1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (!id || (id == (sctp_assoc_t)-1)) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = vmemdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kvfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kvfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kvfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = vmemdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kvfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 1870 return 0; 1871 } 1872 1873 return 1; 1874 } 1875 1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1877 struct msghdr *msg, size_t msg_len, 1878 struct sctp_transport *transport, 1879 struct sctp_sndrcvinfo *sinfo) 1880 { 1881 struct sock *sk = asoc->base.sk; 1882 struct sctp_sock *sp = sctp_sk(sk); 1883 struct net *net = sock_net(sk); 1884 struct sctp_datamsg *datamsg; 1885 bool wait_connect = false; 1886 struct sctp_chunk *chunk; 1887 long timeo; 1888 int err; 1889 1890 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1891 err = -EINVAL; 1892 goto err; 1893 } 1894 1895 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1896 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1897 if (err) 1898 goto err; 1899 } 1900 1901 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1902 err = -EMSGSIZE; 1903 goto err; 1904 } 1905 1906 if (asoc->pmtu_pending) { 1907 if (sp->param_flags & SPP_PMTUD_ENABLE) 1908 sctp_assoc_sync_pmtu(asoc); 1909 asoc->pmtu_pending = 0; 1910 } 1911 1912 if (sctp_wspace(asoc) < (int)msg_len) 1913 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1914 1915 if (sctp_wspace(asoc) <= 0) { 1916 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1918 if (err) 1919 goto err; 1920 } 1921 1922 if (sctp_state(asoc, CLOSED)) { 1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1924 if (err) 1925 goto err; 1926 1927 if (sp->strm_interleave) { 1928 timeo = sock_sndtimeo(sk, 0); 1929 err = sctp_wait_for_connect(asoc, &timeo); 1930 if (err) { 1931 err = -ESRCH; 1932 goto err; 1933 } 1934 } else { 1935 wait_connect = true; 1936 } 1937 1938 pr_debug("%s: we associated primitively\n", __func__); 1939 } 1940 1941 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1942 if (IS_ERR(datamsg)) { 1943 err = PTR_ERR(datamsg); 1944 goto err; 1945 } 1946 1947 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1948 1949 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1950 sctp_chunk_hold(chunk); 1951 sctp_set_owner_w(chunk); 1952 chunk->transport = transport; 1953 } 1954 1955 err = sctp_primitive_SEND(net, asoc, datamsg); 1956 if (err) { 1957 sctp_datamsg_free(datamsg); 1958 goto err; 1959 } 1960 1961 pr_debug("%s: we sent primitively\n", __func__); 1962 1963 sctp_datamsg_put(datamsg); 1964 1965 if (unlikely(wait_connect)) { 1966 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1967 sctp_wait_for_connect(asoc, &timeo); 1968 } 1969 1970 err = msg_len; 1971 1972 err: 1973 return err; 1974 } 1975 1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1977 const struct msghdr *msg, 1978 struct sctp_cmsgs *cmsgs) 1979 { 1980 union sctp_addr *daddr = NULL; 1981 int err; 1982 1983 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1984 int len = msg->msg_namelen; 1985 1986 if (len > sizeof(*daddr)) 1987 len = sizeof(*daddr); 1988 1989 daddr = (union sctp_addr *)msg->msg_name; 1990 1991 err = sctp_verify_addr(sk, daddr, len); 1992 if (err) 1993 return ERR_PTR(err); 1994 } 1995 1996 return daddr; 1997 } 1998 1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2000 struct sctp_sndrcvinfo *sinfo, 2001 struct sctp_cmsgs *cmsgs) 2002 { 2003 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2004 sinfo->sinfo_stream = asoc->default_stream; 2005 sinfo->sinfo_ppid = asoc->default_ppid; 2006 sinfo->sinfo_context = asoc->default_context; 2007 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2008 2009 if (!cmsgs->prinfo) 2010 sinfo->sinfo_flags = asoc->default_flags; 2011 } 2012 2013 if (!cmsgs->srinfo && !cmsgs->prinfo) 2014 sinfo->sinfo_timetolive = asoc->default_timetolive; 2015 2016 if (cmsgs->authinfo) { 2017 /* Reuse sinfo_tsn to indicate that authinfo was set and 2018 * sinfo_ssn to save the keyid on tx path. 2019 */ 2020 sinfo->sinfo_tsn = 1; 2021 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2022 } 2023 } 2024 2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2026 { 2027 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2028 struct sctp_transport *transport = NULL; 2029 struct sctp_sndrcvinfo _sinfo, *sinfo; 2030 struct sctp_association *asoc; 2031 struct sctp_cmsgs cmsgs; 2032 union sctp_addr *daddr; 2033 bool new = false; 2034 __u16 sflags; 2035 int err; 2036 2037 /* Parse and get snd_info */ 2038 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2039 if (err) 2040 goto out; 2041 2042 sinfo = &_sinfo; 2043 sflags = sinfo->sinfo_flags; 2044 2045 /* Get daddr from msg */ 2046 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2047 if (IS_ERR(daddr)) { 2048 err = PTR_ERR(daddr); 2049 goto out; 2050 } 2051 2052 lock_sock(sk); 2053 2054 /* SCTP_SENDALL process */ 2055 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2056 list_for_each_entry(asoc, &ep->asocs, asocs) { 2057 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2058 msg_len); 2059 if (err == 0) 2060 continue; 2061 if (err < 0) 2062 goto out_unlock; 2063 2064 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2065 2066 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2067 NULL, sinfo); 2068 if (err < 0) 2069 goto out_unlock; 2070 2071 iov_iter_revert(&msg->msg_iter, err); 2072 } 2073 2074 goto out_unlock; 2075 } 2076 2077 /* Get and check or create asoc */ 2078 if (daddr) { 2079 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2080 if (asoc) { 2081 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2082 msg_len); 2083 if (err <= 0) 2084 goto out_unlock; 2085 } else { 2086 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2087 &transport); 2088 if (err) 2089 goto out_unlock; 2090 2091 asoc = transport->asoc; 2092 new = true; 2093 } 2094 2095 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2096 transport = NULL; 2097 } else { 2098 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2099 if (!asoc) { 2100 err = -EPIPE; 2101 goto out_unlock; 2102 } 2103 2104 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2105 if (err <= 0) 2106 goto out_unlock; 2107 } 2108 2109 /* Update snd_info with the asoc */ 2110 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2111 2112 /* Send msg to the asoc */ 2113 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2114 if (err < 0 && err != -ESRCH && new) 2115 sctp_association_free(asoc); 2116 2117 out_unlock: 2118 release_sock(sk); 2119 out: 2120 return sctp_error(sk, msg->msg_flags, err); 2121 } 2122 2123 /* This is an extended version of skb_pull() that removes the data from the 2124 * start of a skb even when data is spread across the list of skb's in the 2125 * frag_list. len specifies the total amount of data that needs to be removed. 2126 * when 'len' bytes could be removed from the skb, it returns 0. 2127 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2128 * could not be removed. 2129 */ 2130 static int sctp_skb_pull(struct sk_buff *skb, int len) 2131 { 2132 struct sk_buff *list; 2133 int skb_len = skb_headlen(skb); 2134 int rlen; 2135 2136 if (len <= skb_len) { 2137 __skb_pull(skb, len); 2138 return 0; 2139 } 2140 len -= skb_len; 2141 __skb_pull(skb, skb_len); 2142 2143 skb_walk_frags(skb, list) { 2144 rlen = sctp_skb_pull(list, len); 2145 skb->len -= (len-rlen); 2146 skb->data_len -= (len-rlen); 2147 2148 if (!rlen) 2149 return 0; 2150 2151 len = rlen; 2152 } 2153 2154 return len; 2155 } 2156 2157 /* API 3.1.3 recvmsg() - UDP Style Syntax 2158 * 2159 * ssize_t recvmsg(int socket, struct msghdr *message, 2160 * int flags); 2161 * 2162 * socket - the socket descriptor of the endpoint. 2163 * message - pointer to the msghdr structure which contains a single 2164 * user message and possibly some ancillary data. 2165 * 2166 * See Section 5 for complete description of the data 2167 * structures. 2168 * 2169 * flags - flags sent or received with the user message, see Section 2170 * 5 for complete description of the flags. 2171 */ 2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2173 int noblock, int flags, int *addr_len) 2174 { 2175 struct sctp_ulpevent *event = NULL; 2176 struct sctp_sock *sp = sctp_sk(sk); 2177 struct sk_buff *skb, *head_skb; 2178 int copied; 2179 int err = 0; 2180 int skb_len; 2181 2182 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2183 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2184 addr_len); 2185 2186 lock_sock(sk); 2187 2188 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2189 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2190 err = -ENOTCONN; 2191 goto out; 2192 } 2193 2194 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2195 if (!skb) 2196 goto out; 2197 2198 /* Get the total length of the skb including any skb's in the 2199 * frag_list. 2200 */ 2201 skb_len = skb->len; 2202 2203 copied = skb_len; 2204 if (copied > len) 2205 copied = len; 2206 2207 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2208 2209 event = sctp_skb2event(skb); 2210 2211 if (err) 2212 goto out_free; 2213 2214 if (event->chunk && event->chunk->head_skb) 2215 head_skb = event->chunk->head_skb; 2216 else 2217 head_skb = skb; 2218 sock_recv_ts_and_drops(msg, sk, head_skb); 2219 if (sctp_ulpevent_is_notification(event)) { 2220 msg->msg_flags |= MSG_NOTIFICATION; 2221 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2222 } else { 2223 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2224 } 2225 2226 /* Check if we allow SCTP_NXTINFO. */ 2227 if (sp->recvnxtinfo) 2228 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2229 /* Check if we allow SCTP_RCVINFO. */ 2230 if (sp->recvrcvinfo) 2231 sctp_ulpevent_read_rcvinfo(event, msg); 2232 /* Check if we allow SCTP_SNDRCVINFO. */ 2233 if (sp->subscribe.sctp_data_io_event) 2234 sctp_ulpevent_read_sndrcvinfo(event, msg); 2235 2236 err = copied; 2237 2238 /* If skb's length exceeds the user's buffer, update the skb and 2239 * push it back to the receive_queue so that the next call to 2240 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2241 */ 2242 if (skb_len > copied) { 2243 msg->msg_flags &= ~MSG_EOR; 2244 if (flags & MSG_PEEK) 2245 goto out_free; 2246 sctp_skb_pull(skb, copied); 2247 skb_queue_head(&sk->sk_receive_queue, skb); 2248 2249 /* When only partial message is copied to the user, increase 2250 * rwnd by that amount. If all the data in the skb is read, 2251 * rwnd is updated when the event is freed. 2252 */ 2253 if (!sctp_ulpevent_is_notification(event)) 2254 sctp_assoc_rwnd_increase(event->asoc, copied); 2255 goto out; 2256 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2257 (event->msg_flags & MSG_EOR)) 2258 msg->msg_flags |= MSG_EOR; 2259 else 2260 msg->msg_flags &= ~MSG_EOR; 2261 2262 out_free: 2263 if (flags & MSG_PEEK) { 2264 /* Release the skb reference acquired after peeking the skb in 2265 * sctp_skb_recv_datagram(). 2266 */ 2267 kfree_skb(skb); 2268 } else { 2269 /* Free the event which includes releasing the reference to 2270 * the owner of the skb, freeing the skb and updating the 2271 * rwnd. 2272 */ 2273 sctp_ulpevent_free(event); 2274 } 2275 out: 2276 release_sock(sk); 2277 return err; 2278 } 2279 2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2281 * 2282 * This option is a on/off flag. If enabled no SCTP message 2283 * fragmentation will be performed. Instead if a message being sent 2284 * exceeds the current PMTU size, the message will NOT be sent and 2285 * instead a error will be indicated to the user. 2286 */ 2287 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2288 char __user *optval, 2289 unsigned int optlen) 2290 { 2291 int val; 2292 2293 if (optlen < sizeof(int)) 2294 return -EINVAL; 2295 2296 if (get_user(val, (int __user *)optval)) 2297 return -EFAULT; 2298 2299 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2300 2301 return 0; 2302 } 2303 2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2305 unsigned int optlen) 2306 { 2307 struct sctp_association *asoc; 2308 struct sctp_ulpevent *event; 2309 2310 if (optlen > sizeof(struct sctp_event_subscribe)) 2311 return -EINVAL; 2312 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2313 return -EFAULT; 2314 2315 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2316 * if there is no data to be sent or retransmit, the stack will 2317 * immediately send up this notification. 2318 */ 2319 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2320 &sctp_sk(sk)->subscribe)) { 2321 asoc = sctp_id2assoc(sk, 0); 2322 2323 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2324 event = sctp_ulpevent_make_sender_dry_event(asoc, 2325 GFP_USER | __GFP_NOWARN); 2326 if (!event) 2327 return -ENOMEM; 2328 2329 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2330 } 2331 } 2332 2333 return 0; 2334 } 2335 2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2337 * 2338 * This socket option is applicable to the UDP-style socket only. When 2339 * set it will cause associations that are idle for more than the 2340 * specified number of seconds to automatically close. An association 2341 * being idle is defined an association that has NOT sent or received 2342 * user data. The special value of '0' indicates that no automatic 2343 * close of any associations should be performed. The option expects an 2344 * integer defining the number of seconds of idle time before an 2345 * association is closed. 2346 */ 2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2348 unsigned int optlen) 2349 { 2350 struct sctp_sock *sp = sctp_sk(sk); 2351 struct net *net = sock_net(sk); 2352 2353 /* Applicable to UDP-style socket only */ 2354 if (sctp_style(sk, TCP)) 2355 return -EOPNOTSUPP; 2356 if (optlen != sizeof(int)) 2357 return -EINVAL; 2358 if (copy_from_user(&sp->autoclose, optval, optlen)) 2359 return -EFAULT; 2360 2361 if (sp->autoclose > net->sctp.max_autoclose) 2362 sp->autoclose = net->sctp.max_autoclose; 2363 2364 return 0; 2365 } 2366 2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2368 * 2369 * Applications can enable or disable heartbeats for any peer address of 2370 * an association, modify an address's heartbeat interval, force a 2371 * heartbeat to be sent immediately, and adjust the address's maximum 2372 * number of retransmissions sent before an address is considered 2373 * unreachable. The following structure is used to access and modify an 2374 * address's parameters: 2375 * 2376 * struct sctp_paddrparams { 2377 * sctp_assoc_t spp_assoc_id; 2378 * struct sockaddr_storage spp_address; 2379 * uint32_t spp_hbinterval; 2380 * uint16_t spp_pathmaxrxt; 2381 * uint32_t spp_pathmtu; 2382 * uint32_t spp_sackdelay; 2383 * uint32_t spp_flags; 2384 * uint32_t spp_ipv6_flowlabel; 2385 * uint8_t spp_dscp; 2386 * }; 2387 * 2388 * spp_assoc_id - (one-to-many style socket) This is filled in the 2389 * application, and identifies the association for 2390 * this query. 2391 * spp_address - This specifies which address is of interest. 2392 * spp_hbinterval - This contains the value of the heartbeat interval, 2393 * in milliseconds. If a value of zero 2394 * is present in this field then no changes are to 2395 * be made to this parameter. 2396 * spp_pathmaxrxt - This contains the maximum number of 2397 * retransmissions before this address shall be 2398 * considered unreachable. If a value of zero 2399 * is present in this field then no changes are to 2400 * be made to this parameter. 2401 * spp_pathmtu - When Path MTU discovery is disabled the value 2402 * specified here will be the "fixed" path mtu. 2403 * Note that if the spp_address field is empty 2404 * then all associations on this address will 2405 * have this fixed path mtu set upon them. 2406 * 2407 * spp_sackdelay - When delayed sack is enabled, this value specifies 2408 * the number of milliseconds that sacks will be delayed 2409 * for. This value will apply to all addresses of an 2410 * association if the spp_address field is empty. Note 2411 * also, that if delayed sack is enabled and this 2412 * value is set to 0, no change is made to the last 2413 * recorded delayed sack timer value. 2414 * 2415 * spp_flags - These flags are used to control various features 2416 * on an association. The flag field may contain 2417 * zero or more of the following options. 2418 * 2419 * SPP_HB_ENABLE - Enable heartbeats on the 2420 * specified address. Note that if the address 2421 * field is empty all addresses for the association 2422 * have heartbeats enabled upon them. 2423 * 2424 * SPP_HB_DISABLE - Disable heartbeats on the 2425 * speicifed address. Note that if the address 2426 * field is empty all addresses for the association 2427 * will have their heartbeats disabled. Note also 2428 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2429 * mutually exclusive, only one of these two should 2430 * be specified. Enabling both fields will have 2431 * undetermined results. 2432 * 2433 * SPP_HB_DEMAND - Request a user initiated heartbeat 2434 * to be made immediately. 2435 * 2436 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2437 * heartbeat delayis to be set to the value of 0 2438 * milliseconds. 2439 * 2440 * SPP_PMTUD_ENABLE - This field will enable PMTU 2441 * discovery upon the specified address. Note that 2442 * if the address feild is empty then all addresses 2443 * on the association are effected. 2444 * 2445 * SPP_PMTUD_DISABLE - This field will disable PMTU 2446 * discovery upon the specified address. Note that 2447 * if the address feild is empty then all addresses 2448 * on the association are effected. Not also that 2449 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2450 * exclusive. Enabling both will have undetermined 2451 * results. 2452 * 2453 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2454 * on delayed sack. The time specified in spp_sackdelay 2455 * is used to specify the sack delay for this address. Note 2456 * that if spp_address is empty then all addresses will 2457 * enable delayed sack and take on the sack delay 2458 * value specified in spp_sackdelay. 2459 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2460 * off delayed sack. If the spp_address field is blank then 2461 * delayed sack is disabled for the entire association. Note 2462 * also that this field is mutually exclusive to 2463 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2464 * results. 2465 * 2466 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2467 * setting of the IPV6 flow label value. The value is 2468 * contained in the spp_ipv6_flowlabel field. 2469 * Upon retrieval, this flag will be set to indicate that 2470 * the spp_ipv6_flowlabel field has a valid value returned. 2471 * If a specific destination address is set (in the 2472 * spp_address field), then the value returned is that of 2473 * the address. If just an association is specified (and 2474 * no address), then the association's default flow label 2475 * is returned. If neither an association nor a destination 2476 * is specified, then the socket's default flow label is 2477 * returned. For non-IPv6 sockets, this flag will be left 2478 * cleared. 2479 * 2480 * SPP_DSCP: Setting this flag enables the setting of the 2481 * Differentiated Services Code Point (DSCP) value 2482 * associated with either the association or a specific 2483 * address. The value is obtained in the spp_dscp field. 2484 * Upon retrieval, this flag will be set to indicate that 2485 * the spp_dscp field has a valid value returned. If a 2486 * specific destination address is set when called (in the 2487 * spp_address field), then that specific destination 2488 * address's DSCP value is returned. If just an association 2489 * is specified, then the association's default DSCP is 2490 * returned. If neither an association nor a destination is 2491 * specified, then the socket's default DSCP is returned. 2492 * 2493 * spp_ipv6_flowlabel 2494 * - This field is used in conjunction with the 2495 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2496 * The 20 least significant bits are used for the flow 2497 * label. This setting has precedence over any IPv6-layer 2498 * setting. 2499 * 2500 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2501 * and contains the DSCP. The 6 most significant bits are 2502 * used for the DSCP. This setting has precedence over any 2503 * IPv4- or IPv6- layer setting. 2504 */ 2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2506 struct sctp_transport *trans, 2507 struct sctp_association *asoc, 2508 struct sctp_sock *sp, 2509 int hb_change, 2510 int pmtud_change, 2511 int sackdelay_change) 2512 { 2513 int error; 2514 2515 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2516 struct net *net = sock_net(trans->asoc->base.sk); 2517 2518 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2519 if (error) 2520 return error; 2521 } 2522 2523 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2524 * this field is ignored. Note also that a value of zero indicates 2525 * the current setting should be left unchanged. 2526 */ 2527 if (params->spp_flags & SPP_HB_ENABLE) { 2528 2529 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2530 * set. This lets us use 0 value when this flag 2531 * is set. 2532 */ 2533 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2534 params->spp_hbinterval = 0; 2535 2536 if (params->spp_hbinterval || 2537 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2538 if (trans) { 2539 trans->hbinterval = 2540 msecs_to_jiffies(params->spp_hbinterval); 2541 } else if (asoc) { 2542 asoc->hbinterval = 2543 msecs_to_jiffies(params->spp_hbinterval); 2544 } else { 2545 sp->hbinterval = params->spp_hbinterval; 2546 } 2547 } 2548 } 2549 2550 if (hb_change) { 2551 if (trans) { 2552 trans->param_flags = 2553 (trans->param_flags & ~SPP_HB) | hb_change; 2554 } else if (asoc) { 2555 asoc->param_flags = 2556 (asoc->param_flags & ~SPP_HB) | hb_change; 2557 } else { 2558 sp->param_flags = 2559 (sp->param_flags & ~SPP_HB) | hb_change; 2560 } 2561 } 2562 2563 /* When Path MTU discovery is disabled the value specified here will 2564 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2565 * include the flag SPP_PMTUD_DISABLE for this field to have any 2566 * effect). 2567 */ 2568 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2569 if (trans) { 2570 trans->pathmtu = params->spp_pathmtu; 2571 sctp_assoc_sync_pmtu(asoc); 2572 } else if (asoc) { 2573 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2574 } else { 2575 sp->pathmtu = params->spp_pathmtu; 2576 } 2577 } 2578 2579 if (pmtud_change) { 2580 if (trans) { 2581 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2582 (params->spp_flags & SPP_PMTUD_ENABLE); 2583 trans->param_flags = 2584 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2585 if (update) { 2586 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2587 sctp_assoc_sync_pmtu(asoc); 2588 } 2589 } else if (asoc) { 2590 asoc->param_flags = 2591 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2592 } else { 2593 sp->param_flags = 2594 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2595 } 2596 } 2597 2598 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2599 * value of this field is ignored. Note also that a value of zero 2600 * indicates the current setting should be left unchanged. 2601 */ 2602 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2603 if (trans) { 2604 trans->sackdelay = 2605 msecs_to_jiffies(params->spp_sackdelay); 2606 } else if (asoc) { 2607 asoc->sackdelay = 2608 msecs_to_jiffies(params->spp_sackdelay); 2609 } else { 2610 sp->sackdelay = params->spp_sackdelay; 2611 } 2612 } 2613 2614 if (sackdelay_change) { 2615 if (trans) { 2616 trans->param_flags = 2617 (trans->param_flags & ~SPP_SACKDELAY) | 2618 sackdelay_change; 2619 } else if (asoc) { 2620 asoc->param_flags = 2621 (asoc->param_flags & ~SPP_SACKDELAY) | 2622 sackdelay_change; 2623 } else { 2624 sp->param_flags = 2625 (sp->param_flags & ~SPP_SACKDELAY) | 2626 sackdelay_change; 2627 } 2628 } 2629 2630 /* Note that a value of zero indicates the current setting should be 2631 left unchanged. 2632 */ 2633 if (params->spp_pathmaxrxt) { 2634 if (trans) { 2635 trans->pathmaxrxt = params->spp_pathmaxrxt; 2636 } else if (asoc) { 2637 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2638 } else { 2639 sp->pathmaxrxt = params->spp_pathmaxrxt; 2640 } 2641 } 2642 2643 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2644 if (trans) { 2645 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2646 trans->flowlabel = params->spp_ipv6_flowlabel & 2647 SCTP_FLOWLABEL_VAL_MASK; 2648 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2649 } 2650 } else if (asoc) { 2651 struct sctp_transport *t; 2652 2653 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2654 transports) { 2655 if (t->ipaddr.sa.sa_family != AF_INET6) 2656 continue; 2657 t->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 asoc->flowlabel = params->spp_ipv6_flowlabel & 2662 SCTP_FLOWLABEL_VAL_MASK; 2663 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2664 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2665 sp->flowlabel = params->spp_ipv6_flowlabel & 2666 SCTP_FLOWLABEL_VAL_MASK; 2667 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2668 } 2669 } 2670 2671 if (params->spp_flags & SPP_DSCP) { 2672 if (trans) { 2673 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2674 trans->dscp |= SCTP_DSCP_SET_MASK; 2675 } else if (asoc) { 2676 struct sctp_transport *t; 2677 2678 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2679 transports) { 2680 t->dscp = params->spp_dscp & 2681 SCTP_DSCP_VAL_MASK; 2682 t->dscp |= SCTP_DSCP_SET_MASK; 2683 } 2684 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 asoc->dscp |= SCTP_DSCP_SET_MASK; 2686 } else { 2687 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2688 sp->dscp |= SCTP_DSCP_SET_MASK; 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2696 char __user *optval, 2697 unsigned int optlen) 2698 { 2699 struct sctp_paddrparams params; 2700 struct sctp_transport *trans = NULL; 2701 struct sctp_association *asoc = NULL; 2702 struct sctp_sock *sp = sctp_sk(sk); 2703 int error; 2704 int hb_change, pmtud_change, sackdelay_change; 2705 2706 if (optlen == sizeof(params)) { 2707 if (copy_from_user(¶ms, optval, optlen)) 2708 return -EFAULT; 2709 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2710 spp_ipv6_flowlabel), 4)) { 2711 if (copy_from_user(¶ms, optval, optlen)) 2712 return -EFAULT; 2713 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2714 return -EINVAL; 2715 } else { 2716 return -EINVAL; 2717 } 2718 2719 /* Validate flags and value parameters. */ 2720 hb_change = params.spp_flags & SPP_HB; 2721 pmtud_change = params.spp_flags & SPP_PMTUD; 2722 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2723 2724 if (hb_change == SPP_HB || 2725 pmtud_change == SPP_PMTUD || 2726 sackdelay_change == SPP_SACKDELAY || 2727 params.spp_sackdelay > 500 || 2728 (params.spp_pathmtu && 2729 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2730 return -EINVAL; 2731 2732 /* If an address other than INADDR_ANY is specified, and 2733 * no transport is found, then the request is invalid. 2734 */ 2735 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2736 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2737 params.spp_assoc_id); 2738 if (!trans) 2739 return -EINVAL; 2740 } 2741 2742 /* Get association, if assoc_id != 0 and the socket is a one 2743 * to many style socket, and an association was not found, then 2744 * the id was invalid. 2745 */ 2746 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2747 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2748 return -EINVAL; 2749 2750 /* Heartbeat demand can only be sent on a transport or 2751 * association, but not a socket. 2752 */ 2753 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2754 return -EINVAL; 2755 2756 /* Process parameters. */ 2757 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2758 hb_change, pmtud_change, 2759 sackdelay_change); 2760 2761 if (error) 2762 return error; 2763 2764 /* If changes are for association, also apply parameters to each 2765 * transport. 2766 */ 2767 if (!trans && asoc) { 2768 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2769 transports) { 2770 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2771 hb_change, pmtud_change, 2772 sackdelay_change); 2773 } 2774 } 2775 2776 return 0; 2777 } 2778 2779 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2780 { 2781 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2782 } 2783 2784 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2785 { 2786 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2787 } 2788 2789 /* 2790 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2791 * 2792 * This option will effect the way delayed acks are performed. This 2793 * option allows you to get or set the delayed ack time, in 2794 * milliseconds. It also allows changing the delayed ack frequency. 2795 * Changing the frequency to 1 disables the delayed sack algorithm. If 2796 * the assoc_id is 0, then this sets or gets the endpoints default 2797 * values. If the assoc_id field is non-zero, then the set or get 2798 * effects the specified association for the one to many model (the 2799 * assoc_id field is ignored by the one to one model). Note that if 2800 * sack_delay or sack_freq are 0 when setting this option, then the 2801 * current values will remain unchanged. 2802 * 2803 * struct sctp_sack_info { 2804 * sctp_assoc_t sack_assoc_id; 2805 * uint32_t sack_delay; 2806 * uint32_t sack_freq; 2807 * }; 2808 * 2809 * sack_assoc_id - This parameter, indicates which association the user 2810 * is performing an action upon. Note that if this field's value is 2811 * zero then the endpoints default value is changed (effecting future 2812 * associations only). 2813 * 2814 * sack_delay - This parameter contains the number of milliseconds that 2815 * the user is requesting the delayed ACK timer be set to. Note that 2816 * this value is defined in the standard to be between 200 and 500 2817 * milliseconds. 2818 * 2819 * sack_freq - This parameter contains the number of packets that must 2820 * be received before a sack is sent without waiting for the delay 2821 * timer to expire. The default value for this is 2, setting this 2822 * value to 1 will disable the delayed sack algorithm. 2823 */ 2824 2825 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2826 char __user *optval, unsigned int optlen) 2827 { 2828 struct sctp_sack_info params; 2829 struct sctp_transport *trans = NULL; 2830 struct sctp_association *asoc = NULL; 2831 struct sctp_sock *sp = sctp_sk(sk); 2832 2833 if (optlen == sizeof(struct sctp_sack_info)) { 2834 if (copy_from_user(¶ms, optval, optlen)) 2835 return -EFAULT; 2836 2837 if (params.sack_delay == 0 && params.sack_freq == 0) 2838 return 0; 2839 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2840 pr_warn_ratelimited(DEPRECATED 2841 "%s (pid %d) " 2842 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2843 "Use struct sctp_sack_info instead\n", 2844 current->comm, task_pid_nr(current)); 2845 if (copy_from_user(¶ms, optval, optlen)) 2846 return -EFAULT; 2847 2848 if (params.sack_delay == 0) 2849 params.sack_freq = 1; 2850 else 2851 params.sack_freq = 0; 2852 } else 2853 return -EINVAL; 2854 2855 /* Validate value parameter. */ 2856 if (params.sack_delay > 500) 2857 return -EINVAL; 2858 2859 /* Get association, if sack_assoc_id != 0 and the socket is a one 2860 * to many style socket, and an association was not found, then 2861 * the id was invalid. 2862 */ 2863 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2864 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2865 return -EINVAL; 2866 2867 if (params.sack_delay) { 2868 if (asoc) { 2869 asoc->sackdelay = 2870 msecs_to_jiffies(params.sack_delay); 2871 asoc->param_flags = 2872 sctp_spp_sackdelay_enable(asoc->param_flags); 2873 } else { 2874 sp->sackdelay = params.sack_delay; 2875 sp->param_flags = 2876 sctp_spp_sackdelay_enable(sp->param_flags); 2877 } 2878 } 2879 2880 if (params.sack_freq == 1) { 2881 if (asoc) { 2882 asoc->param_flags = 2883 sctp_spp_sackdelay_disable(asoc->param_flags); 2884 } else { 2885 sp->param_flags = 2886 sctp_spp_sackdelay_disable(sp->param_flags); 2887 } 2888 } else if (params.sack_freq > 1) { 2889 if (asoc) { 2890 asoc->sackfreq = params.sack_freq; 2891 asoc->param_flags = 2892 sctp_spp_sackdelay_enable(asoc->param_flags); 2893 } else { 2894 sp->sackfreq = params.sack_freq; 2895 sp->param_flags = 2896 sctp_spp_sackdelay_enable(sp->param_flags); 2897 } 2898 } 2899 2900 /* If change is for association, also apply to each transport. */ 2901 if (asoc) { 2902 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2903 transports) { 2904 if (params.sack_delay) { 2905 trans->sackdelay = 2906 msecs_to_jiffies(params.sack_delay); 2907 trans->param_flags = 2908 sctp_spp_sackdelay_enable(trans->param_flags); 2909 } 2910 if (params.sack_freq == 1) { 2911 trans->param_flags = 2912 sctp_spp_sackdelay_disable(trans->param_flags); 2913 } else if (params.sack_freq > 1) { 2914 trans->sackfreq = params.sack_freq; 2915 trans->param_flags = 2916 sctp_spp_sackdelay_enable(trans->param_flags); 2917 } 2918 } 2919 } 2920 2921 return 0; 2922 } 2923 2924 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2925 * 2926 * Applications can specify protocol parameters for the default association 2927 * initialization. The option name argument to setsockopt() and getsockopt() 2928 * is SCTP_INITMSG. 2929 * 2930 * Setting initialization parameters is effective only on an unconnected 2931 * socket (for UDP-style sockets only future associations are effected 2932 * by the change). With TCP-style sockets, this option is inherited by 2933 * sockets derived from a listener socket. 2934 */ 2935 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2936 { 2937 struct sctp_initmsg sinit; 2938 struct sctp_sock *sp = sctp_sk(sk); 2939 2940 if (optlen != sizeof(struct sctp_initmsg)) 2941 return -EINVAL; 2942 if (copy_from_user(&sinit, optval, optlen)) 2943 return -EFAULT; 2944 2945 if (sinit.sinit_num_ostreams) 2946 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2947 if (sinit.sinit_max_instreams) 2948 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2949 if (sinit.sinit_max_attempts) 2950 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2951 if (sinit.sinit_max_init_timeo) 2952 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2953 2954 return 0; 2955 } 2956 2957 /* 2958 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2959 * 2960 * Applications that wish to use the sendto() system call may wish to 2961 * specify a default set of parameters that would normally be supplied 2962 * through the inclusion of ancillary data. This socket option allows 2963 * such an application to set the default sctp_sndrcvinfo structure. 2964 * The application that wishes to use this socket option simply passes 2965 * in to this call the sctp_sndrcvinfo structure defined in Section 2966 * 5.2.2) The input parameters accepted by this call include 2967 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2968 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2969 * to this call if the caller is using the UDP model. 2970 */ 2971 static int sctp_setsockopt_default_send_param(struct sock *sk, 2972 char __user *optval, 2973 unsigned int optlen) 2974 { 2975 struct sctp_sock *sp = sctp_sk(sk); 2976 struct sctp_association *asoc; 2977 struct sctp_sndrcvinfo info; 2978 2979 if (optlen != sizeof(info)) 2980 return -EINVAL; 2981 if (copy_from_user(&info, optval, optlen)) 2982 return -EFAULT; 2983 if (info.sinfo_flags & 2984 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2985 SCTP_ABORT | SCTP_EOF)) 2986 return -EINVAL; 2987 2988 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2989 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2990 return -EINVAL; 2991 if (asoc) { 2992 asoc->default_stream = info.sinfo_stream; 2993 asoc->default_flags = info.sinfo_flags; 2994 asoc->default_ppid = info.sinfo_ppid; 2995 asoc->default_context = info.sinfo_context; 2996 asoc->default_timetolive = info.sinfo_timetolive; 2997 } else { 2998 sp->default_stream = info.sinfo_stream; 2999 sp->default_flags = info.sinfo_flags; 3000 sp->default_ppid = info.sinfo_ppid; 3001 sp->default_context = info.sinfo_context; 3002 sp->default_timetolive = info.sinfo_timetolive; 3003 } 3004 3005 return 0; 3006 } 3007 3008 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3009 * (SCTP_DEFAULT_SNDINFO) 3010 */ 3011 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3012 char __user *optval, 3013 unsigned int optlen) 3014 { 3015 struct sctp_sock *sp = sctp_sk(sk); 3016 struct sctp_association *asoc; 3017 struct sctp_sndinfo info; 3018 3019 if (optlen != sizeof(info)) 3020 return -EINVAL; 3021 if (copy_from_user(&info, optval, optlen)) 3022 return -EFAULT; 3023 if (info.snd_flags & 3024 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3025 SCTP_ABORT | SCTP_EOF)) 3026 return -EINVAL; 3027 3028 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3029 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 3030 return -EINVAL; 3031 if (asoc) { 3032 asoc->default_stream = info.snd_sid; 3033 asoc->default_flags = info.snd_flags; 3034 asoc->default_ppid = info.snd_ppid; 3035 asoc->default_context = info.snd_context; 3036 } else { 3037 sp->default_stream = info.snd_sid; 3038 sp->default_flags = info.snd_flags; 3039 sp->default_ppid = info.snd_ppid; 3040 sp->default_context = info.snd_context; 3041 } 3042 3043 return 0; 3044 } 3045 3046 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3047 * 3048 * Requests that the local SCTP stack use the enclosed peer address as 3049 * the association primary. The enclosed address must be one of the 3050 * association peer's addresses. 3051 */ 3052 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3053 unsigned int optlen) 3054 { 3055 struct sctp_prim prim; 3056 struct sctp_transport *trans; 3057 struct sctp_af *af; 3058 int err; 3059 3060 if (optlen != sizeof(struct sctp_prim)) 3061 return -EINVAL; 3062 3063 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3064 return -EFAULT; 3065 3066 /* Allow security module to validate address but need address len. */ 3067 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3068 if (!af) 3069 return -EINVAL; 3070 3071 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3072 (struct sockaddr *)&prim.ssp_addr, 3073 af->sockaddr_len); 3074 if (err) 3075 return err; 3076 3077 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3078 if (!trans) 3079 return -EINVAL; 3080 3081 sctp_assoc_set_primary(trans->asoc, trans); 3082 3083 return 0; 3084 } 3085 3086 /* 3087 * 7.1.5 SCTP_NODELAY 3088 * 3089 * Turn on/off any Nagle-like algorithm. This means that packets are 3090 * generally sent as soon as possible and no unnecessary delays are 3091 * introduced, at the cost of more packets in the network. Expects an 3092 * integer boolean flag. 3093 */ 3094 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3095 unsigned int optlen) 3096 { 3097 int val; 3098 3099 if (optlen < sizeof(int)) 3100 return -EINVAL; 3101 if (get_user(val, (int __user *)optval)) 3102 return -EFAULT; 3103 3104 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3105 return 0; 3106 } 3107 3108 /* 3109 * 3110 * 7.1.1 SCTP_RTOINFO 3111 * 3112 * The protocol parameters used to initialize and bound retransmission 3113 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3114 * and modify these parameters. 3115 * All parameters are time values, in milliseconds. A value of 0, when 3116 * modifying the parameters, indicates that the current value should not 3117 * be changed. 3118 * 3119 */ 3120 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3121 { 3122 struct sctp_rtoinfo rtoinfo; 3123 struct sctp_association *asoc; 3124 unsigned long rto_min, rto_max; 3125 struct sctp_sock *sp = sctp_sk(sk); 3126 3127 if (optlen != sizeof (struct sctp_rtoinfo)) 3128 return -EINVAL; 3129 3130 if (copy_from_user(&rtoinfo, optval, optlen)) 3131 return -EFAULT; 3132 3133 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3134 3135 /* Set the values to the specific association */ 3136 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3137 return -EINVAL; 3138 3139 rto_max = rtoinfo.srto_max; 3140 rto_min = rtoinfo.srto_min; 3141 3142 if (rto_max) 3143 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3144 else 3145 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3146 3147 if (rto_min) 3148 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3149 else 3150 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3151 3152 if (rto_min > rto_max) 3153 return -EINVAL; 3154 3155 if (asoc) { 3156 if (rtoinfo.srto_initial != 0) 3157 asoc->rto_initial = 3158 msecs_to_jiffies(rtoinfo.srto_initial); 3159 asoc->rto_max = rto_max; 3160 asoc->rto_min = rto_min; 3161 } else { 3162 /* If there is no association or the association-id = 0 3163 * set the values to the endpoint. 3164 */ 3165 if (rtoinfo.srto_initial != 0) 3166 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3167 sp->rtoinfo.srto_max = rto_max; 3168 sp->rtoinfo.srto_min = rto_min; 3169 } 3170 3171 return 0; 3172 } 3173 3174 /* 3175 * 3176 * 7.1.2 SCTP_ASSOCINFO 3177 * 3178 * This option is used to tune the maximum retransmission attempts 3179 * of the association. 3180 * Returns an error if the new association retransmission value is 3181 * greater than the sum of the retransmission value of the peer. 3182 * See [SCTP] for more information. 3183 * 3184 */ 3185 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3186 { 3187 3188 struct sctp_assocparams assocparams; 3189 struct sctp_association *asoc; 3190 3191 if (optlen != sizeof(struct sctp_assocparams)) 3192 return -EINVAL; 3193 if (copy_from_user(&assocparams, optval, optlen)) 3194 return -EFAULT; 3195 3196 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3197 3198 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3199 return -EINVAL; 3200 3201 /* Set the values to the specific association */ 3202 if (asoc) { 3203 if (assocparams.sasoc_asocmaxrxt != 0) { 3204 __u32 path_sum = 0; 3205 int paths = 0; 3206 struct sctp_transport *peer_addr; 3207 3208 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3209 transports) { 3210 path_sum += peer_addr->pathmaxrxt; 3211 paths++; 3212 } 3213 3214 /* Only validate asocmaxrxt if we have more than 3215 * one path/transport. We do this because path 3216 * retransmissions are only counted when we have more 3217 * then one path. 3218 */ 3219 if (paths > 1 && 3220 assocparams.sasoc_asocmaxrxt > path_sum) 3221 return -EINVAL; 3222 3223 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3224 } 3225 3226 if (assocparams.sasoc_cookie_life != 0) 3227 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3228 } else { 3229 /* Set the values to the endpoint */ 3230 struct sctp_sock *sp = sctp_sk(sk); 3231 3232 if (assocparams.sasoc_asocmaxrxt != 0) 3233 sp->assocparams.sasoc_asocmaxrxt = 3234 assocparams.sasoc_asocmaxrxt; 3235 if (assocparams.sasoc_cookie_life != 0) 3236 sp->assocparams.sasoc_cookie_life = 3237 assocparams.sasoc_cookie_life; 3238 } 3239 return 0; 3240 } 3241 3242 /* 3243 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3244 * 3245 * This socket option is a boolean flag which turns on or off mapped V4 3246 * addresses. If this option is turned on and the socket is type 3247 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3248 * If this option is turned off, then no mapping will be done of V4 3249 * addresses and a user will receive both PF_INET6 and PF_INET type 3250 * addresses on the socket. 3251 */ 3252 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3253 { 3254 int val; 3255 struct sctp_sock *sp = sctp_sk(sk); 3256 3257 if (optlen < sizeof(int)) 3258 return -EINVAL; 3259 if (get_user(val, (int __user *)optval)) 3260 return -EFAULT; 3261 if (val) 3262 sp->v4mapped = 1; 3263 else 3264 sp->v4mapped = 0; 3265 3266 return 0; 3267 } 3268 3269 /* 3270 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3271 * This option will get or set the maximum size to put in any outgoing 3272 * SCTP DATA chunk. If a message is larger than this size it will be 3273 * fragmented by SCTP into the specified size. Note that the underlying 3274 * SCTP implementation may fragment into smaller sized chunks when the 3275 * PMTU of the underlying association is smaller than the value set by 3276 * the user. The default value for this option is '0' which indicates 3277 * the user is NOT limiting fragmentation and only the PMTU will effect 3278 * SCTP's choice of DATA chunk size. Note also that values set larger 3279 * than the maximum size of an IP datagram will effectively let SCTP 3280 * control fragmentation (i.e. the same as setting this option to 0). 3281 * 3282 * The following structure is used to access and modify this parameter: 3283 * 3284 * struct sctp_assoc_value { 3285 * sctp_assoc_t assoc_id; 3286 * uint32_t assoc_value; 3287 * }; 3288 * 3289 * assoc_id: This parameter is ignored for one-to-one style sockets. 3290 * For one-to-many style sockets this parameter indicates which 3291 * association the user is performing an action upon. Note that if 3292 * this field's value is zero then the endpoints default value is 3293 * changed (effecting future associations only). 3294 * assoc_value: This parameter specifies the maximum size in bytes. 3295 */ 3296 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3297 { 3298 struct sctp_sock *sp = sctp_sk(sk); 3299 struct sctp_assoc_value params; 3300 struct sctp_association *asoc; 3301 int val; 3302 3303 if (optlen == sizeof(int)) { 3304 pr_warn_ratelimited(DEPRECATED 3305 "%s (pid %d) " 3306 "Use of int in maxseg socket option.\n" 3307 "Use struct sctp_assoc_value instead\n", 3308 current->comm, task_pid_nr(current)); 3309 if (copy_from_user(&val, optval, optlen)) 3310 return -EFAULT; 3311 params.assoc_id = 0; 3312 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3313 if (copy_from_user(¶ms, optval, optlen)) 3314 return -EFAULT; 3315 val = params.assoc_value; 3316 } else { 3317 return -EINVAL; 3318 } 3319 3320 asoc = sctp_id2assoc(sk, params.assoc_id); 3321 3322 if (val) { 3323 int min_len, max_len; 3324 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3325 sizeof(struct sctp_data_chunk); 3326 3327 min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT, 3328 datasize); 3329 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3330 3331 if (val < min_len || val > max_len) 3332 return -EINVAL; 3333 } 3334 3335 if (asoc) { 3336 asoc->user_frag = val; 3337 sctp_assoc_update_frag_point(asoc); 3338 } else { 3339 if (params.assoc_id && sctp_style(sk, UDP)) 3340 return -EINVAL; 3341 sp->user_frag = val; 3342 } 3343 3344 return 0; 3345 } 3346 3347 3348 /* 3349 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3350 * 3351 * Requests that the peer mark the enclosed address as the association 3352 * primary. The enclosed address must be one of the association's 3353 * locally bound addresses. The following structure is used to make a 3354 * set primary request: 3355 */ 3356 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3357 unsigned int optlen) 3358 { 3359 struct net *net = sock_net(sk); 3360 struct sctp_sock *sp; 3361 struct sctp_association *asoc = NULL; 3362 struct sctp_setpeerprim prim; 3363 struct sctp_chunk *chunk; 3364 struct sctp_af *af; 3365 int err; 3366 3367 sp = sctp_sk(sk); 3368 3369 if (!net->sctp.addip_enable) 3370 return -EPERM; 3371 3372 if (optlen != sizeof(struct sctp_setpeerprim)) 3373 return -EINVAL; 3374 3375 if (copy_from_user(&prim, optval, optlen)) 3376 return -EFAULT; 3377 3378 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3379 if (!asoc) 3380 return -EINVAL; 3381 3382 if (!asoc->peer.asconf_capable) 3383 return -EPERM; 3384 3385 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3386 return -EPERM; 3387 3388 if (!sctp_state(asoc, ESTABLISHED)) 3389 return -ENOTCONN; 3390 3391 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3392 if (!af) 3393 return -EINVAL; 3394 3395 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3396 return -EADDRNOTAVAIL; 3397 3398 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3399 return -EADDRNOTAVAIL; 3400 3401 /* Allow security module to validate address. */ 3402 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3403 (struct sockaddr *)&prim.sspp_addr, 3404 af->sockaddr_len); 3405 if (err) 3406 return err; 3407 3408 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3409 chunk = sctp_make_asconf_set_prim(asoc, 3410 (union sctp_addr *)&prim.sspp_addr); 3411 if (!chunk) 3412 return -ENOMEM; 3413 3414 err = sctp_send_asconf(asoc, chunk); 3415 3416 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3417 3418 return err; 3419 } 3420 3421 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3422 unsigned int optlen) 3423 { 3424 struct sctp_setadaptation adaptation; 3425 3426 if (optlen != sizeof(struct sctp_setadaptation)) 3427 return -EINVAL; 3428 if (copy_from_user(&adaptation, optval, optlen)) 3429 return -EFAULT; 3430 3431 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3432 3433 return 0; 3434 } 3435 3436 /* 3437 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3438 * 3439 * The context field in the sctp_sndrcvinfo structure is normally only 3440 * used when a failed message is retrieved holding the value that was 3441 * sent down on the actual send call. This option allows the setting of 3442 * a default context on an association basis that will be received on 3443 * reading messages from the peer. This is especially helpful in the 3444 * one-2-many model for an application to keep some reference to an 3445 * internal state machine that is processing messages on the 3446 * association. Note that the setting of this value only effects 3447 * received messages from the peer and does not effect the value that is 3448 * saved with outbound messages. 3449 */ 3450 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3451 unsigned int optlen) 3452 { 3453 struct sctp_assoc_value params; 3454 struct sctp_sock *sp; 3455 struct sctp_association *asoc; 3456 3457 if (optlen != sizeof(struct sctp_assoc_value)) 3458 return -EINVAL; 3459 if (copy_from_user(¶ms, optval, optlen)) 3460 return -EFAULT; 3461 3462 sp = sctp_sk(sk); 3463 3464 if (params.assoc_id != 0) { 3465 asoc = sctp_id2assoc(sk, params.assoc_id); 3466 if (!asoc) 3467 return -EINVAL; 3468 asoc->default_rcv_context = params.assoc_value; 3469 } else { 3470 sp->default_rcv_context = params.assoc_value; 3471 } 3472 3473 return 0; 3474 } 3475 3476 /* 3477 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3478 * 3479 * This options will at a minimum specify if the implementation is doing 3480 * fragmented interleave. Fragmented interleave, for a one to many 3481 * socket, is when subsequent calls to receive a message may return 3482 * parts of messages from different associations. Some implementations 3483 * may allow you to turn this value on or off. If so, when turned off, 3484 * no fragment interleave will occur (which will cause a head of line 3485 * blocking amongst multiple associations sharing the same one to many 3486 * socket). When this option is turned on, then each receive call may 3487 * come from a different association (thus the user must receive data 3488 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3489 * association each receive belongs to. 3490 * 3491 * This option takes a boolean value. A non-zero value indicates that 3492 * fragmented interleave is on. A value of zero indicates that 3493 * fragmented interleave is off. 3494 * 3495 * Note that it is important that an implementation that allows this 3496 * option to be turned on, have it off by default. Otherwise an unaware 3497 * application using the one to many model may become confused and act 3498 * incorrectly. 3499 */ 3500 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3501 char __user *optval, 3502 unsigned int optlen) 3503 { 3504 int val; 3505 3506 if (optlen != sizeof(int)) 3507 return -EINVAL; 3508 if (get_user(val, (int __user *)optval)) 3509 return -EFAULT; 3510 3511 sctp_sk(sk)->frag_interleave = !!val; 3512 3513 if (!sctp_sk(sk)->frag_interleave) 3514 sctp_sk(sk)->strm_interleave = 0; 3515 3516 return 0; 3517 } 3518 3519 /* 3520 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3521 * (SCTP_PARTIAL_DELIVERY_POINT) 3522 * 3523 * This option will set or get the SCTP partial delivery point. This 3524 * point is the size of a message where the partial delivery API will be 3525 * invoked to help free up rwnd space for the peer. Setting this to a 3526 * lower value will cause partial deliveries to happen more often. The 3527 * calls argument is an integer that sets or gets the partial delivery 3528 * point. Note also that the call will fail if the user attempts to set 3529 * this value larger than the socket receive buffer size. 3530 * 3531 * Note that any single message having a length smaller than or equal to 3532 * the SCTP partial delivery point will be delivered in one single read 3533 * call as long as the user provided buffer is large enough to hold the 3534 * message. 3535 */ 3536 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3537 char __user *optval, 3538 unsigned int optlen) 3539 { 3540 u32 val; 3541 3542 if (optlen != sizeof(u32)) 3543 return -EINVAL; 3544 if (get_user(val, (int __user *)optval)) 3545 return -EFAULT; 3546 3547 /* Note: We double the receive buffer from what the user sets 3548 * it to be, also initial rwnd is based on rcvbuf/2. 3549 */ 3550 if (val > (sk->sk_rcvbuf >> 1)) 3551 return -EINVAL; 3552 3553 sctp_sk(sk)->pd_point = val; 3554 3555 return 0; /* is this the right error code? */ 3556 } 3557 3558 /* 3559 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3560 * 3561 * This option will allow a user to change the maximum burst of packets 3562 * that can be emitted by this association. Note that the default value 3563 * is 4, and some implementations may restrict this setting so that it 3564 * can only be lowered. 3565 * 3566 * NOTE: This text doesn't seem right. Do this on a socket basis with 3567 * future associations inheriting the socket value. 3568 */ 3569 static int sctp_setsockopt_maxburst(struct sock *sk, 3570 char __user *optval, 3571 unsigned int optlen) 3572 { 3573 struct sctp_assoc_value params; 3574 struct sctp_sock *sp; 3575 struct sctp_association *asoc; 3576 int val; 3577 int assoc_id = 0; 3578 3579 if (optlen == sizeof(int)) { 3580 pr_warn_ratelimited(DEPRECATED 3581 "%s (pid %d) " 3582 "Use of int in max_burst socket option deprecated.\n" 3583 "Use struct sctp_assoc_value instead\n", 3584 current->comm, task_pid_nr(current)); 3585 if (copy_from_user(&val, optval, optlen)) 3586 return -EFAULT; 3587 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3588 if (copy_from_user(¶ms, optval, optlen)) 3589 return -EFAULT; 3590 val = params.assoc_value; 3591 assoc_id = params.assoc_id; 3592 } else 3593 return -EINVAL; 3594 3595 sp = sctp_sk(sk); 3596 3597 if (assoc_id != 0) { 3598 asoc = sctp_id2assoc(sk, assoc_id); 3599 if (!asoc) 3600 return -EINVAL; 3601 asoc->max_burst = val; 3602 } else 3603 sp->max_burst = val; 3604 3605 return 0; 3606 } 3607 3608 /* 3609 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3610 * 3611 * This set option adds a chunk type that the user is requesting to be 3612 * received only in an authenticated way. Changes to the list of chunks 3613 * will only effect future associations on the socket. 3614 */ 3615 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3616 char __user *optval, 3617 unsigned int optlen) 3618 { 3619 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3620 struct sctp_authchunk val; 3621 3622 if (!ep->auth_enable) 3623 return -EACCES; 3624 3625 if (optlen != sizeof(struct sctp_authchunk)) 3626 return -EINVAL; 3627 if (copy_from_user(&val, optval, optlen)) 3628 return -EFAULT; 3629 3630 switch (val.sauth_chunk) { 3631 case SCTP_CID_INIT: 3632 case SCTP_CID_INIT_ACK: 3633 case SCTP_CID_SHUTDOWN_COMPLETE: 3634 case SCTP_CID_AUTH: 3635 return -EINVAL; 3636 } 3637 3638 /* add this chunk id to the endpoint */ 3639 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3640 } 3641 3642 /* 3643 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3644 * 3645 * This option gets or sets the list of HMAC algorithms that the local 3646 * endpoint requires the peer to use. 3647 */ 3648 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3649 char __user *optval, 3650 unsigned int optlen) 3651 { 3652 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3653 struct sctp_hmacalgo *hmacs; 3654 u32 idents; 3655 int err; 3656 3657 if (!ep->auth_enable) 3658 return -EACCES; 3659 3660 if (optlen < sizeof(struct sctp_hmacalgo)) 3661 return -EINVAL; 3662 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3663 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3664 3665 hmacs = memdup_user(optval, optlen); 3666 if (IS_ERR(hmacs)) 3667 return PTR_ERR(hmacs); 3668 3669 idents = hmacs->shmac_num_idents; 3670 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3671 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3672 err = -EINVAL; 3673 goto out; 3674 } 3675 3676 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3677 out: 3678 kfree(hmacs); 3679 return err; 3680 } 3681 3682 /* 3683 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3684 * 3685 * This option will set a shared secret key which is used to build an 3686 * association shared key. 3687 */ 3688 static int sctp_setsockopt_auth_key(struct sock *sk, 3689 char __user *optval, 3690 unsigned int optlen) 3691 { 3692 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3693 struct sctp_authkey *authkey; 3694 struct sctp_association *asoc; 3695 int ret; 3696 3697 if (!ep->auth_enable) 3698 return -EACCES; 3699 3700 if (optlen <= sizeof(struct sctp_authkey)) 3701 return -EINVAL; 3702 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3703 * this. 3704 */ 3705 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3706 sizeof(struct sctp_authkey)); 3707 3708 authkey = memdup_user(optval, optlen); 3709 if (IS_ERR(authkey)) 3710 return PTR_ERR(authkey); 3711 3712 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3713 ret = -EINVAL; 3714 goto out; 3715 } 3716 3717 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3718 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3719 ret = -EINVAL; 3720 goto out; 3721 } 3722 3723 ret = sctp_auth_set_key(ep, asoc, authkey); 3724 out: 3725 kzfree(authkey); 3726 return ret; 3727 } 3728 3729 /* 3730 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3731 * 3732 * This option will get or set the active shared key to be used to build 3733 * the association shared key. 3734 */ 3735 static int sctp_setsockopt_active_key(struct sock *sk, 3736 char __user *optval, 3737 unsigned int optlen) 3738 { 3739 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3740 struct sctp_authkeyid val; 3741 struct sctp_association *asoc; 3742 3743 if (!ep->auth_enable) 3744 return -EACCES; 3745 3746 if (optlen != sizeof(struct sctp_authkeyid)) 3747 return -EINVAL; 3748 if (copy_from_user(&val, optval, optlen)) 3749 return -EFAULT; 3750 3751 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3752 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3753 return -EINVAL; 3754 3755 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3756 } 3757 3758 /* 3759 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3760 * 3761 * This set option will delete a shared secret key from use. 3762 */ 3763 static int sctp_setsockopt_del_key(struct sock *sk, 3764 char __user *optval, 3765 unsigned int optlen) 3766 { 3767 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3768 struct sctp_authkeyid val; 3769 struct sctp_association *asoc; 3770 3771 if (!ep->auth_enable) 3772 return -EACCES; 3773 3774 if (optlen != sizeof(struct sctp_authkeyid)) 3775 return -EINVAL; 3776 if (copy_from_user(&val, optval, optlen)) 3777 return -EFAULT; 3778 3779 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3780 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3781 return -EINVAL; 3782 3783 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3784 3785 } 3786 3787 /* 3788 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3789 * 3790 * This set option will deactivate a shared secret key. 3791 */ 3792 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3793 unsigned int optlen) 3794 { 3795 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3796 struct sctp_authkeyid val; 3797 struct sctp_association *asoc; 3798 3799 if (!ep->auth_enable) 3800 return -EACCES; 3801 3802 if (optlen != sizeof(struct sctp_authkeyid)) 3803 return -EINVAL; 3804 if (copy_from_user(&val, optval, optlen)) 3805 return -EFAULT; 3806 3807 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3808 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3809 return -EINVAL; 3810 3811 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3812 } 3813 3814 /* 3815 * 8.1.23 SCTP_AUTO_ASCONF 3816 * 3817 * This option will enable or disable the use of the automatic generation of 3818 * ASCONF chunks to add and delete addresses to an existing association. Note 3819 * that this option has two caveats namely: a) it only affects sockets that 3820 * are bound to all addresses available to the SCTP stack, and b) the system 3821 * administrator may have an overriding control that turns the ASCONF feature 3822 * off no matter what setting the socket option may have. 3823 * This option expects an integer boolean flag, where a non-zero value turns on 3824 * the option, and a zero value turns off the option. 3825 * Note. In this implementation, socket operation overrides default parameter 3826 * being set by sysctl as well as FreeBSD implementation 3827 */ 3828 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3829 unsigned int optlen) 3830 { 3831 int val; 3832 struct sctp_sock *sp = sctp_sk(sk); 3833 3834 if (optlen < sizeof(int)) 3835 return -EINVAL; 3836 if (get_user(val, (int __user *)optval)) 3837 return -EFAULT; 3838 if (!sctp_is_ep_boundall(sk) && val) 3839 return -EINVAL; 3840 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3841 return 0; 3842 3843 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3844 if (val == 0 && sp->do_auto_asconf) { 3845 list_del(&sp->auto_asconf_list); 3846 sp->do_auto_asconf = 0; 3847 } else if (val && !sp->do_auto_asconf) { 3848 list_add_tail(&sp->auto_asconf_list, 3849 &sock_net(sk)->sctp.auto_asconf_splist); 3850 sp->do_auto_asconf = 1; 3851 } 3852 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3853 return 0; 3854 } 3855 3856 /* 3857 * SCTP_PEER_ADDR_THLDS 3858 * 3859 * This option allows us to alter the partially failed threshold for one or all 3860 * transports in an association. See Section 6.1 of: 3861 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3862 */ 3863 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3864 char __user *optval, 3865 unsigned int optlen) 3866 { 3867 struct sctp_paddrthlds val; 3868 struct sctp_transport *trans; 3869 struct sctp_association *asoc; 3870 3871 if (optlen < sizeof(struct sctp_paddrthlds)) 3872 return -EINVAL; 3873 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3874 sizeof(struct sctp_paddrthlds))) 3875 return -EFAULT; 3876 3877 3878 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3879 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3880 if (!asoc) 3881 return -ENOENT; 3882 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3883 transports) { 3884 if (val.spt_pathmaxrxt) 3885 trans->pathmaxrxt = val.spt_pathmaxrxt; 3886 trans->pf_retrans = val.spt_pathpfthld; 3887 } 3888 3889 if (val.spt_pathmaxrxt) 3890 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3891 asoc->pf_retrans = val.spt_pathpfthld; 3892 } else { 3893 trans = sctp_addr_id2transport(sk, &val.spt_address, 3894 val.spt_assoc_id); 3895 if (!trans) 3896 return -ENOENT; 3897 3898 if (val.spt_pathmaxrxt) 3899 trans->pathmaxrxt = val.spt_pathmaxrxt; 3900 trans->pf_retrans = val.spt_pathpfthld; 3901 } 3902 3903 return 0; 3904 } 3905 3906 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3907 char __user *optval, 3908 unsigned int optlen) 3909 { 3910 int val; 3911 3912 if (optlen < sizeof(int)) 3913 return -EINVAL; 3914 if (get_user(val, (int __user *) optval)) 3915 return -EFAULT; 3916 3917 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3918 3919 return 0; 3920 } 3921 3922 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3923 char __user *optval, 3924 unsigned int optlen) 3925 { 3926 int val; 3927 3928 if (optlen < sizeof(int)) 3929 return -EINVAL; 3930 if (get_user(val, (int __user *) optval)) 3931 return -EFAULT; 3932 3933 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3934 3935 return 0; 3936 } 3937 3938 static int sctp_setsockopt_pr_supported(struct sock *sk, 3939 char __user *optval, 3940 unsigned int optlen) 3941 { 3942 struct sctp_assoc_value params; 3943 3944 if (optlen != sizeof(params)) 3945 return -EINVAL; 3946 3947 if (copy_from_user(¶ms, optval, optlen)) 3948 return -EFAULT; 3949 3950 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 3951 3952 return 0; 3953 } 3954 3955 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3956 char __user *optval, 3957 unsigned int optlen) 3958 { 3959 struct sctp_default_prinfo info; 3960 struct sctp_association *asoc; 3961 int retval = -EINVAL; 3962 3963 if (optlen != sizeof(info)) 3964 goto out; 3965 3966 if (copy_from_user(&info, optval, sizeof(info))) { 3967 retval = -EFAULT; 3968 goto out; 3969 } 3970 3971 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3972 goto out; 3973 3974 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3975 info.pr_value = 0; 3976 3977 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3978 if (asoc) { 3979 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3980 asoc->default_timetolive = info.pr_value; 3981 } else if (!info.pr_assoc_id) { 3982 struct sctp_sock *sp = sctp_sk(sk); 3983 3984 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3985 sp->default_timetolive = info.pr_value; 3986 } else { 3987 goto out; 3988 } 3989 3990 retval = 0; 3991 3992 out: 3993 return retval; 3994 } 3995 3996 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3997 char __user *optval, 3998 unsigned int optlen) 3999 { 4000 struct sctp_assoc_value params; 4001 struct sctp_association *asoc; 4002 int retval = -EINVAL; 4003 4004 if (optlen != sizeof(params)) 4005 goto out; 4006 4007 if (copy_from_user(¶ms, optval, optlen)) { 4008 retval = -EFAULT; 4009 goto out; 4010 } 4011 4012 asoc = sctp_id2assoc(sk, params.assoc_id); 4013 if (asoc) { 4014 asoc->reconf_enable = !!params.assoc_value; 4015 } else if (!params.assoc_id) { 4016 struct sctp_sock *sp = sctp_sk(sk); 4017 4018 sp->ep->reconf_enable = !!params.assoc_value; 4019 } else { 4020 goto out; 4021 } 4022 4023 retval = 0; 4024 4025 out: 4026 return retval; 4027 } 4028 4029 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4030 char __user *optval, 4031 unsigned int optlen) 4032 { 4033 struct sctp_assoc_value params; 4034 struct sctp_association *asoc; 4035 int retval = -EINVAL; 4036 4037 if (optlen != sizeof(params)) 4038 goto out; 4039 4040 if (copy_from_user(¶ms, optval, optlen)) { 4041 retval = -EFAULT; 4042 goto out; 4043 } 4044 4045 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4046 goto out; 4047 4048 asoc = sctp_id2assoc(sk, params.assoc_id); 4049 if (asoc) { 4050 asoc->strreset_enable = params.assoc_value; 4051 } else if (!params.assoc_id) { 4052 struct sctp_sock *sp = sctp_sk(sk); 4053 4054 sp->ep->strreset_enable = params.assoc_value; 4055 } else { 4056 goto out; 4057 } 4058 4059 retval = 0; 4060 4061 out: 4062 return retval; 4063 } 4064 4065 static int sctp_setsockopt_reset_streams(struct sock *sk, 4066 char __user *optval, 4067 unsigned int optlen) 4068 { 4069 struct sctp_reset_streams *params; 4070 struct sctp_association *asoc; 4071 int retval = -EINVAL; 4072 4073 if (optlen < sizeof(*params)) 4074 return -EINVAL; 4075 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4076 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4077 sizeof(__u16) * sizeof(*params)); 4078 4079 params = memdup_user(optval, optlen); 4080 if (IS_ERR(params)) 4081 return PTR_ERR(params); 4082 4083 if (params->srs_number_streams * sizeof(__u16) > 4084 optlen - sizeof(*params)) 4085 goto out; 4086 4087 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4088 if (!asoc) 4089 goto out; 4090 4091 retval = sctp_send_reset_streams(asoc, params); 4092 4093 out: 4094 kfree(params); 4095 return retval; 4096 } 4097 4098 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4099 char __user *optval, 4100 unsigned int optlen) 4101 { 4102 struct sctp_association *asoc; 4103 sctp_assoc_t associd; 4104 int retval = -EINVAL; 4105 4106 if (optlen != sizeof(associd)) 4107 goto out; 4108 4109 if (copy_from_user(&associd, optval, optlen)) { 4110 retval = -EFAULT; 4111 goto out; 4112 } 4113 4114 asoc = sctp_id2assoc(sk, associd); 4115 if (!asoc) 4116 goto out; 4117 4118 retval = sctp_send_reset_assoc(asoc); 4119 4120 out: 4121 return retval; 4122 } 4123 4124 static int sctp_setsockopt_add_streams(struct sock *sk, 4125 char __user *optval, 4126 unsigned int optlen) 4127 { 4128 struct sctp_association *asoc; 4129 struct sctp_add_streams params; 4130 int retval = -EINVAL; 4131 4132 if (optlen != sizeof(params)) 4133 goto out; 4134 4135 if (copy_from_user(¶ms, optval, optlen)) { 4136 retval = -EFAULT; 4137 goto out; 4138 } 4139 4140 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4141 if (!asoc) 4142 goto out; 4143 4144 retval = sctp_send_add_streams(asoc, ¶ms); 4145 4146 out: 4147 return retval; 4148 } 4149 4150 static int sctp_setsockopt_scheduler(struct sock *sk, 4151 char __user *optval, 4152 unsigned int optlen) 4153 { 4154 struct sctp_association *asoc; 4155 struct sctp_assoc_value params; 4156 int retval = -EINVAL; 4157 4158 if (optlen < sizeof(params)) 4159 goto out; 4160 4161 optlen = sizeof(params); 4162 if (copy_from_user(¶ms, optval, optlen)) { 4163 retval = -EFAULT; 4164 goto out; 4165 } 4166 4167 if (params.assoc_value > SCTP_SS_MAX) 4168 goto out; 4169 4170 asoc = sctp_id2assoc(sk, params.assoc_id); 4171 if (!asoc) 4172 goto out; 4173 4174 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4175 4176 out: 4177 return retval; 4178 } 4179 4180 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4181 char __user *optval, 4182 unsigned int optlen) 4183 { 4184 struct sctp_association *asoc; 4185 struct sctp_stream_value params; 4186 int retval = -EINVAL; 4187 4188 if (optlen < sizeof(params)) 4189 goto out; 4190 4191 optlen = sizeof(params); 4192 if (copy_from_user(¶ms, optval, optlen)) { 4193 retval = -EFAULT; 4194 goto out; 4195 } 4196 4197 asoc = sctp_id2assoc(sk, params.assoc_id); 4198 if (!asoc) 4199 goto out; 4200 4201 retval = sctp_sched_set_value(asoc, params.stream_id, 4202 params.stream_value, GFP_KERNEL); 4203 4204 out: 4205 return retval; 4206 } 4207 4208 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4209 char __user *optval, 4210 unsigned int optlen) 4211 { 4212 struct sctp_sock *sp = sctp_sk(sk); 4213 struct net *net = sock_net(sk); 4214 struct sctp_assoc_value params; 4215 int retval = -EINVAL; 4216 4217 if (optlen < sizeof(params)) 4218 goto out; 4219 4220 optlen = sizeof(params); 4221 if (copy_from_user(¶ms, optval, optlen)) { 4222 retval = -EFAULT; 4223 goto out; 4224 } 4225 4226 if (params.assoc_id) 4227 goto out; 4228 4229 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4230 retval = -EPERM; 4231 goto out; 4232 } 4233 4234 sp->strm_interleave = !!params.assoc_value; 4235 4236 retval = 0; 4237 4238 out: 4239 return retval; 4240 } 4241 4242 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4243 unsigned int optlen) 4244 { 4245 int val; 4246 4247 if (!sctp_style(sk, TCP)) 4248 return -EOPNOTSUPP; 4249 4250 if (sctp_sk(sk)->ep->base.bind_addr.port) 4251 return -EFAULT; 4252 4253 if (optlen < sizeof(int)) 4254 return -EINVAL; 4255 4256 if (get_user(val, (int __user *)optval)) 4257 return -EFAULT; 4258 4259 sctp_sk(sk)->reuse = !!val; 4260 4261 return 0; 4262 } 4263 4264 /* API 6.2 setsockopt(), getsockopt() 4265 * 4266 * Applications use setsockopt() and getsockopt() to set or retrieve 4267 * socket options. Socket options are used to change the default 4268 * behavior of sockets calls. They are described in Section 7. 4269 * 4270 * The syntax is: 4271 * 4272 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4273 * int __user *optlen); 4274 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4275 * int optlen); 4276 * 4277 * sd - the socket descript. 4278 * level - set to IPPROTO_SCTP for all SCTP options. 4279 * optname - the option name. 4280 * optval - the buffer to store the value of the option. 4281 * optlen - the size of the buffer. 4282 */ 4283 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4284 char __user *optval, unsigned int optlen) 4285 { 4286 int retval = 0; 4287 4288 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4289 4290 /* I can hardly begin to describe how wrong this is. This is 4291 * so broken as to be worse than useless. The API draft 4292 * REALLY is NOT helpful here... I am not convinced that the 4293 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4294 * are at all well-founded. 4295 */ 4296 if (level != SOL_SCTP) { 4297 struct sctp_af *af = sctp_sk(sk)->pf->af; 4298 retval = af->setsockopt(sk, level, optname, optval, optlen); 4299 goto out_nounlock; 4300 } 4301 4302 lock_sock(sk); 4303 4304 switch (optname) { 4305 case SCTP_SOCKOPT_BINDX_ADD: 4306 /* 'optlen' is the size of the addresses buffer. */ 4307 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4308 optlen, SCTP_BINDX_ADD_ADDR); 4309 break; 4310 4311 case SCTP_SOCKOPT_BINDX_REM: 4312 /* 'optlen' is the size of the addresses buffer. */ 4313 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4314 optlen, SCTP_BINDX_REM_ADDR); 4315 break; 4316 4317 case SCTP_SOCKOPT_CONNECTX_OLD: 4318 /* 'optlen' is the size of the addresses buffer. */ 4319 retval = sctp_setsockopt_connectx_old(sk, 4320 (struct sockaddr __user *)optval, 4321 optlen); 4322 break; 4323 4324 case SCTP_SOCKOPT_CONNECTX: 4325 /* 'optlen' is the size of the addresses buffer. */ 4326 retval = sctp_setsockopt_connectx(sk, 4327 (struct sockaddr __user *)optval, 4328 optlen); 4329 break; 4330 4331 case SCTP_DISABLE_FRAGMENTS: 4332 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4333 break; 4334 4335 case SCTP_EVENTS: 4336 retval = sctp_setsockopt_events(sk, optval, optlen); 4337 break; 4338 4339 case SCTP_AUTOCLOSE: 4340 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4341 break; 4342 4343 case SCTP_PEER_ADDR_PARAMS: 4344 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4345 break; 4346 4347 case SCTP_DELAYED_SACK: 4348 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4349 break; 4350 case SCTP_PARTIAL_DELIVERY_POINT: 4351 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4352 break; 4353 4354 case SCTP_INITMSG: 4355 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4356 break; 4357 case SCTP_DEFAULT_SEND_PARAM: 4358 retval = sctp_setsockopt_default_send_param(sk, optval, 4359 optlen); 4360 break; 4361 case SCTP_DEFAULT_SNDINFO: 4362 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4363 break; 4364 case SCTP_PRIMARY_ADDR: 4365 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4366 break; 4367 case SCTP_SET_PEER_PRIMARY_ADDR: 4368 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4369 break; 4370 case SCTP_NODELAY: 4371 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4372 break; 4373 case SCTP_RTOINFO: 4374 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4375 break; 4376 case SCTP_ASSOCINFO: 4377 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4378 break; 4379 case SCTP_I_WANT_MAPPED_V4_ADDR: 4380 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4381 break; 4382 case SCTP_MAXSEG: 4383 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4384 break; 4385 case SCTP_ADAPTATION_LAYER: 4386 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4387 break; 4388 case SCTP_CONTEXT: 4389 retval = sctp_setsockopt_context(sk, optval, optlen); 4390 break; 4391 case SCTP_FRAGMENT_INTERLEAVE: 4392 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4393 break; 4394 case SCTP_MAX_BURST: 4395 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4396 break; 4397 case SCTP_AUTH_CHUNK: 4398 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4399 break; 4400 case SCTP_HMAC_IDENT: 4401 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4402 break; 4403 case SCTP_AUTH_KEY: 4404 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4405 break; 4406 case SCTP_AUTH_ACTIVE_KEY: 4407 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4408 break; 4409 case SCTP_AUTH_DELETE_KEY: 4410 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4411 break; 4412 case SCTP_AUTH_DEACTIVATE_KEY: 4413 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4414 break; 4415 case SCTP_AUTO_ASCONF: 4416 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4417 break; 4418 case SCTP_PEER_ADDR_THLDS: 4419 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4420 break; 4421 case SCTP_RECVRCVINFO: 4422 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4423 break; 4424 case SCTP_RECVNXTINFO: 4425 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4426 break; 4427 case SCTP_PR_SUPPORTED: 4428 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4429 break; 4430 case SCTP_DEFAULT_PRINFO: 4431 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4432 break; 4433 case SCTP_RECONFIG_SUPPORTED: 4434 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4435 break; 4436 case SCTP_ENABLE_STREAM_RESET: 4437 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4438 break; 4439 case SCTP_RESET_STREAMS: 4440 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4441 break; 4442 case SCTP_RESET_ASSOC: 4443 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4444 break; 4445 case SCTP_ADD_STREAMS: 4446 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4447 break; 4448 case SCTP_STREAM_SCHEDULER: 4449 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4450 break; 4451 case SCTP_STREAM_SCHEDULER_VALUE: 4452 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4453 break; 4454 case SCTP_INTERLEAVING_SUPPORTED: 4455 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4456 optlen); 4457 break; 4458 case SCTP_REUSE_PORT: 4459 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4460 break; 4461 default: 4462 retval = -ENOPROTOOPT; 4463 break; 4464 } 4465 4466 release_sock(sk); 4467 4468 out_nounlock: 4469 return retval; 4470 } 4471 4472 /* API 3.1.6 connect() - UDP Style Syntax 4473 * 4474 * An application may use the connect() call in the UDP model to initiate an 4475 * association without sending data. 4476 * 4477 * The syntax is: 4478 * 4479 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4480 * 4481 * sd: the socket descriptor to have a new association added to. 4482 * 4483 * nam: the address structure (either struct sockaddr_in or struct 4484 * sockaddr_in6 defined in RFC2553 [7]). 4485 * 4486 * len: the size of the address. 4487 */ 4488 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4489 int addr_len, int flags) 4490 { 4491 struct inet_sock *inet = inet_sk(sk); 4492 struct sctp_af *af; 4493 int err = 0; 4494 4495 lock_sock(sk); 4496 4497 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4498 addr, addr_len); 4499 4500 /* We may need to bind the socket. */ 4501 if (!inet->inet_num) { 4502 if (sk->sk_prot->get_port(sk, 0)) { 4503 release_sock(sk); 4504 return -EAGAIN; 4505 } 4506 inet->inet_sport = htons(inet->inet_num); 4507 } 4508 4509 /* Validate addr_len before calling common connect/connectx routine. */ 4510 af = sctp_get_af_specific(addr->sa_family); 4511 if (!af || addr_len < af->sockaddr_len) { 4512 err = -EINVAL; 4513 } else { 4514 /* Pass correct addr len to common routine (so it knows there 4515 * is only one address being passed. 4516 */ 4517 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4518 } 4519 4520 release_sock(sk); 4521 return err; 4522 } 4523 4524 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4525 int addr_len, int flags) 4526 { 4527 if (addr_len < sizeof(uaddr->sa_family)) 4528 return -EINVAL; 4529 4530 if (uaddr->sa_family == AF_UNSPEC) 4531 return -EOPNOTSUPP; 4532 4533 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4534 } 4535 4536 /* FIXME: Write comments. */ 4537 static int sctp_disconnect(struct sock *sk, int flags) 4538 { 4539 return -EOPNOTSUPP; /* STUB */ 4540 } 4541 4542 /* 4.1.4 accept() - TCP Style Syntax 4543 * 4544 * Applications use accept() call to remove an established SCTP 4545 * association from the accept queue of the endpoint. A new socket 4546 * descriptor will be returned from accept() to represent the newly 4547 * formed association. 4548 */ 4549 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4550 { 4551 struct sctp_sock *sp; 4552 struct sctp_endpoint *ep; 4553 struct sock *newsk = NULL; 4554 struct sctp_association *asoc; 4555 long timeo; 4556 int error = 0; 4557 4558 lock_sock(sk); 4559 4560 sp = sctp_sk(sk); 4561 ep = sp->ep; 4562 4563 if (!sctp_style(sk, TCP)) { 4564 error = -EOPNOTSUPP; 4565 goto out; 4566 } 4567 4568 if (!sctp_sstate(sk, LISTENING)) { 4569 error = -EINVAL; 4570 goto out; 4571 } 4572 4573 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4574 4575 error = sctp_wait_for_accept(sk, timeo); 4576 if (error) 4577 goto out; 4578 4579 /* We treat the list of associations on the endpoint as the accept 4580 * queue and pick the first association on the list. 4581 */ 4582 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4583 4584 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4585 if (!newsk) { 4586 error = -ENOMEM; 4587 goto out; 4588 } 4589 4590 /* Populate the fields of the newsk from the oldsk and migrate the 4591 * asoc to the newsk. 4592 */ 4593 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4594 4595 out: 4596 release_sock(sk); 4597 *err = error; 4598 return newsk; 4599 } 4600 4601 /* The SCTP ioctl handler. */ 4602 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4603 { 4604 int rc = -ENOTCONN; 4605 4606 lock_sock(sk); 4607 4608 /* 4609 * SEQPACKET-style sockets in LISTENING state are valid, for 4610 * SCTP, so only discard TCP-style sockets in LISTENING state. 4611 */ 4612 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4613 goto out; 4614 4615 switch (cmd) { 4616 case SIOCINQ: { 4617 struct sk_buff *skb; 4618 unsigned int amount = 0; 4619 4620 skb = skb_peek(&sk->sk_receive_queue); 4621 if (skb != NULL) { 4622 /* 4623 * We will only return the amount of this packet since 4624 * that is all that will be read. 4625 */ 4626 amount = skb->len; 4627 } 4628 rc = put_user(amount, (int __user *)arg); 4629 break; 4630 } 4631 default: 4632 rc = -ENOIOCTLCMD; 4633 break; 4634 } 4635 out: 4636 release_sock(sk); 4637 return rc; 4638 } 4639 4640 /* This is the function which gets called during socket creation to 4641 * initialized the SCTP-specific portion of the sock. 4642 * The sock structure should already be zero-filled memory. 4643 */ 4644 static int sctp_init_sock(struct sock *sk) 4645 { 4646 struct net *net = sock_net(sk); 4647 struct sctp_sock *sp; 4648 4649 pr_debug("%s: sk:%p\n", __func__, sk); 4650 4651 sp = sctp_sk(sk); 4652 4653 /* Initialize the SCTP per socket area. */ 4654 switch (sk->sk_type) { 4655 case SOCK_SEQPACKET: 4656 sp->type = SCTP_SOCKET_UDP; 4657 break; 4658 case SOCK_STREAM: 4659 sp->type = SCTP_SOCKET_TCP; 4660 break; 4661 default: 4662 return -ESOCKTNOSUPPORT; 4663 } 4664 4665 sk->sk_gso_type = SKB_GSO_SCTP; 4666 4667 /* Initialize default send parameters. These parameters can be 4668 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4669 */ 4670 sp->default_stream = 0; 4671 sp->default_ppid = 0; 4672 sp->default_flags = 0; 4673 sp->default_context = 0; 4674 sp->default_timetolive = 0; 4675 4676 sp->default_rcv_context = 0; 4677 sp->max_burst = net->sctp.max_burst; 4678 4679 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4680 4681 /* Initialize default setup parameters. These parameters 4682 * can be modified with the SCTP_INITMSG socket option or 4683 * overridden by the SCTP_INIT CMSG. 4684 */ 4685 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4686 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4687 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4688 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4689 4690 /* Initialize default RTO related parameters. These parameters can 4691 * be modified for with the SCTP_RTOINFO socket option. 4692 */ 4693 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4694 sp->rtoinfo.srto_max = net->sctp.rto_max; 4695 sp->rtoinfo.srto_min = net->sctp.rto_min; 4696 4697 /* Initialize default association related parameters. These parameters 4698 * can be modified with the SCTP_ASSOCINFO socket option. 4699 */ 4700 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4701 sp->assocparams.sasoc_number_peer_destinations = 0; 4702 sp->assocparams.sasoc_peer_rwnd = 0; 4703 sp->assocparams.sasoc_local_rwnd = 0; 4704 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4705 4706 /* Initialize default event subscriptions. By default, all the 4707 * options are off. 4708 */ 4709 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4710 4711 /* Default Peer Address Parameters. These defaults can 4712 * be modified via SCTP_PEER_ADDR_PARAMS 4713 */ 4714 sp->hbinterval = net->sctp.hb_interval; 4715 sp->pathmaxrxt = net->sctp.max_retrans_path; 4716 sp->pathmtu = 0; /* allow default discovery */ 4717 sp->sackdelay = net->sctp.sack_timeout; 4718 sp->sackfreq = 2; 4719 sp->param_flags = SPP_HB_ENABLE | 4720 SPP_PMTUD_ENABLE | 4721 SPP_SACKDELAY_ENABLE; 4722 4723 /* If enabled no SCTP message fragmentation will be performed. 4724 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4725 */ 4726 sp->disable_fragments = 0; 4727 4728 /* Enable Nagle algorithm by default. */ 4729 sp->nodelay = 0; 4730 4731 sp->recvrcvinfo = 0; 4732 sp->recvnxtinfo = 0; 4733 4734 /* Enable by default. */ 4735 sp->v4mapped = 1; 4736 4737 /* Auto-close idle associations after the configured 4738 * number of seconds. A value of 0 disables this 4739 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4740 * for UDP-style sockets only. 4741 */ 4742 sp->autoclose = 0; 4743 4744 /* User specified fragmentation limit. */ 4745 sp->user_frag = 0; 4746 4747 sp->adaptation_ind = 0; 4748 4749 sp->pf = sctp_get_pf_specific(sk->sk_family); 4750 4751 /* Control variables for partial data delivery. */ 4752 atomic_set(&sp->pd_mode, 0); 4753 skb_queue_head_init(&sp->pd_lobby); 4754 sp->frag_interleave = 0; 4755 4756 /* Create a per socket endpoint structure. Even if we 4757 * change the data structure relationships, this may still 4758 * be useful for storing pre-connect address information. 4759 */ 4760 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4761 if (!sp->ep) 4762 return -ENOMEM; 4763 4764 sp->hmac = NULL; 4765 4766 sk->sk_destruct = sctp_destruct_sock; 4767 4768 SCTP_DBG_OBJCNT_INC(sock); 4769 4770 local_bh_disable(); 4771 sk_sockets_allocated_inc(sk); 4772 sock_prot_inuse_add(net, sk->sk_prot, 1); 4773 4774 /* Nothing can fail after this block, otherwise 4775 * sctp_destroy_sock() will be called without addr_wq_lock held 4776 */ 4777 if (net->sctp.default_auto_asconf) { 4778 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4779 list_add_tail(&sp->auto_asconf_list, 4780 &net->sctp.auto_asconf_splist); 4781 sp->do_auto_asconf = 1; 4782 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4783 } else { 4784 sp->do_auto_asconf = 0; 4785 } 4786 4787 local_bh_enable(); 4788 4789 return 0; 4790 } 4791 4792 /* Cleanup any SCTP per socket resources. Must be called with 4793 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4794 */ 4795 static void sctp_destroy_sock(struct sock *sk) 4796 { 4797 struct sctp_sock *sp; 4798 4799 pr_debug("%s: sk:%p\n", __func__, sk); 4800 4801 /* Release our hold on the endpoint. */ 4802 sp = sctp_sk(sk); 4803 /* This could happen during socket init, thus we bail out 4804 * early, since the rest of the below is not setup either. 4805 */ 4806 if (sp->ep == NULL) 4807 return; 4808 4809 if (sp->do_auto_asconf) { 4810 sp->do_auto_asconf = 0; 4811 list_del(&sp->auto_asconf_list); 4812 } 4813 sctp_endpoint_free(sp->ep); 4814 local_bh_disable(); 4815 sk_sockets_allocated_dec(sk); 4816 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4817 local_bh_enable(); 4818 } 4819 4820 /* Triggered when there are no references on the socket anymore */ 4821 static void sctp_destruct_sock(struct sock *sk) 4822 { 4823 struct sctp_sock *sp = sctp_sk(sk); 4824 4825 /* Free up the HMAC transform. */ 4826 crypto_free_shash(sp->hmac); 4827 4828 inet_sock_destruct(sk); 4829 } 4830 4831 /* API 4.1.7 shutdown() - TCP Style Syntax 4832 * int shutdown(int socket, int how); 4833 * 4834 * sd - the socket descriptor of the association to be closed. 4835 * how - Specifies the type of shutdown. The values are 4836 * as follows: 4837 * SHUT_RD 4838 * Disables further receive operations. No SCTP 4839 * protocol action is taken. 4840 * SHUT_WR 4841 * Disables further send operations, and initiates 4842 * the SCTP shutdown sequence. 4843 * SHUT_RDWR 4844 * Disables further send and receive operations 4845 * and initiates the SCTP shutdown sequence. 4846 */ 4847 static void sctp_shutdown(struct sock *sk, int how) 4848 { 4849 struct net *net = sock_net(sk); 4850 struct sctp_endpoint *ep; 4851 4852 if (!sctp_style(sk, TCP)) 4853 return; 4854 4855 ep = sctp_sk(sk)->ep; 4856 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4857 struct sctp_association *asoc; 4858 4859 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4860 asoc = list_entry(ep->asocs.next, 4861 struct sctp_association, asocs); 4862 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4863 } 4864 } 4865 4866 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4867 struct sctp_info *info) 4868 { 4869 struct sctp_transport *prim; 4870 struct list_head *pos; 4871 int mask; 4872 4873 memset(info, 0, sizeof(*info)); 4874 if (!asoc) { 4875 struct sctp_sock *sp = sctp_sk(sk); 4876 4877 info->sctpi_s_autoclose = sp->autoclose; 4878 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4879 info->sctpi_s_pd_point = sp->pd_point; 4880 info->sctpi_s_nodelay = sp->nodelay; 4881 info->sctpi_s_disable_fragments = sp->disable_fragments; 4882 info->sctpi_s_v4mapped = sp->v4mapped; 4883 info->sctpi_s_frag_interleave = sp->frag_interleave; 4884 info->sctpi_s_type = sp->type; 4885 4886 return 0; 4887 } 4888 4889 info->sctpi_tag = asoc->c.my_vtag; 4890 info->sctpi_state = asoc->state; 4891 info->sctpi_rwnd = asoc->a_rwnd; 4892 info->sctpi_unackdata = asoc->unack_data; 4893 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4894 info->sctpi_instrms = asoc->stream.incnt; 4895 info->sctpi_outstrms = asoc->stream.outcnt; 4896 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4897 info->sctpi_inqueue++; 4898 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4899 info->sctpi_outqueue++; 4900 info->sctpi_overall_error = asoc->overall_error_count; 4901 info->sctpi_max_burst = asoc->max_burst; 4902 info->sctpi_maxseg = asoc->frag_point; 4903 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4904 info->sctpi_peer_tag = asoc->c.peer_vtag; 4905 4906 mask = asoc->peer.ecn_capable << 1; 4907 mask = (mask | asoc->peer.ipv4_address) << 1; 4908 mask = (mask | asoc->peer.ipv6_address) << 1; 4909 mask = (mask | asoc->peer.hostname_address) << 1; 4910 mask = (mask | asoc->peer.asconf_capable) << 1; 4911 mask = (mask | asoc->peer.prsctp_capable) << 1; 4912 mask = (mask | asoc->peer.auth_capable); 4913 info->sctpi_peer_capable = mask; 4914 mask = asoc->peer.sack_needed << 1; 4915 mask = (mask | asoc->peer.sack_generation) << 1; 4916 mask = (mask | asoc->peer.zero_window_announced); 4917 info->sctpi_peer_sack = mask; 4918 4919 info->sctpi_isacks = asoc->stats.isacks; 4920 info->sctpi_osacks = asoc->stats.osacks; 4921 info->sctpi_opackets = asoc->stats.opackets; 4922 info->sctpi_ipackets = asoc->stats.ipackets; 4923 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4924 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4925 info->sctpi_idupchunks = asoc->stats.idupchunks; 4926 info->sctpi_gapcnt = asoc->stats.gapcnt; 4927 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4928 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4929 info->sctpi_oodchunks = asoc->stats.oodchunks; 4930 info->sctpi_iodchunks = asoc->stats.iodchunks; 4931 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4932 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4933 4934 prim = asoc->peer.primary_path; 4935 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4936 info->sctpi_p_state = prim->state; 4937 info->sctpi_p_cwnd = prim->cwnd; 4938 info->sctpi_p_srtt = prim->srtt; 4939 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4940 info->sctpi_p_hbinterval = prim->hbinterval; 4941 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4942 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4943 info->sctpi_p_ssthresh = prim->ssthresh; 4944 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4945 info->sctpi_p_flight_size = prim->flight_size; 4946 info->sctpi_p_error = prim->error_count; 4947 4948 return 0; 4949 } 4950 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4951 4952 /* use callback to avoid exporting the core structure */ 4953 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4954 { 4955 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4956 4957 rhashtable_walk_start(iter); 4958 } 4959 4960 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4961 { 4962 rhashtable_walk_stop(iter); 4963 rhashtable_walk_exit(iter); 4964 } 4965 4966 struct sctp_transport *sctp_transport_get_next(struct net *net, 4967 struct rhashtable_iter *iter) 4968 { 4969 struct sctp_transport *t; 4970 4971 t = rhashtable_walk_next(iter); 4972 for (; t; t = rhashtable_walk_next(iter)) { 4973 if (IS_ERR(t)) { 4974 if (PTR_ERR(t) == -EAGAIN) 4975 continue; 4976 break; 4977 } 4978 4979 if (!sctp_transport_hold(t)) 4980 continue; 4981 4982 if (net_eq(sock_net(t->asoc->base.sk), net) && 4983 t->asoc->peer.primary_path == t) 4984 break; 4985 4986 sctp_transport_put(t); 4987 } 4988 4989 return t; 4990 } 4991 4992 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4993 struct rhashtable_iter *iter, 4994 int pos) 4995 { 4996 struct sctp_transport *t; 4997 4998 if (!pos) 4999 return SEQ_START_TOKEN; 5000 5001 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5002 if (!--pos) 5003 break; 5004 sctp_transport_put(t); 5005 } 5006 5007 return t; 5008 } 5009 5010 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5011 void *p) { 5012 int err = 0; 5013 int hash = 0; 5014 struct sctp_ep_common *epb; 5015 struct sctp_hashbucket *head; 5016 5017 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5018 hash++, head++) { 5019 read_lock_bh(&head->lock); 5020 sctp_for_each_hentry(epb, &head->chain) { 5021 err = cb(sctp_ep(epb), p); 5022 if (err) 5023 break; 5024 } 5025 read_unlock_bh(&head->lock); 5026 } 5027 5028 return err; 5029 } 5030 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5031 5032 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5033 struct net *net, 5034 const union sctp_addr *laddr, 5035 const union sctp_addr *paddr, void *p) 5036 { 5037 struct sctp_transport *transport; 5038 int err; 5039 5040 rcu_read_lock(); 5041 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5042 rcu_read_unlock(); 5043 if (!transport) 5044 return -ENOENT; 5045 5046 err = cb(transport, p); 5047 sctp_transport_put(transport); 5048 5049 return err; 5050 } 5051 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5052 5053 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5054 int (*cb_done)(struct sctp_transport *, void *), 5055 struct net *net, int *pos, void *p) { 5056 struct rhashtable_iter hti; 5057 struct sctp_transport *tsp; 5058 int ret; 5059 5060 again: 5061 ret = 0; 5062 sctp_transport_walk_start(&hti); 5063 5064 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5065 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5066 ret = cb(tsp, p); 5067 if (ret) 5068 break; 5069 (*pos)++; 5070 sctp_transport_put(tsp); 5071 } 5072 sctp_transport_walk_stop(&hti); 5073 5074 if (ret) { 5075 if (cb_done && !cb_done(tsp, p)) { 5076 (*pos)++; 5077 sctp_transport_put(tsp); 5078 goto again; 5079 } 5080 sctp_transport_put(tsp); 5081 } 5082 5083 return ret; 5084 } 5085 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5086 5087 /* 7.2.1 Association Status (SCTP_STATUS) 5088 5089 * Applications can retrieve current status information about an 5090 * association, including association state, peer receiver window size, 5091 * number of unacked data chunks, and number of data chunks pending 5092 * receipt. This information is read-only. 5093 */ 5094 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5095 char __user *optval, 5096 int __user *optlen) 5097 { 5098 struct sctp_status status; 5099 struct sctp_association *asoc = NULL; 5100 struct sctp_transport *transport; 5101 sctp_assoc_t associd; 5102 int retval = 0; 5103 5104 if (len < sizeof(status)) { 5105 retval = -EINVAL; 5106 goto out; 5107 } 5108 5109 len = sizeof(status); 5110 if (copy_from_user(&status, optval, len)) { 5111 retval = -EFAULT; 5112 goto out; 5113 } 5114 5115 associd = status.sstat_assoc_id; 5116 asoc = sctp_id2assoc(sk, associd); 5117 if (!asoc) { 5118 retval = -EINVAL; 5119 goto out; 5120 } 5121 5122 transport = asoc->peer.primary_path; 5123 5124 status.sstat_assoc_id = sctp_assoc2id(asoc); 5125 status.sstat_state = sctp_assoc_to_state(asoc); 5126 status.sstat_rwnd = asoc->peer.rwnd; 5127 status.sstat_unackdata = asoc->unack_data; 5128 5129 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5130 status.sstat_instrms = asoc->stream.incnt; 5131 status.sstat_outstrms = asoc->stream.outcnt; 5132 status.sstat_fragmentation_point = asoc->frag_point; 5133 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5134 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5135 transport->af_specific->sockaddr_len); 5136 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5137 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5138 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5139 status.sstat_primary.spinfo_state = transport->state; 5140 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5141 status.sstat_primary.spinfo_srtt = transport->srtt; 5142 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5143 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5144 5145 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5146 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5147 5148 if (put_user(len, optlen)) { 5149 retval = -EFAULT; 5150 goto out; 5151 } 5152 5153 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5154 __func__, len, status.sstat_state, status.sstat_rwnd, 5155 status.sstat_assoc_id); 5156 5157 if (copy_to_user(optval, &status, len)) { 5158 retval = -EFAULT; 5159 goto out; 5160 } 5161 5162 out: 5163 return retval; 5164 } 5165 5166 5167 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5168 * 5169 * Applications can retrieve information about a specific peer address 5170 * of an association, including its reachability state, congestion 5171 * window, and retransmission timer values. This information is 5172 * read-only. 5173 */ 5174 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5175 char __user *optval, 5176 int __user *optlen) 5177 { 5178 struct sctp_paddrinfo pinfo; 5179 struct sctp_transport *transport; 5180 int retval = 0; 5181 5182 if (len < sizeof(pinfo)) { 5183 retval = -EINVAL; 5184 goto out; 5185 } 5186 5187 len = sizeof(pinfo); 5188 if (copy_from_user(&pinfo, optval, len)) { 5189 retval = -EFAULT; 5190 goto out; 5191 } 5192 5193 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5194 pinfo.spinfo_assoc_id); 5195 if (!transport) 5196 return -EINVAL; 5197 5198 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5199 pinfo.spinfo_state = transport->state; 5200 pinfo.spinfo_cwnd = transport->cwnd; 5201 pinfo.spinfo_srtt = transport->srtt; 5202 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5203 pinfo.spinfo_mtu = transport->pathmtu; 5204 5205 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5206 pinfo.spinfo_state = SCTP_ACTIVE; 5207 5208 if (put_user(len, optlen)) { 5209 retval = -EFAULT; 5210 goto out; 5211 } 5212 5213 if (copy_to_user(optval, &pinfo, len)) { 5214 retval = -EFAULT; 5215 goto out; 5216 } 5217 5218 out: 5219 return retval; 5220 } 5221 5222 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5223 * 5224 * This option is a on/off flag. If enabled no SCTP message 5225 * fragmentation will be performed. Instead if a message being sent 5226 * exceeds the current PMTU size, the message will NOT be sent and 5227 * instead a error will be indicated to the user. 5228 */ 5229 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5230 char __user *optval, int __user *optlen) 5231 { 5232 int val; 5233 5234 if (len < sizeof(int)) 5235 return -EINVAL; 5236 5237 len = sizeof(int); 5238 val = (sctp_sk(sk)->disable_fragments == 1); 5239 if (put_user(len, optlen)) 5240 return -EFAULT; 5241 if (copy_to_user(optval, &val, len)) 5242 return -EFAULT; 5243 return 0; 5244 } 5245 5246 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5247 * 5248 * This socket option is used to specify various notifications and 5249 * ancillary data the user wishes to receive. 5250 */ 5251 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5252 int __user *optlen) 5253 { 5254 if (len == 0) 5255 return -EINVAL; 5256 if (len > sizeof(struct sctp_event_subscribe)) 5257 len = sizeof(struct sctp_event_subscribe); 5258 if (put_user(len, optlen)) 5259 return -EFAULT; 5260 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5261 return -EFAULT; 5262 return 0; 5263 } 5264 5265 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5266 * 5267 * This socket option is applicable to the UDP-style socket only. When 5268 * set it will cause associations that are idle for more than the 5269 * specified number of seconds to automatically close. An association 5270 * being idle is defined an association that has NOT sent or received 5271 * user data. The special value of '0' indicates that no automatic 5272 * close of any associations should be performed. The option expects an 5273 * integer defining the number of seconds of idle time before an 5274 * association is closed. 5275 */ 5276 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5277 { 5278 /* Applicable to UDP-style socket only */ 5279 if (sctp_style(sk, TCP)) 5280 return -EOPNOTSUPP; 5281 if (len < sizeof(int)) 5282 return -EINVAL; 5283 len = sizeof(int); 5284 if (put_user(len, optlen)) 5285 return -EFAULT; 5286 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5287 return -EFAULT; 5288 return 0; 5289 } 5290 5291 /* Helper routine to branch off an association to a new socket. */ 5292 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5293 { 5294 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5295 struct sctp_sock *sp = sctp_sk(sk); 5296 struct socket *sock; 5297 int err = 0; 5298 5299 /* Do not peel off from one netns to another one. */ 5300 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5301 return -EINVAL; 5302 5303 if (!asoc) 5304 return -EINVAL; 5305 5306 /* An association cannot be branched off from an already peeled-off 5307 * socket, nor is this supported for tcp style sockets. 5308 */ 5309 if (!sctp_style(sk, UDP)) 5310 return -EINVAL; 5311 5312 /* Create a new socket. */ 5313 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5314 if (err < 0) 5315 return err; 5316 5317 sctp_copy_sock(sock->sk, sk, asoc); 5318 5319 /* Make peeled-off sockets more like 1-1 accepted sockets. 5320 * Set the daddr and initialize id to something more random and also 5321 * copy over any ip options. 5322 */ 5323 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5324 sp->pf->copy_ip_options(sk, sock->sk); 5325 5326 /* Populate the fields of the newsk from the oldsk and migrate the 5327 * asoc to the newsk. 5328 */ 5329 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5330 5331 *sockp = sock; 5332 5333 return err; 5334 } 5335 EXPORT_SYMBOL(sctp_do_peeloff); 5336 5337 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5338 struct file **newfile, unsigned flags) 5339 { 5340 struct socket *newsock; 5341 int retval; 5342 5343 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5344 if (retval < 0) 5345 goto out; 5346 5347 /* Map the socket to an unused fd that can be returned to the user. */ 5348 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5349 if (retval < 0) { 5350 sock_release(newsock); 5351 goto out; 5352 } 5353 5354 *newfile = sock_alloc_file(newsock, 0, NULL); 5355 if (IS_ERR(*newfile)) { 5356 put_unused_fd(retval); 5357 retval = PTR_ERR(*newfile); 5358 *newfile = NULL; 5359 return retval; 5360 } 5361 5362 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5363 retval); 5364 5365 peeloff->sd = retval; 5366 5367 if (flags & SOCK_NONBLOCK) 5368 (*newfile)->f_flags |= O_NONBLOCK; 5369 out: 5370 return retval; 5371 } 5372 5373 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5374 { 5375 sctp_peeloff_arg_t peeloff; 5376 struct file *newfile = NULL; 5377 int retval = 0; 5378 5379 if (len < sizeof(sctp_peeloff_arg_t)) 5380 return -EINVAL; 5381 len = sizeof(sctp_peeloff_arg_t); 5382 if (copy_from_user(&peeloff, optval, len)) 5383 return -EFAULT; 5384 5385 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5386 if (retval < 0) 5387 goto out; 5388 5389 /* Return the fd mapped to the new socket. */ 5390 if (put_user(len, optlen)) { 5391 fput(newfile); 5392 put_unused_fd(retval); 5393 return -EFAULT; 5394 } 5395 5396 if (copy_to_user(optval, &peeloff, len)) { 5397 fput(newfile); 5398 put_unused_fd(retval); 5399 return -EFAULT; 5400 } 5401 fd_install(retval, newfile); 5402 out: 5403 return retval; 5404 } 5405 5406 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5407 char __user *optval, int __user *optlen) 5408 { 5409 sctp_peeloff_flags_arg_t peeloff; 5410 struct file *newfile = NULL; 5411 int retval = 0; 5412 5413 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5414 return -EINVAL; 5415 len = sizeof(sctp_peeloff_flags_arg_t); 5416 if (copy_from_user(&peeloff, optval, len)) 5417 return -EFAULT; 5418 5419 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5420 &newfile, peeloff.flags); 5421 if (retval < 0) 5422 goto out; 5423 5424 /* Return the fd mapped to the new socket. */ 5425 if (put_user(len, optlen)) { 5426 fput(newfile); 5427 put_unused_fd(retval); 5428 return -EFAULT; 5429 } 5430 5431 if (copy_to_user(optval, &peeloff, len)) { 5432 fput(newfile); 5433 put_unused_fd(retval); 5434 return -EFAULT; 5435 } 5436 fd_install(retval, newfile); 5437 out: 5438 return retval; 5439 } 5440 5441 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5442 * 5443 * Applications can enable or disable heartbeats for any peer address of 5444 * an association, modify an address's heartbeat interval, force a 5445 * heartbeat to be sent immediately, and adjust the address's maximum 5446 * number of retransmissions sent before an address is considered 5447 * unreachable. The following structure is used to access and modify an 5448 * address's parameters: 5449 * 5450 * struct sctp_paddrparams { 5451 * sctp_assoc_t spp_assoc_id; 5452 * struct sockaddr_storage spp_address; 5453 * uint32_t spp_hbinterval; 5454 * uint16_t spp_pathmaxrxt; 5455 * uint32_t spp_pathmtu; 5456 * uint32_t spp_sackdelay; 5457 * uint32_t spp_flags; 5458 * }; 5459 * 5460 * spp_assoc_id - (one-to-many style socket) This is filled in the 5461 * application, and identifies the association for 5462 * this query. 5463 * spp_address - This specifies which address is of interest. 5464 * spp_hbinterval - This contains the value of the heartbeat interval, 5465 * in milliseconds. If a value of zero 5466 * is present in this field then no changes are to 5467 * be made to this parameter. 5468 * spp_pathmaxrxt - This contains the maximum number of 5469 * retransmissions before this address shall be 5470 * considered unreachable. If a value of zero 5471 * is present in this field then no changes are to 5472 * be made to this parameter. 5473 * spp_pathmtu - When Path MTU discovery is disabled the value 5474 * specified here will be the "fixed" path mtu. 5475 * Note that if the spp_address field is empty 5476 * then all associations on this address will 5477 * have this fixed path mtu set upon them. 5478 * 5479 * spp_sackdelay - When delayed sack is enabled, this value specifies 5480 * the number of milliseconds that sacks will be delayed 5481 * for. This value will apply to all addresses of an 5482 * association if the spp_address field is empty. Note 5483 * also, that if delayed sack is enabled and this 5484 * value is set to 0, no change is made to the last 5485 * recorded delayed sack timer value. 5486 * 5487 * spp_flags - These flags are used to control various features 5488 * on an association. The flag field may contain 5489 * zero or more of the following options. 5490 * 5491 * SPP_HB_ENABLE - Enable heartbeats on the 5492 * specified address. Note that if the address 5493 * field is empty all addresses for the association 5494 * have heartbeats enabled upon them. 5495 * 5496 * SPP_HB_DISABLE - Disable heartbeats on the 5497 * speicifed address. Note that if the address 5498 * field is empty all addresses for the association 5499 * will have their heartbeats disabled. Note also 5500 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5501 * mutually exclusive, only one of these two should 5502 * be specified. Enabling both fields will have 5503 * undetermined results. 5504 * 5505 * SPP_HB_DEMAND - Request a user initiated heartbeat 5506 * to be made immediately. 5507 * 5508 * SPP_PMTUD_ENABLE - This field will enable PMTU 5509 * discovery upon the specified address. Note that 5510 * if the address feild is empty then all addresses 5511 * on the association are effected. 5512 * 5513 * SPP_PMTUD_DISABLE - This field will disable PMTU 5514 * discovery upon the specified address. Note that 5515 * if the address feild is empty then all addresses 5516 * on the association are effected. Not also that 5517 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5518 * exclusive. Enabling both will have undetermined 5519 * results. 5520 * 5521 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5522 * on delayed sack. The time specified in spp_sackdelay 5523 * is used to specify the sack delay for this address. Note 5524 * that if spp_address is empty then all addresses will 5525 * enable delayed sack and take on the sack delay 5526 * value specified in spp_sackdelay. 5527 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5528 * off delayed sack. If the spp_address field is blank then 5529 * delayed sack is disabled for the entire association. Note 5530 * also that this field is mutually exclusive to 5531 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5532 * results. 5533 * 5534 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5535 * setting of the IPV6 flow label value. The value is 5536 * contained in the spp_ipv6_flowlabel field. 5537 * Upon retrieval, this flag will be set to indicate that 5538 * the spp_ipv6_flowlabel field has a valid value returned. 5539 * If a specific destination address is set (in the 5540 * spp_address field), then the value returned is that of 5541 * the address. If just an association is specified (and 5542 * no address), then the association's default flow label 5543 * is returned. If neither an association nor a destination 5544 * is specified, then the socket's default flow label is 5545 * returned. For non-IPv6 sockets, this flag will be left 5546 * cleared. 5547 * 5548 * SPP_DSCP: Setting this flag enables the setting of the 5549 * Differentiated Services Code Point (DSCP) value 5550 * associated with either the association or a specific 5551 * address. The value is obtained in the spp_dscp field. 5552 * Upon retrieval, this flag will be set to indicate that 5553 * the spp_dscp field has a valid value returned. If a 5554 * specific destination address is set when called (in the 5555 * spp_address field), then that specific destination 5556 * address's DSCP value is returned. If just an association 5557 * is specified, then the association's default DSCP is 5558 * returned. If neither an association nor a destination is 5559 * specified, then the socket's default DSCP is returned. 5560 * 5561 * spp_ipv6_flowlabel 5562 * - This field is used in conjunction with the 5563 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5564 * The 20 least significant bits are used for the flow 5565 * label. This setting has precedence over any IPv6-layer 5566 * setting. 5567 * 5568 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5569 * and contains the DSCP. The 6 most significant bits are 5570 * used for the DSCP. This setting has precedence over any 5571 * IPv4- or IPv6- layer setting. 5572 */ 5573 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5574 char __user *optval, int __user *optlen) 5575 { 5576 struct sctp_paddrparams params; 5577 struct sctp_transport *trans = NULL; 5578 struct sctp_association *asoc = NULL; 5579 struct sctp_sock *sp = sctp_sk(sk); 5580 5581 if (len >= sizeof(params)) 5582 len = sizeof(params); 5583 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5584 spp_ipv6_flowlabel), 4)) 5585 len = ALIGN(offsetof(struct sctp_paddrparams, 5586 spp_ipv6_flowlabel), 4); 5587 else 5588 return -EINVAL; 5589 5590 if (copy_from_user(¶ms, optval, len)) 5591 return -EFAULT; 5592 5593 /* If an address other than INADDR_ANY is specified, and 5594 * no transport is found, then the request is invalid. 5595 */ 5596 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5597 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5598 params.spp_assoc_id); 5599 if (!trans) { 5600 pr_debug("%s: failed no transport\n", __func__); 5601 return -EINVAL; 5602 } 5603 } 5604 5605 /* Get association, if assoc_id != 0 and the socket is a one 5606 * to many style socket, and an association was not found, then 5607 * the id was invalid. 5608 */ 5609 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5610 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5611 pr_debug("%s: failed no association\n", __func__); 5612 return -EINVAL; 5613 } 5614 5615 if (trans) { 5616 /* Fetch transport values. */ 5617 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5618 params.spp_pathmtu = trans->pathmtu; 5619 params.spp_pathmaxrxt = trans->pathmaxrxt; 5620 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5621 5622 /*draft-11 doesn't say what to return in spp_flags*/ 5623 params.spp_flags = trans->param_flags; 5624 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5625 params.spp_ipv6_flowlabel = trans->flowlabel & 5626 SCTP_FLOWLABEL_VAL_MASK; 5627 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5628 } 5629 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5630 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5631 params.spp_flags |= SPP_DSCP; 5632 } 5633 } else if (asoc) { 5634 /* Fetch association values. */ 5635 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5636 params.spp_pathmtu = asoc->pathmtu; 5637 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5638 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5639 5640 /*draft-11 doesn't say what to return in spp_flags*/ 5641 params.spp_flags = asoc->param_flags; 5642 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5643 params.spp_ipv6_flowlabel = asoc->flowlabel & 5644 SCTP_FLOWLABEL_VAL_MASK; 5645 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5646 } 5647 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5648 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5649 params.spp_flags |= SPP_DSCP; 5650 } 5651 } else { 5652 /* Fetch socket values. */ 5653 params.spp_hbinterval = sp->hbinterval; 5654 params.spp_pathmtu = sp->pathmtu; 5655 params.spp_sackdelay = sp->sackdelay; 5656 params.spp_pathmaxrxt = sp->pathmaxrxt; 5657 5658 /*draft-11 doesn't say what to return in spp_flags*/ 5659 params.spp_flags = sp->param_flags; 5660 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5661 params.spp_ipv6_flowlabel = sp->flowlabel & 5662 SCTP_FLOWLABEL_VAL_MASK; 5663 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5664 } 5665 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5666 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5667 params.spp_flags |= SPP_DSCP; 5668 } 5669 } 5670 5671 if (copy_to_user(optval, ¶ms, len)) 5672 return -EFAULT; 5673 5674 if (put_user(len, optlen)) 5675 return -EFAULT; 5676 5677 return 0; 5678 } 5679 5680 /* 5681 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5682 * 5683 * This option will effect the way delayed acks are performed. This 5684 * option allows you to get or set the delayed ack time, in 5685 * milliseconds. It also allows changing the delayed ack frequency. 5686 * Changing the frequency to 1 disables the delayed sack algorithm. If 5687 * the assoc_id is 0, then this sets or gets the endpoints default 5688 * values. If the assoc_id field is non-zero, then the set or get 5689 * effects the specified association for the one to many model (the 5690 * assoc_id field is ignored by the one to one model). Note that if 5691 * sack_delay or sack_freq are 0 when setting this option, then the 5692 * current values will remain unchanged. 5693 * 5694 * struct sctp_sack_info { 5695 * sctp_assoc_t sack_assoc_id; 5696 * uint32_t sack_delay; 5697 * uint32_t sack_freq; 5698 * }; 5699 * 5700 * sack_assoc_id - This parameter, indicates which association the user 5701 * is performing an action upon. Note that if this field's value is 5702 * zero then the endpoints default value is changed (effecting future 5703 * associations only). 5704 * 5705 * sack_delay - This parameter contains the number of milliseconds that 5706 * the user is requesting the delayed ACK timer be set to. Note that 5707 * this value is defined in the standard to be between 200 and 500 5708 * milliseconds. 5709 * 5710 * sack_freq - This parameter contains the number of packets that must 5711 * be received before a sack is sent without waiting for the delay 5712 * timer to expire. The default value for this is 2, setting this 5713 * value to 1 will disable the delayed sack algorithm. 5714 */ 5715 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5716 char __user *optval, 5717 int __user *optlen) 5718 { 5719 struct sctp_sack_info params; 5720 struct sctp_association *asoc = NULL; 5721 struct sctp_sock *sp = sctp_sk(sk); 5722 5723 if (len >= sizeof(struct sctp_sack_info)) { 5724 len = sizeof(struct sctp_sack_info); 5725 5726 if (copy_from_user(¶ms, optval, len)) 5727 return -EFAULT; 5728 } else if (len == sizeof(struct sctp_assoc_value)) { 5729 pr_warn_ratelimited(DEPRECATED 5730 "%s (pid %d) " 5731 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5732 "Use struct sctp_sack_info instead\n", 5733 current->comm, task_pid_nr(current)); 5734 if (copy_from_user(¶ms, optval, len)) 5735 return -EFAULT; 5736 } else 5737 return -EINVAL; 5738 5739 /* Get association, if sack_assoc_id != 0 and the socket is a one 5740 * to many style socket, and an association was not found, then 5741 * the id was invalid. 5742 */ 5743 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5744 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5745 return -EINVAL; 5746 5747 if (asoc) { 5748 /* Fetch association values. */ 5749 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5750 params.sack_delay = jiffies_to_msecs( 5751 asoc->sackdelay); 5752 params.sack_freq = asoc->sackfreq; 5753 5754 } else { 5755 params.sack_delay = 0; 5756 params.sack_freq = 1; 5757 } 5758 } else { 5759 /* Fetch socket values. */ 5760 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5761 params.sack_delay = sp->sackdelay; 5762 params.sack_freq = sp->sackfreq; 5763 } else { 5764 params.sack_delay = 0; 5765 params.sack_freq = 1; 5766 } 5767 } 5768 5769 if (copy_to_user(optval, ¶ms, len)) 5770 return -EFAULT; 5771 5772 if (put_user(len, optlen)) 5773 return -EFAULT; 5774 5775 return 0; 5776 } 5777 5778 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5779 * 5780 * Applications can specify protocol parameters for the default association 5781 * initialization. The option name argument to setsockopt() and getsockopt() 5782 * is SCTP_INITMSG. 5783 * 5784 * Setting initialization parameters is effective only on an unconnected 5785 * socket (for UDP-style sockets only future associations are effected 5786 * by the change). With TCP-style sockets, this option is inherited by 5787 * sockets derived from a listener socket. 5788 */ 5789 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5790 { 5791 if (len < sizeof(struct sctp_initmsg)) 5792 return -EINVAL; 5793 len = sizeof(struct sctp_initmsg); 5794 if (put_user(len, optlen)) 5795 return -EFAULT; 5796 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5797 return -EFAULT; 5798 return 0; 5799 } 5800 5801 5802 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5803 char __user *optval, int __user *optlen) 5804 { 5805 struct sctp_association *asoc; 5806 int cnt = 0; 5807 struct sctp_getaddrs getaddrs; 5808 struct sctp_transport *from; 5809 void __user *to; 5810 union sctp_addr temp; 5811 struct sctp_sock *sp = sctp_sk(sk); 5812 int addrlen; 5813 size_t space_left; 5814 int bytes_copied; 5815 5816 if (len < sizeof(struct sctp_getaddrs)) 5817 return -EINVAL; 5818 5819 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5820 return -EFAULT; 5821 5822 /* For UDP-style sockets, id specifies the association to query. */ 5823 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5824 if (!asoc) 5825 return -EINVAL; 5826 5827 to = optval + offsetof(struct sctp_getaddrs, addrs); 5828 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5829 5830 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5831 transports) { 5832 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5833 addrlen = sctp_get_pf_specific(sk->sk_family) 5834 ->addr_to_user(sp, &temp); 5835 if (space_left < addrlen) 5836 return -ENOMEM; 5837 if (copy_to_user(to, &temp, addrlen)) 5838 return -EFAULT; 5839 to += addrlen; 5840 cnt++; 5841 space_left -= addrlen; 5842 } 5843 5844 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5845 return -EFAULT; 5846 bytes_copied = ((char __user *)to) - optval; 5847 if (put_user(bytes_copied, optlen)) 5848 return -EFAULT; 5849 5850 return 0; 5851 } 5852 5853 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5854 size_t space_left, int *bytes_copied) 5855 { 5856 struct sctp_sockaddr_entry *addr; 5857 union sctp_addr temp; 5858 int cnt = 0; 5859 int addrlen; 5860 struct net *net = sock_net(sk); 5861 5862 rcu_read_lock(); 5863 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5864 if (!addr->valid) 5865 continue; 5866 5867 if ((PF_INET == sk->sk_family) && 5868 (AF_INET6 == addr->a.sa.sa_family)) 5869 continue; 5870 if ((PF_INET6 == sk->sk_family) && 5871 inet_v6_ipv6only(sk) && 5872 (AF_INET == addr->a.sa.sa_family)) 5873 continue; 5874 memcpy(&temp, &addr->a, sizeof(temp)); 5875 if (!temp.v4.sin_port) 5876 temp.v4.sin_port = htons(port); 5877 5878 addrlen = sctp_get_pf_specific(sk->sk_family) 5879 ->addr_to_user(sctp_sk(sk), &temp); 5880 5881 if (space_left < addrlen) { 5882 cnt = -ENOMEM; 5883 break; 5884 } 5885 memcpy(to, &temp, addrlen); 5886 5887 to += addrlen; 5888 cnt++; 5889 space_left -= addrlen; 5890 *bytes_copied += addrlen; 5891 } 5892 rcu_read_unlock(); 5893 5894 return cnt; 5895 } 5896 5897 5898 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5899 char __user *optval, int __user *optlen) 5900 { 5901 struct sctp_bind_addr *bp; 5902 struct sctp_association *asoc; 5903 int cnt = 0; 5904 struct sctp_getaddrs getaddrs; 5905 struct sctp_sockaddr_entry *addr; 5906 void __user *to; 5907 union sctp_addr temp; 5908 struct sctp_sock *sp = sctp_sk(sk); 5909 int addrlen; 5910 int err = 0; 5911 size_t space_left; 5912 int bytes_copied = 0; 5913 void *addrs; 5914 void *buf; 5915 5916 if (len < sizeof(struct sctp_getaddrs)) 5917 return -EINVAL; 5918 5919 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5920 return -EFAULT; 5921 5922 /* 5923 * For UDP-style sockets, id specifies the association to query. 5924 * If the id field is set to the value '0' then the locally bound 5925 * addresses are returned without regard to any particular 5926 * association. 5927 */ 5928 if (0 == getaddrs.assoc_id) { 5929 bp = &sctp_sk(sk)->ep->base.bind_addr; 5930 } else { 5931 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5932 if (!asoc) 5933 return -EINVAL; 5934 bp = &asoc->base.bind_addr; 5935 } 5936 5937 to = optval + offsetof(struct sctp_getaddrs, addrs); 5938 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5939 5940 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5941 if (!addrs) 5942 return -ENOMEM; 5943 5944 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5945 * addresses from the global local address list. 5946 */ 5947 if (sctp_list_single_entry(&bp->address_list)) { 5948 addr = list_entry(bp->address_list.next, 5949 struct sctp_sockaddr_entry, list); 5950 if (sctp_is_any(sk, &addr->a)) { 5951 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5952 space_left, &bytes_copied); 5953 if (cnt < 0) { 5954 err = cnt; 5955 goto out; 5956 } 5957 goto copy_getaddrs; 5958 } 5959 } 5960 5961 buf = addrs; 5962 /* Protection on the bound address list is not needed since 5963 * in the socket option context we hold a socket lock and 5964 * thus the bound address list can't change. 5965 */ 5966 list_for_each_entry(addr, &bp->address_list, list) { 5967 memcpy(&temp, &addr->a, sizeof(temp)); 5968 addrlen = sctp_get_pf_specific(sk->sk_family) 5969 ->addr_to_user(sp, &temp); 5970 if (space_left < addrlen) { 5971 err = -ENOMEM; /*fixme: right error?*/ 5972 goto out; 5973 } 5974 memcpy(buf, &temp, addrlen); 5975 buf += addrlen; 5976 bytes_copied += addrlen; 5977 cnt++; 5978 space_left -= addrlen; 5979 } 5980 5981 copy_getaddrs: 5982 if (copy_to_user(to, addrs, bytes_copied)) { 5983 err = -EFAULT; 5984 goto out; 5985 } 5986 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5987 err = -EFAULT; 5988 goto out; 5989 } 5990 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5991 * but we can't change it anymore. 5992 */ 5993 if (put_user(bytes_copied, optlen)) 5994 err = -EFAULT; 5995 out: 5996 kfree(addrs); 5997 return err; 5998 } 5999 6000 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6001 * 6002 * Requests that the local SCTP stack use the enclosed peer address as 6003 * the association primary. The enclosed address must be one of the 6004 * association peer's addresses. 6005 */ 6006 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6007 char __user *optval, int __user *optlen) 6008 { 6009 struct sctp_prim prim; 6010 struct sctp_association *asoc; 6011 struct sctp_sock *sp = sctp_sk(sk); 6012 6013 if (len < sizeof(struct sctp_prim)) 6014 return -EINVAL; 6015 6016 len = sizeof(struct sctp_prim); 6017 6018 if (copy_from_user(&prim, optval, len)) 6019 return -EFAULT; 6020 6021 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6022 if (!asoc) 6023 return -EINVAL; 6024 6025 if (!asoc->peer.primary_path) 6026 return -ENOTCONN; 6027 6028 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6029 asoc->peer.primary_path->af_specific->sockaddr_len); 6030 6031 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6032 (union sctp_addr *)&prim.ssp_addr); 6033 6034 if (put_user(len, optlen)) 6035 return -EFAULT; 6036 if (copy_to_user(optval, &prim, len)) 6037 return -EFAULT; 6038 6039 return 0; 6040 } 6041 6042 /* 6043 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6044 * 6045 * Requests that the local endpoint set the specified Adaptation Layer 6046 * Indication parameter for all future INIT and INIT-ACK exchanges. 6047 */ 6048 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6049 char __user *optval, int __user *optlen) 6050 { 6051 struct sctp_setadaptation adaptation; 6052 6053 if (len < sizeof(struct sctp_setadaptation)) 6054 return -EINVAL; 6055 6056 len = sizeof(struct sctp_setadaptation); 6057 6058 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6059 6060 if (put_user(len, optlen)) 6061 return -EFAULT; 6062 if (copy_to_user(optval, &adaptation, len)) 6063 return -EFAULT; 6064 6065 return 0; 6066 } 6067 6068 /* 6069 * 6070 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6071 * 6072 * Applications that wish to use the sendto() system call may wish to 6073 * specify a default set of parameters that would normally be supplied 6074 * through the inclusion of ancillary data. This socket option allows 6075 * such an application to set the default sctp_sndrcvinfo structure. 6076 6077 6078 * The application that wishes to use this socket option simply passes 6079 * in to this call the sctp_sndrcvinfo structure defined in Section 6080 * 5.2.2) The input parameters accepted by this call include 6081 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6082 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6083 * to this call if the caller is using the UDP model. 6084 * 6085 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6086 */ 6087 static int sctp_getsockopt_default_send_param(struct sock *sk, 6088 int len, char __user *optval, 6089 int __user *optlen) 6090 { 6091 struct sctp_sock *sp = sctp_sk(sk); 6092 struct sctp_association *asoc; 6093 struct sctp_sndrcvinfo info; 6094 6095 if (len < sizeof(info)) 6096 return -EINVAL; 6097 6098 len = sizeof(info); 6099 6100 if (copy_from_user(&info, optval, len)) 6101 return -EFAULT; 6102 6103 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6104 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 6105 return -EINVAL; 6106 if (asoc) { 6107 info.sinfo_stream = asoc->default_stream; 6108 info.sinfo_flags = asoc->default_flags; 6109 info.sinfo_ppid = asoc->default_ppid; 6110 info.sinfo_context = asoc->default_context; 6111 info.sinfo_timetolive = asoc->default_timetolive; 6112 } else { 6113 info.sinfo_stream = sp->default_stream; 6114 info.sinfo_flags = sp->default_flags; 6115 info.sinfo_ppid = sp->default_ppid; 6116 info.sinfo_context = sp->default_context; 6117 info.sinfo_timetolive = sp->default_timetolive; 6118 } 6119 6120 if (put_user(len, optlen)) 6121 return -EFAULT; 6122 if (copy_to_user(optval, &info, len)) 6123 return -EFAULT; 6124 6125 return 0; 6126 } 6127 6128 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6129 * (SCTP_DEFAULT_SNDINFO) 6130 */ 6131 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6132 char __user *optval, 6133 int __user *optlen) 6134 { 6135 struct sctp_sock *sp = sctp_sk(sk); 6136 struct sctp_association *asoc; 6137 struct sctp_sndinfo info; 6138 6139 if (len < sizeof(info)) 6140 return -EINVAL; 6141 6142 len = sizeof(info); 6143 6144 if (copy_from_user(&info, optval, len)) 6145 return -EFAULT; 6146 6147 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6148 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 6149 return -EINVAL; 6150 if (asoc) { 6151 info.snd_sid = asoc->default_stream; 6152 info.snd_flags = asoc->default_flags; 6153 info.snd_ppid = asoc->default_ppid; 6154 info.snd_context = asoc->default_context; 6155 } else { 6156 info.snd_sid = sp->default_stream; 6157 info.snd_flags = sp->default_flags; 6158 info.snd_ppid = sp->default_ppid; 6159 info.snd_context = sp->default_context; 6160 } 6161 6162 if (put_user(len, optlen)) 6163 return -EFAULT; 6164 if (copy_to_user(optval, &info, len)) 6165 return -EFAULT; 6166 6167 return 0; 6168 } 6169 6170 /* 6171 * 6172 * 7.1.5 SCTP_NODELAY 6173 * 6174 * Turn on/off any Nagle-like algorithm. This means that packets are 6175 * generally sent as soon as possible and no unnecessary delays are 6176 * introduced, at the cost of more packets in the network. Expects an 6177 * integer boolean flag. 6178 */ 6179 6180 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6181 char __user *optval, int __user *optlen) 6182 { 6183 int val; 6184 6185 if (len < sizeof(int)) 6186 return -EINVAL; 6187 6188 len = sizeof(int); 6189 val = (sctp_sk(sk)->nodelay == 1); 6190 if (put_user(len, optlen)) 6191 return -EFAULT; 6192 if (copy_to_user(optval, &val, len)) 6193 return -EFAULT; 6194 return 0; 6195 } 6196 6197 /* 6198 * 6199 * 7.1.1 SCTP_RTOINFO 6200 * 6201 * The protocol parameters used to initialize and bound retransmission 6202 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6203 * and modify these parameters. 6204 * All parameters are time values, in milliseconds. A value of 0, when 6205 * modifying the parameters, indicates that the current value should not 6206 * be changed. 6207 * 6208 */ 6209 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6210 char __user *optval, 6211 int __user *optlen) { 6212 struct sctp_rtoinfo rtoinfo; 6213 struct sctp_association *asoc; 6214 6215 if (len < sizeof (struct sctp_rtoinfo)) 6216 return -EINVAL; 6217 6218 len = sizeof(struct sctp_rtoinfo); 6219 6220 if (copy_from_user(&rtoinfo, optval, len)) 6221 return -EFAULT; 6222 6223 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6224 6225 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6226 return -EINVAL; 6227 6228 /* Values corresponding to the specific association. */ 6229 if (asoc) { 6230 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6231 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6232 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6233 } else { 6234 /* Values corresponding to the endpoint. */ 6235 struct sctp_sock *sp = sctp_sk(sk); 6236 6237 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6238 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6239 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6240 } 6241 6242 if (put_user(len, optlen)) 6243 return -EFAULT; 6244 6245 if (copy_to_user(optval, &rtoinfo, len)) 6246 return -EFAULT; 6247 6248 return 0; 6249 } 6250 6251 /* 6252 * 6253 * 7.1.2 SCTP_ASSOCINFO 6254 * 6255 * This option is used to tune the maximum retransmission attempts 6256 * of the association. 6257 * Returns an error if the new association retransmission value is 6258 * greater than the sum of the retransmission value of the peer. 6259 * See [SCTP] for more information. 6260 * 6261 */ 6262 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6263 char __user *optval, 6264 int __user *optlen) 6265 { 6266 6267 struct sctp_assocparams assocparams; 6268 struct sctp_association *asoc; 6269 struct list_head *pos; 6270 int cnt = 0; 6271 6272 if (len < sizeof (struct sctp_assocparams)) 6273 return -EINVAL; 6274 6275 len = sizeof(struct sctp_assocparams); 6276 6277 if (copy_from_user(&assocparams, optval, len)) 6278 return -EFAULT; 6279 6280 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6281 6282 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6283 return -EINVAL; 6284 6285 /* Values correspoinding to the specific association */ 6286 if (asoc) { 6287 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6288 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6289 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6290 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6291 6292 list_for_each(pos, &asoc->peer.transport_addr_list) { 6293 cnt++; 6294 } 6295 6296 assocparams.sasoc_number_peer_destinations = cnt; 6297 } else { 6298 /* Values corresponding to the endpoint */ 6299 struct sctp_sock *sp = sctp_sk(sk); 6300 6301 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6302 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6303 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6304 assocparams.sasoc_cookie_life = 6305 sp->assocparams.sasoc_cookie_life; 6306 assocparams.sasoc_number_peer_destinations = 6307 sp->assocparams. 6308 sasoc_number_peer_destinations; 6309 } 6310 6311 if (put_user(len, optlen)) 6312 return -EFAULT; 6313 6314 if (copy_to_user(optval, &assocparams, len)) 6315 return -EFAULT; 6316 6317 return 0; 6318 } 6319 6320 /* 6321 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6322 * 6323 * This socket option is a boolean flag which turns on or off mapped V4 6324 * addresses. If this option is turned on and the socket is type 6325 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6326 * If this option is turned off, then no mapping will be done of V4 6327 * addresses and a user will receive both PF_INET6 and PF_INET type 6328 * addresses on the socket. 6329 */ 6330 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6331 char __user *optval, int __user *optlen) 6332 { 6333 int val; 6334 struct sctp_sock *sp = sctp_sk(sk); 6335 6336 if (len < sizeof(int)) 6337 return -EINVAL; 6338 6339 len = sizeof(int); 6340 val = sp->v4mapped; 6341 if (put_user(len, optlen)) 6342 return -EFAULT; 6343 if (copy_to_user(optval, &val, len)) 6344 return -EFAULT; 6345 6346 return 0; 6347 } 6348 6349 /* 6350 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6351 * (chapter and verse is quoted at sctp_setsockopt_context()) 6352 */ 6353 static int sctp_getsockopt_context(struct sock *sk, int len, 6354 char __user *optval, int __user *optlen) 6355 { 6356 struct sctp_assoc_value params; 6357 struct sctp_sock *sp; 6358 struct sctp_association *asoc; 6359 6360 if (len < sizeof(struct sctp_assoc_value)) 6361 return -EINVAL; 6362 6363 len = sizeof(struct sctp_assoc_value); 6364 6365 if (copy_from_user(¶ms, optval, len)) 6366 return -EFAULT; 6367 6368 sp = sctp_sk(sk); 6369 6370 if (params.assoc_id != 0) { 6371 asoc = sctp_id2assoc(sk, params.assoc_id); 6372 if (!asoc) 6373 return -EINVAL; 6374 params.assoc_value = asoc->default_rcv_context; 6375 } else { 6376 params.assoc_value = sp->default_rcv_context; 6377 } 6378 6379 if (put_user(len, optlen)) 6380 return -EFAULT; 6381 if (copy_to_user(optval, ¶ms, len)) 6382 return -EFAULT; 6383 6384 return 0; 6385 } 6386 6387 /* 6388 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6389 * This option will get or set the maximum size to put in any outgoing 6390 * SCTP DATA chunk. If a message is larger than this size it will be 6391 * fragmented by SCTP into the specified size. Note that the underlying 6392 * SCTP implementation may fragment into smaller sized chunks when the 6393 * PMTU of the underlying association is smaller than the value set by 6394 * the user. The default value for this option is '0' which indicates 6395 * the user is NOT limiting fragmentation and only the PMTU will effect 6396 * SCTP's choice of DATA chunk size. Note also that values set larger 6397 * than the maximum size of an IP datagram will effectively let SCTP 6398 * control fragmentation (i.e. the same as setting this option to 0). 6399 * 6400 * The following structure is used to access and modify this parameter: 6401 * 6402 * struct sctp_assoc_value { 6403 * sctp_assoc_t assoc_id; 6404 * uint32_t assoc_value; 6405 * }; 6406 * 6407 * assoc_id: This parameter is ignored for one-to-one style sockets. 6408 * For one-to-many style sockets this parameter indicates which 6409 * association the user is performing an action upon. Note that if 6410 * this field's value is zero then the endpoints default value is 6411 * changed (effecting future associations only). 6412 * assoc_value: This parameter specifies the maximum size in bytes. 6413 */ 6414 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6415 char __user *optval, int __user *optlen) 6416 { 6417 struct sctp_assoc_value params; 6418 struct sctp_association *asoc; 6419 6420 if (len == sizeof(int)) { 6421 pr_warn_ratelimited(DEPRECATED 6422 "%s (pid %d) " 6423 "Use of int in maxseg socket option.\n" 6424 "Use struct sctp_assoc_value instead\n", 6425 current->comm, task_pid_nr(current)); 6426 params.assoc_id = 0; 6427 } else if (len >= sizeof(struct sctp_assoc_value)) { 6428 len = sizeof(struct sctp_assoc_value); 6429 if (copy_from_user(¶ms, optval, len)) 6430 return -EFAULT; 6431 } else 6432 return -EINVAL; 6433 6434 asoc = sctp_id2assoc(sk, params.assoc_id); 6435 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6436 return -EINVAL; 6437 6438 if (asoc) 6439 params.assoc_value = asoc->frag_point; 6440 else 6441 params.assoc_value = sctp_sk(sk)->user_frag; 6442 6443 if (put_user(len, optlen)) 6444 return -EFAULT; 6445 if (len == sizeof(int)) { 6446 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6447 return -EFAULT; 6448 } else { 6449 if (copy_to_user(optval, ¶ms, len)) 6450 return -EFAULT; 6451 } 6452 6453 return 0; 6454 } 6455 6456 /* 6457 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6458 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6459 */ 6460 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6461 char __user *optval, int __user *optlen) 6462 { 6463 int val; 6464 6465 if (len < sizeof(int)) 6466 return -EINVAL; 6467 6468 len = sizeof(int); 6469 6470 val = sctp_sk(sk)->frag_interleave; 6471 if (put_user(len, optlen)) 6472 return -EFAULT; 6473 if (copy_to_user(optval, &val, len)) 6474 return -EFAULT; 6475 6476 return 0; 6477 } 6478 6479 /* 6480 * 7.1.25. Set or Get the sctp partial delivery point 6481 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6482 */ 6483 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6484 char __user *optval, 6485 int __user *optlen) 6486 { 6487 u32 val; 6488 6489 if (len < sizeof(u32)) 6490 return -EINVAL; 6491 6492 len = sizeof(u32); 6493 6494 val = sctp_sk(sk)->pd_point; 6495 if (put_user(len, optlen)) 6496 return -EFAULT; 6497 if (copy_to_user(optval, &val, len)) 6498 return -EFAULT; 6499 6500 return 0; 6501 } 6502 6503 /* 6504 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6505 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6506 */ 6507 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6508 char __user *optval, 6509 int __user *optlen) 6510 { 6511 struct sctp_assoc_value params; 6512 struct sctp_sock *sp; 6513 struct sctp_association *asoc; 6514 6515 if (len == sizeof(int)) { 6516 pr_warn_ratelimited(DEPRECATED 6517 "%s (pid %d) " 6518 "Use of int in max_burst socket option.\n" 6519 "Use struct sctp_assoc_value instead\n", 6520 current->comm, task_pid_nr(current)); 6521 params.assoc_id = 0; 6522 } else if (len >= sizeof(struct sctp_assoc_value)) { 6523 len = sizeof(struct sctp_assoc_value); 6524 if (copy_from_user(¶ms, optval, len)) 6525 return -EFAULT; 6526 } else 6527 return -EINVAL; 6528 6529 sp = sctp_sk(sk); 6530 6531 if (params.assoc_id != 0) { 6532 asoc = sctp_id2assoc(sk, params.assoc_id); 6533 if (!asoc) 6534 return -EINVAL; 6535 params.assoc_value = asoc->max_burst; 6536 } else 6537 params.assoc_value = sp->max_burst; 6538 6539 if (len == sizeof(int)) { 6540 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6541 return -EFAULT; 6542 } else { 6543 if (copy_to_user(optval, ¶ms, len)) 6544 return -EFAULT; 6545 } 6546 6547 return 0; 6548 6549 } 6550 6551 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6552 char __user *optval, int __user *optlen) 6553 { 6554 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6555 struct sctp_hmacalgo __user *p = (void __user *)optval; 6556 struct sctp_hmac_algo_param *hmacs; 6557 __u16 data_len = 0; 6558 u32 num_idents; 6559 int i; 6560 6561 if (!ep->auth_enable) 6562 return -EACCES; 6563 6564 hmacs = ep->auth_hmacs_list; 6565 data_len = ntohs(hmacs->param_hdr.length) - 6566 sizeof(struct sctp_paramhdr); 6567 6568 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6569 return -EINVAL; 6570 6571 len = sizeof(struct sctp_hmacalgo) + data_len; 6572 num_idents = data_len / sizeof(u16); 6573 6574 if (put_user(len, optlen)) 6575 return -EFAULT; 6576 if (put_user(num_idents, &p->shmac_num_idents)) 6577 return -EFAULT; 6578 for (i = 0; i < num_idents; i++) { 6579 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6580 6581 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6582 return -EFAULT; 6583 } 6584 return 0; 6585 } 6586 6587 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6588 char __user *optval, int __user *optlen) 6589 { 6590 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6591 struct sctp_authkeyid val; 6592 struct sctp_association *asoc; 6593 6594 if (!ep->auth_enable) 6595 return -EACCES; 6596 6597 if (len < sizeof(struct sctp_authkeyid)) 6598 return -EINVAL; 6599 6600 len = sizeof(struct sctp_authkeyid); 6601 if (copy_from_user(&val, optval, len)) 6602 return -EFAULT; 6603 6604 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6605 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6606 return -EINVAL; 6607 6608 if (asoc) 6609 val.scact_keynumber = asoc->active_key_id; 6610 else 6611 val.scact_keynumber = ep->active_key_id; 6612 6613 if (put_user(len, optlen)) 6614 return -EFAULT; 6615 if (copy_to_user(optval, &val, len)) 6616 return -EFAULT; 6617 6618 return 0; 6619 } 6620 6621 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6622 char __user *optval, int __user *optlen) 6623 { 6624 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6625 struct sctp_authchunks __user *p = (void __user *)optval; 6626 struct sctp_authchunks val; 6627 struct sctp_association *asoc; 6628 struct sctp_chunks_param *ch; 6629 u32 num_chunks = 0; 6630 char __user *to; 6631 6632 if (!ep->auth_enable) 6633 return -EACCES; 6634 6635 if (len < sizeof(struct sctp_authchunks)) 6636 return -EINVAL; 6637 6638 if (copy_from_user(&val, optval, sizeof(val))) 6639 return -EFAULT; 6640 6641 to = p->gauth_chunks; 6642 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6643 if (!asoc) 6644 return -EINVAL; 6645 6646 ch = asoc->peer.peer_chunks; 6647 if (!ch) 6648 goto num; 6649 6650 /* See if the user provided enough room for all the data */ 6651 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6652 if (len < num_chunks) 6653 return -EINVAL; 6654 6655 if (copy_to_user(to, ch->chunks, num_chunks)) 6656 return -EFAULT; 6657 num: 6658 len = sizeof(struct sctp_authchunks) + num_chunks; 6659 if (put_user(len, optlen)) 6660 return -EFAULT; 6661 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6662 return -EFAULT; 6663 return 0; 6664 } 6665 6666 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6667 char __user *optval, int __user *optlen) 6668 { 6669 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6670 struct sctp_authchunks __user *p = (void __user *)optval; 6671 struct sctp_authchunks val; 6672 struct sctp_association *asoc; 6673 struct sctp_chunks_param *ch; 6674 u32 num_chunks = 0; 6675 char __user *to; 6676 6677 if (!ep->auth_enable) 6678 return -EACCES; 6679 6680 if (len < sizeof(struct sctp_authchunks)) 6681 return -EINVAL; 6682 6683 if (copy_from_user(&val, optval, sizeof(val))) 6684 return -EFAULT; 6685 6686 to = p->gauth_chunks; 6687 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6688 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6689 return -EINVAL; 6690 6691 if (asoc) 6692 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6693 else 6694 ch = ep->auth_chunk_list; 6695 6696 if (!ch) 6697 goto num; 6698 6699 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6700 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6701 return -EINVAL; 6702 6703 if (copy_to_user(to, ch->chunks, num_chunks)) 6704 return -EFAULT; 6705 num: 6706 len = sizeof(struct sctp_authchunks) + num_chunks; 6707 if (put_user(len, optlen)) 6708 return -EFAULT; 6709 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6710 return -EFAULT; 6711 6712 return 0; 6713 } 6714 6715 /* 6716 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6717 * This option gets the current number of associations that are attached 6718 * to a one-to-many style socket. The option value is an uint32_t. 6719 */ 6720 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6721 char __user *optval, int __user *optlen) 6722 { 6723 struct sctp_sock *sp = sctp_sk(sk); 6724 struct sctp_association *asoc; 6725 u32 val = 0; 6726 6727 if (sctp_style(sk, TCP)) 6728 return -EOPNOTSUPP; 6729 6730 if (len < sizeof(u32)) 6731 return -EINVAL; 6732 6733 len = sizeof(u32); 6734 6735 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6736 val++; 6737 } 6738 6739 if (put_user(len, optlen)) 6740 return -EFAULT; 6741 if (copy_to_user(optval, &val, len)) 6742 return -EFAULT; 6743 6744 return 0; 6745 } 6746 6747 /* 6748 * 8.1.23 SCTP_AUTO_ASCONF 6749 * See the corresponding setsockopt entry as description 6750 */ 6751 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6752 char __user *optval, int __user *optlen) 6753 { 6754 int val = 0; 6755 6756 if (len < sizeof(int)) 6757 return -EINVAL; 6758 6759 len = sizeof(int); 6760 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6761 val = 1; 6762 if (put_user(len, optlen)) 6763 return -EFAULT; 6764 if (copy_to_user(optval, &val, len)) 6765 return -EFAULT; 6766 return 0; 6767 } 6768 6769 /* 6770 * 8.2.6. Get the Current Identifiers of Associations 6771 * (SCTP_GET_ASSOC_ID_LIST) 6772 * 6773 * This option gets the current list of SCTP association identifiers of 6774 * the SCTP associations handled by a one-to-many style socket. 6775 */ 6776 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6777 char __user *optval, int __user *optlen) 6778 { 6779 struct sctp_sock *sp = sctp_sk(sk); 6780 struct sctp_association *asoc; 6781 struct sctp_assoc_ids *ids; 6782 u32 num = 0; 6783 6784 if (sctp_style(sk, TCP)) 6785 return -EOPNOTSUPP; 6786 6787 if (len < sizeof(struct sctp_assoc_ids)) 6788 return -EINVAL; 6789 6790 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6791 num++; 6792 } 6793 6794 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6795 return -EINVAL; 6796 6797 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6798 6799 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6800 if (unlikely(!ids)) 6801 return -ENOMEM; 6802 6803 ids->gaids_number_of_ids = num; 6804 num = 0; 6805 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6806 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6807 } 6808 6809 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6810 kfree(ids); 6811 return -EFAULT; 6812 } 6813 6814 kfree(ids); 6815 return 0; 6816 } 6817 6818 /* 6819 * SCTP_PEER_ADDR_THLDS 6820 * 6821 * This option allows us to fetch the partially failed threshold for one or all 6822 * transports in an association. See Section 6.1 of: 6823 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6824 */ 6825 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6826 char __user *optval, 6827 int len, 6828 int __user *optlen) 6829 { 6830 struct sctp_paddrthlds val; 6831 struct sctp_transport *trans; 6832 struct sctp_association *asoc; 6833 6834 if (len < sizeof(struct sctp_paddrthlds)) 6835 return -EINVAL; 6836 len = sizeof(struct sctp_paddrthlds); 6837 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6838 return -EFAULT; 6839 6840 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6841 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6842 if (!asoc) 6843 return -ENOENT; 6844 6845 val.spt_pathpfthld = asoc->pf_retrans; 6846 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6847 } else { 6848 trans = sctp_addr_id2transport(sk, &val.spt_address, 6849 val.spt_assoc_id); 6850 if (!trans) 6851 return -ENOENT; 6852 6853 val.spt_pathmaxrxt = trans->pathmaxrxt; 6854 val.spt_pathpfthld = trans->pf_retrans; 6855 } 6856 6857 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6858 return -EFAULT; 6859 6860 return 0; 6861 } 6862 6863 /* 6864 * SCTP_GET_ASSOC_STATS 6865 * 6866 * This option retrieves local per endpoint statistics. It is modeled 6867 * after OpenSolaris' implementation 6868 */ 6869 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6870 char __user *optval, 6871 int __user *optlen) 6872 { 6873 struct sctp_assoc_stats sas; 6874 struct sctp_association *asoc = NULL; 6875 6876 /* User must provide at least the assoc id */ 6877 if (len < sizeof(sctp_assoc_t)) 6878 return -EINVAL; 6879 6880 /* Allow the struct to grow and fill in as much as possible */ 6881 len = min_t(size_t, len, sizeof(sas)); 6882 6883 if (copy_from_user(&sas, optval, len)) 6884 return -EFAULT; 6885 6886 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6887 if (!asoc) 6888 return -EINVAL; 6889 6890 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6891 sas.sas_gapcnt = asoc->stats.gapcnt; 6892 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6893 sas.sas_osacks = asoc->stats.osacks; 6894 sas.sas_isacks = asoc->stats.isacks; 6895 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6896 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6897 sas.sas_oodchunks = asoc->stats.oodchunks; 6898 sas.sas_iodchunks = asoc->stats.iodchunks; 6899 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6900 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6901 sas.sas_idupchunks = asoc->stats.idupchunks; 6902 sas.sas_opackets = asoc->stats.opackets; 6903 sas.sas_ipackets = asoc->stats.ipackets; 6904 6905 /* New high max rto observed, will return 0 if not a single 6906 * RTO update took place. obs_rto_ipaddr will be bogus 6907 * in such a case 6908 */ 6909 sas.sas_maxrto = asoc->stats.max_obs_rto; 6910 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6911 sizeof(struct sockaddr_storage)); 6912 6913 /* Mark beginning of a new observation period */ 6914 asoc->stats.max_obs_rto = asoc->rto_min; 6915 6916 if (put_user(len, optlen)) 6917 return -EFAULT; 6918 6919 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6920 6921 if (copy_to_user(optval, &sas, len)) 6922 return -EFAULT; 6923 6924 return 0; 6925 } 6926 6927 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6928 char __user *optval, 6929 int __user *optlen) 6930 { 6931 int val = 0; 6932 6933 if (len < sizeof(int)) 6934 return -EINVAL; 6935 6936 len = sizeof(int); 6937 if (sctp_sk(sk)->recvrcvinfo) 6938 val = 1; 6939 if (put_user(len, optlen)) 6940 return -EFAULT; 6941 if (copy_to_user(optval, &val, len)) 6942 return -EFAULT; 6943 6944 return 0; 6945 } 6946 6947 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6948 char __user *optval, 6949 int __user *optlen) 6950 { 6951 int val = 0; 6952 6953 if (len < sizeof(int)) 6954 return -EINVAL; 6955 6956 len = sizeof(int); 6957 if (sctp_sk(sk)->recvnxtinfo) 6958 val = 1; 6959 if (put_user(len, optlen)) 6960 return -EFAULT; 6961 if (copy_to_user(optval, &val, len)) 6962 return -EFAULT; 6963 6964 return 0; 6965 } 6966 6967 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6968 char __user *optval, 6969 int __user *optlen) 6970 { 6971 struct sctp_assoc_value params; 6972 struct sctp_association *asoc; 6973 int retval = -EFAULT; 6974 6975 if (len < sizeof(params)) { 6976 retval = -EINVAL; 6977 goto out; 6978 } 6979 6980 len = sizeof(params); 6981 if (copy_from_user(¶ms, optval, len)) 6982 goto out; 6983 6984 asoc = sctp_id2assoc(sk, params.assoc_id); 6985 if (asoc) { 6986 params.assoc_value = asoc->prsctp_enable; 6987 } else if (!params.assoc_id) { 6988 struct sctp_sock *sp = sctp_sk(sk); 6989 6990 params.assoc_value = sp->ep->prsctp_enable; 6991 } else { 6992 retval = -EINVAL; 6993 goto out; 6994 } 6995 6996 if (put_user(len, optlen)) 6997 goto out; 6998 6999 if (copy_to_user(optval, ¶ms, len)) 7000 goto out; 7001 7002 retval = 0; 7003 7004 out: 7005 return retval; 7006 } 7007 7008 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7009 char __user *optval, 7010 int __user *optlen) 7011 { 7012 struct sctp_default_prinfo info; 7013 struct sctp_association *asoc; 7014 int retval = -EFAULT; 7015 7016 if (len < sizeof(info)) { 7017 retval = -EINVAL; 7018 goto out; 7019 } 7020 7021 len = sizeof(info); 7022 if (copy_from_user(&info, optval, len)) 7023 goto out; 7024 7025 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7026 if (asoc) { 7027 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7028 info.pr_value = asoc->default_timetolive; 7029 } else if (!info.pr_assoc_id) { 7030 struct sctp_sock *sp = sctp_sk(sk); 7031 7032 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7033 info.pr_value = sp->default_timetolive; 7034 } else { 7035 retval = -EINVAL; 7036 goto out; 7037 } 7038 7039 if (put_user(len, optlen)) 7040 goto out; 7041 7042 if (copy_to_user(optval, &info, len)) 7043 goto out; 7044 7045 retval = 0; 7046 7047 out: 7048 return retval; 7049 } 7050 7051 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7052 char __user *optval, 7053 int __user *optlen) 7054 { 7055 struct sctp_prstatus params; 7056 struct sctp_association *asoc; 7057 int policy; 7058 int retval = -EINVAL; 7059 7060 if (len < sizeof(params)) 7061 goto out; 7062 7063 len = sizeof(params); 7064 if (copy_from_user(¶ms, optval, len)) { 7065 retval = -EFAULT; 7066 goto out; 7067 } 7068 7069 policy = params.sprstat_policy; 7070 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7071 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7072 goto out; 7073 7074 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7075 if (!asoc) 7076 goto out; 7077 7078 if (policy == SCTP_PR_SCTP_ALL) { 7079 params.sprstat_abandoned_unsent = 0; 7080 params.sprstat_abandoned_sent = 0; 7081 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7082 params.sprstat_abandoned_unsent += 7083 asoc->abandoned_unsent[policy]; 7084 params.sprstat_abandoned_sent += 7085 asoc->abandoned_sent[policy]; 7086 } 7087 } else { 7088 params.sprstat_abandoned_unsent = 7089 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7090 params.sprstat_abandoned_sent = 7091 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7092 } 7093 7094 if (put_user(len, optlen)) { 7095 retval = -EFAULT; 7096 goto out; 7097 } 7098 7099 if (copy_to_user(optval, ¶ms, len)) { 7100 retval = -EFAULT; 7101 goto out; 7102 } 7103 7104 retval = 0; 7105 7106 out: 7107 return retval; 7108 } 7109 7110 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7111 char __user *optval, 7112 int __user *optlen) 7113 { 7114 struct sctp_stream_out_ext *streamoute; 7115 struct sctp_association *asoc; 7116 struct sctp_prstatus params; 7117 int retval = -EINVAL; 7118 int policy; 7119 7120 if (len < sizeof(params)) 7121 goto out; 7122 7123 len = sizeof(params); 7124 if (copy_from_user(¶ms, optval, len)) { 7125 retval = -EFAULT; 7126 goto out; 7127 } 7128 7129 policy = params.sprstat_policy; 7130 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7131 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7132 goto out; 7133 7134 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7135 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7136 goto out; 7137 7138 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7139 if (!streamoute) { 7140 /* Not allocated yet, means all stats are 0 */ 7141 params.sprstat_abandoned_unsent = 0; 7142 params.sprstat_abandoned_sent = 0; 7143 retval = 0; 7144 goto out; 7145 } 7146 7147 if (policy == SCTP_PR_SCTP_ALL) { 7148 params.sprstat_abandoned_unsent = 0; 7149 params.sprstat_abandoned_sent = 0; 7150 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7151 params.sprstat_abandoned_unsent += 7152 streamoute->abandoned_unsent[policy]; 7153 params.sprstat_abandoned_sent += 7154 streamoute->abandoned_sent[policy]; 7155 } 7156 } else { 7157 params.sprstat_abandoned_unsent = 7158 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7159 params.sprstat_abandoned_sent = 7160 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7161 } 7162 7163 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7164 retval = -EFAULT; 7165 goto out; 7166 } 7167 7168 retval = 0; 7169 7170 out: 7171 return retval; 7172 } 7173 7174 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7175 char __user *optval, 7176 int __user *optlen) 7177 { 7178 struct sctp_assoc_value params; 7179 struct sctp_association *asoc; 7180 int retval = -EFAULT; 7181 7182 if (len < sizeof(params)) { 7183 retval = -EINVAL; 7184 goto out; 7185 } 7186 7187 len = sizeof(params); 7188 if (copy_from_user(¶ms, optval, len)) 7189 goto out; 7190 7191 asoc = sctp_id2assoc(sk, params.assoc_id); 7192 if (asoc) { 7193 params.assoc_value = asoc->reconf_enable; 7194 } else if (!params.assoc_id) { 7195 struct sctp_sock *sp = sctp_sk(sk); 7196 7197 params.assoc_value = sp->ep->reconf_enable; 7198 } else { 7199 retval = -EINVAL; 7200 goto out; 7201 } 7202 7203 if (put_user(len, optlen)) 7204 goto out; 7205 7206 if (copy_to_user(optval, ¶ms, len)) 7207 goto out; 7208 7209 retval = 0; 7210 7211 out: 7212 return retval; 7213 } 7214 7215 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7216 char __user *optval, 7217 int __user *optlen) 7218 { 7219 struct sctp_assoc_value params; 7220 struct sctp_association *asoc; 7221 int retval = -EFAULT; 7222 7223 if (len < sizeof(params)) { 7224 retval = -EINVAL; 7225 goto out; 7226 } 7227 7228 len = sizeof(params); 7229 if (copy_from_user(¶ms, optval, len)) 7230 goto out; 7231 7232 asoc = sctp_id2assoc(sk, params.assoc_id); 7233 if (asoc) { 7234 params.assoc_value = asoc->strreset_enable; 7235 } else if (!params.assoc_id) { 7236 struct sctp_sock *sp = sctp_sk(sk); 7237 7238 params.assoc_value = sp->ep->strreset_enable; 7239 } else { 7240 retval = -EINVAL; 7241 goto out; 7242 } 7243 7244 if (put_user(len, optlen)) 7245 goto out; 7246 7247 if (copy_to_user(optval, ¶ms, len)) 7248 goto out; 7249 7250 retval = 0; 7251 7252 out: 7253 return retval; 7254 } 7255 7256 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7257 char __user *optval, 7258 int __user *optlen) 7259 { 7260 struct sctp_assoc_value params; 7261 struct sctp_association *asoc; 7262 int retval = -EFAULT; 7263 7264 if (len < sizeof(params)) { 7265 retval = -EINVAL; 7266 goto out; 7267 } 7268 7269 len = sizeof(params); 7270 if (copy_from_user(¶ms, optval, len)) 7271 goto out; 7272 7273 asoc = sctp_id2assoc(sk, params.assoc_id); 7274 if (!asoc) { 7275 retval = -EINVAL; 7276 goto out; 7277 } 7278 7279 params.assoc_value = sctp_sched_get_sched(asoc); 7280 7281 if (put_user(len, optlen)) 7282 goto out; 7283 7284 if (copy_to_user(optval, ¶ms, len)) 7285 goto out; 7286 7287 retval = 0; 7288 7289 out: 7290 return retval; 7291 } 7292 7293 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7294 char __user *optval, 7295 int __user *optlen) 7296 { 7297 struct sctp_stream_value params; 7298 struct sctp_association *asoc; 7299 int retval = -EFAULT; 7300 7301 if (len < sizeof(params)) { 7302 retval = -EINVAL; 7303 goto out; 7304 } 7305 7306 len = sizeof(params); 7307 if (copy_from_user(¶ms, optval, len)) 7308 goto out; 7309 7310 asoc = sctp_id2assoc(sk, params.assoc_id); 7311 if (!asoc) { 7312 retval = -EINVAL; 7313 goto out; 7314 } 7315 7316 retval = sctp_sched_get_value(asoc, params.stream_id, 7317 ¶ms.stream_value); 7318 if (retval) 7319 goto out; 7320 7321 if (put_user(len, optlen)) { 7322 retval = -EFAULT; 7323 goto out; 7324 } 7325 7326 if (copy_to_user(optval, ¶ms, len)) { 7327 retval = -EFAULT; 7328 goto out; 7329 } 7330 7331 out: 7332 return retval; 7333 } 7334 7335 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7336 char __user *optval, 7337 int __user *optlen) 7338 { 7339 struct sctp_assoc_value params; 7340 struct sctp_association *asoc; 7341 int retval = -EFAULT; 7342 7343 if (len < sizeof(params)) { 7344 retval = -EINVAL; 7345 goto out; 7346 } 7347 7348 len = sizeof(params); 7349 if (copy_from_user(¶ms, optval, len)) 7350 goto out; 7351 7352 asoc = sctp_id2assoc(sk, params.assoc_id); 7353 if (asoc) { 7354 params.assoc_value = asoc->intl_enable; 7355 } else if (!params.assoc_id) { 7356 struct sctp_sock *sp = sctp_sk(sk); 7357 7358 params.assoc_value = sp->strm_interleave; 7359 } else { 7360 retval = -EINVAL; 7361 goto out; 7362 } 7363 7364 if (put_user(len, optlen)) 7365 goto out; 7366 7367 if (copy_to_user(optval, ¶ms, len)) 7368 goto out; 7369 7370 retval = 0; 7371 7372 out: 7373 return retval; 7374 } 7375 7376 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7377 char __user *optval, 7378 int __user *optlen) 7379 { 7380 int val; 7381 7382 if (len < sizeof(int)) 7383 return -EINVAL; 7384 7385 len = sizeof(int); 7386 val = sctp_sk(sk)->reuse; 7387 if (put_user(len, optlen)) 7388 return -EFAULT; 7389 7390 if (copy_to_user(optval, &val, len)) 7391 return -EFAULT; 7392 7393 return 0; 7394 } 7395 7396 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7397 char __user *optval, int __user *optlen) 7398 { 7399 int retval = 0; 7400 int len; 7401 7402 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7403 7404 /* I can hardly begin to describe how wrong this is. This is 7405 * so broken as to be worse than useless. The API draft 7406 * REALLY is NOT helpful here... I am not convinced that the 7407 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7408 * are at all well-founded. 7409 */ 7410 if (level != SOL_SCTP) { 7411 struct sctp_af *af = sctp_sk(sk)->pf->af; 7412 7413 retval = af->getsockopt(sk, level, optname, optval, optlen); 7414 return retval; 7415 } 7416 7417 if (get_user(len, optlen)) 7418 return -EFAULT; 7419 7420 if (len < 0) 7421 return -EINVAL; 7422 7423 lock_sock(sk); 7424 7425 switch (optname) { 7426 case SCTP_STATUS: 7427 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7428 break; 7429 case SCTP_DISABLE_FRAGMENTS: 7430 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7431 optlen); 7432 break; 7433 case SCTP_EVENTS: 7434 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7435 break; 7436 case SCTP_AUTOCLOSE: 7437 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7438 break; 7439 case SCTP_SOCKOPT_PEELOFF: 7440 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7441 break; 7442 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7443 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7444 break; 7445 case SCTP_PEER_ADDR_PARAMS: 7446 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7447 optlen); 7448 break; 7449 case SCTP_DELAYED_SACK: 7450 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7451 optlen); 7452 break; 7453 case SCTP_INITMSG: 7454 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7455 break; 7456 case SCTP_GET_PEER_ADDRS: 7457 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7458 optlen); 7459 break; 7460 case SCTP_GET_LOCAL_ADDRS: 7461 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7462 optlen); 7463 break; 7464 case SCTP_SOCKOPT_CONNECTX3: 7465 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7466 break; 7467 case SCTP_DEFAULT_SEND_PARAM: 7468 retval = sctp_getsockopt_default_send_param(sk, len, 7469 optval, optlen); 7470 break; 7471 case SCTP_DEFAULT_SNDINFO: 7472 retval = sctp_getsockopt_default_sndinfo(sk, len, 7473 optval, optlen); 7474 break; 7475 case SCTP_PRIMARY_ADDR: 7476 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7477 break; 7478 case SCTP_NODELAY: 7479 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7480 break; 7481 case SCTP_RTOINFO: 7482 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7483 break; 7484 case SCTP_ASSOCINFO: 7485 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7486 break; 7487 case SCTP_I_WANT_MAPPED_V4_ADDR: 7488 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7489 break; 7490 case SCTP_MAXSEG: 7491 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7492 break; 7493 case SCTP_GET_PEER_ADDR_INFO: 7494 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7495 optlen); 7496 break; 7497 case SCTP_ADAPTATION_LAYER: 7498 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7499 optlen); 7500 break; 7501 case SCTP_CONTEXT: 7502 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7503 break; 7504 case SCTP_FRAGMENT_INTERLEAVE: 7505 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7506 optlen); 7507 break; 7508 case SCTP_PARTIAL_DELIVERY_POINT: 7509 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7510 optlen); 7511 break; 7512 case SCTP_MAX_BURST: 7513 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7514 break; 7515 case SCTP_AUTH_KEY: 7516 case SCTP_AUTH_CHUNK: 7517 case SCTP_AUTH_DELETE_KEY: 7518 case SCTP_AUTH_DEACTIVATE_KEY: 7519 retval = -EOPNOTSUPP; 7520 break; 7521 case SCTP_HMAC_IDENT: 7522 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7523 break; 7524 case SCTP_AUTH_ACTIVE_KEY: 7525 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7526 break; 7527 case SCTP_PEER_AUTH_CHUNKS: 7528 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7529 optlen); 7530 break; 7531 case SCTP_LOCAL_AUTH_CHUNKS: 7532 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7533 optlen); 7534 break; 7535 case SCTP_GET_ASSOC_NUMBER: 7536 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7537 break; 7538 case SCTP_GET_ASSOC_ID_LIST: 7539 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7540 break; 7541 case SCTP_AUTO_ASCONF: 7542 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7543 break; 7544 case SCTP_PEER_ADDR_THLDS: 7545 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7546 break; 7547 case SCTP_GET_ASSOC_STATS: 7548 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7549 break; 7550 case SCTP_RECVRCVINFO: 7551 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7552 break; 7553 case SCTP_RECVNXTINFO: 7554 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7555 break; 7556 case SCTP_PR_SUPPORTED: 7557 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7558 break; 7559 case SCTP_DEFAULT_PRINFO: 7560 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7561 optlen); 7562 break; 7563 case SCTP_PR_ASSOC_STATUS: 7564 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7565 optlen); 7566 break; 7567 case SCTP_PR_STREAM_STATUS: 7568 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7569 optlen); 7570 break; 7571 case SCTP_RECONFIG_SUPPORTED: 7572 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7573 optlen); 7574 break; 7575 case SCTP_ENABLE_STREAM_RESET: 7576 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7577 optlen); 7578 break; 7579 case SCTP_STREAM_SCHEDULER: 7580 retval = sctp_getsockopt_scheduler(sk, len, optval, 7581 optlen); 7582 break; 7583 case SCTP_STREAM_SCHEDULER_VALUE: 7584 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7585 optlen); 7586 break; 7587 case SCTP_INTERLEAVING_SUPPORTED: 7588 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7589 optlen); 7590 break; 7591 case SCTP_REUSE_PORT: 7592 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7593 break; 7594 default: 7595 retval = -ENOPROTOOPT; 7596 break; 7597 } 7598 7599 release_sock(sk); 7600 return retval; 7601 } 7602 7603 static int sctp_hash(struct sock *sk) 7604 { 7605 /* STUB */ 7606 return 0; 7607 } 7608 7609 static void sctp_unhash(struct sock *sk) 7610 { 7611 /* STUB */ 7612 } 7613 7614 /* Check if port is acceptable. Possibly find first available port. 7615 * 7616 * The port hash table (contained in the 'global' SCTP protocol storage 7617 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7618 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7619 * list (the list number is the port number hashed out, so as you 7620 * would expect from a hash function, all the ports in a given list have 7621 * such a number that hashes out to the same list number; you were 7622 * expecting that, right?); so each list has a set of ports, with a 7623 * link to the socket (struct sock) that uses it, the port number and 7624 * a fastreuse flag (FIXME: NPI ipg). 7625 */ 7626 static struct sctp_bind_bucket *sctp_bucket_create( 7627 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7628 7629 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7630 { 7631 bool reuse = (sk->sk_reuse || sctp_sk(sk)->reuse); 7632 struct sctp_bind_hashbucket *head; /* hash list */ 7633 struct sctp_bind_bucket *pp; 7634 unsigned short snum; 7635 int ret; 7636 7637 snum = ntohs(addr->v4.sin_port); 7638 7639 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7640 7641 local_bh_disable(); 7642 7643 if (snum == 0) { 7644 /* Search for an available port. */ 7645 int low, high, remaining, index; 7646 unsigned int rover; 7647 struct net *net = sock_net(sk); 7648 7649 inet_get_local_port_range(net, &low, &high); 7650 remaining = (high - low) + 1; 7651 rover = prandom_u32() % remaining + low; 7652 7653 do { 7654 rover++; 7655 if ((rover < low) || (rover > high)) 7656 rover = low; 7657 if (inet_is_local_reserved_port(net, rover)) 7658 continue; 7659 index = sctp_phashfn(sock_net(sk), rover); 7660 head = &sctp_port_hashtable[index]; 7661 spin_lock(&head->lock); 7662 sctp_for_each_hentry(pp, &head->chain) 7663 if ((pp->port == rover) && 7664 net_eq(sock_net(sk), pp->net)) 7665 goto next; 7666 break; 7667 next: 7668 spin_unlock(&head->lock); 7669 } while (--remaining > 0); 7670 7671 /* Exhausted local port range during search? */ 7672 ret = 1; 7673 if (remaining <= 0) 7674 goto fail; 7675 7676 /* OK, here is the one we will use. HEAD (the port 7677 * hash table list entry) is non-NULL and we hold it's 7678 * mutex. 7679 */ 7680 snum = rover; 7681 } else { 7682 /* We are given an specific port number; we verify 7683 * that it is not being used. If it is used, we will 7684 * exahust the search in the hash list corresponding 7685 * to the port number (snum) - we detect that with the 7686 * port iterator, pp being NULL. 7687 */ 7688 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7689 spin_lock(&head->lock); 7690 sctp_for_each_hentry(pp, &head->chain) { 7691 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7692 goto pp_found; 7693 } 7694 } 7695 pp = NULL; 7696 goto pp_not_found; 7697 pp_found: 7698 if (!hlist_empty(&pp->owner)) { 7699 /* We had a port hash table hit - there is an 7700 * available port (pp != NULL) and it is being 7701 * used by other socket (pp->owner not empty); that other 7702 * socket is going to be sk2. 7703 */ 7704 struct sock *sk2; 7705 7706 pr_debug("%s: found a possible match\n", __func__); 7707 7708 if (pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING) 7709 goto success; 7710 7711 /* Run through the list of sockets bound to the port 7712 * (pp->port) [via the pointers bind_next and 7713 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7714 * we get the endpoint they describe and run through 7715 * the endpoint's list of IP (v4 or v6) addresses, 7716 * comparing each of the addresses with the address of 7717 * the socket sk. If we find a match, then that means 7718 * that this port/socket (sk) combination are already 7719 * in an endpoint. 7720 */ 7721 sk_for_each_bound(sk2, &pp->owner) { 7722 struct sctp_endpoint *ep2; 7723 ep2 = sctp_sk(sk2)->ep; 7724 7725 if (sk == sk2 || 7726 (reuse && (sk2->sk_reuse || sctp_sk(sk2)->reuse) && 7727 sk2->sk_state != SCTP_SS_LISTENING)) 7728 continue; 7729 7730 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7731 sctp_sk(sk2), sctp_sk(sk))) { 7732 ret = (long)sk2; 7733 goto fail_unlock; 7734 } 7735 } 7736 7737 pr_debug("%s: found a match\n", __func__); 7738 } 7739 pp_not_found: 7740 /* If there was a hash table miss, create a new port. */ 7741 ret = 1; 7742 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7743 goto fail_unlock; 7744 7745 /* In either case (hit or miss), make sure fastreuse is 1 only 7746 * if sk->sk_reuse is too (that is, if the caller requested 7747 * SO_REUSEADDR on this socket -sk-). 7748 */ 7749 if (hlist_empty(&pp->owner)) { 7750 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 7751 pp->fastreuse = 1; 7752 else 7753 pp->fastreuse = 0; 7754 } else if (pp->fastreuse && 7755 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 7756 pp->fastreuse = 0; 7757 7758 /* We are set, so fill up all the data in the hash table 7759 * entry, tie the socket list information with the rest of the 7760 * sockets FIXME: Blurry, NPI (ipg). 7761 */ 7762 success: 7763 if (!sctp_sk(sk)->bind_hash) { 7764 inet_sk(sk)->inet_num = snum; 7765 sk_add_bind_node(sk, &pp->owner); 7766 sctp_sk(sk)->bind_hash = pp; 7767 } 7768 ret = 0; 7769 7770 fail_unlock: 7771 spin_unlock(&head->lock); 7772 7773 fail: 7774 local_bh_enable(); 7775 return ret; 7776 } 7777 7778 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7779 * port is requested. 7780 */ 7781 static int sctp_get_port(struct sock *sk, unsigned short snum) 7782 { 7783 union sctp_addr addr; 7784 struct sctp_af *af = sctp_sk(sk)->pf->af; 7785 7786 /* Set up a dummy address struct from the sk. */ 7787 af->from_sk(&addr, sk); 7788 addr.v4.sin_port = htons(snum); 7789 7790 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7791 return !!sctp_get_port_local(sk, &addr); 7792 } 7793 7794 /* 7795 * Move a socket to LISTENING state. 7796 */ 7797 static int sctp_listen_start(struct sock *sk, int backlog) 7798 { 7799 struct sctp_sock *sp = sctp_sk(sk); 7800 struct sctp_endpoint *ep = sp->ep; 7801 struct crypto_shash *tfm = NULL; 7802 char alg[32]; 7803 7804 /* Allocate HMAC for generating cookie. */ 7805 if (!sp->hmac && sp->sctp_hmac_alg) { 7806 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7807 tfm = crypto_alloc_shash(alg, 0, 0); 7808 if (IS_ERR(tfm)) { 7809 net_info_ratelimited("failed to load transform for %s: %ld\n", 7810 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7811 return -ENOSYS; 7812 } 7813 sctp_sk(sk)->hmac = tfm; 7814 } 7815 7816 /* 7817 * If a bind() or sctp_bindx() is not called prior to a listen() 7818 * call that allows new associations to be accepted, the system 7819 * picks an ephemeral port and will choose an address set equivalent 7820 * to binding with a wildcard address. 7821 * 7822 * This is not currently spelled out in the SCTP sockets 7823 * extensions draft, but follows the practice as seen in TCP 7824 * sockets. 7825 * 7826 */ 7827 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7828 if (!ep->base.bind_addr.port) { 7829 if (sctp_autobind(sk)) 7830 return -EAGAIN; 7831 } else { 7832 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7833 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7834 return -EADDRINUSE; 7835 } 7836 } 7837 7838 sk->sk_max_ack_backlog = backlog; 7839 sctp_hash_endpoint(ep); 7840 return 0; 7841 } 7842 7843 /* 7844 * 4.1.3 / 5.1.3 listen() 7845 * 7846 * By default, new associations are not accepted for UDP style sockets. 7847 * An application uses listen() to mark a socket as being able to 7848 * accept new associations. 7849 * 7850 * On TCP style sockets, applications use listen() to ready the SCTP 7851 * endpoint for accepting inbound associations. 7852 * 7853 * On both types of endpoints a backlog of '0' disables listening. 7854 * 7855 * Move a socket to LISTENING state. 7856 */ 7857 int sctp_inet_listen(struct socket *sock, int backlog) 7858 { 7859 struct sock *sk = sock->sk; 7860 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7861 int err = -EINVAL; 7862 7863 if (unlikely(backlog < 0)) 7864 return err; 7865 7866 lock_sock(sk); 7867 7868 /* Peeled-off sockets are not allowed to listen(). */ 7869 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7870 goto out; 7871 7872 if (sock->state != SS_UNCONNECTED) 7873 goto out; 7874 7875 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7876 goto out; 7877 7878 /* If backlog is zero, disable listening. */ 7879 if (!backlog) { 7880 if (sctp_sstate(sk, CLOSED)) 7881 goto out; 7882 7883 err = 0; 7884 sctp_unhash_endpoint(ep); 7885 sk->sk_state = SCTP_SS_CLOSED; 7886 if (sk->sk_reuse || sctp_sk(sk)->reuse) 7887 sctp_sk(sk)->bind_hash->fastreuse = 1; 7888 goto out; 7889 } 7890 7891 /* If we are already listening, just update the backlog */ 7892 if (sctp_sstate(sk, LISTENING)) 7893 sk->sk_max_ack_backlog = backlog; 7894 else { 7895 err = sctp_listen_start(sk, backlog); 7896 if (err) 7897 goto out; 7898 } 7899 7900 err = 0; 7901 out: 7902 release_sock(sk); 7903 return err; 7904 } 7905 7906 /* 7907 * This function is done by modeling the current datagram_poll() and the 7908 * tcp_poll(). Note that, based on these implementations, we don't 7909 * lock the socket in this function, even though it seems that, 7910 * ideally, locking or some other mechanisms can be used to ensure 7911 * the integrity of the counters (sndbuf and wmem_alloc) used 7912 * in this place. We assume that we don't need locks either until proven 7913 * otherwise. 7914 * 7915 * Another thing to note is that we include the Async I/O support 7916 * here, again, by modeling the current TCP/UDP code. We don't have 7917 * a good way to test with it yet. 7918 */ 7919 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7920 { 7921 struct sock *sk = sock->sk; 7922 struct sctp_sock *sp = sctp_sk(sk); 7923 __poll_t mask; 7924 7925 poll_wait(file, sk_sleep(sk), wait); 7926 7927 sock_rps_record_flow(sk); 7928 7929 /* A TCP-style listening socket becomes readable when the accept queue 7930 * is not empty. 7931 */ 7932 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7933 return (!list_empty(&sp->ep->asocs)) ? 7934 (EPOLLIN | EPOLLRDNORM) : 0; 7935 7936 mask = 0; 7937 7938 /* Is there any exceptional events? */ 7939 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7940 mask |= EPOLLERR | 7941 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7942 if (sk->sk_shutdown & RCV_SHUTDOWN) 7943 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7944 if (sk->sk_shutdown == SHUTDOWN_MASK) 7945 mask |= EPOLLHUP; 7946 7947 /* Is it readable? Reconsider this code with TCP-style support. */ 7948 if (!skb_queue_empty(&sk->sk_receive_queue)) 7949 mask |= EPOLLIN | EPOLLRDNORM; 7950 7951 /* The association is either gone or not ready. */ 7952 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7953 return mask; 7954 7955 /* Is it writable? */ 7956 if (sctp_writeable(sk)) { 7957 mask |= EPOLLOUT | EPOLLWRNORM; 7958 } else { 7959 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7960 /* 7961 * Since the socket is not locked, the buffer 7962 * might be made available after the writeable check and 7963 * before the bit is set. This could cause a lost I/O 7964 * signal. tcp_poll() has a race breaker for this race 7965 * condition. Based on their implementation, we put 7966 * in the following code to cover it as well. 7967 */ 7968 if (sctp_writeable(sk)) 7969 mask |= EPOLLOUT | EPOLLWRNORM; 7970 } 7971 return mask; 7972 } 7973 7974 /******************************************************************** 7975 * 2nd Level Abstractions 7976 ********************************************************************/ 7977 7978 static struct sctp_bind_bucket *sctp_bucket_create( 7979 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7980 { 7981 struct sctp_bind_bucket *pp; 7982 7983 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7984 if (pp) { 7985 SCTP_DBG_OBJCNT_INC(bind_bucket); 7986 pp->port = snum; 7987 pp->fastreuse = 0; 7988 INIT_HLIST_HEAD(&pp->owner); 7989 pp->net = net; 7990 hlist_add_head(&pp->node, &head->chain); 7991 } 7992 return pp; 7993 } 7994 7995 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7996 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7997 { 7998 if (pp && hlist_empty(&pp->owner)) { 7999 __hlist_del(&pp->node); 8000 kmem_cache_free(sctp_bucket_cachep, pp); 8001 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8002 } 8003 } 8004 8005 /* Release this socket's reference to a local port. */ 8006 static inline void __sctp_put_port(struct sock *sk) 8007 { 8008 struct sctp_bind_hashbucket *head = 8009 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8010 inet_sk(sk)->inet_num)]; 8011 struct sctp_bind_bucket *pp; 8012 8013 spin_lock(&head->lock); 8014 pp = sctp_sk(sk)->bind_hash; 8015 __sk_del_bind_node(sk); 8016 sctp_sk(sk)->bind_hash = NULL; 8017 inet_sk(sk)->inet_num = 0; 8018 sctp_bucket_destroy(pp); 8019 spin_unlock(&head->lock); 8020 } 8021 8022 void sctp_put_port(struct sock *sk) 8023 { 8024 local_bh_disable(); 8025 __sctp_put_port(sk); 8026 local_bh_enable(); 8027 } 8028 8029 /* 8030 * The system picks an ephemeral port and choose an address set equivalent 8031 * to binding with a wildcard address. 8032 * One of those addresses will be the primary address for the association. 8033 * This automatically enables the multihoming capability of SCTP. 8034 */ 8035 static int sctp_autobind(struct sock *sk) 8036 { 8037 union sctp_addr autoaddr; 8038 struct sctp_af *af; 8039 __be16 port; 8040 8041 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8042 af = sctp_sk(sk)->pf->af; 8043 8044 port = htons(inet_sk(sk)->inet_num); 8045 af->inaddr_any(&autoaddr, port); 8046 8047 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8048 } 8049 8050 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8051 * 8052 * From RFC 2292 8053 * 4.2 The cmsghdr Structure * 8054 * 8055 * When ancillary data is sent or received, any number of ancillary data 8056 * objects can be specified by the msg_control and msg_controllen members of 8057 * the msghdr structure, because each object is preceded by 8058 * a cmsghdr structure defining the object's length (the cmsg_len member). 8059 * Historically Berkeley-derived implementations have passed only one object 8060 * at a time, but this API allows multiple objects to be 8061 * passed in a single call to sendmsg() or recvmsg(). The following example 8062 * shows two ancillary data objects in a control buffer. 8063 * 8064 * |<--------------------------- msg_controllen -------------------------->| 8065 * | | 8066 * 8067 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8068 * 8069 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8070 * | | | 8071 * 8072 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8073 * 8074 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8075 * | | | | | 8076 * 8077 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8078 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8079 * 8080 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8081 * 8082 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8083 * ^ 8084 * | 8085 * 8086 * msg_control 8087 * points here 8088 */ 8089 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8090 { 8091 struct msghdr *my_msg = (struct msghdr *)msg; 8092 struct cmsghdr *cmsg; 8093 8094 for_each_cmsghdr(cmsg, my_msg) { 8095 if (!CMSG_OK(my_msg, cmsg)) 8096 return -EINVAL; 8097 8098 /* Should we parse this header or ignore? */ 8099 if (cmsg->cmsg_level != IPPROTO_SCTP) 8100 continue; 8101 8102 /* Strictly check lengths following example in SCM code. */ 8103 switch (cmsg->cmsg_type) { 8104 case SCTP_INIT: 8105 /* SCTP Socket API Extension 8106 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8107 * 8108 * This cmsghdr structure provides information for 8109 * initializing new SCTP associations with sendmsg(). 8110 * The SCTP_INITMSG socket option uses this same data 8111 * structure. This structure is not used for 8112 * recvmsg(). 8113 * 8114 * cmsg_level cmsg_type cmsg_data[] 8115 * ------------ ------------ ---------------------- 8116 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8117 */ 8118 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8119 return -EINVAL; 8120 8121 cmsgs->init = CMSG_DATA(cmsg); 8122 break; 8123 8124 case SCTP_SNDRCV: 8125 /* SCTP Socket API Extension 8126 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8127 * 8128 * This cmsghdr structure specifies SCTP options for 8129 * sendmsg() and describes SCTP header information 8130 * about a received message through recvmsg(). 8131 * 8132 * cmsg_level cmsg_type cmsg_data[] 8133 * ------------ ------------ ---------------------- 8134 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8135 */ 8136 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8137 return -EINVAL; 8138 8139 cmsgs->srinfo = CMSG_DATA(cmsg); 8140 8141 if (cmsgs->srinfo->sinfo_flags & 8142 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8143 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8144 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8145 return -EINVAL; 8146 break; 8147 8148 case SCTP_SNDINFO: 8149 /* SCTP Socket API Extension 8150 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8151 * 8152 * This cmsghdr structure specifies SCTP options for 8153 * sendmsg(). This structure and SCTP_RCVINFO replaces 8154 * SCTP_SNDRCV which has been deprecated. 8155 * 8156 * cmsg_level cmsg_type cmsg_data[] 8157 * ------------ ------------ --------------------- 8158 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8159 */ 8160 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8161 return -EINVAL; 8162 8163 cmsgs->sinfo = CMSG_DATA(cmsg); 8164 8165 if (cmsgs->sinfo->snd_flags & 8166 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8167 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8168 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8169 return -EINVAL; 8170 break; 8171 case SCTP_PRINFO: 8172 /* SCTP Socket API Extension 8173 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8174 * 8175 * This cmsghdr structure specifies SCTP options for sendmsg(). 8176 * 8177 * cmsg_level cmsg_type cmsg_data[] 8178 * ------------ ------------ --------------------- 8179 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8180 */ 8181 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8182 return -EINVAL; 8183 8184 cmsgs->prinfo = CMSG_DATA(cmsg); 8185 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8186 return -EINVAL; 8187 8188 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8189 cmsgs->prinfo->pr_value = 0; 8190 break; 8191 case SCTP_AUTHINFO: 8192 /* SCTP Socket API Extension 8193 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8194 * 8195 * This cmsghdr structure specifies SCTP options for sendmsg(). 8196 * 8197 * cmsg_level cmsg_type cmsg_data[] 8198 * ------------ ------------ --------------------- 8199 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8200 */ 8201 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8202 return -EINVAL; 8203 8204 cmsgs->authinfo = CMSG_DATA(cmsg); 8205 break; 8206 case SCTP_DSTADDRV4: 8207 case SCTP_DSTADDRV6: 8208 /* SCTP Socket API Extension 8209 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8210 * 8211 * This cmsghdr structure specifies SCTP options for sendmsg(). 8212 * 8213 * cmsg_level cmsg_type cmsg_data[] 8214 * ------------ ------------ --------------------- 8215 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8216 * ------------ ------------ --------------------- 8217 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8218 */ 8219 cmsgs->addrs_msg = my_msg; 8220 break; 8221 default: 8222 return -EINVAL; 8223 } 8224 } 8225 8226 return 0; 8227 } 8228 8229 /* 8230 * Wait for a packet.. 8231 * Note: This function is the same function as in core/datagram.c 8232 * with a few modifications to make lksctp work. 8233 */ 8234 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8235 { 8236 int error; 8237 DEFINE_WAIT(wait); 8238 8239 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8240 8241 /* Socket errors? */ 8242 error = sock_error(sk); 8243 if (error) 8244 goto out; 8245 8246 if (!skb_queue_empty(&sk->sk_receive_queue)) 8247 goto ready; 8248 8249 /* Socket shut down? */ 8250 if (sk->sk_shutdown & RCV_SHUTDOWN) 8251 goto out; 8252 8253 /* Sequenced packets can come disconnected. If so we report the 8254 * problem. 8255 */ 8256 error = -ENOTCONN; 8257 8258 /* Is there a good reason to think that we may receive some data? */ 8259 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8260 goto out; 8261 8262 /* Handle signals. */ 8263 if (signal_pending(current)) 8264 goto interrupted; 8265 8266 /* Let another process have a go. Since we are going to sleep 8267 * anyway. Note: This may cause odd behaviors if the message 8268 * does not fit in the user's buffer, but this seems to be the 8269 * only way to honor MSG_DONTWAIT realistically. 8270 */ 8271 release_sock(sk); 8272 *timeo_p = schedule_timeout(*timeo_p); 8273 lock_sock(sk); 8274 8275 ready: 8276 finish_wait(sk_sleep(sk), &wait); 8277 return 0; 8278 8279 interrupted: 8280 error = sock_intr_errno(*timeo_p); 8281 8282 out: 8283 finish_wait(sk_sleep(sk), &wait); 8284 *err = error; 8285 return error; 8286 } 8287 8288 /* Receive a datagram. 8289 * Note: This is pretty much the same routine as in core/datagram.c 8290 * with a few changes to make lksctp work. 8291 */ 8292 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8293 int noblock, int *err) 8294 { 8295 int error; 8296 struct sk_buff *skb; 8297 long timeo; 8298 8299 timeo = sock_rcvtimeo(sk, noblock); 8300 8301 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8302 MAX_SCHEDULE_TIMEOUT); 8303 8304 do { 8305 /* Again only user level code calls this function, 8306 * so nothing interrupt level 8307 * will suddenly eat the receive_queue. 8308 * 8309 * Look at current nfs client by the way... 8310 * However, this function was correct in any case. 8) 8311 */ 8312 if (flags & MSG_PEEK) { 8313 skb = skb_peek(&sk->sk_receive_queue); 8314 if (skb) 8315 refcount_inc(&skb->users); 8316 } else { 8317 skb = __skb_dequeue(&sk->sk_receive_queue); 8318 } 8319 8320 if (skb) 8321 return skb; 8322 8323 /* Caller is allowed not to check sk->sk_err before calling. */ 8324 error = sock_error(sk); 8325 if (error) 8326 goto no_packet; 8327 8328 if (sk->sk_shutdown & RCV_SHUTDOWN) 8329 break; 8330 8331 if (sk_can_busy_loop(sk)) { 8332 sk_busy_loop(sk, noblock); 8333 8334 if (!skb_queue_empty(&sk->sk_receive_queue)) 8335 continue; 8336 } 8337 8338 /* User doesn't want to wait. */ 8339 error = -EAGAIN; 8340 if (!timeo) 8341 goto no_packet; 8342 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8343 8344 return NULL; 8345 8346 no_packet: 8347 *err = error; 8348 return NULL; 8349 } 8350 8351 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8352 static void __sctp_write_space(struct sctp_association *asoc) 8353 { 8354 struct sock *sk = asoc->base.sk; 8355 8356 if (sctp_wspace(asoc) <= 0) 8357 return; 8358 8359 if (waitqueue_active(&asoc->wait)) 8360 wake_up_interruptible(&asoc->wait); 8361 8362 if (sctp_writeable(sk)) { 8363 struct socket_wq *wq; 8364 8365 rcu_read_lock(); 8366 wq = rcu_dereference(sk->sk_wq); 8367 if (wq) { 8368 if (waitqueue_active(&wq->wait)) 8369 wake_up_interruptible(&wq->wait); 8370 8371 /* Note that we try to include the Async I/O support 8372 * here by modeling from the current TCP/UDP code. 8373 * We have not tested with it yet. 8374 */ 8375 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8376 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8377 } 8378 rcu_read_unlock(); 8379 } 8380 } 8381 8382 static void sctp_wake_up_waiters(struct sock *sk, 8383 struct sctp_association *asoc) 8384 { 8385 struct sctp_association *tmp = asoc; 8386 8387 /* We do accounting for the sndbuf space per association, 8388 * so we only need to wake our own association. 8389 */ 8390 if (asoc->ep->sndbuf_policy) 8391 return __sctp_write_space(asoc); 8392 8393 /* If association goes down and is just flushing its 8394 * outq, then just normally notify others. 8395 */ 8396 if (asoc->base.dead) 8397 return sctp_write_space(sk); 8398 8399 /* Accounting for the sndbuf space is per socket, so we 8400 * need to wake up others, try to be fair and in case of 8401 * other associations, let them have a go first instead 8402 * of just doing a sctp_write_space() call. 8403 * 8404 * Note that we reach sctp_wake_up_waiters() only when 8405 * associations free up queued chunks, thus we are under 8406 * lock and the list of associations on a socket is 8407 * guaranteed not to change. 8408 */ 8409 for (tmp = list_next_entry(tmp, asocs); 1; 8410 tmp = list_next_entry(tmp, asocs)) { 8411 /* Manually skip the head element. */ 8412 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8413 continue; 8414 /* Wake up association. */ 8415 __sctp_write_space(tmp); 8416 /* We've reached the end. */ 8417 if (tmp == asoc) 8418 break; 8419 } 8420 } 8421 8422 /* Do accounting for the sndbuf space. 8423 * Decrement the used sndbuf space of the corresponding association by the 8424 * data size which was just transmitted(freed). 8425 */ 8426 static void sctp_wfree(struct sk_buff *skb) 8427 { 8428 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8429 struct sctp_association *asoc = chunk->asoc; 8430 struct sock *sk = asoc->base.sk; 8431 8432 sk_mem_uncharge(sk, skb->truesize); 8433 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8434 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8435 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8436 &sk->sk_wmem_alloc)); 8437 8438 if (chunk->shkey) { 8439 struct sctp_shared_key *shkey = chunk->shkey; 8440 8441 /* refcnt == 2 and !list_empty mean after this release, it's 8442 * not being used anywhere, and it's time to notify userland 8443 * that this shkey can be freed if it's been deactivated. 8444 */ 8445 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8446 refcount_read(&shkey->refcnt) == 2) { 8447 struct sctp_ulpevent *ev; 8448 8449 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8450 SCTP_AUTH_FREE_KEY, 8451 GFP_KERNEL); 8452 if (ev) 8453 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8454 } 8455 sctp_auth_shkey_release(chunk->shkey); 8456 } 8457 8458 sock_wfree(skb); 8459 sctp_wake_up_waiters(sk, asoc); 8460 8461 sctp_association_put(asoc); 8462 } 8463 8464 /* Do accounting for the receive space on the socket. 8465 * Accounting for the association is done in ulpevent.c 8466 * We set this as a destructor for the cloned data skbs so that 8467 * accounting is done at the correct time. 8468 */ 8469 void sctp_sock_rfree(struct sk_buff *skb) 8470 { 8471 struct sock *sk = skb->sk; 8472 struct sctp_ulpevent *event = sctp_skb2event(skb); 8473 8474 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8475 8476 /* 8477 * Mimic the behavior of sock_rfree 8478 */ 8479 sk_mem_uncharge(sk, event->rmem_len); 8480 } 8481 8482 8483 /* Helper function to wait for space in the sndbuf. */ 8484 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8485 size_t msg_len) 8486 { 8487 struct sock *sk = asoc->base.sk; 8488 long current_timeo = *timeo_p; 8489 DEFINE_WAIT(wait); 8490 int err = 0; 8491 8492 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8493 *timeo_p, msg_len); 8494 8495 /* Increment the association's refcnt. */ 8496 sctp_association_hold(asoc); 8497 8498 /* Wait on the association specific sndbuf space. */ 8499 for (;;) { 8500 prepare_to_wait_exclusive(&asoc->wait, &wait, 8501 TASK_INTERRUPTIBLE); 8502 if (asoc->base.dead) 8503 goto do_dead; 8504 if (!*timeo_p) 8505 goto do_nonblock; 8506 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8507 goto do_error; 8508 if (signal_pending(current)) 8509 goto do_interrupted; 8510 if ((int)msg_len <= sctp_wspace(asoc)) 8511 break; 8512 8513 /* Let another process have a go. Since we are going 8514 * to sleep anyway. 8515 */ 8516 release_sock(sk); 8517 current_timeo = schedule_timeout(current_timeo); 8518 lock_sock(sk); 8519 if (sk != asoc->base.sk) 8520 goto do_error; 8521 8522 *timeo_p = current_timeo; 8523 } 8524 8525 out: 8526 finish_wait(&asoc->wait, &wait); 8527 8528 /* Release the association's refcnt. */ 8529 sctp_association_put(asoc); 8530 8531 return err; 8532 8533 do_dead: 8534 err = -ESRCH; 8535 goto out; 8536 8537 do_error: 8538 err = -EPIPE; 8539 goto out; 8540 8541 do_interrupted: 8542 err = sock_intr_errno(*timeo_p); 8543 goto out; 8544 8545 do_nonblock: 8546 err = -EAGAIN; 8547 goto out; 8548 } 8549 8550 void sctp_data_ready(struct sock *sk) 8551 { 8552 struct socket_wq *wq; 8553 8554 rcu_read_lock(); 8555 wq = rcu_dereference(sk->sk_wq); 8556 if (skwq_has_sleeper(wq)) 8557 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8558 EPOLLRDNORM | EPOLLRDBAND); 8559 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8560 rcu_read_unlock(); 8561 } 8562 8563 /* If socket sndbuf has changed, wake up all per association waiters. */ 8564 void sctp_write_space(struct sock *sk) 8565 { 8566 struct sctp_association *asoc; 8567 8568 /* Wake up the tasks in each wait queue. */ 8569 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8570 __sctp_write_space(asoc); 8571 } 8572 } 8573 8574 /* Is there any sndbuf space available on the socket? 8575 * 8576 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8577 * associations on the same socket. For a UDP-style socket with 8578 * multiple associations, it is possible for it to be "unwriteable" 8579 * prematurely. I assume that this is acceptable because 8580 * a premature "unwriteable" is better than an accidental "writeable" which 8581 * would cause an unwanted block under certain circumstances. For the 1-1 8582 * UDP-style sockets or TCP-style sockets, this code should work. 8583 * - Daisy 8584 */ 8585 static bool sctp_writeable(struct sock *sk) 8586 { 8587 return sk->sk_sndbuf > sk->sk_wmem_queued; 8588 } 8589 8590 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8591 * returns immediately with EINPROGRESS. 8592 */ 8593 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8594 { 8595 struct sock *sk = asoc->base.sk; 8596 int err = 0; 8597 long current_timeo = *timeo_p; 8598 DEFINE_WAIT(wait); 8599 8600 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8601 8602 /* Increment the association's refcnt. */ 8603 sctp_association_hold(asoc); 8604 8605 for (;;) { 8606 prepare_to_wait_exclusive(&asoc->wait, &wait, 8607 TASK_INTERRUPTIBLE); 8608 if (!*timeo_p) 8609 goto do_nonblock; 8610 if (sk->sk_shutdown & RCV_SHUTDOWN) 8611 break; 8612 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8613 asoc->base.dead) 8614 goto do_error; 8615 if (signal_pending(current)) 8616 goto do_interrupted; 8617 8618 if (sctp_state(asoc, ESTABLISHED)) 8619 break; 8620 8621 /* Let another process have a go. Since we are going 8622 * to sleep anyway. 8623 */ 8624 release_sock(sk); 8625 current_timeo = schedule_timeout(current_timeo); 8626 lock_sock(sk); 8627 8628 *timeo_p = current_timeo; 8629 } 8630 8631 out: 8632 finish_wait(&asoc->wait, &wait); 8633 8634 /* Release the association's refcnt. */ 8635 sctp_association_put(asoc); 8636 8637 return err; 8638 8639 do_error: 8640 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8641 err = -ETIMEDOUT; 8642 else 8643 err = -ECONNREFUSED; 8644 goto out; 8645 8646 do_interrupted: 8647 err = sock_intr_errno(*timeo_p); 8648 goto out; 8649 8650 do_nonblock: 8651 err = -EINPROGRESS; 8652 goto out; 8653 } 8654 8655 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8656 { 8657 struct sctp_endpoint *ep; 8658 int err = 0; 8659 DEFINE_WAIT(wait); 8660 8661 ep = sctp_sk(sk)->ep; 8662 8663 8664 for (;;) { 8665 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8666 TASK_INTERRUPTIBLE); 8667 8668 if (list_empty(&ep->asocs)) { 8669 release_sock(sk); 8670 timeo = schedule_timeout(timeo); 8671 lock_sock(sk); 8672 } 8673 8674 err = -EINVAL; 8675 if (!sctp_sstate(sk, LISTENING)) 8676 break; 8677 8678 err = 0; 8679 if (!list_empty(&ep->asocs)) 8680 break; 8681 8682 err = sock_intr_errno(timeo); 8683 if (signal_pending(current)) 8684 break; 8685 8686 err = -EAGAIN; 8687 if (!timeo) 8688 break; 8689 } 8690 8691 finish_wait(sk_sleep(sk), &wait); 8692 8693 return err; 8694 } 8695 8696 static void sctp_wait_for_close(struct sock *sk, long timeout) 8697 { 8698 DEFINE_WAIT(wait); 8699 8700 do { 8701 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8702 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8703 break; 8704 release_sock(sk); 8705 timeout = schedule_timeout(timeout); 8706 lock_sock(sk); 8707 } while (!signal_pending(current) && timeout); 8708 8709 finish_wait(sk_sleep(sk), &wait); 8710 } 8711 8712 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8713 { 8714 struct sk_buff *frag; 8715 8716 if (!skb->data_len) 8717 goto done; 8718 8719 /* Don't forget the fragments. */ 8720 skb_walk_frags(skb, frag) 8721 sctp_skb_set_owner_r_frag(frag, sk); 8722 8723 done: 8724 sctp_skb_set_owner_r(skb, sk); 8725 } 8726 8727 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8728 struct sctp_association *asoc) 8729 { 8730 struct inet_sock *inet = inet_sk(sk); 8731 struct inet_sock *newinet; 8732 struct sctp_sock *sp = sctp_sk(sk); 8733 struct sctp_endpoint *ep = sp->ep; 8734 8735 newsk->sk_type = sk->sk_type; 8736 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8737 newsk->sk_flags = sk->sk_flags; 8738 newsk->sk_tsflags = sk->sk_tsflags; 8739 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8740 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8741 newsk->sk_reuse = sk->sk_reuse; 8742 sctp_sk(newsk)->reuse = sp->reuse; 8743 8744 newsk->sk_shutdown = sk->sk_shutdown; 8745 newsk->sk_destruct = sctp_destruct_sock; 8746 newsk->sk_family = sk->sk_family; 8747 newsk->sk_protocol = IPPROTO_SCTP; 8748 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8749 newsk->sk_sndbuf = sk->sk_sndbuf; 8750 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8751 newsk->sk_lingertime = sk->sk_lingertime; 8752 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8753 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8754 newsk->sk_rxhash = sk->sk_rxhash; 8755 8756 newinet = inet_sk(newsk); 8757 8758 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8759 * getsockname() and getpeername() 8760 */ 8761 newinet->inet_sport = inet->inet_sport; 8762 newinet->inet_saddr = inet->inet_saddr; 8763 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8764 newinet->inet_dport = htons(asoc->peer.port); 8765 newinet->pmtudisc = inet->pmtudisc; 8766 newinet->inet_id = asoc->next_tsn ^ jiffies; 8767 8768 newinet->uc_ttl = inet->uc_ttl; 8769 newinet->mc_loop = 1; 8770 newinet->mc_ttl = 1; 8771 newinet->mc_index = 0; 8772 newinet->mc_list = NULL; 8773 8774 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8775 net_enable_timestamp(); 8776 8777 /* Set newsk security attributes from orginal sk and connection 8778 * security attribute from ep. 8779 */ 8780 security_sctp_sk_clone(ep, sk, newsk); 8781 } 8782 8783 static inline void sctp_copy_descendant(struct sock *sk_to, 8784 const struct sock *sk_from) 8785 { 8786 int ancestor_size = sizeof(struct inet_sock) + 8787 sizeof(struct sctp_sock) - 8788 offsetof(struct sctp_sock, auto_asconf_list); 8789 8790 if (sk_from->sk_family == PF_INET6) 8791 ancestor_size += sizeof(struct ipv6_pinfo); 8792 8793 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8794 } 8795 8796 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8797 * and its messages to the newsk. 8798 */ 8799 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8800 struct sctp_association *assoc, 8801 enum sctp_socket_type type) 8802 { 8803 struct sctp_sock *oldsp = sctp_sk(oldsk); 8804 struct sctp_sock *newsp = sctp_sk(newsk); 8805 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8806 struct sctp_endpoint *newep = newsp->ep; 8807 struct sk_buff *skb, *tmp; 8808 struct sctp_ulpevent *event; 8809 struct sctp_bind_hashbucket *head; 8810 8811 /* Migrate socket buffer sizes and all the socket level options to the 8812 * new socket. 8813 */ 8814 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8815 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8816 /* Brute force copy old sctp opt. */ 8817 sctp_copy_descendant(newsk, oldsk); 8818 8819 /* Restore the ep value that was overwritten with the above structure 8820 * copy. 8821 */ 8822 newsp->ep = newep; 8823 newsp->hmac = NULL; 8824 8825 /* Hook this new socket in to the bind_hash list. */ 8826 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8827 inet_sk(oldsk)->inet_num)]; 8828 spin_lock_bh(&head->lock); 8829 pp = sctp_sk(oldsk)->bind_hash; 8830 sk_add_bind_node(newsk, &pp->owner); 8831 sctp_sk(newsk)->bind_hash = pp; 8832 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8833 spin_unlock_bh(&head->lock); 8834 8835 /* Copy the bind_addr list from the original endpoint to the new 8836 * endpoint so that we can handle restarts properly 8837 */ 8838 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8839 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8840 8841 /* Move any messages in the old socket's receive queue that are for the 8842 * peeled off association to the new socket's receive queue. 8843 */ 8844 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8845 event = sctp_skb2event(skb); 8846 if (event->asoc == assoc) { 8847 __skb_unlink(skb, &oldsk->sk_receive_queue); 8848 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8849 sctp_skb_set_owner_r_frag(skb, newsk); 8850 } 8851 } 8852 8853 /* Clean up any messages pending delivery due to partial 8854 * delivery. Three cases: 8855 * 1) No partial deliver; no work. 8856 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8857 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8858 */ 8859 skb_queue_head_init(&newsp->pd_lobby); 8860 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8861 8862 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8863 struct sk_buff_head *queue; 8864 8865 /* Decide which queue to move pd_lobby skbs to. */ 8866 if (assoc->ulpq.pd_mode) { 8867 queue = &newsp->pd_lobby; 8868 } else 8869 queue = &newsk->sk_receive_queue; 8870 8871 /* Walk through the pd_lobby, looking for skbs that 8872 * need moved to the new socket. 8873 */ 8874 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8875 event = sctp_skb2event(skb); 8876 if (event->asoc == assoc) { 8877 __skb_unlink(skb, &oldsp->pd_lobby); 8878 __skb_queue_tail(queue, skb); 8879 sctp_skb_set_owner_r_frag(skb, newsk); 8880 } 8881 } 8882 8883 /* Clear up any skbs waiting for the partial 8884 * delivery to finish. 8885 */ 8886 if (assoc->ulpq.pd_mode) 8887 sctp_clear_pd(oldsk, NULL); 8888 8889 } 8890 8891 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8892 8893 /* Set the type of socket to indicate that it is peeled off from the 8894 * original UDP-style socket or created with the accept() call on a 8895 * TCP-style socket.. 8896 */ 8897 newsp->type = type; 8898 8899 /* Mark the new socket "in-use" by the user so that any packets 8900 * that may arrive on the association after we've moved it are 8901 * queued to the backlog. This prevents a potential race between 8902 * backlog processing on the old socket and new-packet processing 8903 * on the new socket. 8904 * 8905 * The caller has just allocated newsk so we can guarantee that other 8906 * paths won't try to lock it and then oldsk. 8907 */ 8908 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8909 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8910 sctp_assoc_migrate(assoc, newsk); 8911 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8912 8913 /* If the association on the newsk is already closed before accept() 8914 * is called, set RCV_SHUTDOWN flag. 8915 */ 8916 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8917 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8918 newsk->sk_shutdown |= RCV_SHUTDOWN; 8919 } else { 8920 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8921 } 8922 8923 release_sock(newsk); 8924 } 8925 8926 8927 /* This proto struct describes the ULP interface for SCTP. */ 8928 struct proto sctp_prot = { 8929 .name = "SCTP", 8930 .owner = THIS_MODULE, 8931 .close = sctp_close, 8932 .disconnect = sctp_disconnect, 8933 .accept = sctp_accept, 8934 .ioctl = sctp_ioctl, 8935 .init = sctp_init_sock, 8936 .destroy = sctp_destroy_sock, 8937 .shutdown = sctp_shutdown, 8938 .setsockopt = sctp_setsockopt, 8939 .getsockopt = sctp_getsockopt, 8940 .sendmsg = sctp_sendmsg, 8941 .recvmsg = sctp_recvmsg, 8942 .bind = sctp_bind, 8943 .backlog_rcv = sctp_backlog_rcv, 8944 .hash = sctp_hash, 8945 .unhash = sctp_unhash, 8946 .get_port = sctp_get_port, 8947 .obj_size = sizeof(struct sctp_sock), 8948 .useroffset = offsetof(struct sctp_sock, subscribe), 8949 .usersize = offsetof(struct sctp_sock, initmsg) - 8950 offsetof(struct sctp_sock, subscribe) + 8951 sizeof_field(struct sctp_sock, initmsg), 8952 .sysctl_mem = sysctl_sctp_mem, 8953 .sysctl_rmem = sysctl_sctp_rmem, 8954 .sysctl_wmem = sysctl_sctp_wmem, 8955 .memory_pressure = &sctp_memory_pressure, 8956 .enter_memory_pressure = sctp_enter_memory_pressure, 8957 .memory_allocated = &sctp_memory_allocated, 8958 .sockets_allocated = &sctp_sockets_allocated, 8959 }; 8960 8961 #if IS_ENABLED(CONFIG_IPV6) 8962 8963 #include <net/transp_v6.h> 8964 static void sctp_v6_destroy_sock(struct sock *sk) 8965 { 8966 sctp_destroy_sock(sk); 8967 inet6_destroy_sock(sk); 8968 } 8969 8970 struct proto sctpv6_prot = { 8971 .name = "SCTPv6", 8972 .owner = THIS_MODULE, 8973 .close = sctp_close, 8974 .disconnect = sctp_disconnect, 8975 .accept = sctp_accept, 8976 .ioctl = sctp_ioctl, 8977 .init = sctp_init_sock, 8978 .destroy = sctp_v6_destroy_sock, 8979 .shutdown = sctp_shutdown, 8980 .setsockopt = sctp_setsockopt, 8981 .getsockopt = sctp_getsockopt, 8982 .sendmsg = sctp_sendmsg, 8983 .recvmsg = sctp_recvmsg, 8984 .bind = sctp_bind, 8985 .backlog_rcv = sctp_backlog_rcv, 8986 .hash = sctp_hash, 8987 .unhash = sctp_unhash, 8988 .get_port = sctp_get_port, 8989 .obj_size = sizeof(struct sctp6_sock), 8990 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8991 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8992 offsetof(struct sctp6_sock, sctp.subscribe) + 8993 sizeof_field(struct sctp6_sock, sctp.initmsg), 8994 .sysctl_mem = sysctl_sctp_mem, 8995 .sysctl_rmem = sysctl_sctp_rmem, 8996 .sysctl_wmem = sysctl_sctp_wmem, 8997 .memory_pressure = &sctp_memory_pressure, 8998 .enter_memory_pressure = sctp_enter_memory_pressure, 8999 .memory_allocated = &sctp_memory_allocated, 9000 .sockets_allocated = &sctp_sockets_allocated, 9001 }; 9002 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9003