xref: /openbmc/linux/net/sctp/socket.c (revision 483eb062)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 
68 #include <net/ip.h>
69 #include <net/icmp.h>
70 #include <net/route.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 
74 #include <linux/socket.h> /* for sa_family_t */
75 #include <linux/export.h>
76 #include <net/sock.h>
77 #include <net/sctp/sctp.h>
78 #include <net/sctp/sm.h>
79 
80 /* Forward declarations for internal helper functions. */
81 static int sctp_writeable(struct sock *sk);
82 static void sctp_wfree(struct sk_buff *skb);
83 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
84 				size_t msg_len);
85 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
86 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
87 static int sctp_wait_for_accept(struct sock *sk, long timeo);
88 static void sctp_wait_for_close(struct sock *sk, long timeo);
89 static void sctp_destruct_sock(struct sock *sk);
90 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
91 					union sctp_addr *addr, int len);
92 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
93 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
94 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf(struct sctp_association *asoc,
97 			    struct sctp_chunk *chunk);
98 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
99 static int sctp_autobind(struct sock *sk);
100 static void sctp_sock_migrate(struct sock *, struct sock *,
101 			      struct sctp_association *, sctp_socket_type_t);
102 
103 extern struct kmem_cache *sctp_bucket_cachep;
104 extern long sysctl_sctp_mem[3];
105 extern int sysctl_sctp_rmem[3];
106 extern int sysctl_sctp_wmem[3];
107 
108 static int sctp_memory_pressure;
109 static atomic_long_t sctp_memory_allocated;
110 struct percpu_counter sctp_sockets_allocated;
111 
112 static void sctp_enter_memory_pressure(struct sock *sk)
113 {
114 	sctp_memory_pressure = 1;
115 }
116 
117 
118 /* Get the sndbuf space available at the time on the association.  */
119 static inline int sctp_wspace(struct sctp_association *asoc)
120 {
121 	int amt;
122 
123 	if (asoc->ep->sndbuf_policy)
124 		amt = asoc->sndbuf_used;
125 	else
126 		amt = sk_wmem_alloc_get(asoc->base.sk);
127 
128 	if (amt >= asoc->base.sk->sk_sndbuf) {
129 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
130 			amt = 0;
131 		else {
132 			amt = sk_stream_wspace(asoc->base.sk);
133 			if (amt < 0)
134 				amt = 0;
135 		}
136 	} else {
137 		amt = asoc->base.sk->sk_sndbuf - amt;
138 	}
139 	return amt;
140 }
141 
142 /* Increment the used sndbuf space count of the corresponding association by
143  * the size of the outgoing data chunk.
144  * Also, set the skb destructor for sndbuf accounting later.
145  *
146  * Since it is always 1-1 between chunk and skb, and also a new skb is always
147  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
148  * destructor in the data chunk skb for the purpose of the sndbuf space
149  * tracking.
150  */
151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
152 {
153 	struct sctp_association *asoc = chunk->asoc;
154 	struct sock *sk = asoc->base.sk;
155 
156 	/* The sndbuf space is tracked per association.  */
157 	sctp_association_hold(asoc);
158 
159 	skb_set_owner_w(chunk->skb, sk);
160 
161 	chunk->skb->destructor = sctp_wfree;
162 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
163 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
164 
165 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
166 				sizeof(struct sk_buff) +
167 				sizeof(struct sctp_chunk);
168 
169 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
170 	sk->sk_wmem_queued += chunk->skb->truesize;
171 	sk_mem_charge(sk, chunk->skb->truesize);
172 }
173 
174 /* Verify that this is a valid address. */
175 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
176 				   int len)
177 {
178 	struct sctp_af *af;
179 
180 	/* Verify basic sockaddr. */
181 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
182 	if (!af)
183 		return -EINVAL;
184 
185 	/* Is this a valid SCTP address?  */
186 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
187 		return -EINVAL;
188 
189 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 /* Look up the association by its id.  If this is not a UDP-style
196  * socket, the ID field is always ignored.
197  */
198 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
199 {
200 	struct sctp_association *asoc = NULL;
201 
202 	/* If this is not a UDP-style socket, assoc id should be ignored. */
203 	if (!sctp_style(sk, UDP)) {
204 		/* Return NULL if the socket state is not ESTABLISHED. It
205 		 * could be a TCP-style listening socket or a socket which
206 		 * hasn't yet called connect() to establish an association.
207 		 */
208 		if (!sctp_sstate(sk, ESTABLISHED))
209 			return NULL;
210 
211 		/* Get the first and the only association from the list. */
212 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
213 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
214 					  struct sctp_association, asocs);
215 		return asoc;
216 	}
217 
218 	/* Otherwise this is a UDP-style socket. */
219 	if (!id || (id == (sctp_assoc_t)-1))
220 		return NULL;
221 
222 	spin_lock_bh(&sctp_assocs_id_lock);
223 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
224 	spin_unlock_bh(&sctp_assocs_id_lock);
225 
226 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
227 		return NULL;
228 
229 	return asoc;
230 }
231 
232 /* Look up the transport from an address and an assoc id. If both address and
233  * id are specified, the associations matching the address and the id should be
234  * the same.
235  */
236 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
237 					      struct sockaddr_storage *addr,
238 					      sctp_assoc_t id)
239 {
240 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
241 	struct sctp_transport *transport;
242 	union sctp_addr *laddr = (union sctp_addr *)addr;
243 
244 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
245 					       laddr,
246 					       &transport);
247 
248 	if (!addr_asoc)
249 		return NULL;
250 
251 	id_asoc = sctp_id2assoc(sk, id);
252 	if (id_asoc && (id_asoc != addr_asoc))
253 		return NULL;
254 
255 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
256 						(union sctp_addr *)addr);
257 
258 	return transport;
259 }
260 
261 /* API 3.1.2 bind() - UDP Style Syntax
262  * The syntax of bind() is,
263  *
264  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
265  *
266  *   sd      - the socket descriptor returned by socket().
267  *   addr    - the address structure (struct sockaddr_in or struct
268  *             sockaddr_in6 [RFC 2553]),
269  *   addr_len - the size of the address structure.
270  */
271 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
272 {
273 	int retval = 0;
274 
275 	lock_sock(sk);
276 
277 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
278 		 addr, addr_len);
279 
280 	/* Disallow binding twice. */
281 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
282 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
283 				      addr_len);
284 	else
285 		retval = -EINVAL;
286 
287 	release_sock(sk);
288 
289 	return retval;
290 }
291 
292 static long sctp_get_port_local(struct sock *, union sctp_addr *);
293 
294 /* Verify this is a valid sockaddr. */
295 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
296 					union sctp_addr *addr, int len)
297 {
298 	struct sctp_af *af;
299 
300 	/* Check minimum size.  */
301 	if (len < sizeof (struct sockaddr))
302 		return NULL;
303 
304 	/* V4 mapped address are really of AF_INET family */
305 	if (addr->sa.sa_family == AF_INET6 &&
306 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
307 		if (!opt->pf->af_supported(AF_INET, opt))
308 			return NULL;
309 	} else {
310 		/* Does this PF support this AF? */
311 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
312 			return NULL;
313 	}
314 
315 	/* If we get this far, af is valid. */
316 	af = sctp_get_af_specific(addr->sa.sa_family);
317 
318 	if (len < af->sockaddr_len)
319 		return NULL;
320 
321 	return af;
322 }
323 
324 /* Bind a local address either to an endpoint or to an association.  */
325 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
326 {
327 	struct net *net = sock_net(sk);
328 	struct sctp_sock *sp = sctp_sk(sk);
329 	struct sctp_endpoint *ep = sp->ep;
330 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
331 	struct sctp_af *af;
332 	unsigned short snum;
333 	int ret = 0;
334 
335 	/* Common sockaddr verification. */
336 	af = sctp_sockaddr_af(sp, addr, len);
337 	if (!af) {
338 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
339 			 __func__, sk, addr, len);
340 		return -EINVAL;
341 	}
342 
343 	snum = ntohs(addr->v4.sin_port);
344 
345 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
346 		 __func__, sk, &addr->sa, bp->port, snum, len);
347 
348 	/* PF specific bind() address verification. */
349 	if (!sp->pf->bind_verify(sp, addr))
350 		return -EADDRNOTAVAIL;
351 
352 	/* We must either be unbound, or bind to the same port.
353 	 * It's OK to allow 0 ports if we are already bound.
354 	 * We'll just inhert an already bound port in this case
355 	 */
356 	if (bp->port) {
357 		if (!snum)
358 			snum = bp->port;
359 		else if (snum != bp->port) {
360 			pr_debug("%s: new port %d doesn't match existing port "
361 				 "%d\n", __func__, snum, bp->port);
362 			return -EINVAL;
363 		}
364 	}
365 
366 	if (snum && snum < PROT_SOCK &&
367 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
368 		return -EACCES;
369 
370 	/* See if the address matches any of the addresses we may have
371 	 * already bound before checking against other endpoints.
372 	 */
373 	if (sctp_bind_addr_match(bp, addr, sp))
374 		return -EINVAL;
375 
376 	/* Make sure we are allowed to bind here.
377 	 * The function sctp_get_port_local() does duplicate address
378 	 * detection.
379 	 */
380 	addr->v4.sin_port = htons(snum);
381 	if ((ret = sctp_get_port_local(sk, addr))) {
382 		return -EADDRINUSE;
383 	}
384 
385 	/* Refresh ephemeral port.  */
386 	if (!bp->port)
387 		bp->port = inet_sk(sk)->inet_num;
388 
389 	/* Add the address to the bind address list.
390 	 * Use GFP_ATOMIC since BHs will be disabled.
391 	 */
392 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
393 
394 	/* Copy back into socket for getsockname() use. */
395 	if (!ret) {
396 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
397 		af->to_sk_saddr(addr, sk);
398 	}
399 
400 	return ret;
401 }
402 
403  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
404  *
405  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
406  * at any one time.  If a sender, after sending an ASCONF chunk, decides
407  * it needs to transfer another ASCONF Chunk, it MUST wait until the
408  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
409  * subsequent ASCONF. Note this restriction binds each side, so at any
410  * time two ASCONF may be in-transit on any given association (one sent
411  * from each endpoint).
412  */
413 static int sctp_send_asconf(struct sctp_association *asoc,
414 			    struct sctp_chunk *chunk)
415 {
416 	struct net 	*net = sock_net(asoc->base.sk);
417 	int		retval = 0;
418 
419 	/* If there is an outstanding ASCONF chunk, queue it for later
420 	 * transmission.
421 	 */
422 	if (asoc->addip_last_asconf) {
423 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
424 		goto out;
425 	}
426 
427 	/* Hold the chunk until an ASCONF_ACK is received. */
428 	sctp_chunk_hold(chunk);
429 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
430 	if (retval)
431 		sctp_chunk_free(chunk);
432 	else
433 		asoc->addip_last_asconf = chunk;
434 
435 out:
436 	return retval;
437 }
438 
439 /* Add a list of addresses as bind addresses to local endpoint or
440  * association.
441  *
442  * Basically run through each address specified in the addrs/addrcnt
443  * array/length pair, determine if it is IPv6 or IPv4 and call
444  * sctp_do_bind() on it.
445  *
446  * If any of them fails, then the operation will be reversed and the
447  * ones that were added will be removed.
448  *
449  * Only sctp_setsockopt_bindx() is supposed to call this function.
450  */
451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
452 {
453 	int cnt;
454 	int retval = 0;
455 	void *addr_buf;
456 	struct sockaddr *sa_addr;
457 	struct sctp_af *af;
458 
459 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
460 		 addrs, addrcnt);
461 
462 	addr_buf = addrs;
463 	for (cnt = 0; cnt < addrcnt; cnt++) {
464 		/* The list may contain either IPv4 or IPv6 address;
465 		 * determine the address length for walking thru the list.
466 		 */
467 		sa_addr = addr_buf;
468 		af = sctp_get_af_specific(sa_addr->sa_family);
469 		if (!af) {
470 			retval = -EINVAL;
471 			goto err_bindx_add;
472 		}
473 
474 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
475 				      af->sockaddr_len);
476 
477 		addr_buf += af->sockaddr_len;
478 
479 err_bindx_add:
480 		if (retval < 0) {
481 			/* Failed. Cleanup the ones that have been added */
482 			if (cnt > 0)
483 				sctp_bindx_rem(sk, addrs, cnt);
484 			return retval;
485 		}
486 	}
487 
488 	return retval;
489 }
490 
491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
492  * associations that are part of the endpoint indicating that a list of local
493  * addresses are added to the endpoint.
494  *
495  * If any of the addresses is already in the bind address list of the
496  * association, we do not send the chunk for that association.  But it will not
497  * affect other associations.
498  *
499  * Only sctp_setsockopt_bindx() is supposed to call this function.
500  */
501 static int sctp_send_asconf_add_ip(struct sock		*sk,
502 				   struct sockaddr	*addrs,
503 				   int 			addrcnt)
504 {
505 	struct net *net = sock_net(sk);
506 	struct sctp_sock		*sp;
507 	struct sctp_endpoint		*ep;
508 	struct sctp_association		*asoc;
509 	struct sctp_bind_addr		*bp;
510 	struct sctp_chunk		*chunk;
511 	struct sctp_sockaddr_entry	*laddr;
512 	union sctp_addr			*addr;
513 	union sctp_addr			saveaddr;
514 	void				*addr_buf;
515 	struct sctp_af			*af;
516 	struct list_head		*p;
517 	int 				i;
518 	int 				retval = 0;
519 
520 	if (!net->sctp.addip_enable)
521 		return retval;
522 
523 	sp = sctp_sk(sk);
524 	ep = sp->ep;
525 
526 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
527 		 __func__, sk, addrs, addrcnt);
528 
529 	list_for_each_entry(asoc, &ep->asocs, asocs) {
530 		if (!asoc->peer.asconf_capable)
531 			continue;
532 
533 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
534 			continue;
535 
536 		if (!sctp_state(asoc, ESTABLISHED))
537 			continue;
538 
539 		/* Check if any address in the packed array of addresses is
540 		 * in the bind address list of the association. If so,
541 		 * do not send the asconf chunk to its peer, but continue with
542 		 * other associations.
543 		 */
544 		addr_buf = addrs;
545 		for (i = 0; i < addrcnt; i++) {
546 			addr = addr_buf;
547 			af = sctp_get_af_specific(addr->v4.sin_family);
548 			if (!af) {
549 				retval = -EINVAL;
550 				goto out;
551 			}
552 
553 			if (sctp_assoc_lookup_laddr(asoc, addr))
554 				break;
555 
556 			addr_buf += af->sockaddr_len;
557 		}
558 		if (i < addrcnt)
559 			continue;
560 
561 		/* Use the first valid address in bind addr list of
562 		 * association as Address Parameter of ASCONF CHUNK.
563 		 */
564 		bp = &asoc->base.bind_addr;
565 		p = bp->address_list.next;
566 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
567 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
568 						   addrcnt, SCTP_PARAM_ADD_IP);
569 		if (!chunk) {
570 			retval = -ENOMEM;
571 			goto out;
572 		}
573 
574 		/* Add the new addresses to the bind address list with
575 		 * use_as_src set to 0.
576 		 */
577 		addr_buf = addrs;
578 		for (i = 0; i < addrcnt; i++) {
579 			addr = addr_buf;
580 			af = sctp_get_af_specific(addr->v4.sin_family);
581 			memcpy(&saveaddr, addr, af->sockaddr_len);
582 			retval = sctp_add_bind_addr(bp, &saveaddr,
583 						    SCTP_ADDR_NEW, GFP_ATOMIC);
584 			addr_buf += af->sockaddr_len;
585 		}
586 		if (asoc->src_out_of_asoc_ok) {
587 			struct sctp_transport *trans;
588 
589 			list_for_each_entry(trans,
590 			    &asoc->peer.transport_addr_list, transports) {
591 				/* Clear the source and route cache */
592 				dst_release(trans->dst);
593 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
594 				    2*asoc->pathmtu, 4380));
595 				trans->ssthresh = asoc->peer.i.a_rwnd;
596 				trans->rto = asoc->rto_initial;
597 				sctp_max_rto(asoc, trans);
598 				trans->rtt = trans->srtt = trans->rttvar = 0;
599 				sctp_transport_route(trans, NULL,
600 				    sctp_sk(asoc->base.sk));
601 			}
602 		}
603 		retval = sctp_send_asconf(asoc, chunk);
604 	}
605 
606 out:
607 	return retval;
608 }
609 
610 /* Remove a list of addresses from bind addresses list.  Do not remove the
611  * last address.
612  *
613  * Basically run through each address specified in the addrs/addrcnt
614  * array/length pair, determine if it is IPv6 or IPv4 and call
615  * sctp_del_bind() on it.
616  *
617  * If any of them fails, then the operation will be reversed and the
618  * ones that were removed will be added back.
619  *
620  * At least one address has to be left; if only one address is
621  * available, the operation will return -EBUSY.
622  *
623  * Only sctp_setsockopt_bindx() is supposed to call this function.
624  */
625 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
626 {
627 	struct sctp_sock *sp = sctp_sk(sk);
628 	struct sctp_endpoint *ep = sp->ep;
629 	int cnt;
630 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
631 	int retval = 0;
632 	void *addr_buf;
633 	union sctp_addr *sa_addr;
634 	struct sctp_af *af;
635 
636 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
637 		 __func__, sk, addrs, addrcnt);
638 
639 	addr_buf = addrs;
640 	for (cnt = 0; cnt < addrcnt; cnt++) {
641 		/* If the bind address list is empty or if there is only one
642 		 * bind address, there is nothing more to be removed (we need
643 		 * at least one address here).
644 		 */
645 		if (list_empty(&bp->address_list) ||
646 		    (sctp_list_single_entry(&bp->address_list))) {
647 			retval = -EBUSY;
648 			goto err_bindx_rem;
649 		}
650 
651 		sa_addr = addr_buf;
652 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
653 		if (!af) {
654 			retval = -EINVAL;
655 			goto err_bindx_rem;
656 		}
657 
658 		if (!af->addr_valid(sa_addr, sp, NULL)) {
659 			retval = -EADDRNOTAVAIL;
660 			goto err_bindx_rem;
661 		}
662 
663 		if (sa_addr->v4.sin_port &&
664 		    sa_addr->v4.sin_port != htons(bp->port)) {
665 			retval = -EINVAL;
666 			goto err_bindx_rem;
667 		}
668 
669 		if (!sa_addr->v4.sin_port)
670 			sa_addr->v4.sin_port = htons(bp->port);
671 
672 		/* FIXME - There is probably a need to check if sk->sk_saddr and
673 		 * sk->sk_rcv_addr are currently set to one of the addresses to
674 		 * be removed. This is something which needs to be looked into
675 		 * when we are fixing the outstanding issues with multi-homing
676 		 * socket routing and failover schemes. Refer to comments in
677 		 * sctp_do_bind(). -daisy
678 		 */
679 		retval = sctp_del_bind_addr(bp, sa_addr);
680 
681 		addr_buf += af->sockaddr_len;
682 err_bindx_rem:
683 		if (retval < 0) {
684 			/* Failed. Add the ones that has been removed back */
685 			if (cnt > 0)
686 				sctp_bindx_add(sk, addrs, cnt);
687 			return retval;
688 		}
689 	}
690 
691 	return retval;
692 }
693 
694 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
695  * the associations that are part of the endpoint indicating that a list of
696  * local addresses are removed from the endpoint.
697  *
698  * If any of the addresses is already in the bind address list of the
699  * association, we do not send the chunk for that association.  But it will not
700  * affect other associations.
701  *
702  * Only sctp_setsockopt_bindx() is supposed to call this function.
703  */
704 static int sctp_send_asconf_del_ip(struct sock		*sk,
705 				   struct sockaddr	*addrs,
706 				   int			addrcnt)
707 {
708 	struct net *net = sock_net(sk);
709 	struct sctp_sock	*sp;
710 	struct sctp_endpoint	*ep;
711 	struct sctp_association	*asoc;
712 	struct sctp_transport	*transport;
713 	struct sctp_bind_addr	*bp;
714 	struct sctp_chunk	*chunk;
715 	union sctp_addr		*laddr;
716 	void			*addr_buf;
717 	struct sctp_af		*af;
718 	struct sctp_sockaddr_entry *saddr;
719 	int 			i;
720 	int 			retval = 0;
721 	int			stored = 0;
722 
723 	chunk = NULL;
724 	if (!net->sctp.addip_enable)
725 		return retval;
726 
727 	sp = sctp_sk(sk);
728 	ep = sp->ep;
729 
730 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
731 		 __func__, sk, addrs, addrcnt);
732 
733 	list_for_each_entry(asoc, &ep->asocs, asocs) {
734 
735 		if (!asoc->peer.asconf_capable)
736 			continue;
737 
738 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
739 			continue;
740 
741 		if (!sctp_state(asoc, ESTABLISHED))
742 			continue;
743 
744 		/* Check if any address in the packed array of addresses is
745 		 * not present in the bind address list of the association.
746 		 * If so, do not send the asconf chunk to its peer, but
747 		 * continue with other associations.
748 		 */
749 		addr_buf = addrs;
750 		for (i = 0; i < addrcnt; i++) {
751 			laddr = addr_buf;
752 			af = sctp_get_af_specific(laddr->v4.sin_family);
753 			if (!af) {
754 				retval = -EINVAL;
755 				goto out;
756 			}
757 
758 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
759 				break;
760 
761 			addr_buf += af->sockaddr_len;
762 		}
763 		if (i < addrcnt)
764 			continue;
765 
766 		/* Find one address in the association's bind address list
767 		 * that is not in the packed array of addresses. This is to
768 		 * make sure that we do not delete all the addresses in the
769 		 * association.
770 		 */
771 		bp = &asoc->base.bind_addr;
772 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
773 					       addrcnt, sp);
774 		if ((laddr == NULL) && (addrcnt == 1)) {
775 			if (asoc->asconf_addr_del_pending)
776 				continue;
777 			asoc->asconf_addr_del_pending =
778 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
779 			if (asoc->asconf_addr_del_pending == NULL) {
780 				retval = -ENOMEM;
781 				goto out;
782 			}
783 			asoc->asconf_addr_del_pending->sa.sa_family =
784 				    addrs->sa_family;
785 			asoc->asconf_addr_del_pending->v4.sin_port =
786 				    htons(bp->port);
787 			if (addrs->sa_family == AF_INET) {
788 				struct sockaddr_in *sin;
789 
790 				sin = (struct sockaddr_in *)addrs;
791 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
792 			} else if (addrs->sa_family == AF_INET6) {
793 				struct sockaddr_in6 *sin6;
794 
795 				sin6 = (struct sockaddr_in6 *)addrs;
796 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
797 			}
798 
799 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
800 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
801 				 asoc->asconf_addr_del_pending);
802 
803 			asoc->src_out_of_asoc_ok = 1;
804 			stored = 1;
805 			goto skip_mkasconf;
806 		}
807 
808 		if (laddr == NULL)
809 			return -EINVAL;
810 
811 		/* We do not need RCU protection throughout this loop
812 		 * because this is done under a socket lock from the
813 		 * setsockopt call.
814 		 */
815 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
816 						   SCTP_PARAM_DEL_IP);
817 		if (!chunk) {
818 			retval = -ENOMEM;
819 			goto out;
820 		}
821 
822 skip_mkasconf:
823 		/* Reset use_as_src flag for the addresses in the bind address
824 		 * list that are to be deleted.
825 		 */
826 		addr_buf = addrs;
827 		for (i = 0; i < addrcnt; i++) {
828 			laddr = addr_buf;
829 			af = sctp_get_af_specific(laddr->v4.sin_family);
830 			list_for_each_entry(saddr, &bp->address_list, list) {
831 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
832 					saddr->state = SCTP_ADDR_DEL;
833 			}
834 			addr_buf += af->sockaddr_len;
835 		}
836 
837 		/* Update the route and saddr entries for all the transports
838 		 * as some of the addresses in the bind address list are
839 		 * about to be deleted and cannot be used as source addresses.
840 		 */
841 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
842 					transports) {
843 			dst_release(transport->dst);
844 			sctp_transport_route(transport, NULL,
845 					     sctp_sk(asoc->base.sk));
846 		}
847 
848 		if (stored)
849 			/* We don't need to transmit ASCONF */
850 			continue;
851 		retval = sctp_send_asconf(asoc, chunk);
852 	}
853 out:
854 	return retval;
855 }
856 
857 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
858 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
859 {
860 	struct sock *sk = sctp_opt2sk(sp);
861 	union sctp_addr *addr;
862 	struct sctp_af *af;
863 
864 	/* It is safe to write port space in caller. */
865 	addr = &addrw->a;
866 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
867 	af = sctp_get_af_specific(addr->sa.sa_family);
868 	if (!af)
869 		return -EINVAL;
870 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
871 		return -EINVAL;
872 
873 	if (addrw->state == SCTP_ADDR_NEW)
874 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
875 	else
876 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
877 }
878 
879 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
880  *
881  * API 8.1
882  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
883  *                int flags);
884  *
885  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
886  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
887  * or IPv6 addresses.
888  *
889  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
890  * Section 3.1.2 for this usage.
891  *
892  * addrs is a pointer to an array of one or more socket addresses. Each
893  * address is contained in its appropriate structure (i.e. struct
894  * sockaddr_in or struct sockaddr_in6) the family of the address type
895  * must be used to distinguish the address length (note that this
896  * representation is termed a "packed array" of addresses). The caller
897  * specifies the number of addresses in the array with addrcnt.
898  *
899  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
900  * -1, and sets errno to the appropriate error code.
901  *
902  * For SCTP, the port given in each socket address must be the same, or
903  * sctp_bindx() will fail, setting errno to EINVAL.
904  *
905  * The flags parameter is formed from the bitwise OR of zero or more of
906  * the following currently defined flags:
907  *
908  * SCTP_BINDX_ADD_ADDR
909  *
910  * SCTP_BINDX_REM_ADDR
911  *
912  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
913  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
914  * addresses from the association. The two flags are mutually exclusive;
915  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
916  * not remove all addresses from an association; sctp_bindx() will
917  * reject such an attempt with EINVAL.
918  *
919  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
920  * additional addresses with an endpoint after calling bind().  Or use
921  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
922  * socket is associated with so that no new association accepted will be
923  * associated with those addresses. If the endpoint supports dynamic
924  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
925  * endpoint to send the appropriate message to the peer to change the
926  * peers address lists.
927  *
928  * Adding and removing addresses from a connected association is
929  * optional functionality. Implementations that do not support this
930  * functionality should return EOPNOTSUPP.
931  *
932  * Basically do nothing but copying the addresses from user to kernel
933  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
934  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
935  * from userspace.
936  *
937  * We don't use copy_from_user() for optimization: we first do the
938  * sanity checks (buffer size -fast- and access check-healthy
939  * pointer); if all of those succeed, then we can alloc the memory
940  * (expensive operation) needed to copy the data to kernel. Then we do
941  * the copying without checking the user space area
942  * (__copy_from_user()).
943  *
944  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
945  * it.
946  *
947  * sk        The sk of the socket
948  * addrs     The pointer to the addresses in user land
949  * addrssize Size of the addrs buffer
950  * op        Operation to perform (add or remove, see the flags of
951  *           sctp_bindx)
952  *
953  * Returns 0 if ok, <0 errno code on error.
954  */
955 static int sctp_setsockopt_bindx(struct sock *sk,
956 				 struct sockaddr __user *addrs,
957 				 int addrs_size, int op)
958 {
959 	struct sockaddr *kaddrs;
960 	int err;
961 	int addrcnt = 0;
962 	int walk_size = 0;
963 	struct sockaddr *sa_addr;
964 	void *addr_buf;
965 	struct sctp_af *af;
966 
967 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
968 		 __func__, sk, addrs, addrs_size, op);
969 
970 	if (unlikely(addrs_size <= 0))
971 		return -EINVAL;
972 
973 	/* Check the user passed a healthy pointer.  */
974 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
975 		return -EFAULT;
976 
977 	/* Alloc space for the address array in kernel memory.  */
978 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
979 	if (unlikely(!kaddrs))
980 		return -ENOMEM;
981 
982 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
983 		kfree(kaddrs);
984 		return -EFAULT;
985 	}
986 
987 	/* Walk through the addrs buffer and count the number of addresses. */
988 	addr_buf = kaddrs;
989 	while (walk_size < addrs_size) {
990 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
991 			kfree(kaddrs);
992 			return -EINVAL;
993 		}
994 
995 		sa_addr = addr_buf;
996 		af = sctp_get_af_specific(sa_addr->sa_family);
997 
998 		/* If the address family is not supported or if this address
999 		 * causes the address buffer to overflow return EINVAL.
1000 		 */
1001 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1002 			kfree(kaddrs);
1003 			return -EINVAL;
1004 		}
1005 		addrcnt++;
1006 		addr_buf += af->sockaddr_len;
1007 		walk_size += af->sockaddr_len;
1008 	}
1009 
1010 	/* Do the work. */
1011 	switch (op) {
1012 	case SCTP_BINDX_ADD_ADDR:
1013 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1014 		if (err)
1015 			goto out;
1016 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1017 		break;
1018 
1019 	case SCTP_BINDX_REM_ADDR:
1020 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1021 		if (err)
1022 			goto out;
1023 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1024 		break;
1025 
1026 	default:
1027 		err = -EINVAL;
1028 		break;
1029 	}
1030 
1031 out:
1032 	kfree(kaddrs);
1033 
1034 	return err;
1035 }
1036 
1037 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1038  *
1039  * Common routine for handling connect() and sctp_connectx().
1040  * Connect will come in with just a single address.
1041  */
1042 static int __sctp_connect(struct sock *sk,
1043 			  struct sockaddr *kaddrs,
1044 			  int addrs_size,
1045 			  sctp_assoc_t *assoc_id)
1046 {
1047 	struct net *net = sock_net(sk);
1048 	struct sctp_sock *sp;
1049 	struct sctp_endpoint *ep;
1050 	struct sctp_association *asoc = NULL;
1051 	struct sctp_association *asoc2;
1052 	struct sctp_transport *transport;
1053 	union sctp_addr to;
1054 	struct sctp_af *af;
1055 	sctp_scope_t scope;
1056 	long timeo;
1057 	int err = 0;
1058 	int addrcnt = 0;
1059 	int walk_size = 0;
1060 	union sctp_addr *sa_addr = NULL;
1061 	void *addr_buf;
1062 	unsigned short port;
1063 	unsigned int f_flags = 0;
1064 
1065 	sp = sctp_sk(sk);
1066 	ep = sp->ep;
1067 
1068 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1069 	 * state - UDP-style peeled off socket or a TCP-style socket that
1070 	 * is already connected.
1071 	 * It cannot be done even on a TCP-style listening socket.
1072 	 */
1073 	if (sctp_sstate(sk, ESTABLISHED) ||
1074 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1075 		err = -EISCONN;
1076 		goto out_free;
1077 	}
1078 
1079 	/* Walk through the addrs buffer and count the number of addresses. */
1080 	addr_buf = kaddrs;
1081 	while (walk_size < addrs_size) {
1082 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 			err = -EINVAL;
1084 			goto out_free;
1085 		}
1086 
1087 		sa_addr = addr_buf;
1088 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089 
1090 		/* If the address family is not supported or if this address
1091 		 * causes the address buffer to overflow return EINVAL.
1092 		 */
1093 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 			err = -EINVAL;
1095 			goto out_free;
1096 		}
1097 
1098 		port = ntohs(sa_addr->v4.sin_port);
1099 
1100 		/* Save current address so we can work with it */
1101 		memcpy(&to, sa_addr, af->sockaddr_len);
1102 
1103 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 		if (err)
1105 			goto out_free;
1106 
1107 		/* Make sure the destination port is correctly set
1108 		 * in all addresses.
1109 		 */
1110 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 			err = -EINVAL;
1112 			goto out_free;
1113 		}
1114 
1115 		/* Check if there already is a matching association on the
1116 		 * endpoint (other than the one created here).
1117 		 */
1118 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 		if (asoc2 && asoc2 != asoc) {
1120 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 				err = -EISCONN;
1122 			else
1123 				err = -EALREADY;
1124 			goto out_free;
1125 		}
1126 
1127 		/* If we could not find a matching association on the endpoint,
1128 		 * make sure that there is no peeled-off association matching
1129 		 * the peer address even on another socket.
1130 		 */
1131 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 			err = -EADDRNOTAVAIL;
1133 			goto out_free;
1134 		}
1135 
1136 		if (!asoc) {
1137 			/* If a bind() or sctp_bindx() is not called prior to
1138 			 * an sctp_connectx() call, the system picks an
1139 			 * ephemeral port and will choose an address set
1140 			 * equivalent to binding with a wildcard address.
1141 			 */
1142 			if (!ep->base.bind_addr.port) {
1143 				if (sctp_autobind(sk)) {
1144 					err = -EAGAIN;
1145 					goto out_free;
1146 				}
1147 			} else {
1148 				/*
1149 				 * If an unprivileged user inherits a 1-many
1150 				 * style socket with open associations on a
1151 				 * privileged port, it MAY be permitted to
1152 				 * accept new associations, but it SHOULD NOT
1153 				 * be permitted to open new associations.
1154 				 */
1155 				if (ep->base.bind_addr.port < PROT_SOCK &&
1156 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 					err = -EACCES;
1158 					goto out_free;
1159 				}
1160 			}
1161 
1162 			scope = sctp_scope(&to);
1163 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 			if (!asoc) {
1165 				err = -ENOMEM;
1166 				goto out_free;
1167 			}
1168 
1169 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 							      GFP_KERNEL);
1171 			if (err < 0) {
1172 				goto out_free;
1173 			}
1174 
1175 		}
1176 
1177 		/* Prime the peer's transport structures.  */
1178 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 						SCTP_UNKNOWN);
1180 		if (!transport) {
1181 			err = -ENOMEM;
1182 			goto out_free;
1183 		}
1184 
1185 		addrcnt++;
1186 		addr_buf += af->sockaddr_len;
1187 		walk_size += af->sockaddr_len;
1188 	}
1189 
1190 	/* In case the user of sctp_connectx() wants an association
1191 	 * id back, assign one now.
1192 	 */
1193 	if (assoc_id) {
1194 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 		if (err < 0)
1196 			goto out_free;
1197 	}
1198 
1199 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 	if (err < 0) {
1201 		goto out_free;
1202 	}
1203 
1204 	/* Initialize sk's dport and daddr for getpeername() */
1205 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1207 	af->to_sk_daddr(sa_addr, sk);
1208 	sk->sk_err = 0;
1209 
1210 	/* in-kernel sockets don't generally have a file allocated to them
1211 	 * if all they do is call sock_create_kern().
1212 	 */
1213 	if (sk->sk_socket->file)
1214 		f_flags = sk->sk_socket->file->f_flags;
1215 
1216 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1217 
1218 	err = sctp_wait_for_connect(asoc, &timeo);
1219 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1220 		*assoc_id = asoc->assoc_id;
1221 
1222 	/* Don't free association on exit. */
1223 	asoc = NULL;
1224 
1225 out_free:
1226 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1227 		 __func__, asoc, kaddrs, err);
1228 
1229 	if (asoc) {
1230 		/* sctp_primitive_ASSOCIATE may have added this association
1231 		 * To the hash table, try to unhash it, just in case, its a noop
1232 		 * if it wasn't hashed so we're safe
1233 		 */
1234 		sctp_unhash_established(asoc);
1235 		sctp_association_free(asoc);
1236 	}
1237 	return err;
1238 }
1239 
1240 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1241  *
1242  * API 8.9
1243  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1244  * 			sctp_assoc_t *asoc);
1245  *
1246  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1247  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1248  * or IPv6 addresses.
1249  *
1250  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1251  * Section 3.1.2 for this usage.
1252  *
1253  * addrs is a pointer to an array of one or more socket addresses. Each
1254  * address is contained in its appropriate structure (i.e. struct
1255  * sockaddr_in or struct sockaddr_in6) the family of the address type
1256  * must be used to distengish the address length (note that this
1257  * representation is termed a "packed array" of addresses). The caller
1258  * specifies the number of addresses in the array with addrcnt.
1259  *
1260  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1261  * the association id of the new association.  On failure, sctp_connectx()
1262  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1263  * is not touched by the kernel.
1264  *
1265  * For SCTP, the port given in each socket address must be the same, or
1266  * sctp_connectx() will fail, setting errno to EINVAL.
1267  *
1268  * An application can use sctp_connectx to initiate an association with
1269  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1270  * allows a caller to specify multiple addresses at which a peer can be
1271  * reached.  The way the SCTP stack uses the list of addresses to set up
1272  * the association is implementation dependent.  This function only
1273  * specifies that the stack will try to make use of all the addresses in
1274  * the list when needed.
1275  *
1276  * Note that the list of addresses passed in is only used for setting up
1277  * the association.  It does not necessarily equal the set of addresses
1278  * the peer uses for the resulting association.  If the caller wants to
1279  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1280  * retrieve them after the association has been set up.
1281  *
1282  * Basically do nothing but copying the addresses from user to kernel
1283  * land and invoking either sctp_connectx(). This is used for tunneling
1284  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1285  *
1286  * We don't use copy_from_user() for optimization: we first do the
1287  * sanity checks (buffer size -fast- and access check-healthy
1288  * pointer); if all of those succeed, then we can alloc the memory
1289  * (expensive operation) needed to copy the data to kernel. Then we do
1290  * the copying without checking the user space area
1291  * (__copy_from_user()).
1292  *
1293  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1294  * it.
1295  *
1296  * sk        The sk of the socket
1297  * addrs     The pointer to the addresses in user land
1298  * addrssize Size of the addrs buffer
1299  *
1300  * Returns >=0 if ok, <0 errno code on error.
1301  */
1302 static int __sctp_setsockopt_connectx(struct sock *sk,
1303 				      struct sockaddr __user *addrs,
1304 				      int addrs_size,
1305 				      sctp_assoc_t *assoc_id)
1306 {
1307 	int err = 0;
1308 	struct sockaddr *kaddrs;
1309 
1310 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1311 		 __func__, sk, addrs, addrs_size);
1312 
1313 	if (unlikely(addrs_size <= 0))
1314 		return -EINVAL;
1315 
1316 	/* Check the user passed a healthy pointer.  */
1317 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1318 		return -EFAULT;
1319 
1320 	/* Alloc space for the address array in kernel memory.  */
1321 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1322 	if (unlikely(!kaddrs))
1323 		return -ENOMEM;
1324 
1325 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1326 		err = -EFAULT;
1327 	} else {
1328 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1329 	}
1330 
1331 	kfree(kaddrs);
1332 
1333 	return err;
1334 }
1335 
1336 /*
1337  * This is an older interface.  It's kept for backward compatibility
1338  * to the option that doesn't provide association id.
1339  */
1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 					struct sockaddr __user *addrs,
1342 					int addrs_size)
1343 {
1344 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1345 }
1346 
1347 /*
1348  * New interface for the API.  The since the API is done with a socket
1349  * option, to make it simple we feed back the association id is as a return
1350  * indication to the call.  Error is always negative and association id is
1351  * always positive.
1352  */
1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 				    struct sockaddr __user *addrs,
1355 				    int addrs_size)
1356 {
1357 	sctp_assoc_t assoc_id = 0;
1358 	int err = 0;
1359 
1360 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1361 
1362 	if (err)
1363 		return err;
1364 	else
1365 		return assoc_id;
1366 }
1367 
1368 /*
1369  * New (hopefully final) interface for the API.
1370  * We use the sctp_getaddrs_old structure so that use-space library
1371  * can avoid any unnecessary allocations.   The only defferent part
1372  * is that we store the actual length of the address buffer into the
1373  * addrs_num structure member.  That way we can re-use the existing
1374  * code.
1375  */
1376 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1377 				     char __user *optval,
1378 				     int __user *optlen)
1379 {
1380 	struct sctp_getaddrs_old param;
1381 	sctp_assoc_t assoc_id = 0;
1382 	int err = 0;
1383 
1384 	if (len < sizeof(param))
1385 		return -EINVAL;
1386 
1387 	if (copy_from_user(&param, optval, sizeof(param)))
1388 		return -EFAULT;
1389 
1390 	err = __sctp_setsockopt_connectx(sk,
1391 			(struct sockaddr __user *)param.addrs,
1392 			param.addr_num, &assoc_id);
1393 
1394 	if (err == 0 || err == -EINPROGRESS) {
1395 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1396 			return -EFAULT;
1397 		if (put_user(sizeof(assoc_id), optlen))
1398 			return -EFAULT;
1399 	}
1400 
1401 	return err;
1402 }
1403 
1404 /* API 3.1.4 close() - UDP Style Syntax
1405  * Applications use close() to perform graceful shutdown (as described in
1406  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1407  * by a UDP-style socket.
1408  *
1409  * The syntax is
1410  *
1411  *   ret = close(int sd);
1412  *
1413  *   sd      - the socket descriptor of the associations to be closed.
1414  *
1415  * To gracefully shutdown a specific association represented by the
1416  * UDP-style socket, an application should use the sendmsg() call,
1417  * passing no user data, but including the appropriate flag in the
1418  * ancillary data (see Section xxxx).
1419  *
1420  * If sd in the close() call is a branched-off socket representing only
1421  * one association, the shutdown is performed on that association only.
1422  *
1423  * 4.1.6 close() - TCP Style Syntax
1424  *
1425  * Applications use close() to gracefully close down an association.
1426  *
1427  * The syntax is:
1428  *
1429  *    int close(int sd);
1430  *
1431  *      sd      - the socket descriptor of the association to be closed.
1432  *
1433  * After an application calls close() on a socket descriptor, no further
1434  * socket operations will succeed on that descriptor.
1435  *
1436  * API 7.1.4 SO_LINGER
1437  *
1438  * An application using the TCP-style socket can use this option to
1439  * perform the SCTP ABORT primitive.  The linger option structure is:
1440  *
1441  *  struct  linger {
1442  *     int     l_onoff;                // option on/off
1443  *     int     l_linger;               // linger time
1444  * };
1445  *
1446  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1447  * to 0, calling close() is the same as the ABORT primitive.  If the
1448  * value is set to a negative value, the setsockopt() call will return
1449  * an error.  If the value is set to a positive value linger_time, the
1450  * close() can be blocked for at most linger_time ms.  If the graceful
1451  * shutdown phase does not finish during this period, close() will
1452  * return but the graceful shutdown phase continues in the system.
1453  */
1454 static void sctp_close(struct sock *sk, long timeout)
1455 {
1456 	struct net *net = sock_net(sk);
1457 	struct sctp_endpoint *ep;
1458 	struct sctp_association *asoc;
1459 	struct list_head *pos, *temp;
1460 	unsigned int data_was_unread;
1461 
1462 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1463 
1464 	lock_sock(sk);
1465 	sk->sk_shutdown = SHUTDOWN_MASK;
1466 	sk->sk_state = SCTP_SS_CLOSING;
1467 
1468 	ep = sctp_sk(sk)->ep;
1469 
1470 	/* Clean up any skbs sitting on the receive queue.  */
1471 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1472 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1473 
1474 	/* Walk all associations on an endpoint.  */
1475 	list_for_each_safe(pos, temp, &ep->asocs) {
1476 		asoc = list_entry(pos, struct sctp_association, asocs);
1477 
1478 		if (sctp_style(sk, TCP)) {
1479 			/* A closed association can still be in the list if
1480 			 * it belongs to a TCP-style listening socket that is
1481 			 * not yet accepted. If so, free it. If not, send an
1482 			 * ABORT or SHUTDOWN based on the linger options.
1483 			 */
1484 			if (sctp_state(asoc, CLOSED)) {
1485 				sctp_unhash_established(asoc);
1486 				sctp_association_free(asoc);
1487 				continue;
1488 			}
1489 		}
1490 
1491 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1492 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1493 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1494 			struct sctp_chunk *chunk;
1495 
1496 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1497 			if (chunk)
1498 				sctp_primitive_ABORT(net, asoc, chunk);
1499 		} else
1500 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1501 	}
1502 
1503 	/* On a TCP-style socket, block for at most linger_time if set. */
1504 	if (sctp_style(sk, TCP) && timeout)
1505 		sctp_wait_for_close(sk, timeout);
1506 
1507 	/* This will run the backlog queue.  */
1508 	release_sock(sk);
1509 
1510 	/* Supposedly, no process has access to the socket, but
1511 	 * the net layers still may.
1512 	 */
1513 	local_bh_disable();
1514 	bh_lock_sock(sk);
1515 
1516 	/* Hold the sock, since sk_common_release() will put sock_put()
1517 	 * and we have just a little more cleanup.
1518 	 */
1519 	sock_hold(sk);
1520 	sk_common_release(sk);
1521 
1522 	bh_unlock_sock(sk);
1523 	local_bh_enable();
1524 
1525 	sock_put(sk);
1526 
1527 	SCTP_DBG_OBJCNT_DEC(sock);
1528 }
1529 
1530 /* Handle EPIPE error. */
1531 static int sctp_error(struct sock *sk, int flags, int err)
1532 {
1533 	if (err == -EPIPE)
1534 		err = sock_error(sk) ? : -EPIPE;
1535 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1536 		send_sig(SIGPIPE, current, 0);
1537 	return err;
1538 }
1539 
1540 /* API 3.1.3 sendmsg() - UDP Style Syntax
1541  *
1542  * An application uses sendmsg() and recvmsg() calls to transmit data to
1543  * and receive data from its peer.
1544  *
1545  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1546  *                  int flags);
1547  *
1548  *  socket  - the socket descriptor of the endpoint.
1549  *  message - pointer to the msghdr structure which contains a single
1550  *            user message and possibly some ancillary data.
1551  *
1552  *            See Section 5 for complete description of the data
1553  *            structures.
1554  *
1555  *  flags   - flags sent or received with the user message, see Section
1556  *            5 for complete description of the flags.
1557  *
1558  * Note:  This function could use a rewrite especially when explicit
1559  * connect support comes in.
1560  */
1561 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1562 
1563 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1564 
1565 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1566 			struct msghdr *msg, size_t msg_len)
1567 {
1568 	struct net *net = sock_net(sk);
1569 	struct sctp_sock *sp;
1570 	struct sctp_endpoint *ep;
1571 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1572 	struct sctp_transport *transport, *chunk_tp;
1573 	struct sctp_chunk *chunk;
1574 	union sctp_addr to;
1575 	struct sockaddr *msg_name = NULL;
1576 	struct sctp_sndrcvinfo default_sinfo;
1577 	struct sctp_sndrcvinfo *sinfo;
1578 	struct sctp_initmsg *sinit;
1579 	sctp_assoc_t associd = 0;
1580 	sctp_cmsgs_t cmsgs = { NULL };
1581 	int err;
1582 	sctp_scope_t scope;
1583 	long timeo;
1584 	__u16 sinfo_flags = 0;
1585 	struct sctp_datamsg *datamsg;
1586 	int msg_flags = msg->msg_flags;
1587 
1588 	err = 0;
1589 	sp = sctp_sk(sk);
1590 	ep = sp->ep;
1591 
1592 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1593 		 msg, msg_len, ep);
1594 
1595 	/* We cannot send a message over a TCP-style listening socket. */
1596 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1597 		err = -EPIPE;
1598 		goto out_nounlock;
1599 	}
1600 
1601 	/* Parse out the SCTP CMSGs.  */
1602 	err = sctp_msghdr_parse(msg, &cmsgs);
1603 	if (err) {
1604 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1605 		goto out_nounlock;
1606 	}
1607 
1608 	/* Fetch the destination address for this packet.  This
1609 	 * address only selects the association--it is not necessarily
1610 	 * the address we will send to.
1611 	 * For a peeled-off socket, msg_name is ignored.
1612 	 */
1613 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1614 		int msg_namelen = msg->msg_namelen;
1615 
1616 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1617 				       msg_namelen);
1618 		if (err)
1619 			return err;
1620 
1621 		if (msg_namelen > sizeof(to))
1622 			msg_namelen = sizeof(to);
1623 		memcpy(&to, msg->msg_name, msg_namelen);
1624 		msg_name = msg->msg_name;
1625 	}
1626 
1627 	sinfo = cmsgs.info;
1628 	sinit = cmsgs.init;
1629 
1630 	/* Did the user specify SNDRCVINFO?  */
1631 	if (sinfo) {
1632 		sinfo_flags = sinfo->sinfo_flags;
1633 		associd = sinfo->sinfo_assoc_id;
1634 	}
1635 
1636 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1637 		 msg_len, sinfo_flags);
1638 
1639 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1640 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1641 		err = -EINVAL;
1642 		goto out_nounlock;
1643 	}
1644 
1645 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1646 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1647 	 * If SCTP_ABORT is set, the message length could be non zero with
1648 	 * the msg_iov set to the user abort reason.
1649 	 */
1650 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1651 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1652 		err = -EINVAL;
1653 		goto out_nounlock;
1654 	}
1655 
1656 	/* If SCTP_ADDR_OVER is set, there must be an address
1657 	 * specified in msg_name.
1658 	 */
1659 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1660 		err = -EINVAL;
1661 		goto out_nounlock;
1662 	}
1663 
1664 	transport = NULL;
1665 
1666 	pr_debug("%s: about to look up association\n", __func__);
1667 
1668 	lock_sock(sk);
1669 
1670 	/* If a msg_name has been specified, assume this is to be used.  */
1671 	if (msg_name) {
1672 		/* Look for a matching association on the endpoint. */
1673 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1674 		if (!asoc) {
1675 			/* If we could not find a matching association on the
1676 			 * endpoint, make sure that it is not a TCP-style
1677 			 * socket that already has an association or there is
1678 			 * no peeled-off association on another socket.
1679 			 */
1680 			if ((sctp_style(sk, TCP) &&
1681 			     sctp_sstate(sk, ESTABLISHED)) ||
1682 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1683 				err = -EADDRNOTAVAIL;
1684 				goto out_unlock;
1685 			}
1686 		}
1687 	} else {
1688 		asoc = sctp_id2assoc(sk, associd);
1689 		if (!asoc) {
1690 			err = -EPIPE;
1691 			goto out_unlock;
1692 		}
1693 	}
1694 
1695 	if (asoc) {
1696 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1697 
1698 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1699 		 * socket that has an association in CLOSED state. This can
1700 		 * happen when an accepted socket has an association that is
1701 		 * already CLOSED.
1702 		 */
1703 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1704 			err = -EPIPE;
1705 			goto out_unlock;
1706 		}
1707 
1708 		if (sinfo_flags & SCTP_EOF) {
1709 			pr_debug("%s: shutting down association:%p\n",
1710 				 __func__, asoc);
1711 
1712 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1713 			err = 0;
1714 			goto out_unlock;
1715 		}
1716 		if (sinfo_flags & SCTP_ABORT) {
1717 
1718 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1719 			if (!chunk) {
1720 				err = -ENOMEM;
1721 				goto out_unlock;
1722 			}
1723 
1724 			pr_debug("%s: aborting association:%p\n",
1725 				 __func__, asoc);
1726 
1727 			sctp_primitive_ABORT(net, asoc, chunk);
1728 			err = 0;
1729 			goto out_unlock;
1730 		}
1731 	}
1732 
1733 	/* Do we need to create the association?  */
1734 	if (!asoc) {
1735 		pr_debug("%s: there is no association yet\n", __func__);
1736 
1737 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1738 			err = -EINVAL;
1739 			goto out_unlock;
1740 		}
1741 
1742 		/* Check for invalid stream against the stream counts,
1743 		 * either the default or the user specified stream counts.
1744 		 */
1745 		if (sinfo) {
1746 			if (!sinit || !sinit->sinit_num_ostreams) {
1747 				/* Check against the defaults. */
1748 				if (sinfo->sinfo_stream >=
1749 				    sp->initmsg.sinit_num_ostreams) {
1750 					err = -EINVAL;
1751 					goto out_unlock;
1752 				}
1753 			} else {
1754 				/* Check against the requested.  */
1755 				if (sinfo->sinfo_stream >=
1756 				    sinit->sinit_num_ostreams) {
1757 					err = -EINVAL;
1758 					goto out_unlock;
1759 				}
1760 			}
1761 		}
1762 
1763 		/*
1764 		 * API 3.1.2 bind() - UDP Style Syntax
1765 		 * If a bind() or sctp_bindx() is not called prior to a
1766 		 * sendmsg() call that initiates a new association, the
1767 		 * system picks an ephemeral port and will choose an address
1768 		 * set equivalent to binding with a wildcard address.
1769 		 */
1770 		if (!ep->base.bind_addr.port) {
1771 			if (sctp_autobind(sk)) {
1772 				err = -EAGAIN;
1773 				goto out_unlock;
1774 			}
1775 		} else {
1776 			/*
1777 			 * If an unprivileged user inherits a one-to-many
1778 			 * style socket with open associations on a privileged
1779 			 * port, it MAY be permitted to accept new associations,
1780 			 * but it SHOULD NOT be permitted to open new
1781 			 * associations.
1782 			 */
1783 			if (ep->base.bind_addr.port < PROT_SOCK &&
1784 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1785 				err = -EACCES;
1786 				goto out_unlock;
1787 			}
1788 		}
1789 
1790 		scope = sctp_scope(&to);
1791 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1792 		if (!new_asoc) {
1793 			err = -ENOMEM;
1794 			goto out_unlock;
1795 		}
1796 		asoc = new_asoc;
1797 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1798 		if (err < 0) {
1799 			err = -ENOMEM;
1800 			goto out_free;
1801 		}
1802 
1803 		/* If the SCTP_INIT ancillary data is specified, set all
1804 		 * the association init values accordingly.
1805 		 */
1806 		if (sinit) {
1807 			if (sinit->sinit_num_ostreams) {
1808 				asoc->c.sinit_num_ostreams =
1809 					sinit->sinit_num_ostreams;
1810 			}
1811 			if (sinit->sinit_max_instreams) {
1812 				asoc->c.sinit_max_instreams =
1813 					sinit->sinit_max_instreams;
1814 			}
1815 			if (sinit->sinit_max_attempts) {
1816 				asoc->max_init_attempts
1817 					= sinit->sinit_max_attempts;
1818 			}
1819 			if (sinit->sinit_max_init_timeo) {
1820 				asoc->max_init_timeo =
1821 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1822 			}
1823 		}
1824 
1825 		/* Prime the peer's transport structures.  */
1826 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1827 		if (!transport) {
1828 			err = -ENOMEM;
1829 			goto out_free;
1830 		}
1831 	}
1832 
1833 	/* ASSERT: we have a valid association at this point.  */
1834 	pr_debug("%s: we have a valid association\n", __func__);
1835 
1836 	if (!sinfo) {
1837 		/* If the user didn't specify SNDRCVINFO, make up one with
1838 		 * some defaults.
1839 		 */
1840 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1841 		default_sinfo.sinfo_stream = asoc->default_stream;
1842 		default_sinfo.sinfo_flags = asoc->default_flags;
1843 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1844 		default_sinfo.sinfo_context = asoc->default_context;
1845 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1846 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1847 		sinfo = &default_sinfo;
1848 	}
1849 
1850 	/* API 7.1.7, the sndbuf size per association bounds the
1851 	 * maximum size of data that can be sent in a single send call.
1852 	 */
1853 	if (msg_len > sk->sk_sndbuf) {
1854 		err = -EMSGSIZE;
1855 		goto out_free;
1856 	}
1857 
1858 	if (asoc->pmtu_pending)
1859 		sctp_assoc_pending_pmtu(sk, asoc);
1860 
1861 	/* If fragmentation is disabled and the message length exceeds the
1862 	 * association fragmentation point, return EMSGSIZE.  The I-D
1863 	 * does not specify what this error is, but this looks like
1864 	 * a great fit.
1865 	 */
1866 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1867 		err = -EMSGSIZE;
1868 		goto out_free;
1869 	}
1870 
1871 	/* Check for invalid stream. */
1872 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1873 		err = -EINVAL;
1874 		goto out_free;
1875 	}
1876 
1877 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1878 	if (!sctp_wspace(asoc)) {
1879 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1880 		if (err)
1881 			goto out_free;
1882 	}
1883 
1884 	/* If an address is passed with the sendto/sendmsg call, it is used
1885 	 * to override the primary destination address in the TCP model, or
1886 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1887 	 */
1888 	if ((sctp_style(sk, TCP) && msg_name) ||
1889 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1890 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1891 		if (!chunk_tp) {
1892 			err = -EINVAL;
1893 			goto out_free;
1894 		}
1895 	} else
1896 		chunk_tp = NULL;
1897 
1898 	/* Auto-connect, if we aren't connected already. */
1899 	if (sctp_state(asoc, CLOSED)) {
1900 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1901 		if (err < 0)
1902 			goto out_free;
1903 
1904 		pr_debug("%s: we associated primitively\n", __func__);
1905 	}
1906 
1907 	/* Break the message into multiple chunks of maximum size. */
1908 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1909 	if (IS_ERR(datamsg)) {
1910 		err = PTR_ERR(datamsg);
1911 		goto out_free;
1912 	}
1913 
1914 	/* Now send the (possibly) fragmented message. */
1915 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1916 		sctp_chunk_hold(chunk);
1917 
1918 		/* Do accounting for the write space.  */
1919 		sctp_set_owner_w(chunk);
1920 
1921 		chunk->transport = chunk_tp;
1922 	}
1923 
1924 	/* Send it to the lower layers.  Note:  all chunks
1925 	 * must either fail or succeed.   The lower layer
1926 	 * works that way today.  Keep it that way or this
1927 	 * breaks.
1928 	 */
1929 	err = sctp_primitive_SEND(net, asoc, datamsg);
1930 	/* Did the lower layer accept the chunk? */
1931 	if (err) {
1932 		sctp_datamsg_free(datamsg);
1933 		goto out_free;
1934 	}
1935 
1936 	pr_debug("%s: we sent primitively\n", __func__);
1937 
1938 	sctp_datamsg_put(datamsg);
1939 	err = msg_len;
1940 
1941 	/* If we are already past ASSOCIATE, the lower
1942 	 * layers are responsible for association cleanup.
1943 	 */
1944 	goto out_unlock;
1945 
1946 out_free:
1947 	if (new_asoc) {
1948 		sctp_unhash_established(asoc);
1949 		sctp_association_free(asoc);
1950 	}
1951 out_unlock:
1952 	release_sock(sk);
1953 
1954 out_nounlock:
1955 	return sctp_error(sk, msg_flags, err);
1956 
1957 #if 0
1958 do_sock_err:
1959 	if (msg_len)
1960 		err = msg_len;
1961 	else
1962 		err = sock_error(sk);
1963 	goto out;
1964 
1965 do_interrupted:
1966 	if (msg_len)
1967 		err = msg_len;
1968 	goto out;
1969 #endif /* 0 */
1970 }
1971 
1972 /* This is an extended version of skb_pull() that removes the data from the
1973  * start of a skb even when data is spread across the list of skb's in the
1974  * frag_list. len specifies the total amount of data that needs to be removed.
1975  * when 'len' bytes could be removed from the skb, it returns 0.
1976  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1977  * could not be removed.
1978  */
1979 static int sctp_skb_pull(struct sk_buff *skb, int len)
1980 {
1981 	struct sk_buff *list;
1982 	int skb_len = skb_headlen(skb);
1983 	int rlen;
1984 
1985 	if (len <= skb_len) {
1986 		__skb_pull(skb, len);
1987 		return 0;
1988 	}
1989 	len -= skb_len;
1990 	__skb_pull(skb, skb_len);
1991 
1992 	skb_walk_frags(skb, list) {
1993 		rlen = sctp_skb_pull(list, len);
1994 		skb->len -= (len-rlen);
1995 		skb->data_len -= (len-rlen);
1996 
1997 		if (!rlen)
1998 			return 0;
1999 
2000 		len = rlen;
2001 	}
2002 
2003 	return len;
2004 }
2005 
2006 /* API 3.1.3  recvmsg() - UDP Style Syntax
2007  *
2008  *  ssize_t recvmsg(int socket, struct msghdr *message,
2009  *                    int flags);
2010  *
2011  *  socket  - the socket descriptor of the endpoint.
2012  *  message - pointer to the msghdr structure which contains a single
2013  *            user message and possibly some ancillary data.
2014  *
2015  *            See Section 5 for complete description of the data
2016  *            structures.
2017  *
2018  *  flags   - flags sent or received with the user message, see Section
2019  *            5 for complete description of the flags.
2020  */
2021 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2022 
2023 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2024 			struct msghdr *msg, size_t len, int noblock,
2025 			int flags, int *addr_len)
2026 {
2027 	struct sctp_ulpevent *event = NULL;
2028 	struct sctp_sock *sp = sctp_sk(sk);
2029 	struct sk_buff *skb;
2030 	int copied;
2031 	int err = 0;
2032 	int skb_len;
2033 
2034 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2035 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2036 		 addr_len);
2037 
2038 	lock_sock(sk);
2039 
2040 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2041 		err = -ENOTCONN;
2042 		goto out;
2043 	}
2044 
2045 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2046 	if (!skb)
2047 		goto out;
2048 
2049 	/* Get the total length of the skb including any skb's in the
2050 	 * frag_list.
2051 	 */
2052 	skb_len = skb->len;
2053 
2054 	copied = skb_len;
2055 	if (copied > len)
2056 		copied = len;
2057 
2058 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2059 
2060 	event = sctp_skb2event(skb);
2061 
2062 	if (err)
2063 		goto out_free;
2064 
2065 	sock_recv_ts_and_drops(msg, sk, skb);
2066 	if (sctp_ulpevent_is_notification(event)) {
2067 		msg->msg_flags |= MSG_NOTIFICATION;
2068 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2069 	} else {
2070 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2071 	}
2072 
2073 	/* Check if we allow SCTP_SNDRCVINFO. */
2074 	if (sp->subscribe.sctp_data_io_event)
2075 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2076 #if 0
2077 	/* FIXME: we should be calling IP/IPv6 layers.  */
2078 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2079 		ip_cmsg_recv(msg, skb);
2080 #endif
2081 
2082 	err = copied;
2083 
2084 	/* If skb's length exceeds the user's buffer, update the skb and
2085 	 * push it back to the receive_queue so that the next call to
2086 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2087 	 */
2088 	if (skb_len > copied) {
2089 		msg->msg_flags &= ~MSG_EOR;
2090 		if (flags & MSG_PEEK)
2091 			goto out_free;
2092 		sctp_skb_pull(skb, copied);
2093 		skb_queue_head(&sk->sk_receive_queue, skb);
2094 
2095 		/* When only partial message is copied to the user, increase
2096 		 * rwnd by that amount. If all the data in the skb is read,
2097 		 * rwnd is updated when the event is freed.
2098 		 */
2099 		if (!sctp_ulpevent_is_notification(event))
2100 			sctp_assoc_rwnd_increase(event->asoc, copied);
2101 		goto out;
2102 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2103 		   (event->msg_flags & MSG_EOR))
2104 		msg->msg_flags |= MSG_EOR;
2105 	else
2106 		msg->msg_flags &= ~MSG_EOR;
2107 
2108 out_free:
2109 	if (flags & MSG_PEEK) {
2110 		/* Release the skb reference acquired after peeking the skb in
2111 		 * sctp_skb_recv_datagram().
2112 		 */
2113 		kfree_skb(skb);
2114 	} else {
2115 		/* Free the event which includes releasing the reference to
2116 		 * the owner of the skb, freeing the skb and updating the
2117 		 * rwnd.
2118 		 */
2119 		sctp_ulpevent_free(event);
2120 	}
2121 out:
2122 	release_sock(sk);
2123 	return err;
2124 }
2125 
2126 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2127  *
2128  * This option is a on/off flag.  If enabled no SCTP message
2129  * fragmentation will be performed.  Instead if a message being sent
2130  * exceeds the current PMTU size, the message will NOT be sent and
2131  * instead a error will be indicated to the user.
2132  */
2133 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2134 					     char __user *optval,
2135 					     unsigned int optlen)
2136 {
2137 	int val;
2138 
2139 	if (optlen < sizeof(int))
2140 		return -EINVAL;
2141 
2142 	if (get_user(val, (int __user *)optval))
2143 		return -EFAULT;
2144 
2145 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2146 
2147 	return 0;
2148 }
2149 
2150 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2151 				  unsigned int optlen)
2152 {
2153 	struct sctp_association *asoc;
2154 	struct sctp_ulpevent *event;
2155 
2156 	if (optlen > sizeof(struct sctp_event_subscribe))
2157 		return -EINVAL;
2158 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2159 		return -EFAULT;
2160 
2161 	/*
2162 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2163 	 * if there is no data to be sent or retransmit, the stack will
2164 	 * immediately send up this notification.
2165 	 */
2166 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2167 				       &sctp_sk(sk)->subscribe)) {
2168 		asoc = sctp_id2assoc(sk, 0);
2169 
2170 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2171 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2172 					GFP_ATOMIC);
2173 			if (!event)
2174 				return -ENOMEM;
2175 
2176 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2177 		}
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2184  *
2185  * This socket option is applicable to the UDP-style socket only.  When
2186  * set it will cause associations that are idle for more than the
2187  * specified number of seconds to automatically close.  An association
2188  * being idle is defined an association that has NOT sent or received
2189  * user data.  The special value of '0' indicates that no automatic
2190  * close of any associations should be performed.  The option expects an
2191  * integer defining the number of seconds of idle time before an
2192  * association is closed.
2193  */
2194 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2195 				     unsigned int optlen)
2196 {
2197 	struct sctp_sock *sp = sctp_sk(sk);
2198 	struct net *net = sock_net(sk);
2199 
2200 	/* Applicable to UDP-style socket only */
2201 	if (sctp_style(sk, TCP))
2202 		return -EOPNOTSUPP;
2203 	if (optlen != sizeof(int))
2204 		return -EINVAL;
2205 	if (copy_from_user(&sp->autoclose, optval, optlen))
2206 		return -EFAULT;
2207 
2208 	if (sp->autoclose > net->sctp.max_autoclose)
2209 		sp->autoclose = net->sctp.max_autoclose;
2210 
2211 	return 0;
2212 }
2213 
2214 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2215  *
2216  * Applications can enable or disable heartbeats for any peer address of
2217  * an association, modify an address's heartbeat interval, force a
2218  * heartbeat to be sent immediately, and adjust the address's maximum
2219  * number of retransmissions sent before an address is considered
2220  * unreachable.  The following structure is used to access and modify an
2221  * address's parameters:
2222  *
2223  *  struct sctp_paddrparams {
2224  *     sctp_assoc_t            spp_assoc_id;
2225  *     struct sockaddr_storage spp_address;
2226  *     uint32_t                spp_hbinterval;
2227  *     uint16_t                spp_pathmaxrxt;
2228  *     uint32_t                spp_pathmtu;
2229  *     uint32_t                spp_sackdelay;
2230  *     uint32_t                spp_flags;
2231  * };
2232  *
2233  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2234  *                     application, and identifies the association for
2235  *                     this query.
2236  *   spp_address     - This specifies which address is of interest.
2237  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2238  *                     in milliseconds.  If a  value of zero
2239  *                     is present in this field then no changes are to
2240  *                     be made to this parameter.
2241  *   spp_pathmaxrxt  - This contains the maximum number of
2242  *                     retransmissions before this address shall be
2243  *                     considered unreachable. If a  value of zero
2244  *                     is present in this field then no changes are to
2245  *                     be made to this parameter.
2246  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2247  *                     specified here will be the "fixed" path mtu.
2248  *                     Note that if the spp_address field is empty
2249  *                     then all associations on this address will
2250  *                     have this fixed path mtu set upon them.
2251  *
2252  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2253  *                     the number of milliseconds that sacks will be delayed
2254  *                     for. This value will apply to all addresses of an
2255  *                     association if the spp_address field is empty. Note
2256  *                     also, that if delayed sack is enabled and this
2257  *                     value is set to 0, no change is made to the last
2258  *                     recorded delayed sack timer value.
2259  *
2260  *   spp_flags       - These flags are used to control various features
2261  *                     on an association. The flag field may contain
2262  *                     zero or more of the following options.
2263  *
2264  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2265  *                     specified address. Note that if the address
2266  *                     field is empty all addresses for the association
2267  *                     have heartbeats enabled upon them.
2268  *
2269  *                     SPP_HB_DISABLE - Disable heartbeats on the
2270  *                     speicifed address. Note that if the address
2271  *                     field is empty all addresses for the association
2272  *                     will have their heartbeats disabled. Note also
2273  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2274  *                     mutually exclusive, only one of these two should
2275  *                     be specified. Enabling both fields will have
2276  *                     undetermined results.
2277  *
2278  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2279  *                     to be made immediately.
2280  *
2281  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2282  *                     heartbeat delayis to be set to the value of 0
2283  *                     milliseconds.
2284  *
2285  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2286  *                     discovery upon the specified address. Note that
2287  *                     if the address feild is empty then all addresses
2288  *                     on the association are effected.
2289  *
2290  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2291  *                     discovery upon the specified address. Note that
2292  *                     if the address feild is empty then all addresses
2293  *                     on the association are effected. Not also that
2294  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2295  *                     exclusive. Enabling both will have undetermined
2296  *                     results.
2297  *
2298  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2299  *                     on delayed sack. The time specified in spp_sackdelay
2300  *                     is used to specify the sack delay for this address. Note
2301  *                     that if spp_address is empty then all addresses will
2302  *                     enable delayed sack and take on the sack delay
2303  *                     value specified in spp_sackdelay.
2304  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2305  *                     off delayed sack. If the spp_address field is blank then
2306  *                     delayed sack is disabled for the entire association. Note
2307  *                     also that this field is mutually exclusive to
2308  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2309  *                     results.
2310  */
2311 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2312 				       struct sctp_transport   *trans,
2313 				       struct sctp_association *asoc,
2314 				       struct sctp_sock        *sp,
2315 				       int                      hb_change,
2316 				       int                      pmtud_change,
2317 				       int                      sackdelay_change)
2318 {
2319 	int error;
2320 
2321 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2322 		struct net *net = sock_net(trans->asoc->base.sk);
2323 
2324 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2325 		if (error)
2326 			return error;
2327 	}
2328 
2329 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2330 	 * this field is ignored.  Note also that a value of zero indicates
2331 	 * the current setting should be left unchanged.
2332 	 */
2333 	if (params->spp_flags & SPP_HB_ENABLE) {
2334 
2335 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2336 		 * set.  This lets us use 0 value when this flag
2337 		 * is set.
2338 		 */
2339 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2340 			params->spp_hbinterval = 0;
2341 
2342 		if (params->spp_hbinterval ||
2343 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2344 			if (trans) {
2345 				trans->hbinterval =
2346 				    msecs_to_jiffies(params->spp_hbinterval);
2347 			} else if (asoc) {
2348 				asoc->hbinterval =
2349 				    msecs_to_jiffies(params->spp_hbinterval);
2350 			} else {
2351 				sp->hbinterval = params->spp_hbinterval;
2352 			}
2353 		}
2354 	}
2355 
2356 	if (hb_change) {
2357 		if (trans) {
2358 			trans->param_flags =
2359 				(trans->param_flags & ~SPP_HB) | hb_change;
2360 		} else if (asoc) {
2361 			asoc->param_flags =
2362 				(asoc->param_flags & ~SPP_HB) | hb_change;
2363 		} else {
2364 			sp->param_flags =
2365 				(sp->param_flags & ~SPP_HB) | hb_change;
2366 		}
2367 	}
2368 
2369 	/* When Path MTU discovery is disabled the value specified here will
2370 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2371 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2372 	 * effect).
2373 	 */
2374 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2375 		if (trans) {
2376 			trans->pathmtu = params->spp_pathmtu;
2377 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2378 		} else if (asoc) {
2379 			asoc->pathmtu = params->spp_pathmtu;
2380 			sctp_frag_point(asoc, params->spp_pathmtu);
2381 		} else {
2382 			sp->pathmtu = params->spp_pathmtu;
2383 		}
2384 	}
2385 
2386 	if (pmtud_change) {
2387 		if (trans) {
2388 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2389 				(params->spp_flags & SPP_PMTUD_ENABLE);
2390 			trans->param_flags =
2391 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2392 			if (update) {
2393 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2394 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2395 			}
2396 		} else if (asoc) {
2397 			asoc->param_flags =
2398 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2399 		} else {
2400 			sp->param_flags =
2401 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2402 		}
2403 	}
2404 
2405 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2406 	 * value of this field is ignored.  Note also that a value of zero
2407 	 * indicates the current setting should be left unchanged.
2408 	 */
2409 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2410 		if (trans) {
2411 			trans->sackdelay =
2412 				msecs_to_jiffies(params->spp_sackdelay);
2413 		} else if (asoc) {
2414 			asoc->sackdelay =
2415 				msecs_to_jiffies(params->spp_sackdelay);
2416 		} else {
2417 			sp->sackdelay = params->spp_sackdelay;
2418 		}
2419 	}
2420 
2421 	if (sackdelay_change) {
2422 		if (trans) {
2423 			trans->param_flags =
2424 				(trans->param_flags & ~SPP_SACKDELAY) |
2425 				sackdelay_change;
2426 		} else if (asoc) {
2427 			asoc->param_flags =
2428 				(asoc->param_flags & ~SPP_SACKDELAY) |
2429 				sackdelay_change;
2430 		} else {
2431 			sp->param_flags =
2432 				(sp->param_flags & ~SPP_SACKDELAY) |
2433 				sackdelay_change;
2434 		}
2435 	}
2436 
2437 	/* Note that a value of zero indicates the current setting should be
2438 	   left unchanged.
2439 	 */
2440 	if (params->spp_pathmaxrxt) {
2441 		if (trans) {
2442 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2443 		} else if (asoc) {
2444 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2445 		} else {
2446 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2447 		}
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2454 					    char __user *optval,
2455 					    unsigned int optlen)
2456 {
2457 	struct sctp_paddrparams  params;
2458 	struct sctp_transport   *trans = NULL;
2459 	struct sctp_association *asoc = NULL;
2460 	struct sctp_sock        *sp = sctp_sk(sk);
2461 	int error;
2462 	int hb_change, pmtud_change, sackdelay_change;
2463 
2464 	if (optlen != sizeof(struct sctp_paddrparams))
2465 		return -EINVAL;
2466 
2467 	if (copy_from_user(&params, optval, optlen))
2468 		return -EFAULT;
2469 
2470 	/* Validate flags and value parameters. */
2471 	hb_change        = params.spp_flags & SPP_HB;
2472 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2473 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2474 
2475 	if (hb_change        == SPP_HB ||
2476 	    pmtud_change     == SPP_PMTUD ||
2477 	    sackdelay_change == SPP_SACKDELAY ||
2478 	    params.spp_sackdelay > 500 ||
2479 	    (params.spp_pathmtu &&
2480 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2481 		return -EINVAL;
2482 
2483 	/* If an address other than INADDR_ANY is specified, and
2484 	 * no transport is found, then the request is invalid.
2485 	 */
2486 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2487 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2488 					       params.spp_assoc_id);
2489 		if (!trans)
2490 			return -EINVAL;
2491 	}
2492 
2493 	/* Get association, if assoc_id != 0 and the socket is a one
2494 	 * to many style socket, and an association was not found, then
2495 	 * the id was invalid.
2496 	 */
2497 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2498 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2499 		return -EINVAL;
2500 
2501 	/* Heartbeat demand can only be sent on a transport or
2502 	 * association, but not a socket.
2503 	 */
2504 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2505 		return -EINVAL;
2506 
2507 	/* Process parameters. */
2508 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2509 					    hb_change, pmtud_change,
2510 					    sackdelay_change);
2511 
2512 	if (error)
2513 		return error;
2514 
2515 	/* If changes are for association, also apply parameters to each
2516 	 * transport.
2517 	 */
2518 	if (!trans && asoc) {
2519 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2520 				transports) {
2521 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2522 						    hb_change, pmtud_change,
2523 						    sackdelay_change);
2524 		}
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2531 {
2532 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2533 }
2534 
2535 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2536 {
2537 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2538 }
2539 
2540 /*
2541  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2542  *
2543  * This option will effect the way delayed acks are performed.  This
2544  * option allows you to get or set the delayed ack time, in
2545  * milliseconds.  It also allows changing the delayed ack frequency.
2546  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2547  * the assoc_id is 0, then this sets or gets the endpoints default
2548  * values.  If the assoc_id field is non-zero, then the set or get
2549  * effects the specified association for the one to many model (the
2550  * assoc_id field is ignored by the one to one model).  Note that if
2551  * sack_delay or sack_freq are 0 when setting this option, then the
2552  * current values will remain unchanged.
2553  *
2554  * struct sctp_sack_info {
2555  *     sctp_assoc_t            sack_assoc_id;
2556  *     uint32_t                sack_delay;
2557  *     uint32_t                sack_freq;
2558  * };
2559  *
2560  * sack_assoc_id -  This parameter, indicates which association the user
2561  *    is performing an action upon.  Note that if this field's value is
2562  *    zero then the endpoints default value is changed (effecting future
2563  *    associations only).
2564  *
2565  * sack_delay -  This parameter contains the number of milliseconds that
2566  *    the user is requesting the delayed ACK timer be set to.  Note that
2567  *    this value is defined in the standard to be between 200 and 500
2568  *    milliseconds.
2569  *
2570  * sack_freq -  This parameter contains the number of packets that must
2571  *    be received before a sack is sent without waiting for the delay
2572  *    timer to expire.  The default value for this is 2, setting this
2573  *    value to 1 will disable the delayed sack algorithm.
2574  */
2575 
2576 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2577 				       char __user *optval, unsigned int optlen)
2578 {
2579 	struct sctp_sack_info    params;
2580 	struct sctp_transport   *trans = NULL;
2581 	struct sctp_association *asoc = NULL;
2582 	struct sctp_sock        *sp = sctp_sk(sk);
2583 
2584 	if (optlen == sizeof(struct sctp_sack_info)) {
2585 		if (copy_from_user(&params, optval, optlen))
2586 			return -EFAULT;
2587 
2588 		if (params.sack_delay == 0 && params.sack_freq == 0)
2589 			return 0;
2590 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2591 		pr_warn_ratelimited(DEPRECATED
2592 				    "%s (pid %d) "
2593 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2594 				    "Use struct sctp_sack_info instead\n",
2595 				    current->comm, task_pid_nr(current));
2596 		if (copy_from_user(&params, optval, optlen))
2597 			return -EFAULT;
2598 
2599 		if (params.sack_delay == 0)
2600 			params.sack_freq = 1;
2601 		else
2602 			params.sack_freq = 0;
2603 	} else
2604 		return -EINVAL;
2605 
2606 	/* Validate value parameter. */
2607 	if (params.sack_delay > 500)
2608 		return -EINVAL;
2609 
2610 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2611 	 * to many style socket, and an association was not found, then
2612 	 * the id was invalid.
2613 	 */
2614 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2615 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2616 		return -EINVAL;
2617 
2618 	if (params.sack_delay) {
2619 		if (asoc) {
2620 			asoc->sackdelay =
2621 				msecs_to_jiffies(params.sack_delay);
2622 			asoc->param_flags =
2623 				sctp_spp_sackdelay_enable(asoc->param_flags);
2624 		} else {
2625 			sp->sackdelay = params.sack_delay;
2626 			sp->param_flags =
2627 				sctp_spp_sackdelay_enable(sp->param_flags);
2628 		}
2629 	}
2630 
2631 	if (params.sack_freq == 1) {
2632 		if (asoc) {
2633 			asoc->param_flags =
2634 				sctp_spp_sackdelay_disable(asoc->param_flags);
2635 		} else {
2636 			sp->param_flags =
2637 				sctp_spp_sackdelay_disable(sp->param_flags);
2638 		}
2639 	} else if (params.sack_freq > 1) {
2640 		if (asoc) {
2641 			asoc->sackfreq = params.sack_freq;
2642 			asoc->param_flags =
2643 				sctp_spp_sackdelay_enable(asoc->param_flags);
2644 		} else {
2645 			sp->sackfreq = params.sack_freq;
2646 			sp->param_flags =
2647 				sctp_spp_sackdelay_enable(sp->param_flags);
2648 		}
2649 	}
2650 
2651 	/* If change is for association, also apply to each transport. */
2652 	if (asoc) {
2653 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2654 				transports) {
2655 			if (params.sack_delay) {
2656 				trans->sackdelay =
2657 					msecs_to_jiffies(params.sack_delay);
2658 				trans->param_flags =
2659 					sctp_spp_sackdelay_enable(trans->param_flags);
2660 			}
2661 			if (params.sack_freq == 1) {
2662 				trans->param_flags =
2663 					sctp_spp_sackdelay_disable(trans->param_flags);
2664 			} else if (params.sack_freq > 1) {
2665 				trans->sackfreq = params.sack_freq;
2666 				trans->param_flags =
2667 					sctp_spp_sackdelay_enable(trans->param_flags);
2668 			}
2669 		}
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2676  *
2677  * Applications can specify protocol parameters for the default association
2678  * initialization.  The option name argument to setsockopt() and getsockopt()
2679  * is SCTP_INITMSG.
2680  *
2681  * Setting initialization parameters is effective only on an unconnected
2682  * socket (for UDP-style sockets only future associations are effected
2683  * by the change).  With TCP-style sockets, this option is inherited by
2684  * sockets derived from a listener socket.
2685  */
2686 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2687 {
2688 	struct sctp_initmsg sinit;
2689 	struct sctp_sock *sp = sctp_sk(sk);
2690 
2691 	if (optlen != sizeof(struct sctp_initmsg))
2692 		return -EINVAL;
2693 	if (copy_from_user(&sinit, optval, optlen))
2694 		return -EFAULT;
2695 
2696 	if (sinit.sinit_num_ostreams)
2697 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2698 	if (sinit.sinit_max_instreams)
2699 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2700 	if (sinit.sinit_max_attempts)
2701 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2702 	if (sinit.sinit_max_init_timeo)
2703 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2704 
2705 	return 0;
2706 }
2707 
2708 /*
2709  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2710  *
2711  *   Applications that wish to use the sendto() system call may wish to
2712  *   specify a default set of parameters that would normally be supplied
2713  *   through the inclusion of ancillary data.  This socket option allows
2714  *   such an application to set the default sctp_sndrcvinfo structure.
2715  *   The application that wishes to use this socket option simply passes
2716  *   in to this call the sctp_sndrcvinfo structure defined in Section
2717  *   5.2.2) The input parameters accepted by this call include
2718  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2719  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2720  *   to this call if the caller is using the UDP model.
2721  */
2722 static int sctp_setsockopt_default_send_param(struct sock *sk,
2723 					      char __user *optval,
2724 					      unsigned int optlen)
2725 {
2726 	struct sctp_sndrcvinfo info;
2727 	struct sctp_association *asoc;
2728 	struct sctp_sock *sp = sctp_sk(sk);
2729 
2730 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2731 		return -EINVAL;
2732 	if (copy_from_user(&info, optval, optlen))
2733 		return -EFAULT;
2734 
2735 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2736 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2737 		return -EINVAL;
2738 
2739 	if (asoc) {
2740 		asoc->default_stream = info.sinfo_stream;
2741 		asoc->default_flags = info.sinfo_flags;
2742 		asoc->default_ppid = info.sinfo_ppid;
2743 		asoc->default_context = info.sinfo_context;
2744 		asoc->default_timetolive = info.sinfo_timetolive;
2745 	} else {
2746 		sp->default_stream = info.sinfo_stream;
2747 		sp->default_flags = info.sinfo_flags;
2748 		sp->default_ppid = info.sinfo_ppid;
2749 		sp->default_context = info.sinfo_context;
2750 		sp->default_timetolive = info.sinfo_timetolive;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2757  *
2758  * Requests that the local SCTP stack use the enclosed peer address as
2759  * the association primary.  The enclosed address must be one of the
2760  * association peer's addresses.
2761  */
2762 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2763 					unsigned int optlen)
2764 {
2765 	struct sctp_prim prim;
2766 	struct sctp_transport *trans;
2767 
2768 	if (optlen != sizeof(struct sctp_prim))
2769 		return -EINVAL;
2770 
2771 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2772 		return -EFAULT;
2773 
2774 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2775 	if (!trans)
2776 		return -EINVAL;
2777 
2778 	sctp_assoc_set_primary(trans->asoc, trans);
2779 
2780 	return 0;
2781 }
2782 
2783 /*
2784  * 7.1.5 SCTP_NODELAY
2785  *
2786  * Turn on/off any Nagle-like algorithm.  This means that packets are
2787  * generally sent as soon as possible and no unnecessary delays are
2788  * introduced, at the cost of more packets in the network.  Expects an
2789  *  integer boolean flag.
2790  */
2791 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2792 				   unsigned int optlen)
2793 {
2794 	int val;
2795 
2796 	if (optlen < sizeof(int))
2797 		return -EINVAL;
2798 	if (get_user(val, (int __user *)optval))
2799 		return -EFAULT;
2800 
2801 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2802 	return 0;
2803 }
2804 
2805 /*
2806  *
2807  * 7.1.1 SCTP_RTOINFO
2808  *
2809  * The protocol parameters used to initialize and bound retransmission
2810  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2811  * and modify these parameters.
2812  * All parameters are time values, in milliseconds.  A value of 0, when
2813  * modifying the parameters, indicates that the current value should not
2814  * be changed.
2815  *
2816  */
2817 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2818 {
2819 	struct sctp_rtoinfo rtoinfo;
2820 	struct sctp_association *asoc;
2821 	unsigned long rto_min, rto_max;
2822 	struct sctp_sock *sp = sctp_sk(sk);
2823 
2824 	if (optlen != sizeof (struct sctp_rtoinfo))
2825 		return -EINVAL;
2826 
2827 	if (copy_from_user(&rtoinfo, optval, optlen))
2828 		return -EFAULT;
2829 
2830 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2831 
2832 	/* Set the values to the specific association */
2833 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2834 		return -EINVAL;
2835 
2836 	rto_max = rtoinfo.srto_max;
2837 	rto_min = rtoinfo.srto_min;
2838 
2839 	if (rto_max)
2840 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2841 	else
2842 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2843 
2844 	if (rto_min)
2845 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2846 	else
2847 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2848 
2849 	if (rto_min > rto_max)
2850 		return -EINVAL;
2851 
2852 	if (asoc) {
2853 		if (rtoinfo.srto_initial != 0)
2854 			asoc->rto_initial =
2855 				msecs_to_jiffies(rtoinfo.srto_initial);
2856 		asoc->rto_max = rto_max;
2857 		asoc->rto_min = rto_min;
2858 	} else {
2859 		/* If there is no association or the association-id = 0
2860 		 * set the values to the endpoint.
2861 		 */
2862 		if (rtoinfo.srto_initial != 0)
2863 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2864 		sp->rtoinfo.srto_max = rto_max;
2865 		sp->rtoinfo.srto_min = rto_min;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 /*
2872  *
2873  * 7.1.2 SCTP_ASSOCINFO
2874  *
2875  * This option is used to tune the maximum retransmission attempts
2876  * of the association.
2877  * Returns an error if the new association retransmission value is
2878  * greater than the sum of the retransmission value  of the peer.
2879  * See [SCTP] for more information.
2880  *
2881  */
2882 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2883 {
2884 
2885 	struct sctp_assocparams assocparams;
2886 	struct sctp_association *asoc;
2887 
2888 	if (optlen != sizeof(struct sctp_assocparams))
2889 		return -EINVAL;
2890 	if (copy_from_user(&assocparams, optval, optlen))
2891 		return -EFAULT;
2892 
2893 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2894 
2895 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2896 		return -EINVAL;
2897 
2898 	/* Set the values to the specific association */
2899 	if (asoc) {
2900 		if (assocparams.sasoc_asocmaxrxt != 0) {
2901 			__u32 path_sum = 0;
2902 			int   paths = 0;
2903 			struct sctp_transport *peer_addr;
2904 
2905 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2906 					transports) {
2907 				path_sum += peer_addr->pathmaxrxt;
2908 				paths++;
2909 			}
2910 
2911 			/* Only validate asocmaxrxt if we have more than
2912 			 * one path/transport.  We do this because path
2913 			 * retransmissions are only counted when we have more
2914 			 * then one path.
2915 			 */
2916 			if (paths > 1 &&
2917 			    assocparams.sasoc_asocmaxrxt > path_sum)
2918 				return -EINVAL;
2919 
2920 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2921 		}
2922 
2923 		if (assocparams.sasoc_cookie_life != 0)
2924 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2925 	} else {
2926 		/* Set the values to the endpoint */
2927 		struct sctp_sock *sp = sctp_sk(sk);
2928 
2929 		if (assocparams.sasoc_asocmaxrxt != 0)
2930 			sp->assocparams.sasoc_asocmaxrxt =
2931 						assocparams.sasoc_asocmaxrxt;
2932 		if (assocparams.sasoc_cookie_life != 0)
2933 			sp->assocparams.sasoc_cookie_life =
2934 						assocparams.sasoc_cookie_life;
2935 	}
2936 	return 0;
2937 }
2938 
2939 /*
2940  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2941  *
2942  * This socket option is a boolean flag which turns on or off mapped V4
2943  * addresses.  If this option is turned on and the socket is type
2944  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2945  * If this option is turned off, then no mapping will be done of V4
2946  * addresses and a user will receive both PF_INET6 and PF_INET type
2947  * addresses on the socket.
2948  */
2949 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2950 {
2951 	int val;
2952 	struct sctp_sock *sp = sctp_sk(sk);
2953 
2954 	if (optlen < sizeof(int))
2955 		return -EINVAL;
2956 	if (get_user(val, (int __user *)optval))
2957 		return -EFAULT;
2958 	if (val)
2959 		sp->v4mapped = 1;
2960 	else
2961 		sp->v4mapped = 0;
2962 
2963 	return 0;
2964 }
2965 
2966 /*
2967  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2968  * This option will get or set the maximum size to put in any outgoing
2969  * SCTP DATA chunk.  If a message is larger than this size it will be
2970  * fragmented by SCTP into the specified size.  Note that the underlying
2971  * SCTP implementation may fragment into smaller sized chunks when the
2972  * PMTU of the underlying association is smaller than the value set by
2973  * the user.  The default value for this option is '0' which indicates
2974  * the user is NOT limiting fragmentation and only the PMTU will effect
2975  * SCTP's choice of DATA chunk size.  Note also that values set larger
2976  * than the maximum size of an IP datagram will effectively let SCTP
2977  * control fragmentation (i.e. the same as setting this option to 0).
2978  *
2979  * The following structure is used to access and modify this parameter:
2980  *
2981  * struct sctp_assoc_value {
2982  *   sctp_assoc_t assoc_id;
2983  *   uint32_t assoc_value;
2984  * };
2985  *
2986  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2987  *    For one-to-many style sockets this parameter indicates which
2988  *    association the user is performing an action upon.  Note that if
2989  *    this field's value is zero then the endpoints default value is
2990  *    changed (effecting future associations only).
2991  * assoc_value:  This parameter specifies the maximum size in bytes.
2992  */
2993 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2994 {
2995 	struct sctp_assoc_value params;
2996 	struct sctp_association *asoc;
2997 	struct sctp_sock *sp = sctp_sk(sk);
2998 	int val;
2999 
3000 	if (optlen == sizeof(int)) {
3001 		pr_warn_ratelimited(DEPRECATED
3002 				    "%s (pid %d) "
3003 				    "Use of int in maxseg socket option.\n"
3004 				    "Use struct sctp_assoc_value instead\n",
3005 				    current->comm, task_pid_nr(current));
3006 		if (copy_from_user(&val, optval, optlen))
3007 			return -EFAULT;
3008 		params.assoc_id = 0;
3009 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3010 		if (copy_from_user(&params, optval, optlen))
3011 			return -EFAULT;
3012 		val = params.assoc_value;
3013 	} else
3014 		return -EINVAL;
3015 
3016 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3017 		return -EINVAL;
3018 
3019 	asoc = sctp_id2assoc(sk, params.assoc_id);
3020 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3021 		return -EINVAL;
3022 
3023 	if (asoc) {
3024 		if (val == 0) {
3025 			val = asoc->pathmtu;
3026 			val -= sp->pf->af->net_header_len;
3027 			val -= sizeof(struct sctphdr) +
3028 					sizeof(struct sctp_data_chunk);
3029 		}
3030 		asoc->user_frag = val;
3031 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3032 	} else {
3033 		sp->user_frag = val;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 
3040 /*
3041  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3042  *
3043  *   Requests that the peer mark the enclosed address as the association
3044  *   primary. The enclosed address must be one of the association's
3045  *   locally bound addresses. The following structure is used to make a
3046  *   set primary request:
3047  */
3048 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3049 					     unsigned int optlen)
3050 {
3051 	struct net *net = sock_net(sk);
3052 	struct sctp_sock	*sp;
3053 	struct sctp_association	*asoc = NULL;
3054 	struct sctp_setpeerprim	prim;
3055 	struct sctp_chunk	*chunk;
3056 	struct sctp_af		*af;
3057 	int 			err;
3058 
3059 	sp = sctp_sk(sk);
3060 
3061 	if (!net->sctp.addip_enable)
3062 		return -EPERM;
3063 
3064 	if (optlen != sizeof(struct sctp_setpeerprim))
3065 		return -EINVAL;
3066 
3067 	if (copy_from_user(&prim, optval, optlen))
3068 		return -EFAULT;
3069 
3070 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3071 	if (!asoc)
3072 		return -EINVAL;
3073 
3074 	if (!asoc->peer.asconf_capable)
3075 		return -EPERM;
3076 
3077 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3078 		return -EPERM;
3079 
3080 	if (!sctp_state(asoc, ESTABLISHED))
3081 		return -ENOTCONN;
3082 
3083 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3084 	if (!af)
3085 		return -EINVAL;
3086 
3087 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3088 		return -EADDRNOTAVAIL;
3089 
3090 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3091 		return -EADDRNOTAVAIL;
3092 
3093 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3094 	chunk = sctp_make_asconf_set_prim(asoc,
3095 					  (union sctp_addr *)&prim.sspp_addr);
3096 	if (!chunk)
3097 		return -ENOMEM;
3098 
3099 	err = sctp_send_asconf(asoc, chunk);
3100 
3101 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3102 
3103 	return err;
3104 }
3105 
3106 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3107 					    unsigned int optlen)
3108 {
3109 	struct sctp_setadaptation adaptation;
3110 
3111 	if (optlen != sizeof(struct sctp_setadaptation))
3112 		return -EINVAL;
3113 	if (copy_from_user(&adaptation, optval, optlen))
3114 		return -EFAULT;
3115 
3116 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3117 
3118 	return 0;
3119 }
3120 
3121 /*
3122  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3123  *
3124  * The context field in the sctp_sndrcvinfo structure is normally only
3125  * used when a failed message is retrieved holding the value that was
3126  * sent down on the actual send call.  This option allows the setting of
3127  * a default context on an association basis that will be received on
3128  * reading messages from the peer.  This is especially helpful in the
3129  * one-2-many model for an application to keep some reference to an
3130  * internal state machine that is processing messages on the
3131  * association.  Note that the setting of this value only effects
3132  * received messages from the peer and does not effect the value that is
3133  * saved with outbound messages.
3134  */
3135 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3136 				   unsigned int optlen)
3137 {
3138 	struct sctp_assoc_value params;
3139 	struct sctp_sock *sp;
3140 	struct sctp_association *asoc;
3141 
3142 	if (optlen != sizeof(struct sctp_assoc_value))
3143 		return -EINVAL;
3144 	if (copy_from_user(&params, optval, optlen))
3145 		return -EFAULT;
3146 
3147 	sp = sctp_sk(sk);
3148 
3149 	if (params.assoc_id != 0) {
3150 		asoc = sctp_id2assoc(sk, params.assoc_id);
3151 		if (!asoc)
3152 			return -EINVAL;
3153 		asoc->default_rcv_context = params.assoc_value;
3154 	} else {
3155 		sp->default_rcv_context = params.assoc_value;
3156 	}
3157 
3158 	return 0;
3159 }
3160 
3161 /*
3162  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3163  *
3164  * This options will at a minimum specify if the implementation is doing
3165  * fragmented interleave.  Fragmented interleave, for a one to many
3166  * socket, is when subsequent calls to receive a message may return
3167  * parts of messages from different associations.  Some implementations
3168  * may allow you to turn this value on or off.  If so, when turned off,
3169  * no fragment interleave will occur (which will cause a head of line
3170  * blocking amongst multiple associations sharing the same one to many
3171  * socket).  When this option is turned on, then each receive call may
3172  * come from a different association (thus the user must receive data
3173  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3174  * association each receive belongs to.
3175  *
3176  * This option takes a boolean value.  A non-zero value indicates that
3177  * fragmented interleave is on.  A value of zero indicates that
3178  * fragmented interleave is off.
3179  *
3180  * Note that it is important that an implementation that allows this
3181  * option to be turned on, have it off by default.  Otherwise an unaware
3182  * application using the one to many model may become confused and act
3183  * incorrectly.
3184  */
3185 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3186 					       char __user *optval,
3187 					       unsigned int optlen)
3188 {
3189 	int val;
3190 
3191 	if (optlen != sizeof(int))
3192 		return -EINVAL;
3193 	if (get_user(val, (int __user *)optval))
3194 		return -EFAULT;
3195 
3196 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3197 
3198 	return 0;
3199 }
3200 
3201 /*
3202  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3203  *       (SCTP_PARTIAL_DELIVERY_POINT)
3204  *
3205  * This option will set or get the SCTP partial delivery point.  This
3206  * point is the size of a message where the partial delivery API will be
3207  * invoked to help free up rwnd space for the peer.  Setting this to a
3208  * lower value will cause partial deliveries to happen more often.  The
3209  * calls argument is an integer that sets or gets the partial delivery
3210  * point.  Note also that the call will fail if the user attempts to set
3211  * this value larger than the socket receive buffer size.
3212  *
3213  * Note that any single message having a length smaller than or equal to
3214  * the SCTP partial delivery point will be delivered in one single read
3215  * call as long as the user provided buffer is large enough to hold the
3216  * message.
3217  */
3218 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3219 						  char __user *optval,
3220 						  unsigned int optlen)
3221 {
3222 	u32 val;
3223 
3224 	if (optlen != sizeof(u32))
3225 		return -EINVAL;
3226 	if (get_user(val, (int __user *)optval))
3227 		return -EFAULT;
3228 
3229 	/* Note: We double the receive buffer from what the user sets
3230 	 * it to be, also initial rwnd is based on rcvbuf/2.
3231 	 */
3232 	if (val > (sk->sk_rcvbuf >> 1))
3233 		return -EINVAL;
3234 
3235 	sctp_sk(sk)->pd_point = val;
3236 
3237 	return 0; /* is this the right error code? */
3238 }
3239 
3240 /*
3241  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3242  *
3243  * This option will allow a user to change the maximum burst of packets
3244  * that can be emitted by this association.  Note that the default value
3245  * is 4, and some implementations may restrict this setting so that it
3246  * can only be lowered.
3247  *
3248  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3249  * future associations inheriting the socket value.
3250  */
3251 static int sctp_setsockopt_maxburst(struct sock *sk,
3252 				    char __user *optval,
3253 				    unsigned int optlen)
3254 {
3255 	struct sctp_assoc_value params;
3256 	struct sctp_sock *sp;
3257 	struct sctp_association *asoc;
3258 	int val;
3259 	int assoc_id = 0;
3260 
3261 	if (optlen == sizeof(int)) {
3262 		pr_warn_ratelimited(DEPRECATED
3263 				    "%s (pid %d) "
3264 				    "Use of int in max_burst socket option deprecated.\n"
3265 				    "Use struct sctp_assoc_value instead\n",
3266 				    current->comm, task_pid_nr(current));
3267 		if (copy_from_user(&val, optval, optlen))
3268 			return -EFAULT;
3269 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3270 		if (copy_from_user(&params, optval, optlen))
3271 			return -EFAULT;
3272 		val = params.assoc_value;
3273 		assoc_id = params.assoc_id;
3274 	} else
3275 		return -EINVAL;
3276 
3277 	sp = sctp_sk(sk);
3278 
3279 	if (assoc_id != 0) {
3280 		asoc = sctp_id2assoc(sk, assoc_id);
3281 		if (!asoc)
3282 			return -EINVAL;
3283 		asoc->max_burst = val;
3284 	} else
3285 		sp->max_burst = val;
3286 
3287 	return 0;
3288 }
3289 
3290 /*
3291  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3292  *
3293  * This set option adds a chunk type that the user is requesting to be
3294  * received only in an authenticated way.  Changes to the list of chunks
3295  * will only effect future associations on the socket.
3296  */
3297 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3298 				      char __user *optval,
3299 				      unsigned int optlen)
3300 {
3301 	struct net *net = sock_net(sk);
3302 	struct sctp_authchunk val;
3303 
3304 	if (!net->sctp.auth_enable)
3305 		return -EACCES;
3306 
3307 	if (optlen != sizeof(struct sctp_authchunk))
3308 		return -EINVAL;
3309 	if (copy_from_user(&val, optval, optlen))
3310 		return -EFAULT;
3311 
3312 	switch (val.sauth_chunk) {
3313 	case SCTP_CID_INIT:
3314 	case SCTP_CID_INIT_ACK:
3315 	case SCTP_CID_SHUTDOWN_COMPLETE:
3316 	case SCTP_CID_AUTH:
3317 		return -EINVAL;
3318 	}
3319 
3320 	/* add this chunk id to the endpoint */
3321 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3322 }
3323 
3324 /*
3325  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3326  *
3327  * This option gets or sets the list of HMAC algorithms that the local
3328  * endpoint requires the peer to use.
3329  */
3330 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3331 				      char __user *optval,
3332 				      unsigned int optlen)
3333 {
3334 	struct net *net = sock_net(sk);
3335 	struct sctp_hmacalgo *hmacs;
3336 	u32 idents;
3337 	int err;
3338 
3339 	if (!net->sctp.auth_enable)
3340 		return -EACCES;
3341 
3342 	if (optlen < sizeof(struct sctp_hmacalgo))
3343 		return -EINVAL;
3344 
3345 	hmacs = memdup_user(optval, optlen);
3346 	if (IS_ERR(hmacs))
3347 		return PTR_ERR(hmacs);
3348 
3349 	idents = hmacs->shmac_num_idents;
3350 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3351 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3352 		err = -EINVAL;
3353 		goto out;
3354 	}
3355 
3356 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3357 out:
3358 	kfree(hmacs);
3359 	return err;
3360 }
3361 
3362 /*
3363  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3364  *
3365  * This option will set a shared secret key which is used to build an
3366  * association shared key.
3367  */
3368 static int sctp_setsockopt_auth_key(struct sock *sk,
3369 				    char __user *optval,
3370 				    unsigned int optlen)
3371 {
3372 	struct net *net = sock_net(sk);
3373 	struct sctp_authkey *authkey;
3374 	struct sctp_association *asoc;
3375 	int ret;
3376 
3377 	if (!net->sctp.auth_enable)
3378 		return -EACCES;
3379 
3380 	if (optlen <= sizeof(struct sctp_authkey))
3381 		return -EINVAL;
3382 
3383 	authkey = memdup_user(optval, optlen);
3384 	if (IS_ERR(authkey))
3385 		return PTR_ERR(authkey);
3386 
3387 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3388 		ret = -EINVAL;
3389 		goto out;
3390 	}
3391 
3392 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3393 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3394 		ret = -EINVAL;
3395 		goto out;
3396 	}
3397 
3398 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3399 out:
3400 	kzfree(authkey);
3401 	return ret;
3402 }
3403 
3404 /*
3405  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3406  *
3407  * This option will get or set the active shared key to be used to build
3408  * the association shared key.
3409  */
3410 static int sctp_setsockopt_active_key(struct sock *sk,
3411 				      char __user *optval,
3412 				      unsigned int optlen)
3413 {
3414 	struct net *net = sock_net(sk);
3415 	struct sctp_authkeyid val;
3416 	struct sctp_association *asoc;
3417 
3418 	if (!net->sctp.auth_enable)
3419 		return -EACCES;
3420 
3421 	if (optlen != sizeof(struct sctp_authkeyid))
3422 		return -EINVAL;
3423 	if (copy_from_user(&val, optval, optlen))
3424 		return -EFAULT;
3425 
3426 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3427 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3428 		return -EINVAL;
3429 
3430 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3431 					val.scact_keynumber);
3432 }
3433 
3434 /*
3435  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3436  *
3437  * This set option will delete a shared secret key from use.
3438  */
3439 static int sctp_setsockopt_del_key(struct sock *sk,
3440 				   char __user *optval,
3441 				   unsigned int optlen)
3442 {
3443 	struct net *net = sock_net(sk);
3444 	struct sctp_authkeyid val;
3445 	struct sctp_association *asoc;
3446 
3447 	if (!net->sctp.auth_enable)
3448 		return -EACCES;
3449 
3450 	if (optlen != sizeof(struct sctp_authkeyid))
3451 		return -EINVAL;
3452 	if (copy_from_user(&val, optval, optlen))
3453 		return -EFAULT;
3454 
3455 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3456 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3457 		return -EINVAL;
3458 
3459 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3460 				    val.scact_keynumber);
3461 
3462 }
3463 
3464 /*
3465  * 8.1.23 SCTP_AUTO_ASCONF
3466  *
3467  * This option will enable or disable the use of the automatic generation of
3468  * ASCONF chunks to add and delete addresses to an existing association.  Note
3469  * that this option has two caveats namely: a) it only affects sockets that
3470  * are bound to all addresses available to the SCTP stack, and b) the system
3471  * administrator may have an overriding control that turns the ASCONF feature
3472  * off no matter what setting the socket option may have.
3473  * This option expects an integer boolean flag, where a non-zero value turns on
3474  * the option, and a zero value turns off the option.
3475  * Note. In this implementation, socket operation overrides default parameter
3476  * being set by sysctl as well as FreeBSD implementation
3477  */
3478 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3479 					unsigned int optlen)
3480 {
3481 	int val;
3482 	struct sctp_sock *sp = sctp_sk(sk);
3483 
3484 	if (optlen < sizeof(int))
3485 		return -EINVAL;
3486 	if (get_user(val, (int __user *)optval))
3487 		return -EFAULT;
3488 	if (!sctp_is_ep_boundall(sk) && val)
3489 		return -EINVAL;
3490 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3491 		return 0;
3492 
3493 	if (val == 0 && sp->do_auto_asconf) {
3494 		list_del(&sp->auto_asconf_list);
3495 		sp->do_auto_asconf = 0;
3496 	} else if (val && !sp->do_auto_asconf) {
3497 		list_add_tail(&sp->auto_asconf_list,
3498 		    &sock_net(sk)->sctp.auto_asconf_splist);
3499 		sp->do_auto_asconf = 1;
3500 	}
3501 	return 0;
3502 }
3503 
3504 
3505 /*
3506  * SCTP_PEER_ADDR_THLDS
3507  *
3508  * This option allows us to alter the partially failed threshold for one or all
3509  * transports in an association.  See Section 6.1 of:
3510  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3511  */
3512 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3513 					    char __user *optval,
3514 					    unsigned int optlen)
3515 {
3516 	struct sctp_paddrthlds val;
3517 	struct sctp_transport *trans;
3518 	struct sctp_association *asoc;
3519 
3520 	if (optlen < sizeof(struct sctp_paddrthlds))
3521 		return -EINVAL;
3522 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3523 			   sizeof(struct sctp_paddrthlds)))
3524 		return -EFAULT;
3525 
3526 
3527 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3528 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3529 		if (!asoc)
3530 			return -ENOENT;
3531 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3532 				    transports) {
3533 			if (val.spt_pathmaxrxt)
3534 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3535 			trans->pf_retrans = val.spt_pathpfthld;
3536 		}
3537 
3538 		if (val.spt_pathmaxrxt)
3539 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3540 		asoc->pf_retrans = val.spt_pathpfthld;
3541 	} else {
3542 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3543 					       val.spt_assoc_id);
3544 		if (!trans)
3545 			return -ENOENT;
3546 
3547 		if (val.spt_pathmaxrxt)
3548 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3549 		trans->pf_retrans = val.spt_pathpfthld;
3550 	}
3551 
3552 	return 0;
3553 }
3554 
3555 /* API 6.2 setsockopt(), getsockopt()
3556  *
3557  * Applications use setsockopt() and getsockopt() to set or retrieve
3558  * socket options.  Socket options are used to change the default
3559  * behavior of sockets calls.  They are described in Section 7.
3560  *
3561  * The syntax is:
3562  *
3563  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3564  *                    int __user *optlen);
3565  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3566  *                    int optlen);
3567  *
3568  *   sd      - the socket descript.
3569  *   level   - set to IPPROTO_SCTP for all SCTP options.
3570  *   optname - the option name.
3571  *   optval  - the buffer to store the value of the option.
3572  *   optlen  - the size of the buffer.
3573  */
3574 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3575 			   char __user *optval, unsigned int optlen)
3576 {
3577 	int retval = 0;
3578 
3579 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3580 
3581 	/* I can hardly begin to describe how wrong this is.  This is
3582 	 * so broken as to be worse than useless.  The API draft
3583 	 * REALLY is NOT helpful here...  I am not convinced that the
3584 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3585 	 * are at all well-founded.
3586 	 */
3587 	if (level != SOL_SCTP) {
3588 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3589 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3590 		goto out_nounlock;
3591 	}
3592 
3593 	lock_sock(sk);
3594 
3595 	switch (optname) {
3596 	case SCTP_SOCKOPT_BINDX_ADD:
3597 		/* 'optlen' is the size of the addresses buffer. */
3598 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3599 					       optlen, SCTP_BINDX_ADD_ADDR);
3600 		break;
3601 
3602 	case SCTP_SOCKOPT_BINDX_REM:
3603 		/* 'optlen' is the size of the addresses buffer. */
3604 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3605 					       optlen, SCTP_BINDX_REM_ADDR);
3606 		break;
3607 
3608 	case SCTP_SOCKOPT_CONNECTX_OLD:
3609 		/* 'optlen' is the size of the addresses buffer. */
3610 		retval = sctp_setsockopt_connectx_old(sk,
3611 					    (struct sockaddr __user *)optval,
3612 					    optlen);
3613 		break;
3614 
3615 	case SCTP_SOCKOPT_CONNECTX:
3616 		/* 'optlen' is the size of the addresses buffer. */
3617 		retval = sctp_setsockopt_connectx(sk,
3618 					    (struct sockaddr __user *)optval,
3619 					    optlen);
3620 		break;
3621 
3622 	case SCTP_DISABLE_FRAGMENTS:
3623 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3624 		break;
3625 
3626 	case SCTP_EVENTS:
3627 		retval = sctp_setsockopt_events(sk, optval, optlen);
3628 		break;
3629 
3630 	case SCTP_AUTOCLOSE:
3631 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3632 		break;
3633 
3634 	case SCTP_PEER_ADDR_PARAMS:
3635 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3636 		break;
3637 
3638 	case SCTP_DELAYED_SACK:
3639 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3640 		break;
3641 	case SCTP_PARTIAL_DELIVERY_POINT:
3642 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3643 		break;
3644 
3645 	case SCTP_INITMSG:
3646 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3647 		break;
3648 	case SCTP_DEFAULT_SEND_PARAM:
3649 		retval = sctp_setsockopt_default_send_param(sk, optval,
3650 							    optlen);
3651 		break;
3652 	case SCTP_PRIMARY_ADDR:
3653 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3654 		break;
3655 	case SCTP_SET_PEER_PRIMARY_ADDR:
3656 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3657 		break;
3658 	case SCTP_NODELAY:
3659 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3660 		break;
3661 	case SCTP_RTOINFO:
3662 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3663 		break;
3664 	case SCTP_ASSOCINFO:
3665 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3666 		break;
3667 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3668 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3669 		break;
3670 	case SCTP_MAXSEG:
3671 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3672 		break;
3673 	case SCTP_ADAPTATION_LAYER:
3674 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3675 		break;
3676 	case SCTP_CONTEXT:
3677 		retval = sctp_setsockopt_context(sk, optval, optlen);
3678 		break;
3679 	case SCTP_FRAGMENT_INTERLEAVE:
3680 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3681 		break;
3682 	case SCTP_MAX_BURST:
3683 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3684 		break;
3685 	case SCTP_AUTH_CHUNK:
3686 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3687 		break;
3688 	case SCTP_HMAC_IDENT:
3689 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3690 		break;
3691 	case SCTP_AUTH_KEY:
3692 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3693 		break;
3694 	case SCTP_AUTH_ACTIVE_KEY:
3695 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3696 		break;
3697 	case SCTP_AUTH_DELETE_KEY:
3698 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3699 		break;
3700 	case SCTP_AUTO_ASCONF:
3701 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3702 		break;
3703 	case SCTP_PEER_ADDR_THLDS:
3704 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3705 		break;
3706 	default:
3707 		retval = -ENOPROTOOPT;
3708 		break;
3709 	}
3710 
3711 	release_sock(sk);
3712 
3713 out_nounlock:
3714 	return retval;
3715 }
3716 
3717 /* API 3.1.6 connect() - UDP Style Syntax
3718  *
3719  * An application may use the connect() call in the UDP model to initiate an
3720  * association without sending data.
3721  *
3722  * The syntax is:
3723  *
3724  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3725  *
3726  * sd: the socket descriptor to have a new association added to.
3727  *
3728  * nam: the address structure (either struct sockaddr_in or struct
3729  *    sockaddr_in6 defined in RFC2553 [7]).
3730  *
3731  * len: the size of the address.
3732  */
3733 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3734 			int addr_len)
3735 {
3736 	int err = 0;
3737 	struct sctp_af *af;
3738 
3739 	lock_sock(sk);
3740 
3741 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3742 		 addr, addr_len);
3743 
3744 	/* Validate addr_len before calling common connect/connectx routine. */
3745 	af = sctp_get_af_specific(addr->sa_family);
3746 	if (!af || addr_len < af->sockaddr_len) {
3747 		err = -EINVAL;
3748 	} else {
3749 		/* Pass correct addr len to common routine (so it knows there
3750 		 * is only one address being passed.
3751 		 */
3752 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3753 	}
3754 
3755 	release_sock(sk);
3756 	return err;
3757 }
3758 
3759 /* FIXME: Write comments. */
3760 static int sctp_disconnect(struct sock *sk, int flags)
3761 {
3762 	return -EOPNOTSUPP; /* STUB */
3763 }
3764 
3765 /* 4.1.4 accept() - TCP Style Syntax
3766  *
3767  * Applications use accept() call to remove an established SCTP
3768  * association from the accept queue of the endpoint.  A new socket
3769  * descriptor will be returned from accept() to represent the newly
3770  * formed association.
3771  */
3772 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3773 {
3774 	struct sctp_sock *sp;
3775 	struct sctp_endpoint *ep;
3776 	struct sock *newsk = NULL;
3777 	struct sctp_association *asoc;
3778 	long timeo;
3779 	int error = 0;
3780 
3781 	lock_sock(sk);
3782 
3783 	sp = sctp_sk(sk);
3784 	ep = sp->ep;
3785 
3786 	if (!sctp_style(sk, TCP)) {
3787 		error = -EOPNOTSUPP;
3788 		goto out;
3789 	}
3790 
3791 	if (!sctp_sstate(sk, LISTENING)) {
3792 		error = -EINVAL;
3793 		goto out;
3794 	}
3795 
3796 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3797 
3798 	error = sctp_wait_for_accept(sk, timeo);
3799 	if (error)
3800 		goto out;
3801 
3802 	/* We treat the list of associations on the endpoint as the accept
3803 	 * queue and pick the first association on the list.
3804 	 */
3805 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3806 
3807 	newsk = sp->pf->create_accept_sk(sk, asoc);
3808 	if (!newsk) {
3809 		error = -ENOMEM;
3810 		goto out;
3811 	}
3812 
3813 	/* Populate the fields of the newsk from the oldsk and migrate the
3814 	 * asoc to the newsk.
3815 	 */
3816 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3817 
3818 out:
3819 	release_sock(sk);
3820 	*err = error;
3821 	return newsk;
3822 }
3823 
3824 /* The SCTP ioctl handler. */
3825 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3826 {
3827 	int rc = -ENOTCONN;
3828 
3829 	lock_sock(sk);
3830 
3831 	/*
3832 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3833 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3834 	 */
3835 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3836 		goto out;
3837 
3838 	switch (cmd) {
3839 	case SIOCINQ: {
3840 		struct sk_buff *skb;
3841 		unsigned int amount = 0;
3842 
3843 		skb = skb_peek(&sk->sk_receive_queue);
3844 		if (skb != NULL) {
3845 			/*
3846 			 * We will only return the amount of this packet since
3847 			 * that is all that will be read.
3848 			 */
3849 			amount = skb->len;
3850 		}
3851 		rc = put_user(amount, (int __user *)arg);
3852 		break;
3853 	}
3854 	default:
3855 		rc = -ENOIOCTLCMD;
3856 		break;
3857 	}
3858 out:
3859 	release_sock(sk);
3860 	return rc;
3861 }
3862 
3863 /* This is the function which gets called during socket creation to
3864  * initialized the SCTP-specific portion of the sock.
3865  * The sock structure should already be zero-filled memory.
3866  */
3867 static int sctp_init_sock(struct sock *sk)
3868 {
3869 	struct net *net = sock_net(sk);
3870 	struct sctp_sock *sp;
3871 
3872 	pr_debug("%s: sk:%p\n", __func__, sk);
3873 
3874 	sp = sctp_sk(sk);
3875 
3876 	/* Initialize the SCTP per socket area.  */
3877 	switch (sk->sk_type) {
3878 	case SOCK_SEQPACKET:
3879 		sp->type = SCTP_SOCKET_UDP;
3880 		break;
3881 	case SOCK_STREAM:
3882 		sp->type = SCTP_SOCKET_TCP;
3883 		break;
3884 	default:
3885 		return -ESOCKTNOSUPPORT;
3886 	}
3887 
3888 	/* Initialize default send parameters. These parameters can be
3889 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3890 	 */
3891 	sp->default_stream = 0;
3892 	sp->default_ppid = 0;
3893 	sp->default_flags = 0;
3894 	sp->default_context = 0;
3895 	sp->default_timetolive = 0;
3896 
3897 	sp->default_rcv_context = 0;
3898 	sp->max_burst = net->sctp.max_burst;
3899 
3900 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3901 
3902 	/* Initialize default setup parameters. These parameters
3903 	 * can be modified with the SCTP_INITMSG socket option or
3904 	 * overridden by the SCTP_INIT CMSG.
3905 	 */
3906 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3907 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3908 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3909 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3910 
3911 	/* Initialize default RTO related parameters.  These parameters can
3912 	 * be modified for with the SCTP_RTOINFO socket option.
3913 	 */
3914 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3915 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3916 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3917 
3918 	/* Initialize default association related parameters. These parameters
3919 	 * can be modified with the SCTP_ASSOCINFO socket option.
3920 	 */
3921 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3922 	sp->assocparams.sasoc_number_peer_destinations = 0;
3923 	sp->assocparams.sasoc_peer_rwnd = 0;
3924 	sp->assocparams.sasoc_local_rwnd = 0;
3925 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3926 
3927 	/* Initialize default event subscriptions. By default, all the
3928 	 * options are off.
3929 	 */
3930 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3931 
3932 	/* Default Peer Address Parameters.  These defaults can
3933 	 * be modified via SCTP_PEER_ADDR_PARAMS
3934 	 */
3935 	sp->hbinterval  = net->sctp.hb_interval;
3936 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3937 	sp->pathmtu     = 0; /* allow default discovery */
3938 	sp->sackdelay   = net->sctp.sack_timeout;
3939 	sp->sackfreq	= 2;
3940 	sp->param_flags = SPP_HB_ENABLE |
3941 			  SPP_PMTUD_ENABLE |
3942 			  SPP_SACKDELAY_ENABLE;
3943 
3944 	/* If enabled no SCTP message fragmentation will be performed.
3945 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3946 	 */
3947 	sp->disable_fragments = 0;
3948 
3949 	/* Enable Nagle algorithm by default.  */
3950 	sp->nodelay           = 0;
3951 
3952 	/* Enable by default. */
3953 	sp->v4mapped          = 1;
3954 
3955 	/* Auto-close idle associations after the configured
3956 	 * number of seconds.  A value of 0 disables this
3957 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3958 	 * for UDP-style sockets only.
3959 	 */
3960 	sp->autoclose         = 0;
3961 
3962 	/* User specified fragmentation limit. */
3963 	sp->user_frag         = 0;
3964 
3965 	sp->adaptation_ind = 0;
3966 
3967 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3968 
3969 	/* Control variables for partial data delivery. */
3970 	atomic_set(&sp->pd_mode, 0);
3971 	skb_queue_head_init(&sp->pd_lobby);
3972 	sp->frag_interleave = 0;
3973 
3974 	/* Create a per socket endpoint structure.  Even if we
3975 	 * change the data structure relationships, this may still
3976 	 * be useful for storing pre-connect address information.
3977 	 */
3978 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3979 	if (!sp->ep)
3980 		return -ENOMEM;
3981 
3982 	sp->hmac = NULL;
3983 
3984 	sk->sk_destruct = sctp_destruct_sock;
3985 
3986 	SCTP_DBG_OBJCNT_INC(sock);
3987 
3988 	local_bh_disable();
3989 	percpu_counter_inc(&sctp_sockets_allocated);
3990 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3991 	if (net->sctp.default_auto_asconf) {
3992 		list_add_tail(&sp->auto_asconf_list,
3993 		    &net->sctp.auto_asconf_splist);
3994 		sp->do_auto_asconf = 1;
3995 	} else
3996 		sp->do_auto_asconf = 0;
3997 	local_bh_enable();
3998 
3999 	return 0;
4000 }
4001 
4002 /* Cleanup any SCTP per socket resources.  */
4003 static void sctp_destroy_sock(struct sock *sk)
4004 {
4005 	struct sctp_sock *sp;
4006 
4007 	pr_debug("%s: sk:%p\n", __func__, sk);
4008 
4009 	/* Release our hold on the endpoint. */
4010 	sp = sctp_sk(sk);
4011 	/* This could happen during socket init, thus we bail out
4012 	 * early, since the rest of the below is not setup either.
4013 	 */
4014 	if (sp->ep == NULL)
4015 		return;
4016 
4017 	if (sp->do_auto_asconf) {
4018 		sp->do_auto_asconf = 0;
4019 		list_del(&sp->auto_asconf_list);
4020 	}
4021 	sctp_endpoint_free(sp->ep);
4022 	local_bh_disable();
4023 	percpu_counter_dec(&sctp_sockets_allocated);
4024 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4025 	local_bh_enable();
4026 }
4027 
4028 /* Triggered when there are no references on the socket anymore */
4029 static void sctp_destruct_sock(struct sock *sk)
4030 {
4031 	struct sctp_sock *sp = sctp_sk(sk);
4032 
4033 	/* Free up the HMAC transform. */
4034 	crypto_free_hash(sp->hmac);
4035 
4036 	inet_sock_destruct(sk);
4037 }
4038 
4039 /* API 4.1.7 shutdown() - TCP Style Syntax
4040  *     int shutdown(int socket, int how);
4041  *
4042  *     sd      - the socket descriptor of the association to be closed.
4043  *     how     - Specifies the type of shutdown.  The  values  are
4044  *               as follows:
4045  *               SHUT_RD
4046  *                     Disables further receive operations. No SCTP
4047  *                     protocol action is taken.
4048  *               SHUT_WR
4049  *                     Disables further send operations, and initiates
4050  *                     the SCTP shutdown sequence.
4051  *               SHUT_RDWR
4052  *                     Disables further send  and  receive  operations
4053  *                     and initiates the SCTP shutdown sequence.
4054  */
4055 static void sctp_shutdown(struct sock *sk, int how)
4056 {
4057 	struct net *net = sock_net(sk);
4058 	struct sctp_endpoint *ep;
4059 	struct sctp_association *asoc;
4060 
4061 	if (!sctp_style(sk, TCP))
4062 		return;
4063 
4064 	if (how & SEND_SHUTDOWN) {
4065 		ep = sctp_sk(sk)->ep;
4066 		if (!list_empty(&ep->asocs)) {
4067 			asoc = list_entry(ep->asocs.next,
4068 					  struct sctp_association, asocs);
4069 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4070 		}
4071 	}
4072 }
4073 
4074 /* 7.2.1 Association Status (SCTP_STATUS)
4075 
4076  * Applications can retrieve current status information about an
4077  * association, including association state, peer receiver window size,
4078  * number of unacked data chunks, and number of data chunks pending
4079  * receipt.  This information is read-only.
4080  */
4081 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4082 				       char __user *optval,
4083 				       int __user *optlen)
4084 {
4085 	struct sctp_status status;
4086 	struct sctp_association *asoc = NULL;
4087 	struct sctp_transport *transport;
4088 	sctp_assoc_t associd;
4089 	int retval = 0;
4090 
4091 	if (len < sizeof(status)) {
4092 		retval = -EINVAL;
4093 		goto out;
4094 	}
4095 
4096 	len = sizeof(status);
4097 	if (copy_from_user(&status, optval, len)) {
4098 		retval = -EFAULT;
4099 		goto out;
4100 	}
4101 
4102 	associd = status.sstat_assoc_id;
4103 	asoc = sctp_id2assoc(sk, associd);
4104 	if (!asoc) {
4105 		retval = -EINVAL;
4106 		goto out;
4107 	}
4108 
4109 	transport = asoc->peer.primary_path;
4110 
4111 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4112 	status.sstat_state = asoc->state;
4113 	status.sstat_rwnd =  asoc->peer.rwnd;
4114 	status.sstat_unackdata = asoc->unack_data;
4115 
4116 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4117 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4118 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4119 	status.sstat_fragmentation_point = asoc->frag_point;
4120 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4121 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4122 			transport->af_specific->sockaddr_len);
4123 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4124 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4125 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4126 	status.sstat_primary.spinfo_state = transport->state;
4127 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4128 	status.sstat_primary.spinfo_srtt = transport->srtt;
4129 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4130 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4131 
4132 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4133 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4134 
4135 	if (put_user(len, optlen)) {
4136 		retval = -EFAULT;
4137 		goto out;
4138 	}
4139 
4140 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4141 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4142 		 status.sstat_assoc_id);
4143 
4144 	if (copy_to_user(optval, &status, len)) {
4145 		retval = -EFAULT;
4146 		goto out;
4147 	}
4148 
4149 out:
4150 	return retval;
4151 }
4152 
4153 
4154 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4155  *
4156  * Applications can retrieve information about a specific peer address
4157  * of an association, including its reachability state, congestion
4158  * window, and retransmission timer values.  This information is
4159  * read-only.
4160  */
4161 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4162 					  char __user *optval,
4163 					  int __user *optlen)
4164 {
4165 	struct sctp_paddrinfo pinfo;
4166 	struct sctp_transport *transport;
4167 	int retval = 0;
4168 
4169 	if (len < sizeof(pinfo)) {
4170 		retval = -EINVAL;
4171 		goto out;
4172 	}
4173 
4174 	len = sizeof(pinfo);
4175 	if (copy_from_user(&pinfo, optval, len)) {
4176 		retval = -EFAULT;
4177 		goto out;
4178 	}
4179 
4180 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4181 					   pinfo.spinfo_assoc_id);
4182 	if (!transport)
4183 		return -EINVAL;
4184 
4185 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4186 	pinfo.spinfo_state = transport->state;
4187 	pinfo.spinfo_cwnd = transport->cwnd;
4188 	pinfo.spinfo_srtt = transport->srtt;
4189 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4190 	pinfo.spinfo_mtu = transport->pathmtu;
4191 
4192 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4193 		pinfo.spinfo_state = SCTP_ACTIVE;
4194 
4195 	if (put_user(len, optlen)) {
4196 		retval = -EFAULT;
4197 		goto out;
4198 	}
4199 
4200 	if (copy_to_user(optval, &pinfo, len)) {
4201 		retval = -EFAULT;
4202 		goto out;
4203 	}
4204 
4205 out:
4206 	return retval;
4207 }
4208 
4209 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4210  *
4211  * This option is a on/off flag.  If enabled no SCTP message
4212  * fragmentation will be performed.  Instead if a message being sent
4213  * exceeds the current PMTU size, the message will NOT be sent and
4214  * instead a error will be indicated to the user.
4215  */
4216 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4217 					char __user *optval, int __user *optlen)
4218 {
4219 	int val;
4220 
4221 	if (len < sizeof(int))
4222 		return -EINVAL;
4223 
4224 	len = sizeof(int);
4225 	val = (sctp_sk(sk)->disable_fragments == 1);
4226 	if (put_user(len, optlen))
4227 		return -EFAULT;
4228 	if (copy_to_user(optval, &val, len))
4229 		return -EFAULT;
4230 	return 0;
4231 }
4232 
4233 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4234  *
4235  * This socket option is used to specify various notifications and
4236  * ancillary data the user wishes to receive.
4237  */
4238 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4239 				  int __user *optlen)
4240 {
4241 	if (len <= 0)
4242 		return -EINVAL;
4243 	if (len > sizeof(struct sctp_event_subscribe))
4244 		len = sizeof(struct sctp_event_subscribe);
4245 	if (put_user(len, optlen))
4246 		return -EFAULT;
4247 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4248 		return -EFAULT;
4249 	return 0;
4250 }
4251 
4252 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4253  *
4254  * This socket option is applicable to the UDP-style socket only.  When
4255  * set it will cause associations that are idle for more than the
4256  * specified number of seconds to automatically close.  An association
4257  * being idle is defined an association that has NOT sent or received
4258  * user data.  The special value of '0' indicates that no automatic
4259  * close of any associations should be performed.  The option expects an
4260  * integer defining the number of seconds of idle time before an
4261  * association is closed.
4262  */
4263 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4264 {
4265 	/* Applicable to UDP-style socket only */
4266 	if (sctp_style(sk, TCP))
4267 		return -EOPNOTSUPP;
4268 	if (len < sizeof(int))
4269 		return -EINVAL;
4270 	len = sizeof(int);
4271 	if (put_user(len, optlen))
4272 		return -EFAULT;
4273 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4274 		return -EFAULT;
4275 	return 0;
4276 }
4277 
4278 /* Helper routine to branch off an association to a new socket.  */
4279 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4280 {
4281 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4282 	struct socket *sock;
4283 	struct sctp_af *af;
4284 	int err = 0;
4285 
4286 	if (!asoc)
4287 		return -EINVAL;
4288 
4289 	/* An association cannot be branched off from an already peeled-off
4290 	 * socket, nor is this supported for tcp style sockets.
4291 	 */
4292 	if (!sctp_style(sk, UDP))
4293 		return -EINVAL;
4294 
4295 	/* Create a new socket.  */
4296 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4297 	if (err < 0)
4298 		return err;
4299 
4300 	sctp_copy_sock(sock->sk, sk, asoc);
4301 
4302 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4303 	 * Set the daddr and initialize id to something more random
4304 	 */
4305 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4306 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4307 
4308 	/* Populate the fields of the newsk from the oldsk and migrate the
4309 	 * asoc to the newsk.
4310 	 */
4311 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4312 
4313 	*sockp = sock;
4314 
4315 	return err;
4316 }
4317 EXPORT_SYMBOL(sctp_do_peeloff);
4318 
4319 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4320 {
4321 	sctp_peeloff_arg_t peeloff;
4322 	struct socket *newsock;
4323 	struct file *newfile;
4324 	int retval = 0;
4325 
4326 	if (len < sizeof(sctp_peeloff_arg_t))
4327 		return -EINVAL;
4328 	len = sizeof(sctp_peeloff_arg_t);
4329 	if (copy_from_user(&peeloff, optval, len))
4330 		return -EFAULT;
4331 
4332 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4333 	if (retval < 0)
4334 		goto out;
4335 
4336 	/* Map the socket to an unused fd that can be returned to the user.  */
4337 	retval = get_unused_fd_flags(0);
4338 	if (retval < 0) {
4339 		sock_release(newsock);
4340 		goto out;
4341 	}
4342 
4343 	newfile = sock_alloc_file(newsock, 0, NULL);
4344 	if (unlikely(IS_ERR(newfile))) {
4345 		put_unused_fd(retval);
4346 		sock_release(newsock);
4347 		return PTR_ERR(newfile);
4348 	}
4349 
4350 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4351 		 retval);
4352 
4353 	/* Return the fd mapped to the new socket.  */
4354 	if (put_user(len, optlen)) {
4355 		fput(newfile);
4356 		put_unused_fd(retval);
4357 		return -EFAULT;
4358 	}
4359 	peeloff.sd = retval;
4360 	if (copy_to_user(optval, &peeloff, len)) {
4361 		fput(newfile);
4362 		put_unused_fd(retval);
4363 		return -EFAULT;
4364 	}
4365 	fd_install(retval, newfile);
4366 out:
4367 	return retval;
4368 }
4369 
4370 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4371  *
4372  * Applications can enable or disable heartbeats for any peer address of
4373  * an association, modify an address's heartbeat interval, force a
4374  * heartbeat to be sent immediately, and adjust the address's maximum
4375  * number of retransmissions sent before an address is considered
4376  * unreachable.  The following structure is used to access and modify an
4377  * address's parameters:
4378  *
4379  *  struct sctp_paddrparams {
4380  *     sctp_assoc_t            spp_assoc_id;
4381  *     struct sockaddr_storage spp_address;
4382  *     uint32_t                spp_hbinterval;
4383  *     uint16_t                spp_pathmaxrxt;
4384  *     uint32_t                spp_pathmtu;
4385  *     uint32_t                spp_sackdelay;
4386  *     uint32_t                spp_flags;
4387  * };
4388  *
4389  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4390  *                     application, and identifies the association for
4391  *                     this query.
4392  *   spp_address     - This specifies which address is of interest.
4393  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4394  *                     in milliseconds.  If a  value of zero
4395  *                     is present in this field then no changes are to
4396  *                     be made to this parameter.
4397  *   spp_pathmaxrxt  - This contains the maximum number of
4398  *                     retransmissions before this address shall be
4399  *                     considered unreachable. If a  value of zero
4400  *                     is present in this field then no changes are to
4401  *                     be made to this parameter.
4402  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4403  *                     specified here will be the "fixed" path mtu.
4404  *                     Note that if the spp_address field is empty
4405  *                     then all associations on this address will
4406  *                     have this fixed path mtu set upon them.
4407  *
4408  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4409  *                     the number of milliseconds that sacks will be delayed
4410  *                     for. This value will apply to all addresses of an
4411  *                     association if the spp_address field is empty. Note
4412  *                     also, that if delayed sack is enabled and this
4413  *                     value is set to 0, no change is made to the last
4414  *                     recorded delayed sack timer value.
4415  *
4416  *   spp_flags       - These flags are used to control various features
4417  *                     on an association. The flag field may contain
4418  *                     zero or more of the following options.
4419  *
4420  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4421  *                     specified address. Note that if the address
4422  *                     field is empty all addresses for the association
4423  *                     have heartbeats enabled upon them.
4424  *
4425  *                     SPP_HB_DISABLE - Disable heartbeats on the
4426  *                     speicifed address. Note that if the address
4427  *                     field is empty all addresses for the association
4428  *                     will have their heartbeats disabled. Note also
4429  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4430  *                     mutually exclusive, only one of these two should
4431  *                     be specified. Enabling both fields will have
4432  *                     undetermined results.
4433  *
4434  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4435  *                     to be made immediately.
4436  *
4437  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4438  *                     discovery upon the specified address. Note that
4439  *                     if the address feild is empty then all addresses
4440  *                     on the association are effected.
4441  *
4442  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4443  *                     discovery upon the specified address. Note that
4444  *                     if the address feild is empty then all addresses
4445  *                     on the association are effected. Not also that
4446  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4447  *                     exclusive. Enabling both will have undetermined
4448  *                     results.
4449  *
4450  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4451  *                     on delayed sack. The time specified in spp_sackdelay
4452  *                     is used to specify the sack delay for this address. Note
4453  *                     that if spp_address is empty then all addresses will
4454  *                     enable delayed sack and take on the sack delay
4455  *                     value specified in spp_sackdelay.
4456  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4457  *                     off delayed sack. If the spp_address field is blank then
4458  *                     delayed sack is disabled for the entire association. Note
4459  *                     also that this field is mutually exclusive to
4460  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4461  *                     results.
4462  */
4463 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4464 					    char __user *optval, int __user *optlen)
4465 {
4466 	struct sctp_paddrparams  params;
4467 	struct sctp_transport   *trans = NULL;
4468 	struct sctp_association *asoc = NULL;
4469 	struct sctp_sock        *sp = sctp_sk(sk);
4470 
4471 	if (len < sizeof(struct sctp_paddrparams))
4472 		return -EINVAL;
4473 	len = sizeof(struct sctp_paddrparams);
4474 	if (copy_from_user(&params, optval, len))
4475 		return -EFAULT;
4476 
4477 	/* If an address other than INADDR_ANY is specified, and
4478 	 * no transport is found, then the request is invalid.
4479 	 */
4480 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4481 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4482 					       params.spp_assoc_id);
4483 		if (!trans) {
4484 			pr_debug("%s: failed no transport\n", __func__);
4485 			return -EINVAL;
4486 		}
4487 	}
4488 
4489 	/* Get association, if assoc_id != 0 and the socket is a one
4490 	 * to many style socket, and an association was not found, then
4491 	 * the id was invalid.
4492 	 */
4493 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4494 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4495 		pr_debug("%s: failed no association\n", __func__);
4496 		return -EINVAL;
4497 	}
4498 
4499 	if (trans) {
4500 		/* Fetch transport values. */
4501 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4502 		params.spp_pathmtu    = trans->pathmtu;
4503 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4504 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4505 
4506 		/*draft-11 doesn't say what to return in spp_flags*/
4507 		params.spp_flags      = trans->param_flags;
4508 	} else if (asoc) {
4509 		/* Fetch association values. */
4510 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4511 		params.spp_pathmtu    = asoc->pathmtu;
4512 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4513 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4514 
4515 		/*draft-11 doesn't say what to return in spp_flags*/
4516 		params.spp_flags      = asoc->param_flags;
4517 	} else {
4518 		/* Fetch socket values. */
4519 		params.spp_hbinterval = sp->hbinterval;
4520 		params.spp_pathmtu    = sp->pathmtu;
4521 		params.spp_sackdelay  = sp->sackdelay;
4522 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4523 
4524 		/*draft-11 doesn't say what to return in spp_flags*/
4525 		params.spp_flags      = sp->param_flags;
4526 	}
4527 
4528 	if (copy_to_user(optval, &params, len))
4529 		return -EFAULT;
4530 
4531 	if (put_user(len, optlen))
4532 		return -EFAULT;
4533 
4534 	return 0;
4535 }
4536 
4537 /*
4538  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4539  *
4540  * This option will effect the way delayed acks are performed.  This
4541  * option allows you to get or set the delayed ack time, in
4542  * milliseconds.  It also allows changing the delayed ack frequency.
4543  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4544  * the assoc_id is 0, then this sets or gets the endpoints default
4545  * values.  If the assoc_id field is non-zero, then the set or get
4546  * effects the specified association for the one to many model (the
4547  * assoc_id field is ignored by the one to one model).  Note that if
4548  * sack_delay or sack_freq are 0 when setting this option, then the
4549  * current values will remain unchanged.
4550  *
4551  * struct sctp_sack_info {
4552  *     sctp_assoc_t            sack_assoc_id;
4553  *     uint32_t                sack_delay;
4554  *     uint32_t                sack_freq;
4555  * };
4556  *
4557  * sack_assoc_id -  This parameter, indicates which association the user
4558  *    is performing an action upon.  Note that if this field's value is
4559  *    zero then the endpoints default value is changed (effecting future
4560  *    associations only).
4561  *
4562  * sack_delay -  This parameter contains the number of milliseconds that
4563  *    the user is requesting the delayed ACK timer be set to.  Note that
4564  *    this value is defined in the standard to be between 200 and 500
4565  *    milliseconds.
4566  *
4567  * sack_freq -  This parameter contains the number of packets that must
4568  *    be received before a sack is sent without waiting for the delay
4569  *    timer to expire.  The default value for this is 2, setting this
4570  *    value to 1 will disable the delayed sack algorithm.
4571  */
4572 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4573 					    char __user *optval,
4574 					    int __user *optlen)
4575 {
4576 	struct sctp_sack_info    params;
4577 	struct sctp_association *asoc = NULL;
4578 	struct sctp_sock        *sp = sctp_sk(sk);
4579 
4580 	if (len >= sizeof(struct sctp_sack_info)) {
4581 		len = sizeof(struct sctp_sack_info);
4582 
4583 		if (copy_from_user(&params, optval, len))
4584 			return -EFAULT;
4585 	} else if (len == sizeof(struct sctp_assoc_value)) {
4586 		pr_warn_ratelimited(DEPRECATED
4587 				    "%s (pid %d) "
4588 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4589 				    "Use struct sctp_sack_info instead\n",
4590 				    current->comm, task_pid_nr(current));
4591 		if (copy_from_user(&params, optval, len))
4592 			return -EFAULT;
4593 	} else
4594 		return -EINVAL;
4595 
4596 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4597 	 * to many style socket, and an association was not found, then
4598 	 * the id was invalid.
4599 	 */
4600 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4601 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4602 		return -EINVAL;
4603 
4604 	if (asoc) {
4605 		/* Fetch association values. */
4606 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4607 			params.sack_delay = jiffies_to_msecs(
4608 				asoc->sackdelay);
4609 			params.sack_freq = asoc->sackfreq;
4610 
4611 		} else {
4612 			params.sack_delay = 0;
4613 			params.sack_freq = 1;
4614 		}
4615 	} else {
4616 		/* Fetch socket values. */
4617 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4618 			params.sack_delay  = sp->sackdelay;
4619 			params.sack_freq = sp->sackfreq;
4620 		} else {
4621 			params.sack_delay  = 0;
4622 			params.sack_freq = 1;
4623 		}
4624 	}
4625 
4626 	if (copy_to_user(optval, &params, len))
4627 		return -EFAULT;
4628 
4629 	if (put_user(len, optlen))
4630 		return -EFAULT;
4631 
4632 	return 0;
4633 }
4634 
4635 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4636  *
4637  * Applications can specify protocol parameters for the default association
4638  * initialization.  The option name argument to setsockopt() and getsockopt()
4639  * is SCTP_INITMSG.
4640  *
4641  * Setting initialization parameters is effective only on an unconnected
4642  * socket (for UDP-style sockets only future associations are effected
4643  * by the change).  With TCP-style sockets, this option is inherited by
4644  * sockets derived from a listener socket.
4645  */
4646 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4647 {
4648 	if (len < sizeof(struct sctp_initmsg))
4649 		return -EINVAL;
4650 	len = sizeof(struct sctp_initmsg);
4651 	if (put_user(len, optlen))
4652 		return -EFAULT;
4653 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4654 		return -EFAULT;
4655 	return 0;
4656 }
4657 
4658 
4659 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4660 				      char __user *optval, int __user *optlen)
4661 {
4662 	struct sctp_association *asoc;
4663 	int cnt = 0;
4664 	struct sctp_getaddrs getaddrs;
4665 	struct sctp_transport *from;
4666 	void __user *to;
4667 	union sctp_addr temp;
4668 	struct sctp_sock *sp = sctp_sk(sk);
4669 	int addrlen;
4670 	size_t space_left;
4671 	int bytes_copied;
4672 
4673 	if (len < sizeof(struct sctp_getaddrs))
4674 		return -EINVAL;
4675 
4676 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4677 		return -EFAULT;
4678 
4679 	/* For UDP-style sockets, id specifies the association to query.  */
4680 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4681 	if (!asoc)
4682 		return -EINVAL;
4683 
4684 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4685 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4686 
4687 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4688 				transports) {
4689 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4690 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4691 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4692 		if (space_left < addrlen)
4693 			return -ENOMEM;
4694 		if (copy_to_user(to, &temp, addrlen))
4695 			return -EFAULT;
4696 		to += addrlen;
4697 		cnt++;
4698 		space_left -= addrlen;
4699 	}
4700 
4701 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4702 		return -EFAULT;
4703 	bytes_copied = ((char __user *)to) - optval;
4704 	if (put_user(bytes_copied, optlen))
4705 		return -EFAULT;
4706 
4707 	return 0;
4708 }
4709 
4710 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4711 			    size_t space_left, int *bytes_copied)
4712 {
4713 	struct sctp_sockaddr_entry *addr;
4714 	union sctp_addr temp;
4715 	int cnt = 0;
4716 	int addrlen;
4717 	struct net *net = sock_net(sk);
4718 
4719 	rcu_read_lock();
4720 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4721 		if (!addr->valid)
4722 			continue;
4723 
4724 		if ((PF_INET == sk->sk_family) &&
4725 		    (AF_INET6 == addr->a.sa.sa_family))
4726 			continue;
4727 		if ((PF_INET6 == sk->sk_family) &&
4728 		    inet_v6_ipv6only(sk) &&
4729 		    (AF_INET == addr->a.sa.sa_family))
4730 			continue;
4731 		memcpy(&temp, &addr->a, sizeof(temp));
4732 		if (!temp.v4.sin_port)
4733 			temp.v4.sin_port = htons(port);
4734 
4735 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4736 								&temp);
4737 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4738 		if (space_left < addrlen) {
4739 			cnt =  -ENOMEM;
4740 			break;
4741 		}
4742 		memcpy(to, &temp, addrlen);
4743 
4744 		to += addrlen;
4745 		cnt++;
4746 		space_left -= addrlen;
4747 		*bytes_copied += addrlen;
4748 	}
4749 	rcu_read_unlock();
4750 
4751 	return cnt;
4752 }
4753 
4754 
4755 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4756 				       char __user *optval, int __user *optlen)
4757 {
4758 	struct sctp_bind_addr *bp;
4759 	struct sctp_association *asoc;
4760 	int cnt = 0;
4761 	struct sctp_getaddrs getaddrs;
4762 	struct sctp_sockaddr_entry *addr;
4763 	void __user *to;
4764 	union sctp_addr temp;
4765 	struct sctp_sock *sp = sctp_sk(sk);
4766 	int addrlen;
4767 	int err = 0;
4768 	size_t space_left;
4769 	int bytes_copied = 0;
4770 	void *addrs;
4771 	void *buf;
4772 
4773 	if (len < sizeof(struct sctp_getaddrs))
4774 		return -EINVAL;
4775 
4776 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4777 		return -EFAULT;
4778 
4779 	/*
4780 	 *  For UDP-style sockets, id specifies the association to query.
4781 	 *  If the id field is set to the value '0' then the locally bound
4782 	 *  addresses are returned without regard to any particular
4783 	 *  association.
4784 	 */
4785 	if (0 == getaddrs.assoc_id) {
4786 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4787 	} else {
4788 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4789 		if (!asoc)
4790 			return -EINVAL;
4791 		bp = &asoc->base.bind_addr;
4792 	}
4793 
4794 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4795 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4796 
4797 	addrs = kmalloc(space_left, GFP_KERNEL);
4798 	if (!addrs)
4799 		return -ENOMEM;
4800 
4801 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4802 	 * addresses from the global local address list.
4803 	 */
4804 	if (sctp_list_single_entry(&bp->address_list)) {
4805 		addr = list_entry(bp->address_list.next,
4806 				  struct sctp_sockaddr_entry, list);
4807 		if (sctp_is_any(sk, &addr->a)) {
4808 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4809 						space_left, &bytes_copied);
4810 			if (cnt < 0) {
4811 				err = cnt;
4812 				goto out;
4813 			}
4814 			goto copy_getaddrs;
4815 		}
4816 	}
4817 
4818 	buf = addrs;
4819 	/* Protection on the bound address list is not needed since
4820 	 * in the socket option context we hold a socket lock and
4821 	 * thus the bound address list can't change.
4822 	 */
4823 	list_for_each_entry(addr, &bp->address_list, list) {
4824 		memcpy(&temp, &addr->a, sizeof(temp));
4825 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4826 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4827 		if (space_left < addrlen) {
4828 			err =  -ENOMEM; /*fixme: right error?*/
4829 			goto out;
4830 		}
4831 		memcpy(buf, &temp, addrlen);
4832 		buf += addrlen;
4833 		bytes_copied += addrlen;
4834 		cnt++;
4835 		space_left -= addrlen;
4836 	}
4837 
4838 copy_getaddrs:
4839 	if (copy_to_user(to, addrs, bytes_copied)) {
4840 		err = -EFAULT;
4841 		goto out;
4842 	}
4843 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4844 		err = -EFAULT;
4845 		goto out;
4846 	}
4847 	if (put_user(bytes_copied, optlen))
4848 		err = -EFAULT;
4849 out:
4850 	kfree(addrs);
4851 	return err;
4852 }
4853 
4854 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4855  *
4856  * Requests that the local SCTP stack use the enclosed peer address as
4857  * the association primary.  The enclosed address must be one of the
4858  * association peer's addresses.
4859  */
4860 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4861 					char __user *optval, int __user *optlen)
4862 {
4863 	struct sctp_prim prim;
4864 	struct sctp_association *asoc;
4865 	struct sctp_sock *sp = sctp_sk(sk);
4866 
4867 	if (len < sizeof(struct sctp_prim))
4868 		return -EINVAL;
4869 
4870 	len = sizeof(struct sctp_prim);
4871 
4872 	if (copy_from_user(&prim, optval, len))
4873 		return -EFAULT;
4874 
4875 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4876 	if (!asoc)
4877 		return -EINVAL;
4878 
4879 	if (!asoc->peer.primary_path)
4880 		return -ENOTCONN;
4881 
4882 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4883 		asoc->peer.primary_path->af_specific->sockaddr_len);
4884 
4885 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4886 			(union sctp_addr *)&prim.ssp_addr);
4887 
4888 	if (put_user(len, optlen))
4889 		return -EFAULT;
4890 	if (copy_to_user(optval, &prim, len))
4891 		return -EFAULT;
4892 
4893 	return 0;
4894 }
4895 
4896 /*
4897  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4898  *
4899  * Requests that the local endpoint set the specified Adaptation Layer
4900  * Indication parameter for all future INIT and INIT-ACK exchanges.
4901  */
4902 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4903 				  char __user *optval, int __user *optlen)
4904 {
4905 	struct sctp_setadaptation adaptation;
4906 
4907 	if (len < sizeof(struct sctp_setadaptation))
4908 		return -EINVAL;
4909 
4910 	len = sizeof(struct sctp_setadaptation);
4911 
4912 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4913 
4914 	if (put_user(len, optlen))
4915 		return -EFAULT;
4916 	if (copy_to_user(optval, &adaptation, len))
4917 		return -EFAULT;
4918 
4919 	return 0;
4920 }
4921 
4922 /*
4923  *
4924  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4925  *
4926  *   Applications that wish to use the sendto() system call may wish to
4927  *   specify a default set of parameters that would normally be supplied
4928  *   through the inclusion of ancillary data.  This socket option allows
4929  *   such an application to set the default sctp_sndrcvinfo structure.
4930 
4931 
4932  *   The application that wishes to use this socket option simply passes
4933  *   in to this call the sctp_sndrcvinfo structure defined in Section
4934  *   5.2.2) The input parameters accepted by this call include
4935  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4936  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4937  *   to this call if the caller is using the UDP model.
4938  *
4939  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4940  */
4941 static int sctp_getsockopt_default_send_param(struct sock *sk,
4942 					int len, char __user *optval,
4943 					int __user *optlen)
4944 {
4945 	struct sctp_sndrcvinfo info;
4946 	struct sctp_association *asoc;
4947 	struct sctp_sock *sp = sctp_sk(sk);
4948 
4949 	if (len < sizeof(struct sctp_sndrcvinfo))
4950 		return -EINVAL;
4951 
4952 	len = sizeof(struct sctp_sndrcvinfo);
4953 
4954 	if (copy_from_user(&info, optval, len))
4955 		return -EFAULT;
4956 
4957 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4958 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4959 		return -EINVAL;
4960 
4961 	if (asoc) {
4962 		info.sinfo_stream = asoc->default_stream;
4963 		info.sinfo_flags = asoc->default_flags;
4964 		info.sinfo_ppid = asoc->default_ppid;
4965 		info.sinfo_context = asoc->default_context;
4966 		info.sinfo_timetolive = asoc->default_timetolive;
4967 	} else {
4968 		info.sinfo_stream = sp->default_stream;
4969 		info.sinfo_flags = sp->default_flags;
4970 		info.sinfo_ppid = sp->default_ppid;
4971 		info.sinfo_context = sp->default_context;
4972 		info.sinfo_timetolive = sp->default_timetolive;
4973 	}
4974 
4975 	if (put_user(len, optlen))
4976 		return -EFAULT;
4977 	if (copy_to_user(optval, &info, len))
4978 		return -EFAULT;
4979 
4980 	return 0;
4981 }
4982 
4983 /*
4984  *
4985  * 7.1.5 SCTP_NODELAY
4986  *
4987  * Turn on/off any Nagle-like algorithm.  This means that packets are
4988  * generally sent as soon as possible and no unnecessary delays are
4989  * introduced, at the cost of more packets in the network.  Expects an
4990  * integer boolean flag.
4991  */
4992 
4993 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4994 				   char __user *optval, int __user *optlen)
4995 {
4996 	int val;
4997 
4998 	if (len < sizeof(int))
4999 		return -EINVAL;
5000 
5001 	len = sizeof(int);
5002 	val = (sctp_sk(sk)->nodelay == 1);
5003 	if (put_user(len, optlen))
5004 		return -EFAULT;
5005 	if (copy_to_user(optval, &val, len))
5006 		return -EFAULT;
5007 	return 0;
5008 }
5009 
5010 /*
5011  *
5012  * 7.1.1 SCTP_RTOINFO
5013  *
5014  * The protocol parameters used to initialize and bound retransmission
5015  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5016  * and modify these parameters.
5017  * All parameters are time values, in milliseconds.  A value of 0, when
5018  * modifying the parameters, indicates that the current value should not
5019  * be changed.
5020  *
5021  */
5022 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5023 				char __user *optval,
5024 				int __user *optlen) {
5025 	struct sctp_rtoinfo rtoinfo;
5026 	struct sctp_association *asoc;
5027 
5028 	if (len < sizeof (struct sctp_rtoinfo))
5029 		return -EINVAL;
5030 
5031 	len = sizeof(struct sctp_rtoinfo);
5032 
5033 	if (copy_from_user(&rtoinfo, optval, len))
5034 		return -EFAULT;
5035 
5036 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5037 
5038 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5039 		return -EINVAL;
5040 
5041 	/* Values corresponding to the specific association. */
5042 	if (asoc) {
5043 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5044 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5045 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5046 	} else {
5047 		/* Values corresponding to the endpoint. */
5048 		struct sctp_sock *sp = sctp_sk(sk);
5049 
5050 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5051 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5052 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5053 	}
5054 
5055 	if (put_user(len, optlen))
5056 		return -EFAULT;
5057 
5058 	if (copy_to_user(optval, &rtoinfo, len))
5059 		return -EFAULT;
5060 
5061 	return 0;
5062 }
5063 
5064 /*
5065  *
5066  * 7.1.2 SCTP_ASSOCINFO
5067  *
5068  * This option is used to tune the maximum retransmission attempts
5069  * of the association.
5070  * Returns an error if the new association retransmission value is
5071  * greater than the sum of the retransmission value  of the peer.
5072  * See [SCTP] for more information.
5073  *
5074  */
5075 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5076 				     char __user *optval,
5077 				     int __user *optlen)
5078 {
5079 
5080 	struct sctp_assocparams assocparams;
5081 	struct sctp_association *asoc;
5082 	struct list_head *pos;
5083 	int cnt = 0;
5084 
5085 	if (len < sizeof (struct sctp_assocparams))
5086 		return -EINVAL;
5087 
5088 	len = sizeof(struct sctp_assocparams);
5089 
5090 	if (copy_from_user(&assocparams, optval, len))
5091 		return -EFAULT;
5092 
5093 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5094 
5095 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5096 		return -EINVAL;
5097 
5098 	/* Values correspoinding to the specific association */
5099 	if (asoc) {
5100 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5101 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5102 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5103 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5104 
5105 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5106 			cnt++;
5107 		}
5108 
5109 		assocparams.sasoc_number_peer_destinations = cnt;
5110 	} else {
5111 		/* Values corresponding to the endpoint */
5112 		struct sctp_sock *sp = sctp_sk(sk);
5113 
5114 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5115 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5116 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5117 		assocparams.sasoc_cookie_life =
5118 					sp->assocparams.sasoc_cookie_life;
5119 		assocparams.sasoc_number_peer_destinations =
5120 					sp->assocparams.
5121 					sasoc_number_peer_destinations;
5122 	}
5123 
5124 	if (put_user(len, optlen))
5125 		return -EFAULT;
5126 
5127 	if (copy_to_user(optval, &assocparams, len))
5128 		return -EFAULT;
5129 
5130 	return 0;
5131 }
5132 
5133 /*
5134  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5135  *
5136  * This socket option is a boolean flag which turns on or off mapped V4
5137  * addresses.  If this option is turned on and the socket is type
5138  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5139  * If this option is turned off, then no mapping will be done of V4
5140  * addresses and a user will receive both PF_INET6 and PF_INET type
5141  * addresses on the socket.
5142  */
5143 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5144 				    char __user *optval, int __user *optlen)
5145 {
5146 	int val;
5147 	struct sctp_sock *sp = sctp_sk(sk);
5148 
5149 	if (len < sizeof(int))
5150 		return -EINVAL;
5151 
5152 	len = sizeof(int);
5153 	val = sp->v4mapped;
5154 	if (put_user(len, optlen))
5155 		return -EFAULT;
5156 	if (copy_to_user(optval, &val, len))
5157 		return -EFAULT;
5158 
5159 	return 0;
5160 }
5161 
5162 /*
5163  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5164  * (chapter and verse is quoted at sctp_setsockopt_context())
5165  */
5166 static int sctp_getsockopt_context(struct sock *sk, int len,
5167 				   char __user *optval, int __user *optlen)
5168 {
5169 	struct sctp_assoc_value params;
5170 	struct sctp_sock *sp;
5171 	struct sctp_association *asoc;
5172 
5173 	if (len < sizeof(struct sctp_assoc_value))
5174 		return -EINVAL;
5175 
5176 	len = sizeof(struct sctp_assoc_value);
5177 
5178 	if (copy_from_user(&params, optval, len))
5179 		return -EFAULT;
5180 
5181 	sp = sctp_sk(sk);
5182 
5183 	if (params.assoc_id != 0) {
5184 		asoc = sctp_id2assoc(sk, params.assoc_id);
5185 		if (!asoc)
5186 			return -EINVAL;
5187 		params.assoc_value = asoc->default_rcv_context;
5188 	} else {
5189 		params.assoc_value = sp->default_rcv_context;
5190 	}
5191 
5192 	if (put_user(len, optlen))
5193 		return -EFAULT;
5194 	if (copy_to_user(optval, &params, len))
5195 		return -EFAULT;
5196 
5197 	return 0;
5198 }
5199 
5200 /*
5201  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5202  * This option will get or set the maximum size to put in any outgoing
5203  * SCTP DATA chunk.  If a message is larger than this size it will be
5204  * fragmented by SCTP into the specified size.  Note that the underlying
5205  * SCTP implementation may fragment into smaller sized chunks when the
5206  * PMTU of the underlying association is smaller than the value set by
5207  * the user.  The default value for this option is '0' which indicates
5208  * the user is NOT limiting fragmentation and only the PMTU will effect
5209  * SCTP's choice of DATA chunk size.  Note also that values set larger
5210  * than the maximum size of an IP datagram will effectively let SCTP
5211  * control fragmentation (i.e. the same as setting this option to 0).
5212  *
5213  * The following structure is used to access and modify this parameter:
5214  *
5215  * struct sctp_assoc_value {
5216  *   sctp_assoc_t assoc_id;
5217  *   uint32_t assoc_value;
5218  * };
5219  *
5220  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5221  *    For one-to-many style sockets this parameter indicates which
5222  *    association the user is performing an action upon.  Note that if
5223  *    this field's value is zero then the endpoints default value is
5224  *    changed (effecting future associations only).
5225  * assoc_value:  This parameter specifies the maximum size in bytes.
5226  */
5227 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5228 				  char __user *optval, int __user *optlen)
5229 {
5230 	struct sctp_assoc_value params;
5231 	struct sctp_association *asoc;
5232 
5233 	if (len == sizeof(int)) {
5234 		pr_warn_ratelimited(DEPRECATED
5235 				    "%s (pid %d) "
5236 				    "Use of int in maxseg socket option.\n"
5237 				    "Use struct sctp_assoc_value instead\n",
5238 				    current->comm, task_pid_nr(current));
5239 		params.assoc_id = 0;
5240 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5241 		len = sizeof(struct sctp_assoc_value);
5242 		if (copy_from_user(&params, optval, sizeof(params)))
5243 			return -EFAULT;
5244 	} else
5245 		return -EINVAL;
5246 
5247 	asoc = sctp_id2assoc(sk, params.assoc_id);
5248 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5249 		return -EINVAL;
5250 
5251 	if (asoc)
5252 		params.assoc_value = asoc->frag_point;
5253 	else
5254 		params.assoc_value = sctp_sk(sk)->user_frag;
5255 
5256 	if (put_user(len, optlen))
5257 		return -EFAULT;
5258 	if (len == sizeof(int)) {
5259 		if (copy_to_user(optval, &params.assoc_value, len))
5260 			return -EFAULT;
5261 	} else {
5262 		if (copy_to_user(optval, &params, len))
5263 			return -EFAULT;
5264 	}
5265 
5266 	return 0;
5267 }
5268 
5269 /*
5270  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5271  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5272  */
5273 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5274 					       char __user *optval, int __user *optlen)
5275 {
5276 	int val;
5277 
5278 	if (len < sizeof(int))
5279 		return -EINVAL;
5280 
5281 	len = sizeof(int);
5282 
5283 	val = sctp_sk(sk)->frag_interleave;
5284 	if (put_user(len, optlen))
5285 		return -EFAULT;
5286 	if (copy_to_user(optval, &val, len))
5287 		return -EFAULT;
5288 
5289 	return 0;
5290 }
5291 
5292 /*
5293  * 7.1.25.  Set or Get the sctp partial delivery point
5294  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5295  */
5296 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5297 						  char __user *optval,
5298 						  int __user *optlen)
5299 {
5300 	u32 val;
5301 
5302 	if (len < sizeof(u32))
5303 		return -EINVAL;
5304 
5305 	len = sizeof(u32);
5306 
5307 	val = sctp_sk(sk)->pd_point;
5308 	if (put_user(len, optlen))
5309 		return -EFAULT;
5310 	if (copy_to_user(optval, &val, len))
5311 		return -EFAULT;
5312 
5313 	return 0;
5314 }
5315 
5316 /*
5317  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5318  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5319  */
5320 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5321 				    char __user *optval,
5322 				    int __user *optlen)
5323 {
5324 	struct sctp_assoc_value params;
5325 	struct sctp_sock *sp;
5326 	struct sctp_association *asoc;
5327 
5328 	if (len == sizeof(int)) {
5329 		pr_warn_ratelimited(DEPRECATED
5330 				    "%s (pid %d) "
5331 				    "Use of int in max_burst socket option.\n"
5332 				    "Use struct sctp_assoc_value instead\n",
5333 				    current->comm, task_pid_nr(current));
5334 		params.assoc_id = 0;
5335 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5336 		len = sizeof(struct sctp_assoc_value);
5337 		if (copy_from_user(&params, optval, len))
5338 			return -EFAULT;
5339 	} else
5340 		return -EINVAL;
5341 
5342 	sp = sctp_sk(sk);
5343 
5344 	if (params.assoc_id != 0) {
5345 		asoc = sctp_id2assoc(sk, params.assoc_id);
5346 		if (!asoc)
5347 			return -EINVAL;
5348 		params.assoc_value = asoc->max_burst;
5349 	} else
5350 		params.assoc_value = sp->max_burst;
5351 
5352 	if (len == sizeof(int)) {
5353 		if (copy_to_user(optval, &params.assoc_value, len))
5354 			return -EFAULT;
5355 	} else {
5356 		if (copy_to_user(optval, &params, len))
5357 			return -EFAULT;
5358 	}
5359 
5360 	return 0;
5361 
5362 }
5363 
5364 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5365 				    char __user *optval, int __user *optlen)
5366 {
5367 	struct net *net = sock_net(sk);
5368 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5369 	struct sctp_hmac_algo_param *hmacs;
5370 	__u16 data_len = 0;
5371 	u32 num_idents;
5372 
5373 	if (!net->sctp.auth_enable)
5374 		return -EACCES;
5375 
5376 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5377 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5378 
5379 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5380 		return -EINVAL;
5381 
5382 	len = sizeof(struct sctp_hmacalgo) + data_len;
5383 	num_idents = data_len / sizeof(u16);
5384 
5385 	if (put_user(len, optlen))
5386 		return -EFAULT;
5387 	if (put_user(num_idents, &p->shmac_num_idents))
5388 		return -EFAULT;
5389 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5390 		return -EFAULT;
5391 	return 0;
5392 }
5393 
5394 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5395 				    char __user *optval, int __user *optlen)
5396 {
5397 	struct net *net = sock_net(sk);
5398 	struct sctp_authkeyid val;
5399 	struct sctp_association *asoc;
5400 
5401 	if (!net->sctp.auth_enable)
5402 		return -EACCES;
5403 
5404 	if (len < sizeof(struct sctp_authkeyid))
5405 		return -EINVAL;
5406 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5407 		return -EFAULT;
5408 
5409 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5410 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5411 		return -EINVAL;
5412 
5413 	if (asoc)
5414 		val.scact_keynumber = asoc->active_key_id;
5415 	else
5416 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5417 
5418 	len = sizeof(struct sctp_authkeyid);
5419 	if (put_user(len, optlen))
5420 		return -EFAULT;
5421 	if (copy_to_user(optval, &val, len))
5422 		return -EFAULT;
5423 
5424 	return 0;
5425 }
5426 
5427 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5428 				    char __user *optval, int __user *optlen)
5429 {
5430 	struct net *net = sock_net(sk);
5431 	struct sctp_authchunks __user *p = (void __user *)optval;
5432 	struct sctp_authchunks val;
5433 	struct sctp_association *asoc;
5434 	struct sctp_chunks_param *ch;
5435 	u32    num_chunks = 0;
5436 	char __user *to;
5437 
5438 	if (!net->sctp.auth_enable)
5439 		return -EACCES;
5440 
5441 	if (len < sizeof(struct sctp_authchunks))
5442 		return -EINVAL;
5443 
5444 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5445 		return -EFAULT;
5446 
5447 	to = p->gauth_chunks;
5448 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5449 	if (!asoc)
5450 		return -EINVAL;
5451 
5452 	ch = asoc->peer.peer_chunks;
5453 	if (!ch)
5454 		goto num;
5455 
5456 	/* See if the user provided enough room for all the data */
5457 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5458 	if (len < num_chunks)
5459 		return -EINVAL;
5460 
5461 	if (copy_to_user(to, ch->chunks, num_chunks))
5462 		return -EFAULT;
5463 num:
5464 	len = sizeof(struct sctp_authchunks) + num_chunks;
5465 	if (put_user(len, optlen))
5466 		return -EFAULT;
5467 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5468 		return -EFAULT;
5469 	return 0;
5470 }
5471 
5472 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5473 				    char __user *optval, int __user *optlen)
5474 {
5475 	struct net *net = sock_net(sk);
5476 	struct sctp_authchunks __user *p = (void __user *)optval;
5477 	struct sctp_authchunks val;
5478 	struct sctp_association *asoc;
5479 	struct sctp_chunks_param *ch;
5480 	u32    num_chunks = 0;
5481 	char __user *to;
5482 
5483 	if (!net->sctp.auth_enable)
5484 		return -EACCES;
5485 
5486 	if (len < sizeof(struct sctp_authchunks))
5487 		return -EINVAL;
5488 
5489 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5490 		return -EFAULT;
5491 
5492 	to = p->gauth_chunks;
5493 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5494 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5495 		return -EINVAL;
5496 
5497 	if (asoc)
5498 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5499 	else
5500 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5501 
5502 	if (!ch)
5503 		goto num;
5504 
5505 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5506 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5507 		return -EINVAL;
5508 
5509 	if (copy_to_user(to, ch->chunks, num_chunks))
5510 		return -EFAULT;
5511 num:
5512 	len = sizeof(struct sctp_authchunks) + num_chunks;
5513 	if (put_user(len, optlen))
5514 		return -EFAULT;
5515 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5516 		return -EFAULT;
5517 
5518 	return 0;
5519 }
5520 
5521 /*
5522  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5523  * This option gets the current number of associations that are attached
5524  * to a one-to-many style socket.  The option value is an uint32_t.
5525  */
5526 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5527 				    char __user *optval, int __user *optlen)
5528 {
5529 	struct sctp_sock *sp = sctp_sk(sk);
5530 	struct sctp_association *asoc;
5531 	u32 val = 0;
5532 
5533 	if (sctp_style(sk, TCP))
5534 		return -EOPNOTSUPP;
5535 
5536 	if (len < sizeof(u32))
5537 		return -EINVAL;
5538 
5539 	len = sizeof(u32);
5540 
5541 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5542 		val++;
5543 	}
5544 
5545 	if (put_user(len, optlen))
5546 		return -EFAULT;
5547 	if (copy_to_user(optval, &val, len))
5548 		return -EFAULT;
5549 
5550 	return 0;
5551 }
5552 
5553 /*
5554  * 8.1.23 SCTP_AUTO_ASCONF
5555  * See the corresponding setsockopt entry as description
5556  */
5557 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5558 				   char __user *optval, int __user *optlen)
5559 {
5560 	int val = 0;
5561 
5562 	if (len < sizeof(int))
5563 		return -EINVAL;
5564 
5565 	len = sizeof(int);
5566 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5567 		val = 1;
5568 	if (put_user(len, optlen))
5569 		return -EFAULT;
5570 	if (copy_to_user(optval, &val, len))
5571 		return -EFAULT;
5572 	return 0;
5573 }
5574 
5575 /*
5576  * 8.2.6. Get the Current Identifiers of Associations
5577  *        (SCTP_GET_ASSOC_ID_LIST)
5578  *
5579  * This option gets the current list of SCTP association identifiers of
5580  * the SCTP associations handled by a one-to-many style socket.
5581  */
5582 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5583 				    char __user *optval, int __user *optlen)
5584 {
5585 	struct sctp_sock *sp = sctp_sk(sk);
5586 	struct sctp_association *asoc;
5587 	struct sctp_assoc_ids *ids;
5588 	u32 num = 0;
5589 
5590 	if (sctp_style(sk, TCP))
5591 		return -EOPNOTSUPP;
5592 
5593 	if (len < sizeof(struct sctp_assoc_ids))
5594 		return -EINVAL;
5595 
5596 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5597 		num++;
5598 	}
5599 
5600 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5601 		return -EINVAL;
5602 
5603 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5604 
5605 	ids = kmalloc(len, GFP_KERNEL);
5606 	if (unlikely(!ids))
5607 		return -ENOMEM;
5608 
5609 	ids->gaids_number_of_ids = num;
5610 	num = 0;
5611 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5612 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5613 	}
5614 
5615 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5616 		kfree(ids);
5617 		return -EFAULT;
5618 	}
5619 
5620 	kfree(ids);
5621 	return 0;
5622 }
5623 
5624 /*
5625  * SCTP_PEER_ADDR_THLDS
5626  *
5627  * This option allows us to fetch the partially failed threshold for one or all
5628  * transports in an association.  See Section 6.1 of:
5629  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5630  */
5631 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5632 					    char __user *optval,
5633 					    int len,
5634 					    int __user *optlen)
5635 {
5636 	struct sctp_paddrthlds val;
5637 	struct sctp_transport *trans;
5638 	struct sctp_association *asoc;
5639 
5640 	if (len < sizeof(struct sctp_paddrthlds))
5641 		return -EINVAL;
5642 	len = sizeof(struct sctp_paddrthlds);
5643 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5644 		return -EFAULT;
5645 
5646 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5647 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5648 		if (!asoc)
5649 			return -ENOENT;
5650 
5651 		val.spt_pathpfthld = asoc->pf_retrans;
5652 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5653 	} else {
5654 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5655 					       val.spt_assoc_id);
5656 		if (!trans)
5657 			return -ENOENT;
5658 
5659 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5660 		val.spt_pathpfthld = trans->pf_retrans;
5661 	}
5662 
5663 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5664 		return -EFAULT;
5665 
5666 	return 0;
5667 }
5668 
5669 /*
5670  * SCTP_GET_ASSOC_STATS
5671  *
5672  * This option retrieves local per endpoint statistics. It is modeled
5673  * after OpenSolaris' implementation
5674  */
5675 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5676 				       char __user *optval,
5677 				       int __user *optlen)
5678 {
5679 	struct sctp_assoc_stats sas;
5680 	struct sctp_association *asoc = NULL;
5681 
5682 	/* User must provide at least the assoc id */
5683 	if (len < sizeof(sctp_assoc_t))
5684 		return -EINVAL;
5685 
5686 	/* Allow the struct to grow and fill in as much as possible */
5687 	len = min_t(size_t, len, sizeof(sas));
5688 
5689 	if (copy_from_user(&sas, optval, len))
5690 		return -EFAULT;
5691 
5692 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5693 	if (!asoc)
5694 		return -EINVAL;
5695 
5696 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5697 	sas.sas_gapcnt = asoc->stats.gapcnt;
5698 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5699 	sas.sas_osacks = asoc->stats.osacks;
5700 	sas.sas_isacks = asoc->stats.isacks;
5701 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5702 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5703 	sas.sas_oodchunks = asoc->stats.oodchunks;
5704 	sas.sas_iodchunks = asoc->stats.iodchunks;
5705 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5706 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5707 	sas.sas_idupchunks = asoc->stats.idupchunks;
5708 	sas.sas_opackets = asoc->stats.opackets;
5709 	sas.sas_ipackets = asoc->stats.ipackets;
5710 
5711 	/* New high max rto observed, will return 0 if not a single
5712 	 * RTO update took place. obs_rto_ipaddr will be bogus
5713 	 * in such a case
5714 	 */
5715 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5716 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5717 		sizeof(struct sockaddr_storage));
5718 
5719 	/* Mark beginning of a new observation period */
5720 	asoc->stats.max_obs_rto = asoc->rto_min;
5721 
5722 	if (put_user(len, optlen))
5723 		return -EFAULT;
5724 
5725 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5726 
5727 	if (copy_to_user(optval, &sas, len))
5728 		return -EFAULT;
5729 
5730 	return 0;
5731 }
5732 
5733 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5734 			   char __user *optval, int __user *optlen)
5735 {
5736 	int retval = 0;
5737 	int len;
5738 
5739 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5740 
5741 	/* I can hardly begin to describe how wrong this is.  This is
5742 	 * so broken as to be worse than useless.  The API draft
5743 	 * REALLY is NOT helpful here...  I am not convinced that the
5744 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5745 	 * are at all well-founded.
5746 	 */
5747 	if (level != SOL_SCTP) {
5748 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5749 
5750 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5751 		return retval;
5752 	}
5753 
5754 	if (get_user(len, optlen))
5755 		return -EFAULT;
5756 
5757 	lock_sock(sk);
5758 
5759 	switch (optname) {
5760 	case SCTP_STATUS:
5761 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5762 		break;
5763 	case SCTP_DISABLE_FRAGMENTS:
5764 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5765 							   optlen);
5766 		break;
5767 	case SCTP_EVENTS:
5768 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5769 		break;
5770 	case SCTP_AUTOCLOSE:
5771 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5772 		break;
5773 	case SCTP_SOCKOPT_PEELOFF:
5774 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5775 		break;
5776 	case SCTP_PEER_ADDR_PARAMS:
5777 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5778 							  optlen);
5779 		break;
5780 	case SCTP_DELAYED_SACK:
5781 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5782 							  optlen);
5783 		break;
5784 	case SCTP_INITMSG:
5785 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5786 		break;
5787 	case SCTP_GET_PEER_ADDRS:
5788 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5789 						    optlen);
5790 		break;
5791 	case SCTP_GET_LOCAL_ADDRS:
5792 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5793 						     optlen);
5794 		break;
5795 	case SCTP_SOCKOPT_CONNECTX3:
5796 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5797 		break;
5798 	case SCTP_DEFAULT_SEND_PARAM:
5799 		retval = sctp_getsockopt_default_send_param(sk, len,
5800 							    optval, optlen);
5801 		break;
5802 	case SCTP_PRIMARY_ADDR:
5803 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5804 		break;
5805 	case SCTP_NODELAY:
5806 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5807 		break;
5808 	case SCTP_RTOINFO:
5809 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5810 		break;
5811 	case SCTP_ASSOCINFO:
5812 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5813 		break;
5814 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5815 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5816 		break;
5817 	case SCTP_MAXSEG:
5818 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5819 		break;
5820 	case SCTP_GET_PEER_ADDR_INFO:
5821 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5822 							optlen);
5823 		break;
5824 	case SCTP_ADAPTATION_LAYER:
5825 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5826 							optlen);
5827 		break;
5828 	case SCTP_CONTEXT:
5829 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5830 		break;
5831 	case SCTP_FRAGMENT_INTERLEAVE:
5832 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5833 							     optlen);
5834 		break;
5835 	case SCTP_PARTIAL_DELIVERY_POINT:
5836 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5837 								optlen);
5838 		break;
5839 	case SCTP_MAX_BURST:
5840 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5841 		break;
5842 	case SCTP_AUTH_KEY:
5843 	case SCTP_AUTH_CHUNK:
5844 	case SCTP_AUTH_DELETE_KEY:
5845 		retval = -EOPNOTSUPP;
5846 		break;
5847 	case SCTP_HMAC_IDENT:
5848 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5849 		break;
5850 	case SCTP_AUTH_ACTIVE_KEY:
5851 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5852 		break;
5853 	case SCTP_PEER_AUTH_CHUNKS:
5854 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5855 							optlen);
5856 		break;
5857 	case SCTP_LOCAL_AUTH_CHUNKS:
5858 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5859 							optlen);
5860 		break;
5861 	case SCTP_GET_ASSOC_NUMBER:
5862 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5863 		break;
5864 	case SCTP_GET_ASSOC_ID_LIST:
5865 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5866 		break;
5867 	case SCTP_AUTO_ASCONF:
5868 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5869 		break;
5870 	case SCTP_PEER_ADDR_THLDS:
5871 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5872 		break;
5873 	case SCTP_GET_ASSOC_STATS:
5874 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5875 		break;
5876 	default:
5877 		retval = -ENOPROTOOPT;
5878 		break;
5879 	}
5880 
5881 	release_sock(sk);
5882 	return retval;
5883 }
5884 
5885 static void sctp_hash(struct sock *sk)
5886 {
5887 	/* STUB */
5888 }
5889 
5890 static void sctp_unhash(struct sock *sk)
5891 {
5892 	/* STUB */
5893 }
5894 
5895 /* Check if port is acceptable.  Possibly find first available port.
5896  *
5897  * The port hash table (contained in the 'global' SCTP protocol storage
5898  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5899  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5900  * list (the list number is the port number hashed out, so as you
5901  * would expect from a hash function, all the ports in a given list have
5902  * such a number that hashes out to the same list number; you were
5903  * expecting that, right?); so each list has a set of ports, with a
5904  * link to the socket (struct sock) that uses it, the port number and
5905  * a fastreuse flag (FIXME: NPI ipg).
5906  */
5907 static struct sctp_bind_bucket *sctp_bucket_create(
5908 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5909 
5910 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5911 {
5912 	struct sctp_bind_hashbucket *head; /* hash list */
5913 	struct sctp_bind_bucket *pp;
5914 	unsigned short snum;
5915 	int ret;
5916 
5917 	snum = ntohs(addr->v4.sin_port);
5918 
5919 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5920 
5921 	local_bh_disable();
5922 
5923 	if (snum == 0) {
5924 		/* Search for an available port. */
5925 		int low, high, remaining, index;
5926 		unsigned int rover;
5927 
5928 		inet_get_local_port_range(sock_net(sk), &low, &high);
5929 		remaining = (high - low) + 1;
5930 		rover = prandom_u32() % remaining + low;
5931 
5932 		do {
5933 			rover++;
5934 			if ((rover < low) || (rover > high))
5935 				rover = low;
5936 			if (inet_is_reserved_local_port(rover))
5937 				continue;
5938 			index = sctp_phashfn(sock_net(sk), rover);
5939 			head = &sctp_port_hashtable[index];
5940 			spin_lock(&head->lock);
5941 			sctp_for_each_hentry(pp, &head->chain)
5942 				if ((pp->port == rover) &&
5943 				    net_eq(sock_net(sk), pp->net))
5944 					goto next;
5945 			break;
5946 		next:
5947 			spin_unlock(&head->lock);
5948 		} while (--remaining > 0);
5949 
5950 		/* Exhausted local port range during search? */
5951 		ret = 1;
5952 		if (remaining <= 0)
5953 			goto fail;
5954 
5955 		/* OK, here is the one we will use.  HEAD (the port
5956 		 * hash table list entry) is non-NULL and we hold it's
5957 		 * mutex.
5958 		 */
5959 		snum = rover;
5960 	} else {
5961 		/* We are given an specific port number; we verify
5962 		 * that it is not being used. If it is used, we will
5963 		 * exahust the search in the hash list corresponding
5964 		 * to the port number (snum) - we detect that with the
5965 		 * port iterator, pp being NULL.
5966 		 */
5967 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5968 		spin_lock(&head->lock);
5969 		sctp_for_each_hentry(pp, &head->chain) {
5970 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5971 				goto pp_found;
5972 		}
5973 	}
5974 	pp = NULL;
5975 	goto pp_not_found;
5976 pp_found:
5977 	if (!hlist_empty(&pp->owner)) {
5978 		/* We had a port hash table hit - there is an
5979 		 * available port (pp != NULL) and it is being
5980 		 * used by other socket (pp->owner not empty); that other
5981 		 * socket is going to be sk2.
5982 		 */
5983 		int reuse = sk->sk_reuse;
5984 		struct sock *sk2;
5985 
5986 		pr_debug("%s: found a possible match\n", __func__);
5987 
5988 		if (pp->fastreuse && sk->sk_reuse &&
5989 			sk->sk_state != SCTP_SS_LISTENING)
5990 			goto success;
5991 
5992 		/* Run through the list of sockets bound to the port
5993 		 * (pp->port) [via the pointers bind_next and
5994 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5995 		 * we get the endpoint they describe and run through
5996 		 * the endpoint's list of IP (v4 or v6) addresses,
5997 		 * comparing each of the addresses with the address of
5998 		 * the socket sk. If we find a match, then that means
5999 		 * that this port/socket (sk) combination are already
6000 		 * in an endpoint.
6001 		 */
6002 		sk_for_each_bound(sk2, &pp->owner) {
6003 			struct sctp_endpoint *ep2;
6004 			ep2 = sctp_sk(sk2)->ep;
6005 
6006 			if (sk == sk2 ||
6007 			    (reuse && sk2->sk_reuse &&
6008 			     sk2->sk_state != SCTP_SS_LISTENING))
6009 				continue;
6010 
6011 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6012 						 sctp_sk(sk2), sctp_sk(sk))) {
6013 				ret = (long)sk2;
6014 				goto fail_unlock;
6015 			}
6016 		}
6017 
6018 		pr_debug("%s: found a match\n", __func__);
6019 	}
6020 pp_not_found:
6021 	/* If there was a hash table miss, create a new port.  */
6022 	ret = 1;
6023 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6024 		goto fail_unlock;
6025 
6026 	/* In either case (hit or miss), make sure fastreuse is 1 only
6027 	 * if sk->sk_reuse is too (that is, if the caller requested
6028 	 * SO_REUSEADDR on this socket -sk-).
6029 	 */
6030 	if (hlist_empty(&pp->owner)) {
6031 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6032 			pp->fastreuse = 1;
6033 		else
6034 			pp->fastreuse = 0;
6035 	} else if (pp->fastreuse &&
6036 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6037 		pp->fastreuse = 0;
6038 
6039 	/* We are set, so fill up all the data in the hash table
6040 	 * entry, tie the socket list information with the rest of the
6041 	 * sockets FIXME: Blurry, NPI (ipg).
6042 	 */
6043 success:
6044 	if (!sctp_sk(sk)->bind_hash) {
6045 		inet_sk(sk)->inet_num = snum;
6046 		sk_add_bind_node(sk, &pp->owner);
6047 		sctp_sk(sk)->bind_hash = pp;
6048 	}
6049 	ret = 0;
6050 
6051 fail_unlock:
6052 	spin_unlock(&head->lock);
6053 
6054 fail:
6055 	local_bh_enable();
6056 	return ret;
6057 }
6058 
6059 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6060  * port is requested.
6061  */
6062 static int sctp_get_port(struct sock *sk, unsigned short snum)
6063 {
6064 	union sctp_addr addr;
6065 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6066 
6067 	/* Set up a dummy address struct from the sk. */
6068 	af->from_sk(&addr, sk);
6069 	addr.v4.sin_port = htons(snum);
6070 
6071 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6072 	return !!sctp_get_port_local(sk, &addr);
6073 }
6074 
6075 /*
6076  *  Move a socket to LISTENING state.
6077  */
6078 static int sctp_listen_start(struct sock *sk, int backlog)
6079 {
6080 	struct sctp_sock *sp = sctp_sk(sk);
6081 	struct sctp_endpoint *ep = sp->ep;
6082 	struct crypto_hash *tfm = NULL;
6083 	char alg[32];
6084 
6085 	/* Allocate HMAC for generating cookie. */
6086 	if (!sp->hmac && sp->sctp_hmac_alg) {
6087 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6088 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6089 		if (IS_ERR(tfm)) {
6090 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6091 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6092 			return -ENOSYS;
6093 		}
6094 		sctp_sk(sk)->hmac = tfm;
6095 	}
6096 
6097 	/*
6098 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6099 	 * call that allows new associations to be accepted, the system
6100 	 * picks an ephemeral port and will choose an address set equivalent
6101 	 * to binding with a wildcard address.
6102 	 *
6103 	 * This is not currently spelled out in the SCTP sockets
6104 	 * extensions draft, but follows the practice as seen in TCP
6105 	 * sockets.
6106 	 *
6107 	 */
6108 	sk->sk_state = SCTP_SS_LISTENING;
6109 	if (!ep->base.bind_addr.port) {
6110 		if (sctp_autobind(sk))
6111 			return -EAGAIN;
6112 	} else {
6113 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6114 			sk->sk_state = SCTP_SS_CLOSED;
6115 			return -EADDRINUSE;
6116 		}
6117 	}
6118 
6119 	sk->sk_max_ack_backlog = backlog;
6120 	sctp_hash_endpoint(ep);
6121 	return 0;
6122 }
6123 
6124 /*
6125  * 4.1.3 / 5.1.3 listen()
6126  *
6127  *   By default, new associations are not accepted for UDP style sockets.
6128  *   An application uses listen() to mark a socket as being able to
6129  *   accept new associations.
6130  *
6131  *   On TCP style sockets, applications use listen() to ready the SCTP
6132  *   endpoint for accepting inbound associations.
6133  *
6134  *   On both types of endpoints a backlog of '0' disables listening.
6135  *
6136  *  Move a socket to LISTENING state.
6137  */
6138 int sctp_inet_listen(struct socket *sock, int backlog)
6139 {
6140 	struct sock *sk = sock->sk;
6141 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6142 	int err = -EINVAL;
6143 
6144 	if (unlikely(backlog < 0))
6145 		return err;
6146 
6147 	lock_sock(sk);
6148 
6149 	/* Peeled-off sockets are not allowed to listen().  */
6150 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6151 		goto out;
6152 
6153 	if (sock->state != SS_UNCONNECTED)
6154 		goto out;
6155 
6156 	/* If backlog is zero, disable listening. */
6157 	if (!backlog) {
6158 		if (sctp_sstate(sk, CLOSED))
6159 			goto out;
6160 
6161 		err = 0;
6162 		sctp_unhash_endpoint(ep);
6163 		sk->sk_state = SCTP_SS_CLOSED;
6164 		if (sk->sk_reuse)
6165 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6166 		goto out;
6167 	}
6168 
6169 	/* If we are already listening, just update the backlog */
6170 	if (sctp_sstate(sk, LISTENING))
6171 		sk->sk_max_ack_backlog = backlog;
6172 	else {
6173 		err = sctp_listen_start(sk, backlog);
6174 		if (err)
6175 			goto out;
6176 	}
6177 
6178 	err = 0;
6179 out:
6180 	release_sock(sk);
6181 	return err;
6182 }
6183 
6184 /*
6185  * This function is done by modeling the current datagram_poll() and the
6186  * tcp_poll().  Note that, based on these implementations, we don't
6187  * lock the socket in this function, even though it seems that,
6188  * ideally, locking or some other mechanisms can be used to ensure
6189  * the integrity of the counters (sndbuf and wmem_alloc) used
6190  * in this place.  We assume that we don't need locks either until proven
6191  * otherwise.
6192  *
6193  * Another thing to note is that we include the Async I/O support
6194  * here, again, by modeling the current TCP/UDP code.  We don't have
6195  * a good way to test with it yet.
6196  */
6197 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6198 {
6199 	struct sock *sk = sock->sk;
6200 	struct sctp_sock *sp = sctp_sk(sk);
6201 	unsigned int mask;
6202 
6203 	poll_wait(file, sk_sleep(sk), wait);
6204 
6205 	/* A TCP-style listening socket becomes readable when the accept queue
6206 	 * is not empty.
6207 	 */
6208 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6209 		return (!list_empty(&sp->ep->asocs)) ?
6210 			(POLLIN | POLLRDNORM) : 0;
6211 
6212 	mask = 0;
6213 
6214 	/* Is there any exceptional events?  */
6215 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6216 		mask |= POLLERR |
6217 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6218 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6219 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6220 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6221 		mask |= POLLHUP;
6222 
6223 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6224 	if (!skb_queue_empty(&sk->sk_receive_queue))
6225 		mask |= POLLIN | POLLRDNORM;
6226 
6227 	/* The association is either gone or not ready.  */
6228 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6229 		return mask;
6230 
6231 	/* Is it writable?  */
6232 	if (sctp_writeable(sk)) {
6233 		mask |= POLLOUT | POLLWRNORM;
6234 	} else {
6235 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6236 		/*
6237 		 * Since the socket is not locked, the buffer
6238 		 * might be made available after the writeable check and
6239 		 * before the bit is set.  This could cause a lost I/O
6240 		 * signal.  tcp_poll() has a race breaker for this race
6241 		 * condition.  Based on their implementation, we put
6242 		 * in the following code to cover it as well.
6243 		 */
6244 		if (sctp_writeable(sk))
6245 			mask |= POLLOUT | POLLWRNORM;
6246 	}
6247 	return mask;
6248 }
6249 
6250 /********************************************************************
6251  * 2nd Level Abstractions
6252  ********************************************************************/
6253 
6254 static struct sctp_bind_bucket *sctp_bucket_create(
6255 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6256 {
6257 	struct sctp_bind_bucket *pp;
6258 
6259 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6260 	if (pp) {
6261 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6262 		pp->port = snum;
6263 		pp->fastreuse = 0;
6264 		INIT_HLIST_HEAD(&pp->owner);
6265 		pp->net = net;
6266 		hlist_add_head(&pp->node, &head->chain);
6267 	}
6268 	return pp;
6269 }
6270 
6271 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6272 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6273 {
6274 	if (pp && hlist_empty(&pp->owner)) {
6275 		__hlist_del(&pp->node);
6276 		kmem_cache_free(sctp_bucket_cachep, pp);
6277 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6278 	}
6279 }
6280 
6281 /* Release this socket's reference to a local port.  */
6282 static inline void __sctp_put_port(struct sock *sk)
6283 {
6284 	struct sctp_bind_hashbucket *head =
6285 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6286 						  inet_sk(sk)->inet_num)];
6287 	struct sctp_bind_bucket *pp;
6288 
6289 	spin_lock(&head->lock);
6290 	pp = sctp_sk(sk)->bind_hash;
6291 	__sk_del_bind_node(sk);
6292 	sctp_sk(sk)->bind_hash = NULL;
6293 	inet_sk(sk)->inet_num = 0;
6294 	sctp_bucket_destroy(pp);
6295 	spin_unlock(&head->lock);
6296 }
6297 
6298 void sctp_put_port(struct sock *sk)
6299 {
6300 	local_bh_disable();
6301 	__sctp_put_port(sk);
6302 	local_bh_enable();
6303 }
6304 
6305 /*
6306  * The system picks an ephemeral port and choose an address set equivalent
6307  * to binding with a wildcard address.
6308  * One of those addresses will be the primary address for the association.
6309  * This automatically enables the multihoming capability of SCTP.
6310  */
6311 static int sctp_autobind(struct sock *sk)
6312 {
6313 	union sctp_addr autoaddr;
6314 	struct sctp_af *af;
6315 	__be16 port;
6316 
6317 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6318 	af = sctp_sk(sk)->pf->af;
6319 
6320 	port = htons(inet_sk(sk)->inet_num);
6321 	af->inaddr_any(&autoaddr, port);
6322 
6323 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6324 }
6325 
6326 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6327  *
6328  * From RFC 2292
6329  * 4.2 The cmsghdr Structure *
6330  *
6331  * When ancillary data is sent or received, any number of ancillary data
6332  * objects can be specified by the msg_control and msg_controllen members of
6333  * the msghdr structure, because each object is preceded by
6334  * a cmsghdr structure defining the object's length (the cmsg_len member).
6335  * Historically Berkeley-derived implementations have passed only one object
6336  * at a time, but this API allows multiple objects to be
6337  * passed in a single call to sendmsg() or recvmsg(). The following example
6338  * shows two ancillary data objects in a control buffer.
6339  *
6340  *   |<--------------------------- msg_controllen -------------------------->|
6341  *   |                                                                       |
6342  *
6343  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6344  *
6345  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6346  *   |                                   |                                   |
6347  *
6348  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6349  *
6350  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6351  *   |                                |  |                                |  |
6352  *
6353  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6354  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6355  *
6356  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6357  *
6358  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6359  *    ^
6360  *    |
6361  *
6362  * msg_control
6363  * points here
6364  */
6365 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6366 {
6367 	struct cmsghdr *cmsg;
6368 	struct msghdr *my_msg = (struct msghdr *)msg;
6369 
6370 	for (cmsg = CMSG_FIRSTHDR(msg);
6371 	     cmsg != NULL;
6372 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6373 		if (!CMSG_OK(my_msg, cmsg))
6374 			return -EINVAL;
6375 
6376 		/* Should we parse this header or ignore?  */
6377 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6378 			continue;
6379 
6380 		/* Strictly check lengths following example in SCM code.  */
6381 		switch (cmsg->cmsg_type) {
6382 		case SCTP_INIT:
6383 			/* SCTP Socket API Extension
6384 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6385 			 *
6386 			 * This cmsghdr structure provides information for
6387 			 * initializing new SCTP associations with sendmsg().
6388 			 * The SCTP_INITMSG socket option uses this same data
6389 			 * structure.  This structure is not used for
6390 			 * recvmsg().
6391 			 *
6392 			 * cmsg_level    cmsg_type      cmsg_data[]
6393 			 * ------------  ------------   ----------------------
6394 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6395 			 */
6396 			if (cmsg->cmsg_len !=
6397 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6398 				return -EINVAL;
6399 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6400 			break;
6401 
6402 		case SCTP_SNDRCV:
6403 			/* SCTP Socket API Extension
6404 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6405 			 *
6406 			 * This cmsghdr structure specifies SCTP options for
6407 			 * sendmsg() and describes SCTP header information
6408 			 * about a received message through recvmsg().
6409 			 *
6410 			 * cmsg_level    cmsg_type      cmsg_data[]
6411 			 * ------------  ------------   ----------------------
6412 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6413 			 */
6414 			if (cmsg->cmsg_len !=
6415 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6416 				return -EINVAL;
6417 
6418 			cmsgs->info =
6419 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6420 
6421 			/* Minimally, validate the sinfo_flags. */
6422 			if (cmsgs->info->sinfo_flags &
6423 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6424 			      SCTP_ABORT | SCTP_EOF))
6425 				return -EINVAL;
6426 			break;
6427 
6428 		default:
6429 			return -EINVAL;
6430 		}
6431 	}
6432 	return 0;
6433 }
6434 
6435 /*
6436  * Wait for a packet..
6437  * Note: This function is the same function as in core/datagram.c
6438  * with a few modifications to make lksctp work.
6439  */
6440 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6441 {
6442 	int error;
6443 	DEFINE_WAIT(wait);
6444 
6445 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6446 
6447 	/* Socket errors? */
6448 	error = sock_error(sk);
6449 	if (error)
6450 		goto out;
6451 
6452 	if (!skb_queue_empty(&sk->sk_receive_queue))
6453 		goto ready;
6454 
6455 	/* Socket shut down?  */
6456 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6457 		goto out;
6458 
6459 	/* Sequenced packets can come disconnected.  If so we report the
6460 	 * problem.
6461 	 */
6462 	error = -ENOTCONN;
6463 
6464 	/* Is there a good reason to think that we may receive some data?  */
6465 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6466 		goto out;
6467 
6468 	/* Handle signals.  */
6469 	if (signal_pending(current))
6470 		goto interrupted;
6471 
6472 	/* Let another process have a go.  Since we are going to sleep
6473 	 * anyway.  Note: This may cause odd behaviors if the message
6474 	 * does not fit in the user's buffer, but this seems to be the
6475 	 * only way to honor MSG_DONTWAIT realistically.
6476 	 */
6477 	release_sock(sk);
6478 	*timeo_p = schedule_timeout(*timeo_p);
6479 	lock_sock(sk);
6480 
6481 ready:
6482 	finish_wait(sk_sleep(sk), &wait);
6483 	return 0;
6484 
6485 interrupted:
6486 	error = sock_intr_errno(*timeo_p);
6487 
6488 out:
6489 	finish_wait(sk_sleep(sk), &wait);
6490 	*err = error;
6491 	return error;
6492 }
6493 
6494 /* Receive a datagram.
6495  * Note: This is pretty much the same routine as in core/datagram.c
6496  * with a few changes to make lksctp work.
6497  */
6498 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6499 					      int noblock, int *err)
6500 {
6501 	int error;
6502 	struct sk_buff *skb;
6503 	long timeo;
6504 
6505 	timeo = sock_rcvtimeo(sk, noblock);
6506 
6507 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6508 		 MAX_SCHEDULE_TIMEOUT);
6509 
6510 	do {
6511 		/* Again only user level code calls this function,
6512 		 * so nothing interrupt level
6513 		 * will suddenly eat the receive_queue.
6514 		 *
6515 		 *  Look at current nfs client by the way...
6516 		 *  However, this function was correct in any case. 8)
6517 		 */
6518 		if (flags & MSG_PEEK) {
6519 			spin_lock_bh(&sk->sk_receive_queue.lock);
6520 			skb = skb_peek(&sk->sk_receive_queue);
6521 			if (skb)
6522 				atomic_inc(&skb->users);
6523 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6524 		} else {
6525 			skb = skb_dequeue(&sk->sk_receive_queue);
6526 		}
6527 
6528 		if (skb)
6529 			return skb;
6530 
6531 		/* Caller is allowed not to check sk->sk_err before calling. */
6532 		error = sock_error(sk);
6533 		if (error)
6534 			goto no_packet;
6535 
6536 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6537 			break;
6538 
6539 		/* User doesn't want to wait.  */
6540 		error = -EAGAIN;
6541 		if (!timeo)
6542 			goto no_packet;
6543 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6544 
6545 	return NULL;
6546 
6547 no_packet:
6548 	*err = error;
6549 	return NULL;
6550 }
6551 
6552 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6553 static void __sctp_write_space(struct sctp_association *asoc)
6554 {
6555 	struct sock *sk = asoc->base.sk;
6556 	struct socket *sock = sk->sk_socket;
6557 
6558 	if ((sctp_wspace(asoc) > 0) && sock) {
6559 		if (waitqueue_active(&asoc->wait))
6560 			wake_up_interruptible(&asoc->wait);
6561 
6562 		if (sctp_writeable(sk)) {
6563 			wait_queue_head_t *wq = sk_sleep(sk);
6564 
6565 			if (wq && waitqueue_active(wq))
6566 				wake_up_interruptible(wq);
6567 
6568 			/* Note that we try to include the Async I/O support
6569 			 * here by modeling from the current TCP/UDP code.
6570 			 * We have not tested with it yet.
6571 			 */
6572 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6573 				sock_wake_async(sock,
6574 						SOCK_WAKE_SPACE, POLL_OUT);
6575 		}
6576 	}
6577 }
6578 
6579 /* Do accounting for the sndbuf space.
6580  * Decrement the used sndbuf space of the corresponding association by the
6581  * data size which was just transmitted(freed).
6582  */
6583 static void sctp_wfree(struct sk_buff *skb)
6584 {
6585 	struct sctp_association *asoc;
6586 	struct sctp_chunk *chunk;
6587 	struct sock *sk;
6588 
6589 	/* Get the saved chunk pointer.  */
6590 	chunk = *((struct sctp_chunk **)(skb->cb));
6591 	asoc = chunk->asoc;
6592 	sk = asoc->base.sk;
6593 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6594 				sizeof(struct sk_buff) +
6595 				sizeof(struct sctp_chunk);
6596 
6597 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6598 
6599 	/*
6600 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6601 	 */
6602 	sk->sk_wmem_queued   -= skb->truesize;
6603 	sk_mem_uncharge(sk, skb->truesize);
6604 
6605 	sock_wfree(skb);
6606 	__sctp_write_space(asoc);
6607 
6608 	sctp_association_put(asoc);
6609 }
6610 
6611 /* Do accounting for the receive space on the socket.
6612  * Accounting for the association is done in ulpevent.c
6613  * We set this as a destructor for the cloned data skbs so that
6614  * accounting is done at the correct time.
6615  */
6616 void sctp_sock_rfree(struct sk_buff *skb)
6617 {
6618 	struct sock *sk = skb->sk;
6619 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6620 
6621 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6622 
6623 	/*
6624 	 * Mimic the behavior of sock_rfree
6625 	 */
6626 	sk_mem_uncharge(sk, event->rmem_len);
6627 }
6628 
6629 
6630 /* Helper function to wait for space in the sndbuf.  */
6631 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6632 				size_t msg_len)
6633 {
6634 	struct sock *sk = asoc->base.sk;
6635 	int err = 0;
6636 	long current_timeo = *timeo_p;
6637 	DEFINE_WAIT(wait);
6638 
6639 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6640 		 *timeo_p, msg_len);
6641 
6642 	/* Increment the association's refcnt.  */
6643 	sctp_association_hold(asoc);
6644 
6645 	/* Wait on the association specific sndbuf space. */
6646 	for (;;) {
6647 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6648 					  TASK_INTERRUPTIBLE);
6649 		if (!*timeo_p)
6650 			goto do_nonblock;
6651 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6652 		    asoc->base.dead)
6653 			goto do_error;
6654 		if (signal_pending(current))
6655 			goto do_interrupted;
6656 		if (msg_len <= sctp_wspace(asoc))
6657 			break;
6658 
6659 		/* Let another process have a go.  Since we are going
6660 		 * to sleep anyway.
6661 		 */
6662 		release_sock(sk);
6663 		current_timeo = schedule_timeout(current_timeo);
6664 		BUG_ON(sk != asoc->base.sk);
6665 		lock_sock(sk);
6666 
6667 		*timeo_p = current_timeo;
6668 	}
6669 
6670 out:
6671 	finish_wait(&asoc->wait, &wait);
6672 
6673 	/* Release the association's refcnt.  */
6674 	sctp_association_put(asoc);
6675 
6676 	return err;
6677 
6678 do_error:
6679 	err = -EPIPE;
6680 	goto out;
6681 
6682 do_interrupted:
6683 	err = sock_intr_errno(*timeo_p);
6684 	goto out;
6685 
6686 do_nonblock:
6687 	err = -EAGAIN;
6688 	goto out;
6689 }
6690 
6691 void sctp_data_ready(struct sock *sk, int len)
6692 {
6693 	struct socket_wq *wq;
6694 
6695 	rcu_read_lock();
6696 	wq = rcu_dereference(sk->sk_wq);
6697 	if (wq_has_sleeper(wq))
6698 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6699 						POLLRDNORM | POLLRDBAND);
6700 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6701 	rcu_read_unlock();
6702 }
6703 
6704 /* If socket sndbuf has changed, wake up all per association waiters.  */
6705 void sctp_write_space(struct sock *sk)
6706 {
6707 	struct sctp_association *asoc;
6708 
6709 	/* Wake up the tasks in each wait queue.  */
6710 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6711 		__sctp_write_space(asoc);
6712 	}
6713 }
6714 
6715 /* Is there any sndbuf space available on the socket?
6716  *
6717  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6718  * associations on the same socket.  For a UDP-style socket with
6719  * multiple associations, it is possible for it to be "unwriteable"
6720  * prematurely.  I assume that this is acceptable because
6721  * a premature "unwriteable" is better than an accidental "writeable" which
6722  * would cause an unwanted block under certain circumstances.  For the 1-1
6723  * UDP-style sockets or TCP-style sockets, this code should work.
6724  *  - Daisy
6725  */
6726 static int sctp_writeable(struct sock *sk)
6727 {
6728 	int amt = 0;
6729 
6730 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6731 	if (amt < 0)
6732 		amt = 0;
6733 	return amt;
6734 }
6735 
6736 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6737  * returns immediately with EINPROGRESS.
6738  */
6739 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6740 {
6741 	struct sock *sk = asoc->base.sk;
6742 	int err = 0;
6743 	long current_timeo = *timeo_p;
6744 	DEFINE_WAIT(wait);
6745 
6746 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6747 
6748 	/* Increment the association's refcnt.  */
6749 	sctp_association_hold(asoc);
6750 
6751 	for (;;) {
6752 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6753 					  TASK_INTERRUPTIBLE);
6754 		if (!*timeo_p)
6755 			goto do_nonblock;
6756 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6757 			break;
6758 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6759 		    asoc->base.dead)
6760 			goto do_error;
6761 		if (signal_pending(current))
6762 			goto do_interrupted;
6763 
6764 		if (sctp_state(asoc, ESTABLISHED))
6765 			break;
6766 
6767 		/* Let another process have a go.  Since we are going
6768 		 * to sleep anyway.
6769 		 */
6770 		release_sock(sk);
6771 		current_timeo = schedule_timeout(current_timeo);
6772 		lock_sock(sk);
6773 
6774 		*timeo_p = current_timeo;
6775 	}
6776 
6777 out:
6778 	finish_wait(&asoc->wait, &wait);
6779 
6780 	/* Release the association's refcnt.  */
6781 	sctp_association_put(asoc);
6782 
6783 	return err;
6784 
6785 do_error:
6786 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6787 		err = -ETIMEDOUT;
6788 	else
6789 		err = -ECONNREFUSED;
6790 	goto out;
6791 
6792 do_interrupted:
6793 	err = sock_intr_errno(*timeo_p);
6794 	goto out;
6795 
6796 do_nonblock:
6797 	err = -EINPROGRESS;
6798 	goto out;
6799 }
6800 
6801 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6802 {
6803 	struct sctp_endpoint *ep;
6804 	int err = 0;
6805 	DEFINE_WAIT(wait);
6806 
6807 	ep = sctp_sk(sk)->ep;
6808 
6809 
6810 	for (;;) {
6811 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6812 					  TASK_INTERRUPTIBLE);
6813 
6814 		if (list_empty(&ep->asocs)) {
6815 			release_sock(sk);
6816 			timeo = schedule_timeout(timeo);
6817 			lock_sock(sk);
6818 		}
6819 
6820 		err = -EINVAL;
6821 		if (!sctp_sstate(sk, LISTENING))
6822 			break;
6823 
6824 		err = 0;
6825 		if (!list_empty(&ep->asocs))
6826 			break;
6827 
6828 		err = sock_intr_errno(timeo);
6829 		if (signal_pending(current))
6830 			break;
6831 
6832 		err = -EAGAIN;
6833 		if (!timeo)
6834 			break;
6835 	}
6836 
6837 	finish_wait(sk_sleep(sk), &wait);
6838 
6839 	return err;
6840 }
6841 
6842 static void sctp_wait_for_close(struct sock *sk, long timeout)
6843 {
6844 	DEFINE_WAIT(wait);
6845 
6846 	do {
6847 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6848 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6849 			break;
6850 		release_sock(sk);
6851 		timeout = schedule_timeout(timeout);
6852 		lock_sock(sk);
6853 	} while (!signal_pending(current) && timeout);
6854 
6855 	finish_wait(sk_sleep(sk), &wait);
6856 }
6857 
6858 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6859 {
6860 	struct sk_buff *frag;
6861 
6862 	if (!skb->data_len)
6863 		goto done;
6864 
6865 	/* Don't forget the fragments. */
6866 	skb_walk_frags(skb, frag)
6867 		sctp_skb_set_owner_r_frag(frag, sk);
6868 
6869 done:
6870 	sctp_skb_set_owner_r(skb, sk);
6871 }
6872 
6873 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6874 		    struct sctp_association *asoc)
6875 {
6876 	struct inet_sock *inet = inet_sk(sk);
6877 	struct inet_sock *newinet;
6878 
6879 	newsk->sk_type = sk->sk_type;
6880 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6881 	newsk->sk_flags = sk->sk_flags;
6882 	newsk->sk_no_check = sk->sk_no_check;
6883 	newsk->sk_reuse = sk->sk_reuse;
6884 
6885 	newsk->sk_shutdown = sk->sk_shutdown;
6886 	newsk->sk_destruct = sctp_destruct_sock;
6887 	newsk->sk_family = sk->sk_family;
6888 	newsk->sk_protocol = IPPROTO_SCTP;
6889 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6890 	newsk->sk_sndbuf = sk->sk_sndbuf;
6891 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6892 	newsk->sk_lingertime = sk->sk_lingertime;
6893 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6894 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6895 
6896 	newinet = inet_sk(newsk);
6897 
6898 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6899 	 * getsockname() and getpeername()
6900 	 */
6901 	newinet->inet_sport = inet->inet_sport;
6902 	newinet->inet_saddr = inet->inet_saddr;
6903 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6904 	newinet->inet_dport = htons(asoc->peer.port);
6905 	newinet->pmtudisc = inet->pmtudisc;
6906 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6907 
6908 	newinet->uc_ttl = inet->uc_ttl;
6909 	newinet->mc_loop = 1;
6910 	newinet->mc_ttl = 1;
6911 	newinet->mc_index = 0;
6912 	newinet->mc_list = NULL;
6913 }
6914 
6915 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6916  * and its messages to the newsk.
6917  */
6918 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6919 			      struct sctp_association *assoc,
6920 			      sctp_socket_type_t type)
6921 {
6922 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6923 	struct sctp_sock *newsp = sctp_sk(newsk);
6924 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6925 	struct sctp_endpoint *newep = newsp->ep;
6926 	struct sk_buff *skb, *tmp;
6927 	struct sctp_ulpevent *event;
6928 	struct sctp_bind_hashbucket *head;
6929 	struct list_head tmplist;
6930 
6931 	/* Migrate socket buffer sizes and all the socket level options to the
6932 	 * new socket.
6933 	 */
6934 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6935 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6936 	/* Brute force copy old sctp opt. */
6937 	if (oldsp->do_auto_asconf) {
6938 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6939 		inet_sk_copy_descendant(newsk, oldsk);
6940 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6941 	} else
6942 		inet_sk_copy_descendant(newsk, oldsk);
6943 
6944 	/* Restore the ep value that was overwritten with the above structure
6945 	 * copy.
6946 	 */
6947 	newsp->ep = newep;
6948 	newsp->hmac = NULL;
6949 
6950 	/* Hook this new socket in to the bind_hash list. */
6951 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6952 						 inet_sk(oldsk)->inet_num)];
6953 	local_bh_disable();
6954 	spin_lock(&head->lock);
6955 	pp = sctp_sk(oldsk)->bind_hash;
6956 	sk_add_bind_node(newsk, &pp->owner);
6957 	sctp_sk(newsk)->bind_hash = pp;
6958 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6959 	spin_unlock(&head->lock);
6960 	local_bh_enable();
6961 
6962 	/* Copy the bind_addr list from the original endpoint to the new
6963 	 * endpoint so that we can handle restarts properly
6964 	 */
6965 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6966 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6967 
6968 	/* Move any messages in the old socket's receive queue that are for the
6969 	 * peeled off association to the new socket's receive queue.
6970 	 */
6971 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6972 		event = sctp_skb2event(skb);
6973 		if (event->asoc == assoc) {
6974 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6975 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6976 			sctp_skb_set_owner_r_frag(skb, newsk);
6977 		}
6978 	}
6979 
6980 	/* Clean up any messages pending delivery due to partial
6981 	 * delivery.   Three cases:
6982 	 * 1) No partial deliver;  no work.
6983 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6984 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6985 	 */
6986 	skb_queue_head_init(&newsp->pd_lobby);
6987 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6988 
6989 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6990 		struct sk_buff_head *queue;
6991 
6992 		/* Decide which queue to move pd_lobby skbs to. */
6993 		if (assoc->ulpq.pd_mode) {
6994 			queue = &newsp->pd_lobby;
6995 		} else
6996 			queue = &newsk->sk_receive_queue;
6997 
6998 		/* Walk through the pd_lobby, looking for skbs that
6999 		 * need moved to the new socket.
7000 		 */
7001 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7002 			event = sctp_skb2event(skb);
7003 			if (event->asoc == assoc) {
7004 				__skb_unlink(skb, &oldsp->pd_lobby);
7005 				__skb_queue_tail(queue, skb);
7006 				sctp_skb_set_owner_r_frag(skb, newsk);
7007 			}
7008 		}
7009 
7010 		/* Clear up any skbs waiting for the partial
7011 		 * delivery to finish.
7012 		 */
7013 		if (assoc->ulpq.pd_mode)
7014 			sctp_clear_pd(oldsk, NULL);
7015 
7016 	}
7017 
7018 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7019 		sctp_skb_set_owner_r_frag(skb, newsk);
7020 
7021 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7022 		sctp_skb_set_owner_r_frag(skb, newsk);
7023 
7024 	/* Set the type of socket to indicate that it is peeled off from the
7025 	 * original UDP-style socket or created with the accept() call on a
7026 	 * TCP-style socket..
7027 	 */
7028 	newsp->type = type;
7029 
7030 	/* Mark the new socket "in-use" by the user so that any packets
7031 	 * that may arrive on the association after we've moved it are
7032 	 * queued to the backlog.  This prevents a potential race between
7033 	 * backlog processing on the old socket and new-packet processing
7034 	 * on the new socket.
7035 	 *
7036 	 * The caller has just allocated newsk so we can guarantee that other
7037 	 * paths won't try to lock it and then oldsk.
7038 	 */
7039 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7040 	sctp_assoc_migrate(assoc, newsk);
7041 
7042 	/* If the association on the newsk is already closed before accept()
7043 	 * is called, set RCV_SHUTDOWN flag.
7044 	 */
7045 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7046 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7047 
7048 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7049 	release_sock(newsk);
7050 }
7051 
7052 
7053 /* This proto struct describes the ULP interface for SCTP.  */
7054 struct proto sctp_prot = {
7055 	.name        =	"SCTP",
7056 	.owner       =	THIS_MODULE,
7057 	.close       =	sctp_close,
7058 	.connect     =	sctp_connect,
7059 	.disconnect  =	sctp_disconnect,
7060 	.accept      =	sctp_accept,
7061 	.ioctl       =	sctp_ioctl,
7062 	.init        =	sctp_init_sock,
7063 	.destroy     =	sctp_destroy_sock,
7064 	.shutdown    =	sctp_shutdown,
7065 	.setsockopt  =	sctp_setsockopt,
7066 	.getsockopt  =	sctp_getsockopt,
7067 	.sendmsg     =	sctp_sendmsg,
7068 	.recvmsg     =	sctp_recvmsg,
7069 	.bind        =	sctp_bind,
7070 	.backlog_rcv =	sctp_backlog_rcv,
7071 	.hash        =	sctp_hash,
7072 	.unhash      =	sctp_unhash,
7073 	.get_port    =	sctp_get_port,
7074 	.obj_size    =  sizeof(struct sctp_sock),
7075 	.sysctl_mem  =  sysctl_sctp_mem,
7076 	.sysctl_rmem =  sysctl_sctp_rmem,
7077 	.sysctl_wmem =  sysctl_sctp_wmem,
7078 	.memory_pressure = &sctp_memory_pressure,
7079 	.enter_memory_pressure = sctp_enter_memory_pressure,
7080 	.memory_allocated = &sctp_memory_allocated,
7081 	.sockets_allocated = &sctp_sockets_allocated,
7082 };
7083 
7084 #if IS_ENABLED(CONFIG_IPV6)
7085 
7086 struct proto sctpv6_prot = {
7087 	.name		= "SCTPv6",
7088 	.owner		= THIS_MODULE,
7089 	.close		= sctp_close,
7090 	.connect	= sctp_connect,
7091 	.disconnect	= sctp_disconnect,
7092 	.accept		= sctp_accept,
7093 	.ioctl		= sctp_ioctl,
7094 	.init		= sctp_init_sock,
7095 	.destroy	= sctp_destroy_sock,
7096 	.shutdown	= sctp_shutdown,
7097 	.setsockopt	= sctp_setsockopt,
7098 	.getsockopt	= sctp_getsockopt,
7099 	.sendmsg	= sctp_sendmsg,
7100 	.recvmsg	= sctp_recvmsg,
7101 	.bind		= sctp_bind,
7102 	.backlog_rcv	= sctp_backlog_rcv,
7103 	.hash		= sctp_hash,
7104 	.unhash		= sctp_unhash,
7105 	.get_port	= sctp_get_port,
7106 	.obj_size	= sizeof(struct sctp6_sock),
7107 	.sysctl_mem	= sysctl_sctp_mem,
7108 	.sysctl_rmem	= sysctl_sctp_rmem,
7109 	.sysctl_wmem	= sysctl_sctp_wmem,
7110 	.memory_pressure = &sctp_memory_pressure,
7111 	.enter_memory_pressure = sctp_enter_memory_pressure,
7112 	.memory_allocated = &sctp_memory_allocated,
7113 	.sockets_allocated = &sctp_sockets_allocated,
7114 };
7115 #endif /* IS_ENABLED(CONFIG_IPV6) */
7116