1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = memdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = memdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 iov_iter_revert(&msg->msg_iter, msg_len); 1870 1871 return 0; 1872 } 1873 1874 return 1; 1875 } 1876 1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1878 struct msghdr *msg, size_t msg_len, 1879 struct sctp_transport *transport, 1880 struct sctp_sndrcvinfo *sinfo) 1881 { 1882 struct sock *sk = asoc->base.sk; 1883 struct sctp_sock *sp = sctp_sk(sk); 1884 struct net *net = sock_net(sk); 1885 struct sctp_datamsg *datamsg; 1886 bool wait_connect = false; 1887 struct sctp_chunk *chunk; 1888 long timeo; 1889 int err; 1890 1891 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1892 err = -EINVAL; 1893 goto err; 1894 } 1895 1896 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1897 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1898 if (err) 1899 goto err; 1900 } 1901 1902 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1903 err = -EMSGSIZE; 1904 goto err; 1905 } 1906 1907 if (asoc->pmtu_pending) { 1908 if (sp->param_flags & SPP_PMTUD_ENABLE) 1909 sctp_assoc_sync_pmtu(asoc); 1910 asoc->pmtu_pending = 0; 1911 } 1912 1913 if (sctp_wspace(asoc) < (int)msg_len) 1914 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1915 1916 if (sk_under_memory_pressure(sk)) 1917 sk_mem_reclaim(sk); 1918 1919 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1920 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1921 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1922 if (err) 1923 goto err; 1924 } 1925 1926 if (sctp_state(asoc, CLOSED)) { 1927 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1928 if (err) 1929 goto err; 1930 1931 if (sp->strm_interleave) { 1932 timeo = sock_sndtimeo(sk, 0); 1933 err = sctp_wait_for_connect(asoc, &timeo); 1934 if (err) { 1935 err = -ESRCH; 1936 goto err; 1937 } 1938 } else { 1939 wait_connect = true; 1940 } 1941 1942 pr_debug("%s: we associated primitively\n", __func__); 1943 } 1944 1945 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1946 if (IS_ERR(datamsg)) { 1947 err = PTR_ERR(datamsg); 1948 goto err; 1949 } 1950 1951 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1952 1953 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1954 sctp_chunk_hold(chunk); 1955 sctp_set_owner_w(chunk); 1956 chunk->transport = transport; 1957 } 1958 1959 err = sctp_primitive_SEND(net, asoc, datamsg); 1960 if (err) { 1961 sctp_datamsg_free(datamsg); 1962 goto err; 1963 } 1964 1965 pr_debug("%s: we sent primitively\n", __func__); 1966 1967 sctp_datamsg_put(datamsg); 1968 1969 if (unlikely(wait_connect)) { 1970 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1971 sctp_wait_for_connect(asoc, &timeo); 1972 } 1973 1974 err = msg_len; 1975 1976 err: 1977 return err; 1978 } 1979 1980 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1981 const struct msghdr *msg, 1982 struct sctp_cmsgs *cmsgs) 1983 { 1984 union sctp_addr *daddr = NULL; 1985 int err; 1986 1987 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1988 int len = msg->msg_namelen; 1989 1990 if (len > sizeof(*daddr)) 1991 len = sizeof(*daddr); 1992 1993 daddr = (union sctp_addr *)msg->msg_name; 1994 1995 err = sctp_verify_addr(sk, daddr, len); 1996 if (err) 1997 return ERR_PTR(err); 1998 } 1999 2000 return daddr; 2001 } 2002 2003 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2004 struct sctp_sndrcvinfo *sinfo, 2005 struct sctp_cmsgs *cmsgs) 2006 { 2007 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2008 sinfo->sinfo_stream = asoc->default_stream; 2009 sinfo->sinfo_ppid = asoc->default_ppid; 2010 sinfo->sinfo_context = asoc->default_context; 2011 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2012 2013 if (!cmsgs->prinfo) 2014 sinfo->sinfo_flags = asoc->default_flags; 2015 } 2016 2017 if (!cmsgs->srinfo && !cmsgs->prinfo) 2018 sinfo->sinfo_timetolive = asoc->default_timetolive; 2019 2020 if (cmsgs->authinfo) { 2021 /* Reuse sinfo_tsn to indicate that authinfo was set and 2022 * sinfo_ssn to save the keyid on tx path. 2023 */ 2024 sinfo->sinfo_tsn = 1; 2025 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2026 } 2027 } 2028 2029 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2030 { 2031 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2032 struct sctp_transport *transport = NULL; 2033 struct sctp_sndrcvinfo _sinfo, *sinfo; 2034 struct sctp_association *asoc, *tmp; 2035 struct sctp_cmsgs cmsgs; 2036 union sctp_addr *daddr; 2037 bool new = false; 2038 __u16 sflags; 2039 int err; 2040 2041 /* Parse and get snd_info */ 2042 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2043 if (err) 2044 goto out; 2045 2046 sinfo = &_sinfo; 2047 sflags = sinfo->sinfo_flags; 2048 2049 /* Get daddr from msg */ 2050 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2051 if (IS_ERR(daddr)) { 2052 err = PTR_ERR(daddr); 2053 goto out; 2054 } 2055 2056 lock_sock(sk); 2057 2058 /* SCTP_SENDALL process */ 2059 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2060 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2061 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2062 msg_len); 2063 if (err == 0) 2064 continue; 2065 if (err < 0) 2066 goto out_unlock; 2067 2068 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2069 2070 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2071 NULL, sinfo); 2072 if (err < 0) 2073 goto out_unlock; 2074 2075 iov_iter_revert(&msg->msg_iter, err); 2076 } 2077 2078 goto out_unlock; 2079 } 2080 2081 /* Get and check or create asoc */ 2082 if (daddr) { 2083 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2084 if (asoc) { 2085 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2086 msg_len); 2087 if (err <= 0) 2088 goto out_unlock; 2089 } else { 2090 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2091 &transport); 2092 if (err) 2093 goto out_unlock; 2094 2095 asoc = transport->asoc; 2096 new = true; 2097 } 2098 2099 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2100 transport = NULL; 2101 } else { 2102 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2103 if (!asoc) { 2104 err = -EPIPE; 2105 goto out_unlock; 2106 } 2107 2108 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2109 if (err <= 0) 2110 goto out_unlock; 2111 } 2112 2113 /* Update snd_info with the asoc */ 2114 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2115 2116 /* Send msg to the asoc */ 2117 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2118 if (err < 0 && err != -ESRCH && new) 2119 sctp_association_free(asoc); 2120 2121 out_unlock: 2122 release_sock(sk); 2123 out: 2124 return sctp_error(sk, msg->msg_flags, err); 2125 } 2126 2127 /* This is an extended version of skb_pull() that removes the data from the 2128 * start of a skb even when data is spread across the list of skb's in the 2129 * frag_list. len specifies the total amount of data that needs to be removed. 2130 * when 'len' bytes could be removed from the skb, it returns 0. 2131 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2132 * could not be removed. 2133 */ 2134 static int sctp_skb_pull(struct sk_buff *skb, int len) 2135 { 2136 struct sk_buff *list; 2137 int skb_len = skb_headlen(skb); 2138 int rlen; 2139 2140 if (len <= skb_len) { 2141 __skb_pull(skb, len); 2142 return 0; 2143 } 2144 len -= skb_len; 2145 __skb_pull(skb, skb_len); 2146 2147 skb_walk_frags(skb, list) { 2148 rlen = sctp_skb_pull(list, len); 2149 skb->len -= (len-rlen); 2150 skb->data_len -= (len-rlen); 2151 2152 if (!rlen) 2153 return 0; 2154 2155 len = rlen; 2156 } 2157 2158 return len; 2159 } 2160 2161 /* API 3.1.3 recvmsg() - UDP Style Syntax 2162 * 2163 * ssize_t recvmsg(int socket, struct msghdr *message, 2164 * int flags); 2165 * 2166 * socket - the socket descriptor of the endpoint. 2167 * message - pointer to the msghdr structure which contains a single 2168 * user message and possibly some ancillary data. 2169 * 2170 * See Section 5 for complete description of the data 2171 * structures. 2172 * 2173 * flags - flags sent or received with the user message, see Section 2174 * 5 for complete description of the flags. 2175 */ 2176 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2177 int noblock, int flags, int *addr_len) 2178 { 2179 struct sctp_ulpevent *event = NULL; 2180 struct sctp_sock *sp = sctp_sk(sk); 2181 struct sk_buff *skb, *head_skb; 2182 int copied; 2183 int err = 0; 2184 int skb_len; 2185 2186 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2187 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2188 addr_len); 2189 2190 lock_sock(sk); 2191 2192 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2193 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2194 err = -ENOTCONN; 2195 goto out; 2196 } 2197 2198 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2199 if (!skb) 2200 goto out; 2201 2202 /* Get the total length of the skb including any skb's in the 2203 * frag_list. 2204 */ 2205 skb_len = skb->len; 2206 2207 copied = skb_len; 2208 if (copied > len) 2209 copied = len; 2210 2211 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2212 2213 event = sctp_skb2event(skb); 2214 2215 if (err) 2216 goto out_free; 2217 2218 if (event->chunk && event->chunk->head_skb) 2219 head_skb = event->chunk->head_skb; 2220 else 2221 head_skb = skb; 2222 sock_recv_ts_and_drops(msg, sk, head_skb); 2223 if (sctp_ulpevent_is_notification(event)) { 2224 msg->msg_flags |= MSG_NOTIFICATION; 2225 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2226 } else { 2227 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2228 } 2229 2230 /* Check if we allow SCTP_NXTINFO. */ 2231 if (sp->recvnxtinfo) 2232 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2233 /* Check if we allow SCTP_RCVINFO. */ 2234 if (sp->recvrcvinfo) 2235 sctp_ulpevent_read_rcvinfo(event, msg); 2236 /* Check if we allow SCTP_SNDRCVINFO. */ 2237 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2238 sctp_ulpevent_read_sndrcvinfo(event, msg); 2239 2240 err = copied; 2241 2242 /* If skb's length exceeds the user's buffer, update the skb and 2243 * push it back to the receive_queue so that the next call to 2244 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2245 */ 2246 if (skb_len > copied) { 2247 msg->msg_flags &= ~MSG_EOR; 2248 if (flags & MSG_PEEK) 2249 goto out_free; 2250 sctp_skb_pull(skb, copied); 2251 skb_queue_head(&sk->sk_receive_queue, skb); 2252 2253 /* When only partial message is copied to the user, increase 2254 * rwnd by that amount. If all the data in the skb is read, 2255 * rwnd is updated when the event is freed. 2256 */ 2257 if (!sctp_ulpevent_is_notification(event)) 2258 sctp_assoc_rwnd_increase(event->asoc, copied); 2259 goto out; 2260 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2261 (event->msg_flags & MSG_EOR)) 2262 msg->msg_flags |= MSG_EOR; 2263 else 2264 msg->msg_flags &= ~MSG_EOR; 2265 2266 out_free: 2267 if (flags & MSG_PEEK) { 2268 /* Release the skb reference acquired after peeking the skb in 2269 * sctp_skb_recv_datagram(). 2270 */ 2271 kfree_skb(skb); 2272 } else { 2273 /* Free the event which includes releasing the reference to 2274 * the owner of the skb, freeing the skb and updating the 2275 * rwnd. 2276 */ 2277 sctp_ulpevent_free(event); 2278 } 2279 out: 2280 release_sock(sk); 2281 return err; 2282 } 2283 2284 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2285 * 2286 * This option is a on/off flag. If enabled no SCTP message 2287 * fragmentation will be performed. Instead if a message being sent 2288 * exceeds the current PMTU size, the message will NOT be sent and 2289 * instead a error will be indicated to the user. 2290 */ 2291 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2292 char __user *optval, 2293 unsigned int optlen) 2294 { 2295 int val; 2296 2297 if (optlen < sizeof(int)) 2298 return -EINVAL; 2299 2300 if (get_user(val, (int __user *)optval)) 2301 return -EFAULT; 2302 2303 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2304 2305 return 0; 2306 } 2307 2308 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2309 unsigned int optlen) 2310 { 2311 struct sctp_event_subscribe subscribe; 2312 __u8 *sn_type = (__u8 *)&subscribe; 2313 struct sctp_sock *sp = sctp_sk(sk); 2314 struct sctp_association *asoc; 2315 int i; 2316 2317 if (optlen > sizeof(struct sctp_event_subscribe)) 2318 return -EINVAL; 2319 2320 if (copy_from_user(&subscribe, optval, optlen)) 2321 return -EFAULT; 2322 2323 for (i = 0; i < optlen; i++) 2324 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2325 sn_type[i]); 2326 2327 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2328 asoc->subscribe = sctp_sk(sk)->subscribe; 2329 2330 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2331 * if there is no data to be sent or retransmit, the stack will 2332 * immediately send up this notification. 2333 */ 2334 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2335 struct sctp_ulpevent *event; 2336 2337 asoc = sctp_id2assoc(sk, 0); 2338 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2339 event = sctp_ulpevent_make_sender_dry_event(asoc, 2340 GFP_USER | __GFP_NOWARN); 2341 if (!event) 2342 return -ENOMEM; 2343 2344 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2345 } 2346 } 2347 2348 return 0; 2349 } 2350 2351 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2352 * 2353 * This socket option is applicable to the UDP-style socket only. When 2354 * set it will cause associations that are idle for more than the 2355 * specified number of seconds to automatically close. An association 2356 * being idle is defined an association that has NOT sent or received 2357 * user data. The special value of '0' indicates that no automatic 2358 * close of any associations should be performed. The option expects an 2359 * integer defining the number of seconds of idle time before an 2360 * association is closed. 2361 */ 2362 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2363 unsigned int optlen) 2364 { 2365 struct sctp_sock *sp = sctp_sk(sk); 2366 struct net *net = sock_net(sk); 2367 2368 /* Applicable to UDP-style socket only */ 2369 if (sctp_style(sk, TCP)) 2370 return -EOPNOTSUPP; 2371 if (optlen != sizeof(int)) 2372 return -EINVAL; 2373 if (copy_from_user(&sp->autoclose, optval, optlen)) 2374 return -EFAULT; 2375 2376 if (sp->autoclose > net->sctp.max_autoclose) 2377 sp->autoclose = net->sctp.max_autoclose; 2378 2379 return 0; 2380 } 2381 2382 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2383 * 2384 * Applications can enable or disable heartbeats for any peer address of 2385 * an association, modify an address's heartbeat interval, force a 2386 * heartbeat to be sent immediately, and adjust the address's maximum 2387 * number of retransmissions sent before an address is considered 2388 * unreachable. The following structure is used to access and modify an 2389 * address's parameters: 2390 * 2391 * struct sctp_paddrparams { 2392 * sctp_assoc_t spp_assoc_id; 2393 * struct sockaddr_storage spp_address; 2394 * uint32_t spp_hbinterval; 2395 * uint16_t spp_pathmaxrxt; 2396 * uint32_t spp_pathmtu; 2397 * uint32_t spp_sackdelay; 2398 * uint32_t spp_flags; 2399 * uint32_t spp_ipv6_flowlabel; 2400 * uint8_t spp_dscp; 2401 * }; 2402 * 2403 * spp_assoc_id - (one-to-many style socket) This is filled in the 2404 * application, and identifies the association for 2405 * this query. 2406 * spp_address - This specifies which address is of interest. 2407 * spp_hbinterval - This contains the value of the heartbeat interval, 2408 * in milliseconds. If a value of zero 2409 * is present in this field then no changes are to 2410 * be made to this parameter. 2411 * spp_pathmaxrxt - This contains the maximum number of 2412 * retransmissions before this address shall be 2413 * considered unreachable. If a value of zero 2414 * is present in this field then no changes are to 2415 * be made to this parameter. 2416 * spp_pathmtu - When Path MTU discovery is disabled the value 2417 * specified here will be the "fixed" path mtu. 2418 * Note that if the spp_address field is empty 2419 * then all associations on this address will 2420 * have this fixed path mtu set upon them. 2421 * 2422 * spp_sackdelay - When delayed sack is enabled, this value specifies 2423 * the number of milliseconds that sacks will be delayed 2424 * for. This value will apply to all addresses of an 2425 * association if the spp_address field is empty. Note 2426 * also, that if delayed sack is enabled and this 2427 * value is set to 0, no change is made to the last 2428 * recorded delayed sack timer value. 2429 * 2430 * spp_flags - These flags are used to control various features 2431 * on an association. The flag field may contain 2432 * zero or more of the following options. 2433 * 2434 * SPP_HB_ENABLE - Enable heartbeats on the 2435 * specified address. Note that if the address 2436 * field is empty all addresses for the association 2437 * have heartbeats enabled upon them. 2438 * 2439 * SPP_HB_DISABLE - Disable heartbeats on the 2440 * speicifed address. Note that if the address 2441 * field is empty all addresses for the association 2442 * will have their heartbeats disabled. Note also 2443 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2444 * mutually exclusive, only one of these two should 2445 * be specified. Enabling both fields will have 2446 * undetermined results. 2447 * 2448 * SPP_HB_DEMAND - Request a user initiated heartbeat 2449 * to be made immediately. 2450 * 2451 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2452 * heartbeat delayis to be set to the value of 0 2453 * milliseconds. 2454 * 2455 * SPP_PMTUD_ENABLE - This field will enable PMTU 2456 * discovery upon the specified address. Note that 2457 * if the address feild is empty then all addresses 2458 * on the association are effected. 2459 * 2460 * SPP_PMTUD_DISABLE - This field will disable PMTU 2461 * discovery upon the specified address. Note that 2462 * if the address feild is empty then all addresses 2463 * on the association are effected. Not also that 2464 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2465 * exclusive. Enabling both will have undetermined 2466 * results. 2467 * 2468 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2469 * on delayed sack. The time specified in spp_sackdelay 2470 * is used to specify the sack delay for this address. Note 2471 * that if spp_address is empty then all addresses will 2472 * enable delayed sack and take on the sack delay 2473 * value specified in spp_sackdelay. 2474 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2475 * off delayed sack. If the spp_address field is blank then 2476 * delayed sack is disabled for the entire association. Note 2477 * also that this field is mutually exclusive to 2478 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2479 * results. 2480 * 2481 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2482 * setting of the IPV6 flow label value. The value is 2483 * contained in the spp_ipv6_flowlabel field. 2484 * Upon retrieval, this flag will be set to indicate that 2485 * the spp_ipv6_flowlabel field has a valid value returned. 2486 * If a specific destination address is set (in the 2487 * spp_address field), then the value returned is that of 2488 * the address. If just an association is specified (and 2489 * no address), then the association's default flow label 2490 * is returned. If neither an association nor a destination 2491 * is specified, then the socket's default flow label is 2492 * returned. For non-IPv6 sockets, this flag will be left 2493 * cleared. 2494 * 2495 * SPP_DSCP: Setting this flag enables the setting of the 2496 * Differentiated Services Code Point (DSCP) value 2497 * associated with either the association or a specific 2498 * address. The value is obtained in the spp_dscp field. 2499 * Upon retrieval, this flag will be set to indicate that 2500 * the spp_dscp field has a valid value returned. If a 2501 * specific destination address is set when called (in the 2502 * spp_address field), then that specific destination 2503 * address's DSCP value is returned. If just an association 2504 * is specified, then the association's default DSCP is 2505 * returned. If neither an association nor a destination is 2506 * specified, then the socket's default DSCP is returned. 2507 * 2508 * spp_ipv6_flowlabel 2509 * - This field is used in conjunction with the 2510 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2511 * The 20 least significant bits are used for the flow 2512 * label. This setting has precedence over any IPv6-layer 2513 * setting. 2514 * 2515 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2516 * and contains the DSCP. The 6 most significant bits are 2517 * used for the DSCP. This setting has precedence over any 2518 * IPv4- or IPv6- layer setting. 2519 */ 2520 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2521 struct sctp_transport *trans, 2522 struct sctp_association *asoc, 2523 struct sctp_sock *sp, 2524 int hb_change, 2525 int pmtud_change, 2526 int sackdelay_change) 2527 { 2528 int error; 2529 2530 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2531 struct net *net = sock_net(trans->asoc->base.sk); 2532 2533 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2534 if (error) 2535 return error; 2536 } 2537 2538 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2539 * this field is ignored. Note also that a value of zero indicates 2540 * the current setting should be left unchanged. 2541 */ 2542 if (params->spp_flags & SPP_HB_ENABLE) { 2543 2544 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2545 * set. This lets us use 0 value when this flag 2546 * is set. 2547 */ 2548 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2549 params->spp_hbinterval = 0; 2550 2551 if (params->spp_hbinterval || 2552 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2553 if (trans) { 2554 trans->hbinterval = 2555 msecs_to_jiffies(params->spp_hbinterval); 2556 } else if (asoc) { 2557 asoc->hbinterval = 2558 msecs_to_jiffies(params->spp_hbinterval); 2559 } else { 2560 sp->hbinterval = params->spp_hbinterval; 2561 } 2562 } 2563 } 2564 2565 if (hb_change) { 2566 if (trans) { 2567 trans->param_flags = 2568 (trans->param_flags & ~SPP_HB) | hb_change; 2569 } else if (asoc) { 2570 asoc->param_flags = 2571 (asoc->param_flags & ~SPP_HB) | hb_change; 2572 } else { 2573 sp->param_flags = 2574 (sp->param_flags & ~SPP_HB) | hb_change; 2575 } 2576 } 2577 2578 /* When Path MTU discovery is disabled the value specified here will 2579 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2580 * include the flag SPP_PMTUD_DISABLE for this field to have any 2581 * effect). 2582 */ 2583 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2584 if (trans) { 2585 trans->pathmtu = params->spp_pathmtu; 2586 sctp_assoc_sync_pmtu(asoc); 2587 } else if (asoc) { 2588 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2589 } else { 2590 sp->pathmtu = params->spp_pathmtu; 2591 } 2592 } 2593 2594 if (pmtud_change) { 2595 if (trans) { 2596 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2597 (params->spp_flags & SPP_PMTUD_ENABLE); 2598 trans->param_flags = 2599 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2600 if (update) { 2601 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2602 sctp_assoc_sync_pmtu(asoc); 2603 } 2604 } else if (asoc) { 2605 asoc->param_flags = 2606 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2607 } else { 2608 sp->param_flags = 2609 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2610 } 2611 } 2612 2613 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2614 * value of this field is ignored. Note also that a value of zero 2615 * indicates the current setting should be left unchanged. 2616 */ 2617 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2618 if (trans) { 2619 trans->sackdelay = 2620 msecs_to_jiffies(params->spp_sackdelay); 2621 } else if (asoc) { 2622 asoc->sackdelay = 2623 msecs_to_jiffies(params->spp_sackdelay); 2624 } else { 2625 sp->sackdelay = params->spp_sackdelay; 2626 } 2627 } 2628 2629 if (sackdelay_change) { 2630 if (trans) { 2631 trans->param_flags = 2632 (trans->param_flags & ~SPP_SACKDELAY) | 2633 sackdelay_change; 2634 } else if (asoc) { 2635 asoc->param_flags = 2636 (asoc->param_flags & ~SPP_SACKDELAY) | 2637 sackdelay_change; 2638 } else { 2639 sp->param_flags = 2640 (sp->param_flags & ~SPP_SACKDELAY) | 2641 sackdelay_change; 2642 } 2643 } 2644 2645 /* Note that a value of zero indicates the current setting should be 2646 left unchanged. 2647 */ 2648 if (params->spp_pathmaxrxt) { 2649 if (trans) { 2650 trans->pathmaxrxt = params->spp_pathmaxrxt; 2651 } else if (asoc) { 2652 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2653 } else { 2654 sp->pathmaxrxt = params->spp_pathmaxrxt; 2655 } 2656 } 2657 2658 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2659 if (trans) { 2660 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2661 trans->flowlabel = params->spp_ipv6_flowlabel & 2662 SCTP_FLOWLABEL_VAL_MASK; 2663 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2664 } 2665 } else if (asoc) { 2666 struct sctp_transport *t; 2667 2668 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2669 transports) { 2670 if (t->ipaddr.sa.sa_family != AF_INET6) 2671 continue; 2672 t->flowlabel = params->spp_ipv6_flowlabel & 2673 SCTP_FLOWLABEL_VAL_MASK; 2674 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2675 } 2676 asoc->flowlabel = params->spp_ipv6_flowlabel & 2677 SCTP_FLOWLABEL_VAL_MASK; 2678 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2679 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2680 sp->flowlabel = params->spp_ipv6_flowlabel & 2681 SCTP_FLOWLABEL_VAL_MASK; 2682 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2683 } 2684 } 2685 2686 if (params->spp_flags & SPP_DSCP) { 2687 if (trans) { 2688 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2689 trans->dscp |= SCTP_DSCP_SET_MASK; 2690 } else if (asoc) { 2691 struct sctp_transport *t; 2692 2693 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2694 transports) { 2695 t->dscp = params->spp_dscp & 2696 SCTP_DSCP_VAL_MASK; 2697 t->dscp |= SCTP_DSCP_SET_MASK; 2698 } 2699 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2700 asoc->dscp |= SCTP_DSCP_SET_MASK; 2701 } else { 2702 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2703 sp->dscp |= SCTP_DSCP_SET_MASK; 2704 } 2705 } 2706 2707 return 0; 2708 } 2709 2710 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2711 char __user *optval, 2712 unsigned int optlen) 2713 { 2714 struct sctp_paddrparams params; 2715 struct sctp_transport *trans = NULL; 2716 struct sctp_association *asoc = NULL; 2717 struct sctp_sock *sp = sctp_sk(sk); 2718 int error; 2719 int hb_change, pmtud_change, sackdelay_change; 2720 2721 if (optlen == sizeof(params)) { 2722 if (copy_from_user(¶ms, optval, optlen)) 2723 return -EFAULT; 2724 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2725 spp_ipv6_flowlabel), 4)) { 2726 if (copy_from_user(¶ms, optval, optlen)) 2727 return -EFAULT; 2728 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2729 return -EINVAL; 2730 } else { 2731 return -EINVAL; 2732 } 2733 2734 /* Validate flags and value parameters. */ 2735 hb_change = params.spp_flags & SPP_HB; 2736 pmtud_change = params.spp_flags & SPP_PMTUD; 2737 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2738 2739 if (hb_change == SPP_HB || 2740 pmtud_change == SPP_PMTUD || 2741 sackdelay_change == SPP_SACKDELAY || 2742 params.spp_sackdelay > 500 || 2743 (params.spp_pathmtu && 2744 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2745 return -EINVAL; 2746 2747 /* If an address other than INADDR_ANY is specified, and 2748 * no transport is found, then the request is invalid. 2749 */ 2750 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2751 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2752 params.spp_assoc_id); 2753 if (!trans) 2754 return -EINVAL; 2755 } 2756 2757 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2758 * socket is a one to many style socket, and an association 2759 * was not found, then the id was invalid. 2760 */ 2761 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2762 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2763 sctp_style(sk, UDP)) 2764 return -EINVAL; 2765 2766 /* Heartbeat demand can only be sent on a transport or 2767 * association, but not a socket. 2768 */ 2769 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2770 return -EINVAL; 2771 2772 /* Process parameters. */ 2773 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2774 hb_change, pmtud_change, 2775 sackdelay_change); 2776 2777 if (error) 2778 return error; 2779 2780 /* If changes are for association, also apply parameters to each 2781 * transport. 2782 */ 2783 if (!trans && asoc) { 2784 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2785 transports) { 2786 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2787 hb_change, pmtud_change, 2788 sackdelay_change); 2789 } 2790 } 2791 2792 return 0; 2793 } 2794 2795 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2796 { 2797 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2798 } 2799 2800 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2801 { 2802 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2803 } 2804 2805 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2806 struct sctp_association *asoc) 2807 { 2808 struct sctp_transport *trans; 2809 2810 if (params->sack_delay) { 2811 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2812 asoc->param_flags = 2813 sctp_spp_sackdelay_enable(asoc->param_flags); 2814 } 2815 if (params->sack_freq == 1) { 2816 asoc->param_flags = 2817 sctp_spp_sackdelay_disable(asoc->param_flags); 2818 } else if (params->sack_freq > 1) { 2819 asoc->sackfreq = params->sack_freq; 2820 asoc->param_flags = 2821 sctp_spp_sackdelay_enable(asoc->param_flags); 2822 } 2823 2824 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2825 transports) { 2826 if (params->sack_delay) { 2827 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2828 trans->param_flags = 2829 sctp_spp_sackdelay_enable(trans->param_flags); 2830 } 2831 if (params->sack_freq == 1) { 2832 trans->param_flags = 2833 sctp_spp_sackdelay_disable(trans->param_flags); 2834 } else if (params->sack_freq > 1) { 2835 trans->sackfreq = params->sack_freq; 2836 trans->param_flags = 2837 sctp_spp_sackdelay_enable(trans->param_flags); 2838 } 2839 } 2840 } 2841 2842 /* 2843 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2844 * 2845 * This option will effect the way delayed acks are performed. This 2846 * option allows you to get or set the delayed ack time, in 2847 * milliseconds. It also allows changing the delayed ack frequency. 2848 * Changing the frequency to 1 disables the delayed sack algorithm. If 2849 * the assoc_id is 0, then this sets or gets the endpoints default 2850 * values. If the assoc_id field is non-zero, then the set or get 2851 * effects the specified association for the one to many model (the 2852 * assoc_id field is ignored by the one to one model). Note that if 2853 * sack_delay or sack_freq are 0 when setting this option, then the 2854 * current values will remain unchanged. 2855 * 2856 * struct sctp_sack_info { 2857 * sctp_assoc_t sack_assoc_id; 2858 * uint32_t sack_delay; 2859 * uint32_t sack_freq; 2860 * }; 2861 * 2862 * sack_assoc_id - This parameter, indicates which association the user 2863 * is performing an action upon. Note that if this field's value is 2864 * zero then the endpoints default value is changed (effecting future 2865 * associations only). 2866 * 2867 * sack_delay - This parameter contains the number of milliseconds that 2868 * the user is requesting the delayed ACK timer be set to. Note that 2869 * this value is defined in the standard to be between 200 and 500 2870 * milliseconds. 2871 * 2872 * sack_freq - This parameter contains the number of packets that must 2873 * be received before a sack is sent without waiting for the delay 2874 * timer to expire. The default value for this is 2, setting this 2875 * value to 1 will disable the delayed sack algorithm. 2876 */ 2877 2878 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2879 char __user *optval, unsigned int optlen) 2880 { 2881 struct sctp_sock *sp = sctp_sk(sk); 2882 struct sctp_association *asoc; 2883 struct sctp_sack_info params; 2884 2885 if (optlen == sizeof(struct sctp_sack_info)) { 2886 if (copy_from_user(¶ms, optval, optlen)) 2887 return -EFAULT; 2888 2889 if (params.sack_delay == 0 && params.sack_freq == 0) 2890 return 0; 2891 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2892 pr_warn_ratelimited(DEPRECATED 2893 "%s (pid %d) " 2894 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2895 "Use struct sctp_sack_info instead\n", 2896 current->comm, task_pid_nr(current)); 2897 if (copy_from_user(¶ms, optval, optlen)) 2898 return -EFAULT; 2899 2900 if (params.sack_delay == 0) 2901 params.sack_freq = 1; 2902 else 2903 params.sack_freq = 0; 2904 } else 2905 return -EINVAL; 2906 2907 /* Validate value parameter. */ 2908 if (params.sack_delay > 500) 2909 return -EINVAL; 2910 2911 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2912 * socket is a one to many style socket, and an association 2913 * was not found, then the id was invalid. 2914 */ 2915 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2916 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2917 sctp_style(sk, UDP)) 2918 return -EINVAL; 2919 2920 if (asoc) { 2921 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2922 2923 return 0; 2924 } 2925 2926 if (sctp_style(sk, TCP)) 2927 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2928 2929 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2930 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2931 if (params.sack_delay) { 2932 sp->sackdelay = params.sack_delay; 2933 sp->param_flags = 2934 sctp_spp_sackdelay_enable(sp->param_flags); 2935 } 2936 if (params.sack_freq == 1) { 2937 sp->param_flags = 2938 sctp_spp_sackdelay_disable(sp->param_flags); 2939 } else if (params.sack_freq > 1) { 2940 sp->sackfreq = params.sack_freq; 2941 sp->param_flags = 2942 sctp_spp_sackdelay_enable(sp->param_flags); 2943 } 2944 } 2945 2946 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2947 params.sack_assoc_id == SCTP_ALL_ASSOC) 2948 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2949 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2950 2951 return 0; 2952 } 2953 2954 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2955 * 2956 * Applications can specify protocol parameters for the default association 2957 * initialization. The option name argument to setsockopt() and getsockopt() 2958 * is SCTP_INITMSG. 2959 * 2960 * Setting initialization parameters is effective only on an unconnected 2961 * socket (for UDP-style sockets only future associations are effected 2962 * by the change). With TCP-style sockets, this option is inherited by 2963 * sockets derived from a listener socket. 2964 */ 2965 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2966 { 2967 struct sctp_initmsg sinit; 2968 struct sctp_sock *sp = sctp_sk(sk); 2969 2970 if (optlen != sizeof(struct sctp_initmsg)) 2971 return -EINVAL; 2972 if (copy_from_user(&sinit, optval, optlen)) 2973 return -EFAULT; 2974 2975 if (sinit.sinit_num_ostreams) 2976 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2977 if (sinit.sinit_max_instreams) 2978 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2979 if (sinit.sinit_max_attempts) 2980 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2981 if (sinit.sinit_max_init_timeo) 2982 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2983 2984 return 0; 2985 } 2986 2987 /* 2988 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2989 * 2990 * Applications that wish to use the sendto() system call may wish to 2991 * specify a default set of parameters that would normally be supplied 2992 * through the inclusion of ancillary data. This socket option allows 2993 * such an application to set the default sctp_sndrcvinfo structure. 2994 * The application that wishes to use this socket option simply passes 2995 * in to this call the sctp_sndrcvinfo structure defined in Section 2996 * 5.2.2) The input parameters accepted by this call include 2997 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2998 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2999 * to this call if the caller is using the UDP model. 3000 */ 3001 static int sctp_setsockopt_default_send_param(struct sock *sk, 3002 char __user *optval, 3003 unsigned int optlen) 3004 { 3005 struct sctp_sock *sp = sctp_sk(sk); 3006 struct sctp_association *asoc; 3007 struct sctp_sndrcvinfo info; 3008 3009 if (optlen != sizeof(info)) 3010 return -EINVAL; 3011 if (copy_from_user(&info, optval, optlen)) 3012 return -EFAULT; 3013 if (info.sinfo_flags & 3014 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3015 SCTP_ABORT | SCTP_EOF)) 3016 return -EINVAL; 3017 3018 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3019 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3020 sctp_style(sk, UDP)) 3021 return -EINVAL; 3022 3023 if (asoc) { 3024 asoc->default_stream = info.sinfo_stream; 3025 asoc->default_flags = info.sinfo_flags; 3026 asoc->default_ppid = info.sinfo_ppid; 3027 asoc->default_context = info.sinfo_context; 3028 asoc->default_timetolive = info.sinfo_timetolive; 3029 3030 return 0; 3031 } 3032 3033 if (sctp_style(sk, TCP)) 3034 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 3035 3036 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3037 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3038 sp->default_stream = info.sinfo_stream; 3039 sp->default_flags = info.sinfo_flags; 3040 sp->default_ppid = info.sinfo_ppid; 3041 sp->default_context = info.sinfo_context; 3042 sp->default_timetolive = info.sinfo_timetolive; 3043 } 3044 3045 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3046 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3047 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3048 asoc->default_stream = info.sinfo_stream; 3049 asoc->default_flags = info.sinfo_flags; 3050 asoc->default_ppid = info.sinfo_ppid; 3051 asoc->default_context = info.sinfo_context; 3052 asoc->default_timetolive = info.sinfo_timetolive; 3053 } 3054 } 3055 3056 return 0; 3057 } 3058 3059 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3060 * (SCTP_DEFAULT_SNDINFO) 3061 */ 3062 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3063 char __user *optval, 3064 unsigned int optlen) 3065 { 3066 struct sctp_sock *sp = sctp_sk(sk); 3067 struct sctp_association *asoc; 3068 struct sctp_sndinfo info; 3069 3070 if (optlen != sizeof(info)) 3071 return -EINVAL; 3072 if (copy_from_user(&info, optval, optlen)) 3073 return -EFAULT; 3074 if (info.snd_flags & 3075 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3076 SCTP_ABORT | SCTP_EOF)) 3077 return -EINVAL; 3078 3079 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3080 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3081 sctp_style(sk, UDP)) 3082 return -EINVAL; 3083 3084 if (asoc) { 3085 asoc->default_stream = info.snd_sid; 3086 asoc->default_flags = info.snd_flags; 3087 asoc->default_ppid = info.snd_ppid; 3088 asoc->default_context = info.snd_context; 3089 3090 return 0; 3091 } 3092 3093 if (sctp_style(sk, TCP)) 3094 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3095 3096 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3097 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3098 sp->default_stream = info.snd_sid; 3099 sp->default_flags = info.snd_flags; 3100 sp->default_ppid = info.snd_ppid; 3101 sp->default_context = info.snd_context; 3102 } 3103 3104 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3105 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3106 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3107 asoc->default_stream = info.snd_sid; 3108 asoc->default_flags = info.snd_flags; 3109 asoc->default_ppid = info.snd_ppid; 3110 asoc->default_context = info.snd_context; 3111 } 3112 } 3113 3114 return 0; 3115 } 3116 3117 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3118 * 3119 * Requests that the local SCTP stack use the enclosed peer address as 3120 * the association primary. The enclosed address must be one of the 3121 * association peer's addresses. 3122 */ 3123 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3124 unsigned int optlen) 3125 { 3126 struct sctp_prim prim; 3127 struct sctp_transport *trans; 3128 struct sctp_af *af; 3129 int err; 3130 3131 if (optlen != sizeof(struct sctp_prim)) 3132 return -EINVAL; 3133 3134 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3135 return -EFAULT; 3136 3137 /* Allow security module to validate address but need address len. */ 3138 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3139 if (!af) 3140 return -EINVAL; 3141 3142 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3143 (struct sockaddr *)&prim.ssp_addr, 3144 af->sockaddr_len); 3145 if (err) 3146 return err; 3147 3148 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3149 if (!trans) 3150 return -EINVAL; 3151 3152 sctp_assoc_set_primary(trans->asoc, trans); 3153 3154 return 0; 3155 } 3156 3157 /* 3158 * 7.1.5 SCTP_NODELAY 3159 * 3160 * Turn on/off any Nagle-like algorithm. This means that packets are 3161 * generally sent as soon as possible and no unnecessary delays are 3162 * introduced, at the cost of more packets in the network. Expects an 3163 * integer boolean flag. 3164 */ 3165 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3166 unsigned int optlen) 3167 { 3168 int val; 3169 3170 if (optlen < sizeof(int)) 3171 return -EINVAL; 3172 if (get_user(val, (int __user *)optval)) 3173 return -EFAULT; 3174 3175 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3176 return 0; 3177 } 3178 3179 /* 3180 * 3181 * 7.1.1 SCTP_RTOINFO 3182 * 3183 * The protocol parameters used to initialize and bound retransmission 3184 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3185 * and modify these parameters. 3186 * All parameters are time values, in milliseconds. A value of 0, when 3187 * modifying the parameters, indicates that the current value should not 3188 * be changed. 3189 * 3190 */ 3191 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3192 { 3193 struct sctp_rtoinfo rtoinfo; 3194 struct sctp_association *asoc; 3195 unsigned long rto_min, rto_max; 3196 struct sctp_sock *sp = sctp_sk(sk); 3197 3198 if (optlen != sizeof (struct sctp_rtoinfo)) 3199 return -EINVAL; 3200 3201 if (copy_from_user(&rtoinfo, optval, optlen)) 3202 return -EFAULT; 3203 3204 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3205 3206 /* Set the values to the specific association */ 3207 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3208 sctp_style(sk, UDP)) 3209 return -EINVAL; 3210 3211 rto_max = rtoinfo.srto_max; 3212 rto_min = rtoinfo.srto_min; 3213 3214 if (rto_max) 3215 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3216 else 3217 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3218 3219 if (rto_min) 3220 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3221 else 3222 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3223 3224 if (rto_min > rto_max) 3225 return -EINVAL; 3226 3227 if (asoc) { 3228 if (rtoinfo.srto_initial != 0) 3229 asoc->rto_initial = 3230 msecs_to_jiffies(rtoinfo.srto_initial); 3231 asoc->rto_max = rto_max; 3232 asoc->rto_min = rto_min; 3233 } else { 3234 /* If there is no association or the association-id = 0 3235 * set the values to the endpoint. 3236 */ 3237 if (rtoinfo.srto_initial != 0) 3238 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3239 sp->rtoinfo.srto_max = rto_max; 3240 sp->rtoinfo.srto_min = rto_min; 3241 } 3242 3243 return 0; 3244 } 3245 3246 /* 3247 * 3248 * 7.1.2 SCTP_ASSOCINFO 3249 * 3250 * This option is used to tune the maximum retransmission attempts 3251 * of the association. 3252 * Returns an error if the new association retransmission value is 3253 * greater than the sum of the retransmission value of the peer. 3254 * See [SCTP] for more information. 3255 * 3256 */ 3257 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3258 { 3259 3260 struct sctp_assocparams assocparams; 3261 struct sctp_association *asoc; 3262 3263 if (optlen != sizeof(struct sctp_assocparams)) 3264 return -EINVAL; 3265 if (copy_from_user(&assocparams, optval, optlen)) 3266 return -EFAULT; 3267 3268 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3269 3270 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3271 sctp_style(sk, UDP)) 3272 return -EINVAL; 3273 3274 /* Set the values to the specific association */ 3275 if (asoc) { 3276 if (assocparams.sasoc_asocmaxrxt != 0) { 3277 __u32 path_sum = 0; 3278 int paths = 0; 3279 struct sctp_transport *peer_addr; 3280 3281 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3282 transports) { 3283 path_sum += peer_addr->pathmaxrxt; 3284 paths++; 3285 } 3286 3287 /* Only validate asocmaxrxt if we have more than 3288 * one path/transport. We do this because path 3289 * retransmissions are only counted when we have more 3290 * then one path. 3291 */ 3292 if (paths > 1 && 3293 assocparams.sasoc_asocmaxrxt > path_sum) 3294 return -EINVAL; 3295 3296 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3297 } 3298 3299 if (assocparams.sasoc_cookie_life != 0) 3300 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3301 } else { 3302 /* Set the values to the endpoint */ 3303 struct sctp_sock *sp = sctp_sk(sk); 3304 3305 if (assocparams.sasoc_asocmaxrxt != 0) 3306 sp->assocparams.sasoc_asocmaxrxt = 3307 assocparams.sasoc_asocmaxrxt; 3308 if (assocparams.sasoc_cookie_life != 0) 3309 sp->assocparams.sasoc_cookie_life = 3310 assocparams.sasoc_cookie_life; 3311 } 3312 return 0; 3313 } 3314 3315 /* 3316 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3317 * 3318 * This socket option is a boolean flag which turns on or off mapped V4 3319 * addresses. If this option is turned on and the socket is type 3320 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3321 * If this option is turned off, then no mapping will be done of V4 3322 * addresses and a user will receive both PF_INET6 and PF_INET type 3323 * addresses on the socket. 3324 */ 3325 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3326 { 3327 int val; 3328 struct sctp_sock *sp = sctp_sk(sk); 3329 3330 if (optlen < sizeof(int)) 3331 return -EINVAL; 3332 if (get_user(val, (int __user *)optval)) 3333 return -EFAULT; 3334 if (val) 3335 sp->v4mapped = 1; 3336 else 3337 sp->v4mapped = 0; 3338 3339 return 0; 3340 } 3341 3342 /* 3343 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3344 * This option will get or set the maximum size to put in any outgoing 3345 * SCTP DATA chunk. If a message is larger than this size it will be 3346 * fragmented by SCTP into the specified size. Note that the underlying 3347 * SCTP implementation may fragment into smaller sized chunks when the 3348 * PMTU of the underlying association is smaller than the value set by 3349 * the user. The default value for this option is '0' which indicates 3350 * the user is NOT limiting fragmentation and only the PMTU will effect 3351 * SCTP's choice of DATA chunk size. Note also that values set larger 3352 * than the maximum size of an IP datagram will effectively let SCTP 3353 * control fragmentation (i.e. the same as setting this option to 0). 3354 * 3355 * The following structure is used to access and modify this parameter: 3356 * 3357 * struct sctp_assoc_value { 3358 * sctp_assoc_t assoc_id; 3359 * uint32_t assoc_value; 3360 * }; 3361 * 3362 * assoc_id: This parameter is ignored for one-to-one style sockets. 3363 * For one-to-many style sockets this parameter indicates which 3364 * association the user is performing an action upon. Note that if 3365 * this field's value is zero then the endpoints default value is 3366 * changed (effecting future associations only). 3367 * assoc_value: This parameter specifies the maximum size in bytes. 3368 */ 3369 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3370 { 3371 struct sctp_sock *sp = sctp_sk(sk); 3372 struct sctp_assoc_value params; 3373 struct sctp_association *asoc; 3374 int val; 3375 3376 if (optlen == sizeof(int)) { 3377 pr_warn_ratelimited(DEPRECATED 3378 "%s (pid %d) " 3379 "Use of int in maxseg socket option.\n" 3380 "Use struct sctp_assoc_value instead\n", 3381 current->comm, task_pid_nr(current)); 3382 if (copy_from_user(&val, optval, optlen)) 3383 return -EFAULT; 3384 params.assoc_id = SCTP_FUTURE_ASSOC; 3385 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3386 if (copy_from_user(¶ms, optval, optlen)) 3387 return -EFAULT; 3388 val = params.assoc_value; 3389 } else { 3390 return -EINVAL; 3391 } 3392 3393 asoc = sctp_id2assoc(sk, params.assoc_id); 3394 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3395 sctp_style(sk, UDP)) 3396 return -EINVAL; 3397 3398 if (val) { 3399 int min_len, max_len; 3400 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3401 sizeof(struct sctp_data_chunk); 3402 3403 min_len = sctp_min_frag_point(sp, datasize); 3404 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3405 3406 if (val < min_len || val > max_len) 3407 return -EINVAL; 3408 } 3409 3410 if (asoc) { 3411 asoc->user_frag = val; 3412 sctp_assoc_update_frag_point(asoc); 3413 } else { 3414 sp->user_frag = val; 3415 } 3416 3417 return 0; 3418 } 3419 3420 3421 /* 3422 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3423 * 3424 * Requests that the peer mark the enclosed address as the association 3425 * primary. The enclosed address must be one of the association's 3426 * locally bound addresses. The following structure is used to make a 3427 * set primary request: 3428 */ 3429 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3430 unsigned int optlen) 3431 { 3432 struct net *net = sock_net(sk); 3433 struct sctp_sock *sp; 3434 struct sctp_association *asoc = NULL; 3435 struct sctp_setpeerprim prim; 3436 struct sctp_chunk *chunk; 3437 struct sctp_af *af; 3438 int err; 3439 3440 sp = sctp_sk(sk); 3441 3442 if (!net->sctp.addip_enable) 3443 return -EPERM; 3444 3445 if (optlen != sizeof(struct sctp_setpeerprim)) 3446 return -EINVAL; 3447 3448 if (copy_from_user(&prim, optval, optlen)) 3449 return -EFAULT; 3450 3451 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3452 if (!asoc) 3453 return -EINVAL; 3454 3455 if (!asoc->peer.asconf_capable) 3456 return -EPERM; 3457 3458 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3459 return -EPERM; 3460 3461 if (!sctp_state(asoc, ESTABLISHED)) 3462 return -ENOTCONN; 3463 3464 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3465 if (!af) 3466 return -EINVAL; 3467 3468 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3469 return -EADDRNOTAVAIL; 3470 3471 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3472 return -EADDRNOTAVAIL; 3473 3474 /* Allow security module to validate address. */ 3475 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3476 (struct sockaddr *)&prim.sspp_addr, 3477 af->sockaddr_len); 3478 if (err) 3479 return err; 3480 3481 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3482 chunk = sctp_make_asconf_set_prim(asoc, 3483 (union sctp_addr *)&prim.sspp_addr); 3484 if (!chunk) 3485 return -ENOMEM; 3486 3487 err = sctp_send_asconf(asoc, chunk); 3488 3489 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3490 3491 return err; 3492 } 3493 3494 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3495 unsigned int optlen) 3496 { 3497 struct sctp_setadaptation adaptation; 3498 3499 if (optlen != sizeof(struct sctp_setadaptation)) 3500 return -EINVAL; 3501 if (copy_from_user(&adaptation, optval, optlen)) 3502 return -EFAULT; 3503 3504 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3505 3506 return 0; 3507 } 3508 3509 /* 3510 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3511 * 3512 * The context field in the sctp_sndrcvinfo structure is normally only 3513 * used when a failed message is retrieved holding the value that was 3514 * sent down on the actual send call. This option allows the setting of 3515 * a default context on an association basis that will be received on 3516 * reading messages from the peer. This is especially helpful in the 3517 * one-2-many model for an application to keep some reference to an 3518 * internal state machine that is processing messages on the 3519 * association. Note that the setting of this value only effects 3520 * received messages from the peer and does not effect the value that is 3521 * saved with outbound messages. 3522 */ 3523 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3524 unsigned int optlen) 3525 { 3526 struct sctp_sock *sp = sctp_sk(sk); 3527 struct sctp_assoc_value params; 3528 struct sctp_association *asoc; 3529 3530 if (optlen != sizeof(struct sctp_assoc_value)) 3531 return -EINVAL; 3532 if (copy_from_user(¶ms, optval, optlen)) 3533 return -EFAULT; 3534 3535 asoc = sctp_id2assoc(sk, params.assoc_id); 3536 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3537 sctp_style(sk, UDP)) 3538 return -EINVAL; 3539 3540 if (asoc) { 3541 asoc->default_rcv_context = params.assoc_value; 3542 3543 return 0; 3544 } 3545 3546 if (sctp_style(sk, TCP)) 3547 params.assoc_id = SCTP_FUTURE_ASSOC; 3548 3549 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3550 params.assoc_id == SCTP_ALL_ASSOC) 3551 sp->default_rcv_context = params.assoc_value; 3552 3553 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3554 params.assoc_id == SCTP_ALL_ASSOC) 3555 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3556 asoc->default_rcv_context = params.assoc_value; 3557 3558 return 0; 3559 } 3560 3561 /* 3562 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3563 * 3564 * This options will at a minimum specify if the implementation is doing 3565 * fragmented interleave. Fragmented interleave, for a one to many 3566 * socket, is when subsequent calls to receive a message may return 3567 * parts of messages from different associations. Some implementations 3568 * may allow you to turn this value on or off. If so, when turned off, 3569 * no fragment interleave will occur (which will cause a head of line 3570 * blocking amongst multiple associations sharing the same one to many 3571 * socket). When this option is turned on, then each receive call may 3572 * come from a different association (thus the user must receive data 3573 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3574 * association each receive belongs to. 3575 * 3576 * This option takes a boolean value. A non-zero value indicates that 3577 * fragmented interleave is on. A value of zero indicates that 3578 * fragmented interleave is off. 3579 * 3580 * Note that it is important that an implementation that allows this 3581 * option to be turned on, have it off by default. Otherwise an unaware 3582 * application using the one to many model may become confused and act 3583 * incorrectly. 3584 */ 3585 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3586 char __user *optval, 3587 unsigned int optlen) 3588 { 3589 int val; 3590 3591 if (optlen != sizeof(int)) 3592 return -EINVAL; 3593 if (get_user(val, (int __user *)optval)) 3594 return -EFAULT; 3595 3596 sctp_sk(sk)->frag_interleave = !!val; 3597 3598 if (!sctp_sk(sk)->frag_interleave) 3599 sctp_sk(sk)->strm_interleave = 0; 3600 3601 return 0; 3602 } 3603 3604 /* 3605 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3606 * (SCTP_PARTIAL_DELIVERY_POINT) 3607 * 3608 * This option will set or get the SCTP partial delivery point. This 3609 * point is the size of a message where the partial delivery API will be 3610 * invoked to help free up rwnd space for the peer. Setting this to a 3611 * lower value will cause partial deliveries to happen more often. The 3612 * calls argument is an integer that sets or gets the partial delivery 3613 * point. Note also that the call will fail if the user attempts to set 3614 * this value larger than the socket receive buffer size. 3615 * 3616 * Note that any single message having a length smaller than or equal to 3617 * the SCTP partial delivery point will be delivered in one single read 3618 * call as long as the user provided buffer is large enough to hold the 3619 * message. 3620 */ 3621 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3622 char __user *optval, 3623 unsigned int optlen) 3624 { 3625 u32 val; 3626 3627 if (optlen != sizeof(u32)) 3628 return -EINVAL; 3629 if (get_user(val, (int __user *)optval)) 3630 return -EFAULT; 3631 3632 /* Note: We double the receive buffer from what the user sets 3633 * it to be, also initial rwnd is based on rcvbuf/2. 3634 */ 3635 if (val > (sk->sk_rcvbuf >> 1)) 3636 return -EINVAL; 3637 3638 sctp_sk(sk)->pd_point = val; 3639 3640 return 0; /* is this the right error code? */ 3641 } 3642 3643 /* 3644 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3645 * 3646 * This option will allow a user to change the maximum burst of packets 3647 * that can be emitted by this association. Note that the default value 3648 * is 4, and some implementations may restrict this setting so that it 3649 * can only be lowered. 3650 * 3651 * NOTE: This text doesn't seem right. Do this on a socket basis with 3652 * future associations inheriting the socket value. 3653 */ 3654 static int sctp_setsockopt_maxburst(struct sock *sk, 3655 char __user *optval, 3656 unsigned int optlen) 3657 { 3658 struct sctp_sock *sp = sctp_sk(sk); 3659 struct sctp_assoc_value params; 3660 struct sctp_association *asoc; 3661 3662 if (optlen == sizeof(int)) { 3663 pr_warn_ratelimited(DEPRECATED 3664 "%s (pid %d) " 3665 "Use of int in max_burst socket option deprecated.\n" 3666 "Use struct sctp_assoc_value instead\n", 3667 current->comm, task_pid_nr(current)); 3668 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3669 return -EFAULT; 3670 params.assoc_id = SCTP_FUTURE_ASSOC; 3671 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3672 if (copy_from_user(¶ms, optval, optlen)) 3673 return -EFAULT; 3674 } else 3675 return -EINVAL; 3676 3677 asoc = sctp_id2assoc(sk, params.assoc_id); 3678 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3679 sctp_style(sk, UDP)) 3680 return -EINVAL; 3681 3682 if (asoc) { 3683 asoc->max_burst = params.assoc_value; 3684 3685 return 0; 3686 } 3687 3688 if (sctp_style(sk, TCP)) 3689 params.assoc_id = SCTP_FUTURE_ASSOC; 3690 3691 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3692 params.assoc_id == SCTP_ALL_ASSOC) 3693 sp->max_burst = params.assoc_value; 3694 3695 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3696 params.assoc_id == SCTP_ALL_ASSOC) 3697 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3698 asoc->max_burst = params.assoc_value; 3699 3700 return 0; 3701 } 3702 3703 /* 3704 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3705 * 3706 * This set option adds a chunk type that the user is requesting to be 3707 * received only in an authenticated way. Changes to the list of chunks 3708 * will only effect future associations on the socket. 3709 */ 3710 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3711 char __user *optval, 3712 unsigned int optlen) 3713 { 3714 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3715 struct sctp_authchunk val; 3716 3717 if (!ep->auth_enable) 3718 return -EACCES; 3719 3720 if (optlen != sizeof(struct sctp_authchunk)) 3721 return -EINVAL; 3722 if (copy_from_user(&val, optval, optlen)) 3723 return -EFAULT; 3724 3725 switch (val.sauth_chunk) { 3726 case SCTP_CID_INIT: 3727 case SCTP_CID_INIT_ACK: 3728 case SCTP_CID_SHUTDOWN_COMPLETE: 3729 case SCTP_CID_AUTH: 3730 return -EINVAL; 3731 } 3732 3733 /* add this chunk id to the endpoint */ 3734 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3735 } 3736 3737 /* 3738 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3739 * 3740 * This option gets or sets the list of HMAC algorithms that the local 3741 * endpoint requires the peer to use. 3742 */ 3743 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3744 char __user *optval, 3745 unsigned int optlen) 3746 { 3747 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3748 struct sctp_hmacalgo *hmacs; 3749 u32 idents; 3750 int err; 3751 3752 if (!ep->auth_enable) 3753 return -EACCES; 3754 3755 if (optlen < sizeof(struct sctp_hmacalgo)) 3756 return -EINVAL; 3757 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3758 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3759 3760 hmacs = memdup_user(optval, optlen); 3761 if (IS_ERR(hmacs)) 3762 return PTR_ERR(hmacs); 3763 3764 idents = hmacs->shmac_num_idents; 3765 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3766 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3767 err = -EINVAL; 3768 goto out; 3769 } 3770 3771 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3772 out: 3773 kfree(hmacs); 3774 return err; 3775 } 3776 3777 /* 3778 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3779 * 3780 * This option will set a shared secret key which is used to build an 3781 * association shared key. 3782 */ 3783 static int sctp_setsockopt_auth_key(struct sock *sk, 3784 char __user *optval, 3785 unsigned int optlen) 3786 { 3787 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3788 struct sctp_authkey *authkey; 3789 struct sctp_association *asoc; 3790 int ret = -EINVAL; 3791 3792 if (!ep->auth_enable) 3793 return -EACCES; 3794 3795 if (optlen <= sizeof(struct sctp_authkey)) 3796 return -EINVAL; 3797 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3798 * this. 3799 */ 3800 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3801 3802 authkey = memdup_user(optval, optlen); 3803 if (IS_ERR(authkey)) 3804 return PTR_ERR(authkey); 3805 3806 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3807 goto out; 3808 3809 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3810 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3811 sctp_style(sk, UDP)) 3812 goto out; 3813 3814 if (asoc) { 3815 ret = sctp_auth_set_key(ep, asoc, authkey); 3816 goto out; 3817 } 3818 3819 if (sctp_style(sk, TCP)) 3820 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3821 3822 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3823 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3824 ret = sctp_auth_set_key(ep, asoc, authkey); 3825 if (ret) 3826 goto out; 3827 } 3828 3829 ret = 0; 3830 3831 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3832 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3833 list_for_each_entry(asoc, &ep->asocs, asocs) { 3834 int res = sctp_auth_set_key(ep, asoc, authkey); 3835 3836 if (res && !ret) 3837 ret = res; 3838 } 3839 } 3840 3841 out: 3842 kzfree(authkey); 3843 return ret; 3844 } 3845 3846 /* 3847 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3848 * 3849 * This option will get or set the active shared key to be used to build 3850 * the association shared key. 3851 */ 3852 static int sctp_setsockopt_active_key(struct sock *sk, 3853 char __user *optval, 3854 unsigned int optlen) 3855 { 3856 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3857 struct sctp_association *asoc; 3858 struct sctp_authkeyid val; 3859 int ret = 0; 3860 3861 if (!ep->auth_enable) 3862 return -EACCES; 3863 3864 if (optlen != sizeof(struct sctp_authkeyid)) 3865 return -EINVAL; 3866 if (copy_from_user(&val, optval, optlen)) 3867 return -EFAULT; 3868 3869 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3870 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3871 sctp_style(sk, UDP)) 3872 return -EINVAL; 3873 3874 if (asoc) 3875 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3876 3877 if (sctp_style(sk, TCP)) 3878 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3879 3880 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3881 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3882 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3883 if (ret) 3884 return ret; 3885 } 3886 3887 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3888 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3889 list_for_each_entry(asoc, &ep->asocs, asocs) { 3890 int res = sctp_auth_set_active_key(ep, asoc, 3891 val.scact_keynumber); 3892 3893 if (res && !ret) 3894 ret = res; 3895 } 3896 } 3897 3898 return ret; 3899 } 3900 3901 /* 3902 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3903 * 3904 * This set option will delete a shared secret key from use. 3905 */ 3906 static int sctp_setsockopt_del_key(struct sock *sk, 3907 char __user *optval, 3908 unsigned int optlen) 3909 { 3910 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3911 struct sctp_association *asoc; 3912 struct sctp_authkeyid val; 3913 int ret = 0; 3914 3915 if (!ep->auth_enable) 3916 return -EACCES; 3917 3918 if (optlen != sizeof(struct sctp_authkeyid)) 3919 return -EINVAL; 3920 if (copy_from_user(&val, optval, optlen)) 3921 return -EFAULT; 3922 3923 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3924 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3925 sctp_style(sk, UDP)) 3926 return -EINVAL; 3927 3928 if (asoc) 3929 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3930 3931 if (sctp_style(sk, TCP)) 3932 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3933 3934 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3935 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3936 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3937 if (ret) 3938 return ret; 3939 } 3940 3941 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3942 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3943 list_for_each_entry(asoc, &ep->asocs, asocs) { 3944 int res = sctp_auth_del_key_id(ep, asoc, 3945 val.scact_keynumber); 3946 3947 if (res && !ret) 3948 ret = res; 3949 } 3950 } 3951 3952 return ret; 3953 } 3954 3955 /* 3956 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3957 * 3958 * This set option will deactivate a shared secret key. 3959 */ 3960 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3961 unsigned int optlen) 3962 { 3963 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3964 struct sctp_association *asoc; 3965 struct sctp_authkeyid val; 3966 int ret = 0; 3967 3968 if (!ep->auth_enable) 3969 return -EACCES; 3970 3971 if (optlen != sizeof(struct sctp_authkeyid)) 3972 return -EINVAL; 3973 if (copy_from_user(&val, optval, optlen)) 3974 return -EFAULT; 3975 3976 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3977 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3978 sctp_style(sk, UDP)) 3979 return -EINVAL; 3980 3981 if (asoc) 3982 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3983 3984 if (sctp_style(sk, TCP)) 3985 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3986 3987 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3988 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3989 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3990 if (ret) 3991 return ret; 3992 } 3993 3994 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3995 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3996 list_for_each_entry(asoc, &ep->asocs, asocs) { 3997 int res = sctp_auth_deact_key_id(ep, asoc, 3998 val.scact_keynumber); 3999 4000 if (res && !ret) 4001 ret = res; 4002 } 4003 } 4004 4005 return ret; 4006 } 4007 4008 /* 4009 * 8.1.23 SCTP_AUTO_ASCONF 4010 * 4011 * This option will enable or disable the use of the automatic generation of 4012 * ASCONF chunks to add and delete addresses to an existing association. Note 4013 * that this option has two caveats namely: a) it only affects sockets that 4014 * are bound to all addresses available to the SCTP stack, and b) the system 4015 * administrator may have an overriding control that turns the ASCONF feature 4016 * off no matter what setting the socket option may have. 4017 * This option expects an integer boolean flag, where a non-zero value turns on 4018 * the option, and a zero value turns off the option. 4019 * Note. In this implementation, socket operation overrides default parameter 4020 * being set by sysctl as well as FreeBSD implementation 4021 */ 4022 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 4023 unsigned int optlen) 4024 { 4025 int val; 4026 struct sctp_sock *sp = sctp_sk(sk); 4027 4028 if (optlen < sizeof(int)) 4029 return -EINVAL; 4030 if (get_user(val, (int __user *)optval)) 4031 return -EFAULT; 4032 if (!sctp_is_ep_boundall(sk) && val) 4033 return -EINVAL; 4034 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4035 return 0; 4036 4037 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4038 if (val == 0 && sp->do_auto_asconf) { 4039 list_del(&sp->auto_asconf_list); 4040 sp->do_auto_asconf = 0; 4041 } else if (val && !sp->do_auto_asconf) { 4042 list_add_tail(&sp->auto_asconf_list, 4043 &sock_net(sk)->sctp.auto_asconf_splist); 4044 sp->do_auto_asconf = 1; 4045 } 4046 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4047 return 0; 4048 } 4049 4050 /* 4051 * SCTP_PEER_ADDR_THLDS 4052 * 4053 * This option allows us to alter the partially failed threshold for one or all 4054 * transports in an association. See Section 6.1 of: 4055 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4056 */ 4057 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4058 char __user *optval, 4059 unsigned int optlen) 4060 { 4061 struct sctp_paddrthlds val; 4062 struct sctp_transport *trans; 4063 struct sctp_association *asoc; 4064 4065 if (optlen < sizeof(struct sctp_paddrthlds)) 4066 return -EINVAL; 4067 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4068 sizeof(struct sctp_paddrthlds))) 4069 return -EFAULT; 4070 4071 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4072 trans = sctp_addr_id2transport(sk, &val.spt_address, 4073 val.spt_assoc_id); 4074 if (!trans) 4075 return -ENOENT; 4076 4077 if (val.spt_pathmaxrxt) 4078 trans->pathmaxrxt = val.spt_pathmaxrxt; 4079 trans->pf_retrans = val.spt_pathpfthld; 4080 4081 return 0; 4082 } 4083 4084 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4085 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4086 sctp_style(sk, UDP)) 4087 return -EINVAL; 4088 4089 if (asoc) { 4090 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4091 transports) { 4092 if (val.spt_pathmaxrxt) 4093 trans->pathmaxrxt = val.spt_pathmaxrxt; 4094 trans->pf_retrans = val.spt_pathpfthld; 4095 } 4096 4097 if (val.spt_pathmaxrxt) 4098 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4099 asoc->pf_retrans = val.spt_pathpfthld; 4100 } else { 4101 struct sctp_sock *sp = sctp_sk(sk); 4102 4103 if (val.spt_pathmaxrxt) 4104 sp->pathmaxrxt = val.spt_pathmaxrxt; 4105 sp->pf_retrans = val.spt_pathpfthld; 4106 } 4107 4108 return 0; 4109 } 4110 4111 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4112 char __user *optval, 4113 unsigned int optlen) 4114 { 4115 int val; 4116 4117 if (optlen < sizeof(int)) 4118 return -EINVAL; 4119 if (get_user(val, (int __user *) optval)) 4120 return -EFAULT; 4121 4122 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4123 4124 return 0; 4125 } 4126 4127 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4128 char __user *optval, 4129 unsigned int optlen) 4130 { 4131 int val; 4132 4133 if (optlen < sizeof(int)) 4134 return -EINVAL; 4135 if (get_user(val, (int __user *) optval)) 4136 return -EFAULT; 4137 4138 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4139 4140 return 0; 4141 } 4142 4143 static int sctp_setsockopt_pr_supported(struct sock *sk, 4144 char __user *optval, 4145 unsigned int optlen) 4146 { 4147 struct sctp_assoc_value params; 4148 struct sctp_association *asoc; 4149 4150 if (optlen != sizeof(params)) 4151 return -EINVAL; 4152 4153 if (copy_from_user(¶ms, optval, optlen)) 4154 return -EFAULT; 4155 4156 asoc = sctp_id2assoc(sk, params.assoc_id); 4157 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4158 sctp_style(sk, UDP)) 4159 return -EINVAL; 4160 4161 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4162 4163 return 0; 4164 } 4165 4166 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4167 char __user *optval, 4168 unsigned int optlen) 4169 { 4170 struct sctp_sock *sp = sctp_sk(sk); 4171 struct sctp_default_prinfo info; 4172 struct sctp_association *asoc; 4173 int retval = -EINVAL; 4174 4175 if (optlen != sizeof(info)) 4176 goto out; 4177 4178 if (copy_from_user(&info, optval, sizeof(info))) { 4179 retval = -EFAULT; 4180 goto out; 4181 } 4182 4183 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4184 goto out; 4185 4186 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4187 info.pr_value = 0; 4188 4189 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4190 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4191 sctp_style(sk, UDP)) 4192 goto out; 4193 4194 retval = 0; 4195 4196 if (asoc) { 4197 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4198 asoc->default_timetolive = info.pr_value; 4199 goto out; 4200 } 4201 4202 if (sctp_style(sk, TCP)) 4203 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4204 4205 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4206 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4207 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4208 sp->default_timetolive = info.pr_value; 4209 } 4210 4211 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4212 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4213 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4214 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4215 asoc->default_timetolive = info.pr_value; 4216 } 4217 } 4218 4219 out: 4220 return retval; 4221 } 4222 4223 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4224 char __user *optval, 4225 unsigned int optlen) 4226 { 4227 struct sctp_assoc_value params; 4228 struct sctp_association *asoc; 4229 int retval = -EINVAL; 4230 4231 if (optlen != sizeof(params)) 4232 goto out; 4233 4234 if (copy_from_user(¶ms, optval, optlen)) { 4235 retval = -EFAULT; 4236 goto out; 4237 } 4238 4239 asoc = sctp_id2assoc(sk, params.assoc_id); 4240 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4241 sctp_style(sk, UDP)) 4242 goto out; 4243 4244 if (asoc) 4245 asoc->reconf_enable = !!params.assoc_value; 4246 else 4247 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4248 4249 retval = 0; 4250 4251 out: 4252 return retval; 4253 } 4254 4255 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4256 char __user *optval, 4257 unsigned int optlen) 4258 { 4259 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4260 struct sctp_assoc_value params; 4261 struct sctp_association *asoc; 4262 int retval = -EINVAL; 4263 4264 if (optlen != sizeof(params)) 4265 goto out; 4266 4267 if (copy_from_user(¶ms, optval, optlen)) { 4268 retval = -EFAULT; 4269 goto out; 4270 } 4271 4272 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4273 goto out; 4274 4275 asoc = sctp_id2assoc(sk, params.assoc_id); 4276 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4277 sctp_style(sk, UDP)) 4278 goto out; 4279 4280 retval = 0; 4281 4282 if (asoc) { 4283 asoc->strreset_enable = params.assoc_value; 4284 goto out; 4285 } 4286 4287 if (sctp_style(sk, TCP)) 4288 params.assoc_id = SCTP_FUTURE_ASSOC; 4289 4290 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4291 params.assoc_id == SCTP_ALL_ASSOC) 4292 ep->strreset_enable = params.assoc_value; 4293 4294 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4295 params.assoc_id == SCTP_ALL_ASSOC) 4296 list_for_each_entry(asoc, &ep->asocs, asocs) 4297 asoc->strreset_enable = params.assoc_value; 4298 4299 out: 4300 return retval; 4301 } 4302 4303 static int sctp_setsockopt_reset_streams(struct sock *sk, 4304 char __user *optval, 4305 unsigned int optlen) 4306 { 4307 struct sctp_reset_streams *params; 4308 struct sctp_association *asoc; 4309 int retval = -EINVAL; 4310 4311 if (optlen < sizeof(*params)) 4312 return -EINVAL; 4313 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4314 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4315 sizeof(__u16) * sizeof(*params)); 4316 4317 params = memdup_user(optval, optlen); 4318 if (IS_ERR(params)) 4319 return PTR_ERR(params); 4320 4321 if (params->srs_number_streams * sizeof(__u16) > 4322 optlen - sizeof(*params)) 4323 goto out; 4324 4325 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4326 if (!asoc) 4327 goto out; 4328 4329 retval = sctp_send_reset_streams(asoc, params); 4330 4331 out: 4332 kfree(params); 4333 return retval; 4334 } 4335 4336 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4337 char __user *optval, 4338 unsigned int optlen) 4339 { 4340 struct sctp_association *asoc; 4341 sctp_assoc_t associd; 4342 int retval = -EINVAL; 4343 4344 if (optlen != sizeof(associd)) 4345 goto out; 4346 4347 if (copy_from_user(&associd, optval, optlen)) { 4348 retval = -EFAULT; 4349 goto out; 4350 } 4351 4352 asoc = sctp_id2assoc(sk, associd); 4353 if (!asoc) 4354 goto out; 4355 4356 retval = sctp_send_reset_assoc(asoc); 4357 4358 out: 4359 return retval; 4360 } 4361 4362 static int sctp_setsockopt_add_streams(struct sock *sk, 4363 char __user *optval, 4364 unsigned int optlen) 4365 { 4366 struct sctp_association *asoc; 4367 struct sctp_add_streams params; 4368 int retval = -EINVAL; 4369 4370 if (optlen != sizeof(params)) 4371 goto out; 4372 4373 if (copy_from_user(¶ms, optval, optlen)) { 4374 retval = -EFAULT; 4375 goto out; 4376 } 4377 4378 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4379 if (!asoc) 4380 goto out; 4381 4382 retval = sctp_send_add_streams(asoc, ¶ms); 4383 4384 out: 4385 return retval; 4386 } 4387 4388 static int sctp_setsockopt_scheduler(struct sock *sk, 4389 char __user *optval, 4390 unsigned int optlen) 4391 { 4392 struct sctp_sock *sp = sctp_sk(sk); 4393 struct sctp_association *asoc; 4394 struct sctp_assoc_value params; 4395 int retval = 0; 4396 4397 if (optlen < sizeof(params)) 4398 return -EINVAL; 4399 4400 optlen = sizeof(params); 4401 if (copy_from_user(¶ms, optval, optlen)) 4402 return -EFAULT; 4403 4404 if (params.assoc_value > SCTP_SS_MAX) 4405 return -EINVAL; 4406 4407 asoc = sctp_id2assoc(sk, params.assoc_id); 4408 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4409 sctp_style(sk, UDP)) 4410 return -EINVAL; 4411 4412 if (asoc) 4413 return sctp_sched_set_sched(asoc, params.assoc_value); 4414 4415 if (sctp_style(sk, TCP)) 4416 params.assoc_id = SCTP_FUTURE_ASSOC; 4417 4418 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4419 params.assoc_id == SCTP_ALL_ASSOC) 4420 sp->default_ss = params.assoc_value; 4421 4422 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4423 params.assoc_id == SCTP_ALL_ASSOC) { 4424 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4425 int ret = sctp_sched_set_sched(asoc, 4426 params.assoc_value); 4427 4428 if (ret && !retval) 4429 retval = ret; 4430 } 4431 } 4432 4433 return retval; 4434 } 4435 4436 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4437 char __user *optval, 4438 unsigned int optlen) 4439 { 4440 struct sctp_stream_value params; 4441 struct sctp_association *asoc; 4442 int retval = -EINVAL; 4443 4444 if (optlen < sizeof(params)) 4445 goto out; 4446 4447 optlen = sizeof(params); 4448 if (copy_from_user(¶ms, optval, optlen)) { 4449 retval = -EFAULT; 4450 goto out; 4451 } 4452 4453 asoc = sctp_id2assoc(sk, params.assoc_id); 4454 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4455 sctp_style(sk, UDP)) 4456 goto out; 4457 4458 if (asoc) { 4459 retval = sctp_sched_set_value(asoc, params.stream_id, 4460 params.stream_value, GFP_KERNEL); 4461 goto out; 4462 } 4463 4464 retval = 0; 4465 4466 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4467 int ret = sctp_sched_set_value(asoc, params.stream_id, 4468 params.stream_value, GFP_KERNEL); 4469 if (ret && !retval) /* try to return the 1st error. */ 4470 retval = ret; 4471 } 4472 4473 out: 4474 return retval; 4475 } 4476 4477 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4478 char __user *optval, 4479 unsigned int optlen) 4480 { 4481 struct sctp_sock *sp = sctp_sk(sk); 4482 struct sctp_assoc_value params; 4483 struct sctp_association *asoc; 4484 int retval = -EINVAL; 4485 4486 if (optlen < sizeof(params)) 4487 goto out; 4488 4489 optlen = sizeof(params); 4490 if (copy_from_user(¶ms, optval, optlen)) { 4491 retval = -EFAULT; 4492 goto out; 4493 } 4494 4495 asoc = sctp_id2assoc(sk, params.assoc_id); 4496 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4497 sctp_style(sk, UDP)) 4498 goto out; 4499 4500 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4501 retval = -EPERM; 4502 goto out; 4503 } 4504 4505 sp->strm_interleave = !!params.assoc_value; 4506 4507 retval = 0; 4508 4509 out: 4510 return retval; 4511 } 4512 4513 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4514 unsigned int optlen) 4515 { 4516 int val; 4517 4518 if (!sctp_style(sk, TCP)) 4519 return -EOPNOTSUPP; 4520 4521 if (sctp_sk(sk)->ep->base.bind_addr.port) 4522 return -EFAULT; 4523 4524 if (optlen < sizeof(int)) 4525 return -EINVAL; 4526 4527 if (get_user(val, (int __user *)optval)) 4528 return -EFAULT; 4529 4530 sctp_sk(sk)->reuse = !!val; 4531 4532 return 0; 4533 } 4534 4535 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4536 struct sctp_association *asoc) 4537 { 4538 struct sctp_ulpevent *event; 4539 4540 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4541 4542 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4543 if (sctp_outq_is_empty(&asoc->outqueue)) { 4544 event = sctp_ulpevent_make_sender_dry_event(asoc, 4545 GFP_USER | __GFP_NOWARN); 4546 if (!event) 4547 return -ENOMEM; 4548 4549 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4550 } 4551 } 4552 4553 return 0; 4554 } 4555 4556 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4557 unsigned int optlen) 4558 { 4559 struct sctp_sock *sp = sctp_sk(sk); 4560 struct sctp_association *asoc; 4561 struct sctp_event param; 4562 int retval = 0; 4563 4564 if (optlen < sizeof(param)) 4565 return -EINVAL; 4566 4567 optlen = sizeof(param); 4568 if (copy_from_user(¶m, optval, optlen)) 4569 return -EFAULT; 4570 4571 if (param.se_type < SCTP_SN_TYPE_BASE || 4572 param.se_type > SCTP_SN_TYPE_MAX) 4573 return -EINVAL; 4574 4575 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4576 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4577 sctp_style(sk, UDP)) 4578 return -EINVAL; 4579 4580 if (asoc) 4581 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4582 4583 if (sctp_style(sk, TCP)) 4584 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4585 4586 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4587 param.se_assoc_id == SCTP_ALL_ASSOC) 4588 sctp_ulpevent_type_set(&sp->subscribe, 4589 param.se_type, param.se_on); 4590 4591 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4592 param.se_assoc_id == SCTP_ALL_ASSOC) { 4593 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4594 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4595 4596 if (ret && !retval) 4597 retval = ret; 4598 } 4599 } 4600 4601 return retval; 4602 } 4603 4604 /* API 6.2 setsockopt(), getsockopt() 4605 * 4606 * Applications use setsockopt() and getsockopt() to set or retrieve 4607 * socket options. Socket options are used to change the default 4608 * behavior of sockets calls. They are described in Section 7. 4609 * 4610 * The syntax is: 4611 * 4612 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4613 * int __user *optlen); 4614 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4615 * int optlen); 4616 * 4617 * sd - the socket descript. 4618 * level - set to IPPROTO_SCTP for all SCTP options. 4619 * optname - the option name. 4620 * optval - the buffer to store the value of the option. 4621 * optlen - the size of the buffer. 4622 */ 4623 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4624 char __user *optval, unsigned int optlen) 4625 { 4626 int retval = 0; 4627 4628 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4629 4630 /* I can hardly begin to describe how wrong this is. This is 4631 * so broken as to be worse than useless. The API draft 4632 * REALLY is NOT helpful here... I am not convinced that the 4633 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4634 * are at all well-founded. 4635 */ 4636 if (level != SOL_SCTP) { 4637 struct sctp_af *af = sctp_sk(sk)->pf->af; 4638 retval = af->setsockopt(sk, level, optname, optval, optlen); 4639 goto out_nounlock; 4640 } 4641 4642 lock_sock(sk); 4643 4644 switch (optname) { 4645 case SCTP_SOCKOPT_BINDX_ADD: 4646 /* 'optlen' is the size of the addresses buffer. */ 4647 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4648 optlen, SCTP_BINDX_ADD_ADDR); 4649 break; 4650 4651 case SCTP_SOCKOPT_BINDX_REM: 4652 /* 'optlen' is the size of the addresses buffer. */ 4653 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4654 optlen, SCTP_BINDX_REM_ADDR); 4655 break; 4656 4657 case SCTP_SOCKOPT_CONNECTX_OLD: 4658 /* 'optlen' is the size of the addresses buffer. */ 4659 retval = sctp_setsockopt_connectx_old(sk, 4660 (struct sockaddr __user *)optval, 4661 optlen); 4662 break; 4663 4664 case SCTP_SOCKOPT_CONNECTX: 4665 /* 'optlen' is the size of the addresses buffer. */ 4666 retval = sctp_setsockopt_connectx(sk, 4667 (struct sockaddr __user *)optval, 4668 optlen); 4669 break; 4670 4671 case SCTP_DISABLE_FRAGMENTS: 4672 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4673 break; 4674 4675 case SCTP_EVENTS: 4676 retval = sctp_setsockopt_events(sk, optval, optlen); 4677 break; 4678 4679 case SCTP_AUTOCLOSE: 4680 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4681 break; 4682 4683 case SCTP_PEER_ADDR_PARAMS: 4684 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4685 break; 4686 4687 case SCTP_DELAYED_SACK: 4688 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4689 break; 4690 case SCTP_PARTIAL_DELIVERY_POINT: 4691 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4692 break; 4693 4694 case SCTP_INITMSG: 4695 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4696 break; 4697 case SCTP_DEFAULT_SEND_PARAM: 4698 retval = sctp_setsockopt_default_send_param(sk, optval, 4699 optlen); 4700 break; 4701 case SCTP_DEFAULT_SNDINFO: 4702 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4703 break; 4704 case SCTP_PRIMARY_ADDR: 4705 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4706 break; 4707 case SCTP_SET_PEER_PRIMARY_ADDR: 4708 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4709 break; 4710 case SCTP_NODELAY: 4711 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4712 break; 4713 case SCTP_RTOINFO: 4714 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4715 break; 4716 case SCTP_ASSOCINFO: 4717 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4718 break; 4719 case SCTP_I_WANT_MAPPED_V4_ADDR: 4720 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4721 break; 4722 case SCTP_MAXSEG: 4723 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4724 break; 4725 case SCTP_ADAPTATION_LAYER: 4726 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4727 break; 4728 case SCTP_CONTEXT: 4729 retval = sctp_setsockopt_context(sk, optval, optlen); 4730 break; 4731 case SCTP_FRAGMENT_INTERLEAVE: 4732 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4733 break; 4734 case SCTP_MAX_BURST: 4735 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4736 break; 4737 case SCTP_AUTH_CHUNK: 4738 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4739 break; 4740 case SCTP_HMAC_IDENT: 4741 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4742 break; 4743 case SCTP_AUTH_KEY: 4744 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4745 break; 4746 case SCTP_AUTH_ACTIVE_KEY: 4747 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4748 break; 4749 case SCTP_AUTH_DELETE_KEY: 4750 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4751 break; 4752 case SCTP_AUTH_DEACTIVATE_KEY: 4753 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4754 break; 4755 case SCTP_AUTO_ASCONF: 4756 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4757 break; 4758 case SCTP_PEER_ADDR_THLDS: 4759 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4760 break; 4761 case SCTP_RECVRCVINFO: 4762 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4763 break; 4764 case SCTP_RECVNXTINFO: 4765 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4766 break; 4767 case SCTP_PR_SUPPORTED: 4768 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4769 break; 4770 case SCTP_DEFAULT_PRINFO: 4771 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4772 break; 4773 case SCTP_RECONFIG_SUPPORTED: 4774 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4775 break; 4776 case SCTP_ENABLE_STREAM_RESET: 4777 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4778 break; 4779 case SCTP_RESET_STREAMS: 4780 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4781 break; 4782 case SCTP_RESET_ASSOC: 4783 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4784 break; 4785 case SCTP_ADD_STREAMS: 4786 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4787 break; 4788 case SCTP_STREAM_SCHEDULER: 4789 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4790 break; 4791 case SCTP_STREAM_SCHEDULER_VALUE: 4792 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4793 break; 4794 case SCTP_INTERLEAVING_SUPPORTED: 4795 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4796 optlen); 4797 break; 4798 case SCTP_REUSE_PORT: 4799 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4800 break; 4801 case SCTP_EVENT: 4802 retval = sctp_setsockopt_event(sk, optval, optlen); 4803 break; 4804 default: 4805 retval = -ENOPROTOOPT; 4806 break; 4807 } 4808 4809 release_sock(sk); 4810 4811 out_nounlock: 4812 return retval; 4813 } 4814 4815 /* API 3.1.6 connect() - UDP Style Syntax 4816 * 4817 * An application may use the connect() call in the UDP model to initiate an 4818 * association without sending data. 4819 * 4820 * The syntax is: 4821 * 4822 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4823 * 4824 * sd: the socket descriptor to have a new association added to. 4825 * 4826 * nam: the address structure (either struct sockaddr_in or struct 4827 * sockaddr_in6 defined in RFC2553 [7]). 4828 * 4829 * len: the size of the address. 4830 */ 4831 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4832 int addr_len, int flags) 4833 { 4834 struct inet_sock *inet = inet_sk(sk); 4835 struct sctp_af *af; 4836 int err = 0; 4837 4838 lock_sock(sk); 4839 4840 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4841 addr, addr_len); 4842 4843 /* We may need to bind the socket. */ 4844 if (!inet->inet_num) { 4845 if (sk->sk_prot->get_port(sk, 0)) { 4846 release_sock(sk); 4847 return -EAGAIN; 4848 } 4849 inet->inet_sport = htons(inet->inet_num); 4850 } 4851 4852 /* Validate addr_len before calling common connect/connectx routine. */ 4853 af = addr_len < offsetofend(struct sockaddr, sa_family) ? NULL : 4854 sctp_get_af_specific(addr->sa_family); 4855 if (!af || addr_len < af->sockaddr_len) { 4856 err = -EINVAL; 4857 } else { 4858 /* Pass correct addr len to common routine (so it knows there 4859 * is only one address being passed. 4860 */ 4861 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4862 } 4863 4864 release_sock(sk); 4865 return err; 4866 } 4867 4868 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4869 int addr_len, int flags) 4870 { 4871 if (addr_len < sizeof(uaddr->sa_family)) 4872 return -EINVAL; 4873 4874 if (uaddr->sa_family == AF_UNSPEC) 4875 return -EOPNOTSUPP; 4876 4877 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4878 } 4879 4880 /* FIXME: Write comments. */ 4881 static int sctp_disconnect(struct sock *sk, int flags) 4882 { 4883 return -EOPNOTSUPP; /* STUB */ 4884 } 4885 4886 /* 4.1.4 accept() - TCP Style Syntax 4887 * 4888 * Applications use accept() call to remove an established SCTP 4889 * association from the accept queue of the endpoint. A new socket 4890 * descriptor will be returned from accept() to represent the newly 4891 * formed association. 4892 */ 4893 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4894 { 4895 struct sctp_sock *sp; 4896 struct sctp_endpoint *ep; 4897 struct sock *newsk = NULL; 4898 struct sctp_association *asoc; 4899 long timeo; 4900 int error = 0; 4901 4902 lock_sock(sk); 4903 4904 sp = sctp_sk(sk); 4905 ep = sp->ep; 4906 4907 if (!sctp_style(sk, TCP)) { 4908 error = -EOPNOTSUPP; 4909 goto out; 4910 } 4911 4912 if (!sctp_sstate(sk, LISTENING)) { 4913 error = -EINVAL; 4914 goto out; 4915 } 4916 4917 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4918 4919 error = sctp_wait_for_accept(sk, timeo); 4920 if (error) 4921 goto out; 4922 4923 /* We treat the list of associations on the endpoint as the accept 4924 * queue and pick the first association on the list. 4925 */ 4926 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4927 4928 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4929 if (!newsk) { 4930 error = -ENOMEM; 4931 goto out; 4932 } 4933 4934 /* Populate the fields of the newsk from the oldsk and migrate the 4935 * asoc to the newsk. 4936 */ 4937 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4938 if (error) { 4939 sk_common_release(newsk); 4940 newsk = NULL; 4941 } 4942 4943 out: 4944 release_sock(sk); 4945 *err = error; 4946 return newsk; 4947 } 4948 4949 /* The SCTP ioctl handler. */ 4950 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4951 { 4952 int rc = -ENOTCONN; 4953 4954 lock_sock(sk); 4955 4956 /* 4957 * SEQPACKET-style sockets in LISTENING state are valid, for 4958 * SCTP, so only discard TCP-style sockets in LISTENING state. 4959 */ 4960 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4961 goto out; 4962 4963 switch (cmd) { 4964 case SIOCINQ: { 4965 struct sk_buff *skb; 4966 unsigned int amount = 0; 4967 4968 skb = skb_peek(&sk->sk_receive_queue); 4969 if (skb != NULL) { 4970 /* 4971 * We will only return the amount of this packet since 4972 * that is all that will be read. 4973 */ 4974 amount = skb->len; 4975 } 4976 rc = put_user(amount, (int __user *)arg); 4977 break; 4978 } 4979 default: 4980 rc = -ENOIOCTLCMD; 4981 break; 4982 } 4983 out: 4984 release_sock(sk); 4985 return rc; 4986 } 4987 4988 /* This is the function which gets called during socket creation to 4989 * initialized the SCTP-specific portion of the sock. 4990 * The sock structure should already be zero-filled memory. 4991 */ 4992 static int sctp_init_sock(struct sock *sk) 4993 { 4994 struct net *net = sock_net(sk); 4995 struct sctp_sock *sp; 4996 4997 pr_debug("%s: sk:%p\n", __func__, sk); 4998 4999 sp = sctp_sk(sk); 5000 5001 /* Initialize the SCTP per socket area. */ 5002 switch (sk->sk_type) { 5003 case SOCK_SEQPACKET: 5004 sp->type = SCTP_SOCKET_UDP; 5005 break; 5006 case SOCK_STREAM: 5007 sp->type = SCTP_SOCKET_TCP; 5008 break; 5009 default: 5010 return -ESOCKTNOSUPPORT; 5011 } 5012 5013 sk->sk_gso_type = SKB_GSO_SCTP; 5014 5015 /* Initialize default send parameters. These parameters can be 5016 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5017 */ 5018 sp->default_stream = 0; 5019 sp->default_ppid = 0; 5020 sp->default_flags = 0; 5021 sp->default_context = 0; 5022 sp->default_timetolive = 0; 5023 5024 sp->default_rcv_context = 0; 5025 sp->max_burst = net->sctp.max_burst; 5026 5027 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5028 5029 /* Initialize default setup parameters. These parameters 5030 * can be modified with the SCTP_INITMSG socket option or 5031 * overridden by the SCTP_INIT CMSG. 5032 */ 5033 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5034 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5035 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5036 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5037 5038 /* Initialize default RTO related parameters. These parameters can 5039 * be modified for with the SCTP_RTOINFO socket option. 5040 */ 5041 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5042 sp->rtoinfo.srto_max = net->sctp.rto_max; 5043 sp->rtoinfo.srto_min = net->sctp.rto_min; 5044 5045 /* Initialize default association related parameters. These parameters 5046 * can be modified with the SCTP_ASSOCINFO socket option. 5047 */ 5048 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5049 sp->assocparams.sasoc_number_peer_destinations = 0; 5050 sp->assocparams.sasoc_peer_rwnd = 0; 5051 sp->assocparams.sasoc_local_rwnd = 0; 5052 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5053 5054 /* Initialize default event subscriptions. By default, all the 5055 * options are off. 5056 */ 5057 sp->subscribe = 0; 5058 5059 /* Default Peer Address Parameters. These defaults can 5060 * be modified via SCTP_PEER_ADDR_PARAMS 5061 */ 5062 sp->hbinterval = net->sctp.hb_interval; 5063 sp->pathmaxrxt = net->sctp.max_retrans_path; 5064 sp->pf_retrans = net->sctp.pf_retrans; 5065 sp->pathmtu = 0; /* allow default discovery */ 5066 sp->sackdelay = net->sctp.sack_timeout; 5067 sp->sackfreq = 2; 5068 sp->param_flags = SPP_HB_ENABLE | 5069 SPP_PMTUD_ENABLE | 5070 SPP_SACKDELAY_ENABLE; 5071 sp->default_ss = SCTP_SS_DEFAULT; 5072 5073 /* If enabled no SCTP message fragmentation will be performed. 5074 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5075 */ 5076 sp->disable_fragments = 0; 5077 5078 /* Enable Nagle algorithm by default. */ 5079 sp->nodelay = 0; 5080 5081 sp->recvrcvinfo = 0; 5082 sp->recvnxtinfo = 0; 5083 5084 /* Enable by default. */ 5085 sp->v4mapped = 1; 5086 5087 /* Auto-close idle associations after the configured 5088 * number of seconds. A value of 0 disables this 5089 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5090 * for UDP-style sockets only. 5091 */ 5092 sp->autoclose = 0; 5093 5094 /* User specified fragmentation limit. */ 5095 sp->user_frag = 0; 5096 5097 sp->adaptation_ind = 0; 5098 5099 sp->pf = sctp_get_pf_specific(sk->sk_family); 5100 5101 /* Control variables for partial data delivery. */ 5102 atomic_set(&sp->pd_mode, 0); 5103 skb_queue_head_init(&sp->pd_lobby); 5104 sp->frag_interleave = 0; 5105 5106 /* Create a per socket endpoint structure. Even if we 5107 * change the data structure relationships, this may still 5108 * be useful for storing pre-connect address information. 5109 */ 5110 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5111 if (!sp->ep) 5112 return -ENOMEM; 5113 5114 sp->hmac = NULL; 5115 5116 sk->sk_destruct = sctp_destruct_sock; 5117 5118 SCTP_DBG_OBJCNT_INC(sock); 5119 5120 local_bh_disable(); 5121 sk_sockets_allocated_inc(sk); 5122 sock_prot_inuse_add(net, sk->sk_prot, 1); 5123 5124 /* Nothing can fail after this block, otherwise 5125 * sctp_destroy_sock() will be called without addr_wq_lock held 5126 */ 5127 if (net->sctp.default_auto_asconf) { 5128 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5129 list_add_tail(&sp->auto_asconf_list, 5130 &net->sctp.auto_asconf_splist); 5131 sp->do_auto_asconf = 1; 5132 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5133 } else { 5134 sp->do_auto_asconf = 0; 5135 } 5136 5137 local_bh_enable(); 5138 5139 return 0; 5140 } 5141 5142 /* Cleanup any SCTP per socket resources. Must be called with 5143 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5144 */ 5145 static void sctp_destroy_sock(struct sock *sk) 5146 { 5147 struct sctp_sock *sp; 5148 5149 pr_debug("%s: sk:%p\n", __func__, sk); 5150 5151 /* Release our hold on the endpoint. */ 5152 sp = sctp_sk(sk); 5153 /* This could happen during socket init, thus we bail out 5154 * early, since the rest of the below is not setup either. 5155 */ 5156 if (sp->ep == NULL) 5157 return; 5158 5159 if (sp->do_auto_asconf) { 5160 sp->do_auto_asconf = 0; 5161 list_del(&sp->auto_asconf_list); 5162 } 5163 sctp_endpoint_free(sp->ep); 5164 local_bh_disable(); 5165 sk_sockets_allocated_dec(sk); 5166 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5167 local_bh_enable(); 5168 } 5169 5170 /* Triggered when there are no references on the socket anymore */ 5171 static void sctp_destruct_sock(struct sock *sk) 5172 { 5173 struct sctp_sock *sp = sctp_sk(sk); 5174 5175 /* Free up the HMAC transform. */ 5176 crypto_free_shash(sp->hmac); 5177 5178 inet_sock_destruct(sk); 5179 } 5180 5181 /* API 4.1.7 shutdown() - TCP Style Syntax 5182 * int shutdown(int socket, int how); 5183 * 5184 * sd - the socket descriptor of the association to be closed. 5185 * how - Specifies the type of shutdown. The values are 5186 * as follows: 5187 * SHUT_RD 5188 * Disables further receive operations. No SCTP 5189 * protocol action is taken. 5190 * SHUT_WR 5191 * Disables further send operations, and initiates 5192 * the SCTP shutdown sequence. 5193 * SHUT_RDWR 5194 * Disables further send and receive operations 5195 * and initiates the SCTP shutdown sequence. 5196 */ 5197 static void sctp_shutdown(struct sock *sk, int how) 5198 { 5199 struct net *net = sock_net(sk); 5200 struct sctp_endpoint *ep; 5201 5202 if (!sctp_style(sk, TCP)) 5203 return; 5204 5205 ep = sctp_sk(sk)->ep; 5206 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5207 struct sctp_association *asoc; 5208 5209 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5210 asoc = list_entry(ep->asocs.next, 5211 struct sctp_association, asocs); 5212 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5213 } 5214 } 5215 5216 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5217 struct sctp_info *info) 5218 { 5219 struct sctp_transport *prim; 5220 struct list_head *pos; 5221 int mask; 5222 5223 memset(info, 0, sizeof(*info)); 5224 if (!asoc) { 5225 struct sctp_sock *sp = sctp_sk(sk); 5226 5227 info->sctpi_s_autoclose = sp->autoclose; 5228 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5229 info->sctpi_s_pd_point = sp->pd_point; 5230 info->sctpi_s_nodelay = sp->nodelay; 5231 info->sctpi_s_disable_fragments = sp->disable_fragments; 5232 info->sctpi_s_v4mapped = sp->v4mapped; 5233 info->sctpi_s_frag_interleave = sp->frag_interleave; 5234 info->sctpi_s_type = sp->type; 5235 5236 return 0; 5237 } 5238 5239 info->sctpi_tag = asoc->c.my_vtag; 5240 info->sctpi_state = asoc->state; 5241 info->sctpi_rwnd = asoc->a_rwnd; 5242 info->sctpi_unackdata = asoc->unack_data; 5243 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5244 info->sctpi_instrms = asoc->stream.incnt; 5245 info->sctpi_outstrms = asoc->stream.outcnt; 5246 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5247 info->sctpi_inqueue++; 5248 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5249 info->sctpi_outqueue++; 5250 info->sctpi_overall_error = asoc->overall_error_count; 5251 info->sctpi_max_burst = asoc->max_burst; 5252 info->sctpi_maxseg = asoc->frag_point; 5253 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5254 info->sctpi_peer_tag = asoc->c.peer_vtag; 5255 5256 mask = asoc->peer.ecn_capable << 1; 5257 mask = (mask | asoc->peer.ipv4_address) << 1; 5258 mask = (mask | asoc->peer.ipv6_address) << 1; 5259 mask = (mask | asoc->peer.hostname_address) << 1; 5260 mask = (mask | asoc->peer.asconf_capable) << 1; 5261 mask = (mask | asoc->peer.prsctp_capable) << 1; 5262 mask = (mask | asoc->peer.auth_capable); 5263 info->sctpi_peer_capable = mask; 5264 mask = asoc->peer.sack_needed << 1; 5265 mask = (mask | asoc->peer.sack_generation) << 1; 5266 mask = (mask | asoc->peer.zero_window_announced); 5267 info->sctpi_peer_sack = mask; 5268 5269 info->sctpi_isacks = asoc->stats.isacks; 5270 info->sctpi_osacks = asoc->stats.osacks; 5271 info->sctpi_opackets = asoc->stats.opackets; 5272 info->sctpi_ipackets = asoc->stats.ipackets; 5273 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5274 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5275 info->sctpi_idupchunks = asoc->stats.idupchunks; 5276 info->sctpi_gapcnt = asoc->stats.gapcnt; 5277 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5278 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5279 info->sctpi_oodchunks = asoc->stats.oodchunks; 5280 info->sctpi_iodchunks = asoc->stats.iodchunks; 5281 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5282 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5283 5284 prim = asoc->peer.primary_path; 5285 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5286 info->sctpi_p_state = prim->state; 5287 info->sctpi_p_cwnd = prim->cwnd; 5288 info->sctpi_p_srtt = prim->srtt; 5289 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5290 info->sctpi_p_hbinterval = prim->hbinterval; 5291 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5292 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5293 info->sctpi_p_ssthresh = prim->ssthresh; 5294 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5295 info->sctpi_p_flight_size = prim->flight_size; 5296 info->sctpi_p_error = prim->error_count; 5297 5298 return 0; 5299 } 5300 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5301 5302 /* use callback to avoid exporting the core structure */ 5303 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5304 { 5305 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5306 5307 rhashtable_walk_start(iter); 5308 } 5309 5310 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5311 { 5312 rhashtable_walk_stop(iter); 5313 rhashtable_walk_exit(iter); 5314 } 5315 5316 struct sctp_transport *sctp_transport_get_next(struct net *net, 5317 struct rhashtable_iter *iter) 5318 { 5319 struct sctp_transport *t; 5320 5321 t = rhashtable_walk_next(iter); 5322 for (; t; t = rhashtable_walk_next(iter)) { 5323 if (IS_ERR(t)) { 5324 if (PTR_ERR(t) == -EAGAIN) 5325 continue; 5326 break; 5327 } 5328 5329 if (!sctp_transport_hold(t)) 5330 continue; 5331 5332 if (net_eq(sock_net(t->asoc->base.sk), net) && 5333 t->asoc->peer.primary_path == t) 5334 break; 5335 5336 sctp_transport_put(t); 5337 } 5338 5339 return t; 5340 } 5341 5342 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5343 struct rhashtable_iter *iter, 5344 int pos) 5345 { 5346 struct sctp_transport *t; 5347 5348 if (!pos) 5349 return SEQ_START_TOKEN; 5350 5351 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5352 if (!--pos) 5353 break; 5354 sctp_transport_put(t); 5355 } 5356 5357 return t; 5358 } 5359 5360 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5361 void *p) { 5362 int err = 0; 5363 int hash = 0; 5364 struct sctp_ep_common *epb; 5365 struct sctp_hashbucket *head; 5366 5367 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5368 hash++, head++) { 5369 read_lock_bh(&head->lock); 5370 sctp_for_each_hentry(epb, &head->chain) { 5371 err = cb(sctp_ep(epb), p); 5372 if (err) 5373 break; 5374 } 5375 read_unlock_bh(&head->lock); 5376 } 5377 5378 return err; 5379 } 5380 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5381 5382 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5383 struct net *net, 5384 const union sctp_addr *laddr, 5385 const union sctp_addr *paddr, void *p) 5386 { 5387 struct sctp_transport *transport; 5388 int err; 5389 5390 rcu_read_lock(); 5391 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5392 rcu_read_unlock(); 5393 if (!transport) 5394 return -ENOENT; 5395 5396 err = cb(transport, p); 5397 sctp_transport_put(transport); 5398 5399 return err; 5400 } 5401 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5402 5403 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5404 int (*cb_done)(struct sctp_transport *, void *), 5405 struct net *net, int *pos, void *p) { 5406 struct rhashtable_iter hti; 5407 struct sctp_transport *tsp; 5408 int ret; 5409 5410 again: 5411 ret = 0; 5412 sctp_transport_walk_start(&hti); 5413 5414 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5415 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5416 ret = cb(tsp, p); 5417 if (ret) 5418 break; 5419 (*pos)++; 5420 sctp_transport_put(tsp); 5421 } 5422 sctp_transport_walk_stop(&hti); 5423 5424 if (ret) { 5425 if (cb_done && !cb_done(tsp, p)) { 5426 (*pos)++; 5427 sctp_transport_put(tsp); 5428 goto again; 5429 } 5430 sctp_transport_put(tsp); 5431 } 5432 5433 return ret; 5434 } 5435 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5436 5437 /* 7.2.1 Association Status (SCTP_STATUS) 5438 5439 * Applications can retrieve current status information about an 5440 * association, including association state, peer receiver window size, 5441 * number of unacked data chunks, and number of data chunks pending 5442 * receipt. This information is read-only. 5443 */ 5444 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5445 char __user *optval, 5446 int __user *optlen) 5447 { 5448 struct sctp_status status; 5449 struct sctp_association *asoc = NULL; 5450 struct sctp_transport *transport; 5451 sctp_assoc_t associd; 5452 int retval = 0; 5453 5454 if (len < sizeof(status)) { 5455 retval = -EINVAL; 5456 goto out; 5457 } 5458 5459 len = sizeof(status); 5460 if (copy_from_user(&status, optval, len)) { 5461 retval = -EFAULT; 5462 goto out; 5463 } 5464 5465 associd = status.sstat_assoc_id; 5466 asoc = sctp_id2assoc(sk, associd); 5467 if (!asoc) { 5468 retval = -EINVAL; 5469 goto out; 5470 } 5471 5472 transport = asoc->peer.primary_path; 5473 5474 status.sstat_assoc_id = sctp_assoc2id(asoc); 5475 status.sstat_state = sctp_assoc_to_state(asoc); 5476 status.sstat_rwnd = asoc->peer.rwnd; 5477 status.sstat_unackdata = asoc->unack_data; 5478 5479 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5480 status.sstat_instrms = asoc->stream.incnt; 5481 status.sstat_outstrms = asoc->stream.outcnt; 5482 status.sstat_fragmentation_point = asoc->frag_point; 5483 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5484 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5485 transport->af_specific->sockaddr_len); 5486 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5487 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5488 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5489 status.sstat_primary.spinfo_state = transport->state; 5490 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5491 status.sstat_primary.spinfo_srtt = transport->srtt; 5492 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5493 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5494 5495 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5496 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5497 5498 if (put_user(len, optlen)) { 5499 retval = -EFAULT; 5500 goto out; 5501 } 5502 5503 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5504 __func__, len, status.sstat_state, status.sstat_rwnd, 5505 status.sstat_assoc_id); 5506 5507 if (copy_to_user(optval, &status, len)) { 5508 retval = -EFAULT; 5509 goto out; 5510 } 5511 5512 out: 5513 return retval; 5514 } 5515 5516 5517 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5518 * 5519 * Applications can retrieve information about a specific peer address 5520 * of an association, including its reachability state, congestion 5521 * window, and retransmission timer values. This information is 5522 * read-only. 5523 */ 5524 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5525 char __user *optval, 5526 int __user *optlen) 5527 { 5528 struct sctp_paddrinfo pinfo; 5529 struct sctp_transport *transport; 5530 int retval = 0; 5531 5532 if (len < sizeof(pinfo)) { 5533 retval = -EINVAL; 5534 goto out; 5535 } 5536 5537 len = sizeof(pinfo); 5538 if (copy_from_user(&pinfo, optval, len)) { 5539 retval = -EFAULT; 5540 goto out; 5541 } 5542 5543 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5544 pinfo.spinfo_assoc_id); 5545 if (!transport) 5546 return -EINVAL; 5547 5548 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5549 pinfo.spinfo_state = transport->state; 5550 pinfo.spinfo_cwnd = transport->cwnd; 5551 pinfo.spinfo_srtt = transport->srtt; 5552 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5553 pinfo.spinfo_mtu = transport->pathmtu; 5554 5555 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5556 pinfo.spinfo_state = SCTP_ACTIVE; 5557 5558 if (put_user(len, optlen)) { 5559 retval = -EFAULT; 5560 goto out; 5561 } 5562 5563 if (copy_to_user(optval, &pinfo, len)) { 5564 retval = -EFAULT; 5565 goto out; 5566 } 5567 5568 out: 5569 return retval; 5570 } 5571 5572 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5573 * 5574 * This option is a on/off flag. If enabled no SCTP message 5575 * fragmentation will be performed. Instead if a message being sent 5576 * exceeds the current PMTU size, the message will NOT be sent and 5577 * instead a error will be indicated to the user. 5578 */ 5579 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5580 char __user *optval, int __user *optlen) 5581 { 5582 int val; 5583 5584 if (len < sizeof(int)) 5585 return -EINVAL; 5586 5587 len = sizeof(int); 5588 val = (sctp_sk(sk)->disable_fragments == 1); 5589 if (put_user(len, optlen)) 5590 return -EFAULT; 5591 if (copy_to_user(optval, &val, len)) 5592 return -EFAULT; 5593 return 0; 5594 } 5595 5596 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5597 * 5598 * This socket option is used to specify various notifications and 5599 * ancillary data the user wishes to receive. 5600 */ 5601 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5602 int __user *optlen) 5603 { 5604 struct sctp_event_subscribe subscribe; 5605 __u8 *sn_type = (__u8 *)&subscribe; 5606 int i; 5607 5608 if (len == 0) 5609 return -EINVAL; 5610 if (len > sizeof(struct sctp_event_subscribe)) 5611 len = sizeof(struct sctp_event_subscribe); 5612 if (put_user(len, optlen)) 5613 return -EFAULT; 5614 5615 for (i = 0; i < len; i++) 5616 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5617 SCTP_SN_TYPE_BASE + i); 5618 5619 if (copy_to_user(optval, &subscribe, len)) 5620 return -EFAULT; 5621 5622 return 0; 5623 } 5624 5625 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5626 * 5627 * This socket option is applicable to the UDP-style socket only. When 5628 * set it will cause associations that are idle for more than the 5629 * specified number of seconds to automatically close. An association 5630 * being idle is defined an association that has NOT sent or received 5631 * user data. The special value of '0' indicates that no automatic 5632 * close of any associations should be performed. The option expects an 5633 * integer defining the number of seconds of idle time before an 5634 * association is closed. 5635 */ 5636 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5637 { 5638 /* Applicable to UDP-style socket only */ 5639 if (sctp_style(sk, TCP)) 5640 return -EOPNOTSUPP; 5641 if (len < sizeof(int)) 5642 return -EINVAL; 5643 len = sizeof(int); 5644 if (put_user(len, optlen)) 5645 return -EFAULT; 5646 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5647 return -EFAULT; 5648 return 0; 5649 } 5650 5651 /* Helper routine to branch off an association to a new socket. */ 5652 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5653 { 5654 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5655 struct sctp_sock *sp = sctp_sk(sk); 5656 struct socket *sock; 5657 int err = 0; 5658 5659 /* Do not peel off from one netns to another one. */ 5660 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5661 return -EINVAL; 5662 5663 if (!asoc) 5664 return -EINVAL; 5665 5666 /* An association cannot be branched off from an already peeled-off 5667 * socket, nor is this supported for tcp style sockets. 5668 */ 5669 if (!sctp_style(sk, UDP)) 5670 return -EINVAL; 5671 5672 /* Create a new socket. */ 5673 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5674 if (err < 0) 5675 return err; 5676 5677 sctp_copy_sock(sock->sk, sk, asoc); 5678 5679 /* Make peeled-off sockets more like 1-1 accepted sockets. 5680 * Set the daddr and initialize id to something more random and also 5681 * copy over any ip options. 5682 */ 5683 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5684 sp->pf->copy_ip_options(sk, sock->sk); 5685 5686 /* Populate the fields of the newsk from the oldsk and migrate the 5687 * asoc to the newsk. 5688 */ 5689 err = sctp_sock_migrate(sk, sock->sk, asoc, 5690 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5691 if (err) { 5692 sock_release(sock); 5693 sock = NULL; 5694 } 5695 5696 *sockp = sock; 5697 5698 return err; 5699 } 5700 EXPORT_SYMBOL(sctp_do_peeloff); 5701 5702 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5703 struct file **newfile, unsigned flags) 5704 { 5705 struct socket *newsock; 5706 int retval; 5707 5708 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5709 if (retval < 0) 5710 goto out; 5711 5712 /* Map the socket to an unused fd that can be returned to the user. */ 5713 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5714 if (retval < 0) { 5715 sock_release(newsock); 5716 goto out; 5717 } 5718 5719 *newfile = sock_alloc_file(newsock, 0, NULL); 5720 if (IS_ERR(*newfile)) { 5721 put_unused_fd(retval); 5722 retval = PTR_ERR(*newfile); 5723 *newfile = NULL; 5724 return retval; 5725 } 5726 5727 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5728 retval); 5729 5730 peeloff->sd = retval; 5731 5732 if (flags & SOCK_NONBLOCK) 5733 (*newfile)->f_flags |= O_NONBLOCK; 5734 out: 5735 return retval; 5736 } 5737 5738 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5739 { 5740 sctp_peeloff_arg_t peeloff; 5741 struct file *newfile = NULL; 5742 int retval = 0; 5743 5744 if (len < sizeof(sctp_peeloff_arg_t)) 5745 return -EINVAL; 5746 len = sizeof(sctp_peeloff_arg_t); 5747 if (copy_from_user(&peeloff, optval, len)) 5748 return -EFAULT; 5749 5750 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5751 if (retval < 0) 5752 goto out; 5753 5754 /* Return the fd mapped to the new socket. */ 5755 if (put_user(len, optlen)) { 5756 fput(newfile); 5757 put_unused_fd(retval); 5758 return -EFAULT; 5759 } 5760 5761 if (copy_to_user(optval, &peeloff, len)) { 5762 fput(newfile); 5763 put_unused_fd(retval); 5764 return -EFAULT; 5765 } 5766 fd_install(retval, newfile); 5767 out: 5768 return retval; 5769 } 5770 5771 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5772 char __user *optval, int __user *optlen) 5773 { 5774 sctp_peeloff_flags_arg_t peeloff; 5775 struct file *newfile = NULL; 5776 int retval = 0; 5777 5778 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5779 return -EINVAL; 5780 len = sizeof(sctp_peeloff_flags_arg_t); 5781 if (copy_from_user(&peeloff, optval, len)) 5782 return -EFAULT; 5783 5784 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5785 &newfile, peeloff.flags); 5786 if (retval < 0) 5787 goto out; 5788 5789 /* Return the fd mapped to the new socket. */ 5790 if (put_user(len, optlen)) { 5791 fput(newfile); 5792 put_unused_fd(retval); 5793 return -EFAULT; 5794 } 5795 5796 if (copy_to_user(optval, &peeloff, len)) { 5797 fput(newfile); 5798 put_unused_fd(retval); 5799 return -EFAULT; 5800 } 5801 fd_install(retval, newfile); 5802 out: 5803 return retval; 5804 } 5805 5806 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5807 * 5808 * Applications can enable or disable heartbeats for any peer address of 5809 * an association, modify an address's heartbeat interval, force a 5810 * heartbeat to be sent immediately, and adjust the address's maximum 5811 * number of retransmissions sent before an address is considered 5812 * unreachable. The following structure is used to access and modify an 5813 * address's parameters: 5814 * 5815 * struct sctp_paddrparams { 5816 * sctp_assoc_t spp_assoc_id; 5817 * struct sockaddr_storage spp_address; 5818 * uint32_t spp_hbinterval; 5819 * uint16_t spp_pathmaxrxt; 5820 * uint32_t spp_pathmtu; 5821 * uint32_t spp_sackdelay; 5822 * uint32_t spp_flags; 5823 * }; 5824 * 5825 * spp_assoc_id - (one-to-many style socket) This is filled in the 5826 * application, and identifies the association for 5827 * this query. 5828 * spp_address - This specifies which address is of interest. 5829 * spp_hbinterval - This contains the value of the heartbeat interval, 5830 * in milliseconds. If a value of zero 5831 * is present in this field then no changes are to 5832 * be made to this parameter. 5833 * spp_pathmaxrxt - This contains the maximum number of 5834 * retransmissions before this address shall be 5835 * considered unreachable. If a value of zero 5836 * is present in this field then no changes are to 5837 * be made to this parameter. 5838 * spp_pathmtu - When Path MTU discovery is disabled the value 5839 * specified here will be the "fixed" path mtu. 5840 * Note that if the spp_address field is empty 5841 * then all associations on this address will 5842 * have this fixed path mtu set upon them. 5843 * 5844 * spp_sackdelay - When delayed sack is enabled, this value specifies 5845 * the number of milliseconds that sacks will be delayed 5846 * for. This value will apply to all addresses of an 5847 * association if the spp_address field is empty. Note 5848 * also, that if delayed sack is enabled and this 5849 * value is set to 0, no change is made to the last 5850 * recorded delayed sack timer value. 5851 * 5852 * spp_flags - These flags are used to control various features 5853 * on an association. The flag field may contain 5854 * zero or more of the following options. 5855 * 5856 * SPP_HB_ENABLE - Enable heartbeats on the 5857 * specified address. Note that if the address 5858 * field is empty all addresses for the association 5859 * have heartbeats enabled upon them. 5860 * 5861 * SPP_HB_DISABLE - Disable heartbeats on the 5862 * speicifed address. Note that if the address 5863 * field is empty all addresses for the association 5864 * will have their heartbeats disabled. Note also 5865 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5866 * mutually exclusive, only one of these two should 5867 * be specified. Enabling both fields will have 5868 * undetermined results. 5869 * 5870 * SPP_HB_DEMAND - Request a user initiated heartbeat 5871 * to be made immediately. 5872 * 5873 * SPP_PMTUD_ENABLE - This field will enable PMTU 5874 * discovery upon the specified address. Note that 5875 * if the address feild is empty then all addresses 5876 * on the association are effected. 5877 * 5878 * SPP_PMTUD_DISABLE - This field will disable PMTU 5879 * discovery upon the specified address. Note that 5880 * if the address feild is empty then all addresses 5881 * on the association are effected. Not also that 5882 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5883 * exclusive. Enabling both will have undetermined 5884 * results. 5885 * 5886 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5887 * on delayed sack. The time specified in spp_sackdelay 5888 * is used to specify the sack delay for this address. Note 5889 * that if spp_address is empty then all addresses will 5890 * enable delayed sack and take on the sack delay 5891 * value specified in spp_sackdelay. 5892 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5893 * off delayed sack. If the spp_address field is blank then 5894 * delayed sack is disabled for the entire association. Note 5895 * also that this field is mutually exclusive to 5896 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5897 * results. 5898 * 5899 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5900 * setting of the IPV6 flow label value. The value is 5901 * contained in the spp_ipv6_flowlabel field. 5902 * Upon retrieval, this flag will be set to indicate that 5903 * the spp_ipv6_flowlabel field has a valid value returned. 5904 * If a specific destination address is set (in the 5905 * spp_address field), then the value returned is that of 5906 * the address. If just an association is specified (and 5907 * no address), then the association's default flow label 5908 * is returned. If neither an association nor a destination 5909 * is specified, then the socket's default flow label is 5910 * returned. For non-IPv6 sockets, this flag will be left 5911 * cleared. 5912 * 5913 * SPP_DSCP: Setting this flag enables the setting of the 5914 * Differentiated Services Code Point (DSCP) value 5915 * associated with either the association or a specific 5916 * address. The value is obtained in the spp_dscp field. 5917 * Upon retrieval, this flag will be set to indicate that 5918 * the spp_dscp field has a valid value returned. If a 5919 * specific destination address is set when called (in the 5920 * spp_address field), then that specific destination 5921 * address's DSCP value is returned. If just an association 5922 * is specified, then the association's default DSCP is 5923 * returned. If neither an association nor a destination is 5924 * specified, then the socket's default DSCP is returned. 5925 * 5926 * spp_ipv6_flowlabel 5927 * - This field is used in conjunction with the 5928 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5929 * The 20 least significant bits are used for the flow 5930 * label. This setting has precedence over any IPv6-layer 5931 * setting. 5932 * 5933 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5934 * and contains the DSCP. The 6 most significant bits are 5935 * used for the DSCP. This setting has precedence over any 5936 * IPv4- or IPv6- layer setting. 5937 */ 5938 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5939 char __user *optval, int __user *optlen) 5940 { 5941 struct sctp_paddrparams params; 5942 struct sctp_transport *trans = NULL; 5943 struct sctp_association *asoc = NULL; 5944 struct sctp_sock *sp = sctp_sk(sk); 5945 5946 if (len >= sizeof(params)) 5947 len = sizeof(params); 5948 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5949 spp_ipv6_flowlabel), 4)) 5950 len = ALIGN(offsetof(struct sctp_paddrparams, 5951 spp_ipv6_flowlabel), 4); 5952 else 5953 return -EINVAL; 5954 5955 if (copy_from_user(¶ms, optval, len)) 5956 return -EFAULT; 5957 5958 /* If an address other than INADDR_ANY is specified, and 5959 * no transport is found, then the request is invalid. 5960 */ 5961 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5962 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5963 params.spp_assoc_id); 5964 if (!trans) { 5965 pr_debug("%s: failed no transport\n", __func__); 5966 return -EINVAL; 5967 } 5968 } 5969 5970 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5971 * socket is a one to many style socket, and an association 5972 * was not found, then the id was invalid. 5973 */ 5974 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5975 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5976 sctp_style(sk, UDP)) { 5977 pr_debug("%s: failed no association\n", __func__); 5978 return -EINVAL; 5979 } 5980 5981 if (trans) { 5982 /* Fetch transport values. */ 5983 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5984 params.spp_pathmtu = trans->pathmtu; 5985 params.spp_pathmaxrxt = trans->pathmaxrxt; 5986 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5987 5988 /*draft-11 doesn't say what to return in spp_flags*/ 5989 params.spp_flags = trans->param_flags; 5990 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5991 params.spp_ipv6_flowlabel = trans->flowlabel & 5992 SCTP_FLOWLABEL_VAL_MASK; 5993 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5994 } 5995 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5996 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5997 params.spp_flags |= SPP_DSCP; 5998 } 5999 } else if (asoc) { 6000 /* Fetch association values. */ 6001 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6002 params.spp_pathmtu = asoc->pathmtu; 6003 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6004 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6005 6006 /*draft-11 doesn't say what to return in spp_flags*/ 6007 params.spp_flags = asoc->param_flags; 6008 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6009 params.spp_ipv6_flowlabel = asoc->flowlabel & 6010 SCTP_FLOWLABEL_VAL_MASK; 6011 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6012 } 6013 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6014 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6015 params.spp_flags |= SPP_DSCP; 6016 } 6017 } else { 6018 /* Fetch socket values. */ 6019 params.spp_hbinterval = sp->hbinterval; 6020 params.spp_pathmtu = sp->pathmtu; 6021 params.spp_sackdelay = sp->sackdelay; 6022 params.spp_pathmaxrxt = sp->pathmaxrxt; 6023 6024 /*draft-11 doesn't say what to return in spp_flags*/ 6025 params.spp_flags = sp->param_flags; 6026 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6027 params.spp_ipv6_flowlabel = sp->flowlabel & 6028 SCTP_FLOWLABEL_VAL_MASK; 6029 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6030 } 6031 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6032 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6033 params.spp_flags |= SPP_DSCP; 6034 } 6035 } 6036 6037 if (copy_to_user(optval, ¶ms, len)) 6038 return -EFAULT; 6039 6040 if (put_user(len, optlen)) 6041 return -EFAULT; 6042 6043 return 0; 6044 } 6045 6046 /* 6047 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6048 * 6049 * This option will effect the way delayed acks are performed. This 6050 * option allows you to get or set the delayed ack time, in 6051 * milliseconds. It also allows changing the delayed ack frequency. 6052 * Changing the frequency to 1 disables the delayed sack algorithm. If 6053 * the assoc_id is 0, then this sets or gets the endpoints default 6054 * values. If the assoc_id field is non-zero, then the set or get 6055 * effects the specified association for the one to many model (the 6056 * assoc_id field is ignored by the one to one model). Note that if 6057 * sack_delay or sack_freq are 0 when setting this option, then the 6058 * current values will remain unchanged. 6059 * 6060 * struct sctp_sack_info { 6061 * sctp_assoc_t sack_assoc_id; 6062 * uint32_t sack_delay; 6063 * uint32_t sack_freq; 6064 * }; 6065 * 6066 * sack_assoc_id - This parameter, indicates which association the user 6067 * is performing an action upon. Note that if this field's value is 6068 * zero then the endpoints default value is changed (effecting future 6069 * associations only). 6070 * 6071 * sack_delay - This parameter contains the number of milliseconds that 6072 * the user is requesting the delayed ACK timer be set to. Note that 6073 * this value is defined in the standard to be between 200 and 500 6074 * milliseconds. 6075 * 6076 * sack_freq - This parameter contains the number of packets that must 6077 * be received before a sack is sent without waiting for the delay 6078 * timer to expire. The default value for this is 2, setting this 6079 * value to 1 will disable the delayed sack algorithm. 6080 */ 6081 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6082 char __user *optval, 6083 int __user *optlen) 6084 { 6085 struct sctp_sack_info params; 6086 struct sctp_association *asoc = NULL; 6087 struct sctp_sock *sp = sctp_sk(sk); 6088 6089 if (len >= sizeof(struct sctp_sack_info)) { 6090 len = sizeof(struct sctp_sack_info); 6091 6092 if (copy_from_user(¶ms, optval, len)) 6093 return -EFAULT; 6094 } else if (len == sizeof(struct sctp_assoc_value)) { 6095 pr_warn_ratelimited(DEPRECATED 6096 "%s (pid %d) " 6097 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6098 "Use struct sctp_sack_info instead\n", 6099 current->comm, task_pid_nr(current)); 6100 if (copy_from_user(¶ms, optval, len)) 6101 return -EFAULT; 6102 } else 6103 return -EINVAL; 6104 6105 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6106 * socket is a one to many style socket, and an association 6107 * was not found, then the id was invalid. 6108 */ 6109 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6110 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6111 sctp_style(sk, UDP)) 6112 return -EINVAL; 6113 6114 if (asoc) { 6115 /* Fetch association values. */ 6116 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6117 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6118 params.sack_freq = asoc->sackfreq; 6119 6120 } else { 6121 params.sack_delay = 0; 6122 params.sack_freq = 1; 6123 } 6124 } else { 6125 /* Fetch socket values. */ 6126 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6127 params.sack_delay = sp->sackdelay; 6128 params.sack_freq = sp->sackfreq; 6129 } else { 6130 params.sack_delay = 0; 6131 params.sack_freq = 1; 6132 } 6133 } 6134 6135 if (copy_to_user(optval, ¶ms, len)) 6136 return -EFAULT; 6137 6138 if (put_user(len, optlen)) 6139 return -EFAULT; 6140 6141 return 0; 6142 } 6143 6144 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6145 * 6146 * Applications can specify protocol parameters for the default association 6147 * initialization. The option name argument to setsockopt() and getsockopt() 6148 * is SCTP_INITMSG. 6149 * 6150 * Setting initialization parameters is effective only on an unconnected 6151 * socket (for UDP-style sockets only future associations are effected 6152 * by the change). With TCP-style sockets, this option is inherited by 6153 * sockets derived from a listener socket. 6154 */ 6155 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6156 { 6157 if (len < sizeof(struct sctp_initmsg)) 6158 return -EINVAL; 6159 len = sizeof(struct sctp_initmsg); 6160 if (put_user(len, optlen)) 6161 return -EFAULT; 6162 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6163 return -EFAULT; 6164 return 0; 6165 } 6166 6167 6168 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6169 char __user *optval, int __user *optlen) 6170 { 6171 struct sctp_association *asoc; 6172 int cnt = 0; 6173 struct sctp_getaddrs getaddrs; 6174 struct sctp_transport *from; 6175 void __user *to; 6176 union sctp_addr temp; 6177 struct sctp_sock *sp = sctp_sk(sk); 6178 int addrlen; 6179 size_t space_left; 6180 int bytes_copied; 6181 6182 if (len < sizeof(struct sctp_getaddrs)) 6183 return -EINVAL; 6184 6185 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6186 return -EFAULT; 6187 6188 /* For UDP-style sockets, id specifies the association to query. */ 6189 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6190 if (!asoc) 6191 return -EINVAL; 6192 6193 to = optval + offsetof(struct sctp_getaddrs, addrs); 6194 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6195 6196 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6197 transports) { 6198 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6199 addrlen = sctp_get_pf_specific(sk->sk_family) 6200 ->addr_to_user(sp, &temp); 6201 if (space_left < addrlen) 6202 return -ENOMEM; 6203 if (copy_to_user(to, &temp, addrlen)) 6204 return -EFAULT; 6205 to += addrlen; 6206 cnt++; 6207 space_left -= addrlen; 6208 } 6209 6210 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6211 return -EFAULT; 6212 bytes_copied = ((char __user *)to) - optval; 6213 if (put_user(bytes_copied, optlen)) 6214 return -EFAULT; 6215 6216 return 0; 6217 } 6218 6219 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6220 size_t space_left, int *bytes_copied) 6221 { 6222 struct sctp_sockaddr_entry *addr; 6223 union sctp_addr temp; 6224 int cnt = 0; 6225 int addrlen; 6226 struct net *net = sock_net(sk); 6227 6228 rcu_read_lock(); 6229 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6230 if (!addr->valid) 6231 continue; 6232 6233 if ((PF_INET == sk->sk_family) && 6234 (AF_INET6 == addr->a.sa.sa_family)) 6235 continue; 6236 if ((PF_INET6 == sk->sk_family) && 6237 inet_v6_ipv6only(sk) && 6238 (AF_INET == addr->a.sa.sa_family)) 6239 continue; 6240 memcpy(&temp, &addr->a, sizeof(temp)); 6241 if (!temp.v4.sin_port) 6242 temp.v4.sin_port = htons(port); 6243 6244 addrlen = sctp_get_pf_specific(sk->sk_family) 6245 ->addr_to_user(sctp_sk(sk), &temp); 6246 6247 if (space_left < addrlen) { 6248 cnt = -ENOMEM; 6249 break; 6250 } 6251 memcpy(to, &temp, addrlen); 6252 6253 to += addrlen; 6254 cnt++; 6255 space_left -= addrlen; 6256 *bytes_copied += addrlen; 6257 } 6258 rcu_read_unlock(); 6259 6260 return cnt; 6261 } 6262 6263 6264 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6265 char __user *optval, int __user *optlen) 6266 { 6267 struct sctp_bind_addr *bp; 6268 struct sctp_association *asoc; 6269 int cnt = 0; 6270 struct sctp_getaddrs getaddrs; 6271 struct sctp_sockaddr_entry *addr; 6272 void __user *to; 6273 union sctp_addr temp; 6274 struct sctp_sock *sp = sctp_sk(sk); 6275 int addrlen; 6276 int err = 0; 6277 size_t space_left; 6278 int bytes_copied = 0; 6279 void *addrs; 6280 void *buf; 6281 6282 if (len < sizeof(struct sctp_getaddrs)) 6283 return -EINVAL; 6284 6285 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6286 return -EFAULT; 6287 6288 /* 6289 * For UDP-style sockets, id specifies the association to query. 6290 * If the id field is set to the value '0' then the locally bound 6291 * addresses are returned without regard to any particular 6292 * association. 6293 */ 6294 if (0 == getaddrs.assoc_id) { 6295 bp = &sctp_sk(sk)->ep->base.bind_addr; 6296 } else { 6297 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6298 if (!asoc) 6299 return -EINVAL; 6300 bp = &asoc->base.bind_addr; 6301 } 6302 6303 to = optval + offsetof(struct sctp_getaddrs, addrs); 6304 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6305 6306 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6307 if (!addrs) 6308 return -ENOMEM; 6309 6310 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6311 * addresses from the global local address list. 6312 */ 6313 if (sctp_list_single_entry(&bp->address_list)) { 6314 addr = list_entry(bp->address_list.next, 6315 struct sctp_sockaddr_entry, list); 6316 if (sctp_is_any(sk, &addr->a)) { 6317 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6318 space_left, &bytes_copied); 6319 if (cnt < 0) { 6320 err = cnt; 6321 goto out; 6322 } 6323 goto copy_getaddrs; 6324 } 6325 } 6326 6327 buf = addrs; 6328 /* Protection on the bound address list is not needed since 6329 * in the socket option context we hold a socket lock and 6330 * thus the bound address list can't change. 6331 */ 6332 list_for_each_entry(addr, &bp->address_list, list) { 6333 memcpy(&temp, &addr->a, sizeof(temp)); 6334 addrlen = sctp_get_pf_specific(sk->sk_family) 6335 ->addr_to_user(sp, &temp); 6336 if (space_left < addrlen) { 6337 err = -ENOMEM; /*fixme: right error?*/ 6338 goto out; 6339 } 6340 memcpy(buf, &temp, addrlen); 6341 buf += addrlen; 6342 bytes_copied += addrlen; 6343 cnt++; 6344 space_left -= addrlen; 6345 } 6346 6347 copy_getaddrs: 6348 if (copy_to_user(to, addrs, bytes_copied)) { 6349 err = -EFAULT; 6350 goto out; 6351 } 6352 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6353 err = -EFAULT; 6354 goto out; 6355 } 6356 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6357 * but we can't change it anymore. 6358 */ 6359 if (put_user(bytes_copied, optlen)) 6360 err = -EFAULT; 6361 out: 6362 kfree(addrs); 6363 return err; 6364 } 6365 6366 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6367 * 6368 * Requests that the local SCTP stack use the enclosed peer address as 6369 * the association primary. The enclosed address must be one of the 6370 * association peer's addresses. 6371 */ 6372 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6373 char __user *optval, int __user *optlen) 6374 { 6375 struct sctp_prim prim; 6376 struct sctp_association *asoc; 6377 struct sctp_sock *sp = sctp_sk(sk); 6378 6379 if (len < sizeof(struct sctp_prim)) 6380 return -EINVAL; 6381 6382 len = sizeof(struct sctp_prim); 6383 6384 if (copy_from_user(&prim, optval, len)) 6385 return -EFAULT; 6386 6387 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6388 if (!asoc) 6389 return -EINVAL; 6390 6391 if (!asoc->peer.primary_path) 6392 return -ENOTCONN; 6393 6394 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6395 asoc->peer.primary_path->af_specific->sockaddr_len); 6396 6397 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6398 (union sctp_addr *)&prim.ssp_addr); 6399 6400 if (put_user(len, optlen)) 6401 return -EFAULT; 6402 if (copy_to_user(optval, &prim, len)) 6403 return -EFAULT; 6404 6405 return 0; 6406 } 6407 6408 /* 6409 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6410 * 6411 * Requests that the local endpoint set the specified Adaptation Layer 6412 * Indication parameter for all future INIT and INIT-ACK exchanges. 6413 */ 6414 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6415 char __user *optval, int __user *optlen) 6416 { 6417 struct sctp_setadaptation adaptation; 6418 6419 if (len < sizeof(struct sctp_setadaptation)) 6420 return -EINVAL; 6421 6422 len = sizeof(struct sctp_setadaptation); 6423 6424 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6425 6426 if (put_user(len, optlen)) 6427 return -EFAULT; 6428 if (copy_to_user(optval, &adaptation, len)) 6429 return -EFAULT; 6430 6431 return 0; 6432 } 6433 6434 /* 6435 * 6436 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6437 * 6438 * Applications that wish to use the sendto() system call may wish to 6439 * specify a default set of parameters that would normally be supplied 6440 * through the inclusion of ancillary data. This socket option allows 6441 * such an application to set the default sctp_sndrcvinfo structure. 6442 6443 6444 * The application that wishes to use this socket option simply passes 6445 * in to this call the sctp_sndrcvinfo structure defined in Section 6446 * 5.2.2) The input parameters accepted by this call include 6447 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6448 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6449 * to this call if the caller is using the UDP model. 6450 * 6451 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6452 */ 6453 static int sctp_getsockopt_default_send_param(struct sock *sk, 6454 int len, char __user *optval, 6455 int __user *optlen) 6456 { 6457 struct sctp_sock *sp = sctp_sk(sk); 6458 struct sctp_association *asoc; 6459 struct sctp_sndrcvinfo info; 6460 6461 if (len < sizeof(info)) 6462 return -EINVAL; 6463 6464 len = sizeof(info); 6465 6466 if (copy_from_user(&info, optval, len)) 6467 return -EFAULT; 6468 6469 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6470 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6471 sctp_style(sk, UDP)) 6472 return -EINVAL; 6473 6474 if (asoc) { 6475 info.sinfo_stream = asoc->default_stream; 6476 info.sinfo_flags = asoc->default_flags; 6477 info.sinfo_ppid = asoc->default_ppid; 6478 info.sinfo_context = asoc->default_context; 6479 info.sinfo_timetolive = asoc->default_timetolive; 6480 } else { 6481 info.sinfo_stream = sp->default_stream; 6482 info.sinfo_flags = sp->default_flags; 6483 info.sinfo_ppid = sp->default_ppid; 6484 info.sinfo_context = sp->default_context; 6485 info.sinfo_timetolive = sp->default_timetolive; 6486 } 6487 6488 if (put_user(len, optlen)) 6489 return -EFAULT; 6490 if (copy_to_user(optval, &info, len)) 6491 return -EFAULT; 6492 6493 return 0; 6494 } 6495 6496 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6497 * (SCTP_DEFAULT_SNDINFO) 6498 */ 6499 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6500 char __user *optval, 6501 int __user *optlen) 6502 { 6503 struct sctp_sock *sp = sctp_sk(sk); 6504 struct sctp_association *asoc; 6505 struct sctp_sndinfo info; 6506 6507 if (len < sizeof(info)) 6508 return -EINVAL; 6509 6510 len = sizeof(info); 6511 6512 if (copy_from_user(&info, optval, len)) 6513 return -EFAULT; 6514 6515 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6516 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6517 sctp_style(sk, UDP)) 6518 return -EINVAL; 6519 6520 if (asoc) { 6521 info.snd_sid = asoc->default_stream; 6522 info.snd_flags = asoc->default_flags; 6523 info.snd_ppid = asoc->default_ppid; 6524 info.snd_context = asoc->default_context; 6525 } else { 6526 info.snd_sid = sp->default_stream; 6527 info.snd_flags = sp->default_flags; 6528 info.snd_ppid = sp->default_ppid; 6529 info.snd_context = sp->default_context; 6530 } 6531 6532 if (put_user(len, optlen)) 6533 return -EFAULT; 6534 if (copy_to_user(optval, &info, len)) 6535 return -EFAULT; 6536 6537 return 0; 6538 } 6539 6540 /* 6541 * 6542 * 7.1.5 SCTP_NODELAY 6543 * 6544 * Turn on/off any Nagle-like algorithm. This means that packets are 6545 * generally sent as soon as possible and no unnecessary delays are 6546 * introduced, at the cost of more packets in the network. Expects an 6547 * integer boolean flag. 6548 */ 6549 6550 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6551 char __user *optval, int __user *optlen) 6552 { 6553 int val; 6554 6555 if (len < sizeof(int)) 6556 return -EINVAL; 6557 6558 len = sizeof(int); 6559 val = (sctp_sk(sk)->nodelay == 1); 6560 if (put_user(len, optlen)) 6561 return -EFAULT; 6562 if (copy_to_user(optval, &val, len)) 6563 return -EFAULT; 6564 return 0; 6565 } 6566 6567 /* 6568 * 6569 * 7.1.1 SCTP_RTOINFO 6570 * 6571 * The protocol parameters used to initialize and bound retransmission 6572 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6573 * and modify these parameters. 6574 * All parameters are time values, in milliseconds. A value of 0, when 6575 * modifying the parameters, indicates that the current value should not 6576 * be changed. 6577 * 6578 */ 6579 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6580 char __user *optval, 6581 int __user *optlen) { 6582 struct sctp_rtoinfo rtoinfo; 6583 struct sctp_association *asoc; 6584 6585 if (len < sizeof (struct sctp_rtoinfo)) 6586 return -EINVAL; 6587 6588 len = sizeof(struct sctp_rtoinfo); 6589 6590 if (copy_from_user(&rtoinfo, optval, len)) 6591 return -EFAULT; 6592 6593 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6594 6595 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6596 sctp_style(sk, UDP)) 6597 return -EINVAL; 6598 6599 /* Values corresponding to the specific association. */ 6600 if (asoc) { 6601 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6602 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6603 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6604 } else { 6605 /* Values corresponding to the endpoint. */ 6606 struct sctp_sock *sp = sctp_sk(sk); 6607 6608 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6609 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6610 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6611 } 6612 6613 if (put_user(len, optlen)) 6614 return -EFAULT; 6615 6616 if (copy_to_user(optval, &rtoinfo, len)) 6617 return -EFAULT; 6618 6619 return 0; 6620 } 6621 6622 /* 6623 * 6624 * 7.1.2 SCTP_ASSOCINFO 6625 * 6626 * This option is used to tune the maximum retransmission attempts 6627 * of the association. 6628 * Returns an error if the new association retransmission value is 6629 * greater than the sum of the retransmission value of the peer. 6630 * See [SCTP] for more information. 6631 * 6632 */ 6633 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6634 char __user *optval, 6635 int __user *optlen) 6636 { 6637 6638 struct sctp_assocparams assocparams; 6639 struct sctp_association *asoc; 6640 struct list_head *pos; 6641 int cnt = 0; 6642 6643 if (len < sizeof (struct sctp_assocparams)) 6644 return -EINVAL; 6645 6646 len = sizeof(struct sctp_assocparams); 6647 6648 if (copy_from_user(&assocparams, optval, len)) 6649 return -EFAULT; 6650 6651 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6652 6653 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6654 sctp_style(sk, UDP)) 6655 return -EINVAL; 6656 6657 /* Values correspoinding to the specific association */ 6658 if (asoc) { 6659 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6660 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6661 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6662 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6663 6664 list_for_each(pos, &asoc->peer.transport_addr_list) { 6665 cnt++; 6666 } 6667 6668 assocparams.sasoc_number_peer_destinations = cnt; 6669 } else { 6670 /* Values corresponding to the endpoint */ 6671 struct sctp_sock *sp = sctp_sk(sk); 6672 6673 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6674 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6675 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6676 assocparams.sasoc_cookie_life = 6677 sp->assocparams.sasoc_cookie_life; 6678 assocparams.sasoc_number_peer_destinations = 6679 sp->assocparams. 6680 sasoc_number_peer_destinations; 6681 } 6682 6683 if (put_user(len, optlen)) 6684 return -EFAULT; 6685 6686 if (copy_to_user(optval, &assocparams, len)) 6687 return -EFAULT; 6688 6689 return 0; 6690 } 6691 6692 /* 6693 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6694 * 6695 * This socket option is a boolean flag which turns on or off mapped V4 6696 * addresses. If this option is turned on and the socket is type 6697 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6698 * If this option is turned off, then no mapping will be done of V4 6699 * addresses and a user will receive both PF_INET6 and PF_INET type 6700 * addresses on the socket. 6701 */ 6702 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6703 char __user *optval, int __user *optlen) 6704 { 6705 int val; 6706 struct sctp_sock *sp = sctp_sk(sk); 6707 6708 if (len < sizeof(int)) 6709 return -EINVAL; 6710 6711 len = sizeof(int); 6712 val = sp->v4mapped; 6713 if (put_user(len, optlen)) 6714 return -EFAULT; 6715 if (copy_to_user(optval, &val, len)) 6716 return -EFAULT; 6717 6718 return 0; 6719 } 6720 6721 /* 6722 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6723 * (chapter and verse is quoted at sctp_setsockopt_context()) 6724 */ 6725 static int sctp_getsockopt_context(struct sock *sk, int len, 6726 char __user *optval, int __user *optlen) 6727 { 6728 struct sctp_assoc_value params; 6729 struct sctp_association *asoc; 6730 6731 if (len < sizeof(struct sctp_assoc_value)) 6732 return -EINVAL; 6733 6734 len = sizeof(struct sctp_assoc_value); 6735 6736 if (copy_from_user(¶ms, optval, len)) 6737 return -EFAULT; 6738 6739 asoc = sctp_id2assoc(sk, params.assoc_id); 6740 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6741 sctp_style(sk, UDP)) 6742 return -EINVAL; 6743 6744 params.assoc_value = asoc ? asoc->default_rcv_context 6745 : sctp_sk(sk)->default_rcv_context; 6746 6747 if (put_user(len, optlen)) 6748 return -EFAULT; 6749 if (copy_to_user(optval, ¶ms, len)) 6750 return -EFAULT; 6751 6752 return 0; 6753 } 6754 6755 /* 6756 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6757 * This option will get or set the maximum size to put in any outgoing 6758 * SCTP DATA chunk. If a message is larger than this size it will be 6759 * fragmented by SCTP into the specified size. Note that the underlying 6760 * SCTP implementation may fragment into smaller sized chunks when the 6761 * PMTU of the underlying association is smaller than the value set by 6762 * the user. The default value for this option is '0' which indicates 6763 * the user is NOT limiting fragmentation and only the PMTU will effect 6764 * SCTP's choice of DATA chunk size. Note also that values set larger 6765 * than the maximum size of an IP datagram will effectively let SCTP 6766 * control fragmentation (i.e. the same as setting this option to 0). 6767 * 6768 * The following structure is used to access and modify this parameter: 6769 * 6770 * struct sctp_assoc_value { 6771 * sctp_assoc_t assoc_id; 6772 * uint32_t assoc_value; 6773 * }; 6774 * 6775 * assoc_id: This parameter is ignored for one-to-one style sockets. 6776 * For one-to-many style sockets this parameter indicates which 6777 * association the user is performing an action upon. Note that if 6778 * this field's value is zero then the endpoints default value is 6779 * changed (effecting future associations only). 6780 * assoc_value: This parameter specifies the maximum size in bytes. 6781 */ 6782 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6783 char __user *optval, int __user *optlen) 6784 { 6785 struct sctp_assoc_value params; 6786 struct sctp_association *asoc; 6787 6788 if (len == sizeof(int)) { 6789 pr_warn_ratelimited(DEPRECATED 6790 "%s (pid %d) " 6791 "Use of int in maxseg socket option.\n" 6792 "Use struct sctp_assoc_value instead\n", 6793 current->comm, task_pid_nr(current)); 6794 params.assoc_id = SCTP_FUTURE_ASSOC; 6795 } else if (len >= sizeof(struct sctp_assoc_value)) { 6796 len = sizeof(struct sctp_assoc_value); 6797 if (copy_from_user(¶ms, optval, len)) 6798 return -EFAULT; 6799 } else 6800 return -EINVAL; 6801 6802 asoc = sctp_id2assoc(sk, params.assoc_id); 6803 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6804 sctp_style(sk, UDP)) 6805 return -EINVAL; 6806 6807 if (asoc) 6808 params.assoc_value = asoc->frag_point; 6809 else 6810 params.assoc_value = sctp_sk(sk)->user_frag; 6811 6812 if (put_user(len, optlen)) 6813 return -EFAULT; 6814 if (len == sizeof(int)) { 6815 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6816 return -EFAULT; 6817 } else { 6818 if (copy_to_user(optval, ¶ms, len)) 6819 return -EFAULT; 6820 } 6821 6822 return 0; 6823 } 6824 6825 /* 6826 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6827 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6828 */ 6829 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6830 char __user *optval, int __user *optlen) 6831 { 6832 int val; 6833 6834 if (len < sizeof(int)) 6835 return -EINVAL; 6836 6837 len = sizeof(int); 6838 6839 val = sctp_sk(sk)->frag_interleave; 6840 if (put_user(len, optlen)) 6841 return -EFAULT; 6842 if (copy_to_user(optval, &val, len)) 6843 return -EFAULT; 6844 6845 return 0; 6846 } 6847 6848 /* 6849 * 7.1.25. Set or Get the sctp partial delivery point 6850 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6851 */ 6852 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6853 char __user *optval, 6854 int __user *optlen) 6855 { 6856 u32 val; 6857 6858 if (len < sizeof(u32)) 6859 return -EINVAL; 6860 6861 len = sizeof(u32); 6862 6863 val = sctp_sk(sk)->pd_point; 6864 if (put_user(len, optlen)) 6865 return -EFAULT; 6866 if (copy_to_user(optval, &val, len)) 6867 return -EFAULT; 6868 6869 return 0; 6870 } 6871 6872 /* 6873 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6874 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6875 */ 6876 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6877 char __user *optval, 6878 int __user *optlen) 6879 { 6880 struct sctp_assoc_value params; 6881 struct sctp_association *asoc; 6882 6883 if (len == sizeof(int)) { 6884 pr_warn_ratelimited(DEPRECATED 6885 "%s (pid %d) " 6886 "Use of int in max_burst socket option.\n" 6887 "Use struct sctp_assoc_value instead\n", 6888 current->comm, task_pid_nr(current)); 6889 params.assoc_id = SCTP_FUTURE_ASSOC; 6890 } else if (len >= sizeof(struct sctp_assoc_value)) { 6891 len = sizeof(struct sctp_assoc_value); 6892 if (copy_from_user(¶ms, optval, len)) 6893 return -EFAULT; 6894 } else 6895 return -EINVAL; 6896 6897 asoc = sctp_id2assoc(sk, params.assoc_id); 6898 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6899 sctp_style(sk, UDP)) 6900 return -EINVAL; 6901 6902 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6903 6904 if (len == sizeof(int)) { 6905 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6906 return -EFAULT; 6907 } else { 6908 if (copy_to_user(optval, ¶ms, len)) 6909 return -EFAULT; 6910 } 6911 6912 return 0; 6913 6914 } 6915 6916 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6917 char __user *optval, int __user *optlen) 6918 { 6919 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6920 struct sctp_hmacalgo __user *p = (void __user *)optval; 6921 struct sctp_hmac_algo_param *hmacs; 6922 __u16 data_len = 0; 6923 u32 num_idents; 6924 int i; 6925 6926 if (!ep->auth_enable) 6927 return -EACCES; 6928 6929 hmacs = ep->auth_hmacs_list; 6930 data_len = ntohs(hmacs->param_hdr.length) - 6931 sizeof(struct sctp_paramhdr); 6932 6933 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6934 return -EINVAL; 6935 6936 len = sizeof(struct sctp_hmacalgo) + data_len; 6937 num_idents = data_len / sizeof(u16); 6938 6939 if (put_user(len, optlen)) 6940 return -EFAULT; 6941 if (put_user(num_idents, &p->shmac_num_idents)) 6942 return -EFAULT; 6943 for (i = 0; i < num_idents; i++) { 6944 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6945 6946 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6947 return -EFAULT; 6948 } 6949 return 0; 6950 } 6951 6952 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6953 char __user *optval, int __user *optlen) 6954 { 6955 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6956 struct sctp_authkeyid val; 6957 struct sctp_association *asoc; 6958 6959 if (!ep->auth_enable) 6960 return -EACCES; 6961 6962 if (len < sizeof(struct sctp_authkeyid)) 6963 return -EINVAL; 6964 6965 len = sizeof(struct sctp_authkeyid); 6966 if (copy_from_user(&val, optval, len)) 6967 return -EFAULT; 6968 6969 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6970 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6971 return -EINVAL; 6972 6973 if (asoc) 6974 val.scact_keynumber = asoc->active_key_id; 6975 else 6976 val.scact_keynumber = ep->active_key_id; 6977 6978 if (put_user(len, optlen)) 6979 return -EFAULT; 6980 if (copy_to_user(optval, &val, len)) 6981 return -EFAULT; 6982 6983 return 0; 6984 } 6985 6986 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6987 char __user *optval, int __user *optlen) 6988 { 6989 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6990 struct sctp_authchunks __user *p = (void __user *)optval; 6991 struct sctp_authchunks val; 6992 struct sctp_association *asoc; 6993 struct sctp_chunks_param *ch; 6994 u32 num_chunks = 0; 6995 char __user *to; 6996 6997 if (!ep->auth_enable) 6998 return -EACCES; 6999 7000 if (len < sizeof(struct sctp_authchunks)) 7001 return -EINVAL; 7002 7003 if (copy_from_user(&val, optval, sizeof(val))) 7004 return -EFAULT; 7005 7006 to = p->gauth_chunks; 7007 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7008 if (!asoc) 7009 return -EINVAL; 7010 7011 ch = asoc->peer.peer_chunks; 7012 if (!ch) 7013 goto num; 7014 7015 /* See if the user provided enough room for all the data */ 7016 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7017 if (len < num_chunks) 7018 return -EINVAL; 7019 7020 if (copy_to_user(to, ch->chunks, num_chunks)) 7021 return -EFAULT; 7022 num: 7023 len = sizeof(struct sctp_authchunks) + num_chunks; 7024 if (put_user(len, optlen)) 7025 return -EFAULT; 7026 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7027 return -EFAULT; 7028 return 0; 7029 } 7030 7031 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7032 char __user *optval, int __user *optlen) 7033 { 7034 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7035 struct sctp_authchunks __user *p = (void __user *)optval; 7036 struct sctp_authchunks val; 7037 struct sctp_association *asoc; 7038 struct sctp_chunks_param *ch; 7039 u32 num_chunks = 0; 7040 char __user *to; 7041 7042 if (!ep->auth_enable) 7043 return -EACCES; 7044 7045 if (len < sizeof(struct sctp_authchunks)) 7046 return -EINVAL; 7047 7048 if (copy_from_user(&val, optval, sizeof(val))) 7049 return -EFAULT; 7050 7051 to = p->gauth_chunks; 7052 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7053 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7054 sctp_style(sk, UDP)) 7055 return -EINVAL; 7056 7057 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7058 : ep->auth_chunk_list; 7059 if (!ch) 7060 goto num; 7061 7062 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7063 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7064 return -EINVAL; 7065 7066 if (copy_to_user(to, ch->chunks, num_chunks)) 7067 return -EFAULT; 7068 num: 7069 len = sizeof(struct sctp_authchunks) + num_chunks; 7070 if (put_user(len, optlen)) 7071 return -EFAULT; 7072 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7073 return -EFAULT; 7074 7075 return 0; 7076 } 7077 7078 /* 7079 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7080 * This option gets the current number of associations that are attached 7081 * to a one-to-many style socket. The option value is an uint32_t. 7082 */ 7083 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7084 char __user *optval, int __user *optlen) 7085 { 7086 struct sctp_sock *sp = sctp_sk(sk); 7087 struct sctp_association *asoc; 7088 u32 val = 0; 7089 7090 if (sctp_style(sk, TCP)) 7091 return -EOPNOTSUPP; 7092 7093 if (len < sizeof(u32)) 7094 return -EINVAL; 7095 7096 len = sizeof(u32); 7097 7098 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7099 val++; 7100 } 7101 7102 if (put_user(len, optlen)) 7103 return -EFAULT; 7104 if (copy_to_user(optval, &val, len)) 7105 return -EFAULT; 7106 7107 return 0; 7108 } 7109 7110 /* 7111 * 8.1.23 SCTP_AUTO_ASCONF 7112 * See the corresponding setsockopt entry as description 7113 */ 7114 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7115 char __user *optval, int __user *optlen) 7116 { 7117 int val = 0; 7118 7119 if (len < sizeof(int)) 7120 return -EINVAL; 7121 7122 len = sizeof(int); 7123 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7124 val = 1; 7125 if (put_user(len, optlen)) 7126 return -EFAULT; 7127 if (copy_to_user(optval, &val, len)) 7128 return -EFAULT; 7129 return 0; 7130 } 7131 7132 /* 7133 * 8.2.6. Get the Current Identifiers of Associations 7134 * (SCTP_GET_ASSOC_ID_LIST) 7135 * 7136 * This option gets the current list of SCTP association identifiers of 7137 * the SCTP associations handled by a one-to-many style socket. 7138 */ 7139 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7140 char __user *optval, int __user *optlen) 7141 { 7142 struct sctp_sock *sp = sctp_sk(sk); 7143 struct sctp_association *asoc; 7144 struct sctp_assoc_ids *ids; 7145 u32 num = 0; 7146 7147 if (sctp_style(sk, TCP)) 7148 return -EOPNOTSUPP; 7149 7150 if (len < sizeof(struct sctp_assoc_ids)) 7151 return -EINVAL; 7152 7153 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7154 num++; 7155 } 7156 7157 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7158 return -EINVAL; 7159 7160 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7161 7162 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7163 if (unlikely(!ids)) 7164 return -ENOMEM; 7165 7166 ids->gaids_number_of_ids = num; 7167 num = 0; 7168 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7169 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7170 } 7171 7172 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7173 kfree(ids); 7174 return -EFAULT; 7175 } 7176 7177 kfree(ids); 7178 return 0; 7179 } 7180 7181 /* 7182 * SCTP_PEER_ADDR_THLDS 7183 * 7184 * This option allows us to fetch the partially failed threshold for one or all 7185 * transports in an association. See Section 6.1 of: 7186 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7187 */ 7188 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7189 char __user *optval, 7190 int len, 7191 int __user *optlen) 7192 { 7193 struct sctp_paddrthlds val; 7194 struct sctp_transport *trans; 7195 struct sctp_association *asoc; 7196 7197 if (len < sizeof(struct sctp_paddrthlds)) 7198 return -EINVAL; 7199 len = sizeof(struct sctp_paddrthlds); 7200 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7201 return -EFAULT; 7202 7203 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7204 trans = sctp_addr_id2transport(sk, &val.spt_address, 7205 val.spt_assoc_id); 7206 if (!trans) 7207 return -ENOENT; 7208 7209 val.spt_pathmaxrxt = trans->pathmaxrxt; 7210 val.spt_pathpfthld = trans->pf_retrans; 7211 7212 return 0; 7213 } 7214 7215 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7216 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7217 sctp_style(sk, UDP)) 7218 return -EINVAL; 7219 7220 if (asoc) { 7221 val.spt_pathpfthld = asoc->pf_retrans; 7222 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7223 } else { 7224 struct sctp_sock *sp = sctp_sk(sk); 7225 7226 val.spt_pathpfthld = sp->pf_retrans; 7227 val.spt_pathmaxrxt = sp->pathmaxrxt; 7228 } 7229 7230 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7231 return -EFAULT; 7232 7233 return 0; 7234 } 7235 7236 /* 7237 * SCTP_GET_ASSOC_STATS 7238 * 7239 * This option retrieves local per endpoint statistics. It is modeled 7240 * after OpenSolaris' implementation 7241 */ 7242 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7243 char __user *optval, 7244 int __user *optlen) 7245 { 7246 struct sctp_assoc_stats sas; 7247 struct sctp_association *asoc = NULL; 7248 7249 /* User must provide at least the assoc id */ 7250 if (len < sizeof(sctp_assoc_t)) 7251 return -EINVAL; 7252 7253 /* Allow the struct to grow and fill in as much as possible */ 7254 len = min_t(size_t, len, sizeof(sas)); 7255 7256 if (copy_from_user(&sas, optval, len)) 7257 return -EFAULT; 7258 7259 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7260 if (!asoc) 7261 return -EINVAL; 7262 7263 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7264 sas.sas_gapcnt = asoc->stats.gapcnt; 7265 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7266 sas.sas_osacks = asoc->stats.osacks; 7267 sas.sas_isacks = asoc->stats.isacks; 7268 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7269 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7270 sas.sas_oodchunks = asoc->stats.oodchunks; 7271 sas.sas_iodchunks = asoc->stats.iodchunks; 7272 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7273 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7274 sas.sas_idupchunks = asoc->stats.idupchunks; 7275 sas.sas_opackets = asoc->stats.opackets; 7276 sas.sas_ipackets = asoc->stats.ipackets; 7277 7278 /* New high max rto observed, will return 0 if not a single 7279 * RTO update took place. obs_rto_ipaddr will be bogus 7280 * in such a case 7281 */ 7282 sas.sas_maxrto = asoc->stats.max_obs_rto; 7283 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7284 sizeof(struct sockaddr_storage)); 7285 7286 /* Mark beginning of a new observation period */ 7287 asoc->stats.max_obs_rto = asoc->rto_min; 7288 7289 if (put_user(len, optlen)) 7290 return -EFAULT; 7291 7292 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7293 7294 if (copy_to_user(optval, &sas, len)) 7295 return -EFAULT; 7296 7297 return 0; 7298 } 7299 7300 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7301 char __user *optval, 7302 int __user *optlen) 7303 { 7304 int val = 0; 7305 7306 if (len < sizeof(int)) 7307 return -EINVAL; 7308 7309 len = sizeof(int); 7310 if (sctp_sk(sk)->recvrcvinfo) 7311 val = 1; 7312 if (put_user(len, optlen)) 7313 return -EFAULT; 7314 if (copy_to_user(optval, &val, len)) 7315 return -EFAULT; 7316 7317 return 0; 7318 } 7319 7320 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7321 char __user *optval, 7322 int __user *optlen) 7323 { 7324 int val = 0; 7325 7326 if (len < sizeof(int)) 7327 return -EINVAL; 7328 7329 len = sizeof(int); 7330 if (sctp_sk(sk)->recvnxtinfo) 7331 val = 1; 7332 if (put_user(len, optlen)) 7333 return -EFAULT; 7334 if (copy_to_user(optval, &val, len)) 7335 return -EFAULT; 7336 7337 return 0; 7338 } 7339 7340 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7341 char __user *optval, 7342 int __user *optlen) 7343 { 7344 struct sctp_assoc_value params; 7345 struct sctp_association *asoc; 7346 int retval = -EFAULT; 7347 7348 if (len < sizeof(params)) { 7349 retval = -EINVAL; 7350 goto out; 7351 } 7352 7353 len = sizeof(params); 7354 if (copy_from_user(¶ms, optval, len)) 7355 goto out; 7356 7357 asoc = sctp_id2assoc(sk, params.assoc_id); 7358 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7359 sctp_style(sk, UDP)) { 7360 retval = -EINVAL; 7361 goto out; 7362 } 7363 7364 params.assoc_value = asoc ? asoc->prsctp_enable 7365 : sctp_sk(sk)->ep->prsctp_enable; 7366 7367 if (put_user(len, optlen)) 7368 goto out; 7369 7370 if (copy_to_user(optval, ¶ms, len)) 7371 goto out; 7372 7373 retval = 0; 7374 7375 out: 7376 return retval; 7377 } 7378 7379 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7380 char __user *optval, 7381 int __user *optlen) 7382 { 7383 struct sctp_default_prinfo info; 7384 struct sctp_association *asoc; 7385 int retval = -EFAULT; 7386 7387 if (len < sizeof(info)) { 7388 retval = -EINVAL; 7389 goto out; 7390 } 7391 7392 len = sizeof(info); 7393 if (copy_from_user(&info, optval, len)) 7394 goto out; 7395 7396 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7397 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7398 sctp_style(sk, UDP)) { 7399 retval = -EINVAL; 7400 goto out; 7401 } 7402 7403 if (asoc) { 7404 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7405 info.pr_value = asoc->default_timetolive; 7406 } else { 7407 struct sctp_sock *sp = sctp_sk(sk); 7408 7409 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7410 info.pr_value = sp->default_timetolive; 7411 } 7412 7413 if (put_user(len, optlen)) 7414 goto out; 7415 7416 if (copy_to_user(optval, &info, len)) 7417 goto out; 7418 7419 retval = 0; 7420 7421 out: 7422 return retval; 7423 } 7424 7425 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7426 char __user *optval, 7427 int __user *optlen) 7428 { 7429 struct sctp_prstatus params; 7430 struct sctp_association *asoc; 7431 int policy; 7432 int retval = -EINVAL; 7433 7434 if (len < sizeof(params)) 7435 goto out; 7436 7437 len = sizeof(params); 7438 if (copy_from_user(¶ms, optval, len)) { 7439 retval = -EFAULT; 7440 goto out; 7441 } 7442 7443 policy = params.sprstat_policy; 7444 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7445 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7446 goto out; 7447 7448 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7449 if (!asoc) 7450 goto out; 7451 7452 if (policy == SCTP_PR_SCTP_ALL) { 7453 params.sprstat_abandoned_unsent = 0; 7454 params.sprstat_abandoned_sent = 0; 7455 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7456 params.sprstat_abandoned_unsent += 7457 asoc->abandoned_unsent[policy]; 7458 params.sprstat_abandoned_sent += 7459 asoc->abandoned_sent[policy]; 7460 } 7461 } else { 7462 params.sprstat_abandoned_unsent = 7463 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7464 params.sprstat_abandoned_sent = 7465 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7466 } 7467 7468 if (put_user(len, optlen)) { 7469 retval = -EFAULT; 7470 goto out; 7471 } 7472 7473 if (copy_to_user(optval, ¶ms, len)) { 7474 retval = -EFAULT; 7475 goto out; 7476 } 7477 7478 retval = 0; 7479 7480 out: 7481 return retval; 7482 } 7483 7484 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7485 char __user *optval, 7486 int __user *optlen) 7487 { 7488 struct sctp_stream_out_ext *streamoute; 7489 struct sctp_association *asoc; 7490 struct sctp_prstatus params; 7491 int retval = -EINVAL; 7492 int policy; 7493 7494 if (len < sizeof(params)) 7495 goto out; 7496 7497 len = sizeof(params); 7498 if (copy_from_user(¶ms, optval, len)) { 7499 retval = -EFAULT; 7500 goto out; 7501 } 7502 7503 policy = params.sprstat_policy; 7504 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7505 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7506 goto out; 7507 7508 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7509 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7510 goto out; 7511 7512 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7513 if (!streamoute) { 7514 /* Not allocated yet, means all stats are 0 */ 7515 params.sprstat_abandoned_unsent = 0; 7516 params.sprstat_abandoned_sent = 0; 7517 retval = 0; 7518 goto out; 7519 } 7520 7521 if (policy == SCTP_PR_SCTP_ALL) { 7522 params.sprstat_abandoned_unsent = 0; 7523 params.sprstat_abandoned_sent = 0; 7524 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7525 params.sprstat_abandoned_unsent += 7526 streamoute->abandoned_unsent[policy]; 7527 params.sprstat_abandoned_sent += 7528 streamoute->abandoned_sent[policy]; 7529 } 7530 } else { 7531 params.sprstat_abandoned_unsent = 7532 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7533 params.sprstat_abandoned_sent = 7534 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7535 } 7536 7537 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7538 retval = -EFAULT; 7539 goto out; 7540 } 7541 7542 retval = 0; 7543 7544 out: 7545 return retval; 7546 } 7547 7548 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7549 char __user *optval, 7550 int __user *optlen) 7551 { 7552 struct sctp_assoc_value params; 7553 struct sctp_association *asoc; 7554 int retval = -EFAULT; 7555 7556 if (len < sizeof(params)) { 7557 retval = -EINVAL; 7558 goto out; 7559 } 7560 7561 len = sizeof(params); 7562 if (copy_from_user(¶ms, optval, len)) 7563 goto out; 7564 7565 asoc = sctp_id2assoc(sk, params.assoc_id); 7566 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7567 sctp_style(sk, UDP)) { 7568 retval = -EINVAL; 7569 goto out; 7570 } 7571 7572 params.assoc_value = asoc ? asoc->reconf_enable 7573 : sctp_sk(sk)->ep->reconf_enable; 7574 7575 if (put_user(len, optlen)) 7576 goto out; 7577 7578 if (copy_to_user(optval, ¶ms, len)) 7579 goto out; 7580 7581 retval = 0; 7582 7583 out: 7584 return retval; 7585 } 7586 7587 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7588 char __user *optval, 7589 int __user *optlen) 7590 { 7591 struct sctp_assoc_value params; 7592 struct sctp_association *asoc; 7593 int retval = -EFAULT; 7594 7595 if (len < sizeof(params)) { 7596 retval = -EINVAL; 7597 goto out; 7598 } 7599 7600 len = sizeof(params); 7601 if (copy_from_user(¶ms, optval, len)) 7602 goto out; 7603 7604 asoc = sctp_id2assoc(sk, params.assoc_id); 7605 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7606 sctp_style(sk, UDP)) { 7607 retval = -EINVAL; 7608 goto out; 7609 } 7610 7611 params.assoc_value = asoc ? asoc->strreset_enable 7612 : sctp_sk(sk)->ep->strreset_enable; 7613 7614 if (put_user(len, optlen)) 7615 goto out; 7616 7617 if (copy_to_user(optval, ¶ms, len)) 7618 goto out; 7619 7620 retval = 0; 7621 7622 out: 7623 return retval; 7624 } 7625 7626 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7627 char __user *optval, 7628 int __user *optlen) 7629 { 7630 struct sctp_assoc_value params; 7631 struct sctp_association *asoc; 7632 int retval = -EFAULT; 7633 7634 if (len < sizeof(params)) { 7635 retval = -EINVAL; 7636 goto out; 7637 } 7638 7639 len = sizeof(params); 7640 if (copy_from_user(¶ms, optval, len)) 7641 goto out; 7642 7643 asoc = sctp_id2assoc(sk, params.assoc_id); 7644 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7645 sctp_style(sk, UDP)) { 7646 retval = -EINVAL; 7647 goto out; 7648 } 7649 7650 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7651 : sctp_sk(sk)->default_ss; 7652 7653 if (put_user(len, optlen)) 7654 goto out; 7655 7656 if (copy_to_user(optval, ¶ms, len)) 7657 goto out; 7658 7659 retval = 0; 7660 7661 out: 7662 return retval; 7663 } 7664 7665 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7666 char __user *optval, 7667 int __user *optlen) 7668 { 7669 struct sctp_stream_value params; 7670 struct sctp_association *asoc; 7671 int retval = -EFAULT; 7672 7673 if (len < sizeof(params)) { 7674 retval = -EINVAL; 7675 goto out; 7676 } 7677 7678 len = sizeof(params); 7679 if (copy_from_user(¶ms, optval, len)) 7680 goto out; 7681 7682 asoc = sctp_id2assoc(sk, params.assoc_id); 7683 if (!asoc) { 7684 retval = -EINVAL; 7685 goto out; 7686 } 7687 7688 retval = sctp_sched_get_value(asoc, params.stream_id, 7689 ¶ms.stream_value); 7690 if (retval) 7691 goto out; 7692 7693 if (put_user(len, optlen)) { 7694 retval = -EFAULT; 7695 goto out; 7696 } 7697 7698 if (copy_to_user(optval, ¶ms, len)) { 7699 retval = -EFAULT; 7700 goto out; 7701 } 7702 7703 out: 7704 return retval; 7705 } 7706 7707 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7708 char __user *optval, 7709 int __user *optlen) 7710 { 7711 struct sctp_assoc_value params; 7712 struct sctp_association *asoc; 7713 int retval = -EFAULT; 7714 7715 if (len < sizeof(params)) { 7716 retval = -EINVAL; 7717 goto out; 7718 } 7719 7720 len = sizeof(params); 7721 if (copy_from_user(¶ms, optval, len)) 7722 goto out; 7723 7724 asoc = sctp_id2assoc(sk, params.assoc_id); 7725 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7726 sctp_style(sk, UDP)) { 7727 retval = -EINVAL; 7728 goto out; 7729 } 7730 7731 params.assoc_value = asoc ? asoc->intl_enable 7732 : sctp_sk(sk)->strm_interleave; 7733 7734 if (put_user(len, optlen)) 7735 goto out; 7736 7737 if (copy_to_user(optval, ¶ms, len)) 7738 goto out; 7739 7740 retval = 0; 7741 7742 out: 7743 return retval; 7744 } 7745 7746 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7747 char __user *optval, 7748 int __user *optlen) 7749 { 7750 int val; 7751 7752 if (len < sizeof(int)) 7753 return -EINVAL; 7754 7755 len = sizeof(int); 7756 val = sctp_sk(sk)->reuse; 7757 if (put_user(len, optlen)) 7758 return -EFAULT; 7759 7760 if (copy_to_user(optval, &val, len)) 7761 return -EFAULT; 7762 7763 return 0; 7764 } 7765 7766 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7767 int __user *optlen) 7768 { 7769 struct sctp_association *asoc; 7770 struct sctp_event param; 7771 __u16 subscribe; 7772 7773 if (len < sizeof(param)) 7774 return -EINVAL; 7775 7776 len = sizeof(param); 7777 if (copy_from_user(¶m, optval, len)) 7778 return -EFAULT; 7779 7780 if (param.se_type < SCTP_SN_TYPE_BASE || 7781 param.se_type > SCTP_SN_TYPE_MAX) 7782 return -EINVAL; 7783 7784 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7785 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7786 sctp_style(sk, UDP)) 7787 return -EINVAL; 7788 7789 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7790 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7791 7792 if (put_user(len, optlen)) 7793 return -EFAULT; 7794 7795 if (copy_to_user(optval, ¶m, len)) 7796 return -EFAULT; 7797 7798 return 0; 7799 } 7800 7801 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7802 char __user *optval, int __user *optlen) 7803 { 7804 int retval = 0; 7805 int len; 7806 7807 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7808 7809 /* I can hardly begin to describe how wrong this is. This is 7810 * so broken as to be worse than useless. The API draft 7811 * REALLY is NOT helpful here... I am not convinced that the 7812 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7813 * are at all well-founded. 7814 */ 7815 if (level != SOL_SCTP) { 7816 struct sctp_af *af = sctp_sk(sk)->pf->af; 7817 7818 retval = af->getsockopt(sk, level, optname, optval, optlen); 7819 return retval; 7820 } 7821 7822 if (get_user(len, optlen)) 7823 return -EFAULT; 7824 7825 if (len < 0) 7826 return -EINVAL; 7827 7828 lock_sock(sk); 7829 7830 switch (optname) { 7831 case SCTP_STATUS: 7832 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7833 break; 7834 case SCTP_DISABLE_FRAGMENTS: 7835 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7836 optlen); 7837 break; 7838 case SCTP_EVENTS: 7839 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7840 break; 7841 case SCTP_AUTOCLOSE: 7842 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7843 break; 7844 case SCTP_SOCKOPT_PEELOFF: 7845 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7846 break; 7847 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7848 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7849 break; 7850 case SCTP_PEER_ADDR_PARAMS: 7851 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7852 optlen); 7853 break; 7854 case SCTP_DELAYED_SACK: 7855 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7856 optlen); 7857 break; 7858 case SCTP_INITMSG: 7859 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7860 break; 7861 case SCTP_GET_PEER_ADDRS: 7862 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7863 optlen); 7864 break; 7865 case SCTP_GET_LOCAL_ADDRS: 7866 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7867 optlen); 7868 break; 7869 case SCTP_SOCKOPT_CONNECTX3: 7870 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7871 break; 7872 case SCTP_DEFAULT_SEND_PARAM: 7873 retval = sctp_getsockopt_default_send_param(sk, len, 7874 optval, optlen); 7875 break; 7876 case SCTP_DEFAULT_SNDINFO: 7877 retval = sctp_getsockopt_default_sndinfo(sk, len, 7878 optval, optlen); 7879 break; 7880 case SCTP_PRIMARY_ADDR: 7881 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7882 break; 7883 case SCTP_NODELAY: 7884 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7885 break; 7886 case SCTP_RTOINFO: 7887 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7888 break; 7889 case SCTP_ASSOCINFO: 7890 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7891 break; 7892 case SCTP_I_WANT_MAPPED_V4_ADDR: 7893 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7894 break; 7895 case SCTP_MAXSEG: 7896 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7897 break; 7898 case SCTP_GET_PEER_ADDR_INFO: 7899 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7900 optlen); 7901 break; 7902 case SCTP_ADAPTATION_LAYER: 7903 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7904 optlen); 7905 break; 7906 case SCTP_CONTEXT: 7907 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7908 break; 7909 case SCTP_FRAGMENT_INTERLEAVE: 7910 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7911 optlen); 7912 break; 7913 case SCTP_PARTIAL_DELIVERY_POINT: 7914 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7915 optlen); 7916 break; 7917 case SCTP_MAX_BURST: 7918 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7919 break; 7920 case SCTP_AUTH_KEY: 7921 case SCTP_AUTH_CHUNK: 7922 case SCTP_AUTH_DELETE_KEY: 7923 case SCTP_AUTH_DEACTIVATE_KEY: 7924 retval = -EOPNOTSUPP; 7925 break; 7926 case SCTP_HMAC_IDENT: 7927 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7928 break; 7929 case SCTP_AUTH_ACTIVE_KEY: 7930 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7931 break; 7932 case SCTP_PEER_AUTH_CHUNKS: 7933 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7934 optlen); 7935 break; 7936 case SCTP_LOCAL_AUTH_CHUNKS: 7937 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7938 optlen); 7939 break; 7940 case SCTP_GET_ASSOC_NUMBER: 7941 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7942 break; 7943 case SCTP_GET_ASSOC_ID_LIST: 7944 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7945 break; 7946 case SCTP_AUTO_ASCONF: 7947 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7948 break; 7949 case SCTP_PEER_ADDR_THLDS: 7950 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7951 break; 7952 case SCTP_GET_ASSOC_STATS: 7953 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7954 break; 7955 case SCTP_RECVRCVINFO: 7956 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7957 break; 7958 case SCTP_RECVNXTINFO: 7959 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7960 break; 7961 case SCTP_PR_SUPPORTED: 7962 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7963 break; 7964 case SCTP_DEFAULT_PRINFO: 7965 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7966 optlen); 7967 break; 7968 case SCTP_PR_ASSOC_STATUS: 7969 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7970 optlen); 7971 break; 7972 case SCTP_PR_STREAM_STATUS: 7973 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7974 optlen); 7975 break; 7976 case SCTP_RECONFIG_SUPPORTED: 7977 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7978 optlen); 7979 break; 7980 case SCTP_ENABLE_STREAM_RESET: 7981 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7982 optlen); 7983 break; 7984 case SCTP_STREAM_SCHEDULER: 7985 retval = sctp_getsockopt_scheduler(sk, len, optval, 7986 optlen); 7987 break; 7988 case SCTP_STREAM_SCHEDULER_VALUE: 7989 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7990 optlen); 7991 break; 7992 case SCTP_INTERLEAVING_SUPPORTED: 7993 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7994 optlen); 7995 break; 7996 case SCTP_REUSE_PORT: 7997 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7998 break; 7999 case SCTP_EVENT: 8000 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8001 break; 8002 default: 8003 retval = -ENOPROTOOPT; 8004 break; 8005 } 8006 8007 release_sock(sk); 8008 return retval; 8009 } 8010 8011 static int sctp_hash(struct sock *sk) 8012 { 8013 /* STUB */ 8014 return 0; 8015 } 8016 8017 static void sctp_unhash(struct sock *sk) 8018 { 8019 /* STUB */ 8020 } 8021 8022 /* Check if port is acceptable. Possibly find first available port. 8023 * 8024 * The port hash table (contained in the 'global' SCTP protocol storage 8025 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8026 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8027 * list (the list number is the port number hashed out, so as you 8028 * would expect from a hash function, all the ports in a given list have 8029 * such a number that hashes out to the same list number; you were 8030 * expecting that, right?); so each list has a set of ports, with a 8031 * link to the socket (struct sock) that uses it, the port number and 8032 * a fastreuse flag (FIXME: NPI ipg). 8033 */ 8034 static struct sctp_bind_bucket *sctp_bucket_create( 8035 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8036 8037 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8038 { 8039 struct sctp_sock *sp = sctp_sk(sk); 8040 bool reuse = (sk->sk_reuse || sp->reuse); 8041 struct sctp_bind_hashbucket *head; /* hash list */ 8042 kuid_t uid = sock_i_uid(sk); 8043 struct sctp_bind_bucket *pp; 8044 unsigned short snum; 8045 int ret; 8046 8047 snum = ntohs(addr->v4.sin_port); 8048 8049 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8050 8051 local_bh_disable(); 8052 8053 if (snum == 0) { 8054 /* Search for an available port. */ 8055 int low, high, remaining, index; 8056 unsigned int rover; 8057 struct net *net = sock_net(sk); 8058 8059 inet_get_local_port_range(net, &low, &high); 8060 remaining = (high - low) + 1; 8061 rover = prandom_u32() % remaining + low; 8062 8063 do { 8064 rover++; 8065 if ((rover < low) || (rover > high)) 8066 rover = low; 8067 if (inet_is_local_reserved_port(net, rover)) 8068 continue; 8069 index = sctp_phashfn(sock_net(sk), rover); 8070 head = &sctp_port_hashtable[index]; 8071 spin_lock(&head->lock); 8072 sctp_for_each_hentry(pp, &head->chain) 8073 if ((pp->port == rover) && 8074 net_eq(sock_net(sk), pp->net)) 8075 goto next; 8076 break; 8077 next: 8078 spin_unlock(&head->lock); 8079 } while (--remaining > 0); 8080 8081 /* Exhausted local port range during search? */ 8082 ret = 1; 8083 if (remaining <= 0) 8084 goto fail; 8085 8086 /* OK, here is the one we will use. HEAD (the port 8087 * hash table list entry) is non-NULL and we hold it's 8088 * mutex. 8089 */ 8090 snum = rover; 8091 } else { 8092 /* We are given an specific port number; we verify 8093 * that it is not being used. If it is used, we will 8094 * exahust the search in the hash list corresponding 8095 * to the port number (snum) - we detect that with the 8096 * port iterator, pp being NULL. 8097 */ 8098 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8099 spin_lock(&head->lock); 8100 sctp_for_each_hentry(pp, &head->chain) { 8101 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8102 goto pp_found; 8103 } 8104 } 8105 pp = NULL; 8106 goto pp_not_found; 8107 pp_found: 8108 if (!hlist_empty(&pp->owner)) { 8109 /* We had a port hash table hit - there is an 8110 * available port (pp != NULL) and it is being 8111 * used by other socket (pp->owner not empty); that other 8112 * socket is going to be sk2. 8113 */ 8114 struct sock *sk2; 8115 8116 pr_debug("%s: found a possible match\n", __func__); 8117 8118 if ((pp->fastreuse && reuse && 8119 sk->sk_state != SCTP_SS_LISTENING) || 8120 (pp->fastreuseport && sk->sk_reuseport && 8121 uid_eq(pp->fastuid, uid))) 8122 goto success; 8123 8124 /* Run through the list of sockets bound to the port 8125 * (pp->port) [via the pointers bind_next and 8126 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8127 * we get the endpoint they describe and run through 8128 * the endpoint's list of IP (v4 or v6) addresses, 8129 * comparing each of the addresses with the address of 8130 * the socket sk. If we find a match, then that means 8131 * that this port/socket (sk) combination are already 8132 * in an endpoint. 8133 */ 8134 sk_for_each_bound(sk2, &pp->owner) { 8135 struct sctp_sock *sp2 = sctp_sk(sk2); 8136 struct sctp_endpoint *ep2 = sp2->ep; 8137 8138 if (sk == sk2 || 8139 (reuse && (sk2->sk_reuse || sp2->reuse) && 8140 sk2->sk_state != SCTP_SS_LISTENING) || 8141 (sk->sk_reuseport && sk2->sk_reuseport && 8142 uid_eq(uid, sock_i_uid(sk2)))) 8143 continue; 8144 8145 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8146 addr, sp2, sp)) { 8147 ret = (long)sk2; 8148 goto fail_unlock; 8149 } 8150 } 8151 8152 pr_debug("%s: found a match\n", __func__); 8153 } 8154 pp_not_found: 8155 /* If there was a hash table miss, create a new port. */ 8156 ret = 1; 8157 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8158 goto fail_unlock; 8159 8160 /* In either case (hit or miss), make sure fastreuse is 1 only 8161 * if sk->sk_reuse is too (that is, if the caller requested 8162 * SO_REUSEADDR on this socket -sk-). 8163 */ 8164 if (hlist_empty(&pp->owner)) { 8165 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8166 pp->fastreuse = 1; 8167 else 8168 pp->fastreuse = 0; 8169 8170 if (sk->sk_reuseport) { 8171 pp->fastreuseport = 1; 8172 pp->fastuid = uid; 8173 } else { 8174 pp->fastreuseport = 0; 8175 } 8176 } else { 8177 if (pp->fastreuse && 8178 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8179 pp->fastreuse = 0; 8180 8181 if (pp->fastreuseport && 8182 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8183 pp->fastreuseport = 0; 8184 } 8185 8186 /* We are set, so fill up all the data in the hash table 8187 * entry, tie the socket list information with the rest of the 8188 * sockets FIXME: Blurry, NPI (ipg). 8189 */ 8190 success: 8191 if (!sp->bind_hash) { 8192 inet_sk(sk)->inet_num = snum; 8193 sk_add_bind_node(sk, &pp->owner); 8194 sp->bind_hash = pp; 8195 } 8196 ret = 0; 8197 8198 fail_unlock: 8199 spin_unlock(&head->lock); 8200 8201 fail: 8202 local_bh_enable(); 8203 return ret; 8204 } 8205 8206 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8207 * port is requested. 8208 */ 8209 static int sctp_get_port(struct sock *sk, unsigned short snum) 8210 { 8211 union sctp_addr addr; 8212 struct sctp_af *af = sctp_sk(sk)->pf->af; 8213 8214 /* Set up a dummy address struct from the sk. */ 8215 af->from_sk(&addr, sk); 8216 addr.v4.sin_port = htons(snum); 8217 8218 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8219 return !!sctp_get_port_local(sk, &addr); 8220 } 8221 8222 /* 8223 * Move a socket to LISTENING state. 8224 */ 8225 static int sctp_listen_start(struct sock *sk, int backlog) 8226 { 8227 struct sctp_sock *sp = sctp_sk(sk); 8228 struct sctp_endpoint *ep = sp->ep; 8229 struct crypto_shash *tfm = NULL; 8230 char alg[32]; 8231 8232 /* Allocate HMAC for generating cookie. */ 8233 if (!sp->hmac && sp->sctp_hmac_alg) { 8234 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8235 tfm = crypto_alloc_shash(alg, 0, 0); 8236 if (IS_ERR(tfm)) { 8237 net_info_ratelimited("failed to load transform for %s: %ld\n", 8238 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8239 return -ENOSYS; 8240 } 8241 sctp_sk(sk)->hmac = tfm; 8242 } 8243 8244 /* 8245 * If a bind() or sctp_bindx() is not called prior to a listen() 8246 * call that allows new associations to be accepted, the system 8247 * picks an ephemeral port and will choose an address set equivalent 8248 * to binding with a wildcard address. 8249 * 8250 * This is not currently spelled out in the SCTP sockets 8251 * extensions draft, but follows the practice as seen in TCP 8252 * sockets. 8253 * 8254 */ 8255 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8256 if (!ep->base.bind_addr.port) { 8257 if (sctp_autobind(sk)) 8258 return -EAGAIN; 8259 } else { 8260 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8261 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8262 return -EADDRINUSE; 8263 } 8264 } 8265 8266 sk->sk_max_ack_backlog = backlog; 8267 return sctp_hash_endpoint(ep); 8268 } 8269 8270 /* 8271 * 4.1.3 / 5.1.3 listen() 8272 * 8273 * By default, new associations are not accepted for UDP style sockets. 8274 * An application uses listen() to mark a socket as being able to 8275 * accept new associations. 8276 * 8277 * On TCP style sockets, applications use listen() to ready the SCTP 8278 * endpoint for accepting inbound associations. 8279 * 8280 * On both types of endpoints a backlog of '0' disables listening. 8281 * 8282 * Move a socket to LISTENING state. 8283 */ 8284 int sctp_inet_listen(struct socket *sock, int backlog) 8285 { 8286 struct sock *sk = sock->sk; 8287 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8288 int err = -EINVAL; 8289 8290 if (unlikely(backlog < 0)) 8291 return err; 8292 8293 lock_sock(sk); 8294 8295 /* Peeled-off sockets are not allowed to listen(). */ 8296 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8297 goto out; 8298 8299 if (sock->state != SS_UNCONNECTED) 8300 goto out; 8301 8302 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8303 goto out; 8304 8305 /* If backlog is zero, disable listening. */ 8306 if (!backlog) { 8307 if (sctp_sstate(sk, CLOSED)) 8308 goto out; 8309 8310 err = 0; 8311 sctp_unhash_endpoint(ep); 8312 sk->sk_state = SCTP_SS_CLOSED; 8313 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8314 sctp_sk(sk)->bind_hash->fastreuse = 1; 8315 goto out; 8316 } 8317 8318 /* If we are already listening, just update the backlog */ 8319 if (sctp_sstate(sk, LISTENING)) 8320 sk->sk_max_ack_backlog = backlog; 8321 else { 8322 err = sctp_listen_start(sk, backlog); 8323 if (err) 8324 goto out; 8325 } 8326 8327 err = 0; 8328 out: 8329 release_sock(sk); 8330 return err; 8331 } 8332 8333 /* 8334 * This function is done by modeling the current datagram_poll() and the 8335 * tcp_poll(). Note that, based on these implementations, we don't 8336 * lock the socket in this function, even though it seems that, 8337 * ideally, locking or some other mechanisms can be used to ensure 8338 * the integrity of the counters (sndbuf and wmem_alloc) used 8339 * in this place. We assume that we don't need locks either until proven 8340 * otherwise. 8341 * 8342 * Another thing to note is that we include the Async I/O support 8343 * here, again, by modeling the current TCP/UDP code. We don't have 8344 * a good way to test with it yet. 8345 */ 8346 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8347 { 8348 struct sock *sk = sock->sk; 8349 struct sctp_sock *sp = sctp_sk(sk); 8350 __poll_t mask; 8351 8352 poll_wait(file, sk_sleep(sk), wait); 8353 8354 sock_rps_record_flow(sk); 8355 8356 /* A TCP-style listening socket becomes readable when the accept queue 8357 * is not empty. 8358 */ 8359 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8360 return (!list_empty(&sp->ep->asocs)) ? 8361 (EPOLLIN | EPOLLRDNORM) : 0; 8362 8363 mask = 0; 8364 8365 /* Is there any exceptional events? */ 8366 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8367 mask |= EPOLLERR | 8368 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8369 if (sk->sk_shutdown & RCV_SHUTDOWN) 8370 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8371 if (sk->sk_shutdown == SHUTDOWN_MASK) 8372 mask |= EPOLLHUP; 8373 8374 /* Is it readable? Reconsider this code with TCP-style support. */ 8375 if (!skb_queue_empty(&sk->sk_receive_queue)) 8376 mask |= EPOLLIN | EPOLLRDNORM; 8377 8378 /* The association is either gone or not ready. */ 8379 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8380 return mask; 8381 8382 /* Is it writable? */ 8383 if (sctp_writeable(sk)) { 8384 mask |= EPOLLOUT | EPOLLWRNORM; 8385 } else { 8386 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8387 /* 8388 * Since the socket is not locked, the buffer 8389 * might be made available after the writeable check and 8390 * before the bit is set. This could cause a lost I/O 8391 * signal. tcp_poll() has a race breaker for this race 8392 * condition. Based on their implementation, we put 8393 * in the following code to cover it as well. 8394 */ 8395 if (sctp_writeable(sk)) 8396 mask |= EPOLLOUT | EPOLLWRNORM; 8397 } 8398 return mask; 8399 } 8400 8401 /******************************************************************** 8402 * 2nd Level Abstractions 8403 ********************************************************************/ 8404 8405 static struct sctp_bind_bucket *sctp_bucket_create( 8406 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8407 { 8408 struct sctp_bind_bucket *pp; 8409 8410 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8411 if (pp) { 8412 SCTP_DBG_OBJCNT_INC(bind_bucket); 8413 pp->port = snum; 8414 pp->fastreuse = 0; 8415 INIT_HLIST_HEAD(&pp->owner); 8416 pp->net = net; 8417 hlist_add_head(&pp->node, &head->chain); 8418 } 8419 return pp; 8420 } 8421 8422 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8423 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8424 { 8425 if (pp && hlist_empty(&pp->owner)) { 8426 __hlist_del(&pp->node); 8427 kmem_cache_free(sctp_bucket_cachep, pp); 8428 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8429 } 8430 } 8431 8432 /* Release this socket's reference to a local port. */ 8433 static inline void __sctp_put_port(struct sock *sk) 8434 { 8435 struct sctp_bind_hashbucket *head = 8436 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8437 inet_sk(sk)->inet_num)]; 8438 struct sctp_bind_bucket *pp; 8439 8440 spin_lock(&head->lock); 8441 pp = sctp_sk(sk)->bind_hash; 8442 __sk_del_bind_node(sk); 8443 sctp_sk(sk)->bind_hash = NULL; 8444 inet_sk(sk)->inet_num = 0; 8445 sctp_bucket_destroy(pp); 8446 spin_unlock(&head->lock); 8447 } 8448 8449 void sctp_put_port(struct sock *sk) 8450 { 8451 local_bh_disable(); 8452 __sctp_put_port(sk); 8453 local_bh_enable(); 8454 } 8455 8456 /* 8457 * The system picks an ephemeral port and choose an address set equivalent 8458 * to binding with a wildcard address. 8459 * One of those addresses will be the primary address for the association. 8460 * This automatically enables the multihoming capability of SCTP. 8461 */ 8462 static int sctp_autobind(struct sock *sk) 8463 { 8464 union sctp_addr autoaddr; 8465 struct sctp_af *af; 8466 __be16 port; 8467 8468 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8469 af = sctp_sk(sk)->pf->af; 8470 8471 port = htons(inet_sk(sk)->inet_num); 8472 af->inaddr_any(&autoaddr, port); 8473 8474 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8475 } 8476 8477 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8478 * 8479 * From RFC 2292 8480 * 4.2 The cmsghdr Structure * 8481 * 8482 * When ancillary data is sent or received, any number of ancillary data 8483 * objects can be specified by the msg_control and msg_controllen members of 8484 * the msghdr structure, because each object is preceded by 8485 * a cmsghdr structure defining the object's length (the cmsg_len member). 8486 * Historically Berkeley-derived implementations have passed only one object 8487 * at a time, but this API allows multiple objects to be 8488 * passed in a single call to sendmsg() or recvmsg(). The following example 8489 * shows two ancillary data objects in a control buffer. 8490 * 8491 * |<--------------------------- msg_controllen -------------------------->| 8492 * | | 8493 * 8494 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8495 * 8496 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8497 * | | | 8498 * 8499 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8500 * 8501 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8502 * | | | | | 8503 * 8504 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8505 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8506 * 8507 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8508 * 8509 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8510 * ^ 8511 * | 8512 * 8513 * msg_control 8514 * points here 8515 */ 8516 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8517 { 8518 struct msghdr *my_msg = (struct msghdr *)msg; 8519 struct cmsghdr *cmsg; 8520 8521 for_each_cmsghdr(cmsg, my_msg) { 8522 if (!CMSG_OK(my_msg, cmsg)) 8523 return -EINVAL; 8524 8525 /* Should we parse this header or ignore? */ 8526 if (cmsg->cmsg_level != IPPROTO_SCTP) 8527 continue; 8528 8529 /* Strictly check lengths following example in SCM code. */ 8530 switch (cmsg->cmsg_type) { 8531 case SCTP_INIT: 8532 /* SCTP Socket API Extension 8533 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8534 * 8535 * This cmsghdr structure provides information for 8536 * initializing new SCTP associations with sendmsg(). 8537 * The SCTP_INITMSG socket option uses this same data 8538 * structure. This structure is not used for 8539 * recvmsg(). 8540 * 8541 * cmsg_level cmsg_type cmsg_data[] 8542 * ------------ ------------ ---------------------- 8543 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8544 */ 8545 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8546 return -EINVAL; 8547 8548 cmsgs->init = CMSG_DATA(cmsg); 8549 break; 8550 8551 case SCTP_SNDRCV: 8552 /* SCTP Socket API Extension 8553 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8554 * 8555 * This cmsghdr structure specifies SCTP options for 8556 * sendmsg() and describes SCTP header information 8557 * about a received message through recvmsg(). 8558 * 8559 * cmsg_level cmsg_type cmsg_data[] 8560 * ------------ ------------ ---------------------- 8561 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8562 */ 8563 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8564 return -EINVAL; 8565 8566 cmsgs->srinfo = CMSG_DATA(cmsg); 8567 8568 if (cmsgs->srinfo->sinfo_flags & 8569 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8570 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8571 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8572 return -EINVAL; 8573 break; 8574 8575 case SCTP_SNDINFO: 8576 /* SCTP Socket API Extension 8577 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8578 * 8579 * This cmsghdr structure specifies SCTP options for 8580 * sendmsg(). This structure and SCTP_RCVINFO replaces 8581 * SCTP_SNDRCV which has been deprecated. 8582 * 8583 * cmsg_level cmsg_type cmsg_data[] 8584 * ------------ ------------ --------------------- 8585 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8586 */ 8587 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8588 return -EINVAL; 8589 8590 cmsgs->sinfo = CMSG_DATA(cmsg); 8591 8592 if (cmsgs->sinfo->snd_flags & 8593 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8594 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8595 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8596 return -EINVAL; 8597 break; 8598 case SCTP_PRINFO: 8599 /* SCTP Socket API Extension 8600 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8601 * 8602 * This cmsghdr structure specifies SCTP options for sendmsg(). 8603 * 8604 * cmsg_level cmsg_type cmsg_data[] 8605 * ------------ ------------ --------------------- 8606 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8607 */ 8608 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8609 return -EINVAL; 8610 8611 cmsgs->prinfo = CMSG_DATA(cmsg); 8612 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8613 return -EINVAL; 8614 8615 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8616 cmsgs->prinfo->pr_value = 0; 8617 break; 8618 case SCTP_AUTHINFO: 8619 /* SCTP Socket API Extension 8620 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8621 * 8622 * This cmsghdr structure specifies SCTP options for sendmsg(). 8623 * 8624 * cmsg_level cmsg_type cmsg_data[] 8625 * ------------ ------------ --------------------- 8626 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8627 */ 8628 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8629 return -EINVAL; 8630 8631 cmsgs->authinfo = CMSG_DATA(cmsg); 8632 break; 8633 case SCTP_DSTADDRV4: 8634 case SCTP_DSTADDRV6: 8635 /* SCTP Socket API Extension 8636 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8637 * 8638 * This cmsghdr structure specifies SCTP options for sendmsg(). 8639 * 8640 * cmsg_level cmsg_type cmsg_data[] 8641 * ------------ ------------ --------------------- 8642 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8643 * ------------ ------------ --------------------- 8644 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8645 */ 8646 cmsgs->addrs_msg = my_msg; 8647 break; 8648 default: 8649 return -EINVAL; 8650 } 8651 } 8652 8653 return 0; 8654 } 8655 8656 /* 8657 * Wait for a packet.. 8658 * Note: This function is the same function as in core/datagram.c 8659 * with a few modifications to make lksctp work. 8660 */ 8661 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8662 { 8663 int error; 8664 DEFINE_WAIT(wait); 8665 8666 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8667 8668 /* Socket errors? */ 8669 error = sock_error(sk); 8670 if (error) 8671 goto out; 8672 8673 if (!skb_queue_empty(&sk->sk_receive_queue)) 8674 goto ready; 8675 8676 /* Socket shut down? */ 8677 if (sk->sk_shutdown & RCV_SHUTDOWN) 8678 goto out; 8679 8680 /* Sequenced packets can come disconnected. If so we report the 8681 * problem. 8682 */ 8683 error = -ENOTCONN; 8684 8685 /* Is there a good reason to think that we may receive some data? */ 8686 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8687 goto out; 8688 8689 /* Handle signals. */ 8690 if (signal_pending(current)) 8691 goto interrupted; 8692 8693 /* Let another process have a go. Since we are going to sleep 8694 * anyway. Note: This may cause odd behaviors if the message 8695 * does not fit in the user's buffer, but this seems to be the 8696 * only way to honor MSG_DONTWAIT realistically. 8697 */ 8698 release_sock(sk); 8699 *timeo_p = schedule_timeout(*timeo_p); 8700 lock_sock(sk); 8701 8702 ready: 8703 finish_wait(sk_sleep(sk), &wait); 8704 return 0; 8705 8706 interrupted: 8707 error = sock_intr_errno(*timeo_p); 8708 8709 out: 8710 finish_wait(sk_sleep(sk), &wait); 8711 *err = error; 8712 return error; 8713 } 8714 8715 /* Receive a datagram. 8716 * Note: This is pretty much the same routine as in core/datagram.c 8717 * with a few changes to make lksctp work. 8718 */ 8719 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8720 int noblock, int *err) 8721 { 8722 int error; 8723 struct sk_buff *skb; 8724 long timeo; 8725 8726 timeo = sock_rcvtimeo(sk, noblock); 8727 8728 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8729 MAX_SCHEDULE_TIMEOUT); 8730 8731 do { 8732 /* Again only user level code calls this function, 8733 * so nothing interrupt level 8734 * will suddenly eat the receive_queue. 8735 * 8736 * Look at current nfs client by the way... 8737 * However, this function was correct in any case. 8) 8738 */ 8739 if (flags & MSG_PEEK) { 8740 skb = skb_peek(&sk->sk_receive_queue); 8741 if (skb) 8742 refcount_inc(&skb->users); 8743 } else { 8744 skb = __skb_dequeue(&sk->sk_receive_queue); 8745 } 8746 8747 if (skb) 8748 return skb; 8749 8750 /* Caller is allowed not to check sk->sk_err before calling. */ 8751 error = sock_error(sk); 8752 if (error) 8753 goto no_packet; 8754 8755 if (sk->sk_shutdown & RCV_SHUTDOWN) 8756 break; 8757 8758 if (sk_can_busy_loop(sk)) { 8759 sk_busy_loop(sk, noblock); 8760 8761 if (!skb_queue_empty(&sk->sk_receive_queue)) 8762 continue; 8763 } 8764 8765 /* User doesn't want to wait. */ 8766 error = -EAGAIN; 8767 if (!timeo) 8768 goto no_packet; 8769 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8770 8771 return NULL; 8772 8773 no_packet: 8774 *err = error; 8775 return NULL; 8776 } 8777 8778 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8779 static void __sctp_write_space(struct sctp_association *asoc) 8780 { 8781 struct sock *sk = asoc->base.sk; 8782 8783 if (sctp_wspace(asoc) <= 0) 8784 return; 8785 8786 if (waitqueue_active(&asoc->wait)) 8787 wake_up_interruptible(&asoc->wait); 8788 8789 if (sctp_writeable(sk)) { 8790 struct socket_wq *wq; 8791 8792 rcu_read_lock(); 8793 wq = rcu_dereference(sk->sk_wq); 8794 if (wq) { 8795 if (waitqueue_active(&wq->wait)) 8796 wake_up_interruptible(&wq->wait); 8797 8798 /* Note that we try to include the Async I/O support 8799 * here by modeling from the current TCP/UDP code. 8800 * We have not tested with it yet. 8801 */ 8802 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8803 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8804 } 8805 rcu_read_unlock(); 8806 } 8807 } 8808 8809 static void sctp_wake_up_waiters(struct sock *sk, 8810 struct sctp_association *asoc) 8811 { 8812 struct sctp_association *tmp = asoc; 8813 8814 /* We do accounting for the sndbuf space per association, 8815 * so we only need to wake our own association. 8816 */ 8817 if (asoc->ep->sndbuf_policy) 8818 return __sctp_write_space(asoc); 8819 8820 /* If association goes down and is just flushing its 8821 * outq, then just normally notify others. 8822 */ 8823 if (asoc->base.dead) 8824 return sctp_write_space(sk); 8825 8826 /* Accounting for the sndbuf space is per socket, so we 8827 * need to wake up others, try to be fair and in case of 8828 * other associations, let them have a go first instead 8829 * of just doing a sctp_write_space() call. 8830 * 8831 * Note that we reach sctp_wake_up_waiters() only when 8832 * associations free up queued chunks, thus we are under 8833 * lock and the list of associations on a socket is 8834 * guaranteed not to change. 8835 */ 8836 for (tmp = list_next_entry(tmp, asocs); 1; 8837 tmp = list_next_entry(tmp, asocs)) { 8838 /* Manually skip the head element. */ 8839 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8840 continue; 8841 /* Wake up association. */ 8842 __sctp_write_space(tmp); 8843 /* We've reached the end. */ 8844 if (tmp == asoc) 8845 break; 8846 } 8847 } 8848 8849 /* Do accounting for the sndbuf space. 8850 * Decrement the used sndbuf space of the corresponding association by the 8851 * data size which was just transmitted(freed). 8852 */ 8853 static void sctp_wfree(struct sk_buff *skb) 8854 { 8855 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8856 struct sctp_association *asoc = chunk->asoc; 8857 struct sock *sk = asoc->base.sk; 8858 8859 sk_mem_uncharge(sk, skb->truesize); 8860 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8861 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8862 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8863 &sk->sk_wmem_alloc)); 8864 8865 if (chunk->shkey) { 8866 struct sctp_shared_key *shkey = chunk->shkey; 8867 8868 /* refcnt == 2 and !list_empty mean after this release, it's 8869 * not being used anywhere, and it's time to notify userland 8870 * that this shkey can be freed if it's been deactivated. 8871 */ 8872 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8873 refcount_read(&shkey->refcnt) == 2) { 8874 struct sctp_ulpevent *ev; 8875 8876 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8877 SCTP_AUTH_FREE_KEY, 8878 GFP_KERNEL); 8879 if (ev) 8880 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8881 } 8882 sctp_auth_shkey_release(chunk->shkey); 8883 } 8884 8885 sock_wfree(skb); 8886 sctp_wake_up_waiters(sk, asoc); 8887 8888 sctp_association_put(asoc); 8889 } 8890 8891 /* Do accounting for the receive space on the socket. 8892 * Accounting for the association is done in ulpevent.c 8893 * We set this as a destructor for the cloned data skbs so that 8894 * accounting is done at the correct time. 8895 */ 8896 void sctp_sock_rfree(struct sk_buff *skb) 8897 { 8898 struct sock *sk = skb->sk; 8899 struct sctp_ulpevent *event = sctp_skb2event(skb); 8900 8901 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8902 8903 /* 8904 * Mimic the behavior of sock_rfree 8905 */ 8906 sk_mem_uncharge(sk, event->rmem_len); 8907 } 8908 8909 8910 /* Helper function to wait for space in the sndbuf. */ 8911 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8912 size_t msg_len) 8913 { 8914 struct sock *sk = asoc->base.sk; 8915 long current_timeo = *timeo_p; 8916 DEFINE_WAIT(wait); 8917 int err = 0; 8918 8919 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8920 *timeo_p, msg_len); 8921 8922 /* Increment the association's refcnt. */ 8923 sctp_association_hold(asoc); 8924 8925 /* Wait on the association specific sndbuf space. */ 8926 for (;;) { 8927 prepare_to_wait_exclusive(&asoc->wait, &wait, 8928 TASK_INTERRUPTIBLE); 8929 if (asoc->base.dead) 8930 goto do_dead; 8931 if (!*timeo_p) 8932 goto do_nonblock; 8933 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8934 goto do_error; 8935 if (signal_pending(current)) 8936 goto do_interrupted; 8937 if (sk_under_memory_pressure(sk)) 8938 sk_mem_reclaim(sk); 8939 if ((int)msg_len <= sctp_wspace(asoc) && 8940 sk_wmem_schedule(sk, msg_len)) 8941 break; 8942 8943 /* Let another process have a go. Since we are going 8944 * to sleep anyway. 8945 */ 8946 release_sock(sk); 8947 current_timeo = schedule_timeout(current_timeo); 8948 lock_sock(sk); 8949 if (sk != asoc->base.sk) 8950 goto do_error; 8951 8952 *timeo_p = current_timeo; 8953 } 8954 8955 out: 8956 finish_wait(&asoc->wait, &wait); 8957 8958 /* Release the association's refcnt. */ 8959 sctp_association_put(asoc); 8960 8961 return err; 8962 8963 do_dead: 8964 err = -ESRCH; 8965 goto out; 8966 8967 do_error: 8968 err = -EPIPE; 8969 goto out; 8970 8971 do_interrupted: 8972 err = sock_intr_errno(*timeo_p); 8973 goto out; 8974 8975 do_nonblock: 8976 err = -EAGAIN; 8977 goto out; 8978 } 8979 8980 void sctp_data_ready(struct sock *sk) 8981 { 8982 struct socket_wq *wq; 8983 8984 rcu_read_lock(); 8985 wq = rcu_dereference(sk->sk_wq); 8986 if (skwq_has_sleeper(wq)) 8987 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8988 EPOLLRDNORM | EPOLLRDBAND); 8989 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8990 rcu_read_unlock(); 8991 } 8992 8993 /* If socket sndbuf has changed, wake up all per association waiters. */ 8994 void sctp_write_space(struct sock *sk) 8995 { 8996 struct sctp_association *asoc; 8997 8998 /* Wake up the tasks in each wait queue. */ 8999 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9000 __sctp_write_space(asoc); 9001 } 9002 } 9003 9004 /* Is there any sndbuf space available on the socket? 9005 * 9006 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9007 * associations on the same socket. For a UDP-style socket with 9008 * multiple associations, it is possible for it to be "unwriteable" 9009 * prematurely. I assume that this is acceptable because 9010 * a premature "unwriteable" is better than an accidental "writeable" which 9011 * would cause an unwanted block under certain circumstances. For the 1-1 9012 * UDP-style sockets or TCP-style sockets, this code should work. 9013 * - Daisy 9014 */ 9015 static bool sctp_writeable(struct sock *sk) 9016 { 9017 return sk->sk_sndbuf > sk->sk_wmem_queued; 9018 } 9019 9020 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9021 * returns immediately with EINPROGRESS. 9022 */ 9023 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9024 { 9025 struct sock *sk = asoc->base.sk; 9026 int err = 0; 9027 long current_timeo = *timeo_p; 9028 DEFINE_WAIT(wait); 9029 9030 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9031 9032 /* Increment the association's refcnt. */ 9033 sctp_association_hold(asoc); 9034 9035 for (;;) { 9036 prepare_to_wait_exclusive(&asoc->wait, &wait, 9037 TASK_INTERRUPTIBLE); 9038 if (!*timeo_p) 9039 goto do_nonblock; 9040 if (sk->sk_shutdown & RCV_SHUTDOWN) 9041 break; 9042 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9043 asoc->base.dead) 9044 goto do_error; 9045 if (signal_pending(current)) 9046 goto do_interrupted; 9047 9048 if (sctp_state(asoc, ESTABLISHED)) 9049 break; 9050 9051 /* Let another process have a go. Since we are going 9052 * to sleep anyway. 9053 */ 9054 release_sock(sk); 9055 current_timeo = schedule_timeout(current_timeo); 9056 lock_sock(sk); 9057 9058 *timeo_p = current_timeo; 9059 } 9060 9061 out: 9062 finish_wait(&asoc->wait, &wait); 9063 9064 /* Release the association's refcnt. */ 9065 sctp_association_put(asoc); 9066 9067 return err; 9068 9069 do_error: 9070 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9071 err = -ETIMEDOUT; 9072 else 9073 err = -ECONNREFUSED; 9074 goto out; 9075 9076 do_interrupted: 9077 err = sock_intr_errno(*timeo_p); 9078 goto out; 9079 9080 do_nonblock: 9081 err = -EINPROGRESS; 9082 goto out; 9083 } 9084 9085 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9086 { 9087 struct sctp_endpoint *ep; 9088 int err = 0; 9089 DEFINE_WAIT(wait); 9090 9091 ep = sctp_sk(sk)->ep; 9092 9093 9094 for (;;) { 9095 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9096 TASK_INTERRUPTIBLE); 9097 9098 if (list_empty(&ep->asocs)) { 9099 release_sock(sk); 9100 timeo = schedule_timeout(timeo); 9101 lock_sock(sk); 9102 } 9103 9104 err = -EINVAL; 9105 if (!sctp_sstate(sk, LISTENING)) 9106 break; 9107 9108 err = 0; 9109 if (!list_empty(&ep->asocs)) 9110 break; 9111 9112 err = sock_intr_errno(timeo); 9113 if (signal_pending(current)) 9114 break; 9115 9116 err = -EAGAIN; 9117 if (!timeo) 9118 break; 9119 } 9120 9121 finish_wait(sk_sleep(sk), &wait); 9122 9123 return err; 9124 } 9125 9126 static void sctp_wait_for_close(struct sock *sk, long timeout) 9127 { 9128 DEFINE_WAIT(wait); 9129 9130 do { 9131 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9132 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9133 break; 9134 release_sock(sk); 9135 timeout = schedule_timeout(timeout); 9136 lock_sock(sk); 9137 } while (!signal_pending(current) && timeout); 9138 9139 finish_wait(sk_sleep(sk), &wait); 9140 } 9141 9142 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9143 { 9144 struct sk_buff *frag; 9145 9146 if (!skb->data_len) 9147 goto done; 9148 9149 /* Don't forget the fragments. */ 9150 skb_walk_frags(skb, frag) 9151 sctp_skb_set_owner_r_frag(frag, sk); 9152 9153 done: 9154 sctp_skb_set_owner_r(skb, sk); 9155 } 9156 9157 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9158 struct sctp_association *asoc) 9159 { 9160 struct inet_sock *inet = inet_sk(sk); 9161 struct inet_sock *newinet; 9162 struct sctp_sock *sp = sctp_sk(sk); 9163 struct sctp_endpoint *ep = sp->ep; 9164 9165 newsk->sk_type = sk->sk_type; 9166 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9167 newsk->sk_flags = sk->sk_flags; 9168 newsk->sk_tsflags = sk->sk_tsflags; 9169 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9170 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9171 newsk->sk_reuse = sk->sk_reuse; 9172 sctp_sk(newsk)->reuse = sp->reuse; 9173 9174 newsk->sk_shutdown = sk->sk_shutdown; 9175 newsk->sk_destruct = sctp_destruct_sock; 9176 newsk->sk_family = sk->sk_family; 9177 newsk->sk_protocol = IPPROTO_SCTP; 9178 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9179 newsk->sk_sndbuf = sk->sk_sndbuf; 9180 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9181 newsk->sk_lingertime = sk->sk_lingertime; 9182 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9183 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9184 newsk->sk_rxhash = sk->sk_rxhash; 9185 9186 newinet = inet_sk(newsk); 9187 9188 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9189 * getsockname() and getpeername() 9190 */ 9191 newinet->inet_sport = inet->inet_sport; 9192 newinet->inet_saddr = inet->inet_saddr; 9193 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9194 newinet->inet_dport = htons(asoc->peer.port); 9195 newinet->pmtudisc = inet->pmtudisc; 9196 newinet->inet_id = asoc->next_tsn ^ jiffies; 9197 9198 newinet->uc_ttl = inet->uc_ttl; 9199 newinet->mc_loop = 1; 9200 newinet->mc_ttl = 1; 9201 newinet->mc_index = 0; 9202 newinet->mc_list = NULL; 9203 9204 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9205 net_enable_timestamp(); 9206 9207 /* Set newsk security attributes from orginal sk and connection 9208 * security attribute from ep. 9209 */ 9210 security_sctp_sk_clone(ep, sk, newsk); 9211 } 9212 9213 static inline void sctp_copy_descendant(struct sock *sk_to, 9214 const struct sock *sk_from) 9215 { 9216 int ancestor_size = sizeof(struct inet_sock) + 9217 sizeof(struct sctp_sock) - 9218 offsetof(struct sctp_sock, pd_lobby); 9219 9220 if (sk_from->sk_family == PF_INET6) 9221 ancestor_size += sizeof(struct ipv6_pinfo); 9222 9223 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9224 } 9225 9226 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9227 * and its messages to the newsk. 9228 */ 9229 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9230 struct sctp_association *assoc, 9231 enum sctp_socket_type type) 9232 { 9233 struct sctp_sock *oldsp = sctp_sk(oldsk); 9234 struct sctp_sock *newsp = sctp_sk(newsk); 9235 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9236 struct sctp_endpoint *newep = newsp->ep; 9237 struct sk_buff *skb, *tmp; 9238 struct sctp_ulpevent *event; 9239 struct sctp_bind_hashbucket *head; 9240 int err; 9241 9242 /* Migrate socket buffer sizes and all the socket level options to the 9243 * new socket. 9244 */ 9245 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9246 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9247 /* Brute force copy old sctp opt. */ 9248 sctp_copy_descendant(newsk, oldsk); 9249 9250 /* Restore the ep value that was overwritten with the above structure 9251 * copy. 9252 */ 9253 newsp->ep = newep; 9254 newsp->hmac = NULL; 9255 9256 /* Hook this new socket in to the bind_hash list. */ 9257 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9258 inet_sk(oldsk)->inet_num)]; 9259 spin_lock_bh(&head->lock); 9260 pp = sctp_sk(oldsk)->bind_hash; 9261 sk_add_bind_node(newsk, &pp->owner); 9262 sctp_sk(newsk)->bind_hash = pp; 9263 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9264 spin_unlock_bh(&head->lock); 9265 9266 /* Copy the bind_addr list from the original endpoint to the new 9267 * endpoint so that we can handle restarts properly 9268 */ 9269 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9270 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9271 if (err) 9272 return err; 9273 9274 /* New ep's auth_hmacs should be set if old ep's is set, in case 9275 * that net->sctp.auth_enable has been changed to 0 by users and 9276 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9277 */ 9278 if (oldsp->ep->auth_hmacs) { 9279 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9280 if (err) 9281 return err; 9282 } 9283 9284 /* Move any messages in the old socket's receive queue that are for the 9285 * peeled off association to the new socket's receive queue. 9286 */ 9287 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9288 event = sctp_skb2event(skb); 9289 if (event->asoc == assoc) { 9290 __skb_unlink(skb, &oldsk->sk_receive_queue); 9291 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9292 sctp_skb_set_owner_r_frag(skb, newsk); 9293 } 9294 } 9295 9296 /* Clean up any messages pending delivery due to partial 9297 * delivery. Three cases: 9298 * 1) No partial deliver; no work. 9299 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9300 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9301 */ 9302 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9303 9304 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9305 struct sk_buff_head *queue; 9306 9307 /* Decide which queue to move pd_lobby skbs to. */ 9308 if (assoc->ulpq.pd_mode) { 9309 queue = &newsp->pd_lobby; 9310 } else 9311 queue = &newsk->sk_receive_queue; 9312 9313 /* Walk through the pd_lobby, looking for skbs that 9314 * need moved to the new socket. 9315 */ 9316 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9317 event = sctp_skb2event(skb); 9318 if (event->asoc == assoc) { 9319 __skb_unlink(skb, &oldsp->pd_lobby); 9320 __skb_queue_tail(queue, skb); 9321 sctp_skb_set_owner_r_frag(skb, newsk); 9322 } 9323 } 9324 9325 /* Clear up any skbs waiting for the partial 9326 * delivery to finish. 9327 */ 9328 if (assoc->ulpq.pd_mode) 9329 sctp_clear_pd(oldsk, NULL); 9330 9331 } 9332 9333 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9334 9335 /* Set the type of socket to indicate that it is peeled off from the 9336 * original UDP-style socket or created with the accept() call on a 9337 * TCP-style socket.. 9338 */ 9339 newsp->type = type; 9340 9341 /* Mark the new socket "in-use" by the user so that any packets 9342 * that may arrive on the association after we've moved it are 9343 * queued to the backlog. This prevents a potential race between 9344 * backlog processing on the old socket and new-packet processing 9345 * on the new socket. 9346 * 9347 * The caller has just allocated newsk so we can guarantee that other 9348 * paths won't try to lock it and then oldsk. 9349 */ 9350 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9351 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9352 sctp_assoc_migrate(assoc, newsk); 9353 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9354 9355 /* If the association on the newsk is already closed before accept() 9356 * is called, set RCV_SHUTDOWN flag. 9357 */ 9358 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9359 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9360 newsk->sk_shutdown |= RCV_SHUTDOWN; 9361 } else { 9362 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9363 } 9364 9365 release_sock(newsk); 9366 9367 return 0; 9368 } 9369 9370 9371 /* This proto struct describes the ULP interface for SCTP. */ 9372 struct proto sctp_prot = { 9373 .name = "SCTP", 9374 .owner = THIS_MODULE, 9375 .close = sctp_close, 9376 .disconnect = sctp_disconnect, 9377 .accept = sctp_accept, 9378 .ioctl = sctp_ioctl, 9379 .init = sctp_init_sock, 9380 .destroy = sctp_destroy_sock, 9381 .shutdown = sctp_shutdown, 9382 .setsockopt = sctp_setsockopt, 9383 .getsockopt = sctp_getsockopt, 9384 .sendmsg = sctp_sendmsg, 9385 .recvmsg = sctp_recvmsg, 9386 .bind = sctp_bind, 9387 .backlog_rcv = sctp_backlog_rcv, 9388 .hash = sctp_hash, 9389 .unhash = sctp_unhash, 9390 .get_port = sctp_get_port, 9391 .obj_size = sizeof(struct sctp_sock), 9392 .useroffset = offsetof(struct sctp_sock, subscribe), 9393 .usersize = offsetof(struct sctp_sock, initmsg) - 9394 offsetof(struct sctp_sock, subscribe) + 9395 sizeof_field(struct sctp_sock, initmsg), 9396 .sysctl_mem = sysctl_sctp_mem, 9397 .sysctl_rmem = sysctl_sctp_rmem, 9398 .sysctl_wmem = sysctl_sctp_wmem, 9399 .memory_pressure = &sctp_memory_pressure, 9400 .enter_memory_pressure = sctp_enter_memory_pressure, 9401 .memory_allocated = &sctp_memory_allocated, 9402 .sockets_allocated = &sctp_sockets_allocated, 9403 }; 9404 9405 #if IS_ENABLED(CONFIG_IPV6) 9406 9407 #include <net/transp_v6.h> 9408 static void sctp_v6_destroy_sock(struct sock *sk) 9409 { 9410 sctp_destroy_sock(sk); 9411 inet6_destroy_sock(sk); 9412 } 9413 9414 struct proto sctpv6_prot = { 9415 .name = "SCTPv6", 9416 .owner = THIS_MODULE, 9417 .close = sctp_close, 9418 .disconnect = sctp_disconnect, 9419 .accept = sctp_accept, 9420 .ioctl = sctp_ioctl, 9421 .init = sctp_init_sock, 9422 .destroy = sctp_v6_destroy_sock, 9423 .shutdown = sctp_shutdown, 9424 .setsockopt = sctp_setsockopt, 9425 .getsockopt = sctp_getsockopt, 9426 .sendmsg = sctp_sendmsg, 9427 .recvmsg = sctp_recvmsg, 9428 .bind = sctp_bind, 9429 .backlog_rcv = sctp_backlog_rcv, 9430 .hash = sctp_hash, 9431 .unhash = sctp_unhash, 9432 .get_port = sctp_get_port, 9433 .obj_size = sizeof(struct sctp6_sock), 9434 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9435 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9436 offsetof(struct sctp6_sock, sctp.subscribe) + 9437 sizeof_field(struct sctp6_sock, sctp.initmsg), 9438 .sysctl_mem = sysctl_sctp_mem, 9439 .sysctl_rmem = sysctl_sctp_rmem, 9440 .sysctl_wmem = sysctl_sctp_wmem, 9441 .memory_pressure = &sctp_memory_pressure, 9442 .enter_memory_pressure = sctp_enter_memory_pressure, 9443 .memory_allocated = &sctp_memory_allocated, 9444 .sockets_allocated = &sctp_sockets_allocated, 9445 }; 9446 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9447