1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/wait.h> 58 #include <linux/time.h> 59 #include <linux/ip.h> 60 #include <linux/capability.h> 61 #include <linux/fcntl.h> 62 #include <linux/poll.h> 63 #include <linux/init.h> 64 #include <linux/crypto.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 68 #include <net/ip.h> 69 #include <net/icmp.h> 70 #include <net/route.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 74 #include <linux/socket.h> /* for sa_family_t */ 75 #include <linux/export.h> 76 #include <net/sock.h> 77 #include <net/sctp/sctp.h> 78 #include <net/sctp/sm.h> 79 80 /* Forward declarations for internal helper functions. */ 81 static int sctp_writeable(struct sock *sk); 82 static void sctp_wfree(struct sk_buff *skb); 83 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 84 size_t msg_len); 85 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 86 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 87 static int sctp_wait_for_accept(struct sock *sk, long timeo); 88 static void sctp_wait_for_close(struct sock *sk, long timeo); 89 static void sctp_destruct_sock(struct sock *sk); 90 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 91 union sctp_addr *addr, int len); 92 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 93 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 94 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 95 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf(struct sctp_association *asoc, 97 struct sctp_chunk *chunk); 98 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 99 static int sctp_autobind(struct sock *sk); 100 static void sctp_sock_migrate(struct sock *, struct sock *, 101 struct sctp_association *, sctp_socket_type_t); 102 103 extern struct kmem_cache *sctp_bucket_cachep; 104 extern long sysctl_sctp_mem[3]; 105 extern int sysctl_sctp_rmem[3]; 106 extern int sysctl_sctp_wmem[3]; 107 108 static int sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 skb_set_owner_w(chunk->skb, sk); 160 161 chunk->skb->destructor = sctp_wfree; 162 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 163 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 164 165 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 166 sizeof(struct sk_buff) + 167 sizeof(struct sctp_chunk); 168 169 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 170 sk->sk_wmem_queued += chunk->skb->truesize; 171 sk_mem_charge(sk, chunk->skb->truesize); 172 } 173 174 /* Verify that this is a valid address. */ 175 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 176 int len) 177 { 178 struct sctp_af *af; 179 180 /* Verify basic sockaddr. */ 181 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 182 if (!af) 183 return -EINVAL; 184 185 /* Is this a valid SCTP address? */ 186 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 187 return -EINVAL; 188 189 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 /* Look up the association by its id. If this is not a UDP-style 196 * socket, the ID field is always ignored. 197 */ 198 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 199 { 200 struct sctp_association *asoc = NULL; 201 202 /* If this is not a UDP-style socket, assoc id should be ignored. */ 203 if (!sctp_style(sk, UDP)) { 204 /* Return NULL if the socket state is not ESTABLISHED. It 205 * could be a TCP-style listening socket or a socket which 206 * hasn't yet called connect() to establish an association. 207 */ 208 if (!sctp_sstate(sk, ESTABLISHED)) 209 return NULL; 210 211 /* Get the first and the only association from the list. */ 212 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 213 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 214 struct sctp_association, asocs); 215 return asoc; 216 } 217 218 /* Otherwise this is a UDP-style socket. */ 219 if (!id || (id == (sctp_assoc_t)-1)) 220 return NULL; 221 222 spin_lock_bh(&sctp_assocs_id_lock); 223 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 224 spin_unlock_bh(&sctp_assocs_id_lock); 225 226 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 227 return NULL; 228 229 return asoc; 230 } 231 232 /* Look up the transport from an address and an assoc id. If both address and 233 * id are specified, the associations matching the address and the id should be 234 * the same. 235 */ 236 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 237 struct sockaddr_storage *addr, 238 sctp_assoc_t id) 239 { 240 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 241 struct sctp_transport *transport; 242 union sctp_addr *laddr = (union sctp_addr *)addr; 243 244 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 245 laddr, 246 &transport); 247 248 if (!addr_asoc) 249 return NULL; 250 251 id_asoc = sctp_id2assoc(sk, id); 252 if (id_asoc && (id_asoc != addr_asoc)) 253 return NULL; 254 255 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 256 (union sctp_addr *)addr); 257 258 return transport; 259 } 260 261 /* API 3.1.2 bind() - UDP Style Syntax 262 * The syntax of bind() is, 263 * 264 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 265 * 266 * sd - the socket descriptor returned by socket(). 267 * addr - the address structure (struct sockaddr_in or struct 268 * sockaddr_in6 [RFC 2553]), 269 * addr_len - the size of the address structure. 270 */ 271 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 272 { 273 int retval = 0; 274 275 lock_sock(sk); 276 277 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 278 addr, addr_len); 279 280 /* Disallow binding twice. */ 281 if (!sctp_sk(sk)->ep->base.bind_addr.port) 282 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 283 addr_len); 284 else 285 retval = -EINVAL; 286 287 release_sock(sk); 288 289 return retval; 290 } 291 292 static long sctp_get_port_local(struct sock *, union sctp_addr *); 293 294 /* Verify this is a valid sockaddr. */ 295 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 296 union sctp_addr *addr, int len) 297 { 298 struct sctp_af *af; 299 300 /* Check minimum size. */ 301 if (len < sizeof (struct sockaddr)) 302 return NULL; 303 304 /* V4 mapped address are really of AF_INET family */ 305 if (addr->sa.sa_family == AF_INET6 && 306 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 307 if (!opt->pf->af_supported(AF_INET, opt)) 308 return NULL; 309 } else { 310 /* Does this PF support this AF? */ 311 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 312 return NULL; 313 } 314 315 /* If we get this far, af is valid. */ 316 af = sctp_get_af_specific(addr->sa.sa_family); 317 318 if (len < af->sockaddr_len) 319 return NULL; 320 321 return af; 322 } 323 324 /* Bind a local address either to an endpoint or to an association. */ 325 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 326 { 327 struct net *net = sock_net(sk); 328 struct sctp_sock *sp = sctp_sk(sk); 329 struct sctp_endpoint *ep = sp->ep; 330 struct sctp_bind_addr *bp = &ep->base.bind_addr; 331 struct sctp_af *af; 332 unsigned short snum; 333 int ret = 0; 334 335 /* Common sockaddr verification. */ 336 af = sctp_sockaddr_af(sp, addr, len); 337 if (!af) { 338 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 339 __func__, sk, addr, len); 340 return -EINVAL; 341 } 342 343 snum = ntohs(addr->v4.sin_port); 344 345 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 346 __func__, sk, &addr->sa, bp->port, snum, len); 347 348 /* PF specific bind() address verification. */ 349 if (!sp->pf->bind_verify(sp, addr)) 350 return -EADDRNOTAVAIL; 351 352 /* We must either be unbound, or bind to the same port. 353 * It's OK to allow 0 ports if we are already bound. 354 * We'll just inhert an already bound port in this case 355 */ 356 if (bp->port) { 357 if (!snum) 358 snum = bp->port; 359 else if (snum != bp->port) { 360 pr_debug("%s: new port %d doesn't match existing port " 361 "%d\n", __func__, snum, bp->port); 362 return -EINVAL; 363 } 364 } 365 366 if (snum && snum < PROT_SOCK && 367 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 368 return -EACCES; 369 370 /* See if the address matches any of the addresses we may have 371 * already bound before checking against other endpoints. 372 */ 373 if (sctp_bind_addr_match(bp, addr, sp)) 374 return -EINVAL; 375 376 /* Make sure we are allowed to bind here. 377 * The function sctp_get_port_local() does duplicate address 378 * detection. 379 */ 380 addr->v4.sin_port = htons(snum); 381 if ((ret = sctp_get_port_local(sk, addr))) { 382 return -EADDRINUSE; 383 } 384 385 /* Refresh ephemeral port. */ 386 if (!bp->port) 387 bp->port = inet_sk(sk)->inet_num; 388 389 /* Add the address to the bind address list. 390 * Use GFP_ATOMIC since BHs will be disabled. 391 */ 392 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 393 394 /* Copy back into socket for getsockname() use. */ 395 if (!ret) { 396 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 397 af->to_sk_saddr(addr, sk); 398 } 399 400 return ret; 401 } 402 403 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 404 * 405 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 406 * at any one time. If a sender, after sending an ASCONF chunk, decides 407 * it needs to transfer another ASCONF Chunk, it MUST wait until the 408 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 409 * subsequent ASCONF. Note this restriction binds each side, so at any 410 * time two ASCONF may be in-transit on any given association (one sent 411 * from each endpoint). 412 */ 413 static int sctp_send_asconf(struct sctp_association *asoc, 414 struct sctp_chunk *chunk) 415 { 416 struct net *net = sock_net(asoc->base.sk); 417 int retval = 0; 418 419 /* If there is an outstanding ASCONF chunk, queue it for later 420 * transmission. 421 */ 422 if (asoc->addip_last_asconf) { 423 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 424 goto out; 425 } 426 427 /* Hold the chunk until an ASCONF_ACK is received. */ 428 sctp_chunk_hold(chunk); 429 retval = sctp_primitive_ASCONF(net, asoc, chunk); 430 if (retval) 431 sctp_chunk_free(chunk); 432 else 433 asoc->addip_last_asconf = chunk; 434 435 out: 436 return retval; 437 } 438 439 /* Add a list of addresses as bind addresses to local endpoint or 440 * association. 441 * 442 * Basically run through each address specified in the addrs/addrcnt 443 * array/length pair, determine if it is IPv6 or IPv4 and call 444 * sctp_do_bind() on it. 445 * 446 * If any of them fails, then the operation will be reversed and the 447 * ones that were added will be removed. 448 * 449 * Only sctp_setsockopt_bindx() is supposed to call this function. 450 */ 451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 452 { 453 int cnt; 454 int retval = 0; 455 void *addr_buf; 456 struct sockaddr *sa_addr; 457 struct sctp_af *af; 458 459 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 460 addrs, addrcnt); 461 462 addr_buf = addrs; 463 for (cnt = 0; cnt < addrcnt; cnt++) { 464 /* The list may contain either IPv4 or IPv6 address; 465 * determine the address length for walking thru the list. 466 */ 467 sa_addr = addr_buf; 468 af = sctp_get_af_specific(sa_addr->sa_family); 469 if (!af) { 470 retval = -EINVAL; 471 goto err_bindx_add; 472 } 473 474 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 475 af->sockaddr_len); 476 477 addr_buf += af->sockaddr_len; 478 479 err_bindx_add: 480 if (retval < 0) { 481 /* Failed. Cleanup the ones that have been added */ 482 if (cnt > 0) 483 sctp_bindx_rem(sk, addrs, cnt); 484 return retval; 485 } 486 } 487 488 return retval; 489 } 490 491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 492 * associations that are part of the endpoint indicating that a list of local 493 * addresses are added to the endpoint. 494 * 495 * If any of the addresses is already in the bind address list of the 496 * association, we do not send the chunk for that association. But it will not 497 * affect other associations. 498 * 499 * Only sctp_setsockopt_bindx() is supposed to call this function. 500 */ 501 static int sctp_send_asconf_add_ip(struct sock *sk, 502 struct sockaddr *addrs, 503 int addrcnt) 504 { 505 struct net *net = sock_net(sk); 506 struct sctp_sock *sp; 507 struct sctp_endpoint *ep; 508 struct sctp_association *asoc; 509 struct sctp_bind_addr *bp; 510 struct sctp_chunk *chunk; 511 struct sctp_sockaddr_entry *laddr; 512 union sctp_addr *addr; 513 union sctp_addr saveaddr; 514 void *addr_buf; 515 struct sctp_af *af; 516 struct list_head *p; 517 int i; 518 int retval = 0; 519 520 if (!net->sctp.addip_enable) 521 return retval; 522 523 sp = sctp_sk(sk); 524 ep = sp->ep; 525 526 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 527 __func__, sk, addrs, addrcnt); 528 529 list_for_each_entry(asoc, &ep->asocs, asocs) { 530 if (!asoc->peer.asconf_capable) 531 continue; 532 533 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 534 continue; 535 536 if (!sctp_state(asoc, ESTABLISHED)) 537 continue; 538 539 /* Check if any address in the packed array of addresses is 540 * in the bind address list of the association. If so, 541 * do not send the asconf chunk to its peer, but continue with 542 * other associations. 543 */ 544 addr_buf = addrs; 545 for (i = 0; i < addrcnt; i++) { 546 addr = addr_buf; 547 af = sctp_get_af_specific(addr->v4.sin_family); 548 if (!af) { 549 retval = -EINVAL; 550 goto out; 551 } 552 553 if (sctp_assoc_lookup_laddr(asoc, addr)) 554 break; 555 556 addr_buf += af->sockaddr_len; 557 } 558 if (i < addrcnt) 559 continue; 560 561 /* Use the first valid address in bind addr list of 562 * association as Address Parameter of ASCONF CHUNK. 563 */ 564 bp = &asoc->base.bind_addr; 565 p = bp->address_list.next; 566 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 567 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 568 addrcnt, SCTP_PARAM_ADD_IP); 569 if (!chunk) { 570 retval = -ENOMEM; 571 goto out; 572 } 573 574 /* Add the new addresses to the bind address list with 575 * use_as_src set to 0. 576 */ 577 addr_buf = addrs; 578 for (i = 0; i < addrcnt; i++) { 579 addr = addr_buf; 580 af = sctp_get_af_specific(addr->v4.sin_family); 581 memcpy(&saveaddr, addr, af->sockaddr_len); 582 retval = sctp_add_bind_addr(bp, &saveaddr, 583 SCTP_ADDR_NEW, GFP_ATOMIC); 584 addr_buf += af->sockaddr_len; 585 } 586 if (asoc->src_out_of_asoc_ok) { 587 struct sctp_transport *trans; 588 589 list_for_each_entry(trans, 590 &asoc->peer.transport_addr_list, transports) { 591 /* Clear the source and route cache */ 592 dst_release(trans->dst); 593 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 594 2*asoc->pathmtu, 4380)); 595 trans->ssthresh = asoc->peer.i.a_rwnd; 596 trans->rto = asoc->rto_initial; 597 sctp_max_rto(asoc, trans); 598 trans->rtt = trans->srtt = trans->rttvar = 0; 599 sctp_transport_route(trans, NULL, 600 sctp_sk(asoc->base.sk)); 601 } 602 } 603 retval = sctp_send_asconf(asoc, chunk); 604 } 605 606 out: 607 return retval; 608 } 609 610 /* Remove a list of addresses from bind addresses list. Do not remove the 611 * last address. 612 * 613 * Basically run through each address specified in the addrs/addrcnt 614 * array/length pair, determine if it is IPv6 or IPv4 and call 615 * sctp_del_bind() on it. 616 * 617 * If any of them fails, then the operation will be reversed and the 618 * ones that were removed will be added back. 619 * 620 * At least one address has to be left; if only one address is 621 * available, the operation will return -EBUSY. 622 * 623 * Only sctp_setsockopt_bindx() is supposed to call this function. 624 */ 625 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 626 { 627 struct sctp_sock *sp = sctp_sk(sk); 628 struct sctp_endpoint *ep = sp->ep; 629 int cnt; 630 struct sctp_bind_addr *bp = &ep->base.bind_addr; 631 int retval = 0; 632 void *addr_buf; 633 union sctp_addr *sa_addr; 634 struct sctp_af *af; 635 636 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 637 __func__, sk, addrs, addrcnt); 638 639 addr_buf = addrs; 640 for (cnt = 0; cnt < addrcnt; cnt++) { 641 /* If the bind address list is empty or if there is only one 642 * bind address, there is nothing more to be removed (we need 643 * at least one address here). 644 */ 645 if (list_empty(&bp->address_list) || 646 (sctp_list_single_entry(&bp->address_list))) { 647 retval = -EBUSY; 648 goto err_bindx_rem; 649 } 650 651 sa_addr = addr_buf; 652 af = sctp_get_af_specific(sa_addr->sa.sa_family); 653 if (!af) { 654 retval = -EINVAL; 655 goto err_bindx_rem; 656 } 657 658 if (!af->addr_valid(sa_addr, sp, NULL)) { 659 retval = -EADDRNOTAVAIL; 660 goto err_bindx_rem; 661 } 662 663 if (sa_addr->v4.sin_port && 664 sa_addr->v4.sin_port != htons(bp->port)) { 665 retval = -EINVAL; 666 goto err_bindx_rem; 667 } 668 669 if (!sa_addr->v4.sin_port) 670 sa_addr->v4.sin_port = htons(bp->port); 671 672 /* FIXME - There is probably a need to check if sk->sk_saddr and 673 * sk->sk_rcv_addr are currently set to one of the addresses to 674 * be removed. This is something which needs to be looked into 675 * when we are fixing the outstanding issues with multi-homing 676 * socket routing and failover schemes. Refer to comments in 677 * sctp_do_bind(). -daisy 678 */ 679 retval = sctp_del_bind_addr(bp, sa_addr); 680 681 addr_buf += af->sockaddr_len; 682 err_bindx_rem: 683 if (retval < 0) { 684 /* Failed. Add the ones that has been removed back */ 685 if (cnt > 0) 686 sctp_bindx_add(sk, addrs, cnt); 687 return retval; 688 } 689 } 690 691 return retval; 692 } 693 694 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 695 * the associations that are part of the endpoint indicating that a list of 696 * local addresses are removed from the endpoint. 697 * 698 * If any of the addresses is already in the bind address list of the 699 * association, we do not send the chunk for that association. But it will not 700 * affect other associations. 701 * 702 * Only sctp_setsockopt_bindx() is supposed to call this function. 703 */ 704 static int sctp_send_asconf_del_ip(struct sock *sk, 705 struct sockaddr *addrs, 706 int addrcnt) 707 { 708 struct net *net = sock_net(sk); 709 struct sctp_sock *sp; 710 struct sctp_endpoint *ep; 711 struct sctp_association *asoc; 712 struct sctp_transport *transport; 713 struct sctp_bind_addr *bp; 714 struct sctp_chunk *chunk; 715 union sctp_addr *laddr; 716 void *addr_buf; 717 struct sctp_af *af; 718 struct sctp_sockaddr_entry *saddr; 719 int i; 720 int retval = 0; 721 int stored = 0; 722 723 chunk = NULL; 724 if (!net->sctp.addip_enable) 725 return retval; 726 727 sp = sctp_sk(sk); 728 ep = sp->ep; 729 730 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 731 __func__, sk, addrs, addrcnt); 732 733 list_for_each_entry(asoc, &ep->asocs, asocs) { 734 735 if (!asoc->peer.asconf_capable) 736 continue; 737 738 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 739 continue; 740 741 if (!sctp_state(asoc, ESTABLISHED)) 742 continue; 743 744 /* Check if any address in the packed array of addresses is 745 * not present in the bind address list of the association. 746 * If so, do not send the asconf chunk to its peer, but 747 * continue with other associations. 748 */ 749 addr_buf = addrs; 750 for (i = 0; i < addrcnt; i++) { 751 laddr = addr_buf; 752 af = sctp_get_af_specific(laddr->v4.sin_family); 753 if (!af) { 754 retval = -EINVAL; 755 goto out; 756 } 757 758 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 759 break; 760 761 addr_buf += af->sockaddr_len; 762 } 763 if (i < addrcnt) 764 continue; 765 766 /* Find one address in the association's bind address list 767 * that is not in the packed array of addresses. This is to 768 * make sure that we do not delete all the addresses in the 769 * association. 770 */ 771 bp = &asoc->base.bind_addr; 772 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 773 addrcnt, sp); 774 if ((laddr == NULL) && (addrcnt == 1)) { 775 if (asoc->asconf_addr_del_pending) 776 continue; 777 asoc->asconf_addr_del_pending = 778 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 779 if (asoc->asconf_addr_del_pending == NULL) { 780 retval = -ENOMEM; 781 goto out; 782 } 783 asoc->asconf_addr_del_pending->sa.sa_family = 784 addrs->sa_family; 785 asoc->asconf_addr_del_pending->v4.sin_port = 786 htons(bp->port); 787 if (addrs->sa_family == AF_INET) { 788 struct sockaddr_in *sin; 789 790 sin = (struct sockaddr_in *)addrs; 791 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 792 } else if (addrs->sa_family == AF_INET6) { 793 struct sockaddr_in6 *sin6; 794 795 sin6 = (struct sockaddr_in6 *)addrs; 796 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 797 } 798 799 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 800 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 801 asoc->asconf_addr_del_pending); 802 803 asoc->src_out_of_asoc_ok = 1; 804 stored = 1; 805 goto skip_mkasconf; 806 } 807 808 if (laddr == NULL) 809 return -EINVAL; 810 811 /* We do not need RCU protection throughout this loop 812 * because this is done under a socket lock from the 813 * setsockopt call. 814 */ 815 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 816 SCTP_PARAM_DEL_IP); 817 if (!chunk) { 818 retval = -ENOMEM; 819 goto out; 820 } 821 822 skip_mkasconf: 823 /* Reset use_as_src flag for the addresses in the bind address 824 * list that are to be deleted. 825 */ 826 addr_buf = addrs; 827 for (i = 0; i < addrcnt; i++) { 828 laddr = addr_buf; 829 af = sctp_get_af_specific(laddr->v4.sin_family); 830 list_for_each_entry(saddr, &bp->address_list, list) { 831 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 832 saddr->state = SCTP_ADDR_DEL; 833 } 834 addr_buf += af->sockaddr_len; 835 } 836 837 /* Update the route and saddr entries for all the transports 838 * as some of the addresses in the bind address list are 839 * about to be deleted and cannot be used as source addresses. 840 */ 841 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 842 transports) { 843 dst_release(transport->dst); 844 sctp_transport_route(transport, NULL, 845 sctp_sk(asoc->base.sk)); 846 } 847 848 if (stored) 849 /* We don't need to transmit ASCONF */ 850 continue; 851 retval = sctp_send_asconf(asoc, chunk); 852 } 853 out: 854 return retval; 855 } 856 857 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 858 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 859 { 860 struct sock *sk = sctp_opt2sk(sp); 861 union sctp_addr *addr; 862 struct sctp_af *af; 863 864 /* It is safe to write port space in caller. */ 865 addr = &addrw->a; 866 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 867 af = sctp_get_af_specific(addr->sa.sa_family); 868 if (!af) 869 return -EINVAL; 870 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 871 return -EINVAL; 872 873 if (addrw->state == SCTP_ADDR_NEW) 874 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 875 else 876 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 877 } 878 879 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 880 * 881 * API 8.1 882 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 883 * int flags); 884 * 885 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 886 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 887 * or IPv6 addresses. 888 * 889 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 890 * Section 3.1.2 for this usage. 891 * 892 * addrs is a pointer to an array of one or more socket addresses. Each 893 * address is contained in its appropriate structure (i.e. struct 894 * sockaddr_in or struct sockaddr_in6) the family of the address type 895 * must be used to distinguish the address length (note that this 896 * representation is termed a "packed array" of addresses). The caller 897 * specifies the number of addresses in the array with addrcnt. 898 * 899 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 900 * -1, and sets errno to the appropriate error code. 901 * 902 * For SCTP, the port given in each socket address must be the same, or 903 * sctp_bindx() will fail, setting errno to EINVAL. 904 * 905 * The flags parameter is formed from the bitwise OR of zero or more of 906 * the following currently defined flags: 907 * 908 * SCTP_BINDX_ADD_ADDR 909 * 910 * SCTP_BINDX_REM_ADDR 911 * 912 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 913 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 914 * addresses from the association. The two flags are mutually exclusive; 915 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 916 * not remove all addresses from an association; sctp_bindx() will 917 * reject such an attempt with EINVAL. 918 * 919 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 920 * additional addresses with an endpoint after calling bind(). Or use 921 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 922 * socket is associated with so that no new association accepted will be 923 * associated with those addresses. If the endpoint supports dynamic 924 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 925 * endpoint to send the appropriate message to the peer to change the 926 * peers address lists. 927 * 928 * Adding and removing addresses from a connected association is 929 * optional functionality. Implementations that do not support this 930 * functionality should return EOPNOTSUPP. 931 * 932 * Basically do nothing but copying the addresses from user to kernel 933 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 934 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 935 * from userspace. 936 * 937 * We don't use copy_from_user() for optimization: we first do the 938 * sanity checks (buffer size -fast- and access check-healthy 939 * pointer); if all of those succeed, then we can alloc the memory 940 * (expensive operation) needed to copy the data to kernel. Then we do 941 * the copying without checking the user space area 942 * (__copy_from_user()). 943 * 944 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 945 * it. 946 * 947 * sk The sk of the socket 948 * addrs The pointer to the addresses in user land 949 * addrssize Size of the addrs buffer 950 * op Operation to perform (add or remove, see the flags of 951 * sctp_bindx) 952 * 953 * Returns 0 if ok, <0 errno code on error. 954 */ 955 static int sctp_setsockopt_bindx(struct sock *sk, 956 struct sockaddr __user *addrs, 957 int addrs_size, int op) 958 { 959 struct sockaddr *kaddrs; 960 int err; 961 int addrcnt = 0; 962 int walk_size = 0; 963 struct sockaddr *sa_addr; 964 void *addr_buf; 965 struct sctp_af *af; 966 967 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 968 __func__, sk, addrs, addrs_size, op); 969 970 if (unlikely(addrs_size <= 0)) 971 return -EINVAL; 972 973 /* Check the user passed a healthy pointer. */ 974 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 975 return -EFAULT; 976 977 /* Alloc space for the address array in kernel memory. */ 978 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 979 if (unlikely(!kaddrs)) 980 return -ENOMEM; 981 982 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 983 kfree(kaddrs); 984 return -EFAULT; 985 } 986 987 /* Walk through the addrs buffer and count the number of addresses. */ 988 addr_buf = kaddrs; 989 while (walk_size < addrs_size) { 990 if (walk_size + sizeof(sa_family_t) > addrs_size) { 991 kfree(kaddrs); 992 return -EINVAL; 993 } 994 995 sa_addr = addr_buf; 996 af = sctp_get_af_specific(sa_addr->sa_family); 997 998 /* If the address family is not supported or if this address 999 * causes the address buffer to overflow return EINVAL. 1000 */ 1001 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1002 kfree(kaddrs); 1003 return -EINVAL; 1004 } 1005 addrcnt++; 1006 addr_buf += af->sockaddr_len; 1007 walk_size += af->sockaddr_len; 1008 } 1009 1010 /* Do the work. */ 1011 switch (op) { 1012 case SCTP_BINDX_ADD_ADDR: 1013 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1014 if (err) 1015 goto out; 1016 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1017 break; 1018 1019 case SCTP_BINDX_REM_ADDR: 1020 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1021 if (err) 1022 goto out; 1023 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1024 break; 1025 1026 default: 1027 err = -EINVAL; 1028 break; 1029 } 1030 1031 out: 1032 kfree(kaddrs); 1033 1034 return err; 1035 } 1036 1037 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1038 * 1039 * Common routine for handling connect() and sctp_connectx(). 1040 * Connect will come in with just a single address. 1041 */ 1042 static int __sctp_connect(struct sock *sk, 1043 struct sockaddr *kaddrs, 1044 int addrs_size, 1045 sctp_assoc_t *assoc_id) 1046 { 1047 struct net *net = sock_net(sk); 1048 struct sctp_sock *sp; 1049 struct sctp_endpoint *ep; 1050 struct sctp_association *asoc = NULL; 1051 struct sctp_association *asoc2; 1052 struct sctp_transport *transport; 1053 union sctp_addr to; 1054 struct sctp_af *af; 1055 sctp_scope_t scope; 1056 long timeo; 1057 int err = 0; 1058 int addrcnt = 0; 1059 int walk_size = 0; 1060 union sctp_addr *sa_addr = NULL; 1061 void *addr_buf; 1062 unsigned short port; 1063 unsigned int f_flags = 0; 1064 1065 sp = sctp_sk(sk); 1066 ep = sp->ep; 1067 1068 /* connect() cannot be done on a socket that is already in ESTABLISHED 1069 * state - UDP-style peeled off socket or a TCP-style socket that 1070 * is already connected. 1071 * It cannot be done even on a TCP-style listening socket. 1072 */ 1073 if (sctp_sstate(sk, ESTABLISHED) || 1074 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1075 err = -EISCONN; 1076 goto out_free; 1077 } 1078 1079 /* Walk through the addrs buffer and count the number of addresses. */ 1080 addr_buf = kaddrs; 1081 while (walk_size < addrs_size) { 1082 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1083 err = -EINVAL; 1084 goto out_free; 1085 } 1086 1087 sa_addr = addr_buf; 1088 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1089 1090 /* If the address family is not supported or if this address 1091 * causes the address buffer to overflow return EINVAL. 1092 */ 1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1094 err = -EINVAL; 1095 goto out_free; 1096 } 1097 1098 port = ntohs(sa_addr->v4.sin_port); 1099 1100 /* Save current address so we can work with it */ 1101 memcpy(&to, sa_addr, af->sockaddr_len); 1102 1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1104 if (err) 1105 goto out_free; 1106 1107 /* Make sure the destination port is correctly set 1108 * in all addresses. 1109 */ 1110 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1111 err = -EINVAL; 1112 goto out_free; 1113 } 1114 1115 /* Check if there already is a matching association on the 1116 * endpoint (other than the one created here). 1117 */ 1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1119 if (asoc2 && asoc2 != asoc) { 1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1121 err = -EISCONN; 1122 else 1123 err = -EALREADY; 1124 goto out_free; 1125 } 1126 1127 /* If we could not find a matching association on the endpoint, 1128 * make sure that there is no peeled-off association matching 1129 * the peer address even on another socket. 1130 */ 1131 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1132 err = -EADDRNOTAVAIL; 1133 goto out_free; 1134 } 1135 1136 if (!asoc) { 1137 /* If a bind() or sctp_bindx() is not called prior to 1138 * an sctp_connectx() call, the system picks an 1139 * ephemeral port and will choose an address set 1140 * equivalent to binding with a wildcard address. 1141 */ 1142 if (!ep->base.bind_addr.port) { 1143 if (sctp_autobind(sk)) { 1144 err = -EAGAIN; 1145 goto out_free; 1146 } 1147 } else { 1148 /* 1149 * If an unprivileged user inherits a 1-many 1150 * style socket with open associations on a 1151 * privileged port, it MAY be permitted to 1152 * accept new associations, but it SHOULD NOT 1153 * be permitted to open new associations. 1154 */ 1155 if (ep->base.bind_addr.port < PROT_SOCK && 1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1157 err = -EACCES; 1158 goto out_free; 1159 } 1160 } 1161 1162 scope = sctp_scope(&to); 1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1164 if (!asoc) { 1165 err = -ENOMEM; 1166 goto out_free; 1167 } 1168 1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1170 GFP_KERNEL); 1171 if (err < 0) { 1172 goto out_free; 1173 } 1174 1175 } 1176 1177 /* Prime the peer's transport structures. */ 1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1179 SCTP_UNKNOWN); 1180 if (!transport) { 1181 err = -ENOMEM; 1182 goto out_free; 1183 } 1184 1185 addrcnt++; 1186 addr_buf += af->sockaddr_len; 1187 walk_size += af->sockaddr_len; 1188 } 1189 1190 /* In case the user of sctp_connectx() wants an association 1191 * id back, assign one now. 1192 */ 1193 if (assoc_id) { 1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1195 if (err < 0) 1196 goto out_free; 1197 } 1198 1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1200 if (err < 0) { 1201 goto out_free; 1202 } 1203 1204 /* Initialize sk's dport and daddr for getpeername() */ 1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1206 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1207 af->to_sk_daddr(sa_addr, sk); 1208 sk->sk_err = 0; 1209 1210 /* in-kernel sockets don't generally have a file allocated to them 1211 * if all they do is call sock_create_kern(). 1212 */ 1213 if (sk->sk_socket->file) 1214 f_flags = sk->sk_socket->file->f_flags; 1215 1216 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1217 1218 err = sctp_wait_for_connect(asoc, &timeo); 1219 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1220 *assoc_id = asoc->assoc_id; 1221 1222 /* Don't free association on exit. */ 1223 asoc = NULL; 1224 1225 out_free: 1226 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1227 __func__, asoc, kaddrs, err); 1228 1229 if (asoc) { 1230 /* sctp_primitive_ASSOCIATE may have added this association 1231 * To the hash table, try to unhash it, just in case, its a noop 1232 * if it wasn't hashed so we're safe 1233 */ 1234 sctp_unhash_established(asoc); 1235 sctp_association_free(asoc); 1236 } 1237 return err; 1238 } 1239 1240 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1241 * 1242 * API 8.9 1243 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1244 * sctp_assoc_t *asoc); 1245 * 1246 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1247 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1248 * or IPv6 addresses. 1249 * 1250 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1251 * Section 3.1.2 for this usage. 1252 * 1253 * addrs is a pointer to an array of one or more socket addresses. Each 1254 * address is contained in its appropriate structure (i.e. struct 1255 * sockaddr_in or struct sockaddr_in6) the family of the address type 1256 * must be used to distengish the address length (note that this 1257 * representation is termed a "packed array" of addresses). The caller 1258 * specifies the number of addresses in the array with addrcnt. 1259 * 1260 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1261 * the association id of the new association. On failure, sctp_connectx() 1262 * returns -1, and sets errno to the appropriate error code. The assoc_id 1263 * is not touched by the kernel. 1264 * 1265 * For SCTP, the port given in each socket address must be the same, or 1266 * sctp_connectx() will fail, setting errno to EINVAL. 1267 * 1268 * An application can use sctp_connectx to initiate an association with 1269 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1270 * allows a caller to specify multiple addresses at which a peer can be 1271 * reached. The way the SCTP stack uses the list of addresses to set up 1272 * the association is implementation dependent. This function only 1273 * specifies that the stack will try to make use of all the addresses in 1274 * the list when needed. 1275 * 1276 * Note that the list of addresses passed in is only used for setting up 1277 * the association. It does not necessarily equal the set of addresses 1278 * the peer uses for the resulting association. If the caller wants to 1279 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1280 * retrieve them after the association has been set up. 1281 * 1282 * Basically do nothing but copying the addresses from user to kernel 1283 * land and invoking either sctp_connectx(). This is used for tunneling 1284 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1285 * 1286 * We don't use copy_from_user() for optimization: we first do the 1287 * sanity checks (buffer size -fast- and access check-healthy 1288 * pointer); if all of those succeed, then we can alloc the memory 1289 * (expensive operation) needed to copy the data to kernel. Then we do 1290 * the copying without checking the user space area 1291 * (__copy_from_user()). 1292 * 1293 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1294 * it. 1295 * 1296 * sk The sk of the socket 1297 * addrs The pointer to the addresses in user land 1298 * addrssize Size of the addrs buffer 1299 * 1300 * Returns >=0 if ok, <0 errno code on error. 1301 */ 1302 static int __sctp_setsockopt_connectx(struct sock *sk, 1303 struct sockaddr __user *addrs, 1304 int addrs_size, 1305 sctp_assoc_t *assoc_id) 1306 { 1307 int err = 0; 1308 struct sockaddr *kaddrs; 1309 1310 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1311 __func__, sk, addrs, addrs_size); 1312 1313 if (unlikely(addrs_size <= 0)) 1314 return -EINVAL; 1315 1316 /* Check the user passed a healthy pointer. */ 1317 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1318 return -EFAULT; 1319 1320 /* Alloc space for the address array in kernel memory. */ 1321 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1322 if (unlikely(!kaddrs)) 1323 return -ENOMEM; 1324 1325 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1326 err = -EFAULT; 1327 } else { 1328 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1329 } 1330 1331 kfree(kaddrs); 1332 1333 return err; 1334 } 1335 1336 /* 1337 * This is an older interface. It's kept for backward compatibility 1338 * to the option that doesn't provide association id. 1339 */ 1340 static int sctp_setsockopt_connectx_old(struct sock *sk, 1341 struct sockaddr __user *addrs, 1342 int addrs_size) 1343 { 1344 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1345 } 1346 1347 /* 1348 * New interface for the API. The since the API is done with a socket 1349 * option, to make it simple we feed back the association id is as a return 1350 * indication to the call. Error is always negative and association id is 1351 * always positive. 1352 */ 1353 static int sctp_setsockopt_connectx(struct sock *sk, 1354 struct sockaddr __user *addrs, 1355 int addrs_size) 1356 { 1357 sctp_assoc_t assoc_id = 0; 1358 int err = 0; 1359 1360 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1361 1362 if (err) 1363 return err; 1364 else 1365 return assoc_id; 1366 } 1367 1368 /* 1369 * New (hopefully final) interface for the API. 1370 * We use the sctp_getaddrs_old structure so that use-space library 1371 * can avoid any unnecessary allocations. The only defferent part 1372 * is that we store the actual length of the address buffer into the 1373 * addrs_num structure member. That way we can re-use the existing 1374 * code. 1375 */ 1376 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1377 char __user *optval, 1378 int __user *optlen) 1379 { 1380 struct sctp_getaddrs_old param; 1381 sctp_assoc_t assoc_id = 0; 1382 int err = 0; 1383 1384 if (len < sizeof(param)) 1385 return -EINVAL; 1386 1387 if (copy_from_user(¶m, optval, sizeof(param))) 1388 return -EFAULT; 1389 1390 err = __sctp_setsockopt_connectx(sk, 1391 (struct sockaddr __user *)param.addrs, 1392 param.addr_num, &assoc_id); 1393 1394 if (err == 0 || err == -EINPROGRESS) { 1395 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1396 return -EFAULT; 1397 if (put_user(sizeof(assoc_id), optlen)) 1398 return -EFAULT; 1399 } 1400 1401 return err; 1402 } 1403 1404 /* API 3.1.4 close() - UDP Style Syntax 1405 * Applications use close() to perform graceful shutdown (as described in 1406 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1407 * by a UDP-style socket. 1408 * 1409 * The syntax is 1410 * 1411 * ret = close(int sd); 1412 * 1413 * sd - the socket descriptor of the associations to be closed. 1414 * 1415 * To gracefully shutdown a specific association represented by the 1416 * UDP-style socket, an application should use the sendmsg() call, 1417 * passing no user data, but including the appropriate flag in the 1418 * ancillary data (see Section xxxx). 1419 * 1420 * If sd in the close() call is a branched-off socket representing only 1421 * one association, the shutdown is performed on that association only. 1422 * 1423 * 4.1.6 close() - TCP Style Syntax 1424 * 1425 * Applications use close() to gracefully close down an association. 1426 * 1427 * The syntax is: 1428 * 1429 * int close(int sd); 1430 * 1431 * sd - the socket descriptor of the association to be closed. 1432 * 1433 * After an application calls close() on a socket descriptor, no further 1434 * socket operations will succeed on that descriptor. 1435 * 1436 * API 7.1.4 SO_LINGER 1437 * 1438 * An application using the TCP-style socket can use this option to 1439 * perform the SCTP ABORT primitive. The linger option structure is: 1440 * 1441 * struct linger { 1442 * int l_onoff; // option on/off 1443 * int l_linger; // linger time 1444 * }; 1445 * 1446 * To enable the option, set l_onoff to 1. If the l_linger value is set 1447 * to 0, calling close() is the same as the ABORT primitive. If the 1448 * value is set to a negative value, the setsockopt() call will return 1449 * an error. If the value is set to a positive value linger_time, the 1450 * close() can be blocked for at most linger_time ms. If the graceful 1451 * shutdown phase does not finish during this period, close() will 1452 * return but the graceful shutdown phase continues in the system. 1453 */ 1454 static void sctp_close(struct sock *sk, long timeout) 1455 { 1456 struct net *net = sock_net(sk); 1457 struct sctp_endpoint *ep; 1458 struct sctp_association *asoc; 1459 struct list_head *pos, *temp; 1460 unsigned int data_was_unread; 1461 1462 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1463 1464 lock_sock(sk); 1465 sk->sk_shutdown = SHUTDOWN_MASK; 1466 sk->sk_state = SCTP_SS_CLOSING; 1467 1468 ep = sctp_sk(sk)->ep; 1469 1470 /* Clean up any skbs sitting on the receive queue. */ 1471 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1472 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1473 1474 /* Walk all associations on an endpoint. */ 1475 list_for_each_safe(pos, temp, &ep->asocs) { 1476 asoc = list_entry(pos, struct sctp_association, asocs); 1477 1478 if (sctp_style(sk, TCP)) { 1479 /* A closed association can still be in the list if 1480 * it belongs to a TCP-style listening socket that is 1481 * not yet accepted. If so, free it. If not, send an 1482 * ABORT or SHUTDOWN based on the linger options. 1483 */ 1484 if (sctp_state(asoc, CLOSED)) { 1485 sctp_unhash_established(asoc); 1486 sctp_association_free(asoc); 1487 continue; 1488 } 1489 } 1490 1491 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1492 !skb_queue_empty(&asoc->ulpq.reasm) || 1493 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1494 struct sctp_chunk *chunk; 1495 1496 chunk = sctp_make_abort_user(asoc, NULL, 0); 1497 if (chunk) 1498 sctp_primitive_ABORT(net, asoc, chunk); 1499 } else 1500 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1501 } 1502 1503 /* On a TCP-style socket, block for at most linger_time if set. */ 1504 if (sctp_style(sk, TCP) && timeout) 1505 sctp_wait_for_close(sk, timeout); 1506 1507 /* This will run the backlog queue. */ 1508 release_sock(sk); 1509 1510 /* Supposedly, no process has access to the socket, but 1511 * the net layers still may. 1512 */ 1513 local_bh_disable(); 1514 bh_lock_sock(sk); 1515 1516 /* Hold the sock, since sk_common_release() will put sock_put() 1517 * and we have just a little more cleanup. 1518 */ 1519 sock_hold(sk); 1520 sk_common_release(sk); 1521 1522 bh_unlock_sock(sk); 1523 local_bh_enable(); 1524 1525 sock_put(sk); 1526 1527 SCTP_DBG_OBJCNT_DEC(sock); 1528 } 1529 1530 /* Handle EPIPE error. */ 1531 static int sctp_error(struct sock *sk, int flags, int err) 1532 { 1533 if (err == -EPIPE) 1534 err = sock_error(sk) ? : -EPIPE; 1535 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1536 send_sig(SIGPIPE, current, 0); 1537 return err; 1538 } 1539 1540 /* API 3.1.3 sendmsg() - UDP Style Syntax 1541 * 1542 * An application uses sendmsg() and recvmsg() calls to transmit data to 1543 * and receive data from its peer. 1544 * 1545 * ssize_t sendmsg(int socket, const struct msghdr *message, 1546 * int flags); 1547 * 1548 * socket - the socket descriptor of the endpoint. 1549 * message - pointer to the msghdr structure which contains a single 1550 * user message and possibly some ancillary data. 1551 * 1552 * See Section 5 for complete description of the data 1553 * structures. 1554 * 1555 * flags - flags sent or received with the user message, see Section 1556 * 5 for complete description of the flags. 1557 * 1558 * Note: This function could use a rewrite especially when explicit 1559 * connect support comes in. 1560 */ 1561 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1562 1563 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1564 1565 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1566 struct msghdr *msg, size_t msg_len) 1567 { 1568 struct net *net = sock_net(sk); 1569 struct sctp_sock *sp; 1570 struct sctp_endpoint *ep; 1571 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1572 struct sctp_transport *transport, *chunk_tp; 1573 struct sctp_chunk *chunk; 1574 union sctp_addr to; 1575 struct sockaddr *msg_name = NULL; 1576 struct sctp_sndrcvinfo default_sinfo; 1577 struct sctp_sndrcvinfo *sinfo; 1578 struct sctp_initmsg *sinit; 1579 sctp_assoc_t associd = 0; 1580 sctp_cmsgs_t cmsgs = { NULL }; 1581 int err; 1582 sctp_scope_t scope; 1583 long timeo; 1584 __u16 sinfo_flags = 0; 1585 struct sctp_datamsg *datamsg; 1586 int msg_flags = msg->msg_flags; 1587 1588 err = 0; 1589 sp = sctp_sk(sk); 1590 ep = sp->ep; 1591 1592 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1593 msg, msg_len, ep); 1594 1595 /* We cannot send a message over a TCP-style listening socket. */ 1596 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1597 err = -EPIPE; 1598 goto out_nounlock; 1599 } 1600 1601 /* Parse out the SCTP CMSGs. */ 1602 err = sctp_msghdr_parse(msg, &cmsgs); 1603 if (err) { 1604 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1605 goto out_nounlock; 1606 } 1607 1608 /* Fetch the destination address for this packet. This 1609 * address only selects the association--it is not necessarily 1610 * the address we will send to. 1611 * For a peeled-off socket, msg_name is ignored. 1612 */ 1613 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1614 int msg_namelen = msg->msg_namelen; 1615 1616 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1617 msg_namelen); 1618 if (err) 1619 return err; 1620 1621 if (msg_namelen > sizeof(to)) 1622 msg_namelen = sizeof(to); 1623 memcpy(&to, msg->msg_name, msg_namelen); 1624 msg_name = msg->msg_name; 1625 } 1626 1627 sinfo = cmsgs.info; 1628 sinit = cmsgs.init; 1629 1630 /* Did the user specify SNDRCVINFO? */ 1631 if (sinfo) { 1632 sinfo_flags = sinfo->sinfo_flags; 1633 associd = sinfo->sinfo_assoc_id; 1634 } 1635 1636 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1637 msg_len, sinfo_flags); 1638 1639 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1640 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1641 err = -EINVAL; 1642 goto out_nounlock; 1643 } 1644 1645 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1646 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1647 * If SCTP_ABORT is set, the message length could be non zero with 1648 * the msg_iov set to the user abort reason. 1649 */ 1650 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1651 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1652 err = -EINVAL; 1653 goto out_nounlock; 1654 } 1655 1656 /* If SCTP_ADDR_OVER is set, there must be an address 1657 * specified in msg_name. 1658 */ 1659 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1660 err = -EINVAL; 1661 goto out_nounlock; 1662 } 1663 1664 transport = NULL; 1665 1666 pr_debug("%s: about to look up association\n", __func__); 1667 1668 lock_sock(sk); 1669 1670 /* If a msg_name has been specified, assume this is to be used. */ 1671 if (msg_name) { 1672 /* Look for a matching association on the endpoint. */ 1673 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1674 if (!asoc) { 1675 /* If we could not find a matching association on the 1676 * endpoint, make sure that it is not a TCP-style 1677 * socket that already has an association or there is 1678 * no peeled-off association on another socket. 1679 */ 1680 if ((sctp_style(sk, TCP) && 1681 sctp_sstate(sk, ESTABLISHED)) || 1682 sctp_endpoint_is_peeled_off(ep, &to)) { 1683 err = -EADDRNOTAVAIL; 1684 goto out_unlock; 1685 } 1686 } 1687 } else { 1688 asoc = sctp_id2assoc(sk, associd); 1689 if (!asoc) { 1690 err = -EPIPE; 1691 goto out_unlock; 1692 } 1693 } 1694 1695 if (asoc) { 1696 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1697 1698 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1699 * socket that has an association in CLOSED state. This can 1700 * happen when an accepted socket has an association that is 1701 * already CLOSED. 1702 */ 1703 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1704 err = -EPIPE; 1705 goto out_unlock; 1706 } 1707 1708 if (sinfo_flags & SCTP_EOF) { 1709 pr_debug("%s: shutting down association:%p\n", 1710 __func__, asoc); 1711 1712 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1713 err = 0; 1714 goto out_unlock; 1715 } 1716 if (sinfo_flags & SCTP_ABORT) { 1717 1718 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1719 if (!chunk) { 1720 err = -ENOMEM; 1721 goto out_unlock; 1722 } 1723 1724 pr_debug("%s: aborting association:%p\n", 1725 __func__, asoc); 1726 1727 sctp_primitive_ABORT(net, asoc, chunk); 1728 err = 0; 1729 goto out_unlock; 1730 } 1731 } 1732 1733 /* Do we need to create the association? */ 1734 if (!asoc) { 1735 pr_debug("%s: there is no association yet\n", __func__); 1736 1737 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1738 err = -EINVAL; 1739 goto out_unlock; 1740 } 1741 1742 /* Check for invalid stream against the stream counts, 1743 * either the default or the user specified stream counts. 1744 */ 1745 if (sinfo) { 1746 if (!sinit || !sinit->sinit_num_ostreams) { 1747 /* Check against the defaults. */ 1748 if (sinfo->sinfo_stream >= 1749 sp->initmsg.sinit_num_ostreams) { 1750 err = -EINVAL; 1751 goto out_unlock; 1752 } 1753 } else { 1754 /* Check against the requested. */ 1755 if (sinfo->sinfo_stream >= 1756 sinit->sinit_num_ostreams) { 1757 err = -EINVAL; 1758 goto out_unlock; 1759 } 1760 } 1761 } 1762 1763 /* 1764 * API 3.1.2 bind() - UDP Style Syntax 1765 * If a bind() or sctp_bindx() is not called prior to a 1766 * sendmsg() call that initiates a new association, the 1767 * system picks an ephemeral port and will choose an address 1768 * set equivalent to binding with a wildcard address. 1769 */ 1770 if (!ep->base.bind_addr.port) { 1771 if (sctp_autobind(sk)) { 1772 err = -EAGAIN; 1773 goto out_unlock; 1774 } 1775 } else { 1776 /* 1777 * If an unprivileged user inherits a one-to-many 1778 * style socket with open associations on a privileged 1779 * port, it MAY be permitted to accept new associations, 1780 * but it SHOULD NOT be permitted to open new 1781 * associations. 1782 */ 1783 if (ep->base.bind_addr.port < PROT_SOCK && 1784 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1785 err = -EACCES; 1786 goto out_unlock; 1787 } 1788 } 1789 1790 scope = sctp_scope(&to); 1791 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1792 if (!new_asoc) { 1793 err = -ENOMEM; 1794 goto out_unlock; 1795 } 1796 asoc = new_asoc; 1797 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1798 if (err < 0) { 1799 err = -ENOMEM; 1800 goto out_free; 1801 } 1802 1803 /* If the SCTP_INIT ancillary data is specified, set all 1804 * the association init values accordingly. 1805 */ 1806 if (sinit) { 1807 if (sinit->sinit_num_ostreams) { 1808 asoc->c.sinit_num_ostreams = 1809 sinit->sinit_num_ostreams; 1810 } 1811 if (sinit->sinit_max_instreams) { 1812 asoc->c.sinit_max_instreams = 1813 sinit->sinit_max_instreams; 1814 } 1815 if (sinit->sinit_max_attempts) { 1816 asoc->max_init_attempts 1817 = sinit->sinit_max_attempts; 1818 } 1819 if (sinit->sinit_max_init_timeo) { 1820 asoc->max_init_timeo = 1821 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1822 } 1823 } 1824 1825 /* Prime the peer's transport structures. */ 1826 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1827 if (!transport) { 1828 err = -ENOMEM; 1829 goto out_free; 1830 } 1831 } 1832 1833 /* ASSERT: we have a valid association at this point. */ 1834 pr_debug("%s: we have a valid association\n", __func__); 1835 1836 if (!sinfo) { 1837 /* If the user didn't specify SNDRCVINFO, make up one with 1838 * some defaults. 1839 */ 1840 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1841 default_sinfo.sinfo_stream = asoc->default_stream; 1842 default_sinfo.sinfo_flags = asoc->default_flags; 1843 default_sinfo.sinfo_ppid = asoc->default_ppid; 1844 default_sinfo.sinfo_context = asoc->default_context; 1845 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1846 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1847 sinfo = &default_sinfo; 1848 } 1849 1850 /* API 7.1.7, the sndbuf size per association bounds the 1851 * maximum size of data that can be sent in a single send call. 1852 */ 1853 if (msg_len > sk->sk_sndbuf) { 1854 err = -EMSGSIZE; 1855 goto out_free; 1856 } 1857 1858 if (asoc->pmtu_pending) 1859 sctp_assoc_pending_pmtu(sk, asoc); 1860 1861 /* If fragmentation is disabled and the message length exceeds the 1862 * association fragmentation point, return EMSGSIZE. The I-D 1863 * does not specify what this error is, but this looks like 1864 * a great fit. 1865 */ 1866 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1867 err = -EMSGSIZE; 1868 goto out_free; 1869 } 1870 1871 /* Check for invalid stream. */ 1872 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1873 err = -EINVAL; 1874 goto out_free; 1875 } 1876 1877 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1878 if (!sctp_wspace(asoc)) { 1879 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1880 if (err) 1881 goto out_free; 1882 } 1883 1884 /* If an address is passed with the sendto/sendmsg call, it is used 1885 * to override the primary destination address in the TCP model, or 1886 * when SCTP_ADDR_OVER flag is set in the UDP model. 1887 */ 1888 if ((sctp_style(sk, TCP) && msg_name) || 1889 (sinfo_flags & SCTP_ADDR_OVER)) { 1890 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1891 if (!chunk_tp) { 1892 err = -EINVAL; 1893 goto out_free; 1894 } 1895 } else 1896 chunk_tp = NULL; 1897 1898 /* Auto-connect, if we aren't connected already. */ 1899 if (sctp_state(asoc, CLOSED)) { 1900 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1901 if (err < 0) 1902 goto out_free; 1903 1904 pr_debug("%s: we associated primitively\n", __func__); 1905 } 1906 1907 /* Break the message into multiple chunks of maximum size. */ 1908 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1909 if (IS_ERR(datamsg)) { 1910 err = PTR_ERR(datamsg); 1911 goto out_free; 1912 } 1913 1914 /* Now send the (possibly) fragmented message. */ 1915 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1916 sctp_chunk_hold(chunk); 1917 1918 /* Do accounting for the write space. */ 1919 sctp_set_owner_w(chunk); 1920 1921 chunk->transport = chunk_tp; 1922 } 1923 1924 /* Send it to the lower layers. Note: all chunks 1925 * must either fail or succeed. The lower layer 1926 * works that way today. Keep it that way or this 1927 * breaks. 1928 */ 1929 err = sctp_primitive_SEND(net, asoc, datamsg); 1930 /* Did the lower layer accept the chunk? */ 1931 if (err) { 1932 sctp_datamsg_free(datamsg); 1933 goto out_free; 1934 } 1935 1936 pr_debug("%s: we sent primitively\n", __func__); 1937 1938 sctp_datamsg_put(datamsg); 1939 err = msg_len; 1940 1941 /* If we are already past ASSOCIATE, the lower 1942 * layers are responsible for association cleanup. 1943 */ 1944 goto out_unlock; 1945 1946 out_free: 1947 if (new_asoc) { 1948 sctp_unhash_established(asoc); 1949 sctp_association_free(asoc); 1950 } 1951 out_unlock: 1952 release_sock(sk); 1953 1954 out_nounlock: 1955 return sctp_error(sk, msg_flags, err); 1956 1957 #if 0 1958 do_sock_err: 1959 if (msg_len) 1960 err = msg_len; 1961 else 1962 err = sock_error(sk); 1963 goto out; 1964 1965 do_interrupted: 1966 if (msg_len) 1967 err = msg_len; 1968 goto out; 1969 #endif /* 0 */ 1970 } 1971 1972 /* This is an extended version of skb_pull() that removes the data from the 1973 * start of a skb even when data is spread across the list of skb's in the 1974 * frag_list. len specifies the total amount of data that needs to be removed. 1975 * when 'len' bytes could be removed from the skb, it returns 0. 1976 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1977 * could not be removed. 1978 */ 1979 static int sctp_skb_pull(struct sk_buff *skb, int len) 1980 { 1981 struct sk_buff *list; 1982 int skb_len = skb_headlen(skb); 1983 int rlen; 1984 1985 if (len <= skb_len) { 1986 __skb_pull(skb, len); 1987 return 0; 1988 } 1989 len -= skb_len; 1990 __skb_pull(skb, skb_len); 1991 1992 skb_walk_frags(skb, list) { 1993 rlen = sctp_skb_pull(list, len); 1994 skb->len -= (len-rlen); 1995 skb->data_len -= (len-rlen); 1996 1997 if (!rlen) 1998 return 0; 1999 2000 len = rlen; 2001 } 2002 2003 return len; 2004 } 2005 2006 /* API 3.1.3 recvmsg() - UDP Style Syntax 2007 * 2008 * ssize_t recvmsg(int socket, struct msghdr *message, 2009 * int flags); 2010 * 2011 * socket - the socket descriptor of the endpoint. 2012 * message - pointer to the msghdr structure which contains a single 2013 * user message and possibly some ancillary data. 2014 * 2015 * See Section 5 for complete description of the data 2016 * structures. 2017 * 2018 * flags - flags sent or received with the user message, see Section 2019 * 5 for complete description of the flags. 2020 */ 2021 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2022 2023 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2024 struct msghdr *msg, size_t len, int noblock, 2025 int flags, int *addr_len) 2026 { 2027 struct sctp_ulpevent *event = NULL; 2028 struct sctp_sock *sp = sctp_sk(sk); 2029 struct sk_buff *skb; 2030 int copied; 2031 int err = 0; 2032 int skb_len; 2033 2034 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2035 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2036 addr_len); 2037 2038 lock_sock(sk); 2039 2040 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2041 err = -ENOTCONN; 2042 goto out; 2043 } 2044 2045 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2046 if (!skb) 2047 goto out; 2048 2049 /* Get the total length of the skb including any skb's in the 2050 * frag_list. 2051 */ 2052 skb_len = skb->len; 2053 2054 copied = skb_len; 2055 if (copied > len) 2056 copied = len; 2057 2058 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2059 2060 event = sctp_skb2event(skb); 2061 2062 if (err) 2063 goto out_free; 2064 2065 sock_recv_ts_and_drops(msg, sk, skb); 2066 if (sctp_ulpevent_is_notification(event)) { 2067 msg->msg_flags |= MSG_NOTIFICATION; 2068 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2069 } else { 2070 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2071 } 2072 2073 /* Check if we allow SCTP_SNDRCVINFO. */ 2074 if (sp->subscribe.sctp_data_io_event) 2075 sctp_ulpevent_read_sndrcvinfo(event, msg); 2076 #if 0 2077 /* FIXME: we should be calling IP/IPv6 layers. */ 2078 if (sk->sk_protinfo.af_inet.cmsg_flags) 2079 ip_cmsg_recv(msg, skb); 2080 #endif 2081 2082 err = copied; 2083 2084 /* If skb's length exceeds the user's buffer, update the skb and 2085 * push it back to the receive_queue so that the next call to 2086 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2087 */ 2088 if (skb_len > copied) { 2089 msg->msg_flags &= ~MSG_EOR; 2090 if (flags & MSG_PEEK) 2091 goto out_free; 2092 sctp_skb_pull(skb, copied); 2093 skb_queue_head(&sk->sk_receive_queue, skb); 2094 2095 /* When only partial message is copied to the user, increase 2096 * rwnd by that amount. If all the data in the skb is read, 2097 * rwnd is updated when the event is freed. 2098 */ 2099 if (!sctp_ulpevent_is_notification(event)) 2100 sctp_assoc_rwnd_increase(event->asoc, copied); 2101 goto out; 2102 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2103 (event->msg_flags & MSG_EOR)) 2104 msg->msg_flags |= MSG_EOR; 2105 else 2106 msg->msg_flags &= ~MSG_EOR; 2107 2108 out_free: 2109 if (flags & MSG_PEEK) { 2110 /* Release the skb reference acquired after peeking the skb in 2111 * sctp_skb_recv_datagram(). 2112 */ 2113 kfree_skb(skb); 2114 } else { 2115 /* Free the event which includes releasing the reference to 2116 * the owner of the skb, freeing the skb and updating the 2117 * rwnd. 2118 */ 2119 sctp_ulpevent_free(event); 2120 } 2121 out: 2122 release_sock(sk); 2123 return err; 2124 } 2125 2126 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2127 * 2128 * This option is a on/off flag. If enabled no SCTP message 2129 * fragmentation will be performed. Instead if a message being sent 2130 * exceeds the current PMTU size, the message will NOT be sent and 2131 * instead a error will be indicated to the user. 2132 */ 2133 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2134 char __user *optval, 2135 unsigned int optlen) 2136 { 2137 int val; 2138 2139 if (optlen < sizeof(int)) 2140 return -EINVAL; 2141 2142 if (get_user(val, (int __user *)optval)) 2143 return -EFAULT; 2144 2145 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2146 2147 return 0; 2148 } 2149 2150 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2151 unsigned int optlen) 2152 { 2153 struct sctp_association *asoc; 2154 struct sctp_ulpevent *event; 2155 2156 if (optlen > sizeof(struct sctp_event_subscribe)) 2157 return -EINVAL; 2158 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2159 return -EFAULT; 2160 2161 /* 2162 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2163 * if there is no data to be sent or retransmit, the stack will 2164 * immediately send up this notification. 2165 */ 2166 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2167 &sctp_sk(sk)->subscribe)) { 2168 asoc = sctp_id2assoc(sk, 0); 2169 2170 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2171 event = sctp_ulpevent_make_sender_dry_event(asoc, 2172 GFP_ATOMIC); 2173 if (!event) 2174 return -ENOMEM; 2175 2176 sctp_ulpq_tail_event(&asoc->ulpq, event); 2177 } 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2184 * 2185 * This socket option is applicable to the UDP-style socket only. When 2186 * set it will cause associations that are idle for more than the 2187 * specified number of seconds to automatically close. An association 2188 * being idle is defined an association that has NOT sent or received 2189 * user data. The special value of '0' indicates that no automatic 2190 * close of any associations should be performed. The option expects an 2191 * integer defining the number of seconds of idle time before an 2192 * association is closed. 2193 */ 2194 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2195 unsigned int optlen) 2196 { 2197 struct sctp_sock *sp = sctp_sk(sk); 2198 struct net *net = sock_net(sk); 2199 2200 /* Applicable to UDP-style socket only */ 2201 if (sctp_style(sk, TCP)) 2202 return -EOPNOTSUPP; 2203 if (optlen != sizeof(int)) 2204 return -EINVAL; 2205 if (copy_from_user(&sp->autoclose, optval, optlen)) 2206 return -EFAULT; 2207 2208 if (sp->autoclose > net->sctp.max_autoclose) 2209 sp->autoclose = net->sctp.max_autoclose; 2210 2211 return 0; 2212 } 2213 2214 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2215 * 2216 * Applications can enable or disable heartbeats for any peer address of 2217 * an association, modify an address's heartbeat interval, force a 2218 * heartbeat to be sent immediately, and adjust the address's maximum 2219 * number of retransmissions sent before an address is considered 2220 * unreachable. The following structure is used to access and modify an 2221 * address's parameters: 2222 * 2223 * struct sctp_paddrparams { 2224 * sctp_assoc_t spp_assoc_id; 2225 * struct sockaddr_storage spp_address; 2226 * uint32_t spp_hbinterval; 2227 * uint16_t spp_pathmaxrxt; 2228 * uint32_t spp_pathmtu; 2229 * uint32_t spp_sackdelay; 2230 * uint32_t spp_flags; 2231 * }; 2232 * 2233 * spp_assoc_id - (one-to-many style socket) This is filled in the 2234 * application, and identifies the association for 2235 * this query. 2236 * spp_address - This specifies which address is of interest. 2237 * spp_hbinterval - This contains the value of the heartbeat interval, 2238 * in milliseconds. If a value of zero 2239 * is present in this field then no changes are to 2240 * be made to this parameter. 2241 * spp_pathmaxrxt - This contains the maximum number of 2242 * retransmissions before this address shall be 2243 * considered unreachable. If a value of zero 2244 * is present in this field then no changes are to 2245 * be made to this parameter. 2246 * spp_pathmtu - When Path MTU discovery is disabled the value 2247 * specified here will be the "fixed" path mtu. 2248 * Note that if the spp_address field is empty 2249 * then all associations on this address will 2250 * have this fixed path mtu set upon them. 2251 * 2252 * spp_sackdelay - When delayed sack is enabled, this value specifies 2253 * the number of milliseconds that sacks will be delayed 2254 * for. This value will apply to all addresses of an 2255 * association if the spp_address field is empty. Note 2256 * also, that if delayed sack is enabled and this 2257 * value is set to 0, no change is made to the last 2258 * recorded delayed sack timer value. 2259 * 2260 * spp_flags - These flags are used to control various features 2261 * on an association. The flag field may contain 2262 * zero or more of the following options. 2263 * 2264 * SPP_HB_ENABLE - Enable heartbeats on the 2265 * specified address. Note that if the address 2266 * field is empty all addresses for the association 2267 * have heartbeats enabled upon them. 2268 * 2269 * SPP_HB_DISABLE - Disable heartbeats on the 2270 * speicifed address. Note that if the address 2271 * field is empty all addresses for the association 2272 * will have their heartbeats disabled. Note also 2273 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2274 * mutually exclusive, only one of these two should 2275 * be specified. Enabling both fields will have 2276 * undetermined results. 2277 * 2278 * SPP_HB_DEMAND - Request a user initiated heartbeat 2279 * to be made immediately. 2280 * 2281 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2282 * heartbeat delayis to be set to the value of 0 2283 * milliseconds. 2284 * 2285 * SPP_PMTUD_ENABLE - This field will enable PMTU 2286 * discovery upon the specified address. Note that 2287 * if the address feild is empty then all addresses 2288 * on the association are effected. 2289 * 2290 * SPP_PMTUD_DISABLE - This field will disable PMTU 2291 * discovery upon the specified address. Note that 2292 * if the address feild is empty then all addresses 2293 * on the association are effected. Not also that 2294 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2295 * exclusive. Enabling both will have undetermined 2296 * results. 2297 * 2298 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2299 * on delayed sack. The time specified in spp_sackdelay 2300 * is used to specify the sack delay for this address. Note 2301 * that if spp_address is empty then all addresses will 2302 * enable delayed sack and take on the sack delay 2303 * value specified in spp_sackdelay. 2304 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2305 * off delayed sack. If the spp_address field is blank then 2306 * delayed sack is disabled for the entire association. Note 2307 * also that this field is mutually exclusive to 2308 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2309 * results. 2310 */ 2311 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2312 struct sctp_transport *trans, 2313 struct sctp_association *asoc, 2314 struct sctp_sock *sp, 2315 int hb_change, 2316 int pmtud_change, 2317 int sackdelay_change) 2318 { 2319 int error; 2320 2321 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2322 struct net *net = sock_net(trans->asoc->base.sk); 2323 2324 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2325 if (error) 2326 return error; 2327 } 2328 2329 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2330 * this field is ignored. Note also that a value of zero indicates 2331 * the current setting should be left unchanged. 2332 */ 2333 if (params->spp_flags & SPP_HB_ENABLE) { 2334 2335 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2336 * set. This lets us use 0 value when this flag 2337 * is set. 2338 */ 2339 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2340 params->spp_hbinterval = 0; 2341 2342 if (params->spp_hbinterval || 2343 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2344 if (trans) { 2345 trans->hbinterval = 2346 msecs_to_jiffies(params->spp_hbinterval); 2347 } else if (asoc) { 2348 asoc->hbinterval = 2349 msecs_to_jiffies(params->spp_hbinterval); 2350 } else { 2351 sp->hbinterval = params->spp_hbinterval; 2352 } 2353 } 2354 } 2355 2356 if (hb_change) { 2357 if (trans) { 2358 trans->param_flags = 2359 (trans->param_flags & ~SPP_HB) | hb_change; 2360 } else if (asoc) { 2361 asoc->param_flags = 2362 (asoc->param_flags & ~SPP_HB) | hb_change; 2363 } else { 2364 sp->param_flags = 2365 (sp->param_flags & ~SPP_HB) | hb_change; 2366 } 2367 } 2368 2369 /* When Path MTU discovery is disabled the value specified here will 2370 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2371 * include the flag SPP_PMTUD_DISABLE for this field to have any 2372 * effect). 2373 */ 2374 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2375 if (trans) { 2376 trans->pathmtu = params->spp_pathmtu; 2377 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2378 } else if (asoc) { 2379 asoc->pathmtu = params->spp_pathmtu; 2380 sctp_frag_point(asoc, params->spp_pathmtu); 2381 } else { 2382 sp->pathmtu = params->spp_pathmtu; 2383 } 2384 } 2385 2386 if (pmtud_change) { 2387 if (trans) { 2388 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2389 (params->spp_flags & SPP_PMTUD_ENABLE); 2390 trans->param_flags = 2391 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2392 if (update) { 2393 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2394 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2395 } 2396 } else if (asoc) { 2397 asoc->param_flags = 2398 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2399 } else { 2400 sp->param_flags = 2401 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2402 } 2403 } 2404 2405 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2406 * value of this field is ignored. Note also that a value of zero 2407 * indicates the current setting should be left unchanged. 2408 */ 2409 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2410 if (trans) { 2411 trans->sackdelay = 2412 msecs_to_jiffies(params->spp_sackdelay); 2413 } else if (asoc) { 2414 asoc->sackdelay = 2415 msecs_to_jiffies(params->spp_sackdelay); 2416 } else { 2417 sp->sackdelay = params->spp_sackdelay; 2418 } 2419 } 2420 2421 if (sackdelay_change) { 2422 if (trans) { 2423 trans->param_flags = 2424 (trans->param_flags & ~SPP_SACKDELAY) | 2425 sackdelay_change; 2426 } else if (asoc) { 2427 asoc->param_flags = 2428 (asoc->param_flags & ~SPP_SACKDELAY) | 2429 sackdelay_change; 2430 } else { 2431 sp->param_flags = 2432 (sp->param_flags & ~SPP_SACKDELAY) | 2433 sackdelay_change; 2434 } 2435 } 2436 2437 /* Note that a value of zero indicates the current setting should be 2438 left unchanged. 2439 */ 2440 if (params->spp_pathmaxrxt) { 2441 if (trans) { 2442 trans->pathmaxrxt = params->spp_pathmaxrxt; 2443 } else if (asoc) { 2444 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2445 } else { 2446 sp->pathmaxrxt = params->spp_pathmaxrxt; 2447 } 2448 } 2449 2450 return 0; 2451 } 2452 2453 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2454 char __user *optval, 2455 unsigned int optlen) 2456 { 2457 struct sctp_paddrparams params; 2458 struct sctp_transport *trans = NULL; 2459 struct sctp_association *asoc = NULL; 2460 struct sctp_sock *sp = sctp_sk(sk); 2461 int error; 2462 int hb_change, pmtud_change, sackdelay_change; 2463 2464 if (optlen != sizeof(struct sctp_paddrparams)) 2465 return -EINVAL; 2466 2467 if (copy_from_user(¶ms, optval, optlen)) 2468 return -EFAULT; 2469 2470 /* Validate flags and value parameters. */ 2471 hb_change = params.spp_flags & SPP_HB; 2472 pmtud_change = params.spp_flags & SPP_PMTUD; 2473 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2474 2475 if (hb_change == SPP_HB || 2476 pmtud_change == SPP_PMTUD || 2477 sackdelay_change == SPP_SACKDELAY || 2478 params.spp_sackdelay > 500 || 2479 (params.spp_pathmtu && 2480 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2481 return -EINVAL; 2482 2483 /* If an address other than INADDR_ANY is specified, and 2484 * no transport is found, then the request is invalid. 2485 */ 2486 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2487 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2488 params.spp_assoc_id); 2489 if (!trans) 2490 return -EINVAL; 2491 } 2492 2493 /* Get association, if assoc_id != 0 and the socket is a one 2494 * to many style socket, and an association was not found, then 2495 * the id was invalid. 2496 */ 2497 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2498 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2499 return -EINVAL; 2500 2501 /* Heartbeat demand can only be sent on a transport or 2502 * association, but not a socket. 2503 */ 2504 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2505 return -EINVAL; 2506 2507 /* Process parameters. */ 2508 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2509 hb_change, pmtud_change, 2510 sackdelay_change); 2511 2512 if (error) 2513 return error; 2514 2515 /* If changes are for association, also apply parameters to each 2516 * transport. 2517 */ 2518 if (!trans && asoc) { 2519 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2520 transports) { 2521 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2522 hb_change, pmtud_change, 2523 sackdelay_change); 2524 } 2525 } 2526 2527 return 0; 2528 } 2529 2530 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2531 { 2532 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2533 } 2534 2535 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2536 { 2537 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2538 } 2539 2540 /* 2541 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2542 * 2543 * This option will effect the way delayed acks are performed. This 2544 * option allows you to get or set the delayed ack time, in 2545 * milliseconds. It also allows changing the delayed ack frequency. 2546 * Changing the frequency to 1 disables the delayed sack algorithm. If 2547 * the assoc_id is 0, then this sets or gets the endpoints default 2548 * values. If the assoc_id field is non-zero, then the set or get 2549 * effects the specified association for the one to many model (the 2550 * assoc_id field is ignored by the one to one model). Note that if 2551 * sack_delay or sack_freq are 0 when setting this option, then the 2552 * current values will remain unchanged. 2553 * 2554 * struct sctp_sack_info { 2555 * sctp_assoc_t sack_assoc_id; 2556 * uint32_t sack_delay; 2557 * uint32_t sack_freq; 2558 * }; 2559 * 2560 * sack_assoc_id - This parameter, indicates which association the user 2561 * is performing an action upon. Note that if this field's value is 2562 * zero then the endpoints default value is changed (effecting future 2563 * associations only). 2564 * 2565 * sack_delay - This parameter contains the number of milliseconds that 2566 * the user is requesting the delayed ACK timer be set to. Note that 2567 * this value is defined in the standard to be between 200 and 500 2568 * milliseconds. 2569 * 2570 * sack_freq - This parameter contains the number of packets that must 2571 * be received before a sack is sent without waiting for the delay 2572 * timer to expire. The default value for this is 2, setting this 2573 * value to 1 will disable the delayed sack algorithm. 2574 */ 2575 2576 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2577 char __user *optval, unsigned int optlen) 2578 { 2579 struct sctp_sack_info params; 2580 struct sctp_transport *trans = NULL; 2581 struct sctp_association *asoc = NULL; 2582 struct sctp_sock *sp = sctp_sk(sk); 2583 2584 if (optlen == sizeof(struct sctp_sack_info)) { 2585 if (copy_from_user(¶ms, optval, optlen)) 2586 return -EFAULT; 2587 2588 if (params.sack_delay == 0 && params.sack_freq == 0) 2589 return 0; 2590 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2591 pr_warn_ratelimited(DEPRECATED 2592 "%s (pid %d) " 2593 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2594 "Use struct sctp_sack_info instead\n", 2595 current->comm, task_pid_nr(current)); 2596 if (copy_from_user(¶ms, optval, optlen)) 2597 return -EFAULT; 2598 2599 if (params.sack_delay == 0) 2600 params.sack_freq = 1; 2601 else 2602 params.sack_freq = 0; 2603 } else 2604 return -EINVAL; 2605 2606 /* Validate value parameter. */ 2607 if (params.sack_delay > 500) 2608 return -EINVAL; 2609 2610 /* Get association, if sack_assoc_id != 0 and the socket is a one 2611 * to many style socket, and an association was not found, then 2612 * the id was invalid. 2613 */ 2614 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2615 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2616 return -EINVAL; 2617 2618 if (params.sack_delay) { 2619 if (asoc) { 2620 asoc->sackdelay = 2621 msecs_to_jiffies(params.sack_delay); 2622 asoc->param_flags = 2623 sctp_spp_sackdelay_enable(asoc->param_flags); 2624 } else { 2625 sp->sackdelay = params.sack_delay; 2626 sp->param_flags = 2627 sctp_spp_sackdelay_enable(sp->param_flags); 2628 } 2629 } 2630 2631 if (params.sack_freq == 1) { 2632 if (asoc) { 2633 asoc->param_flags = 2634 sctp_spp_sackdelay_disable(asoc->param_flags); 2635 } else { 2636 sp->param_flags = 2637 sctp_spp_sackdelay_disable(sp->param_flags); 2638 } 2639 } else if (params.sack_freq > 1) { 2640 if (asoc) { 2641 asoc->sackfreq = params.sack_freq; 2642 asoc->param_flags = 2643 sctp_spp_sackdelay_enable(asoc->param_flags); 2644 } else { 2645 sp->sackfreq = params.sack_freq; 2646 sp->param_flags = 2647 sctp_spp_sackdelay_enable(sp->param_flags); 2648 } 2649 } 2650 2651 /* If change is for association, also apply to each transport. */ 2652 if (asoc) { 2653 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2654 transports) { 2655 if (params.sack_delay) { 2656 trans->sackdelay = 2657 msecs_to_jiffies(params.sack_delay); 2658 trans->param_flags = 2659 sctp_spp_sackdelay_enable(trans->param_flags); 2660 } 2661 if (params.sack_freq == 1) { 2662 trans->param_flags = 2663 sctp_spp_sackdelay_disable(trans->param_flags); 2664 } else if (params.sack_freq > 1) { 2665 trans->sackfreq = params.sack_freq; 2666 trans->param_flags = 2667 sctp_spp_sackdelay_enable(trans->param_flags); 2668 } 2669 } 2670 } 2671 2672 return 0; 2673 } 2674 2675 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2676 * 2677 * Applications can specify protocol parameters for the default association 2678 * initialization. The option name argument to setsockopt() and getsockopt() 2679 * is SCTP_INITMSG. 2680 * 2681 * Setting initialization parameters is effective only on an unconnected 2682 * socket (for UDP-style sockets only future associations are effected 2683 * by the change). With TCP-style sockets, this option is inherited by 2684 * sockets derived from a listener socket. 2685 */ 2686 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2687 { 2688 struct sctp_initmsg sinit; 2689 struct sctp_sock *sp = sctp_sk(sk); 2690 2691 if (optlen != sizeof(struct sctp_initmsg)) 2692 return -EINVAL; 2693 if (copy_from_user(&sinit, optval, optlen)) 2694 return -EFAULT; 2695 2696 if (sinit.sinit_num_ostreams) 2697 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2698 if (sinit.sinit_max_instreams) 2699 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2700 if (sinit.sinit_max_attempts) 2701 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2702 if (sinit.sinit_max_init_timeo) 2703 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2704 2705 return 0; 2706 } 2707 2708 /* 2709 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2710 * 2711 * Applications that wish to use the sendto() system call may wish to 2712 * specify a default set of parameters that would normally be supplied 2713 * through the inclusion of ancillary data. This socket option allows 2714 * such an application to set the default sctp_sndrcvinfo structure. 2715 * The application that wishes to use this socket option simply passes 2716 * in to this call the sctp_sndrcvinfo structure defined in Section 2717 * 5.2.2) The input parameters accepted by this call include 2718 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2719 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2720 * to this call if the caller is using the UDP model. 2721 */ 2722 static int sctp_setsockopt_default_send_param(struct sock *sk, 2723 char __user *optval, 2724 unsigned int optlen) 2725 { 2726 struct sctp_sndrcvinfo info; 2727 struct sctp_association *asoc; 2728 struct sctp_sock *sp = sctp_sk(sk); 2729 2730 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2731 return -EINVAL; 2732 if (copy_from_user(&info, optval, optlen)) 2733 return -EFAULT; 2734 2735 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2736 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2737 return -EINVAL; 2738 2739 if (asoc) { 2740 asoc->default_stream = info.sinfo_stream; 2741 asoc->default_flags = info.sinfo_flags; 2742 asoc->default_ppid = info.sinfo_ppid; 2743 asoc->default_context = info.sinfo_context; 2744 asoc->default_timetolive = info.sinfo_timetolive; 2745 } else { 2746 sp->default_stream = info.sinfo_stream; 2747 sp->default_flags = info.sinfo_flags; 2748 sp->default_ppid = info.sinfo_ppid; 2749 sp->default_context = info.sinfo_context; 2750 sp->default_timetolive = info.sinfo_timetolive; 2751 } 2752 2753 return 0; 2754 } 2755 2756 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2757 * 2758 * Requests that the local SCTP stack use the enclosed peer address as 2759 * the association primary. The enclosed address must be one of the 2760 * association peer's addresses. 2761 */ 2762 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2763 unsigned int optlen) 2764 { 2765 struct sctp_prim prim; 2766 struct sctp_transport *trans; 2767 2768 if (optlen != sizeof(struct sctp_prim)) 2769 return -EINVAL; 2770 2771 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2772 return -EFAULT; 2773 2774 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2775 if (!trans) 2776 return -EINVAL; 2777 2778 sctp_assoc_set_primary(trans->asoc, trans); 2779 2780 return 0; 2781 } 2782 2783 /* 2784 * 7.1.5 SCTP_NODELAY 2785 * 2786 * Turn on/off any Nagle-like algorithm. This means that packets are 2787 * generally sent as soon as possible and no unnecessary delays are 2788 * introduced, at the cost of more packets in the network. Expects an 2789 * integer boolean flag. 2790 */ 2791 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2792 unsigned int optlen) 2793 { 2794 int val; 2795 2796 if (optlen < sizeof(int)) 2797 return -EINVAL; 2798 if (get_user(val, (int __user *)optval)) 2799 return -EFAULT; 2800 2801 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2802 return 0; 2803 } 2804 2805 /* 2806 * 2807 * 7.1.1 SCTP_RTOINFO 2808 * 2809 * The protocol parameters used to initialize and bound retransmission 2810 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2811 * and modify these parameters. 2812 * All parameters are time values, in milliseconds. A value of 0, when 2813 * modifying the parameters, indicates that the current value should not 2814 * be changed. 2815 * 2816 */ 2817 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2818 { 2819 struct sctp_rtoinfo rtoinfo; 2820 struct sctp_association *asoc; 2821 unsigned long rto_min, rto_max; 2822 struct sctp_sock *sp = sctp_sk(sk); 2823 2824 if (optlen != sizeof (struct sctp_rtoinfo)) 2825 return -EINVAL; 2826 2827 if (copy_from_user(&rtoinfo, optval, optlen)) 2828 return -EFAULT; 2829 2830 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2831 2832 /* Set the values to the specific association */ 2833 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2834 return -EINVAL; 2835 2836 rto_max = rtoinfo.srto_max; 2837 rto_min = rtoinfo.srto_min; 2838 2839 if (rto_max) 2840 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2841 else 2842 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2843 2844 if (rto_min) 2845 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2846 else 2847 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2848 2849 if (rto_min > rto_max) 2850 return -EINVAL; 2851 2852 if (asoc) { 2853 if (rtoinfo.srto_initial != 0) 2854 asoc->rto_initial = 2855 msecs_to_jiffies(rtoinfo.srto_initial); 2856 asoc->rto_max = rto_max; 2857 asoc->rto_min = rto_min; 2858 } else { 2859 /* If there is no association or the association-id = 0 2860 * set the values to the endpoint. 2861 */ 2862 if (rtoinfo.srto_initial != 0) 2863 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2864 sp->rtoinfo.srto_max = rto_max; 2865 sp->rtoinfo.srto_min = rto_min; 2866 } 2867 2868 return 0; 2869 } 2870 2871 /* 2872 * 2873 * 7.1.2 SCTP_ASSOCINFO 2874 * 2875 * This option is used to tune the maximum retransmission attempts 2876 * of the association. 2877 * Returns an error if the new association retransmission value is 2878 * greater than the sum of the retransmission value of the peer. 2879 * See [SCTP] for more information. 2880 * 2881 */ 2882 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2883 { 2884 2885 struct sctp_assocparams assocparams; 2886 struct sctp_association *asoc; 2887 2888 if (optlen != sizeof(struct sctp_assocparams)) 2889 return -EINVAL; 2890 if (copy_from_user(&assocparams, optval, optlen)) 2891 return -EFAULT; 2892 2893 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2894 2895 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2896 return -EINVAL; 2897 2898 /* Set the values to the specific association */ 2899 if (asoc) { 2900 if (assocparams.sasoc_asocmaxrxt != 0) { 2901 __u32 path_sum = 0; 2902 int paths = 0; 2903 struct sctp_transport *peer_addr; 2904 2905 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2906 transports) { 2907 path_sum += peer_addr->pathmaxrxt; 2908 paths++; 2909 } 2910 2911 /* Only validate asocmaxrxt if we have more than 2912 * one path/transport. We do this because path 2913 * retransmissions are only counted when we have more 2914 * then one path. 2915 */ 2916 if (paths > 1 && 2917 assocparams.sasoc_asocmaxrxt > path_sum) 2918 return -EINVAL; 2919 2920 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2921 } 2922 2923 if (assocparams.sasoc_cookie_life != 0) 2924 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 2925 } else { 2926 /* Set the values to the endpoint */ 2927 struct sctp_sock *sp = sctp_sk(sk); 2928 2929 if (assocparams.sasoc_asocmaxrxt != 0) 2930 sp->assocparams.sasoc_asocmaxrxt = 2931 assocparams.sasoc_asocmaxrxt; 2932 if (assocparams.sasoc_cookie_life != 0) 2933 sp->assocparams.sasoc_cookie_life = 2934 assocparams.sasoc_cookie_life; 2935 } 2936 return 0; 2937 } 2938 2939 /* 2940 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2941 * 2942 * This socket option is a boolean flag which turns on or off mapped V4 2943 * addresses. If this option is turned on and the socket is type 2944 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2945 * If this option is turned off, then no mapping will be done of V4 2946 * addresses and a user will receive both PF_INET6 and PF_INET type 2947 * addresses on the socket. 2948 */ 2949 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2950 { 2951 int val; 2952 struct sctp_sock *sp = sctp_sk(sk); 2953 2954 if (optlen < sizeof(int)) 2955 return -EINVAL; 2956 if (get_user(val, (int __user *)optval)) 2957 return -EFAULT; 2958 if (val) 2959 sp->v4mapped = 1; 2960 else 2961 sp->v4mapped = 0; 2962 2963 return 0; 2964 } 2965 2966 /* 2967 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2968 * This option will get or set the maximum size to put in any outgoing 2969 * SCTP DATA chunk. If a message is larger than this size it will be 2970 * fragmented by SCTP into the specified size. Note that the underlying 2971 * SCTP implementation may fragment into smaller sized chunks when the 2972 * PMTU of the underlying association is smaller than the value set by 2973 * the user. The default value for this option is '0' which indicates 2974 * the user is NOT limiting fragmentation and only the PMTU will effect 2975 * SCTP's choice of DATA chunk size. Note also that values set larger 2976 * than the maximum size of an IP datagram will effectively let SCTP 2977 * control fragmentation (i.e. the same as setting this option to 0). 2978 * 2979 * The following structure is used to access and modify this parameter: 2980 * 2981 * struct sctp_assoc_value { 2982 * sctp_assoc_t assoc_id; 2983 * uint32_t assoc_value; 2984 * }; 2985 * 2986 * assoc_id: This parameter is ignored for one-to-one style sockets. 2987 * For one-to-many style sockets this parameter indicates which 2988 * association the user is performing an action upon. Note that if 2989 * this field's value is zero then the endpoints default value is 2990 * changed (effecting future associations only). 2991 * assoc_value: This parameter specifies the maximum size in bytes. 2992 */ 2993 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2994 { 2995 struct sctp_assoc_value params; 2996 struct sctp_association *asoc; 2997 struct sctp_sock *sp = sctp_sk(sk); 2998 int val; 2999 3000 if (optlen == sizeof(int)) { 3001 pr_warn_ratelimited(DEPRECATED 3002 "%s (pid %d) " 3003 "Use of int in maxseg socket option.\n" 3004 "Use struct sctp_assoc_value instead\n", 3005 current->comm, task_pid_nr(current)); 3006 if (copy_from_user(&val, optval, optlen)) 3007 return -EFAULT; 3008 params.assoc_id = 0; 3009 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3010 if (copy_from_user(¶ms, optval, optlen)) 3011 return -EFAULT; 3012 val = params.assoc_value; 3013 } else 3014 return -EINVAL; 3015 3016 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3017 return -EINVAL; 3018 3019 asoc = sctp_id2assoc(sk, params.assoc_id); 3020 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3021 return -EINVAL; 3022 3023 if (asoc) { 3024 if (val == 0) { 3025 val = asoc->pathmtu; 3026 val -= sp->pf->af->net_header_len; 3027 val -= sizeof(struct sctphdr) + 3028 sizeof(struct sctp_data_chunk); 3029 } 3030 asoc->user_frag = val; 3031 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3032 } else { 3033 sp->user_frag = val; 3034 } 3035 3036 return 0; 3037 } 3038 3039 3040 /* 3041 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3042 * 3043 * Requests that the peer mark the enclosed address as the association 3044 * primary. The enclosed address must be one of the association's 3045 * locally bound addresses. The following structure is used to make a 3046 * set primary request: 3047 */ 3048 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3049 unsigned int optlen) 3050 { 3051 struct net *net = sock_net(sk); 3052 struct sctp_sock *sp; 3053 struct sctp_association *asoc = NULL; 3054 struct sctp_setpeerprim prim; 3055 struct sctp_chunk *chunk; 3056 struct sctp_af *af; 3057 int err; 3058 3059 sp = sctp_sk(sk); 3060 3061 if (!net->sctp.addip_enable) 3062 return -EPERM; 3063 3064 if (optlen != sizeof(struct sctp_setpeerprim)) 3065 return -EINVAL; 3066 3067 if (copy_from_user(&prim, optval, optlen)) 3068 return -EFAULT; 3069 3070 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3071 if (!asoc) 3072 return -EINVAL; 3073 3074 if (!asoc->peer.asconf_capable) 3075 return -EPERM; 3076 3077 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3078 return -EPERM; 3079 3080 if (!sctp_state(asoc, ESTABLISHED)) 3081 return -ENOTCONN; 3082 3083 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3084 if (!af) 3085 return -EINVAL; 3086 3087 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3088 return -EADDRNOTAVAIL; 3089 3090 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3091 return -EADDRNOTAVAIL; 3092 3093 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3094 chunk = sctp_make_asconf_set_prim(asoc, 3095 (union sctp_addr *)&prim.sspp_addr); 3096 if (!chunk) 3097 return -ENOMEM; 3098 3099 err = sctp_send_asconf(asoc, chunk); 3100 3101 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3102 3103 return err; 3104 } 3105 3106 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3107 unsigned int optlen) 3108 { 3109 struct sctp_setadaptation adaptation; 3110 3111 if (optlen != sizeof(struct sctp_setadaptation)) 3112 return -EINVAL; 3113 if (copy_from_user(&adaptation, optval, optlen)) 3114 return -EFAULT; 3115 3116 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3117 3118 return 0; 3119 } 3120 3121 /* 3122 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3123 * 3124 * The context field in the sctp_sndrcvinfo structure is normally only 3125 * used when a failed message is retrieved holding the value that was 3126 * sent down on the actual send call. This option allows the setting of 3127 * a default context on an association basis that will be received on 3128 * reading messages from the peer. This is especially helpful in the 3129 * one-2-many model for an application to keep some reference to an 3130 * internal state machine that is processing messages on the 3131 * association. Note that the setting of this value only effects 3132 * received messages from the peer and does not effect the value that is 3133 * saved with outbound messages. 3134 */ 3135 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3136 unsigned int optlen) 3137 { 3138 struct sctp_assoc_value params; 3139 struct sctp_sock *sp; 3140 struct sctp_association *asoc; 3141 3142 if (optlen != sizeof(struct sctp_assoc_value)) 3143 return -EINVAL; 3144 if (copy_from_user(¶ms, optval, optlen)) 3145 return -EFAULT; 3146 3147 sp = sctp_sk(sk); 3148 3149 if (params.assoc_id != 0) { 3150 asoc = sctp_id2assoc(sk, params.assoc_id); 3151 if (!asoc) 3152 return -EINVAL; 3153 asoc->default_rcv_context = params.assoc_value; 3154 } else { 3155 sp->default_rcv_context = params.assoc_value; 3156 } 3157 3158 return 0; 3159 } 3160 3161 /* 3162 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3163 * 3164 * This options will at a minimum specify if the implementation is doing 3165 * fragmented interleave. Fragmented interleave, for a one to many 3166 * socket, is when subsequent calls to receive a message may return 3167 * parts of messages from different associations. Some implementations 3168 * may allow you to turn this value on or off. If so, when turned off, 3169 * no fragment interleave will occur (which will cause a head of line 3170 * blocking amongst multiple associations sharing the same one to many 3171 * socket). When this option is turned on, then each receive call may 3172 * come from a different association (thus the user must receive data 3173 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3174 * association each receive belongs to. 3175 * 3176 * This option takes a boolean value. A non-zero value indicates that 3177 * fragmented interleave is on. A value of zero indicates that 3178 * fragmented interleave is off. 3179 * 3180 * Note that it is important that an implementation that allows this 3181 * option to be turned on, have it off by default. Otherwise an unaware 3182 * application using the one to many model may become confused and act 3183 * incorrectly. 3184 */ 3185 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3186 char __user *optval, 3187 unsigned int optlen) 3188 { 3189 int val; 3190 3191 if (optlen != sizeof(int)) 3192 return -EINVAL; 3193 if (get_user(val, (int __user *)optval)) 3194 return -EFAULT; 3195 3196 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3197 3198 return 0; 3199 } 3200 3201 /* 3202 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3203 * (SCTP_PARTIAL_DELIVERY_POINT) 3204 * 3205 * This option will set or get the SCTP partial delivery point. This 3206 * point is the size of a message where the partial delivery API will be 3207 * invoked to help free up rwnd space for the peer. Setting this to a 3208 * lower value will cause partial deliveries to happen more often. The 3209 * calls argument is an integer that sets or gets the partial delivery 3210 * point. Note also that the call will fail if the user attempts to set 3211 * this value larger than the socket receive buffer size. 3212 * 3213 * Note that any single message having a length smaller than or equal to 3214 * the SCTP partial delivery point will be delivered in one single read 3215 * call as long as the user provided buffer is large enough to hold the 3216 * message. 3217 */ 3218 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3219 char __user *optval, 3220 unsigned int optlen) 3221 { 3222 u32 val; 3223 3224 if (optlen != sizeof(u32)) 3225 return -EINVAL; 3226 if (get_user(val, (int __user *)optval)) 3227 return -EFAULT; 3228 3229 /* Note: We double the receive buffer from what the user sets 3230 * it to be, also initial rwnd is based on rcvbuf/2. 3231 */ 3232 if (val > (sk->sk_rcvbuf >> 1)) 3233 return -EINVAL; 3234 3235 sctp_sk(sk)->pd_point = val; 3236 3237 return 0; /* is this the right error code? */ 3238 } 3239 3240 /* 3241 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3242 * 3243 * This option will allow a user to change the maximum burst of packets 3244 * that can be emitted by this association. Note that the default value 3245 * is 4, and some implementations may restrict this setting so that it 3246 * can only be lowered. 3247 * 3248 * NOTE: This text doesn't seem right. Do this on a socket basis with 3249 * future associations inheriting the socket value. 3250 */ 3251 static int sctp_setsockopt_maxburst(struct sock *sk, 3252 char __user *optval, 3253 unsigned int optlen) 3254 { 3255 struct sctp_assoc_value params; 3256 struct sctp_sock *sp; 3257 struct sctp_association *asoc; 3258 int val; 3259 int assoc_id = 0; 3260 3261 if (optlen == sizeof(int)) { 3262 pr_warn_ratelimited(DEPRECATED 3263 "%s (pid %d) " 3264 "Use of int in max_burst socket option deprecated.\n" 3265 "Use struct sctp_assoc_value instead\n", 3266 current->comm, task_pid_nr(current)); 3267 if (copy_from_user(&val, optval, optlen)) 3268 return -EFAULT; 3269 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3270 if (copy_from_user(¶ms, optval, optlen)) 3271 return -EFAULT; 3272 val = params.assoc_value; 3273 assoc_id = params.assoc_id; 3274 } else 3275 return -EINVAL; 3276 3277 sp = sctp_sk(sk); 3278 3279 if (assoc_id != 0) { 3280 asoc = sctp_id2assoc(sk, assoc_id); 3281 if (!asoc) 3282 return -EINVAL; 3283 asoc->max_burst = val; 3284 } else 3285 sp->max_burst = val; 3286 3287 return 0; 3288 } 3289 3290 /* 3291 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3292 * 3293 * This set option adds a chunk type that the user is requesting to be 3294 * received only in an authenticated way. Changes to the list of chunks 3295 * will only effect future associations on the socket. 3296 */ 3297 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3298 char __user *optval, 3299 unsigned int optlen) 3300 { 3301 struct net *net = sock_net(sk); 3302 struct sctp_authchunk val; 3303 3304 if (!net->sctp.auth_enable) 3305 return -EACCES; 3306 3307 if (optlen != sizeof(struct sctp_authchunk)) 3308 return -EINVAL; 3309 if (copy_from_user(&val, optval, optlen)) 3310 return -EFAULT; 3311 3312 switch (val.sauth_chunk) { 3313 case SCTP_CID_INIT: 3314 case SCTP_CID_INIT_ACK: 3315 case SCTP_CID_SHUTDOWN_COMPLETE: 3316 case SCTP_CID_AUTH: 3317 return -EINVAL; 3318 } 3319 3320 /* add this chunk id to the endpoint */ 3321 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3322 } 3323 3324 /* 3325 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3326 * 3327 * This option gets or sets the list of HMAC algorithms that the local 3328 * endpoint requires the peer to use. 3329 */ 3330 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3331 char __user *optval, 3332 unsigned int optlen) 3333 { 3334 struct net *net = sock_net(sk); 3335 struct sctp_hmacalgo *hmacs; 3336 u32 idents; 3337 int err; 3338 3339 if (!net->sctp.auth_enable) 3340 return -EACCES; 3341 3342 if (optlen < sizeof(struct sctp_hmacalgo)) 3343 return -EINVAL; 3344 3345 hmacs = memdup_user(optval, optlen); 3346 if (IS_ERR(hmacs)) 3347 return PTR_ERR(hmacs); 3348 3349 idents = hmacs->shmac_num_idents; 3350 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3351 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3352 err = -EINVAL; 3353 goto out; 3354 } 3355 3356 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3357 out: 3358 kfree(hmacs); 3359 return err; 3360 } 3361 3362 /* 3363 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3364 * 3365 * This option will set a shared secret key which is used to build an 3366 * association shared key. 3367 */ 3368 static int sctp_setsockopt_auth_key(struct sock *sk, 3369 char __user *optval, 3370 unsigned int optlen) 3371 { 3372 struct net *net = sock_net(sk); 3373 struct sctp_authkey *authkey; 3374 struct sctp_association *asoc; 3375 int ret; 3376 3377 if (!net->sctp.auth_enable) 3378 return -EACCES; 3379 3380 if (optlen <= sizeof(struct sctp_authkey)) 3381 return -EINVAL; 3382 3383 authkey = memdup_user(optval, optlen); 3384 if (IS_ERR(authkey)) 3385 return PTR_ERR(authkey); 3386 3387 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3388 ret = -EINVAL; 3389 goto out; 3390 } 3391 3392 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3393 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3394 ret = -EINVAL; 3395 goto out; 3396 } 3397 3398 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3399 out: 3400 kzfree(authkey); 3401 return ret; 3402 } 3403 3404 /* 3405 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3406 * 3407 * This option will get or set the active shared key to be used to build 3408 * the association shared key. 3409 */ 3410 static int sctp_setsockopt_active_key(struct sock *sk, 3411 char __user *optval, 3412 unsigned int optlen) 3413 { 3414 struct net *net = sock_net(sk); 3415 struct sctp_authkeyid val; 3416 struct sctp_association *asoc; 3417 3418 if (!net->sctp.auth_enable) 3419 return -EACCES; 3420 3421 if (optlen != sizeof(struct sctp_authkeyid)) 3422 return -EINVAL; 3423 if (copy_from_user(&val, optval, optlen)) 3424 return -EFAULT; 3425 3426 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3427 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3428 return -EINVAL; 3429 3430 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3431 val.scact_keynumber); 3432 } 3433 3434 /* 3435 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3436 * 3437 * This set option will delete a shared secret key from use. 3438 */ 3439 static int sctp_setsockopt_del_key(struct sock *sk, 3440 char __user *optval, 3441 unsigned int optlen) 3442 { 3443 struct net *net = sock_net(sk); 3444 struct sctp_authkeyid val; 3445 struct sctp_association *asoc; 3446 3447 if (!net->sctp.auth_enable) 3448 return -EACCES; 3449 3450 if (optlen != sizeof(struct sctp_authkeyid)) 3451 return -EINVAL; 3452 if (copy_from_user(&val, optval, optlen)) 3453 return -EFAULT; 3454 3455 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3456 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3457 return -EINVAL; 3458 3459 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3460 val.scact_keynumber); 3461 3462 } 3463 3464 /* 3465 * 8.1.23 SCTP_AUTO_ASCONF 3466 * 3467 * This option will enable or disable the use of the automatic generation of 3468 * ASCONF chunks to add and delete addresses to an existing association. Note 3469 * that this option has two caveats namely: a) it only affects sockets that 3470 * are bound to all addresses available to the SCTP stack, and b) the system 3471 * administrator may have an overriding control that turns the ASCONF feature 3472 * off no matter what setting the socket option may have. 3473 * This option expects an integer boolean flag, where a non-zero value turns on 3474 * the option, and a zero value turns off the option. 3475 * Note. In this implementation, socket operation overrides default parameter 3476 * being set by sysctl as well as FreeBSD implementation 3477 */ 3478 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3479 unsigned int optlen) 3480 { 3481 int val; 3482 struct sctp_sock *sp = sctp_sk(sk); 3483 3484 if (optlen < sizeof(int)) 3485 return -EINVAL; 3486 if (get_user(val, (int __user *)optval)) 3487 return -EFAULT; 3488 if (!sctp_is_ep_boundall(sk) && val) 3489 return -EINVAL; 3490 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3491 return 0; 3492 3493 if (val == 0 && sp->do_auto_asconf) { 3494 list_del(&sp->auto_asconf_list); 3495 sp->do_auto_asconf = 0; 3496 } else if (val && !sp->do_auto_asconf) { 3497 list_add_tail(&sp->auto_asconf_list, 3498 &sock_net(sk)->sctp.auto_asconf_splist); 3499 sp->do_auto_asconf = 1; 3500 } 3501 return 0; 3502 } 3503 3504 3505 /* 3506 * SCTP_PEER_ADDR_THLDS 3507 * 3508 * This option allows us to alter the partially failed threshold for one or all 3509 * transports in an association. See Section 6.1 of: 3510 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3511 */ 3512 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3513 char __user *optval, 3514 unsigned int optlen) 3515 { 3516 struct sctp_paddrthlds val; 3517 struct sctp_transport *trans; 3518 struct sctp_association *asoc; 3519 3520 if (optlen < sizeof(struct sctp_paddrthlds)) 3521 return -EINVAL; 3522 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3523 sizeof(struct sctp_paddrthlds))) 3524 return -EFAULT; 3525 3526 3527 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3528 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3529 if (!asoc) 3530 return -ENOENT; 3531 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3532 transports) { 3533 if (val.spt_pathmaxrxt) 3534 trans->pathmaxrxt = val.spt_pathmaxrxt; 3535 trans->pf_retrans = val.spt_pathpfthld; 3536 } 3537 3538 if (val.spt_pathmaxrxt) 3539 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3540 asoc->pf_retrans = val.spt_pathpfthld; 3541 } else { 3542 trans = sctp_addr_id2transport(sk, &val.spt_address, 3543 val.spt_assoc_id); 3544 if (!trans) 3545 return -ENOENT; 3546 3547 if (val.spt_pathmaxrxt) 3548 trans->pathmaxrxt = val.spt_pathmaxrxt; 3549 trans->pf_retrans = val.spt_pathpfthld; 3550 } 3551 3552 return 0; 3553 } 3554 3555 /* API 6.2 setsockopt(), getsockopt() 3556 * 3557 * Applications use setsockopt() and getsockopt() to set or retrieve 3558 * socket options. Socket options are used to change the default 3559 * behavior of sockets calls. They are described in Section 7. 3560 * 3561 * The syntax is: 3562 * 3563 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3564 * int __user *optlen); 3565 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3566 * int optlen); 3567 * 3568 * sd - the socket descript. 3569 * level - set to IPPROTO_SCTP for all SCTP options. 3570 * optname - the option name. 3571 * optval - the buffer to store the value of the option. 3572 * optlen - the size of the buffer. 3573 */ 3574 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3575 char __user *optval, unsigned int optlen) 3576 { 3577 int retval = 0; 3578 3579 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3580 3581 /* I can hardly begin to describe how wrong this is. This is 3582 * so broken as to be worse than useless. The API draft 3583 * REALLY is NOT helpful here... I am not convinced that the 3584 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3585 * are at all well-founded. 3586 */ 3587 if (level != SOL_SCTP) { 3588 struct sctp_af *af = sctp_sk(sk)->pf->af; 3589 retval = af->setsockopt(sk, level, optname, optval, optlen); 3590 goto out_nounlock; 3591 } 3592 3593 lock_sock(sk); 3594 3595 switch (optname) { 3596 case SCTP_SOCKOPT_BINDX_ADD: 3597 /* 'optlen' is the size of the addresses buffer. */ 3598 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3599 optlen, SCTP_BINDX_ADD_ADDR); 3600 break; 3601 3602 case SCTP_SOCKOPT_BINDX_REM: 3603 /* 'optlen' is the size of the addresses buffer. */ 3604 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3605 optlen, SCTP_BINDX_REM_ADDR); 3606 break; 3607 3608 case SCTP_SOCKOPT_CONNECTX_OLD: 3609 /* 'optlen' is the size of the addresses buffer. */ 3610 retval = sctp_setsockopt_connectx_old(sk, 3611 (struct sockaddr __user *)optval, 3612 optlen); 3613 break; 3614 3615 case SCTP_SOCKOPT_CONNECTX: 3616 /* 'optlen' is the size of the addresses buffer. */ 3617 retval = sctp_setsockopt_connectx(sk, 3618 (struct sockaddr __user *)optval, 3619 optlen); 3620 break; 3621 3622 case SCTP_DISABLE_FRAGMENTS: 3623 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3624 break; 3625 3626 case SCTP_EVENTS: 3627 retval = sctp_setsockopt_events(sk, optval, optlen); 3628 break; 3629 3630 case SCTP_AUTOCLOSE: 3631 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3632 break; 3633 3634 case SCTP_PEER_ADDR_PARAMS: 3635 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3636 break; 3637 3638 case SCTP_DELAYED_SACK: 3639 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3640 break; 3641 case SCTP_PARTIAL_DELIVERY_POINT: 3642 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3643 break; 3644 3645 case SCTP_INITMSG: 3646 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3647 break; 3648 case SCTP_DEFAULT_SEND_PARAM: 3649 retval = sctp_setsockopt_default_send_param(sk, optval, 3650 optlen); 3651 break; 3652 case SCTP_PRIMARY_ADDR: 3653 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3654 break; 3655 case SCTP_SET_PEER_PRIMARY_ADDR: 3656 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3657 break; 3658 case SCTP_NODELAY: 3659 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3660 break; 3661 case SCTP_RTOINFO: 3662 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3663 break; 3664 case SCTP_ASSOCINFO: 3665 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3666 break; 3667 case SCTP_I_WANT_MAPPED_V4_ADDR: 3668 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3669 break; 3670 case SCTP_MAXSEG: 3671 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3672 break; 3673 case SCTP_ADAPTATION_LAYER: 3674 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3675 break; 3676 case SCTP_CONTEXT: 3677 retval = sctp_setsockopt_context(sk, optval, optlen); 3678 break; 3679 case SCTP_FRAGMENT_INTERLEAVE: 3680 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3681 break; 3682 case SCTP_MAX_BURST: 3683 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3684 break; 3685 case SCTP_AUTH_CHUNK: 3686 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3687 break; 3688 case SCTP_HMAC_IDENT: 3689 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3690 break; 3691 case SCTP_AUTH_KEY: 3692 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3693 break; 3694 case SCTP_AUTH_ACTIVE_KEY: 3695 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3696 break; 3697 case SCTP_AUTH_DELETE_KEY: 3698 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3699 break; 3700 case SCTP_AUTO_ASCONF: 3701 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3702 break; 3703 case SCTP_PEER_ADDR_THLDS: 3704 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3705 break; 3706 default: 3707 retval = -ENOPROTOOPT; 3708 break; 3709 } 3710 3711 release_sock(sk); 3712 3713 out_nounlock: 3714 return retval; 3715 } 3716 3717 /* API 3.1.6 connect() - UDP Style Syntax 3718 * 3719 * An application may use the connect() call in the UDP model to initiate an 3720 * association without sending data. 3721 * 3722 * The syntax is: 3723 * 3724 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3725 * 3726 * sd: the socket descriptor to have a new association added to. 3727 * 3728 * nam: the address structure (either struct sockaddr_in or struct 3729 * sockaddr_in6 defined in RFC2553 [7]). 3730 * 3731 * len: the size of the address. 3732 */ 3733 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3734 int addr_len) 3735 { 3736 int err = 0; 3737 struct sctp_af *af; 3738 3739 lock_sock(sk); 3740 3741 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3742 addr, addr_len); 3743 3744 /* Validate addr_len before calling common connect/connectx routine. */ 3745 af = sctp_get_af_specific(addr->sa_family); 3746 if (!af || addr_len < af->sockaddr_len) { 3747 err = -EINVAL; 3748 } else { 3749 /* Pass correct addr len to common routine (so it knows there 3750 * is only one address being passed. 3751 */ 3752 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3753 } 3754 3755 release_sock(sk); 3756 return err; 3757 } 3758 3759 /* FIXME: Write comments. */ 3760 static int sctp_disconnect(struct sock *sk, int flags) 3761 { 3762 return -EOPNOTSUPP; /* STUB */ 3763 } 3764 3765 /* 4.1.4 accept() - TCP Style Syntax 3766 * 3767 * Applications use accept() call to remove an established SCTP 3768 * association from the accept queue of the endpoint. A new socket 3769 * descriptor will be returned from accept() to represent the newly 3770 * formed association. 3771 */ 3772 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3773 { 3774 struct sctp_sock *sp; 3775 struct sctp_endpoint *ep; 3776 struct sock *newsk = NULL; 3777 struct sctp_association *asoc; 3778 long timeo; 3779 int error = 0; 3780 3781 lock_sock(sk); 3782 3783 sp = sctp_sk(sk); 3784 ep = sp->ep; 3785 3786 if (!sctp_style(sk, TCP)) { 3787 error = -EOPNOTSUPP; 3788 goto out; 3789 } 3790 3791 if (!sctp_sstate(sk, LISTENING)) { 3792 error = -EINVAL; 3793 goto out; 3794 } 3795 3796 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3797 3798 error = sctp_wait_for_accept(sk, timeo); 3799 if (error) 3800 goto out; 3801 3802 /* We treat the list of associations on the endpoint as the accept 3803 * queue and pick the first association on the list. 3804 */ 3805 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3806 3807 newsk = sp->pf->create_accept_sk(sk, asoc); 3808 if (!newsk) { 3809 error = -ENOMEM; 3810 goto out; 3811 } 3812 3813 /* Populate the fields of the newsk from the oldsk and migrate the 3814 * asoc to the newsk. 3815 */ 3816 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3817 3818 out: 3819 release_sock(sk); 3820 *err = error; 3821 return newsk; 3822 } 3823 3824 /* The SCTP ioctl handler. */ 3825 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3826 { 3827 int rc = -ENOTCONN; 3828 3829 lock_sock(sk); 3830 3831 /* 3832 * SEQPACKET-style sockets in LISTENING state are valid, for 3833 * SCTP, so only discard TCP-style sockets in LISTENING state. 3834 */ 3835 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3836 goto out; 3837 3838 switch (cmd) { 3839 case SIOCINQ: { 3840 struct sk_buff *skb; 3841 unsigned int amount = 0; 3842 3843 skb = skb_peek(&sk->sk_receive_queue); 3844 if (skb != NULL) { 3845 /* 3846 * We will only return the amount of this packet since 3847 * that is all that will be read. 3848 */ 3849 amount = skb->len; 3850 } 3851 rc = put_user(amount, (int __user *)arg); 3852 break; 3853 } 3854 default: 3855 rc = -ENOIOCTLCMD; 3856 break; 3857 } 3858 out: 3859 release_sock(sk); 3860 return rc; 3861 } 3862 3863 /* This is the function which gets called during socket creation to 3864 * initialized the SCTP-specific portion of the sock. 3865 * The sock structure should already be zero-filled memory. 3866 */ 3867 static int sctp_init_sock(struct sock *sk) 3868 { 3869 struct net *net = sock_net(sk); 3870 struct sctp_sock *sp; 3871 3872 pr_debug("%s: sk:%p\n", __func__, sk); 3873 3874 sp = sctp_sk(sk); 3875 3876 /* Initialize the SCTP per socket area. */ 3877 switch (sk->sk_type) { 3878 case SOCK_SEQPACKET: 3879 sp->type = SCTP_SOCKET_UDP; 3880 break; 3881 case SOCK_STREAM: 3882 sp->type = SCTP_SOCKET_TCP; 3883 break; 3884 default: 3885 return -ESOCKTNOSUPPORT; 3886 } 3887 3888 /* Initialize default send parameters. These parameters can be 3889 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3890 */ 3891 sp->default_stream = 0; 3892 sp->default_ppid = 0; 3893 sp->default_flags = 0; 3894 sp->default_context = 0; 3895 sp->default_timetolive = 0; 3896 3897 sp->default_rcv_context = 0; 3898 sp->max_burst = net->sctp.max_burst; 3899 3900 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 3901 3902 /* Initialize default setup parameters. These parameters 3903 * can be modified with the SCTP_INITMSG socket option or 3904 * overridden by the SCTP_INIT CMSG. 3905 */ 3906 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3907 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3908 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 3909 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 3910 3911 /* Initialize default RTO related parameters. These parameters can 3912 * be modified for with the SCTP_RTOINFO socket option. 3913 */ 3914 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 3915 sp->rtoinfo.srto_max = net->sctp.rto_max; 3916 sp->rtoinfo.srto_min = net->sctp.rto_min; 3917 3918 /* Initialize default association related parameters. These parameters 3919 * can be modified with the SCTP_ASSOCINFO socket option. 3920 */ 3921 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 3922 sp->assocparams.sasoc_number_peer_destinations = 0; 3923 sp->assocparams.sasoc_peer_rwnd = 0; 3924 sp->assocparams.sasoc_local_rwnd = 0; 3925 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 3926 3927 /* Initialize default event subscriptions. By default, all the 3928 * options are off. 3929 */ 3930 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3931 3932 /* Default Peer Address Parameters. These defaults can 3933 * be modified via SCTP_PEER_ADDR_PARAMS 3934 */ 3935 sp->hbinterval = net->sctp.hb_interval; 3936 sp->pathmaxrxt = net->sctp.max_retrans_path; 3937 sp->pathmtu = 0; /* allow default discovery */ 3938 sp->sackdelay = net->sctp.sack_timeout; 3939 sp->sackfreq = 2; 3940 sp->param_flags = SPP_HB_ENABLE | 3941 SPP_PMTUD_ENABLE | 3942 SPP_SACKDELAY_ENABLE; 3943 3944 /* If enabled no SCTP message fragmentation will be performed. 3945 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3946 */ 3947 sp->disable_fragments = 0; 3948 3949 /* Enable Nagle algorithm by default. */ 3950 sp->nodelay = 0; 3951 3952 /* Enable by default. */ 3953 sp->v4mapped = 1; 3954 3955 /* Auto-close idle associations after the configured 3956 * number of seconds. A value of 0 disables this 3957 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3958 * for UDP-style sockets only. 3959 */ 3960 sp->autoclose = 0; 3961 3962 /* User specified fragmentation limit. */ 3963 sp->user_frag = 0; 3964 3965 sp->adaptation_ind = 0; 3966 3967 sp->pf = sctp_get_pf_specific(sk->sk_family); 3968 3969 /* Control variables for partial data delivery. */ 3970 atomic_set(&sp->pd_mode, 0); 3971 skb_queue_head_init(&sp->pd_lobby); 3972 sp->frag_interleave = 0; 3973 3974 /* Create a per socket endpoint structure. Even if we 3975 * change the data structure relationships, this may still 3976 * be useful for storing pre-connect address information. 3977 */ 3978 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 3979 if (!sp->ep) 3980 return -ENOMEM; 3981 3982 sp->hmac = NULL; 3983 3984 sk->sk_destruct = sctp_destruct_sock; 3985 3986 SCTP_DBG_OBJCNT_INC(sock); 3987 3988 local_bh_disable(); 3989 percpu_counter_inc(&sctp_sockets_allocated); 3990 sock_prot_inuse_add(net, sk->sk_prot, 1); 3991 if (net->sctp.default_auto_asconf) { 3992 list_add_tail(&sp->auto_asconf_list, 3993 &net->sctp.auto_asconf_splist); 3994 sp->do_auto_asconf = 1; 3995 } else 3996 sp->do_auto_asconf = 0; 3997 local_bh_enable(); 3998 3999 return 0; 4000 } 4001 4002 /* Cleanup any SCTP per socket resources. */ 4003 static void sctp_destroy_sock(struct sock *sk) 4004 { 4005 struct sctp_sock *sp; 4006 4007 pr_debug("%s: sk:%p\n", __func__, sk); 4008 4009 /* Release our hold on the endpoint. */ 4010 sp = sctp_sk(sk); 4011 /* This could happen during socket init, thus we bail out 4012 * early, since the rest of the below is not setup either. 4013 */ 4014 if (sp->ep == NULL) 4015 return; 4016 4017 if (sp->do_auto_asconf) { 4018 sp->do_auto_asconf = 0; 4019 list_del(&sp->auto_asconf_list); 4020 } 4021 sctp_endpoint_free(sp->ep); 4022 local_bh_disable(); 4023 percpu_counter_dec(&sctp_sockets_allocated); 4024 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4025 local_bh_enable(); 4026 } 4027 4028 /* Triggered when there are no references on the socket anymore */ 4029 static void sctp_destruct_sock(struct sock *sk) 4030 { 4031 struct sctp_sock *sp = sctp_sk(sk); 4032 4033 /* Free up the HMAC transform. */ 4034 crypto_free_hash(sp->hmac); 4035 4036 inet_sock_destruct(sk); 4037 } 4038 4039 /* API 4.1.7 shutdown() - TCP Style Syntax 4040 * int shutdown(int socket, int how); 4041 * 4042 * sd - the socket descriptor of the association to be closed. 4043 * how - Specifies the type of shutdown. The values are 4044 * as follows: 4045 * SHUT_RD 4046 * Disables further receive operations. No SCTP 4047 * protocol action is taken. 4048 * SHUT_WR 4049 * Disables further send operations, and initiates 4050 * the SCTP shutdown sequence. 4051 * SHUT_RDWR 4052 * Disables further send and receive operations 4053 * and initiates the SCTP shutdown sequence. 4054 */ 4055 static void sctp_shutdown(struct sock *sk, int how) 4056 { 4057 struct net *net = sock_net(sk); 4058 struct sctp_endpoint *ep; 4059 struct sctp_association *asoc; 4060 4061 if (!sctp_style(sk, TCP)) 4062 return; 4063 4064 if (how & SEND_SHUTDOWN) { 4065 ep = sctp_sk(sk)->ep; 4066 if (!list_empty(&ep->asocs)) { 4067 asoc = list_entry(ep->asocs.next, 4068 struct sctp_association, asocs); 4069 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4070 } 4071 } 4072 } 4073 4074 /* 7.2.1 Association Status (SCTP_STATUS) 4075 4076 * Applications can retrieve current status information about an 4077 * association, including association state, peer receiver window size, 4078 * number of unacked data chunks, and number of data chunks pending 4079 * receipt. This information is read-only. 4080 */ 4081 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4082 char __user *optval, 4083 int __user *optlen) 4084 { 4085 struct sctp_status status; 4086 struct sctp_association *asoc = NULL; 4087 struct sctp_transport *transport; 4088 sctp_assoc_t associd; 4089 int retval = 0; 4090 4091 if (len < sizeof(status)) { 4092 retval = -EINVAL; 4093 goto out; 4094 } 4095 4096 len = sizeof(status); 4097 if (copy_from_user(&status, optval, len)) { 4098 retval = -EFAULT; 4099 goto out; 4100 } 4101 4102 associd = status.sstat_assoc_id; 4103 asoc = sctp_id2assoc(sk, associd); 4104 if (!asoc) { 4105 retval = -EINVAL; 4106 goto out; 4107 } 4108 4109 transport = asoc->peer.primary_path; 4110 4111 status.sstat_assoc_id = sctp_assoc2id(asoc); 4112 status.sstat_state = asoc->state; 4113 status.sstat_rwnd = asoc->peer.rwnd; 4114 status.sstat_unackdata = asoc->unack_data; 4115 4116 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4117 status.sstat_instrms = asoc->c.sinit_max_instreams; 4118 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4119 status.sstat_fragmentation_point = asoc->frag_point; 4120 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4121 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4122 transport->af_specific->sockaddr_len); 4123 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4124 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4125 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4126 status.sstat_primary.spinfo_state = transport->state; 4127 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4128 status.sstat_primary.spinfo_srtt = transport->srtt; 4129 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4130 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4131 4132 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4133 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4134 4135 if (put_user(len, optlen)) { 4136 retval = -EFAULT; 4137 goto out; 4138 } 4139 4140 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4141 __func__, len, status.sstat_state, status.sstat_rwnd, 4142 status.sstat_assoc_id); 4143 4144 if (copy_to_user(optval, &status, len)) { 4145 retval = -EFAULT; 4146 goto out; 4147 } 4148 4149 out: 4150 return retval; 4151 } 4152 4153 4154 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4155 * 4156 * Applications can retrieve information about a specific peer address 4157 * of an association, including its reachability state, congestion 4158 * window, and retransmission timer values. This information is 4159 * read-only. 4160 */ 4161 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4162 char __user *optval, 4163 int __user *optlen) 4164 { 4165 struct sctp_paddrinfo pinfo; 4166 struct sctp_transport *transport; 4167 int retval = 0; 4168 4169 if (len < sizeof(pinfo)) { 4170 retval = -EINVAL; 4171 goto out; 4172 } 4173 4174 len = sizeof(pinfo); 4175 if (copy_from_user(&pinfo, optval, len)) { 4176 retval = -EFAULT; 4177 goto out; 4178 } 4179 4180 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4181 pinfo.spinfo_assoc_id); 4182 if (!transport) 4183 return -EINVAL; 4184 4185 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4186 pinfo.spinfo_state = transport->state; 4187 pinfo.spinfo_cwnd = transport->cwnd; 4188 pinfo.spinfo_srtt = transport->srtt; 4189 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4190 pinfo.spinfo_mtu = transport->pathmtu; 4191 4192 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4193 pinfo.spinfo_state = SCTP_ACTIVE; 4194 4195 if (put_user(len, optlen)) { 4196 retval = -EFAULT; 4197 goto out; 4198 } 4199 4200 if (copy_to_user(optval, &pinfo, len)) { 4201 retval = -EFAULT; 4202 goto out; 4203 } 4204 4205 out: 4206 return retval; 4207 } 4208 4209 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4210 * 4211 * This option is a on/off flag. If enabled no SCTP message 4212 * fragmentation will be performed. Instead if a message being sent 4213 * exceeds the current PMTU size, the message will NOT be sent and 4214 * instead a error will be indicated to the user. 4215 */ 4216 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4217 char __user *optval, int __user *optlen) 4218 { 4219 int val; 4220 4221 if (len < sizeof(int)) 4222 return -EINVAL; 4223 4224 len = sizeof(int); 4225 val = (sctp_sk(sk)->disable_fragments == 1); 4226 if (put_user(len, optlen)) 4227 return -EFAULT; 4228 if (copy_to_user(optval, &val, len)) 4229 return -EFAULT; 4230 return 0; 4231 } 4232 4233 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4234 * 4235 * This socket option is used to specify various notifications and 4236 * ancillary data the user wishes to receive. 4237 */ 4238 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4239 int __user *optlen) 4240 { 4241 if (len <= 0) 4242 return -EINVAL; 4243 if (len > sizeof(struct sctp_event_subscribe)) 4244 len = sizeof(struct sctp_event_subscribe); 4245 if (put_user(len, optlen)) 4246 return -EFAULT; 4247 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4248 return -EFAULT; 4249 return 0; 4250 } 4251 4252 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4253 * 4254 * This socket option is applicable to the UDP-style socket only. When 4255 * set it will cause associations that are idle for more than the 4256 * specified number of seconds to automatically close. An association 4257 * being idle is defined an association that has NOT sent or received 4258 * user data. The special value of '0' indicates that no automatic 4259 * close of any associations should be performed. The option expects an 4260 * integer defining the number of seconds of idle time before an 4261 * association is closed. 4262 */ 4263 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4264 { 4265 /* Applicable to UDP-style socket only */ 4266 if (sctp_style(sk, TCP)) 4267 return -EOPNOTSUPP; 4268 if (len < sizeof(int)) 4269 return -EINVAL; 4270 len = sizeof(int); 4271 if (put_user(len, optlen)) 4272 return -EFAULT; 4273 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4274 return -EFAULT; 4275 return 0; 4276 } 4277 4278 /* Helper routine to branch off an association to a new socket. */ 4279 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4280 { 4281 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4282 struct socket *sock; 4283 struct sctp_af *af; 4284 int err = 0; 4285 4286 if (!asoc) 4287 return -EINVAL; 4288 4289 /* An association cannot be branched off from an already peeled-off 4290 * socket, nor is this supported for tcp style sockets. 4291 */ 4292 if (!sctp_style(sk, UDP)) 4293 return -EINVAL; 4294 4295 /* Create a new socket. */ 4296 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4297 if (err < 0) 4298 return err; 4299 4300 sctp_copy_sock(sock->sk, sk, asoc); 4301 4302 /* Make peeled-off sockets more like 1-1 accepted sockets. 4303 * Set the daddr and initialize id to something more random 4304 */ 4305 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4306 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4307 4308 /* Populate the fields of the newsk from the oldsk and migrate the 4309 * asoc to the newsk. 4310 */ 4311 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4312 4313 *sockp = sock; 4314 4315 return err; 4316 } 4317 EXPORT_SYMBOL(sctp_do_peeloff); 4318 4319 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4320 { 4321 sctp_peeloff_arg_t peeloff; 4322 struct socket *newsock; 4323 struct file *newfile; 4324 int retval = 0; 4325 4326 if (len < sizeof(sctp_peeloff_arg_t)) 4327 return -EINVAL; 4328 len = sizeof(sctp_peeloff_arg_t); 4329 if (copy_from_user(&peeloff, optval, len)) 4330 return -EFAULT; 4331 4332 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4333 if (retval < 0) 4334 goto out; 4335 4336 /* Map the socket to an unused fd that can be returned to the user. */ 4337 retval = get_unused_fd_flags(0); 4338 if (retval < 0) { 4339 sock_release(newsock); 4340 goto out; 4341 } 4342 4343 newfile = sock_alloc_file(newsock, 0, NULL); 4344 if (unlikely(IS_ERR(newfile))) { 4345 put_unused_fd(retval); 4346 sock_release(newsock); 4347 return PTR_ERR(newfile); 4348 } 4349 4350 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4351 retval); 4352 4353 /* Return the fd mapped to the new socket. */ 4354 if (put_user(len, optlen)) { 4355 fput(newfile); 4356 put_unused_fd(retval); 4357 return -EFAULT; 4358 } 4359 peeloff.sd = retval; 4360 if (copy_to_user(optval, &peeloff, len)) { 4361 fput(newfile); 4362 put_unused_fd(retval); 4363 return -EFAULT; 4364 } 4365 fd_install(retval, newfile); 4366 out: 4367 return retval; 4368 } 4369 4370 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4371 * 4372 * Applications can enable or disable heartbeats for any peer address of 4373 * an association, modify an address's heartbeat interval, force a 4374 * heartbeat to be sent immediately, and adjust the address's maximum 4375 * number of retransmissions sent before an address is considered 4376 * unreachable. The following structure is used to access and modify an 4377 * address's parameters: 4378 * 4379 * struct sctp_paddrparams { 4380 * sctp_assoc_t spp_assoc_id; 4381 * struct sockaddr_storage spp_address; 4382 * uint32_t spp_hbinterval; 4383 * uint16_t spp_pathmaxrxt; 4384 * uint32_t spp_pathmtu; 4385 * uint32_t spp_sackdelay; 4386 * uint32_t spp_flags; 4387 * }; 4388 * 4389 * spp_assoc_id - (one-to-many style socket) This is filled in the 4390 * application, and identifies the association for 4391 * this query. 4392 * spp_address - This specifies which address is of interest. 4393 * spp_hbinterval - This contains the value of the heartbeat interval, 4394 * in milliseconds. If a value of zero 4395 * is present in this field then no changes are to 4396 * be made to this parameter. 4397 * spp_pathmaxrxt - This contains the maximum number of 4398 * retransmissions before this address shall be 4399 * considered unreachable. If a value of zero 4400 * is present in this field then no changes are to 4401 * be made to this parameter. 4402 * spp_pathmtu - When Path MTU discovery is disabled the value 4403 * specified here will be the "fixed" path mtu. 4404 * Note that if the spp_address field is empty 4405 * then all associations on this address will 4406 * have this fixed path mtu set upon them. 4407 * 4408 * spp_sackdelay - When delayed sack is enabled, this value specifies 4409 * the number of milliseconds that sacks will be delayed 4410 * for. This value will apply to all addresses of an 4411 * association if the spp_address field is empty. Note 4412 * also, that if delayed sack is enabled and this 4413 * value is set to 0, no change is made to the last 4414 * recorded delayed sack timer value. 4415 * 4416 * spp_flags - These flags are used to control various features 4417 * on an association. The flag field may contain 4418 * zero or more of the following options. 4419 * 4420 * SPP_HB_ENABLE - Enable heartbeats on the 4421 * specified address. Note that if the address 4422 * field is empty all addresses for the association 4423 * have heartbeats enabled upon them. 4424 * 4425 * SPP_HB_DISABLE - Disable heartbeats on the 4426 * speicifed address. Note that if the address 4427 * field is empty all addresses for the association 4428 * will have their heartbeats disabled. Note also 4429 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4430 * mutually exclusive, only one of these two should 4431 * be specified. Enabling both fields will have 4432 * undetermined results. 4433 * 4434 * SPP_HB_DEMAND - Request a user initiated heartbeat 4435 * to be made immediately. 4436 * 4437 * SPP_PMTUD_ENABLE - This field will enable PMTU 4438 * discovery upon the specified address. Note that 4439 * if the address feild is empty then all addresses 4440 * on the association are effected. 4441 * 4442 * SPP_PMTUD_DISABLE - This field will disable PMTU 4443 * discovery upon the specified address. Note that 4444 * if the address feild is empty then all addresses 4445 * on the association are effected. Not also that 4446 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4447 * exclusive. Enabling both will have undetermined 4448 * results. 4449 * 4450 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4451 * on delayed sack. The time specified in spp_sackdelay 4452 * is used to specify the sack delay for this address. Note 4453 * that if spp_address is empty then all addresses will 4454 * enable delayed sack and take on the sack delay 4455 * value specified in spp_sackdelay. 4456 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4457 * off delayed sack. If the spp_address field is blank then 4458 * delayed sack is disabled for the entire association. Note 4459 * also that this field is mutually exclusive to 4460 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4461 * results. 4462 */ 4463 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4464 char __user *optval, int __user *optlen) 4465 { 4466 struct sctp_paddrparams params; 4467 struct sctp_transport *trans = NULL; 4468 struct sctp_association *asoc = NULL; 4469 struct sctp_sock *sp = sctp_sk(sk); 4470 4471 if (len < sizeof(struct sctp_paddrparams)) 4472 return -EINVAL; 4473 len = sizeof(struct sctp_paddrparams); 4474 if (copy_from_user(¶ms, optval, len)) 4475 return -EFAULT; 4476 4477 /* If an address other than INADDR_ANY is specified, and 4478 * no transport is found, then the request is invalid. 4479 */ 4480 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4481 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4482 params.spp_assoc_id); 4483 if (!trans) { 4484 pr_debug("%s: failed no transport\n", __func__); 4485 return -EINVAL; 4486 } 4487 } 4488 4489 /* Get association, if assoc_id != 0 and the socket is a one 4490 * to many style socket, and an association was not found, then 4491 * the id was invalid. 4492 */ 4493 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4494 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4495 pr_debug("%s: failed no association\n", __func__); 4496 return -EINVAL; 4497 } 4498 4499 if (trans) { 4500 /* Fetch transport values. */ 4501 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4502 params.spp_pathmtu = trans->pathmtu; 4503 params.spp_pathmaxrxt = trans->pathmaxrxt; 4504 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4505 4506 /*draft-11 doesn't say what to return in spp_flags*/ 4507 params.spp_flags = trans->param_flags; 4508 } else if (asoc) { 4509 /* Fetch association values. */ 4510 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4511 params.spp_pathmtu = asoc->pathmtu; 4512 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4513 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4514 4515 /*draft-11 doesn't say what to return in spp_flags*/ 4516 params.spp_flags = asoc->param_flags; 4517 } else { 4518 /* Fetch socket values. */ 4519 params.spp_hbinterval = sp->hbinterval; 4520 params.spp_pathmtu = sp->pathmtu; 4521 params.spp_sackdelay = sp->sackdelay; 4522 params.spp_pathmaxrxt = sp->pathmaxrxt; 4523 4524 /*draft-11 doesn't say what to return in spp_flags*/ 4525 params.spp_flags = sp->param_flags; 4526 } 4527 4528 if (copy_to_user(optval, ¶ms, len)) 4529 return -EFAULT; 4530 4531 if (put_user(len, optlen)) 4532 return -EFAULT; 4533 4534 return 0; 4535 } 4536 4537 /* 4538 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4539 * 4540 * This option will effect the way delayed acks are performed. This 4541 * option allows you to get or set the delayed ack time, in 4542 * milliseconds. It also allows changing the delayed ack frequency. 4543 * Changing the frequency to 1 disables the delayed sack algorithm. If 4544 * the assoc_id is 0, then this sets or gets the endpoints default 4545 * values. If the assoc_id field is non-zero, then the set or get 4546 * effects the specified association for the one to many model (the 4547 * assoc_id field is ignored by the one to one model). Note that if 4548 * sack_delay or sack_freq are 0 when setting this option, then the 4549 * current values will remain unchanged. 4550 * 4551 * struct sctp_sack_info { 4552 * sctp_assoc_t sack_assoc_id; 4553 * uint32_t sack_delay; 4554 * uint32_t sack_freq; 4555 * }; 4556 * 4557 * sack_assoc_id - This parameter, indicates which association the user 4558 * is performing an action upon. Note that if this field's value is 4559 * zero then the endpoints default value is changed (effecting future 4560 * associations only). 4561 * 4562 * sack_delay - This parameter contains the number of milliseconds that 4563 * the user is requesting the delayed ACK timer be set to. Note that 4564 * this value is defined in the standard to be between 200 and 500 4565 * milliseconds. 4566 * 4567 * sack_freq - This parameter contains the number of packets that must 4568 * be received before a sack is sent without waiting for the delay 4569 * timer to expire. The default value for this is 2, setting this 4570 * value to 1 will disable the delayed sack algorithm. 4571 */ 4572 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4573 char __user *optval, 4574 int __user *optlen) 4575 { 4576 struct sctp_sack_info params; 4577 struct sctp_association *asoc = NULL; 4578 struct sctp_sock *sp = sctp_sk(sk); 4579 4580 if (len >= sizeof(struct sctp_sack_info)) { 4581 len = sizeof(struct sctp_sack_info); 4582 4583 if (copy_from_user(¶ms, optval, len)) 4584 return -EFAULT; 4585 } else if (len == sizeof(struct sctp_assoc_value)) { 4586 pr_warn_ratelimited(DEPRECATED 4587 "%s (pid %d) " 4588 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 4589 "Use struct sctp_sack_info instead\n", 4590 current->comm, task_pid_nr(current)); 4591 if (copy_from_user(¶ms, optval, len)) 4592 return -EFAULT; 4593 } else 4594 return -EINVAL; 4595 4596 /* Get association, if sack_assoc_id != 0 and the socket is a one 4597 * to many style socket, and an association was not found, then 4598 * the id was invalid. 4599 */ 4600 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4601 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4602 return -EINVAL; 4603 4604 if (asoc) { 4605 /* Fetch association values. */ 4606 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4607 params.sack_delay = jiffies_to_msecs( 4608 asoc->sackdelay); 4609 params.sack_freq = asoc->sackfreq; 4610 4611 } else { 4612 params.sack_delay = 0; 4613 params.sack_freq = 1; 4614 } 4615 } else { 4616 /* Fetch socket values. */ 4617 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4618 params.sack_delay = sp->sackdelay; 4619 params.sack_freq = sp->sackfreq; 4620 } else { 4621 params.sack_delay = 0; 4622 params.sack_freq = 1; 4623 } 4624 } 4625 4626 if (copy_to_user(optval, ¶ms, len)) 4627 return -EFAULT; 4628 4629 if (put_user(len, optlen)) 4630 return -EFAULT; 4631 4632 return 0; 4633 } 4634 4635 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4636 * 4637 * Applications can specify protocol parameters for the default association 4638 * initialization. The option name argument to setsockopt() and getsockopt() 4639 * is SCTP_INITMSG. 4640 * 4641 * Setting initialization parameters is effective only on an unconnected 4642 * socket (for UDP-style sockets only future associations are effected 4643 * by the change). With TCP-style sockets, this option is inherited by 4644 * sockets derived from a listener socket. 4645 */ 4646 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4647 { 4648 if (len < sizeof(struct sctp_initmsg)) 4649 return -EINVAL; 4650 len = sizeof(struct sctp_initmsg); 4651 if (put_user(len, optlen)) 4652 return -EFAULT; 4653 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4654 return -EFAULT; 4655 return 0; 4656 } 4657 4658 4659 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4660 char __user *optval, int __user *optlen) 4661 { 4662 struct sctp_association *asoc; 4663 int cnt = 0; 4664 struct sctp_getaddrs getaddrs; 4665 struct sctp_transport *from; 4666 void __user *to; 4667 union sctp_addr temp; 4668 struct sctp_sock *sp = sctp_sk(sk); 4669 int addrlen; 4670 size_t space_left; 4671 int bytes_copied; 4672 4673 if (len < sizeof(struct sctp_getaddrs)) 4674 return -EINVAL; 4675 4676 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4677 return -EFAULT; 4678 4679 /* For UDP-style sockets, id specifies the association to query. */ 4680 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4681 if (!asoc) 4682 return -EINVAL; 4683 4684 to = optval + offsetof(struct sctp_getaddrs, addrs); 4685 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4686 4687 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4688 transports) { 4689 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4690 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4691 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4692 if (space_left < addrlen) 4693 return -ENOMEM; 4694 if (copy_to_user(to, &temp, addrlen)) 4695 return -EFAULT; 4696 to += addrlen; 4697 cnt++; 4698 space_left -= addrlen; 4699 } 4700 4701 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4702 return -EFAULT; 4703 bytes_copied = ((char __user *)to) - optval; 4704 if (put_user(bytes_copied, optlen)) 4705 return -EFAULT; 4706 4707 return 0; 4708 } 4709 4710 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4711 size_t space_left, int *bytes_copied) 4712 { 4713 struct sctp_sockaddr_entry *addr; 4714 union sctp_addr temp; 4715 int cnt = 0; 4716 int addrlen; 4717 struct net *net = sock_net(sk); 4718 4719 rcu_read_lock(); 4720 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4721 if (!addr->valid) 4722 continue; 4723 4724 if ((PF_INET == sk->sk_family) && 4725 (AF_INET6 == addr->a.sa.sa_family)) 4726 continue; 4727 if ((PF_INET6 == sk->sk_family) && 4728 inet_v6_ipv6only(sk) && 4729 (AF_INET == addr->a.sa.sa_family)) 4730 continue; 4731 memcpy(&temp, &addr->a, sizeof(temp)); 4732 if (!temp.v4.sin_port) 4733 temp.v4.sin_port = htons(port); 4734 4735 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4736 &temp); 4737 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4738 if (space_left < addrlen) { 4739 cnt = -ENOMEM; 4740 break; 4741 } 4742 memcpy(to, &temp, addrlen); 4743 4744 to += addrlen; 4745 cnt++; 4746 space_left -= addrlen; 4747 *bytes_copied += addrlen; 4748 } 4749 rcu_read_unlock(); 4750 4751 return cnt; 4752 } 4753 4754 4755 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4756 char __user *optval, int __user *optlen) 4757 { 4758 struct sctp_bind_addr *bp; 4759 struct sctp_association *asoc; 4760 int cnt = 0; 4761 struct sctp_getaddrs getaddrs; 4762 struct sctp_sockaddr_entry *addr; 4763 void __user *to; 4764 union sctp_addr temp; 4765 struct sctp_sock *sp = sctp_sk(sk); 4766 int addrlen; 4767 int err = 0; 4768 size_t space_left; 4769 int bytes_copied = 0; 4770 void *addrs; 4771 void *buf; 4772 4773 if (len < sizeof(struct sctp_getaddrs)) 4774 return -EINVAL; 4775 4776 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4777 return -EFAULT; 4778 4779 /* 4780 * For UDP-style sockets, id specifies the association to query. 4781 * If the id field is set to the value '0' then the locally bound 4782 * addresses are returned without regard to any particular 4783 * association. 4784 */ 4785 if (0 == getaddrs.assoc_id) { 4786 bp = &sctp_sk(sk)->ep->base.bind_addr; 4787 } else { 4788 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4789 if (!asoc) 4790 return -EINVAL; 4791 bp = &asoc->base.bind_addr; 4792 } 4793 4794 to = optval + offsetof(struct sctp_getaddrs, addrs); 4795 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4796 4797 addrs = kmalloc(space_left, GFP_KERNEL); 4798 if (!addrs) 4799 return -ENOMEM; 4800 4801 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4802 * addresses from the global local address list. 4803 */ 4804 if (sctp_list_single_entry(&bp->address_list)) { 4805 addr = list_entry(bp->address_list.next, 4806 struct sctp_sockaddr_entry, list); 4807 if (sctp_is_any(sk, &addr->a)) { 4808 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4809 space_left, &bytes_copied); 4810 if (cnt < 0) { 4811 err = cnt; 4812 goto out; 4813 } 4814 goto copy_getaddrs; 4815 } 4816 } 4817 4818 buf = addrs; 4819 /* Protection on the bound address list is not needed since 4820 * in the socket option context we hold a socket lock and 4821 * thus the bound address list can't change. 4822 */ 4823 list_for_each_entry(addr, &bp->address_list, list) { 4824 memcpy(&temp, &addr->a, sizeof(temp)); 4825 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4826 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4827 if (space_left < addrlen) { 4828 err = -ENOMEM; /*fixme: right error?*/ 4829 goto out; 4830 } 4831 memcpy(buf, &temp, addrlen); 4832 buf += addrlen; 4833 bytes_copied += addrlen; 4834 cnt++; 4835 space_left -= addrlen; 4836 } 4837 4838 copy_getaddrs: 4839 if (copy_to_user(to, addrs, bytes_copied)) { 4840 err = -EFAULT; 4841 goto out; 4842 } 4843 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4844 err = -EFAULT; 4845 goto out; 4846 } 4847 if (put_user(bytes_copied, optlen)) 4848 err = -EFAULT; 4849 out: 4850 kfree(addrs); 4851 return err; 4852 } 4853 4854 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4855 * 4856 * Requests that the local SCTP stack use the enclosed peer address as 4857 * the association primary. The enclosed address must be one of the 4858 * association peer's addresses. 4859 */ 4860 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4861 char __user *optval, int __user *optlen) 4862 { 4863 struct sctp_prim prim; 4864 struct sctp_association *asoc; 4865 struct sctp_sock *sp = sctp_sk(sk); 4866 4867 if (len < sizeof(struct sctp_prim)) 4868 return -EINVAL; 4869 4870 len = sizeof(struct sctp_prim); 4871 4872 if (copy_from_user(&prim, optval, len)) 4873 return -EFAULT; 4874 4875 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4876 if (!asoc) 4877 return -EINVAL; 4878 4879 if (!asoc->peer.primary_path) 4880 return -ENOTCONN; 4881 4882 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4883 asoc->peer.primary_path->af_specific->sockaddr_len); 4884 4885 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4886 (union sctp_addr *)&prim.ssp_addr); 4887 4888 if (put_user(len, optlen)) 4889 return -EFAULT; 4890 if (copy_to_user(optval, &prim, len)) 4891 return -EFAULT; 4892 4893 return 0; 4894 } 4895 4896 /* 4897 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4898 * 4899 * Requests that the local endpoint set the specified Adaptation Layer 4900 * Indication parameter for all future INIT and INIT-ACK exchanges. 4901 */ 4902 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4903 char __user *optval, int __user *optlen) 4904 { 4905 struct sctp_setadaptation adaptation; 4906 4907 if (len < sizeof(struct sctp_setadaptation)) 4908 return -EINVAL; 4909 4910 len = sizeof(struct sctp_setadaptation); 4911 4912 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4913 4914 if (put_user(len, optlen)) 4915 return -EFAULT; 4916 if (copy_to_user(optval, &adaptation, len)) 4917 return -EFAULT; 4918 4919 return 0; 4920 } 4921 4922 /* 4923 * 4924 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4925 * 4926 * Applications that wish to use the sendto() system call may wish to 4927 * specify a default set of parameters that would normally be supplied 4928 * through the inclusion of ancillary data. This socket option allows 4929 * such an application to set the default sctp_sndrcvinfo structure. 4930 4931 4932 * The application that wishes to use this socket option simply passes 4933 * in to this call the sctp_sndrcvinfo structure defined in Section 4934 * 5.2.2) The input parameters accepted by this call include 4935 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4936 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4937 * to this call if the caller is using the UDP model. 4938 * 4939 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4940 */ 4941 static int sctp_getsockopt_default_send_param(struct sock *sk, 4942 int len, char __user *optval, 4943 int __user *optlen) 4944 { 4945 struct sctp_sndrcvinfo info; 4946 struct sctp_association *asoc; 4947 struct sctp_sock *sp = sctp_sk(sk); 4948 4949 if (len < sizeof(struct sctp_sndrcvinfo)) 4950 return -EINVAL; 4951 4952 len = sizeof(struct sctp_sndrcvinfo); 4953 4954 if (copy_from_user(&info, optval, len)) 4955 return -EFAULT; 4956 4957 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4958 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4959 return -EINVAL; 4960 4961 if (asoc) { 4962 info.sinfo_stream = asoc->default_stream; 4963 info.sinfo_flags = asoc->default_flags; 4964 info.sinfo_ppid = asoc->default_ppid; 4965 info.sinfo_context = asoc->default_context; 4966 info.sinfo_timetolive = asoc->default_timetolive; 4967 } else { 4968 info.sinfo_stream = sp->default_stream; 4969 info.sinfo_flags = sp->default_flags; 4970 info.sinfo_ppid = sp->default_ppid; 4971 info.sinfo_context = sp->default_context; 4972 info.sinfo_timetolive = sp->default_timetolive; 4973 } 4974 4975 if (put_user(len, optlen)) 4976 return -EFAULT; 4977 if (copy_to_user(optval, &info, len)) 4978 return -EFAULT; 4979 4980 return 0; 4981 } 4982 4983 /* 4984 * 4985 * 7.1.5 SCTP_NODELAY 4986 * 4987 * Turn on/off any Nagle-like algorithm. This means that packets are 4988 * generally sent as soon as possible and no unnecessary delays are 4989 * introduced, at the cost of more packets in the network. Expects an 4990 * integer boolean flag. 4991 */ 4992 4993 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4994 char __user *optval, int __user *optlen) 4995 { 4996 int val; 4997 4998 if (len < sizeof(int)) 4999 return -EINVAL; 5000 5001 len = sizeof(int); 5002 val = (sctp_sk(sk)->nodelay == 1); 5003 if (put_user(len, optlen)) 5004 return -EFAULT; 5005 if (copy_to_user(optval, &val, len)) 5006 return -EFAULT; 5007 return 0; 5008 } 5009 5010 /* 5011 * 5012 * 7.1.1 SCTP_RTOINFO 5013 * 5014 * The protocol parameters used to initialize and bound retransmission 5015 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5016 * and modify these parameters. 5017 * All parameters are time values, in milliseconds. A value of 0, when 5018 * modifying the parameters, indicates that the current value should not 5019 * be changed. 5020 * 5021 */ 5022 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5023 char __user *optval, 5024 int __user *optlen) { 5025 struct sctp_rtoinfo rtoinfo; 5026 struct sctp_association *asoc; 5027 5028 if (len < sizeof (struct sctp_rtoinfo)) 5029 return -EINVAL; 5030 5031 len = sizeof(struct sctp_rtoinfo); 5032 5033 if (copy_from_user(&rtoinfo, optval, len)) 5034 return -EFAULT; 5035 5036 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5037 5038 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5039 return -EINVAL; 5040 5041 /* Values corresponding to the specific association. */ 5042 if (asoc) { 5043 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5044 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5045 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5046 } else { 5047 /* Values corresponding to the endpoint. */ 5048 struct sctp_sock *sp = sctp_sk(sk); 5049 5050 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5051 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5052 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5053 } 5054 5055 if (put_user(len, optlen)) 5056 return -EFAULT; 5057 5058 if (copy_to_user(optval, &rtoinfo, len)) 5059 return -EFAULT; 5060 5061 return 0; 5062 } 5063 5064 /* 5065 * 5066 * 7.1.2 SCTP_ASSOCINFO 5067 * 5068 * This option is used to tune the maximum retransmission attempts 5069 * of the association. 5070 * Returns an error if the new association retransmission value is 5071 * greater than the sum of the retransmission value of the peer. 5072 * See [SCTP] for more information. 5073 * 5074 */ 5075 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5076 char __user *optval, 5077 int __user *optlen) 5078 { 5079 5080 struct sctp_assocparams assocparams; 5081 struct sctp_association *asoc; 5082 struct list_head *pos; 5083 int cnt = 0; 5084 5085 if (len < sizeof (struct sctp_assocparams)) 5086 return -EINVAL; 5087 5088 len = sizeof(struct sctp_assocparams); 5089 5090 if (copy_from_user(&assocparams, optval, len)) 5091 return -EFAULT; 5092 5093 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5094 5095 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5096 return -EINVAL; 5097 5098 /* Values correspoinding to the specific association */ 5099 if (asoc) { 5100 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5101 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5102 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5103 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5104 5105 list_for_each(pos, &asoc->peer.transport_addr_list) { 5106 cnt++; 5107 } 5108 5109 assocparams.sasoc_number_peer_destinations = cnt; 5110 } else { 5111 /* Values corresponding to the endpoint */ 5112 struct sctp_sock *sp = sctp_sk(sk); 5113 5114 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5115 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5116 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5117 assocparams.sasoc_cookie_life = 5118 sp->assocparams.sasoc_cookie_life; 5119 assocparams.sasoc_number_peer_destinations = 5120 sp->assocparams. 5121 sasoc_number_peer_destinations; 5122 } 5123 5124 if (put_user(len, optlen)) 5125 return -EFAULT; 5126 5127 if (copy_to_user(optval, &assocparams, len)) 5128 return -EFAULT; 5129 5130 return 0; 5131 } 5132 5133 /* 5134 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5135 * 5136 * This socket option is a boolean flag which turns on or off mapped V4 5137 * addresses. If this option is turned on and the socket is type 5138 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5139 * If this option is turned off, then no mapping will be done of V4 5140 * addresses and a user will receive both PF_INET6 and PF_INET type 5141 * addresses on the socket. 5142 */ 5143 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5144 char __user *optval, int __user *optlen) 5145 { 5146 int val; 5147 struct sctp_sock *sp = sctp_sk(sk); 5148 5149 if (len < sizeof(int)) 5150 return -EINVAL; 5151 5152 len = sizeof(int); 5153 val = sp->v4mapped; 5154 if (put_user(len, optlen)) 5155 return -EFAULT; 5156 if (copy_to_user(optval, &val, len)) 5157 return -EFAULT; 5158 5159 return 0; 5160 } 5161 5162 /* 5163 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5164 * (chapter and verse is quoted at sctp_setsockopt_context()) 5165 */ 5166 static int sctp_getsockopt_context(struct sock *sk, int len, 5167 char __user *optval, int __user *optlen) 5168 { 5169 struct sctp_assoc_value params; 5170 struct sctp_sock *sp; 5171 struct sctp_association *asoc; 5172 5173 if (len < sizeof(struct sctp_assoc_value)) 5174 return -EINVAL; 5175 5176 len = sizeof(struct sctp_assoc_value); 5177 5178 if (copy_from_user(¶ms, optval, len)) 5179 return -EFAULT; 5180 5181 sp = sctp_sk(sk); 5182 5183 if (params.assoc_id != 0) { 5184 asoc = sctp_id2assoc(sk, params.assoc_id); 5185 if (!asoc) 5186 return -EINVAL; 5187 params.assoc_value = asoc->default_rcv_context; 5188 } else { 5189 params.assoc_value = sp->default_rcv_context; 5190 } 5191 5192 if (put_user(len, optlen)) 5193 return -EFAULT; 5194 if (copy_to_user(optval, ¶ms, len)) 5195 return -EFAULT; 5196 5197 return 0; 5198 } 5199 5200 /* 5201 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5202 * This option will get or set the maximum size to put in any outgoing 5203 * SCTP DATA chunk. If a message is larger than this size it will be 5204 * fragmented by SCTP into the specified size. Note that the underlying 5205 * SCTP implementation may fragment into smaller sized chunks when the 5206 * PMTU of the underlying association is smaller than the value set by 5207 * the user. The default value for this option is '0' which indicates 5208 * the user is NOT limiting fragmentation and only the PMTU will effect 5209 * SCTP's choice of DATA chunk size. Note also that values set larger 5210 * than the maximum size of an IP datagram will effectively let SCTP 5211 * control fragmentation (i.e. the same as setting this option to 0). 5212 * 5213 * The following structure is used to access and modify this parameter: 5214 * 5215 * struct sctp_assoc_value { 5216 * sctp_assoc_t assoc_id; 5217 * uint32_t assoc_value; 5218 * }; 5219 * 5220 * assoc_id: This parameter is ignored for one-to-one style sockets. 5221 * For one-to-many style sockets this parameter indicates which 5222 * association the user is performing an action upon. Note that if 5223 * this field's value is zero then the endpoints default value is 5224 * changed (effecting future associations only). 5225 * assoc_value: This parameter specifies the maximum size in bytes. 5226 */ 5227 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5228 char __user *optval, int __user *optlen) 5229 { 5230 struct sctp_assoc_value params; 5231 struct sctp_association *asoc; 5232 5233 if (len == sizeof(int)) { 5234 pr_warn_ratelimited(DEPRECATED 5235 "%s (pid %d) " 5236 "Use of int in maxseg socket option.\n" 5237 "Use struct sctp_assoc_value instead\n", 5238 current->comm, task_pid_nr(current)); 5239 params.assoc_id = 0; 5240 } else if (len >= sizeof(struct sctp_assoc_value)) { 5241 len = sizeof(struct sctp_assoc_value); 5242 if (copy_from_user(¶ms, optval, sizeof(params))) 5243 return -EFAULT; 5244 } else 5245 return -EINVAL; 5246 5247 asoc = sctp_id2assoc(sk, params.assoc_id); 5248 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5249 return -EINVAL; 5250 5251 if (asoc) 5252 params.assoc_value = asoc->frag_point; 5253 else 5254 params.assoc_value = sctp_sk(sk)->user_frag; 5255 5256 if (put_user(len, optlen)) 5257 return -EFAULT; 5258 if (len == sizeof(int)) { 5259 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5260 return -EFAULT; 5261 } else { 5262 if (copy_to_user(optval, ¶ms, len)) 5263 return -EFAULT; 5264 } 5265 5266 return 0; 5267 } 5268 5269 /* 5270 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5271 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5272 */ 5273 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5274 char __user *optval, int __user *optlen) 5275 { 5276 int val; 5277 5278 if (len < sizeof(int)) 5279 return -EINVAL; 5280 5281 len = sizeof(int); 5282 5283 val = sctp_sk(sk)->frag_interleave; 5284 if (put_user(len, optlen)) 5285 return -EFAULT; 5286 if (copy_to_user(optval, &val, len)) 5287 return -EFAULT; 5288 5289 return 0; 5290 } 5291 5292 /* 5293 * 7.1.25. Set or Get the sctp partial delivery point 5294 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5295 */ 5296 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5297 char __user *optval, 5298 int __user *optlen) 5299 { 5300 u32 val; 5301 5302 if (len < sizeof(u32)) 5303 return -EINVAL; 5304 5305 len = sizeof(u32); 5306 5307 val = sctp_sk(sk)->pd_point; 5308 if (put_user(len, optlen)) 5309 return -EFAULT; 5310 if (copy_to_user(optval, &val, len)) 5311 return -EFAULT; 5312 5313 return 0; 5314 } 5315 5316 /* 5317 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5318 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5319 */ 5320 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5321 char __user *optval, 5322 int __user *optlen) 5323 { 5324 struct sctp_assoc_value params; 5325 struct sctp_sock *sp; 5326 struct sctp_association *asoc; 5327 5328 if (len == sizeof(int)) { 5329 pr_warn_ratelimited(DEPRECATED 5330 "%s (pid %d) " 5331 "Use of int in max_burst socket option.\n" 5332 "Use struct sctp_assoc_value instead\n", 5333 current->comm, task_pid_nr(current)); 5334 params.assoc_id = 0; 5335 } else if (len >= sizeof(struct sctp_assoc_value)) { 5336 len = sizeof(struct sctp_assoc_value); 5337 if (copy_from_user(¶ms, optval, len)) 5338 return -EFAULT; 5339 } else 5340 return -EINVAL; 5341 5342 sp = sctp_sk(sk); 5343 5344 if (params.assoc_id != 0) { 5345 asoc = sctp_id2assoc(sk, params.assoc_id); 5346 if (!asoc) 5347 return -EINVAL; 5348 params.assoc_value = asoc->max_burst; 5349 } else 5350 params.assoc_value = sp->max_burst; 5351 5352 if (len == sizeof(int)) { 5353 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5354 return -EFAULT; 5355 } else { 5356 if (copy_to_user(optval, ¶ms, len)) 5357 return -EFAULT; 5358 } 5359 5360 return 0; 5361 5362 } 5363 5364 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5365 char __user *optval, int __user *optlen) 5366 { 5367 struct net *net = sock_net(sk); 5368 struct sctp_hmacalgo __user *p = (void __user *)optval; 5369 struct sctp_hmac_algo_param *hmacs; 5370 __u16 data_len = 0; 5371 u32 num_idents; 5372 5373 if (!net->sctp.auth_enable) 5374 return -EACCES; 5375 5376 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5377 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5378 5379 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5380 return -EINVAL; 5381 5382 len = sizeof(struct sctp_hmacalgo) + data_len; 5383 num_idents = data_len / sizeof(u16); 5384 5385 if (put_user(len, optlen)) 5386 return -EFAULT; 5387 if (put_user(num_idents, &p->shmac_num_idents)) 5388 return -EFAULT; 5389 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5390 return -EFAULT; 5391 return 0; 5392 } 5393 5394 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5395 char __user *optval, int __user *optlen) 5396 { 5397 struct net *net = sock_net(sk); 5398 struct sctp_authkeyid val; 5399 struct sctp_association *asoc; 5400 5401 if (!net->sctp.auth_enable) 5402 return -EACCES; 5403 5404 if (len < sizeof(struct sctp_authkeyid)) 5405 return -EINVAL; 5406 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5407 return -EFAULT; 5408 5409 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5410 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5411 return -EINVAL; 5412 5413 if (asoc) 5414 val.scact_keynumber = asoc->active_key_id; 5415 else 5416 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5417 5418 len = sizeof(struct sctp_authkeyid); 5419 if (put_user(len, optlen)) 5420 return -EFAULT; 5421 if (copy_to_user(optval, &val, len)) 5422 return -EFAULT; 5423 5424 return 0; 5425 } 5426 5427 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5428 char __user *optval, int __user *optlen) 5429 { 5430 struct net *net = sock_net(sk); 5431 struct sctp_authchunks __user *p = (void __user *)optval; 5432 struct sctp_authchunks val; 5433 struct sctp_association *asoc; 5434 struct sctp_chunks_param *ch; 5435 u32 num_chunks = 0; 5436 char __user *to; 5437 5438 if (!net->sctp.auth_enable) 5439 return -EACCES; 5440 5441 if (len < sizeof(struct sctp_authchunks)) 5442 return -EINVAL; 5443 5444 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5445 return -EFAULT; 5446 5447 to = p->gauth_chunks; 5448 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5449 if (!asoc) 5450 return -EINVAL; 5451 5452 ch = asoc->peer.peer_chunks; 5453 if (!ch) 5454 goto num; 5455 5456 /* See if the user provided enough room for all the data */ 5457 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5458 if (len < num_chunks) 5459 return -EINVAL; 5460 5461 if (copy_to_user(to, ch->chunks, num_chunks)) 5462 return -EFAULT; 5463 num: 5464 len = sizeof(struct sctp_authchunks) + num_chunks; 5465 if (put_user(len, optlen)) 5466 return -EFAULT; 5467 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5468 return -EFAULT; 5469 return 0; 5470 } 5471 5472 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5473 char __user *optval, int __user *optlen) 5474 { 5475 struct net *net = sock_net(sk); 5476 struct sctp_authchunks __user *p = (void __user *)optval; 5477 struct sctp_authchunks val; 5478 struct sctp_association *asoc; 5479 struct sctp_chunks_param *ch; 5480 u32 num_chunks = 0; 5481 char __user *to; 5482 5483 if (!net->sctp.auth_enable) 5484 return -EACCES; 5485 5486 if (len < sizeof(struct sctp_authchunks)) 5487 return -EINVAL; 5488 5489 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5490 return -EFAULT; 5491 5492 to = p->gauth_chunks; 5493 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5494 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5495 return -EINVAL; 5496 5497 if (asoc) 5498 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5499 else 5500 ch = sctp_sk(sk)->ep->auth_chunk_list; 5501 5502 if (!ch) 5503 goto num; 5504 5505 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5506 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5507 return -EINVAL; 5508 5509 if (copy_to_user(to, ch->chunks, num_chunks)) 5510 return -EFAULT; 5511 num: 5512 len = sizeof(struct sctp_authchunks) + num_chunks; 5513 if (put_user(len, optlen)) 5514 return -EFAULT; 5515 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5516 return -EFAULT; 5517 5518 return 0; 5519 } 5520 5521 /* 5522 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5523 * This option gets the current number of associations that are attached 5524 * to a one-to-many style socket. The option value is an uint32_t. 5525 */ 5526 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5527 char __user *optval, int __user *optlen) 5528 { 5529 struct sctp_sock *sp = sctp_sk(sk); 5530 struct sctp_association *asoc; 5531 u32 val = 0; 5532 5533 if (sctp_style(sk, TCP)) 5534 return -EOPNOTSUPP; 5535 5536 if (len < sizeof(u32)) 5537 return -EINVAL; 5538 5539 len = sizeof(u32); 5540 5541 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5542 val++; 5543 } 5544 5545 if (put_user(len, optlen)) 5546 return -EFAULT; 5547 if (copy_to_user(optval, &val, len)) 5548 return -EFAULT; 5549 5550 return 0; 5551 } 5552 5553 /* 5554 * 8.1.23 SCTP_AUTO_ASCONF 5555 * See the corresponding setsockopt entry as description 5556 */ 5557 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5558 char __user *optval, int __user *optlen) 5559 { 5560 int val = 0; 5561 5562 if (len < sizeof(int)) 5563 return -EINVAL; 5564 5565 len = sizeof(int); 5566 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5567 val = 1; 5568 if (put_user(len, optlen)) 5569 return -EFAULT; 5570 if (copy_to_user(optval, &val, len)) 5571 return -EFAULT; 5572 return 0; 5573 } 5574 5575 /* 5576 * 8.2.6. Get the Current Identifiers of Associations 5577 * (SCTP_GET_ASSOC_ID_LIST) 5578 * 5579 * This option gets the current list of SCTP association identifiers of 5580 * the SCTP associations handled by a one-to-many style socket. 5581 */ 5582 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5583 char __user *optval, int __user *optlen) 5584 { 5585 struct sctp_sock *sp = sctp_sk(sk); 5586 struct sctp_association *asoc; 5587 struct sctp_assoc_ids *ids; 5588 u32 num = 0; 5589 5590 if (sctp_style(sk, TCP)) 5591 return -EOPNOTSUPP; 5592 5593 if (len < sizeof(struct sctp_assoc_ids)) 5594 return -EINVAL; 5595 5596 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5597 num++; 5598 } 5599 5600 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5601 return -EINVAL; 5602 5603 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5604 5605 ids = kmalloc(len, GFP_KERNEL); 5606 if (unlikely(!ids)) 5607 return -ENOMEM; 5608 5609 ids->gaids_number_of_ids = num; 5610 num = 0; 5611 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5612 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5613 } 5614 5615 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5616 kfree(ids); 5617 return -EFAULT; 5618 } 5619 5620 kfree(ids); 5621 return 0; 5622 } 5623 5624 /* 5625 * SCTP_PEER_ADDR_THLDS 5626 * 5627 * This option allows us to fetch the partially failed threshold for one or all 5628 * transports in an association. See Section 6.1 of: 5629 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5630 */ 5631 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5632 char __user *optval, 5633 int len, 5634 int __user *optlen) 5635 { 5636 struct sctp_paddrthlds val; 5637 struct sctp_transport *trans; 5638 struct sctp_association *asoc; 5639 5640 if (len < sizeof(struct sctp_paddrthlds)) 5641 return -EINVAL; 5642 len = sizeof(struct sctp_paddrthlds); 5643 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5644 return -EFAULT; 5645 5646 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5647 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5648 if (!asoc) 5649 return -ENOENT; 5650 5651 val.spt_pathpfthld = asoc->pf_retrans; 5652 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5653 } else { 5654 trans = sctp_addr_id2transport(sk, &val.spt_address, 5655 val.spt_assoc_id); 5656 if (!trans) 5657 return -ENOENT; 5658 5659 val.spt_pathmaxrxt = trans->pathmaxrxt; 5660 val.spt_pathpfthld = trans->pf_retrans; 5661 } 5662 5663 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5664 return -EFAULT; 5665 5666 return 0; 5667 } 5668 5669 /* 5670 * SCTP_GET_ASSOC_STATS 5671 * 5672 * This option retrieves local per endpoint statistics. It is modeled 5673 * after OpenSolaris' implementation 5674 */ 5675 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5676 char __user *optval, 5677 int __user *optlen) 5678 { 5679 struct sctp_assoc_stats sas; 5680 struct sctp_association *asoc = NULL; 5681 5682 /* User must provide at least the assoc id */ 5683 if (len < sizeof(sctp_assoc_t)) 5684 return -EINVAL; 5685 5686 /* Allow the struct to grow and fill in as much as possible */ 5687 len = min_t(size_t, len, sizeof(sas)); 5688 5689 if (copy_from_user(&sas, optval, len)) 5690 return -EFAULT; 5691 5692 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5693 if (!asoc) 5694 return -EINVAL; 5695 5696 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5697 sas.sas_gapcnt = asoc->stats.gapcnt; 5698 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5699 sas.sas_osacks = asoc->stats.osacks; 5700 sas.sas_isacks = asoc->stats.isacks; 5701 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5702 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5703 sas.sas_oodchunks = asoc->stats.oodchunks; 5704 sas.sas_iodchunks = asoc->stats.iodchunks; 5705 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5706 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5707 sas.sas_idupchunks = asoc->stats.idupchunks; 5708 sas.sas_opackets = asoc->stats.opackets; 5709 sas.sas_ipackets = asoc->stats.ipackets; 5710 5711 /* New high max rto observed, will return 0 if not a single 5712 * RTO update took place. obs_rto_ipaddr will be bogus 5713 * in such a case 5714 */ 5715 sas.sas_maxrto = asoc->stats.max_obs_rto; 5716 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5717 sizeof(struct sockaddr_storage)); 5718 5719 /* Mark beginning of a new observation period */ 5720 asoc->stats.max_obs_rto = asoc->rto_min; 5721 5722 if (put_user(len, optlen)) 5723 return -EFAULT; 5724 5725 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 5726 5727 if (copy_to_user(optval, &sas, len)) 5728 return -EFAULT; 5729 5730 return 0; 5731 } 5732 5733 static int sctp_getsockopt(struct sock *sk, int level, int optname, 5734 char __user *optval, int __user *optlen) 5735 { 5736 int retval = 0; 5737 int len; 5738 5739 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 5740 5741 /* I can hardly begin to describe how wrong this is. This is 5742 * so broken as to be worse than useless. The API draft 5743 * REALLY is NOT helpful here... I am not convinced that the 5744 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5745 * are at all well-founded. 5746 */ 5747 if (level != SOL_SCTP) { 5748 struct sctp_af *af = sctp_sk(sk)->pf->af; 5749 5750 retval = af->getsockopt(sk, level, optname, optval, optlen); 5751 return retval; 5752 } 5753 5754 if (get_user(len, optlen)) 5755 return -EFAULT; 5756 5757 lock_sock(sk); 5758 5759 switch (optname) { 5760 case SCTP_STATUS: 5761 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5762 break; 5763 case SCTP_DISABLE_FRAGMENTS: 5764 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5765 optlen); 5766 break; 5767 case SCTP_EVENTS: 5768 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5769 break; 5770 case SCTP_AUTOCLOSE: 5771 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5772 break; 5773 case SCTP_SOCKOPT_PEELOFF: 5774 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5775 break; 5776 case SCTP_PEER_ADDR_PARAMS: 5777 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5778 optlen); 5779 break; 5780 case SCTP_DELAYED_SACK: 5781 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5782 optlen); 5783 break; 5784 case SCTP_INITMSG: 5785 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5786 break; 5787 case SCTP_GET_PEER_ADDRS: 5788 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5789 optlen); 5790 break; 5791 case SCTP_GET_LOCAL_ADDRS: 5792 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5793 optlen); 5794 break; 5795 case SCTP_SOCKOPT_CONNECTX3: 5796 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5797 break; 5798 case SCTP_DEFAULT_SEND_PARAM: 5799 retval = sctp_getsockopt_default_send_param(sk, len, 5800 optval, optlen); 5801 break; 5802 case SCTP_PRIMARY_ADDR: 5803 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5804 break; 5805 case SCTP_NODELAY: 5806 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5807 break; 5808 case SCTP_RTOINFO: 5809 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5810 break; 5811 case SCTP_ASSOCINFO: 5812 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5813 break; 5814 case SCTP_I_WANT_MAPPED_V4_ADDR: 5815 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5816 break; 5817 case SCTP_MAXSEG: 5818 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5819 break; 5820 case SCTP_GET_PEER_ADDR_INFO: 5821 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5822 optlen); 5823 break; 5824 case SCTP_ADAPTATION_LAYER: 5825 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5826 optlen); 5827 break; 5828 case SCTP_CONTEXT: 5829 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5830 break; 5831 case SCTP_FRAGMENT_INTERLEAVE: 5832 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5833 optlen); 5834 break; 5835 case SCTP_PARTIAL_DELIVERY_POINT: 5836 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5837 optlen); 5838 break; 5839 case SCTP_MAX_BURST: 5840 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5841 break; 5842 case SCTP_AUTH_KEY: 5843 case SCTP_AUTH_CHUNK: 5844 case SCTP_AUTH_DELETE_KEY: 5845 retval = -EOPNOTSUPP; 5846 break; 5847 case SCTP_HMAC_IDENT: 5848 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5849 break; 5850 case SCTP_AUTH_ACTIVE_KEY: 5851 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5852 break; 5853 case SCTP_PEER_AUTH_CHUNKS: 5854 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5855 optlen); 5856 break; 5857 case SCTP_LOCAL_AUTH_CHUNKS: 5858 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5859 optlen); 5860 break; 5861 case SCTP_GET_ASSOC_NUMBER: 5862 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5863 break; 5864 case SCTP_GET_ASSOC_ID_LIST: 5865 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5866 break; 5867 case SCTP_AUTO_ASCONF: 5868 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5869 break; 5870 case SCTP_PEER_ADDR_THLDS: 5871 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5872 break; 5873 case SCTP_GET_ASSOC_STATS: 5874 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 5875 break; 5876 default: 5877 retval = -ENOPROTOOPT; 5878 break; 5879 } 5880 5881 release_sock(sk); 5882 return retval; 5883 } 5884 5885 static void sctp_hash(struct sock *sk) 5886 { 5887 /* STUB */ 5888 } 5889 5890 static void sctp_unhash(struct sock *sk) 5891 { 5892 /* STUB */ 5893 } 5894 5895 /* Check if port is acceptable. Possibly find first available port. 5896 * 5897 * The port hash table (contained in the 'global' SCTP protocol storage 5898 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5899 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5900 * list (the list number is the port number hashed out, so as you 5901 * would expect from a hash function, all the ports in a given list have 5902 * such a number that hashes out to the same list number; you were 5903 * expecting that, right?); so each list has a set of ports, with a 5904 * link to the socket (struct sock) that uses it, the port number and 5905 * a fastreuse flag (FIXME: NPI ipg). 5906 */ 5907 static struct sctp_bind_bucket *sctp_bucket_create( 5908 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 5909 5910 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5911 { 5912 struct sctp_bind_hashbucket *head; /* hash list */ 5913 struct sctp_bind_bucket *pp; 5914 unsigned short snum; 5915 int ret; 5916 5917 snum = ntohs(addr->v4.sin_port); 5918 5919 pr_debug("%s: begins, snum:%d\n", __func__, snum); 5920 5921 local_bh_disable(); 5922 5923 if (snum == 0) { 5924 /* Search for an available port. */ 5925 int low, high, remaining, index; 5926 unsigned int rover; 5927 5928 inet_get_local_port_range(sock_net(sk), &low, &high); 5929 remaining = (high - low) + 1; 5930 rover = prandom_u32() % remaining + low; 5931 5932 do { 5933 rover++; 5934 if ((rover < low) || (rover > high)) 5935 rover = low; 5936 if (inet_is_reserved_local_port(rover)) 5937 continue; 5938 index = sctp_phashfn(sock_net(sk), rover); 5939 head = &sctp_port_hashtable[index]; 5940 spin_lock(&head->lock); 5941 sctp_for_each_hentry(pp, &head->chain) 5942 if ((pp->port == rover) && 5943 net_eq(sock_net(sk), pp->net)) 5944 goto next; 5945 break; 5946 next: 5947 spin_unlock(&head->lock); 5948 } while (--remaining > 0); 5949 5950 /* Exhausted local port range during search? */ 5951 ret = 1; 5952 if (remaining <= 0) 5953 goto fail; 5954 5955 /* OK, here is the one we will use. HEAD (the port 5956 * hash table list entry) is non-NULL and we hold it's 5957 * mutex. 5958 */ 5959 snum = rover; 5960 } else { 5961 /* We are given an specific port number; we verify 5962 * that it is not being used. If it is used, we will 5963 * exahust the search in the hash list corresponding 5964 * to the port number (snum) - we detect that with the 5965 * port iterator, pp being NULL. 5966 */ 5967 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 5968 spin_lock(&head->lock); 5969 sctp_for_each_hentry(pp, &head->chain) { 5970 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 5971 goto pp_found; 5972 } 5973 } 5974 pp = NULL; 5975 goto pp_not_found; 5976 pp_found: 5977 if (!hlist_empty(&pp->owner)) { 5978 /* We had a port hash table hit - there is an 5979 * available port (pp != NULL) and it is being 5980 * used by other socket (pp->owner not empty); that other 5981 * socket is going to be sk2. 5982 */ 5983 int reuse = sk->sk_reuse; 5984 struct sock *sk2; 5985 5986 pr_debug("%s: found a possible match\n", __func__); 5987 5988 if (pp->fastreuse && sk->sk_reuse && 5989 sk->sk_state != SCTP_SS_LISTENING) 5990 goto success; 5991 5992 /* Run through the list of sockets bound to the port 5993 * (pp->port) [via the pointers bind_next and 5994 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5995 * we get the endpoint they describe and run through 5996 * the endpoint's list of IP (v4 or v6) addresses, 5997 * comparing each of the addresses with the address of 5998 * the socket sk. If we find a match, then that means 5999 * that this port/socket (sk) combination are already 6000 * in an endpoint. 6001 */ 6002 sk_for_each_bound(sk2, &pp->owner) { 6003 struct sctp_endpoint *ep2; 6004 ep2 = sctp_sk(sk2)->ep; 6005 6006 if (sk == sk2 || 6007 (reuse && sk2->sk_reuse && 6008 sk2->sk_state != SCTP_SS_LISTENING)) 6009 continue; 6010 6011 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6012 sctp_sk(sk2), sctp_sk(sk))) { 6013 ret = (long)sk2; 6014 goto fail_unlock; 6015 } 6016 } 6017 6018 pr_debug("%s: found a match\n", __func__); 6019 } 6020 pp_not_found: 6021 /* If there was a hash table miss, create a new port. */ 6022 ret = 1; 6023 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6024 goto fail_unlock; 6025 6026 /* In either case (hit or miss), make sure fastreuse is 1 only 6027 * if sk->sk_reuse is too (that is, if the caller requested 6028 * SO_REUSEADDR on this socket -sk-). 6029 */ 6030 if (hlist_empty(&pp->owner)) { 6031 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6032 pp->fastreuse = 1; 6033 else 6034 pp->fastreuse = 0; 6035 } else if (pp->fastreuse && 6036 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6037 pp->fastreuse = 0; 6038 6039 /* We are set, so fill up all the data in the hash table 6040 * entry, tie the socket list information with the rest of the 6041 * sockets FIXME: Blurry, NPI (ipg). 6042 */ 6043 success: 6044 if (!sctp_sk(sk)->bind_hash) { 6045 inet_sk(sk)->inet_num = snum; 6046 sk_add_bind_node(sk, &pp->owner); 6047 sctp_sk(sk)->bind_hash = pp; 6048 } 6049 ret = 0; 6050 6051 fail_unlock: 6052 spin_unlock(&head->lock); 6053 6054 fail: 6055 local_bh_enable(); 6056 return ret; 6057 } 6058 6059 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6060 * port is requested. 6061 */ 6062 static int sctp_get_port(struct sock *sk, unsigned short snum) 6063 { 6064 union sctp_addr addr; 6065 struct sctp_af *af = sctp_sk(sk)->pf->af; 6066 6067 /* Set up a dummy address struct from the sk. */ 6068 af->from_sk(&addr, sk); 6069 addr.v4.sin_port = htons(snum); 6070 6071 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6072 return !!sctp_get_port_local(sk, &addr); 6073 } 6074 6075 /* 6076 * Move a socket to LISTENING state. 6077 */ 6078 static int sctp_listen_start(struct sock *sk, int backlog) 6079 { 6080 struct sctp_sock *sp = sctp_sk(sk); 6081 struct sctp_endpoint *ep = sp->ep; 6082 struct crypto_hash *tfm = NULL; 6083 char alg[32]; 6084 6085 /* Allocate HMAC for generating cookie. */ 6086 if (!sp->hmac && sp->sctp_hmac_alg) { 6087 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6088 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6089 if (IS_ERR(tfm)) { 6090 net_info_ratelimited("failed to load transform for %s: %ld\n", 6091 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6092 return -ENOSYS; 6093 } 6094 sctp_sk(sk)->hmac = tfm; 6095 } 6096 6097 /* 6098 * If a bind() or sctp_bindx() is not called prior to a listen() 6099 * call that allows new associations to be accepted, the system 6100 * picks an ephemeral port and will choose an address set equivalent 6101 * to binding with a wildcard address. 6102 * 6103 * This is not currently spelled out in the SCTP sockets 6104 * extensions draft, but follows the practice as seen in TCP 6105 * sockets. 6106 * 6107 */ 6108 sk->sk_state = SCTP_SS_LISTENING; 6109 if (!ep->base.bind_addr.port) { 6110 if (sctp_autobind(sk)) 6111 return -EAGAIN; 6112 } else { 6113 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6114 sk->sk_state = SCTP_SS_CLOSED; 6115 return -EADDRINUSE; 6116 } 6117 } 6118 6119 sk->sk_max_ack_backlog = backlog; 6120 sctp_hash_endpoint(ep); 6121 return 0; 6122 } 6123 6124 /* 6125 * 4.1.3 / 5.1.3 listen() 6126 * 6127 * By default, new associations are not accepted for UDP style sockets. 6128 * An application uses listen() to mark a socket as being able to 6129 * accept new associations. 6130 * 6131 * On TCP style sockets, applications use listen() to ready the SCTP 6132 * endpoint for accepting inbound associations. 6133 * 6134 * On both types of endpoints a backlog of '0' disables listening. 6135 * 6136 * Move a socket to LISTENING state. 6137 */ 6138 int sctp_inet_listen(struct socket *sock, int backlog) 6139 { 6140 struct sock *sk = sock->sk; 6141 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6142 int err = -EINVAL; 6143 6144 if (unlikely(backlog < 0)) 6145 return err; 6146 6147 lock_sock(sk); 6148 6149 /* Peeled-off sockets are not allowed to listen(). */ 6150 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6151 goto out; 6152 6153 if (sock->state != SS_UNCONNECTED) 6154 goto out; 6155 6156 /* If backlog is zero, disable listening. */ 6157 if (!backlog) { 6158 if (sctp_sstate(sk, CLOSED)) 6159 goto out; 6160 6161 err = 0; 6162 sctp_unhash_endpoint(ep); 6163 sk->sk_state = SCTP_SS_CLOSED; 6164 if (sk->sk_reuse) 6165 sctp_sk(sk)->bind_hash->fastreuse = 1; 6166 goto out; 6167 } 6168 6169 /* If we are already listening, just update the backlog */ 6170 if (sctp_sstate(sk, LISTENING)) 6171 sk->sk_max_ack_backlog = backlog; 6172 else { 6173 err = sctp_listen_start(sk, backlog); 6174 if (err) 6175 goto out; 6176 } 6177 6178 err = 0; 6179 out: 6180 release_sock(sk); 6181 return err; 6182 } 6183 6184 /* 6185 * This function is done by modeling the current datagram_poll() and the 6186 * tcp_poll(). Note that, based on these implementations, we don't 6187 * lock the socket in this function, even though it seems that, 6188 * ideally, locking or some other mechanisms can be used to ensure 6189 * the integrity of the counters (sndbuf and wmem_alloc) used 6190 * in this place. We assume that we don't need locks either until proven 6191 * otherwise. 6192 * 6193 * Another thing to note is that we include the Async I/O support 6194 * here, again, by modeling the current TCP/UDP code. We don't have 6195 * a good way to test with it yet. 6196 */ 6197 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6198 { 6199 struct sock *sk = sock->sk; 6200 struct sctp_sock *sp = sctp_sk(sk); 6201 unsigned int mask; 6202 6203 poll_wait(file, sk_sleep(sk), wait); 6204 6205 /* A TCP-style listening socket becomes readable when the accept queue 6206 * is not empty. 6207 */ 6208 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6209 return (!list_empty(&sp->ep->asocs)) ? 6210 (POLLIN | POLLRDNORM) : 0; 6211 6212 mask = 0; 6213 6214 /* Is there any exceptional events? */ 6215 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6216 mask |= POLLERR | 6217 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6218 if (sk->sk_shutdown & RCV_SHUTDOWN) 6219 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6220 if (sk->sk_shutdown == SHUTDOWN_MASK) 6221 mask |= POLLHUP; 6222 6223 /* Is it readable? Reconsider this code with TCP-style support. */ 6224 if (!skb_queue_empty(&sk->sk_receive_queue)) 6225 mask |= POLLIN | POLLRDNORM; 6226 6227 /* The association is either gone or not ready. */ 6228 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6229 return mask; 6230 6231 /* Is it writable? */ 6232 if (sctp_writeable(sk)) { 6233 mask |= POLLOUT | POLLWRNORM; 6234 } else { 6235 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6236 /* 6237 * Since the socket is not locked, the buffer 6238 * might be made available after the writeable check and 6239 * before the bit is set. This could cause a lost I/O 6240 * signal. tcp_poll() has a race breaker for this race 6241 * condition. Based on their implementation, we put 6242 * in the following code to cover it as well. 6243 */ 6244 if (sctp_writeable(sk)) 6245 mask |= POLLOUT | POLLWRNORM; 6246 } 6247 return mask; 6248 } 6249 6250 /******************************************************************** 6251 * 2nd Level Abstractions 6252 ********************************************************************/ 6253 6254 static struct sctp_bind_bucket *sctp_bucket_create( 6255 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6256 { 6257 struct sctp_bind_bucket *pp; 6258 6259 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6260 if (pp) { 6261 SCTP_DBG_OBJCNT_INC(bind_bucket); 6262 pp->port = snum; 6263 pp->fastreuse = 0; 6264 INIT_HLIST_HEAD(&pp->owner); 6265 pp->net = net; 6266 hlist_add_head(&pp->node, &head->chain); 6267 } 6268 return pp; 6269 } 6270 6271 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6272 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6273 { 6274 if (pp && hlist_empty(&pp->owner)) { 6275 __hlist_del(&pp->node); 6276 kmem_cache_free(sctp_bucket_cachep, pp); 6277 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6278 } 6279 } 6280 6281 /* Release this socket's reference to a local port. */ 6282 static inline void __sctp_put_port(struct sock *sk) 6283 { 6284 struct sctp_bind_hashbucket *head = 6285 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6286 inet_sk(sk)->inet_num)]; 6287 struct sctp_bind_bucket *pp; 6288 6289 spin_lock(&head->lock); 6290 pp = sctp_sk(sk)->bind_hash; 6291 __sk_del_bind_node(sk); 6292 sctp_sk(sk)->bind_hash = NULL; 6293 inet_sk(sk)->inet_num = 0; 6294 sctp_bucket_destroy(pp); 6295 spin_unlock(&head->lock); 6296 } 6297 6298 void sctp_put_port(struct sock *sk) 6299 { 6300 local_bh_disable(); 6301 __sctp_put_port(sk); 6302 local_bh_enable(); 6303 } 6304 6305 /* 6306 * The system picks an ephemeral port and choose an address set equivalent 6307 * to binding with a wildcard address. 6308 * One of those addresses will be the primary address for the association. 6309 * This automatically enables the multihoming capability of SCTP. 6310 */ 6311 static int sctp_autobind(struct sock *sk) 6312 { 6313 union sctp_addr autoaddr; 6314 struct sctp_af *af; 6315 __be16 port; 6316 6317 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6318 af = sctp_sk(sk)->pf->af; 6319 6320 port = htons(inet_sk(sk)->inet_num); 6321 af->inaddr_any(&autoaddr, port); 6322 6323 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6324 } 6325 6326 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6327 * 6328 * From RFC 2292 6329 * 4.2 The cmsghdr Structure * 6330 * 6331 * When ancillary data is sent or received, any number of ancillary data 6332 * objects can be specified by the msg_control and msg_controllen members of 6333 * the msghdr structure, because each object is preceded by 6334 * a cmsghdr structure defining the object's length (the cmsg_len member). 6335 * Historically Berkeley-derived implementations have passed only one object 6336 * at a time, but this API allows multiple objects to be 6337 * passed in a single call to sendmsg() or recvmsg(). The following example 6338 * shows two ancillary data objects in a control buffer. 6339 * 6340 * |<--------------------------- msg_controllen -------------------------->| 6341 * | | 6342 * 6343 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6344 * 6345 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6346 * | | | 6347 * 6348 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6349 * 6350 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6351 * | | | | | 6352 * 6353 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6354 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6355 * 6356 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6357 * 6358 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6359 * ^ 6360 * | 6361 * 6362 * msg_control 6363 * points here 6364 */ 6365 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6366 { 6367 struct cmsghdr *cmsg; 6368 struct msghdr *my_msg = (struct msghdr *)msg; 6369 6370 for (cmsg = CMSG_FIRSTHDR(msg); 6371 cmsg != NULL; 6372 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6373 if (!CMSG_OK(my_msg, cmsg)) 6374 return -EINVAL; 6375 6376 /* Should we parse this header or ignore? */ 6377 if (cmsg->cmsg_level != IPPROTO_SCTP) 6378 continue; 6379 6380 /* Strictly check lengths following example in SCM code. */ 6381 switch (cmsg->cmsg_type) { 6382 case SCTP_INIT: 6383 /* SCTP Socket API Extension 6384 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6385 * 6386 * This cmsghdr structure provides information for 6387 * initializing new SCTP associations with sendmsg(). 6388 * The SCTP_INITMSG socket option uses this same data 6389 * structure. This structure is not used for 6390 * recvmsg(). 6391 * 6392 * cmsg_level cmsg_type cmsg_data[] 6393 * ------------ ------------ ---------------------- 6394 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6395 */ 6396 if (cmsg->cmsg_len != 6397 CMSG_LEN(sizeof(struct sctp_initmsg))) 6398 return -EINVAL; 6399 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6400 break; 6401 6402 case SCTP_SNDRCV: 6403 /* SCTP Socket API Extension 6404 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6405 * 6406 * This cmsghdr structure specifies SCTP options for 6407 * sendmsg() and describes SCTP header information 6408 * about a received message through recvmsg(). 6409 * 6410 * cmsg_level cmsg_type cmsg_data[] 6411 * ------------ ------------ ---------------------- 6412 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6413 */ 6414 if (cmsg->cmsg_len != 6415 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6416 return -EINVAL; 6417 6418 cmsgs->info = 6419 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6420 6421 /* Minimally, validate the sinfo_flags. */ 6422 if (cmsgs->info->sinfo_flags & 6423 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6424 SCTP_ABORT | SCTP_EOF)) 6425 return -EINVAL; 6426 break; 6427 6428 default: 6429 return -EINVAL; 6430 } 6431 } 6432 return 0; 6433 } 6434 6435 /* 6436 * Wait for a packet.. 6437 * Note: This function is the same function as in core/datagram.c 6438 * with a few modifications to make lksctp work. 6439 */ 6440 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 6441 { 6442 int error; 6443 DEFINE_WAIT(wait); 6444 6445 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6446 6447 /* Socket errors? */ 6448 error = sock_error(sk); 6449 if (error) 6450 goto out; 6451 6452 if (!skb_queue_empty(&sk->sk_receive_queue)) 6453 goto ready; 6454 6455 /* Socket shut down? */ 6456 if (sk->sk_shutdown & RCV_SHUTDOWN) 6457 goto out; 6458 6459 /* Sequenced packets can come disconnected. If so we report the 6460 * problem. 6461 */ 6462 error = -ENOTCONN; 6463 6464 /* Is there a good reason to think that we may receive some data? */ 6465 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6466 goto out; 6467 6468 /* Handle signals. */ 6469 if (signal_pending(current)) 6470 goto interrupted; 6471 6472 /* Let another process have a go. Since we are going to sleep 6473 * anyway. Note: This may cause odd behaviors if the message 6474 * does not fit in the user's buffer, but this seems to be the 6475 * only way to honor MSG_DONTWAIT realistically. 6476 */ 6477 release_sock(sk); 6478 *timeo_p = schedule_timeout(*timeo_p); 6479 lock_sock(sk); 6480 6481 ready: 6482 finish_wait(sk_sleep(sk), &wait); 6483 return 0; 6484 6485 interrupted: 6486 error = sock_intr_errno(*timeo_p); 6487 6488 out: 6489 finish_wait(sk_sleep(sk), &wait); 6490 *err = error; 6491 return error; 6492 } 6493 6494 /* Receive a datagram. 6495 * Note: This is pretty much the same routine as in core/datagram.c 6496 * with a few changes to make lksctp work. 6497 */ 6498 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6499 int noblock, int *err) 6500 { 6501 int error; 6502 struct sk_buff *skb; 6503 long timeo; 6504 6505 timeo = sock_rcvtimeo(sk, noblock); 6506 6507 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6508 MAX_SCHEDULE_TIMEOUT); 6509 6510 do { 6511 /* Again only user level code calls this function, 6512 * so nothing interrupt level 6513 * will suddenly eat the receive_queue. 6514 * 6515 * Look at current nfs client by the way... 6516 * However, this function was correct in any case. 8) 6517 */ 6518 if (flags & MSG_PEEK) { 6519 spin_lock_bh(&sk->sk_receive_queue.lock); 6520 skb = skb_peek(&sk->sk_receive_queue); 6521 if (skb) 6522 atomic_inc(&skb->users); 6523 spin_unlock_bh(&sk->sk_receive_queue.lock); 6524 } else { 6525 skb = skb_dequeue(&sk->sk_receive_queue); 6526 } 6527 6528 if (skb) 6529 return skb; 6530 6531 /* Caller is allowed not to check sk->sk_err before calling. */ 6532 error = sock_error(sk); 6533 if (error) 6534 goto no_packet; 6535 6536 if (sk->sk_shutdown & RCV_SHUTDOWN) 6537 break; 6538 6539 /* User doesn't want to wait. */ 6540 error = -EAGAIN; 6541 if (!timeo) 6542 goto no_packet; 6543 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6544 6545 return NULL; 6546 6547 no_packet: 6548 *err = error; 6549 return NULL; 6550 } 6551 6552 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6553 static void __sctp_write_space(struct sctp_association *asoc) 6554 { 6555 struct sock *sk = asoc->base.sk; 6556 struct socket *sock = sk->sk_socket; 6557 6558 if ((sctp_wspace(asoc) > 0) && sock) { 6559 if (waitqueue_active(&asoc->wait)) 6560 wake_up_interruptible(&asoc->wait); 6561 6562 if (sctp_writeable(sk)) { 6563 wait_queue_head_t *wq = sk_sleep(sk); 6564 6565 if (wq && waitqueue_active(wq)) 6566 wake_up_interruptible(wq); 6567 6568 /* Note that we try to include the Async I/O support 6569 * here by modeling from the current TCP/UDP code. 6570 * We have not tested with it yet. 6571 */ 6572 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6573 sock_wake_async(sock, 6574 SOCK_WAKE_SPACE, POLL_OUT); 6575 } 6576 } 6577 } 6578 6579 /* Do accounting for the sndbuf space. 6580 * Decrement the used sndbuf space of the corresponding association by the 6581 * data size which was just transmitted(freed). 6582 */ 6583 static void sctp_wfree(struct sk_buff *skb) 6584 { 6585 struct sctp_association *asoc; 6586 struct sctp_chunk *chunk; 6587 struct sock *sk; 6588 6589 /* Get the saved chunk pointer. */ 6590 chunk = *((struct sctp_chunk **)(skb->cb)); 6591 asoc = chunk->asoc; 6592 sk = asoc->base.sk; 6593 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6594 sizeof(struct sk_buff) + 6595 sizeof(struct sctp_chunk); 6596 6597 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6598 6599 /* 6600 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6601 */ 6602 sk->sk_wmem_queued -= skb->truesize; 6603 sk_mem_uncharge(sk, skb->truesize); 6604 6605 sock_wfree(skb); 6606 __sctp_write_space(asoc); 6607 6608 sctp_association_put(asoc); 6609 } 6610 6611 /* Do accounting for the receive space on the socket. 6612 * Accounting for the association is done in ulpevent.c 6613 * We set this as a destructor for the cloned data skbs so that 6614 * accounting is done at the correct time. 6615 */ 6616 void sctp_sock_rfree(struct sk_buff *skb) 6617 { 6618 struct sock *sk = skb->sk; 6619 struct sctp_ulpevent *event = sctp_skb2event(skb); 6620 6621 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6622 6623 /* 6624 * Mimic the behavior of sock_rfree 6625 */ 6626 sk_mem_uncharge(sk, event->rmem_len); 6627 } 6628 6629 6630 /* Helper function to wait for space in the sndbuf. */ 6631 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6632 size_t msg_len) 6633 { 6634 struct sock *sk = asoc->base.sk; 6635 int err = 0; 6636 long current_timeo = *timeo_p; 6637 DEFINE_WAIT(wait); 6638 6639 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 6640 *timeo_p, msg_len); 6641 6642 /* Increment the association's refcnt. */ 6643 sctp_association_hold(asoc); 6644 6645 /* Wait on the association specific sndbuf space. */ 6646 for (;;) { 6647 prepare_to_wait_exclusive(&asoc->wait, &wait, 6648 TASK_INTERRUPTIBLE); 6649 if (!*timeo_p) 6650 goto do_nonblock; 6651 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6652 asoc->base.dead) 6653 goto do_error; 6654 if (signal_pending(current)) 6655 goto do_interrupted; 6656 if (msg_len <= sctp_wspace(asoc)) 6657 break; 6658 6659 /* Let another process have a go. Since we are going 6660 * to sleep anyway. 6661 */ 6662 release_sock(sk); 6663 current_timeo = schedule_timeout(current_timeo); 6664 BUG_ON(sk != asoc->base.sk); 6665 lock_sock(sk); 6666 6667 *timeo_p = current_timeo; 6668 } 6669 6670 out: 6671 finish_wait(&asoc->wait, &wait); 6672 6673 /* Release the association's refcnt. */ 6674 sctp_association_put(asoc); 6675 6676 return err; 6677 6678 do_error: 6679 err = -EPIPE; 6680 goto out; 6681 6682 do_interrupted: 6683 err = sock_intr_errno(*timeo_p); 6684 goto out; 6685 6686 do_nonblock: 6687 err = -EAGAIN; 6688 goto out; 6689 } 6690 6691 void sctp_data_ready(struct sock *sk, int len) 6692 { 6693 struct socket_wq *wq; 6694 6695 rcu_read_lock(); 6696 wq = rcu_dereference(sk->sk_wq); 6697 if (wq_has_sleeper(wq)) 6698 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6699 POLLRDNORM | POLLRDBAND); 6700 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6701 rcu_read_unlock(); 6702 } 6703 6704 /* If socket sndbuf has changed, wake up all per association waiters. */ 6705 void sctp_write_space(struct sock *sk) 6706 { 6707 struct sctp_association *asoc; 6708 6709 /* Wake up the tasks in each wait queue. */ 6710 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6711 __sctp_write_space(asoc); 6712 } 6713 } 6714 6715 /* Is there any sndbuf space available on the socket? 6716 * 6717 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6718 * associations on the same socket. For a UDP-style socket with 6719 * multiple associations, it is possible for it to be "unwriteable" 6720 * prematurely. I assume that this is acceptable because 6721 * a premature "unwriteable" is better than an accidental "writeable" which 6722 * would cause an unwanted block under certain circumstances. For the 1-1 6723 * UDP-style sockets or TCP-style sockets, this code should work. 6724 * - Daisy 6725 */ 6726 static int sctp_writeable(struct sock *sk) 6727 { 6728 int amt = 0; 6729 6730 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6731 if (amt < 0) 6732 amt = 0; 6733 return amt; 6734 } 6735 6736 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6737 * returns immediately with EINPROGRESS. 6738 */ 6739 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6740 { 6741 struct sock *sk = asoc->base.sk; 6742 int err = 0; 6743 long current_timeo = *timeo_p; 6744 DEFINE_WAIT(wait); 6745 6746 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 6747 6748 /* Increment the association's refcnt. */ 6749 sctp_association_hold(asoc); 6750 6751 for (;;) { 6752 prepare_to_wait_exclusive(&asoc->wait, &wait, 6753 TASK_INTERRUPTIBLE); 6754 if (!*timeo_p) 6755 goto do_nonblock; 6756 if (sk->sk_shutdown & RCV_SHUTDOWN) 6757 break; 6758 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6759 asoc->base.dead) 6760 goto do_error; 6761 if (signal_pending(current)) 6762 goto do_interrupted; 6763 6764 if (sctp_state(asoc, ESTABLISHED)) 6765 break; 6766 6767 /* Let another process have a go. Since we are going 6768 * to sleep anyway. 6769 */ 6770 release_sock(sk); 6771 current_timeo = schedule_timeout(current_timeo); 6772 lock_sock(sk); 6773 6774 *timeo_p = current_timeo; 6775 } 6776 6777 out: 6778 finish_wait(&asoc->wait, &wait); 6779 6780 /* Release the association's refcnt. */ 6781 sctp_association_put(asoc); 6782 6783 return err; 6784 6785 do_error: 6786 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6787 err = -ETIMEDOUT; 6788 else 6789 err = -ECONNREFUSED; 6790 goto out; 6791 6792 do_interrupted: 6793 err = sock_intr_errno(*timeo_p); 6794 goto out; 6795 6796 do_nonblock: 6797 err = -EINPROGRESS; 6798 goto out; 6799 } 6800 6801 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6802 { 6803 struct sctp_endpoint *ep; 6804 int err = 0; 6805 DEFINE_WAIT(wait); 6806 6807 ep = sctp_sk(sk)->ep; 6808 6809 6810 for (;;) { 6811 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6812 TASK_INTERRUPTIBLE); 6813 6814 if (list_empty(&ep->asocs)) { 6815 release_sock(sk); 6816 timeo = schedule_timeout(timeo); 6817 lock_sock(sk); 6818 } 6819 6820 err = -EINVAL; 6821 if (!sctp_sstate(sk, LISTENING)) 6822 break; 6823 6824 err = 0; 6825 if (!list_empty(&ep->asocs)) 6826 break; 6827 6828 err = sock_intr_errno(timeo); 6829 if (signal_pending(current)) 6830 break; 6831 6832 err = -EAGAIN; 6833 if (!timeo) 6834 break; 6835 } 6836 6837 finish_wait(sk_sleep(sk), &wait); 6838 6839 return err; 6840 } 6841 6842 static void sctp_wait_for_close(struct sock *sk, long timeout) 6843 { 6844 DEFINE_WAIT(wait); 6845 6846 do { 6847 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6848 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6849 break; 6850 release_sock(sk); 6851 timeout = schedule_timeout(timeout); 6852 lock_sock(sk); 6853 } while (!signal_pending(current) && timeout); 6854 6855 finish_wait(sk_sleep(sk), &wait); 6856 } 6857 6858 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6859 { 6860 struct sk_buff *frag; 6861 6862 if (!skb->data_len) 6863 goto done; 6864 6865 /* Don't forget the fragments. */ 6866 skb_walk_frags(skb, frag) 6867 sctp_skb_set_owner_r_frag(frag, sk); 6868 6869 done: 6870 sctp_skb_set_owner_r(skb, sk); 6871 } 6872 6873 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6874 struct sctp_association *asoc) 6875 { 6876 struct inet_sock *inet = inet_sk(sk); 6877 struct inet_sock *newinet; 6878 6879 newsk->sk_type = sk->sk_type; 6880 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6881 newsk->sk_flags = sk->sk_flags; 6882 newsk->sk_no_check = sk->sk_no_check; 6883 newsk->sk_reuse = sk->sk_reuse; 6884 6885 newsk->sk_shutdown = sk->sk_shutdown; 6886 newsk->sk_destruct = sctp_destruct_sock; 6887 newsk->sk_family = sk->sk_family; 6888 newsk->sk_protocol = IPPROTO_SCTP; 6889 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6890 newsk->sk_sndbuf = sk->sk_sndbuf; 6891 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6892 newsk->sk_lingertime = sk->sk_lingertime; 6893 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6894 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6895 6896 newinet = inet_sk(newsk); 6897 6898 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6899 * getsockname() and getpeername() 6900 */ 6901 newinet->inet_sport = inet->inet_sport; 6902 newinet->inet_saddr = inet->inet_saddr; 6903 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6904 newinet->inet_dport = htons(asoc->peer.port); 6905 newinet->pmtudisc = inet->pmtudisc; 6906 newinet->inet_id = asoc->next_tsn ^ jiffies; 6907 6908 newinet->uc_ttl = inet->uc_ttl; 6909 newinet->mc_loop = 1; 6910 newinet->mc_ttl = 1; 6911 newinet->mc_index = 0; 6912 newinet->mc_list = NULL; 6913 } 6914 6915 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6916 * and its messages to the newsk. 6917 */ 6918 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6919 struct sctp_association *assoc, 6920 sctp_socket_type_t type) 6921 { 6922 struct sctp_sock *oldsp = sctp_sk(oldsk); 6923 struct sctp_sock *newsp = sctp_sk(newsk); 6924 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6925 struct sctp_endpoint *newep = newsp->ep; 6926 struct sk_buff *skb, *tmp; 6927 struct sctp_ulpevent *event; 6928 struct sctp_bind_hashbucket *head; 6929 struct list_head tmplist; 6930 6931 /* Migrate socket buffer sizes and all the socket level options to the 6932 * new socket. 6933 */ 6934 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6935 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6936 /* Brute force copy old sctp opt. */ 6937 if (oldsp->do_auto_asconf) { 6938 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6939 inet_sk_copy_descendant(newsk, oldsk); 6940 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6941 } else 6942 inet_sk_copy_descendant(newsk, oldsk); 6943 6944 /* Restore the ep value that was overwritten with the above structure 6945 * copy. 6946 */ 6947 newsp->ep = newep; 6948 newsp->hmac = NULL; 6949 6950 /* Hook this new socket in to the bind_hash list. */ 6951 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 6952 inet_sk(oldsk)->inet_num)]; 6953 local_bh_disable(); 6954 spin_lock(&head->lock); 6955 pp = sctp_sk(oldsk)->bind_hash; 6956 sk_add_bind_node(newsk, &pp->owner); 6957 sctp_sk(newsk)->bind_hash = pp; 6958 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6959 spin_unlock(&head->lock); 6960 local_bh_enable(); 6961 6962 /* Copy the bind_addr list from the original endpoint to the new 6963 * endpoint so that we can handle restarts properly 6964 */ 6965 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6966 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6967 6968 /* Move any messages in the old socket's receive queue that are for the 6969 * peeled off association to the new socket's receive queue. 6970 */ 6971 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6972 event = sctp_skb2event(skb); 6973 if (event->asoc == assoc) { 6974 __skb_unlink(skb, &oldsk->sk_receive_queue); 6975 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6976 sctp_skb_set_owner_r_frag(skb, newsk); 6977 } 6978 } 6979 6980 /* Clean up any messages pending delivery due to partial 6981 * delivery. Three cases: 6982 * 1) No partial deliver; no work. 6983 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6984 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6985 */ 6986 skb_queue_head_init(&newsp->pd_lobby); 6987 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6988 6989 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6990 struct sk_buff_head *queue; 6991 6992 /* Decide which queue to move pd_lobby skbs to. */ 6993 if (assoc->ulpq.pd_mode) { 6994 queue = &newsp->pd_lobby; 6995 } else 6996 queue = &newsk->sk_receive_queue; 6997 6998 /* Walk through the pd_lobby, looking for skbs that 6999 * need moved to the new socket. 7000 */ 7001 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7002 event = sctp_skb2event(skb); 7003 if (event->asoc == assoc) { 7004 __skb_unlink(skb, &oldsp->pd_lobby); 7005 __skb_queue_tail(queue, skb); 7006 sctp_skb_set_owner_r_frag(skb, newsk); 7007 } 7008 } 7009 7010 /* Clear up any skbs waiting for the partial 7011 * delivery to finish. 7012 */ 7013 if (assoc->ulpq.pd_mode) 7014 sctp_clear_pd(oldsk, NULL); 7015 7016 } 7017 7018 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7019 sctp_skb_set_owner_r_frag(skb, newsk); 7020 7021 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7022 sctp_skb_set_owner_r_frag(skb, newsk); 7023 7024 /* Set the type of socket to indicate that it is peeled off from the 7025 * original UDP-style socket or created with the accept() call on a 7026 * TCP-style socket.. 7027 */ 7028 newsp->type = type; 7029 7030 /* Mark the new socket "in-use" by the user so that any packets 7031 * that may arrive on the association after we've moved it are 7032 * queued to the backlog. This prevents a potential race between 7033 * backlog processing on the old socket and new-packet processing 7034 * on the new socket. 7035 * 7036 * The caller has just allocated newsk so we can guarantee that other 7037 * paths won't try to lock it and then oldsk. 7038 */ 7039 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7040 sctp_assoc_migrate(assoc, newsk); 7041 7042 /* If the association on the newsk is already closed before accept() 7043 * is called, set RCV_SHUTDOWN flag. 7044 */ 7045 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7046 newsk->sk_shutdown |= RCV_SHUTDOWN; 7047 7048 newsk->sk_state = SCTP_SS_ESTABLISHED; 7049 release_sock(newsk); 7050 } 7051 7052 7053 /* This proto struct describes the ULP interface for SCTP. */ 7054 struct proto sctp_prot = { 7055 .name = "SCTP", 7056 .owner = THIS_MODULE, 7057 .close = sctp_close, 7058 .connect = sctp_connect, 7059 .disconnect = sctp_disconnect, 7060 .accept = sctp_accept, 7061 .ioctl = sctp_ioctl, 7062 .init = sctp_init_sock, 7063 .destroy = sctp_destroy_sock, 7064 .shutdown = sctp_shutdown, 7065 .setsockopt = sctp_setsockopt, 7066 .getsockopt = sctp_getsockopt, 7067 .sendmsg = sctp_sendmsg, 7068 .recvmsg = sctp_recvmsg, 7069 .bind = sctp_bind, 7070 .backlog_rcv = sctp_backlog_rcv, 7071 .hash = sctp_hash, 7072 .unhash = sctp_unhash, 7073 .get_port = sctp_get_port, 7074 .obj_size = sizeof(struct sctp_sock), 7075 .sysctl_mem = sysctl_sctp_mem, 7076 .sysctl_rmem = sysctl_sctp_rmem, 7077 .sysctl_wmem = sysctl_sctp_wmem, 7078 .memory_pressure = &sctp_memory_pressure, 7079 .enter_memory_pressure = sctp_enter_memory_pressure, 7080 .memory_allocated = &sctp_memory_allocated, 7081 .sockets_allocated = &sctp_sockets_allocated, 7082 }; 7083 7084 #if IS_ENABLED(CONFIG_IPV6) 7085 7086 struct proto sctpv6_prot = { 7087 .name = "SCTPv6", 7088 .owner = THIS_MODULE, 7089 .close = sctp_close, 7090 .connect = sctp_connect, 7091 .disconnect = sctp_disconnect, 7092 .accept = sctp_accept, 7093 .ioctl = sctp_ioctl, 7094 .init = sctp_init_sock, 7095 .destroy = sctp_destroy_sock, 7096 .shutdown = sctp_shutdown, 7097 .setsockopt = sctp_setsockopt, 7098 .getsockopt = sctp_getsockopt, 7099 .sendmsg = sctp_sendmsg, 7100 .recvmsg = sctp_recvmsg, 7101 .bind = sctp_bind, 7102 .backlog_rcv = sctp_backlog_rcv, 7103 .hash = sctp_hash, 7104 .unhash = sctp_unhash, 7105 .get_port = sctp_get_port, 7106 .obj_size = sizeof(struct sctp6_sock), 7107 .sysctl_mem = sysctl_sctp_mem, 7108 .sysctl_rmem = sysctl_sctp_rmem, 7109 .sysctl_wmem = sysctl_sctp_wmem, 7110 .memory_pressure = &sctp_memory_pressure, 7111 .enter_memory_pressure = sctp_enter_memory_pressure, 7112 .memory_allocated = &sctp_memory_allocated, 7113 .sockets_allocated = &sctp_sockets_allocated, 7114 }; 7115 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7116