xref: /openbmc/linux/net/sctp/socket.c (revision 458a445deb9c9fb13cec46fe9b179a84d2ff514f)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			      struct sctp_association *assoc,
107 			      enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (!id || (id == (sctp_assoc_t)-1))
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = vmemdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kvfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kvfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kvfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = vmemdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kvfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 
1870 		return 0;
1871 	}
1872 
1873 	return 1;
1874 }
1875 
1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1877 				struct msghdr *msg, size_t msg_len,
1878 				struct sctp_transport *transport,
1879 				struct sctp_sndrcvinfo *sinfo)
1880 {
1881 	struct sock *sk = asoc->base.sk;
1882 	struct sctp_sock *sp = sctp_sk(sk);
1883 	struct net *net = sock_net(sk);
1884 	struct sctp_datamsg *datamsg;
1885 	bool wait_connect = false;
1886 	struct sctp_chunk *chunk;
1887 	long timeo;
1888 	int err;
1889 
1890 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1891 		err = -EINVAL;
1892 		goto err;
1893 	}
1894 
1895 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1896 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1897 		if (err)
1898 			goto err;
1899 	}
1900 
1901 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1902 		err = -EMSGSIZE;
1903 		goto err;
1904 	}
1905 
1906 	if (asoc->pmtu_pending) {
1907 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1908 			sctp_assoc_sync_pmtu(asoc);
1909 		asoc->pmtu_pending = 0;
1910 	}
1911 
1912 	if (sctp_wspace(asoc) < (int)msg_len)
1913 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1914 
1915 	if (sctp_wspace(asoc) <= 0) {
1916 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto err;
1920 	}
1921 
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err)
1925 			goto err;
1926 
1927 		if (sp->strm_interleave) {
1928 			timeo = sock_sndtimeo(sk, 0);
1929 			err = sctp_wait_for_connect(asoc, &timeo);
1930 			if (err) {
1931 				err = -ESRCH;
1932 				goto err;
1933 			}
1934 		} else {
1935 			wait_connect = true;
1936 		}
1937 
1938 		pr_debug("%s: we associated primitively\n", __func__);
1939 	}
1940 
1941 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1942 	if (IS_ERR(datamsg)) {
1943 		err = PTR_ERR(datamsg);
1944 		goto err;
1945 	}
1946 
1947 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1948 
1949 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1950 		sctp_chunk_hold(chunk);
1951 		sctp_set_owner_w(chunk);
1952 		chunk->transport = transport;
1953 	}
1954 
1955 	err = sctp_primitive_SEND(net, asoc, datamsg);
1956 	if (err) {
1957 		sctp_datamsg_free(datamsg);
1958 		goto err;
1959 	}
1960 
1961 	pr_debug("%s: we sent primitively\n", __func__);
1962 
1963 	sctp_datamsg_put(datamsg);
1964 
1965 	if (unlikely(wait_connect)) {
1966 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1967 		sctp_wait_for_connect(asoc, &timeo);
1968 	}
1969 
1970 	err = msg_len;
1971 
1972 err:
1973 	return err;
1974 }
1975 
1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1977 					       const struct msghdr *msg,
1978 					       struct sctp_cmsgs *cmsgs)
1979 {
1980 	union sctp_addr *daddr = NULL;
1981 	int err;
1982 
1983 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1984 		int len = msg->msg_namelen;
1985 
1986 		if (len > sizeof(*daddr))
1987 			len = sizeof(*daddr);
1988 
1989 		daddr = (union sctp_addr *)msg->msg_name;
1990 
1991 		err = sctp_verify_addr(sk, daddr, len);
1992 		if (err)
1993 			return ERR_PTR(err);
1994 	}
1995 
1996 	return daddr;
1997 }
1998 
1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2000 				      struct sctp_sndrcvinfo *sinfo,
2001 				      struct sctp_cmsgs *cmsgs)
2002 {
2003 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2004 		sinfo->sinfo_stream = asoc->default_stream;
2005 		sinfo->sinfo_ppid = asoc->default_ppid;
2006 		sinfo->sinfo_context = asoc->default_context;
2007 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2008 
2009 		if (!cmsgs->prinfo)
2010 			sinfo->sinfo_flags = asoc->default_flags;
2011 	}
2012 
2013 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2014 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2015 
2016 	if (cmsgs->authinfo) {
2017 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2018 		 * sinfo_ssn to save the keyid on tx path.
2019 		 */
2020 		sinfo->sinfo_tsn = 1;
2021 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2022 	}
2023 }
2024 
2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2026 {
2027 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2028 	struct sctp_transport *transport = NULL;
2029 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2030 	struct sctp_association *asoc;
2031 	struct sctp_cmsgs cmsgs;
2032 	union sctp_addr *daddr;
2033 	bool new = false;
2034 	__u16 sflags;
2035 	int err;
2036 
2037 	/* Parse and get snd_info */
2038 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2039 	if (err)
2040 		goto out;
2041 
2042 	sinfo  = &_sinfo;
2043 	sflags = sinfo->sinfo_flags;
2044 
2045 	/* Get daddr from msg */
2046 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2047 	if (IS_ERR(daddr)) {
2048 		err = PTR_ERR(daddr);
2049 		goto out;
2050 	}
2051 
2052 	lock_sock(sk);
2053 
2054 	/* SCTP_SENDALL process */
2055 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2056 		list_for_each_entry(asoc, &ep->asocs, asocs) {
2057 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2058 							msg_len);
2059 			if (err == 0)
2060 				continue;
2061 			if (err < 0)
2062 				goto out_unlock;
2063 
2064 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2065 
2066 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2067 						   NULL, sinfo);
2068 			if (err < 0)
2069 				goto out_unlock;
2070 
2071 			iov_iter_revert(&msg->msg_iter, err);
2072 		}
2073 
2074 		goto out_unlock;
2075 	}
2076 
2077 	/* Get and check or create asoc */
2078 	if (daddr) {
2079 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2080 		if (asoc) {
2081 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2082 							msg_len);
2083 			if (err <= 0)
2084 				goto out_unlock;
2085 		} else {
2086 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2087 						    &transport);
2088 			if (err)
2089 				goto out_unlock;
2090 
2091 			asoc = transport->asoc;
2092 			new = true;
2093 		}
2094 
2095 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2096 			transport = NULL;
2097 	} else {
2098 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2099 		if (!asoc) {
2100 			err = -EPIPE;
2101 			goto out_unlock;
2102 		}
2103 
2104 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2105 		if (err <= 0)
2106 			goto out_unlock;
2107 	}
2108 
2109 	/* Update snd_info with the asoc */
2110 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2111 
2112 	/* Send msg to the asoc */
2113 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2114 	if (err < 0 && err != -ESRCH && new)
2115 		sctp_association_free(asoc);
2116 
2117 out_unlock:
2118 	release_sock(sk);
2119 out:
2120 	return sctp_error(sk, msg->msg_flags, err);
2121 }
2122 
2123 /* This is an extended version of skb_pull() that removes the data from the
2124  * start of a skb even when data is spread across the list of skb's in the
2125  * frag_list. len specifies the total amount of data that needs to be removed.
2126  * when 'len' bytes could be removed from the skb, it returns 0.
2127  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2128  * could not be removed.
2129  */
2130 static int sctp_skb_pull(struct sk_buff *skb, int len)
2131 {
2132 	struct sk_buff *list;
2133 	int skb_len = skb_headlen(skb);
2134 	int rlen;
2135 
2136 	if (len <= skb_len) {
2137 		__skb_pull(skb, len);
2138 		return 0;
2139 	}
2140 	len -= skb_len;
2141 	__skb_pull(skb, skb_len);
2142 
2143 	skb_walk_frags(skb, list) {
2144 		rlen = sctp_skb_pull(list, len);
2145 		skb->len -= (len-rlen);
2146 		skb->data_len -= (len-rlen);
2147 
2148 		if (!rlen)
2149 			return 0;
2150 
2151 		len = rlen;
2152 	}
2153 
2154 	return len;
2155 }
2156 
2157 /* API 3.1.3  recvmsg() - UDP Style Syntax
2158  *
2159  *  ssize_t recvmsg(int socket, struct msghdr *message,
2160  *                    int flags);
2161  *
2162  *  socket  - the socket descriptor of the endpoint.
2163  *  message - pointer to the msghdr structure which contains a single
2164  *            user message and possibly some ancillary data.
2165  *
2166  *            See Section 5 for complete description of the data
2167  *            structures.
2168  *
2169  *  flags   - flags sent or received with the user message, see Section
2170  *            5 for complete description of the flags.
2171  */
2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2173 			int noblock, int flags, int *addr_len)
2174 {
2175 	struct sctp_ulpevent *event = NULL;
2176 	struct sctp_sock *sp = sctp_sk(sk);
2177 	struct sk_buff *skb, *head_skb;
2178 	int copied;
2179 	int err = 0;
2180 	int skb_len;
2181 
2182 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2183 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2184 		 addr_len);
2185 
2186 	lock_sock(sk);
2187 
2188 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2189 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2190 		err = -ENOTCONN;
2191 		goto out;
2192 	}
2193 
2194 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2195 	if (!skb)
2196 		goto out;
2197 
2198 	/* Get the total length of the skb including any skb's in the
2199 	 * frag_list.
2200 	 */
2201 	skb_len = skb->len;
2202 
2203 	copied = skb_len;
2204 	if (copied > len)
2205 		copied = len;
2206 
2207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2208 
2209 	event = sctp_skb2event(skb);
2210 
2211 	if (err)
2212 		goto out_free;
2213 
2214 	if (event->chunk && event->chunk->head_skb)
2215 		head_skb = event->chunk->head_skb;
2216 	else
2217 		head_skb = skb;
2218 	sock_recv_ts_and_drops(msg, sk, head_skb);
2219 	if (sctp_ulpevent_is_notification(event)) {
2220 		msg->msg_flags |= MSG_NOTIFICATION;
2221 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2222 	} else {
2223 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2224 	}
2225 
2226 	/* Check if we allow SCTP_NXTINFO. */
2227 	if (sp->recvnxtinfo)
2228 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2229 	/* Check if we allow SCTP_RCVINFO. */
2230 	if (sp->recvrcvinfo)
2231 		sctp_ulpevent_read_rcvinfo(event, msg);
2232 	/* Check if we allow SCTP_SNDRCVINFO. */
2233 	if (sp->subscribe.sctp_data_io_event)
2234 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2235 
2236 	err = copied;
2237 
2238 	/* If skb's length exceeds the user's buffer, update the skb and
2239 	 * push it back to the receive_queue so that the next call to
2240 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2241 	 */
2242 	if (skb_len > copied) {
2243 		msg->msg_flags &= ~MSG_EOR;
2244 		if (flags & MSG_PEEK)
2245 			goto out_free;
2246 		sctp_skb_pull(skb, copied);
2247 		skb_queue_head(&sk->sk_receive_queue, skb);
2248 
2249 		/* When only partial message is copied to the user, increase
2250 		 * rwnd by that amount. If all the data in the skb is read,
2251 		 * rwnd is updated when the event is freed.
2252 		 */
2253 		if (!sctp_ulpevent_is_notification(event))
2254 			sctp_assoc_rwnd_increase(event->asoc, copied);
2255 		goto out;
2256 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2257 		   (event->msg_flags & MSG_EOR))
2258 		msg->msg_flags |= MSG_EOR;
2259 	else
2260 		msg->msg_flags &= ~MSG_EOR;
2261 
2262 out_free:
2263 	if (flags & MSG_PEEK) {
2264 		/* Release the skb reference acquired after peeking the skb in
2265 		 * sctp_skb_recv_datagram().
2266 		 */
2267 		kfree_skb(skb);
2268 	} else {
2269 		/* Free the event which includes releasing the reference to
2270 		 * the owner of the skb, freeing the skb and updating the
2271 		 * rwnd.
2272 		 */
2273 		sctp_ulpevent_free(event);
2274 	}
2275 out:
2276 	release_sock(sk);
2277 	return err;
2278 }
2279 
2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2281  *
2282  * This option is a on/off flag.  If enabled no SCTP message
2283  * fragmentation will be performed.  Instead if a message being sent
2284  * exceeds the current PMTU size, the message will NOT be sent and
2285  * instead a error will be indicated to the user.
2286  */
2287 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2288 					     char __user *optval,
2289 					     unsigned int optlen)
2290 {
2291 	int val;
2292 
2293 	if (optlen < sizeof(int))
2294 		return -EINVAL;
2295 
2296 	if (get_user(val, (int __user *)optval))
2297 		return -EFAULT;
2298 
2299 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2300 
2301 	return 0;
2302 }
2303 
2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2305 				  unsigned int optlen)
2306 {
2307 	struct sctp_association *asoc;
2308 	struct sctp_ulpevent *event;
2309 
2310 	if (optlen > sizeof(struct sctp_event_subscribe))
2311 		return -EINVAL;
2312 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2313 		return -EFAULT;
2314 
2315 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2316 	 * if there is no data to be sent or retransmit, the stack will
2317 	 * immediately send up this notification.
2318 	 */
2319 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2320 				       &sctp_sk(sk)->subscribe)) {
2321 		asoc = sctp_id2assoc(sk, 0);
2322 
2323 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2324 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2325 					GFP_USER | __GFP_NOWARN);
2326 			if (!event)
2327 				return -ENOMEM;
2328 
2329 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2337  *
2338  * This socket option is applicable to the UDP-style socket only.  When
2339  * set it will cause associations that are idle for more than the
2340  * specified number of seconds to automatically close.  An association
2341  * being idle is defined an association that has NOT sent or received
2342  * user data.  The special value of '0' indicates that no automatic
2343  * close of any associations should be performed.  The option expects an
2344  * integer defining the number of seconds of idle time before an
2345  * association is closed.
2346  */
2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2348 				     unsigned int optlen)
2349 {
2350 	struct sctp_sock *sp = sctp_sk(sk);
2351 	struct net *net = sock_net(sk);
2352 
2353 	/* Applicable to UDP-style socket only */
2354 	if (sctp_style(sk, TCP))
2355 		return -EOPNOTSUPP;
2356 	if (optlen != sizeof(int))
2357 		return -EINVAL;
2358 	if (copy_from_user(&sp->autoclose, optval, optlen))
2359 		return -EFAULT;
2360 
2361 	if (sp->autoclose > net->sctp.max_autoclose)
2362 		sp->autoclose = net->sctp.max_autoclose;
2363 
2364 	return 0;
2365 }
2366 
2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2368  *
2369  * Applications can enable or disable heartbeats for any peer address of
2370  * an association, modify an address's heartbeat interval, force a
2371  * heartbeat to be sent immediately, and adjust the address's maximum
2372  * number of retransmissions sent before an address is considered
2373  * unreachable.  The following structure is used to access and modify an
2374  * address's parameters:
2375  *
2376  *  struct sctp_paddrparams {
2377  *     sctp_assoc_t            spp_assoc_id;
2378  *     struct sockaddr_storage spp_address;
2379  *     uint32_t                spp_hbinterval;
2380  *     uint16_t                spp_pathmaxrxt;
2381  *     uint32_t                spp_pathmtu;
2382  *     uint32_t                spp_sackdelay;
2383  *     uint32_t                spp_flags;
2384  *     uint32_t                spp_ipv6_flowlabel;
2385  *     uint8_t                 spp_dscp;
2386  * };
2387  *
2388  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2389  *                     application, and identifies the association for
2390  *                     this query.
2391  *   spp_address     - This specifies which address is of interest.
2392  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2393  *                     in milliseconds.  If a  value of zero
2394  *                     is present in this field then no changes are to
2395  *                     be made to this parameter.
2396  *   spp_pathmaxrxt  - This contains the maximum number of
2397  *                     retransmissions before this address shall be
2398  *                     considered unreachable. If a  value of zero
2399  *                     is present in this field then no changes are to
2400  *                     be made to this parameter.
2401  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2402  *                     specified here will be the "fixed" path mtu.
2403  *                     Note that if the spp_address field is empty
2404  *                     then all associations on this address will
2405  *                     have this fixed path mtu set upon them.
2406  *
2407  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2408  *                     the number of milliseconds that sacks will be delayed
2409  *                     for. This value will apply to all addresses of an
2410  *                     association if the spp_address field is empty. Note
2411  *                     also, that if delayed sack is enabled and this
2412  *                     value is set to 0, no change is made to the last
2413  *                     recorded delayed sack timer value.
2414  *
2415  *   spp_flags       - These flags are used to control various features
2416  *                     on an association. The flag field may contain
2417  *                     zero or more of the following options.
2418  *
2419  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2420  *                     specified address. Note that if the address
2421  *                     field is empty all addresses for the association
2422  *                     have heartbeats enabled upon them.
2423  *
2424  *                     SPP_HB_DISABLE - Disable heartbeats on the
2425  *                     speicifed address. Note that if the address
2426  *                     field is empty all addresses for the association
2427  *                     will have their heartbeats disabled. Note also
2428  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2429  *                     mutually exclusive, only one of these two should
2430  *                     be specified. Enabling both fields will have
2431  *                     undetermined results.
2432  *
2433  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2434  *                     to be made immediately.
2435  *
2436  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2437  *                     heartbeat delayis to be set to the value of 0
2438  *                     milliseconds.
2439  *
2440  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2441  *                     discovery upon the specified address. Note that
2442  *                     if the address feild is empty then all addresses
2443  *                     on the association are effected.
2444  *
2445  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2446  *                     discovery upon the specified address. Note that
2447  *                     if the address feild is empty then all addresses
2448  *                     on the association are effected. Not also that
2449  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2450  *                     exclusive. Enabling both will have undetermined
2451  *                     results.
2452  *
2453  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2454  *                     on delayed sack. The time specified in spp_sackdelay
2455  *                     is used to specify the sack delay for this address. Note
2456  *                     that if spp_address is empty then all addresses will
2457  *                     enable delayed sack and take on the sack delay
2458  *                     value specified in spp_sackdelay.
2459  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2460  *                     off delayed sack. If the spp_address field is blank then
2461  *                     delayed sack is disabled for the entire association. Note
2462  *                     also that this field is mutually exclusive to
2463  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2464  *                     results.
2465  *
2466  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2467  *                     setting of the IPV6 flow label value.  The value is
2468  *                     contained in the spp_ipv6_flowlabel field.
2469  *                     Upon retrieval, this flag will be set to indicate that
2470  *                     the spp_ipv6_flowlabel field has a valid value returned.
2471  *                     If a specific destination address is set (in the
2472  *                     spp_address field), then the value returned is that of
2473  *                     the address.  If just an association is specified (and
2474  *                     no address), then the association's default flow label
2475  *                     is returned.  If neither an association nor a destination
2476  *                     is specified, then the socket's default flow label is
2477  *                     returned.  For non-IPv6 sockets, this flag will be left
2478  *                     cleared.
2479  *
2480  *                     SPP_DSCP:  Setting this flag enables the setting of the
2481  *                     Differentiated Services Code Point (DSCP) value
2482  *                     associated with either the association or a specific
2483  *                     address.  The value is obtained in the spp_dscp field.
2484  *                     Upon retrieval, this flag will be set to indicate that
2485  *                     the spp_dscp field has a valid value returned.  If a
2486  *                     specific destination address is set when called (in the
2487  *                     spp_address field), then that specific destination
2488  *                     address's DSCP value is returned.  If just an association
2489  *                     is specified, then the association's default DSCP is
2490  *                     returned.  If neither an association nor a destination is
2491  *                     specified, then the socket's default DSCP is returned.
2492  *
2493  *   spp_ipv6_flowlabel
2494  *                   - This field is used in conjunction with the
2495  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2496  *                     The 20 least significant bits are used for the flow
2497  *                     label.  This setting has precedence over any IPv6-layer
2498  *                     setting.
2499  *
2500  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2501  *                     and contains the DSCP.  The 6 most significant bits are
2502  *                     used for the DSCP.  This setting has precedence over any
2503  *                     IPv4- or IPv6- layer setting.
2504  */
2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2506 				       struct sctp_transport   *trans,
2507 				       struct sctp_association *asoc,
2508 				       struct sctp_sock        *sp,
2509 				       int                      hb_change,
2510 				       int                      pmtud_change,
2511 				       int                      sackdelay_change)
2512 {
2513 	int error;
2514 
2515 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2516 		struct net *net = sock_net(trans->asoc->base.sk);
2517 
2518 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2519 		if (error)
2520 			return error;
2521 	}
2522 
2523 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2524 	 * this field is ignored.  Note also that a value of zero indicates
2525 	 * the current setting should be left unchanged.
2526 	 */
2527 	if (params->spp_flags & SPP_HB_ENABLE) {
2528 
2529 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2530 		 * set.  This lets us use 0 value when this flag
2531 		 * is set.
2532 		 */
2533 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2534 			params->spp_hbinterval = 0;
2535 
2536 		if (params->spp_hbinterval ||
2537 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2538 			if (trans) {
2539 				trans->hbinterval =
2540 				    msecs_to_jiffies(params->spp_hbinterval);
2541 			} else if (asoc) {
2542 				asoc->hbinterval =
2543 				    msecs_to_jiffies(params->spp_hbinterval);
2544 			} else {
2545 				sp->hbinterval = params->spp_hbinterval;
2546 			}
2547 		}
2548 	}
2549 
2550 	if (hb_change) {
2551 		if (trans) {
2552 			trans->param_flags =
2553 				(trans->param_flags & ~SPP_HB) | hb_change;
2554 		} else if (asoc) {
2555 			asoc->param_flags =
2556 				(asoc->param_flags & ~SPP_HB) | hb_change;
2557 		} else {
2558 			sp->param_flags =
2559 				(sp->param_flags & ~SPP_HB) | hb_change;
2560 		}
2561 	}
2562 
2563 	/* When Path MTU discovery is disabled the value specified here will
2564 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2565 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2566 	 * effect).
2567 	 */
2568 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2569 		if (trans) {
2570 			trans->pathmtu = params->spp_pathmtu;
2571 			sctp_assoc_sync_pmtu(asoc);
2572 		} else if (asoc) {
2573 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2574 		} else {
2575 			sp->pathmtu = params->spp_pathmtu;
2576 		}
2577 	}
2578 
2579 	if (pmtud_change) {
2580 		if (trans) {
2581 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2582 				(params->spp_flags & SPP_PMTUD_ENABLE);
2583 			trans->param_flags =
2584 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2585 			if (update) {
2586 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2587 				sctp_assoc_sync_pmtu(asoc);
2588 			}
2589 		} else if (asoc) {
2590 			asoc->param_flags =
2591 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2592 		} else {
2593 			sp->param_flags =
2594 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2595 		}
2596 	}
2597 
2598 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2599 	 * value of this field is ignored.  Note also that a value of zero
2600 	 * indicates the current setting should be left unchanged.
2601 	 */
2602 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2603 		if (trans) {
2604 			trans->sackdelay =
2605 				msecs_to_jiffies(params->spp_sackdelay);
2606 		} else if (asoc) {
2607 			asoc->sackdelay =
2608 				msecs_to_jiffies(params->spp_sackdelay);
2609 		} else {
2610 			sp->sackdelay = params->spp_sackdelay;
2611 		}
2612 	}
2613 
2614 	if (sackdelay_change) {
2615 		if (trans) {
2616 			trans->param_flags =
2617 				(trans->param_flags & ~SPP_SACKDELAY) |
2618 				sackdelay_change;
2619 		} else if (asoc) {
2620 			asoc->param_flags =
2621 				(asoc->param_flags & ~SPP_SACKDELAY) |
2622 				sackdelay_change;
2623 		} else {
2624 			sp->param_flags =
2625 				(sp->param_flags & ~SPP_SACKDELAY) |
2626 				sackdelay_change;
2627 		}
2628 	}
2629 
2630 	/* Note that a value of zero indicates the current setting should be
2631 	   left unchanged.
2632 	 */
2633 	if (params->spp_pathmaxrxt) {
2634 		if (trans) {
2635 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2636 		} else if (asoc) {
2637 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2638 		} else {
2639 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2640 		}
2641 	}
2642 
2643 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2644 		if (trans) {
2645 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2646 				trans->flowlabel = params->spp_ipv6_flowlabel &
2647 						   SCTP_FLOWLABEL_VAL_MASK;
2648 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2649 			}
2650 		} else if (asoc) {
2651 			struct sctp_transport *t;
2652 
2653 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2654 					    transports) {
2655 				if (t->ipaddr.sa.sa_family != AF_INET6)
2656 					continue;
2657 				t->flowlabel = params->spp_ipv6_flowlabel &
2658 					       SCTP_FLOWLABEL_VAL_MASK;
2659 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 			}
2661 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2662 					  SCTP_FLOWLABEL_VAL_MASK;
2663 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2664 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2665 			sp->flowlabel = params->spp_ipv6_flowlabel &
2666 					SCTP_FLOWLABEL_VAL_MASK;
2667 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2668 		}
2669 	}
2670 
2671 	if (params->spp_flags & SPP_DSCP) {
2672 		if (trans) {
2673 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2674 			trans->dscp |= SCTP_DSCP_SET_MASK;
2675 		} else if (asoc) {
2676 			struct sctp_transport *t;
2677 
2678 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2679 					    transports) {
2680 				t->dscp = params->spp_dscp &
2681 					  SCTP_DSCP_VAL_MASK;
2682 				t->dscp |= SCTP_DSCP_SET_MASK;
2683 			}
2684 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2686 		} else {
2687 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2688 			sp->dscp |= SCTP_DSCP_SET_MASK;
2689 		}
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2696 					    char __user *optval,
2697 					    unsigned int optlen)
2698 {
2699 	struct sctp_paddrparams  params;
2700 	struct sctp_transport   *trans = NULL;
2701 	struct sctp_association *asoc = NULL;
2702 	struct sctp_sock        *sp = sctp_sk(sk);
2703 	int error;
2704 	int hb_change, pmtud_change, sackdelay_change;
2705 
2706 	if (optlen == sizeof(params)) {
2707 		if (copy_from_user(&params, optval, optlen))
2708 			return -EFAULT;
2709 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2710 					    spp_ipv6_flowlabel), 4)) {
2711 		if (copy_from_user(&params, optval, optlen))
2712 			return -EFAULT;
2713 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2714 			return -EINVAL;
2715 	} else {
2716 		return -EINVAL;
2717 	}
2718 
2719 	/* Validate flags and value parameters. */
2720 	hb_change        = params.spp_flags & SPP_HB;
2721 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2722 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2723 
2724 	if (hb_change        == SPP_HB ||
2725 	    pmtud_change     == SPP_PMTUD ||
2726 	    sackdelay_change == SPP_SACKDELAY ||
2727 	    params.spp_sackdelay > 500 ||
2728 	    (params.spp_pathmtu &&
2729 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2730 		return -EINVAL;
2731 
2732 	/* If an address other than INADDR_ANY is specified, and
2733 	 * no transport is found, then the request is invalid.
2734 	 */
2735 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2736 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2737 					       params.spp_assoc_id);
2738 		if (!trans)
2739 			return -EINVAL;
2740 	}
2741 
2742 	/* Get association, if assoc_id != 0 and the socket is a one
2743 	 * to many style socket, and an association was not found, then
2744 	 * the id was invalid.
2745 	 */
2746 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2747 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2748 		return -EINVAL;
2749 
2750 	/* Heartbeat demand can only be sent on a transport or
2751 	 * association, but not a socket.
2752 	 */
2753 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2754 		return -EINVAL;
2755 
2756 	/* Process parameters. */
2757 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2758 					    hb_change, pmtud_change,
2759 					    sackdelay_change);
2760 
2761 	if (error)
2762 		return error;
2763 
2764 	/* If changes are for association, also apply parameters to each
2765 	 * transport.
2766 	 */
2767 	if (!trans && asoc) {
2768 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2769 				transports) {
2770 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2771 						    hb_change, pmtud_change,
2772 						    sackdelay_change);
2773 		}
2774 	}
2775 
2776 	return 0;
2777 }
2778 
2779 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2780 {
2781 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2782 }
2783 
2784 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2785 {
2786 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2787 }
2788 
2789 /*
2790  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2791  *
2792  * This option will effect the way delayed acks are performed.  This
2793  * option allows you to get or set the delayed ack time, in
2794  * milliseconds.  It also allows changing the delayed ack frequency.
2795  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2796  * the assoc_id is 0, then this sets or gets the endpoints default
2797  * values.  If the assoc_id field is non-zero, then the set or get
2798  * effects the specified association for the one to many model (the
2799  * assoc_id field is ignored by the one to one model).  Note that if
2800  * sack_delay or sack_freq are 0 when setting this option, then the
2801  * current values will remain unchanged.
2802  *
2803  * struct sctp_sack_info {
2804  *     sctp_assoc_t            sack_assoc_id;
2805  *     uint32_t                sack_delay;
2806  *     uint32_t                sack_freq;
2807  * };
2808  *
2809  * sack_assoc_id -  This parameter, indicates which association the user
2810  *    is performing an action upon.  Note that if this field's value is
2811  *    zero then the endpoints default value is changed (effecting future
2812  *    associations only).
2813  *
2814  * sack_delay -  This parameter contains the number of milliseconds that
2815  *    the user is requesting the delayed ACK timer be set to.  Note that
2816  *    this value is defined in the standard to be between 200 and 500
2817  *    milliseconds.
2818  *
2819  * sack_freq -  This parameter contains the number of packets that must
2820  *    be received before a sack is sent without waiting for the delay
2821  *    timer to expire.  The default value for this is 2, setting this
2822  *    value to 1 will disable the delayed sack algorithm.
2823  */
2824 
2825 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2826 				       char __user *optval, unsigned int optlen)
2827 {
2828 	struct sctp_sack_info    params;
2829 	struct sctp_transport   *trans = NULL;
2830 	struct sctp_association *asoc = NULL;
2831 	struct sctp_sock        *sp = sctp_sk(sk);
2832 
2833 	if (optlen == sizeof(struct sctp_sack_info)) {
2834 		if (copy_from_user(&params, optval, optlen))
2835 			return -EFAULT;
2836 
2837 		if (params.sack_delay == 0 && params.sack_freq == 0)
2838 			return 0;
2839 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2840 		pr_warn_ratelimited(DEPRECATED
2841 				    "%s (pid %d) "
2842 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2843 				    "Use struct sctp_sack_info instead\n",
2844 				    current->comm, task_pid_nr(current));
2845 		if (copy_from_user(&params, optval, optlen))
2846 			return -EFAULT;
2847 
2848 		if (params.sack_delay == 0)
2849 			params.sack_freq = 1;
2850 		else
2851 			params.sack_freq = 0;
2852 	} else
2853 		return -EINVAL;
2854 
2855 	/* Validate value parameter. */
2856 	if (params.sack_delay > 500)
2857 		return -EINVAL;
2858 
2859 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2860 	 * to many style socket, and an association was not found, then
2861 	 * the id was invalid.
2862 	 */
2863 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2864 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2865 		return -EINVAL;
2866 
2867 	if (params.sack_delay) {
2868 		if (asoc) {
2869 			asoc->sackdelay =
2870 				msecs_to_jiffies(params.sack_delay);
2871 			asoc->param_flags =
2872 				sctp_spp_sackdelay_enable(asoc->param_flags);
2873 		} else {
2874 			sp->sackdelay = params.sack_delay;
2875 			sp->param_flags =
2876 				sctp_spp_sackdelay_enable(sp->param_flags);
2877 		}
2878 	}
2879 
2880 	if (params.sack_freq == 1) {
2881 		if (asoc) {
2882 			asoc->param_flags =
2883 				sctp_spp_sackdelay_disable(asoc->param_flags);
2884 		} else {
2885 			sp->param_flags =
2886 				sctp_spp_sackdelay_disable(sp->param_flags);
2887 		}
2888 	} else if (params.sack_freq > 1) {
2889 		if (asoc) {
2890 			asoc->sackfreq = params.sack_freq;
2891 			asoc->param_flags =
2892 				sctp_spp_sackdelay_enable(asoc->param_flags);
2893 		} else {
2894 			sp->sackfreq = params.sack_freq;
2895 			sp->param_flags =
2896 				sctp_spp_sackdelay_enable(sp->param_flags);
2897 		}
2898 	}
2899 
2900 	/* If change is for association, also apply to each transport. */
2901 	if (asoc) {
2902 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2903 				transports) {
2904 			if (params.sack_delay) {
2905 				trans->sackdelay =
2906 					msecs_to_jiffies(params.sack_delay);
2907 				trans->param_flags =
2908 					sctp_spp_sackdelay_enable(trans->param_flags);
2909 			}
2910 			if (params.sack_freq == 1) {
2911 				trans->param_flags =
2912 					sctp_spp_sackdelay_disable(trans->param_flags);
2913 			} else if (params.sack_freq > 1) {
2914 				trans->sackfreq = params.sack_freq;
2915 				trans->param_flags =
2916 					sctp_spp_sackdelay_enable(trans->param_flags);
2917 			}
2918 		}
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2925  *
2926  * Applications can specify protocol parameters for the default association
2927  * initialization.  The option name argument to setsockopt() and getsockopt()
2928  * is SCTP_INITMSG.
2929  *
2930  * Setting initialization parameters is effective only on an unconnected
2931  * socket (for UDP-style sockets only future associations are effected
2932  * by the change).  With TCP-style sockets, this option is inherited by
2933  * sockets derived from a listener socket.
2934  */
2935 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2936 {
2937 	struct sctp_initmsg sinit;
2938 	struct sctp_sock *sp = sctp_sk(sk);
2939 
2940 	if (optlen != sizeof(struct sctp_initmsg))
2941 		return -EINVAL;
2942 	if (copy_from_user(&sinit, optval, optlen))
2943 		return -EFAULT;
2944 
2945 	if (sinit.sinit_num_ostreams)
2946 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2947 	if (sinit.sinit_max_instreams)
2948 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2949 	if (sinit.sinit_max_attempts)
2950 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2951 	if (sinit.sinit_max_init_timeo)
2952 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2953 
2954 	return 0;
2955 }
2956 
2957 /*
2958  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2959  *
2960  *   Applications that wish to use the sendto() system call may wish to
2961  *   specify a default set of parameters that would normally be supplied
2962  *   through the inclusion of ancillary data.  This socket option allows
2963  *   such an application to set the default sctp_sndrcvinfo structure.
2964  *   The application that wishes to use this socket option simply passes
2965  *   in to this call the sctp_sndrcvinfo structure defined in Section
2966  *   5.2.2) The input parameters accepted by this call include
2967  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2968  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2969  *   to this call if the caller is using the UDP model.
2970  */
2971 static int sctp_setsockopt_default_send_param(struct sock *sk,
2972 					      char __user *optval,
2973 					      unsigned int optlen)
2974 {
2975 	struct sctp_sock *sp = sctp_sk(sk);
2976 	struct sctp_association *asoc;
2977 	struct sctp_sndrcvinfo info;
2978 
2979 	if (optlen != sizeof(info))
2980 		return -EINVAL;
2981 	if (copy_from_user(&info, optval, optlen))
2982 		return -EFAULT;
2983 	if (info.sinfo_flags &
2984 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2985 	      SCTP_ABORT | SCTP_EOF))
2986 		return -EINVAL;
2987 
2988 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2989 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2990 		return -EINVAL;
2991 	if (asoc) {
2992 		asoc->default_stream = info.sinfo_stream;
2993 		asoc->default_flags = info.sinfo_flags;
2994 		asoc->default_ppid = info.sinfo_ppid;
2995 		asoc->default_context = info.sinfo_context;
2996 		asoc->default_timetolive = info.sinfo_timetolive;
2997 	} else {
2998 		sp->default_stream = info.sinfo_stream;
2999 		sp->default_flags = info.sinfo_flags;
3000 		sp->default_ppid = info.sinfo_ppid;
3001 		sp->default_context = info.sinfo_context;
3002 		sp->default_timetolive = info.sinfo_timetolive;
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3009  * (SCTP_DEFAULT_SNDINFO)
3010  */
3011 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3012 					   char __user *optval,
3013 					   unsigned int optlen)
3014 {
3015 	struct sctp_sock *sp = sctp_sk(sk);
3016 	struct sctp_association *asoc;
3017 	struct sctp_sndinfo info;
3018 
3019 	if (optlen != sizeof(info))
3020 		return -EINVAL;
3021 	if (copy_from_user(&info, optval, optlen))
3022 		return -EFAULT;
3023 	if (info.snd_flags &
3024 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3025 	      SCTP_ABORT | SCTP_EOF))
3026 		return -EINVAL;
3027 
3028 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3029 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
3030 		return -EINVAL;
3031 	if (asoc) {
3032 		asoc->default_stream = info.snd_sid;
3033 		asoc->default_flags = info.snd_flags;
3034 		asoc->default_ppid = info.snd_ppid;
3035 		asoc->default_context = info.snd_context;
3036 	} else {
3037 		sp->default_stream = info.snd_sid;
3038 		sp->default_flags = info.snd_flags;
3039 		sp->default_ppid = info.snd_ppid;
3040 		sp->default_context = info.snd_context;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3047  *
3048  * Requests that the local SCTP stack use the enclosed peer address as
3049  * the association primary.  The enclosed address must be one of the
3050  * association peer's addresses.
3051  */
3052 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3053 					unsigned int optlen)
3054 {
3055 	struct sctp_prim prim;
3056 	struct sctp_transport *trans;
3057 	struct sctp_af *af;
3058 	int err;
3059 
3060 	if (optlen != sizeof(struct sctp_prim))
3061 		return -EINVAL;
3062 
3063 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3064 		return -EFAULT;
3065 
3066 	/* Allow security module to validate address but need address len. */
3067 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3068 	if (!af)
3069 		return -EINVAL;
3070 
3071 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3072 					 (struct sockaddr *)&prim.ssp_addr,
3073 					 af->sockaddr_len);
3074 	if (err)
3075 		return err;
3076 
3077 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3078 	if (!trans)
3079 		return -EINVAL;
3080 
3081 	sctp_assoc_set_primary(trans->asoc, trans);
3082 
3083 	return 0;
3084 }
3085 
3086 /*
3087  * 7.1.5 SCTP_NODELAY
3088  *
3089  * Turn on/off any Nagle-like algorithm.  This means that packets are
3090  * generally sent as soon as possible and no unnecessary delays are
3091  * introduced, at the cost of more packets in the network.  Expects an
3092  *  integer boolean flag.
3093  */
3094 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3095 				   unsigned int optlen)
3096 {
3097 	int val;
3098 
3099 	if (optlen < sizeof(int))
3100 		return -EINVAL;
3101 	if (get_user(val, (int __user *)optval))
3102 		return -EFAULT;
3103 
3104 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3105 	return 0;
3106 }
3107 
3108 /*
3109  *
3110  * 7.1.1 SCTP_RTOINFO
3111  *
3112  * The protocol parameters used to initialize and bound retransmission
3113  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3114  * and modify these parameters.
3115  * All parameters are time values, in milliseconds.  A value of 0, when
3116  * modifying the parameters, indicates that the current value should not
3117  * be changed.
3118  *
3119  */
3120 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3121 {
3122 	struct sctp_rtoinfo rtoinfo;
3123 	struct sctp_association *asoc;
3124 	unsigned long rto_min, rto_max;
3125 	struct sctp_sock *sp = sctp_sk(sk);
3126 
3127 	if (optlen != sizeof (struct sctp_rtoinfo))
3128 		return -EINVAL;
3129 
3130 	if (copy_from_user(&rtoinfo, optval, optlen))
3131 		return -EFAULT;
3132 
3133 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3134 
3135 	/* Set the values to the specific association */
3136 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3137 		return -EINVAL;
3138 
3139 	rto_max = rtoinfo.srto_max;
3140 	rto_min = rtoinfo.srto_min;
3141 
3142 	if (rto_max)
3143 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3144 	else
3145 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3146 
3147 	if (rto_min)
3148 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3149 	else
3150 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3151 
3152 	if (rto_min > rto_max)
3153 		return -EINVAL;
3154 
3155 	if (asoc) {
3156 		if (rtoinfo.srto_initial != 0)
3157 			asoc->rto_initial =
3158 				msecs_to_jiffies(rtoinfo.srto_initial);
3159 		asoc->rto_max = rto_max;
3160 		asoc->rto_min = rto_min;
3161 	} else {
3162 		/* If there is no association or the association-id = 0
3163 		 * set the values to the endpoint.
3164 		 */
3165 		if (rtoinfo.srto_initial != 0)
3166 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3167 		sp->rtoinfo.srto_max = rto_max;
3168 		sp->rtoinfo.srto_min = rto_min;
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 /*
3175  *
3176  * 7.1.2 SCTP_ASSOCINFO
3177  *
3178  * This option is used to tune the maximum retransmission attempts
3179  * of the association.
3180  * Returns an error if the new association retransmission value is
3181  * greater than the sum of the retransmission value  of the peer.
3182  * See [SCTP] for more information.
3183  *
3184  */
3185 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3186 {
3187 
3188 	struct sctp_assocparams assocparams;
3189 	struct sctp_association *asoc;
3190 
3191 	if (optlen != sizeof(struct sctp_assocparams))
3192 		return -EINVAL;
3193 	if (copy_from_user(&assocparams, optval, optlen))
3194 		return -EFAULT;
3195 
3196 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3197 
3198 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3199 		return -EINVAL;
3200 
3201 	/* Set the values to the specific association */
3202 	if (asoc) {
3203 		if (assocparams.sasoc_asocmaxrxt != 0) {
3204 			__u32 path_sum = 0;
3205 			int   paths = 0;
3206 			struct sctp_transport *peer_addr;
3207 
3208 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3209 					transports) {
3210 				path_sum += peer_addr->pathmaxrxt;
3211 				paths++;
3212 			}
3213 
3214 			/* Only validate asocmaxrxt if we have more than
3215 			 * one path/transport.  We do this because path
3216 			 * retransmissions are only counted when we have more
3217 			 * then one path.
3218 			 */
3219 			if (paths > 1 &&
3220 			    assocparams.sasoc_asocmaxrxt > path_sum)
3221 				return -EINVAL;
3222 
3223 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3224 		}
3225 
3226 		if (assocparams.sasoc_cookie_life != 0)
3227 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3228 	} else {
3229 		/* Set the values to the endpoint */
3230 		struct sctp_sock *sp = sctp_sk(sk);
3231 
3232 		if (assocparams.sasoc_asocmaxrxt != 0)
3233 			sp->assocparams.sasoc_asocmaxrxt =
3234 						assocparams.sasoc_asocmaxrxt;
3235 		if (assocparams.sasoc_cookie_life != 0)
3236 			sp->assocparams.sasoc_cookie_life =
3237 						assocparams.sasoc_cookie_life;
3238 	}
3239 	return 0;
3240 }
3241 
3242 /*
3243  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3244  *
3245  * This socket option is a boolean flag which turns on or off mapped V4
3246  * addresses.  If this option is turned on and the socket is type
3247  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3248  * If this option is turned off, then no mapping will be done of V4
3249  * addresses and a user will receive both PF_INET6 and PF_INET type
3250  * addresses on the socket.
3251  */
3252 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3253 {
3254 	int val;
3255 	struct sctp_sock *sp = sctp_sk(sk);
3256 
3257 	if (optlen < sizeof(int))
3258 		return -EINVAL;
3259 	if (get_user(val, (int __user *)optval))
3260 		return -EFAULT;
3261 	if (val)
3262 		sp->v4mapped = 1;
3263 	else
3264 		sp->v4mapped = 0;
3265 
3266 	return 0;
3267 }
3268 
3269 /*
3270  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3271  * This option will get or set the maximum size to put in any outgoing
3272  * SCTP DATA chunk.  If a message is larger than this size it will be
3273  * fragmented by SCTP into the specified size.  Note that the underlying
3274  * SCTP implementation may fragment into smaller sized chunks when the
3275  * PMTU of the underlying association is smaller than the value set by
3276  * the user.  The default value for this option is '0' which indicates
3277  * the user is NOT limiting fragmentation and only the PMTU will effect
3278  * SCTP's choice of DATA chunk size.  Note also that values set larger
3279  * than the maximum size of an IP datagram will effectively let SCTP
3280  * control fragmentation (i.e. the same as setting this option to 0).
3281  *
3282  * The following structure is used to access and modify this parameter:
3283  *
3284  * struct sctp_assoc_value {
3285  *   sctp_assoc_t assoc_id;
3286  *   uint32_t assoc_value;
3287  * };
3288  *
3289  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3290  *    For one-to-many style sockets this parameter indicates which
3291  *    association the user is performing an action upon.  Note that if
3292  *    this field's value is zero then the endpoints default value is
3293  *    changed (effecting future associations only).
3294  * assoc_value:  This parameter specifies the maximum size in bytes.
3295  */
3296 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3297 {
3298 	struct sctp_sock *sp = sctp_sk(sk);
3299 	struct sctp_assoc_value params;
3300 	struct sctp_association *asoc;
3301 	int val;
3302 
3303 	if (optlen == sizeof(int)) {
3304 		pr_warn_ratelimited(DEPRECATED
3305 				    "%s (pid %d) "
3306 				    "Use of int in maxseg socket option.\n"
3307 				    "Use struct sctp_assoc_value instead\n",
3308 				    current->comm, task_pid_nr(current));
3309 		if (copy_from_user(&val, optval, optlen))
3310 			return -EFAULT;
3311 		params.assoc_id = 0;
3312 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3313 		if (copy_from_user(&params, optval, optlen))
3314 			return -EFAULT;
3315 		val = params.assoc_value;
3316 	} else {
3317 		return -EINVAL;
3318 	}
3319 
3320 	asoc = sctp_id2assoc(sk, params.assoc_id);
3321 
3322 	if (val) {
3323 		int min_len, max_len;
3324 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3325 				 sizeof(struct sctp_data_chunk);
3326 
3327 		min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT,
3328 					   datasize);
3329 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3330 
3331 		if (val < min_len || val > max_len)
3332 			return -EINVAL;
3333 	}
3334 
3335 	if (asoc) {
3336 		asoc->user_frag = val;
3337 		sctp_assoc_update_frag_point(asoc);
3338 	} else {
3339 		if (params.assoc_id && sctp_style(sk, UDP))
3340 			return -EINVAL;
3341 		sp->user_frag = val;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 
3348 /*
3349  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3350  *
3351  *   Requests that the peer mark the enclosed address as the association
3352  *   primary. The enclosed address must be one of the association's
3353  *   locally bound addresses. The following structure is used to make a
3354  *   set primary request:
3355  */
3356 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3357 					     unsigned int optlen)
3358 {
3359 	struct net *net = sock_net(sk);
3360 	struct sctp_sock	*sp;
3361 	struct sctp_association	*asoc = NULL;
3362 	struct sctp_setpeerprim	prim;
3363 	struct sctp_chunk	*chunk;
3364 	struct sctp_af		*af;
3365 	int 			err;
3366 
3367 	sp = sctp_sk(sk);
3368 
3369 	if (!net->sctp.addip_enable)
3370 		return -EPERM;
3371 
3372 	if (optlen != sizeof(struct sctp_setpeerprim))
3373 		return -EINVAL;
3374 
3375 	if (copy_from_user(&prim, optval, optlen))
3376 		return -EFAULT;
3377 
3378 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3379 	if (!asoc)
3380 		return -EINVAL;
3381 
3382 	if (!asoc->peer.asconf_capable)
3383 		return -EPERM;
3384 
3385 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3386 		return -EPERM;
3387 
3388 	if (!sctp_state(asoc, ESTABLISHED))
3389 		return -ENOTCONN;
3390 
3391 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3392 	if (!af)
3393 		return -EINVAL;
3394 
3395 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3396 		return -EADDRNOTAVAIL;
3397 
3398 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3399 		return -EADDRNOTAVAIL;
3400 
3401 	/* Allow security module to validate address. */
3402 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3403 					 (struct sockaddr *)&prim.sspp_addr,
3404 					 af->sockaddr_len);
3405 	if (err)
3406 		return err;
3407 
3408 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3409 	chunk = sctp_make_asconf_set_prim(asoc,
3410 					  (union sctp_addr *)&prim.sspp_addr);
3411 	if (!chunk)
3412 		return -ENOMEM;
3413 
3414 	err = sctp_send_asconf(asoc, chunk);
3415 
3416 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3417 
3418 	return err;
3419 }
3420 
3421 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3422 					    unsigned int optlen)
3423 {
3424 	struct sctp_setadaptation adaptation;
3425 
3426 	if (optlen != sizeof(struct sctp_setadaptation))
3427 		return -EINVAL;
3428 	if (copy_from_user(&adaptation, optval, optlen))
3429 		return -EFAULT;
3430 
3431 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3432 
3433 	return 0;
3434 }
3435 
3436 /*
3437  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3438  *
3439  * The context field in the sctp_sndrcvinfo structure is normally only
3440  * used when a failed message is retrieved holding the value that was
3441  * sent down on the actual send call.  This option allows the setting of
3442  * a default context on an association basis that will be received on
3443  * reading messages from the peer.  This is especially helpful in the
3444  * one-2-many model for an application to keep some reference to an
3445  * internal state machine that is processing messages on the
3446  * association.  Note that the setting of this value only effects
3447  * received messages from the peer and does not effect the value that is
3448  * saved with outbound messages.
3449  */
3450 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3451 				   unsigned int optlen)
3452 {
3453 	struct sctp_assoc_value params;
3454 	struct sctp_sock *sp;
3455 	struct sctp_association *asoc;
3456 
3457 	if (optlen != sizeof(struct sctp_assoc_value))
3458 		return -EINVAL;
3459 	if (copy_from_user(&params, optval, optlen))
3460 		return -EFAULT;
3461 
3462 	sp = sctp_sk(sk);
3463 
3464 	if (params.assoc_id != 0) {
3465 		asoc = sctp_id2assoc(sk, params.assoc_id);
3466 		if (!asoc)
3467 			return -EINVAL;
3468 		asoc->default_rcv_context = params.assoc_value;
3469 	} else {
3470 		sp->default_rcv_context = params.assoc_value;
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 /*
3477  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3478  *
3479  * This options will at a minimum specify if the implementation is doing
3480  * fragmented interleave.  Fragmented interleave, for a one to many
3481  * socket, is when subsequent calls to receive a message may return
3482  * parts of messages from different associations.  Some implementations
3483  * may allow you to turn this value on or off.  If so, when turned off,
3484  * no fragment interleave will occur (which will cause a head of line
3485  * blocking amongst multiple associations sharing the same one to many
3486  * socket).  When this option is turned on, then each receive call may
3487  * come from a different association (thus the user must receive data
3488  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3489  * association each receive belongs to.
3490  *
3491  * This option takes a boolean value.  A non-zero value indicates that
3492  * fragmented interleave is on.  A value of zero indicates that
3493  * fragmented interleave is off.
3494  *
3495  * Note that it is important that an implementation that allows this
3496  * option to be turned on, have it off by default.  Otherwise an unaware
3497  * application using the one to many model may become confused and act
3498  * incorrectly.
3499  */
3500 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3501 					       char __user *optval,
3502 					       unsigned int optlen)
3503 {
3504 	int val;
3505 
3506 	if (optlen != sizeof(int))
3507 		return -EINVAL;
3508 	if (get_user(val, (int __user *)optval))
3509 		return -EFAULT;
3510 
3511 	sctp_sk(sk)->frag_interleave = !!val;
3512 
3513 	if (!sctp_sk(sk)->frag_interleave)
3514 		sctp_sk(sk)->strm_interleave = 0;
3515 
3516 	return 0;
3517 }
3518 
3519 /*
3520  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3521  *       (SCTP_PARTIAL_DELIVERY_POINT)
3522  *
3523  * This option will set or get the SCTP partial delivery point.  This
3524  * point is the size of a message where the partial delivery API will be
3525  * invoked to help free up rwnd space for the peer.  Setting this to a
3526  * lower value will cause partial deliveries to happen more often.  The
3527  * calls argument is an integer that sets or gets the partial delivery
3528  * point.  Note also that the call will fail if the user attempts to set
3529  * this value larger than the socket receive buffer size.
3530  *
3531  * Note that any single message having a length smaller than or equal to
3532  * the SCTP partial delivery point will be delivered in one single read
3533  * call as long as the user provided buffer is large enough to hold the
3534  * message.
3535  */
3536 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3537 						  char __user *optval,
3538 						  unsigned int optlen)
3539 {
3540 	u32 val;
3541 
3542 	if (optlen != sizeof(u32))
3543 		return -EINVAL;
3544 	if (get_user(val, (int __user *)optval))
3545 		return -EFAULT;
3546 
3547 	/* Note: We double the receive buffer from what the user sets
3548 	 * it to be, also initial rwnd is based on rcvbuf/2.
3549 	 */
3550 	if (val > (sk->sk_rcvbuf >> 1))
3551 		return -EINVAL;
3552 
3553 	sctp_sk(sk)->pd_point = val;
3554 
3555 	return 0; /* is this the right error code? */
3556 }
3557 
3558 /*
3559  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3560  *
3561  * This option will allow a user to change the maximum burst of packets
3562  * that can be emitted by this association.  Note that the default value
3563  * is 4, and some implementations may restrict this setting so that it
3564  * can only be lowered.
3565  *
3566  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3567  * future associations inheriting the socket value.
3568  */
3569 static int sctp_setsockopt_maxburst(struct sock *sk,
3570 				    char __user *optval,
3571 				    unsigned int optlen)
3572 {
3573 	struct sctp_assoc_value params;
3574 	struct sctp_sock *sp;
3575 	struct sctp_association *asoc;
3576 	int val;
3577 	int assoc_id = 0;
3578 
3579 	if (optlen == sizeof(int)) {
3580 		pr_warn_ratelimited(DEPRECATED
3581 				    "%s (pid %d) "
3582 				    "Use of int in max_burst socket option deprecated.\n"
3583 				    "Use struct sctp_assoc_value instead\n",
3584 				    current->comm, task_pid_nr(current));
3585 		if (copy_from_user(&val, optval, optlen))
3586 			return -EFAULT;
3587 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3588 		if (copy_from_user(&params, optval, optlen))
3589 			return -EFAULT;
3590 		val = params.assoc_value;
3591 		assoc_id = params.assoc_id;
3592 	} else
3593 		return -EINVAL;
3594 
3595 	sp = sctp_sk(sk);
3596 
3597 	if (assoc_id != 0) {
3598 		asoc = sctp_id2assoc(sk, assoc_id);
3599 		if (!asoc)
3600 			return -EINVAL;
3601 		asoc->max_burst = val;
3602 	} else
3603 		sp->max_burst = val;
3604 
3605 	return 0;
3606 }
3607 
3608 /*
3609  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3610  *
3611  * This set option adds a chunk type that the user is requesting to be
3612  * received only in an authenticated way.  Changes to the list of chunks
3613  * will only effect future associations on the socket.
3614  */
3615 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3616 				      char __user *optval,
3617 				      unsigned int optlen)
3618 {
3619 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3620 	struct sctp_authchunk val;
3621 
3622 	if (!ep->auth_enable)
3623 		return -EACCES;
3624 
3625 	if (optlen != sizeof(struct sctp_authchunk))
3626 		return -EINVAL;
3627 	if (copy_from_user(&val, optval, optlen))
3628 		return -EFAULT;
3629 
3630 	switch (val.sauth_chunk) {
3631 	case SCTP_CID_INIT:
3632 	case SCTP_CID_INIT_ACK:
3633 	case SCTP_CID_SHUTDOWN_COMPLETE:
3634 	case SCTP_CID_AUTH:
3635 		return -EINVAL;
3636 	}
3637 
3638 	/* add this chunk id to the endpoint */
3639 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3640 }
3641 
3642 /*
3643  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3644  *
3645  * This option gets or sets the list of HMAC algorithms that the local
3646  * endpoint requires the peer to use.
3647  */
3648 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3649 				      char __user *optval,
3650 				      unsigned int optlen)
3651 {
3652 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3653 	struct sctp_hmacalgo *hmacs;
3654 	u32 idents;
3655 	int err;
3656 
3657 	if (!ep->auth_enable)
3658 		return -EACCES;
3659 
3660 	if (optlen < sizeof(struct sctp_hmacalgo))
3661 		return -EINVAL;
3662 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3663 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3664 
3665 	hmacs = memdup_user(optval, optlen);
3666 	if (IS_ERR(hmacs))
3667 		return PTR_ERR(hmacs);
3668 
3669 	idents = hmacs->shmac_num_idents;
3670 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3671 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3672 		err = -EINVAL;
3673 		goto out;
3674 	}
3675 
3676 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3677 out:
3678 	kfree(hmacs);
3679 	return err;
3680 }
3681 
3682 /*
3683  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3684  *
3685  * This option will set a shared secret key which is used to build an
3686  * association shared key.
3687  */
3688 static int sctp_setsockopt_auth_key(struct sock *sk,
3689 				    char __user *optval,
3690 				    unsigned int optlen)
3691 {
3692 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3693 	struct sctp_authkey *authkey;
3694 	struct sctp_association *asoc;
3695 	int ret;
3696 
3697 	if (!ep->auth_enable)
3698 		return -EACCES;
3699 
3700 	if (optlen <= sizeof(struct sctp_authkey))
3701 		return -EINVAL;
3702 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3703 	 * this.
3704 	 */
3705 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
3706 					     sizeof(struct sctp_authkey));
3707 
3708 	authkey = memdup_user(optval, optlen);
3709 	if (IS_ERR(authkey))
3710 		return PTR_ERR(authkey);
3711 
3712 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3713 		ret = -EINVAL;
3714 		goto out;
3715 	}
3716 
3717 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3718 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3719 		ret = -EINVAL;
3720 		goto out;
3721 	}
3722 
3723 	ret = sctp_auth_set_key(ep, asoc, authkey);
3724 out:
3725 	kzfree(authkey);
3726 	return ret;
3727 }
3728 
3729 /*
3730  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3731  *
3732  * This option will get or set the active shared key to be used to build
3733  * the association shared key.
3734  */
3735 static int sctp_setsockopt_active_key(struct sock *sk,
3736 				      char __user *optval,
3737 				      unsigned int optlen)
3738 {
3739 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3740 	struct sctp_authkeyid val;
3741 	struct sctp_association *asoc;
3742 
3743 	if (!ep->auth_enable)
3744 		return -EACCES;
3745 
3746 	if (optlen != sizeof(struct sctp_authkeyid))
3747 		return -EINVAL;
3748 	if (copy_from_user(&val, optval, optlen))
3749 		return -EFAULT;
3750 
3751 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3752 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3753 		return -EINVAL;
3754 
3755 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3756 }
3757 
3758 /*
3759  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3760  *
3761  * This set option will delete a shared secret key from use.
3762  */
3763 static int sctp_setsockopt_del_key(struct sock *sk,
3764 				   char __user *optval,
3765 				   unsigned int optlen)
3766 {
3767 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3768 	struct sctp_authkeyid val;
3769 	struct sctp_association *asoc;
3770 
3771 	if (!ep->auth_enable)
3772 		return -EACCES;
3773 
3774 	if (optlen != sizeof(struct sctp_authkeyid))
3775 		return -EINVAL;
3776 	if (copy_from_user(&val, optval, optlen))
3777 		return -EFAULT;
3778 
3779 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3780 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3781 		return -EINVAL;
3782 
3783 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3784 
3785 }
3786 
3787 /*
3788  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3789  *
3790  * This set option will deactivate a shared secret key.
3791  */
3792 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3793 					  unsigned int optlen)
3794 {
3795 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3796 	struct sctp_authkeyid val;
3797 	struct sctp_association *asoc;
3798 
3799 	if (!ep->auth_enable)
3800 		return -EACCES;
3801 
3802 	if (optlen != sizeof(struct sctp_authkeyid))
3803 		return -EINVAL;
3804 	if (copy_from_user(&val, optval, optlen))
3805 		return -EFAULT;
3806 
3807 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3808 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3809 		return -EINVAL;
3810 
3811 	return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3812 }
3813 
3814 /*
3815  * 8.1.23 SCTP_AUTO_ASCONF
3816  *
3817  * This option will enable or disable the use of the automatic generation of
3818  * ASCONF chunks to add and delete addresses to an existing association.  Note
3819  * that this option has two caveats namely: a) it only affects sockets that
3820  * are bound to all addresses available to the SCTP stack, and b) the system
3821  * administrator may have an overriding control that turns the ASCONF feature
3822  * off no matter what setting the socket option may have.
3823  * This option expects an integer boolean flag, where a non-zero value turns on
3824  * the option, and a zero value turns off the option.
3825  * Note. In this implementation, socket operation overrides default parameter
3826  * being set by sysctl as well as FreeBSD implementation
3827  */
3828 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3829 					unsigned int optlen)
3830 {
3831 	int val;
3832 	struct sctp_sock *sp = sctp_sk(sk);
3833 
3834 	if (optlen < sizeof(int))
3835 		return -EINVAL;
3836 	if (get_user(val, (int __user *)optval))
3837 		return -EFAULT;
3838 	if (!sctp_is_ep_boundall(sk) && val)
3839 		return -EINVAL;
3840 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3841 		return 0;
3842 
3843 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3844 	if (val == 0 && sp->do_auto_asconf) {
3845 		list_del(&sp->auto_asconf_list);
3846 		sp->do_auto_asconf = 0;
3847 	} else if (val && !sp->do_auto_asconf) {
3848 		list_add_tail(&sp->auto_asconf_list,
3849 		    &sock_net(sk)->sctp.auto_asconf_splist);
3850 		sp->do_auto_asconf = 1;
3851 	}
3852 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3853 	return 0;
3854 }
3855 
3856 /*
3857  * SCTP_PEER_ADDR_THLDS
3858  *
3859  * This option allows us to alter the partially failed threshold for one or all
3860  * transports in an association.  See Section 6.1 of:
3861  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3862  */
3863 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3864 					    char __user *optval,
3865 					    unsigned int optlen)
3866 {
3867 	struct sctp_paddrthlds val;
3868 	struct sctp_transport *trans;
3869 	struct sctp_association *asoc;
3870 
3871 	if (optlen < sizeof(struct sctp_paddrthlds))
3872 		return -EINVAL;
3873 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3874 			   sizeof(struct sctp_paddrthlds)))
3875 		return -EFAULT;
3876 
3877 
3878 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3879 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3880 		if (!asoc)
3881 			return -ENOENT;
3882 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3883 				    transports) {
3884 			if (val.spt_pathmaxrxt)
3885 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3886 			trans->pf_retrans = val.spt_pathpfthld;
3887 		}
3888 
3889 		if (val.spt_pathmaxrxt)
3890 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3891 		asoc->pf_retrans = val.spt_pathpfthld;
3892 	} else {
3893 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3894 					       val.spt_assoc_id);
3895 		if (!trans)
3896 			return -ENOENT;
3897 
3898 		if (val.spt_pathmaxrxt)
3899 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3900 		trans->pf_retrans = val.spt_pathpfthld;
3901 	}
3902 
3903 	return 0;
3904 }
3905 
3906 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3907 				       char __user *optval,
3908 				       unsigned int optlen)
3909 {
3910 	int val;
3911 
3912 	if (optlen < sizeof(int))
3913 		return -EINVAL;
3914 	if (get_user(val, (int __user *) optval))
3915 		return -EFAULT;
3916 
3917 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3918 
3919 	return 0;
3920 }
3921 
3922 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3923 				       char __user *optval,
3924 				       unsigned int optlen)
3925 {
3926 	int val;
3927 
3928 	if (optlen < sizeof(int))
3929 		return -EINVAL;
3930 	if (get_user(val, (int __user *) optval))
3931 		return -EFAULT;
3932 
3933 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3934 
3935 	return 0;
3936 }
3937 
3938 static int sctp_setsockopt_pr_supported(struct sock *sk,
3939 					char __user *optval,
3940 					unsigned int optlen)
3941 {
3942 	struct sctp_assoc_value params;
3943 
3944 	if (optlen != sizeof(params))
3945 		return -EINVAL;
3946 
3947 	if (copy_from_user(&params, optval, optlen))
3948 		return -EFAULT;
3949 
3950 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
3951 
3952 	return 0;
3953 }
3954 
3955 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3956 					  char __user *optval,
3957 					  unsigned int optlen)
3958 {
3959 	struct sctp_default_prinfo info;
3960 	struct sctp_association *asoc;
3961 	int retval = -EINVAL;
3962 
3963 	if (optlen != sizeof(info))
3964 		goto out;
3965 
3966 	if (copy_from_user(&info, optval, sizeof(info))) {
3967 		retval = -EFAULT;
3968 		goto out;
3969 	}
3970 
3971 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3972 		goto out;
3973 
3974 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3975 		info.pr_value = 0;
3976 
3977 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3978 	if (asoc) {
3979 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3980 		asoc->default_timetolive = info.pr_value;
3981 	} else if (!info.pr_assoc_id) {
3982 		struct sctp_sock *sp = sctp_sk(sk);
3983 
3984 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3985 		sp->default_timetolive = info.pr_value;
3986 	} else {
3987 		goto out;
3988 	}
3989 
3990 	retval = 0;
3991 
3992 out:
3993 	return retval;
3994 }
3995 
3996 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3997 					      char __user *optval,
3998 					      unsigned int optlen)
3999 {
4000 	struct sctp_assoc_value params;
4001 	struct sctp_association *asoc;
4002 	int retval = -EINVAL;
4003 
4004 	if (optlen != sizeof(params))
4005 		goto out;
4006 
4007 	if (copy_from_user(&params, optval, optlen)) {
4008 		retval = -EFAULT;
4009 		goto out;
4010 	}
4011 
4012 	asoc = sctp_id2assoc(sk, params.assoc_id);
4013 	if (asoc) {
4014 		asoc->reconf_enable = !!params.assoc_value;
4015 	} else if (!params.assoc_id) {
4016 		struct sctp_sock *sp = sctp_sk(sk);
4017 
4018 		sp->ep->reconf_enable = !!params.assoc_value;
4019 	} else {
4020 		goto out;
4021 	}
4022 
4023 	retval = 0;
4024 
4025 out:
4026 	return retval;
4027 }
4028 
4029 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4030 					   char __user *optval,
4031 					   unsigned int optlen)
4032 {
4033 	struct sctp_assoc_value params;
4034 	struct sctp_association *asoc;
4035 	int retval = -EINVAL;
4036 
4037 	if (optlen != sizeof(params))
4038 		goto out;
4039 
4040 	if (copy_from_user(&params, optval, optlen)) {
4041 		retval = -EFAULT;
4042 		goto out;
4043 	}
4044 
4045 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4046 		goto out;
4047 
4048 	asoc = sctp_id2assoc(sk, params.assoc_id);
4049 	if (asoc) {
4050 		asoc->strreset_enable = params.assoc_value;
4051 	} else if (!params.assoc_id) {
4052 		struct sctp_sock *sp = sctp_sk(sk);
4053 
4054 		sp->ep->strreset_enable = params.assoc_value;
4055 	} else {
4056 		goto out;
4057 	}
4058 
4059 	retval = 0;
4060 
4061 out:
4062 	return retval;
4063 }
4064 
4065 static int sctp_setsockopt_reset_streams(struct sock *sk,
4066 					 char __user *optval,
4067 					 unsigned int optlen)
4068 {
4069 	struct sctp_reset_streams *params;
4070 	struct sctp_association *asoc;
4071 	int retval = -EINVAL;
4072 
4073 	if (optlen < sizeof(*params))
4074 		return -EINVAL;
4075 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4076 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4077 					     sizeof(__u16) * sizeof(*params));
4078 
4079 	params = memdup_user(optval, optlen);
4080 	if (IS_ERR(params))
4081 		return PTR_ERR(params);
4082 
4083 	if (params->srs_number_streams * sizeof(__u16) >
4084 	    optlen - sizeof(*params))
4085 		goto out;
4086 
4087 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4088 	if (!asoc)
4089 		goto out;
4090 
4091 	retval = sctp_send_reset_streams(asoc, params);
4092 
4093 out:
4094 	kfree(params);
4095 	return retval;
4096 }
4097 
4098 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4099 				       char __user *optval,
4100 				       unsigned int optlen)
4101 {
4102 	struct sctp_association *asoc;
4103 	sctp_assoc_t associd;
4104 	int retval = -EINVAL;
4105 
4106 	if (optlen != sizeof(associd))
4107 		goto out;
4108 
4109 	if (copy_from_user(&associd, optval, optlen)) {
4110 		retval = -EFAULT;
4111 		goto out;
4112 	}
4113 
4114 	asoc = sctp_id2assoc(sk, associd);
4115 	if (!asoc)
4116 		goto out;
4117 
4118 	retval = sctp_send_reset_assoc(asoc);
4119 
4120 out:
4121 	return retval;
4122 }
4123 
4124 static int sctp_setsockopt_add_streams(struct sock *sk,
4125 				       char __user *optval,
4126 				       unsigned int optlen)
4127 {
4128 	struct sctp_association *asoc;
4129 	struct sctp_add_streams params;
4130 	int retval = -EINVAL;
4131 
4132 	if (optlen != sizeof(params))
4133 		goto out;
4134 
4135 	if (copy_from_user(&params, optval, optlen)) {
4136 		retval = -EFAULT;
4137 		goto out;
4138 	}
4139 
4140 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4141 	if (!asoc)
4142 		goto out;
4143 
4144 	retval = sctp_send_add_streams(asoc, &params);
4145 
4146 out:
4147 	return retval;
4148 }
4149 
4150 static int sctp_setsockopt_scheduler(struct sock *sk,
4151 				     char __user *optval,
4152 				     unsigned int optlen)
4153 {
4154 	struct sctp_association *asoc;
4155 	struct sctp_assoc_value params;
4156 	int retval = -EINVAL;
4157 
4158 	if (optlen < sizeof(params))
4159 		goto out;
4160 
4161 	optlen = sizeof(params);
4162 	if (copy_from_user(&params, optval, optlen)) {
4163 		retval = -EFAULT;
4164 		goto out;
4165 	}
4166 
4167 	if (params.assoc_value > SCTP_SS_MAX)
4168 		goto out;
4169 
4170 	asoc = sctp_id2assoc(sk, params.assoc_id);
4171 	if (!asoc)
4172 		goto out;
4173 
4174 	retval = sctp_sched_set_sched(asoc, params.assoc_value);
4175 
4176 out:
4177 	return retval;
4178 }
4179 
4180 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4181 					   char __user *optval,
4182 					   unsigned int optlen)
4183 {
4184 	struct sctp_association *asoc;
4185 	struct sctp_stream_value params;
4186 	int retval = -EINVAL;
4187 
4188 	if (optlen < sizeof(params))
4189 		goto out;
4190 
4191 	optlen = sizeof(params);
4192 	if (copy_from_user(&params, optval, optlen)) {
4193 		retval = -EFAULT;
4194 		goto out;
4195 	}
4196 
4197 	asoc = sctp_id2assoc(sk, params.assoc_id);
4198 	if (!asoc)
4199 		goto out;
4200 
4201 	retval = sctp_sched_set_value(asoc, params.stream_id,
4202 				      params.stream_value, GFP_KERNEL);
4203 
4204 out:
4205 	return retval;
4206 }
4207 
4208 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4209 						  char __user *optval,
4210 						  unsigned int optlen)
4211 {
4212 	struct sctp_sock *sp = sctp_sk(sk);
4213 	struct net *net = sock_net(sk);
4214 	struct sctp_assoc_value params;
4215 	int retval = -EINVAL;
4216 
4217 	if (optlen < sizeof(params))
4218 		goto out;
4219 
4220 	optlen = sizeof(params);
4221 	if (copy_from_user(&params, optval, optlen)) {
4222 		retval = -EFAULT;
4223 		goto out;
4224 	}
4225 
4226 	if (params.assoc_id)
4227 		goto out;
4228 
4229 	if (!net->sctp.intl_enable || !sp->frag_interleave) {
4230 		retval = -EPERM;
4231 		goto out;
4232 	}
4233 
4234 	sp->strm_interleave = !!params.assoc_value;
4235 
4236 	retval = 0;
4237 
4238 out:
4239 	return retval;
4240 }
4241 
4242 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4243 				      unsigned int optlen)
4244 {
4245 	int val;
4246 
4247 	if (!sctp_style(sk, TCP))
4248 		return -EOPNOTSUPP;
4249 
4250 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4251 		return -EFAULT;
4252 
4253 	if (optlen < sizeof(int))
4254 		return -EINVAL;
4255 
4256 	if (get_user(val, (int __user *)optval))
4257 		return -EFAULT;
4258 
4259 	sctp_sk(sk)->reuse = !!val;
4260 
4261 	return 0;
4262 }
4263 
4264 /* API 6.2 setsockopt(), getsockopt()
4265  *
4266  * Applications use setsockopt() and getsockopt() to set or retrieve
4267  * socket options.  Socket options are used to change the default
4268  * behavior of sockets calls.  They are described in Section 7.
4269  *
4270  * The syntax is:
4271  *
4272  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4273  *                    int __user *optlen);
4274  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4275  *                    int optlen);
4276  *
4277  *   sd      - the socket descript.
4278  *   level   - set to IPPROTO_SCTP for all SCTP options.
4279  *   optname - the option name.
4280  *   optval  - the buffer to store the value of the option.
4281  *   optlen  - the size of the buffer.
4282  */
4283 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4284 			   char __user *optval, unsigned int optlen)
4285 {
4286 	int retval = 0;
4287 
4288 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4289 
4290 	/* I can hardly begin to describe how wrong this is.  This is
4291 	 * so broken as to be worse than useless.  The API draft
4292 	 * REALLY is NOT helpful here...  I am not convinced that the
4293 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4294 	 * are at all well-founded.
4295 	 */
4296 	if (level != SOL_SCTP) {
4297 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4298 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4299 		goto out_nounlock;
4300 	}
4301 
4302 	lock_sock(sk);
4303 
4304 	switch (optname) {
4305 	case SCTP_SOCKOPT_BINDX_ADD:
4306 		/* 'optlen' is the size of the addresses buffer. */
4307 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4308 					       optlen, SCTP_BINDX_ADD_ADDR);
4309 		break;
4310 
4311 	case SCTP_SOCKOPT_BINDX_REM:
4312 		/* 'optlen' is the size of the addresses buffer. */
4313 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4314 					       optlen, SCTP_BINDX_REM_ADDR);
4315 		break;
4316 
4317 	case SCTP_SOCKOPT_CONNECTX_OLD:
4318 		/* 'optlen' is the size of the addresses buffer. */
4319 		retval = sctp_setsockopt_connectx_old(sk,
4320 					    (struct sockaddr __user *)optval,
4321 					    optlen);
4322 		break;
4323 
4324 	case SCTP_SOCKOPT_CONNECTX:
4325 		/* 'optlen' is the size of the addresses buffer. */
4326 		retval = sctp_setsockopt_connectx(sk,
4327 					    (struct sockaddr __user *)optval,
4328 					    optlen);
4329 		break;
4330 
4331 	case SCTP_DISABLE_FRAGMENTS:
4332 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4333 		break;
4334 
4335 	case SCTP_EVENTS:
4336 		retval = sctp_setsockopt_events(sk, optval, optlen);
4337 		break;
4338 
4339 	case SCTP_AUTOCLOSE:
4340 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4341 		break;
4342 
4343 	case SCTP_PEER_ADDR_PARAMS:
4344 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4345 		break;
4346 
4347 	case SCTP_DELAYED_SACK:
4348 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4349 		break;
4350 	case SCTP_PARTIAL_DELIVERY_POINT:
4351 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4352 		break;
4353 
4354 	case SCTP_INITMSG:
4355 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4356 		break;
4357 	case SCTP_DEFAULT_SEND_PARAM:
4358 		retval = sctp_setsockopt_default_send_param(sk, optval,
4359 							    optlen);
4360 		break;
4361 	case SCTP_DEFAULT_SNDINFO:
4362 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4363 		break;
4364 	case SCTP_PRIMARY_ADDR:
4365 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4366 		break;
4367 	case SCTP_SET_PEER_PRIMARY_ADDR:
4368 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4369 		break;
4370 	case SCTP_NODELAY:
4371 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4372 		break;
4373 	case SCTP_RTOINFO:
4374 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4375 		break;
4376 	case SCTP_ASSOCINFO:
4377 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4378 		break;
4379 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4380 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4381 		break;
4382 	case SCTP_MAXSEG:
4383 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4384 		break;
4385 	case SCTP_ADAPTATION_LAYER:
4386 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4387 		break;
4388 	case SCTP_CONTEXT:
4389 		retval = sctp_setsockopt_context(sk, optval, optlen);
4390 		break;
4391 	case SCTP_FRAGMENT_INTERLEAVE:
4392 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4393 		break;
4394 	case SCTP_MAX_BURST:
4395 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4396 		break;
4397 	case SCTP_AUTH_CHUNK:
4398 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4399 		break;
4400 	case SCTP_HMAC_IDENT:
4401 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4402 		break;
4403 	case SCTP_AUTH_KEY:
4404 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4405 		break;
4406 	case SCTP_AUTH_ACTIVE_KEY:
4407 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4408 		break;
4409 	case SCTP_AUTH_DELETE_KEY:
4410 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4411 		break;
4412 	case SCTP_AUTH_DEACTIVATE_KEY:
4413 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4414 		break;
4415 	case SCTP_AUTO_ASCONF:
4416 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4417 		break;
4418 	case SCTP_PEER_ADDR_THLDS:
4419 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4420 		break;
4421 	case SCTP_RECVRCVINFO:
4422 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4423 		break;
4424 	case SCTP_RECVNXTINFO:
4425 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4426 		break;
4427 	case SCTP_PR_SUPPORTED:
4428 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4429 		break;
4430 	case SCTP_DEFAULT_PRINFO:
4431 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4432 		break;
4433 	case SCTP_RECONFIG_SUPPORTED:
4434 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4435 		break;
4436 	case SCTP_ENABLE_STREAM_RESET:
4437 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4438 		break;
4439 	case SCTP_RESET_STREAMS:
4440 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4441 		break;
4442 	case SCTP_RESET_ASSOC:
4443 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4444 		break;
4445 	case SCTP_ADD_STREAMS:
4446 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4447 		break;
4448 	case SCTP_STREAM_SCHEDULER:
4449 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4450 		break;
4451 	case SCTP_STREAM_SCHEDULER_VALUE:
4452 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4453 		break;
4454 	case SCTP_INTERLEAVING_SUPPORTED:
4455 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4456 								optlen);
4457 		break;
4458 	case SCTP_REUSE_PORT:
4459 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4460 		break;
4461 	default:
4462 		retval = -ENOPROTOOPT;
4463 		break;
4464 	}
4465 
4466 	release_sock(sk);
4467 
4468 out_nounlock:
4469 	return retval;
4470 }
4471 
4472 /* API 3.1.6 connect() - UDP Style Syntax
4473  *
4474  * An application may use the connect() call in the UDP model to initiate an
4475  * association without sending data.
4476  *
4477  * The syntax is:
4478  *
4479  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4480  *
4481  * sd: the socket descriptor to have a new association added to.
4482  *
4483  * nam: the address structure (either struct sockaddr_in or struct
4484  *    sockaddr_in6 defined in RFC2553 [7]).
4485  *
4486  * len: the size of the address.
4487  */
4488 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4489 			int addr_len, int flags)
4490 {
4491 	struct inet_sock *inet = inet_sk(sk);
4492 	struct sctp_af *af;
4493 	int err = 0;
4494 
4495 	lock_sock(sk);
4496 
4497 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4498 		 addr, addr_len);
4499 
4500 	/* We may need to bind the socket. */
4501 	if (!inet->inet_num) {
4502 		if (sk->sk_prot->get_port(sk, 0)) {
4503 			release_sock(sk);
4504 			return -EAGAIN;
4505 		}
4506 		inet->inet_sport = htons(inet->inet_num);
4507 	}
4508 
4509 	/* Validate addr_len before calling common connect/connectx routine. */
4510 	af = sctp_get_af_specific(addr->sa_family);
4511 	if (!af || addr_len < af->sockaddr_len) {
4512 		err = -EINVAL;
4513 	} else {
4514 		/* Pass correct addr len to common routine (so it knows there
4515 		 * is only one address being passed.
4516 		 */
4517 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4518 	}
4519 
4520 	release_sock(sk);
4521 	return err;
4522 }
4523 
4524 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4525 		      int addr_len, int flags)
4526 {
4527 	if (addr_len < sizeof(uaddr->sa_family))
4528 		return -EINVAL;
4529 
4530 	if (uaddr->sa_family == AF_UNSPEC)
4531 		return -EOPNOTSUPP;
4532 
4533 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4534 }
4535 
4536 /* FIXME: Write comments. */
4537 static int sctp_disconnect(struct sock *sk, int flags)
4538 {
4539 	return -EOPNOTSUPP; /* STUB */
4540 }
4541 
4542 /* 4.1.4 accept() - TCP Style Syntax
4543  *
4544  * Applications use accept() call to remove an established SCTP
4545  * association from the accept queue of the endpoint.  A new socket
4546  * descriptor will be returned from accept() to represent the newly
4547  * formed association.
4548  */
4549 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4550 {
4551 	struct sctp_sock *sp;
4552 	struct sctp_endpoint *ep;
4553 	struct sock *newsk = NULL;
4554 	struct sctp_association *asoc;
4555 	long timeo;
4556 	int error = 0;
4557 
4558 	lock_sock(sk);
4559 
4560 	sp = sctp_sk(sk);
4561 	ep = sp->ep;
4562 
4563 	if (!sctp_style(sk, TCP)) {
4564 		error = -EOPNOTSUPP;
4565 		goto out;
4566 	}
4567 
4568 	if (!sctp_sstate(sk, LISTENING)) {
4569 		error = -EINVAL;
4570 		goto out;
4571 	}
4572 
4573 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4574 
4575 	error = sctp_wait_for_accept(sk, timeo);
4576 	if (error)
4577 		goto out;
4578 
4579 	/* We treat the list of associations on the endpoint as the accept
4580 	 * queue and pick the first association on the list.
4581 	 */
4582 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4583 
4584 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4585 	if (!newsk) {
4586 		error = -ENOMEM;
4587 		goto out;
4588 	}
4589 
4590 	/* Populate the fields of the newsk from the oldsk and migrate the
4591 	 * asoc to the newsk.
4592 	 */
4593 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4594 
4595 out:
4596 	release_sock(sk);
4597 	*err = error;
4598 	return newsk;
4599 }
4600 
4601 /* The SCTP ioctl handler. */
4602 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4603 {
4604 	int rc = -ENOTCONN;
4605 
4606 	lock_sock(sk);
4607 
4608 	/*
4609 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4610 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4611 	 */
4612 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4613 		goto out;
4614 
4615 	switch (cmd) {
4616 	case SIOCINQ: {
4617 		struct sk_buff *skb;
4618 		unsigned int amount = 0;
4619 
4620 		skb = skb_peek(&sk->sk_receive_queue);
4621 		if (skb != NULL) {
4622 			/*
4623 			 * We will only return the amount of this packet since
4624 			 * that is all that will be read.
4625 			 */
4626 			amount = skb->len;
4627 		}
4628 		rc = put_user(amount, (int __user *)arg);
4629 		break;
4630 	}
4631 	default:
4632 		rc = -ENOIOCTLCMD;
4633 		break;
4634 	}
4635 out:
4636 	release_sock(sk);
4637 	return rc;
4638 }
4639 
4640 /* This is the function which gets called during socket creation to
4641  * initialized the SCTP-specific portion of the sock.
4642  * The sock structure should already be zero-filled memory.
4643  */
4644 static int sctp_init_sock(struct sock *sk)
4645 {
4646 	struct net *net = sock_net(sk);
4647 	struct sctp_sock *sp;
4648 
4649 	pr_debug("%s: sk:%p\n", __func__, sk);
4650 
4651 	sp = sctp_sk(sk);
4652 
4653 	/* Initialize the SCTP per socket area.  */
4654 	switch (sk->sk_type) {
4655 	case SOCK_SEQPACKET:
4656 		sp->type = SCTP_SOCKET_UDP;
4657 		break;
4658 	case SOCK_STREAM:
4659 		sp->type = SCTP_SOCKET_TCP;
4660 		break;
4661 	default:
4662 		return -ESOCKTNOSUPPORT;
4663 	}
4664 
4665 	sk->sk_gso_type = SKB_GSO_SCTP;
4666 
4667 	/* Initialize default send parameters. These parameters can be
4668 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4669 	 */
4670 	sp->default_stream = 0;
4671 	sp->default_ppid = 0;
4672 	sp->default_flags = 0;
4673 	sp->default_context = 0;
4674 	sp->default_timetolive = 0;
4675 
4676 	sp->default_rcv_context = 0;
4677 	sp->max_burst = net->sctp.max_burst;
4678 
4679 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4680 
4681 	/* Initialize default setup parameters. These parameters
4682 	 * can be modified with the SCTP_INITMSG socket option or
4683 	 * overridden by the SCTP_INIT CMSG.
4684 	 */
4685 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4686 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4687 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4688 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4689 
4690 	/* Initialize default RTO related parameters.  These parameters can
4691 	 * be modified for with the SCTP_RTOINFO socket option.
4692 	 */
4693 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4694 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4695 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4696 
4697 	/* Initialize default association related parameters. These parameters
4698 	 * can be modified with the SCTP_ASSOCINFO socket option.
4699 	 */
4700 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4701 	sp->assocparams.sasoc_number_peer_destinations = 0;
4702 	sp->assocparams.sasoc_peer_rwnd = 0;
4703 	sp->assocparams.sasoc_local_rwnd = 0;
4704 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4705 
4706 	/* Initialize default event subscriptions. By default, all the
4707 	 * options are off.
4708 	 */
4709 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4710 
4711 	/* Default Peer Address Parameters.  These defaults can
4712 	 * be modified via SCTP_PEER_ADDR_PARAMS
4713 	 */
4714 	sp->hbinterval  = net->sctp.hb_interval;
4715 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4716 	sp->pathmtu     = 0; /* allow default discovery */
4717 	sp->sackdelay   = net->sctp.sack_timeout;
4718 	sp->sackfreq	= 2;
4719 	sp->param_flags = SPP_HB_ENABLE |
4720 			  SPP_PMTUD_ENABLE |
4721 			  SPP_SACKDELAY_ENABLE;
4722 
4723 	/* If enabled no SCTP message fragmentation will be performed.
4724 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4725 	 */
4726 	sp->disable_fragments = 0;
4727 
4728 	/* Enable Nagle algorithm by default.  */
4729 	sp->nodelay           = 0;
4730 
4731 	sp->recvrcvinfo = 0;
4732 	sp->recvnxtinfo = 0;
4733 
4734 	/* Enable by default. */
4735 	sp->v4mapped          = 1;
4736 
4737 	/* Auto-close idle associations after the configured
4738 	 * number of seconds.  A value of 0 disables this
4739 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4740 	 * for UDP-style sockets only.
4741 	 */
4742 	sp->autoclose         = 0;
4743 
4744 	/* User specified fragmentation limit. */
4745 	sp->user_frag         = 0;
4746 
4747 	sp->adaptation_ind = 0;
4748 
4749 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4750 
4751 	/* Control variables for partial data delivery. */
4752 	atomic_set(&sp->pd_mode, 0);
4753 	skb_queue_head_init(&sp->pd_lobby);
4754 	sp->frag_interleave = 0;
4755 
4756 	/* Create a per socket endpoint structure.  Even if we
4757 	 * change the data structure relationships, this may still
4758 	 * be useful for storing pre-connect address information.
4759 	 */
4760 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4761 	if (!sp->ep)
4762 		return -ENOMEM;
4763 
4764 	sp->hmac = NULL;
4765 
4766 	sk->sk_destruct = sctp_destruct_sock;
4767 
4768 	SCTP_DBG_OBJCNT_INC(sock);
4769 
4770 	local_bh_disable();
4771 	sk_sockets_allocated_inc(sk);
4772 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4773 
4774 	/* Nothing can fail after this block, otherwise
4775 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4776 	 */
4777 	if (net->sctp.default_auto_asconf) {
4778 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4779 		list_add_tail(&sp->auto_asconf_list,
4780 		    &net->sctp.auto_asconf_splist);
4781 		sp->do_auto_asconf = 1;
4782 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4783 	} else {
4784 		sp->do_auto_asconf = 0;
4785 	}
4786 
4787 	local_bh_enable();
4788 
4789 	return 0;
4790 }
4791 
4792 /* Cleanup any SCTP per socket resources. Must be called with
4793  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4794  */
4795 static void sctp_destroy_sock(struct sock *sk)
4796 {
4797 	struct sctp_sock *sp;
4798 
4799 	pr_debug("%s: sk:%p\n", __func__, sk);
4800 
4801 	/* Release our hold on the endpoint. */
4802 	sp = sctp_sk(sk);
4803 	/* This could happen during socket init, thus we bail out
4804 	 * early, since the rest of the below is not setup either.
4805 	 */
4806 	if (sp->ep == NULL)
4807 		return;
4808 
4809 	if (sp->do_auto_asconf) {
4810 		sp->do_auto_asconf = 0;
4811 		list_del(&sp->auto_asconf_list);
4812 	}
4813 	sctp_endpoint_free(sp->ep);
4814 	local_bh_disable();
4815 	sk_sockets_allocated_dec(sk);
4816 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4817 	local_bh_enable();
4818 }
4819 
4820 /* Triggered when there are no references on the socket anymore */
4821 static void sctp_destruct_sock(struct sock *sk)
4822 {
4823 	struct sctp_sock *sp = sctp_sk(sk);
4824 
4825 	/* Free up the HMAC transform. */
4826 	crypto_free_shash(sp->hmac);
4827 
4828 	inet_sock_destruct(sk);
4829 }
4830 
4831 /* API 4.1.7 shutdown() - TCP Style Syntax
4832  *     int shutdown(int socket, int how);
4833  *
4834  *     sd      - the socket descriptor of the association to be closed.
4835  *     how     - Specifies the type of shutdown.  The  values  are
4836  *               as follows:
4837  *               SHUT_RD
4838  *                     Disables further receive operations. No SCTP
4839  *                     protocol action is taken.
4840  *               SHUT_WR
4841  *                     Disables further send operations, and initiates
4842  *                     the SCTP shutdown sequence.
4843  *               SHUT_RDWR
4844  *                     Disables further send  and  receive  operations
4845  *                     and initiates the SCTP shutdown sequence.
4846  */
4847 static void sctp_shutdown(struct sock *sk, int how)
4848 {
4849 	struct net *net = sock_net(sk);
4850 	struct sctp_endpoint *ep;
4851 
4852 	if (!sctp_style(sk, TCP))
4853 		return;
4854 
4855 	ep = sctp_sk(sk)->ep;
4856 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4857 		struct sctp_association *asoc;
4858 
4859 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
4860 		asoc = list_entry(ep->asocs.next,
4861 				  struct sctp_association, asocs);
4862 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4863 	}
4864 }
4865 
4866 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4867 		       struct sctp_info *info)
4868 {
4869 	struct sctp_transport *prim;
4870 	struct list_head *pos;
4871 	int mask;
4872 
4873 	memset(info, 0, sizeof(*info));
4874 	if (!asoc) {
4875 		struct sctp_sock *sp = sctp_sk(sk);
4876 
4877 		info->sctpi_s_autoclose = sp->autoclose;
4878 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4879 		info->sctpi_s_pd_point = sp->pd_point;
4880 		info->sctpi_s_nodelay = sp->nodelay;
4881 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4882 		info->sctpi_s_v4mapped = sp->v4mapped;
4883 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4884 		info->sctpi_s_type = sp->type;
4885 
4886 		return 0;
4887 	}
4888 
4889 	info->sctpi_tag = asoc->c.my_vtag;
4890 	info->sctpi_state = asoc->state;
4891 	info->sctpi_rwnd = asoc->a_rwnd;
4892 	info->sctpi_unackdata = asoc->unack_data;
4893 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4894 	info->sctpi_instrms = asoc->stream.incnt;
4895 	info->sctpi_outstrms = asoc->stream.outcnt;
4896 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4897 		info->sctpi_inqueue++;
4898 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4899 		info->sctpi_outqueue++;
4900 	info->sctpi_overall_error = asoc->overall_error_count;
4901 	info->sctpi_max_burst = asoc->max_burst;
4902 	info->sctpi_maxseg = asoc->frag_point;
4903 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4904 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4905 
4906 	mask = asoc->peer.ecn_capable << 1;
4907 	mask = (mask | asoc->peer.ipv4_address) << 1;
4908 	mask = (mask | asoc->peer.ipv6_address) << 1;
4909 	mask = (mask | asoc->peer.hostname_address) << 1;
4910 	mask = (mask | asoc->peer.asconf_capable) << 1;
4911 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4912 	mask = (mask | asoc->peer.auth_capable);
4913 	info->sctpi_peer_capable = mask;
4914 	mask = asoc->peer.sack_needed << 1;
4915 	mask = (mask | asoc->peer.sack_generation) << 1;
4916 	mask = (mask | asoc->peer.zero_window_announced);
4917 	info->sctpi_peer_sack = mask;
4918 
4919 	info->sctpi_isacks = asoc->stats.isacks;
4920 	info->sctpi_osacks = asoc->stats.osacks;
4921 	info->sctpi_opackets = asoc->stats.opackets;
4922 	info->sctpi_ipackets = asoc->stats.ipackets;
4923 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4924 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4925 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4926 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4927 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4928 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4929 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4930 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4931 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4932 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4933 
4934 	prim = asoc->peer.primary_path;
4935 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4936 	info->sctpi_p_state = prim->state;
4937 	info->sctpi_p_cwnd = prim->cwnd;
4938 	info->sctpi_p_srtt = prim->srtt;
4939 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4940 	info->sctpi_p_hbinterval = prim->hbinterval;
4941 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4942 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4943 	info->sctpi_p_ssthresh = prim->ssthresh;
4944 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4945 	info->sctpi_p_flight_size = prim->flight_size;
4946 	info->sctpi_p_error = prim->error_count;
4947 
4948 	return 0;
4949 }
4950 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4951 
4952 /* use callback to avoid exporting the core structure */
4953 void sctp_transport_walk_start(struct rhashtable_iter *iter)
4954 {
4955 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
4956 
4957 	rhashtable_walk_start(iter);
4958 }
4959 
4960 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4961 {
4962 	rhashtable_walk_stop(iter);
4963 	rhashtable_walk_exit(iter);
4964 }
4965 
4966 struct sctp_transport *sctp_transport_get_next(struct net *net,
4967 					       struct rhashtable_iter *iter)
4968 {
4969 	struct sctp_transport *t;
4970 
4971 	t = rhashtable_walk_next(iter);
4972 	for (; t; t = rhashtable_walk_next(iter)) {
4973 		if (IS_ERR(t)) {
4974 			if (PTR_ERR(t) == -EAGAIN)
4975 				continue;
4976 			break;
4977 		}
4978 
4979 		if (!sctp_transport_hold(t))
4980 			continue;
4981 
4982 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
4983 		    t->asoc->peer.primary_path == t)
4984 			break;
4985 
4986 		sctp_transport_put(t);
4987 	}
4988 
4989 	return t;
4990 }
4991 
4992 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4993 					      struct rhashtable_iter *iter,
4994 					      int pos)
4995 {
4996 	struct sctp_transport *t;
4997 
4998 	if (!pos)
4999 		return SEQ_START_TOKEN;
5000 
5001 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5002 		if (!--pos)
5003 			break;
5004 		sctp_transport_put(t);
5005 	}
5006 
5007 	return t;
5008 }
5009 
5010 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5011 			   void *p) {
5012 	int err = 0;
5013 	int hash = 0;
5014 	struct sctp_ep_common *epb;
5015 	struct sctp_hashbucket *head;
5016 
5017 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5018 	     hash++, head++) {
5019 		read_lock_bh(&head->lock);
5020 		sctp_for_each_hentry(epb, &head->chain) {
5021 			err = cb(sctp_ep(epb), p);
5022 			if (err)
5023 				break;
5024 		}
5025 		read_unlock_bh(&head->lock);
5026 	}
5027 
5028 	return err;
5029 }
5030 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5031 
5032 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5033 				  struct net *net,
5034 				  const union sctp_addr *laddr,
5035 				  const union sctp_addr *paddr, void *p)
5036 {
5037 	struct sctp_transport *transport;
5038 	int err;
5039 
5040 	rcu_read_lock();
5041 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5042 	rcu_read_unlock();
5043 	if (!transport)
5044 		return -ENOENT;
5045 
5046 	err = cb(transport, p);
5047 	sctp_transport_put(transport);
5048 
5049 	return err;
5050 }
5051 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5052 
5053 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5054 			    int (*cb_done)(struct sctp_transport *, void *),
5055 			    struct net *net, int *pos, void *p) {
5056 	struct rhashtable_iter hti;
5057 	struct sctp_transport *tsp;
5058 	int ret;
5059 
5060 again:
5061 	ret = 0;
5062 	sctp_transport_walk_start(&hti);
5063 
5064 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5065 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5066 		ret = cb(tsp, p);
5067 		if (ret)
5068 			break;
5069 		(*pos)++;
5070 		sctp_transport_put(tsp);
5071 	}
5072 	sctp_transport_walk_stop(&hti);
5073 
5074 	if (ret) {
5075 		if (cb_done && !cb_done(tsp, p)) {
5076 			(*pos)++;
5077 			sctp_transport_put(tsp);
5078 			goto again;
5079 		}
5080 		sctp_transport_put(tsp);
5081 	}
5082 
5083 	return ret;
5084 }
5085 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5086 
5087 /* 7.2.1 Association Status (SCTP_STATUS)
5088 
5089  * Applications can retrieve current status information about an
5090  * association, including association state, peer receiver window size,
5091  * number of unacked data chunks, and number of data chunks pending
5092  * receipt.  This information is read-only.
5093  */
5094 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5095 				       char __user *optval,
5096 				       int __user *optlen)
5097 {
5098 	struct sctp_status status;
5099 	struct sctp_association *asoc = NULL;
5100 	struct sctp_transport *transport;
5101 	sctp_assoc_t associd;
5102 	int retval = 0;
5103 
5104 	if (len < sizeof(status)) {
5105 		retval = -EINVAL;
5106 		goto out;
5107 	}
5108 
5109 	len = sizeof(status);
5110 	if (copy_from_user(&status, optval, len)) {
5111 		retval = -EFAULT;
5112 		goto out;
5113 	}
5114 
5115 	associd = status.sstat_assoc_id;
5116 	asoc = sctp_id2assoc(sk, associd);
5117 	if (!asoc) {
5118 		retval = -EINVAL;
5119 		goto out;
5120 	}
5121 
5122 	transport = asoc->peer.primary_path;
5123 
5124 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5125 	status.sstat_state = sctp_assoc_to_state(asoc);
5126 	status.sstat_rwnd =  asoc->peer.rwnd;
5127 	status.sstat_unackdata = asoc->unack_data;
5128 
5129 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5130 	status.sstat_instrms = asoc->stream.incnt;
5131 	status.sstat_outstrms = asoc->stream.outcnt;
5132 	status.sstat_fragmentation_point = asoc->frag_point;
5133 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5134 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5135 			transport->af_specific->sockaddr_len);
5136 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5137 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5138 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5139 	status.sstat_primary.spinfo_state = transport->state;
5140 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5141 	status.sstat_primary.spinfo_srtt = transport->srtt;
5142 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5143 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5144 
5145 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5146 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5147 
5148 	if (put_user(len, optlen)) {
5149 		retval = -EFAULT;
5150 		goto out;
5151 	}
5152 
5153 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5154 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5155 		 status.sstat_assoc_id);
5156 
5157 	if (copy_to_user(optval, &status, len)) {
5158 		retval = -EFAULT;
5159 		goto out;
5160 	}
5161 
5162 out:
5163 	return retval;
5164 }
5165 
5166 
5167 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5168  *
5169  * Applications can retrieve information about a specific peer address
5170  * of an association, including its reachability state, congestion
5171  * window, and retransmission timer values.  This information is
5172  * read-only.
5173  */
5174 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5175 					  char __user *optval,
5176 					  int __user *optlen)
5177 {
5178 	struct sctp_paddrinfo pinfo;
5179 	struct sctp_transport *transport;
5180 	int retval = 0;
5181 
5182 	if (len < sizeof(pinfo)) {
5183 		retval = -EINVAL;
5184 		goto out;
5185 	}
5186 
5187 	len = sizeof(pinfo);
5188 	if (copy_from_user(&pinfo, optval, len)) {
5189 		retval = -EFAULT;
5190 		goto out;
5191 	}
5192 
5193 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5194 					   pinfo.spinfo_assoc_id);
5195 	if (!transport)
5196 		return -EINVAL;
5197 
5198 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5199 	pinfo.spinfo_state = transport->state;
5200 	pinfo.spinfo_cwnd = transport->cwnd;
5201 	pinfo.spinfo_srtt = transport->srtt;
5202 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5203 	pinfo.spinfo_mtu = transport->pathmtu;
5204 
5205 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5206 		pinfo.spinfo_state = SCTP_ACTIVE;
5207 
5208 	if (put_user(len, optlen)) {
5209 		retval = -EFAULT;
5210 		goto out;
5211 	}
5212 
5213 	if (copy_to_user(optval, &pinfo, len)) {
5214 		retval = -EFAULT;
5215 		goto out;
5216 	}
5217 
5218 out:
5219 	return retval;
5220 }
5221 
5222 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5223  *
5224  * This option is a on/off flag.  If enabled no SCTP message
5225  * fragmentation will be performed.  Instead if a message being sent
5226  * exceeds the current PMTU size, the message will NOT be sent and
5227  * instead a error will be indicated to the user.
5228  */
5229 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5230 					char __user *optval, int __user *optlen)
5231 {
5232 	int val;
5233 
5234 	if (len < sizeof(int))
5235 		return -EINVAL;
5236 
5237 	len = sizeof(int);
5238 	val = (sctp_sk(sk)->disable_fragments == 1);
5239 	if (put_user(len, optlen))
5240 		return -EFAULT;
5241 	if (copy_to_user(optval, &val, len))
5242 		return -EFAULT;
5243 	return 0;
5244 }
5245 
5246 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5247  *
5248  * This socket option is used to specify various notifications and
5249  * ancillary data the user wishes to receive.
5250  */
5251 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5252 				  int __user *optlen)
5253 {
5254 	if (len == 0)
5255 		return -EINVAL;
5256 	if (len > sizeof(struct sctp_event_subscribe))
5257 		len = sizeof(struct sctp_event_subscribe);
5258 	if (put_user(len, optlen))
5259 		return -EFAULT;
5260 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
5261 		return -EFAULT;
5262 	return 0;
5263 }
5264 
5265 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5266  *
5267  * This socket option is applicable to the UDP-style socket only.  When
5268  * set it will cause associations that are idle for more than the
5269  * specified number of seconds to automatically close.  An association
5270  * being idle is defined an association that has NOT sent or received
5271  * user data.  The special value of '0' indicates that no automatic
5272  * close of any associations should be performed.  The option expects an
5273  * integer defining the number of seconds of idle time before an
5274  * association is closed.
5275  */
5276 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5277 {
5278 	/* Applicable to UDP-style socket only */
5279 	if (sctp_style(sk, TCP))
5280 		return -EOPNOTSUPP;
5281 	if (len < sizeof(int))
5282 		return -EINVAL;
5283 	len = sizeof(int);
5284 	if (put_user(len, optlen))
5285 		return -EFAULT;
5286 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5287 		return -EFAULT;
5288 	return 0;
5289 }
5290 
5291 /* Helper routine to branch off an association to a new socket.  */
5292 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5293 {
5294 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5295 	struct sctp_sock *sp = sctp_sk(sk);
5296 	struct socket *sock;
5297 	int err = 0;
5298 
5299 	/* Do not peel off from one netns to another one. */
5300 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5301 		return -EINVAL;
5302 
5303 	if (!asoc)
5304 		return -EINVAL;
5305 
5306 	/* An association cannot be branched off from an already peeled-off
5307 	 * socket, nor is this supported for tcp style sockets.
5308 	 */
5309 	if (!sctp_style(sk, UDP))
5310 		return -EINVAL;
5311 
5312 	/* Create a new socket.  */
5313 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5314 	if (err < 0)
5315 		return err;
5316 
5317 	sctp_copy_sock(sock->sk, sk, asoc);
5318 
5319 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5320 	 * Set the daddr and initialize id to something more random and also
5321 	 * copy over any ip options.
5322 	 */
5323 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5324 	sp->pf->copy_ip_options(sk, sock->sk);
5325 
5326 	/* Populate the fields of the newsk from the oldsk and migrate the
5327 	 * asoc to the newsk.
5328 	 */
5329 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5330 
5331 	*sockp = sock;
5332 
5333 	return err;
5334 }
5335 EXPORT_SYMBOL(sctp_do_peeloff);
5336 
5337 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5338 					  struct file **newfile, unsigned flags)
5339 {
5340 	struct socket *newsock;
5341 	int retval;
5342 
5343 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5344 	if (retval < 0)
5345 		goto out;
5346 
5347 	/* Map the socket to an unused fd that can be returned to the user.  */
5348 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5349 	if (retval < 0) {
5350 		sock_release(newsock);
5351 		goto out;
5352 	}
5353 
5354 	*newfile = sock_alloc_file(newsock, 0, NULL);
5355 	if (IS_ERR(*newfile)) {
5356 		put_unused_fd(retval);
5357 		retval = PTR_ERR(*newfile);
5358 		*newfile = NULL;
5359 		return retval;
5360 	}
5361 
5362 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5363 		 retval);
5364 
5365 	peeloff->sd = retval;
5366 
5367 	if (flags & SOCK_NONBLOCK)
5368 		(*newfile)->f_flags |= O_NONBLOCK;
5369 out:
5370 	return retval;
5371 }
5372 
5373 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5374 {
5375 	sctp_peeloff_arg_t peeloff;
5376 	struct file *newfile = NULL;
5377 	int retval = 0;
5378 
5379 	if (len < sizeof(sctp_peeloff_arg_t))
5380 		return -EINVAL;
5381 	len = sizeof(sctp_peeloff_arg_t);
5382 	if (copy_from_user(&peeloff, optval, len))
5383 		return -EFAULT;
5384 
5385 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5386 	if (retval < 0)
5387 		goto out;
5388 
5389 	/* Return the fd mapped to the new socket.  */
5390 	if (put_user(len, optlen)) {
5391 		fput(newfile);
5392 		put_unused_fd(retval);
5393 		return -EFAULT;
5394 	}
5395 
5396 	if (copy_to_user(optval, &peeloff, len)) {
5397 		fput(newfile);
5398 		put_unused_fd(retval);
5399 		return -EFAULT;
5400 	}
5401 	fd_install(retval, newfile);
5402 out:
5403 	return retval;
5404 }
5405 
5406 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5407 					 char __user *optval, int __user *optlen)
5408 {
5409 	sctp_peeloff_flags_arg_t peeloff;
5410 	struct file *newfile = NULL;
5411 	int retval = 0;
5412 
5413 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5414 		return -EINVAL;
5415 	len = sizeof(sctp_peeloff_flags_arg_t);
5416 	if (copy_from_user(&peeloff, optval, len))
5417 		return -EFAULT;
5418 
5419 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5420 						&newfile, peeloff.flags);
5421 	if (retval < 0)
5422 		goto out;
5423 
5424 	/* Return the fd mapped to the new socket.  */
5425 	if (put_user(len, optlen)) {
5426 		fput(newfile);
5427 		put_unused_fd(retval);
5428 		return -EFAULT;
5429 	}
5430 
5431 	if (copy_to_user(optval, &peeloff, len)) {
5432 		fput(newfile);
5433 		put_unused_fd(retval);
5434 		return -EFAULT;
5435 	}
5436 	fd_install(retval, newfile);
5437 out:
5438 	return retval;
5439 }
5440 
5441 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5442  *
5443  * Applications can enable or disable heartbeats for any peer address of
5444  * an association, modify an address's heartbeat interval, force a
5445  * heartbeat to be sent immediately, and adjust the address's maximum
5446  * number of retransmissions sent before an address is considered
5447  * unreachable.  The following structure is used to access and modify an
5448  * address's parameters:
5449  *
5450  *  struct sctp_paddrparams {
5451  *     sctp_assoc_t            spp_assoc_id;
5452  *     struct sockaddr_storage spp_address;
5453  *     uint32_t                spp_hbinterval;
5454  *     uint16_t                spp_pathmaxrxt;
5455  *     uint32_t                spp_pathmtu;
5456  *     uint32_t                spp_sackdelay;
5457  *     uint32_t                spp_flags;
5458  * };
5459  *
5460  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5461  *                     application, and identifies the association for
5462  *                     this query.
5463  *   spp_address     - This specifies which address is of interest.
5464  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5465  *                     in milliseconds.  If a  value of zero
5466  *                     is present in this field then no changes are to
5467  *                     be made to this parameter.
5468  *   spp_pathmaxrxt  - This contains the maximum number of
5469  *                     retransmissions before this address shall be
5470  *                     considered unreachable. If a  value of zero
5471  *                     is present in this field then no changes are to
5472  *                     be made to this parameter.
5473  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5474  *                     specified here will be the "fixed" path mtu.
5475  *                     Note that if the spp_address field is empty
5476  *                     then all associations on this address will
5477  *                     have this fixed path mtu set upon them.
5478  *
5479  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5480  *                     the number of milliseconds that sacks will be delayed
5481  *                     for. This value will apply to all addresses of an
5482  *                     association if the spp_address field is empty. Note
5483  *                     also, that if delayed sack is enabled and this
5484  *                     value is set to 0, no change is made to the last
5485  *                     recorded delayed sack timer value.
5486  *
5487  *   spp_flags       - These flags are used to control various features
5488  *                     on an association. The flag field may contain
5489  *                     zero or more of the following options.
5490  *
5491  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5492  *                     specified address. Note that if the address
5493  *                     field is empty all addresses for the association
5494  *                     have heartbeats enabled upon them.
5495  *
5496  *                     SPP_HB_DISABLE - Disable heartbeats on the
5497  *                     speicifed address. Note that if the address
5498  *                     field is empty all addresses for the association
5499  *                     will have their heartbeats disabled. Note also
5500  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5501  *                     mutually exclusive, only one of these two should
5502  *                     be specified. Enabling both fields will have
5503  *                     undetermined results.
5504  *
5505  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5506  *                     to be made immediately.
5507  *
5508  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5509  *                     discovery upon the specified address. Note that
5510  *                     if the address feild is empty then all addresses
5511  *                     on the association are effected.
5512  *
5513  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5514  *                     discovery upon the specified address. Note that
5515  *                     if the address feild is empty then all addresses
5516  *                     on the association are effected. Not also that
5517  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5518  *                     exclusive. Enabling both will have undetermined
5519  *                     results.
5520  *
5521  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5522  *                     on delayed sack. The time specified in spp_sackdelay
5523  *                     is used to specify the sack delay for this address. Note
5524  *                     that if spp_address is empty then all addresses will
5525  *                     enable delayed sack and take on the sack delay
5526  *                     value specified in spp_sackdelay.
5527  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5528  *                     off delayed sack. If the spp_address field is blank then
5529  *                     delayed sack is disabled for the entire association. Note
5530  *                     also that this field is mutually exclusive to
5531  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5532  *                     results.
5533  *
5534  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5535  *                     setting of the IPV6 flow label value.  The value is
5536  *                     contained in the spp_ipv6_flowlabel field.
5537  *                     Upon retrieval, this flag will be set to indicate that
5538  *                     the spp_ipv6_flowlabel field has a valid value returned.
5539  *                     If a specific destination address is set (in the
5540  *                     spp_address field), then the value returned is that of
5541  *                     the address.  If just an association is specified (and
5542  *                     no address), then the association's default flow label
5543  *                     is returned.  If neither an association nor a destination
5544  *                     is specified, then the socket's default flow label is
5545  *                     returned.  For non-IPv6 sockets, this flag will be left
5546  *                     cleared.
5547  *
5548  *                     SPP_DSCP:  Setting this flag enables the setting of the
5549  *                     Differentiated Services Code Point (DSCP) value
5550  *                     associated with either the association or a specific
5551  *                     address.  The value is obtained in the spp_dscp field.
5552  *                     Upon retrieval, this flag will be set to indicate that
5553  *                     the spp_dscp field has a valid value returned.  If a
5554  *                     specific destination address is set when called (in the
5555  *                     spp_address field), then that specific destination
5556  *                     address's DSCP value is returned.  If just an association
5557  *                     is specified, then the association's default DSCP is
5558  *                     returned.  If neither an association nor a destination is
5559  *                     specified, then the socket's default DSCP is returned.
5560  *
5561  *   spp_ipv6_flowlabel
5562  *                   - This field is used in conjunction with the
5563  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5564  *                     The 20 least significant bits are used for the flow
5565  *                     label.  This setting has precedence over any IPv6-layer
5566  *                     setting.
5567  *
5568  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5569  *                     and contains the DSCP.  The 6 most significant bits are
5570  *                     used for the DSCP.  This setting has precedence over any
5571  *                     IPv4- or IPv6- layer setting.
5572  */
5573 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5574 					    char __user *optval, int __user *optlen)
5575 {
5576 	struct sctp_paddrparams  params;
5577 	struct sctp_transport   *trans = NULL;
5578 	struct sctp_association *asoc = NULL;
5579 	struct sctp_sock        *sp = sctp_sk(sk);
5580 
5581 	if (len >= sizeof(params))
5582 		len = sizeof(params);
5583 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5584 				       spp_ipv6_flowlabel), 4))
5585 		len = ALIGN(offsetof(struct sctp_paddrparams,
5586 				     spp_ipv6_flowlabel), 4);
5587 	else
5588 		return -EINVAL;
5589 
5590 	if (copy_from_user(&params, optval, len))
5591 		return -EFAULT;
5592 
5593 	/* If an address other than INADDR_ANY is specified, and
5594 	 * no transport is found, then the request is invalid.
5595 	 */
5596 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5597 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5598 					       params.spp_assoc_id);
5599 		if (!trans) {
5600 			pr_debug("%s: failed no transport\n", __func__);
5601 			return -EINVAL;
5602 		}
5603 	}
5604 
5605 	/* Get association, if assoc_id != 0 and the socket is a one
5606 	 * to many style socket, and an association was not found, then
5607 	 * the id was invalid.
5608 	 */
5609 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5610 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5611 		pr_debug("%s: failed no association\n", __func__);
5612 		return -EINVAL;
5613 	}
5614 
5615 	if (trans) {
5616 		/* Fetch transport values. */
5617 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5618 		params.spp_pathmtu    = trans->pathmtu;
5619 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5620 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5621 
5622 		/*draft-11 doesn't say what to return in spp_flags*/
5623 		params.spp_flags      = trans->param_flags;
5624 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5625 			params.spp_ipv6_flowlabel = trans->flowlabel &
5626 						    SCTP_FLOWLABEL_VAL_MASK;
5627 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5628 		}
5629 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5630 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5631 			params.spp_flags |= SPP_DSCP;
5632 		}
5633 	} else if (asoc) {
5634 		/* Fetch association values. */
5635 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5636 		params.spp_pathmtu    = asoc->pathmtu;
5637 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5638 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5639 
5640 		/*draft-11 doesn't say what to return in spp_flags*/
5641 		params.spp_flags      = asoc->param_flags;
5642 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5643 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5644 						    SCTP_FLOWLABEL_VAL_MASK;
5645 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5646 		}
5647 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5648 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5649 			params.spp_flags |= SPP_DSCP;
5650 		}
5651 	} else {
5652 		/* Fetch socket values. */
5653 		params.spp_hbinterval = sp->hbinterval;
5654 		params.spp_pathmtu    = sp->pathmtu;
5655 		params.spp_sackdelay  = sp->sackdelay;
5656 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5657 
5658 		/*draft-11 doesn't say what to return in spp_flags*/
5659 		params.spp_flags      = sp->param_flags;
5660 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5661 			params.spp_ipv6_flowlabel = sp->flowlabel &
5662 						    SCTP_FLOWLABEL_VAL_MASK;
5663 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5664 		}
5665 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5666 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5667 			params.spp_flags |= SPP_DSCP;
5668 		}
5669 	}
5670 
5671 	if (copy_to_user(optval, &params, len))
5672 		return -EFAULT;
5673 
5674 	if (put_user(len, optlen))
5675 		return -EFAULT;
5676 
5677 	return 0;
5678 }
5679 
5680 /*
5681  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5682  *
5683  * This option will effect the way delayed acks are performed.  This
5684  * option allows you to get or set the delayed ack time, in
5685  * milliseconds.  It also allows changing the delayed ack frequency.
5686  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5687  * the assoc_id is 0, then this sets or gets the endpoints default
5688  * values.  If the assoc_id field is non-zero, then the set or get
5689  * effects the specified association for the one to many model (the
5690  * assoc_id field is ignored by the one to one model).  Note that if
5691  * sack_delay or sack_freq are 0 when setting this option, then the
5692  * current values will remain unchanged.
5693  *
5694  * struct sctp_sack_info {
5695  *     sctp_assoc_t            sack_assoc_id;
5696  *     uint32_t                sack_delay;
5697  *     uint32_t                sack_freq;
5698  * };
5699  *
5700  * sack_assoc_id -  This parameter, indicates which association the user
5701  *    is performing an action upon.  Note that if this field's value is
5702  *    zero then the endpoints default value is changed (effecting future
5703  *    associations only).
5704  *
5705  * sack_delay -  This parameter contains the number of milliseconds that
5706  *    the user is requesting the delayed ACK timer be set to.  Note that
5707  *    this value is defined in the standard to be between 200 and 500
5708  *    milliseconds.
5709  *
5710  * sack_freq -  This parameter contains the number of packets that must
5711  *    be received before a sack is sent without waiting for the delay
5712  *    timer to expire.  The default value for this is 2, setting this
5713  *    value to 1 will disable the delayed sack algorithm.
5714  */
5715 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5716 					    char __user *optval,
5717 					    int __user *optlen)
5718 {
5719 	struct sctp_sack_info    params;
5720 	struct sctp_association *asoc = NULL;
5721 	struct sctp_sock        *sp = sctp_sk(sk);
5722 
5723 	if (len >= sizeof(struct sctp_sack_info)) {
5724 		len = sizeof(struct sctp_sack_info);
5725 
5726 		if (copy_from_user(&params, optval, len))
5727 			return -EFAULT;
5728 	} else if (len == sizeof(struct sctp_assoc_value)) {
5729 		pr_warn_ratelimited(DEPRECATED
5730 				    "%s (pid %d) "
5731 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5732 				    "Use struct sctp_sack_info instead\n",
5733 				    current->comm, task_pid_nr(current));
5734 		if (copy_from_user(&params, optval, len))
5735 			return -EFAULT;
5736 	} else
5737 		return -EINVAL;
5738 
5739 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5740 	 * to many style socket, and an association was not found, then
5741 	 * the id was invalid.
5742 	 */
5743 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5744 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5745 		return -EINVAL;
5746 
5747 	if (asoc) {
5748 		/* Fetch association values. */
5749 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5750 			params.sack_delay = jiffies_to_msecs(
5751 				asoc->sackdelay);
5752 			params.sack_freq = asoc->sackfreq;
5753 
5754 		} else {
5755 			params.sack_delay = 0;
5756 			params.sack_freq = 1;
5757 		}
5758 	} else {
5759 		/* Fetch socket values. */
5760 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5761 			params.sack_delay  = sp->sackdelay;
5762 			params.sack_freq = sp->sackfreq;
5763 		} else {
5764 			params.sack_delay  = 0;
5765 			params.sack_freq = 1;
5766 		}
5767 	}
5768 
5769 	if (copy_to_user(optval, &params, len))
5770 		return -EFAULT;
5771 
5772 	if (put_user(len, optlen))
5773 		return -EFAULT;
5774 
5775 	return 0;
5776 }
5777 
5778 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5779  *
5780  * Applications can specify protocol parameters for the default association
5781  * initialization.  The option name argument to setsockopt() and getsockopt()
5782  * is SCTP_INITMSG.
5783  *
5784  * Setting initialization parameters is effective only on an unconnected
5785  * socket (for UDP-style sockets only future associations are effected
5786  * by the change).  With TCP-style sockets, this option is inherited by
5787  * sockets derived from a listener socket.
5788  */
5789 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5790 {
5791 	if (len < sizeof(struct sctp_initmsg))
5792 		return -EINVAL;
5793 	len = sizeof(struct sctp_initmsg);
5794 	if (put_user(len, optlen))
5795 		return -EFAULT;
5796 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5797 		return -EFAULT;
5798 	return 0;
5799 }
5800 
5801 
5802 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5803 				      char __user *optval, int __user *optlen)
5804 {
5805 	struct sctp_association *asoc;
5806 	int cnt = 0;
5807 	struct sctp_getaddrs getaddrs;
5808 	struct sctp_transport *from;
5809 	void __user *to;
5810 	union sctp_addr temp;
5811 	struct sctp_sock *sp = sctp_sk(sk);
5812 	int addrlen;
5813 	size_t space_left;
5814 	int bytes_copied;
5815 
5816 	if (len < sizeof(struct sctp_getaddrs))
5817 		return -EINVAL;
5818 
5819 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5820 		return -EFAULT;
5821 
5822 	/* For UDP-style sockets, id specifies the association to query.  */
5823 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5824 	if (!asoc)
5825 		return -EINVAL;
5826 
5827 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5828 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5829 
5830 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5831 				transports) {
5832 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5833 		addrlen = sctp_get_pf_specific(sk->sk_family)
5834 			      ->addr_to_user(sp, &temp);
5835 		if (space_left < addrlen)
5836 			return -ENOMEM;
5837 		if (copy_to_user(to, &temp, addrlen))
5838 			return -EFAULT;
5839 		to += addrlen;
5840 		cnt++;
5841 		space_left -= addrlen;
5842 	}
5843 
5844 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5845 		return -EFAULT;
5846 	bytes_copied = ((char __user *)to) - optval;
5847 	if (put_user(bytes_copied, optlen))
5848 		return -EFAULT;
5849 
5850 	return 0;
5851 }
5852 
5853 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5854 			    size_t space_left, int *bytes_copied)
5855 {
5856 	struct sctp_sockaddr_entry *addr;
5857 	union sctp_addr temp;
5858 	int cnt = 0;
5859 	int addrlen;
5860 	struct net *net = sock_net(sk);
5861 
5862 	rcu_read_lock();
5863 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5864 		if (!addr->valid)
5865 			continue;
5866 
5867 		if ((PF_INET == sk->sk_family) &&
5868 		    (AF_INET6 == addr->a.sa.sa_family))
5869 			continue;
5870 		if ((PF_INET6 == sk->sk_family) &&
5871 		    inet_v6_ipv6only(sk) &&
5872 		    (AF_INET == addr->a.sa.sa_family))
5873 			continue;
5874 		memcpy(&temp, &addr->a, sizeof(temp));
5875 		if (!temp.v4.sin_port)
5876 			temp.v4.sin_port = htons(port);
5877 
5878 		addrlen = sctp_get_pf_specific(sk->sk_family)
5879 			      ->addr_to_user(sctp_sk(sk), &temp);
5880 
5881 		if (space_left < addrlen) {
5882 			cnt =  -ENOMEM;
5883 			break;
5884 		}
5885 		memcpy(to, &temp, addrlen);
5886 
5887 		to += addrlen;
5888 		cnt++;
5889 		space_left -= addrlen;
5890 		*bytes_copied += addrlen;
5891 	}
5892 	rcu_read_unlock();
5893 
5894 	return cnt;
5895 }
5896 
5897 
5898 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5899 				       char __user *optval, int __user *optlen)
5900 {
5901 	struct sctp_bind_addr *bp;
5902 	struct sctp_association *asoc;
5903 	int cnt = 0;
5904 	struct sctp_getaddrs getaddrs;
5905 	struct sctp_sockaddr_entry *addr;
5906 	void __user *to;
5907 	union sctp_addr temp;
5908 	struct sctp_sock *sp = sctp_sk(sk);
5909 	int addrlen;
5910 	int err = 0;
5911 	size_t space_left;
5912 	int bytes_copied = 0;
5913 	void *addrs;
5914 	void *buf;
5915 
5916 	if (len < sizeof(struct sctp_getaddrs))
5917 		return -EINVAL;
5918 
5919 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5920 		return -EFAULT;
5921 
5922 	/*
5923 	 *  For UDP-style sockets, id specifies the association to query.
5924 	 *  If the id field is set to the value '0' then the locally bound
5925 	 *  addresses are returned without regard to any particular
5926 	 *  association.
5927 	 */
5928 	if (0 == getaddrs.assoc_id) {
5929 		bp = &sctp_sk(sk)->ep->base.bind_addr;
5930 	} else {
5931 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5932 		if (!asoc)
5933 			return -EINVAL;
5934 		bp = &asoc->base.bind_addr;
5935 	}
5936 
5937 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5938 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5939 
5940 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5941 	if (!addrs)
5942 		return -ENOMEM;
5943 
5944 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5945 	 * addresses from the global local address list.
5946 	 */
5947 	if (sctp_list_single_entry(&bp->address_list)) {
5948 		addr = list_entry(bp->address_list.next,
5949 				  struct sctp_sockaddr_entry, list);
5950 		if (sctp_is_any(sk, &addr->a)) {
5951 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5952 						space_left, &bytes_copied);
5953 			if (cnt < 0) {
5954 				err = cnt;
5955 				goto out;
5956 			}
5957 			goto copy_getaddrs;
5958 		}
5959 	}
5960 
5961 	buf = addrs;
5962 	/* Protection on the bound address list is not needed since
5963 	 * in the socket option context we hold a socket lock and
5964 	 * thus the bound address list can't change.
5965 	 */
5966 	list_for_each_entry(addr, &bp->address_list, list) {
5967 		memcpy(&temp, &addr->a, sizeof(temp));
5968 		addrlen = sctp_get_pf_specific(sk->sk_family)
5969 			      ->addr_to_user(sp, &temp);
5970 		if (space_left < addrlen) {
5971 			err =  -ENOMEM; /*fixme: right error?*/
5972 			goto out;
5973 		}
5974 		memcpy(buf, &temp, addrlen);
5975 		buf += addrlen;
5976 		bytes_copied += addrlen;
5977 		cnt++;
5978 		space_left -= addrlen;
5979 	}
5980 
5981 copy_getaddrs:
5982 	if (copy_to_user(to, addrs, bytes_copied)) {
5983 		err = -EFAULT;
5984 		goto out;
5985 	}
5986 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5987 		err = -EFAULT;
5988 		goto out;
5989 	}
5990 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
5991 	 * but we can't change it anymore.
5992 	 */
5993 	if (put_user(bytes_copied, optlen))
5994 		err = -EFAULT;
5995 out:
5996 	kfree(addrs);
5997 	return err;
5998 }
5999 
6000 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6001  *
6002  * Requests that the local SCTP stack use the enclosed peer address as
6003  * the association primary.  The enclosed address must be one of the
6004  * association peer's addresses.
6005  */
6006 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6007 					char __user *optval, int __user *optlen)
6008 {
6009 	struct sctp_prim prim;
6010 	struct sctp_association *asoc;
6011 	struct sctp_sock *sp = sctp_sk(sk);
6012 
6013 	if (len < sizeof(struct sctp_prim))
6014 		return -EINVAL;
6015 
6016 	len = sizeof(struct sctp_prim);
6017 
6018 	if (copy_from_user(&prim, optval, len))
6019 		return -EFAULT;
6020 
6021 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6022 	if (!asoc)
6023 		return -EINVAL;
6024 
6025 	if (!asoc->peer.primary_path)
6026 		return -ENOTCONN;
6027 
6028 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6029 		asoc->peer.primary_path->af_specific->sockaddr_len);
6030 
6031 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6032 			(union sctp_addr *)&prim.ssp_addr);
6033 
6034 	if (put_user(len, optlen))
6035 		return -EFAULT;
6036 	if (copy_to_user(optval, &prim, len))
6037 		return -EFAULT;
6038 
6039 	return 0;
6040 }
6041 
6042 /*
6043  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6044  *
6045  * Requests that the local endpoint set the specified Adaptation Layer
6046  * Indication parameter for all future INIT and INIT-ACK exchanges.
6047  */
6048 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6049 				  char __user *optval, int __user *optlen)
6050 {
6051 	struct sctp_setadaptation adaptation;
6052 
6053 	if (len < sizeof(struct sctp_setadaptation))
6054 		return -EINVAL;
6055 
6056 	len = sizeof(struct sctp_setadaptation);
6057 
6058 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6059 
6060 	if (put_user(len, optlen))
6061 		return -EFAULT;
6062 	if (copy_to_user(optval, &adaptation, len))
6063 		return -EFAULT;
6064 
6065 	return 0;
6066 }
6067 
6068 /*
6069  *
6070  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6071  *
6072  *   Applications that wish to use the sendto() system call may wish to
6073  *   specify a default set of parameters that would normally be supplied
6074  *   through the inclusion of ancillary data.  This socket option allows
6075  *   such an application to set the default sctp_sndrcvinfo structure.
6076 
6077 
6078  *   The application that wishes to use this socket option simply passes
6079  *   in to this call the sctp_sndrcvinfo structure defined in Section
6080  *   5.2.2) The input parameters accepted by this call include
6081  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6082  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6083  *   to this call if the caller is using the UDP model.
6084  *
6085  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6086  */
6087 static int sctp_getsockopt_default_send_param(struct sock *sk,
6088 					int len, char __user *optval,
6089 					int __user *optlen)
6090 {
6091 	struct sctp_sock *sp = sctp_sk(sk);
6092 	struct sctp_association *asoc;
6093 	struct sctp_sndrcvinfo info;
6094 
6095 	if (len < sizeof(info))
6096 		return -EINVAL;
6097 
6098 	len = sizeof(info);
6099 
6100 	if (copy_from_user(&info, optval, len))
6101 		return -EFAULT;
6102 
6103 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6104 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
6105 		return -EINVAL;
6106 	if (asoc) {
6107 		info.sinfo_stream = asoc->default_stream;
6108 		info.sinfo_flags = asoc->default_flags;
6109 		info.sinfo_ppid = asoc->default_ppid;
6110 		info.sinfo_context = asoc->default_context;
6111 		info.sinfo_timetolive = asoc->default_timetolive;
6112 	} else {
6113 		info.sinfo_stream = sp->default_stream;
6114 		info.sinfo_flags = sp->default_flags;
6115 		info.sinfo_ppid = sp->default_ppid;
6116 		info.sinfo_context = sp->default_context;
6117 		info.sinfo_timetolive = sp->default_timetolive;
6118 	}
6119 
6120 	if (put_user(len, optlen))
6121 		return -EFAULT;
6122 	if (copy_to_user(optval, &info, len))
6123 		return -EFAULT;
6124 
6125 	return 0;
6126 }
6127 
6128 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6129  * (SCTP_DEFAULT_SNDINFO)
6130  */
6131 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6132 					   char __user *optval,
6133 					   int __user *optlen)
6134 {
6135 	struct sctp_sock *sp = sctp_sk(sk);
6136 	struct sctp_association *asoc;
6137 	struct sctp_sndinfo info;
6138 
6139 	if (len < sizeof(info))
6140 		return -EINVAL;
6141 
6142 	len = sizeof(info);
6143 
6144 	if (copy_from_user(&info, optval, len))
6145 		return -EFAULT;
6146 
6147 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6148 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
6149 		return -EINVAL;
6150 	if (asoc) {
6151 		info.snd_sid = asoc->default_stream;
6152 		info.snd_flags = asoc->default_flags;
6153 		info.snd_ppid = asoc->default_ppid;
6154 		info.snd_context = asoc->default_context;
6155 	} else {
6156 		info.snd_sid = sp->default_stream;
6157 		info.snd_flags = sp->default_flags;
6158 		info.snd_ppid = sp->default_ppid;
6159 		info.snd_context = sp->default_context;
6160 	}
6161 
6162 	if (put_user(len, optlen))
6163 		return -EFAULT;
6164 	if (copy_to_user(optval, &info, len))
6165 		return -EFAULT;
6166 
6167 	return 0;
6168 }
6169 
6170 /*
6171  *
6172  * 7.1.5 SCTP_NODELAY
6173  *
6174  * Turn on/off any Nagle-like algorithm.  This means that packets are
6175  * generally sent as soon as possible and no unnecessary delays are
6176  * introduced, at the cost of more packets in the network.  Expects an
6177  * integer boolean flag.
6178  */
6179 
6180 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6181 				   char __user *optval, int __user *optlen)
6182 {
6183 	int val;
6184 
6185 	if (len < sizeof(int))
6186 		return -EINVAL;
6187 
6188 	len = sizeof(int);
6189 	val = (sctp_sk(sk)->nodelay == 1);
6190 	if (put_user(len, optlen))
6191 		return -EFAULT;
6192 	if (copy_to_user(optval, &val, len))
6193 		return -EFAULT;
6194 	return 0;
6195 }
6196 
6197 /*
6198  *
6199  * 7.1.1 SCTP_RTOINFO
6200  *
6201  * The protocol parameters used to initialize and bound retransmission
6202  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6203  * and modify these parameters.
6204  * All parameters are time values, in milliseconds.  A value of 0, when
6205  * modifying the parameters, indicates that the current value should not
6206  * be changed.
6207  *
6208  */
6209 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6210 				char __user *optval,
6211 				int __user *optlen) {
6212 	struct sctp_rtoinfo rtoinfo;
6213 	struct sctp_association *asoc;
6214 
6215 	if (len < sizeof (struct sctp_rtoinfo))
6216 		return -EINVAL;
6217 
6218 	len = sizeof(struct sctp_rtoinfo);
6219 
6220 	if (copy_from_user(&rtoinfo, optval, len))
6221 		return -EFAULT;
6222 
6223 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6224 
6225 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
6226 		return -EINVAL;
6227 
6228 	/* Values corresponding to the specific association. */
6229 	if (asoc) {
6230 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6231 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6232 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6233 	} else {
6234 		/* Values corresponding to the endpoint. */
6235 		struct sctp_sock *sp = sctp_sk(sk);
6236 
6237 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6238 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6239 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6240 	}
6241 
6242 	if (put_user(len, optlen))
6243 		return -EFAULT;
6244 
6245 	if (copy_to_user(optval, &rtoinfo, len))
6246 		return -EFAULT;
6247 
6248 	return 0;
6249 }
6250 
6251 /*
6252  *
6253  * 7.1.2 SCTP_ASSOCINFO
6254  *
6255  * This option is used to tune the maximum retransmission attempts
6256  * of the association.
6257  * Returns an error if the new association retransmission value is
6258  * greater than the sum of the retransmission value  of the peer.
6259  * See [SCTP] for more information.
6260  *
6261  */
6262 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6263 				     char __user *optval,
6264 				     int __user *optlen)
6265 {
6266 
6267 	struct sctp_assocparams assocparams;
6268 	struct sctp_association *asoc;
6269 	struct list_head *pos;
6270 	int cnt = 0;
6271 
6272 	if (len < sizeof (struct sctp_assocparams))
6273 		return -EINVAL;
6274 
6275 	len = sizeof(struct sctp_assocparams);
6276 
6277 	if (copy_from_user(&assocparams, optval, len))
6278 		return -EFAULT;
6279 
6280 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6281 
6282 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
6283 		return -EINVAL;
6284 
6285 	/* Values correspoinding to the specific association */
6286 	if (asoc) {
6287 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6288 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6289 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6290 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6291 
6292 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6293 			cnt++;
6294 		}
6295 
6296 		assocparams.sasoc_number_peer_destinations = cnt;
6297 	} else {
6298 		/* Values corresponding to the endpoint */
6299 		struct sctp_sock *sp = sctp_sk(sk);
6300 
6301 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6302 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6303 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6304 		assocparams.sasoc_cookie_life =
6305 					sp->assocparams.sasoc_cookie_life;
6306 		assocparams.sasoc_number_peer_destinations =
6307 					sp->assocparams.
6308 					sasoc_number_peer_destinations;
6309 	}
6310 
6311 	if (put_user(len, optlen))
6312 		return -EFAULT;
6313 
6314 	if (copy_to_user(optval, &assocparams, len))
6315 		return -EFAULT;
6316 
6317 	return 0;
6318 }
6319 
6320 /*
6321  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6322  *
6323  * This socket option is a boolean flag which turns on or off mapped V4
6324  * addresses.  If this option is turned on and the socket is type
6325  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6326  * If this option is turned off, then no mapping will be done of V4
6327  * addresses and a user will receive both PF_INET6 and PF_INET type
6328  * addresses on the socket.
6329  */
6330 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6331 				    char __user *optval, int __user *optlen)
6332 {
6333 	int val;
6334 	struct sctp_sock *sp = sctp_sk(sk);
6335 
6336 	if (len < sizeof(int))
6337 		return -EINVAL;
6338 
6339 	len = sizeof(int);
6340 	val = sp->v4mapped;
6341 	if (put_user(len, optlen))
6342 		return -EFAULT;
6343 	if (copy_to_user(optval, &val, len))
6344 		return -EFAULT;
6345 
6346 	return 0;
6347 }
6348 
6349 /*
6350  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6351  * (chapter and verse is quoted at sctp_setsockopt_context())
6352  */
6353 static int sctp_getsockopt_context(struct sock *sk, int len,
6354 				   char __user *optval, int __user *optlen)
6355 {
6356 	struct sctp_assoc_value params;
6357 	struct sctp_sock *sp;
6358 	struct sctp_association *asoc;
6359 
6360 	if (len < sizeof(struct sctp_assoc_value))
6361 		return -EINVAL;
6362 
6363 	len = sizeof(struct sctp_assoc_value);
6364 
6365 	if (copy_from_user(&params, optval, len))
6366 		return -EFAULT;
6367 
6368 	sp = sctp_sk(sk);
6369 
6370 	if (params.assoc_id != 0) {
6371 		asoc = sctp_id2assoc(sk, params.assoc_id);
6372 		if (!asoc)
6373 			return -EINVAL;
6374 		params.assoc_value = asoc->default_rcv_context;
6375 	} else {
6376 		params.assoc_value = sp->default_rcv_context;
6377 	}
6378 
6379 	if (put_user(len, optlen))
6380 		return -EFAULT;
6381 	if (copy_to_user(optval, &params, len))
6382 		return -EFAULT;
6383 
6384 	return 0;
6385 }
6386 
6387 /*
6388  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6389  * This option will get or set the maximum size to put in any outgoing
6390  * SCTP DATA chunk.  If a message is larger than this size it will be
6391  * fragmented by SCTP into the specified size.  Note that the underlying
6392  * SCTP implementation may fragment into smaller sized chunks when the
6393  * PMTU of the underlying association is smaller than the value set by
6394  * the user.  The default value for this option is '0' which indicates
6395  * the user is NOT limiting fragmentation and only the PMTU will effect
6396  * SCTP's choice of DATA chunk size.  Note also that values set larger
6397  * than the maximum size of an IP datagram will effectively let SCTP
6398  * control fragmentation (i.e. the same as setting this option to 0).
6399  *
6400  * The following structure is used to access and modify this parameter:
6401  *
6402  * struct sctp_assoc_value {
6403  *   sctp_assoc_t assoc_id;
6404  *   uint32_t assoc_value;
6405  * };
6406  *
6407  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6408  *    For one-to-many style sockets this parameter indicates which
6409  *    association the user is performing an action upon.  Note that if
6410  *    this field's value is zero then the endpoints default value is
6411  *    changed (effecting future associations only).
6412  * assoc_value:  This parameter specifies the maximum size in bytes.
6413  */
6414 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6415 				  char __user *optval, int __user *optlen)
6416 {
6417 	struct sctp_assoc_value params;
6418 	struct sctp_association *asoc;
6419 
6420 	if (len == sizeof(int)) {
6421 		pr_warn_ratelimited(DEPRECATED
6422 				    "%s (pid %d) "
6423 				    "Use of int in maxseg socket option.\n"
6424 				    "Use struct sctp_assoc_value instead\n",
6425 				    current->comm, task_pid_nr(current));
6426 		params.assoc_id = 0;
6427 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6428 		len = sizeof(struct sctp_assoc_value);
6429 		if (copy_from_user(&params, optval, len))
6430 			return -EFAULT;
6431 	} else
6432 		return -EINVAL;
6433 
6434 	asoc = sctp_id2assoc(sk, params.assoc_id);
6435 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6436 		return -EINVAL;
6437 
6438 	if (asoc)
6439 		params.assoc_value = asoc->frag_point;
6440 	else
6441 		params.assoc_value = sctp_sk(sk)->user_frag;
6442 
6443 	if (put_user(len, optlen))
6444 		return -EFAULT;
6445 	if (len == sizeof(int)) {
6446 		if (copy_to_user(optval, &params.assoc_value, len))
6447 			return -EFAULT;
6448 	} else {
6449 		if (copy_to_user(optval, &params, len))
6450 			return -EFAULT;
6451 	}
6452 
6453 	return 0;
6454 }
6455 
6456 /*
6457  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6458  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6459  */
6460 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6461 					       char __user *optval, int __user *optlen)
6462 {
6463 	int val;
6464 
6465 	if (len < sizeof(int))
6466 		return -EINVAL;
6467 
6468 	len = sizeof(int);
6469 
6470 	val = sctp_sk(sk)->frag_interleave;
6471 	if (put_user(len, optlen))
6472 		return -EFAULT;
6473 	if (copy_to_user(optval, &val, len))
6474 		return -EFAULT;
6475 
6476 	return 0;
6477 }
6478 
6479 /*
6480  * 7.1.25.  Set or Get the sctp partial delivery point
6481  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6482  */
6483 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6484 						  char __user *optval,
6485 						  int __user *optlen)
6486 {
6487 	u32 val;
6488 
6489 	if (len < sizeof(u32))
6490 		return -EINVAL;
6491 
6492 	len = sizeof(u32);
6493 
6494 	val = sctp_sk(sk)->pd_point;
6495 	if (put_user(len, optlen))
6496 		return -EFAULT;
6497 	if (copy_to_user(optval, &val, len))
6498 		return -EFAULT;
6499 
6500 	return 0;
6501 }
6502 
6503 /*
6504  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6505  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6506  */
6507 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6508 				    char __user *optval,
6509 				    int __user *optlen)
6510 {
6511 	struct sctp_assoc_value params;
6512 	struct sctp_sock *sp;
6513 	struct sctp_association *asoc;
6514 
6515 	if (len == sizeof(int)) {
6516 		pr_warn_ratelimited(DEPRECATED
6517 				    "%s (pid %d) "
6518 				    "Use of int in max_burst socket option.\n"
6519 				    "Use struct sctp_assoc_value instead\n",
6520 				    current->comm, task_pid_nr(current));
6521 		params.assoc_id = 0;
6522 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6523 		len = sizeof(struct sctp_assoc_value);
6524 		if (copy_from_user(&params, optval, len))
6525 			return -EFAULT;
6526 	} else
6527 		return -EINVAL;
6528 
6529 	sp = sctp_sk(sk);
6530 
6531 	if (params.assoc_id != 0) {
6532 		asoc = sctp_id2assoc(sk, params.assoc_id);
6533 		if (!asoc)
6534 			return -EINVAL;
6535 		params.assoc_value = asoc->max_burst;
6536 	} else
6537 		params.assoc_value = sp->max_burst;
6538 
6539 	if (len == sizeof(int)) {
6540 		if (copy_to_user(optval, &params.assoc_value, len))
6541 			return -EFAULT;
6542 	} else {
6543 		if (copy_to_user(optval, &params, len))
6544 			return -EFAULT;
6545 	}
6546 
6547 	return 0;
6548 
6549 }
6550 
6551 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6552 				    char __user *optval, int __user *optlen)
6553 {
6554 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6555 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6556 	struct sctp_hmac_algo_param *hmacs;
6557 	__u16 data_len = 0;
6558 	u32 num_idents;
6559 	int i;
6560 
6561 	if (!ep->auth_enable)
6562 		return -EACCES;
6563 
6564 	hmacs = ep->auth_hmacs_list;
6565 	data_len = ntohs(hmacs->param_hdr.length) -
6566 		   sizeof(struct sctp_paramhdr);
6567 
6568 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6569 		return -EINVAL;
6570 
6571 	len = sizeof(struct sctp_hmacalgo) + data_len;
6572 	num_idents = data_len / sizeof(u16);
6573 
6574 	if (put_user(len, optlen))
6575 		return -EFAULT;
6576 	if (put_user(num_idents, &p->shmac_num_idents))
6577 		return -EFAULT;
6578 	for (i = 0; i < num_idents; i++) {
6579 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6580 
6581 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6582 			return -EFAULT;
6583 	}
6584 	return 0;
6585 }
6586 
6587 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6588 				    char __user *optval, int __user *optlen)
6589 {
6590 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6591 	struct sctp_authkeyid val;
6592 	struct sctp_association *asoc;
6593 
6594 	if (!ep->auth_enable)
6595 		return -EACCES;
6596 
6597 	if (len < sizeof(struct sctp_authkeyid))
6598 		return -EINVAL;
6599 
6600 	len = sizeof(struct sctp_authkeyid);
6601 	if (copy_from_user(&val, optval, len))
6602 		return -EFAULT;
6603 
6604 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6605 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6606 		return -EINVAL;
6607 
6608 	if (asoc)
6609 		val.scact_keynumber = asoc->active_key_id;
6610 	else
6611 		val.scact_keynumber = ep->active_key_id;
6612 
6613 	if (put_user(len, optlen))
6614 		return -EFAULT;
6615 	if (copy_to_user(optval, &val, len))
6616 		return -EFAULT;
6617 
6618 	return 0;
6619 }
6620 
6621 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6622 				    char __user *optval, int __user *optlen)
6623 {
6624 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6625 	struct sctp_authchunks __user *p = (void __user *)optval;
6626 	struct sctp_authchunks val;
6627 	struct sctp_association *asoc;
6628 	struct sctp_chunks_param *ch;
6629 	u32    num_chunks = 0;
6630 	char __user *to;
6631 
6632 	if (!ep->auth_enable)
6633 		return -EACCES;
6634 
6635 	if (len < sizeof(struct sctp_authchunks))
6636 		return -EINVAL;
6637 
6638 	if (copy_from_user(&val, optval, sizeof(val)))
6639 		return -EFAULT;
6640 
6641 	to = p->gauth_chunks;
6642 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6643 	if (!asoc)
6644 		return -EINVAL;
6645 
6646 	ch = asoc->peer.peer_chunks;
6647 	if (!ch)
6648 		goto num;
6649 
6650 	/* See if the user provided enough room for all the data */
6651 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6652 	if (len < num_chunks)
6653 		return -EINVAL;
6654 
6655 	if (copy_to_user(to, ch->chunks, num_chunks))
6656 		return -EFAULT;
6657 num:
6658 	len = sizeof(struct sctp_authchunks) + num_chunks;
6659 	if (put_user(len, optlen))
6660 		return -EFAULT;
6661 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6662 		return -EFAULT;
6663 	return 0;
6664 }
6665 
6666 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6667 				    char __user *optval, int __user *optlen)
6668 {
6669 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6670 	struct sctp_authchunks __user *p = (void __user *)optval;
6671 	struct sctp_authchunks val;
6672 	struct sctp_association *asoc;
6673 	struct sctp_chunks_param *ch;
6674 	u32    num_chunks = 0;
6675 	char __user *to;
6676 
6677 	if (!ep->auth_enable)
6678 		return -EACCES;
6679 
6680 	if (len < sizeof(struct sctp_authchunks))
6681 		return -EINVAL;
6682 
6683 	if (copy_from_user(&val, optval, sizeof(val)))
6684 		return -EFAULT;
6685 
6686 	to = p->gauth_chunks;
6687 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6688 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6689 		return -EINVAL;
6690 
6691 	if (asoc)
6692 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6693 	else
6694 		ch = ep->auth_chunk_list;
6695 
6696 	if (!ch)
6697 		goto num;
6698 
6699 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6700 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6701 		return -EINVAL;
6702 
6703 	if (copy_to_user(to, ch->chunks, num_chunks))
6704 		return -EFAULT;
6705 num:
6706 	len = sizeof(struct sctp_authchunks) + num_chunks;
6707 	if (put_user(len, optlen))
6708 		return -EFAULT;
6709 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6710 		return -EFAULT;
6711 
6712 	return 0;
6713 }
6714 
6715 /*
6716  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6717  * This option gets the current number of associations that are attached
6718  * to a one-to-many style socket.  The option value is an uint32_t.
6719  */
6720 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6721 				    char __user *optval, int __user *optlen)
6722 {
6723 	struct sctp_sock *sp = sctp_sk(sk);
6724 	struct sctp_association *asoc;
6725 	u32 val = 0;
6726 
6727 	if (sctp_style(sk, TCP))
6728 		return -EOPNOTSUPP;
6729 
6730 	if (len < sizeof(u32))
6731 		return -EINVAL;
6732 
6733 	len = sizeof(u32);
6734 
6735 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6736 		val++;
6737 	}
6738 
6739 	if (put_user(len, optlen))
6740 		return -EFAULT;
6741 	if (copy_to_user(optval, &val, len))
6742 		return -EFAULT;
6743 
6744 	return 0;
6745 }
6746 
6747 /*
6748  * 8.1.23 SCTP_AUTO_ASCONF
6749  * See the corresponding setsockopt entry as description
6750  */
6751 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6752 				   char __user *optval, int __user *optlen)
6753 {
6754 	int val = 0;
6755 
6756 	if (len < sizeof(int))
6757 		return -EINVAL;
6758 
6759 	len = sizeof(int);
6760 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6761 		val = 1;
6762 	if (put_user(len, optlen))
6763 		return -EFAULT;
6764 	if (copy_to_user(optval, &val, len))
6765 		return -EFAULT;
6766 	return 0;
6767 }
6768 
6769 /*
6770  * 8.2.6. Get the Current Identifiers of Associations
6771  *        (SCTP_GET_ASSOC_ID_LIST)
6772  *
6773  * This option gets the current list of SCTP association identifiers of
6774  * the SCTP associations handled by a one-to-many style socket.
6775  */
6776 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6777 				    char __user *optval, int __user *optlen)
6778 {
6779 	struct sctp_sock *sp = sctp_sk(sk);
6780 	struct sctp_association *asoc;
6781 	struct sctp_assoc_ids *ids;
6782 	u32 num = 0;
6783 
6784 	if (sctp_style(sk, TCP))
6785 		return -EOPNOTSUPP;
6786 
6787 	if (len < sizeof(struct sctp_assoc_ids))
6788 		return -EINVAL;
6789 
6790 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6791 		num++;
6792 	}
6793 
6794 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6795 		return -EINVAL;
6796 
6797 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6798 
6799 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6800 	if (unlikely(!ids))
6801 		return -ENOMEM;
6802 
6803 	ids->gaids_number_of_ids = num;
6804 	num = 0;
6805 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6806 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6807 	}
6808 
6809 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6810 		kfree(ids);
6811 		return -EFAULT;
6812 	}
6813 
6814 	kfree(ids);
6815 	return 0;
6816 }
6817 
6818 /*
6819  * SCTP_PEER_ADDR_THLDS
6820  *
6821  * This option allows us to fetch the partially failed threshold for one or all
6822  * transports in an association.  See Section 6.1 of:
6823  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6824  */
6825 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6826 					    char __user *optval,
6827 					    int len,
6828 					    int __user *optlen)
6829 {
6830 	struct sctp_paddrthlds val;
6831 	struct sctp_transport *trans;
6832 	struct sctp_association *asoc;
6833 
6834 	if (len < sizeof(struct sctp_paddrthlds))
6835 		return -EINVAL;
6836 	len = sizeof(struct sctp_paddrthlds);
6837 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6838 		return -EFAULT;
6839 
6840 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6841 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6842 		if (!asoc)
6843 			return -ENOENT;
6844 
6845 		val.spt_pathpfthld = asoc->pf_retrans;
6846 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6847 	} else {
6848 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6849 					       val.spt_assoc_id);
6850 		if (!trans)
6851 			return -ENOENT;
6852 
6853 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6854 		val.spt_pathpfthld = trans->pf_retrans;
6855 	}
6856 
6857 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6858 		return -EFAULT;
6859 
6860 	return 0;
6861 }
6862 
6863 /*
6864  * SCTP_GET_ASSOC_STATS
6865  *
6866  * This option retrieves local per endpoint statistics. It is modeled
6867  * after OpenSolaris' implementation
6868  */
6869 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6870 				       char __user *optval,
6871 				       int __user *optlen)
6872 {
6873 	struct sctp_assoc_stats sas;
6874 	struct sctp_association *asoc = NULL;
6875 
6876 	/* User must provide at least the assoc id */
6877 	if (len < sizeof(sctp_assoc_t))
6878 		return -EINVAL;
6879 
6880 	/* Allow the struct to grow and fill in as much as possible */
6881 	len = min_t(size_t, len, sizeof(sas));
6882 
6883 	if (copy_from_user(&sas, optval, len))
6884 		return -EFAULT;
6885 
6886 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6887 	if (!asoc)
6888 		return -EINVAL;
6889 
6890 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6891 	sas.sas_gapcnt = asoc->stats.gapcnt;
6892 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6893 	sas.sas_osacks = asoc->stats.osacks;
6894 	sas.sas_isacks = asoc->stats.isacks;
6895 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6896 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6897 	sas.sas_oodchunks = asoc->stats.oodchunks;
6898 	sas.sas_iodchunks = asoc->stats.iodchunks;
6899 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6900 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6901 	sas.sas_idupchunks = asoc->stats.idupchunks;
6902 	sas.sas_opackets = asoc->stats.opackets;
6903 	sas.sas_ipackets = asoc->stats.ipackets;
6904 
6905 	/* New high max rto observed, will return 0 if not a single
6906 	 * RTO update took place. obs_rto_ipaddr will be bogus
6907 	 * in such a case
6908 	 */
6909 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6910 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6911 		sizeof(struct sockaddr_storage));
6912 
6913 	/* Mark beginning of a new observation period */
6914 	asoc->stats.max_obs_rto = asoc->rto_min;
6915 
6916 	if (put_user(len, optlen))
6917 		return -EFAULT;
6918 
6919 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6920 
6921 	if (copy_to_user(optval, &sas, len))
6922 		return -EFAULT;
6923 
6924 	return 0;
6925 }
6926 
6927 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
6928 				       char __user *optval,
6929 				       int __user *optlen)
6930 {
6931 	int val = 0;
6932 
6933 	if (len < sizeof(int))
6934 		return -EINVAL;
6935 
6936 	len = sizeof(int);
6937 	if (sctp_sk(sk)->recvrcvinfo)
6938 		val = 1;
6939 	if (put_user(len, optlen))
6940 		return -EFAULT;
6941 	if (copy_to_user(optval, &val, len))
6942 		return -EFAULT;
6943 
6944 	return 0;
6945 }
6946 
6947 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
6948 				       char __user *optval,
6949 				       int __user *optlen)
6950 {
6951 	int val = 0;
6952 
6953 	if (len < sizeof(int))
6954 		return -EINVAL;
6955 
6956 	len = sizeof(int);
6957 	if (sctp_sk(sk)->recvnxtinfo)
6958 		val = 1;
6959 	if (put_user(len, optlen))
6960 		return -EFAULT;
6961 	if (copy_to_user(optval, &val, len))
6962 		return -EFAULT;
6963 
6964 	return 0;
6965 }
6966 
6967 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6968 					char __user *optval,
6969 					int __user *optlen)
6970 {
6971 	struct sctp_assoc_value params;
6972 	struct sctp_association *asoc;
6973 	int retval = -EFAULT;
6974 
6975 	if (len < sizeof(params)) {
6976 		retval = -EINVAL;
6977 		goto out;
6978 	}
6979 
6980 	len = sizeof(params);
6981 	if (copy_from_user(&params, optval, len))
6982 		goto out;
6983 
6984 	asoc = sctp_id2assoc(sk, params.assoc_id);
6985 	if (asoc) {
6986 		params.assoc_value = asoc->prsctp_enable;
6987 	} else if (!params.assoc_id) {
6988 		struct sctp_sock *sp = sctp_sk(sk);
6989 
6990 		params.assoc_value = sp->ep->prsctp_enable;
6991 	} else {
6992 		retval = -EINVAL;
6993 		goto out;
6994 	}
6995 
6996 	if (put_user(len, optlen))
6997 		goto out;
6998 
6999 	if (copy_to_user(optval, &params, len))
7000 		goto out;
7001 
7002 	retval = 0;
7003 
7004 out:
7005 	return retval;
7006 }
7007 
7008 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7009 					  char __user *optval,
7010 					  int __user *optlen)
7011 {
7012 	struct sctp_default_prinfo info;
7013 	struct sctp_association *asoc;
7014 	int retval = -EFAULT;
7015 
7016 	if (len < sizeof(info)) {
7017 		retval = -EINVAL;
7018 		goto out;
7019 	}
7020 
7021 	len = sizeof(info);
7022 	if (copy_from_user(&info, optval, len))
7023 		goto out;
7024 
7025 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7026 	if (asoc) {
7027 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7028 		info.pr_value = asoc->default_timetolive;
7029 	} else if (!info.pr_assoc_id) {
7030 		struct sctp_sock *sp = sctp_sk(sk);
7031 
7032 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7033 		info.pr_value = sp->default_timetolive;
7034 	} else {
7035 		retval = -EINVAL;
7036 		goto out;
7037 	}
7038 
7039 	if (put_user(len, optlen))
7040 		goto out;
7041 
7042 	if (copy_to_user(optval, &info, len))
7043 		goto out;
7044 
7045 	retval = 0;
7046 
7047 out:
7048 	return retval;
7049 }
7050 
7051 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7052 					  char __user *optval,
7053 					  int __user *optlen)
7054 {
7055 	struct sctp_prstatus params;
7056 	struct sctp_association *asoc;
7057 	int policy;
7058 	int retval = -EINVAL;
7059 
7060 	if (len < sizeof(params))
7061 		goto out;
7062 
7063 	len = sizeof(params);
7064 	if (copy_from_user(&params, optval, len)) {
7065 		retval = -EFAULT;
7066 		goto out;
7067 	}
7068 
7069 	policy = params.sprstat_policy;
7070 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7071 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7072 		goto out;
7073 
7074 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7075 	if (!asoc)
7076 		goto out;
7077 
7078 	if (policy == SCTP_PR_SCTP_ALL) {
7079 		params.sprstat_abandoned_unsent = 0;
7080 		params.sprstat_abandoned_sent = 0;
7081 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7082 			params.sprstat_abandoned_unsent +=
7083 				asoc->abandoned_unsent[policy];
7084 			params.sprstat_abandoned_sent +=
7085 				asoc->abandoned_sent[policy];
7086 		}
7087 	} else {
7088 		params.sprstat_abandoned_unsent =
7089 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7090 		params.sprstat_abandoned_sent =
7091 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7092 	}
7093 
7094 	if (put_user(len, optlen)) {
7095 		retval = -EFAULT;
7096 		goto out;
7097 	}
7098 
7099 	if (copy_to_user(optval, &params, len)) {
7100 		retval = -EFAULT;
7101 		goto out;
7102 	}
7103 
7104 	retval = 0;
7105 
7106 out:
7107 	return retval;
7108 }
7109 
7110 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7111 					   char __user *optval,
7112 					   int __user *optlen)
7113 {
7114 	struct sctp_stream_out_ext *streamoute;
7115 	struct sctp_association *asoc;
7116 	struct sctp_prstatus params;
7117 	int retval = -EINVAL;
7118 	int policy;
7119 
7120 	if (len < sizeof(params))
7121 		goto out;
7122 
7123 	len = sizeof(params);
7124 	if (copy_from_user(&params, optval, len)) {
7125 		retval = -EFAULT;
7126 		goto out;
7127 	}
7128 
7129 	policy = params.sprstat_policy;
7130 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7131 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7132 		goto out;
7133 
7134 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7135 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7136 		goto out;
7137 
7138 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7139 	if (!streamoute) {
7140 		/* Not allocated yet, means all stats are 0 */
7141 		params.sprstat_abandoned_unsent = 0;
7142 		params.sprstat_abandoned_sent = 0;
7143 		retval = 0;
7144 		goto out;
7145 	}
7146 
7147 	if (policy == SCTP_PR_SCTP_ALL) {
7148 		params.sprstat_abandoned_unsent = 0;
7149 		params.sprstat_abandoned_sent = 0;
7150 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7151 			params.sprstat_abandoned_unsent +=
7152 				streamoute->abandoned_unsent[policy];
7153 			params.sprstat_abandoned_sent +=
7154 				streamoute->abandoned_sent[policy];
7155 		}
7156 	} else {
7157 		params.sprstat_abandoned_unsent =
7158 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7159 		params.sprstat_abandoned_sent =
7160 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7161 	}
7162 
7163 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7164 		retval = -EFAULT;
7165 		goto out;
7166 	}
7167 
7168 	retval = 0;
7169 
7170 out:
7171 	return retval;
7172 }
7173 
7174 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7175 					      char __user *optval,
7176 					      int __user *optlen)
7177 {
7178 	struct sctp_assoc_value params;
7179 	struct sctp_association *asoc;
7180 	int retval = -EFAULT;
7181 
7182 	if (len < sizeof(params)) {
7183 		retval = -EINVAL;
7184 		goto out;
7185 	}
7186 
7187 	len = sizeof(params);
7188 	if (copy_from_user(&params, optval, len))
7189 		goto out;
7190 
7191 	asoc = sctp_id2assoc(sk, params.assoc_id);
7192 	if (asoc) {
7193 		params.assoc_value = asoc->reconf_enable;
7194 	} else if (!params.assoc_id) {
7195 		struct sctp_sock *sp = sctp_sk(sk);
7196 
7197 		params.assoc_value = sp->ep->reconf_enable;
7198 	} else {
7199 		retval = -EINVAL;
7200 		goto out;
7201 	}
7202 
7203 	if (put_user(len, optlen))
7204 		goto out;
7205 
7206 	if (copy_to_user(optval, &params, len))
7207 		goto out;
7208 
7209 	retval = 0;
7210 
7211 out:
7212 	return retval;
7213 }
7214 
7215 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7216 					   char __user *optval,
7217 					   int __user *optlen)
7218 {
7219 	struct sctp_assoc_value params;
7220 	struct sctp_association *asoc;
7221 	int retval = -EFAULT;
7222 
7223 	if (len < sizeof(params)) {
7224 		retval = -EINVAL;
7225 		goto out;
7226 	}
7227 
7228 	len = sizeof(params);
7229 	if (copy_from_user(&params, optval, len))
7230 		goto out;
7231 
7232 	asoc = sctp_id2assoc(sk, params.assoc_id);
7233 	if (asoc) {
7234 		params.assoc_value = asoc->strreset_enable;
7235 	} else if (!params.assoc_id) {
7236 		struct sctp_sock *sp = sctp_sk(sk);
7237 
7238 		params.assoc_value = sp->ep->strreset_enable;
7239 	} else {
7240 		retval = -EINVAL;
7241 		goto out;
7242 	}
7243 
7244 	if (put_user(len, optlen))
7245 		goto out;
7246 
7247 	if (copy_to_user(optval, &params, len))
7248 		goto out;
7249 
7250 	retval = 0;
7251 
7252 out:
7253 	return retval;
7254 }
7255 
7256 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7257 				     char __user *optval,
7258 				     int __user *optlen)
7259 {
7260 	struct sctp_assoc_value params;
7261 	struct sctp_association *asoc;
7262 	int retval = -EFAULT;
7263 
7264 	if (len < sizeof(params)) {
7265 		retval = -EINVAL;
7266 		goto out;
7267 	}
7268 
7269 	len = sizeof(params);
7270 	if (copy_from_user(&params, optval, len))
7271 		goto out;
7272 
7273 	asoc = sctp_id2assoc(sk, params.assoc_id);
7274 	if (!asoc) {
7275 		retval = -EINVAL;
7276 		goto out;
7277 	}
7278 
7279 	params.assoc_value = sctp_sched_get_sched(asoc);
7280 
7281 	if (put_user(len, optlen))
7282 		goto out;
7283 
7284 	if (copy_to_user(optval, &params, len))
7285 		goto out;
7286 
7287 	retval = 0;
7288 
7289 out:
7290 	return retval;
7291 }
7292 
7293 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7294 					   char __user *optval,
7295 					   int __user *optlen)
7296 {
7297 	struct sctp_stream_value params;
7298 	struct sctp_association *asoc;
7299 	int retval = -EFAULT;
7300 
7301 	if (len < sizeof(params)) {
7302 		retval = -EINVAL;
7303 		goto out;
7304 	}
7305 
7306 	len = sizeof(params);
7307 	if (copy_from_user(&params, optval, len))
7308 		goto out;
7309 
7310 	asoc = sctp_id2assoc(sk, params.assoc_id);
7311 	if (!asoc) {
7312 		retval = -EINVAL;
7313 		goto out;
7314 	}
7315 
7316 	retval = sctp_sched_get_value(asoc, params.stream_id,
7317 				      &params.stream_value);
7318 	if (retval)
7319 		goto out;
7320 
7321 	if (put_user(len, optlen)) {
7322 		retval = -EFAULT;
7323 		goto out;
7324 	}
7325 
7326 	if (copy_to_user(optval, &params, len)) {
7327 		retval = -EFAULT;
7328 		goto out;
7329 	}
7330 
7331 out:
7332 	return retval;
7333 }
7334 
7335 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7336 						  char __user *optval,
7337 						  int __user *optlen)
7338 {
7339 	struct sctp_assoc_value params;
7340 	struct sctp_association *asoc;
7341 	int retval = -EFAULT;
7342 
7343 	if (len < sizeof(params)) {
7344 		retval = -EINVAL;
7345 		goto out;
7346 	}
7347 
7348 	len = sizeof(params);
7349 	if (copy_from_user(&params, optval, len))
7350 		goto out;
7351 
7352 	asoc = sctp_id2assoc(sk, params.assoc_id);
7353 	if (asoc) {
7354 		params.assoc_value = asoc->intl_enable;
7355 	} else if (!params.assoc_id) {
7356 		struct sctp_sock *sp = sctp_sk(sk);
7357 
7358 		params.assoc_value = sp->strm_interleave;
7359 	} else {
7360 		retval = -EINVAL;
7361 		goto out;
7362 	}
7363 
7364 	if (put_user(len, optlen))
7365 		goto out;
7366 
7367 	if (copy_to_user(optval, &params, len))
7368 		goto out;
7369 
7370 	retval = 0;
7371 
7372 out:
7373 	return retval;
7374 }
7375 
7376 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7377 				      char __user *optval,
7378 				      int __user *optlen)
7379 {
7380 	int val;
7381 
7382 	if (len < sizeof(int))
7383 		return -EINVAL;
7384 
7385 	len = sizeof(int);
7386 	val = sctp_sk(sk)->reuse;
7387 	if (put_user(len, optlen))
7388 		return -EFAULT;
7389 
7390 	if (copy_to_user(optval, &val, len))
7391 		return -EFAULT;
7392 
7393 	return 0;
7394 }
7395 
7396 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7397 			   char __user *optval, int __user *optlen)
7398 {
7399 	int retval = 0;
7400 	int len;
7401 
7402 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7403 
7404 	/* I can hardly begin to describe how wrong this is.  This is
7405 	 * so broken as to be worse than useless.  The API draft
7406 	 * REALLY is NOT helpful here...  I am not convinced that the
7407 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7408 	 * are at all well-founded.
7409 	 */
7410 	if (level != SOL_SCTP) {
7411 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7412 
7413 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7414 		return retval;
7415 	}
7416 
7417 	if (get_user(len, optlen))
7418 		return -EFAULT;
7419 
7420 	if (len < 0)
7421 		return -EINVAL;
7422 
7423 	lock_sock(sk);
7424 
7425 	switch (optname) {
7426 	case SCTP_STATUS:
7427 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7428 		break;
7429 	case SCTP_DISABLE_FRAGMENTS:
7430 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7431 							   optlen);
7432 		break;
7433 	case SCTP_EVENTS:
7434 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7435 		break;
7436 	case SCTP_AUTOCLOSE:
7437 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7438 		break;
7439 	case SCTP_SOCKOPT_PEELOFF:
7440 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7441 		break;
7442 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7443 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7444 		break;
7445 	case SCTP_PEER_ADDR_PARAMS:
7446 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7447 							  optlen);
7448 		break;
7449 	case SCTP_DELAYED_SACK:
7450 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7451 							  optlen);
7452 		break;
7453 	case SCTP_INITMSG:
7454 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7455 		break;
7456 	case SCTP_GET_PEER_ADDRS:
7457 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7458 						    optlen);
7459 		break;
7460 	case SCTP_GET_LOCAL_ADDRS:
7461 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7462 						     optlen);
7463 		break;
7464 	case SCTP_SOCKOPT_CONNECTX3:
7465 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7466 		break;
7467 	case SCTP_DEFAULT_SEND_PARAM:
7468 		retval = sctp_getsockopt_default_send_param(sk, len,
7469 							    optval, optlen);
7470 		break;
7471 	case SCTP_DEFAULT_SNDINFO:
7472 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7473 							 optval, optlen);
7474 		break;
7475 	case SCTP_PRIMARY_ADDR:
7476 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7477 		break;
7478 	case SCTP_NODELAY:
7479 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7480 		break;
7481 	case SCTP_RTOINFO:
7482 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7483 		break;
7484 	case SCTP_ASSOCINFO:
7485 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7486 		break;
7487 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7488 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7489 		break;
7490 	case SCTP_MAXSEG:
7491 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7492 		break;
7493 	case SCTP_GET_PEER_ADDR_INFO:
7494 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7495 							optlen);
7496 		break;
7497 	case SCTP_ADAPTATION_LAYER:
7498 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7499 							optlen);
7500 		break;
7501 	case SCTP_CONTEXT:
7502 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7503 		break;
7504 	case SCTP_FRAGMENT_INTERLEAVE:
7505 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7506 							     optlen);
7507 		break;
7508 	case SCTP_PARTIAL_DELIVERY_POINT:
7509 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7510 								optlen);
7511 		break;
7512 	case SCTP_MAX_BURST:
7513 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7514 		break;
7515 	case SCTP_AUTH_KEY:
7516 	case SCTP_AUTH_CHUNK:
7517 	case SCTP_AUTH_DELETE_KEY:
7518 	case SCTP_AUTH_DEACTIVATE_KEY:
7519 		retval = -EOPNOTSUPP;
7520 		break;
7521 	case SCTP_HMAC_IDENT:
7522 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7523 		break;
7524 	case SCTP_AUTH_ACTIVE_KEY:
7525 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7526 		break;
7527 	case SCTP_PEER_AUTH_CHUNKS:
7528 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7529 							optlen);
7530 		break;
7531 	case SCTP_LOCAL_AUTH_CHUNKS:
7532 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7533 							optlen);
7534 		break;
7535 	case SCTP_GET_ASSOC_NUMBER:
7536 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7537 		break;
7538 	case SCTP_GET_ASSOC_ID_LIST:
7539 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7540 		break;
7541 	case SCTP_AUTO_ASCONF:
7542 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7543 		break;
7544 	case SCTP_PEER_ADDR_THLDS:
7545 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7546 		break;
7547 	case SCTP_GET_ASSOC_STATS:
7548 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7549 		break;
7550 	case SCTP_RECVRCVINFO:
7551 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7552 		break;
7553 	case SCTP_RECVNXTINFO:
7554 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7555 		break;
7556 	case SCTP_PR_SUPPORTED:
7557 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7558 		break;
7559 	case SCTP_DEFAULT_PRINFO:
7560 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7561 							optlen);
7562 		break;
7563 	case SCTP_PR_ASSOC_STATUS:
7564 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7565 							optlen);
7566 		break;
7567 	case SCTP_PR_STREAM_STATUS:
7568 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7569 							 optlen);
7570 		break;
7571 	case SCTP_RECONFIG_SUPPORTED:
7572 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7573 							    optlen);
7574 		break;
7575 	case SCTP_ENABLE_STREAM_RESET:
7576 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7577 							 optlen);
7578 		break;
7579 	case SCTP_STREAM_SCHEDULER:
7580 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7581 						   optlen);
7582 		break;
7583 	case SCTP_STREAM_SCHEDULER_VALUE:
7584 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7585 							 optlen);
7586 		break;
7587 	case SCTP_INTERLEAVING_SUPPORTED:
7588 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7589 								optlen);
7590 		break;
7591 	case SCTP_REUSE_PORT:
7592 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7593 		break;
7594 	default:
7595 		retval = -ENOPROTOOPT;
7596 		break;
7597 	}
7598 
7599 	release_sock(sk);
7600 	return retval;
7601 }
7602 
7603 static int sctp_hash(struct sock *sk)
7604 {
7605 	/* STUB */
7606 	return 0;
7607 }
7608 
7609 static void sctp_unhash(struct sock *sk)
7610 {
7611 	/* STUB */
7612 }
7613 
7614 /* Check if port is acceptable.  Possibly find first available port.
7615  *
7616  * The port hash table (contained in the 'global' SCTP protocol storage
7617  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7618  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7619  * list (the list number is the port number hashed out, so as you
7620  * would expect from a hash function, all the ports in a given list have
7621  * such a number that hashes out to the same list number; you were
7622  * expecting that, right?); so each list has a set of ports, with a
7623  * link to the socket (struct sock) that uses it, the port number and
7624  * a fastreuse flag (FIXME: NPI ipg).
7625  */
7626 static struct sctp_bind_bucket *sctp_bucket_create(
7627 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7628 
7629 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7630 {
7631 	bool reuse = (sk->sk_reuse || sctp_sk(sk)->reuse);
7632 	struct sctp_bind_hashbucket *head; /* hash list */
7633 	struct sctp_bind_bucket *pp;
7634 	unsigned short snum;
7635 	int ret;
7636 
7637 	snum = ntohs(addr->v4.sin_port);
7638 
7639 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7640 
7641 	local_bh_disable();
7642 
7643 	if (snum == 0) {
7644 		/* Search for an available port. */
7645 		int low, high, remaining, index;
7646 		unsigned int rover;
7647 		struct net *net = sock_net(sk);
7648 
7649 		inet_get_local_port_range(net, &low, &high);
7650 		remaining = (high - low) + 1;
7651 		rover = prandom_u32() % remaining + low;
7652 
7653 		do {
7654 			rover++;
7655 			if ((rover < low) || (rover > high))
7656 				rover = low;
7657 			if (inet_is_local_reserved_port(net, rover))
7658 				continue;
7659 			index = sctp_phashfn(sock_net(sk), rover);
7660 			head = &sctp_port_hashtable[index];
7661 			spin_lock(&head->lock);
7662 			sctp_for_each_hentry(pp, &head->chain)
7663 				if ((pp->port == rover) &&
7664 				    net_eq(sock_net(sk), pp->net))
7665 					goto next;
7666 			break;
7667 		next:
7668 			spin_unlock(&head->lock);
7669 		} while (--remaining > 0);
7670 
7671 		/* Exhausted local port range during search? */
7672 		ret = 1;
7673 		if (remaining <= 0)
7674 			goto fail;
7675 
7676 		/* OK, here is the one we will use.  HEAD (the port
7677 		 * hash table list entry) is non-NULL and we hold it's
7678 		 * mutex.
7679 		 */
7680 		snum = rover;
7681 	} else {
7682 		/* We are given an specific port number; we verify
7683 		 * that it is not being used. If it is used, we will
7684 		 * exahust the search in the hash list corresponding
7685 		 * to the port number (snum) - we detect that with the
7686 		 * port iterator, pp being NULL.
7687 		 */
7688 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7689 		spin_lock(&head->lock);
7690 		sctp_for_each_hentry(pp, &head->chain) {
7691 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7692 				goto pp_found;
7693 		}
7694 	}
7695 	pp = NULL;
7696 	goto pp_not_found;
7697 pp_found:
7698 	if (!hlist_empty(&pp->owner)) {
7699 		/* We had a port hash table hit - there is an
7700 		 * available port (pp != NULL) and it is being
7701 		 * used by other socket (pp->owner not empty); that other
7702 		 * socket is going to be sk2.
7703 		 */
7704 		struct sock *sk2;
7705 
7706 		pr_debug("%s: found a possible match\n", __func__);
7707 
7708 		if (pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING)
7709 			goto success;
7710 
7711 		/* Run through the list of sockets bound to the port
7712 		 * (pp->port) [via the pointers bind_next and
7713 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7714 		 * we get the endpoint they describe and run through
7715 		 * the endpoint's list of IP (v4 or v6) addresses,
7716 		 * comparing each of the addresses with the address of
7717 		 * the socket sk. If we find a match, then that means
7718 		 * that this port/socket (sk) combination are already
7719 		 * in an endpoint.
7720 		 */
7721 		sk_for_each_bound(sk2, &pp->owner) {
7722 			struct sctp_endpoint *ep2;
7723 			ep2 = sctp_sk(sk2)->ep;
7724 
7725 			if (sk == sk2 ||
7726 			    (reuse && (sk2->sk_reuse || sctp_sk(sk2)->reuse) &&
7727 			     sk2->sk_state != SCTP_SS_LISTENING))
7728 				continue;
7729 
7730 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7731 						 sctp_sk(sk2), sctp_sk(sk))) {
7732 				ret = (long)sk2;
7733 				goto fail_unlock;
7734 			}
7735 		}
7736 
7737 		pr_debug("%s: found a match\n", __func__);
7738 	}
7739 pp_not_found:
7740 	/* If there was a hash table miss, create a new port.  */
7741 	ret = 1;
7742 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7743 		goto fail_unlock;
7744 
7745 	/* In either case (hit or miss), make sure fastreuse is 1 only
7746 	 * if sk->sk_reuse is too (that is, if the caller requested
7747 	 * SO_REUSEADDR on this socket -sk-).
7748 	 */
7749 	if (hlist_empty(&pp->owner)) {
7750 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
7751 			pp->fastreuse = 1;
7752 		else
7753 			pp->fastreuse = 0;
7754 	} else if (pp->fastreuse &&
7755 		   (!reuse || sk->sk_state == SCTP_SS_LISTENING))
7756 		pp->fastreuse = 0;
7757 
7758 	/* We are set, so fill up all the data in the hash table
7759 	 * entry, tie the socket list information with the rest of the
7760 	 * sockets FIXME: Blurry, NPI (ipg).
7761 	 */
7762 success:
7763 	if (!sctp_sk(sk)->bind_hash) {
7764 		inet_sk(sk)->inet_num = snum;
7765 		sk_add_bind_node(sk, &pp->owner);
7766 		sctp_sk(sk)->bind_hash = pp;
7767 	}
7768 	ret = 0;
7769 
7770 fail_unlock:
7771 	spin_unlock(&head->lock);
7772 
7773 fail:
7774 	local_bh_enable();
7775 	return ret;
7776 }
7777 
7778 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
7779  * port is requested.
7780  */
7781 static int sctp_get_port(struct sock *sk, unsigned short snum)
7782 {
7783 	union sctp_addr addr;
7784 	struct sctp_af *af = sctp_sk(sk)->pf->af;
7785 
7786 	/* Set up a dummy address struct from the sk. */
7787 	af->from_sk(&addr, sk);
7788 	addr.v4.sin_port = htons(snum);
7789 
7790 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
7791 	return !!sctp_get_port_local(sk, &addr);
7792 }
7793 
7794 /*
7795  *  Move a socket to LISTENING state.
7796  */
7797 static int sctp_listen_start(struct sock *sk, int backlog)
7798 {
7799 	struct sctp_sock *sp = sctp_sk(sk);
7800 	struct sctp_endpoint *ep = sp->ep;
7801 	struct crypto_shash *tfm = NULL;
7802 	char alg[32];
7803 
7804 	/* Allocate HMAC for generating cookie. */
7805 	if (!sp->hmac && sp->sctp_hmac_alg) {
7806 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7807 		tfm = crypto_alloc_shash(alg, 0, 0);
7808 		if (IS_ERR(tfm)) {
7809 			net_info_ratelimited("failed to load transform for %s: %ld\n",
7810 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
7811 			return -ENOSYS;
7812 		}
7813 		sctp_sk(sk)->hmac = tfm;
7814 	}
7815 
7816 	/*
7817 	 * If a bind() or sctp_bindx() is not called prior to a listen()
7818 	 * call that allows new associations to be accepted, the system
7819 	 * picks an ephemeral port and will choose an address set equivalent
7820 	 * to binding with a wildcard address.
7821 	 *
7822 	 * This is not currently spelled out in the SCTP sockets
7823 	 * extensions draft, but follows the practice as seen in TCP
7824 	 * sockets.
7825 	 *
7826 	 */
7827 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
7828 	if (!ep->base.bind_addr.port) {
7829 		if (sctp_autobind(sk))
7830 			return -EAGAIN;
7831 	} else {
7832 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7833 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
7834 			return -EADDRINUSE;
7835 		}
7836 	}
7837 
7838 	sk->sk_max_ack_backlog = backlog;
7839 	sctp_hash_endpoint(ep);
7840 	return 0;
7841 }
7842 
7843 /*
7844  * 4.1.3 / 5.1.3 listen()
7845  *
7846  *   By default, new associations are not accepted for UDP style sockets.
7847  *   An application uses listen() to mark a socket as being able to
7848  *   accept new associations.
7849  *
7850  *   On TCP style sockets, applications use listen() to ready the SCTP
7851  *   endpoint for accepting inbound associations.
7852  *
7853  *   On both types of endpoints a backlog of '0' disables listening.
7854  *
7855  *  Move a socket to LISTENING state.
7856  */
7857 int sctp_inet_listen(struct socket *sock, int backlog)
7858 {
7859 	struct sock *sk = sock->sk;
7860 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7861 	int err = -EINVAL;
7862 
7863 	if (unlikely(backlog < 0))
7864 		return err;
7865 
7866 	lock_sock(sk);
7867 
7868 	/* Peeled-off sockets are not allowed to listen().  */
7869 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7870 		goto out;
7871 
7872 	if (sock->state != SS_UNCONNECTED)
7873 		goto out;
7874 
7875 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7876 		goto out;
7877 
7878 	/* If backlog is zero, disable listening. */
7879 	if (!backlog) {
7880 		if (sctp_sstate(sk, CLOSED))
7881 			goto out;
7882 
7883 		err = 0;
7884 		sctp_unhash_endpoint(ep);
7885 		sk->sk_state = SCTP_SS_CLOSED;
7886 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
7887 			sctp_sk(sk)->bind_hash->fastreuse = 1;
7888 		goto out;
7889 	}
7890 
7891 	/* If we are already listening, just update the backlog */
7892 	if (sctp_sstate(sk, LISTENING))
7893 		sk->sk_max_ack_backlog = backlog;
7894 	else {
7895 		err = sctp_listen_start(sk, backlog);
7896 		if (err)
7897 			goto out;
7898 	}
7899 
7900 	err = 0;
7901 out:
7902 	release_sock(sk);
7903 	return err;
7904 }
7905 
7906 /*
7907  * This function is done by modeling the current datagram_poll() and the
7908  * tcp_poll().  Note that, based on these implementations, we don't
7909  * lock the socket in this function, even though it seems that,
7910  * ideally, locking or some other mechanisms can be used to ensure
7911  * the integrity of the counters (sndbuf and wmem_alloc) used
7912  * in this place.  We assume that we don't need locks either until proven
7913  * otherwise.
7914  *
7915  * Another thing to note is that we include the Async I/O support
7916  * here, again, by modeling the current TCP/UDP code.  We don't have
7917  * a good way to test with it yet.
7918  */
7919 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7920 {
7921 	struct sock *sk = sock->sk;
7922 	struct sctp_sock *sp = sctp_sk(sk);
7923 	__poll_t mask;
7924 
7925 	poll_wait(file, sk_sleep(sk), wait);
7926 
7927 	sock_rps_record_flow(sk);
7928 
7929 	/* A TCP-style listening socket becomes readable when the accept queue
7930 	 * is not empty.
7931 	 */
7932 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7933 		return (!list_empty(&sp->ep->asocs)) ?
7934 			(EPOLLIN | EPOLLRDNORM) : 0;
7935 
7936 	mask = 0;
7937 
7938 	/* Is there any exceptional events?  */
7939 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7940 		mask |= EPOLLERR |
7941 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
7942 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7943 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
7944 	if (sk->sk_shutdown == SHUTDOWN_MASK)
7945 		mask |= EPOLLHUP;
7946 
7947 	/* Is it readable?  Reconsider this code with TCP-style support.  */
7948 	if (!skb_queue_empty(&sk->sk_receive_queue))
7949 		mask |= EPOLLIN | EPOLLRDNORM;
7950 
7951 	/* The association is either gone or not ready.  */
7952 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7953 		return mask;
7954 
7955 	/* Is it writable?  */
7956 	if (sctp_writeable(sk)) {
7957 		mask |= EPOLLOUT | EPOLLWRNORM;
7958 	} else {
7959 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7960 		/*
7961 		 * Since the socket is not locked, the buffer
7962 		 * might be made available after the writeable check and
7963 		 * before the bit is set.  This could cause a lost I/O
7964 		 * signal.  tcp_poll() has a race breaker for this race
7965 		 * condition.  Based on their implementation, we put
7966 		 * in the following code to cover it as well.
7967 		 */
7968 		if (sctp_writeable(sk))
7969 			mask |= EPOLLOUT | EPOLLWRNORM;
7970 	}
7971 	return mask;
7972 }
7973 
7974 /********************************************************************
7975  * 2nd Level Abstractions
7976  ********************************************************************/
7977 
7978 static struct sctp_bind_bucket *sctp_bucket_create(
7979 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7980 {
7981 	struct sctp_bind_bucket *pp;
7982 
7983 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7984 	if (pp) {
7985 		SCTP_DBG_OBJCNT_INC(bind_bucket);
7986 		pp->port = snum;
7987 		pp->fastreuse = 0;
7988 		INIT_HLIST_HEAD(&pp->owner);
7989 		pp->net = net;
7990 		hlist_add_head(&pp->node, &head->chain);
7991 	}
7992 	return pp;
7993 }
7994 
7995 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7996 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7997 {
7998 	if (pp && hlist_empty(&pp->owner)) {
7999 		__hlist_del(&pp->node);
8000 		kmem_cache_free(sctp_bucket_cachep, pp);
8001 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8002 	}
8003 }
8004 
8005 /* Release this socket's reference to a local port.  */
8006 static inline void __sctp_put_port(struct sock *sk)
8007 {
8008 	struct sctp_bind_hashbucket *head =
8009 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8010 						  inet_sk(sk)->inet_num)];
8011 	struct sctp_bind_bucket *pp;
8012 
8013 	spin_lock(&head->lock);
8014 	pp = sctp_sk(sk)->bind_hash;
8015 	__sk_del_bind_node(sk);
8016 	sctp_sk(sk)->bind_hash = NULL;
8017 	inet_sk(sk)->inet_num = 0;
8018 	sctp_bucket_destroy(pp);
8019 	spin_unlock(&head->lock);
8020 }
8021 
8022 void sctp_put_port(struct sock *sk)
8023 {
8024 	local_bh_disable();
8025 	__sctp_put_port(sk);
8026 	local_bh_enable();
8027 }
8028 
8029 /*
8030  * The system picks an ephemeral port and choose an address set equivalent
8031  * to binding with a wildcard address.
8032  * One of those addresses will be the primary address for the association.
8033  * This automatically enables the multihoming capability of SCTP.
8034  */
8035 static int sctp_autobind(struct sock *sk)
8036 {
8037 	union sctp_addr autoaddr;
8038 	struct sctp_af *af;
8039 	__be16 port;
8040 
8041 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8042 	af = sctp_sk(sk)->pf->af;
8043 
8044 	port = htons(inet_sk(sk)->inet_num);
8045 	af->inaddr_any(&autoaddr, port);
8046 
8047 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8048 }
8049 
8050 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8051  *
8052  * From RFC 2292
8053  * 4.2 The cmsghdr Structure *
8054  *
8055  * When ancillary data is sent or received, any number of ancillary data
8056  * objects can be specified by the msg_control and msg_controllen members of
8057  * the msghdr structure, because each object is preceded by
8058  * a cmsghdr structure defining the object's length (the cmsg_len member).
8059  * Historically Berkeley-derived implementations have passed only one object
8060  * at a time, but this API allows multiple objects to be
8061  * passed in a single call to sendmsg() or recvmsg(). The following example
8062  * shows two ancillary data objects in a control buffer.
8063  *
8064  *   |<--------------------------- msg_controllen -------------------------->|
8065  *   |                                                                       |
8066  *
8067  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8068  *
8069  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8070  *   |                                   |                                   |
8071  *
8072  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8073  *
8074  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8075  *   |                                |  |                                |  |
8076  *
8077  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8078  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8079  *
8080  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8081  *
8082  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8083  *    ^
8084  *    |
8085  *
8086  * msg_control
8087  * points here
8088  */
8089 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8090 {
8091 	struct msghdr *my_msg = (struct msghdr *)msg;
8092 	struct cmsghdr *cmsg;
8093 
8094 	for_each_cmsghdr(cmsg, my_msg) {
8095 		if (!CMSG_OK(my_msg, cmsg))
8096 			return -EINVAL;
8097 
8098 		/* Should we parse this header or ignore?  */
8099 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8100 			continue;
8101 
8102 		/* Strictly check lengths following example in SCM code.  */
8103 		switch (cmsg->cmsg_type) {
8104 		case SCTP_INIT:
8105 			/* SCTP Socket API Extension
8106 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8107 			 *
8108 			 * This cmsghdr structure provides information for
8109 			 * initializing new SCTP associations with sendmsg().
8110 			 * The SCTP_INITMSG socket option uses this same data
8111 			 * structure.  This structure is not used for
8112 			 * recvmsg().
8113 			 *
8114 			 * cmsg_level    cmsg_type      cmsg_data[]
8115 			 * ------------  ------------   ----------------------
8116 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8117 			 */
8118 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8119 				return -EINVAL;
8120 
8121 			cmsgs->init = CMSG_DATA(cmsg);
8122 			break;
8123 
8124 		case SCTP_SNDRCV:
8125 			/* SCTP Socket API Extension
8126 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8127 			 *
8128 			 * This cmsghdr structure specifies SCTP options for
8129 			 * sendmsg() and describes SCTP header information
8130 			 * about a received message through recvmsg().
8131 			 *
8132 			 * cmsg_level    cmsg_type      cmsg_data[]
8133 			 * ------------  ------------   ----------------------
8134 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8135 			 */
8136 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8137 				return -EINVAL;
8138 
8139 			cmsgs->srinfo = CMSG_DATA(cmsg);
8140 
8141 			if (cmsgs->srinfo->sinfo_flags &
8142 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8143 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8144 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8145 				return -EINVAL;
8146 			break;
8147 
8148 		case SCTP_SNDINFO:
8149 			/* SCTP Socket API Extension
8150 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8151 			 *
8152 			 * This cmsghdr structure specifies SCTP options for
8153 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8154 			 * SCTP_SNDRCV which has been deprecated.
8155 			 *
8156 			 * cmsg_level    cmsg_type      cmsg_data[]
8157 			 * ------------  ------------   ---------------------
8158 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8159 			 */
8160 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8161 				return -EINVAL;
8162 
8163 			cmsgs->sinfo = CMSG_DATA(cmsg);
8164 
8165 			if (cmsgs->sinfo->snd_flags &
8166 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8167 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8168 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8169 				return -EINVAL;
8170 			break;
8171 		case SCTP_PRINFO:
8172 			/* SCTP Socket API Extension
8173 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8174 			 *
8175 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8176 			 *
8177 			 * cmsg_level    cmsg_type      cmsg_data[]
8178 			 * ------------  ------------   ---------------------
8179 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8180 			 */
8181 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8182 				return -EINVAL;
8183 
8184 			cmsgs->prinfo = CMSG_DATA(cmsg);
8185 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8186 				return -EINVAL;
8187 
8188 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8189 				cmsgs->prinfo->pr_value = 0;
8190 			break;
8191 		case SCTP_AUTHINFO:
8192 			/* SCTP Socket API Extension
8193 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8194 			 *
8195 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8196 			 *
8197 			 * cmsg_level    cmsg_type      cmsg_data[]
8198 			 * ------------  ------------   ---------------------
8199 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8200 			 */
8201 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8202 				return -EINVAL;
8203 
8204 			cmsgs->authinfo = CMSG_DATA(cmsg);
8205 			break;
8206 		case SCTP_DSTADDRV4:
8207 		case SCTP_DSTADDRV6:
8208 			/* SCTP Socket API Extension
8209 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8210 			 *
8211 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8212 			 *
8213 			 * cmsg_level    cmsg_type         cmsg_data[]
8214 			 * ------------  ------------   ---------------------
8215 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8216 			 * ------------  ------------   ---------------------
8217 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8218 			 */
8219 			cmsgs->addrs_msg = my_msg;
8220 			break;
8221 		default:
8222 			return -EINVAL;
8223 		}
8224 	}
8225 
8226 	return 0;
8227 }
8228 
8229 /*
8230  * Wait for a packet..
8231  * Note: This function is the same function as in core/datagram.c
8232  * with a few modifications to make lksctp work.
8233  */
8234 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8235 {
8236 	int error;
8237 	DEFINE_WAIT(wait);
8238 
8239 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8240 
8241 	/* Socket errors? */
8242 	error = sock_error(sk);
8243 	if (error)
8244 		goto out;
8245 
8246 	if (!skb_queue_empty(&sk->sk_receive_queue))
8247 		goto ready;
8248 
8249 	/* Socket shut down?  */
8250 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8251 		goto out;
8252 
8253 	/* Sequenced packets can come disconnected.  If so we report the
8254 	 * problem.
8255 	 */
8256 	error = -ENOTCONN;
8257 
8258 	/* Is there a good reason to think that we may receive some data?  */
8259 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8260 		goto out;
8261 
8262 	/* Handle signals.  */
8263 	if (signal_pending(current))
8264 		goto interrupted;
8265 
8266 	/* Let another process have a go.  Since we are going to sleep
8267 	 * anyway.  Note: This may cause odd behaviors if the message
8268 	 * does not fit in the user's buffer, but this seems to be the
8269 	 * only way to honor MSG_DONTWAIT realistically.
8270 	 */
8271 	release_sock(sk);
8272 	*timeo_p = schedule_timeout(*timeo_p);
8273 	lock_sock(sk);
8274 
8275 ready:
8276 	finish_wait(sk_sleep(sk), &wait);
8277 	return 0;
8278 
8279 interrupted:
8280 	error = sock_intr_errno(*timeo_p);
8281 
8282 out:
8283 	finish_wait(sk_sleep(sk), &wait);
8284 	*err = error;
8285 	return error;
8286 }
8287 
8288 /* Receive a datagram.
8289  * Note: This is pretty much the same routine as in core/datagram.c
8290  * with a few changes to make lksctp work.
8291  */
8292 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8293 				       int noblock, int *err)
8294 {
8295 	int error;
8296 	struct sk_buff *skb;
8297 	long timeo;
8298 
8299 	timeo = sock_rcvtimeo(sk, noblock);
8300 
8301 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8302 		 MAX_SCHEDULE_TIMEOUT);
8303 
8304 	do {
8305 		/* Again only user level code calls this function,
8306 		 * so nothing interrupt level
8307 		 * will suddenly eat the receive_queue.
8308 		 *
8309 		 *  Look at current nfs client by the way...
8310 		 *  However, this function was correct in any case. 8)
8311 		 */
8312 		if (flags & MSG_PEEK) {
8313 			skb = skb_peek(&sk->sk_receive_queue);
8314 			if (skb)
8315 				refcount_inc(&skb->users);
8316 		} else {
8317 			skb = __skb_dequeue(&sk->sk_receive_queue);
8318 		}
8319 
8320 		if (skb)
8321 			return skb;
8322 
8323 		/* Caller is allowed not to check sk->sk_err before calling. */
8324 		error = sock_error(sk);
8325 		if (error)
8326 			goto no_packet;
8327 
8328 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8329 			break;
8330 
8331 		if (sk_can_busy_loop(sk)) {
8332 			sk_busy_loop(sk, noblock);
8333 
8334 			if (!skb_queue_empty(&sk->sk_receive_queue))
8335 				continue;
8336 		}
8337 
8338 		/* User doesn't want to wait.  */
8339 		error = -EAGAIN;
8340 		if (!timeo)
8341 			goto no_packet;
8342 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8343 
8344 	return NULL;
8345 
8346 no_packet:
8347 	*err = error;
8348 	return NULL;
8349 }
8350 
8351 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8352 static void __sctp_write_space(struct sctp_association *asoc)
8353 {
8354 	struct sock *sk = asoc->base.sk;
8355 
8356 	if (sctp_wspace(asoc) <= 0)
8357 		return;
8358 
8359 	if (waitqueue_active(&asoc->wait))
8360 		wake_up_interruptible(&asoc->wait);
8361 
8362 	if (sctp_writeable(sk)) {
8363 		struct socket_wq *wq;
8364 
8365 		rcu_read_lock();
8366 		wq = rcu_dereference(sk->sk_wq);
8367 		if (wq) {
8368 			if (waitqueue_active(&wq->wait))
8369 				wake_up_interruptible(&wq->wait);
8370 
8371 			/* Note that we try to include the Async I/O support
8372 			 * here by modeling from the current TCP/UDP code.
8373 			 * We have not tested with it yet.
8374 			 */
8375 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8376 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8377 		}
8378 		rcu_read_unlock();
8379 	}
8380 }
8381 
8382 static void sctp_wake_up_waiters(struct sock *sk,
8383 				 struct sctp_association *asoc)
8384 {
8385 	struct sctp_association *tmp = asoc;
8386 
8387 	/* We do accounting for the sndbuf space per association,
8388 	 * so we only need to wake our own association.
8389 	 */
8390 	if (asoc->ep->sndbuf_policy)
8391 		return __sctp_write_space(asoc);
8392 
8393 	/* If association goes down and is just flushing its
8394 	 * outq, then just normally notify others.
8395 	 */
8396 	if (asoc->base.dead)
8397 		return sctp_write_space(sk);
8398 
8399 	/* Accounting for the sndbuf space is per socket, so we
8400 	 * need to wake up others, try to be fair and in case of
8401 	 * other associations, let them have a go first instead
8402 	 * of just doing a sctp_write_space() call.
8403 	 *
8404 	 * Note that we reach sctp_wake_up_waiters() only when
8405 	 * associations free up queued chunks, thus we are under
8406 	 * lock and the list of associations on a socket is
8407 	 * guaranteed not to change.
8408 	 */
8409 	for (tmp = list_next_entry(tmp, asocs); 1;
8410 	     tmp = list_next_entry(tmp, asocs)) {
8411 		/* Manually skip the head element. */
8412 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8413 			continue;
8414 		/* Wake up association. */
8415 		__sctp_write_space(tmp);
8416 		/* We've reached the end. */
8417 		if (tmp == asoc)
8418 			break;
8419 	}
8420 }
8421 
8422 /* Do accounting for the sndbuf space.
8423  * Decrement the used sndbuf space of the corresponding association by the
8424  * data size which was just transmitted(freed).
8425  */
8426 static void sctp_wfree(struct sk_buff *skb)
8427 {
8428 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8429 	struct sctp_association *asoc = chunk->asoc;
8430 	struct sock *sk = asoc->base.sk;
8431 
8432 	sk_mem_uncharge(sk, skb->truesize);
8433 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8434 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8435 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8436 				      &sk->sk_wmem_alloc));
8437 
8438 	if (chunk->shkey) {
8439 		struct sctp_shared_key *shkey = chunk->shkey;
8440 
8441 		/* refcnt == 2 and !list_empty mean after this release, it's
8442 		 * not being used anywhere, and it's time to notify userland
8443 		 * that this shkey can be freed if it's been deactivated.
8444 		 */
8445 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8446 		    refcount_read(&shkey->refcnt) == 2) {
8447 			struct sctp_ulpevent *ev;
8448 
8449 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8450 							SCTP_AUTH_FREE_KEY,
8451 							GFP_KERNEL);
8452 			if (ev)
8453 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8454 		}
8455 		sctp_auth_shkey_release(chunk->shkey);
8456 	}
8457 
8458 	sock_wfree(skb);
8459 	sctp_wake_up_waiters(sk, asoc);
8460 
8461 	sctp_association_put(asoc);
8462 }
8463 
8464 /* Do accounting for the receive space on the socket.
8465  * Accounting for the association is done in ulpevent.c
8466  * We set this as a destructor for the cloned data skbs so that
8467  * accounting is done at the correct time.
8468  */
8469 void sctp_sock_rfree(struct sk_buff *skb)
8470 {
8471 	struct sock *sk = skb->sk;
8472 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8473 
8474 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8475 
8476 	/*
8477 	 * Mimic the behavior of sock_rfree
8478 	 */
8479 	sk_mem_uncharge(sk, event->rmem_len);
8480 }
8481 
8482 
8483 /* Helper function to wait for space in the sndbuf.  */
8484 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8485 				size_t msg_len)
8486 {
8487 	struct sock *sk = asoc->base.sk;
8488 	long current_timeo = *timeo_p;
8489 	DEFINE_WAIT(wait);
8490 	int err = 0;
8491 
8492 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8493 		 *timeo_p, msg_len);
8494 
8495 	/* Increment the association's refcnt.  */
8496 	sctp_association_hold(asoc);
8497 
8498 	/* Wait on the association specific sndbuf space. */
8499 	for (;;) {
8500 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8501 					  TASK_INTERRUPTIBLE);
8502 		if (asoc->base.dead)
8503 			goto do_dead;
8504 		if (!*timeo_p)
8505 			goto do_nonblock;
8506 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8507 			goto do_error;
8508 		if (signal_pending(current))
8509 			goto do_interrupted;
8510 		if ((int)msg_len <= sctp_wspace(asoc))
8511 			break;
8512 
8513 		/* Let another process have a go.  Since we are going
8514 		 * to sleep anyway.
8515 		 */
8516 		release_sock(sk);
8517 		current_timeo = schedule_timeout(current_timeo);
8518 		lock_sock(sk);
8519 		if (sk != asoc->base.sk)
8520 			goto do_error;
8521 
8522 		*timeo_p = current_timeo;
8523 	}
8524 
8525 out:
8526 	finish_wait(&asoc->wait, &wait);
8527 
8528 	/* Release the association's refcnt.  */
8529 	sctp_association_put(asoc);
8530 
8531 	return err;
8532 
8533 do_dead:
8534 	err = -ESRCH;
8535 	goto out;
8536 
8537 do_error:
8538 	err = -EPIPE;
8539 	goto out;
8540 
8541 do_interrupted:
8542 	err = sock_intr_errno(*timeo_p);
8543 	goto out;
8544 
8545 do_nonblock:
8546 	err = -EAGAIN;
8547 	goto out;
8548 }
8549 
8550 void sctp_data_ready(struct sock *sk)
8551 {
8552 	struct socket_wq *wq;
8553 
8554 	rcu_read_lock();
8555 	wq = rcu_dereference(sk->sk_wq);
8556 	if (skwq_has_sleeper(wq))
8557 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8558 						EPOLLRDNORM | EPOLLRDBAND);
8559 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8560 	rcu_read_unlock();
8561 }
8562 
8563 /* If socket sndbuf has changed, wake up all per association waiters.  */
8564 void sctp_write_space(struct sock *sk)
8565 {
8566 	struct sctp_association *asoc;
8567 
8568 	/* Wake up the tasks in each wait queue.  */
8569 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8570 		__sctp_write_space(asoc);
8571 	}
8572 }
8573 
8574 /* Is there any sndbuf space available on the socket?
8575  *
8576  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8577  * associations on the same socket.  For a UDP-style socket with
8578  * multiple associations, it is possible for it to be "unwriteable"
8579  * prematurely.  I assume that this is acceptable because
8580  * a premature "unwriteable" is better than an accidental "writeable" which
8581  * would cause an unwanted block under certain circumstances.  For the 1-1
8582  * UDP-style sockets or TCP-style sockets, this code should work.
8583  *  - Daisy
8584  */
8585 static bool sctp_writeable(struct sock *sk)
8586 {
8587 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8588 }
8589 
8590 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8591  * returns immediately with EINPROGRESS.
8592  */
8593 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8594 {
8595 	struct sock *sk = asoc->base.sk;
8596 	int err = 0;
8597 	long current_timeo = *timeo_p;
8598 	DEFINE_WAIT(wait);
8599 
8600 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8601 
8602 	/* Increment the association's refcnt.  */
8603 	sctp_association_hold(asoc);
8604 
8605 	for (;;) {
8606 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8607 					  TASK_INTERRUPTIBLE);
8608 		if (!*timeo_p)
8609 			goto do_nonblock;
8610 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8611 			break;
8612 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8613 		    asoc->base.dead)
8614 			goto do_error;
8615 		if (signal_pending(current))
8616 			goto do_interrupted;
8617 
8618 		if (sctp_state(asoc, ESTABLISHED))
8619 			break;
8620 
8621 		/* Let another process have a go.  Since we are going
8622 		 * to sleep anyway.
8623 		 */
8624 		release_sock(sk);
8625 		current_timeo = schedule_timeout(current_timeo);
8626 		lock_sock(sk);
8627 
8628 		*timeo_p = current_timeo;
8629 	}
8630 
8631 out:
8632 	finish_wait(&asoc->wait, &wait);
8633 
8634 	/* Release the association's refcnt.  */
8635 	sctp_association_put(asoc);
8636 
8637 	return err;
8638 
8639 do_error:
8640 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8641 		err = -ETIMEDOUT;
8642 	else
8643 		err = -ECONNREFUSED;
8644 	goto out;
8645 
8646 do_interrupted:
8647 	err = sock_intr_errno(*timeo_p);
8648 	goto out;
8649 
8650 do_nonblock:
8651 	err = -EINPROGRESS;
8652 	goto out;
8653 }
8654 
8655 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8656 {
8657 	struct sctp_endpoint *ep;
8658 	int err = 0;
8659 	DEFINE_WAIT(wait);
8660 
8661 	ep = sctp_sk(sk)->ep;
8662 
8663 
8664 	for (;;) {
8665 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8666 					  TASK_INTERRUPTIBLE);
8667 
8668 		if (list_empty(&ep->asocs)) {
8669 			release_sock(sk);
8670 			timeo = schedule_timeout(timeo);
8671 			lock_sock(sk);
8672 		}
8673 
8674 		err = -EINVAL;
8675 		if (!sctp_sstate(sk, LISTENING))
8676 			break;
8677 
8678 		err = 0;
8679 		if (!list_empty(&ep->asocs))
8680 			break;
8681 
8682 		err = sock_intr_errno(timeo);
8683 		if (signal_pending(current))
8684 			break;
8685 
8686 		err = -EAGAIN;
8687 		if (!timeo)
8688 			break;
8689 	}
8690 
8691 	finish_wait(sk_sleep(sk), &wait);
8692 
8693 	return err;
8694 }
8695 
8696 static void sctp_wait_for_close(struct sock *sk, long timeout)
8697 {
8698 	DEFINE_WAIT(wait);
8699 
8700 	do {
8701 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8702 		if (list_empty(&sctp_sk(sk)->ep->asocs))
8703 			break;
8704 		release_sock(sk);
8705 		timeout = schedule_timeout(timeout);
8706 		lock_sock(sk);
8707 	} while (!signal_pending(current) && timeout);
8708 
8709 	finish_wait(sk_sleep(sk), &wait);
8710 }
8711 
8712 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8713 {
8714 	struct sk_buff *frag;
8715 
8716 	if (!skb->data_len)
8717 		goto done;
8718 
8719 	/* Don't forget the fragments. */
8720 	skb_walk_frags(skb, frag)
8721 		sctp_skb_set_owner_r_frag(frag, sk);
8722 
8723 done:
8724 	sctp_skb_set_owner_r(skb, sk);
8725 }
8726 
8727 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8728 		    struct sctp_association *asoc)
8729 {
8730 	struct inet_sock *inet = inet_sk(sk);
8731 	struct inet_sock *newinet;
8732 	struct sctp_sock *sp = sctp_sk(sk);
8733 	struct sctp_endpoint *ep = sp->ep;
8734 
8735 	newsk->sk_type = sk->sk_type;
8736 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8737 	newsk->sk_flags = sk->sk_flags;
8738 	newsk->sk_tsflags = sk->sk_tsflags;
8739 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
8740 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
8741 	newsk->sk_reuse = sk->sk_reuse;
8742 	sctp_sk(newsk)->reuse = sp->reuse;
8743 
8744 	newsk->sk_shutdown = sk->sk_shutdown;
8745 	newsk->sk_destruct = sctp_destruct_sock;
8746 	newsk->sk_family = sk->sk_family;
8747 	newsk->sk_protocol = IPPROTO_SCTP;
8748 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8749 	newsk->sk_sndbuf = sk->sk_sndbuf;
8750 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
8751 	newsk->sk_lingertime = sk->sk_lingertime;
8752 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8753 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
8754 	newsk->sk_rxhash = sk->sk_rxhash;
8755 
8756 	newinet = inet_sk(newsk);
8757 
8758 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
8759 	 * getsockname() and getpeername()
8760 	 */
8761 	newinet->inet_sport = inet->inet_sport;
8762 	newinet->inet_saddr = inet->inet_saddr;
8763 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8764 	newinet->inet_dport = htons(asoc->peer.port);
8765 	newinet->pmtudisc = inet->pmtudisc;
8766 	newinet->inet_id = asoc->next_tsn ^ jiffies;
8767 
8768 	newinet->uc_ttl = inet->uc_ttl;
8769 	newinet->mc_loop = 1;
8770 	newinet->mc_ttl = 1;
8771 	newinet->mc_index = 0;
8772 	newinet->mc_list = NULL;
8773 
8774 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8775 		net_enable_timestamp();
8776 
8777 	/* Set newsk security attributes from orginal sk and connection
8778 	 * security attribute from ep.
8779 	 */
8780 	security_sctp_sk_clone(ep, sk, newsk);
8781 }
8782 
8783 static inline void sctp_copy_descendant(struct sock *sk_to,
8784 					const struct sock *sk_from)
8785 {
8786 	int ancestor_size = sizeof(struct inet_sock) +
8787 			    sizeof(struct sctp_sock) -
8788 			    offsetof(struct sctp_sock, auto_asconf_list);
8789 
8790 	if (sk_from->sk_family == PF_INET6)
8791 		ancestor_size += sizeof(struct ipv6_pinfo);
8792 
8793 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8794 }
8795 
8796 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8797  * and its messages to the newsk.
8798  */
8799 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8800 			      struct sctp_association *assoc,
8801 			      enum sctp_socket_type type)
8802 {
8803 	struct sctp_sock *oldsp = sctp_sk(oldsk);
8804 	struct sctp_sock *newsp = sctp_sk(newsk);
8805 	struct sctp_bind_bucket *pp; /* hash list port iterator */
8806 	struct sctp_endpoint *newep = newsp->ep;
8807 	struct sk_buff *skb, *tmp;
8808 	struct sctp_ulpevent *event;
8809 	struct sctp_bind_hashbucket *head;
8810 
8811 	/* Migrate socket buffer sizes and all the socket level options to the
8812 	 * new socket.
8813 	 */
8814 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
8815 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8816 	/* Brute force copy old sctp opt. */
8817 	sctp_copy_descendant(newsk, oldsk);
8818 
8819 	/* Restore the ep value that was overwritten with the above structure
8820 	 * copy.
8821 	 */
8822 	newsp->ep = newep;
8823 	newsp->hmac = NULL;
8824 
8825 	/* Hook this new socket in to the bind_hash list. */
8826 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8827 						 inet_sk(oldsk)->inet_num)];
8828 	spin_lock_bh(&head->lock);
8829 	pp = sctp_sk(oldsk)->bind_hash;
8830 	sk_add_bind_node(newsk, &pp->owner);
8831 	sctp_sk(newsk)->bind_hash = pp;
8832 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8833 	spin_unlock_bh(&head->lock);
8834 
8835 	/* Copy the bind_addr list from the original endpoint to the new
8836 	 * endpoint so that we can handle restarts properly
8837 	 */
8838 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8839 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
8840 
8841 	/* Move any messages in the old socket's receive queue that are for the
8842 	 * peeled off association to the new socket's receive queue.
8843 	 */
8844 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8845 		event = sctp_skb2event(skb);
8846 		if (event->asoc == assoc) {
8847 			__skb_unlink(skb, &oldsk->sk_receive_queue);
8848 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
8849 			sctp_skb_set_owner_r_frag(skb, newsk);
8850 		}
8851 	}
8852 
8853 	/* Clean up any messages pending delivery due to partial
8854 	 * delivery.   Three cases:
8855 	 * 1) No partial deliver;  no work.
8856 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8857 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8858 	 */
8859 	skb_queue_head_init(&newsp->pd_lobby);
8860 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8861 
8862 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8863 		struct sk_buff_head *queue;
8864 
8865 		/* Decide which queue to move pd_lobby skbs to. */
8866 		if (assoc->ulpq.pd_mode) {
8867 			queue = &newsp->pd_lobby;
8868 		} else
8869 			queue = &newsk->sk_receive_queue;
8870 
8871 		/* Walk through the pd_lobby, looking for skbs that
8872 		 * need moved to the new socket.
8873 		 */
8874 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8875 			event = sctp_skb2event(skb);
8876 			if (event->asoc == assoc) {
8877 				__skb_unlink(skb, &oldsp->pd_lobby);
8878 				__skb_queue_tail(queue, skb);
8879 				sctp_skb_set_owner_r_frag(skb, newsk);
8880 			}
8881 		}
8882 
8883 		/* Clear up any skbs waiting for the partial
8884 		 * delivery to finish.
8885 		 */
8886 		if (assoc->ulpq.pd_mode)
8887 			sctp_clear_pd(oldsk, NULL);
8888 
8889 	}
8890 
8891 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
8892 
8893 	/* Set the type of socket to indicate that it is peeled off from the
8894 	 * original UDP-style socket or created with the accept() call on a
8895 	 * TCP-style socket..
8896 	 */
8897 	newsp->type = type;
8898 
8899 	/* Mark the new socket "in-use" by the user so that any packets
8900 	 * that may arrive on the association after we've moved it are
8901 	 * queued to the backlog.  This prevents a potential race between
8902 	 * backlog processing on the old socket and new-packet processing
8903 	 * on the new socket.
8904 	 *
8905 	 * The caller has just allocated newsk so we can guarantee that other
8906 	 * paths won't try to lock it and then oldsk.
8907 	 */
8908 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8909 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8910 	sctp_assoc_migrate(assoc, newsk);
8911 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8912 
8913 	/* If the association on the newsk is already closed before accept()
8914 	 * is called, set RCV_SHUTDOWN flag.
8915 	 */
8916 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8917 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
8918 		newsk->sk_shutdown |= RCV_SHUTDOWN;
8919 	} else {
8920 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
8921 	}
8922 
8923 	release_sock(newsk);
8924 }
8925 
8926 
8927 /* This proto struct describes the ULP interface for SCTP.  */
8928 struct proto sctp_prot = {
8929 	.name        =	"SCTP",
8930 	.owner       =	THIS_MODULE,
8931 	.close       =	sctp_close,
8932 	.disconnect  =	sctp_disconnect,
8933 	.accept      =	sctp_accept,
8934 	.ioctl       =	sctp_ioctl,
8935 	.init        =	sctp_init_sock,
8936 	.destroy     =	sctp_destroy_sock,
8937 	.shutdown    =	sctp_shutdown,
8938 	.setsockopt  =	sctp_setsockopt,
8939 	.getsockopt  =	sctp_getsockopt,
8940 	.sendmsg     =	sctp_sendmsg,
8941 	.recvmsg     =	sctp_recvmsg,
8942 	.bind        =	sctp_bind,
8943 	.backlog_rcv =	sctp_backlog_rcv,
8944 	.hash        =	sctp_hash,
8945 	.unhash      =	sctp_unhash,
8946 	.get_port    =	sctp_get_port,
8947 	.obj_size    =  sizeof(struct sctp_sock),
8948 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
8949 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
8950 				offsetof(struct sctp_sock, subscribe) +
8951 				sizeof_field(struct sctp_sock, initmsg),
8952 	.sysctl_mem  =  sysctl_sctp_mem,
8953 	.sysctl_rmem =  sysctl_sctp_rmem,
8954 	.sysctl_wmem =  sysctl_sctp_wmem,
8955 	.memory_pressure = &sctp_memory_pressure,
8956 	.enter_memory_pressure = sctp_enter_memory_pressure,
8957 	.memory_allocated = &sctp_memory_allocated,
8958 	.sockets_allocated = &sctp_sockets_allocated,
8959 };
8960 
8961 #if IS_ENABLED(CONFIG_IPV6)
8962 
8963 #include <net/transp_v6.h>
8964 static void sctp_v6_destroy_sock(struct sock *sk)
8965 {
8966 	sctp_destroy_sock(sk);
8967 	inet6_destroy_sock(sk);
8968 }
8969 
8970 struct proto sctpv6_prot = {
8971 	.name		= "SCTPv6",
8972 	.owner		= THIS_MODULE,
8973 	.close		= sctp_close,
8974 	.disconnect	= sctp_disconnect,
8975 	.accept		= sctp_accept,
8976 	.ioctl		= sctp_ioctl,
8977 	.init		= sctp_init_sock,
8978 	.destroy	= sctp_v6_destroy_sock,
8979 	.shutdown	= sctp_shutdown,
8980 	.setsockopt	= sctp_setsockopt,
8981 	.getsockopt	= sctp_getsockopt,
8982 	.sendmsg	= sctp_sendmsg,
8983 	.recvmsg	= sctp_recvmsg,
8984 	.bind		= sctp_bind,
8985 	.backlog_rcv	= sctp_backlog_rcv,
8986 	.hash		= sctp_hash,
8987 	.unhash		= sctp_unhash,
8988 	.get_port	= sctp_get_port,
8989 	.obj_size	= sizeof(struct sctp6_sock),
8990 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
8991 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
8992 				offsetof(struct sctp6_sock, sctp.subscribe) +
8993 				sizeof_field(struct sctp6_sock, sctp.initmsg),
8994 	.sysctl_mem	= sysctl_sctp_mem,
8995 	.sysctl_rmem	= sysctl_sctp_rmem,
8996 	.sysctl_wmem	= sysctl_sctp_wmem,
8997 	.memory_pressure = &sctp_memory_pressure,
8998 	.enter_memory_pressure = sctp_enter_memory_pressure,
8999 	.memory_allocated = &sctp_memory_allocated,
9000 	.sockets_allocated = &sctp_sockets_allocated,
9001 };
9002 #endif /* IS_ENABLED(CONFIG_IPV6) */
9003