asoc->max_init_timeo = 1865 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1866 } 1867 } 1868 1869 /* Prime the peer's transport structures. */ 1870 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1871 if (!transport) { 1872 err = -ENOMEM; 1873 goto out_free; 1874 } 1875 } 1876 1877 /* ASSERT: we have a valid association at this point. */ 1878 pr_debug("%s: we have a valid association\n", __func__); 1879 1880 if (!sinfo) { 1881 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1882 * one with some defaults. 1883 */ 1884 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1885 default_sinfo.sinfo_stream = asoc->default_stream; 1886 default_sinfo.sinfo_flags = asoc->default_flags; 1887 default_sinfo.sinfo_ppid = asoc->default_ppid; 1888 default_sinfo.sinfo_context = asoc->default_context; 1889 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1890 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1891 1892 sinfo = &default_sinfo; 1893 } else if (fill_sinfo_ttl) { 1894 /* In case SNDINFO was specified, we still need to fill 1895 * it with a default ttl from the assoc here. 1896 */ 1897 sinfo->sinfo_timetolive = asoc->default_timetolive; 1898 } 1899 1900 /* API 7.1.7, the sndbuf size per association bounds the 1901 * maximum size of data that can be sent in a single send call. 1902 */ 1903 if (msg_len > sk->sk_sndbuf) { 1904 err = -EMSGSIZE; 1905 goto out_free; 1906 } 1907 1908 if (asoc->pmtu_pending) 1909 sctp_assoc_pending_pmtu(sk, asoc); 1910 1911 /* If fragmentation is disabled and the message length exceeds the 1912 * association fragmentation point, return EMSGSIZE. The I-D 1913 * does not specify what this error is, but this looks like 1914 * a great fit. 1915 */ 1916 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1917 err = -EMSGSIZE; 1918 goto out_free; 1919 } 1920 1921 /* Check for invalid stream. */ 1922 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1923 err = -EINVAL; 1924 goto out_free; 1925 } 1926 1927 if (sctp_wspace(asoc) < msg_len) 1928 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1929 1930 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1931 if (!sctp_wspace(asoc)) { 1932 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1933 if (err) 1934 goto out_free; 1935 } 1936 1937 /* If an address is passed with the sendto/sendmsg call, it is used 1938 * to override the primary destination address in the TCP model, or 1939 * when SCTP_ADDR_OVER flag is set in the UDP model. 1940 */ 1941 if ((sctp_style(sk, TCP) && msg_name) || 1942 (sinfo_flags & SCTP_ADDR_OVER)) { 1943 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1944 if (!chunk_tp) { 1945 err = -EINVAL; 1946 goto out_free; 1947 } 1948 } else 1949 chunk_tp = NULL; 1950 1951 /* Auto-connect, if we aren't connected already. */ 1952 if (sctp_state(asoc, CLOSED)) { 1953 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1954 if (err < 0) 1955 goto out_free; 1956 1957 wait_connect = true; 1958 pr_debug("%s: we associated primitively\n", __func__); 1959 } 1960 1961 /* Break the message into multiple chunks of maximum size. */ 1962 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1963 if (IS_ERR(datamsg)) { 1964 err = PTR_ERR(datamsg); 1965 goto out_free; 1966 } 1967 datamsg->force_delay = !!(msg->msg_flags & MSG_MORE); 1968 1969 /* Now send the (possibly) fragmented message. */ 1970 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1971 sctp_chunk_hold(chunk); 1972 1973 /* Do accounting for the write space. */ 1974 sctp_set_owner_w(chunk); 1975 1976 chunk->transport = chunk_tp; 1977 } 1978 1979 /* Send it to the lower layers. Note: all chunks 1980 * must either fail or succeed. The lower layer 1981 * works that way today. Keep it that way or this 1982 * breaks. 1983 */ 1984 err = sctp_primitive_SEND(net, asoc, datamsg); 1985 /* Did the lower layer accept the chunk? */ 1986 if (err) { 1987 sctp_datamsg_free(datamsg); 1988 goto out_free; 1989 } 1990 1991 pr_debug("%s: we sent primitively\n", __func__); 1992 1993 sctp_datamsg_put(datamsg); 1994 err = msg_len; 1995 1996 if (unlikely(wait_connect)) { 1997 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1998 sctp_wait_for_connect(asoc, &timeo); 1999 } 2000 2001 /* If we are already past ASSOCIATE, the lower 2002 * layers are responsible for association cleanup. 2003 */ 2004 goto out_unlock; 2005 2006 out_free: 2007 if (new_asoc) 2008 sctp_association_free(asoc); 2009 out_unlock: 2010 release_sock(sk); 2011 2012 out_nounlock: 2013 return sctp_error(sk, msg_flags, err); 2014 2015 #if 0 2016 do_sock_err: 2017 if (msg_len) 2018 err = msg_len; 2019 else 2020 err = sock_error(sk); 2021 goto out; 2022 2023 do_interrupted: 2024 if (msg_len) 2025 err = msg_len; 2026 goto out; 2027 #endif /* 0 */ 2028 } 2029 2030 /* This is an extended version of skb_pull() that removes the data from the 2031 * start of a skb even when data is spread across the list of skb's in the 2032 * frag_list. len specifies the total amount of data that needs to be removed. 2033 * when 'len' bytes could be removed from the skb, it returns 0. 2034 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2035 * could not be removed. 2036 */ 2037 static int sctp_skb_pull(struct sk_buff *skb, int len) 2038 { 2039 struct sk_buff *list; 2040 int skb_len = skb_headlen(skb); 2041 int rlen; 2042 2043 if (len <= skb_len) { 2044 __skb_pull(skb, len); 2045 return 0; 2046 } 2047 len -= skb_len; 2048 __skb_pull(skb, skb_len); 2049 2050 skb_walk_frags(skb, list) { 2051 rlen = sctp_skb_pull(list, len); 2052 skb->len -= (len-rlen); 2053 skb->data_len -= (len-rlen); 2054 2055 if (!rlen) 2056 return 0; 2057 2058 len = rlen; 2059 } 2060 2061 return len; 2062 } 2063 2064 /* API 3.1.3 recvmsg() - UDP Style Syntax 2065 * 2066 * ssize_t recvmsg(int socket, struct msghdr *message, 2067 * int flags); 2068 * 2069 * socket - the socket descriptor of the endpoint. 2070 * message - pointer to the msghdr structure which contains a single 2071 * user message and possibly some ancillary data. 2072 * 2073 * See Section 5 for complete description of the data 2074 * structures. 2075 * 2076 * flags - flags sent or received with the user message, see Section 2077 * 5 for complete description of the flags. 2078 */ 2079 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2080 int noblock, int flags, int *addr_len) 2081 { 2082 struct sctp_ulpevent *event = NULL; 2083 struct sctp_sock *sp = sctp_sk(sk); 2084 struct sk_buff *skb, *head_skb; 2085 int copied; 2086 int err = 0; 2087 int skb_len; 2088 2089 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2090 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2091 addr_len); 2092 2093 lock_sock(sk); 2094 2095 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2096 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2097 err = -ENOTCONN; 2098 goto out; 2099 } 2100 2101 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2102 if (!skb) 2103 goto out; 2104 2105 /* Get the total length of the skb including any skb's in the 2106 * frag_list. 2107 */ 2108 skb_len = skb->len; 2109 2110 copied = skb_len; 2111 if (copied > len) 2112 copied = len; 2113 2114 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2115 2116 event = sctp_skb2event(skb); 2117 2118 if (err) 2119 goto out_free; 2120 2121 if (event->chunk && event->chunk->head_skb) 2122 head_skb = event->chunk->head_skb; 2123 else 2124 head_skb = skb; 2125 sock_recv_ts_and_drops(msg, sk, head_skb); 2126 if (sctp_ulpevent_is_notification(event)) { 2127 msg->msg_flags |= MSG_NOTIFICATION; 2128 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2129 } else { 2130 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2131 } 2132 2133 /* Check if we allow SCTP_NXTINFO. */ 2134 if (sp->recvnxtinfo) 2135 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2136 /* Check if we allow SCTP_RCVINFO. */ 2137 if (sp->recvrcvinfo) 2138 sctp_ulpevent_read_rcvinfo(event, msg); 2139 /* Check if we allow SCTP_SNDRCVINFO. */ 2140 if (sp->subscribe.sctp_data_io_event) 2141 sctp_ulpevent_read_sndrcvinfo(event, msg); 2142 2143 err = copied; 2144 2145 /* If skb's length exceeds the user's buffer, update the skb and 2146 * push it back to the receive_queue so that the next call to 2147 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2148 */ 2149 if (skb_len > copied) { 2150 msg->msg_flags &= ~MSG_EOR; 2151 if (flags & MSG_PEEK) 2152 goto out_free; 2153 sctp_skb_pull(skb, copied); 2154 skb_queue_head(&sk->sk_receive_queue, skb); 2155 2156 /* When only partial message is copied to the user, increase 2157 * rwnd by that amount. If all the data in the skb is read, 2158 * rwnd is updated when the event is freed. 2159 */ 2160 if (!sctp_ulpevent_is_notification(event)) 2161 sctp_assoc_rwnd_increase(event->asoc, copied); 2162 goto out; 2163 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2164 (event->msg_flags & MSG_EOR)) 2165 msg->msg_flags |= MSG_EOR; 2166 else 2167 msg->msg_flags &= ~MSG_EOR; 2168 2169 out_free: 2170 if (flags & MSG_PEEK) { 2171 /* Release the skb reference acquired after peeking the skb in 2172 * sctp_skb_recv_datagram(). 2173 */ 2174 kfree_skb(skb); 2175 } else { 2176 /* Free the event which includes releasing the reference to 2177 * the owner of the skb, freeing the skb and updating the 2178 * rwnd. 2179 */ 2180 sctp_ulpevent_free(event); 2181 } 2182 out: 2183 release_sock(sk); 2184 return err; 2185 } 2186 2187 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2188 * 2189 * This option is a on/off flag. If enabled no SCTP message 2190 * fragmentation will be performed. Instead if a message being sent 2191 * exceeds the current PMTU size, the message will NOT be sent and 2192 * instead a error will be indicated to the user. 2193 */ 2194 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2195 char __user *optval, 2196 unsigned int optlen) 2197 { 2198 int val; 2199 2200 if (optlen < sizeof(int)) 2201 return -EINVAL; 2202 2203 if (get_user(val, (int __user *)optval)) 2204 return -EFAULT; 2205 2206 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2207 2208 return 0; 2209 } 2210 2211 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2212 unsigned int optlen) 2213 { 2214 struct sctp_association *asoc; 2215 struct sctp_ulpevent *event; 2216 2217 if (optlen > sizeof(struct sctp_event_subscribe)) 2218 return -EINVAL; 2219 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2220 return -EFAULT; 2221 2222 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2223 * if there is no data to be sent or retransmit, the stack will 2224 * immediately send up this notification. 2225 */ 2226 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2227 &sctp_sk(sk)->subscribe)) { 2228 asoc = sctp_id2assoc(sk, 0); 2229 2230 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2231 event = sctp_ulpevent_make_sender_dry_event(asoc, 2232 GFP_ATOMIC); 2233 if (!event) 2234 return -ENOMEM; 2235 2236 sctp_ulpq_tail_event(&asoc->ulpq, event); 2237 } 2238 } 2239 2240 return 0; 2241 } 2242 2243 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2244 * 2245 * This socket option is applicable to the UDP-style socket only. When 2246 * set it will cause associations that are idle for more than the 2247 * specified number of seconds to automatically close. An association 2248 * being idle is defined an association that has NOT sent or received 2249 * user data. The special value of '0' indicates that no automatic 2250 * close of any associations should be performed. The option expects an 2251 * integer defining the number of seconds of idle time before an 2252 * association is closed. 2253 */ 2254 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2255 unsigned int optlen) 2256 { 2257 struct sctp_sock *sp = sctp_sk(sk); 2258 struct net *net = sock_net(sk); 2259 2260 /* Applicable to UDP-style socket only */ 2261 if (sctp_style(sk, TCP)) 2262 return -EOPNOTSUPP; 2263 if (optlen != sizeof(int)) 2264 return -EINVAL; 2265 if (copy_from_user(&sp->autoclose, optval, optlen)) 2266 return -EFAULT; 2267 2268 if (sp->autoclose > net->sctp.max_autoclose) 2269 sp->autoclose = net->sctp.max_autoclose; 2270 2271 return 0; 2272 } 2273 2274 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2275 * 2276 * Applications can enable or disable heartbeats for any peer address of 2277 * an association, modify an address's heartbeat interval, force a 2278 * heartbeat to be sent immediately, and adjust the address's maximum 2279 * number of retransmissions sent before an address is considered 2280 * unreachable. The following structure is used to access and modify an 2281 * address's parameters: 2282 * 2283 * struct sctp_paddrparams { 2284 * sctp_assoc_t spp_assoc_id; 2285 * struct sockaddr_storage spp_address; 2286 * uint32_t spp_hbinterval; 2287 * uint16_t spp_pathmaxrxt; 2288 * uint32_t spp_pathmtu; 2289 * uint32_t spp_sackdelay; 2290 * uint32_t spp_flags; 2291 * }; 2292 * 2293 * spp_assoc_id - (one-to-many style socket) This is filled in the 2294 * application, and identifies the association for 2295 * this query. 2296 * spp_address - This specifies which address is of interest. 2297 * spp_hbinterval - This contains the value of the heartbeat interval, 2298 * in milliseconds. If a value of zero 2299 * is present in this field then no changes are to 2300 * be made to this parameter. 2301 * spp_pathmaxrxt - This contains the maximum number of 2302 * retransmissions before this address shall be 2303 * considered unreachable. If a value of zero 2304 * is present in this field then no changes are to 2305 * be made to this parameter. 2306 * spp_pathmtu - When Path MTU discovery is disabled the value 2307 * specified here will be the "fixed" path mtu. 2308 * Note that if the spp_address field is empty 2309 * then all associations on this address will 2310 * have this fixed path mtu set upon them. 2311 * 2312 * spp_sackdelay - When delayed sack is enabled, this value specifies 2313 * the number of milliseconds that sacks will be delayed 2314 * for. This value will apply to all addresses of an 2315 * association if the spp_address field is empty. Note 2316 * also, that if delayed sack is enabled and this 2317 * value is set to 0, no change is made to the last 2318 * recorded delayed sack timer value. 2319 * 2320 * spp_flags - These flags are used to control various features 2321 * on an association. The flag field may contain 2322 * zero or more of the following options. 2323 * 2324 * SPP_HB_ENABLE - Enable heartbeats on the 2325 * specified address. Note that if the address 2326 * field is empty all addresses for the association 2327 * have heartbeats enabled upon them. 2328 * 2329 * SPP_HB_DISABLE - Disable heartbeats on the 2330 * speicifed address. Note that if the address 2331 * field is empty all addresses for the association 2332 * will have their heartbeats disabled. Note also 2333 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2334 * mutually exclusive, only one of these two should 2335 * be specified. Enabling both fields will have 2336 * undetermined results. 2337 * 2338 * SPP_HB_DEMAND - Request a user initiated heartbeat 2339 * to be made immediately. 2340 * 2341 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2342 * heartbeat delayis to be set to the value of 0 2343 * milliseconds. 2344 * 2345 * SPP_PMTUD_ENABLE - This field will enable PMTU 2346 * discovery upon the specified address. Note that 2347 * if the address feild is empty then all addresses 2348 * on the association are effected. 2349 * 2350 * SPP_PMTUD_DISABLE - This field will disable PMTU 2351 * discovery upon the specified address. Note that 2352 * if the address feild is empty then all addresses 2353 * on the association are effected. Not also that 2354 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2355 * exclusive. Enabling both will have undetermined 2356 * results. 2357 * 2358 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2359 * on delayed sack. The time specified in spp_sackdelay 2360 * is used to specify the sack delay for this address. Note 2361 * that if spp_address is empty then all addresses will 2362 * enable delayed sack and take on the sack delay 2363 * value specified in spp_sackdelay. 2364 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2365 * off delayed sack. If the spp_address field is blank then 2366 * delayed sack is disabled for the entire association. Note 2367 * also that this field is mutually exclusive to 2368 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2369 * results. 2370 */ 2371 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2372 struct sctp_transport *trans, 2373 struct sctp_association *asoc, 2374 struct sctp_sock *sp, 2375 int hb_change, 2376 int pmtud_change, 2377 int sackdelay_change) 2378 { 2379 int error; 2380 2381 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2382 struct net *net = sock_net(trans->asoc->base.sk); 2383 2384 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2385 if (error) 2386 return error; 2387 } 2388 2389 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2390 * this field is ignored. Note also that a value of zero indicates 2391 * the current setting should be left unchanged. 2392 */ 2393 if (params->spp_flags & SPP_HB_ENABLE) { 2394 2395 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2396 * set. This lets us use 0 value when this flag 2397 * is set. 2398 */ 2399 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2400 params->spp_hbinterval = 0; 2401 2402 if (params->spp_hbinterval || 2403 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2404 if (trans) { 2405 trans->hbinterval = 2406 msecs_to_jiffies(params->spp_hbinterval); 2407 } else if (asoc) { 2408 asoc->hbinterval = 2409 msecs_to_jiffies(params->spp_hbinterval); 2410 } else { 2411 sp->hbinterval = params->spp_hbinterval; 2412 } 2413 } 2414 } 2415 2416 if (hb_change) { 2417 if (trans) { 2418 trans->param_flags = 2419 (trans->param_flags & ~SPP_HB) | hb_change; 2420 } else if (asoc) { 2421 asoc->param_flags = 2422 (asoc->param_flags & ~SPP_HB) | hb_change; 2423 } else { 2424 sp->param_flags = 2425 (sp->param_flags & ~SPP_HB) | hb_change; 2426 } 2427 } 2428 2429 /* When Path MTU discovery is disabled the value specified here will 2430 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2431 * include the flag SPP_PMTUD_DISABLE for this field to have any 2432 * effect). 2433 */ 2434 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2435 if (trans) { 2436 trans->pathmtu = params->spp_pathmtu; 2437 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2438 } else if (asoc) { 2439 asoc->pathmtu = params->spp_pathmtu; 2440 } else { 2441 sp->pathmtu = params->spp_pathmtu; 2442 } 2443 } 2444 2445 if (pmtud_change) { 2446 if (trans) { 2447 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2448 (params->spp_flags & SPP_PMTUD_ENABLE); 2449 trans->param_flags = 2450 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2451 if (update) { 2452 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2453 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2454 } 2455 } else if (asoc) { 2456 asoc->param_flags = 2457 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2458 } else { 2459 sp->param_flags = 2460 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2461 } 2462 } 2463 2464 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2465 * value of this field is ignored. Note also that a value of zero 2466 * indicates the current setting should be left unchanged. 2467 */ 2468 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2469 if (trans) { 2470 trans->sackdelay = 2471 msecs_to_jiffies(params->spp_sackdelay); 2472 } else if (asoc) { 2473 asoc->sackdelay = 2474 msecs_to_jiffies(params->spp_sackdelay); 2475 } else { 2476 sp->sackdelay = params->spp_sackdelay; 2477 } 2478 } 2479 2480 if (sackdelay_change) { 2481 if (trans) { 2482 trans->param_flags = 2483 (trans->param_flags & ~SPP_SACKDELAY) | 2484 sackdelay_change; 2485 } else if (asoc) { 2486 asoc->param_flags = 2487 (asoc->param_flags & ~SPP_SACKDELAY) | 2488 sackdelay_change; 2489 } else { 2490 sp->param_flags = 2491 (sp->param_flags & ~SPP_SACKDELAY) | 2492 sackdelay_change; 2493 } 2494 } 2495 2496 /* Note that a value of zero indicates the current setting should be 2497 left unchanged. 2498 */ 2499 if (params->spp_pathmaxrxt) { 2500 if (trans) { 2501 trans->pathmaxrxt = params->spp_pathmaxrxt; 2502 } else if (asoc) { 2503 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2504 } else { 2505 sp->pathmaxrxt = params->spp_pathmaxrxt; 2506 } 2507 } 2508 2509 return 0; 2510 } 2511 2512 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2513 char __user *optval, 2514 unsigned int optlen) 2515 { 2516 struct sctp_paddrparams params; 2517 struct sctp_transport *trans = NULL; 2518 struct sctp_association *asoc = NULL; 2519 struct sctp_sock *sp = sctp_sk(sk); 2520 int error; 2521 int hb_change, pmtud_change, sackdelay_change; 2522 2523 if (optlen != sizeof(struct sctp_paddrparams)) 2524 return -EINVAL; 2525 2526 if (copy_from_user(¶ms, optval, optlen)) 2527 return -EFAULT; 2528 2529 /* Validate flags and value parameters. */ 2530 hb_change = params.spp_flags & SPP_HB; 2531 pmtud_change = params.spp_flags & SPP_PMTUD; 2532 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2533 2534 if (hb_change == SPP_HB || 2535 pmtud_change == SPP_PMTUD || 2536 sackdelay_change == SPP_SACKDELAY || 2537 params.spp_sackdelay > 500 || 2538 (params.spp_pathmtu && 2539 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2540 return -EINVAL; 2541 2542 /* If an address other than INADDR_ANY is specified, and 2543 * no transport is found, then the request is invalid. 2544 */ 2545 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2546 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2547 params.spp_assoc_id); 2548 if (!trans) 2549 return -EINVAL; 2550 } 2551 2552 /* Get association, if assoc_id != 0 and the socket is a one 2553 * to many style socket, and an association was not found, then 2554 * the id was invalid. 2555 */ 2556 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2557 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2558 return -EINVAL; 2559 2560 /* Heartbeat demand can only be sent on a transport or 2561 * association, but not a socket. 2562 */ 2563 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2564 return -EINVAL; 2565 2566 /* Process parameters. */ 2567 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2568 hb_change, pmtud_change, 2569 sackdelay_change); 2570 2571 if (error) 2572 return error; 2573 2574 /* If changes are for association, also apply parameters to each 2575 * transport. 2576 */ 2577 if (!trans && asoc) { 2578 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2579 transports) { 2580 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2581 hb_change, pmtud_change, 2582 sackdelay_change); 2583 } 2584 } 2585 2586 return 0; 2587 } 2588 2589 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2590 { 2591 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2592 } 2593 2594 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2595 { 2596 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2597 } 2598 2599 /* 2600 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2601 * 2602 * This option will effect the way delayed acks are performed. This 2603 * option allows you to get or set the delayed ack time, in 2604 * milliseconds. It also allows changing the delayed ack frequency. 2605 * Changing the frequency to 1 disables the delayed sack algorithm. If 2606 * the assoc_id is 0, then this sets or gets the endpoints default 2607 * values. If the assoc_id field is non-zero, then the set or get 2608 * effects the specified association for the one to many model (the 2609 * assoc_id field is ignored by the one to one model). Note that if 2610 * sack_delay or sack_freq are 0 when setting this option, then the 2611 * current values will remain unchanged. 2612 * 2613 * struct sctp_sack_info { 2614 * sctp_assoc_t sack_assoc_id; 2615 * uint32_t sack_delay; 2616 * uint32_t sack_freq; 2617 * }; 2618 * 2619 * sack_assoc_id - This parameter, indicates which association the user 2620 * is performing an action upon. Note that if this field's value is 2621 * zero then the endpoints default value is changed (effecting future 2622 * associations only). 2623 * 2624 * sack_delay - This parameter contains the number of milliseconds that 2625 * the user is requesting the delayed ACK timer be set to. Note that 2626 * this value is defined in the standard to be between 200 and 500 2627 * milliseconds. 2628 * 2629 * sack_freq - This parameter contains the number of packets that must 2630 * be received before a sack is sent without waiting for the delay 2631 * timer to expire. The default value for this is 2, setting this 2632 * value to 1 will disable the delayed sack algorithm. 2633 */ 2634 2635 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2636 char __user *optval, unsigned int optlen) 2637 { 2638 struct sctp_sack_info params; 2639 struct sctp_transport *trans = NULL; 2640 struct sctp_association *asoc = NULL; 2641 struct sctp_sock *sp = sctp_sk(sk); 2642 2643 if (optlen == sizeof(struct sctp_sack_info)) { 2644 if (copy_from_user(¶ms, optval, optlen)) 2645 return -EFAULT; 2646 2647 if (params.sack_delay == 0 && params.sack_freq == 0) 2648 return 0; 2649 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2650 pr_warn_ratelimited(DEPRECATED 2651 "%s (pid %d) " 2652 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2653 "Use struct sctp_sack_info instead\n", 2654 current->comm, task_pid_nr(current)); 2655 if (copy_from_user(¶ms, optval, optlen)) 2656 return -EFAULT; 2657 2658 if (params.sack_delay == 0) 2659 params.sack_freq = 1; 2660 else 2661 params.sack_freq = 0; 2662 } else 2663 return -EINVAL; 2664 2665 /* Validate value parameter. */ 2666 if (params.sack_delay > 500) 2667 return -EINVAL; 2668 2669 /* Get association, if sack_assoc_id != 0 and the socket is a one 2670 * to many style socket, and an association was not found, then 2671 * the id was invalid. 2672 */ 2673 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2674 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2675 return -EINVAL; 2676 2677 if (params.sack_delay) { 2678 if (asoc) { 2679 asoc->sackdelay = 2680 msecs_to_jiffies(params.sack_delay); 2681 asoc->param_flags = 2682 sctp_spp_sackdelay_enable(asoc->param_flags); 2683 } else { 2684 sp->sackdelay = params.sack_delay; 2685 sp->param_flags = 2686 sctp_spp_sackdelay_enable(sp->param_flags); 2687 } 2688 } 2689 2690 if (params.sack_freq == 1) { 2691 if (asoc) { 2692 asoc->param_flags = 2693 sctp_spp_sackdelay_disable(asoc->param_flags); 2694 } else { 2695 sp->param_flags = 2696 sctp_spp_sackdelay_disable(sp->param_flags); 2697 } 2698 } else if (params.sack_freq > 1) { 2699 if (asoc) { 2700 asoc->sackfreq = params.sack_freq; 2701 asoc->param_flags = 2702 sctp_spp_sackdelay_enable(asoc->param_flags); 2703 } else { 2704 sp->sackfreq = params.sack_freq; 2705 sp->param_flags = 2706 sctp_spp_sackdelay_enable(sp->param_flags); 2707 } 2708 } 2709 2710 /* If change is for association, also apply to each transport. */ 2711 if (asoc) { 2712 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2713 transports) { 2714 if (params.sack_delay) { 2715 trans->sackdelay = 2716 msecs_to_jiffies(params.sack_delay); 2717 trans->param_flags = 2718 sctp_spp_sackdelay_enable(trans->param_flags); 2719 } 2720 if (params.sack_freq == 1) { 2721 trans->param_flags = 2722 sctp_spp_sackdelay_disable(trans->param_flags); 2723 } else if (params.sack_freq > 1) { 2724 trans->sackfreq = params.sack_freq; 2725 trans->param_flags = 2726 sctp_spp_sackdelay_enable(trans->param_flags); 2727 } 2728 } 2729 } 2730 2731 return 0; 2732 } 2733 2734 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2735 * 2736 * Applications can specify protocol parameters for the default association 2737 * initialization. The option name argument to setsockopt() and getsockopt() 2738 * is SCTP_INITMSG. 2739 * 2740 * Setting initialization parameters is effective only on an unconnected 2741 * socket (for UDP-style sockets only future associations are effected 2742 * by the change). With TCP-style sockets, this option is inherited by 2743 * sockets derived from a listener socket. 2744 */ 2745 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2746 { 2747 struct sctp_initmsg sinit; 2748 struct sctp_sock *sp = sctp_sk(sk); 2749 2750 if (optlen != sizeof(struct sctp_initmsg)) 2751 return -EINVAL; 2752 if (copy_from_user(&sinit, optval, optlen)) 2753 return -EFAULT; 2754 2755 if (sinit.sinit_num_ostreams) 2756 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2757 if (sinit.sinit_max_instreams) 2758 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2759 if (sinit.sinit_max_attempts) 2760 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2761 if (sinit.sinit_max_init_timeo) 2762 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2763 2764 return 0; 2765 } 2766 2767 /* 2768 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2769 * 2770 * Applications that wish to use the sendto() system call may wish to 2771 * specify a default set of parameters that would normally be supplied 2772 * through the inclusion of ancillary data. This socket option allows 2773 * such an application to set the default sctp_sndrcvinfo structure. 2774 * The application that wishes to use this socket option simply passes 2775 * in to this call the sctp_sndrcvinfo structure defined in Section 2776 * 5.2.2) The input parameters accepted by this call include 2777 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2778 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2779 * to this call if the caller is using the UDP model. 2780 */ 2781 static int sctp_setsockopt_default_send_param(struct sock *sk, 2782 char __user *optval, 2783 unsigned int optlen) 2784 { 2785 struct sctp_sock *sp = sctp_sk(sk); 2786 struct sctp_association *asoc; 2787 struct sctp_sndrcvinfo info; 2788 2789 if (optlen != sizeof(info)) 2790 return -EINVAL; 2791 if (copy_from_user(&info, optval, optlen)) 2792 return -EFAULT; 2793 if (info.sinfo_flags & 2794 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2795 SCTP_ABORT | SCTP_EOF)) 2796 return -EINVAL; 2797 2798 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2799 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2800 return -EINVAL; 2801 if (asoc) { 2802 asoc->default_stream = info.sinfo_stream; 2803 asoc->default_flags = info.sinfo_flags; 2804 asoc->default_ppid = info.sinfo_ppid; 2805 asoc->default_context = info.sinfo_context; 2806 asoc->default_timetolive = info.sinfo_timetolive; 2807 } else { 2808 sp->default_stream = info.sinfo_stream; 2809 sp->default_flags = info.sinfo_flags; 2810 sp->default_ppid = info.sinfo_ppid; 2811 sp->default_context = info.sinfo_context; 2812 sp->default_timetolive = info.sinfo_timetolive; 2813 } 2814 2815 return 0; 2816 } 2817 2818 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2819 * (SCTP_DEFAULT_SNDINFO) 2820 */ 2821 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2822 char __user *optval, 2823 unsigned int optlen) 2824 { 2825 struct sctp_sock *sp = sctp_sk(sk); 2826 struct sctp_association *asoc; 2827 struct sctp_sndinfo info; 2828 2829 if (optlen != sizeof(info)) 2830 return -EINVAL; 2831 if (copy_from_user(&info, optval, optlen)) 2832 return -EFAULT; 2833 if (info.snd_flags & 2834 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2835 SCTP_ABORT | SCTP_EOF)) 2836 return -EINVAL; 2837 2838 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2839 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2840 return -EINVAL; 2841 if (asoc) { 2842 asoc->default_stream = info.snd_sid; 2843 asoc->default_flags = info.snd_flags; 2844 asoc->default_ppid = info.snd_ppid; 2845 asoc->default_context = info.snd_context; 2846 } else { 2847 sp->default_stream = info.snd_sid; 2848 sp->default_flags = info.snd_flags; 2849 sp->default_ppid = info.snd_ppid; 2850 sp->default_context = info.snd_context; 2851 } 2852 2853 return 0; 2854 } 2855 2856 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2857 * 2858 * Requests that the local SCTP stack use the enclosed peer address as 2859 * the association primary. The enclosed address must be one of the 2860 * association peer's addresses. 2861 */ 2862 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2863 unsigned int optlen) 2864 { 2865 struct sctp_prim prim; 2866 struct sctp_transport *trans; 2867 2868 if (optlen != sizeof(struct sctp_prim)) 2869 return -EINVAL; 2870 2871 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2872 return -EFAULT; 2873 2874 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2875 if (!trans) 2876 return -EINVAL; 2877 2878 sctp_assoc_set_primary(trans->asoc, trans); 2879 2880 return 0; 2881 } 2882 2883 /* 2884 * 7.1.5 SCTP_NODELAY 2885 * 2886 * Turn on/off any Nagle-like algorithm. This means that packets are 2887 * generally sent as soon as possible and no unnecessary delays are 2888 * introduced, at the cost of more packets in the network. Expects an 2889 * integer boolean flag. 2890 */ 2891 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2892 unsigned int optlen) 2893 { 2894 int val; 2895 2896 if (optlen < sizeof(int)) 2897 return -EINVAL; 2898 if (get_user(val, (int __user *)optval)) 2899 return -EFAULT; 2900 2901 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2902 return 0; 2903 } 2904 2905 /* 2906 * 2907 * 7.1.1 SCTP_RTOINFO 2908 * 2909 * The protocol parameters used to initialize and bound retransmission 2910 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2911 * and modify these parameters. 2912 * All parameters are time values, in milliseconds. A value of 0, when 2913 * modifying the parameters, indicates that the current value should not 2914 * be changed. 2915 * 2916 */ 2917 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2918 { 2919 struct sctp_rtoinfo rtoinfo; 2920 struct sctp_association *asoc; 2921 unsigned long rto_min, rto_max; 2922 struct sctp_sock *sp = sctp_sk(sk); 2923 2924 if (optlen != sizeof (struct sctp_rtoinfo)) 2925 return -EINVAL; 2926 2927 if (copy_from_user(&rtoinfo, optval, optlen)) 2928 return -EFAULT; 2929 2930 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2931 2932 /* Set the values to the specific association */ 2933 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2934 return -EINVAL; 2935 2936 rto_max = rtoinfo.srto_max; 2937 rto_min = rtoinfo.srto_min; 2938 2939 if (rto_max) 2940 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2941 else 2942 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2943 2944 if (rto_min) 2945 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2946 else 2947 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2948 2949 if (rto_min > rto_max) 2950 return -EINVAL; 2951 2952 if (asoc) { 2953 if (rtoinfo.srto_initial != 0) 2954 asoc->rto_initial = 2955 msecs_to_jiffies(rtoinfo.srto_initial); 2956 asoc->rto_max = rto_max; 2957 asoc->rto_min = rto_min; 2958 } else { 2959 /* If there is no association or the association-id = 0 2960 * set the values to the endpoint. 2961 */ 2962 if (rtoinfo.srto_initial != 0) 2963 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2964 sp->rtoinfo.srto_max = rto_max; 2965 sp->rtoinfo.srto_min = rto_min; 2966 } 2967 2968 return 0; 2969 } 2970 2971 /* 2972 * 2973 * 7.1.2 SCTP_ASSOCINFO 2974 * 2975 * This option is used to tune the maximum retransmission attempts 2976 * of the association. 2977 * Returns an error if the new association retransmission value is 2978 * greater than the sum of the retransmission value of the peer. 2979 * See [SCTP] for more information. 2980 * 2981 */ 2982 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2983 { 2984 2985 struct sctp_assocparams assocparams; 2986 struct sctp_association *asoc; 2987 2988 if (optlen != sizeof(struct sctp_assocparams)) 2989 return -EINVAL; 2990 if (copy_from_user(&assocparams, optval, optlen)) 2991 return -EFAULT; 2992 2993 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2994 2995 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2996 return -EINVAL; 2997 2998 /* Set the values to the specific association */ 2999 if (asoc) { 3000 if (assocparams.sasoc_asocmaxrxt != 0) { 3001 __u32 path_sum = 0; 3002 int paths = 0; 3003 struct sctp_transport *peer_addr; 3004 3005 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3006 transports) { 3007 path_sum += peer_addr->pathmaxrxt; 3008 paths++; 3009 } 3010 3011 /* Only validate asocmaxrxt if we have more than 3012 * one path/transport. We do this because path 3013 * retransmissions are only counted when we have more 3014 * then one path. 3015 */ 3016 if (paths > 1 && 3017 assocparams.sasoc_asocmaxrxt > path_sum) 3018 return -EINVAL; 3019 3020 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3021 } 3022 3023 if (assocparams.sasoc_cookie_life != 0) 3024 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3025 } else { 3026 /* Set the values to the endpoint */ 3027 struct sctp_sock *sp = sctp_sk(sk); 3028 3029 if (assocparams.sasoc_asocmaxrxt != 0) 3030 sp->assocparams.sasoc_asocmaxrxt = 3031 assocparams.sasoc_asocmaxrxt; 3032 if (assocparams.sasoc_cookie_life != 0) 3033 sp->assocparams.sasoc_cookie_life = 3034 assocparams.sasoc_cookie_life; 3035 } 3036 return 0; 3037 } 3038 3039 /* 3040 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3041 * 3042 * This socket option is a boolean flag which turns on or off mapped V4 3043 * addresses. If this option is turned on and the socket is type 3044 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3045 * If this option is turned off, then no mapping will be done of V4 3046 * addresses and a user will receive both PF_INET6 and PF_INET type 3047 * addresses on the socket. 3048 */ 3049 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3050 { 3051 int val; 3052 struct sctp_sock *sp = sctp_sk(sk); 3053 3054 if (optlen < sizeof(int)) 3055 return -EINVAL; 3056 if (get_user(val, (int __user *)optval)) 3057 return -EFAULT; 3058 if (val) 3059 sp->v4mapped = 1; 3060 else 3061 sp->v4mapped = 0; 3062 3063 return 0; 3064 } 3065 3066 /* 3067 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3068 * This option will get or set the maximum size to put in any outgoing 3069 * SCTP DATA chunk. If a message is larger than this size it will be 3070 * fragmented by SCTP into the specified size. Note that the underlying 3071 * SCTP implementation may fragment into smaller sized chunks when the 3072 * PMTU of the underlying association is smaller than the value set by 3073 * the user. The default value for this option is '0' which indicates 3074 * the user is NOT limiting fragmentation and only the PMTU will effect 3075 * SCTP's choice of DATA chunk size. Note also that values set larger 3076 * than the maximum size of an IP datagram will effectively let SCTP 3077 * control fragmentation (i.e. the same as setting this option to 0). 3078 * 3079 * The following structure is used to access and modify this parameter: 3080 * 3081 * struct sctp_assoc_value { 3082 * sctp_assoc_t assoc_id; 3083 * uint32_t assoc_value; 3084 * }; 3085 * 3086 * assoc_id: This parameter is ignored for one-to-one style sockets. 3087 * For one-to-many style sockets this parameter indicates which 3088 * association the user is performing an action upon. Note that if 3089 * this field's value is zero then the endpoints default value is 3090 * changed (effecting future associations only). 3091 * assoc_value: This parameter specifies the maximum size in bytes. 3092 */ 3093 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3094 { 3095 struct sctp_assoc_value params; 3096 struct sctp_association *asoc; 3097 struct sctp_sock *sp = sctp_sk(sk); 3098 int val; 3099 3100 if (optlen == sizeof(int)) { 3101 pr_warn_ratelimited(DEPRECATED 3102 "%s (pid %d) " 3103 "Use of int in maxseg socket option.\n" 3104 "Use struct sctp_assoc_value instead\n", 3105 current->comm, task_pid_nr(current)); 3106 if (copy_from_user(&val, optval, optlen)) 3107 return -EFAULT; 3108 params.assoc_id = 0; 3109 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3110 if (copy_from_user(¶ms, optval, optlen)) 3111 return -EFAULT; 3112 val = params.assoc_value; 3113 } else 3114 return -EINVAL; 3115 3116 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3117 return -EINVAL; 3118 3119 asoc = sctp_id2assoc(sk, params.assoc_id); 3120 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3121 return -EINVAL; 3122 3123 if (asoc) { 3124 if (val == 0) { 3125 val = asoc->pathmtu; 3126 val -= sp->pf->af->net_header_len; 3127 val -= sizeof(struct sctphdr) + 3128 sizeof(struct sctp_data_chunk); 3129 } 3130 asoc->user_frag = val; 3131 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3132 } else { 3133 sp->user_frag = val; 3134 } 3135 3136 return 0; 3137 } 3138 3139 3140 /* 3141 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3142 * 3143 * Requests that the peer mark the enclosed address as the association 3144 * primary. The enclosed address must be one of the association's 3145 * locally bound addresses. The following structure is used to make a 3146 * set primary request: 3147 */ 3148 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3149 unsigned int optlen) 3150 { 3151 struct net *net = sock_net(sk); 3152 struct sctp_sock *sp; 3153 struct sctp_association *asoc = NULL; 3154 struct sctp_setpeerprim prim; 3155 struct sctp_chunk *chunk; 3156 struct sctp_af *af; 3157 int err; 3158 3159 sp = sctp_sk(sk); 3160 3161 if (!net->sctp.addip_enable) 3162 return -EPERM; 3163 3164 if (optlen != sizeof(struct sctp_setpeerprim)) 3165 return -EINVAL; 3166 3167 if (copy_from_user(&prim, optval, optlen)) 3168 return -EFAULT; 3169 3170 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3171 if (!asoc) 3172 return -EINVAL; 3173 3174 if (!asoc->peer.asconf_capable) 3175 return -EPERM; 3176 3177 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3178 return -EPERM; 3179 3180 if (!sctp_state(asoc, ESTABLISHED)) 3181 return -ENOTCONN; 3182 3183 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3184 if (!af) 3185 return -EINVAL; 3186 3187 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3188 return -EADDRNOTAVAIL; 3189 3190 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3191 return -EADDRNOTAVAIL; 3192 3193 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3194 chunk = sctp_make_asconf_set_prim(asoc, 3195 (union sctp_addr *)&prim.sspp_addr); 3196 if (!chunk) 3197 return -ENOMEM; 3198 3199 err = sctp_send_asconf(asoc, chunk); 3200 3201 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3202 3203 return err; 3204 } 3205 3206 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3207 unsigned int optlen) 3208 { 3209 struct sctp_setadaptation adaptation; 3210 3211 if (optlen != sizeof(struct sctp_setadaptation)) 3212 return -EINVAL; 3213 if (copy_from_user(&adaptation, optval, optlen)) 3214 return -EFAULT; 3215 3216 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3217 3218 return 0; 3219 } 3220 3221 /* 3222 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3223 * 3224 * The context field in the sctp_sndrcvinfo structure is normally only 3225 * used when a failed message is retrieved holding the value that was 3226 * sent down on the actual send call. This option allows the setting of 3227 * a default context on an association basis that will be received on 3228 * reading messages from the peer. This is especially helpful in the 3229 * one-2-many model for an application to keep some reference to an 3230 * internal state machine that is processing messages on the 3231 * association. Note that the setting of this value only effects 3232 * received messages from the peer and does not effect the value that is 3233 * saved with outbound messages. 3234 */ 3235 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3236 unsigned int optlen) 3237 { 3238 struct sctp_assoc_value params; 3239 struct sctp_sock *sp; 3240 struct sctp_association *asoc; 3241 3242 if (optlen != sizeof(struct sctp_assoc_value)) 3243 return -EINVAL; 3244 if (copy_from_user(¶ms, optval, optlen)) 3245 return -EFAULT; 3246 3247 sp = sctp_sk(sk); 3248 3249 if (params.assoc_id != 0) { 3250 asoc = sctp_id2assoc(sk, params.assoc_id); 3251 if (!asoc) 3252 return -EINVAL; 3253 asoc->default_rcv_context = params.assoc_value; 3254 } else { 3255 sp->default_rcv_context = params.assoc_value; 3256 } 3257 3258 return 0; 3259 } 3260 3261 /* 3262 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3263 * 3264 * This options will at a minimum specify if the implementation is doing 3265 * fragmented interleave. Fragmented interleave, for a one to many 3266 * socket, is when subsequent calls to receive a message may return 3267 * parts of messages from different associations. Some implementations 3268 * may allow you to turn this value on or off. If so, when turned off, 3269 * no fragment interleave will occur (which will cause a head of line 3270 * blocking amongst multiple associations sharing the same one to many 3271 * socket). When this option is turned on, then each receive call may 3272 * come from a different association (thus the user must receive data 3273 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3274 * association each receive belongs to. 3275 * 3276 * This option takes a boolean value. A non-zero value indicates that 3277 * fragmented interleave is on. A value of zero indicates that 3278 * fragmented interleave is off. 3279 * 3280 * Note that it is important that an implementation that allows this 3281 * option to be turned on, have it off by default. Otherwise an unaware 3282 * application using the one to many model may become confused and act 3283 * incorrectly. 3284 */ 3285 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3286 char __user *optval, 3287 unsigned int optlen) 3288 { 3289 int val; 3290 3291 if (optlen != sizeof(int)) 3292 return -EINVAL; 3293 if (get_user(val, (int __user *)optval)) 3294 return -EFAULT; 3295 3296 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3297 3298 return 0; 3299 } 3300 3301 /* 3302 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3303 * (SCTP_PARTIAL_DELIVERY_POINT) 3304 * 3305 * This option will set or get the SCTP partial delivery point. This 3306 * point is the size of a message where the partial delivery API will be 3307 * invoked to help free up rwnd space for the peer. Setting this to a 3308 * lower value will cause partial deliveries to happen more often. The 3309 * calls argument is an integer that sets or gets the partial delivery 3310 * point. Note also that the call will fail if the user attempts to set 3311 * this value larger than the socket receive buffer size. 3312 * 3313 * Note that any single message having a length smaller than or equal to 3314 * the SCTP partial delivery point will be delivered in one single read 3315 * call as long as the user provided buffer is large enough to hold the 3316 * message. 3317 */ 3318 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3319 char __user *optval, 3320 unsigned int optlen) 3321 { 3322 u32 val; 3323 3324 if (optlen != sizeof(u32)) 3325 return -EINVAL; 3326 if (get_user(val, (int __user *)optval)) 3327 return -EFAULT; 3328 3329 /* Note: We double the receive buffer from what the user sets 3330 * it to be, also initial rwnd is based on rcvbuf/2. 3331 */ 3332 if (val > (sk->sk_rcvbuf >> 1)) 3333 return -EINVAL; 3334 3335 sctp_sk(sk)->pd_point = val; 3336 3337 return 0; /* is this the right error code? */ 3338 } 3339 3340 /* 3341 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3342 * 3343 * This option will allow a user to change the maximum burst of packets 3344 * that can be emitted by this association. Note that the default value 3345 * is 4, and some implementations may restrict this setting so that it 3346 * can only be lowered. 3347 * 3348 * NOTE: This text doesn't seem right. Do this on a socket basis with 3349 * future associations inheriting the socket value. 3350 */ 3351 static int sctp_setsockopt_maxburst(struct sock *sk, 3352 char __user *optval, 3353 unsigned int optlen) 3354 { 3355 struct sctp_assoc_value params; 3356 struct sctp_sock *sp; 3357 struct sctp_association *asoc; 3358 int val; 3359 int assoc_id = 0; 3360 3361 if (optlen == sizeof(int)) { 3362 pr_warn_ratelimited(DEPRECATED 3363 "%s (pid %d) " 3364 "Use of int in max_burst socket option deprecated.\n" 3365 "Use struct sctp_assoc_value instead\n", 3366 current->comm, task_pid_nr(current)); 3367 if (copy_from_user(&val, optval, optlen)) 3368 return -EFAULT; 3369 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3370 if (copy_from_user(¶ms, optval, optlen)) 3371 return -EFAULT; 3372 val = params.assoc_value; 3373 assoc_id = params.assoc_id; 3374 } else 3375 return -EINVAL; 3376 3377 sp = sctp_sk(sk); 3378 3379 if (assoc_id != 0) { 3380 asoc = sctp_id2assoc(sk, assoc_id); 3381 if (!asoc) 3382 return -EINVAL; 3383 asoc->max_burst = val; 3384 } else 3385 sp->max_burst = val; 3386 3387 return 0; 3388 } 3389 3390 /* 3391 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3392 * 3393 * This set option adds a chunk type that the user is requesting to be 3394 * received only in an authenticated way. Changes to the list of chunks 3395 * will only effect future associations on the socket. 3396 */ 3397 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3398 char __user *optval, 3399 unsigned int optlen) 3400 { 3401 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3402 struct sctp_authchunk val; 3403 3404 if (!ep->auth_enable) 3405 return -EACCES; 3406 3407 if (optlen != sizeof(struct sctp_authchunk)) 3408 return -EINVAL; 3409 if (copy_from_user(&val, optval, optlen)) 3410 return -EFAULT; 3411 3412 switch (val.sauth_chunk) { 3413 case SCTP_CID_INIT: 3414 case SCTP_CID_INIT_ACK: 3415 case SCTP_CID_SHUTDOWN_COMPLETE: 3416 case SCTP_CID_AUTH: 3417 return -EINVAL; 3418 } 3419 3420 /* add this chunk id to the endpoint */ 3421 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3422 } 3423 3424 /* 3425 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3426 * 3427 * This option gets or sets the list of HMAC algorithms that the local 3428 * endpoint requires the peer to use. 3429 */ 3430 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3431 char __user *optval, 3432 unsigned int optlen) 3433 { 3434 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3435 struct sctp_hmacalgo *hmacs; 3436 u32 idents; 3437 int err; 3438 3439 if (!ep->auth_enable) 3440 return -EACCES; 3441 3442 if (optlen < sizeof(struct sctp_hmacalgo)) 3443 return -EINVAL; 3444 3445 hmacs = memdup_user(optval, optlen); 3446 if (IS_ERR(hmacs)) 3447 return PTR_ERR(hmacs); 3448 3449 idents = hmacs->shmac_num_idents; 3450 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3451 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3452 err = -EINVAL; 3453 goto out; 3454 } 3455 3456 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3457 out: 3458 kfree(hmacs); 3459 return err; 3460 } 3461 3462 /* 3463 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3464 * 3465 * This option will set a shared secret key which is used to build an 3466 * association shared key. 3467 */ 3468 static int sctp_setsockopt_auth_key(struct sock *sk, 3469 char __user *optval, 3470 unsigned int optlen) 3471 { 3472 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3473 struct sctp_authkey *authkey; 3474 struct sctp_association *asoc; 3475 int ret; 3476 3477 if (!ep->auth_enable) 3478 return -EACCES; 3479 3480 if (optlen <= sizeof(struct sctp_authkey)) 3481 return -EINVAL; 3482 3483 authkey = memdup_user(optval, optlen); 3484 if (IS_ERR(authkey)) 3485 return PTR_ERR(authkey); 3486 3487 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3488 ret = -EINVAL; 3489 goto out; 3490 } 3491 3492 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3493 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3494 ret = -EINVAL; 3495 goto out; 3496 } 3497 3498 ret = sctp_auth_set_key(ep, asoc, authkey); 3499 out: 3500 kzfree(authkey); 3501 return ret; 3502 } 3503 3504 /* 3505 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3506 * 3507 * This option will get or set the active shared key to be used to build 3508 * the association shared key. 3509 */ 3510 static int sctp_setsockopt_active_key(struct sock *sk, 3511 char __user *optval, 3512 unsigned int optlen) 3513 { 3514 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3515 struct sctp_authkeyid val; 3516 struct sctp_association *asoc; 3517 3518 if (!ep->auth_enable) 3519 return -EACCES; 3520 3521 if (optlen != sizeof(struct sctp_authkeyid)) 3522 return -EINVAL; 3523 if (copy_from_user(&val, optval, optlen)) 3524 return -EFAULT; 3525 3526 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3527 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3528 return -EINVAL; 3529 3530 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3531 } 3532 3533 /* 3534 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3535 * 3536 * This set option will delete a shared secret key from use. 3537 */ 3538 static int sctp_setsockopt_del_key(struct sock *sk, 3539 char __user *optval, 3540 unsigned int optlen) 3541 { 3542 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3543 struct sctp_authkeyid val; 3544 struct sctp_association *asoc; 3545 3546 if (!ep->auth_enable) 3547 return -EACCES; 3548 3549 if (optlen != sizeof(struct sctp_authkeyid)) 3550 return -EINVAL; 3551 if (copy_from_user(&val, optval, optlen)) 3552 return -EFAULT; 3553 3554 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3555 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3556 return -EINVAL; 3557 3558 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3559 3560 } 3561 3562 /* 3563 * 8.1.23 SCTP_AUTO_ASCONF 3564 * 3565 * This option will enable or disable the use of the automatic generation of 3566 * ASCONF chunks to add and delete addresses to an existing association. Note 3567 * that this option has two caveats namely: a) it only affects sockets that 3568 * are bound to all addresses available to the SCTP stack, and b) the system 3569 * administrator may have an overriding control that turns the ASCONF feature 3570 * off no matter what setting the socket option may have. 3571 * This option expects an integer boolean flag, where a non-zero value turns on 3572 * the option, and a zero value turns off the option. 3573 * Note. In this implementation, socket operation overrides default parameter 3574 * being set by sysctl as well as FreeBSD implementation 3575 */ 3576 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3577 unsigned int optlen) 3578 { 3579 int val; 3580 struct sctp_sock *sp = sctp_sk(sk); 3581 3582 if (optlen < sizeof(int)) 3583 return -EINVAL; 3584 if (get_user(val, (int __user *)optval)) 3585 return -EFAULT; 3586 if (!sctp_is_ep_boundall(sk) && val) 3587 return -EINVAL; 3588 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3589 return 0; 3590 3591 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3592 if (val == 0 && sp->do_auto_asconf) { 3593 list_del(&sp->auto_asconf_list); 3594 sp->do_auto_asconf = 0; 3595 } else if (val && !sp->do_auto_asconf) { 3596 list_add_tail(&sp->auto_asconf_list, 3597 &sock_net(sk)->sctp.auto_asconf_splist); 3598 sp->do_auto_asconf = 1; 3599 } 3600 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3601 return 0; 3602 } 3603 3604 /* 3605 * SCTP_PEER_ADDR_THLDS 3606 * 3607 * This option allows us to alter the partially failed threshold for one or all 3608 * transports in an association. See Section 6.1 of: 3609 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3610 */ 3611 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3612 char __user *optval, 3613 unsigned int optlen) 3614 { 3615 struct sctp_paddrthlds val; 3616 struct sctp_transport *trans; 3617 struct sctp_association *asoc; 3618 3619 if (optlen < sizeof(struct sctp_paddrthlds)) 3620 return -EINVAL; 3621 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3622 sizeof(struct sctp_paddrthlds))) 3623 return -EFAULT; 3624 3625 3626 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3627 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3628 if (!asoc) 3629 return -ENOENT; 3630 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3631 transports) { 3632 if (val.spt_pathmaxrxt) 3633 trans->pathmaxrxt = val.spt_pathmaxrxt; 3634 trans->pf_retrans = val.spt_pathpfthld; 3635 } 3636 3637 if (val.spt_pathmaxrxt) 3638 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3639 asoc->pf_retrans = val.spt_pathpfthld; 3640 } else { 3641 trans = sctp_addr_id2transport(sk, &val.spt_address, 3642 val.spt_assoc_id); 3643 if (!trans) 3644 return -ENOENT; 3645 3646 if (val.spt_pathmaxrxt) 3647 trans->pathmaxrxt = val.spt_pathmaxrxt; 3648 trans->pf_retrans = val.spt_pathpfthld; 3649 } 3650 3651 return 0; 3652 } 3653 3654 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3655 char __user *optval, 3656 unsigned int optlen) 3657 { 3658 int val; 3659 3660 if (optlen < sizeof(int)) 3661 return -EINVAL; 3662 if (get_user(val, (int __user *) optval)) 3663 return -EFAULT; 3664 3665 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3666 3667 return 0; 3668 } 3669 3670 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3671 char __user *optval, 3672 unsigned int optlen) 3673 { 3674 int val; 3675 3676 if (optlen < sizeof(int)) 3677 return -EINVAL; 3678 if (get_user(val, (int __user *) optval)) 3679 return -EFAULT; 3680 3681 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3682 3683 return 0; 3684 } 3685 3686 static int sctp_setsockopt_pr_supported(struct sock *sk, 3687 char __user *optval, 3688 unsigned int optlen) 3689 { 3690 struct sctp_assoc_value params; 3691 struct sctp_association *asoc; 3692 int retval = -EINVAL; 3693 3694 if (optlen != sizeof(params)) 3695 goto out; 3696 3697 if (copy_from_user(¶ms, optval, optlen)) { 3698 retval = -EFAULT; 3699 goto out; 3700 } 3701 3702 asoc = sctp_id2assoc(sk, params.assoc_id); 3703 if (asoc) { 3704 asoc->prsctp_enable = !!params.assoc_value; 3705 } else if (!params.assoc_id) { 3706 struct sctp_sock *sp = sctp_sk(sk); 3707 3708 sp->ep->prsctp_enable = !!params.assoc_value; 3709 } else { 3710 goto out; 3711 } 3712 3713 retval = 0; 3714 3715 out: 3716 return retval; 3717 } 3718 3719 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3720 char __user *optval, 3721 unsigned int optlen) 3722 { 3723 struct sctp_default_prinfo info; 3724 struct sctp_association *asoc; 3725 int retval = -EINVAL; 3726 3727 if (optlen != sizeof(info)) 3728 goto out; 3729 3730 if (copy_from_user(&info, optval, sizeof(info))) { 3731 retval = -EFAULT; 3732 goto out; 3733 } 3734 3735 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3736 goto out; 3737 3738 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3739 info.pr_value = 0; 3740 3741 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3742 if (asoc) { 3743 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3744 asoc->default_timetolive = info.pr_value; 3745 } else if (!info.pr_assoc_id) { 3746 struct sctp_sock *sp = sctp_sk(sk); 3747 3748 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3749 sp->default_timetolive = info.pr_value; 3750 } else { 3751 goto out; 3752 } 3753 3754 retval = 0; 3755 3756 out: 3757 return retval; 3758 } 3759 3760 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3761 char __user *optval, 3762 unsigned int optlen) 3763 { 3764 struct sctp_assoc_value params; 3765 struct sctp_association *asoc; 3766 int retval = -EINVAL; 3767 3768 if (optlen != sizeof(params)) 3769 goto out; 3770 3771 if (copy_from_user(¶ms, optval, optlen)) { 3772 retval = -EFAULT; 3773 goto out; 3774 } 3775 3776 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3777 goto out; 3778 3779 asoc = sctp_id2assoc(sk, params.assoc_id); 3780 if (asoc) { 3781 asoc->strreset_enable = params.assoc_value; 3782 } else if (!params.assoc_id) { 3783 struct sctp_sock *sp = sctp_sk(sk); 3784 3785 sp->ep->strreset_enable = params.assoc_value; 3786 } else { 3787 goto out; 3788 } 3789 3790 retval = 0; 3791 3792 out: 3793 return retval; 3794 } 3795 3796 static int sctp_setsockopt_reset_streams(struct sock *sk, 3797 char __user *optval, 3798 unsigned int optlen) 3799 { 3800 struct sctp_reset_streams *params; 3801 struct sctp_association *asoc; 3802 int retval = -EINVAL; 3803 3804 if (optlen < sizeof(struct sctp_reset_streams)) 3805 return -EINVAL; 3806 3807 params = memdup_user(optval, optlen); 3808 if (IS_ERR(params)) 3809 return PTR_ERR(params); 3810 3811 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3812 if (!asoc) 3813 goto out; 3814 3815 retval = sctp_send_reset_streams(asoc, params); 3816 3817 out: 3818 kfree(params); 3819 return retval; 3820 } 3821 3822 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3823 char __user *optval, 3824 unsigned int optlen) 3825 { 3826 struct sctp_association *asoc; 3827 sctp_assoc_t associd; 3828 int retval = -EINVAL; 3829 3830 if (optlen != sizeof(associd)) 3831 goto out; 3832 3833 if (copy_from_user(&associd, optval, optlen)) { 3834 retval = -EFAULT; 3835 goto out; 3836 } 3837 3838 asoc = sctp_id2assoc(sk, associd); 3839 if (!asoc) 3840 goto out; 3841 3842 retval = sctp_send_reset_assoc(asoc); 3843 3844 out: 3845 return retval; 3846 } 3847 3848 static int sctp_setsockopt_add_streams(struct sock *sk, 3849 char __user *optval, 3850 unsigned int optlen) 3851 { 3852 struct sctp_association *asoc; 3853 struct sctp_add_streams params; 3854 int retval = -EINVAL; 3855 3856 if (optlen != sizeof(params)) 3857 goto out; 3858 3859 if (copy_from_user(¶ms, optval, optlen)) { 3860 retval = -EFAULT; 3861 goto out; 3862 } 3863 3864 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3865 if (!asoc) 3866 goto out; 3867 3868 retval = sctp_send_add_streams(asoc, ¶ms); 3869 3870 out: 3871 return retval; 3872 } 3873 3874 /* API 6.2 setsockopt(), getsockopt() 3875 * 3876 * Applications use setsockopt() and getsockopt() to set or retrieve 3877 * socket options. Socket options are used to change the default 3878 * behavior of sockets calls. They are described in Section 7. 3879 * 3880 * The syntax is: 3881 * 3882 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3883 * int __user *optlen); 3884 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3885 * int optlen); 3886 * 3887 * sd - the socket descript. 3888 * level - set to IPPROTO_SCTP for all SCTP options. 3889 * optname - the option name. 3890 * optval - the buffer to store the value of the option. 3891 * optlen - the size of the buffer. 3892 */ 3893 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3894 char __user *optval, unsigned int optlen) 3895 { 3896 int retval = 0; 3897 3898 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3899 3900 /* I can hardly begin to describe how wrong this is. This is 3901 * so broken as to be worse than useless. The API draft 3902 * REALLY is NOT helpful here... I am not convinced that the 3903 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3904 * are at all well-founded. 3905 */ 3906 if (level != SOL_SCTP) { 3907 struct sctp_af *af = sctp_sk(sk)->pf->af; 3908 retval = af->setsockopt(sk, level, optname, optval, optlen); 3909 goto out_nounlock; 3910 } 3911 3912 lock_sock(sk); 3913 3914 switch (optname) { 3915 case SCTP_SOCKOPT_BINDX_ADD: 3916 /* 'optlen' is the size of the addresses buffer. */ 3917 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3918 optlen, SCTP_BINDX_ADD_ADDR); 3919 break; 3920 3921 case SCTP_SOCKOPT_BINDX_REM: 3922 /* 'optlen' is the size of the addresses buffer. */ 3923 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3924 optlen, SCTP_BINDX_REM_ADDR); 3925 break; 3926 3927 case SCTP_SOCKOPT_CONNECTX_OLD: 3928 /* 'optlen' is the size of the addresses buffer. */ 3929 retval = sctp_setsockopt_connectx_old(sk, 3930 (struct sockaddr __user *)optval, 3931 optlen); 3932 break; 3933 3934 case SCTP_SOCKOPT_CONNECTX: 3935 /* 'optlen' is the size of the addresses buffer. */ 3936 retval = sctp_setsockopt_connectx(sk, 3937 (struct sockaddr __user *)optval, 3938 optlen); 3939 break; 3940 3941 case SCTP_DISABLE_FRAGMENTS: 3942 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3943 break; 3944 3945 case SCTP_EVENTS: 3946 retval = sctp_setsockopt_events(sk, optval, optlen); 3947 break; 3948 3949 case SCTP_AUTOCLOSE: 3950 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3951 break; 3952 3953 case SCTP_PEER_ADDR_PARAMS: 3954 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3955 break; 3956 3957 case SCTP_DELAYED_SACK: 3958 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3959 break; 3960 case SCTP_PARTIAL_DELIVERY_POINT: 3961 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3962 break; 3963 3964 case SCTP_INITMSG: 3965 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3966 break; 3967 case SCTP_DEFAULT_SEND_PARAM: 3968 retval = sctp_setsockopt_default_send_param(sk, optval, 3969 optlen); 3970 break; 3971 case SCTP_DEFAULT_SNDINFO: 3972 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3973 break; 3974 case SCTP_PRIMARY_ADDR: 3975 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3976 break; 3977 case SCTP_SET_PEER_PRIMARY_ADDR: 3978 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3979 break; 3980 case SCTP_NODELAY: 3981 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3982 break; 3983 case SCTP_RTOINFO: 3984 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3985 break; 3986 case SCTP_ASSOCINFO: 3987 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3988 break; 3989 case SCTP_I_WANT_MAPPED_V4_ADDR: 3990 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3991 break; 3992 case SCTP_MAXSEG: 3993 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3994 break; 3995 case SCTP_ADAPTATION_LAYER: 3996 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3997 break; 3998 case SCTP_CONTEXT: 3999 retval = sctp_setsockopt_context(sk, optval, optlen); 4000 break; 4001 case SCTP_FRAGMENT_INTERLEAVE: 4002 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4003 break; 4004 case SCTP_MAX_BURST: 4005 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4006 break; 4007 case SCTP_AUTH_CHUNK: 4008 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4009 break; 4010 case SCTP_HMAC_IDENT: 4011 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4012 break; 4013 case SCTP_AUTH_KEY: 4014 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4015 break; 4016 case SCTP_AUTH_ACTIVE_KEY: 4017 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4018 break; 4019 case SCTP_AUTH_DELETE_KEY: 4020 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4021 break; 4022 case SCTP_AUTO_ASCONF: 4023 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4024 break; 4025 case SCTP_PEER_ADDR_THLDS: 4026 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4027 break; 4028 case SCTP_RECVRCVINFO: 4029 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4030 break; 4031 case SCTP_RECVNXTINFO: 4032 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4033 break; 4034 case SCTP_PR_SUPPORTED: 4035 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4036 break; 4037 case SCTP_DEFAULT_PRINFO: 4038 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4039 break; 4040 case SCTP_ENABLE_STREAM_RESET: 4041 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4042 break; 4043 case SCTP_RESET_STREAMS: 4044 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4045 break; 4046 case SCTP_RESET_ASSOC: 4047 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4048 break; 4049 case SCTP_ADD_STREAMS: 4050 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4051 break; 4052 default: 4053 retval = -ENOPROTOOPT; 4054 break; 4055 } 4056 4057 release_sock(sk); 4058 4059 out_nounlock: 4060 return retval; 4061 } 4062 4063 /* API 3.1.6 connect() - UDP Style Syntax 4064 * 4065 * An application may use the connect() call in the UDP model to initiate an 4066 * association without sending data. 4067 * 4068 * The syntax is: 4069 * 4070 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4071 * 4072 * sd: the socket descriptor to have a new association added to. 4073 * 4074 * nam: the address structure (either struct sockaddr_in or struct 4075 * sockaddr_in6 defined in RFC2553 [7]). 4076 * 4077 * len: the size of the address. 4078 */ 4079 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4080 int addr_len) 4081 { 4082 int err = 0; 4083 struct sctp_af *af; 4084 4085 lock_sock(sk); 4086 4087 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4088 addr, addr_len); 4089 4090 /* Validate addr_len before calling common connect/connectx routine. */ 4091 af = sctp_get_af_specific(addr->sa_family); 4092 if (!af || addr_len < af->sockaddr_len) { 4093 err = -EINVAL; 4094 } else { 4095 /* Pass correct addr len to common routine (so it knows there 4096 * is only one address being passed. 4097 */ 4098 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4099 } 4100 4101 release_sock(sk); 4102 return err; 4103 } 4104 4105 /* FIXME: Write comments. */ 4106 static int sctp_disconnect(struct sock *sk, int flags) 4107 { 4108 return -EOPNOTSUPP; /* STUB */ 4109 } 4110 4111 /* 4.1.4 accept() - TCP Style Syntax 4112 * 4113 * Applications use accept() call to remove an established SCTP 4114 * association from the accept queue of the endpoint. A new socket 4115 * descriptor will be returned from accept() to represent the newly 4116 * formed association. 4117 */ 4118 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 4119 { 4120 struct sctp_sock *sp; 4121 struct sctp_endpoint *ep; 4122 struct sock *newsk = NULL; 4123 struct sctp_association *asoc; 4124 long timeo; 4125 int error = 0; 4126 4127 lock_sock(sk); 4128 4129 sp = sctp_sk(sk); 4130 ep = sp->ep; 4131 4132 if (!sctp_style(sk, TCP)) { 4133 error = -EOPNOTSUPP; 4134 goto out; 4135 } 4136 4137 if (!sctp_sstate(sk, LISTENING)) { 4138 error = -EINVAL; 4139 goto out; 4140 } 4141 4142 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4143 4144 error = sctp_wait_for_accept(sk, timeo); 4145 if (error) 4146 goto out; 4147 4148 /* We treat the list of associations on the endpoint as the accept 4149 * queue and pick the first association on the list. 4150 */ 4151 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4152 4153 newsk = sp->pf->create_accept_sk(sk, asoc); 4154 if (!newsk) { 4155 error = -ENOMEM; 4156 goto out; 4157 } 4158 4159 /* Populate the fields of the newsk from the oldsk and migrate the 4160 * asoc to the newsk. 4161 */ 4162 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4163 4164 out: 4165 release_sock(sk); 4166 *err = error; 4167 return newsk; 4168 } 4169 4170 /* The SCTP ioctl handler. */ 4171 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4172 { 4173 int rc = -ENOTCONN; 4174 4175 lock_sock(sk); 4176 4177 /* 4178 * SEQPACKET-style sockets in LISTENING state are valid, for 4179 * SCTP, so only discard TCP-style sockets in LISTENING state. 4180 */ 4181 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4182 goto out; 4183 4184 switch (cmd) { 4185 case SIOCINQ: { 4186 struct sk_buff *skb; 4187 unsigned int amount = 0; 4188 4189 skb = skb_peek(&sk->sk_receive_queue); 4190 if (skb != NULL) { 4191 /* 4192 * We will only return the amount of this packet since 4193 * that is all that will be read. 4194 */ 4195 amount = skb->len; 4196 } 4197 rc = put_user(amount, (int __user *)arg); 4198 break; 4199 } 4200 default: 4201 rc = -ENOIOCTLCMD; 4202 break; 4203 } 4204 out: 4205 release_sock(sk); 4206 return rc; 4207 } 4208 4209 /* This is the function which gets called during socket creation to 4210 * initialized the SCTP-specific portion of the sock. 4211 * The sock structure should already be zero-filled memory. 4212 */ 4213 static int sctp_init_sock(struct sock *sk) 4214 { 4215 struct net *net = sock_net(sk); 4216 struct sctp_sock *sp; 4217 4218 pr_debug("%s: sk:%p\n", __func__, sk); 4219 4220 sp = sctp_sk(sk); 4221 4222 /* Initialize the SCTP per socket area. */ 4223 switch (sk->sk_type) { 4224 case SOCK_SEQPACKET: 4225 sp->type = SCTP_SOCKET_UDP; 4226 break; 4227 case SOCK_STREAM: 4228 sp->type = SCTP_SOCKET_TCP; 4229 break; 4230 default: 4231 return -ESOCKTNOSUPPORT; 4232 } 4233 4234 sk->sk_gso_type = SKB_GSO_SCTP; 4235 4236 /* Initialize default send parameters. These parameters can be 4237 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4238 */ 4239 sp->default_stream = 0; 4240 sp->default_ppid = 0; 4241 sp->default_flags = 0; 4242 sp->default_context = 0; 4243 sp->default_timetolive = 0; 4244 4245 sp->default_rcv_context = 0; 4246 sp->max_burst = net->sctp.max_burst; 4247 4248 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4249 4250 /* Initialize default setup parameters. These parameters 4251 * can be modified with the SCTP_INITMSG socket option or 4252 * overridden by the SCTP_INIT CMSG. 4253 */ 4254 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4255 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4256 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4257 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4258 4259 /* Initialize default RTO related parameters. These parameters can 4260 * be modified for with the SCTP_RTOINFO socket option. 4261 */ 4262 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4263 sp->rtoinfo.srto_max = net->sctp.rto_max; 4264 sp->rtoinfo.srto_min = net->sctp.rto_min; 4265 4266 /* Initialize default association related parameters. These parameters 4267 * can be modified with the SCTP_ASSOCINFO socket option. 4268 */ 4269 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4270 sp->assocparams.sasoc_number_peer_destinations = 0; 4271 sp->assocparams.sasoc_peer_rwnd = 0; 4272 sp->assocparams.sasoc_local_rwnd = 0; 4273 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4274 4275 /* Initialize default event subscriptions. By default, all the 4276 * options are off. 4277 */ 4278 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4279 4280 /* Default Peer Address Parameters. These defaults can 4281 * be modified via SCTP_PEER_ADDR_PARAMS 4282 */ 4283 sp->hbinterval = net->sctp.hb_interval; 4284 sp->pathmaxrxt = net->sctp.max_retrans_path; 4285 sp->pathmtu = 0; /* allow default discovery */ 4286 sp->sackdelay = net->sctp.sack_timeout; 4287 sp->sackfreq = 2; 4288 sp->param_flags = SPP_HB_ENABLE | 4289 SPP_PMTUD_ENABLE | 4290 SPP_SACKDELAY_ENABLE; 4291 4292 /* If enabled no SCTP message fragmentation will be performed. 4293 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4294 */ 4295 sp->disable_fragments = 0; 4296 4297 /* Enable Nagle algorithm by default. */ 4298 sp->nodelay = 0; 4299 4300 sp->recvrcvinfo = 0; 4301 sp->recvnxtinfo = 0; 4302 4303 /* Enable by default. */ 4304 sp->v4mapped = 1; 4305 4306 /* Auto-close idle associations after the configured 4307 * number of seconds. A value of 0 disables this 4308 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4309 * for UDP-style sockets only. 4310 */ 4311 sp->autoclose = 0; 4312 4313 /* User specified fragmentation limit. */ 4314 sp->user_frag = 0; 4315 4316 sp->adaptation_ind = 0; 4317 4318 sp->pf = sctp_get_pf_specific(sk->sk_family); 4319 4320 /* Control variables for partial data delivery. */ 4321 atomic_set(&sp->pd_mode, 0); 4322 skb_queue_head_init(&sp->pd_lobby); 4323 sp->frag_interleave = 0; 4324 4325 /* Create a per socket endpoint structure. Even if we 4326 * change the data structure relationships, this may still 4327 * be useful for storing pre-connect address information. 4328 */ 4329 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4330 if (!sp->ep) 4331 return -ENOMEM; 4332 4333 sp->hmac = NULL; 4334 4335 sk->sk_destruct = sctp_destruct_sock; 4336 4337 SCTP_DBG_OBJCNT_INC(sock); 4338 4339 local_bh_disable(); 4340 percpu_counter_inc(&sctp_sockets_allocated); 4341 sock_prot_inuse_add(net, sk->sk_prot, 1); 4342 4343 /* Nothing can fail after this block, otherwise 4344 * sctp_destroy_sock() will be called without addr_wq_lock held 4345 */ 4346 if (net->sctp.default_auto_asconf) { 4347 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4348 list_add_tail(&sp->auto_asconf_list, 4349 &net->sctp.auto_asconf_splist); 4350 sp->do_auto_asconf = 1; 4351 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4352 } else { 4353 sp->do_auto_asconf = 0; 4354 } 4355 4356 local_bh_enable(); 4357 4358 return 0; 4359 } 4360 4361 /* Cleanup any SCTP per socket resources. Must be called with 4362 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4363 */ 4364 static void sctp_destroy_sock(struct sock *sk) 4365 { 4366 struct sctp_sock *sp; 4367 4368 pr_debug("%s: sk:%p\n", __func__, sk); 4369 4370 /* Release our hold on the endpoint. */ 4371 sp = sctp_sk(sk); 4372 /* This could happen during socket init, thus we bail out 4373 * early, since the rest of the below is not setup either. 4374 */ 4375 if (sp->ep == NULL) 4376 return; 4377 4378 if (sp->do_auto_asconf) { 4379 sp->do_auto_asconf = 0; 4380 list_del(&sp->auto_asconf_list); 4381 } 4382 sctp_endpoint_free(sp->ep); 4383 local_bh_disable(); 4384 percpu_counter_dec(&sctp_sockets_allocated); 4385 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4386 local_bh_enable(); 4387 } 4388 4389 /* Triggered when there are no references on the socket anymore */ 4390 static void sctp_destruct_sock(struct sock *sk) 4391 { 4392 struct sctp_sock *sp = sctp_sk(sk); 4393 4394 /* Free up the HMAC transform. */ 4395 crypto_free_shash(sp->hmac); 4396 4397 inet_sock_destruct(sk); 4398 } 4399 4400 /* API 4.1.7 shutdown() - TCP Style Syntax 4401 * int shutdown(int socket, int how); 4402 * 4403 * sd - the socket descriptor of the association to be closed. 4404 * how - Specifies the type of shutdown. The values are 4405 * as follows: 4406 * SHUT_RD 4407 * Disables further receive operations. No SCTP 4408 * protocol action is taken. 4409 * SHUT_WR 4410 * Disables further send operations, and initiates 4411 * the SCTP shutdown sequence. 4412 * SHUT_RDWR 4413 * Disables further send and receive operations 4414 * and initiates the SCTP shutdown sequence. 4415 */ 4416 static void sctp_shutdown(struct sock *sk, int how) 4417 { 4418 struct net *net = sock_net(sk); 4419 struct sctp_endpoint *ep; 4420 4421 if (!sctp_style(sk, TCP)) 4422 return; 4423 4424 ep = sctp_sk(sk)->ep; 4425 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4426 struct sctp_association *asoc; 4427 4428 sk->sk_state = SCTP_SS_CLOSING; 4429 asoc = list_entry(ep->asocs.next, 4430 struct sctp_association, asocs); 4431 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4432 } 4433 } 4434 4435 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4436 struct sctp_info *info) 4437 { 4438 struct sctp_transport *prim; 4439 struct list_head *pos; 4440 int mask; 4441 4442 memset(info, 0, sizeof(*info)); 4443 if (!asoc) { 4444 struct sctp_sock *sp = sctp_sk(sk); 4445 4446 info->sctpi_s_autoclose = sp->autoclose; 4447 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4448 info->sctpi_s_pd_point = sp->pd_point; 4449 info->sctpi_s_nodelay = sp->nodelay; 4450 info->sctpi_s_disable_fragments = sp->disable_fragments; 4451 info->sctpi_s_v4mapped = sp->v4mapped; 4452 info->sctpi_s_frag_interleave = sp->frag_interleave; 4453 info->sctpi_s_type = sp->type; 4454 4455 return 0; 4456 } 4457 4458 info->sctpi_tag = asoc->c.my_vtag; 4459 info->sctpi_state = asoc->state; 4460 info->sctpi_rwnd = asoc->a_rwnd; 4461 info->sctpi_unackdata = asoc->unack_data; 4462 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4463 info->sctpi_instrms = asoc->c.sinit_max_instreams; 4464 info->sctpi_outstrms = asoc->c.sinit_num_ostreams; 4465 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4466 info->sctpi_inqueue++; 4467 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4468 info->sctpi_outqueue++; 4469 info->sctpi_overall_error = asoc->overall_error_count; 4470 info->sctpi_max_burst = asoc->max_burst; 4471 info->sctpi_maxseg = asoc->frag_point; 4472 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4473 info->sctpi_peer_tag = asoc->c.peer_vtag; 4474 4475 mask = asoc->peer.ecn_capable << 1; 4476 mask = (mask | asoc->peer.ipv4_address) << 1; 4477 mask = (mask | asoc->peer.ipv6_address) << 1; 4478 mask = (mask | asoc->peer.hostname_address) << 1; 4479 mask = (mask | asoc->peer.asconf_capable) << 1; 4480 mask = (mask | asoc->peer.prsctp_capable) << 1; 4481 mask = (mask | asoc->peer.auth_capable); 4482 info->sctpi_peer_capable = mask; 4483 mask = asoc->peer.sack_needed << 1; 4484 mask = (mask | asoc->peer.sack_generation) << 1; 4485 mask = (mask | asoc->peer.zero_window_announced); 4486 info->sctpi_peer_sack = mask; 4487 4488 info->sctpi_isacks = asoc->stats.isacks; 4489 info->sctpi_osacks = asoc->stats.osacks; 4490 info->sctpi_opackets = asoc->stats.opackets; 4491 info->sctpi_ipackets = asoc->stats.ipackets; 4492 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4493 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4494 info->sctpi_idupchunks = asoc->stats.idupchunks; 4495 info->sctpi_gapcnt = asoc->stats.gapcnt; 4496 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4497 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4498 info->sctpi_oodchunks = asoc->stats.oodchunks; 4499 info->sctpi_iodchunks = asoc->stats.iodchunks; 4500 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4501 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4502 4503 prim = asoc->peer.primary_path; 4504 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4505 sizeof(struct sockaddr_storage)); 4506 info->sctpi_p_state = prim->state; 4507 info->sctpi_p_cwnd = prim->cwnd; 4508 info->sctpi_p_srtt = prim->srtt; 4509 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4510 info->sctpi_p_hbinterval = prim->hbinterval; 4511 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4512 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4513 info->sctpi_p_ssthresh = prim->ssthresh; 4514 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4515 info->sctpi_p_flight_size = prim->flight_size; 4516 info->sctpi_p_error = prim->error_count; 4517 4518 return 0; 4519 } 4520 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4521 4522 /* use callback to avoid exporting the core structure */ 4523 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4524 { 4525 int err; 4526 4527 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4528 4529 err = rhashtable_walk_start(iter); 4530 if (err && err != -EAGAIN) { 4531 rhashtable_walk_stop(iter); 4532 rhashtable_walk_exit(iter); 4533 return err; 4534 } 4535 4536 return 0; 4537 } 4538 4539 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4540 { 4541 rhashtable_walk_stop(iter); 4542 rhashtable_walk_exit(iter); 4543 } 4544 4545 struct sctp_transport *sctp_transport_get_next(struct net *net, 4546 struct rhashtable_iter *iter) 4547 { 4548 struct sctp_transport *t; 4549 4550 t = rhashtable_walk_next(iter); 4551 for (; t; t = rhashtable_walk_next(iter)) { 4552 if (IS_ERR(t)) { 4553 if (PTR_ERR(t) == -EAGAIN) 4554 continue; 4555 break; 4556 } 4557 4558 if (net_eq(sock_net(t->asoc->base.sk), net) && 4559 t->asoc->peer.primary_path == t) 4560 break; 4561 } 4562 4563 return t; 4564 } 4565 4566 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4567 struct rhashtable_iter *iter, 4568 int pos) 4569 { 4570 void *obj = SEQ_START_TOKEN; 4571 4572 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4573 !IS_ERR(obj)) 4574 pos--; 4575 4576 return obj; 4577 } 4578 4579 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4580 void *p) { 4581 int err = 0; 4582 int hash = 0; 4583 struct sctp_ep_common *epb; 4584 struct sctp_hashbucket *head; 4585 4586 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4587 hash++, head++) { 4588 read_lock(&head->lock); 4589 sctp_for_each_hentry(epb, &head->chain) { 4590 err = cb(sctp_ep(epb), p); 4591 if (err) 4592 break; 4593 } 4594 read_unlock(&head->lock); 4595 } 4596 4597 return err; 4598 } 4599 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4600 4601 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4602 struct net *net, 4603 const union sctp_addr *laddr, 4604 const union sctp_addr *paddr, void *p) 4605 { 4606 struct sctp_transport *transport; 4607 int err; 4608 4609 rcu_read_lock(); 4610 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4611 rcu_read_unlock(); 4612 if (!transport) 4613 return -ENOENT; 4614 4615 err = cb(transport, p); 4616 sctp_transport_put(transport); 4617 4618 return err; 4619 } 4620 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4621 4622 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4623 struct net *net, int pos, void *p) { 4624 struct rhashtable_iter hti; 4625 void *obj; 4626 int err; 4627 4628 err = sctp_transport_walk_start(&hti); 4629 if (err) 4630 return err; 4631 4632 sctp_transport_get_idx(net, &hti, pos); 4633 obj = sctp_transport_get_next(net, &hti); 4634 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) { 4635 struct sctp_transport *transport = obj; 4636 4637 if (!sctp_transport_hold(transport)) 4638 continue; 4639 err = cb(transport, p); 4640 sctp_transport_put(transport); 4641 if (err) 4642 break; 4643 } 4644 sctp_transport_walk_stop(&hti); 4645 4646 return err; 4647 } 4648 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4649 4650 /* 7.2.1 Association Status (SCTP_STATUS) 4651 4652 * Applications can retrieve current status information about an 4653 * association, including association state, peer receiver window size, 4654 * number of unacked data chunks, and number of data chunks pending 4655 * receipt. This information is read-only. 4656 */ 4657 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4658 char __user *optval, 4659 int __user *optlen) 4660 { 4661 struct sctp_status status; 4662 struct sctp_association *asoc = NULL; 4663 struct sctp_transport *transport; 4664 sctp_assoc_t associd; 4665 int retval = 0; 4666 4667 if (len < sizeof(status)) { 4668 retval = -EINVAL; 4669 goto out; 4670 } 4671 4672 len = sizeof(status); 4673 if (copy_from_user(&status, optval, len)) { 4674 retval = -EFAULT; 4675 goto out; 4676 } 4677 4678 associd = status.sstat_assoc_id; 4679 asoc = sctp_id2assoc(sk, associd); 4680 if (!asoc) { 4681 retval = -EINVAL; 4682 goto out; 4683 } 4684 4685 transport = asoc->peer.primary_path; 4686 4687 status.sstat_assoc_id = sctp_assoc2id(asoc); 4688 status.sstat_state = sctp_assoc_to_state(asoc); 4689 status.sstat_rwnd = asoc->peer.rwnd; 4690 status.sstat_unackdata = asoc->unack_data; 4691 4692 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4693 status.sstat_instrms = asoc->c.sinit_max_instreams; 4694 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4695 status.sstat_fragmentation_point = asoc->frag_point; 4696 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4697 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4698 transport->af_specific->sockaddr_len); 4699 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4700 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4701 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4702 status.sstat_primary.spinfo_state = transport->state; 4703 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4704 status.sstat_primary.spinfo_srtt = transport->srtt; 4705 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4706 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4707 4708 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4709 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4710 4711 if (put_user(len, optlen)) { 4712 retval = -EFAULT; 4713 goto out; 4714 } 4715 4716 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4717 __func__, len, status.sstat_state, status.sstat_rwnd, 4718 status.sstat_assoc_id); 4719 4720 if (copy_to_user(optval, &status, len)) { 4721 retval = -EFAULT; 4722 goto out; 4723 } 4724 4725 out: 4726 return retval; 4727 } 4728 4729 4730 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4731 * 4732 * Applications can retrieve information about a specific peer address 4733 * of an association, including its reachability state, congestion 4734 * window, and retransmission timer values. This information is 4735 * read-only. 4736 */ 4737 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4738 char __user *optval, 4739 int __user *optlen) 4740 { 4741 struct sctp_paddrinfo pinfo; 4742 struct sctp_transport *transport; 4743 int retval = 0; 4744 4745 if (len < sizeof(pinfo)) { 4746 retval = -EINVAL; 4747 goto out; 4748 } 4749 4750 len = sizeof(pinfo); 4751 if (copy_from_user(&pinfo, optval, len)) { 4752 retval = -EFAULT; 4753 goto out; 4754 } 4755 4756 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4757 pinfo.spinfo_assoc_id); 4758 if (!transport) 4759 return -EINVAL; 4760 4761 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4762 pinfo.spinfo_state = transport->state; 4763 pinfo.spinfo_cwnd = transport->cwnd; 4764 pinfo.spinfo_srtt = transport->srtt; 4765 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4766 pinfo.spinfo_mtu = transport->pathmtu; 4767 4768 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4769 pinfo.spinfo_state = SCTP_ACTIVE; 4770 4771 if (put_user(len, optlen)) { 4772 retval = -EFAULT; 4773 goto out; 4774 } 4775 4776 if (copy_to_user(optval, &pinfo, len)) { 4777 retval = -EFAULT; 4778 goto out; 4779 } 4780 4781 out: 4782 return retval; 4783 } 4784 4785 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4786 * 4787 * This option is a on/off flag. If enabled no SCTP message 4788 * fragmentation will be performed. Instead if a message being sent 4789 * exceeds the current PMTU size, the message will NOT be sent and 4790 * instead a error will be indicated to the user. 4791 */ 4792 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4793 char __user *optval, int __user *optlen) 4794 { 4795 int val; 4796 4797 if (len < sizeof(int)) 4798 return -EINVAL; 4799 4800 len = sizeof(int); 4801 val = (sctp_sk(sk)->disable_fragments == 1); 4802 if (put_user(len, optlen)) 4803 return -EFAULT; 4804 if (copy_to_user(optval, &val, len)) 4805 return -EFAULT; 4806 return 0; 4807 } 4808 4809 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4810 * 4811 * This socket option is used to specify various notifications and 4812 * ancillary data the user wishes to receive. 4813 */ 4814 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4815 int __user *optlen) 4816 { 4817 if (len == 0) 4818 return -EINVAL; 4819 if (len > sizeof(struct sctp_event_subscribe)) 4820 len = sizeof(struct sctp_event_subscribe); 4821 if (put_user(len, optlen)) 4822 return -EFAULT; 4823 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4824 return -EFAULT; 4825 return 0; 4826 } 4827 4828 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4829 * 4830 * This socket option is applicable to the UDP-style socket only. When 4831 * set it will cause associations that are idle for more than the 4832 * specified number of seconds to automatically close. An association 4833 * being idle is defined an association that has NOT sent or received 4834 * user data. The special value of '0' indicates that no automatic 4835 * close of any associations should be performed. The option expects an 4836 * integer defining the number of seconds of idle time before an 4837 * association is closed. 4838 */ 4839 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4840 { 4841 /* Applicable to UDP-style socket only */ 4842 if (sctp_style(sk, TCP)) 4843 return -EOPNOTSUPP; 4844 if (len < sizeof(int)) 4845 return -EINVAL; 4846 len = sizeof(int); 4847 if (put_user(len, optlen)) 4848 return -EFAULT; 4849 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4850 return -EFAULT; 4851 return 0; 4852 } 4853 4854 /* Helper routine to branch off an association to a new socket. */ 4855 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4856 { 4857 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4858 struct sctp_sock *sp = sctp_sk(sk); 4859 struct socket *sock; 4860 int err = 0; 4861 4862 if (!asoc) 4863 return -EINVAL; 4864 4865 /* An association cannot be branched off from an already peeled-off 4866 * socket, nor is this supported for tcp style sockets. 4867 */ 4868 if (!sctp_style(sk, UDP)) 4869 return -EINVAL; 4870 4871 /* Create a new socket. */ 4872 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4873 if (err < 0) 4874 return err; 4875 4876 sctp_copy_sock(sock->sk, sk, asoc); 4877 4878 /* Make peeled-off sockets more like 1-1 accepted sockets. 4879 * Set the daddr and initialize id to something more random 4880 */ 4881 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4882 4883 /* Populate the fields of the newsk from the oldsk and migrate the 4884 * asoc to the newsk. 4885 */ 4886 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4887 4888 *sockp = sock; 4889 4890 return err; 4891 } 4892 EXPORT_SYMBOL(sctp_do_peeloff); 4893 4894 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4895 { 4896 sctp_peeloff_arg_t peeloff; 4897 struct socket *newsock; 4898 struct file *newfile; 4899 int retval = 0; 4900 4901 if (len < sizeof(sctp_peeloff_arg_t)) 4902 return -EINVAL; 4903 len = sizeof(sctp_peeloff_arg_t); 4904 if (copy_from_user(&peeloff, optval, len)) 4905 return -EFAULT; 4906 4907 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4908 if (retval < 0) 4909 goto out; 4910 4911 /* Map the socket to an unused fd that can be returned to the user. */ 4912 retval = get_unused_fd_flags(0); 4913 if (retval < 0) { 4914 sock_release(newsock); 4915 goto out; 4916 } 4917 4918 newfile = sock_alloc_file(newsock, 0, NULL); 4919 if (IS_ERR(newfile)) { 4920 put_unused_fd(retval); 4921 sock_release(newsock); 4922 return PTR_ERR(newfile); 4923 } 4924 4925 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4926 retval); 4927 4928 /* Return the fd mapped to the new socket. */ 4929 if (put_user(len, optlen)) { 4930 fput(newfile); 4931 put_unused_fd(retval); 4932 return -EFAULT; 4933 } 4934 peeloff.sd = retval; 4935 if (copy_to_user(optval, &peeloff, len)) { 4936 fput(newfile); 4937 put_unused_fd(retval); 4938 return -EFAULT; 4939 } 4940 fd_install(retval, newfile); 4941 out: 4942 return retval; 4943 } 4944 4945 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4946 * 4947 * Applications can enable or disable heartbeats for any peer address of 4948 * an association, modify an address's heartbeat interval, force a 4949 * heartbeat to be sent immediately, and adjust the address's maximum 4950 * number of retransmissions sent before an address is considered 4951 * unreachable. The following structure is used to access and modify an 4952 * address's parameters: 4953 * 4954 * struct sctp_paddrparams { 4955 * sctp_assoc_t spp_assoc_id; 4956 * struct sockaddr_storage spp_address; 4957 * uint32_t spp_hbinterval; 4958 * uint16_t spp_pathmaxrxt; 4959 * uint32_t spp_pathmtu; 4960 * uint32_t spp_sackdelay; 4961 * uint32_t spp_flags; 4962 * }; 4963 * 4964 * spp_assoc_id - (one-to-many style socket) This is filled in the 4965 * application, and identifies the association for 4966 * this query. 4967 * spp_address - This specifies which address is of interest. 4968 * spp_hbinterval - This contains the value of the heartbeat interval, 4969 * in milliseconds. If a value of zero 4970 * is present in this field then no changes are to 4971 * be made to this parameter. 4972 * spp_pathmaxrxt - This contains the maximum number of 4973 * retransmissions before this address shall be 4974 * considered unreachable. If a value of zero 4975 * is present in this field then no changes are to 4976 * be made to this parameter. 4977 * spp_pathmtu - When Path MTU discovery is disabled the value 4978 * specified here will be the "fixed" path mtu. 4979 * Note that if the spp_address field is empty 4980 * then all associations on this address will 4981 * have this fixed path mtu set upon them. 4982 * 4983 * spp_sackdelay - When delayed sack is enabled, this value specifies 4984 * the number of milliseconds that sacks will be delayed 4985 * for. This value will apply to all addresses of an 4986 * association if the spp_address field is empty. Note 4987 * also, that if delayed sack is enabled and this 4988 * value is set to 0, no change is made to the last 4989 * recorded delayed sack timer value. 4990 * 4991 * spp_flags - These flags are used to control various features 4992 * on an association. The flag field may contain 4993 * zero or more of the following options. 4994 * 4995 * SPP_HB_ENABLE - Enable heartbeats on the 4996 * specified address. Note that if the address 4997 * field is empty all addresses for the association 4998 * have heartbeats enabled upon them. 4999 * 5000 * SPP_HB_DISABLE - Disable heartbeats on the 5001 * speicifed address. Note that if the address 5002 * field is empty all addresses for the association 5003 * will have their heartbeats disabled. Note also 5004 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5005 * mutually exclusive, only one of these two should 5006 * be specified. Enabling both fields will have 5007 * undetermined results. 5008 * 5009 * SPP_HB_DEMAND - Request a user initiated heartbeat 5010 * to be made immediately. 5011 * 5012 * SPP_PMTUD_ENABLE - This field will enable PMTU 5013 * discovery upon the specified address. Note that 5014 * if the address feild is empty then all addresses 5015 * on the association are effected. 5016 * 5017 * SPP_PMTUD_DISABLE - This field will disable PMTU 5018 * discovery upon the specified address. Note that 5019 * if the address feild is empty then all addresses 5020 * on the association are effected. Not also that 5021 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5022 * exclusive. Enabling both will have undetermined 5023 * results. 5024 * 5025 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5026 * on delayed sack. The time specified in spp_sackdelay 5027 * is used to specify the sack delay for this address. Note 5028 * that if spp_address is empty then all addresses will 5029 * enable delayed sack and take on the sack delay 5030 * value specified in spp_sackdelay. 5031 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5032 * off delayed sack. If the spp_address field is blank then 5033 * delayed sack is disabled for the entire association. Note 5034 * also that this field is mutually exclusive to 5035 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5036 * results. 5037 */ 5038 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5039 char __user *optval, int __user *optlen) 5040 { 5041 struct sctp_paddrparams params; 5042 struct sctp_transport *trans = NULL; 5043 struct sctp_association *asoc = NULL; 5044 struct sctp_sock *sp = sctp_sk(sk); 5045 5046 if (len < sizeof(struct sctp_paddrparams)) 5047 return -EINVAL; 5048 len = sizeof(struct sctp_paddrparams); 5049 if (copy_from_user(¶ms, optval, len)) 5050 return -EFAULT; 5051 5052 /* If an address other than INADDR_ANY is specified, and 5053 * no transport is found, then the request is invalid. 5054 */ 5055 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5056 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5057 params.spp_assoc_id); 5058 if (!trans) { 5059 pr_debug("%s: failed no transport\n", __func__); 5060 return -EINVAL; 5061 } 5062 } 5063 5064 /* Get association, if assoc_id != 0 and the socket is a one 5065 * to many style socket, and an association was not found, then 5066 * the id was invalid. 5067 */ 5068 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5069 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5070 pr_debug("%s: failed no association\n", __func__); 5071 return -EINVAL; 5072 } 5073 5074 if (trans) { 5075 /* Fetch transport values. */ 5076 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5077 params.spp_pathmtu = trans->pathmtu; 5078 params.spp_pathmaxrxt = trans->pathmaxrxt; 5079 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5080 5081 /*draft-11 doesn't say what to return in spp_flags*/ 5082 params.spp_flags = trans->param_flags; 5083 } else if (asoc) { 5084 /* Fetch association values. */ 5085 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5086 params.spp_pathmtu = asoc->pathmtu; 5087 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5088 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5089 5090 /*draft-11 doesn't say what to return in spp_flags*/ 5091 params.spp_flags = asoc->param_flags; 5092 } else { 5093 /* Fetch socket values. */ 5094 params.spp_hbinterval = sp->hbinterval; 5095 params.spp_pathmtu = sp->pathmtu; 5096 params.spp_sackdelay = sp->sackdelay; 5097 params.spp_pathmaxrxt = sp->pathmaxrxt; 5098 5099 /*draft-11 doesn't say what to return in spp_flags*/ 5100 params.spp_flags = sp->param_flags; 5101 } 5102 5103 if (copy_to_user(optval, ¶ms, len)) 5104 return -EFAULT; 5105 5106 if (put_user(len, optlen)) 5107 return -EFAULT; 5108 5109 return 0; 5110 } 5111 5112 /* 5113 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5114 * 5115 * This option will effect the way delayed acks are performed. This 5116 * option allows you to get or set the delayed ack time, in 5117 * milliseconds. It also allows changing the delayed ack frequency. 5118 * Changing the frequency to 1 disables the delayed sack algorithm. If 5119 * the assoc_id is 0, then this sets or gets the endpoints default 5120 * values. If the assoc_id field is non-zero, then the set or get 5121 * effects the specified association for the one to many model (the 5122 * assoc_id field is ignored by the one to one model). Note that if 5123 * sack_delay or sack_freq are 0 when setting this option, then the 5124 * current values will remain unchanged. 5125 * 5126 * struct sctp_sack_info { 5127 * sctp_assoc_t sack_assoc_id; 5128 * uint32_t sack_delay; 5129 * uint32_t sack_freq; 5130 * }; 5131 * 5132 * sack_assoc_id - This parameter, indicates which association the user 5133 * is performing an action upon. Note that if this field's value is 5134 * zero then the endpoints default value is changed (effecting future 5135 * associations only). 5136 * 5137 * sack_delay - This parameter contains the number of milliseconds that 5138 * the user is requesting the delayed ACK timer be set to. Note that 5139 * this value is defined in the standard to be between 200 and 500 5140 * milliseconds. 5141 * 5142 * sack_freq - This parameter contains the number of packets that must 5143 * be received before a sack is sent without waiting for the delay 5144 * timer to expire. The default value for this is 2, setting this 5145 * value to 1 will disable the delayed sack algorithm. 5146 */ 5147 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5148 char __user *optval, 5149 int __user *optlen) 5150 { 5151 struct sctp_sack_info params; 5152 struct sctp_association *asoc = NULL; 5153 struct sctp_sock *sp = sctp_sk(sk); 5154 5155 if (len >= sizeof(struct sctp_sack_info)) { 5156 len = sizeof(struct sctp_sack_info); 5157 5158 if (copy_from_user(¶ms, optval, len)) 5159 return -EFAULT; 5160 } else if (len == sizeof(struct sctp_assoc_value)) { 5161 pr_warn_ratelimited(DEPRECATED 5162 "%s (pid %d) " 5163 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5164 "Use struct sctp_sack_info instead\n", 5165 current->comm, task_pid_nr(current)); 5166 if (copy_from_user(¶ms, optval, len)) 5167 return -EFAULT; 5168 } else 5169 return -EINVAL; 5170 5171 /* Get association, if sack_assoc_id != 0 and the socket is a one 5172 * to many style socket, and an association was not found, then 5173 * the id was invalid. 5174 */ 5175 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5176 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5177 return -EINVAL; 5178 5179 if (asoc) { 5180 /* Fetch association values. */ 5181 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5182 params.sack_delay = jiffies_to_msecs( 5183 asoc->sackdelay); 5184 params.sack_freq = asoc->sackfreq; 5185 5186 } else { 5187 params.sack_delay = 0; 5188 params.sack_freq = 1; 5189 } 5190 } else { 5191 /* Fetch socket values. */ 5192 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5193 params.sack_delay = sp->sackdelay; 5194 params.sack_freq = sp->sackfreq; 5195 } else { 5196 params.sack_delay = 0; 5197 params.sack_freq = 1; 5198 } 5199 } 5200 5201 if (copy_to_user(optval, ¶ms, len)) 5202 return -EFAULT; 5203 5204 if (put_user(len, optlen)) 5205 return -EFAULT; 5206 5207 return 0; 5208 } 5209 5210 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5211 * 5212 * Applications can specify protocol parameters for the default association 5213 * initialization. The option name argument to setsockopt() and getsockopt() 5214 * is SCTP_INITMSG. 5215 * 5216 * Setting initialization parameters is effective only on an unconnected 5217 * socket (for UDP-style sockets only future associations are effected 5218 * by the change). With TCP-style sockets, this option is inherited by 5219 * sockets derived from a listener socket. 5220 */ 5221 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5222 { 5223 if (len < sizeof(struct sctp_initmsg)) 5224 return -EINVAL; 5225 len = sizeof(struct sctp_initmsg); 5226 if (put_user(len, optlen)) 5227 return -EFAULT; 5228 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5229 return -EFAULT; 5230 return 0; 5231 } 5232 5233 5234 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5235 char __user *optval, int __user *optlen) 5236 { 5237 struct sctp_association *asoc; 5238 int cnt = 0; 5239 struct sctp_getaddrs getaddrs; 5240 struct sctp_transport *from; 5241 void __user *to; 5242 union sctp_addr temp; 5243 struct sctp_sock *sp = sctp_sk(sk); 5244 int addrlen; 5245 size_t space_left; 5246 int bytes_copied; 5247 5248 if (len < sizeof(struct sctp_getaddrs)) 5249 return -EINVAL; 5250 5251 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5252 return -EFAULT; 5253 5254 /* For UDP-style sockets, id specifies the association to query. */ 5255 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5256 if (!asoc) 5257 return -EINVAL; 5258 5259 to = optval + offsetof(struct sctp_getaddrs, addrs); 5260 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5261 5262 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5263 transports) { 5264 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5265 addrlen = sctp_get_pf_specific(sk->sk_family) 5266 ->addr_to_user(sp, &temp); 5267 if (space_left < addrlen) 5268 return -ENOMEM; 5269 if (copy_to_user(to, &temp, addrlen)) 5270 return -EFAULT; 5271 to += addrlen; 5272 cnt++; 5273 space_left -= addrlen; 5274 } 5275 5276 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5277 return -EFAULT; 5278 bytes_copied = ((char __user *)to) - optval; 5279 if (put_user(bytes_copied, optlen)) 5280 return -EFAULT; 5281 5282 return 0; 5283 } 5284 5285 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5286 size_t space_left, int *bytes_copied) 5287 { 5288 struct sctp_sockaddr_entry *addr; 5289 union sctp_addr temp; 5290 int cnt = 0; 5291 int addrlen; 5292 struct net *net = sock_net(sk); 5293 5294 rcu_read_lock(); 5295 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5296 if (!addr->valid) 5297 continue; 5298 5299 if ((PF_INET == sk->sk_family) && 5300 (AF_INET6 == addr->a.sa.sa_family)) 5301 continue; 5302 if ((PF_INET6 == sk->sk_family) && 5303 inet_v6_ipv6only(sk) && 5304 (AF_INET == addr->a.sa.sa_family)) 5305 continue; 5306 memcpy(&temp, &addr->a, sizeof(temp)); 5307 if (!temp.v4.sin_port) 5308 temp.v4.sin_port = htons(port); 5309 5310 addrlen = sctp_get_pf_specific(sk->sk_family) 5311 ->addr_to_user(sctp_sk(sk), &temp); 5312 5313 if (space_left < addrlen) { 5314 cnt = -ENOMEM; 5315 break; 5316 } 5317 memcpy(to, &temp, addrlen); 5318 5319 to += addrlen; 5320 cnt++; 5321 space_left -= addrlen; 5322 *bytes_copied += addrlen; 5323 } 5324 rcu_read_unlock(); 5325 5326 return cnt; 5327 } 5328 5329 5330 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5331 char __user *optval, int __user *optlen) 5332 { 5333 struct sctp_bind_addr *bp; 5334 struct sctp_association *asoc; 5335 int cnt = 0; 5336 struct sctp_getaddrs getaddrs; 5337 struct sctp_sockaddr_entry *addr; 5338 void __user *to; 5339 union sctp_addr temp; 5340 struct sctp_sock *sp = sctp_sk(sk); 5341 int addrlen; 5342 int err = 0; 5343 size_t space_left; 5344 int bytes_copied = 0; 5345 void *addrs; 5346 void *buf; 5347 5348 if (len < sizeof(struct sctp_getaddrs)) 5349 return -EINVAL; 5350 5351 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5352 return -EFAULT; 5353 5354 /* 5355 * For UDP-style sockets, id specifies the association to query. 5356 * If the id field is set to the value '0' then the locally bound 5357 * addresses are returned without regard to any particular 5358 * association. 5359 */ 5360 if (0 == getaddrs.assoc_id) { 5361 bp = &sctp_sk(sk)->ep->base.bind_addr; 5362 } else { 5363 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5364 if (!asoc) 5365 return -EINVAL; 5366 bp = &asoc->base.bind_addr; 5367 } 5368 5369 to = optval + offsetof(struct sctp_getaddrs, addrs); 5370 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5371 5372 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5373 if (!addrs) 5374 return -ENOMEM; 5375 5376 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5377 * addresses from the global local address list. 5378 */ 5379 if (sctp_list_single_entry(&bp->address_list)) { 5380 addr = list_entry(bp->address_list.next, 5381 struct sctp_sockaddr_entry, list); 5382 if (sctp_is_any(sk, &addr->a)) { 5383 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5384 space_left, &bytes_copied); 5385 if (cnt < 0) { 5386 err = cnt; 5387 goto out; 5388 } 5389 goto copy_getaddrs; 5390 } 5391 } 5392 5393 buf = addrs; 5394 /* Protection on the bound address list is not needed since 5395 * in the socket option context we hold a socket lock and 5396 * thus the bound address list can't change. 5397 */ 5398 list_for_each_entry(addr, &bp->address_list, list) { 5399 memcpy(&temp, &addr->a, sizeof(temp)); 5400 addrlen = sctp_get_pf_specific(sk->sk_family) 5401 ->addr_to_user(sp, &temp); 5402 if (space_left < addrlen) { 5403 err = -ENOMEM; /*fixme: right error?*/ 5404 goto out; 5405 } 5406 memcpy(buf, &temp, addrlen); 5407 buf += addrlen; 5408 bytes_copied += addrlen; 5409 cnt++; 5410 space_left -= addrlen; 5411 } 5412 5413 copy_getaddrs: 5414 if (copy_to_user(to, addrs, bytes_copied)) { 5415 err = -EFAULT; 5416 goto out; 5417 } 5418 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5419 err = -EFAULT; 5420 goto out; 5421 } 5422 if (put_user(bytes_copied, optlen)) 5423 err = -EFAULT; 5424 out: 5425 kfree(addrs); 5426 return err; 5427 } 5428 5429 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5430 * 5431 * Requests that the local SCTP stack use the enclosed peer address as 5432 * the association primary. The enclosed address must be one of the 5433 * association peer's addresses. 5434 */ 5435 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5436 char __user *optval, int __user *optlen) 5437 { 5438 struct sctp_prim prim; 5439 struct sctp_association *asoc; 5440 struct sctp_sock *sp = sctp_sk(sk); 5441 5442 if (len < sizeof(struct sctp_prim)) 5443 return -EINVAL; 5444 5445 len = sizeof(struct sctp_prim); 5446 5447 if (copy_from_user(&prim, optval, len)) 5448 return -EFAULT; 5449 5450 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5451 if (!asoc) 5452 return -EINVAL; 5453 5454 if (!asoc->peer.primary_path) 5455 return -ENOTCONN; 5456 5457 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5458 asoc->peer.primary_path->af_specific->sockaddr_len); 5459 5460 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5461 (union sctp_addr *)&prim.ssp_addr); 5462 5463 if (put_user(len, optlen)) 5464 return -EFAULT; 5465 if (copy_to_user(optval, &prim, len)) 5466 return -EFAULT; 5467 5468 return 0; 5469 } 5470 5471 /* 5472 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5473 * 5474 * Requests that the local endpoint set the specified Adaptation Layer 5475 * Indication parameter for all future INIT and INIT-ACK exchanges. 5476 */ 5477 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5478 char __user *optval, int __user *optlen) 5479 { 5480 struct sctp_setadaptation adaptation; 5481 5482 if (len < sizeof(struct sctp_setadaptation)) 5483 return -EINVAL; 5484 5485 len = sizeof(struct sctp_setadaptation); 5486 5487 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5488 5489 if (put_user(len, optlen)) 5490 return -EFAULT; 5491 if (copy_to_user(optval, &adaptation, len)) 5492 return -EFAULT; 5493 5494 return 0; 5495 } 5496 5497 /* 5498 * 5499 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5500 * 5501 * Applications that wish to use the sendto() system call may wish to 5502 * specify a default set of parameters that would normally be supplied 5503 * through the inclusion of ancillary data. This socket option allows 5504 * such an application to set the default sctp_sndrcvinfo structure. 5505 5506 5507 * The application that wishes to use this socket option simply passes 5508 * in to this call the sctp_sndrcvinfo structure defined in Section 5509 * 5.2.2) The input parameters accepted by this call include 5510 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5511 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5512 * to this call if the caller is using the UDP model. 5513 * 5514 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5515 */ 5516 static int sctp_getsockopt_default_send_param(struct sock *sk, 5517 int len, char __user *optval, 5518 int __user *optlen) 5519 { 5520 struct sctp_sock *sp = sctp_sk(sk); 5521 struct sctp_association *asoc; 5522 struct sctp_sndrcvinfo info; 5523 5524 if (len < sizeof(info)) 5525 return -EINVAL; 5526 5527 len = sizeof(info); 5528 5529 if (copy_from_user(&info, optval, len)) 5530 return -EFAULT; 5531 5532 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5533 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5534 return -EINVAL; 5535 if (asoc) { 5536 info.sinfo_stream = asoc->default_stream; 5537 info.sinfo_flags = asoc->default_flags; 5538 info.sinfo_ppid = asoc->default_ppid; 5539 info.sinfo_context = asoc->default_context; 5540 info.sinfo_timetolive = asoc->default_timetolive; 5541 } else { 5542 info.sinfo_stream = sp->default_stream; 5543 info.sinfo_flags = sp->default_flags; 5544 info.sinfo_ppid = sp->default_ppid; 5545 info.sinfo_context = sp->default_context; 5546 info.sinfo_timetolive = sp->default_timetolive; 5547 } 5548 5549 if (put_user(len, optlen)) 5550 return -EFAULT; 5551 if (copy_to_user(optval, &info, len)) 5552 return -EFAULT; 5553 5554 return 0; 5555 } 5556 5557 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5558 * (SCTP_DEFAULT_SNDINFO) 5559 */ 5560 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5561 char __user *optval, 5562 int __user *optlen) 5563 { 5564 struct sctp_sock *sp = sctp_sk(sk); 5565 struct sctp_association *asoc; 5566 struct sctp_sndinfo info; 5567 5568 if (len < sizeof(info)) 5569 return -EINVAL; 5570 5571 len = sizeof(info); 5572 5573 if (copy_from_user(&info, optval, len)) 5574 return -EFAULT; 5575 5576 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5577 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5578 return -EINVAL; 5579 if (asoc) { 5580 info.snd_sid = asoc->default_stream; 5581 info.snd_flags = asoc->default_flags; 5582 info.snd_ppid = asoc->default_ppid; 5583 info.snd_context = asoc->default_context; 5584 } else { 5585 info.snd_sid = sp->default_stream; 5586 info.snd_flags = sp->default_flags; 5587 info.snd_ppid = sp->default_ppid; 5588 info.snd_context = sp->default_context; 5589 } 5590 5591 if (put_user(len, optlen)) 5592 return -EFAULT; 5593 if (copy_to_user(optval, &info, len)) 5594 return -EFAULT; 5595 5596 return 0; 5597 } 5598 5599 /* 5600 * 5601 * 7.1.5 SCTP_NODELAY 5602 * 5603 * Turn on/off any Nagle-like algorithm. This means that packets are 5604 * generally sent as soon as possible and no unnecessary delays are 5605 * introduced, at the cost of more packets in the network. Expects an 5606 * integer boolean flag. 5607 */ 5608 5609 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5610 char __user *optval, int __user *optlen) 5611 { 5612 int val; 5613 5614 if (len < sizeof(int)) 5615 return -EINVAL; 5616 5617 len = sizeof(int); 5618 val = (sctp_sk(sk)->nodelay == 1); 5619 if (put_user(len, optlen)) 5620 return -EFAULT; 5621 if (copy_to_user(optval, &val, len)) 5622 return -EFAULT; 5623 return 0; 5624 } 5625 5626 /* 5627 * 5628 * 7.1.1 SCTP_RTOINFO 5629 * 5630 * The protocol parameters used to initialize and bound retransmission 5631 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5632 * and modify these parameters. 5633 * All parameters are time values, in milliseconds. A value of 0, when 5634 * modifying the parameters, indicates that the current value should not 5635 * be changed. 5636 * 5637 */ 5638 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5639 char __user *optval, 5640 int __user *optlen) { 5641 struct sctp_rtoinfo rtoinfo; 5642 struct sctp_association *asoc; 5643 5644 if (len < sizeof (struct sctp_rtoinfo)) 5645 return -EINVAL; 5646 5647 len = sizeof(struct sctp_rtoinfo); 5648 5649 if (copy_from_user(&rtoinfo, optval, len)) 5650 return -EFAULT; 5651 5652 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5653 5654 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5655 return -EINVAL; 5656 5657 /* Values corresponding to the specific association. */ 5658 if (asoc) { 5659 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5660 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5661 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5662 } else { 5663 /* Values corresponding to the endpoint. */ 5664 struct sctp_sock *sp = sctp_sk(sk); 5665 5666 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5667 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5668 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5669 } 5670 5671 if (put_user(len, optlen)) 5672 return -EFAULT; 5673 5674 if (copy_to_user(optval, &rtoinfo, len)) 5675 return -EFAULT; 5676 5677 return 0; 5678 } 5679 5680 /* 5681 * 5682 * 7.1.2 SCTP_ASSOCINFO 5683 * 5684 * This option is used to tune the maximum retransmission attempts 5685 * of the association. 5686 * Returns an error if the new association retransmission value is 5687 * greater than the sum of the retransmission value of the peer. 5688 * See [SCTP] for more information. 5689 * 5690 */ 5691 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5692 char __user *optval, 5693 int __user *optlen) 5694 { 5695 5696 struct sctp_assocparams assocparams; 5697 struct sctp_association *asoc; 5698 struct list_head *pos; 5699 int cnt = 0; 5700 5701 if (len < sizeof (struct sctp_assocparams)) 5702 return -EINVAL; 5703 5704 len = sizeof(struct sctp_assocparams); 5705 5706 if (copy_from_user(&assocparams, optval, len)) 5707 return -EFAULT; 5708 5709 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5710 5711 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5712 return -EINVAL; 5713 5714 /* Values correspoinding to the specific association */ 5715 if (asoc) { 5716 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5717 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5718 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5719 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5720 5721 list_for_each(pos, &asoc->peer.transport_addr_list) { 5722 cnt++; 5723 } 5724 5725 assocparams.sasoc_number_peer_destinations = cnt; 5726 } else { 5727 /* Values corresponding to the endpoint */ 5728 struct sctp_sock *sp = sctp_sk(sk); 5729 5730 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5731 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5732 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5733 assocparams.sasoc_cookie_life = 5734 sp->assocparams.sasoc_cookie_life; 5735 assocparams.sasoc_number_peer_destinations = 5736 sp->assocparams. 5737 sasoc_number_peer_destinations; 5738 } 5739 5740 if (put_user(len, optlen)) 5741 return -EFAULT; 5742 5743 if (copy_to_user(optval, &assocparams, len)) 5744 return -EFAULT; 5745 5746 return 0; 5747 } 5748 5749 /* 5750 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5751 * 5752 * This socket option is a boolean flag which turns on or off mapped V4 5753 * addresses. If this option is turned on and the socket is type 5754 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5755 * If this option is turned off, then no mapping will be done of V4 5756 * addresses and a user will receive both PF_INET6 and PF_INET type 5757 * addresses on the socket. 5758 */ 5759 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5760 char __user *optval, int __user *optlen) 5761 { 5762 int val; 5763 struct sctp_sock *sp = sctp_sk(sk); 5764 5765 if (len < sizeof(int)) 5766 return -EINVAL; 5767 5768 len = sizeof(int); 5769 val = sp->v4mapped; 5770 if (put_user(len, optlen)) 5771 return -EFAULT; 5772 if (copy_to_user(optval, &val, len)) 5773 return -EFAULT; 5774 5775 return 0; 5776 } 5777 5778 /* 5779 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5780 * (chapter and verse is quoted at sctp_setsockopt_context()) 5781 */ 5782 static int sctp_getsockopt_context(struct sock *sk, int len, 5783 char __user *optval, int __user *optlen) 5784 { 5785 struct sctp_assoc_value params; 5786 struct sctp_sock *sp; 5787 struct sctp_association *asoc; 5788 5789 if (len < sizeof(struct sctp_assoc_value)) 5790 return -EINVAL; 5791 5792 len = sizeof(struct sctp_assoc_value); 5793 5794 if (copy_from_user(¶ms, optval, len)) 5795 return -EFAULT; 5796 5797 sp = sctp_sk(sk); 5798 5799 if (params.assoc_id != 0) { 5800 asoc = sctp_id2assoc(sk, params.assoc_id); 5801 if (!asoc) 5802 return -EINVAL; 5803 params.assoc_value = asoc->default_rcv_context; 5804 } else { 5805 params.assoc_value = sp->default_rcv_context; 5806 } 5807 5808 if (put_user(len, optlen)) 5809 return -EFAULT; 5810 if (copy_to_user(optval, ¶ms, len)) 5811 return -EFAULT; 5812 5813 return 0; 5814 } 5815 5816 /* 5817 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5818 * This option will get or set the maximum size to put in any outgoing 5819 * SCTP DATA chunk. If a message is larger than this size it will be 5820 * fragmented by SCTP into the specified size. Note that the underlying 5821 * SCTP implementation may fragment into smaller sized chunks when the 5822 * PMTU of the underlying association is smaller than the value set by 5823 * the user. The default value for this option is '0' which indicates 5824 * the user is NOT limiting fragmentation and only the PMTU will effect 5825 * SCTP's choice of DATA chunk size. Note also that values set larger 5826 * than the maximum size of an IP datagram will effectively let SCTP 5827 * control fragmentation (i.e. the same as setting this option to 0). 5828 * 5829 * The following structure is used to access and modify this parameter: 5830 * 5831 * struct sctp_assoc_value { 5832 * sctp_assoc_t assoc_id; 5833 * uint32_t assoc_value; 5834 * }; 5835 * 5836 * assoc_id: This parameter is ignored for one-to-one style sockets. 5837 * For one-to-many style sockets this parameter indicates which 5838 * association the user is performing an action upon. Note that if 5839 * this field's value is zero then the endpoints default value is 5840 * changed (effecting future associations only). 5841 * assoc_value: This parameter specifies the maximum size in bytes. 5842 */ 5843 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5844 char __user *optval, int __user *optlen) 5845 { 5846 struct sctp_assoc_value params; 5847 struct sctp_association *asoc; 5848 5849 if (len == sizeof(int)) { 5850 pr_warn_ratelimited(DEPRECATED 5851 "%s (pid %d) " 5852 "Use of int in maxseg socket option.\n" 5853 "Use struct sctp_assoc_value instead\n", 5854 current->comm, task_pid_nr(current)); 5855 params.assoc_id = 0; 5856 } else if (len >= sizeof(struct sctp_assoc_value)) { 5857 len = sizeof(struct sctp_assoc_value); 5858 if (copy_from_user(¶ms, optval, sizeof(params))) 5859 return -EFAULT; 5860 } else 5861 return -EINVAL; 5862 5863 asoc = sctp_id2assoc(sk, params.assoc_id); 5864 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5865 return -EINVAL; 5866 5867 if (asoc) 5868 params.assoc_value = asoc->frag_point; 5869 else 5870 params.assoc_value = sctp_sk(sk)->user_frag; 5871 5872 if (put_user(len, optlen)) 5873 return -EFAULT; 5874 if (len == sizeof(int)) { 5875 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5876 return -EFAULT; 5877 } else { 5878 if (copy_to_user(optval, ¶ms, len)) 5879 return -EFAULT; 5880 } 5881 5882 return 0; 5883 } 5884 5885 /* 5886 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5887 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5888 */ 5889 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5890 char __user *optval, int __user *optlen) 5891 { 5892 int val; 5893 5894 if (len < sizeof(int)) 5895 return -EINVAL; 5896 5897 len = sizeof(int); 5898 5899 val = sctp_sk(sk)->frag_interleave; 5900 if (put_user(len, optlen)) 5901 return -EFAULT; 5902 if (copy_to_user(optval, &val, len)) 5903 return -EFAULT; 5904 5905 return 0; 5906 } 5907 5908 /* 5909 * 7.1.25. Set or Get the sctp partial delivery point 5910 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5911 */ 5912 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5913 char __user *optval, 5914 int __user *optlen) 5915 { 5916 u32 val; 5917 5918 if (len < sizeof(u32)) 5919 return -EINVAL; 5920 5921 len = sizeof(u32); 5922 5923 val = sctp_sk(sk)->pd_point; 5924 if (put_user(len, optlen)) 5925 return -EFAULT; 5926 if (copy_to_user(optval, &val, len)) 5927 return -EFAULT; 5928 5929 return 0; 5930 } 5931 5932 /* 5933 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5934 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5935 */ 5936 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5937 char __user *optval, 5938 int __user *optlen) 5939 { 5940 struct sctp_assoc_value params; 5941 struct sctp_sock *sp; 5942 struct sctp_association *asoc; 5943 5944 if (len == sizeof(int)) { 5945 pr_warn_ratelimited(DEPRECATED 5946 "%s (pid %d) " 5947 "Use of int in max_burst socket option.\n" 5948 "Use struct sctp_assoc_value instead\n", 5949 current->comm, task_pid_nr(current)); 5950 params.assoc_id = 0; 5951 } else if (len >= sizeof(struct sctp_assoc_value)) { 5952 len = sizeof(struct sctp_assoc_value); 5953 if (copy_from_user(¶ms, optval, len)) 5954 return -EFAULT; 5955 } else 5956 return -EINVAL; 5957 5958 sp = sctp_sk(sk); 5959 5960 if (params.assoc_id != 0) { 5961 asoc = sctp_id2assoc(sk, params.assoc_id); 5962 if (!asoc) 5963 return -EINVAL; 5964 params.assoc_value = asoc->max_burst; 5965 } else 5966 params.assoc_value = sp->max_burst; 5967 5968 if (len == sizeof(int)) { 5969 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5970 return -EFAULT; 5971 } else { 5972 if (copy_to_user(optval, ¶ms, len)) 5973 return -EFAULT; 5974 } 5975 5976 return 0; 5977 5978 } 5979 5980 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5981 char __user *optval, int __user *optlen) 5982 { 5983 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5984 struct sctp_hmacalgo __user *p = (void __user *)optval; 5985 struct sctp_hmac_algo_param *hmacs; 5986 __u16 data_len = 0; 5987 u32 num_idents; 5988 int i; 5989 5990 if (!ep->auth_enable) 5991 return -EACCES; 5992 5993 hmacs = ep->auth_hmacs_list; 5994 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5995 5996 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5997 return -EINVAL; 5998 5999 len = sizeof(struct sctp_hmacalgo) + data_len; 6000 num_idents = data_len / sizeof(u16); 6001 6002 if (put_user(len, optlen)) 6003 return -EFAULT; 6004 if (put_user(num_idents, &p->shmac_num_idents)) 6005 return -EFAULT; 6006 for (i = 0; i < num_idents; i++) { 6007 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6008 6009 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6010 return -EFAULT; 6011 } 6012 return 0; 6013 } 6014 6015 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6016 char __user *optval, int __user *optlen) 6017 { 6018 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6019 struct sctp_authkeyid val; 6020 struct sctp_association *asoc; 6021 6022 if (!ep->auth_enable) 6023 return -EACCES; 6024 6025 if (len < sizeof(struct sctp_authkeyid)) 6026 return -EINVAL; 6027 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6028 return -EFAULT; 6029 6030 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6031 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6032 return -EINVAL; 6033 6034 if (asoc) 6035 val.scact_keynumber = asoc->active_key_id; 6036 else 6037 val.scact_keynumber = ep->active_key_id; 6038 6039 len = sizeof(struct sctp_authkeyid); 6040 if (put_user(len, optlen)) 6041 return -EFAULT; 6042 if (copy_to_user(optval, &val, len)) 6043 return -EFAULT; 6044 6045 return 0; 6046 } 6047 6048 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6049 char __user *optval, int __user *optlen) 6050 { 6051 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6052 struct sctp_authchunks __user *p = (void __user *)optval; 6053 struct sctp_authchunks val; 6054 struct sctp_association *asoc; 6055 struct sctp_chunks_param *ch; 6056 u32 num_chunks = 0; 6057 char __user *to; 6058 6059 if (!ep->auth_enable) 6060 return -EACCES; 6061 6062 if (len < sizeof(struct sctp_authchunks)) 6063 return -EINVAL; 6064 6065 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6066 return -EFAULT; 6067 6068 to = p->gauth_chunks; 6069 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6070 if (!asoc) 6071 return -EINVAL; 6072 6073 ch = asoc->peer.peer_chunks; 6074 if (!ch) 6075 goto num; 6076 6077 /* See if the user provided enough room for all the data */ 6078 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 6079 if (len < num_chunks) 6080 return -EINVAL; 6081 6082 if (copy_to_user(to, ch->chunks, num_chunks)) 6083 return -EFAULT; 6084 num: 6085 len = sizeof(struct sctp_authchunks) + num_chunks; 6086 if (put_user(len, optlen)) 6087 return -EFAULT; 6088 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6089 return -EFAULT; 6090 return 0; 6091 } 6092 6093 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6094 char __user *optval, int __user *optlen) 6095 { 6096 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6097 struct sctp_authchunks __user *p = (void __user *)optval; 6098 struct sctp_authchunks val; 6099 struct sctp_association *asoc; 6100 struct sctp_chunks_param *ch; 6101 u32 num_chunks = 0; 6102 char __user *to; 6103 6104 if (!ep->auth_enable) 6105 return -EACCES; 6106 6107 if (len < sizeof(struct sctp_authchunks)) 6108 return -EINVAL; 6109 6110 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6111 return -EFAULT; 6112 6113 to = p->gauth_chunks; 6114 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6115 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6116 return -EINVAL; 6117 6118 if (asoc) 6119 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6120 else 6121 ch = ep->auth_chunk_list; 6122 6123 if (!ch) 6124 goto num; 6125 6126 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 6127 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6128 return -EINVAL; 6129 6130 if (copy_to_user(to, ch->chunks, num_chunks)) 6131 return -EFAULT; 6132 num: 6133 len = sizeof(struct sctp_authchunks) + num_chunks; 6134 if (put_user(len, optlen)) 6135 return -EFAULT; 6136 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6137 return -EFAULT; 6138 6139 return 0; 6140 } 6141 6142 /* 6143 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6144 * This option gets the current number of associations that are attached 6145 * to a one-to-many style socket. The option value is an uint32_t. 6146 */ 6147 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6148 char __user *optval, int __user *optlen) 6149 { 6150 struct sctp_sock *sp = sctp_sk(sk); 6151 struct sctp_association *asoc; 6152 u32 val = 0; 6153 6154 if (sctp_style(sk, TCP)) 6155 return -EOPNOTSUPP; 6156 6157 if (len < sizeof(u32)) 6158 return -EINVAL; 6159 6160 len = sizeof(u32); 6161 6162 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6163 val++; 6164 } 6165 6166 if (put_user(len, optlen)) 6167 return -EFAULT; 6168 if (copy_to_user(optval, &val, len)) 6169 return -EFAULT; 6170 6171 return 0; 6172 } 6173 6174 /* 6175 * 8.1.23 SCTP_AUTO_ASCONF 6176 * See the corresponding setsockopt entry as description 6177 */ 6178 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6179 char __user *optval, int __user *optlen) 6180 { 6181 int val = 0; 6182 6183 if (len < sizeof(int)) 6184 return -EINVAL; 6185 6186 len = sizeof(int); 6187 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6188 val = 1; 6189 if (put_user(len, optlen)) 6190 return -EFAULT; 6191 if (copy_to_user(optval, &val, len)) 6192 return -EFAULT; 6193 return 0; 6194 } 6195 6196 /* 6197 * 8.2.6. Get the Current Identifiers of Associations 6198 * (SCTP_GET_ASSOC_ID_LIST) 6199 * 6200 * This option gets the current list of SCTP association identifiers of 6201 * the SCTP associations handled by a one-to-many style socket. 6202 */ 6203 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6204 char __user *optval, int __user *optlen) 6205 { 6206 struct sctp_sock *sp = sctp_sk(sk); 6207 struct sctp_association *asoc; 6208 struct sctp_assoc_ids *ids; 6209 u32 num = 0; 6210 6211 if (sctp_style(sk, TCP)) 6212 return -EOPNOTSUPP; 6213 6214 if (len < sizeof(struct sctp_assoc_ids)) 6215 return -EINVAL; 6216 6217 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6218 num++; 6219 } 6220 6221 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6222 return -EINVAL; 6223 6224 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6225 6226 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6227 if (unlikely(!ids)) 6228 return -ENOMEM; 6229 6230 ids->gaids_number_of_ids = num; 6231 num = 0; 6232 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6233 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6234 } 6235 6236 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6237 kfree(ids); 6238 return -EFAULT; 6239 } 6240 6241 kfree(ids); 6242 return 0; 6243 } 6244 6245 /* 6246 * SCTP_PEER_ADDR_THLDS 6247 * 6248 * This option allows us to fetch the partially failed threshold for one or all 6249 * transports in an association. See Section 6.1 of: 6250 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6251 */ 6252 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6253 char __user *optval, 6254 int len, 6255 int __user *optlen) 6256 { 6257 struct sctp_paddrthlds val; 6258 struct sctp_transport *trans; 6259 struct sctp_association *asoc; 6260 6261 if (len < sizeof(struct sctp_paddrthlds)) 6262 return -EINVAL; 6263 len = sizeof(struct sctp_paddrthlds); 6264 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6265 return -EFAULT; 6266 6267 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6268 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6269 if (!asoc) 6270 return -ENOENT; 6271 6272 val.spt_pathpfthld = asoc->pf_retrans; 6273 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6274 } else { 6275 trans = sctp_addr_id2transport(sk, &val.spt_address, 6276 val.spt_assoc_id); 6277 if (!trans) 6278 return -ENOENT; 6279 6280 val.spt_pathmaxrxt = trans->pathmaxrxt; 6281 val.spt_pathpfthld = trans->pf_retrans; 6282 } 6283 6284 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6285 return -EFAULT; 6286 6287 return 0; 6288 } 6289 6290 /* 6291 * SCTP_GET_ASSOC_STATS 6292 * 6293 * This option retrieves local per endpoint statistics. It is modeled 6294 * after OpenSolaris' implementation 6295 */ 6296 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6297 char __user *optval, 6298 int __user *optlen) 6299 { 6300 struct sctp_assoc_stats sas; 6301 struct sctp_association *asoc = NULL; 6302 6303 /* User must provide at least the assoc id */ 6304 if (len < sizeof(sctp_assoc_t)) 6305 return -EINVAL; 6306 6307 /* Allow the struct to grow and fill in as much as possible */ 6308 len = min_t(size_t, len, sizeof(sas)); 6309 6310 if (copy_from_user(&sas, optval, len)) 6311 return -EFAULT; 6312 6313 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6314 if (!asoc) 6315 return -EINVAL; 6316 6317 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6318 sas.sas_gapcnt = asoc->stats.gapcnt; 6319 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6320 sas.sas_osacks = asoc->stats.osacks; 6321 sas.sas_isacks = asoc->stats.isacks; 6322 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6323 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6324 sas.sas_oodchunks = asoc->stats.oodchunks; 6325 sas.sas_iodchunks = asoc->stats.iodchunks; 6326 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6327 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6328 sas.sas_idupchunks = asoc->stats.idupchunks; 6329 sas.sas_opackets = asoc->stats.opackets; 6330 sas.sas_ipackets = asoc->stats.ipackets; 6331 6332 /* New high max rto observed, will return 0 if not a single 6333 * RTO update took place. obs_rto_ipaddr will be bogus 6334 * in such a case 6335 */ 6336 sas.sas_maxrto = asoc->stats.max_obs_rto; 6337 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6338 sizeof(struct sockaddr_storage)); 6339 6340 /* Mark beginning of a new observation period */ 6341 asoc->stats.max_obs_rto = asoc->rto_min; 6342 6343 if (put_user(len, optlen)) 6344 return -EFAULT; 6345 6346 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6347 6348 if (copy_to_user(optval, &sas, len)) 6349 return -EFAULT; 6350 6351 return 0; 6352 } 6353 6354 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6355 char __user *optval, 6356 int __user *optlen) 6357 { 6358 int val = 0; 6359 6360 if (len < sizeof(int)) 6361 return -EINVAL; 6362 6363 len = sizeof(int); 6364 if (sctp_sk(sk)->recvrcvinfo) 6365 val = 1; 6366 if (put_user(len, optlen)) 6367 return -EFAULT; 6368 if (copy_to_user(optval, &val, len)) 6369 return -EFAULT; 6370 6371 return 0; 6372 } 6373 6374 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6375 char __user *optval, 6376 int __user *optlen) 6377 { 6378 int val = 0; 6379 6380 if (len < sizeof(int)) 6381 return -EINVAL; 6382 6383 len = sizeof(int); 6384 if (sctp_sk(sk)->recvnxtinfo) 6385 val = 1; 6386 if (put_user(len, optlen)) 6387 return -EFAULT; 6388 if (copy_to_user(optval, &val, len)) 6389 return -EFAULT; 6390 6391 return 0; 6392 } 6393 6394 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6395 char __user *optval, 6396 int __user *optlen) 6397 { 6398 struct sctp_assoc_value params; 6399 struct sctp_association *asoc; 6400 int retval = -EFAULT; 6401 6402 if (len < sizeof(params)) { 6403 retval = -EINVAL; 6404 goto out; 6405 } 6406 6407 len = sizeof(params); 6408 if (copy_from_user(¶ms, optval, len)) 6409 goto out; 6410 6411 asoc = sctp_id2assoc(sk, params.assoc_id); 6412 if (asoc) { 6413 params.assoc_value = asoc->prsctp_enable; 6414 } else if (!params.assoc_id) { 6415 struct sctp_sock *sp = sctp_sk(sk); 6416 6417 params.assoc_value = sp->ep->prsctp_enable; 6418 } else { 6419 retval = -EINVAL; 6420 goto out; 6421 } 6422 6423 if (put_user(len, optlen)) 6424 goto out; 6425 6426 if (copy_to_user(optval, ¶ms, len)) 6427 goto out; 6428 6429 retval = 0; 6430 6431 out: 6432 return retval; 6433 } 6434 6435 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6436 char __user *optval, 6437 int __user *optlen) 6438 { 6439 struct sctp_default_prinfo info; 6440 struct sctp_association *asoc; 6441 int retval = -EFAULT; 6442 6443 if (len < sizeof(info)) { 6444 retval = -EINVAL; 6445 goto out; 6446 } 6447 6448 len = sizeof(info); 6449 if (copy_from_user(&info, optval, len)) 6450 goto out; 6451 6452 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6453 if (asoc) { 6454 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6455 info.pr_value = asoc->default_timetolive; 6456 } else if (!info.pr_assoc_id) { 6457 struct sctp_sock *sp = sctp_sk(sk); 6458 6459 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6460 info.pr_value = sp->default_timetolive; 6461 } else { 6462 retval = -EINVAL; 6463 goto out; 6464 } 6465 6466 if (put_user(len, optlen)) 6467 goto out; 6468 6469 if (copy_to_user(optval, &info, len)) 6470 goto out; 6471 6472 retval = 0; 6473 6474 out: 6475 return retval; 6476 } 6477 6478 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6479 char __user *optval, 6480 int __user *optlen) 6481 { 6482 struct sctp_prstatus params; 6483 struct sctp_association *asoc; 6484 int policy; 6485 int retval = -EINVAL; 6486 6487 if (len < sizeof(params)) 6488 goto out; 6489 6490 len = sizeof(params); 6491 if (copy_from_user(¶ms, optval, len)) { 6492 retval = -EFAULT; 6493 goto out; 6494 } 6495 6496 policy = params.sprstat_policy; 6497 if (policy & ~SCTP_PR_SCTP_MASK) 6498 goto out; 6499 6500 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6501 if (!asoc) 6502 goto out; 6503 6504 if (policy == SCTP_PR_SCTP_NONE) { 6505 params.sprstat_abandoned_unsent = 0; 6506 params.sprstat_abandoned_sent = 0; 6507 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6508 params.sprstat_abandoned_unsent += 6509 asoc->abandoned_unsent[policy]; 6510 params.sprstat_abandoned_sent += 6511 asoc->abandoned_sent[policy]; 6512 } 6513 } else { 6514 params.sprstat_abandoned_unsent = 6515 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6516 params.sprstat_abandoned_sent = 6517 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6518 } 6519 6520 if (put_user(len, optlen)) { 6521 retval = -EFAULT; 6522 goto out; 6523 } 6524 6525 if (copy_to_user(optval, ¶ms, len)) { 6526 retval = -EFAULT; 6527 goto out; 6528 } 6529 6530 retval = 0; 6531 6532 out: 6533 return retval; 6534 } 6535 6536 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6537 char __user *optval, 6538 int __user *optlen) 6539 { 6540 struct sctp_assoc_value params; 6541 struct sctp_association *asoc; 6542 int retval = -EFAULT; 6543 6544 if (len < sizeof(params)) { 6545 retval = -EINVAL; 6546 goto out; 6547 } 6548 6549 len = sizeof(params); 6550 if (copy_from_user(¶ms, optval, len)) 6551 goto out; 6552 6553 asoc = sctp_id2assoc(sk, params.assoc_id); 6554 if (asoc) { 6555 params.assoc_value = asoc->strreset_enable; 6556 } else if (!params.assoc_id) { 6557 struct sctp_sock *sp = sctp_sk(sk); 6558 6559 params.assoc_value = sp->ep->strreset_enable; 6560 } else { 6561 retval = -EINVAL; 6562 goto out; 6563 } 6564 6565 if (put_user(len, optlen)) 6566 goto out; 6567 6568 if (copy_to_user(optval, ¶ms, len)) 6569 goto out; 6570 6571 retval = 0; 6572 6573 out: 6574 return retval; 6575 } 6576 6577 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6578 char __user *optval, int __user *optlen) 6579 { 6580 int retval = 0; 6581 int len; 6582 6583 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6584 6585 /* I can hardly begin to describe how wrong this is. This is 6586 * so broken as to be worse than useless. The API draft 6587 * REALLY is NOT helpful here... I am not convinced that the 6588 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6589 * are at all well-founded. 6590 */ 6591 if (level != SOL_SCTP) { 6592 struct sctp_af *af = sctp_sk(sk)->pf->af; 6593 6594 retval = af->getsockopt(sk, level, optname, optval, optlen); 6595 return retval; 6596 } 6597 6598 if (get_user(len, optlen)) 6599 return -EFAULT; 6600 6601 if (len < 0) 6602 return -EINVAL; 6603 6604 lock_sock(sk); 6605 6606 switch (optname) { 6607 case SCTP_STATUS: 6608 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6609 break; 6610 case SCTP_DISABLE_FRAGMENTS: 6611 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6612 optlen); 6613 break; 6614 case SCTP_EVENTS: 6615 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6616 break; 6617 case SCTP_AUTOCLOSE: 6618 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6619 break; 6620 case SCTP_SOCKOPT_PEELOFF: 6621 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6622 break; 6623 case SCTP_PEER_ADDR_PARAMS: 6624 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6625 optlen); 6626 break; 6627 case SCTP_DELAYED_SACK: 6628 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6629 optlen); 6630 break; 6631 case SCTP_INITMSG: 6632 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6633 break; 6634 case SCTP_GET_PEER_ADDRS: 6635 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6636 optlen); 6637 break; 6638 case SCTP_GET_LOCAL_ADDRS: 6639 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6640 optlen); 6641 break; 6642 case SCTP_SOCKOPT_CONNECTX3: 6643 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6644 break; 6645 case SCTP_DEFAULT_SEND_PARAM: 6646 retval = sctp_getsockopt_default_send_param(sk, len, 6647 optval, optlen); 6648 break; 6649 case SCTP_DEFAULT_SNDINFO: 6650 retval = sctp_getsockopt_default_sndinfo(sk, len, 6651 optval, optlen); 6652 break; 6653 case SCTP_PRIMARY_ADDR: 6654 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6655 break; 6656 case SCTP_NODELAY: 6657 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6658 break; 6659 case SCTP_RTOINFO: 6660 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6661 break; 6662 case SCTP_ASSOCINFO: 6663 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6664 break; 6665 case SCTP_I_WANT_MAPPED_V4_ADDR: 6666 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6667 break; 6668 case SCTP_MAXSEG: 6669 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6670 break; 6671 case SCTP_GET_PEER_ADDR_INFO: 6672 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6673 optlen); 6674 break; 6675 case SCTP_ADAPTATION_LAYER: 6676 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6677 optlen); 6678 break; 6679 case SCTP_CONTEXT: 6680 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6681 break; 6682 case SCTP_FRAGMENT_INTERLEAVE: 6683 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6684 optlen); 6685 break; 6686 case SCTP_PARTIAL_DELIVERY_POINT: 6687 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6688 optlen); 6689 break; 6690 case SCTP_MAX_BURST: 6691 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6692 break; 6693 case SCTP_AUTH_KEY: 6694 case SCTP_AUTH_CHUNK: 6695 case SCTP_AUTH_DELETE_KEY: 6696 retval = -EOPNOTSUPP; 6697 break; 6698 case SCTP_HMAC_IDENT: 6699 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6700 break; 6701 case SCTP_AUTH_ACTIVE_KEY: 6702 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6703 break; 6704 case SCTP_PEER_AUTH_CHUNKS: 6705 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6706 optlen); 6707 break; 6708 case SCTP_LOCAL_AUTH_CHUNKS: 6709 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6710 optlen); 6711 break; 6712 case SCTP_GET_ASSOC_NUMBER: 6713 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6714 break; 6715 case SCTP_GET_ASSOC_ID_LIST: 6716 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6717 break; 6718 case SCTP_AUTO_ASCONF: 6719 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6720 break; 6721 case SCTP_PEER_ADDR_THLDS: 6722 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6723 break; 6724 case SCTP_GET_ASSOC_STATS: 6725 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6726 break; 6727 case SCTP_RECVRCVINFO: 6728 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6729 break; 6730 case SCTP_RECVNXTINFO: 6731 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6732 break; 6733 case SCTP_PR_SUPPORTED: 6734 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6735 break; 6736 case SCTP_DEFAULT_PRINFO: 6737 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6738 optlen); 6739 break; 6740 case SCTP_PR_ASSOC_STATUS: 6741 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6742 optlen); 6743 break; 6744 case SCTP_ENABLE_STREAM_RESET: 6745 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6746 optlen); 6747 break; 6748 default: 6749 retval = -ENOPROTOOPT; 6750 break; 6751 } 6752 6753 release_sock(sk); 6754 return retval; 6755 } 6756 6757 static int sctp_hash(struct sock *sk) 6758 { 6759 /* STUB */ 6760 return 0; 6761 } 6762 6763 static void sctp_unhash(struct sock *sk) 6764 { 6765 /* STUB */ 6766 } 6767 6768 /* Check if port is acceptable. Possibly find first available port. 6769 * 6770 * The port hash table (contained in the 'global' SCTP protocol storage 6771 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6772 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6773 * list (the list number is the port number hashed out, so as you 6774 * would expect from a hash function, all the ports in a given list have 6775 * such a number that hashes out to the same list number; you were 6776 * expecting that, right?); so each list has a set of ports, with a 6777 * link to the socket (struct sock) that uses it, the port number and 6778 * a fastreuse flag (FIXME: NPI ipg). 6779 */ 6780 static struct sctp_bind_bucket *sctp_bucket_create( 6781 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6782 6783 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6784 { 6785 struct sctp_bind_hashbucket *head; /* hash list */ 6786 struct sctp_bind_bucket *pp; 6787 unsigned short snum; 6788 int ret; 6789 6790 snum = ntohs(addr->v4.sin_port); 6791 6792 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6793 6794 local_bh_disable(); 6795 6796 if (snum == 0) { 6797 /* Search for an available port. */ 6798 int low, high, remaining, index; 6799 unsigned int rover; 6800 struct net *net = sock_net(sk); 6801 6802 inet_get_local_port_range(net, &low, &high); 6803 remaining = (high - low) + 1; 6804 rover = prandom_u32() % remaining + low; 6805 6806 do { 6807 rover++; 6808 if ((rover < low) || (rover > high)) 6809 rover = low; 6810 if (inet_is_local_reserved_port(net, rover)) 6811 continue; 6812 index = sctp_phashfn(sock_net(sk), rover); 6813 head = &sctp_port_hashtable[index]; 6814 spin_lock(&head->lock); 6815 sctp_for_each_hentry(pp, &head->chain) 6816 if ((pp->port == rover) && 6817 net_eq(sock_net(sk), pp->net)) 6818 goto next; 6819 break; 6820 next: 6821 spin_unlock(&head->lock); 6822 } while (--remaining > 0); 6823 6824 /* Exhausted local port range during search? */ 6825 ret = 1; 6826 if (remaining <= 0) 6827 goto fail; 6828 6829 /* OK, here is the one we will use. HEAD (the port 6830 * hash table list entry) is non-NULL and we hold it's 6831 * mutex. 6832 */ 6833 snum = rover; 6834 } else { 6835 /* We are given an specific port number; we verify 6836 * that it is not being used. If it is used, we will 6837 * exahust the search in the hash list corresponding 6838 * to the port number (snum) - we detect that with the 6839 * port iterator, pp being NULL. 6840 */ 6841 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6842 spin_lock(&head->lock); 6843 sctp_for_each_hentry(pp, &head->chain) { 6844 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6845 goto pp_found; 6846 } 6847 } 6848 pp = NULL; 6849 goto pp_not_found; 6850 pp_found: 6851 if (!hlist_empty(&pp->owner)) { 6852 /* We had a port hash table hit - there is an 6853 * available port (pp != NULL) and it is being 6854 * used by other socket (pp->owner not empty); that other 6855 * socket is going to be sk2. 6856 */ 6857 int reuse = sk->sk_reuse; 6858 struct sock *sk2; 6859 6860 pr_debug("%s: found a possible match\n", __func__); 6861 6862 if (pp->fastreuse && sk->sk_reuse && 6863 sk->sk_state != SCTP_SS_LISTENING) 6864 goto success; 6865 6866 /* Run through the list of sockets bound to the port 6867 * (pp->port) [via the pointers bind_next and 6868 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6869 * we get the endpoint they describe and run through 6870 * the endpoint's list of IP (v4 or v6) addresses, 6871 * comparing each of the addresses with the address of 6872 * the socket sk. If we find a match, then that means 6873 * that this port/socket (sk) combination are already 6874 * in an endpoint. 6875 */ 6876 sk_for_each_bound(sk2, &pp->owner) { 6877 struct sctp_endpoint *ep2; 6878 ep2 = sctp_sk(sk2)->ep; 6879 6880 if (sk == sk2 || 6881 (reuse && sk2->sk_reuse && 6882 sk2->sk_state != SCTP_SS_LISTENING)) 6883 continue; 6884 6885 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6886 sctp_sk(sk2), sctp_sk(sk))) { 6887 ret = (long)sk2; 6888 goto fail_unlock; 6889 } 6890 } 6891 6892 pr_debug("%s: found a match\n", __func__); 6893 } 6894 pp_not_found: 6895 /* If there was a hash table miss, create a new port. */ 6896 ret = 1; 6897 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6898 goto fail_unlock; 6899 6900 /* In either case (hit or miss), make sure fastreuse is 1 only 6901 * if sk->sk_reuse is too (that is, if the caller requested 6902 * SO_REUSEADDR on this socket -sk-). 6903 */ 6904 if (hlist_empty(&pp->owner)) { 6905 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6906 pp->fastreuse = 1; 6907 else 6908 pp->fastreuse = 0; 6909 } else if (pp->fastreuse && 6910 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6911 pp->fastreuse = 0; 6912 6913 /* We are set, so fill up all the data in the hash table 6914 * entry, tie the socket list information with the rest of the 6915 * sockets FIXME: Blurry, NPI (ipg). 6916 */ 6917 success: 6918 if (!sctp_sk(sk)->bind_hash) { 6919 inet_sk(sk)->inet_num = snum; 6920 sk_add_bind_node(sk, &pp->owner); 6921 sctp_sk(sk)->bind_hash = pp; 6922 } 6923 ret = 0; 6924 6925 fail_unlock: 6926 spin_unlock(&head->lock); 6927 6928 fail: 6929 local_bh_enable(); 6930 return ret; 6931 } 6932 6933 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6934 * port is requested. 6935 */ 6936 static int sctp_get_port(struct sock *sk, unsigned short snum) 6937 { 6938 union sctp_addr addr; 6939 struct sctp_af *af = sctp_sk(sk)->pf->af; 6940 6941 /* Set up a dummy address struct from the sk. */ 6942 af->from_sk(&addr, sk); 6943 addr.v4.sin_port = htons(snum); 6944 6945 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6946 return !!sctp_get_port_local(sk, &addr); 6947 } 6948 6949 /* 6950 * Move a socket to LISTENING state. 6951 */ 6952 static int sctp_listen_start(struct sock *sk, int backlog) 6953 { 6954 struct sctp_sock *sp = sctp_sk(sk); 6955 struct sctp_endpoint *ep = sp->ep; 6956 struct crypto_shash *tfm = NULL; 6957 char alg[32]; 6958 6959 /* Allocate HMAC for generating cookie. */ 6960 if (!sp->hmac && sp->sctp_hmac_alg) { 6961 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6962 tfm = crypto_alloc_shash(alg, 0, 0); 6963 if (IS_ERR(tfm)) { 6964 net_info_ratelimited("failed to load transform for %s: %ld\n", 6965 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6966 return -ENOSYS; 6967 } 6968 sctp_sk(sk)->hmac = tfm; 6969 } 6970 6971 /* 6972 * If a bind() or sctp_bindx() is not called prior to a listen() 6973 * call that allows new associations to be accepted, the system 6974 * picks an ephemeral port and will choose an address set equivalent 6975 * to binding with a wildcard address. 6976 * 6977 * This is not currently spelled out in the SCTP sockets 6978 * extensions draft, but follows the practice as seen in TCP 6979 * sockets. 6980 * 6981 */ 6982 sk->sk_state = SCTP_SS_LISTENING; 6983 if (!ep->base.bind_addr.port) { 6984 if (sctp_autobind(sk)) 6985 return -EAGAIN; 6986 } else { 6987 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6988 sk->sk_state = SCTP_SS_CLOSED; 6989 return -EADDRINUSE; 6990 } 6991 } 6992 6993 sk->sk_max_ack_backlog = backlog; 6994 sctp_hash_endpoint(ep); 6995 return 0; 6996 } 6997 6998 /* 6999 * 4.1.3 / 5.1.3 listen() 7000 * 7001 * By default, new associations are not accepted for UDP style sockets. 7002 * An application uses listen() to mark a socket as being able to 7003 * accept new associations. 7004 * 7005 * On TCP style sockets, applications use listen() to ready the SCTP 7006 * endpoint for accepting inbound associations. 7007 * 7008 * On both types of endpoints a backlog of '0' disables listening. 7009 * 7010 * Move a socket to LISTENING state. 7011 */ 7012 int sctp_inet_listen(struct socket *sock, int backlog) 7013 { 7014 struct sock *sk = sock->sk; 7015 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7016 int err = -EINVAL; 7017 7018 if (unlikely(backlog < 0)) 7019 return err; 7020 7021 lock_sock(sk); 7022 7023 /* Peeled-off sockets are not allowed to listen(). */ 7024 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7025 goto out; 7026 7027 if (sock->state != SS_UNCONNECTED) 7028 goto out; 7029 7030 /* If backlog is zero, disable listening. */ 7031 if (!backlog) { 7032 if (sctp_sstate(sk, CLOSED)) 7033 goto out; 7034 7035 err = 0; 7036 sctp_unhash_endpoint(ep); 7037 sk->sk_state = SCTP_SS_CLOSED; 7038 if (sk->sk_reuse) 7039 sctp_sk(sk)->bind_hash->fastreuse = 1; 7040 goto out; 7041 } 7042 7043 /* If we are already listening, just update the backlog */ 7044 if (sctp_sstate(sk, LISTENING)) 7045 sk->sk_max_ack_backlog = backlog; 7046 else { 7047 err = sctp_listen_start(sk, backlog); 7048 if (err) 7049 goto out; 7050 } 7051 7052 err = 0; 7053 out: 7054 release_sock(sk); 7055 return err; 7056 } 7057 7058 /* 7059 * This function is done by modeling the current datagram_poll() and the 7060 * tcp_poll(). Note that, based on these implementations, we don't 7061 * lock the socket in this function, even though it seems that, 7062 * ideally, locking or some other mechanisms can be used to ensure 7063 * the integrity of the counters (sndbuf and wmem_alloc) used 7064 * in this place. We assume that we don't need locks either until proven 7065 * otherwise. 7066 * 7067 * Another thing to note is that we include the Async I/O support 7068 * here, again, by modeling the current TCP/UDP code. We don't have 7069 * a good way to test with it yet. 7070 */ 7071 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7072 { 7073 struct sock *sk = sock->sk; 7074 struct sctp_sock *sp = sctp_sk(sk); 7075 unsigned int mask; 7076 7077 poll_wait(file, sk_sleep(sk), wait); 7078 7079 sock_rps_record_flow(sk); 7080 7081 /* A TCP-style listening socket becomes readable when the accept queue 7082 * is not empty. 7083 */ 7084 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7085 return (!list_empty(&sp->ep->asocs)) ? 7086 (POLLIN | POLLRDNORM) : 0; 7087 7088 mask = 0; 7089 7090 /* Is there any exceptional events? */ 7091 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7092 mask |= POLLERR | 7093 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7094 if (sk->sk_shutdown & RCV_SHUTDOWN) 7095 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7096 if (sk->sk_shutdown == SHUTDOWN_MASK) 7097 mask |= POLLHUP; 7098 7099 /* Is it readable? Reconsider this code with TCP-style support. */ 7100 if (!skb_queue_empty(&sk->sk_receive_queue)) 7101 mask |= POLLIN | POLLRDNORM; 7102 7103 /* The association is either gone or not ready. */ 7104 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7105 return mask; 7106 7107 /* Is it writable? */ 7108 if (sctp_writeable(sk)) { 7109 mask |= POLLOUT | POLLWRNORM; 7110 } else { 7111 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7112 /* 7113 * Since the socket is not locked, the buffer 7114 * might be made available after the writeable check and 7115 * before the bit is set. This could cause a lost I/O 7116 * signal. tcp_poll() has a race breaker for this race 7117 * condition. Based on their implementation, we put 7118 * in the following code to cover it as well. 7119 */ 7120 if (sctp_writeable(sk)) 7121 mask |= POLLOUT | POLLWRNORM; 7122 } 7123 return mask; 7124 } 7125 7126 /******************************************************************** 7127 * 2nd Level Abstractions 7128 ********************************************************************/ 7129 7130 static struct sctp_bind_bucket *sctp_bucket_create( 7131 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7132 { 7133 struct sctp_bind_bucket *pp; 7134 7135 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7136 if (pp) { 7137 SCTP_DBG_OBJCNT_INC(bind_bucket); 7138 pp->port = snum; 7139 pp->fastreuse = 0; 7140 INIT_HLIST_HEAD(&pp->owner); 7141 pp->net = net; 7142 hlist_add_head(&pp->node, &head->chain); 7143 } 7144 return pp; 7145 } 7146 7147 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7148 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7149 { 7150 if (pp && hlist_empty(&pp->owner)) { 7151 __hlist_del(&pp->node); 7152 kmem_cache_free(sctp_bucket_cachep, pp); 7153 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7154 } 7155 } 7156 7157 /* Release this socket's reference to a local port. */ 7158 static inline void __sctp_put_port(struct sock *sk) 7159 { 7160 struct sctp_bind_hashbucket *head = 7161 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7162 inet_sk(sk)->inet_num)]; 7163 struct sctp_bind_bucket *pp; 7164 7165 spin_lock(&head->lock); 7166 pp = sctp_sk(sk)->bind_hash; 7167 __sk_del_bind_node(sk); 7168 sctp_sk(sk)->bind_hash = NULL; 7169 inet_sk(sk)->inet_num = 0; 7170 sctp_bucket_destroy(pp); 7171 spin_unlock(&head->lock); 7172 } 7173 7174 void sctp_put_port(struct sock *sk) 7175 { 7176 local_bh_disable(); 7177 __sctp_put_port(sk); 7178 local_bh_enable(); 7179 } 7180 7181 /* 7182 * The system picks an ephemeral port and choose an address set equivalent 7183 * to binding with a wildcard address. 7184 * One of those addresses will be the primary address for the association. 7185 * This automatically enables the multihoming capability of SCTP. 7186 */ 7187 static int sctp_autobind(struct sock *sk) 7188 { 7189 union sctp_addr autoaddr; 7190 struct sctp_af *af; 7191 __be16 port; 7192 7193 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7194 af = sctp_sk(sk)->pf->af; 7195 7196 port = htons(inet_sk(sk)->inet_num); 7197 af->inaddr_any(&autoaddr, port); 7198 7199 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7200 } 7201 7202 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7203 * 7204 * From RFC 2292 7205 * 4.2 The cmsghdr Structure * 7206 * 7207 * When ancillary data is sent or received, any number of ancillary data 7208 * objects can be specified by the msg_control and msg_controllen members of 7209 * the msghdr structure, because each object is preceded by 7210 * a cmsghdr structure defining the object's length (the cmsg_len member). 7211 * Historically Berkeley-derived implementations have passed only one object 7212 * at a time, but this API allows multiple objects to be 7213 * passed in a single call to sendmsg() or recvmsg(). The following example 7214 * shows two ancillary data objects in a control buffer. 7215 * 7216 * |<--------------------------- msg_controllen -------------------------->| 7217 * | | 7218 * 7219 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7220 * 7221 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7222 * | | | 7223 * 7224 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7225 * 7226 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7227 * | | | | | 7228 * 7229 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7230 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7231 * 7232 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7233 * 7234 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7235 * ^ 7236 * | 7237 * 7238 * msg_control 7239 * points here 7240 */ 7241 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 7242 { 7243 struct cmsghdr *cmsg; 7244 struct msghdr *my_msg = (struct msghdr *)msg; 7245 7246 for_each_cmsghdr(cmsg, my_msg) { 7247 if (!CMSG_OK(my_msg, cmsg)) 7248 return -EINVAL; 7249 7250 /* Should we parse this header or ignore? */ 7251 if (cmsg->cmsg_level != IPPROTO_SCTP) 7252 continue; 7253 7254 /* Strictly check lengths following example in SCM code. */ 7255 switch (cmsg->cmsg_type) { 7256 case SCTP_INIT: 7257 /* SCTP Socket API Extension 7258 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7259 * 7260 * This cmsghdr structure provides information for 7261 * initializing new SCTP associations with sendmsg(). 7262 * The SCTP_INITMSG socket option uses this same data 7263 * structure. This structure is not used for 7264 * recvmsg(). 7265 * 7266 * cmsg_level cmsg_type cmsg_data[] 7267 * ------------ ------------ ---------------------- 7268 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7269 */ 7270 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7271 return -EINVAL; 7272 7273 cmsgs->init = CMSG_DATA(cmsg); 7274 break; 7275 7276 case SCTP_SNDRCV: 7277 /* SCTP Socket API Extension 7278 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7279 * 7280 * This cmsghdr structure specifies SCTP options for 7281 * sendmsg() and describes SCTP header information 7282 * about a received message through recvmsg(). 7283 * 7284 * cmsg_level cmsg_type cmsg_data[] 7285 * ------------ ------------ ---------------------- 7286 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7287 */ 7288 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7289 return -EINVAL; 7290 7291 cmsgs->srinfo = CMSG_DATA(cmsg); 7292 7293 if (cmsgs->srinfo->sinfo_flags & 7294 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7295 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7296 SCTP_ABORT | SCTP_EOF)) 7297 return -EINVAL; 7298 break; 7299 7300 case SCTP_SNDINFO: 7301 /* SCTP Socket API Extension 7302 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7303 * 7304 * This cmsghdr structure specifies SCTP options for 7305 * sendmsg(). This structure and SCTP_RCVINFO replaces 7306 * SCTP_SNDRCV which has been deprecated. 7307 * 7308 * cmsg_level cmsg_type cmsg_data[] 7309 * ------------ ------------ --------------------- 7310 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7311 */ 7312 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7313 return -EINVAL; 7314 7315 cmsgs->sinfo = CMSG_DATA(cmsg); 7316 7317 if (cmsgs->sinfo->snd_flags & 7318 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7319 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7320 SCTP_ABORT | SCTP_EOF)) 7321 return -EINVAL; 7322 break; 7323 default: 7324 return -EINVAL; 7325 } 7326 } 7327 7328 return 0; 7329 } 7330 7331 /* 7332 * Wait for a packet.. 7333 * Note: This function is the same function as in core/datagram.c 7334 * with a few modifications to make lksctp work. 7335 */ 7336 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7337 { 7338 int error; 7339 DEFINE_WAIT(wait); 7340 7341 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7342 7343 /* Socket errors? */ 7344 error = sock_error(sk); 7345 if (error) 7346 goto out; 7347 7348 if (!skb_queue_empty(&sk->sk_receive_queue)) 7349 goto ready; 7350 7351 /* Socket shut down? */ 7352 if (sk->sk_shutdown & RCV_SHUTDOWN) 7353 goto out; 7354 7355 /* Sequenced packets can come disconnected. If so we report the 7356 * problem. 7357 */ 7358 error = -ENOTCONN; 7359 7360 /* Is there a good reason to think that we may receive some data? */ 7361 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7362 goto out; 7363 7364 /* Handle signals. */ 7365 if (signal_pending(current)) 7366 goto interrupted; 7367 7368 /* Let another process have a go. Since we are going to sleep 7369 * anyway. Note: This may cause odd behaviors if the message 7370 * does not fit in the user's buffer, but this seems to be the 7371 * only way to honor MSG_DONTWAIT realistically. 7372 */ 7373 release_sock(sk); 7374 *timeo_p = schedule_timeout(*timeo_p); 7375 lock_sock(sk); 7376 7377 ready: 7378 finish_wait(sk_sleep(sk), &wait); 7379 return 0; 7380 7381 interrupted: 7382 error = sock_intr_errno(*timeo_p); 7383 7384 out: 7385 finish_wait(sk_sleep(sk), &wait); 7386 *err = error; 7387 return error; 7388 } 7389 7390 /* Receive a datagram. 7391 * Note: This is pretty much the same routine as in core/datagram.c 7392 * with a few changes to make lksctp work. 7393 */ 7394 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7395 int noblock, int *err) 7396 { 7397 int error; 7398 struct sk_buff *skb; 7399 long timeo; 7400 7401 timeo = sock_rcvtimeo(sk, noblock); 7402 7403 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7404 MAX_SCHEDULE_TIMEOUT); 7405 7406 do { 7407 /* Again only user level code calls this function, 7408 * so nothing interrupt level 7409 * will suddenly eat the receive_queue. 7410 * 7411 * Look at current nfs client by the way... 7412 * However, this function was correct in any case. 8) 7413 */ 7414 if (flags & MSG_PEEK) { 7415 skb = skb_peek(&sk->sk_receive_queue); 7416 if (skb) 7417 atomic_inc(&skb->users); 7418 } else { 7419 skb = __skb_dequeue(&sk->sk_receive_queue); 7420 } 7421 7422 if (skb) 7423 return skb; 7424 7425 /* Caller is allowed not to check sk->sk_err before calling. */ 7426 error = sock_error(sk); 7427 if (error) 7428 goto no_packet; 7429 7430 if (sk->sk_shutdown & RCV_SHUTDOWN) 7431 break; 7432 7433 if (sk_can_busy_loop(sk) && 7434 sk_busy_loop(sk, noblock)) 7435 continue; 7436 7437 /* User doesn't want to wait. */ 7438 error = -EAGAIN; 7439 if (!timeo) 7440 goto no_packet; 7441 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7442 7443 return NULL; 7444 7445 no_packet: 7446 *err = error; 7447 return NULL; 7448 } 7449 7450 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7451 static void __sctp_write_space(struct sctp_association *asoc) 7452 { 7453 struct sock *sk = asoc->base.sk; 7454 7455 if (sctp_wspace(asoc) <= 0) 7456 return; 7457 7458 if (waitqueue_active(&asoc->wait)) 7459 wake_up_interruptible(&asoc->wait); 7460 7461 if (sctp_writeable(sk)) { 7462 struct socket_wq *wq; 7463 7464 rcu_read_lock(); 7465 wq = rcu_dereference(sk->sk_wq); 7466 if (wq) { 7467 if (waitqueue_active(&wq->wait)) 7468 wake_up_interruptible(&wq->wait); 7469 7470 /* Note that we try to include the Async I/O support 7471 * here by modeling from the current TCP/UDP code. 7472 * We have not tested with it yet. 7473 */ 7474 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7475 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7476 } 7477 rcu_read_unlock(); 7478 } 7479 } 7480 7481 static void sctp_wake_up_waiters(struct sock *sk, 7482 struct sctp_association *asoc) 7483 { 7484 struct sctp_association *tmp = asoc; 7485 7486 /* We do accounting for the sndbuf space per association, 7487 * so we only need to wake our own association. 7488 */ 7489 if (asoc->ep->sndbuf_policy) 7490 return __sctp_write_space(asoc); 7491 7492 /* If association goes down and is just flushing its 7493 * outq, then just normally notify others. 7494 */ 7495 if (asoc->base.dead) 7496 return sctp_write_space(sk); 7497 7498 /* Accounting for the sndbuf space is per socket, so we 7499 * need to wake up others, try to be fair and in case of 7500 * other associations, let them have a go first instead 7501 * of just doing a sctp_write_space() call. 7502 * 7503 * Note that we reach sctp_wake_up_waiters() only when 7504 * associations free up queued chunks, thus we are under 7505 * lock and the list of associations on a socket is 7506 * guaranteed not to change. 7507 */ 7508 for (tmp = list_next_entry(tmp, asocs); 1; 7509 tmp = list_next_entry(tmp, asocs)) { 7510 /* Manually skip the head element. */ 7511 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7512 continue; 7513 /* Wake up association. */ 7514 __sctp_write_space(tmp); 7515 /* We've reached the end. */ 7516 if (tmp == asoc) 7517 break; 7518 } 7519 } 7520 7521 /* Do accounting for the sndbuf space. 7522 * Decrement the used sndbuf space of the corresponding association by the 7523 * data size which was just transmitted(freed). 7524 */ 7525 static void sctp_wfree(struct sk_buff *skb) 7526 { 7527 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7528 struct sctp_association *asoc = chunk->asoc; 7529 struct sock *sk = asoc->base.sk; 7530 7531 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7532 sizeof(struct sk_buff) + 7533 sizeof(struct sctp_chunk); 7534 7535 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 7536 7537 /* 7538 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7539 */ 7540 sk->sk_wmem_queued -= skb->truesize; 7541 sk_mem_uncharge(sk, skb->truesize); 7542 7543 sock_wfree(skb); 7544 sctp_wake_up_waiters(sk, asoc); 7545 7546 sctp_association_put(asoc); 7547 } 7548 7549 /* Do accounting for the receive space on the socket. 7550 * Accounting for the association is done in ulpevent.c 7551 * We set this as a destructor for the cloned data skbs so that 7552 * accounting is done at the correct time. 7553 */ 7554 void sctp_sock_rfree(struct sk_buff *skb) 7555 { 7556 struct sock *sk = skb->sk; 7557 struct sctp_ulpevent *event = sctp_skb2event(skb); 7558 7559 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7560 7561 /* 7562 * Mimic the behavior of sock_rfree 7563 */ 7564 sk_mem_uncharge(sk, event->rmem_len); 7565 } 7566 7567 7568 /* Helper function to wait for space in the sndbuf. */ 7569 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7570 size_t msg_len) 7571 { 7572 struct sock *sk = asoc->base.sk; 7573 int err = 0; 7574 long current_timeo = *timeo_p; 7575 DEFINE_WAIT(wait); 7576 7577 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7578 *timeo_p, msg_len); 7579 7580 /* Increment the association's refcnt. */ 7581 sctp_association_hold(asoc); 7582 7583 /* Wait on the association specific sndbuf space. */ 7584 for (;;) { 7585 prepare_to_wait_exclusive(&asoc->wait, &wait, 7586 TASK_INTERRUPTIBLE); 7587 if (!*timeo_p) 7588 goto do_nonblock; 7589 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7590 asoc->base.dead) 7591 goto do_error; 7592 if (signal_pending(current)) 7593 goto do_interrupted; 7594 if (msg_len <= sctp_wspace(asoc)) 7595 break; 7596 7597 /* Let another process have a go. Since we are going 7598 * to sleep anyway. 7599 */ 7600 release_sock(sk); 7601 current_timeo = schedule_timeout(current_timeo); 7602 if (sk != asoc->base.sk) 7603 goto do_error; 7604 lock_sock(sk); 7605 7606 *timeo_p = current_timeo; 7607 } 7608 7609 out: 7610 finish_wait(&asoc->wait, &wait); 7611 7612 /* Release the association's refcnt. */ 7613 sctp_association_put(asoc); 7614 7615 return err; 7616 7617 do_error: 7618 err = -EPIPE; 7619 goto out; 7620 7621 do_interrupted: 7622 err = sock_intr_errno(*timeo_p); 7623 goto out; 7624 7625 do_nonblock: 7626 err = -EAGAIN; 7627 goto out; 7628 } 7629 7630 void sctp_data_ready(struct sock *sk) 7631 { 7632 struct socket_wq *wq; 7633 7634 rcu_read_lock(); 7635 wq = rcu_dereference(sk->sk_wq); 7636 if (skwq_has_sleeper(wq)) 7637 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7638 POLLRDNORM | POLLRDBAND); 7639 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7640 rcu_read_unlock(); 7641 } 7642 7643 /* If socket sndbuf has changed, wake up all per association waiters. */ 7644 void sctp_write_space(struct sock *sk) 7645 { 7646 struct sctp_association *asoc; 7647 7648 /* Wake up the tasks in each wait queue. */ 7649 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7650 __sctp_write_space(asoc); 7651 } 7652 } 7653 7654 /* Is there any sndbuf space available on the socket? 7655 * 7656 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7657 * associations on the same socket. For a UDP-style socket with 7658 * multiple associations, it is possible for it to be "unwriteable" 7659 * prematurely. I assume that this is acceptable because 7660 * a premature "unwriteable" is better than an accidental "writeable" which 7661 * would cause an unwanted block under certain circumstances. For the 1-1 7662 * UDP-style sockets or TCP-style sockets, this code should work. 7663 * - Daisy 7664 */ 7665 static int sctp_writeable(struct sock *sk) 7666 { 7667 int amt = 0; 7668 7669 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7670 if (amt < 0) 7671 amt = 0; 7672 return amt; 7673 } 7674 7675 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7676 * returns immediately with EINPROGRESS. 7677 */ 7678 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7679 { 7680 struct sock *sk = asoc->base.sk; 7681 int err = 0; 7682 long current_timeo = *timeo_p; 7683 DEFINE_WAIT(wait); 7684 7685 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7686 7687 /* Increment the association's refcnt. */ 7688 sctp_association_hold(asoc); 7689 7690 for (;;) { 7691 prepare_to_wait_exclusive(&asoc->wait, &wait, 7692 TASK_INTERRUPTIBLE); 7693 if (!*timeo_p) 7694 goto do_nonblock; 7695 if (sk->sk_shutdown & RCV_SHUTDOWN) 7696 break; 7697 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7698 asoc->base.dead) 7699 goto do_error; 7700 if (signal_pending(current)) 7701 goto do_interrupted; 7702 7703 if (sctp_state(asoc, ESTABLISHED)) 7704 break; 7705 7706 /* Let another process have a go. Since we are going 7707 * to sleep anyway. 7708 */ 7709 release_sock(sk); 7710 current_timeo = schedule_timeout(current_timeo); 7711 lock_sock(sk); 7712 7713 *timeo_p = current_timeo; 7714 } 7715 7716 out: 7717 finish_wait(&asoc->wait, &wait); 7718 7719 /* Release the association's refcnt. */ 7720 sctp_association_put(asoc); 7721 7722 return err; 7723 7724 do_error: 7725 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7726 err = -ETIMEDOUT; 7727 else 7728 err = -ECONNREFUSED; 7729 goto out; 7730 7731 do_interrupted: 7732 err = sock_intr_errno(*timeo_p); 7733 goto out; 7734 7735 do_nonblock: 7736 err = -EINPROGRESS; 7737 goto out; 7738 } 7739 7740 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7741 { 7742 struct sctp_endpoint *ep; 7743 int err = 0; 7744 DEFINE_WAIT(wait); 7745 7746 ep = sctp_sk(sk)->ep; 7747 7748 7749 for (;;) { 7750 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7751 TASK_INTERRUPTIBLE); 7752 7753 if (list_empty(&ep->asocs)) { 7754 release_sock(sk); 7755 timeo = schedule_timeout(timeo); 7756 lock_sock(sk); 7757 } 7758 7759 err = -EINVAL; 7760 if (!sctp_sstate(sk, LISTENING)) 7761 break; 7762 7763 err = 0; 7764 if (!list_empty(&ep->asocs)) 7765 break; 7766 7767 err = sock_intr_errno(timeo); 7768 if (signal_pending(current)) 7769 break; 7770 7771 err = -EAGAIN; 7772 if (!timeo) 7773 break; 7774 } 7775 7776 finish_wait(sk_sleep(sk), &wait); 7777 7778 return err; 7779 } 7780 7781 static void sctp_wait_for_close(struct sock *sk, long timeout) 7782 { 7783 DEFINE_WAIT(wait); 7784 7785 do { 7786 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7787 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7788 break; 7789 release_sock(sk); 7790 timeout = schedule_timeout(timeout); 7791 lock_sock(sk); 7792 } while (!signal_pending(current) && timeout); 7793 7794 finish_wait(sk_sleep(sk), &wait); 7795 } 7796 7797 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7798 { 7799 struct sk_buff *frag; 7800 7801 if (!skb->data_len) 7802 goto done; 7803 7804 /* Don't forget the fragments. */ 7805 skb_walk_frags(skb, frag) 7806 sctp_skb_set_owner_r_frag(frag, sk); 7807 7808 done: 7809 sctp_skb_set_owner_r(skb, sk); 7810 } 7811 7812 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7813 struct sctp_association *asoc) 7814 { 7815 struct inet_sock *inet = inet_sk(sk); 7816 struct inet_sock *newinet; 7817 7818 newsk->sk_type = sk->sk_type; 7819 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7820 newsk->sk_flags = sk->sk_flags; 7821 newsk->sk_tsflags = sk->sk_tsflags; 7822 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7823 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7824 newsk->sk_reuse = sk->sk_reuse; 7825 7826 newsk->sk_shutdown = sk->sk_shutdown; 7827 newsk->sk_destruct = sctp_destruct_sock; 7828 newsk->sk_family = sk->sk_family; 7829 newsk->sk_protocol = IPPROTO_SCTP; 7830 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7831 newsk->sk_sndbuf = sk->sk_sndbuf; 7832 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7833 newsk->sk_lingertime = sk->sk_lingertime; 7834 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7835 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7836 newsk->sk_rxhash = sk->sk_rxhash; 7837 7838 newinet = inet_sk(newsk); 7839 7840 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7841 * getsockname() and getpeername() 7842 */ 7843 newinet->inet_sport = inet->inet_sport; 7844 newinet->inet_saddr = inet->inet_saddr; 7845 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7846 newinet->inet_dport = htons(asoc->peer.port); 7847 newinet->pmtudisc = inet->pmtudisc; 7848 newinet->inet_id = asoc->next_tsn ^ jiffies; 7849 7850 newinet->uc_ttl = inet->uc_ttl; 7851 newinet->mc_loop = 1; 7852 newinet->mc_ttl = 1; 7853 newinet->mc_index = 0; 7854 newinet->mc_list = NULL; 7855 7856 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 7857 net_enable_timestamp(); 7858 7859 security_sk_clone(sk, newsk); 7860 } 7861 7862 static inline void sctp_copy_descendant(struct sock *sk_to, 7863 const struct sock *sk_from) 7864 { 7865 int ancestor_size = sizeof(struct inet_sock) + 7866 sizeof(struct sctp_sock) - 7867 offsetof(struct sctp_sock, auto_asconf_list); 7868 7869 if (sk_from->sk_family == PF_INET6) 7870 ancestor_size += sizeof(struct ipv6_pinfo); 7871 7872 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7873 } 7874 7875 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7876 * and its messages to the newsk. 7877 */ 7878 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7879 struct sctp_association *assoc, 7880 sctp_socket_type_t type) 7881 { 7882 struct sctp_sock *oldsp = sctp_sk(oldsk); 7883 struct sctp_sock *newsp = sctp_sk(newsk); 7884 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7885 struct sctp_endpoint *newep = newsp->ep; 7886 struct sk_buff *skb, *tmp; 7887 struct sctp_ulpevent *event; 7888 struct sctp_bind_hashbucket *head; 7889 7890 /* Migrate socket buffer sizes and all the socket level options to the 7891 * new socket. 7892 */ 7893 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7894 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7895 /* Brute force copy old sctp opt. */ 7896 sctp_copy_descendant(newsk, oldsk); 7897 7898 /* Restore the ep value that was overwritten with the above structure 7899 * copy. 7900 */ 7901 newsp->ep = newep; 7902 newsp->hmac = NULL; 7903 7904 /* Hook this new socket in to the bind_hash list. */ 7905 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7906 inet_sk(oldsk)->inet_num)]; 7907 spin_lock_bh(&head->lock); 7908 pp = sctp_sk(oldsk)->bind_hash; 7909 sk_add_bind_node(newsk, &pp->owner); 7910 sctp_sk(newsk)->bind_hash = pp; 7911 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7912 spin_unlock_bh(&head->lock); 7913 7914 /* Copy the bind_addr list from the original endpoint to the new 7915 * endpoint so that we can handle restarts properly 7916 */ 7917 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7918 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7919 7920 /* Move any messages in the old socket's receive queue that are for the 7921 * peeled off association to the new socket's receive queue. 7922 */ 7923 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7924 event = sctp_skb2event(skb); 7925 if (event->asoc == assoc) { 7926 __skb_unlink(skb, &oldsk->sk_receive_queue); 7927 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7928 sctp_skb_set_owner_r_frag(skb, newsk); 7929 } 7930 } 7931 7932 /* Clean up any messages pending delivery due to partial 7933 * delivery. Three cases: 7934 * 1) No partial deliver; no work. 7935 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7936 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7937 */ 7938 skb_queue_head_init(&newsp->pd_lobby); 7939 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7940 7941 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7942 struct sk_buff_head *queue; 7943 7944 /* Decide which queue to move pd_lobby skbs to. */ 7945 if (assoc->ulpq.pd_mode) { 7946 queue = &newsp->pd_lobby; 7947 } else 7948 queue = &newsk->sk_receive_queue; 7949 7950 /* Walk through the pd_lobby, looking for skbs that 7951 * need moved to the new socket. 7952 */ 7953 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7954 event = sctp_skb2event(skb); 7955 if (event->asoc == assoc) { 7956 __skb_unlink(skb, &oldsp->pd_lobby); 7957 __skb_queue_tail(queue, skb); 7958 sctp_skb_set_owner_r_frag(skb, newsk); 7959 } 7960 } 7961 7962 /* Clear up any skbs waiting for the partial 7963 * delivery to finish. 7964 */ 7965 if (assoc->ulpq.pd_mode) 7966 sctp_clear_pd(oldsk, NULL); 7967 7968 } 7969 7970 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7971 sctp_skb_set_owner_r_frag(skb, newsk); 7972 7973 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7974 sctp_skb_set_owner_r_frag(skb, newsk); 7975 7976 /* Set the type of socket to indicate that it is peeled off from the 7977 * original UDP-style socket or created with the accept() call on a 7978 * TCP-style socket.. 7979 */ 7980 newsp->type = type; 7981 7982 /* Mark the new socket "in-use" by the user so that any packets 7983 * that may arrive on the association after we've moved it are 7984 * queued to the backlog. This prevents a potential race between 7985 * backlog processing on the old socket and new-packet processing 7986 * on the new socket. 7987 * 7988 * The caller has just allocated newsk so we can guarantee that other 7989 * paths won't try to lock it and then oldsk. 7990 */ 7991 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7992 sctp_assoc_migrate(assoc, newsk); 7993 7994 /* If the association on the newsk is already closed before accept() 7995 * is called, set RCV_SHUTDOWN flag. 7996 */ 7997 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 7998 newsk->sk_state = SCTP_SS_CLOSED; 7999 newsk->sk_shutdown |= RCV_SHUTDOWN; 8000 } else { 8001 newsk->sk_state = SCTP_SS_ESTABLISHED; 8002 } 8003 8004 release_sock(newsk); 8005 } 8006 8007 8008 /* This proto struct describes the ULP interface for SCTP. */ 8009 struct proto sctp_prot = { 8010 .name = "SCTP", 8011 .owner = THIS_MODULE, 8012 .close = sctp_close, 8013 .connect = sctp_connect, 8014 .disconnect = sctp_disconnect, 8015 .accept = sctp_accept, 8016 .ioctl = sctp_ioctl, 8017 .init = sctp_init_sock, 8018 .destroy = sctp_destroy_sock, 8019 .shutdown = sctp_shutdown, 8020 .setsockopt = sctp_setsockopt, 8021 .getsockopt = sctp_getsockopt, 8022 .sendmsg = sctp_sendmsg, 8023 .recvmsg = sctp_recvmsg, 8024 .bind = sctp_bind, 8025 .backlog_rcv = sctp_backlog_rcv, 8026 .hash = sctp_hash, 8027 .unhash = sctp_unhash, 8028 .get_port = sctp_get_port, 8029 .obj_size = sizeof(struct sctp_sock), 8030 .sysctl_mem = sysctl_sctp_mem, 8031 .sysctl_rmem = sysctl_sctp_rmem, 8032 .sysctl_wmem = sysctl_sctp_wmem, 8033 .memory_pressure = &sctp_memory_pressure, 8034 .enter_memory_pressure = sctp_enter_memory_pressure, 8035 .memory_allocated = &sctp_memory_allocated, 8036 .sockets_allocated = &sctp_sockets_allocated, 8037 }; 8038 8039 #if IS_ENABLED(CONFIG_IPV6) 8040 8041 #include <net/transp_v6.h> 8042 static void sctp_v6_destroy_sock(struct sock *sk) 8043 { 8044 sctp_destroy_sock(sk); 8045 inet6_destroy_sock(sk); 8046 } 8047 8048 struct proto sctpv6_prot = { 8049 .name = "SCTPv6", 8050 .owner = THIS_MODULE, 8051 .close = sctp_close, 8052 .connect = sctp_connect, 8053 .disconnect = sctp_disconnect, 8054 .accept = sctp_accept, 8055 .ioctl = sctp_ioctl, 8056 .init = sctp_init_sock, 8057 .destroy = sctp_v6_destroy_sock, 8058 .shutdown = sctp_shutdown, 8059 .setsockopt = sctp_setsockopt, 8060 .getsockopt = sctp_getsockopt, 8061 .sendmsg = sctp_sendmsg, 8062 .recvmsg = sctp_recvmsg, 8063 .bind = sctp_bind, 8064 .backlog_rcv = sctp_backlog_rcv, 8065 .hash = sctp_hash, 8066 .unhash = sctp_unhash, 8067 .get_port = sctp_get_port, 8068 .obj_size = sizeof(struct sctp6_sock), 8069 .sysctl_mem = sysctl_sctp_mem, 8070 .sysctl_rmem = sysctl_sctp_rmem, 8071 .sysctl_wmem = sysctl_sctp_wmem, 8072 .memory_pressure = &sctp_memory_pressure, 8073 .enter_memory_pressure = sctp_enter_memory_pressure, 8074 .memory_allocated = &sctp_memory_allocated, 8075 .sockets_allocated = &sctp_sockets_allocated, 8076 }; 8077 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8078