xref: /openbmc/linux/net/sctp/socket.c (revision 4a075bd4)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			     struct sctp_association *assoc,
107 			     enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = memdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = memdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 		iov_iter_revert(&msg->msg_iter, msg_len);
1870 
1871 		return 0;
1872 	}
1873 
1874 	return 1;
1875 }
1876 
1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1878 				struct msghdr *msg, size_t msg_len,
1879 				struct sctp_transport *transport,
1880 				struct sctp_sndrcvinfo *sinfo)
1881 {
1882 	struct sock *sk = asoc->base.sk;
1883 	struct sctp_sock *sp = sctp_sk(sk);
1884 	struct net *net = sock_net(sk);
1885 	struct sctp_datamsg *datamsg;
1886 	bool wait_connect = false;
1887 	struct sctp_chunk *chunk;
1888 	long timeo;
1889 	int err;
1890 
1891 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1892 		err = -EINVAL;
1893 		goto err;
1894 	}
1895 
1896 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1897 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1898 		if (err)
1899 			goto err;
1900 	}
1901 
1902 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1903 		err = -EMSGSIZE;
1904 		goto err;
1905 	}
1906 
1907 	if (asoc->pmtu_pending) {
1908 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1909 			sctp_assoc_sync_pmtu(asoc);
1910 		asoc->pmtu_pending = 0;
1911 	}
1912 
1913 	if (sctp_wspace(asoc) < (int)msg_len)
1914 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1915 
1916 	if (sk_under_memory_pressure(sk))
1917 		sk_mem_reclaim(sk);
1918 
1919 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1920 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1921 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1922 		if (err)
1923 			goto err;
1924 	}
1925 
1926 	if (sctp_state(asoc, CLOSED)) {
1927 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1928 		if (err)
1929 			goto err;
1930 
1931 		if (sp->strm_interleave) {
1932 			timeo = sock_sndtimeo(sk, 0);
1933 			err = sctp_wait_for_connect(asoc, &timeo);
1934 			if (err) {
1935 				err = -ESRCH;
1936 				goto err;
1937 			}
1938 		} else {
1939 			wait_connect = true;
1940 		}
1941 
1942 		pr_debug("%s: we associated primitively\n", __func__);
1943 	}
1944 
1945 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1946 	if (IS_ERR(datamsg)) {
1947 		err = PTR_ERR(datamsg);
1948 		goto err;
1949 	}
1950 
1951 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1952 
1953 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1954 		sctp_chunk_hold(chunk);
1955 		sctp_set_owner_w(chunk);
1956 		chunk->transport = transport;
1957 	}
1958 
1959 	err = sctp_primitive_SEND(net, asoc, datamsg);
1960 	if (err) {
1961 		sctp_datamsg_free(datamsg);
1962 		goto err;
1963 	}
1964 
1965 	pr_debug("%s: we sent primitively\n", __func__);
1966 
1967 	sctp_datamsg_put(datamsg);
1968 
1969 	if (unlikely(wait_connect)) {
1970 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1971 		sctp_wait_for_connect(asoc, &timeo);
1972 	}
1973 
1974 	err = msg_len;
1975 
1976 err:
1977 	return err;
1978 }
1979 
1980 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1981 					       const struct msghdr *msg,
1982 					       struct sctp_cmsgs *cmsgs)
1983 {
1984 	union sctp_addr *daddr = NULL;
1985 	int err;
1986 
1987 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1988 		int len = msg->msg_namelen;
1989 
1990 		if (len > sizeof(*daddr))
1991 			len = sizeof(*daddr);
1992 
1993 		daddr = (union sctp_addr *)msg->msg_name;
1994 
1995 		err = sctp_verify_addr(sk, daddr, len);
1996 		if (err)
1997 			return ERR_PTR(err);
1998 	}
1999 
2000 	return daddr;
2001 }
2002 
2003 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2004 				      struct sctp_sndrcvinfo *sinfo,
2005 				      struct sctp_cmsgs *cmsgs)
2006 {
2007 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2008 		sinfo->sinfo_stream = asoc->default_stream;
2009 		sinfo->sinfo_ppid = asoc->default_ppid;
2010 		sinfo->sinfo_context = asoc->default_context;
2011 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2012 
2013 		if (!cmsgs->prinfo)
2014 			sinfo->sinfo_flags = asoc->default_flags;
2015 	}
2016 
2017 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2018 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2019 
2020 	if (cmsgs->authinfo) {
2021 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2022 		 * sinfo_ssn to save the keyid on tx path.
2023 		 */
2024 		sinfo->sinfo_tsn = 1;
2025 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2026 	}
2027 }
2028 
2029 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2030 {
2031 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2032 	struct sctp_transport *transport = NULL;
2033 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2034 	struct sctp_association *asoc, *tmp;
2035 	struct sctp_cmsgs cmsgs;
2036 	union sctp_addr *daddr;
2037 	bool new = false;
2038 	__u16 sflags;
2039 	int err;
2040 
2041 	/* Parse and get snd_info */
2042 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2043 	if (err)
2044 		goto out;
2045 
2046 	sinfo  = &_sinfo;
2047 	sflags = sinfo->sinfo_flags;
2048 
2049 	/* Get daddr from msg */
2050 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2051 	if (IS_ERR(daddr)) {
2052 		err = PTR_ERR(daddr);
2053 		goto out;
2054 	}
2055 
2056 	lock_sock(sk);
2057 
2058 	/* SCTP_SENDALL process */
2059 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2060 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
2061 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2062 							msg_len);
2063 			if (err == 0)
2064 				continue;
2065 			if (err < 0)
2066 				goto out_unlock;
2067 
2068 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2069 
2070 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2071 						   NULL, sinfo);
2072 			if (err < 0)
2073 				goto out_unlock;
2074 
2075 			iov_iter_revert(&msg->msg_iter, err);
2076 		}
2077 
2078 		goto out_unlock;
2079 	}
2080 
2081 	/* Get and check or create asoc */
2082 	if (daddr) {
2083 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2084 		if (asoc) {
2085 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2086 							msg_len);
2087 			if (err <= 0)
2088 				goto out_unlock;
2089 		} else {
2090 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2091 						    &transport);
2092 			if (err)
2093 				goto out_unlock;
2094 
2095 			asoc = transport->asoc;
2096 			new = true;
2097 		}
2098 
2099 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2100 			transport = NULL;
2101 	} else {
2102 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2103 		if (!asoc) {
2104 			err = -EPIPE;
2105 			goto out_unlock;
2106 		}
2107 
2108 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2109 		if (err <= 0)
2110 			goto out_unlock;
2111 	}
2112 
2113 	/* Update snd_info with the asoc */
2114 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2115 
2116 	/* Send msg to the asoc */
2117 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2118 	if (err < 0 && err != -ESRCH && new)
2119 		sctp_association_free(asoc);
2120 
2121 out_unlock:
2122 	release_sock(sk);
2123 out:
2124 	return sctp_error(sk, msg->msg_flags, err);
2125 }
2126 
2127 /* This is an extended version of skb_pull() that removes the data from the
2128  * start of a skb even when data is spread across the list of skb's in the
2129  * frag_list. len specifies the total amount of data that needs to be removed.
2130  * when 'len' bytes could be removed from the skb, it returns 0.
2131  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2132  * could not be removed.
2133  */
2134 static int sctp_skb_pull(struct sk_buff *skb, int len)
2135 {
2136 	struct sk_buff *list;
2137 	int skb_len = skb_headlen(skb);
2138 	int rlen;
2139 
2140 	if (len <= skb_len) {
2141 		__skb_pull(skb, len);
2142 		return 0;
2143 	}
2144 	len -= skb_len;
2145 	__skb_pull(skb, skb_len);
2146 
2147 	skb_walk_frags(skb, list) {
2148 		rlen = sctp_skb_pull(list, len);
2149 		skb->len -= (len-rlen);
2150 		skb->data_len -= (len-rlen);
2151 
2152 		if (!rlen)
2153 			return 0;
2154 
2155 		len = rlen;
2156 	}
2157 
2158 	return len;
2159 }
2160 
2161 /* API 3.1.3  recvmsg() - UDP Style Syntax
2162  *
2163  *  ssize_t recvmsg(int socket, struct msghdr *message,
2164  *                    int flags);
2165  *
2166  *  socket  - the socket descriptor of the endpoint.
2167  *  message - pointer to the msghdr structure which contains a single
2168  *            user message and possibly some ancillary data.
2169  *
2170  *            See Section 5 for complete description of the data
2171  *            structures.
2172  *
2173  *  flags   - flags sent or received with the user message, see Section
2174  *            5 for complete description of the flags.
2175  */
2176 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2177 			int noblock, int flags, int *addr_len)
2178 {
2179 	struct sctp_ulpevent *event = NULL;
2180 	struct sctp_sock *sp = sctp_sk(sk);
2181 	struct sk_buff *skb, *head_skb;
2182 	int copied;
2183 	int err = 0;
2184 	int skb_len;
2185 
2186 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2187 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2188 		 addr_len);
2189 
2190 	lock_sock(sk);
2191 
2192 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2193 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2194 		err = -ENOTCONN;
2195 		goto out;
2196 	}
2197 
2198 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2199 	if (!skb)
2200 		goto out;
2201 
2202 	/* Get the total length of the skb including any skb's in the
2203 	 * frag_list.
2204 	 */
2205 	skb_len = skb->len;
2206 
2207 	copied = skb_len;
2208 	if (copied > len)
2209 		copied = len;
2210 
2211 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2212 
2213 	event = sctp_skb2event(skb);
2214 
2215 	if (err)
2216 		goto out_free;
2217 
2218 	if (event->chunk && event->chunk->head_skb)
2219 		head_skb = event->chunk->head_skb;
2220 	else
2221 		head_skb = skb;
2222 	sock_recv_ts_and_drops(msg, sk, head_skb);
2223 	if (sctp_ulpevent_is_notification(event)) {
2224 		msg->msg_flags |= MSG_NOTIFICATION;
2225 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2226 	} else {
2227 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2228 	}
2229 
2230 	/* Check if we allow SCTP_NXTINFO. */
2231 	if (sp->recvnxtinfo)
2232 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2233 	/* Check if we allow SCTP_RCVINFO. */
2234 	if (sp->recvrcvinfo)
2235 		sctp_ulpevent_read_rcvinfo(event, msg);
2236 	/* Check if we allow SCTP_SNDRCVINFO. */
2237 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2238 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2239 
2240 	err = copied;
2241 
2242 	/* If skb's length exceeds the user's buffer, update the skb and
2243 	 * push it back to the receive_queue so that the next call to
2244 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2245 	 */
2246 	if (skb_len > copied) {
2247 		msg->msg_flags &= ~MSG_EOR;
2248 		if (flags & MSG_PEEK)
2249 			goto out_free;
2250 		sctp_skb_pull(skb, copied);
2251 		skb_queue_head(&sk->sk_receive_queue, skb);
2252 
2253 		/* When only partial message is copied to the user, increase
2254 		 * rwnd by that amount. If all the data in the skb is read,
2255 		 * rwnd is updated when the event is freed.
2256 		 */
2257 		if (!sctp_ulpevent_is_notification(event))
2258 			sctp_assoc_rwnd_increase(event->asoc, copied);
2259 		goto out;
2260 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2261 		   (event->msg_flags & MSG_EOR))
2262 		msg->msg_flags |= MSG_EOR;
2263 	else
2264 		msg->msg_flags &= ~MSG_EOR;
2265 
2266 out_free:
2267 	if (flags & MSG_PEEK) {
2268 		/* Release the skb reference acquired after peeking the skb in
2269 		 * sctp_skb_recv_datagram().
2270 		 */
2271 		kfree_skb(skb);
2272 	} else {
2273 		/* Free the event which includes releasing the reference to
2274 		 * the owner of the skb, freeing the skb and updating the
2275 		 * rwnd.
2276 		 */
2277 		sctp_ulpevent_free(event);
2278 	}
2279 out:
2280 	release_sock(sk);
2281 	return err;
2282 }
2283 
2284 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2285  *
2286  * This option is a on/off flag.  If enabled no SCTP message
2287  * fragmentation will be performed.  Instead if a message being sent
2288  * exceeds the current PMTU size, the message will NOT be sent and
2289  * instead a error will be indicated to the user.
2290  */
2291 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2292 					     char __user *optval,
2293 					     unsigned int optlen)
2294 {
2295 	int val;
2296 
2297 	if (optlen < sizeof(int))
2298 		return -EINVAL;
2299 
2300 	if (get_user(val, (int __user *)optval))
2301 		return -EFAULT;
2302 
2303 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2304 
2305 	return 0;
2306 }
2307 
2308 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2309 				  unsigned int optlen)
2310 {
2311 	struct sctp_event_subscribe subscribe;
2312 	__u8 *sn_type = (__u8 *)&subscribe;
2313 	struct sctp_sock *sp = sctp_sk(sk);
2314 	struct sctp_association *asoc;
2315 	int i;
2316 
2317 	if (optlen > sizeof(struct sctp_event_subscribe))
2318 		return -EINVAL;
2319 
2320 	if (copy_from_user(&subscribe, optval, optlen))
2321 		return -EFAULT;
2322 
2323 	for (i = 0; i < optlen; i++)
2324 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2325 				       sn_type[i]);
2326 
2327 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2328 		asoc->subscribe = sctp_sk(sk)->subscribe;
2329 
2330 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2331 	 * if there is no data to be sent or retransmit, the stack will
2332 	 * immediately send up this notification.
2333 	 */
2334 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2335 		struct sctp_ulpevent *event;
2336 
2337 		asoc = sctp_id2assoc(sk, 0);
2338 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2339 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2340 					GFP_USER | __GFP_NOWARN);
2341 			if (!event)
2342 				return -ENOMEM;
2343 
2344 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2345 		}
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2352  *
2353  * This socket option is applicable to the UDP-style socket only.  When
2354  * set it will cause associations that are idle for more than the
2355  * specified number of seconds to automatically close.  An association
2356  * being idle is defined an association that has NOT sent or received
2357  * user data.  The special value of '0' indicates that no automatic
2358  * close of any associations should be performed.  The option expects an
2359  * integer defining the number of seconds of idle time before an
2360  * association is closed.
2361  */
2362 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2363 				     unsigned int optlen)
2364 {
2365 	struct sctp_sock *sp = sctp_sk(sk);
2366 	struct net *net = sock_net(sk);
2367 
2368 	/* Applicable to UDP-style socket only */
2369 	if (sctp_style(sk, TCP))
2370 		return -EOPNOTSUPP;
2371 	if (optlen != sizeof(int))
2372 		return -EINVAL;
2373 	if (copy_from_user(&sp->autoclose, optval, optlen))
2374 		return -EFAULT;
2375 
2376 	if (sp->autoclose > net->sctp.max_autoclose)
2377 		sp->autoclose = net->sctp.max_autoclose;
2378 
2379 	return 0;
2380 }
2381 
2382 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2383  *
2384  * Applications can enable or disable heartbeats for any peer address of
2385  * an association, modify an address's heartbeat interval, force a
2386  * heartbeat to be sent immediately, and adjust the address's maximum
2387  * number of retransmissions sent before an address is considered
2388  * unreachable.  The following structure is used to access and modify an
2389  * address's parameters:
2390  *
2391  *  struct sctp_paddrparams {
2392  *     sctp_assoc_t            spp_assoc_id;
2393  *     struct sockaddr_storage spp_address;
2394  *     uint32_t                spp_hbinterval;
2395  *     uint16_t                spp_pathmaxrxt;
2396  *     uint32_t                spp_pathmtu;
2397  *     uint32_t                spp_sackdelay;
2398  *     uint32_t                spp_flags;
2399  *     uint32_t                spp_ipv6_flowlabel;
2400  *     uint8_t                 spp_dscp;
2401  * };
2402  *
2403  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2404  *                     application, and identifies the association for
2405  *                     this query.
2406  *   spp_address     - This specifies which address is of interest.
2407  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2408  *                     in milliseconds.  If a  value of zero
2409  *                     is present in this field then no changes are to
2410  *                     be made to this parameter.
2411  *   spp_pathmaxrxt  - This contains the maximum number of
2412  *                     retransmissions before this address shall be
2413  *                     considered unreachable. If a  value of zero
2414  *                     is present in this field then no changes are to
2415  *                     be made to this parameter.
2416  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2417  *                     specified here will be the "fixed" path mtu.
2418  *                     Note that if the spp_address field is empty
2419  *                     then all associations on this address will
2420  *                     have this fixed path mtu set upon them.
2421  *
2422  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2423  *                     the number of milliseconds that sacks will be delayed
2424  *                     for. This value will apply to all addresses of an
2425  *                     association if the spp_address field is empty. Note
2426  *                     also, that if delayed sack is enabled and this
2427  *                     value is set to 0, no change is made to the last
2428  *                     recorded delayed sack timer value.
2429  *
2430  *   spp_flags       - These flags are used to control various features
2431  *                     on an association. The flag field may contain
2432  *                     zero or more of the following options.
2433  *
2434  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2435  *                     specified address. Note that if the address
2436  *                     field is empty all addresses for the association
2437  *                     have heartbeats enabled upon them.
2438  *
2439  *                     SPP_HB_DISABLE - Disable heartbeats on the
2440  *                     speicifed address. Note that if the address
2441  *                     field is empty all addresses for the association
2442  *                     will have their heartbeats disabled. Note also
2443  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2444  *                     mutually exclusive, only one of these two should
2445  *                     be specified. Enabling both fields will have
2446  *                     undetermined results.
2447  *
2448  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2449  *                     to be made immediately.
2450  *
2451  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2452  *                     heartbeat delayis to be set to the value of 0
2453  *                     milliseconds.
2454  *
2455  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2456  *                     discovery upon the specified address. Note that
2457  *                     if the address feild is empty then all addresses
2458  *                     on the association are effected.
2459  *
2460  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2461  *                     discovery upon the specified address. Note that
2462  *                     if the address feild is empty then all addresses
2463  *                     on the association are effected. Not also that
2464  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2465  *                     exclusive. Enabling both will have undetermined
2466  *                     results.
2467  *
2468  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2469  *                     on delayed sack. The time specified in spp_sackdelay
2470  *                     is used to specify the sack delay for this address. Note
2471  *                     that if spp_address is empty then all addresses will
2472  *                     enable delayed sack and take on the sack delay
2473  *                     value specified in spp_sackdelay.
2474  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2475  *                     off delayed sack. If the spp_address field is blank then
2476  *                     delayed sack is disabled for the entire association. Note
2477  *                     also that this field is mutually exclusive to
2478  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2479  *                     results.
2480  *
2481  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2482  *                     setting of the IPV6 flow label value.  The value is
2483  *                     contained in the spp_ipv6_flowlabel field.
2484  *                     Upon retrieval, this flag will be set to indicate that
2485  *                     the spp_ipv6_flowlabel field has a valid value returned.
2486  *                     If a specific destination address is set (in the
2487  *                     spp_address field), then the value returned is that of
2488  *                     the address.  If just an association is specified (and
2489  *                     no address), then the association's default flow label
2490  *                     is returned.  If neither an association nor a destination
2491  *                     is specified, then the socket's default flow label is
2492  *                     returned.  For non-IPv6 sockets, this flag will be left
2493  *                     cleared.
2494  *
2495  *                     SPP_DSCP:  Setting this flag enables the setting of the
2496  *                     Differentiated Services Code Point (DSCP) value
2497  *                     associated with either the association or a specific
2498  *                     address.  The value is obtained in the spp_dscp field.
2499  *                     Upon retrieval, this flag will be set to indicate that
2500  *                     the spp_dscp field has a valid value returned.  If a
2501  *                     specific destination address is set when called (in the
2502  *                     spp_address field), then that specific destination
2503  *                     address's DSCP value is returned.  If just an association
2504  *                     is specified, then the association's default DSCP is
2505  *                     returned.  If neither an association nor a destination is
2506  *                     specified, then the socket's default DSCP is returned.
2507  *
2508  *   spp_ipv6_flowlabel
2509  *                   - This field is used in conjunction with the
2510  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2511  *                     The 20 least significant bits are used for the flow
2512  *                     label.  This setting has precedence over any IPv6-layer
2513  *                     setting.
2514  *
2515  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2516  *                     and contains the DSCP.  The 6 most significant bits are
2517  *                     used for the DSCP.  This setting has precedence over any
2518  *                     IPv4- or IPv6- layer setting.
2519  */
2520 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2521 				       struct sctp_transport   *trans,
2522 				       struct sctp_association *asoc,
2523 				       struct sctp_sock        *sp,
2524 				       int                      hb_change,
2525 				       int                      pmtud_change,
2526 				       int                      sackdelay_change)
2527 {
2528 	int error;
2529 
2530 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2531 		struct net *net = sock_net(trans->asoc->base.sk);
2532 
2533 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2534 		if (error)
2535 			return error;
2536 	}
2537 
2538 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2539 	 * this field is ignored.  Note also that a value of zero indicates
2540 	 * the current setting should be left unchanged.
2541 	 */
2542 	if (params->spp_flags & SPP_HB_ENABLE) {
2543 
2544 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2545 		 * set.  This lets us use 0 value when this flag
2546 		 * is set.
2547 		 */
2548 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2549 			params->spp_hbinterval = 0;
2550 
2551 		if (params->spp_hbinterval ||
2552 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2553 			if (trans) {
2554 				trans->hbinterval =
2555 				    msecs_to_jiffies(params->spp_hbinterval);
2556 			} else if (asoc) {
2557 				asoc->hbinterval =
2558 				    msecs_to_jiffies(params->spp_hbinterval);
2559 			} else {
2560 				sp->hbinterval = params->spp_hbinterval;
2561 			}
2562 		}
2563 	}
2564 
2565 	if (hb_change) {
2566 		if (trans) {
2567 			trans->param_flags =
2568 				(trans->param_flags & ~SPP_HB) | hb_change;
2569 		} else if (asoc) {
2570 			asoc->param_flags =
2571 				(asoc->param_flags & ~SPP_HB) | hb_change;
2572 		} else {
2573 			sp->param_flags =
2574 				(sp->param_flags & ~SPP_HB) | hb_change;
2575 		}
2576 	}
2577 
2578 	/* When Path MTU discovery is disabled the value specified here will
2579 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2580 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2581 	 * effect).
2582 	 */
2583 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2584 		if (trans) {
2585 			trans->pathmtu = params->spp_pathmtu;
2586 			sctp_assoc_sync_pmtu(asoc);
2587 		} else if (asoc) {
2588 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2589 		} else {
2590 			sp->pathmtu = params->spp_pathmtu;
2591 		}
2592 	}
2593 
2594 	if (pmtud_change) {
2595 		if (trans) {
2596 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2597 				(params->spp_flags & SPP_PMTUD_ENABLE);
2598 			trans->param_flags =
2599 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2600 			if (update) {
2601 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2602 				sctp_assoc_sync_pmtu(asoc);
2603 			}
2604 		} else if (asoc) {
2605 			asoc->param_flags =
2606 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2607 		} else {
2608 			sp->param_flags =
2609 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2610 		}
2611 	}
2612 
2613 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2614 	 * value of this field is ignored.  Note also that a value of zero
2615 	 * indicates the current setting should be left unchanged.
2616 	 */
2617 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2618 		if (trans) {
2619 			trans->sackdelay =
2620 				msecs_to_jiffies(params->spp_sackdelay);
2621 		} else if (asoc) {
2622 			asoc->sackdelay =
2623 				msecs_to_jiffies(params->spp_sackdelay);
2624 		} else {
2625 			sp->sackdelay = params->spp_sackdelay;
2626 		}
2627 	}
2628 
2629 	if (sackdelay_change) {
2630 		if (trans) {
2631 			trans->param_flags =
2632 				(trans->param_flags & ~SPP_SACKDELAY) |
2633 				sackdelay_change;
2634 		} else if (asoc) {
2635 			asoc->param_flags =
2636 				(asoc->param_flags & ~SPP_SACKDELAY) |
2637 				sackdelay_change;
2638 		} else {
2639 			sp->param_flags =
2640 				(sp->param_flags & ~SPP_SACKDELAY) |
2641 				sackdelay_change;
2642 		}
2643 	}
2644 
2645 	/* Note that a value of zero indicates the current setting should be
2646 	   left unchanged.
2647 	 */
2648 	if (params->spp_pathmaxrxt) {
2649 		if (trans) {
2650 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2651 		} else if (asoc) {
2652 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2653 		} else {
2654 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2655 		}
2656 	}
2657 
2658 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2659 		if (trans) {
2660 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2661 				trans->flowlabel = params->spp_ipv6_flowlabel &
2662 						   SCTP_FLOWLABEL_VAL_MASK;
2663 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2664 			}
2665 		} else if (asoc) {
2666 			struct sctp_transport *t;
2667 
2668 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2669 					    transports) {
2670 				if (t->ipaddr.sa.sa_family != AF_INET6)
2671 					continue;
2672 				t->flowlabel = params->spp_ipv6_flowlabel &
2673 					       SCTP_FLOWLABEL_VAL_MASK;
2674 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2675 			}
2676 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2677 					  SCTP_FLOWLABEL_VAL_MASK;
2678 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2679 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2680 			sp->flowlabel = params->spp_ipv6_flowlabel &
2681 					SCTP_FLOWLABEL_VAL_MASK;
2682 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2683 		}
2684 	}
2685 
2686 	if (params->spp_flags & SPP_DSCP) {
2687 		if (trans) {
2688 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2689 			trans->dscp |= SCTP_DSCP_SET_MASK;
2690 		} else if (asoc) {
2691 			struct sctp_transport *t;
2692 
2693 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2694 					    transports) {
2695 				t->dscp = params->spp_dscp &
2696 					  SCTP_DSCP_VAL_MASK;
2697 				t->dscp |= SCTP_DSCP_SET_MASK;
2698 			}
2699 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2700 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2701 		} else {
2702 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2703 			sp->dscp |= SCTP_DSCP_SET_MASK;
2704 		}
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2711 					    char __user *optval,
2712 					    unsigned int optlen)
2713 {
2714 	struct sctp_paddrparams  params;
2715 	struct sctp_transport   *trans = NULL;
2716 	struct sctp_association *asoc = NULL;
2717 	struct sctp_sock        *sp = sctp_sk(sk);
2718 	int error;
2719 	int hb_change, pmtud_change, sackdelay_change;
2720 
2721 	if (optlen == sizeof(params)) {
2722 		if (copy_from_user(&params, optval, optlen))
2723 			return -EFAULT;
2724 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2725 					    spp_ipv6_flowlabel), 4)) {
2726 		if (copy_from_user(&params, optval, optlen))
2727 			return -EFAULT;
2728 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2729 			return -EINVAL;
2730 	} else {
2731 		return -EINVAL;
2732 	}
2733 
2734 	/* Validate flags and value parameters. */
2735 	hb_change        = params.spp_flags & SPP_HB;
2736 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2737 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2738 
2739 	if (hb_change        == SPP_HB ||
2740 	    pmtud_change     == SPP_PMTUD ||
2741 	    sackdelay_change == SPP_SACKDELAY ||
2742 	    params.spp_sackdelay > 500 ||
2743 	    (params.spp_pathmtu &&
2744 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2745 		return -EINVAL;
2746 
2747 	/* If an address other than INADDR_ANY is specified, and
2748 	 * no transport is found, then the request is invalid.
2749 	 */
2750 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2751 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2752 					       params.spp_assoc_id);
2753 		if (!trans)
2754 			return -EINVAL;
2755 	}
2756 
2757 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2758 	 * socket is a one to many style socket, and an association
2759 	 * was not found, then the id was invalid.
2760 	 */
2761 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2762 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2763 	    sctp_style(sk, UDP))
2764 		return -EINVAL;
2765 
2766 	/* Heartbeat demand can only be sent on a transport or
2767 	 * association, but not a socket.
2768 	 */
2769 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2770 		return -EINVAL;
2771 
2772 	/* Process parameters. */
2773 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2774 					    hb_change, pmtud_change,
2775 					    sackdelay_change);
2776 
2777 	if (error)
2778 		return error;
2779 
2780 	/* If changes are for association, also apply parameters to each
2781 	 * transport.
2782 	 */
2783 	if (!trans && asoc) {
2784 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2785 				transports) {
2786 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2787 						    hb_change, pmtud_change,
2788 						    sackdelay_change);
2789 		}
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2796 {
2797 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2798 }
2799 
2800 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2801 {
2802 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2803 }
2804 
2805 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2806 					struct sctp_association *asoc)
2807 {
2808 	struct sctp_transport *trans;
2809 
2810 	if (params->sack_delay) {
2811 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2812 		asoc->param_flags =
2813 			sctp_spp_sackdelay_enable(asoc->param_flags);
2814 	}
2815 	if (params->sack_freq == 1) {
2816 		asoc->param_flags =
2817 			sctp_spp_sackdelay_disable(asoc->param_flags);
2818 	} else if (params->sack_freq > 1) {
2819 		asoc->sackfreq = params->sack_freq;
2820 		asoc->param_flags =
2821 			sctp_spp_sackdelay_enable(asoc->param_flags);
2822 	}
2823 
2824 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2825 			    transports) {
2826 		if (params->sack_delay) {
2827 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2828 			trans->param_flags =
2829 				sctp_spp_sackdelay_enable(trans->param_flags);
2830 		}
2831 		if (params->sack_freq == 1) {
2832 			trans->param_flags =
2833 				sctp_spp_sackdelay_disable(trans->param_flags);
2834 		} else if (params->sack_freq > 1) {
2835 			trans->sackfreq = params->sack_freq;
2836 			trans->param_flags =
2837 				sctp_spp_sackdelay_enable(trans->param_flags);
2838 		}
2839 	}
2840 }
2841 
2842 /*
2843  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2844  *
2845  * This option will effect the way delayed acks are performed.  This
2846  * option allows you to get or set the delayed ack time, in
2847  * milliseconds.  It also allows changing the delayed ack frequency.
2848  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2849  * the assoc_id is 0, then this sets or gets the endpoints default
2850  * values.  If the assoc_id field is non-zero, then the set or get
2851  * effects the specified association for the one to many model (the
2852  * assoc_id field is ignored by the one to one model).  Note that if
2853  * sack_delay or sack_freq are 0 when setting this option, then the
2854  * current values will remain unchanged.
2855  *
2856  * struct sctp_sack_info {
2857  *     sctp_assoc_t            sack_assoc_id;
2858  *     uint32_t                sack_delay;
2859  *     uint32_t                sack_freq;
2860  * };
2861  *
2862  * sack_assoc_id -  This parameter, indicates which association the user
2863  *    is performing an action upon.  Note that if this field's value is
2864  *    zero then the endpoints default value is changed (effecting future
2865  *    associations only).
2866  *
2867  * sack_delay -  This parameter contains the number of milliseconds that
2868  *    the user is requesting the delayed ACK timer be set to.  Note that
2869  *    this value is defined in the standard to be between 200 and 500
2870  *    milliseconds.
2871  *
2872  * sack_freq -  This parameter contains the number of packets that must
2873  *    be received before a sack is sent without waiting for the delay
2874  *    timer to expire.  The default value for this is 2, setting this
2875  *    value to 1 will disable the delayed sack algorithm.
2876  */
2877 
2878 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2879 				       char __user *optval, unsigned int optlen)
2880 {
2881 	struct sctp_sock *sp = sctp_sk(sk);
2882 	struct sctp_association *asoc;
2883 	struct sctp_sack_info params;
2884 
2885 	if (optlen == sizeof(struct sctp_sack_info)) {
2886 		if (copy_from_user(&params, optval, optlen))
2887 			return -EFAULT;
2888 
2889 		if (params.sack_delay == 0 && params.sack_freq == 0)
2890 			return 0;
2891 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2892 		pr_warn_ratelimited(DEPRECATED
2893 				    "%s (pid %d) "
2894 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2895 				    "Use struct sctp_sack_info instead\n",
2896 				    current->comm, task_pid_nr(current));
2897 		if (copy_from_user(&params, optval, optlen))
2898 			return -EFAULT;
2899 
2900 		if (params.sack_delay == 0)
2901 			params.sack_freq = 1;
2902 		else
2903 			params.sack_freq = 0;
2904 	} else
2905 		return -EINVAL;
2906 
2907 	/* Validate value parameter. */
2908 	if (params.sack_delay > 500)
2909 		return -EINVAL;
2910 
2911 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2912 	 * socket is a one to many style socket, and an association
2913 	 * was not found, then the id was invalid.
2914 	 */
2915 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2916 	if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2917 	    sctp_style(sk, UDP))
2918 		return -EINVAL;
2919 
2920 	if (asoc) {
2921 		sctp_apply_asoc_delayed_ack(&params, asoc);
2922 
2923 		return 0;
2924 	}
2925 
2926 	if (sctp_style(sk, TCP))
2927 		params.sack_assoc_id = SCTP_FUTURE_ASSOC;
2928 
2929 	if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2930 	    params.sack_assoc_id == SCTP_ALL_ASSOC) {
2931 		if (params.sack_delay) {
2932 			sp->sackdelay = params.sack_delay;
2933 			sp->param_flags =
2934 				sctp_spp_sackdelay_enable(sp->param_flags);
2935 		}
2936 		if (params.sack_freq == 1) {
2937 			sp->param_flags =
2938 				sctp_spp_sackdelay_disable(sp->param_flags);
2939 		} else if (params.sack_freq > 1) {
2940 			sp->sackfreq = params.sack_freq;
2941 			sp->param_flags =
2942 				sctp_spp_sackdelay_enable(sp->param_flags);
2943 		}
2944 	}
2945 
2946 	if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2947 	    params.sack_assoc_id == SCTP_ALL_ASSOC)
2948 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2949 			sctp_apply_asoc_delayed_ack(&params, asoc);
2950 
2951 	return 0;
2952 }
2953 
2954 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2955  *
2956  * Applications can specify protocol parameters for the default association
2957  * initialization.  The option name argument to setsockopt() and getsockopt()
2958  * is SCTP_INITMSG.
2959  *
2960  * Setting initialization parameters is effective only on an unconnected
2961  * socket (for UDP-style sockets only future associations are effected
2962  * by the change).  With TCP-style sockets, this option is inherited by
2963  * sockets derived from a listener socket.
2964  */
2965 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2966 {
2967 	struct sctp_initmsg sinit;
2968 	struct sctp_sock *sp = sctp_sk(sk);
2969 
2970 	if (optlen != sizeof(struct sctp_initmsg))
2971 		return -EINVAL;
2972 	if (copy_from_user(&sinit, optval, optlen))
2973 		return -EFAULT;
2974 
2975 	if (sinit.sinit_num_ostreams)
2976 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2977 	if (sinit.sinit_max_instreams)
2978 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2979 	if (sinit.sinit_max_attempts)
2980 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2981 	if (sinit.sinit_max_init_timeo)
2982 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2983 
2984 	return 0;
2985 }
2986 
2987 /*
2988  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2989  *
2990  *   Applications that wish to use the sendto() system call may wish to
2991  *   specify a default set of parameters that would normally be supplied
2992  *   through the inclusion of ancillary data.  This socket option allows
2993  *   such an application to set the default sctp_sndrcvinfo structure.
2994  *   The application that wishes to use this socket option simply passes
2995  *   in to this call the sctp_sndrcvinfo structure defined in Section
2996  *   5.2.2) The input parameters accepted by this call include
2997  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2998  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2999  *   to this call if the caller is using the UDP model.
3000  */
3001 static int sctp_setsockopt_default_send_param(struct sock *sk,
3002 					      char __user *optval,
3003 					      unsigned int optlen)
3004 {
3005 	struct sctp_sock *sp = sctp_sk(sk);
3006 	struct sctp_association *asoc;
3007 	struct sctp_sndrcvinfo info;
3008 
3009 	if (optlen != sizeof(info))
3010 		return -EINVAL;
3011 	if (copy_from_user(&info, optval, optlen))
3012 		return -EFAULT;
3013 	if (info.sinfo_flags &
3014 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3015 	      SCTP_ABORT | SCTP_EOF))
3016 		return -EINVAL;
3017 
3018 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3019 	if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
3020 	    sctp_style(sk, UDP))
3021 		return -EINVAL;
3022 
3023 	if (asoc) {
3024 		asoc->default_stream = info.sinfo_stream;
3025 		asoc->default_flags = info.sinfo_flags;
3026 		asoc->default_ppid = info.sinfo_ppid;
3027 		asoc->default_context = info.sinfo_context;
3028 		asoc->default_timetolive = info.sinfo_timetolive;
3029 
3030 		return 0;
3031 	}
3032 
3033 	if (sctp_style(sk, TCP))
3034 		info.sinfo_assoc_id = SCTP_FUTURE_ASSOC;
3035 
3036 	if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
3037 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3038 		sp->default_stream = info.sinfo_stream;
3039 		sp->default_flags = info.sinfo_flags;
3040 		sp->default_ppid = info.sinfo_ppid;
3041 		sp->default_context = info.sinfo_context;
3042 		sp->default_timetolive = info.sinfo_timetolive;
3043 	}
3044 
3045 	if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
3046 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3047 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3048 			asoc->default_stream = info.sinfo_stream;
3049 			asoc->default_flags = info.sinfo_flags;
3050 			asoc->default_ppid = info.sinfo_ppid;
3051 			asoc->default_context = info.sinfo_context;
3052 			asoc->default_timetolive = info.sinfo_timetolive;
3053 		}
3054 	}
3055 
3056 	return 0;
3057 }
3058 
3059 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3060  * (SCTP_DEFAULT_SNDINFO)
3061  */
3062 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3063 					   char __user *optval,
3064 					   unsigned int optlen)
3065 {
3066 	struct sctp_sock *sp = sctp_sk(sk);
3067 	struct sctp_association *asoc;
3068 	struct sctp_sndinfo info;
3069 
3070 	if (optlen != sizeof(info))
3071 		return -EINVAL;
3072 	if (copy_from_user(&info, optval, optlen))
3073 		return -EFAULT;
3074 	if (info.snd_flags &
3075 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3076 	      SCTP_ABORT | SCTP_EOF))
3077 		return -EINVAL;
3078 
3079 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3080 	if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
3081 	    sctp_style(sk, UDP))
3082 		return -EINVAL;
3083 
3084 	if (asoc) {
3085 		asoc->default_stream = info.snd_sid;
3086 		asoc->default_flags = info.snd_flags;
3087 		asoc->default_ppid = info.snd_ppid;
3088 		asoc->default_context = info.snd_context;
3089 
3090 		return 0;
3091 	}
3092 
3093 	if (sctp_style(sk, TCP))
3094 		info.snd_assoc_id = SCTP_FUTURE_ASSOC;
3095 
3096 	if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
3097 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3098 		sp->default_stream = info.snd_sid;
3099 		sp->default_flags = info.snd_flags;
3100 		sp->default_ppid = info.snd_ppid;
3101 		sp->default_context = info.snd_context;
3102 	}
3103 
3104 	if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3105 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3106 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3107 			asoc->default_stream = info.snd_sid;
3108 			asoc->default_flags = info.snd_flags;
3109 			asoc->default_ppid = info.snd_ppid;
3110 			asoc->default_context = info.snd_context;
3111 		}
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3118  *
3119  * Requests that the local SCTP stack use the enclosed peer address as
3120  * the association primary.  The enclosed address must be one of the
3121  * association peer's addresses.
3122  */
3123 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3124 					unsigned int optlen)
3125 {
3126 	struct sctp_prim prim;
3127 	struct sctp_transport *trans;
3128 	struct sctp_af *af;
3129 	int err;
3130 
3131 	if (optlen != sizeof(struct sctp_prim))
3132 		return -EINVAL;
3133 
3134 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3135 		return -EFAULT;
3136 
3137 	/* Allow security module to validate address but need address len. */
3138 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3139 	if (!af)
3140 		return -EINVAL;
3141 
3142 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3143 					 (struct sockaddr *)&prim.ssp_addr,
3144 					 af->sockaddr_len);
3145 	if (err)
3146 		return err;
3147 
3148 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3149 	if (!trans)
3150 		return -EINVAL;
3151 
3152 	sctp_assoc_set_primary(trans->asoc, trans);
3153 
3154 	return 0;
3155 }
3156 
3157 /*
3158  * 7.1.5 SCTP_NODELAY
3159  *
3160  * Turn on/off any Nagle-like algorithm.  This means that packets are
3161  * generally sent as soon as possible and no unnecessary delays are
3162  * introduced, at the cost of more packets in the network.  Expects an
3163  *  integer boolean flag.
3164  */
3165 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3166 				   unsigned int optlen)
3167 {
3168 	int val;
3169 
3170 	if (optlen < sizeof(int))
3171 		return -EINVAL;
3172 	if (get_user(val, (int __user *)optval))
3173 		return -EFAULT;
3174 
3175 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3176 	return 0;
3177 }
3178 
3179 /*
3180  *
3181  * 7.1.1 SCTP_RTOINFO
3182  *
3183  * The protocol parameters used to initialize and bound retransmission
3184  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3185  * and modify these parameters.
3186  * All parameters are time values, in milliseconds.  A value of 0, when
3187  * modifying the parameters, indicates that the current value should not
3188  * be changed.
3189  *
3190  */
3191 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3192 {
3193 	struct sctp_rtoinfo rtoinfo;
3194 	struct sctp_association *asoc;
3195 	unsigned long rto_min, rto_max;
3196 	struct sctp_sock *sp = sctp_sk(sk);
3197 
3198 	if (optlen != sizeof (struct sctp_rtoinfo))
3199 		return -EINVAL;
3200 
3201 	if (copy_from_user(&rtoinfo, optval, optlen))
3202 		return -EFAULT;
3203 
3204 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3205 
3206 	/* Set the values to the specific association */
3207 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3208 	    sctp_style(sk, UDP))
3209 		return -EINVAL;
3210 
3211 	rto_max = rtoinfo.srto_max;
3212 	rto_min = rtoinfo.srto_min;
3213 
3214 	if (rto_max)
3215 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3216 	else
3217 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3218 
3219 	if (rto_min)
3220 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3221 	else
3222 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3223 
3224 	if (rto_min > rto_max)
3225 		return -EINVAL;
3226 
3227 	if (asoc) {
3228 		if (rtoinfo.srto_initial != 0)
3229 			asoc->rto_initial =
3230 				msecs_to_jiffies(rtoinfo.srto_initial);
3231 		asoc->rto_max = rto_max;
3232 		asoc->rto_min = rto_min;
3233 	} else {
3234 		/* If there is no association or the association-id = 0
3235 		 * set the values to the endpoint.
3236 		 */
3237 		if (rtoinfo.srto_initial != 0)
3238 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3239 		sp->rtoinfo.srto_max = rto_max;
3240 		sp->rtoinfo.srto_min = rto_min;
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 /*
3247  *
3248  * 7.1.2 SCTP_ASSOCINFO
3249  *
3250  * This option is used to tune the maximum retransmission attempts
3251  * of the association.
3252  * Returns an error if the new association retransmission value is
3253  * greater than the sum of the retransmission value  of the peer.
3254  * See [SCTP] for more information.
3255  *
3256  */
3257 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3258 {
3259 
3260 	struct sctp_assocparams assocparams;
3261 	struct sctp_association *asoc;
3262 
3263 	if (optlen != sizeof(struct sctp_assocparams))
3264 		return -EINVAL;
3265 	if (copy_from_user(&assocparams, optval, optlen))
3266 		return -EFAULT;
3267 
3268 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3269 
3270 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3271 	    sctp_style(sk, UDP))
3272 		return -EINVAL;
3273 
3274 	/* Set the values to the specific association */
3275 	if (asoc) {
3276 		if (assocparams.sasoc_asocmaxrxt != 0) {
3277 			__u32 path_sum = 0;
3278 			int   paths = 0;
3279 			struct sctp_transport *peer_addr;
3280 
3281 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3282 					transports) {
3283 				path_sum += peer_addr->pathmaxrxt;
3284 				paths++;
3285 			}
3286 
3287 			/* Only validate asocmaxrxt if we have more than
3288 			 * one path/transport.  We do this because path
3289 			 * retransmissions are only counted when we have more
3290 			 * then one path.
3291 			 */
3292 			if (paths > 1 &&
3293 			    assocparams.sasoc_asocmaxrxt > path_sum)
3294 				return -EINVAL;
3295 
3296 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3297 		}
3298 
3299 		if (assocparams.sasoc_cookie_life != 0)
3300 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3301 	} else {
3302 		/* Set the values to the endpoint */
3303 		struct sctp_sock *sp = sctp_sk(sk);
3304 
3305 		if (assocparams.sasoc_asocmaxrxt != 0)
3306 			sp->assocparams.sasoc_asocmaxrxt =
3307 						assocparams.sasoc_asocmaxrxt;
3308 		if (assocparams.sasoc_cookie_life != 0)
3309 			sp->assocparams.sasoc_cookie_life =
3310 						assocparams.sasoc_cookie_life;
3311 	}
3312 	return 0;
3313 }
3314 
3315 /*
3316  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3317  *
3318  * This socket option is a boolean flag which turns on or off mapped V4
3319  * addresses.  If this option is turned on and the socket is type
3320  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3321  * If this option is turned off, then no mapping will be done of V4
3322  * addresses and a user will receive both PF_INET6 and PF_INET type
3323  * addresses on the socket.
3324  */
3325 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3326 {
3327 	int val;
3328 	struct sctp_sock *sp = sctp_sk(sk);
3329 
3330 	if (optlen < sizeof(int))
3331 		return -EINVAL;
3332 	if (get_user(val, (int __user *)optval))
3333 		return -EFAULT;
3334 	if (val)
3335 		sp->v4mapped = 1;
3336 	else
3337 		sp->v4mapped = 0;
3338 
3339 	return 0;
3340 }
3341 
3342 /*
3343  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3344  * This option will get or set the maximum size to put in any outgoing
3345  * SCTP DATA chunk.  If a message is larger than this size it will be
3346  * fragmented by SCTP into the specified size.  Note that the underlying
3347  * SCTP implementation may fragment into smaller sized chunks when the
3348  * PMTU of the underlying association is smaller than the value set by
3349  * the user.  The default value for this option is '0' which indicates
3350  * the user is NOT limiting fragmentation and only the PMTU will effect
3351  * SCTP's choice of DATA chunk size.  Note also that values set larger
3352  * than the maximum size of an IP datagram will effectively let SCTP
3353  * control fragmentation (i.e. the same as setting this option to 0).
3354  *
3355  * The following structure is used to access and modify this parameter:
3356  *
3357  * struct sctp_assoc_value {
3358  *   sctp_assoc_t assoc_id;
3359  *   uint32_t assoc_value;
3360  * };
3361  *
3362  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3363  *    For one-to-many style sockets this parameter indicates which
3364  *    association the user is performing an action upon.  Note that if
3365  *    this field's value is zero then the endpoints default value is
3366  *    changed (effecting future associations only).
3367  * assoc_value:  This parameter specifies the maximum size in bytes.
3368  */
3369 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3370 {
3371 	struct sctp_sock *sp = sctp_sk(sk);
3372 	struct sctp_assoc_value params;
3373 	struct sctp_association *asoc;
3374 	int val;
3375 
3376 	if (optlen == sizeof(int)) {
3377 		pr_warn_ratelimited(DEPRECATED
3378 				    "%s (pid %d) "
3379 				    "Use of int in maxseg socket option.\n"
3380 				    "Use struct sctp_assoc_value instead\n",
3381 				    current->comm, task_pid_nr(current));
3382 		if (copy_from_user(&val, optval, optlen))
3383 			return -EFAULT;
3384 		params.assoc_id = SCTP_FUTURE_ASSOC;
3385 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3386 		if (copy_from_user(&params, optval, optlen))
3387 			return -EFAULT;
3388 		val = params.assoc_value;
3389 	} else {
3390 		return -EINVAL;
3391 	}
3392 
3393 	asoc = sctp_id2assoc(sk, params.assoc_id);
3394 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3395 	    sctp_style(sk, UDP))
3396 		return -EINVAL;
3397 
3398 	if (val) {
3399 		int min_len, max_len;
3400 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3401 				 sizeof(struct sctp_data_chunk);
3402 
3403 		min_len = sctp_min_frag_point(sp, datasize);
3404 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3405 
3406 		if (val < min_len || val > max_len)
3407 			return -EINVAL;
3408 	}
3409 
3410 	if (asoc) {
3411 		asoc->user_frag = val;
3412 		sctp_assoc_update_frag_point(asoc);
3413 	} else {
3414 		sp->user_frag = val;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 
3421 /*
3422  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3423  *
3424  *   Requests that the peer mark the enclosed address as the association
3425  *   primary. The enclosed address must be one of the association's
3426  *   locally bound addresses. The following structure is used to make a
3427  *   set primary request:
3428  */
3429 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3430 					     unsigned int optlen)
3431 {
3432 	struct net *net = sock_net(sk);
3433 	struct sctp_sock	*sp;
3434 	struct sctp_association	*asoc = NULL;
3435 	struct sctp_setpeerprim	prim;
3436 	struct sctp_chunk	*chunk;
3437 	struct sctp_af		*af;
3438 	int 			err;
3439 
3440 	sp = sctp_sk(sk);
3441 
3442 	if (!net->sctp.addip_enable)
3443 		return -EPERM;
3444 
3445 	if (optlen != sizeof(struct sctp_setpeerprim))
3446 		return -EINVAL;
3447 
3448 	if (copy_from_user(&prim, optval, optlen))
3449 		return -EFAULT;
3450 
3451 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3452 	if (!asoc)
3453 		return -EINVAL;
3454 
3455 	if (!asoc->peer.asconf_capable)
3456 		return -EPERM;
3457 
3458 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3459 		return -EPERM;
3460 
3461 	if (!sctp_state(asoc, ESTABLISHED))
3462 		return -ENOTCONN;
3463 
3464 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3465 	if (!af)
3466 		return -EINVAL;
3467 
3468 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3469 		return -EADDRNOTAVAIL;
3470 
3471 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3472 		return -EADDRNOTAVAIL;
3473 
3474 	/* Allow security module to validate address. */
3475 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3476 					 (struct sockaddr *)&prim.sspp_addr,
3477 					 af->sockaddr_len);
3478 	if (err)
3479 		return err;
3480 
3481 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3482 	chunk = sctp_make_asconf_set_prim(asoc,
3483 					  (union sctp_addr *)&prim.sspp_addr);
3484 	if (!chunk)
3485 		return -ENOMEM;
3486 
3487 	err = sctp_send_asconf(asoc, chunk);
3488 
3489 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3490 
3491 	return err;
3492 }
3493 
3494 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3495 					    unsigned int optlen)
3496 {
3497 	struct sctp_setadaptation adaptation;
3498 
3499 	if (optlen != sizeof(struct sctp_setadaptation))
3500 		return -EINVAL;
3501 	if (copy_from_user(&adaptation, optval, optlen))
3502 		return -EFAULT;
3503 
3504 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3505 
3506 	return 0;
3507 }
3508 
3509 /*
3510  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3511  *
3512  * The context field in the sctp_sndrcvinfo structure is normally only
3513  * used when a failed message is retrieved holding the value that was
3514  * sent down on the actual send call.  This option allows the setting of
3515  * a default context on an association basis that will be received on
3516  * reading messages from the peer.  This is especially helpful in the
3517  * one-2-many model for an application to keep some reference to an
3518  * internal state machine that is processing messages on the
3519  * association.  Note that the setting of this value only effects
3520  * received messages from the peer and does not effect the value that is
3521  * saved with outbound messages.
3522  */
3523 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3524 				   unsigned int optlen)
3525 {
3526 	struct sctp_sock *sp = sctp_sk(sk);
3527 	struct sctp_assoc_value params;
3528 	struct sctp_association *asoc;
3529 
3530 	if (optlen != sizeof(struct sctp_assoc_value))
3531 		return -EINVAL;
3532 	if (copy_from_user(&params, optval, optlen))
3533 		return -EFAULT;
3534 
3535 	asoc = sctp_id2assoc(sk, params.assoc_id);
3536 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3537 	    sctp_style(sk, UDP))
3538 		return -EINVAL;
3539 
3540 	if (asoc) {
3541 		asoc->default_rcv_context = params.assoc_value;
3542 
3543 		return 0;
3544 	}
3545 
3546 	if (sctp_style(sk, TCP))
3547 		params.assoc_id = SCTP_FUTURE_ASSOC;
3548 
3549 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3550 	    params.assoc_id == SCTP_ALL_ASSOC)
3551 		sp->default_rcv_context = params.assoc_value;
3552 
3553 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3554 	    params.assoc_id == SCTP_ALL_ASSOC)
3555 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3556 			asoc->default_rcv_context = params.assoc_value;
3557 
3558 	return 0;
3559 }
3560 
3561 /*
3562  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3563  *
3564  * This options will at a minimum specify if the implementation is doing
3565  * fragmented interleave.  Fragmented interleave, for a one to many
3566  * socket, is when subsequent calls to receive a message may return
3567  * parts of messages from different associations.  Some implementations
3568  * may allow you to turn this value on or off.  If so, when turned off,
3569  * no fragment interleave will occur (which will cause a head of line
3570  * blocking amongst multiple associations sharing the same one to many
3571  * socket).  When this option is turned on, then each receive call may
3572  * come from a different association (thus the user must receive data
3573  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3574  * association each receive belongs to.
3575  *
3576  * This option takes a boolean value.  A non-zero value indicates that
3577  * fragmented interleave is on.  A value of zero indicates that
3578  * fragmented interleave is off.
3579  *
3580  * Note that it is important that an implementation that allows this
3581  * option to be turned on, have it off by default.  Otherwise an unaware
3582  * application using the one to many model may become confused and act
3583  * incorrectly.
3584  */
3585 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3586 					       char __user *optval,
3587 					       unsigned int optlen)
3588 {
3589 	int val;
3590 
3591 	if (optlen != sizeof(int))
3592 		return -EINVAL;
3593 	if (get_user(val, (int __user *)optval))
3594 		return -EFAULT;
3595 
3596 	sctp_sk(sk)->frag_interleave = !!val;
3597 
3598 	if (!sctp_sk(sk)->frag_interleave)
3599 		sctp_sk(sk)->strm_interleave = 0;
3600 
3601 	return 0;
3602 }
3603 
3604 /*
3605  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3606  *       (SCTP_PARTIAL_DELIVERY_POINT)
3607  *
3608  * This option will set or get the SCTP partial delivery point.  This
3609  * point is the size of a message where the partial delivery API will be
3610  * invoked to help free up rwnd space for the peer.  Setting this to a
3611  * lower value will cause partial deliveries to happen more often.  The
3612  * calls argument is an integer that sets or gets the partial delivery
3613  * point.  Note also that the call will fail if the user attempts to set
3614  * this value larger than the socket receive buffer size.
3615  *
3616  * Note that any single message having a length smaller than or equal to
3617  * the SCTP partial delivery point will be delivered in one single read
3618  * call as long as the user provided buffer is large enough to hold the
3619  * message.
3620  */
3621 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3622 						  char __user *optval,
3623 						  unsigned int optlen)
3624 {
3625 	u32 val;
3626 
3627 	if (optlen != sizeof(u32))
3628 		return -EINVAL;
3629 	if (get_user(val, (int __user *)optval))
3630 		return -EFAULT;
3631 
3632 	/* Note: We double the receive buffer from what the user sets
3633 	 * it to be, also initial rwnd is based on rcvbuf/2.
3634 	 */
3635 	if (val > (sk->sk_rcvbuf >> 1))
3636 		return -EINVAL;
3637 
3638 	sctp_sk(sk)->pd_point = val;
3639 
3640 	return 0; /* is this the right error code? */
3641 }
3642 
3643 /*
3644  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3645  *
3646  * This option will allow a user to change the maximum burst of packets
3647  * that can be emitted by this association.  Note that the default value
3648  * is 4, and some implementations may restrict this setting so that it
3649  * can only be lowered.
3650  *
3651  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3652  * future associations inheriting the socket value.
3653  */
3654 static int sctp_setsockopt_maxburst(struct sock *sk,
3655 				    char __user *optval,
3656 				    unsigned int optlen)
3657 {
3658 	struct sctp_sock *sp = sctp_sk(sk);
3659 	struct sctp_assoc_value params;
3660 	struct sctp_association *asoc;
3661 
3662 	if (optlen == sizeof(int)) {
3663 		pr_warn_ratelimited(DEPRECATED
3664 				    "%s (pid %d) "
3665 				    "Use of int in max_burst socket option deprecated.\n"
3666 				    "Use struct sctp_assoc_value instead\n",
3667 				    current->comm, task_pid_nr(current));
3668 		if (copy_from_user(&params.assoc_value, optval, optlen))
3669 			return -EFAULT;
3670 		params.assoc_id = SCTP_FUTURE_ASSOC;
3671 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3672 		if (copy_from_user(&params, optval, optlen))
3673 			return -EFAULT;
3674 	} else
3675 		return -EINVAL;
3676 
3677 	asoc = sctp_id2assoc(sk, params.assoc_id);
3678 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3679 	    sctp_style(sk, UDP))
3680 		return -EINVAL;
3681 
3682 	if (asoc) {
3683 		asoc->max_burst = params.assoc_value;
3684 
3685 		return 0;
3686 	}
3687 
3688 	if (sctp_style(sk, TCP))
3689 		params.assoc_id = SCTP_FUTURE_ASSOC;
3690 
3691 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3692 	    params.assoc_id == SCTP_ALL_ASSOC)
3693 		sp->max_burst = params.assoc_value;
3694 
3695 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3696 	    params.assoc_id == SCTP_ALL_ASSOC)
3697 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3698 			asoc->max_burst = params.assoc_value;
3699 
3700 	return 0;
3701 }
3702 
3703 /*
3704  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3705  *
3706  * This set option adds a chunk type that the user is requesting to be
3707  * received only in an authenticated way.  Changes to the list of chunks
3708  * will only effect future associations on the socket.
3709  */
3710 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3711 				      char __user *optval,
3712 				      unsigned int optlen)
3713 {
3714 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3715 	struct sctp_authchunk val;
3716 
3717 	if (!ep->auth_enable)
3718 		return -EACCES;
3719 
3720 	if (optlen != sizeof(struct sctp_authchunk))
3721 		return -EINVAL;
3722 	if (copy_from_user(&val, optval, optlen))
3723 		return -EFAULT;
3724 
3725 	switch (val.sauth_chunk) {
3726 	case SCTP_CID_INIT:
3727 	case SCTP_CID_INIT_ACK:
3728 	case SCTP_CID_SHUTDOWN_COMPLETE:
3729 	case SCTP_CID_AUTH:
3730 		return -EINVAL;
3731 	}
3732 
3733 	/* add this chunk id to the endpoint */
3734 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3735 }
3736 
3737 /*
3738  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3739  *
3740  * This option gets or sets the list of HMAC algorithms that the local
3741  * endpoint requires the peer to use.
3742  */
3743 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3744 				      char __user *optval,
3745 				      unsigned int optlen)
3746 {
3747 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3748 	struct sctp_hmacalgo *hmacs;
3749 	u32 idents;
3750 	int err;
3751 
3752 	if (!ep->auth_enable)
3753 		return -EACCES;
3754 
3755 	if (optlen < sizeof(struct sctp_hmacalgo))
3756 		return -EINVAL;
3757 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3758 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3759 
3760 	hmacs = memdup_user(optval, optlen);
3761 	if (IS_ERR(hmacs))
3762 		return PTR_ERR(hmacs);
3763 
3764 	idents = hmacs->shmac_num_idents;
3765 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3766 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3767 		err = -EINVAL;
3768 		goto out;
3769 	}
3770 
3771 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3772 out:
3773 	kfree(hmacs);
3774 	return err;
3775 }
3776 
3777 /*
3778  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3779  *
3780  * This option will set a shared secret key which is used to build an
3781  * association shared key.
3782  */
3783 static int sctp_setsockopt_auth_key(struct sock *sk,
3784 				    char __user *optval,
3785 				    unsigned int optlen)
3786 {
3787 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3788 	struct sctp_authkey *authkey;
3789 	struct sctp_association *asoc;
3790 	int ret = -EINVAL;
3791 
3792 	if (!ep->auth_enable)
3793 		return -EACCES;
3794 
3795 	if (optlen <= sizeof(struct sctp_authkey))
3796 		return -EINVAL;
3797 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3798 	 * this.
3799 	 */
3800 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3801 
3802 	authkey = memdup_user(optval, optlen);
3803 	if (IS_ERR(authkey))
3804 		return PTR_ERR(authkey);
3805 
3806 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3807 		goto out;
3808 
3809 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3810 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3811 	    sctp_style(sk, UDP))
3812 		goto out;
3813 
3814 	if (asoc) {
3815 		ret = sctp_auth_set_key(ep, asoc, authkey);
3816 		goto out;
3817 	}
3818 
3819 	if (sctp_style(sk, TCP))
3820 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3821 
3822 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3823 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3824 		ret = sctp_auth_set_key(ep, asoc, authkey);
3825 		if (ret)
3826 			goto out;
3827 	}
3828 
3829 	ret = 0;
3830 
3831 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3832 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3833 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3834 			int res = sctp_auth_set_key(ep, asoc, authkey);
3835 
3836 			if (res && !ret)
3837 				ret = res;
3838 		}
3839 	}
3840 
3841 out:
3842 	kzfree(authkey);
3843 	return ret;
3844 }
3845 
3846 /*
3847  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3848  *
3849  * This option will get or set the active shared key to be used to build
3850  * the association shared key.
3851  */
3852 static int sctp_setsockopt_active_key(struct sock *sk,
3853 				      char __user *optval,
3854 				      unsigned int optlen)
3855 {
3856 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3857 	struct sctp_association *asoc;
3858 	struct sctp_authkeyid val;
3859 	int ret = 0;
3860 
3861 	if (!ep->auth_enable)
3862 		return -EACCES;
3863 
3864 	if (optlen != sizeof(struct sctp_authkeyid))
3865 		return -EINVAL;
3866 	if (copy_from_user(&val, optval, optlen))
3867 		return -EFAULT;
3868 
3869 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3870 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3871 	    sctp_style(sk, UDP))
3872 		return -EINVAL;
3873 
3874 	if (asoc)
3875 		return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3876 
3877 	if (sctp_style(sk, TCP))
3878 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3879 
3880 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3881 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3882 		ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3883 		if (ret)
3884 			return ret;
3885 	}
3886 
3887 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3888 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3889 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3890 			int res = sctp_auth_set_active_key(ep, asoc,
3891 							   val.scact_keynumber);
3892 
3893 			if (res && !ret)
3894 				ret = res;
3895 		}
3896 	}
3897 
3898 	return ret;
3899 }
3900 
3901 /*
3902  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3903  *
3904  * This set option will delete a shared secret key from use.
3905  */
3906 static int sctp_setsockopt_del_key(struct sock *sk,
3907 				   char __user *optval,
3908 				   unsigned int optlen)
3909 {
3910 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3911 	struct sctp_association *asoc;
3912 	struct sctp_authkeyid val;
3913 	int ret = 0;
3914 
3915 	if (!ep->auth_enable)
3916 		return -EACCES;
3917 
3918 	if (optlen != sizeof(struct sctp_authkeyid))
3919 		return -EINVAL;
3920 	if (copy_from_user(&val, optval, optlen))
3921 		return -EFAULT;
3922 
3923 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3924 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3925 	    sctp_style(sk, UDP))
3926 		return -EINVAL;
3927 
3928 	if (asoc)
3929 		return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3930 
3931 	if (sctp_style(sk, TCP))
3932 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3933 
3934 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3935 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3936 		ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3937 		if (ret)
3938 			return ret;
3939 	}
3940 
3941 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3942 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3943 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3944 			int res = sctp_auth_del_key_id(ep, asoc,
3945 						       val.scact_keynumber);
3946 
3947 			if (res && !ret)
3948 				ret = res;
3949 		}
3950 	}
3951 
3952 	return ret;
3953 }
3954 
3955 /*
3956  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3957  *
3958  * This set option will deactivate a shared secret key.
3959  */
3960 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3961 					  unsigned int optlen)
3962 {
3963 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3964 	struct sctp_association *asoc;
3965 	struct sctp_authkeyid val;
3966 	int ret = 0;
3967 
3968 	if (!ep->auth_enable)
3969 		return -EACCES;
3970 
3971 	if (optlen != sizeof(struct sctp_authkeyid))
3972 		return -EINVAL;
3973 	if (copy_from_user(&val, optval, optlen))
3974 		return -EFAULT;
3975 
3976 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3977 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3978 	    sctp_style(sk, UDP))
3979 		return -EINVAL;
3980 
3981 	if (asoc)
3982 		return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3983 
3984 	if (sctp_style(sk, TCP))
3985 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3986 
3987 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3988 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3989 		ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3990 		if (ret)
3991 			return ret;
3992 	}
3993 
3994 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3995 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3996 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3997 			int res = sctp_auth_deact_key_id(ep, asoc,
3998 							 val.scact_keynumber);
3999 
4000 			if (res && !ret)
4001 				ret = res;
4002 		}
4003 	}
4004 
4005 	return ret;
4006 }
4007 
4008 /*
4009  * 8.1.23 SCTP_AUTO_ASCONF
4010  *
4011  * This option will enable or disable the use of the automatic generation of
4012  * ASCONF chunks to add and delete addresses to an existing association.  Note
4013  * that this option has two caveats namely: a) it only affects sockets that
4014  * are bound to all addresses available to the SCTP stack, and b) the system
4015  * administrator may have an overriding control that turns the ASCONF feature
4016  * off no matter what setting the socket option may have.
4017  * This option expects an integer boolean flag, where a non-zero value turns on
4018  * the option, and a zero value turns off the option.
4019  * Note. In this implementation, socket operation overrides default parameter
4020  * being set by sysctl as well as FreeBSD implementation
4021  */
4022 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
4023 					unsigned int optlen)
4024 {
4025 	int val;
4026 	struct sctp_sock *sp = sctp_sk(sk);
4027 
4028 	if (optlen < sizeof(int))
4029 		return -EINVAL;
4030 	if (get_user(val, (int __user *)optval))
4031 		return -EFAULT;
4032 	if (!sctp_is_ep_boundall(sk) && val)
4033 		return -EINVAL;
4034 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
4035 		return 0;
4036 
4037 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4038 	if (val == 0 && sp->do_auto_asconf) {
4039 		list_del(&sp->auto_asconf_list);
4040 		sp->do_auto_asconf = 0;
4041 	} else if (val && !sp->do_auto_asconf) {
4042 		list_add_tail(&sp->auto_asconf_list,
4043 		    &sock_net(sk)->sctp.auto_asconf_splist);
4044 		sp->do_auto_asconf = 1;
4045 	}
4046 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4047 	return 0;
4048 }
4049 
4050 /*
4051  * SCTP_PEER_ADDR_THLDS
4052  *
4053  * This option allows us to alter the partially failed threshold for one or all
4054  * transports in an association.  See Section 6.1 of:
4055  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
4056  */
4057 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
4058 					    char __user *optval,
4059 					    unsigned int optlen)
4060 {
4061 	struct sctp_paddrthlds val;
4062 	struct sctp_transport *trans;
4063 	struct sctp_association *asoc;
4064 
4065 	if (optlen < sizeof(struct sctp_paddrthlds))
4066 		return -EINVAL;
4067 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
4068 			   sizeof(struct sctp_paddrthlds)))
4069 		return -EFAULT;
4070 
4071 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
4072 		trans = sctp_addr_id2transport(sk, &val.spt_address,
4073 					       val.spt_assoc_id);
4074 		if (!trans)
4075 			return -ENOENT;
4076 
4077 		if (val.spt_pathmaxrxt)
4078 			trans->pathmaxrxt = val.spt_pathmaxrxt;
4079 		trans->pf_retrans = val.spt_pathpfthld;
4080 
4081 		return 0;
4082 	}
4083 
4084 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
4085 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
4086 	    sctp_style(sk, UDP))
4087 		return -EINVAL;
4088 
4089 	if (asoc) {
4090 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
4091 				    transports) {
4092 			if (val.spt_pathmaxrxt)
4093 				trans->pathmaxrxt = val.spt_pathmaxrxt;
4094 			trans->pf_retrans = val.spt_pathpfthld;
4095 		}
4096 
4097 		if (val.spt_pathmaxrxt)
4098 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
4099 		asoc->pf_retrans = val.spt_pathpfthld;
4100 	} else {
4101 		struct sctp_sock *sp = sctp_sk(sk);
4102 
4103 		if (val.spt_pathmaxrxt)
4104 			sp->pathmaxrxt = val.spt_pathmaxrxt;
4105 		sp->pf_retrans = val.spt_pathpfthld;
4106 	}
4107 
4108 	return 0;
4109 }
4110 
4111 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
4112 				       char __user *optval,
4113 				       unsigned int optlen)
4114 {
4115 	int val;
4116 
4117 	if (optlen < sizeof(int))
4118 		return -EINVAL;
4119 	if (get_user(val, (int __user *) optval))
4120 		return -EFAULT;
4121 
4122 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4123 
4124 	return 0;
4125 }
4126 
4127 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4128 				       char __user *optval,
4129 				       unsigned int optlen)
4130 {
4131 	int val;
4132 
4133 	if (optlen < sizeof(int))
4134 		return -EINVAL;
4135 	if (get_user(val, (int __user *) optval))
4136 		return -EFAULT;
4137 
4138 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4139 
4140 	return 0;
4141 }
4142 
4143 static int sctp_setsockopt_pr_supported(struct sock *sk,
4144 					char __user *optval,
4145 					unsigned int optlen)
4146 {
4147 	struct sctp_assoc_value params;
4148 	struct sctp_association *asoc;
4149 
4150 	if (optlen != sizeof(params))
4151 		return -EINVAL;
4152 
4153 	if (copy_from_user(&params, optval, optlen))
4154 		return -EFAULT;
4155 
4156 	asoc = sctp_id2assoc(sk, params.assoc_id);
4157 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4158 	    sctp_style(sk, UDP))
4159 		return -EINVAL;
4160 
4161 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4162 
4163 	return 0;
4164 }
4165 
4166 static int sctp_setsockopt_default_prinfo(struct sock *sk,
4167 					  char __user *optval,
4168 					  unsigned int optlen)
4169 {
4170 	struct sctp_sock *sp = sctp_sk(sk);
4171 	struct sctp_default_prinfo info;
4172 	struct sctp_association *asoc;
4173 	int retval = -EINVAL;
4174 
4175 	if (optlen != sizeof(info))
4176 		goto out;
4177 
4178 	if (copy_from_user(&info, optval, sizeof(info))) {
4179 		retval = -EFAULT;
4180 		goto out;
4181 	}
4182 
4183 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4184 		goto out;
4185 
4186 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
4187 		info.pr_value = 0;
4188 
4189 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4190 	if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4191 	    sctp_style(sk, UDP))
4192 		goto out;
4193 
4194 	retval = 0;
4195 
4196 	if (asoc) {
4197 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4198 		asoc->default_timetolive = info.pr_value;
4199 		goto out;
4200 	}
4201 
4202 	if (sctp_style(sk, TCP))
4203 		info.pr_assoc_id = SCTP_FUTURE_ASSOC;
4204 
4205 	if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4206 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4207 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4208 		sp->default_timetolive = info.pr_value;
4209 	}
4210 
4211 	if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4212 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4213 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4214 			SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4215 			asoc->default_timetolive = info.pr_value;
4216 		}
4217 	}
4218 
4219 out:
4220 	return retval;
4221 }
4222 
4223 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4224 					      char __user *optval,
4225 					      unsigned int optlen)
4226 {
4227 	struct sctp_assoc_value params;
4228 	struct sctp_association *asoc;
4229 	int retval = -EINVAL;
4230 
4231 	if (optlen != sizeof(params))
4232 		goto out;
4233 
4234 	if (copy_from_user(&params, optval, optlen)) {
4235 		retval = -EFAULT;
4236 		goto out;
4237 	}
4238 
4239 	asoc = sctp_id2assoc(sk, params.assoc_id);
4240 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4241 	    sctp_style(sk, UDP))
4242 		goto out;
4243 
4244 	if (asoc)
4245 		asoc->reconf_enable = !!params.assoc_value;
4246 	else
4247 		sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4248 
4249 	retval = 0;
4250 
4251 out:
4252 	return retval;
4253 }
4254 
4255 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4256 					   char __user *optval,
4257 					   unsigned int optlen)
4258 {
4259 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4260 	struct sctp_assoc_value params;
4261 	struct sctp_association *asoc;
4262 	int retval = -EINVAL;
4263 
4264 	if (optlen != sizeof(params))
4265 		goto out;
4266 
4267 	if (copy_from_user(&params, optval, optlen)) {
4268 		retval = -EFAULT;
4269 		goto out;
4270 	}
4271 
4272 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4273 		goto out;
4274 
4275 	asoc = sctp_id2assoc(sk, params.assoc_id);
4276 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4277 	    sctp_style(sk, UDP))
4278 		goto out;
4279 
4280 	retval = 0;
4281 
4282 	if (asoc) {
4283 		asoc->strreset_enable = params.assoc_value;
4284 		goto out;
4285 	}
4286 
4287 	if (sctp_style(sk, TCP))
4288 		params.assoc_id = SCTP_FUTURE_ASSOC;
4289 
4290 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4291 	    params.assoc_id == SCTP_ALL_ASSOC)
4292 		ep->strreset_enable = params.assoc_value;
4293 
4294 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4295 	    params.assoc_id == SCTP_ALL_ASSOC)
4296 		list_for_each_entry(asoc, &ep->asocs, asocs)
4297 			asoc->strreset_enable = params.assoc_value;
4298 
4299 out:
4300 	return retval;
4301 }
4302 
4303 static int sctp_setsockopt_reset_streams(struct sock *sk,
4304 					 char __user *optval,
4305 					 unsigned int optlen)
4306 {
4307 	struct sctp_reset_streams *params;
4308 	struct sctp_association *asoc;
4309 	int retval = -EINVAL;
4310 
4311 	if (optlen < sizeof(*params))
4312 		return -EINVAL;
4313 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4314 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4315 					     sizeof(__u16) * sizeof(*params));
4316 
4317 	params = memdup_user(optval, optlen);
4318 	if (IS_ERR(params))
4319 		return PTR_ERR(params);
4320 
4321 	if (params->srs_number_streams * sizeof(__u16) >
4322 	    optlen - sizeof(*params))
4323 		goto out;
4324 
4325 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4326 	if (!asoc)
4327 		goto out;
4328 
4329 	retval = sctp_send_reset_streams(asoc, params);
4330 
4331 out:
4332 	kfree(params);
4333 	return retval;
4334 }
4335 
4336 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4337 				       char __user *optval,
4338 				       unsigned int optlen)
4339 {
4340 	struct sctp_association *asoc;
4341 	sctp_assoc_t associd;
4342 	int retval = -EINVAL;
4343 
4344 	if (optlen != sizeof(associd))
4345 		goto out;
4346 
4347 	if (copy_from_user(&associd, optval, optlen)) {
4348 		retval = -EFAULT;
4349 		goto out;
4350 	}
4351 
4352 	asoc = sctp_id2assoc(sk, associd);
4353 	if (!asoc)
4354 		goto out;
4355 
4356 	retval = sctp_send_reset_assoc(asoc);
4357 
4358 out:
4359 	return retval;
4360 }
4361 
4362 static int sctp_setsockopt_add_streams(struct sock *sk,
4363 				       char __user *optval,
4364 				       unsigned int optlen)
4365 {
4366 	struct sctp_association *asoc;
4367 	struct sctp_add_streams params;
4368 	int retval = -EINVAL;
4369 
4370 	if (optlen != sizeof(params))
4371 		goto out;
4372 
4373 	if (copy_from_user(&params, optval, optlen)) {
4374 		retval = -EFAULT;
4375 		goto out;
4376 	}
4377 
4378 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4379 	if (!asoc)
4380 		goto out;
4381 
4382 	retval = sctp_send_add_streams(asoc, &params);
4383 
4384 out:
4385 	return retval;
4386 }
4387 
4388 static int sctp_setsockopt_scheduler(struct sock *sk,
4389 				     char __user *optval,
4390 				     unsigned int optlen)
4391 {
4392 	struct sctp_sock *sp = sctp_sk(sk);
4393 	struct sctp_association *asoc;
4394 	struct sctp_assoc_value params;
4395 	int retval = 0;
4396 
4397 	if (optlen < sizeof(params))
4398 		return -EINVAL;
4399 
4400 	optlen = sizeof(params);
4401 	if (copy_from_user(&params, optval, optlen))
4402 		return -EFAULT;
4403 
4404 	if (params.assoc_value > SCTP_SS_MAX)
4405 		return -EINVAL;
4406 
4407 	asoc = sctp_id2assoc(sk, params.assoc_id);
4408 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4409 	    sctp_style(sk, UDP))
4410 		return -EINVAL;
4411 
4412 	if (asoc)
4413 		return sctp_sched_set_sched(asoc, params.assoc_value);
4414 
4415 	if (sctp_style(sk, TCP))
4416 		params.assoc_id = SCTP_FUTURE_ASSOC;
4417 
4418 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4419 	    params.assoc_id == SCTP_ALL_ASSOC)
4420 		sp->default_ss = params.assoc_value;
4421 
4422 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4423 	    params.assoc_id == SCTP_ALL_ASSOC) {
4424 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4425 			int ret = sctp_sched_set_sched(asoc,
4426 						       params.assoc_value);
4427 
4428 			if (ret && !retval)
4429 				retval = ret;
4430 		}
4431 	}
4432 
4433 	return retval;
4434 }
4435 
4436 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4437 					   char __user *optval,
4438 					   unsigned int optlen)
4439 {
4440 	struct sctp_stream_value params;
4441 	struct sctp_association *asoc;
4442 	int retval = -EINVAL;
4443 
4444 	if (optlen < sizeof(params))
4445 		goto out;
4446 
4447 	optlen = sizeof(params);
4448 	if (copy_from_user(&params, optval, optlen)) {
4449 		retval = -EFAULT;
4450 		goto out;
4451 	}
4452 
4453 	asoc = sctp_id2assoc(sk, params.assoc_id);
4454 	if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4455 	    sctp_style(sk, UDP))
4456 		goto out;
4457 
4458 	if (asoc) {
4459 		retval = sctp_sched_set_value(asoc, params.stream_id,
4460 					      params.stream_value, GFP_KERNEL);
4461 		goto out;
4462 	}
4463 
4464 	retval = 0;
4465 
4466 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4467 		int ret = sctp_sched_set_value(asoc, params.stream_id,
4468 					       params.stream_value, GFP_KERNEL);
4469 		if (ret && !retval) /* try to return the 1st error. */
4470 			retval = ret;
4471 	}
4472 
4473 out:
4474 	return retval;
4475 }
4476 
4477 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4478 						  char __user *optval,
4479 						  unsigned int optlen)
4480 {
4481 	struct sctp_sock *sp = sctp_sk(sk);
4482 	struct sctp_assoc_value params;
4483 	struct sctp_association *asoc;
4484 	int retval = -EINVAL;
4485 
4486 	if (optlen < sizeof(params))
4487 		goto out;
4488 
4489 	optlen = sizeof(params);
4490 	if (copy_from_user(&params, optval, optlen)) {
4491 		retval = -EFAULT;
4492 		goto out;
4493 	}
4494 
4495 	asoc = sctp_id2assoc(sk, params.assoc_id);
4496 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4497 	    sctp_style(sk, UDP))
4498 		goto out;
4499 
4500 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4501 		retval = -EPERM;
4502 		goto out;
4503 	}
4504 
4505 	sp->strm_interleave = !!params.assoc_value;
4506 
4507 	retval = 0;
4508 
4509 out:
4510 	return retval;
4511 }
4512 
4513 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4514 				      unsigned int optlen)
4515 {
4516 	int val;
4517 
4518 	if (!sctp_style(sk, TCP))
4519 		return -EOPNOTSUPP;
4520 
4521 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4522 		return -EFAULT;
4523 
4524 	if (optlen < sizeof(int))
4525 		return -EINVAL;
4526 
4527 	if (get_user(val, (int __user *)optval))
4528 		return -EFAULT;
4529 
4530 	sctp_sk(sk)->reuse = !!val;
4531 
4532 	return 0;
4533 }
4534 
4535 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4536 					struct sctp_association *asoc)
4537 {
4538 	struct sctp_ulpevent *event;
4539 
4540 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4541 
4542 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4543 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4544 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4545 					GFP_USER | __GFP_NOWARN);
4546 			if (!event)
4547 				return -ENOMEM;
4548 
4549 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4550 		}
4551 	}
4552 
4553 	return 0;
4554 }
4555 
4556 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4557 				 unsigned int optlen)
4558 {
4559 	struct sctp_sock *sp = sctp_sk(sk);
4560 	struct sctp_association *asoc;
4561 	struct sctp_event param;
4562 	int retval = 0;
4563 
4564 	if (optlen < sizeof(param))
4565 		return -EINVAL;
4566 
4567 	optlen = sizeof(param);
4568 	if (copy_from_user(&param, optval, optlen))
4569 		return -EFAULT;
4570 
4571 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4572 	    param.se_type > SCTP_SN_TYPE_MAX)
4573 		return -EINVAL;
4574 
4575 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4576 	if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4577 	    sctp_style(sk, UDP))
4578 		return -EINVAL;
4579 
4580 	if (asoc)
4581 		return sctp_assoc_ulpevent_type_set(&param, asoc);
4582 
4583 	if (sctp_style(sk, TCP))
4584 		param.se_assoc_id = SCTP_FUTURE_ASSOC;
4585 
4586 	if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4587 	    param.se_assoc_id == SCTP_ALL_ASSOC)
4588 		sctp_ulpevent_type_set(&sp->subscribe,
4589 				       param.se_type, param.se_on);
4590 
4591 	if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4592 	    param.se_assoc_id == SCTP_ALL_ASSOC) {
4593 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4594 			int ret = sctp_assoc_ulpevent_type_set(&param, asoc);
4595 
4596 			if (ret && !retval)
4597 				retval = ret;
4598 		}
4599 	}
4600 
4601 	return retval;
4602 }
4603 
4604 /* API 6.2 setsockopt(), getsockopt()
4605  *
4606  * Applications use setsockopt() and getsockopt() to set or retrieve
4607  * socket options.  Socket options are used to change the default
4608  * behavior of sockets calls.  They are described in Section 7.
4609  *
4610  * The syntax is:
4611  *
4612  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4613  *                    int __user *optlen);
4614  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4615  *                    int optlen);
4616  *
4617  *   sd      - the socket descript.
4618  *   level   - set to IPPROTO_SCTP for all SCTP options.
4619  *   optname - the option name.
4620  *   optval  - the buffer to store the value of the option.
4621  *   optlen  - the size of the buffer.
4622  */
4623 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4624 			   char __user *optval, unsigned int optlen)
4625 {
4626 	int retval = 0;
4627 
4628 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4629 
4630 	/* I can hardly begin to describe how wrong this is.  This is
4631 	 * so broken as to be worse than useless.  The API draft
4632 	 * REALLY is NOT helpful here...  I am not convinced that the
4633 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4634 	 * are at all well-founded.
4635 	 */
4636 	if (level != SOL_SCTP) {
4637 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4638 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4639 		goto out_nounlock;
4640 	}
4641 
4642 	lock_sock(sk);
4643 
4644 	switch (optname) {
4645 	case SCTP_SOCKOPT_BINDX_ADD:
4646 		/* 'optlen' is the size of the addresses buffer. */
4647 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4648 					       optlen, SCTP_BINDX_ADD_ADDR);
4649 		break;
4650 
4651 	case SCTP_SOCKOPT_BINDX_REM:
4652 		/* 'optlen' is the size of the addresses buffer. */
4653 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4654 					       optlen, SCTP_BINDX_REM_ADDR);
4655 		break;
4656 
4657 	case SCTP_SOCKOPT_CONNECTX_OLD:
4658 		/* 'optlen' is the size of the addresses buffer. */
4659 		retval = sctp_setsockopt_connectx_old(sk,
4660 					    (struct sockaddr __user *)optval,
4661 					    optlen);
4662 		break;
4663 
4664 	case SCTP_SOCKOPT_CONNECTX:
4665 		/* 'optlen' is the size of the addresses buffer. */
4666 		retval = sctp_setsockopt_connectx(sk,
4667 					    (struct sockaddr __user *)optval,
4668 					    optlen);
4669 		break;
4670 
4671 	case SCTP_DISABLE_FRAGMENTS:
4672 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4673 		break;
4674 
4675 	case SCTP_EVENTS:
4676 		retval = sctp_setsockopt_events(sk, optval, optlen);
4677 		break;
4678 
4679 	case SCTP_AUTOCLOSE:
4680 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4681 		break;
4682 
4683 	case SCTP_PEER_ADDR_PARAMS:
4684 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4685 		break;
4686 
4687 	case SCTP_DELAYED_SACK:
4688 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4689 		break;
4690 	case SCTP_PARTIAL_DELIVERY_POINT:
4691 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4692 		break;
4693 
4694 	case SCTP_INITMSG:
4695 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4696 		break;
4697 	case SCTP_DEFAULT_SEND_PARAM:
4698 		retval = sctp_setsockopt_default_send_param(sk, optval,
4699 							    optlen);
4700 		break;
4701 	case SCTP_DEFAULT_SNDINFO:
4702 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4703 		break;
4704 	case SCTP_PRIMARY_ADDR:
4705 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4706 		break;
4707 	case SCTP_SET_PEER_PRIMARY_ADDR:
4708 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4709 		break;
4710 	case SCTP_NODELAY:
4711 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4712 		break;
4713 	case SCTP_RTOINFO:
4714 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4715 		break;
4716 	case SCTP_ASSOCINFO:
4717 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4718 		break;
4719 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4720 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4721 		break;
4722 	case SCTP_MAXSEG:
4723 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4724 		break;
4725 	case SCTP_ADAPTATION_LAYER:
4726 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4727 		break;
4728 	case SCTP_CONTEXT:
4729 		retval = sctp_setsockopt_context(sk, optval, optlen);
4730 		break;
4731 	case SCTP_FRAGMENT_INTERLEAVE:
4732 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4733 		break;
4734 	case SCTP_MAX_BURST:
4735 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4736 		break;
4737 	case SCTP_AUTH_CHUNK:
4738 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4739 		break;
4740 	case SCTP_HMAC_IDENT:
4741 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4742 		break;
4743 	case SCTP_AUTH_KEY:
4744 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4745 		break;
4746 	case SCTP_AUTH_ACTIVE_KEY:
4747 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4748 		break;
4749 	case SCTP_AUTH_DELETE_KEY:
4750 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4751 		break;
4752 	case SCTP_AUTH_DEACTIVATE_KEY:
4753 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4754 		break;
4755 	case SCTP_AUTO_ASCONF:
4756 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4757 		break;
4758 	case SCTP_PEER_ADDR_THLDS:
4759 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4760 		break;
4761 	case SCTP_RECVRCVINFO:
4762 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4763 		break;
4764 	case SCTP_RECVNXTINFO:
4765 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4766 		break;
4767 	case SCTP_PR_SUPPORTED:
4768 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4769 		break;
4770 	case SCTP_DEFAULT_PRINFO:
4771 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4772 		break;
4773 	case SCTP_RECONFIG_SUPPORTED:
4774 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4775 		break;
4776 	case SCTP_ENABLE_STREAM_RESET:
4777 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4778 		break;
4779 	case SCTP_RESET_STREAMS:
4780 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4781 		break;
4782 	case SCTP_RESET_ASSOC:
4783 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4784 		break;
4785 	case SCTP_ADD_STREAMS:
4786 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4787 		break;
4788 	case SCTP_STREAM_SCHEDULER:
4789 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4790 		break;
4791 	case SCTP_STREAM_SCHEDULER_VALUE:
4792 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4793 		break;
4794 	case SCTP_INTERLEAVING_SUPPORTED:
4795 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4796 								optlen);
4797 		break;
4798 	case SCTP_REUSE_PORT:
4799 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4800 		break;
4801 	case SCTP_EVENT:
4802 		retval = sctp_setsockopt_event(sk, optval, optlen);
4803 		break;
4804 	default:
4805 		retval = -ENOPROTOOPT;
4806 		break;
4807 	}
4808 
4809 	release_sock(sk);
4810 
4811 out_nounlock:
4812 	return retval;
4813 }
4814 
4815 /* API 3.1.6 connect() - UDP Style Syntax
4816  *
4817  * An application may use the connect() call in the UDP model to initiate an
4818  * association without sending data.
4819  *
4820  * The syntax is:
4821  *
4822  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4823  *
4824  * sd: the socket descriptor to have a new association added to.
4825  *
4826  * nam: the address structure (either struct sockaddr_in or struct
4827  *    sockaddr_in6 defined in RFC2553 [7]).
4828  *
4829  * len: the size of the address.
4830  */
4831 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4832 			int addr_len, int flags)
4833 {
4834 	struct inet_sock *inet = inet_sk(sk);
4835 	struct sctp_af *af;
4836 	int err = 0;
4837 
4838 	lock_sock(sk);
4839 
4840 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4841 		 addr, addr_len);
4842 
4843 	/* We may need to bind the socket. */
4844 	if (!inet->inet_num) {
4845 		if (sk->sk_prot->get_port(sk, 0)) {
4846 			release_sock(sk);
4847 			return -EAGAIN;
4848 		}
4849 		inet->inet_sport = htons(inet->inet_num);
4850 	}
4851 
4852 	/* Validate addr_len before calling common connect/connectx routine. */
4853 	af = addr_len < offsetofend(struct sockaddr, sa_family) ? NULL :
4854 		sctp_get_af_specific(addr->sa_family);
4855 	if (!af || addr_len < af->sockaddr_len) {
4856 		err = -EINVAL;
4857 	} else {
4858 		/* Pass correct addr len to common routine (so it knows there
4859 		 * is only one address being passed.
4860 		 */
4861 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4862 	}
4863 
4864 	release_sock(sk);
4865 	return err;
4866 }
4867 
4868 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4869 		      int addr_len, int flags)
4870 {
4871 	if (addr_len < sizeof(uaddr->sa_family))
4872 		return -EINVAL;
4873 
4874 	if (uaddr->sa_family == AF_UNSPEC)
4875 		return -EOPNOTSUPP;
4876 
4877 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4878 }
4879 
4880 /* FIXME: Write comments. */
4881 static int sctp_disconnect(struct sock *sk, int flags)
4882 {
4883 	return -EOPNOTSUPP; /* STUB */
4884 }
4885 
4886 /* 4.1.4 accept() - TCP Style Syntax
4887  *
4888  * Applications use accept() call to remove an established SCTP
4889  * association from the accept queue of the endpoint.  A new socket
4890  * descriptor will be returned from accept() to represent the newly
4891  * formed association.
4892  */
4893 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4894 {
4895 	struct sctp_sock *sp;
4896 	struct sctp_endpoint *ep;
4897 	struct sock *newsk = NULL;
4898 	struct sctp_association *asoc;
4899 	long timeo;
4900 	int error = 0;
4901 
4902 	lock_sock(sk);
4903 
4904 	sp = sctp_sk(sk);
4905 	ep = sp->ep;
4906 
4907 	if (!sctp_style(sk, TCP)) {
4908 		error = -EOPNOTSUPP;
4909 		goto out;
4910 	}
4911 
4912 	if (!sctp_sstate(sk, LISTENING)) {
4913 		error = -EINVAL;
4914 		goto out;
4915 	}
4916 
4917 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4918 
4919 	error = sctp_wait_for_accept(sk, timeo);
4920 	if (error)
4921 		goto out;
4922 
4923 	/* We treat the list of associations on the endpoint as the accept
4924 	 * queue and pick the first association on the list.
4925 	 */
4926 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4927 
4928 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4929 	if (!newsk) {
4930 		error = -ENOMEM;
4931 		goto out;
4932 	}
4933 
4934 	/* Populate the fields of the newsk from the oldsk and migrate the
4935 	 * asoc to the newsk.
4936 	 */
4937 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4938 	if (error) {
4939 		sk_common_release(newsk);
4940 		newsk = NULL;
4941 	}
4942 
4943 out:
4944 	release_sock(sk);
4945 	*err = error;
4946 	return newsk;
4947 }
4948 
4949 /* The SCTP ioctl handler. */
4950 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4951 {
4952 	int rc = -ENOTCONN;
4953 
4954 	lock_sock(sk);
4955 
4956 	/*
4957 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4958 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4959 	 */
4960 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4961 		goto out;
4962 
4963 	switch (cmd) {
4964 	case SIOCINQ: {
4965 		struct sk_buff *skb;
4966 		unsigned int amount = 0;
4967 
4968 		skb = skb_peek(&sk->sk_receive_queue);
4969 		if (skb != NULL) {
4970 			/*
4971 			 * We will only return the amount of this packet since
4972 			 * that is all that will be read.
4973 			 */
4974 			amount = skb->len;
4975 		}
4976 		rc = put_user(amount, (int __user *)arg);
4977 		break;
4978 	}
4979 	default:
4980 		rc = -ENOIOCTLCMD;
4981 		break;
4982 	}
4983 out:
4984 	release_sock(sk);
4985 	return rc;
4986 }
4987 
4988 /* This is the function which gets called during socket creation to
4989  * initialized the SCTP-specific portion of the sock.
4990  * The sock structure should already be zero-filled memory.
4991  */
4992 static int sctp_init_sock(struct sock *sk)
4993 {
4994 	struct net *net = sock_net(sk);
4995 	struct sctp_sock *sp;
4996 
4997 	pr_debug("%s: sk:%p\n", __func__, sk);
4998 
4999 	sp = sctp_sk(sk);
5000 
5001 	/* Initialize the SCTP per socket area.  */
5002 	switch (sk->sk_type) {
5003 	case SOCK_SEQPACKET:
5004 		sp->type = SCTP_SOCKET_UDP;
5005 		break;
5006 	case SOCK_STREAM:
5007 		sp->type = SCTP_SOCKET_TCP;
5008 		break;
5009 	default:
5010 		return -ESOCKTNOSUPPORT;
5011 	}
5012 
5013 	sk->sk_gso_type = SKB_GSO_SCTP;
5014 
5015 	/* Initialize default send parameters. These parameters can be
5016 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
5017 	 */
5018 	sp->default_stream = 0;
5019 	sp->default_ppid = 0;
5020 	sp->default_flags = 0;
5021 	sp->default_context = 0;
5022 	sp->default_timetolive = 0;
5023 
5024 	sp->default_rcv_context = 0;
5025 	sp->max_burst = net->sctp.max_burst;
5026 
5027 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
5028 
5029 	/* Initialize default setup parameters. These parameters
5030 	 * can be modified with the SCTP_INITMSG socket option or
5031 	 * overridden by the SCTP_INIT CMSG.
5032 	 */
5033 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
5034 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
5035 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
5036 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
5037 
5038 	/* Initialize default RTO related parameters.  These parameters can
5039 	 * be modified for with the SCTP_RTOINFO socket option.
5040 	 */
5041 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
5042 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
5043 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
5044 
5045 	/* Initialize default association related parameters. These parameters
5046 	 * can be modified with the SCTP_ASSOCINFO socket option.
5047 	 */
5048 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5049 	sp->assocparams.sasoc_number_peer_destinations = 0;
5050 	sp->assocparams.sasoc_peer_rwnd = 0;
5051 	sp->assocparams.sasoc_local_rwnd = 0;
5052 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5053 
5054 	/* Initialize default event subscriptions. By default, all the
5055 	 * options are off.
5056 	 */
5057 	sp->subscribe = 0;
5058 
5059 	/* Default Peer Address Parameters.  These defaults can
5060 	 * be modified via SCTP_PEER_ADDR_PARAMS
5061 	 */
5062 	sp->hbinterval  = net->sctp.hb_interval;
5063 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5064 	sp->pf_retrans  = net->sctp.pf_retrans;
5065 	sp->pathmtu     = 0; /* allow default discovery */
5066 	sp->sackdelay   = net->sctp.sack_timeout;
5067 	sp->sackfreq	= 2;
5068 	sp->param_flags = SPP_HB_ENABLE |
5069 			  SPP_PMTUD_ENABLE |
5070 			  SPP_SACKDELAY_ENABLE;
5071 	sp->default_ss = SCTP_SS_DEFAULT;
5072 
5073 	/* If enabled no SCTP message fragmentation will be performed.
5074 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5075 	 */
5076 	sp->disable_fragments = 0;
5077 
5078 	/* Enable Nagle algorithm by default.  */
5079 	sp->nodelay           = 0;
5080 
5081 	sp->recvrcvinfo = 0;
5082 	sp->recvnxtinfo = 0;
5083 
5084 	/* Enable by default. */
5085 	sp->v4mapped          = 1;
5086 
5087 	/* Auto-close idle associations after the configured
5088 	 * number of seconds.  A value of 0 disables this
5089 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5090 	 * for UDP-style sockets only.
5091 	 */
5092 	sp->autoclose         = 0;
5093 
5094 	/* User specified fragmentation limit. */
5095 	sp->user_frag         = 0;
5096 
5097 	sp->adaptation_ind = 0;
5098 
5099 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5100 
5101 	/* Control variables for partial data delivery. */
5102 	atomic_set(&sp->pd_mode, 0);
5103 	skb_queue_head_init(&sp->pd_lobby);
5104 	sp->frag_interleave = 0;
5105 
5106 	/* Create a per socket endpoint structure.  Even if we
5107 	 * change the data structure relationships, this may still
5108 	 * be useful for storing pre-connect address information.
5109 	 */
5110 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5111 	if (!sp->ep)
5112 		return -ENOMEM;
5113 
5114 	sp->hmac = NULL;
5115 
5116 	sk->sk_destruct = sctp_destruct_sock;
5117 
5118 	SCTP_DBG_OBJCNT_INC(sock);
5119 
5120 	local_bh_disable();
5121 	sk_sockets_allocated_inc(sk);
5122 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5123 
5124 	/* Nothing can fail after this block, otherwise
5125 	 * sctp_destroy_sock() will be called without addr_wq_lock held
5126 	 */
5127 	if (net->sctp.default_auto_asconf) {
5128 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5129 		list_add_tail(&sp->auto_asconf_list,
5130 		    &net->sctp.auto_asconf_splist);
5131 		sp->do_auto_asconf = 1;
5132 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5133 	} else {
5134 		sp->do_auto_asconf = 0;
5135 	}
5136 
5137 	local_bh_enable();
5138 
5139 	return 0;
5140 }
5141 
5142 /* Cleanup any SCTP per socket resources. Must be called with
5143  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5144  */
5145 static void sctp_destroy_sock(struct sock *sk)
5146 {
5147 	struct sctp_sock *sp;
5148 
5149 	pr_debug("%s: sk:%p\n", __func__, sk);
5150 
5151 	/* Release our hold on the endpoint. */
5152 	sp = sctp_sk(sk);
5153 	/* This could happen during socket init, thus we bail out
5154 	 * early, since the rest of the below is not setup either.
5155 	 */
5156 	if (sp->ep == NULL)
5157 		return;
5158 
5159 	if (sp->do_auto_asconf) {
5160 		sp->do_auto_asconf = 0;
5161 		list_del(&sp->auto_asconf_list);
5162 	}
5163 	sctp_endpoint_free(sp->ep);
5164 	local_bh_disable();
5165 	sk_sockets_allocated_dec(sk);
5166 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5167 	local_bh_enable();
5168 }
5169 
5170 /* Triggered when there are no references on the socket anymore */
5171 static void sctp_destruct_sock(struct sock *sk)
5172 {
5173 	struct sctp_sock *sp = sctp_sk(sk);
5174 
5175 	/* Free up the HMAC transform. */
5176 	crypto_free_shash(sp->hmac);
5177 
5178 	inet_sock_destruct(sk);
5179 }
5180 
5181 /* API 4.1.7 shutdown() - TCP Style Syntax
5182  *     int shutdown(int socket, int how);
5183  *
5184  *     sd      - the socket descriptor of the association to be closed.
5185  *     how     - Specifies the type of shutdown.  The  values  are
5186  *               as follows:
5187  *               SHUT_RD
5188  *                     Disables further receive operations. No SCTP
5189  *                     protocol action is taken.
5190  *               SHUT_WR
5191  *                     Disables further send operations, and initiates
5192  *                     the SCTP shutdown sequence.
5193  *               SHUT_RDWR
5194  *                     Disables further send  and  receive  operations
5195  *                     and initiates the SCTP shutdown sequence.
5196  */
5197 static void sctp_shutdown(struct sock *sk, int how)
5198 {
5199 	struct net *net = sock_net(sk);
5200 	struct sctp_endpoint *ep;
5201 
5202 	if (!sctp_style(sk, TCP))
5203 		return;
5204 
5205 	ep = sctp_sk(sk)->ep;
5206 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5207 		struct sctp_association *asoc;
5208 
5209 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5210 		asoc = list_entry(ep->asocs.next,
5211 				  struct sctp_association, asocs);
5212 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5213 	}
5214 }
5215 
5216 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5217 		       struct sctp_info *info)
5218 {
5219 	struct sctp_transport *prim;
5220 	struct list_head *pos;
5221 	int mask;
5222 
5223 	memset(info, 0, sizeof(*info));
5224 	if (!asoc) {
5225 		struct sctp_sock *sp = sctp_sk(sk);
5226 
5227 		info->sctpi_s_autoclose = sp->autoclose;
5228 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5229 		info->sctpi_s_pd_point = sp->pd_point;
5230 		info->sctpi_s_nodelay = sp->nodelay;
5231 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5232 		info->sctpi_s_v4mapped = sp->v4mapped;
5233 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5234 		info->sctpi_s_type = sp->type;
5235 
5236 		return 0;
5237 	}
5238 
5239 	info->sctpi_tag = asoc->c.my_vtag;
5240 	info->sctpi_state = asoc->state;
5241 	info->sctpi_rwnd = asoc->a_rwnd;
5242 	info->sctpi_unackdata = asoc->unack_data;
5243 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5244 	info->sctpi_instrms = asoc->stream.incnt;
5245 	info->sctpi_outstrms = asoc->stream.outcnt;
5246 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5247 		info->sctpi_inqueue++;
5248 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5249 		info->sctpi_outqueue++;
5250 	info->sctpi_overall_error = asoc->overall_error_count;
5251 	info->sctpi_max_burst = asoc->max_burst;
5252 	info->sctpi_maxseg = asoc->frag_point;
5253 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5254 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5255 
5256 	mask = asoc->peer.ecn_capable << 1;
5257 	mask = (mask | asoc->peer.ipv4_address) << 1;
5258 	mask = (mask | asoc->peer.ipv6_address) << 1;
5259 	mask = (mask | asoc->peer.hostname_address) << 1;
5260 	mask = (mask | asoc->peer.asconf_capable) << 1;
5261 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5262 	mask = (mask | asoc->peer.auth_capable);
5263 	info->sctpi_peer_capable = mask;
5264 	mask = asoc->peer.sack_needed << 1;
5265 	mask = (mask | asoc->peer.sack_generation) << 1;
5266 	mask = (mask | asoc->peer.zero_window_announced);
5267 	info->sctpi_peer_sack = mask;
5268 
5269 	info->sctpi_isacks = asoc->stats.isacks;
5270 	info->sctpi_osacks = asoc->stats.osacks;
5271 	info->sctpi_opackets = asoc->stats.opackets;
5272 	info->sctpi_ipackets = asoc->stats.ipackets;
5273 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5274 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5275 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5276 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5277 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5278 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5279 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5280 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5281 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5282 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5283 
5284 	prim = asoc->peer.primary_path;
5285 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5286 	info->sctpi_p_state = prim->state;
5287 	info->sctpi_p_cwnd = prim->cwnd;
5288 	info->sctpi_p_srtt = prim->srtt;
5289 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5290 	info->sctpi_p_hbinterval = prim->hbinterval;
5291 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5292 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5293 	info->sctpi_p_ssthresh = prim->ssthresh;
5294 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5295 	info->sctpi_p_flight_size = prim->flight_size;
5296 	info->sctpi_p_error = prim->error_count;
5297 
5298 	return 0;
5299 }
5300 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5301 
5302 /* use callback to avoid exporting the core structure */
5303 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5304 {
5305 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5306 
5307 	rhashtable_walk_start(iter);
5308 }
5309 
5310 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5311 {
5312 	rhashtable_walk_stop(iter);
5313 	rhashtable_walk_exit(iter);
5314 }
5315 
5316 struct sctp_transport *sctp_transport_get_next(struct net *net,
5317 					       struct rhashtable_iter *iter)
5318 {
5319 	struct sctp_transport *t;
5320 
5321 	t = rhashtable_walk_next(iter);
5322 	for (; t; t = rhashtable_walk_next(iter)) {
5323 		if (IS_ERR(t)) {
5324 			if (PTR_ERR(t) == -EAGAIN)
5325 				continue;
5326 			break;
5327 		}
5328 
5329 		if (!sctp_transport_hold(t))
5330 			continue;
5331 
5332 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5333 		    t->asoc->peer.primary_path == t)
5334 			break;
5335 
5336 		sctp_transport_put(t);
5337 	}
5338 
5339 	return t;
5340 }
5341 
5342 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5343 					      struct rhashtable_iter *iter,
5344 					      int pos)
5345 {
5346 	struct sctp_transport *t;
5347 
5348 	if (!pos)
5349 		return SEQ_START_TOKEN;
5350 
5351 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5352 		if (!--pos)
5353 			break;
5354 		sctp_transport_put(t);
5355 	}
5356 
5357 	return t;
5358 }
5359 
5360 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5361 			   void *p) {
5362 	int err = 0;
5363 	int hash = 0;
5364 	struct sctp_ep_common *epb;
5365 	struct sctp_hashbucket *head;
5366 
5367 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5368 	     hash++, head++) {
5369 		read_lock_bh(&head->lock);
5370 		sctp_for_each_hentry(epb, &head->chain) {
5371 			err = cb(sctp_ep(epb), p);
5372 			if (err)
5373 				break;
5374 		}
5375 		read_unlock_bh(&head->lock);
5376 	}
5377 
5378 	return err;
5379 }
5380 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5381 
5382 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5383 				  struct net *net,
5384 				  const union sctp_addr *laddr,
5385 				  const union sctp_addr *paddr, void *p)
5386 {
5387 	struct sctp_transport *transport;
5388 	int err;
5389 
5390 	rcu_read_lock();
5391 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5392 	rcu_read_unlock();
5393 	if (!transport)
5394 		return -ENOENT;
5395 
5396 	err = cb(transport, p);
5397 	sctp_transport_put(transport);
5398 
5399 	return err;
5400 }
5401 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5402 
5403 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5404 			    int (*cb_done)(struct sctp_transport *, void *),
5405 			    struct net *net, int *pos, void *p) {
5406 	struct rhashtable_iter hti;
5407 	struct sctp_transport *tsp;
5408 	int ret;
5409 
5410 again:
5411 	ret = 0;
5412 	sctp_transport_walk_start(&hti);
5413 
5414 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5415 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5416 		ret = cb(tsp, p);
5417 		if (ret)
5418 			break;
5419 		(*pos)++;
5420 		sctp_transport_put(tsp);
5421 	}
5422 	sctp_transport_walk_stop(&hti);
5423 
5424 	if (ret) {
5425 		if (cb_done && !cb_done(tsp, p)) {
5426 			(*pos)++;
5427 			sctp_transport_put(tsp);
5428 			goto again;
5429 		}
5430 		sctp_transport_put(tsp);
5431 	}
5432 
5433 	return ret;
5434 }
5435 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5436 
5437 /* 7.2.1 Association Status (SCTP_STATUS)
5438 
5439  * Applications can retrieve current status information about an
5440  * association, including association state, peer receiver window size,
5441  * number of unacked data chunks, and number of data chunks pending
5442  * receipt.  This information is read-only.
5443  */
5444 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5445 				       char __user *optval,
5446 				       int __user *optlen)
5447 {
5448 	struct sctp_status status;
5449 	struct sctp_association *asoc = NULL;
5450 	struct sctp_transport *transport;
5451 	sctp_assoc_t associd;
5452 	int retval = 0;
5453 
5454 	if (len < sizeof(status)) {
5455 		retval = -EINVAL;
5456 		goto out;
5457 	}
5458 
5459 	len = sizeof(status);
5460 	if (copy_from_user(&status, optval, len)) {
5461 		retval = -EFAULT;
5462 		goto out;
5463 	}
5464 
5465 	associd = status.sstat_assoc_id;
5466 	asoc = sctp_id2assoc(sk, associd);
5467 	if (!asoc) {
5468 		retval = -EINVAL;
5469 		goto out;
5470 	}
5471 
5472 	transport = asoc->peer.primary_path;
5473 
5474 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5475 	status.sstat_state = sctp_assoc_to_state(asoc);
5476 	status.sstat_rwnd =  asoc->peer.rwnd;
5477 	status.sstat_unackdata = asoc->unack_data;
5478 
5479 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5480 	status.sstat_instrms = asoc->stream.incnt;
5481 	status.sstat_outstrms = asoc->stream.outcnt;
5482 	status.sstat_fragmentation_point = asoc->frag_point;
5483 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5484 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5485 			transport->af_specific->sockaddr_len);
5486 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5487 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5488 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5489 	status.sstat_primary.spinfo_state = transport->state;
5490 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5491 	status.sstat_primary.spinfo_srtt = transport->srtt;
5492 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5493 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5494 
5495 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5496 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5497 
5498 	if (put_user(len, optlen)) {
5499 		retval = -EFAULT;
5500 		goto out;
5501 	}
5502 
5503 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5504 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5505 		 status.sstat_assoc_id);
5506 
5507 	if (copy_to_user(optval, &status, len)) {
5508 		retval = -EFAULT;
5509 		goto out;
5510 	}
5511 
5512 out:
5513 	return retval;
5514 }
5515 
5516 
5517 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5518  *
5519  * Applications can retrieve information about a specific peer address
5520  * of an association, including its reachability state, congestion
5521  * window, and retransmission timer values.  This information is
5522  * read-only.
5523  */
5524 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5525 					  char __user *optval,
5526 					  int __user *optlen)
5527 {
5528 	struct sctp_paddrinfo pinfo;
5529 	struct sctp_transport *transport;
5530 	int retval = 0;
5531 
5532 	if (len < sizeof(pinfo)) {
5533 		retval = -EINVAL;
5534 		goto out;
5535 	}
5536 
5537 	len = sizeof(pinfo);
5538 	if (copy_from_user(&pinfo, optval, len)) {
5539 		retval = -EFAULT;
5540 		goto out;
5541 	}
5542 
5543 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5544 					   pinfo.spinfo_assoc_id);
5545 	if (!transport)
5546 		return -EINVAL;
5547 
5548 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5549 	pinfo.spinfo_state = transport->state;
5550 	pinfo.spinfo_cwnd = transport->cwnd;
5551 	pinfo.spinfo_srtt = transport->srtt;
5552 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5553 	pinfo.spinfo_mtu = transport->pathmtu;
5554 
5555 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5556 		pinfo.spinfo_state = SCTP_ACTIVE;
5557 
5558 	if (put_user(len, optlen)) {
5559 		retval = -EFAULT;
5560 		goto out;
5561 	}
5562 
5563 	if (copy_to_user(optval, &pinfo, len)) {
5564 		retval = -EFAULT;
5565 		goto out;
5566 	}
5567 
5568 out:
5569 	return retval;
5570 }
5571 
5572 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5573  *
5574  * This option is a on/off flag.  If enabled no SCTP message
5575  * fragmentation will be performed.  Instead if a message being sent
5576  * exceeds the current PMTU size, the message will NOT be sent and
5577  * instead a error will be indicated to the user.
5578  */
5579 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5580 					char __user *optval, int __user *optlen)
5581 {
5582 	int val;
5583 
5584 	if (len < sizeof(int))
5585 		return -EINVAL;
5586 
5587 	len = sizeof(int);
5588 	val = (sctp_sk(sk)->disable_fragments == 1);
5589 	if (put_user(len, optlen))
5590 		return -EFAULT;
5591 	if (copy_to_user(optval, &val, len))
5592 		return -EFAULT;
5593 	return 0;
5594 }
5595 
5596 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5597  *
5598  * This socket option is used to specify various notifications and
5599  * ancillary data the user wishes to receive.
5600  */
5601 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5602 				  int __user *optlen)
5603 {
5604 	struct sctp_event_subscribe subscribe;
5605 	__u8 *sn_type = (__u8 *)&subscribe;
5606 	int i;
5607 
5608 	if (len == 0)
5609 		return -EINVAL;
5610 	if (len > sizeof(struct sctp_event_subscribe))
5611 		len = sizeof(struct sctp_event_subscribe);
5612 	if (put_user(len, optlen))
5613 		return -EFAULT;
5614 
5615 	for (i = 0; i < len; i++)
5616 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5617 							SCTP_SN_TYPE_BASE + i);
5618 
5619 	if (copy_to_user(optval, &subscribe, len))
5620 		return -EFAULT;
5621 
5622 	return 0;
5623 }
5624 
5625 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5626  *
5627  * This socket option is applicable to the UDP-style socket only.  When
5628  * set it will cause associations that are idle for more than the
5629  * specified number of seconds to automatically close.  An association
5630  * being idle is defined an association that has NOT sent or received
5631  * user data.  The special value of '0' indicates that no automatic
5632  * close of any associations should be performed.  The option expects an
5633  * integer defining the number of seconds of idle time before an
5634  * association is closed.
5635  */
5636 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5637 {
5638 	/* Applicable to UDP-style socket only */
5639 	if (sctp_style(sk, TCP))
5640 		return -EOPNOTSUPP;
5641 	if (len < sizeof(int))
5642 		return -EINVAL;
5643 	len = sizeof(int);
5644 	if (put_user(len, optlen))
5645 		return -EFAULT;
5646 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5647 		return -EFAULT;
5648 	return 0;
5649 }
5650 
5651 /* Helper routine to branch off an association to a new socket.  */
5652 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5653 {
5654 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5655 	struct sctp_sock *sp = sctp_sk(sk);
5656 	struct socket *sock;
5657 	int err = 0;
5658 
5659 	/* Do not peel off from one netns to another one. */
5660 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5661 		return -EINVAL;
5662 
5663 	if (!asoc)
5664 		return -EINVAL;
5665 
5666 	/* An association cannot be branched off from an already peeled-off
5667 	 * socket, nor is this supported for tcp style sockets.
5668 	 */
5669 	if (!sctp_style(sk, UDP))
5670 		return -EINVAL;
5671 
5672 	/* Create a new socket.  */
5673 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5674 	if (err < 0)
5675 		return err;
5676 
5677 	sctp_copy_sock(sock->sk, sk, asoc);
5678 
5679 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5680 	 * Set the daddr and initialize id to something more random and also
5681 	 * copy over any ip options.
5682 	 */
5683 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5684 	sp->pf->copy_ip_options(sk, sock->sk);
5685 
5686 	/* Populate the fields of the newsk from the oldsk and migrate the
5687 	 * asoc to the newsk.
5688 	 */
5689 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5690 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5691 	if (err) {
5692 		sock_release(sock);
5693 		sock = NULL;
5694 	}
5695 
5696 	*sockp = sock;
5697 
5698 	return err;
5699 }
5700 EXPORT_SYMBOL(sctp_do_peeloff);
5701 
5702 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5703 					  struct file **newfile, unsigned flags)
5704 {
5705 	struct socket *newsock;
5706 	int retval;
5707 
5708 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5709 	if (retval < 0)
5710 		goto out;
5711 
5712 	/* Map the socket to an unused fd that can be returned to the user.  */
5713 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5714 	if (retval < 0) {
5715 		sock_release(newsock);
5716 		goto out;
5717 	}
5718 
5719 	*newfile = sock_alloc_file(newsock, 0, NULL);
5720 	if (IS_ERR(*newfile)) {
5721 		put_unused_fd(retval);
5722 		retval = PTR_ERR(*newfile);
5723 		*newfile = NULL;
5724 		return retval;
5725 	}
5726 
5727 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5728 		 retval);
5729 
5730 	peeloff->sd = retval;
5731 
5732 	if (flags & SOCK_NONBLOCK)
5733 		(*newfile)->f_flags |= O_NONBLOCK;
5734 out:
5735 	return retval;
5736 }
5737 
5738 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5739 {
5740 	sctp_peeloff_arg_t peeloff;
5741 	struct file *newfile = NULL;
5742 	int retval = 0;
5743 
5744 	if (len < sizeof(sctp_peeloff_arg_t))
5745 		return -EINVAL;
5746 	len = sizeof(sctp_peeloff_arg_t);
5747 	if (copy_from_user(&peeloff, optval, len))
5748 		return -EFAULT;
5749 
5750 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5751 	if (retval < 0)
5752 		goto out;
5753 
5754 	/* Return the fd mapped to the new socket.  */
5755 	if (put_user(len, optlen)) {
5756 		fput(newfile);
5757 		put_unused_fd(retval);
5758 		return -EFAULT;
5759 	}
5760 
5761 	if (copy_to_user(optval, &peeloff, len)) {
5762 		fput(newfile);
5763 		put_unused_fd(retval);
5764 		return -EFAULT;
5765 	}
5766 	fd_install(retval, newfile);
5767 out:
5768 	return retval;
5769 }
5770 
5771 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5772 					 char __user *optval, int __user *optlen)
5773 {
5774 	sctp_peeloff_flags_arg_t peeloff;
5775 	struct file *newfile = NULL;
5776 	int retval = 0;
5777 
5778 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5779 		return -EINVAL;
5780 	len = sizeof(sctp_peeloff_flags_arg_t);
5781 	if (copy_from_user(&peeloff, optval, len))
5782 		return -EFAULT;
5783 
5784 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5785 						&newfile, peeloff.flags);
5786 	if (retval < 0)
5787 		goto out;
5788 
5789 	/* Return the fd mapped to the new socket.  */
5790 	if (put_user(len, optlen)) {
5791 		fput(newfile);
5792 		put_unused_fd(retval);
5793 		return -EFAULT;
5794 	}
5795 
5796 	if (copy_to_user(optval, &peeloff, len)) {
5797 		fput(newfile);
5798 		put_unused_fd(retval);
5799 		return -EFAULT;
5800 	}
5801 	fd_install(retval, newfile);
5802 out:
5803 	return retval;
5804 }
5805 
5806 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5807  *
5808  * Applications can enable or disable heartbeats for any peer address of
5809  * an association, modify an address's heartbeat interval, force a
5810  * heartbeat to be sent immediately, and adjust the address's maximum
5811  * number of retransmissions sent before an address is considered
5812  * unreachable.  The following structure is used to access and modify an
5813  * address's parameters:
5814  *
5815  *  struct sctp_paddrparams {
5816  *     sctp_assoc_t            spp_assoc_id;
5817  *     struct sockaddr_storage spp_address;
5818  *     uint32_t                spp_hbinterval;
5819  *     uint16_t                spp_pathmaxrxt;
5820  *     uint32_t                spp_pathmtu;
5821  *     uint32_t                spp_sackdelay;
5822  *     uint32_t                spp_flags;
5823  * };
5824  *
5825  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5826  *                     application, and identifies the association for
5827  *                     this query.
5828  *   spp_address     - This specifies which address is of interest.
5829  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5830  *                     in milliseconds.  If a  value of zero
5831  *                     is present in this field then no changes are to
5832  *                     be made to this parameter.
5833  *   spp_pathmaxrxt  - This contains the maximum number of
5834  *                     retransmissions before this address shall be
5835  *                     considered unreachable. If a  value of zero
5836  *                     is present in this field then no changes are to
5837  *                     be made to this parameter.
5838  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5839  *                     specified here will be the "fixed" path mtu.
5840  *                     Note that if the spp_address field is empty
5841  *                     then all associations on this address will
5842  *                     have this fixed path mtu set upon them.
5843  *
5844  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5845  *                     the number of milliseconds that sacks will be delayed
5846  *                     for. This value will apply to all addresses of an
5847  *                     association if the spp_address field is empty. Note
5848  *                     also, that if delayed sack is enabled and this
5849  *                     value is set to 0, no change is made to the last
5850  *                     recorded delayed sack timer value.
5851  *
5852  *   spp_flags       - These flags are used to control various features
5853  *                     on an association. The flag field may contain
5854  *                     zero or more of the following options.
5855  *
5856  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5857  *                     specified address. Note that if the address
5858  *                     field is empty all addresses for the association
5859  *                     have heartbeats enabled upon them.
5860  *
5861  *                     SPP_HB_DISABLE - Disable heartbeats on the
5862  *                     speicifed address. Note that if the address
5863  *                     field is empty all addresses for the association
5864  *                     will have their heartbeats disabled. Note also
5865  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5866  *                     mutually exclusive, only one of these two should
5867  *                     be specified. Enabling both fields will have
5868  *                     undetermined results.
5869  *
5870  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5871  *                     to be made immediately.
5872  *
5873  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5874  *                     discovery upon the specified address. Note that
5875  *                     if the address feild is empty then all addresses
5876  *                     on the association are effected.
5877  *
5878  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5879  *                     discovery upon the specified address. Note that
5880  *                     if the address feild is empty then all addresses
5881  *                     on the association are effected. Not also that
5882  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5883  *                     exclusive. Enabling both will have undetermined
5884  *                     results.
5885  *
5886  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5887  *                     on delayed sack. The time specified in spp_sackdelay
5888  *                     is used to specify the sack delay for this address. Note
5889  *                     that if spp_address is empty then all addresses will
5890  *                     enable delayed sack and take on the sack delay
5891  *                     value specified in spp_sackdelay.
5892  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5893  *                     off delayed sack. If the spp_address field is blank then
5894  *                     delayed sack is disabled for the entire association. Note
5895  *                     also that this field is mutually exclusive to
5896  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5897  *                     results.
5898  *
5899  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5900  *                     setting of the IPV6 flow label value.  The value is
5901  *                     contained in the spp_ipv6_flowlabel field.
5902  *                     Upon retrieval, this flag will be set to indicate that
5903  *                     the spp_ipv6_flowlabel field has a valid value returned.
5904  *                     If a specific destination address is set (in the
5905  *                     spp_address field), then the value returned is that of
5906  *                     the address.  If just an association is specified (and
5907  *                     no address), then the association's default flow label
5908  *                     is returned.  If neither an association nor a destination
5909  *                     is specified, then the socket's default flow label is
5910  *                     returned.  For non-IPv6 sockets, this flag will be left
5911  *                     cleared.
5912  *
5913  *                     SPP_DSCP:  Setting this flag enables the setting of the
5914  *                     Differentiated Services Code Point (DSCP) value
5915  *                     associated with either the association or a specific
5916  *                     address.  The value is obtained in the spp_dscp field.
5917  *                     Upon retrieval, this flag will be set to indicate that
5918  *                     the spp_dscp field has a valid value returned.  If a
5919  *                     specific destination address is set when called (in the
5920  *                     spp_address field), then that specific destination
5921  *                     address's DSCP value is returned.  If just an association
5922  *                     is specified, then the association's default DSCP is
5923  *                     returned.  If neither an association nor a destination is
5924  *                     specified, then the socket's default DSCP is returned.
5925  *
5926  *   spp_ipv6_flowlabel
5927  *                   - This field is used in conjunction with the
5928  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5929  *                     The 20 least significant bits are used for the flow
5930  *                     label.  This setting has precedence over any IPv6-layer
5931  *                     setting.
5932  *
5933  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5934  *                     and contains the DSCP.  The 6 most significant bits are
5935  *                     used for the DSCP.  This setting has precedence over any
5936  *                     IPv4- or IPv6- layer setting.
5937  */
5938 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5939 					    char __user *optval, int __user *optlen)
5940 {
5941 	struct sctp_paddrparams  params;
5942 	struct sctp_transport   *trans = NULL;
5943 	struct sctp_association *asoc = NULL;
5944 	struct sctp_sock        *sp = sctp_sk(sk);
5945 
5946 	if (len >= sizeof(params))
5947 		len = sizeof(params);
5948 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5949 				       spp_ipv6_flowlabel), 4))
5950 		len = ALIGN(offsetof(struct sctp_paddrparams,
5951 				     spp_ipv6_flowlabel), 4);
5952 	else
5953 		return -EINVAL;
5954 
5955 	if (copy_from_user(&params, optval, len))
5956 		return -EFAULT;
5957 
5958 	/* If an address other than INADDR_ANY is specified, and
5959 	 * no transport is found, then the request is invalid.
5960 	 */
5961 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5962 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5963 					       params.spp_assoc_id);
5964 		if (!trans) {
5965 			pr_debug("%s: failed no transport\n", __func__);
5966 			return -EINVAL;
5967 		}
5968 	}
5969 
5970 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5971 	 * socket is a one to many style socket, and an association
5972 	 * was not found, then the id was invalid.
5973 	 */
5974 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5975 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5976 	    sctp_style(sk, UDP)) {
5977 		pr_debug("%s: failed no association\n", __func__);
5978 		return -EINVAL;
5979 	}
5980 
5981 	if (trans) {
5982 		/* Fetch transport values. */
5983 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5984 		params.spp_pathmtu    = trans->pathmtu;
5985 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5986 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5987 
5988 		/*draft-11 doesn't say what to return in spp_flags*/
5989 		params.spp_flags      = trans->param_flags;
5990 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5991 			params.spp_ipv6_flowlabel = trans->flowlabel &
5992 						    SCTP_FLOWLABEL_VAL_MASK;
5993 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5994 		}
5995 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5996 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5997 			params.spp_flags |= SPP_DSCP;
5998 		}
5999 	} else if (asoc) {
6000 		/* Fetch association values. */
6001 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
6002 		params.spp_pathmtu    = asoc->pathmtu;
6003 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
6004 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
6005 
6006 		/*draft-11 doesn't say what to return in spp_flags*/
6007 		params.spp_flags      = asoc->param_flags;
6008 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6009 			params.spp_ipv6_flowlabel = asoc->flowlabel &
6010 						    SCTP_FLOWLABEL_VAL_MASK;
6011 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6012 		}
6013 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
6014 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
6015 			params.spp_flags |= SPP_DSCP;
6016 		}
6017 	} else {
6018 		/* Fetch socket values. */
6019 		params.spp_hbinterval = sp->hbinterval;
6020 		params.spp_pathmtu    = sp->pathmtu;
6021 		params.spp_sackdelay  = sp->sackdelay;
6022 		params.spp_pathmaxrxt = sp->pathmaxrxt;
6023 
6024 		/*draft-11 doesn't say what to return in spp_flags*/
6025 		params.spp_flags      = sp->param_flags;
6026 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6027 			params.spp_ipv6_flowlabel = sp->flowlabel &
6028 						    SCTP_FLOWLABEL_VAL_MASK;
6029 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6030 		}
6031 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
6032 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
6033 			params.spp_flags |= SPP_DSCP;
6034 		}
6035 	}
6036 
6037 	if (copy_to_user(optval, &params, len))
6038 		return -EFAULT;
6039 
6040 	if (put_user(len, optlen))
6041 		return -EFAULT;
6042 
6043 	return 0;
6044 }
6045 
6046 /*
6047  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
6048  *
6049  * This option will effect the way delayed acks are performed.  This
6050  * option allows you to get or set the delayed ack time, in
6051  * milliseconds.  It also allows changing the delayed ack frequency.
6052  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6053  * the assoc_id is 0, then this sets or gets the endpoints default
6054  * values.  If the assoc_id field is non-zero, then the set or get
6055  * effects the specified association for the one to many model (the
6056  * assoc_id field is ignored by the one to one model).  Note that if
6057  * sack_delay or sack_freq are 0 when setting this option, then the
6058  * current values will remain unchanged.
6059  *
6060  * struct sctp_sack_info {
6061  *     sctp_assoc_t            sack_assoc_id;
6062  *     uint32_t                sack_delay;
6063  *     uint32_t                sack_freq;
6064  * };
6065  *
6066  * sack_assoc_id -  This parameter, indicates which association the user
6067  *    is performing an action upon.  Note that if this field's value is
6068  *    zero then the endpoints default value is changed (effecting future
6069  *    associations only).
6070  *
6071  * sack_delay -  This parameter contains the number of milliseconds that
6072  *    the user is requesting the delayed ACK timer be set to.  Note that
6073  *    this value is defined in the standard to be between 200 and 500
6074  *    milliseconds.
6075  *
6076  * sack_freq -  This parameter contains the number of packets that must
6077  *    be received before a sack is sent without waiting for the delay
6078  *    timer to expire.  The default value for this is 2, setting this
6079  *    value to 1 will disable the delayed sack algorithm.
6080  */
6081 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6082 					    char __user *optval,
6083 					    int __user *optlen)
6084 {
6085 	struct sctp_sack_info    params;
6086 	struct sctp_association *asoc = NULL;
6087 	struct sctp_sock        *sp = sctp_sk(sk);
6088 
6089 	if (len >= sizeof(struct sctp_sack_info)) {
6090 		len = sizeof(struct sctp_sack_info);
6091 
6092 		if (copy_from_user(&params, optval, len))
6093 			return -EFAULT;
6094 	} else if (len == sizeof(struct sctp_assoc_value)) {
6095 		pr_warn_ratelimited(DEPRECATED
6096 				    "%s (pid %d) "
6097 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6098 				    "Use struct sctp_sack_info instead\n",
6099 				    current->comm, task_pid_nr(current));
6100 		if (copy_from_user(&params, optval, len))
6101 			return -EFAULT;
6102 	} else
6103 		return -EINVAL;
6104 
6105 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6106 	 * socket is a one to many style socket, and an association
6107 	 * was not found, then the id was invalid.
6108 	 */
6109 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6110 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6111 	    sctp_style(sk, UDP))
6112 		return -EINVAL;
6113 
6114 	if (asoc) {
6115 		/* Fetch association values. */
6116 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6117 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6118 			params.sack_freq = asoc->sackfreq;
6119 
6120 		} else {
6121 			params.sack_delay = 0;
6122 			params.sack_freq = 1;
6123 		}
6124 	} else {
6125 		/* Fetch socket values. */
6126 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6127 			params.sack_delay  = sp->sackdelay;
6128 			params.sack_freq = sp->sackfreq;
6129 		} else {
6130 			params.sack_delay  = 0;
6131 			params.sack_freq = 1;
6132 		}
6133 	}
6134 
6135 	if (copy_to_user(optval, &params, len))
6136 		return -EFAULT;
6137 
6138 	if (put_user(len, optlen))
6139 		return -EFAULT;
6140 
6141 	return 0;
6142 }
6143 
6144 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6145  *
6146  * Applications can specify protocol parameters for the default association
6147  * initialization.  The option name argument to setsockopt() and getsockopt()
6148  * is SCTP_INITMSG.
6149  *
6150  * Setting initialization parameters is effective only on an unconnected
6151  * socket (for UDP-style sockets only future associations are effected
6152  * by the change).  With TCP-style sockets, this option is inherited by
6153  * sockets derived from a listener socket.
6154  */
6155 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6156 {
6157 	if (len < sizeof(struct sctp_initmsg))
6158 		return -EINVAL;
6159 	len = sizeof(struct sctp_initmsg);
6160 	if (put_user(len, optlen))
6161 		return -EFAULT;
6162 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6163 		return -EFAULT;
6164 	return 0;
6165 }
6166 
6167 
6168 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6169 				      char __user *optval, int __user *optlen)
6170 {
6171 	struct sctp_association *asoc;
6172 	int cnt = 0;
6173 	struct sctp_getaddrs getaddrs;
6174 	struct sctp_transport *from;
6175 	void __user *to;
6176 	union sctp_addr temp;
6177 	struct sctp_sock *sp = sctp_sk(sk);
6178 	int addrlen;
6179 	size_t space_left;
6180 	int bytes_copied;
6181 
6182 	if (len < sizeof(struct sctp_getaddrs))
6183 		return -EINVAL;
6184 
6185 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6186 		return -EFAULT;
6187 
6188 	/* For UDP-style sockets, id specifies the association to query.  */
6189 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6190 	if (!asoc)
6191 		return -EINVAL;
6192 
6193 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6194 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6195 
6196 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6197 				transports) {
6198 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6199 		addrlen = sctp_get_pf_specific(sk->sk_family)
6200 			      ->addr_to_user(sp, &temp);
6201 		if (space_left < addrlen)
6202 			return -ENOMEM;
6203 		if (copy_to_user(to, &temp, addrlen))
6204 			return -EFAULT;
6205 		to += addrlen;
6206 		cnt++;
6207 		space_left -= addrlen;
6208 	}
6209 
6210 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6211 		return -EFAULT;
6212 	bytes_copied = ((char __user *)to) - optval;
6213 	if (put_user(bytes_copied, optlen))
6214 		return -EFAULT;
6215 
6216 	return 0;
6217 }
6218 
6219 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6220 			    size_t space_left, int *bytes_copied)
6221 {
6222 	struct sctp_sockaddr_entry *addr;
6223 	union sctp_addr temp;
6224 	int cnt = 0;
6225 	int addrlen;
6226 	struct net *net = sock_net(sk);
6227 
6228 	rcu_read_lock();
6229 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6230 		if (!addr->valid)
6231 			continue;
6232 
6233 		if ((PF_INET == sk->sk_family) &&
6234 		    (AF_INET6 == addr->a.sa.sa_family))
6235 			continue;
6236 		if ((PF_INET6 == sk->sk_family) &&
6237 		    inet_v6_ipv6only(sk) &&
6238 		    (AF_INET == addr->a.sa.sa_family))
6239 			continue;
6240 		memcpy(&temp, &addr->a, sizeof(temp));
6241 		if (!temp.v4.sin_port)
6242 			temp.v4.sin_port = htons(port);
6243 
6244 		addrlen = sctp_get_pf_specific(sk->sk_family)
6245 			      ->addr_to_user(sctp_sk(sk), &temp);
6246 
6247 		if (space_left < addrlen) {
6248 			cnt =  -ENOMEM;
6249 			break;
6250 		}
6251 		memcpy(to, &temp, addrlen);
6252 
6253 		to += addrlen;
6254 		cnt++;
6255 		space_left -= addrlen;
6256 		*bytes_copied += addrlen;
6257 	}
6258 	rcu_read_unlock();
6259 
6260 	return cnt;
6261 }
6262 
6263 
6264 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6265 				       char __user *optval, int __user *optlen)
6266 {
6267 	struct sctp_bind_addr *bp;
6268 	struct sctp_association *asoc;
6269 	int cnt = 0;
6270 	struct sctp_getaddrs getaddrs;
6271 	struct sctp_sockaddr_entry *addr;
6272 	void __user *to;
6273 	union sctp_addr temp;
6274 	struct sctp_sock *sp = sctp_sk(sk);
6275 	int addrlen;
6276 	int err = 0;
6277 	size_t space_left;
6278 	int bytes_copied = 0;
6279 	void *addrs;
6280 	void *buf;
6281 
6282 	if (len < sizeof(struct sctp_getaddrs))
6283 		return -EINVAL;
6284 
6285 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6286 		return -EFAULT;
6287 
6288 	/*
6289 	 *  For UDP-style sockets, id specifies the association to query.
6290 	 *  If the id field is set to the value '0' then the locally bound
6291 	 *  addresses are returned without regard to any particular
6292 	 *  association.
6293 	 */
6294 	if (0 == getaddrs.assoc_id) {
6295 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6296 	} else {
6297 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6298 		if (!asoc)
6299 			return -EINVAL;
6300 		bp = &asoc->base.bind_addr;
6301 	}
6302 
6303 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6304 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6305 
6306 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6307 	if (!addrs)
6308 		return -ENOMEM;
6309 
6310 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6311 	 * addresses from the global local address list.
6312 	 */
6313 	if (sctp_list_single_entry(&bp->address_list)) {
6314 		addr = list_entry(bp->address_list.next,
6315 				  struct sctp_sockaddr_entry, list);
6316 		if (sctp_is_any(sk, &addr->a)) {
6317 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6318 						space_left, &bytes_copied);
6319 			if (cnt < 0) {
6320 				err = cnt;
6321 				goto out;
6322 			}
6323 			goto copy_getaddrs;
6324 		}
6325 	}
6326 
6327 	buf = addrs;
6328 	/* Protection on the bound address list is not needed since
6329 	 * in the socket option context we hold a socket lock and
6330 	 * thus the bound address list can't change.
6331 	 */
6332 	list_for_each_entry(addr, &bp->address_list, list) {
6333 		memcpy(&temp, &addr->a, sizeof(temp));
6334 		addrlen = sctp_get_pf_specific(sk->sk_family)
6335 			      ->addr_to_user(sp, &temp);
6336 		if (space_left < addrlen) {
6337 			err =  -ENOMEM; /*fixme: right error?*/
6338 			goto out;
6339 		}
6340 		memcpy(buf, &temp, addrlen);
6341 		buf += addrlen;
6342 		bytes_copied += addrlen;
6343 		cnt++;
6344 		space_left -= addrlen;
6345 	}
6346 
6347 copy_getaddrs:
6348 	if (copy_to_user(to, addrs, bytes_copied)) {
6349 		err = -EFAULT;
6350 		goto out;
6351 	}
6352 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6353 		err = -EFAULT;
6354 		goto out;
6355 	}
6356 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6357 	 * but we can't change it anymore.
6358 	 */
6359 	if (put_user(bytes_copied, optlen))
6360 		err = -EFAULT;
6361 out:
6362 	kfree(addrs);
6363 	return err;
6364 }
6365 
6366 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6367  *
6368  * Requests that the local SCTP stack use the enclosed peer address as
6369  * the association primary.  The enclosed address must be one of the
6370  * association peer's addresses.
6371  */
6372 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6373 					char __user *optval, int __user *optlen)
6374 {
6375 	struct sctp_prim prim;
6376 	struct sctp_association *asoc;
6377 	struct sctp_sock *sp = sctp_sk(sk);
6378 
6379 	if (len < sizeof(struct sctp_prim))
6380 		return -EINVAL;
6381 
6382 	len = sizeof(struct sctp_prim);
6383 
6384 	if (copy_from_user(&prim, optval, len))
6385 		return -EFAULT;
6386 
6387 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6388 	if (!asoc)
6389 		return -EINVAL;
6390 
6391 	if (!asoc->peer.primary_path)
6392 		return -ENOTCONN;
6393 
6394 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6395 		asoc->peer.primary_path->af_specific->sockaddr_len);
6396 
6397 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6398 			(union sctp_addr *)&prim.ssp_addr);
6399 
6400 	if (put_user(len, optlen))
6401 		return -EFAULT;
6402 	if (copy_to_user(optval, &prim, len))
6403 		return -EFAULT;
6404 
6405 	return 0;
6406 }
6407 
6408 /*
6409  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6410  *
6411  * Requests that the local endpoint set the specified Adaptation Layer
6412  * Indication parameter for all future INIT and INIT-ACK exchanges.
6413  */
6414 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6415 				  char __user *optval, int __user *optlen)
6416 {
6417 	struct sctp_setadaptation adaptation;
6418 
6419 	if (len < sizeof(struct sctp_setadaptation))
6420 		return -EINVAL;
6421 
6422 	len = sizeof(struct sctp_setadaptation);
6423 
6424 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6425 
6426 	if (put_user(len, optlen))
6427 		return -EFAULT;
6428 	if (copy_to_user(optval, &adaptation, len))
6429 		return -EFAULT;
6430 
6431 	return 0;
6432 }
6433 
6434 /*
6435  *
6436  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6437  *
6438  *   Applications that wish to use the sendto() system call may wish to
6439  *   specify a default set of parameters that would normally be supplied
6440  *   through the inclusion of ancillary data.  This socket option allows
6441  *   such an application to set the default sctp_sndrcvinfo structure.
6442 
6443 
6444  *   The application that wishes to use this socket option simply passes
6445  *   in to this call the sctp_sndrcvinfo structure defined in Section
6446  *   5.2.2) The input parameters accepted by this call include
6447  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6448  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6449  *   to this call if the caller is using the UDP model.
6450  *
6451  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6452  */
6453 static int sctp_getsockopt_default_send_param(struct sock *sk,
6454 					int len, char __user *optval,
6455 					int __user *optlen)
6456 {
6457 	struct sctp_sock *sp = sctp_sk(sk);
6458 	struct sctp_association *asoc;
6459 	struct sctp_sndrcvinfo info;
6460 
6461 	if (len < sizeof(info))
6462 		return -EINVAL;
6463 
6464 	len = sizeof(info);
6465 
6466 	if (copy_from_user(&info, optval, len))
6467 		return -EFAULT;
6468 
6469 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6470 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6471 	    sctp_style(sk, UDP))
6472 		return -EINVAL;
6473 
6474 	if (asoc) {
6475 		info.sinfo_stream = asoc->default_stream;
6476 		info.sinfo_flags = asoc->default_flags;
6477 		info.sinfo_ppid = asoc->default_ppid;
6478 		info.sinfo_context = asoc->default_context;
6479 		info.sinfo_timetolive = asoc->default_timetolive;
6480 	} else {
6481 		info.sinfo_stream = sp->default_stream;
6482 		info.sinfo_flags = sp->default_flags;
6483 		info.sinfo_ppid = sp->default_ppid;
6484 		info.sinfo_context = sp->default_context;
6485 		info.sinfo_timetolive = sp->default_timetolive;
6486 	}
6487 
6488 	if (put_user(len, optlen))
6489 		return -EFAULT;
6490 	if (copy_to_user(optval, &info, len))
6491 		return -EFAULT;
6492 
6493 	return 0;
6494 }
6495 
6496 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6497  * (SCTP_DEFAULT_SNDINFO)
6498  */
6499 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6500 					   char __user *optval,
6501 					   int __user *optlen)
6502 {
6503 	struct sctp_sock *sp = sctp_sk(sk);
6504 	struct sctp_association *asoc;
6505 	struct sctp_sndinfo info;
6506 
6507 	if (len < sizeof(info))
6508 		return -EINVAL;
6509 
6510 	len = sizeof(info);
6511 
6512 	if (copy_from_user(&info, optval, len))
6513 		return -EFAULT;
6514 
6515 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6516 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6517 	    sctp_style(sk, UDP))
6518 		return -EINVAL;
6519 
6520 	if (asoc) {
6521 		info.snd_sid = asoc->default_stream;
6522 		info.snd_flags = asoc->default_flags;
6523 		info.snd_ppid = asoc->default_ppid;
6524 		info.snd_context = asoc->default_context;
6525 	} else {
6526 		info.snd_sid = sp->default_stream;
6527 		info.snd_flags = sp->default_flags;
6528 		info.snd_ppid = sp->default_ppid;
6529 		info.snd_context = sp->default_context;
6530 	}
6531 
6532 	if (put_user(len, optlen))
6533 		return -EFAULT;
6534 	if (copy_to_user(optval, &info, len))
6535 		return -EFAULT;
6536 
6537 	return 0;
6538 }
6539 
6540 /*
6541  *
6542  * 7.1.5 SCTP_NODELAY
6543  *
6544  * Turn on/off any Nagle-like algorithm.  This means that packets are
6545  * generally sent as soon as possible and no unnecessary delays are
6546  * introduced, at the cost of more packets in the network.  Expects an
6547  * integer boolean flag.
6548  */
6549 
6550 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6551 				   char __user *optval, int __user *optlen)
6552 {
6553 	int val;
6554 
6555 	if (len < sizeof(int))
6556 		return -EINVAL;
6557 
6558 	len = sizeof(int);
6559 	val = (sctp_sk(sk)->nodelay == 1);
6560 	if (put_user(len, optlen))
6561 		return -EFAULT;
6562 	if (copy_to_user(optval, &val, len))
6563 		return -EFAULT;
6564 	return 0;
6565 }
6566 
6567 /*
6568  *
6569  * 7.1.1 SCTP_RTOINFO
6570  *
6571  * The protocol parameters used to initialize and bound retransmission
6572  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6573  * and modify these parameters.
6574  * All parameters are time values, in milliseconds.  A value of 0, when
6575  * modifying the parameters, indicates that the current value should not
6576  * be changed.
6577  *
6578  */
6579 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6580 				char __user *optval,
6581 				int __user *optlen) {
6582 	struct sctp_rtoinfo rtoinfo;
6583 	struct sctp_association *asoc;
6584 
6585 	if (len < sizeof (struct sctp_rtoinfo))
6586 		return -EINVAL;
6587 
6588 	len = sizeof(struct sctp_rtoinfo);
6589 
6590 	if (copy_from_user(&rtoinfo, optval, len))
6591 		return -EFAULT;
6592 
6593 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6594 
6595 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6596 	    sctp_style(sk, UDP))
6597 		return -EINVAL;
6598 
6599 	/* Values corresponding to the specific association. */
6600 	if (asoc) {
6601 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6602 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6603 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6604 	} else {
6605 		/* Values corresponding to the endpoint. */
6606 		struct sctp_sock *sp = sctp_sk(sk);
6607 
6608 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6609 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6610 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6611 	}
6612 
6613 	if (put_user(len, optlen))
6614 		return -EFAULT;
6615 
6616 	if (copy_to_user(optval, &rtoinfo, len))
6617 		return -EFAULT;
6618 
6619 	return 0;
6620 }
6621 
6622 /*
6623  *
6624  * 7.1.2 SCTP_ASSOCINFO
6625  *
6626  * This option is used to tune the maximum retransmission attempts
6627  * of the association.
6628  * Returns an error if the new association retransmission value is
6629  * greater than the sum of the retransmission value  of the peer.
6630  * See [SCTP] for more information.
6631  *
6632  */
6633 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6634 				     char __user *optval,
6635 				     int __user *optlen)
6636 {
6637 
6638 	struct sctp_assocparams assocparams;
6639 	struct sctp_association *asoc;
6640 	struct list_head *pos;
6641 	int cnt = 0;
6642 
6643 	if (len < sizeof (struct sctp_assocparams))
6644 		return -EINVAL;
6645 
6646 	len = sizeof(struct sctp_assocparams);
6647 
6648 	if (copy_from_user(&assocparams, optval, len))
6649 		return -EFAULT;
6650 
6651 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6652 
6653 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6654 	    sctp_style(sk, UDP))
6655 		return -EINVAL;
6656 
6657 	/* Values correspoinding to the specific association */
6658 	if (asoc) {
6659 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6660 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6661 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6662 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6663 
6664 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6665 			cnt++;
6666 		}
6667 
6668 		assocparams.sasoc_number_peer_destinations = cnt;
6669 	} else {
6670 		/* Values corresponding to the endpoint */
6671 		struct sctp_sock *sp = sctp_sk(sk);
6672 
6673 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6674 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6675 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6676 		assocparams.sasoc_cookie_life =
6677 					sp->assocparams.sasoc_cookie_life;
6678 		assocparams.sasoc_number_peer_destinations =
6679 					sp->assocparams.
6680 					sasoc_number_peer_destinations;
6681 	}
6682 
6683 	if (put_user(len, optlen))
6684 		return -EFAULT;
6685 
6686 	if (copy_to_user(optval, &assocparams, len))
6687 		return -EFAULT;
6688 
6689 	return 0;
6690 }
6691 
6692 /*
6693  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6694  *
6695  * This socket option is a boolean flag which turns on or off mapped V4
6696  * addresses.  If this option is turned on and the socket is type
6697  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6698  * If this option is turned off, then no mapping will be done of V4
6699  * addresses and a user will receive both PF_INET6 and PF_INET type
6700  * addresses on the socket.
6701  */
6702 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6703 				    char __user *optval, int __user *optlen)
6704 {
6705 	int val;
6706 	struct sctp_sock *sp = sctp_sk(sk);
6707 
6708 	if (len < sizeof(int))
6709 		return -EINVAL;
6710 
6711 	len = sizeof(int);
6712 	val = sp->v4mapped;
6713 	if (put_user(len, optlen))
6714 		return -EFAULT;
6715 	if (copy_to_user(optval, &val, len))
6716 		return -EFAULT;
6717 
6718 	return 0;
6719 }
6720 
6721 /*
6722  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6723  * (chapter and verse is quoted at sctp_setsockopt_context())
6724  */
6725 static int sctp_getsockopt_context(struct sock *sk, int len,
6726 				   char __user *optval, int __user *optlen)
6727 {
6728 	struct sctp_assoc_value params;
6729 	struct sctp_association *asoc;
6730 
6731 	if (len < sizeof(struct sctp_assoc_value))
6732 		return -EINVAL;
6733 
6734 	len = sizeof(struct sctp_assoc_value);
6735 
6736 	if (copy_from_user(&params, optval, len))
6737 		return -EFAULT;
6738 
6739 	asoc = sctp_id2assoc(sk, params.assoc_id);
6740 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6741 	    sctp_style(sk, UDP))
6742 		return -EINVAL;
6743 
6744 	params.assoc_value = asoc ? asoc->default_rcv_context
6745 				  : sctp_sk(sk)->default_rcv_context;
6746 
6747 	if (put_user(len, optlen))
6748 		return -EFAULT;
6749 	if (copy_to_user(optval, &params, len))
6750 		return -EFAULT;
6751 
6752 	return 0;
6753 }
6754 
6755 /*
6756  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6757  * This option will get or set the maximum size to put in any outgoing
6758  * SCTP DATA chunk.  If a message is larger than this size it will be
6759  * fragmented by SCTP into the specified size.  Note that the underlying
6760  * SCTP implementation may fragment into smaller sized chunks when the
6761  * PMTU of the underlying association is smaller than the value set by
6762  * the user.  The default value for this option is '0' which indicates
6763  * the user is NOT limiting fragmentation and only the PMTU will effect
6764  * SCTP's choice of DATA chunk size.  Note also that values set larger
6765  * than the maximum size of an IP datagram will effectively let SCTP
6766  * control fragmentation (i.e. the same as setting this option to 0).
6767  *
6768  * The following structure is used to access and modify this parameter:
6769  *
6770  * struct sctp_assoc_value {
6771  *   sctp_assoc_t assoc_id;
6772  *   uint32_t assoc_value;
6773  * };
6774  *
6775  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6776  *    For one-to-many style sockets this parameter indicates which
6777  *    association the user is performing an action upon.  Note that if
6778  *    this field's value is zero then the endpoints default value is
6779  *    changed (effecting future associations only).
6780  * assoc_value:  This parameter specifies the maximum size in bytes.
6781  */
6782 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6783 				  char __user *optval, int __user *optlen)
6784 {
6785 	struct sctp_assoc_value params;
6786 	struct sctp_association *asoc;
6787 
6788 	if (len == sizeof(int)) {
6789 		pr_warn_ratelimited(DEPRECATED
6790 				    "%s (pid %d) "
6791 				    "Use of int in maxseg socket option.\n"
6792 				    "Use struct sctp_assoc_value instead\n",
6793 				    current->comm, task_pid_nr(current));
6794 		params.assoc_id = SCTP_FUTURE_ASSOC;
6795 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6796 		len = sizeof(struct sctp_assoc_value);
6797 		if (copy_from_user(&params, optval, len))
6798 			return -EFAULT;
6799 	} else
6800 		return -EINVAL;
6801 
6802 	asoc = sctp_id2assoc(sk, params.assoc_id);
6803 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6804 	    sctp_style(sk, UDP))
6805 		return -EINVAL;
6806 
6807 	if (asoc)
6808 		params.assoc_value = asoc->frag_point;
6809 	else
6810 		params.assoc_value = sctp_sk(sk)->user_frag;
6811 
6812 	if (put_user(len, optlen))
6813 		return -EFAULT;
6814 	if (len == sizeof(int)) {
6815 		if (copy_to_user(optval, &params.assoc_value, len))
6816 			return -EFAULT;
6817 	} else {
6818 		if (copy_to_user(optval, &params, len))
6819 			return -EFAULT;
6820 	}
6821 
6822 	return 0;
6823 }
6824 
6825 /*
6826  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6827  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6828  */
6829 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6830 					       char __user *optval, int __user *optlen)
6831 {
6832 	int val;
6833 
6834 	if (len < sizeof(int))
6835 		return -EINVAL;
6836 
6837 	len = sizeof(int);
6838 
6839 	val = sctp_sk(sk)->frag_interleave;
6840 	if (put_user(len, optlen))
6841 		return -EFAULT;
6842 	if (copy_to_user(optval, &val, len))
6843 		return -EFAULT;
6844 
6845 	return 0;
6846 }
6847 
6848 /*
6849  * 7.1.25.  Set or Get the sctp partial delivery point
6850  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6851  */
6852 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6853 						  char __user *optval,
6854 						  int __user *optlen)
6855 {
6856 	u32 val;
6857 
6858 	if (len < sizeof(u32))
6859 		return -EINVAL;
6860 
6861 	len = sizeof(u32);
6862 
6863 	val = sctp_sk(sk)->pd_point;
6864 	if (put_user(len, optlen))
6865 		return -EFAULT;
6866 	if (copy_to_user(optval, &val, len))
6867 		return -EFAULT;
6868 
6869 	return 0;
6870 }
6871 
6872 /*
6873  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6874  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6875  */
6876 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6877 				    char __user *optval,
6878 				    int __user *optlen)
6879 {
6880 	struct sctp_assoc_value params;
6881 	struct sctp_association *asoc;
6882 
6883 	if (len == sizeof(int)) {
6884 		pr_warn_ratelimited(DEPRECATED
6885 				    "%s (pid %d) "
6886 				    "Use of int in max_burst socket option.\n"
6887 				    "Use struct sctp_assoc_value instead\n",
6888 				    current->comm, task_pid_nr(current));
6889 		params.assoc_id = SCTP_FUTURE_ASSOC;
6890 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6891 		len = sizeof(struct sctp_assoc_value);
6892 		if (copy_from_user(&params, optval, len))
6893 			return -EFAULT;
6894 	} else
6895 		return -EINVAL;
6896 
6897 	asoc = sctp_id2assoc(sk, params.assoc_id);
6898 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6899 	    sctp_style(sk, UDP))
6900 		return -EINVAL;
6901 
6902 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6903 
6904 	if (len == sizeof(int)) {
6905 		if (copy_to_user(optval, &params.assoc_value, len))
6906 			return -EFAULT;
6907 	} else {
6908 		if (copy_to_user(optval, &params, len))
6909 			return -EFAULT;
6910 	}
6911 
6912 	return 0;
6913 
6914 }
6915 
6916 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6917 				    char __user *optval, int __user *optlen)
6918 {
6919 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6920 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6921 	struct sctp_hmac_algo_param *hmacs;
6922 	__u16 data_len = 0;
6923 	u32 num_idents;
6924 	int i;
6925 
6926 	if (!ep->auth_enable)
6927 		return -EACCES;
6928 
6929 	hmacs = ep->auth_hmacs_list;
6930 	data_len = ntohs(hmacs->param_hdr.length) -
6931 		   sizeof(struct sctp_paramhdr);
6932 
6933 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6934 		return -EINVAL;
6935 
6936 	len = sizeof(struct sctp_hmacalgo) + data_len;
6937 	num_idents = data_len / sizeof(u16);
6938 
6939 	if (put_user(len, optlen))
6940 		return -EFAULT;
6941 	if (put_user(num_idents, &p->shmac_num_idents))
6942 		return -EFAULT;
6943 	for (i = 0; i < num_idents; i++) {
6944 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6945 
6946 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6947 			return -EFAULT;
6948 	}
6949 	return 0;
6950 }
6951 
6952 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6953 				    char __user *optval, int __user *optlen)
6954 {
6955 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6956 	struct sctp_authkeyid val;
6957 	struct sctp_association *asoc;
6958 
6959 	if (!ep->auth_enable)
6960 		return -EACCES;
6961 
6962 	if (len < sizeof(struct sctp_authkeyid))
6963 		return -EINVAL;
6964 
6965 	len = sizeof(struct sctp_authkeyid);
6966 	if (copy_from_user(&val, optval, len))
6967 		return -EFAULT;
6968 
6969 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6970 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6971 		return -EINVAL;
6972 
6973 	if (asoc)
6974 		val.scact_keynumber = asoc->active_key_id;
6975 	else
6976 		val.scact_keynumber = ep->active_key_id;
6977 
6978 	if (put_user(len, optlen))
6979 		return -EFAULT;
6980 	if (copy_to_user(optval, &val, len))
6981 		return -EFAULT;
6982 
6983 	return 0;
6984 }
6985 
6986 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6987 				    char __user *optval, int __user *optlen)
6988 {
6989 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6990 	struct sctp_authchunks __user *p = (void __user *)optval;
6991 	struct sctp_authchunks val;
6992 	struct sctp_association *asoc;
6993 	struct sctp_chunks_param *ch;
6994 	u32    num_chunks = 0;
6995 	char __user *to;
6996 
6997 	if (!ep->auth_enable)
6998 		return -EACCES;
6999 
7000 	if (len < sizeof(struct sctp_authchunks))
7001 		return -EINVAL;
7002 
7003 	if (copy_from_user(&val, optval, sizeof(val)))
7004 		return -EFAULT;
7005 
7006 	to = p->gauth_chunks;
7007 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7008 	if (!asoc)
7009 		return -EINVAL;
7010 
7011 	ch = asoc->peer.peer_chunks;
7012 	if (!ch)
7013 		goto num;
7014 
7015 	/* See if the user provided enough room for all the data */
7016 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7017 	if (len < num_chunks)
7018 		return -EINVAL;
7019 
7020 	if (copy_to_user(to, ch->chunks, num_chunks))
7021 		return -EFAULT;
7022 num:
7023 	len = sizeof(struct sctp_authchunks) + num_chunks;
7024 	if (put_user(len, optlen))
7025 		return -EFAULT;
7026 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7027 		return -EFAULT;
7028 	return 0;
7029 }
7030 
7031 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7032 				    char __user *optval, int __user *optlen)
7033 {
7034 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7035 	struct sctp_authchunks __user *p = (void __user *)optval;
7036 	struct sctp_authchunks val;
7037 	struct sctp_association *asoc;
7038 	struct sctp_chunks_param *ch;
7039 	u32    num_chunks = 0;
7040 	char __user *to;
7041 
7042 	if (!ep->auth_enable)
7043 		return -EACCES;
7044 
7045 	if (len < sizeof(struct sctp_authchunks))
7046 		return -EINVAL;
7047 
7048 	if (copy_from_user(&val, optval, sizeof(val)))
7049 		return -EFAULT;
7050 
7051 	to = p->gauth_chunks;
7052 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7053 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7054 	    sctp_style(sk, UDP))
7055 		return -EINVAL;
7056 
7057 	ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks
7058 		  : ep->auth_chunk_list;
7059 	if (!ch)
7060 		goto num;
7061 
7062 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7063 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7064 		return -EINVAL;
7065 
7066 	if (copy_to_user(to, ch->chunks, num_chunks))
7067 		return -EFAULT;
7068 num:
7069 	len = sizeof(struct sctp_authchunks) + num_chunks;
7070 	if (put_user(len, optlen))
7071 		return -EFAULT;
7072 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7073 		return -EFAULT;
7074 
7075 	return 0;
7076 }
7077 
7078 /*
7079  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7080  * This option gets the current number of associations that are attached
7081  * to a one-to-many style socket.  The option value is an uint32_t.
7082  */
7083 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7084 				    char __user *optval, int __user *optlen)
7085 {
7086 	struct sctp_sock *sp = sctp_sk(sk);
7087 	struct sctp_association *asoc;
7088 	u32 val = 0;
7089 
7090 	if (sctp_style(sk, TCP))
7091 		return -EOPNOTSUPP;
7092 
7093 	if (len < sizeof(u32))
7094 		return -EINVAL;
7095 
7096 	len = sizeof(u32);
7097 
7098 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7099 		val++;
7100 	}
7101 
7102 	if (put_user(len, optlen))
7103 		return -EFAULT;
7104 	if (copy_to_user(optval, &val, len))
7105 		return -EFAULT;
7106 
7107 	return 0;
7108 }
7109 
7110 /*
7111  * 8.1.23 SCTP_AUTO_ASCONF
7112  * See the corresponding setsockopt entry as description
7113  */
7114 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7115 				   char __user *optval, int __user *optlen)
7116 {
7117 	int val = 0;
7118 
7119 	if (len < sizeof(int))
7120 		return -EINVAL;
7121 
7122 	len = sizeof(int);
7123 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7124 		val = 1;
7125 	if (put_user(len, optlen))
7126 		return -EFAULT;
7127 	if (copy_to_user(optval, &val, len))
7128 		return -EFAULT;
7129 	return 0;
7130 }
7131 
7132 /*
7133  * 8.2.6. Get the Current Identifiers of Associations
7134  *        (SCTP_GET_ASSOC_ID_LIST)
7135  *
7136  * This option gets the current list of SCTP association identifiers of
7137  * the SCTP associations handled by a one-to-many style socket.
7138  */
7139 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7140 				    char __user *optval, int __user *optlen)
7141 {
7142 	struct sctp_sock *sp = sctp_sk(sk);
7143 	struct sctp_association *asoc;
7144 	struct sctp_assoc_ids *ids;
7145 	u32 num = 0;
7146 
7147 	if (sctp_style(sk, TCP))
7148 		return -EOPNOTSUPP;
7149 
7150 	if (len < sizeof(struct sctp_assoc_ids))
7151 		return -EINVAL;
7152 
7153 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7154 		num++;
7155 	}
7156 
7157 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7158 		return -EINVAL;
7159 
7160 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7161 
7162 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7163 	if (unlikely(!ids))
7164 		return -ENOMEM;
7165 
7166 	ids->gaids_number_of_ids = num;
7167 	num = 0;
7168 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7169 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7170 	}
7171 
7172 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7173 		kfree(ids);
7174 		return -EFAULT;
7175 	}
7176 
7177 	kfree(ids);
7178 	return 0;
7179 }
7180 
7181 /*
7182  * SCTP_PEER_ADDR_THLDS
7183  *
7184  * This option allows us to fetch the partially failed threshold for one or all
7185  * transports in an association.  See Section 6.1 of:
7186  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7187  */
7188 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7189 					    char __user *optval,
7190 					    int len,
7191 					    int __user *optlen)
7192 {
7193 	struct sctp_paddrthlds val;
7194 	struct sctp_transport *trans;
7195 	struct sctp_association *asoc;
7196 
7197 	if (len < sizeof(struct sctp_paddrthlds))
7198 		return -EINVAL;
7199 	len = sizeof(struct sctp_paddrthlds);
7200 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
7201 		return -EFAULT;
7202 
7203 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7204 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7205 					       val.spt_assoc_id);
7206 		if (!trans)
7207 			return -ENOENT;
7208 
7209 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7210 		val.spt_pathpfthld = trans->pf_retrans;
7211 
7212 		return 0;
7213 	}
7214 
7215 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7216 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7217 	    sctp_style(sk, UDP))
7218 		return -EINVAL;
7219 
7220 	if (asoc) {
7221 		val.spt_pathpfthld = asoc->pf_retrans;
7222 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7223 	} else {
7224 		struct sctp_sock *sp = sctp_sk(sk);
7225 
7226 		val.spt_pathpfthld = sp->pf_retrans;
7227 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7228 	}
7229 
7230 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7231 		return -EFAULT;
7232 
7233 	return 0;
7234 }
7235 
7236 /*
7237  * SCTP_GET_ASSOC_STATS
7238  *
7239  * This option retrieves local per endpoint statistics. It is modeled
7240  * after OpenSolaris' implementation
7241  */
7242 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7243 				       char __user *optval,
7244 				       int __user *optlen)
7245 {
7246 	struct sctp_assoc_stats sas;
7247 	struct sctp_association *asoc = NULL;
7248 
7249 	/* User must provide at least the assoc id */
7250 	if (len < sizeof(sctp_assoc_t))
7251 		return -EINVAL;
7252 
7253 	/* Allow the struct to grow and fill in as much as possible */
7254 	len = min_t(size_t, len, sizeof(sas));
7255 
7256 	if (copy_from_user(&sas, optval, len))
7257 		return -EFAULT;
7258 
7259 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7260 	if (!asoc)
7261 		return -EINVAL;
7262 
7263 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7264 	sas.sas_gapcnt = asoc->stats.gapcnt;
7265 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7266 	sas.sas_osacks = asoc->stats.osacks;
7267 	sas.sas_isacks = asoc->stats.isacks;
7268 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7269 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7270 	sas.sas_oodchunks = asoc->stats.oodchunks;
7271 	sas.sas_iodchunks = asoc->stats.iodchunks;
7272 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7273 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7274 	sas.sas_idupchunks = asoc->stats.idupchunks;
7275 	sas.sas_opackets = asoc->stats.opackets;
7276 	sas.sas_ipackets = asoc->stats.ipackets;
7277 
7278 	/* New high max rto observed, will return 0 if not a single
7279 	 * RTO update took place. obs_rto_ipaddr will be bogus
7280 	 * in such a case
7281 	 */
7282 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7283 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7284 		sizeof(struct sockaddr_storage));
7285 
7286 	/* Mark beginning of a new observation period */
7287 	asoc->stats.max_obs_rto = asoc->rto_min;
7288 
7289 	if (put_user(len, optlen))
7290 		return -EFAULT;
7291 
7292 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7293 
7294 	if (copy_to_user(optval, &sas, len))
7295 		return -EFAULT;
7296 
7297 	return 0;
7298 }
7299 
7300 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7301 				       char __user *optval,
7302 				       int __user *optlen)
7303 {
7304 	int val = 0;
7305 
7306 	if (len < sizeof(int))
7307 		return -EINVAL;
7308 
7309 	len = sizeof(int);
7310 	if (sctp_sk(sk)->recvrcvinfo)
7311 		val = 1;
7312 	if (put_user(len, optlen))
7313 		return -EFAULT;
7314 	if (copy_to_user(optval, &val, len))
7315 		return -EFAULT;
7316 
7317 	return 0;
7318 }
7319 
7320 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7321 				       char __user *optval,
7322 				       int __user *optlen)
7323 {
7324 	int val = 0;
7325 
7326 	if (len < sizeof(int))
7327 		return -EINVAL;
7328 
7329 	len = sizeof(int);
7330 	if (sctp_sk(sk)->recvnxtinfo)
7331 		val = 1;
7332 	if (put_user(len, optlen))
7333 		return -EFAULT;
7334 	if (copy_to_user(optval, &val, len))
7335 		return -EFAULT;
7336 
7337 	return 0;
7338 }
7339 
7340 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7341 					char __user *optval,
7342 					int __user *optlen)
7343 {
7344 	struct sctp_assoc_value params;
7345 	struct sctp_association *asoc;
7346 	int retval = -EFAULT;
7347 
7348 	if (len < sizeof(params)) {
7349 		retval = -EINVAL;
7350 		goto out;
7351 	}
7352 
7353 	len = sizeof(params);
7354 	if (copy_from_user(&params, optval, len))
7355 		goto out;
7356 
7357 	asoc = sctp_id2assoc(sk, params.assoc_id);
7358 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7359 	    sctp_style(sk, UDP)) {
7360 		retval = -EINVAL;
7361 		goto out;
7362 	}
7363 
7364 	params.assoc_value = asoc ? asoc->prsctp_enable
7365 				  : sctp_sk(sk)->ep->prsctp_enable;
7366 
7367 	if (put_user(len, optlen))
7368 		goto out;
7369 
7370 	if (copy_to_user(optval, &params, len))
7371 		goto out;
7372 
7373 	retval = 0;
7374 
7375 out:
7376 	return retval;
7377 }
7378 
7379 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7380 					  char __user *optval,
7381 					  int __user *optlen)
7382 {
7383 	struct sctp_default_prinfo info;
7384 	struct sctp_association *asoc;
7385 	int retval = -EFAULT;
7386 
7387 	if (len < sizeof(info)) {
7388 		retval = -EINVAL;
7389 		goto out;
7390 	}
7391 
7392 	len = sizeof(info);
7393 	if (copy_from_user(&info, optval, len))
7394 		goto out;
7395 
7396 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7397 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7398 	    sctp_style(sk, UDP)) {
7399 		retval = -EINVAL;
7400 		goto out;
7401 	}
7402 
7403 	if (asoc) {
7404 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7405 		info.pr_value = asoc->default_timetolive;
7406 	} else {
7407 		struct sctp_sock *sp = sctp_sk(sk);
7408 
7409 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7410 		info.pr_value = sp->default_timetolive;
7411 	}
7412 
7413 	if (put_user(len, optlen))
7414 		goto out;
7415 
7416 	if (copy_to_user(optval, &info, len))
7417 		goto out;
7418 
7419 	retval = 0;
7420 
7421 out:
7422 	return retval;
7423 }
7424 
7425 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7426 					  char __user *optval,
7427 					  int __user *optlen)
7428 {
7429 	struct sctp_prstatus params;
7430 	struct sctp_association *asoc;
7431 	int policy;
7432 	int retval = -EINVAL;
7433 
7434 	if (len < sizeof(params))
7435 		goto out;
7436 
7437 	len = sizeof(params);
7438 	if (copy_from_user(&params, optval, len)) {
7439 		retval = -EFAULT;
7440 		goto out;
7441 	}
7442 
7443 	policy = params.sprstat_policy;
7444 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7445 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7446 		goto out;
7447 
7448 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7449 	if (!asoc)
7450 		goto out;
7451 
7452 	if (policy == SCTP_PR_SCTP_ALL) {
7453 		params.sprstat_abandoned_unsent = 0;
7454 		params.sprstat_abandoned_sent = 0;
7455 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7456 			params.sprstat_abandoned_unsent +=
7457 				asoc->abandoned_unsent[policy];
7458 			params.sprstat_abandoned_sent +=
7459 				asoc->abandoned_sent[policy];
7460 		}
7461 	} else {
7462 		params.sprstat_abandoned_unsent =
7463 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7464 		params.sprstat_abandoned_sent =
7465 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7466 	}
7467 
7468 	if (put_user(len, optlen)) {
7469 		retval = -EFAULT;
7470 		goto out;
7471 	}
7472 
7473 	if (copy_to_user(optval, &params, len)) {
7474 		retval = -EFAULT;
7475 		goto out;
7476 	}
7477 
7478 	retval = 0;
7479 
7480 out:
7481 	return retval;
7482 }
7483 
7484 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7485 					   char __user *optval,
7486 					   int __user *optlen)
7487 {
7488 	struct sctp_stream_out_ext *streamoute;
7489 	struct sctp_association *asoc;
7490 	struct sctp_prstatus params;
7491 	int retval = -EINVAL;
7492 	int policy;
7493 
7494 	if (len < sizeof(params))
7495 		goto out;
7496 
7497 	len = sizeof(params);
7498 	if (copy_from_user(&params, optval, len)) {
7499 		retval = -EFAULT;
7500 		goto out;
7501 	}
7502 
7503 	policy = params.sprstat_policy;
7504 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7505 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7506 		goto out;
7507 
7508 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7509 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7510 		goto out;
7511 
7512 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7513 	if (!streamoute) {
7514 		/* Not allocated yet, means all stats are 0 */
7515 		params.sprstat_abandoned_unsent = 0;
7516 		params.sprstat_abandoned_sent = 0;
7517 		retval = 0;
7518 		goto out;
7519 	}
7520 
7521 	if (policy == SCTP_PR_SCTP_ALL) {
7522 		params.sprstat_abandoned_unsent = 0;
7523 		params.sprstat_abandoned_sent = 0;
7524 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7525 			params.sprstat_abandoned_unsent +=
7526 				streamoute->abandoned_unsent[policy];
7527 			params.sprstat_abandoned_sent +=
7528 				streamoute->abandoned_sent[policy];
7529 		}
7530 	} else {
7531 		params.sprstat_abandoned_unsent =
7532 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7533 		params.sprstat_abandoned_sent =
7534 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7535 	}
7536 
7537 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7538 		retval = -EFAULT;
7539 		goto out;
7540 	}
7541 
7542 	retval = 0;
7543 
7544 out:
7545 	return retval;
7546 }
7547 
7548 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7549 					      char __user *optval,
7550 					      int __user *optlen)
7551 {
7552 	struct sctp_assoc_value params;
7553 	struct sctp_association *asoc;
7554 	int retval = -EFAULT;
7555 
7556 	if (len < sizeof(params)) {
7557 		retval = -EINVAL;
7558 		goto out;
7559 	}
7560 
7561 	len = sizeof(params);
7562 	if (copy_from_user(&params, optval, len))
7563 		goto out;
7564 
7565 	asoc = sctp_id2assoc(sk, params.assoc_id);
7566 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7567 	    sctp_style(sk, UDP)) {
7568 		retval = -EINVAL;
7569 		goto out;
7570 	}
7571 
7572 	params.assoc_value = asoc ? asoc->reconf_enable
7573 				  : sctp_sk(sk)->ep->reconf_enable;
7574 
7575 	if (put_user(len, optlen))
7576 		goto out;
7577 
7578 	if (copy_to_user(optval, &params, len))
7579 		goto out;
7580 
7581 	retval = 0;
7582 
7583 out:
7584 	return retval;
7585 }
7586 
7587 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7588 					   char __user *optval,
7589 					   int __user *optlen)
7590 {
7591 	struct sctp_assoc_value params;
7592 	struct sctp_association *asoc;
7593 	int retval = -EFAULT;
7594 
7595 	if (len < sizeof(params)) {
7596 		retval = -EINVAL;
7597 		goto out;
7598 	}
7599 
7600 	len = sizeof(params);
7601 	if (copy_from_user(&params, optval, len))
7602 		goto out;
7603 
7604 	asoc = sctp_id2assoc(sk, params.assoc_id);
7605 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7606 	    sctp_style(sk, UDP)) {
7607 		retval = -EINVAL;
7608 		goto out;
7609 	}
7610 
7611 	params.assoc_value = asoc ? asoc->strreset_enable
7612 				  : sctp_sk(sk)->ep->strreset_enable;
7613 
7614 	if (put_user(len, optlen))
7615 		goto out;
7616 
7617 	if (copy_to_user(optval, &params, len))
7618 		goto out;
7619 
7620 	retval = 0;
7621 
7622 out:
7623 	return retval;
7624 }
7625 
7626 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7627 				     char __user *optval,
7628 				     int __user *optlen)
7629 {
7630 	struct sctp_assoc_value params;
7631 	struct sctp_association *asoc;
7632 	int retval = -EFAULT;
7633 
7634 	if (len < sizeof(params)) {
7635 		retval = -EINVAL;
7636 		goto out;
7637 	}
7638 
7639 	len = sizeof(params);
7640 	if (copy_from_user(&params, optval, len))
7641 		goto out;
7642 
7643 	asoc = sctp_id2assoc(sk, params.assoc_id);
7644 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7645 	    sctp_style(sk, UDP)) {
7646 		retval = -EINVAL;
7647 		goto out;
7648 	}
7649 
7650 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7651 				  : sctp_sk(sk)->default_ss;
7652 
7653 	if (put_user(len, optlen))
7654 		goto out;
7655 
7656 	if (copy_to_user(optval, &params, len))
7657 		goto out;
7658 
7659 	retval = 0;
7660 
7661 out:
7662 	return retval;
7663 }
7664 
7665 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7666 					   char __user *optval,
7667 					   int __user *optlen)
7668 {
7669 	struct sctp_stream_value params;
7670 	struct sctp_association *asoc;
7671 	int retval = -EFAULT;
7672 
7673 	if (len < sizeof(params)) {
7674 		retval = -EINVAL;
7675 		goto out;
7676 	}
7677 
7678 	len = sizeof(params);
7679 	if (copy_from_user(&params, optval, len))
7680 		goto out;
7681 
7682 	asoc = sctp_id2assoc(sk, params.assoc_id);
7683 	if (!asoc) {
7684 		retval = -EINVAL;
7685 		goto out;
7686 	}
7687 
7688 	retval = sctp_sched_get_value(asoc, params.stream_id,
7689 				      &params.stream_value);
7690 	if (retval)
7691 		goto out;
7692 
7693 	if (put_user(len, optlen)) {
7694 		retval = -EFAULT;
7695 		goto out;
7696 	}
7697 
7698 	if (copy_to_user(optval, &params, len)) {
7699 		retval = -EFAULT;
7700 		goto out;
7701 	}
7702 
7703 out:
7704 	return retval;
7705 }
7706 
7707 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7708 						  char __user *optval,
7709 						  int __user *optlen)
7710 {
7711 	struct sctp_assoc_value params;
7712 	struct sctp_association *asoc;
7713 	int retval = -EFAULT;
7714 
7715 	if (len < sizeof(params)) {
7716 		retval = -EINVAL;
7717 		goto out;
7718 	}
7719 
7720 	len = sizeof(params);
7721 	if (copy_from_user(&params, optval, len))
7722 		goto out;
7723 
7724 	asoc = sctp_id2assoc(sk, params.assoc_id);
7725 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7726 	    sctp_style(sk, UDP)) {
7727 		retval = -EINVAL;
7728 		goto out;
7729 	}
7730 
7731 	params.assoc_value = asoc ? asoc->intl_enable
7732 				  : sctp_sk(sk)->strm_interleave;
7733 
7734 	if (put_user(len, optlen))
7735 		goto out;
7736 
7737 	if (copy_to_user(optval, &params, len))
7738 		goto out;
7739 
7740 	retval = 0;
7741 
7742 out:
7743 	return retval;
7744 }
7745 
7746 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7747 				      char __user *optval,
7748 				      int __user *optlen)
7749 {
7750 	int val;
7751 
7752 	if (len < sizeof(int))
7753 		return -EINVAL;
7754 
7755 	len = sizeof(int);
7756 	val = sctp_sk(sk)->reuse;
7757 	if (put_user(len, optlen))
7758 		return -EFAULT;
7759 
7760 	if (copy_to_user(optval, &val, len))
7761 		return -EFAULT;
7762 
7763 	return 0;
7764 }
7765 
7766 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7767 				 int __user *optlen)
7768 {
7769 	struct sctp_association *asoc;
7770 	struct sctp_event param;
7771 	__u16 subscribe;
7772 
7773 	if (len < sizeof(param))
7774 		return -EINVAL;
7775 
7776 	len = sizeof(param);
7777 	if (copy_from_user(&param, optval, len))
7778 		return -EFAULT;
7779 
7780 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7781 	    param.se_type > SCTP_SN_TYPE_MAX)
7782 		return -EINVAL;
7783 
7784 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7785 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7786 	    sctp_style(sk, UDP))
7787 		return -EINVAL;
7788 
7789 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7790 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7791 
7792 	if (put_user(len, optlen))
7793 		return -EFAULT;
7794 
7795 	if (copy_to_user(optval, &param, len))
7796 		return -EFAULT;
7797 
7798 	return 0;
7799 }
7800 
7801 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7802 			   char __user *optval, int __user *optlen)
7803 {
7804 	int retval = 0;
7805 	int len;
7806 
7807 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7808 
7809 	/* I can hardly begin to describe how wrong this is.  This is
7810 	 * so broken as to be worse than useless.  The API draft
7811 	 * REALLY is NOT helpful here...  I am not convinced that the
7812 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7813 	 * are at all well-founded.
7814 	 */
7815 	if (level != SOL_SCTP) {
7816 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7817 
7818 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7819 		return retval;
7820 	}
7821 
7822 	if (get_user(len, optlen))
7823 		return -EFAULT;
7824 
7825 	if (len < 0)
7826 		return -EINVAL;
7827 
7828 	lock_sock(sk);
7829 
7830 	switch (optname) {
7831 	case SCTP_STATUS:
7832 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7833 		break;
7834 	case SCTP_DISABLE_FRAGMENTS:
7835 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7836 							   optlen);
7837 		break;
7838 	case SCTP_EVENTS:
7839 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7840 		break;
7841 	case SCTP_AUTOCLOSE:
7842 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7843 		break;
7844 	case SCTP_SOCKOPT_PEELOFF:
7845 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7846 		break;
7847 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7848 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7849 		break;
7850 	case SCTP_PEER_ADDR_PARAMS:
7851 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7852 							  optlen);
7853 		break;
7854 	case SCTP_DELAYED_SACK:
7855 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7856 							  optlen);
7857 		break;
7858 	case SCTP_INITMSG:
7859 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7860 		break;
7861 	case SCTP_GET_PEER_ADDRS:
7862 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7863 						    optlen);
7864 		break;
7865 	case SCTP_GET_LOCAL_ADDRS:
7866 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7867 						     optlen);
7868 		break;
7869 	case SCTP_SOCKOPT_CONNECTX3:
7870 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7871 		break;
7872 	case SCTP_DEFAULT_SEND_PARAM:
7873 		retval = sctp_getsockopt_default_send_param(sk, len,
7874 							    optval, optlen);
7875 		break;
7876 	case SCTP_DEFAULT_SNDINFO:
7877 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7878 							 optval, optlen);
7879 		break;
7880 	case SCTP_PRIMARY_ADDR:
7881 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7882 		break;
7883 	case SCTP_NODELAY:
7884 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7885 		break;
7886 	case SCTP_RTOINFO:
7887 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7888 		break;
7889 	case SCTP_ASSOCINFO:
7890 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7891 		break;
7892 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7893 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7894 		break;
7895 	case SCTP_MAXSEG:
7896 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7897 		break;
7898 	case SCTP_GET_PEER_ADDR_INFO:
7899 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7900 							optlen);
7901 		break;
7902 	case SCTP_ADAPTATION_LAYER:
7903 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7904 							optlen);
7905 		break;
7906 	case SCTP_CONTEXT:
7907 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7908 		break;
7909 	case SCTP_FRAGMENT_INTERLEAVE:
7910 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7911 							     optlen);
7912 		break;
7913 	case SCTP_PARTIAL_DELIVERY_POINT:
7914 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7915 								optlen);
7916 		break;
7917 	case SCTP_MAX_BURST:
7918 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7919 		break;
7920 	case SCTP_AUTH_KEY:
7921 	case SCTP_AUTH_CHUNK:
7922 	case SCTP_AUTH_DELETE_KEY:
7923 	case SCTP_AUTH_DEACTIVATE_KEY:
7924 		retval = -EOPNOTSUPP;
7925 		break;
7926 	case SCTP_HMAC_IDENT:
7927 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7928 		break;
7929 	case SCTP_AUTH_ACTIVE_KEY:
7930 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7931 		break;
7932 	case SCTP_PEER_AUTH_CHUNKS:
7933 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7934 							optlen);
7935 		break;
7936 	case SCTP_LOCAL_AUTH_CHUNKS:
7937 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7938 							optlen);
7939 		break;
7940 	case SCTP_GET_ASSOC_NUMBER:
7941 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7942 		break;
7943 	case SCTP_GET_ASSOC_ID_LIST:
7944 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7945 		break;
7946 	case SCTP_AUTO_ASCONF:
7947 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7948 		break;
7949 	case SCTP_PEER_ADDR_THLDS:
7950 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7951 		break;
7952 	case SCTP_GET_ASSOC_STATS:
7953 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7954 		break;
7955 	case SCTP_RECVRCVINFO:
7956 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7957 		break;
7958 	case SCTP_RECVNXTINFO:
7959 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7960 		break;
7961 	case SCTP_PR_SUPPORTED:
7962 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7963 		break;
7964 	case SCTP_DEFAULT_PRINFO:
7965 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7966 							optlen);
7967 		break;
7968 	case SCTP_PR_ASSOC_STATUS:
7969 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7970 							optlen);
7971 		break;
7972 	case SCTP_PR_STREAM_STATUS:
7973 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7974 							 optlen);
7975 		break;
7976 	case SCTP_RECONFIG_SUPPORTED:
7977 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7978 							    optlen);
7979 		break;
7980 	case SCTP_ENABLE_STREAM_RESET:
7981 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7982 							 optlen);
7983 		break;
7984 	case SCTP_STREAM_SCHEDULER:
7985 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7986 						   optlen);
7987 		break;
7988 	case SCTP_STREAM_SCHEDULER_VALUE:
7989 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7990 							 optlen);
7991 		break;
7992 	case SCTP_INTERLEAVING_SUPPORTED:
7993 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7994 								optlen);
7995 		break;
7996 	case SCTP_REUSE_PORT:
7997 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7998 		break;
7999 	case SCTP_EVENT:
8000 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8001 		break;
8002 	default:
8003 		retval = -ENOPROTOOPT;
8004 		break;
8005 	}
8006 
8007 	release_sock(sk);
8008 	return retval;
8009 }
8010 
8011 static int sctp_hash(struct sock *sk)
8012 {
8013 	/* STUB */
8014 	return 0;
8015 }
8016 
8017 static void sctp_unhash(struct sock *sk)
8018 {
8019 	/* STUB */
8020 }
8021 
8022 /* Check if port is acceptable.  Possibly find first available port.
8023  *
8024  * The port hash table (contained in the 'global' SCTP protocol storage
8025  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8026  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8027  * list (the list number is the port number hashed out, so as you
8028  * would expect from a hash function, all the ports in a given list have
8029  * such a number that hashes out to the same list number; you were
8030  * expecting that, right?); so each list has a set of ports, with a
8031  * link to the socket (struct sock) that uses it, the port number and
8032  * a fastreuse flag (FIXME: NPI ipg).
8033  */
8034 static struct sctp_bind_bucket *sctp_bucket_create(
8035 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8036 
8037 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8038 {
8039 	struct sctp_sock *sp = sctp_sk(sk);
8040 	bool reuse = (sk->sk_reuse || sp->reuse);
8041 	struct sctp_bind_hashbucket *head; /* hash list */
8042 	kuid_t uid = sock_i_uid(sk);
8043 	struct sctp_bind_bucket *pp;
8044 	unsigned short snum;
8045 	int ret;
8046 
8047 	snum = ntohs(addr->v4.sin_port);
8048 
8049 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8050 
8051 	local_bh_disable();
8052 
8053 	if (snum == 0) {
8054 		/* Search for an available port. */
8055 		int low, high, remaining, index;
8056 		unsigned int rover;
8057 		struct net *net = sock_net(sk);
8058 
8059 		inet_get_local_port_range(net, &low, &high);
8060 		remaining = (high - low) + 1;
8061 		rover = prandom_u32() % remaining + low;
8062 
8063 		do {
8064 			rover++;
8065 			if ((rover < low) || (rover > high))
8066 				rover = low;
8067 			if (inet_is_local_reserved_port(net, rover))
8068 				continue;
8069 			index = sctp_phashfn(sock_net(sk), rover);
8070 			head = &sctp_port_hashtable[index];
8071 			spin_lock(&head->lock);
8072 			sctp_for_each_hentry(pp, &head->chain)
8073 				if ((pp->port == rover) &&
8074 				    net_eq(sock_net(sk), pp->net))
8075 					goto next;
8076 			break;
8077 		next:
8078 			spin_unlock(&head->lock);
8079 		} while (--remaining > 0);
8080 
8081 		/* Exhausted local port range during search? */
8082 		ret = 1;
8083 		if (remaining <= 0)
8084 			goto fail;
8085 
8086 		/* OK, here is the one we will use.  HEAD (the port
8087 		 * hash table list entry) is non-NULL and we hold it's
8088 		 * mutex.
8089 		 */
8090 		snum = rover;
8091 	} else {
8092 		/* We are given an specific port number; we verify
8093 		 * that it is not being used. If it is used, we will
8094 		 * exahust the search in the hash list corresponding
8095 		 * to the port number (snum) - we detect that with the
8096 		 * port iterator, pp being NULL.
8097 		 */
8098 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
8099 		spin_lock(&head->lock);
8100 		sctp_for_each_hentry(pp, &head->chain) {
8101 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
8102 				goto pp_found;
8103 		}
8104 	}
8105 	pp = NULL;
8106 	goto pp_not_found;
8107 pp_found:
8108 	if (!hlist_empty(&pp->owner)) {
8109 		/* We had a port hash table hit - there is an
8110 		 * available port (pp != NULL) and it is being
8111 		 * used by other socket (pp->owner not empty); that other
8112 		 * socket is going to be sk2.
8113 		 */
8114 		struct sock *sk2;
8115 
8116 		pr_debug("%s: found a possible match\n", __func__);
8117 
8118 		if ((pp->fastreuse && reuse &&
8119 		     sk->sk_state != SCTP_SS_LISTENING) ||
8120 		    (pp->fastreuseport && sk->sk_reuseport &&
8121 		     uid_eq(pp->fastuid, uid)))
8122 			goto success;
8123 
8124 		/* Run through the list of sockets bound to the port
8125 		 * (pp->port) [via the pointers bind_next and
8126 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8127 		 * we get the endpoint they describe and run through
8128 		 * the endpoint's list of IP (v4 or v6) addresses,
8129 		 * comparing each of the addresses with the address of
8130 		 * the socket sk. If we find a match, then that means
8131 		 * that this port/socket (sk) combination are already
8132 		 * in an endpoint.
8133 		 */
8134 		sk_for_each_bound(sk2, &pp->owner) {
8135 			struct sctp_sock *sp2 = sctp_sk(sk2);
8136 			struct sctp_endpoint *ep2 = sp2->ep;
8137 
8138 			if (sk == sk2 ||
8139 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8140 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8141 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8142 			     uid_eq(uid, sock_i_uid(sk2))))
8143 				continue;
8144 
8145 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8146 						    addr, sp2, sp)) {
8147 				ret = (long)sk2;
8148 				goto fail_unlock;
8149 			}
8150 		}
8151 
8152 		pr_debug("%s: found a match\n", __func__);
8153 	}
8154 pp_not_found:
8155 	/* If there was a hash table miss, create a new port.  */
8156 	ret = 1;
8157 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
8158 		goto fail_unlock;
8159 
8160 	/* In either case (hit or miss), make sure fastreuse is 1 only
8161 	 * if sk->sk_reuse is too (that is, if the caller requested
8162 	 * SO_REUSEADDR on this socket -sk-).
8163 	 */
8164 	if (hlist_empty(&pp->owner)) {
8165 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8166 			pp->fastreuse = 1;
8167 		else
8168 			pp->fastreuse = 0;
8169 
8170 		if (sk->sk_reuseport) {
8171 			pp->fastreuseport = 1;
8172 			pp->fastuid = uid;
8173 		} else {
8174 			pp->fastreuseport = 0;
8175 		}
8176 	} else {
8177 		if (pp->fastreuse &&
8178 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8179 			pp->fastreuse = 0;
8180 
8181 		if (pp->fastreuseport &&
8182 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8183 			pp->fastreuseport = 0;
8184 	}
8185 
8186 	/* We are set, so fill up all the data in the hash table
8187 	 * entry, tie the socket list information with the rest of the
8188 	 * sockets FIXME: Blurry, NPI (ipg).
8189 	 */
8190 success:
8191 	if (!sp->bind_hash) {
8192 		inet_sk(sk)->inet_num = snum;
8193 		sk_add_bind_node(sk, &pp->owner);
8194 		sp->bind_hash = pp;
8195 	}
8196 	ret = 0;
8197 
8198 fail_unlock:
8199 	spin_unlock(&head->lock);
8200 
8201 fail:
8202 	local_bh_enable();
8203 	return ret;
8204 }
8205 
8206 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8207  * port is requested.
8208  */
8209 static int sctp_get_port(struct sock *sk, unsigned short snum)
8210 {
8211 	union sctp_addr addr;
8212 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8213 
8214 	/* Set up a dummy address struct from the sk. */
8215 	af->from_sk(&addr, sk);
8216 	addr.v4.sin_port = htons(snum);
8217 
8218 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8219 	return !!sctp_get_port_local(sk, &addr);
8220 }
8221 
8222 /*
8223  *  Move a socket to LISTENING state.
8224  */
8225 static int sctp_listen_start(struct sock *sk, int backlog)
8226 {
8227 	struct sctp_sock *sp = sctp_sk(sk);
8228 	struct sctp_endpoint *ep = sp->ep;
8229 	struct crypto_shash *tfm = NULL;
8230 	char alg[32];
8231 
8232 	/* Allocate HMAC for generating cookie. */
8233 	if (!sp->hmac && sp->sctp_hmac_alg) {
8234 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8235 		tfm = crypto_alloc_shash(alg, 0, 0);
8236 		if (IS_ERR(tfm)) {
8237 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8238 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8239 			return -ENOSYS;
8240 		}
8241 		sctp_sk(sk)->hmac = tfm;
8242 	}
8243 
8244 	/*
8245 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8246 	 * call that allows new associations to be accepted, the system
8247 	 * picks an ephemeral port and will choose an address set equivalent
8248 	 * to binding with a wildcard address.
8249 	 *
8250 	 * This is not currently spelled out in the SCTP sockets
8251 	 * extensions draft, but follows the practice as seen in TCP
8252 	 * sockets.
8253 	 *
8254 	 */
8255 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8256 	if (!ep->base.bind_addr.port) {
8257 		if (sctp_autobind(sk))
8258 			return -EAGAIN;
8259 	} else {
8260 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8261 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8262 			return -EADDRINUSE;
8263 		}
8264 	}
8265 
8266 	sk->sk_max_ack_backlog = backlog;
8267 	return sctp_hash_endpoint(ep);
8268 }
8269 
8270 /*
8271  * 4.1.3 / 5.1.3 listen()
8272  *
8273  *   By default, new associations are not accepted for UDP style sockets.
8274  *   An application uses listen() to mark a socket as being able to
8275  *   accept new associations.
8276  *
8277  *   On TCP style sockets, applications use listen() to ready the SCTP
8278  *   endpoint for accepting inbound associations.
8279  *
8280  *   On both types of endpoints a backlog of '0' disables listening.
8281  *
8282  *  Move a socket to LISTENING state.
8283  */
8284 int sctp_inet_listen(struct socket *sock, int backlog)
8285 {
8286 	struct sock *sk = sock->sk;
8287 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8288 	int err = -EINVAL;
8289 
8290 	if (unlikely(backlog < 0))
8291 		return err;
8292 
8293 	lock_sock(sk);
8294 
8295 	/* Peeled-off sockets are not allowed to listen().  */
8296 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8297 		goto out;
8298 
8299 	if (sock->state != SS_UNCONNECTED)
8300 		goto out;
8301 
8302 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8303 		goto out;
8304 
8305 	/* If backlog is zero, disable listening. */
8306 	if (!backlog) {
8307 		if (sctp_sstate(sk, CLOSED))
8308 			goto out;
8309 
8310 		err = 0;
8311 		sctp_unhash_endpoint(ep);
8312 		sk->sk_state = SCTP_SS_CLOSED;
8313 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8314 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8315 		goto out;
8316 	}
8317 
8318 	/* If we are already listening, just update the backlog */
8319 	if (sctp_sstate(sk, LISTENING))
8320 		sk->sk_max_ack_backlog = backlog;
8321 	else {
8322 		err = sctp_listen_start(sk, backlog);
8323 		if (err)
8324 			goto out;
8325 	}
8326 
8327 	err = 0;
8328 out:
8329 	release_sock(sk);
8330 	return err;
8331 }
8332 
8333 /*
8334  * This function is done by modeling the current datagram_poll() and the
8335  * tcp_poll().  Note that, based on these implementations, we don't
8336  * lock the socket in this function, even though it seems that,
8337  * ideally, locking or some other mechanisms can be used to ensure
8338  * the integrity of the counters (sndbuf and wmem_alloc) used
8339  * in this place.  We assume that we don't need locks either until proven
8340  * otherwise.
8341  *
8342  * Another thing to note is that we include the Async I/O support
8343  * here, again, by modeling the current TCP/UDP code.  We don't have
8344  * a good way to test with it yet.
8345  */
8346 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8347 {
8348 	struct sock *sk = sock->sk;
8349 	struct sctp_sock *sp = sctp_sk(sk);
8350 	__poll_t mask;
8351 
8352 	poll_wait(file, sk_sleep(sk), wait);
8353 
8354 	sock_rps_record_flow(sk);
8355 
8356 	/* A TCP-style listening socket becomes readable when the accept queue
8357 	 * is not empty.
8358 	 */
8359 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8360 		return (!list_empty(&sp->ep->asocs)) ?
8361 			(EPOLLIN | EPOLLRDNORM) : 0;
8362 
8363 	mask = 0;
8364 
8365 	/* Is there any exceptional events?  */
8366 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8367 		mask |= EPOLLERR |
8368 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8369 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8370 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8371 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8372 		mask |= EPOLLHUP;
8373 
8374 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8375 	if (!skb_queue_empty(&sk->sk_receive_queue))
8376 		mask |= EPOLLIN | EPOLLRDNORM;
8377 
8378 	/* The association is either gone or not ready.  */
8379 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8380 		return mask;
8381 
8382 	/* Is it writable?  */
8383 	if (sctp_writeable(sk)) {
8384 		mask |= EPOLLOUT | EPOLLWRNORM;
8385 	} else {
8386 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8387 		/*
8388 		 * Since the socket is not locked, the buffer
8389 		 * might be made available after the writeable check and
8390 		 * before the bit is set.  This could cause a lost I/O
8391 		 * signal.  tcp_poll() has a race breaker for this race
8392 		 * condition.  Based on their implementation, we put
8393 		 * in the following code to cover it as well.
8394 		 */
8395 		if (sctp_writeable(sk))
8396 			mask |= EPOLLOUT | EPOLLWRNORM;
8397 	}
8398 	return mask;
8399 }
8400 
8401 /********************************************************************
8402  * 2nd Level Abstractions
8403  ********************************************************************/
8404 
8405 static struct sctp_bind_bucket *sctp_bucket_create(
8406 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8407 {
8408 	struct sctp_bind_bucket *pp;
8409 
8410 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8411 	if (pp) {
8412 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8413 		pp->port = snum;
8414 		pp->fastreuse = 0;
8415 		INIT_HLIST_HEAD(&pp->owner);
8416 		pp->net = net;
8417 		hlist_add_head(&pp->node, &head->chain);
8418 	}
8419 	return pp;
8420 }
8421 
8422 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8423 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8424 {
8425 	if (pp && hlist_empty(&pp->owner)) {
8426 		__hlist_del(&pp->node);
8427 		kmem_cache_free(sctp_bucket_cachep, pp);
8428 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8429 	}
8430 }
8431 
8432 /* Release this socket's reference to a local port.  */
8433 static inline void __sctp_put_port(struct sock *sk)
8434 {
8435 	struct sctp_bind_hashbucket *head =
8436 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8437 						  inet_sk(sk)->inet_num)];
8438 	struct sctp_bind_bucket *pp;
8439 
8440 	spin_lock(&head->lock);
8441 	pp = sctp_sk(sk)->bind_hash;
8442 	__sk_del_bind_node(sk);
8443 	sctp_sk(sk)->bind_hash = NULL;
8444 	inet_sk(sk)->inet_num = 0;
8445 	sctp_bucket_destroy(pp);
8446 	spin_unlock(&head->lock);
8447 }
8448 
8449 void sctp_put_port(struct sock *sk)
8450 {
8451 	local_bh_disable();
8452 	__sctp_put_port(sk);
8453 	local_bh_enable();
8454 }
8455 
8456 /*
8457  * The system picks an ephemeral port and choose an address set equivalent
8458  * to binding with a wildcard address.
8459  * One of those addresses will be the primary address for the association.
8460  * This automatically enables the multihoming capability of SCTP.
8461  */
8462 static int sctp_autobind(struct sock *sk)
8463 {
8464 	union sctp_addr autoaddr;
8465 	struct sctp_af *af;
8466 	__be16 port;
8467 
8468 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8469 	af = sctp_sk(sk)->pf->af;
8470 
8471 	port = htons(inet_sk(sk)->inet_num);
8472 	af->inaddr_any(&autoaddr, port);
8473 
8474 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8475 }
8476 
8477 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8478  *
8479  * From RFC 2292
8480  * 4.2 The cmsghdr Structure *
8481  *
8482  * When ancillary data is sent or received, any number of ancillary data
8483  * objects can be specified by the msg_control and msg_controllen members of
8484  * the msghdr structure, because each object is preceded by
8485  * a cmsghdr structure defining the object's length (the cmsg_len member).
8486  * Historically Berkeley-derived implementations have passed only one object
8487  * at a time, but this API allows multiple objects to be
8488  * passed in a single call to sendmsg() or recvmsg(). The following example
8489  * shows two ancillary data objects in a control buffer.
8490  *
8491  *   |<--------------------------- msg_controllen -------------------------->|
8492  *   |                                                                       |
8493  *
8494  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8495  *
8496  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8497  *   |                                   |                                   |
8498  *
8499  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8500  *
8501  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8502  *   |                                |  |                                |  |
8503  *
8504  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8505  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8506  *
8507  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8508  *
8509  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8510  *    ^
8511  *    |
8512  *
8513  * msg_control
8514  * points here
8515  */
8516 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8517 {
8518 	struct msghdr *my_msg = (struct msghdr *)msg;
8519 	struct cmsghdr *cmsg;
8520 
8521 	for_each_cmsghdr(cmsg, my_msg) {
8522 		if (!CMSG_OK(my_msg, cmsg))
8523 			return -EINVAL;
8524 
8525 		/* Should we parse this header or ignore?  */
8526 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8527 			continue;
8528 
8529 		/* Strictly check lengths following example in SCM code.  */
8530 		switch (cmsg->cmsg_type) {
8531 		case SCTP_INIT:
8532 			/* SCTP Socket API Extension
8533 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8534 			 *
8535 			 * This cmsghdr structure provides information for
8536 			 * initializing new SCTP associations with sendmsg().
8537 			 * The SCTP_INITMSG socket option uses this same data
8538 			 * structure.  This structure is not used for
8539 			 * recvmsg().
8540 			 *
8541 			 * cmsg_level    cmsg_type      cmsg_data[]
8542 			 * ------------  ------------   ----------------------
8543 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8544 			 */
8545 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8546 				return -EINVAL;
8547 
8548 			cmsgs->init = CMSG_DATA(cmsg);
8549 			break;
8550 
8551 		case SCTP_SNDRCV:
8552 			/* SCTP Socket API Extension
8553 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8554 			 *
8555 			 * This cmsghdr structure specifies SCTP options for
8556 			 * sendmsg() and describes SCTP header information
8557 			 * about a received message through recvmsg().
8558 			 *
8559 			 * cmsg_level    cmsg_type      cmsg_data[]
8560 			 * ------------  ------------   ----------------------
8561 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8562 			 */
8563 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8564 				return -EINVAL;
8565 
8566 			cmsgs->srinfo = CMSG_DATA(cmsg);
8567 
8568 			if (cmsgs->srinfo->sinfo_flags &
8569 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8570 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8571 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8572 				return -EINVAL;
8573 			break;
8574 
8575 		case SCTP_SNDINFO:
8576 			/* SCTP Socket API Extension
8577 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8578 			 *
8579 			 * This cmsghdr structure specifies SCTP options for
8580 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8581 			 * SCTP_SNDRCV which has been deprecated.
8582 			 *
8583 			 * cmsg_level    cmsg_type      cmsg_data[]
8584 			 * ------------  ------------   ---------------------
8585 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8586 			 */
8587 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8588 				return -EINVAL;
8589 
8590 			cmsgs->sinfo = CMSG_DATA(cmsg);
8591 
8592 			if (cmsgs->sinfo->snd_flags &
8593 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8594 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8595 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8596 				return -EINVAL;
8597 			break;
8598 		case SCTP_PRINFO:
8599 			/* SCTP Socket API Extension
8600 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8601 			 *
8602 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8603 			 *
8604 			 * cmsg_level    cmsg_type      cmsg_data[]
8605 			 * ------------  ------------   ---------------------
8606 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8607 			 */
8608 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8609 				return -EINVAL;
8610 
8611 			cmsgs->prinfo = CMSG_DATA(cmsg);
8612 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8613 				return -EINVAL;
8614 
8615 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8616 				cmsgs->prinfo->pr_value = 0;
8617 			break;
8618 		case SCTP_AUTHINFO:
8619 			/* SCTP Socket API Extension
8620 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8621 			 *
8622 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8623 			 *
8624 			 * cmsg_level    cmsg_type      cmsg_data[]
8625 			 * ------------  ------------   ---------------------
8626 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8627 			 */
8628 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8629 				return -EINVAL;
8630 
8631 			cmsgs->authinfo = CMSG_DATA(cmsg);
8632 			break;
8633 		case SCTP_DSTADDRV4:
8634 		case SCTP_DSTADDRV6:
8635 			/* SCTP Socket API Extension
8636 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8637 			 *
8638 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8639 			 *
8640 			 * cmsg_level    cmsg_type         cmsg_data[]
8641 			 * ------------  ------------   ---------------------
8642 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8643 			 * ------------  ------------   ---------------------
8644 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8645 			 */
8646 			cmsgs->addrs_msg = my_msg;
8647 			break;
8648 		default:
8649 			return -EINVAL;
8650 		}
8651 	}
8652 
8653 	return 0;
8654 }
8655 
8656 /*
8657  * Wait for a packet..
8658  * Note: This function is the same function as in core/datagram.c
8659  * with a few modifications to make lksctp work.
8660  */
8661 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8662 {
8663 	int error;
8664 	DEFINE_WAIT(wait);
8665 
8666 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8667 
8668 	/* Socket errors? */
8669 	error = sock_error(sk);
8670 	if (error)
8671 		goto out;
8672 
8673 	if (!skb_queue_empty(&sk->sk_receive_queue))
8674 		goto ready;
8675 
8676 	/* Socket shut down?  */
8677 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8678 		goto out;
8679 
8680 	/* Sequenced packets can come disconnected.  If so we report the
8681 	 * problem.
8682 	 */
8683 	error = -ENOTCONN;
8684 
8685 	/* Is there a good reason to think that we may receive some data?  */
8686 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8687 		goto out;
8688 
8689 	/* Handle signals.  */
8690 	if (signal_pending(current))
8691 		goto interrupted;
8692 
8693 	/* Let another process have a go.  Since we are going to sleep
8694 	 * anyway.  Note: This may cause odd behaviors if the message
8695 	 * does not fit in the user's buffer, but this seems to be the
8696 	 * only way to honor MSG_DONTWAIT realistically.
8697 	 */
8698 	release_sock(sk);
8699 	*timeo_p = schedule_timeout(*timeo_p);
8700 	lock_sock(sk);
8701 
8702 ready:
8703 	finish_wait(sk_sleep(sk), &wait);
8704 	return 0;
8705 
8706 interrupted:
8707 	error = sock_intr_errno(*timeo_p);
8708 
8709 out:
8710 	finish_wait(sk_sleep(sk), &wait);
8711 	*err = error;
8712 	return error;
8713 }
8714 
8715 /* Receive a datagram.
8716  * Note: This is pretty much the same routine as in core/datagram.c
8717  * with a few changes to make lksctp work.
8718  */
8719 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8720 				       int noblock, int *err)
8721 {
8722 	int error;
8723 	struct sk_buff *skb;
8724 	long timeo;
8725 
8726 	timeo = sock_rcvtimeo(sk, noblock);
8727 
8728 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8729 		 MAX_SCHEDULE_TIMEOUT);
8730 
8731 	do {
8732 		/* Again only user level code calls this function,
8733 		 * so nothing interrupt level
8734 		 * will suddenly eat the receive_queue.
8735 		 *
8736 		 *  Look at current nfs client by the way...
8737 		 *  However, this function was correct in any case. 8)
8738 		 */
8739 		if (flags & MSG_PEEK) {
8740 			skb = skb_peek(&sk->sk_receive_queue);
8741 			if (skb)
8742 				refcount_inc(&skb->users);
8743 		} else {
8744 			skb = __skb_dequeue(&sk->sk_receive_queue);
8745 		}
8746 
8747 		if (skb)
8748 			return skb;
8749 
8750 		/* Caller is allowed not to check sk->sk_err before calling. */
8751 		error = sock_error(sk);
8752 		if (error)
8753 			goto no_packet;
8754 
8755 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8756 			break;
8757 
8758 		if (sk_can_busy_loop(sk)) {
8759 			sk_busy_loop(sk, noblock);
8760 
8761 			if (!skb_queue_empty(&sk->sk_receive_queue))
8762 				continue;
8763 		}
8764 
8765 		/* User doesn't want to wait.  */
8766 		error = -EAGAIN;
8767 		if (!timeo)
8768 			goto no_packet;
8769 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8770 
8771 	return NULL;
8772 
8773 no_packet:
8774 	*err = error;
8775 	return NULL;
8776 }
8777 
8778 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8779 static void __sctp_write_space(struct sctp_association *asoc)
8780 {
8781 	struct sock *sk = asoc->base.sk;
8782 
8783 	if (sctp_wspace(asoc) <= 0)
8784 		return;
8785 
8786 	if (waitqueue_active(&asoc->wait))
8787 		wake_up_interruptible(&asoc->wait);
8788 
8789 	if (sctp_writeable(sk)) {
8790 		struct socket_wq *wq;
8791 
8792 		rcu_read_lock();
8793 		wq = rcu_dereference(sk->sk_wq);
8794 		if (wq) {
8795 			if (waitqueue_active(&wq->wait))
8796 				wake_up_interruptible(&wq->wait);
8797 
8798 			/* Note that we try to include the Async I/O support
8799 			 * here by modeling from the current TCP/UDP code.
8800 			 * We have not tested with it yet.
8801 			 */
8802 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8803 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8804 		}
8805 		rcu_read_unlock();
8806 	}
8807 }
8808 
8809 static void sctp_wake_up_waiters(struct sock *sk,
8810 				 struct sctp_association *asoc)
8811 {
8812 	struct sctp_association *tmp = asoc;
8813 
8814 	/* We do accounting for the sndbuf space per association,
8815 	 * so we only need to wake our own association.
8816 	 */
8817 	if (asoc->ep->sndbuf_policy)
8818 		return __sctp_write_space(asoc);
8819 
8820 	/* If association goes down and is just flushing its
8821 	 * outq, then just normally notify others.
8822 	 */
8823 	if (asoc->base.dead)
8824 		return sctp_write_space(sk);
8825 
8826 	/* Accounting for the sndbuf space is per socket, so we
8827 	 * need to wake up others, try to be fair and in case of
8828 	 * other associations, let them have a go first instead
8829 	 * of just doing a sctp_write_space() call.
8830 	 *
8831 	 * Note that we reach sctp_wake_up_waiters() only when
8832 	 * associations free up queued chunks, thus we are under
8833 	 * lock and the list of associations on a socket is
8834 	 * guaranteed not to change.
8835 	 */
8836 	for (tmp = list_next_entry(tmp, asocs); 1;
8837 	     tmp = list_next_entry(tmp, asocs)) {
8838 		/* Manually skip the head element. */
8839 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8840 			continue;
8841 		/* Wake up association. */
8842 		__sctp_write_space(tmp);
8843 		/* We've reached the end. */
8844 		if (tmp == asoc)
8845 			break;
8846 	}
8847 }
8848 
8849 /* Do accounting for the sndbuf space.
8850  * Decrement the used sndbuf space of the corresponding association by the
8851  * data size which was just transmitted(freed).
8852  */
8853 static void sctp_wfree(struct sk_buff *skb)
8854 {
8855 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8856 	struct sctp_association *asoc = chunk->asoc;
8857 	struct sock *sk = asoc->base.sk;
8858 
8859 	sk_mem_uncharge(sk, skb->truesize);
8860 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8861 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8862 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8863 				      &sk->sk_wmem_alloc));
8864 
8865 	if (chunk->shkey) {
8866 		struct sctp_shared_key *shkey = chunk->shkey;
8867 
8868 		/* refcnt == 2 and !list_empty mean after this release, it's
8869 		 * not being used anywhere, and it's time to notify userland
8870 		 * that this shkey can be freed if it's been deactivated.
8871 		 */
8872 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8873 		    refcount_read(&shkey->refcnt) == 2) {
8874 			struct sctp_ulpevent *ev;
8875 
8876 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8877 							SCTP_AUTH_FREE_KEY,
8878 							GFP_KERNEL);
8879 			if (ev)
8880 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8881 		}
8882 		sctp_auth_shkey_release(chunk->shkey);
8883 	}
8884 
8885 	sock_wfree(skb);
8886 	sctp_wake_up_waiters(sk, asoc);
8887 
8888 	sctp_association_put(asoc);
8889 }
8890 
8891 /* Do accounting for the receive space on the socket.
8892  * Accounting for the association is done in ulpevent.c
8893  * We set this as a destructor for the cloned data skbs so that
8894  * accounting is done at the correct time.
8895  */
8896 void sctp_sock_rfree(struct sk_buff *skb)
8897 {
8898 	struct sock *sk = skb->sk;
8899 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8900 
8901 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8902 
8903 	/*
8904 	 * Mimic the behavior of sock_rfree
8905 	 */
8906 	sk_mem_uncharge(sk, event->rmem_len);
8907 }
8908 
8909 
8910 /* Helper function to wait for space in the sndbuf.  */
8911 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8912 				size_t msg_len)
8913 {
8914 	struct sock *sk = asoc->base.sk;
8915 	long current_timeo = *timeo_p;
8916 	DEFINE_WAIT(wait);
8917 	int err = 0;
8918 
8919 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8920 		 *timeo_p, msg_len);
8921 
8922 	/* Increment the association's refcnt.  */
8923 	sctp_association_hold(asoc);
8924 
8925 	/* Wait on the association specific sndbuf space. */
8926 	for (;;) {
8927 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8928 					  TASK_INTERRUPTIBLE);
8929 		if (asoc->base.dead)
8930 			goto do_dead;
8931 		if (!*timeo_p)
8932 			goto do_nonblock;
8933 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8934 			goto do_error;
8935 		if (signal_pending(current))
8936 			goto do_interrupted;
8937 		if (sk_under_memory_pressure(sk))
8938 			sk_mem_reclaim(sk);
8939 		if ((int)msg_len <= sctp_wspace(asoc) &&
8940 		    sk_wmem_schedule(sk, msg_len))
8941 			break;
8942 
8943 		/* Let another process have a go.  Since we are going
8944 		 * to sleep anyway.
8945 		 */
8946 		release_sock(sk);
8947 		current_timeo = schedule_timeout(current_timeo);
8948 		lock_sock(sk);
8949 		if (sk != asoc->base.sk)
8950 			goto do_error;
8951 
8952 		*timeo_p = current_timeo;
8953 	}
8954 
8955 out:
8956 	finish_wait(&asoc->wait, &wait);
8957 
8958 	/* Release the association's refcnt.  */
8959 	sctp_association_put(asoc);
8960 
8961 	return err;
8962 
8963 do_dead:
8964 	err = -ESRCH;
8965 	goto out;
8966 
8967 do_error:
8968 	err = -EPIPE;
8969 	goto out;
8970 
8971 do_interrupted:
8972 	err = sock_intr_errno(*timeo_p);
8973 	goto out;
8974 
8975 do_nonblock:
8976 	err = -EAGAIN;
8977 	goto out;
8978 }
8979 
8980 void sctp_data_ready(struct sock *sk)
8981 {
8982 	struct socket_wq *wq;
8983 
8984 	rcu_read_lock();
8985 	wq = rcu_dereference(sk->sk_wq);
8986 	if (skwq_has_sleeper(wq))
8987 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8988 						EPOLLRDNORM | EPOLLRDBAND);
8989 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8990 	rcu_read_unlock();
8991 }
8992 
8993 /* If socket sndbuf has changed, wake up all per association waiters.  */
8994 void sctp_write_space(struct sock *sk)
8995 {
8996 	struct sctp_association *asoc;
8997 
8998 	/* Wake up the tasks in each wait queue.  */
8999 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9000 		__sctp_write_space(asoc);
9001 	}
9002 }
9003 
9004 /* Is there any sndbuf space available on the socket?
9005  *
9006  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9007  * associations on the same socket.  For a UDP-style socket with
9008  * multiple associations, it is possible for it to be "unwriteable"
9009  * prematurely.  I assume that this is acceptable because
9010  * a premature "unwriteable" is better than an accidental "writeable" which
9011  * would cause an unwanted block under certain circumstances.  For the 1-1
9012  * UDP-style sockets or TCP-style sockets, this code should work.
9013  *  - Daisy
9014  */
9015 static bool sctp_writeable(struct sock *sk)
9016 {
9017 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9018 }
9019 
9020 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9021  * returns immediately with EINPROGRESS.
9022  */
9023 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9024 {
9025 	struct sock *sk = asoc->base.sk;
9026 	int err = 0;
9027 	long current_timeo = *timeo_p;
9028 	DEFINE_WAIT(wait);
9029 
9030 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9031 
9032 	/* Increment the association's refcnt.  */
9033 	sctp_association_hold(asoc);
9034 
9035 	for (;;) {
9036 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9037 					  TASK_INTERRUPTIBLE);
9038 		if (!*timeo_p)
9039 			goto do_nonblock;
9040 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9041 			break;
9042 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9043 		    asoc->base.dead)
9044 			goto do_error;
9045 		if (signal_pending(current))
9046 			goto do_interrupted;
9047 
9048 		if (sctp_state(asoc, ESTABLISHED))
9049 			break;
9050 
9051 		/* Let another process have a go.  Since we are going
9052 		 * to sleep anyway.
9053 		 */
9054 		release_sock(sk);
9055 		current_timeo = schedule_timeout(current_timeo);
9056 		lock_sock(sk);
9057 
9058 		*timeo_p = current_timeo;
9059 	}
9060 
9061 out:
9062 	finish_wait(&asoc->wait, &wait);
9063 
9064 	/* Release the association's refcnt.  */
9065 	sctp_association_put(asoc);
9066 
9067 	return err;
9068 
9069 do_error:
9070 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9071 		err = -ETIMEDOUT;
9072 	else
9073 		err = -ECONNREFUSED;
9074 	goto out;
9075 
9076 do_interrupted:
9077 	err = sock_intr_errno(*timeo_p);
9078 	goto out;
9079 
9080 do_nonblock:
9081 	err = -EINPROGRESS;
9082 	goto out;
9083 }
9084 
9085 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9086 {
9087 	struct sctp_endpoint *ep;
9088 	int err = 0;
9089 	DEFINE_WAIT(wait);
9090 
9091 	ep = sctp_sk(sk)->ep;
9092 
9093 
9094 	for (;;) {
9095 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9096 					  TASK_INTERRUPTIBLE);
9097 
9098 		if (list_empty(&ep->asocs)) {
9099 			release_sock(sk);
9100 			timeo = schedule_timeout(timeo);
9101 			lock_sock(sk);
9102 		}
9103 
9104 		err = -EINVAL;
9105 		if (!sctp_sstate(sk, LISTENING))
9106 			break;
9107 
9108 		err = 0;
9109 		if (!list_empty(&ep->asocs))
9110 			break;
9111 
9112 		err = sock_intr_errno(timeo);
9113 		if (signal_pending(current))
9114 			break;
9115 
9116 		err = -EAGAIN;
9117 		if (!timeo)
9118 			break;
9119 	}
9120 
9121 	finish_wait(sk_sleep(sk), &wait);
9122 
9123 	return err;
9124 }
9125 
9126 static void sctp_wait_for_close(struct sock *sk, long timeout)
9127 {
9128 	DEFINE_WAIT(wait);
9129 
9130 	do {
9131 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9132 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9133 			break;
9134 		release_sock(sk);
9135 		timeout = schedule_timeout(timeout);
9136 		lock_sock(sk);
9137 	} while (!signal_pending(current) && timeout);
9138 
9139 	finish_wait(sk_sleep(sk), &wait);
9140 }
9141 
9142 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9143 {
9144 	struct sk_buff *frag;
9145 
9146 	if (!skb->data_len)
9147 		goto done;
9148 
9149 	/* Don't forget the fragments. */
9150 	skb_walk_frags(skb, frag)
9151 		sctp_skb_set_owner_r_frag(frag, sk);
9152 
9153 done:
9154 	sctp_skb_set_owner_r(skb, sk);
9155 }
9156 
9157 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9158 		    struct sctp_association *asoc)
9159 {
9160 	struct inet_sock *inet = inet_sk(sk);
9161 	struct inet_sock *newinet;
9162 	struct sctp_sock *sp = sctp_sk(sk);
9163 	struct sctp_endpoint *ep = sp->ep;
9164 
9165 	newsk->sk_type = sk->sk_type;
9166 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9167 	newsk->sk_flags = sk->sk_flags;
9168 	newsk->sk_tsflags = sk->sk_tsflags;
9169 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9170 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9171 	newsk->sk_reuse = sk->sk_reuse;
9172 	sctp_sk(newsk)->reuse = sp->reuse;
9173 
9174 	newsk->sk_shutdown = sk->sk_shutdown;
9175 	newsk->sk_destruct = sctp_destruct_sock;
9176 	newsk->sk_family = sk->sk_family;
9177 	newsk->sk_protocol = IPPROTO_SCTP;
9178 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9179 	newsk->sk_sndbuf = sk->sk_sndbuf;
9180 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9181 	newsk->sk_lingertime = sk->sk_lingertime;
9182 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9183 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9184 	newsk->sk_rxhash = sk->sk_rxhash;
9185 
9186 	newinet = inet_sk(newsk);
9187 
9188 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9189 	 * getsockname() and getpeername()
9190 	 */
9191 	newinet->inet_sport = inet->inet_sport;
9192 	newinet->inet_saddr = inet->inet_saddr;
9193 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9194 	newinet->inet_dport = htons(asoc->peer.port);
9195 	newinet->pmtudisc = inet->pmtudisc;
9196 	newinet->inet_id = asoc->next_tsn ^ jiffies;
9197 
9198 	newinet->uc_ttl = inet->uc_ttl;
9199 	newinet->mc_loop = 1;
9200 	newinet->mc_ttl = 1;
9201 	newinet->mc_index = 0;
9202 	newinet->mc_list = NULL;
9203 
9204 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9205 		net_enable_timestamp();
9206 
9207 	/* Set newsk security attributes from orginal sk and connection
9208 	 * security attribute from ep.
9209 	 */
9210 	security_sctp_sk_clone(ep, sk, newsk);
9211 }
9212 
9213 static inline void sctp_copy_descendant(struct sock *sk_to,
9214 					const struct sock *sk_from)
9215 {
9216 	int ancestor_size = sizeof(struct inet_sock) +
9217 			    sizeof(struct sctp_sock) -
9218 			    offsetof(struct sctp_sock, pd_lobby);
9219 
9220 	if (sk_from->sk_family == PF_INET6)
9221 		ancestor_size += sizeof(struct ipv6_pinfo);
9222 
9223 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9224 }
9225 
9226 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9227  * and its messages to the newsk.
9228  */
9229 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9230 			     struct sctp_association *assoc,
9231 			     enum sctp_socket_type type)
9232 {
9233 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9234 	struct sctp_sock *newsp = sctp_sk(newsk);
9235 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9236 	struct sctp_endpoint *newep = newsp->ep;
9237 	struct sk_buff *skb, *tmp;
9238 	struct sctp_ulpevent *event;
9239 	struct sctp_bind_hashbucket *head;
9240 	int err;
9241 
9242 	/* Migrate socket buffer sizes and all the socket level options to the
9243 	 * new socket.
9244 	 */
9245 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9246 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9247 	/* Brute force copy old sctp opt. */
9248 	sctp_copy_descendant(newsk, oldsk);
9249 
9250 	/* Restore the ep value that was overwritten with the above structure
9251 	 * copy.
9252 	 */
9253 	newsp->ep = newep;
9254 	newsp->hmac = NULL;
9255 
9256 	/* Hook this new socket in to the bind_hash list. */
9257 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9258 						 inet_sk(oldsk)->inet_num)];
9259 	spin_lock_bh(&head->lock);
9260 	pp = sctp_sk(oldsk)->bind_hash;
9261 	sk_add_bind_node(newsk, &pp->owner);
9262 	sctp_sk(newsk)->bind_hash = pp;
9263 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9264 	spin_unlock_bh(&head->lock);
9265 
9266 	/* Copy the bind_addr list from the original endpoint to the new
9267 	 * endpoint so that we can handle restarts properly
9268 	 */
9269 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9270 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9271 	if (err)
9272 		return err;
9273 
9274 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9275 	 * that net->sctp.auth_enable has been changed to 0 by users and
9276 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9277 	 */
9278 	if (oldsp->ep->auth_hmacs) {
9279 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9280 		if (err)
9281 			return err;
9282 	}
9283 
9284 	/* Move any messages in the old socket's receive queue that are for the
9285 	 * peeled off association to the new socket's receive queue.
9286 	 */
9287 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9288 		event = sctp_skb2event(skb);
9289 		if (event->asoc == assoc) {
9290 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9291 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9292 			sctp_skb_set_owner_r_frag(skb, newsk);
9293 		}
9294 	}
9295 
9296 	/* Clean up any messages pending delivery due to partial
9297 	 * delivery.   Three cases:
9298 	 * 1) No partial deliver;  no work.
9299 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9300 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9301 	 */
9302 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9303 
9304 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9305 		struct sk_buff_head *queue;
9306 
9307 		/* Decide which queue to move pd_lobby skbs to. */
9308 		if (assoc->ulpq.pd_mode) {
9309 			queue = &newsp->pd_lobby;
9310 		} else
9311 			queue = &newsk->sk_receive_queue;
9312 
9313 		/* Walk through the pd_lobby, looking for skbs that
9314 		 * need moved to the new socket.
9315 		 */
9316 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9317 			event = sctp_skb2event(skb);
9318 			if (event->asoc == assoc) {
9319 				__skb_unlink(skb, &oldsp->pd_lobby);
9320 				__skb_queue_tail(queue, skb);
9321 				sctp_skb_set_owner_r_frag(skb, newsk);
9322 			}
9323 		}
9324 
9325 		/* Clear up any skbs waiting for the partial
9326 		 * delivery to finish.
9327 		 */
9328 		if (assoc->ulpq.pd_mode)
9329 			sctp_clear_pd(oldsk, NULL);
9330 
9331 	}
9332 
9333 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9334 
9335 	/* Set the type of socket to indicate that it is peeled off from the
9336 	 * original UDP-style socket or created with the accept() call on a
9337 	 * TCP-style socket..
9338 	 */
9339 	newsp->type = type;
9340 
9341 	/* Mark the new socket "in-use" by the user so that any packets
9342 	 * that may arrive on the association after we've moved it are
9343 	 * queued to the backlog.  This prevents a potential race between
9344 	 * backlog processing on the old socket and new-packet processing
9345 	 * on the new socket.
9346 	 *
9347 	 * The caller has just allocated newsk so we can guarantee that other
9348 	 * paths won't try to lock it and then oldsk.
9349 	 */
9350 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9351 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9352 	sctp_assoc_migrate(assoc, newsk);
9353 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9354 
9355 	/* If the association on the newsk is already closed before accept()
9356 	 * is called, set RCV_SHUTDOWN flag.
9357 	 */
9358 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9359 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9360 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9361 	} else {
9362 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9363 	}
9364 
9365 	release_sock(newsk);
9366 
9367 	return 0;
9368 }
9369 
9370 
9371 /* This proto struct describes the ULP interface for SCTP.  */
9372 struct proto sctp_prot = {
9373 	.name        =	"SCTP",
9374 	.owner       =	THIS_MODULE,
9375 	.close       =	sctp_close,
9376 	.disconnect  =	sctp_disconnect,
9377 	.accept      =	sctp_accept,
9378 	.ioctl       =	sctp_ioctl,
9379 	.init        =	sctp_init_sock,
9380 	.destroy     =	sctp_destroy_sock,
9381 	.shutdown    =	sctp_shutdown,
9382 	.setsockopt  =	sctp_setsockopt,
9383 	.getsockopt  =	sctp_getsockopt,
9384 	.sendmsg     =	sctp_sendmsg,
9385 	.recvmsg     =	sctp_recvmsg,
9386 	.bind        =	sctp_bind,
9387 	.backlog_rcv =	sctp_backlog_rcv,
9388 	.hash        =	sctp_hash,
9389 	.unhash      =	sctp_unhash,
9390 	.get_port    =	sctp_get_port,
9391 	.obj_size    =  sizeof(struct sctp_sock),
9392 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9393 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9394 				offsetof(struct sctp_sock, subscribe) +
9395 				sizeof_field(struct sctp_sock, initmsg),
9396 	.sysctl_mem  =  sysctl_sctp_mem,
9397 	.sysctl_rmem =  sysctl_sctp_rmem,
9398 	.sysctl_wmem =  sysctl_sctp_wmem,
9399 	.memory_pressure = &sctp_memory_pressure,
9400 	.enter_memory_pressure = sctp_enter_memory_pressure,
9401 	.memory_allocated = &sctp_memory_allocated,
9402 	.sockets_allocated = &sctp_sockets_allocated,
9403 };
9404 
9405 #if IS_ENABLED(CONFIG_IPV6)
9406 
9407 #include <net/transp_v6.h>
9408 static void sctp_v6_destroy_sock(struct sock *sk)
9409 {
9410 	sctp_destroy_sock(sk);
9411 	inet6_destroy_sock(sk);
9412 }
9413 
9414 struct proto sctpv6_prot = {
9415 	.name		= "SCTPv6",
9416 	.owner		= THIS_MODULE,
9417 	.close		= sctp_close,
9418 	.disconnect	= sctp_disconnect,
9419 	.accept		= sctp_accept,
9420 	.ioctl		= sctp_ioctl,
9421 	.init		= sctp_init_sock,
9422 	.destroy	= sctp_v6_destroy_sock,
9423 	.shutdown	= sctp_shutdown,
9424 	.setsockopt	= sctp_setsockopt,
9425 	.getsockopt	= sctp_getsockopt,
9426 	.sendmsg	= sctp_sendmsg,
9427 	.recvmsg	= sctp_recvmsg,
9428 	.bind		= sctp_bind,
9429 	.backlog_rcv	= sctp_backlog_rcv,
9430 	.hash		= sctp_hash,
9431 	.unhash		= sctp_unhash,
9432 	.get_port	= sctp_get_port,
9433 	.obj_size	= sizeof(struct sctp6_sock),
9434 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9435 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9436 				offsetof(struct sctp6_sock, sctp.subscribe) +
9437 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9438 	.sysctl_mem	= sysctl_sctp_mem,
9439 	.sysctl_rmem	= sysctl_sctp_rmem,
9440 	.sysctl_wmem	= sysctl_sctp_wmem,
9441 	.memory_pressure = &sctp_memory_pressure,
9442 	.enter_memory_pressure = sctp_enter_memory_pressure,
9443 	.memory_allocated = &sctp_memory_allocated,
9444 	.sockets_allocated = &sctp_sockets_allocated,
9445 };
9446 #endif /* IS_ENABLED(CONFIG_IPV6) */
9447