1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 151 void (*cb)(struct sctp_chunk *)) 152 153 { 154 struct sctp_outq *q = &asoc->outqueue; 155 struct sctp_transport *t; 156 struct sctp_chunk *chunk; 157 158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 159 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 160 cb(chunk); 161 162 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 163 cb(chunk); 164 165 list_for_each_entry(chunk, &q->sacked, transmitted_list) 166 cb(chunk); 167 168 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 169 cb(chunk); 170 171 list_for_each_entry(chunk, &q->out_chunk_list, list) 172 cb(chunk); 173 } 174 175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 176 void (*cb)(struct sk_buff *, struct sock *)) 177 178 { 179 struct sk_buff *skb, *tmp; 180 181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 182 cb(skb, sk); 183 184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 185 cb(skb, sk); 186 187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 188 cb(skb, sk); 189 } 190 191 /* Verify that this is a valid address. */ 192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 193 int len) 194 { 195 struct sctp_af *af; 196 197 /* Verify basic sockaddr. */ 198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 199 if (!af) 200 return -EINVAL; 201 202 /* Is this a valid SCTP address? */ 203 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 204 return -EINVAL; 205 206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* Look up the association by its id. If this is not a UDP-style 213 * socket, the ID field is always ignored. 214 */ 215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 216 { 217 struct sctp_association *asoc = NULL; 218 219 /* If this is not a UDP-style socket, assoc id should be ignored. */ 220 if (!sctp_style(sk, UDP)) { 221 /* Return NULL if the socket state is not ESTABLISHED. It 222 * could be a TCP-style listening socket or a socket which 223 * hasn't yet called connect() to establish an association. 224 */ 225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 226 return NULL; 227 228 /* Get the first and the only association from the list. */ 229 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 231 struct sctp_association, asocs); 232 return asoc; 233 } 234 235 /* Otherwise this is a UDP-style socket. */ 236 if (id <= SCTP_ALL_ASSOC) 237 return NULL; 238 239 spin_lock_bh(&sctp_assocs_id_lock); 240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 241 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 242 asoc = NULL; 243 spin_unlock_bh(&sctp_assocs_id_lock); 244 245 return asoc; 246 } 247 248 /* Look up the transport from an address and an assoc id. If both address and 249 * id are specified, the associations matching the address and the id should be 250 * the same. 251 */ 252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 253 struct sockaddr_storage *addr, 254 sctp_assoc_t id) 255 { 256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 258 union sctp_addr *laddr = (union sctp_addr *)addr; 259 struct sctp_transport *transport; 260 261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 262 return NULL; 263 264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 265 laddr, 266 &transport); 267 268 if (!addr_asoc) 269 return NULL; 270 271 id_asoc = sctp_id2assoc(sk, id); 272 if (id_asoc && (id_asoc != addr_asoc)) 273 return NULL; 274 275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 276 (union sctp_addr *)addr); 277 278 return transport; 279 } 280 281 /* API 3.1.2 bind() - UDP Style Syntax 282 * The syntax of bind() is, 283 * 284 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 285 * 286 * sd - the socket descriptor returned by socket(). 287 * addr - the address structure (struct sockaddr_in or struct 288 * sockaddr_in6 [RFC 2553]), 289 * addr_len - the size of the address structure. 290 */ 291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 292 { 293 int retval = 0; 294 295 lock_sock(sk); 296 297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 298 addr, addr_len); 299 300 /* Disallow binding twice. */ 301 if (!sctp_sk(sk)->ep->base.bind_addr.port) 302 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 303 addr_len); 304 else 305 retval = -EINVAL; 306 307 release_sock(sk); 308 309 return retval; 310 } 311 312 static long sctp_get_port_local(struct sock *, union sctp_addr *); 313 314 /* Verify this is a valid sockaddr. */ 315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 316 union sctp_addr *addr, int len) 317 { 318 struct sctp_af *af; 319 320 /* Check minimum size. */ 321 if (len < sizeof (struct sockaddr)) 322 return NULL; 323 324 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 325 return NULL; 326 327 if (addr->sa.sa_family == AF_INET6) { 328 if (len < SIN6_LEN_RFC2133) 329 return NULL; 330 /* V4 mapped address are really of AF_INET family */ 331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 332 !opt->pf->af_supported(AF_INET, opt)) 333 return NULL; 334 } 335 336 /* If we get this far, af is valid. */ 337 af = sctp_get_af_specific(addr->sa.sa_family); 338 339 if (len < af->sockaddr_len) 340 return NULL; 341 342 return af; 343 } 344 345 /* Bind a local address either to an endpoint or to an association. */ 346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 347 { 348 struct net *net = sock_net(sk); 349 struct sctp_sock *sp = sctp_sk(sk); 350 struct sctp_endpoint *ep = sp->ep; 351 struct sctp_bind_addr *bp = &ep->base.bind_addr; 352 struct sctp_af *af; 353 unsigned short snum; 354 int ret = 0; 355 356 /* Common sockaddr verification. */ 357 af = sctp_sockaddr_af(sp, addr, len); 358 if (!af) { 359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 360 __func__, sk, addr, len); 361 return -EINVAL; 362 } 363 364 snum = ntohs(addr->v4.sin_port); 365 366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 367 __func__, sk, &addr->sa, bp->port, snum, len); 368 369 /* PF specific bind() address verification. */ 370 if (!sp->pf->bind_verify(sp, addr)) 371 return -EADDRNOTAVAIL; 372 373 /* We must either be unbound, or bind to the same port. 374 * It's OK to allow 0 ports if we are already bound. 375 * We'll just inhert an already bound port in this case 376 */ 377 if (bp->port) { 378 if (!snum) 379 snum = bp->port; 380 else if (snum != bp->port) { 381 pr_debug("%s: new port %d doesn't match existing port " 382 "%d\n", __func__, snum, bp->port); 383 return -EINVAL; 384 } 385 } 386 387 if (snum && snum < inet_prot_sock(net) && 388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 389 return -EACCES; 390 391 /* See if the address matches any of the addresses we may have 392 * already bound before checking against other endpoints. 393 */ 394 if (sctp_bind_addr_match(bp, addr, sp)) 395 return -EINVAL; 396 397 /* Make sure we are allowed to bind here. 398 * The function sctp_get_port_local() does duplicate address 399 * detection. 400 */ 401 addr->v4.sin_port = htons(snum); 402 if ((ret = sctp_get_port_local(sk, addr))) { 403 return -EADDRINUSE; 404 } 405 406 /* Refresh ephemeral port. */ 407 if (!bp->port) 408 bp->port = inet_sk(sk)->inet_num; 409 410 /* Add the address to the bind address list. 411 * Use GFP_ATOMIC since BHs will be disabled. 412 */ 413 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 414 SCTP_ADDR_SRC, GFP_ATOMIC); 415 416 /* Copy back into socket for getsockname() use. */ 417 if (!ret) { 418 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 419 sp->pf->to_sk_saddr(addr, sk); 420 } 421 422 return ret; 423 } 424 425 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 426 * 427 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 428 * at any one time. If a sender, after sending an ASCONF chunk, decides 429 * it needs to transfer another ASCONF Chunk, it MUST wait until the 430 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 431 * subsequent ASCONF. Note this restriction binds each side, so at any 432 * time two ASCONF may be in-transit on any given association (one sent 433 * from each endpoint). 434 */ 435 static int sctp_send_asconf(struct sctp_association *asoc, 436 struct sctp_chunk *chunk) 437 { 438 struct net *net = sock_net(asoc->base.sk); 439 int retval = 0; 440 441 /* If there is an outstanding ASCONF chunk, queue it for later 442 * transmission. 443 */ 444 if (asoc->addip_last_asconf) { 445 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 446 goto out; 447 } 448 449 /* Hold the chunk until an ASCONF_ACK is received. */ 450 sctp_chunk_hold(chunk); 451 retval = sctp_primitive_ASCONF(net, asoc, chunk); 452 if (retval) 453 sctp_chunk_free(chunk); 454 else 455 asoc->addip_last_asconf = chunk; 456 457 out: 458 return retval; 459 } 460 461 /* Add a list of addresses as bind addresses to local endpoint or 462 * association. 463 * 464 * Basically run through each address specified in the addrs/addrcnt 465 * array/length pair, determine if it is IPv6 or IPv4 and call 466 * sctp_do_bind() on it. 467 * 468 * If any of them fails, then the operation will be reversed and the 469 * ones that were added will be removed. 470 * 471 * Only sctp_setsockopt_bindx() is supposed to call this function. 472 */ 473 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 474 { 475 int cnt; 476 int retval = 0; 477 void *addr_buf; 478 struct sockaddr *sa_addr; 479 struct sctp_af *af; 480 481 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 482 addrs, addrcnt); 483 484 addr_buf = addrs; 485 for (cnt = 0; cnt < addrcnt; cnt++) { 486 /* The list may contain either IPv4 or IPv6 address; 487 * determine the address length for walking thru the list. 488 */ 489 sa_addr = addr_buf; 490 af = sctp_get_af_specific(sa_addr->sa_family); 491 if (!af) { 492 retval = -EINVAL; 493 goto err_bindx_add; 494 } 495 496 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 497 af->sockaddr_len); 498 499 addr_buf += af->sockaddr_len; 500 501 err_bindx_add: 502 if (retval < 0) { 503 /* Failed. Cleanup the ones that have been added */ 504 if (cnt > 0) 505 sctp_bindx_rem(sk, addrs, cnt); 506 return retval; 507 } 508 } 509 510 return retval; 511 } 512 513 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 514 * associations that are part of the endpoint indicating that a list of local 515 * addresses are added to the endpoint. 516 * 517 * If any of the addresses is already in the bind address list of the 518 * association, we do not send the chunk for that association. But it will not 519 * affect other associations. 520 * 521 * Only sctp_setsockopt_bindx() is supposed to call this function. 522 */ 523 static int sctp_send_asconf_add_ip(struct sock *sk, 524 struct sockaddr *addrs, 525 int addrcnt) 526 { 527 struct net *net = sock_net(sk); 528 struct sctp_sock *sp; 529 struct sctp_endpoint *ep; 530 struct sctp_association *asoc; 531 struct sctp_bind_addr *bp; 532 struct sctp_chunk *chunk; 533 struct sctp_sockaddr_entry *laddr; 534 union sctp_addr *addr; 535 union sctp_addr saveaddr; 536 void *addr_buf; 537 struct sctp_af *af; 538 struct list_head *p; 539 int i; 540 int retval = 0; 541 542 if (!net->sctp.addip_enable) 543 return retval; 544 545 sp = sctp_sk(sk); 546 ep = sp->ep; 547 548 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 549 __func__, sk, addrs, addrcnt); 550 551 list_for_each_entry(asoc, &ep->asocs, asocs) { 552 if (!asoc->peer.asconf_capable) 553 continue; 554 555 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 556 continue; 557 558 if (!sctp_state(asoc, ESTABLISHED)) 559 continue; 560 561 /* Check if any address in the packed array of addresses is 562 * in the bind address list of the association. If so, 563 * do not send the asconf chunk to its peer, but continue with 564 * other associations. 565 */ 566 addr_buf = addrs; 567 for (i = 0; i < addrcnt; i++) { 568 addr = addr_buf; 569 af = sctp_get_af_specific(addr->v4.sin_family); 570 if (!af) { 571 retval = -EINVAL; 572 goto out; 573 } 574 575 if (sctp_assoc_lookup_laddr(asoc, addr)) 576 break; 577 578 addr_buf += af->sockaddr_len; 579 } 580 if (i < addrcnt) 581 continue; 582 583 /* Use the first valid address in bind addr list of 584 * association as Address Parameter of ASCONF CHUNK. 585 */ 586 bp = &asoc->base.bind_addr; 587 p = bp->address_list.next; 588 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 589 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 590 addrcnt, SCTP_PARAM_ADD_IP); 591 if (!chunk) { 592 retval = -ENOMEM; 593 goto out; 594 } 595 596 /* Add the new addresses to the bind address list with 597 * use_as_src set to 0. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 memcpy(&saveaddr, addr, af->sockaddr_len); 604 retval = sctp_add_bind_addr(bp, &saveaddr, 605 sizeof(saveaddr), 606 SCTP_ADDR_NEW, GFP_ATOMIC); 607 addr_buf += af->sockaddr_len; 608 } 609 if (asoc->src_out_of_asoc_ok) { 610 struct sctp_transport *trans; 611 612 list_for_each_entry(trans, 613 &asoc->peer.transport_addr_list, transports) { 614 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 615 2*asoc->pathmtu, 4380)); 616 trans->ssthresh = asoc->peer.i.a_rwnd; 617 trans->rto = asoc->rto_initial; 618 sctp_max_rto(asoc, trans); 619 trans->rtt = trans->srtt = trans->rttvar = 0; 620 /* Clear the source and route cache */ 621 sctp_transport_route(trans, NULL, 622 sctp_sk(asoc->base.sk)); 623 } 624 } 625 retval = sctp_send_asconf(asoc, chunk); 626 } 627 628 out: 629 return retval; 630 } 631 632 /* Remove a list of addresses from bind addresses list. Do not remove the 633 * last address. 634 * 635 * Basically run through each address specified in the addrs/addrcnt 636 * array/length pair, determine if it is IPv6 or IPv4 and call 637 * sctp_del_bind() on it. 638 * 639 * If any of them fails, then the operation will be reversed and the 640 * ones that were removed will be added back. 641 * 642 * At least one address has to be left; if only one address is 643 * available, the operation will return -EBUSY. 644 * 645 * Only sctp_setsockopt_bindx() is supposed to call this function. 646 */ 647 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 648 { 649 struct sctp_sock *sp = sctp_sk(sk); 650 struct sctp_endpoint *ep = sp->ep; 651 int cnt; 652 struct sctp_bind_addr *bp = &ep->base.bind_addr; 653 int retval = 0; 654 void *addr_buf; 655 union sctp_addr *sa_addr; 656 struct sctp_af *af; 657 658 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 659 __func__, sk, addrs, addrcnt); 660 661 addr_buf = addrs; 662 for (cnt = 0; cnt < addrcnt; cnt++) { 663 /* If the bind address list is empty or if there is only one 664 * bind address, there is nothing more to be removed (we need 665 * at least one address here). 666 */ 667 if (list_empty(&bp->address_list) || 668 (sctp_list_single_entry(&bp->address_list))) { 669 retval = -EBUSY; 670 goto err_bindx_rem; 671 } 672 673 sa_addr = addr_buf; 674 af = sctp_get_af_specific(sa_addr->sa.sa_family); 675 if (!af) { 676 retval = -EINVAL; 677 goto err_bindx_rem; 678 } 679 680 if (!af->addr_valid(sa_addr, sp, NULL)) { 681 retval = -EADDRNOTAVAIL; 682 goto err_bindx_rem; 683 } 684 685 if (sa_addr->v4.sin_port && 686 sa_addr->v4.sin_port != htons(bp->port)) { 687 retval = -EINVAL; 688 goto err_bindx_rem; 689 } 690 691 if (!sa_addr->v4.sin_port) 692 sa_addr->v4.sin_port = htons(bp->port); 693 694 /* FIXME - There is probably a need to check if sk->sk_saddr and 695 * sk->sk_rcv_addr are currently set to one of the addresses to 696 * be removed. This is something which needs to be looked into 697 * when we are fixing the outstanding issues with multi-homing 698 * socket routing and failover schemes. Refer to comments in 699 * sctp_do_bind(). -daisy 700 */ 701 retval = sctp_del_bind_addr(bp, sa_addr); 702 703 addr_buf += af->sockaddr_len; 704 err_bindx_rem: 705 if (retval < 0) { 706 /* Failed. Add the ones that has been removed back */ 707 if (cnt > 0) 708 sctp_bindx_add(sk, addrs, cnt); 709 return retval; 710 } 711 } 712 713 return retval; 714 } 715 716 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 717 * the associations that are part of the endpoint indicating that a list of 718 * local addresses are removed from the endpoint. 719 * 720 * If any of the addresses is already in the bind address list of the 721 * association, we do not send the chunk for that association. But it will not 722 * affect other associations. 723 * 724 * Only sctp_setsockopt_bindx() is supposed to call this function. 725 */ 726 static int sctp_send_asconf_del_ip(struct sock *sk, 727 struct sockaddr *addrs, 728 int addrcnt) 729 { 730 struct net *net = sock_net(sk); 731 struct sctp_sock *sp; 732 struct sctp_endpoint *ep; 733 struct sctp_association *asoc; 734 struct sctp_transport *transport; 735 struct sctp_bind_addr *bp; 736 struct sctp_chunk *chunk; 737 union sctp_addr *laddr; 738 void *addr_buf; 739 struct sctp_af *af; 740 struct sctp_sockaddr_entry *saddr; 741 int i; 742 int retval = 0; 743 int stored = 0; 744 745 chunk = NULL; 746 if (!net->sctp.addip_enable) 747 return retval; 748 749 sp = sctp_sk(sk); 750 ep = sp->ep; 751 752 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 753 __func__, sk, addrs, addrcnt); 754 755 list_for_each_entry(asoc, &ep->asocs, asocs) { 756 757 if (!asoc->peer.asconf_capable) 758 continue; 759 760 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 761 continue; 762 763 if (!sctp_state(asoc, ESTABLISHED)) 764 continue; 765 766 /* Check if any address in the packed array of addresses is 767 * not present in the bind address list of the association. 768 * If so, do not send the asconf chunk to its peer, but 769 * continue with other associations. 770 */ 771 addr_buf = addrs; 772 for (i = 0; i < addrcnt; i++) { 773 laddr = addr_buf; 774 af = sctp_get_af_specific(laddr->v4.sin_family); 775 if (!af) { 776 retval = -EINVAL; 777 goto out; 778 } 779 780 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 781 break; 782 783 addr_buf += af->sockaddr_len; 784 } 785 if (i < addrcnt) 786 continue; 787 788 /* Find one address in the association's bind address list 789 * that is not in the packed array of addresses. This is to 790 * make sure that we do not delete all the addresses in the 791 * association. 792 */ 793 bp = &asoc->base.bind_addr; 794 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 795 addrcnt, sp); 796 if ((laddr == NULL) && (addrcnt == 1)) { 797 if (asoc->asconf_addr_del_pending) 798 continue; 799 asoc->asconf_addr_del_pending = 800 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 801 if (asoc->asconf_addr_del_pending == NULL) { 802 retval = -ENOMEM; 803 goto out; 804 } 805 asoc->asconf_addr_del_pending->sa.sa_family = 806 addrs->sa_family; 807 asoc->asconf_addr_del_pending->v4.sin_port = 808 htons(bp->port); 809 if (addrs->sa_family == AF_INET) { 810 struct sockaddr_in *sin; 811 812 sin = (struct sockaddr_in *)addrs; 813 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 814 } else if (addrs->sa_family == AF_INET6) { 815 struct sockaddr_in6 *sin6; 816 817 sin6 = (struct sockaddr_in6 *)addrs; 818 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 819 } 820 821 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 822 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 823 asoc->asconf_addr_del_pending); 824 825 asoc->src_out_of_asoc_ok = 1; 826 stored = 1; 827 goto skip_mkasconf; 828 } 829 830 if (laddr == NULL) 831 return -EINVAL; 832 833 /* We do not need RCU protection throughout this loop 834 * because this is done under a socket lock from the 835 * setsockopt call. 836 */ 837 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 838 SCTP_PARAM_DEL_IP); 839 if (!chunk) { 840 retval = -ENOMEM; 841 goto out; 842 } 843 844 skip_mkasconf: 845 /* Reset use_as_src flag for the addresses in the bind address 846 * list that are to be deleted. 847 */ 848 addr_buf = addrs; 849 for (i = 0; i < addrcnt; i++) { 850 laddr = addr_buf; 851 af = sctp_get_af_specific(laddr->v4.sin_family); 852 list_for_each_entry(saddr, &bp->address_list, list) { 853 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 854 saddr->state = SCTP_ADDR_DEL; 855 } 856 addr_buf += af->sockaddr_len; 857 } 858 859 /* Update the route and saddr entries for all the transports 860 * as some of the addresses in the bind address list are 861 * about to be deleted and cannot be used as source addresses. 862 */ 863 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 864 transports) { 865 sctp_transport_route(transport, NULL, 866 sctp_sk(asoc->base.sk)); 867 } 868 869 if (stored) 870 /* We don't need to transmit ASCONF */ 871 continue; 872 retval = sctp_send_asconf(asoc, chunk); 873 } 874 out: 875 return retval; 876 } 877 878 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 879 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 880 { 881 struct sock *sk = sctp_opt2sk(sp); 882 union sctp_addr *addr; 883 struct sctp_af *af; 884 885 /* It is safe to write port space in caller. */ 886 addr = &addrw->a; 887 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 888 af = sctp_get_af_specific(addr->sa.sa_family); 889 if (!af) 890 return -EINVAL; 891 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 892 return -EINVAL; 893 894 if (addrw->state == SCTP_ADDR_NEW) 895 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 896 else 897 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 898 } 899 900 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 901 * 902 * API 8.1 903 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 904 * int flags); 905 * 906 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 907 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 908 * or IPv6 addresses. 909 * 910 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 911 * Section 3.1.2 for this usage. 912 * 913 * addrs is a pointer to an array of one or more socket addresses. Each 914 * address is contained in its appropriate structure (i.e. struct 915 * sockaddr_in or struct sockaddr_in6) the family of the address type 916 * must be used to distinguish the address length (note that this 917 * representation is termed a "packed array" of addresses). The caller 918 * specifies the number of addresses in the array with addrcnt. 919 * 920 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 921 * -1, and sets errno to the appropriate error code. 922 * 923 * For SCTP, the port given in each socket address must be the same, or 924 * sctp_bindx() will fail, setting errno to EINVAL. 925 * 926 * The flags parameter is formed from the bitwise OR of zero or more of 927 * the following currently defined flags: 928 * 929 * SCTP_BINDX_ADD_ADDR 930 * 931 * SCTP_BINDX_REM_ADDR 932 * 933 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 934 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 935 * addresses from the association. The two flags are mutually exclusive; 936 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 937 * not remove all addresses from an association; sctp_bindx() will 938 * reject such an attempt with EINVAL. 939 * 940 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 941 * additional addresses with an endpoint after calling bind(). Or use 942 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 943 * socket is associated with so that no new association accepted will be 944 * associated with those addresses. If the endpoint supports dynamic 945 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 946 * endpoint to send the appropriate message to the peer to change the 947 * peers address lists. 948 * 949 * Adding and removing addresses from a connected association is 950 * optional functionality. Implementations that do not support this 951 * functionality should return EOPNOTSUPP. 952 * 953 * Basically do nothing but copying the addresses from user to kernel 954 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 955 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 956 * from userspace. 957 * 958 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 959 * it. 960 * 961 * sk The sk of the socket 962 * addrs The pointer to the addresses in user land 963 * addrssize Size of the addrs buffer 964 * op Operation to perform (add or remove, see the flags of 965 * sctp_bindx) 966 * 967 * Returns 0 if ok, <0 errno code on error. 968 */ 969 static int sctp_setsockopt_bindx(struct sock *sk, 970 struct sockaddr __user *addrs, 971 int addrs_size, int op) 972 { 973 struct sockaddr *kaddrs; 974 int err; 975 int addrcnt = 0; 976 int walk_size = 0; 977 struct sockaddr *sa_addr; 978 void *addr_buf; 979 struct sctp_af *af; 980 981 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 982 __func__, sk, addrs, addrs_size, op); 983 984 if (unlikely(addrs_size <= 0)) 985 return -EINVAL; 986 987 kaddrs = memdup_user(addrs, addrs_size); 988 if (unlikely(IS_ERR(kaddrs))) 989 return PTR_ERR(kaddrs); 990 991 /* Walk through the addrs buffer and count the number of addresses. */ 992 addr_buf = kaddrs; 993 while (walk_size < addrs_size) { 994 if (walk_size + sizeof(sa_family_t) > addrs_size) { 995 kfree(kaddrs); 996 return -EINVAL; 997 } 998 999 sa_addr = addr_buf; 1000 af = sctp_get_af_specific(sa_addr->sa_family); 1001 1002 /* If the address family is not supported or if this address 1003 * causes the address buffer to overflow return EINVAL. 1004 */ 1005 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1006 kfree(kaddrs); 1007 return -EINVAL; 1008 } 1009 addrcnt++; 1010 addr_buf += af->sockaddr_len; 1011 walk_size += af->sockaddr_len; 1012 } 1013 1014 /* Do the work. */ 1015 switch (op) { 1016 case SCTP_BINDX_ADD_ADDR: 1017 /* Allow security module to validate bindx addresses. */ 1018 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1019 (struct sockaddr *)kaddrs, 1020 addrs_size); 1021 if (err) 1022 goto out; 1023 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1024 if (err) 1025 goto out; 1026 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1027 break; 1028 1029 case SCTP_BINDX_REM_ADDR: 1030 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1031 if (err) 1032 goto out; 1033 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1034 break; 1035 1036 default: 1037 err = -EINVAL; 1038 break; 1039 } 1040 1041 out: 1042 kfree(kaddrs); 1043 1044 return err; 1045 } 1046 1047 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1048 * 1049 * Common routine for handling connect() and sctp_connectx(). 1050 * Connect will come in with just a single address. 1051 */ 1052 static int __sctp_connect(struct sock *sk, 1053 struct sockaddr *kaddrs, 1054 int addrs_size, int flags, 1055 sctp_assoc_t *assoc_id) 1056 { 1057 struct net *net = sock_net(sk); 1058 struct sctp_sock *sp; 1059 struct sctp_endpoint *ep; 1060 struct sctp_association *asoc = NULL; 1061 struct sctp_association *asoc2; 1062 struct sctp_transport *transport; 1063 union sctp_addr to; 1064 enum sctp_scope scope; 1065 long timeo; 1066 int err = 0; 1067 int addrcnt = 0; 1068 int walk_size = 0; 1069 union sctp_addr *sa_addr = NULL; 1070 void *addr_buf; 1071 unsigned short port; 1072 1073 sp = sctp_sk(sk); 1074 ep = sp->ep; 1075 1076 /* connect() cannot be done on a socket that is already in ESTABLISHED 1077 * state - UDP-style peeled off socket or a TCP-style socket that 1078 * is already connected. 1079 * It cannot be done even on a TCP-style listening socket. 1080 */ 1081 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1082 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1083 err = -EISCONN; 1084 goto out_free; 1085 } 1086 1087 /* Walk through the addrs buffer and count the number of addresses. */ 1088 addr_buf = kaddrs; 1089 while (walk_size < addrs_size) { 1090 struct sctp_af *af; 1091 1092 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1093 err = -EINVAL; 1094 goto out_free; 1095 } 1096 1097 sa_addr = addr_buf; 1098 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1099 1100 /* If the address family is not supported or if this address 1101 * causes the address buffer to overflow return EINVAL. 1102 */ 1103 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1104 err = -EINVAL; 1105 goto out_free; 1106 } 1107 1108 port = ntohs(sa_addr->v4.sin_port); 1109 1110 /* Save current address so we can work with it */ 1111 memcpy(&to, sa_addr, af->sockaddr_len); 1112 1113 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1114 if (err) 1115 goto out_free; 1116 1117 /* Make sure the destination port is correctly set 1118 * in all addresses. 1119 */ 1120 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1121 err = -EINVAL; 1122 goto out_free; 1123 } 1124 1125 /* Check if there already is a matching association on the 1126 * endpoint (other than the one created here). 1127 */ 1128 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1129 if (asoc2 && asoc2 != asoc) { 1130 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1131 err = -EISCONN; 1132 else 1133 err = -EALREADY; 1134 goto out_free; 1135 } 1136 1137 /* If we could not find a matching association on the endpoint, 1138 * make sure that there is no peeled-off association matching 1139 * the peer address even on another socket. 1140 */ 1141 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1142 err = -EADDRNOTAVAIL; 1143 goto out_free; 1144 } 1145 1146 if (!asoc) { 1147 /* If a bind() or sctp_bindx() is not called prior to 1148 * an sctp_connectx() call, the system picks an 1149 * ephemeral port and will choose an address set 1150 * equivalent to binding with a wildcard address. 1151 */ 1152 if (!ep->base.bind_addr.port) { 1153 if (sctp_autobind(sk)) { 1154 err = -EAGAIN; 1155 goto out_free; 1156 } 1157 } else { 1158 /* 1159 * If an unprivileged user inherits a 1-many 1160 * style socket with open associations on a 1161 * privileged port, it MAY be permitted to 1162 * accept new associations, but it SHOULD NOT 1163 * be permitted to open new associations. 1164 */ 1165 if (ep->base.bind_addr.port < 1166 inet_prot_sock(net) && 1167 !ns_capable(net->user_ns, 1168 CAP_NET_BIND_SERVICE)) { 1169 err = -EACCES; 1170 goto out_free; 1171 } 1172 } 1173 1174 scope = sctp_scope(&to); 1175 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1176 if (!asoc) { 1177 err = -ENOMEM; 1178 goto out_free; 1179 } 1180 1181 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1182 GFP_KERNEL); 1183 if (err < 0) { 1184 goto out_free; 1185 } 1186 1187 } 1188 1189 /* Prime the peer's transport structures. */ 1190 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1191 SCTP_UNKNOWN); 1192 if (!transport) { 1193 err = -ENOMEM; 1194 goto out_free; 1195 } 1196 1197 addrcnt++; 1198 addr_buf += af->sockaddr_len; 1199 walk_size += af->sockaddr_len; 1200 } 1201 1202 /* In case the user of sctp_connectx() wants an association 1203 * id back, assign one now. 1204 */ 1205 if (assoc_id) { 1206 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1207 if (err < 0) 1208 goto out_free; 1209 } 1210 1211 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1212 if (err < 0) { 1213 goto out_free; 1214 } 1215 1216 /* Initialize sk's dport and daddr for getpeername() */ 1217 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1218 sp->pf->to_sk_daddr(sa_addr, sk); 1219 sk->sk_err = 0; 1220 1221 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1222 1223 if (assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 1226 err = sctp_wait_for_connect(asoc, &timeo); 1227 /* Note: the asoc may be freed after the return of 1228 * sctp_wait_for_connect. 1229 */ 1230 1231 /* Don't free association on exit. */ 1232 asoc = NULL; 1233 1234 out_free: 1235 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1236 __func__, asoc, kaddrs, err); 1237 1238 if (asoc) { 1239 /* sctp_primitive_ASSOCIATE may have added this association 1240 * To the hash table, try to unhash it, just in case, its a noop 1241 * if it wasn't hashed so we're safe 1242 */ 1243 sctp_association_free(asoc); 1244 } 1245 return err; 1246 } 1247 1248 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1249 * 1250 * API 8.9 1251 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1252 * sctp_assoc_t *asoc); 1253 * 1254 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1255 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1256 * or IPv6 addresses. 1257 * 1258 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1259 * Section 3.1.2 for this usage. 1260 * 1261 * addrs is a pointer to an array of one or more socket addresses. Each 1262 * address is contained in its appropriate structure (i.e. struct 1263 * sockaddr_in or struct sockaddr_in6) the family of the address type 1264 * must be used to distengish the address length (note that this 1265 * representation is termed a "packed array" of addresses). The caller 1266 * specifies the number of addresses in the array with addrcnt. 1267 * 1268 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1269 * the association id of the new association. On failure, sctp_connectx() 1270 * returns -1, and sets errno to the appropriate error code. The assoc_id 1271 * is not touched by the kernel. 1272 * 1273 * For SCTP, the port given in each socket address must be the same, or 1274 * sctp_connectx() will fail, setting errno to EINVAL. 1275 * 1276 * An application can use sctp_connectx to initiate an association with 1277 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1278 * allows a caller to specify multiple addresses at which a peer can be 1279 * reached. The way the SCTP stack uses the list of addresses to set up 1280 * the association is implementation dependent. This function only 1281 * specifies that the stack will try to make use of all the addresses in 1282 * the list when needed. 1283 * 1284 * Note that the list of addresses passed in is only used for setting up 1285 * the association. It does not necessarily equal the set of addresses 1286 * the peer uses for the resulting association. If the caller wants to 1287 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1288 * retrieve them after the association has been set up. 1289 * 1290 * Basically do nothing but copying the addresses from user to kernel 1291 * land and invoking either sctp_connectx(). This is used for tunneling 1292 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1293 * 1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1295 * it. 1296 * 1297 * sk The sk of the socket 1298 * addrs The pointer to the addresses in user land 1299 * addrssize Size of the addrs buffer 1300 * 1301 * Returns >=0 if ok, <0 errno code on error. 1302 */ 1303 static int __sctp_setsockopt_connectx(struct sock *sk, 1304 struct sockaddr __user *addrs, 1305 int addrs_size, 1306 sctp_assoc_t *assoc_id) 1307 { 1308 struct sockaddr *kaddrs; 1309 int err = 0, flags = 0; 1310 1311 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1312 __func__, sk, addrs, addrs_size); 1313 1314 if (unlikely(addrs_size <= 0)) 1315 return -EINVAL; 1316 1317 kaddrs = memdup_user(addrs, addrs_size); 1318 if (unlikely(IS_ERR(kaddrs))) 1319 return PTR_ERR(kaddrs); 1320 1321 /* Allow security module to validate connectx addresses. */ 1322 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1323 (struct sockaddr *)kaddrs, 1324 addrs_size); 1325 if (err) 1326 goto out_free; 1327 1328 /* in-kernel sockets don't generally have a file allocated to them 1329 * if all they do is call sock_create_kern(). 1330 */ 1331 if (sk->sk_socket->file) 1332 flags = sk->sk_socket->file->f_flags; 1333 1334 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1335 1336 out_free: 1337 kfree(kaddrs); 1338 1339 return err; 1340 } 1341 1342 /* 1343 * This is an older interface. It's kept for backward compatibility 1344 * to the option that doesn't provide association id. 1345 */ 1346 static int sctp_setsockopt_connectx_old(struct sock *sk, 1347 struct sockaddr __user *addrs, 1348 int addrs_size) 1349 { 1350 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1351 } 1352 1353 /* 1354 * New interface for the API. The since the API is done with a socket 1355 * option, to make it simple we feed back the association id is as a return 1356 * indication to the call. Error is always negative and association id is 1357 * always positive. 1358 */ 1359 static int sctp_setsockopt_connectx(struct sock *sk, 1360 struct sockaddr __user *addrs, 1361 int addrs_size) 1362 { 1363 sctp_assoc_t assoc_id = 0; 1364 int err = 0; 1365 1366 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1367 1368 if (err) 1369 return err; 1370 else 1371 return assoc_id; 1372 } 1373 1374 /* 1375 * New (hopefully final) interface for the API. 1376 * We use the sctp_getaddrs_old structure so that use-space library 1377 * can avoid any unnecessary allocations. The only different part 1378 * is that we store the actual length of the address buffer into the 1379 * addrs_num structure member. That way we can re-use the existing 1380 * code. 1381 */ 1382 #ifdef CONFIG_COMPAT 1383 struct compat_sctp_getaddrs_old { 1384 sctp_assoc_t assoc_id; 1385 s32 addr_num; 1386 compat_uptr_t addrs; /* struct sockaddr * */ 1387 }; 1388 #endif 1389 1390 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1391 char __user *optval, 1392 int __user *optlen) 1393 { 1394 struct sctp_getaddrs_old param; 1395 sctp_assoc_t assoc_id = 0; 1396 int err = 0; 1397 1398 #ifdef CONFIG_COMPAT 1399 if (in_compat_syscall()) { 1400 struct compat_sctp_getaddrs_old param32; 1401 1402 if (len < sizeof(param32)) 1403 return -EINVAL; 1404 if (copy_from_user(¶m32, optval, sizeof(param32))) 1405 return -EFAULT; 1406 1407 param.assoc_id = param32.assoc_id; 1408 param.addr_num = param32.addr_num; 1409 param.addrs = compat_ptr(param32.addrs); 1410 } else 1411 #endif 1412 { 1413 if (len < sizeof(param)) 1414 return -EINVAL; 1415 if (copy_from_user(¶m, optval, sizeof(param))) 1416 return -EFAULT; 1417 } 1418 1419 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1420 param.addrs, param.addr_num, 1421 &assoc_id); 1422 if (err == 0 || err == -EINPROGRESS) { 1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1424 return -EFAULT; 1425 if (put_user(sizeof(assoc_id), optlen)) 1426 return -EFAULT; 1427 } 1428 1429 return err; 1430 } 1431 1432 /* API 3.1.4 close() - UDP Style Syntax 1433 * Applications use close() to perform graceful shutdown (as described in 1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1435 * by a UDP-style socket. 1436 * 1437 * The syntax is 1438 * 1439 * ret = close(int sd); 1440 * 1441 * sd - the socket descriptor of the associations to be closed. 1442 * 1443 * To gracefully shutdown a specific association represented by the 1444 * UDP-style socket, an application should use the sendmsg() call, 1445 * passing no user data, but including the appropriate flag in the 1446 * ancillary data (see Section xxxx). 1447 * 1448 * If sd in the close() call is a branched-off socket representing only 1449 * one association, the shutdown is performed on that association only. 1450 * 1451 * 4.1.6 close() - TCP Style Syntax 1452 * 1453 * Applications use close() to gracefully close down an association. 1454 * 1455 * The syntax is: 1456 * 1457 * int close(int sd); 1458 * 1459 * sd - the socket descriptor of the association to be closed. 1460 * 1461 * After an application calls close() on a socket descriptor, no further 1462 * socket operations will succeed on that descriptor. 1463 * 1464 * API 7.1.4 SO_LINGER 1465 * 1466 * An application using the TCP-style socket can use this option to 1467 * perform the SCTP ABORT primitive. The linger option structure is: 1468 * 1469 * struct linger { 1470 * int l_onoff; // option on/off 1471 * int l_linger; // linger time 1472 * }; 1473 * 1474 * To enable the option, set l_onoff to 1. If the l_linger value is set 1475 * to 0, calling close() is the same as the ABORT primitive. If the 1476 * value is set to a negative value, the setsockopt() call will return 1477 * an error. If the value is set to a positive value linger_time, the 1478 * close() can be blocked for at most linger_time ms. If the graceful 1479 * shutdown phase does not finish during this period, close() will 1480 * return but the graceful shutdown phase continues in the system. 1481 */ 1482 static void sctp_close(struct sock *sk, long timeout) 1483 { 1484 struct net *net = sock_net(sk); 1485 struct sctp_endpoint *ep; 1486 struct sctp_association *asoc; 1487 struct list_head *pos, *temp; 1488 unsigned int data_was_unread; 1489 1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1491 1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1493 sk->sk_shutdown = SHUTDOWN_MASK; 1494 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1495 1496 ep = sctp_sk(sk)->ep; 1497 1498 /* Clean up any skbs sitting on the receive queue. */ 1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1501 1502 /* Walk all associations on an endpoint. */ 1503 list_for_each_safe(pos, temp, &ep->asocs) { 1504 asoc = list_entry(pos, struct sctp_association, asocs); 1505 1506 if (sctp_style(sk, TCP)) { 1507 /* A closed association can still be in the list if 1508 * it belongs to a TCP-style listening socket that is 1509 * not yet accepted. If so, free it. If not, send an 1510 * ABORT or SHUTDOWN based on the linger options. 1511 */ 1512 if (sctp_state(asoc, CLOSED)) { 1513 sctp_association_free(asoc); 1514 continue; 1515 } 1516 } 1517 1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1519 !skb_queue_empty(&asoc->ulpq.reasm) || 1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1522 struct sctp_chunk *chunk; 1523 1524 chunk = sctp_make_abort_user(asoc, NULL, 0); 1525 sctp_primitive_ABORT(net, asoc, chunk); 1526 } else 1527 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1528 } 1529 1530 /* On a TCP-style socket, block for at most linger_time if set. */ 1531 if (sctp_style(sk, TCP) && timeout) 1532 sctp_wait_for_close(sk, timeout); 1533 1534 /* This will run the backlog queue. */ 1535 release_sock(sk); 1536 1537 /* Supposedly, no process has access to the socket, but 1538 * the net layers still may. 1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1540 * held and that should be grabbed before socket lock. 1541 */ 1542 spin_lock_bh(&net->sctp.addr_wq_lock); 1543 bh_lock_sock_nested(sk); 1544 1545 /* Hold the sock, since sk_common_release() will put sock_put() 1546 * and we have just a little more cleanup. 1547 */ 1548 sock_hold(sk); 1549 sk_common_release(sk); 1550 1551 bh_unlock_sock(sk); 1552 spin_unlock_bh(&net->sctp.addr_wq_lock); 1553 1554 sock_put(sk); 1555 1556 SCTP_DBG_OBJCNT_DEC(sock); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct net *net = sock_net(sk); 1663 struct sctp_association *asoc; 1664 enum sctp_scope scope; 1665 struct cmsghdr *cmsg; 1666 __be32 flowinfo = 0; 1667 struct sctp_af *af; 1668 int err; 1669 1670 *tp = NULL; 1671 1672 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1673 return -EINVAL; 1674 1675 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1676 sctp_sstate(sk, CLOSING))) 1677 return -EADDRNOTAVAIL; 1678 1679 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1680 return -EADDRNOTAVAIL; 1681 1682 if (!ep->base.bind_addr.port) { 1683 if (sctp_autobind(sk)) 1684 return -EAGAIN; 1685 } else { 1686 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1687 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1688 return -EACCES; 1689 } 1690 1691 scope = sctp_scope(daddr); 1692 1693 /* Label connection socket for first association 1-to-many 1694 * style for client sequence socket()->sendmsg(). This 1695 * needs to be done before sctp_assoc_add_peer() as that will 1696 * set up the initial packet that needs to account for any 1697 * security ip options (CIPSO/CALIPSO) added to the packet. 1698 */ 1699 af = sctp_get_af_specific(daddr->sa.sa_family); 1700 if (!af) 1701 return -EINVAL; 1702 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1703 (struct sockaddr *)daddr, 1704 af->sockaddr_len); 1705 if (err < 0) 1706 return err; 1707 1708 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1709 if (!asoc) 1710 return -ENOMEM; 1711 1712 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1713 err = -ENOMEM; 1714 goto free; 1715 } 1716 1717 if (cmsgs->init) { 1718 struct sctp_initmsg *init = cmsgs->init; 1719 1720 if (init->sinit_num_ostreams) { 1721 __u16 outcnt = init->sinit_num_ostreams; 1722 1723 asoc->c.sinit_num_ostreams = outcnt; 1724 /* outcnt has been changed, need to re-init stream */ 1725 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1726 GFP_KERNEL); 1727 if (err) 1728 goto free; 1729 } 1730 1731 if (init->sinit_max_instreams) 1732 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1733 1734 if (init->sinit_max_attempts) 1735 asoc->max_init_attempts = init->sinit_max_attempts; 1736 1737 if (init->sinit_max_init_timeo) 1738 asoc->max_init_timeo = 1739 msecs_to_jiffies(init->sinit_max_init_timeo); 1740 } 1741 1742 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1743 if (!*tp) { 1744 err = -ENOMEM; 1745 goto free; 1746 } 1747 1748 if (!cmsgs->addrs_msg) 1749 return 0; 1750 1751 if (daddr->sa.sa_family == AF_INET6) 1752 flowinfo = daddr->v6.sin6_flowinfo; 1753 1754 /* sendv addr list parse */ 1755 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1756 struct sctp_transport *transport; 1757 struct sctp_association *old; 1758 union sctp_addr _daddr; 1759 int dlen; 1760 1761 if (cmsg->cmsg_level != IPPROTO_SCTP || 1762 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1763 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1764 continue; 1765 1766 daddr = &_daddr; 1767 memset(daddr, 0, sizeof(*daddr)); 1768 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1769 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1770 if (dlen < sizeof(struct in_addr)) { 1771 err = -EINVAL; 1772 goto free; 1773 } 1774 1775 dlen = sizeof(struct in_addr); 1776 daddr->v4.sin_family = AF_INET; 1777 daddr->v4.sin_port = htons(asoc->peer.port); 1778 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1779 } else { 1780 if (dlen < sizeof(struct in6_addr)) { 1781 err = -EINVAL; 1782 goto free; 1783 } 1784 1785 dlen = sizeof(struct in6_addr); 1786 daddr->v6.sin6_flowinfo = flowinfo; 1787 daddr->v6.sin6_family = AF_INET6; 1788 daddr->v6.sin6_port = htons(asoc->peer.port); 1789 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1790 } 1791 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1792 if (err) 1793 goto free; 1794 1795 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1796 if (old && old != asoc) { 1797 if (old->state >= SCTP_STATE_ESTABLISHED) 1798 err = -EISCONN; 1799 else 1800 err = -EALREADY; 1801 goto free; 1802 } 1803 1804 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1805 err = -EADDRNOTAVAIL; 1806 goto free; 1807 } 1808 1809 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1810 SCTP_UNKNOWN); 1811 if (!transport) { 1812 err = -ENOMEM; 1813 goto free; 1814 } 1815 } 1816 1817 return 0; 1818 1819 free: 1820 sctp_association_free(asoc); 1821 return err; 1822 } 1823 1824 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1825 __u16 sflags, struct msghdr *msg, 1826 size_t msg_len) 1827 { 1828 struct sock *sk = asoc->base.sk; 1829 struct net *net = sock_net(sk); 1830 1831 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1832 return -EPIPE; 1833 1834 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1835 !sctp_state(asoc, ESTABLISHED)) 1836 return 0; 1837 1838 if (sflags & SCTP_EOF) { 1839 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1840 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1841 1842 return 0; 1843 } 1844 1845 if (sflags & SCTP_ABORT) { 1846 struct sctp_chunk *chunk; 1847 1848 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1849 if (!chunk) 1850 return -ENOMEM; 1851 1852 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1853 sctp_primitive_ABORT(net, asoc, chunk); 1854 iov_iter_revert(&msg->msg_iter, msg_len); 1855 1856 return 0; 1857 } 1858 1859 return 1; 1860 } 1861 1862 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1863 struct msghdr *msg, size_t msg_len, 1864 struct sctp_transport *transport, 1865 struct sctp_sndrcvinfo *sinfo) 1866 { 1867 struct sock *sk = asoc->base.sk; 1868 struct sctp_sock *sp = sctp_sk(sk); 1869 struct net *net = sock_net(sk); 1870 struct sctp_datamsg *datamsg; 1871 bool wait_connect = false; 1872 struct sctp_chunk *chunk; 1873 long timeo; 1874 int err; 1875 1876 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1877 err = -EINVAL; 1878 goto err; 1879 } 1880 1881 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1882 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1883 if (err) 1884 goto err; 1885 } 1886 1887 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1888 err = -EMSGSIZE; 1889 goto err; 1890 } 1891 1892 if (asoc->pmtu_pending) { 1893 if (sp->param_flags & SPP_PMTUD_ENABLE) 1894 sctp_assoc_sync_pmtu(asoc); 1895 asoc->pmtu_pending = 0; 1896 } 1897 1898 if (sctp_wspace(asoc) < (int)msg_len) 1899 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1900 1901 if (sk_under_memory_pressure(sk)) 1902 sk_mem_reclaim(sk); 1903 1904 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1905 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1906 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1907 if (err) 1908 goto err; 1909 } 1910 1911 if (sctp_state(asoc, CLOSED)) { 1912 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1913 if (err) 1914 goto err; 1915 1916 if (sp->strm_interleave) { 1917 timeo = sock_sndtimeo(sk, 0); 1918 err = sctp_wait_for_connect(asoc, &timeo); 1919 if (err) { 1920 err = -ESRCH; 1921 goto err; 1922 } 1923 } else { 1924 wait_connect = true; 1925 } 1926 1927 pr_debug("%s: we associated primitively\n", __func__); 1928 } 1929 1930 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1931 if (IS_ERR(datamsg)) { 1932 err = PTR_ERR(datamsg); 1933 goto err; 1934 } 1935 1936 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1937 1938 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1939 sctp_chunk_hold(chunk); 1940 sctp_set_owner_w(chunk); 1941 chunk->transport = transport; 1942 } 1943 1944 err = sctp_primitive_SEND(net, asoc, datamsg); 1945 if (err) { 1946 sctp_datamsg_free(datamsg); 1947 goto err; 1948 } 1949 1950 pr_debug("%s: we sent primitively\n", __func__); 1951 1952 sctp_datamsg_put(datamsg); 1953 1954 if (unlikely(wait_connect)) { 1955 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1956 sctp_wait_for_connect(asoc, &timeo); 1957 } 1958 1959 err = msg_len; 1960 1961 err: 1962 return err; 1963 } 1964 1965 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1966 const struct msghdr *msg, 1967 struct sctp_cmsgs *cmsgs) 1968 { 1969 union sctp_addr *daddr = NULL; 1970 int err; 1971 1972 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1973 int len = msg->msg_namelen; 1974 1975 if (len > sizeof(*daddr)) 1976 len = sizeof(*daddr); 1977 1978 daddr = (union sctp_addr *)msg->msg_name; 1979 1980 err = sctp_verify_addr(sk, daddr, len); 1981 if (err) 1982 return ERR_PTR(err); 1983 } 1984 1985 return daddr; 1986 } 1987 1988 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1989 struct sctp_sndrcvinfo *sinfo, 1990 struct sctp_cmsgs *cmsgs) 1991 { 1992 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1993 sinfo->sinfo_stream = asoc->default_stream; 1994 sinfo->sinfo_ppid = asoc->default_ppid; 1995 sinfo->sinfo_context = asoc->default_context; 1996 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1997 1998 if (!cmsgs->prinfo) 1999 sinfo->sinfo_flags = asoc->default_flags; 2000 } 2001 2002 if (!cmsgs->srinfo && !cmsgs->prinfo) 2003 sinfo->sinfo_timetolive = asoc->default_timetolive; 2004 2005 if (cmsgs->authinfo) { 2006 /* Reuse sinfo_tsn to indicate that authinfo was set and 2007 * sinfo_ssn to save the keyid on tx path. 2008 */ 2009 sinfo->sinfo_tsn = 1; 2010 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2011 } 2012 } 2013 2014 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2015 { 2016 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2017 struct sctp_transport *transport = NULL; 2018 struct sctp_sndrcvinfo _sinfo, *sinfo; 2019 struct sctp_association *asoc, *tmp; 2020 struct sctp_cmsgs cmsgs; 2021 union sctp_addr *daddr; 2022 bool new = false; 2023 __u16 sflags; 2024 int err; 2025 2026 /* Parse and get snd_info */ 2027 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2028 if (err) 2029 goto out; 2030 2031 sinfo = &_sinfo; 2032 sflags = sinfo->sinfo_flags; 2033 2034 /* Get daddr from msg */ 2035 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2036 if (IS_ERR(daddr)) { 2037 err = PTR_ERR(daddr); 2038 goto out; 2039 } 2040 2041 lock_sock(sk); 2042 2043 /* SCTP_SENDALL process */ 2044 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2045 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2046 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2047 msg_len); 2048 if (err == 0) 2049 continue; 2050 if (err < 0) 2051 goto out_unlock; 2052 2053 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2054 2055 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2056 NULL, sinfo); 2057 if (err < 0) 2058 goto out_unlock; 2059 2060 iov_iter_revert(&msg->msg_iter, err); 2061 } 2062 2063 goto out_unlock; 2064 } 2065 2066 /* Get and check or create asoc */ 2067 if (daddr) { 2068 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2069 if (asoc) { 2070 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2071 msg_len); 2072 if (err <= 0) 2073 goto out_unlock; 2074 } else { 2075 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2076 &transport); 2077 if (err) 2078 goto out_unlock; 2079 2080 asoc = transport->asoc; 2081 new = true; 2082 } 2083 2084 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2085 transport = NULL; 2086 } else { 2087 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2088 if (!asoc) { 2089 err = -EPIPE; 2090 goto out_unlock; 2091 } 2092 2093 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2094 if (err <= 0) 2095 goto out_unlock; 2096 } 2097 2098 /* Update snd_info with the asoc */ 2099 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2100 2101 /* Send msg to the asoc */ 2102 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2103 if (err < 0 && err != -ESRCH && new) 2104 sctp_association_free(asoc); 2105 2106 out_unlock: 2107 release_sock(sk); 2108 out: 2109 return sctp_error(sk, msg->msg_flags, err); 2110 } 2111 2112 /* This is an extended version of skb_pull() that removes the data from the 2113 * start of a skb even when data is spread across the list of skb's in the 2114 * frag_list. len specifies the total amount of data that needs to be removed. 2115 * when 'len' bytes could be removed from the skb, it returns 0. 2116 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2117 * could not be removed. 2118 */ 2119 static int sctp_skb_pull(struct sk_buff *skb, int len) 2120 { 2121 struct sk_buff *list; 2122 int skb_len = skb_headlen(skb); 2123 int rlen; 2124 2125 if (len <= skb_len) { 2126 __skb_pull(skb, len); 2127 return 0; 2128 } 2129 len -= skb_len; 2130 __skb_pull(skb, skb_len); 2131 2132 skb_walk_frags(skb, list) { 2133 rlen = sctp_skb_pull(list, len); 2134 skb->len -= (len-rlen); 2135 skb->data_len -= (len-rlen); 2136 2137 if (!rlen) 2138 return 0; 2139 2140 len = rlen; 2141 } 2142 2143 return len; 2144 } 2145 2146 /* API 3.1.3 recvmsg() - UDP Style Syntax 2147 * 2148 * ssize_t recvmsg(int socket, struct msghdr *message, 2149 * int flags); 2150 * 2151 * socket - the socket descriptor of the endpoint. 2152 * message - pointer to the msghdr structure which contains a single 2153 * user message and possibly some ancillary data. 2154 * 2155 * See Section 5 for complete description of the data 2156 * structures. 2157 * 2158 * flags - flags sent or received with the user message, see Section 2159 * 5 for complete description of the flags. 2160 */ 2161 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2162 int noblock, int flags, int *addr_len) 2163 { 2164 struct sctp_ulpevent *event = NULL; 2165 struct sctp_sock *sp = sctp_sk(sk); 2166 struct sk_buff *skb, *head_skb; 2167 int copied; 2168 int err = 0; 2169 int skb_len; 2170 2171 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2172 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2173 addr_len); 2174 2175 lock_sock(sk); 2176 2177 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2178 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2179 err = -ENOTCONN; 2180 goto out; 2181 } 2182 2183 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2184 if (!skb) 2185 goto out; 2186 2187 /* Get the total length of the skb including any skb's in the 2188 * frag_list. 2189 */ 2190 skb_len = skb->len; 2191 2192 copied = skb_len; 2193 if (copied > len) 2194 copied = len; 2195 2196 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2197 2198 event = sctp_skb2event(skb); 2199 2200 if (err) 2201 goto out_free; 2202 2203 if (event->chunk && event->chunk->head_skb) 2204 head_skb = event->chunk->head_skb; 2205 else 2206 head_skb = skb; 2207 sock_recv_ts_and_drops(msg, sk, head_skb); 2208 if (sctp_ulpevent_is_notification(event)) { 2209 msg->msg_flags |= MSG_NOTIFICATION; 2210 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2211 } else { 2212 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2213 } 2214 2215 /* Check if we allow SCTP_NXTINFO. */ 2216 if (sp->recvnxtinfo) 2217 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2218 /* Check if we allow SCTP_RCVINFO. */ 2219 if (sp->recvrcvinfo) 2220 sctp_ulpevent_read_rcvinfo(event, msg); 2221 /* Check if we allow SCTP_SNDRCVINFO. */ 2222 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2223 sctp_ulpevent_read_sndrcvinfo(event, msg); 2224 2225 err = copied; 2226 2227 /* If skb's length exceeds the user's buffer, update the skb and 2228 * push it back to the receive_queue so that the next call to 2229 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2230 */ 2231 if (skb_len > copied) { 2232 msg->msg_flags &= ~MSG_EOR; 2233 if (flags & MSG_PEEK) 2234 goto out_free; 2235 sctp_skb_pull(skb, copied); 2236 skb_queue_head(&sk->sk_receive_queue, skb); 2237 2238 /* When only partial message is copied to the user, increase 2239 * rwnd by that amount. If all the data in the skb is read, 2240 * rwnd is updated when the event is freed. 2241 */ 2242 if (!sctp_ulpevent_is_notification(event)) 2243 sctp_assoc_rwnd_increase(event->asoc, copied); 2244 goto out; 2245 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2246 (event->msg_flags & MSG_EOR)) 2247 msg->msg_flags |= MSG_EOR; 2248 else 2249 msg->msg_flags &= ~MSG_EOR; 2250 2251 out_free: 2252 if (flags & MSG_PEEK) { 2253 /* Release the skb reference acquired after peeking the skb in 2254 * sctp_skb_recv_datagram(). 2255 */ 2256 kfree_skb(skb); 2257 } else { 2258 /* Free the event which includes releasing the reference to 2259 * the owner of the skb, freeing the skb and updating the 2260 * rwnd. 2261 */ 2262 sctp_ulpevent_free(event); 2263 } 2264 out: 2265 release_sock(sk); 2266 return err; 2267 } 2268 2269 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2270 * 2271 * This option is a on/off flag. If enabled no SCTP message 2272 * fragmentation will be performed. Instead if a message being sent 2273 * exceeds the current PMTU size, the message will NOT be sent and 2274 * instead a error will be indicated to the user. 2275 */ 2276 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2277 char __user *optval, 2278 unsigned int optlen) 2279 { 2280 int val; 2281 2282 if (optlen < sizeof(int)) 2283 return -EINVAL; 2284 2285 if (get_user(val, (int __user *)optval)) 2286 return -EFAULT; 2287 2288 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2289 2290 return 0; 2291 } 2292 2293 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2294 unsigned int optlen) 2295 { 2296 struct sctp_event_subscribe subscribe; 2297 __u8 *sn_type = (__u8 *)&subscribe; 2298 struct sctp_sock *sp = sctp_sk(sk); 2299 struct sctp_association *asoc; 2300 int i; 2301 2302 if (optlen > sizeof(struct sctp_event_subscribe)) 2303 return -EINVAL; 2304 2305 if (copy_from_user(&subscribe, optval, optlen)) 2306 return -EFAULT; 2307 2308 for (i = 0; i < optlen; i++) 2309 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2310 sn_type[i]); 2311 2312 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2313 asoc->subscribe = sctp_sk(sk)->subscribe; 2314 2315 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2316 * if there is no data to be sent or retransmit, the stack will 2317 * immediately send up this notification. 2318 */ 2319 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2320 struct sctp_ulpevent *event; 2321 2322 asoc = sctp_id2assoc(sk, 0); 2323 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2324 event = sctp_ulpevent_make_sender_dry_event(asoc, 2325 GFP_USER | __GFP_NOWARN); 2326 if (!event) 2327 return -ENOMEM; 2328 2329 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2330 } 2331 } 2332 2333 return 0; 2334 } 2335 2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2337 * 2338 * This socket option is applicable to the UDP-style socket only. When 2339 * set it will cause associations that are idle for more than the 2340 * specified number of seconds to automatically close. An association 2341 * being idle is defined an association that has NOT sent or received 2342 * user data. The special value of '0' indicates that no automatic 2343 * close of any associations should be performed. The option expects an 2344 * integer defining the number of seconds of idle time before an 2345 * association is closed. 2346 */ 2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2348 unsigned int optlen) 2349 { 2350 struct sctp_sock *sp = sctp_sk(sk); 2351 struct net *net = sock_net(sk); 2352 2353 /* Applicable to UDP-style socket only */ 2354 if (sctp_style(sk, TCP)) 2355 return -EOPNOTSUPP; 2356 if (optlen != sizeof(int)) 2357 return -EINVAL; 2358 if (copy_from_user(&sp->autoclose, optval, optlen)) 2359 return -EFAULT; 2360 2361 if (sp->autoclose > net->sctp.max_autoclose) 2362 sp->autoclose = net->sctp.max_autoclose; 2363 2364 return 0; 2365 } 2366 2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2368 * 2369 * Applications can enable or disable heartbeats for any peer address of 2370 * an association, modify an address's heartbeat interval, force a 2371 * heartbeat to be sent immediately, and adjust the address's maximum 2372 * number of retransmissions sent before an address is considered 2373 * unreachable. The following structure is used to access and modify an 2374 * address's parameters: 2375 * 2376 * struct sctp_paddrparams { 2377 * sctp_assoc_t spp_assoc_id; 2378 * struct sockaddr_storage spp_address; 2379 * uint32_t spp_hbinterval; 2380 * uint16_t spp_pathmaxrxt; 2381 * uint32_t spp_pathmtu; 2382 * uint32_t spp_sackdelay; 2383 * uint32_t spp_flags; 2384 * uint32_t spp_ipv6_flowlabel; 2385 * uint8_t spp_dscp; 2386 * }; 2387 * 2388 * spp_assoc_id - (one-to-many style socket) This is filled in the 2389 * application, and identifies the association for 2390 * this query. 2391 * spp_address - This specifies which address is of interest. 2392 * spp_hbinterval - This contains the value of the heartbeat interval, 2393 * in milliseconds. If a value of zero 2394 * is present in this field then no changes are to 2395 * be made to this parameter. 2396 * spp_pathmaxrxt - This contains the maximum number of 2397 * retransmissions before this address shall be 2398 * considered unreachable. If a value of zero 2399 * is present in this field then no changes are to 2400 * be made to this parameter. 2401 * spp_pathmtu - When Path MTU discovery is disabled the value 2402 * specified here will be the "fixed" path mtu. 2403 * Note that if the spp_address field is empty 2404 * then all associations on this address will 2405 * have this fixed path mtu set upon them. 2406 * 2407 * spp_sackdelay - When delayed sack is enabled, this value specifies 2408 * the number of milliseconds that sacks will be delayed 2409 * for. This value will apply to all addresses of an 2410 * association if the spp_address field is empty. Note 2411 * also, that if delayed sack is enabled and this 2412 * value is set to 0, no change is made to the last 2413 * recorded delayed sack timer value. 2414 * 2415 * spp_flags - These flags are used to control various features 2416 * on an association. The flag field may contain 2417 * zero or more of the following options. 2418 * 2419 * SPP_HB_ENABLE - Enable heartbeats on the 2420 * specified address. Note that if the address 2421 * field is empty all addresses for the association 2422 * have heartbeats enabled upon them. 2423 * 2424 * SPP_HB_DISABLE - Disable heartbeats on the 2425 * speicifed address. Note that if the address 2426 * field is empty all addresses for the association 2427 * will have their heartbeats disabled. Note also 2428 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2429 * mutually exclusive, only one of these two should 2430 * be specified. Enabling both fields will have 2431 * undetermined results. 2432 * 2433 * SPP_HB_DEMAND - Request a user initiated heartbeat 2434 * to be made immediately. 2435 * 2436 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2437 * heartbeat delayis to be set to the value of 0 2438 * milliseconds. 2439 * 2440 * SPP_PMTUD_ENABLE - This field will enable PMTU 2441 * discovery upon the specified address. Note that 2442 * if the address feild is empty then all addresses 2443 * on the association are effected. 2444 * 2445 * SPP_PMTUD_DISABLE - This field will disable PMTU 2446 * discovery upon the specified address. Note that 2447 * if the address feild is empty then all addresses 2448 * on the association are effected. Not also that 2449 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2450 * exclusive. Enabling both will have undetermined 2451 * results. 2452 * 2453 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2454 * on delayed sack. The time specified in spp_sackdelay 2455 * is used to specify the sack delay for this address. Note 2456 * that if spp_address is empty then all addresses will 2457 * enable delayed sack and take on the sack delay 2458 * value specified in spp_sackdelay. 2459 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2460 * off delayed sack. If the spp_address field is blank then 2461 * delayed sack is disabled for the entire association. Note 2462 * also that this field is mutually exclusive to 2463 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2464 * results. 2465 * 2466 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2467 * setting of the IPV6 flow label value. The value is 2468 * contained in the spp_ipv6_flowlabel field. 2469 * Upon retrieval, this flag will be set to indicate that 2470 * the spp_ipv6_flowlabel field has a valid value returned. 2471 * If a specific destination address is set (in the 2472 * spp_address field), then the value returned is that of 2473 * the address. If just an association is specified (and 2474 * no address), then the association's default flow label 2475 * is returned. If neither an association nor a destination 2476 * is specified, then the socket's default flow label is 2477 * returned. For non-IPv6 sockets, this flag will be left 2478 * cleared. 2479 * 2480 * SPP_DSCP: Setting this flag enables the setting of the 2481 * Differentiated Services Code Point (DSCP) value 2482 * associated with either the association or a specific 2483 * address. The value is obtained in the spp_dscp field. 2484 * Upon retrieval, this flag will be set to indicate that 2485 * the spp_dscp field has a valid value returned. If a 2486 * specific destination address is set when called (in the 2487 * spp_address field), then that specific destination 2488 * address's DSCP value is returned. If just an association 2489 * is specified, then the association's default DSCP is 2490 * returned. If neither an association nor a destination is 2491 * specified, then the socket's default DSCP is returned. 2492 * 2493 * spp_ipv6_flowlabel 2494 * - This field is used in conjunction with the 2495 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2496 * The 20 least significant bits are used for the flow 2497 * label. This setting has precedence over any IPv6-layer 2498 * setting. 2499 * 2500 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2501 * and contains the DSCP. The 6 most significant bits are 2502 * used for the DSCP. This setting has precedence over any 2503 * IPv4- or IPv6- layer setting. 2504 */ 2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2506 struct sctp_transport *trans, 2507 struct sctp_association *asoc, 2508 struct sctp_sock *sp, 2509 int hb_change, 2510 int pmtud_change, 2511 int sackdelay_change) 2512 { 2513 int error; 2514 2515 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2516 struct net *net = sock_net(trans->asoc->base.sk); 2517 2518 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2519 if (error) 2520 return error; 2521 } 2522 2523 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2524 * this field is ignored. Note also that a value of zero indicates 2525 * the current setting should be left unchanged. 2526 */ 2527 if (params->spp_flags & SPP_HB_ENABLE) { 2528 2529 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2530 * set. This lets us use 0 value when this flag 2531 * is set. 2532 */ 2533 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2534 params->spp_hbinterval = 0; 2535 2536 if (params->spp_hbinterval || 2537 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2538 if (trans) { 2539 trans->hbinterval = 2540 msecs_to_jiffies(params->spp_hbinterval); 2541 } else if (asoc) { 2542 asoc->hbinterval = 2543 msecs_to_jiffies(params->spp_hbinterval); 2544 } else { 2545 sp->hbinterval = params->spp_hbinterval; 2546 } 2547 } 2548 } 2549 2550 if (hb_change) { 2551 if (trans) { 2552 trans->param_flags = 2553 (trans->param_flags & ~SPP_HB) | hb_change; 2554 } else if (asoc) { 2555 asoc->param_flags = 2556 (asoc->param_flags & ~SPP_HB) | hb_change; 2557 } else { 2558 sp->param_flags = 2559 (sp->param_flags & ~SPP_HB) | hb_change; 2560 } 2561 } 2562 2563 /* When Path MTU discovery is disabled the value specified here will 2564 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2565 * include the flag SPP_PMTUD_DISABLE for this field to have any 2566 * effect). 2567 */ 2568 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2569 if (trans) { 2570 trans->pathmtu = params->spp_pathmtu; 2571 sctp_assoc_sync_pmtu(asoc); 2572 } else if (asoc) { 2573 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2574 } else { 2575 sp->pathmtu = params->spp_pathmtu; 2576 } 2577 } 2578 2579 if (pmtud_change) { 2580 if (trans) { 2581 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2582 (params->spp_flags & SPP_PMTUD_ENABLE); 2583 trans->param_flags = 2584 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2585 if (update) { 2586 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2587 sctp_assoc_sync_pmtu(asoc); 2588 } 2589 } else if (asoc) { 2590 asoc->param_flags = 2591 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2592 } else { 2593 sp->param_flags = 2594 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2595 } 2596 } 2597 2598 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2599 * value of this field is ignored. Note also that a value of zero 2600 * indicates the current setting should be left unchanged. 2601 */ 2602 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2603 if (trans) { 2604 trans->sackdelay = 2605 msecs_to_jiffies(params->spp_sackdelay); 2606 } else if (asoc) { 2607 asoc->sackdelay = 2608 msecs_to_jiffies(params->spp_sackdelay); 2609 } else { 2610 sp->sackdelay = params->spp_sackdelay; 2611 } 2612 } 2613 2614 if (sackdelay_change) { 2615 if (trans) { 2616 trans->param_flags = 2617 (trans->param_flags & ~SPP_SACKDELAY) | 2618 sackdelay_change; 2619 } else if (asoc) { 2620 asoc->param_flags = 2621 (asoc->param_flags & ~SPP_SACKDELAY) | 2622 sackdelay_change; 2623 } else { 2624 sp->param_flags = 2625 (sp->param_flags & ~SPP_SACKDELAY) | 2626 sackdelay_change; 2627 } 2628 } 2629 2630 /* Note that a value of zero indicates the current setting should be 2631 left unchanged. 2632 */ 2633 if (params->spp_pathmaxrxt) { 2634 if (trans) { 2635 trans->pathmaxrxt = params->spp_pathmaxrxt; 2636 } else if (asoc) { 2637 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2638 } else { 2639 sp->pathmaxrxt = params->spp_pathmaxrxt; 2640 } 2641 } 2642 2643 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2644 if (trans) { 2645 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2646 trans->flowlabel = params->spp_ipv6_flowlabel & 2647 SCTP_FLOWLABEL_VAL_MASK; 2648 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2649 } 2650 } else if (asoc) { 2651 struct sctp_transport *t; 2652 2653 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2654 transports) { 2655 if (t->ipaddr.sa.sa_family != AF_INET6) 2656 continue; 2657 t->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 asoc->flowlabel = params->spp_ipv6_flowlabel & 2662 SCTP_FLOWLABEL_VAL_MASK; 2663 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2664 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2665 sp->flowlabel = params->spp_ipv6_flowlabel & 2666 SCTP_FLOWLABEL_VAL_MASK; 2667 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2668 } 2669 } 2670 2671 if (params->spp_flags & SPP_DSCP) { 2672 if (trans) { 2673 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2674 trans->dscp |= SCTP_DSCP_SET_MASK; 2675 } else if (asoc) { 2676 struct sctp_transport *t; 2677 2678 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2679 transports) { 2680 t->dscp = params->spp_dscp & 2681 SCTP_DSCP_VAL_MASK; 2682 t->dscp |= SCTP_DSCP_SET_MASK; 2683 } 2684 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 asoc->dscp |= SCTP_DSCP_SET_MASK; 2686 } else { 2687 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2688 sp->dscp |= SCTP_DSCP_SET_MASK; 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2696 char __user *optval, 2697 unsigned int optlen) 2698 { 2699 struct sctp_paddrparams params; 2700 struct sctp_transport *trans = NULL; 2701 struct sctp_association *asoc = NULL; 2702 struct sctp_sock *sp = sctp_sk(sk); 2703 int error; 2704 int hb_change, pmtud_change, sackdelay_change; 2705 2706 if (optlen == sizeof(params)) { 2707 if (copy_from_user(¶ms, optval, optlen)) 2708 return -EFAULT; 2709 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2710 spp_ipv6_flowlabel), 4)) { 2711 if (copy_from_user(¶ms, optval, optlen)) 2712 return -EFAULT; 2713 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2714 return -EINVAL; 2715 } else { 2716 return -EINVAL; 2717 } 2718 2719 /* Validate flags and value parameters. */ 2720 hb_change = params.spp_flags & SPP_HB; 2721 pmtud_change = params.spp_flags & SPP_PMTUD; 2722 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2723 2724 if (hb_change == SPP_HB || 2725 pmtud_change == SPP_PMTUD || 2726 sackdelay_change == SPP_SACKDELAY || 2727 params.spp_sackdelay > 500 || 2728 (params.spp_pathmtu && 2729 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2730 return -EINVAL; 2731 2732 /* If an address other than INADDR_ANY is specified, and 2733 * no transport is found, then the request is invalid. 2734 */ 2735 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2736 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2737 params.spp_assoc_id); 2738 if (!trans) 2739 return -EINVAL; 2740 } 2741 2742 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2743 * socket is a one to many style socket, and an association 2744 * was not found, then the id was invalid. 2745 */ 2746 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2747 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2748 sctp_style(sk, UDP)) 2749 return -EINVAL; 2750 2751 /* Heartbeat demand can only be sent on a transport or 2752 * association, but not a socket. 2753 */ 2754 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2755 return -EINVAL; 2756 2757 /* Process parameters. */ 2758 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2759 hb_change, pmtud_change, 2760 sackdelay_change); 2761 2762 if (error) 2763 return error; 2764 2765 /* If changes are for association, also apply parameters to each 2766 * transport. 2767 */ 2768 if (!trans && asoc) { 2769 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2770 transports) { 2771 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2772 hb_change, pmtud_change, 2773 sackdelay_change); 2774 } 2775 } 2776 2777 return 0; 2778 } 2779 2780 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2781 { 2782 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2783 } 2784 2785 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2786 { 2787 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2788 } 2789 2790 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2791 struct sctp_association *asoc) 2792 { 2793 struct sctp_transport *trans; 2794 2795 if (params->sack_delay) { 2796 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2797 asoc->param_flags = 2798 sctp_spp_sackdelay_enable(asoc->param_flags); 2799 } 2800 if (params->sack_freq == 1) { 2801 asoc->param_flags = 2802 sctp_spp_sackdelay_disable(asoc->param_flags); 2803 } else if (params->sack_freq > 1) { 2804 asoc->sackfreq = params->sack_freq; 2805 asoc->param_flags = 2806 sctp_spp_sackdelay_enable(asoc->param_flags); 2807 } 2808 2809 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2810 transports) { 2811 if (params->sack_delay) { 2812 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2813 trans->param_flags = 2814 sctp_spp_sackdelay_enable(trans->param_flags); 2815 } 2816 if (params->sack_freq == 1) { 2817 trans->param_flags = 2818 sctp_spp_sackdelay_disable(trans->param_flags); 2819 } else if (params->sack_freq > 1) { 2820 trans->sackfreq = params->sack_freq; 2821 trans->param_flags = 2822 sctp_spp_sackdelay_enable(trans->param_flags); 2823 } 2824 } 2825 } 2826 2827 /* 2828 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2829 * 2830 * This option will effect the way delayed acks are performed. This 2831 * option allows you to get or set the delayed ack time, in 2832 * milliseconds. It also allows changing the delayed ack frequency. 2833 * Changing the frequency to 1 disables the delayed sack algorithm. If 2834 * the assoc_id is 0, then this sets or gets the endpoints default 2835 * values. If the assoc_id field is non-zero, then the set or get 2836 * effects the specified association for the one to many model (the 2837 * assoc_id field is ignored by the one to one model). Note that if 2838 * sack_delay or sack_freq are 0 when setting this option, then the 2839 * current values will remain unchanged. 2840 * 2841 * struct sctp_sack_info { 2842 * sctp_assoc_t sack_assoc_id; 2843 * uint32_t sack_delay; 2844 * uint32_t sack_freq; 2845 * }; 2846 * 2847 * sack_assoc_id - This parameter, indicates which association the user 2848 * is performing an action upon. Note that if this field's value is 2849 * zero then the endpoints default value is changed (effecting future 2850 * associations only). 2851 * 2852 * sack_delay - This parameter contains the number of milliseconds that 2853 * the user is requesting the delayed ACK timer be set to. Note that 2854 * this value is defined in the standard to be between 200 and 500 2855 * milliseconds. 2856 * 2857 * sack_freq - This parameter contains the number of packets that must 2858 * be received before a sack is sent without waiting for the delay 2859 * timer to expire. The default value for this is 2, setting this 2860 * value to 1 will disable the delayed sack algorithm. 2861 */ 2862 2863 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2864 char __user *optval, unsigned int optlen) 2865 { 2866 struct sctp_sock *sp = sctp_sk(sk); 2867 struct sctp_association *asoc; 2868 struct sctp_sack_info params; 2869 2870 if (optlen == sizeof(struct sctp_sack_info)) { 2871 if (copy_from_user(¶ms, optval, optlen)) 2872 return -EFAULT; 2873 2874 if (params.sack_delay == 0 && params.sack_freq == 0) 2875 return 0; 2876 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2877 pr_warn_ratelimited(DEPRECATED 2878 "%s (pid %d) " 2879 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2880 "Use struct sctp_sack_info instead\n", 2881 current->comm, task_pid_nr(current)); 2882 if (copy_from_user(¶ms, optval, optlen)) 2883 return -EFAULT; 2884 2885 if (params.sack_delay == 0) 2886 params.sack_freq = 1; 2887 else 2888 params.sack_freq = 0; 2889 } else 2890 return -EINVAL; 2891 2892 /* Validate value parameter. */ 2893 if (params.sack_delay > 500) 2894 return -EINVAL; 2895 2896 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2897 * socket is a one to many style socket, and an association 2898 * was not found, then the id was invalid. 2899 */ 2900 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2901 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2902 sctp_style(sk, UDP)) 2903 return -EINVAL; 2904 2905 if (asoc) { 2906 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2907 2908 return 0; 2909 } 2910 2911 if (sctp_style(sk, TCP)) 2912 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2913 2914 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2915 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2916 if (params.sack_delay) { 2917 sp->sackdelay = params.sack_delay; 2918 sp->param_flags = 2919 sctp_spp_sackdelay_enable(sp->param_flags); 2920 } 2921 if (params.sack_freq == 1) { 2922 sp->param_flags = 2923 sctp_spp_sackdelay_disable(sp->param_flags); 2924 } else if (params.sack_freq > 1) { 2925 sp->sackfreq = params.sack_freq; 2926 sp->param_flags = 2927 sctp_spp_sackdelay_enable(sp->param_flags); 2928 } 2929 } 2930 2931 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2932 params.sack_assoc_id == SCTP_ALL_ASSOC) 2933 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2934 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2935 2936 return 0; 2937 } 2938 2939 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2940 * 2941 * Applications can specify protocol parameters for the default association 2942 * initialization. The option name argument to setsockopt() and getsockopt() 2943 * is SCTP_INITMSG. 2944 * 2945 * Setting initialization parameters is effective only on an unconnected 2946 * socket (for UDP-style sockets only future associations are effected 2947 * by the change). With TCP-style sockets, this option is inherited by 2948 * sockets derived from a listener socket. 2949 */ 2950 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2951 { 2952 struct sctp_initmsg sinit; 2953 struct sctp_sock *sp = sctp_sk(sk); 2954 2955 if (optlen != sizeof(struct sctp_initmsg)) 2956 return -EINVAL; 2957 if (copy_from_user(&sinit, optval, optlen)) 2958 return -EFAULT; 2959 2960 if (sinit.sinit_num_ostreams) 2961 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2962 if (sinit.sinit_max_instreams) 2963 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2964 if (sinit.sinit_max_attempts) 2965 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2966 if (sinit.sinit_max_init_timeo) 2967 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2974 * 2975 * Applications that wish to use the sendto() system call may wish to 2976 * specify a default set of parameters that would normally be supplied 2977 * through the inclusion of ancillary data. This socket option allows 2978 * such an application to set the default sctp_sndrcvinfo structure. 2979 * The application that wishes to use this socket option simply passes 2980 * in to this call the sctp_sndrcvinfo structure defined in Section 2981 * 5.2.2) The input parameters accepted by this call include 2982 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2983 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2984 * to this call if the caller is using the UDP model. 2985 */ 2986 static int sctp_setsockopt_default_send_param(struct sock *sk, 2987 char __user *optval, 2988 unsigned int optlen) 2989 { 2990 struct sctp_sock *sp = sctp_sk(sk); 2991 struct sctp_association *asoc; 2992 struct sctp_sndrcvinfo info; 2993 2994 if (optlen != sizeof(info)) 2995 return -EINVAL; 2996 if (copy_from_user(&info, optval, optlen)) 2997 return -EFAULT; 2998 if (info.sinfo_flags & 2999 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3000 SCTP_ABORT | SCTP_EOF)) 3001 return -EINVAL; 3002 3003 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3004 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3005 sctp_style(sk, UDP)) 3006 return -EINVAL; 3007 3008 if (asoc) { 3009 asoc->default_stream = info.sinfo_stream; 3010 asoc->default_flags = info.sinfo_flags; 3011 asoc->default_ppid = info.sinfo_ppid; 3012 asoc->default_context = info.sinfo_context; 3013 asoc->default_timetolive = info.sinfo_timetolive; 3014 3015 return 0; 3016 } 3017 3018 if (sctp_style(sk, TCP)) 3019 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 3020 3021 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3022 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3023 sp->default_stream = info.sinfo_stream; 3024 sp->default_flags = info.sinfo_flags; 3025 sp->default_ppid = info.sinfo_ppid; 3026 sp->default_context = info.sinfo_context; 3027 sp->default_timetolive = info.sinfo_timetolive; 3028 } 3029 3030 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3031 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3032 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3033 asoc->default_stream = info.sinfo_stream; 3034 asoc->default_flags = info.sinfo_flags; 3035 asoc->default_ppid = info.sinfo_ppid; 3036 asoc->default_context = info.sinfo_context; 3037 asoc->default_timetolive = info.sinfo_timetolive; 3038 } 3039 } 3040 3041 return 0; 3042 } 3043 3044 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3045 * (SCTP_DEFAULT_SNDINFO) 3046 */ 3047 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3048 char __user *optval, 3049 unsigned int optlen) 3050 { 3051 struct sctp_sock *sp = sctp_sk(sk); 3052 struct sctp_association *asoc; 3053 struct sctp_sndinfo info; 3054 3055 if (optlen != sizeof(info)) 3056 return -EINVAL; 3057 if (copy_from_user(&info, optval, optlen)) 3058 return -EFAULT; 3059 if (info.snd_flags & 3060 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3061 SCTP_ABORT | SCTP_EOF)) 3062 return -EINVAL; 3063 3064 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3065 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3066 sctp_style(sk, UDP)) 3067 return -EINVAL; 3068 3069 if (asoc) { 3070 asoc->default_stream = info.snd_sid; 3071 asoc->default_flags = info.snd_flags; 3072 asoc->default_ppid = info.snd_ppid; 3073 asoc->default_context = info.snd_context; 3074 3075 return 0; 3076 } 3077 3078 if (sctp_style(sk, TCP)) 3079 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3080 3081 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3082 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3083 sp->default_stream = info.snd_sid; 3084 sp->default_flags = info.snd_flags; 3085 sp->default_ppid = info.snd_ppid; 3086 sp->default_context = info.snd_context; 3087 } 3088 3089 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3090 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3091 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3092 asoc->default_stream = info.snd_sid; 3093 asoc->default_flags = info.snd_flags; 3094 asoc->default_ppid = info.snd_ppid; 3095 asoc->default_context = info.snd_context; 3096 } 3097 } 3098 3099 return 0; 3100 } 3101 3102 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3103 * 3104 * Requests that the local SCTP stack use the enclosed peer address as 3105 * the association primary. The enclosed address must be one of the 3106 * association peer's addresses. 3107 */ 3108 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3109 unsigned int optlen) 3110 { 3111 struct sctp_prim prim; 3112 struct sctp_transport *trans; 3113 struct sctp_af *af; 3114 int err; 3115 3116 if (optlen != sizeof(struct sctp_prim)) 3117 return -EINVAL; 3118 3119 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3120 return -EFAULT; 3121 3122 /* Allow security module to validate address but need address len. */ 3123 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3124 if (!af) 3125 return -EINVAL; 3126 3127 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3128 (struct sockaddr *)&prim.ssp_addr, 3129 af->sockaddr_len); 3130 if (err) 3131 return err; 3132 3133 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3134 if (!trans) 3135 return -EINVAL; 3136 3137 sctp_assoc_set_primary(trans->asoc, trans); 3138 3139 return 0; 3140 } 3141 3142 /* 3143 * 7.1.5 SCTP_NODELAY 3144 * 3145 * Turn on/off any Nagle-like algorithm. This means that packets are 3146 * generally sent as soon as possible and no unnecessary delays are 3147 * introduced, at the cost of more packets in the network. Expects an 3148 * integer boolean flag. 3149 */ 3150 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3151 unsigned int optlen) 3152 { 3153 int val; 3154 3155 if (optlen < sizeof(int)) 3156 return -EINVAL; 3157 if (get_user(val, (int __user *)optval)) 3158 return -EFAULT; 3159 3160 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3161 return 0; 3162 } 3163 3164 /* 3165 * 3166 * 7.1.1 SCTP_RTOINFO 3167 * 3168 * The protocol parameters used to initialize and bound retransmission 3169 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3170 * and modify these parameters. 3171 * All parameters are time values, in milliseconds. A value of 0, when 3172 * modifying the parameters, indicates that the current value should not 3173 * be changed. 3174 * 3175 */ 3176 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3177 { 3178 struct sctp_rtoinfo rtoinfo; 3179 struct sctp_association *asoc; 3180 unsigned long rto_min, rto_max; 3181 struct sctp_sock *sp = sctp_sk(sk); 3182 3183 if (optlen != sizeof (struct sctp_rtoinfo)) 3184 return -EINVAL; 3185 3186 if (copy_from_user(&rtoinfo, optval, optlen)) 3187 return -EFAULT; 3188 3189 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3190 3191 /* Set the values to the specific association */ 3192 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3193 sctp_style(sk, UDP)) 3194 return -EINVAL; 3195 3196 rto_max = rtoinfo.srto_max; 3197 rto_min = rtoinfo.srto_min; 3198 3199 if (rto_max) 3200 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3201 else 3202 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3203 3204 if (rto_min) 3205 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3206 else 3207 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3208 3209 if (rto_min > rto_max) 3210 return -EINVAL; 3211 3212 if (asoc) { 3213 if (rtoinfo.srto_initial != 0) 3214 asoc->rto_initial = 3215 msecs_to_jiffies(rtoinfo.srto_initial); 3216 asoc->rto_max = rto_max; 3217 asoc->rto_min = rto_min; 3218 } else { 3219 /* If there is no association or the association-id = 0 3220 * set the values to the endpoint. 3221 */ 3222 if (rtoinfo.srto_initial != 0) 3223 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3224 sp->rtoinfo.srto_max = rto_max; 3225 sp->rtoinfo.srto_min = rto_min; 3226 } 3227 3228 return 0; 3229 } 3230 3231 /* 3232 * 3233 * 7.1.2 SCTP_ASSOCINFO 3234 * 3235 * This option is used to tune the maximum retransmission attempts 3236 * of the association. 3237 * Returns an error if the new association retransmission value is 3238 * greater than the sum of the retransmission value of the peer. 3239 * See [SCTP] for more information. 3240 * 3241 */ 3242 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3243 { 3244 3245 struct sctp_assocparams assocparams; 3246 struct sctp_association *asoc; 3247 3248 if (optlen != sizeof(struct sctp_assocparams)) 3249 return -EINVAL; 3250 if (copy_from_user(&assocparams, optval, optlen)) 3251 return -EFAULT; 3252 3253 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3254 3255 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3256 sctp_style(sk, UDP)) 3257 return -EINVAL; 3258 3259 /* Set the values to the specific association */ 3260 if (asoc) { 3261 if (assocparams.sasoc_asocmaxrxt != 0) { 3262 __u32 path_sum = 0; 3263 int paths = 0; 3264 struct sctp_transport *peer_addr; 3265 3266 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3267 transports) { 3268 path_sum += peer_addr->pathmaxrxt; 3269 paths++; 3270 } 3271 3272 /* Only validate asocmaxrxt if we have more than 3273 * one path/transport. We do this because path 3274 * retransmissions are only counted when we have more 3275 * then one path. 3276 */ 3277 if (paths > 1 && 3278 assocparams.sasoc_asocmaxrxt > path_sum) 3279 return -EINVAL; 3280 3281 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3282 } 3283 3284 if (assocparams.sasoc_cookie_life != 0) 3285 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3286 } else { 3287 /* Set the values to the endpoint */ 3288 struct sctp_sock *sp = sctp_sk(sk); 3289 3290 if (assocparams.sasoc_asocmaxrxt != 0) 3291 sp->assocparams.sasoc_asocmaxrxt = 3292 assocparams.sasoc_asocmaxrxt; 3293 if (assocparams.sasoc_cookie_life != 0) 3294 sp->assocparams.sasoc_cookie_life = 3295 assocparams.sasoc_cookie_life; 3296 } 3297 return 0; 3298 } 3299 3300 /* 3301 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3302 * 3303 * This socket option is a boolean flag which turns on or off mapped V4 3304 * addresses. If this option is turned on and the socket is type 3305 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3306 * If this option is turned off, then no mapping will be done of V4 3307 * addresses and a user will receive both PF_INET6 and PF_INET type 3308 * addresses on the socket. 3309 */ 3310 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3311 { 3312 int val; 3313 struct sctp_sock *sp = sctp_sk(sk); 3314 3315 if (optlen < sizeof(int)) 3316 return -EINVAL; 3317 if (get_user(val, (int __user *)optval)) 3318 return -EFAULT; 3319 if (val) 3320 sp->v4mapped = 1; 3321 else 3322 sp->v4mapped = 0; 3323 3324 return 0; 3325 } 3326 3327 /* 3328 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3329 * This option will get or set the maximum size to put in any outgoing 3330 * SCTP DATA chunk. If a message is larger than this size it will be 3331 * fragmented by SCTP into the specified size. Note that the underlying 3332 * SCTP implementation may fragment into smaller sized chunks when the 3333 * PMTU of the underlying association is smaller than the value set by 3334 * the user. The default value for this option is '0' which indicates 3335 * the user is NOT limiting fragmentation and only the PMTU will effect 3336 * SCTP's choice of DATA chunk size. Note also that values set larger 3337 * than the maximum size of an IP datagram will effectively let SCTP 3338 * control fragmentation (i.e. the same as setting this option to 0). 3339 * 3340 * The following structure is used to access and modify this parameter: 3341 * 3342 * struct sctp_assoc_value { 3343 * sctp_assoc_t assoc_id; 3344 * uint32_t assoc_value; 3345 * }; 3346 * 3347 * assoc_id: This parameter is ignored for one-to-one style sockets. 3348 * For one-to-many style sockets this parameter indicates which 3349 * association the user is performing an action upon. Note that if 3350 * this field's value is zero then the endpoints default value is 3351 * changed (effecting future associations only). 3352 * assoc_value: This parameter specifies the maximum size in bytes. 3353 */ 3354 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3355 { 3356 struct sctp_sock *sp = sctp_sk(sk); 3357 struct sctp_assoc_value params; 3358 struct sctp_association *asoc; 3359 int val; 3360 3361 if (optlen == sizeof(int)) { 3362 pr_warn_ratelimited(DEPRECATED 3363 "%s (pid %d) " 3364 "Use of int in maxseg socket option.\n" 3365 "Use struct sctp_assoc_value instead\n", 3366 current->comm, task_pid_nr(current)); 3367 if (copy_from_user(&val, optval, optlen)) 3368 return -EFAULT; 3369 params.assoc_id = SCTP_FUTURE_ASSOC; 3370 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3371 if (copy_from_user(¶ms, optval, optlen)) 3372 return -EFAULT; 3373 val = params.assoc_value; 3374 } else { 3375 return -EINVAL; 3376 } 3377 3378 asoc = sctp_id2assoc(sk, params.assoc_id); 3379 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3380 sctp_style(sk, UDP)) 3381 return -EINVAL; 3382 3383 if (val) { 3384 int min_len, max_len; 3385 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3386 sizeof(struct sctp_data_chunk); 3387 3388 min_len = sctp_min_frag_point(sp, datasize); 3389 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3390 3391 if (val < min_len || val > max_len) 3392 return -EINVAL; 3393 } 3394 3395 if (asoc) { 3396 asoc->user_frag = val; 3397 sctp_assoc_update_frag_point(asoc); 3398 } else { 3399 sp->user_frag = val; 3400 } 3401 3402 return 0; 3403 } 3404 3405 3406 /* 3407 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3408 * 3409 * Requests that the peer mark the enclosed address as the association 3410 * primary. The enclosed address must be one of the association's 3411 * locally bound addresses. The following structure is used to make a 3412 * set primary request: 3413 */ 3414 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3415 unsigned int optlen) 3416 { 3417 struct net *net = sock_net(sk); 3418 struct sctp_sock *sp; 3419 struct sctp_association *asoc = NULL; 3420 struct sctp_setpeerprim prim; 3421 struct sctp_chunk *chunk; 3422 struct sctp_af *af; 3423 int err; 3424 3425 sp = sctp_sk(sk); 3426 3427 if (!net->sctp.addip_enable) 3428 return -EPERM; 3429 3430 if (optlen != sizeof(struct sctp_setpeerprim)) 3431 return -EINVAL; 3432 3433 if (copy_from_user(&prim, optval, optlen)) 3434 return -EFAULT; 3435 3436 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3437 if (!asoc) 3438 return -EINVAL; 3439 3440 if (!asoc->peer.asconf_capable) 3441 return -EPERM; 3442 3443 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3444 return -EPERM; 3445 3446 if (!sctp_state(asoc, ESTABLISHED)) 3447 return -ENOTCONN; 3448 3449 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3450 if (!af) 3451 return -EINVAL; 3452 3453 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3454 return -EADDRNOTAVAIL; 3455 3456 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3457 return -EADDRNOTAVAIL; 3458 3459 /* Allow security module to validate address. */ 3460 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3461 (struct sockaddr *)&prim.sspp_addr, 3462 af->sockaddr_len); 3463 if (err) 3464 return err; 3465 3466 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3467 chunk = sctp_make_asconf_set_prim(asoc, 3468 (union sctp_addr *)&prim.sspp_addr); 3469 if (!chunk) 3470 return -ENOMEM; 3471 3472 err = sctp_send_asconf(asoc, chunk); 3473 3474 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3475 3476 return err; 3477 } 3478 3479 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3480 unsigned int optlen) 3481 { 3482 struct sctp_setadaptation adaptation; 3483 3484 if (optlen != sizeof(struct sctp_setadaptation)) 3485 return -EINVAL; 3486 if (copy_from_user(&adaptation, optval, optlen)) 3487 return -EFAULT; 3488 3489 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3490 3491 return 0; 3492 } 3493 3494 /* 3495 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3496 * 3497 * The context field in the sctp_sndrcvinfo structure is normally only 3498 * used when a failed message is retrieved holding the value that was 3499 * sent down on the actual send call. This option allows the setting of 3500 * a default context on an association basis that will be received on 3501 * reading messages from the peer. This is especially helpful in the 3502 * one-2-many model for an application to keep some reference to an 3503 * internal state machine that is processing messages on the 3504 * association. Note that the setting of this value only effects 3505 * received messages from the peer and does not effect the value that is 3506 * saved with outbound messages. 3507 */ 3508 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3509 unsigned int optlen) 3510 { 3511 struct sctp_sock *sp = sctp_sk(sk); 3512 struct sctp_assoc_value params; 3513 struct sctp_association *asoc; 3514 3515 if (optlen != sizeof(struct sctp_assoc_value)) 3516 return -EINVAL; 3517 if (copy_from_user(¶ms, optval, optlen)) 3518 return -EFAULT; 3519 3520 asoc = sctp_id2assoc(sk, params.assoc_id); 3521 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3522 sctp_style(sk, UDP)) 3523 return -EINVAL; 3524 3525 if (asoc) { 3526 asoc->default_rcv_context = params.assoc_value; 3527 3528 return 0; 3529 } 3530 3531 if (sctp_style(sk, TCP)) 3532 params.assoc_id = SCTP_FUTURE_ASSOC; 3533 3534 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3535 params.assoc_id == SCTP_ALL_ASSOC) 3536 sp->default_rcv_context = params.assoc_value; 3537 3538 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3539 params.assoc_id == SCTP_ALL_ASSOC) 3540 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3541 asoc->default_rcv_context = params.assoc_value; 3542 3543 return 0; 3544 } 3545 3546 /* 3547 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3548 * 3549 * This options will at a minimum specify if the implementation is doing 3550 * fragmented interleave. Fragmented interleave, for a one to many 3551 * socket, is when subsequent calls to receive a message may return 3552 * parts of messages from different associations. Some implementations 3553 * may allow you to turn this value on or off. If so, when turned off, 3554 * no fragment interleave will occur (which will cause a head of line 3555 * blocking amongst multiple associations sharing the same one to many 3556 * socket). When this option is turned on, then each receive call may 3557 * come from a different association (thus the user must receive data 3558 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3559 * association each receive belongs to. 3560 * 3561 * This option takes a boolean value. A non-zero value indicates that 3562 * fragmented interleave is on. A value of zero indicates that 3563 * fragmented interleave is off. 3564 * 3565 * Note that it is important that an implementation that allows this 3566 * option to be turned on, have it off by default. Otherwise an unaware 3567 * application using the one to many model may become confused and act 3568 * incorrectly. 3569 */ 3570 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3571 char __user *optval, 3572 unsigned int optlen) 3573 { 3574 int val; 3575 3576 if (optlen != sizeof(int)) 3577 return -EINVAL; 3578 if (get_user(val, (int __user *)optval)) 3579 return -EFAULT; 3580 3581 sctp_sk(sk)->frag_interleave = !!val; 3582 3583 if (!sctp_sk(sk)->frag_interleave) 3584 sctp_sk(sk)->strm_interleave = 0; 3585 3586 return 0; 3587 } 3588 3589 /* 3590 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3591 * (SCTP_PARTIAL_DELIVERY_POINT) 3592 * 3593 * This option will set or get the SCTP partial delivery point. This 3594 * point is the size of a message where the partial delivery API will be 3595 * invoked to help free up rwnd space for the peer. Setting this to a 3596 * lower value will cause partial deliveries to happen more often. The 3597 * calls argument is an integer that sets or gets the partial delivery 3598 * point. Note also that the call will fail if the user attempts to set 3599 * this value larger than the socket receive buffer size. 3600 * 3601 * Note that any single message having a length smaller than or equal to 3602 * the SCTP partial delivery point will be delivered in one single read 3603 * call as long as the user provided buffer is large enough to hold the 3604 * message. 3605 */ 3606 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3607 char __user *optval, 3608 unsigned int optlen) 3609 { 3610 u32 val; 3611 3612 if (optlen != sizeof(u32)) 3613 return -EINVAL; 3614 if (get_user(val, (int __user *)optval)) 3615 return -EFAULT; 3616 3617 /* Note: We double the receive buffer from what the user sets 3618 * it to be, also initial rwnd is based on rcvbuf/2. 3619 */ 3620 if (val > (sk->sk_rcvbuf >> 1)) 3621 return -EINVAL; 3622 3623 sctp_sk(sk)->pd_point = val; 3624 3625 return 0; /* is this the right error code? */ 3626 } 3627 3628 /* 3629 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3630 * 3631 * This option will allow a user to change the maximum burst of packets 3632 * that can be emitted by this association. Note that the default value 3633 * is 4, and some implementations may restrict this setting so that it 3634 * can only be lowered. 3635 * 3636 * NOTE: This text doesn't seem right. Do this on a socket basis with 3637 * future associations inheriting the socket value. 3638 */ 3639 static int sctp_setsockopt_maxburst(struct sock *sk, 3640 char __user *optval, 3641 unsigned int optlen) 3642 { 3643 struct sctp_sock *sp = sctp_sk(sk); 3644 struct sctp_assoc_value params; 3645 struct sctp_association *asoc; 3646 3647 if (optlen == sizeof(int)) { 3648 pr_warn_ratelimited(DEPRECATED 3649 "%s (pid %d) " 3650 "Use of int in max_burst socket option deprecated.\n" 3651 "Use struct sctp_assoc_value instead\n", 3652 current->comm, task_pid_nr(current)); 3653 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3654 return -EFAULT; 3655 params.assoc_id = SCTP_FUTURE_ASSOC; 3656 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3657 if (copy_from_user(¶ms, optval, optlen)) 3658 return -EFAULT; 3659 } else 3660 return -EINVAL; 3661 3662 asoc = sctp_id2assoc(sk, params.assoc_id); 3663 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3664 sctp_style(sk, UDP)) 3665 return -EINVAL; 3666 3667 if (asoc) { 3668 asoc->max_burst = params.assoc_value; 3669 3670 return 0; 3671 } 3672 3673 if (sctp_style(sk, TCP)) 3674 params.assoc_id = SCTP_FUTURE_ASSOC; 3675 3676 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3677 params.assoc_id == SCTP_ALL_ASSOC) 3678 sp->max_burst = params.assoc_value; 3679 3680 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3681 params.assoc_id == SCTP_ALL_ASSOC) 3682 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3683 asoc->max_burst = params.assoc_value; 3684 3685 return 0; 3686 } 3687 3688 /* 3689 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3690 * 3691 * This set option adds a chunk type that the user is requesting to be 3692 * received only in an authenticated way. Changes to the list of chunks 3693 * will only effect future associations on the socket. 3694 */ 3695 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3696 char __user *optval, 3697 unsigned int optlen) 3698 { 3699 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3700 struct sctp_authchunk val; 3701 3702 if (!ep->auth_enable) 3703 return -EACCES; 3704 3705 if (optlen != sizeof(struct sctp_authchunk)) 3706 return -EINVAL; 3707 if (copy_from_user(&val, optval, optlen)) 3708 return -EFAULT; 3709 3710 switch (val.sauth_chunk) { 3711 case SCTP_CID_INIT: 3712 case SCTP_CID_INIT_ACK: 3713 case SCTP_CID_SHUTDOWN_COMPLETE: 3714 case SCTP_CID_AUTH: 3715 return -EINVAL; 3716 } 3717 3718 /* add this chunk id to the endpoint */ 3719 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3720 } 3721 3722 /* 3723 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3724 * 3725 * This option gets or sets the list of HMAC algorithms that the local 3726 * endpoint requires the peer to use. 3727 */ 3728 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3729 char __user *optval, 3730 unsigned int optlen) 3731 { 3732 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3733 struct sctp_hmacalgo *hmacs; 3734 u32 idents; 3735 int err; 3736 3737 if (!ep->auth_enable) 3738 return -EACCES; 3739 3740 if (optlen < sizeof(struct sctp_hmacalgo)) 3741 return -EINVAL; 3742 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3743 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3744 3745 hmacs = memdup_user(optval, optlen); 3746 if (IS_ERR(hmacs)) 3747 return PTR_ERR(hmacs); 3748 3749 idents = hmacs->shmac_num_idents; 3750 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3751 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3752 err = -EINVAL; 3753 goto out; 3754 } 3755 3756 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3757 out: 3758 kfree(hmacs); 3759 return err; 3760 } 3761 3762 /* 3763 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3764 * 3765 * This option will set a shared secret key which is used to build an 3766 * association shared key. 3767 */ 3768 static int sctp_setsockopt_auth_key(struct sock *sk, 3769 char __user *optval, 3770 unsigned int optlen) 3771 { 3772 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3773 struct sctp_authkey *authkey; 3774 struct sctp_association *asoc; 3775 int ret = -EINVAL; 3776 3777 if (!ep->auth_enable) 3778 return -EACCES; 3779 3780 if (optlen <= sizeof(struct sctp_authkey)) 3781 return -EINVAL; 3782 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3783 * this. 3784 */ 3785 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3786 3787 authkey = memdup_user(optval, optlen); 3788 if (IS_ERR(authkey)) 3789 return PTR_ERR(authkey); 3790 3791 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3792 goto out; 3793 3794 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3795 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3796 sctp_style(sk, UDP)) 3797 goto out; 3798 3799 if (asoc) { 3800 ret = sctp_auth_set_key(ep, asoc, authkey); 3801 goto out; 3802 } 3803 3804 if (sctp_style(sk, TCP)) 3805 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3806 3807 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3808 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3809 ret = sctp_auth_set_key(ep, asoc, authkey); 3810 if (ret) 3811 goto out; 3812 } 3813 3814 ret = 0; 3815 3816 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3817 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3818 list_for_each_entry(asoc, &ep->asocs, asocs) { 3819 int res = sctp_auth_set_key(ep, asoc, authkey); 3820 3821 if (res && !ret) 3822 ret = res; 3823 } 3824 } 3825 3826 out: 3827 kzfree(authkey); 3828 return ret; 3829 } 3830 3831 /* 3832 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3833 * 3834 * This option will get or set the active shared key to be used to build 3835 * the association shared key. 3836 */ 3837 static int sctp_setsockopt_active_key(struct sock *sk, 3838 char __user *optval, 3839 unsigned int optlen) 3840 { 3841 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3842 struct sctp_association *asoc; 3843 struct sctp_authkeyid val; 3844 int ret = 0; 3845 3846 if (!ep->auth_enable) 3847 return -EACCES; 3848 3849 if (optlen != sizeof(struct sctp_authkeyid)) 3850 return -EINVAL; 3851 if (copy_from_user(&val, optval, optlen)) 3852 return -EFAULT; 3853 3854 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3855 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3856 sctp_style(sk, UDP)) 3857 return -EINVAL; 3858 3859 if (asoc) 3860 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3861 3862 if (sctp_style(sk, TCP)) 3863 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3864 3865 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3866 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3867 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3868 if (ret) 3869 return ret; 3870 } 3871 3872 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3873 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3874 list_for_each_entry(asoc, &ep->asocs, asocs) { 3875 int res = sctp_auth_set_active_key(ep, asoc, 3876 val.scact_keynumber); 3877 3878 if (res && !ret) 3879 ret = res; 3880 } 3881 } 3882 3883 return ret; 3884 } 3885 3886 /* 3887 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3888 * 3889 * This set option will delete a shared secret key from use. 3890 */ 3891 static int sctp_setsockopt_del_key(struct sock *sk, 3892 char __user *optval, 3893 unsigned int optlen) 3894 { 3895 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3896 struct sctp_association *asoc; 3897 struct sctp_authkeyid val; 3898 int ret = 0; 3899 3900 if (!ep->auth_enable) 3901 return -EACCES; 3902 3903 if (optlen != sizeof(struct sctp_authkeyid)) 3904 return -EINVAL; 3905 if (copy_from_user(&val, optval, optlen)) 3906 return -EFAULT; 3907 3908 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3909 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3910 sctp_style(sk, UDP)) 3911 return -EINVAL; 3912 3913 if (asoc) 3914 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3915 3916 if (sctp_style(sk, TCP)) 3917 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3918 3919 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3920 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3921 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3922 if (ret) 3923 return ret; 3924 } 3925 3926 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3927 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3928 list_for_each_entry(asoc, &ep->asocs, asocs) { 3929 int res = sctp_auth_del_key_id(ep, asoc, 3930 val.scact_keynumber); 3931 3932 if (res && !ret) 3933 ret = res; 3934 } 3935 } 3936 3937 return ret; 3938 } 3939 3940 /* 3941 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3942 * 3943 * This set option will deactivate a shared secret key. 3944 */ 3945 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3946 unsigned int optlen) 3947 { 3948 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3949 struct sctp_association *asoc; 3950 struct sctp_authkeyid val; 3951 int ret = 0; 3952 3953 if (!ep->auth_enable) 3954 return -EACCES; 3955 3956 if (optlen != sizeof(struct sctp_authkeyid)) 3957 return -EINVAL; 3958 if (copy_from_user(&val, optval, optlen)) 3959 return -EFAULT; 3960 3961 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3962 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3963 sctp_style(sk, UDP)) 3964 return -EINVAL; 3965 3966 if (asoc) 3967 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3968 3969 if (sctp_style(sk, TCP)) 3970 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3971 3972 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3973 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3974 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3975 if (ret) 3976 return ret; 3977 } 3978 3979 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3980 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3981 list_for_each_entry(asoc, &ep->asocs, asocs) { 3982 int res = sctp_auth_deact_key_id(ep, asoc, 3983 val.scact_keynumber); 3984 3985 if (res && !ret) 3986 ret = res; 3987 } 3988 } 3989 3990 return ret; 3991 } 3992 3993 /* 3994 * 8.1.23 SCTP_AUTO_ASCONF 3995 * 3996 * This option will enable or disable the use of the automatic generation of 3997 * ASCONF chunks to add and delete addresses to an existing association. Note 3998 * that this option has two caveats namely: a) it only affects sockets that 3999 * are bound to all addresses available to the SCTP stack, and b) the system 4000 * administrator may have an overriding control that turns the ASCONF feature 4001 * off no matter what setting the socket option may have. 4002 * This option expects an integer boolean flag, where a non-zero value turns on 4003 * the option, and a zero value turns off the option. 4004 * Note. In this implementation, socket operation overrides default parameter 4005 * being set by sysctl as well as FreeBSD implementation 4006 */ 4007 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 4008 unsigned int optlen) 4009 { 4010 int val; 4011 struct sctp_sock *sp = sctp_sk(sk); 4012 4013 if (optlen < sizeof(int)) 4014 return -EINVAL; 4015 if (get_user(val, (int __user *)optval)) 4016 return -EFAULT; 4017 if (!sctp_is_ep_boundall(sk) && val) 4018 return -EINVAL; 4019 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4020 return 0; 4021 4022 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4023 if (val == 0 && sp->do_auto_asconf) { 4024 list_del(&sp->auto_asconf_list); 4025 sp->do_auto_asconf = 0; 4026 } else if (val && !sp->do_auto_asconf) { 4027 list_add_tail(&sp->auto_asconf_list, 4028 &sock_net(sk)->sctp.auto_asconf_splist); 4029 sp->do_auto_asconf = 1; 4030 } 4031 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4032 return 0; 4033 } 4034 4035 /* 4036 * SCTP_PEER_ADDR_THLDS 4037 * 4038 * This option allows us to alter the partially failed threshold for one or all 4039 * transports in an association. See Section 6.1 of: 4040 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4041 */ 4042 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4043 char __user *optval, 4044 unsigned int optlen) 4045 { 4046 struct sctp_paddrthlds val; 4047 struct sctp_transport *trans; 4048 struct sctp_association *asoc; 4049 4050 if (optlen < sizeof(struct sctp_paddrthlds)) 4051 return -EINVAL; 4052 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4053 sizeof(struct sctp_paddrthlds))) 4054 return -EFAULT; 4055 4056 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4057 trans = sctp_addr_id2transport(sk, &val.spt_address, 4058 val.spt_assoc_id); 4059 if (!trans) 4060 return -ENOENT; 4061 4062 if (val.spt_pathmaxrxt) 4063 trans->pathmaxrxt = val.spt_pathmaxrxt; 4064 trans->pf_retrans = val.spt_pathpfthld; 4065 4066 return 0; 4067 } 4068 4069 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4070 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4071 sctp_style(sk, UDP)) 4072 return -EINVAL; 4073 4074 if (asoc) { 4075 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4076 transports) { 4077 if (val.spt_pathmaxrxt) 4078 trans->pathmaxrxt = val.spt_pathmaxrxt; 4079 trans->pf_retrans = val.spt_pathpfthld; 4080 } 4081 4082 if (val.spt_pathmaxrxt) 4083 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4084 asoc->pf_retrans = val.spt_pathpfthld; 4085 } else { 4086 struct sctp_sock *sp = sctp_sk(sk); 4087 4088 if (val.spt_pathmaxrxt) 4089 sp->pathmaxrxt = val.spt_pathmaxrxt; 4090 sp->pf_retrans = val.spt_pathpfthld; 4091 } 4092 4093 return 0; 4094 } 4095 4096 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4097 char __user *optval, 4098 unsigned int optlen) 4099 { 4100 int val; 4101 4102 if (optlen < sizeof(int)) 4103 return -EINVAL; 4104 if (get_user(val, (int __user *) optval)) 4105 return -EFAULT; 4106 4107 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4108 4109 return 0; 4110 } 4111 4112 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4113 char __user *optval, 4114 unsigned int optlen) 4115 { 4116 int val; 4117 4118 if (optlen < sizeof(int)) 4119 return -EINVAL; 4120 if (get_user(val, (int __user *) optval)) 4121 return -EFAULT; 4122 4123 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4124 4125 return 0; 4126 } 4127 4128 static int sctp_setsockopt_pr_supported(struct sock *sk, 4129 char __user *optval, 4130 unsigned int optlen) 4131 { 4132 struct sctp_assoc_value params; 4133 struct sctp_association *asoc; 4134 4135 if (optlen != sizeof(params)) 4136 return -EINVAL; 4137 4138 if (copy_from_user(¶ms, optval, optlen)) 4139 return -EFAULT; 4140 4141 asoc = sctp_id2assoc(sk, params.assoc_id); 4142 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4143 sctp_style(sk, UDP)) 4144 return -EINVAL; 4145 4146 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4147 4148 return 0; 4149 } 4150 4151 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4152 char __user *optval, 4153 unsigned int optlen) 4154 { 4155 struct sctp_sock *sp = sctp_sk(sk); 4156 struct sctp_default_prinfo info; 4157 struct sctp_association *asoc; 4158 int retval = -EINVAL; 4159 4160 if (optlen != sizeof(info)) 4161 goto out; 4162 4163 if (copy_from_user(&info, optval, sizeof(info))) { 4164 retval = -EFAULT; 4165 goto out; 4166 } 4167 4168 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4169 goto out; 4170 4171 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4172 info.pr_value = 0; 4173 4174 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4175 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4176 sctp_style(sk, UDP)) 4177 goto out; 4178 4179 retval = 0; 4180 4181 if (asoc) { 4182 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4183 asoc->default_timetolive = info.pr_value; 4184 goto out; 4185 } 4186 4187 if (sctp_style(sk, TCP)) 4188 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4189 4190 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4191 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4192 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4193 sp->default_timetolive = info.pr_value; 4194 } 4195 4196 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4197 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4198 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4199 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4200 asoc->default_timetolive = info.pr_value; 4201 } 4202 } 4203 4204 out: 4205 return retval; 4206 } 4207 4208 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4209 char __user *optval, 4210 unsigned int optlen) 4211 { 4212 struct sctp_assoc_value params; 4213 struct sctp_association *asoc; 4214 int retval = -EINVAL; 4215 4216 if (optlen != sizeof(params)) 4217 goto out; 4218 4219 if (copy_from_user(¶ms, optval, optlen)) { 4220 retval = -EFAULT; 4221 goto out; 4222 } 4223 4224 asoc = sctp_id2assoc(sk, params.assoc_id); 4225 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4226 sctp_style(sk, UDP)) 4227 goto out; 4228 4229 if (asoc) 4230 asoc->reconf_enable = !!params.assoc_value; 4231 else 4232 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4233 4234 retval = 0; 4235 4236 out: 4237 return retval; 4238 } 4239 4240 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4241 char __user *optval, 4242 unsigned int optlen) 4243 { 4244 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4245 struct sctp_assoc_value params; 4246 struct sctp_association *asoc; 4247 int retval = -EINVAL; 4248 4249 if (optlen != sizeof(params)) 4250 goto out; 4251 4252 if (copy_from_user(¶ms, optval, optlen)) { 4253 retval = -EFAULT; 4254 goto out; 4255 } 4256 4257 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4258 goto out; 4259 4260 asoc = sctp_id2assoc(sk, params.assoc_id); 4261 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4262 sctp_style(sk, UDP)) 4263 goto out; 4264 4265 retval = 0; 4266 4267 if (asoc) { 4268 asoc->strreset_enable = params.assoc_value; 4269 goto out; 4270 } 4271 4272 if (sctp_style(sk, TCP)) 4273 params.assoc_id = SCTP_FUTURE_ASSOC; 4274 4275 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4276 params.assoc_id == SCTP_ALL_ASSOC) 4277 ep->strreset_enable = params.assoc_value; 4278 4279 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4280 params.assoc_id == SCTP_ALL_ASSOC) 4281 list_for_each_entry(asoc, &ep->asocs, asocs) 4282 asoc->strreset_enable = params.assoc_value; 4283 4284 out: 4285 return retval; 4286 } 4287 4288 static int sctp_setsockopt_reset_streams(struct sock *sk, 4289 char __user *optval, 4290 unsigned int optlen) 4291 { 4292 struct sctp_reset_streams *params; 4293 struct sctp_association *asoc; 4294 int retval = -EINVAL; 4295 4296 if (optlen < sizeof(*params)) 4297 return -EINVAL; 4298 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4299 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4300 sizeof(__u16) * sizeof(*params)); 4301 4302 params = memdup_user(optval, optlen); 4303 if (IS_ERR(params)) 4304 return PTR_ERR(params); 4305 4306 if (params->srs_number_streams * sizeof(__u16) > 4307 optlen - sizeof(*params)) 4308 goto out; 4309 4310 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4311 if (!asoc) 4312 goto out; 4313 4314 retval = sctp_send_reset_streams(asoc, params); 4315 4316 out: 4317 kfree(params); 4318 return retval; 4319 } 4320 4321 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4322 char __user *optval, 4323 unsigned int optlen) 4324 { 4325 struct sctp_association *asoc; 4326 sctp_assoc_t associd; 4327 int retval = -EINVAL; 4328 4329 if (optlen != sizeof(associd)) 4330 goto out; 4331 4332 if (copy_from_user(&associd, optval, optlen)) { 4333 retval = -EFAULT; 4334 goto out; 4335 } 4336 4337 asoc = sctp_id2assoc(sk, associd); 4338 if (!asoc) 4339 goto out; 4340 4341 retval = sctp_send_reset_assoc(asoc); 4342 4343 out: 4344 return retval; 4345 } 4346 4347 static int sctp_setsockopt_add_streams(struct sock *sk, 4348 char __user *optval, 4349 unsigned int optlen) 4350 { 4351 struct sctp_association *asoc; 4352 struct sctp_add_streams params; 4353 int retval = -EINVAL; 4354 4355 if (optlen != sizeof(params)) 4356 goto out; 4357 4358 if (copy_from_user(¶ms, optval, optlen)) { 4359 retval = -EFAULT; 4360 goto out; 4361 } 4362 4363 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4364 if (!asoc) 4365 goto out; 4366 4367 retval = sctp_send_add_streams(asoc, ¶ms); 4368 4369 out: 4370 return retval; 4371 } 4372 4373 static int sctp_setsockopt_scheduler(struct sock *sk, 4374 char __user *optval, 4375 unsigned int optlen) 4376 { 4377 struct sctp_sock *sp = sctp_sk(sk); 4378 struct sctp_association *asoc; 4379 struct sctp_assoc_value params; 4380 int retval = 0; 4381 4382 if (optlen < sizeof(params)) 4383 return -EINVAL; 4384 4385 optlen = sizeof(params); 4386 if (copy_from_user(¶ms, optval, optlen)) 4387 return -EFAULT; 4388 4389 if (params.assoc_value > SCTP_SS_MAX) 4390 return -EINVAL; 4391 4392 asoc = sctp_id2assoc(sk, params.assoc_id); 4393 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4394 sctp_style(sk, UDP)) 4395 return -EINVAL; 4396 4397 if (asoc) 4398 return sctp_sched_set_sched(asoc, params.assoc_value); 4399 4400 if (sctp_style(sk, TCP)) 4401 params.assoc_id = SCTP_FUTURE_ASSOC; 4402 4403 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4404 params.assoc_id == SCTP_ALL_ASSOC) 4405 sp->default_ss = params.assoc_value; 4406 4407 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4408 params.assoc_id == SCTP_ALL_ASSOC) { 4409 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4410 int ret = sctp_sched_set_sched(asoc, 4411 params.assoc_value); 4412 4413 if (ret && !retval) 4414 retval = ret; 4415 } 4416 } 4417 4418 return retval; 4419 } 4420 4421 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4422 char __user *optval, 4423 unsigned int optlen) 4424 { 4425 struct sctp_stream_value params; 4426 struct sctp_association *asoc; 4427 int retval = -EINVAL; 4428 4429 if (optlen < sizeof(params)) 4430 goto out; 4431 4432 optlen = sizeof(params); 4433 if (copy_from_user(¶ms, optval, optlen)) { 4434 retval = -EFAULT; 4435 goto out; 4436 } 4437 4438 asoc = sctp_id2assoc(sk, params.assoc_id); 4439 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4440 sctp_style(sk, UDP)) 4441 goto out; 4442 4443 if (asoc) { 4444 retval = sctp_sched_set_value(asoc, params.stream_id, 4445 params.stream_value, GFP_KERNEL); 4446 goto out; 4447 } 4448 4449 retval = 0; 4450 4451 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4452 int ret = sctp_sched_set_value(asoc, params.stream_id, 4453 params.stream_value, GFP_KERNEL); 4454 if (ret && !retval) /* try to return the 1st error. */ 4455 retval = ret; 4456 } 4457 4458 out: 4459 return retval; 4460 } 4461 4462 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4463 char __user *optval, 4464 unsigned int optlen) 4465 { 4466 struct sctp_sock *sp = sctp_sk(sk); 4467 struct sctp_assoc_value params; 4468 struct sctp_association *asoc; 4469 int retval = -EINVAL; 4470 4471 if (optlen < sizeof(params)) 4472 goto out; 4473 4474 optlen = sizeof(params); 4475 if (copy_from_user(¶ms, optval, optlen)) { 4476 retval = -EFAULT; 4477 goto out; 4478 } 4479 4480 asoc = sctp_id2assoc(sk, params.assoc_id); 4481 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4482 sctp_style(sk, UDP)) 4483 goto out; 4484 4485 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4486 retval = -EPERM; 4487 goto out; 4488 } 4489 4490 sp->strm_interleave = !!params.assoc_value; 4491 4492 retval = 0; 4493 4494 out: 4495 return retval; 4496 } 4497 4498 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4499 unsigned int optlen) 4500 { 4501 int val; 4502 4503 if (!sctp_style(sk, TCP)) 4504 return -EOPNOTSUPP; 4505 4506 if (sctp_sk(sk)->ep->base.bind_addr.port) 4507 return -EFAULT; 4508 4509 if (optlen < sizeof(int)) 4510 return -EINVAL; 4511 4512 if (get_user(val, (int __user *)optval)) 4513 return -EFAULT; 4514 4515 sctp_sk(sk)->reuse = !!val; 4516 4517 return 0; 4518 } 4519 4520 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4521 struct sctp_association *asoc) 4522 { 4523 struct sctp_ulpevent *event; 4524 4525 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4526 4527 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4528 if (sctp_outq_is_empty(&asoc->outqueue)) { 4529 event = sctp_ulpevent_make_sender_dry_event(asoc, 4530 GFP_USER | __GFP_NOWARN); 4531 if (!event) 4532 return -ENOMEM; 4533 4534 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4535 } 4536 } 4537 4538 return 0; 4539 } 4540 4541 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4542 unsigned int optlen) 4543 { 4544 struct sctp_sock *sp = sctp_sk(sk); 4545 struct sctp_association *asoc; 4546 struct sctp_event param; 4547 int retval = 0; 4548 4549 if (optlen < sizeof(param)) 4550 return -EINVAL; 4551 4552 optlen = sizeof(param); 4553 if (copy_from_user(¶m, optval, optlen)) 4554 return -EFAULT; 4555 4556 if (param.se_type < SCTP_SN_TYPE_BASE || 4557 param.se_type > SCTP_SN_TYPE_MAX) 4558 return -EINVAL; 4559 4560 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4561 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4562 sctp_style(sk, UDP)) 4563 return -EINVAL; 4564 4565 if (asoc) 4566 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4567 4568 if (sctp_style(sk, TCP)) 4569 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4570 4571 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4572 param.se_assoc_id == SCTP_ALL_ASSOC) 4573 sctp_ulpevent_type_set(&sp->subscribe, 4574 param.se_type, param.se_on); 4575 4576 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4577 param.se_assoc_id == SCTP_ALL_ASSOC) { 4578 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4579 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4580 4581 if (ret && !retval) 4582 retval = ret; 4583 } 4584 } 4585 4586 return retval; 4587 } 4588 4589 /* API 6.2 setsockopt(), getsockopt() 4590 * 4591 * Applications use setsockopt() and getsockopt() to set or retrieve 4592 * socket options. Socket options are used to change the default 4593 * behavior of sockets calls. They are described in Section 7. 4594 * 4595 * The syntax is: 4596 * 4597 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4598 * int __user *optlen); 4599 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4600 * int optlen); 4601 * 4602 * sd - the socket descript. 4603 * level - set to IPPROTO_SCTP for all SCTP options. 4604 * optname - the option name. 4605 * optval - the buffer to store the value of the option. 4606 * optlen - the size of the buffer. 4607 */ 4608 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4609 char __user *optval, unsigned int optlen) 4610 { 4611 int retval = 0; 4612 4613 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4614 4615 /* I can hardly begin to describe how wrong this is. This is 4616 * so broken as to be worse than useless. The API draft 4617 * REALLY is NOT helpful here... I am not convinced that the 4618 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4619 * are at all well-founded. 4620 */ 4621 if (level != SOL_SCTP) { 4622 struct sctp_af *af = sctp_sk(sk)->pf->af; 4623 retval = af->setsockopt(sk, level, optname, optval, optlen); 4624 goto out_nounlock; 4625 } 4626 4627 lock_sock(sk); 4628 4629 switch (optname) { 4630 case SCTP_SOCKOPT_BINDX_ADD: 4631 /* 'optlen' is the size of the addresses buffer. */ 4632 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4633 optlen, SCTP_BINDX_ADD_ADDR); 4634 break; 4635 4636 case SCTP_SOCKOPT_BINDX_REM: 4637 /* 'optlen' is the size of the addresses buffer. */ 4638 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4639 optlen, SCTP_BINDX_REM_ADDR); 4640 break; 4641 4642 case SCTP_SOCKOPT_CONNECTX_OLD: 4643 /* 'optlen' is the size of the addresses buffer. */ 4644 retval = sctp_setsockopt_connectx_old(sk, 4645 (struct sockaddr __user *)optval, 4646 optlen); 4647 break; 4648 4649 case SCTP_SOCKOPT_CONNECTX: 4650 /* 'optlen' is the size of the addresses buffer. */ 4651 retval = sctp_setsockopt_connectx(sk, 4652 (struct sockaddr __user *)optval, 4653 optlen); 4654 break; 4655 4656 case SCTP_DISABLE_FRAGMENTS: 4657 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4658 break; 4659 4660 case SCTP_EVENTS: 4661 retval = sctp_setsockopt_events(sk, optval, optlen); 4662 break; 4663 4664 case SCTP_AUTOCLOSE: 4665 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4666 break; 4667 4668 case SCTP_PEER_ADDR_PARAMS: 4669 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4670 break; 4671 4672 case SCTP_DELAYED_SACK: 4673 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4674 break; 4675 case SCTP_PARTIAL_DELIVERY_POINT: 4676 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4677 break; 4678 4679 case SCTP_INITMSG: 4680 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4681 break; 4682 case SCTP_DEFAULT_SEND_PARAM: 4683 retval = sctp_setsockopt_default_send_param(sk, optval, 4684 optlen); 4685 break; 4686 case SCTP_DEFAULT_SNDINFO: 4687 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4688 break; 4689 case SCTP_PRIMARY_ADDR: 4690 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4691 break; 4692 case SCTP_SET_PEER_PRIMARY_ADDR: 4693 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4694 break; 4695 case SCTP_NODELAY: 4696 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4697 break; 4698 case SCTP_RTOINFO: 4699 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4700 break; 4701 case SCTP_ASSOCINFO: 4702 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4703 break; 4704 case SCTP_I_WANT_MAPPED_V4_ADDR: 4705 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4706 break; 4707 case SCTP_MAXSEG: 4708 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4709 break; 4710 case SCTP_ADAPTATION_LAYER: 4711 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4712 break; 4713 case SCTP_CONTEXT: 4714 retval = sctp_setsockopt_context(sk, optval, optlen); 4715 break; 4716 case SCTP_FRAGMENT_INTERLEAVE: 4717 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4718 break; 4719 case SCTP_MAX_BURST: 4720 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4721 break; 4722 case SCTP_AUTH_CHUNK: 4723 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4724 break; 4725 case SCTP_HMAC_IDENT: 4726 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4727 break; 4728 case SCTP_AUTH_KEY: 4729 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4730 break; 4731 case SCTP_AUTH_ACTIVE_KEY: 4732 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4733 break; 4734 case SCTP_AUTH_DELETE_KEY: 4735 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4736 break; 4737 case SCTP_AUTH_DEACTIVATE_KEY: 4738 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4739 break; 4740 case SCTP_AUTO_ASCONF: 4741 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4742 break; 4743 case SCTP_PEER_ADDR_THLDS: 4744 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4745 break; 4746 case SCTP_RECVRCVINFO: 4747 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4748 break; 4749 case SCTP_RECVNXTINFO: 4750 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4751 break; 4752 case SCTP_PR_SUPPORTED: 4753 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4754 break; 4755 case SCTP_DEFAULT_PRINFO: 4756 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4757 break; 4758 case SCTP_RECONFIG_SUPPORTED: 4759 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4760 break; 4761 case SCTP_ENABLE_STREAM_RESET: 4762 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4763 break; 4764 case SCTP_RESET_STREAMS: 4765 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4766 break; 4767 case SCTP_RESET_ASSOC: 4768 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4769 break; 4770 case SCTP_ADD_STREAMS: 4771 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4772 break; 4773 case SCTP_STREAM_SCHEDULER: 4774 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4775 break; 4776 case SCTP_STREAM_SCHEDULER_VALUE: 4777 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4778 break; 4779 case SCTP_INTERLEAVING_SUPPORTED: 4780 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4781 optlen); 4782 break; 4783 case SCTP_REUSE_PORT: 4784 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4785 break; 4786 case SCTP_EVENT: 4787 retval = sctp_setsockopt_event(sk, optval, optlen); 4788 break; 4789 default: 4790 retval = -ENOPROTOOPT; 4791 break; 4792 } 4793 4794 release_sock(sk); 4795 4796 out_nounlock: 4797 return retval; 4798 } 4799 4800 /* API 3.1.6 connect() - UDP Style Syntax 4801 * 4802 * An application may use the connect() call in the UDP model to initiate an 4803 * association without sending data. 4804 * 4805 * The syntax is: 4806 * 4807 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4808 * 4809 * sd: the socket descriptor to have a new association added to. 4810 * 4811 * nam: the address structure (either struct sockaddr_in or struct 4812 * sockaddr_in6 defined in RFC2553 [7]). 4813 * 4814 * len: the size of the address. 4815 */ 4816 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4817 int addr_len, int flags) 4818 { 4819 struct inet_sock *inet = inet_sk(sk); 4820 struct sctp_af *af; 4821 int err = 0; 4822 4823 lock_sock(sk); 4824 4825 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4826 addr, addr_len); 4827 4828 /* We may need to bind the socket. */ 4829 if (!inet->inet_num) { 4830 if (sk->sk_prot->get_port(sk, 0)) { 4831 release_sock(sk); 4832 return -EAGAIN; 4833 } 4834 inet->inet_sport = htons(inet->inet_num); 4835 } 4836 4837 /* Validate addr_len before calling common connect/connectx routine. */ 4838 af = addr_len < offsetofend(struct sockaddr, sa_family) ? NULL : 4839 sctp_get_af_specific(addr->sa_family); 4840 if (!af || addr_len < af->sockaddr_len) { 4841 err = -EINVAL; 4842 } else { 4843 /* Pass correct addr len to common routine (so it knows there 4844 * is only one address being passed. 4845 */ 4846 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4847 } 4848 4849 release_sock(sk); 4850 return err; 4851 } 4852 4853 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4854 int addr_len, int flags) 4855 { 4856 if (addr_len < sizeof(uaddr->sa_family)) 4857 return -EINVAL; 4858 4859 if (uaddr->sa_family == AF_UNSPEC) 4860 return -EOPNOTSUPP; 4861 4862 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4863 } 4864 4865 /* FIXME: Write comments. */ 4866 static int sctp_disconnect(struct sock *sk, int flags) 4867 { 4868 return -EOPNOTSUPP; /* STUB */ 4869 } 4870 4871 /* 4.1.4 accept() - TCP Style Syntax 4872 * 4873 * Applications use accept() call to remove an established SCTP 4874 * association from the accept queue of the endpoint. A new socket 4875 * descriptor will be returned from accept() to represent the newly 4876 * formed association. 4877 */ 4878 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4879 { 4880 struct sctp_sock *sp; 4881 struct sctp_endpoint *ep; 4882 struct sock *newsk = NULL; 4883 struct sctp_association *asoc; 4884 long timeo; 4885 int error = 0; 4886 4887 lock_sock(sk); 4888 4889 sp = sctp_sk(sk); 4890 ep = sp->ep; 4891 4892 if (!sctp_style(sk, TCP)) { 4893 error = -EOPNOTSUPP; 4894 goto out; 4895 } 4896 4897 if (!sctp_sstate(sk, LISTENING)) { 4898 error = -EINVAL; 4899 goto out; 4900 } 4901 4902 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4903 4904 error = sctp_wait_for_accept(sk, timeo); 4905 if (error) 4906 goto out; 4907 4908 /* We treat the list of associations on the endpoint as the accept 4909 * queue and pick the first association on the list. 4910 */ 4911 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4912 4913 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4914 if (!newsk) { 4915 error = -ENOMEM; 4916 goto out; 4917 } 4918 4919 /* Populate the fields of the newsk from the oldsk and migrate the 4920 * asoc to the newsk. 4921 */ 4922 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4923 if (error) { 4924 sk_common_release(newsk); 4925 newsk = NULL; 4926 } 4927 4928 out: 4929 release_sock(sk); 4930 *err = error; 4931 return newsk; 4932 } 4933 4934 /* The SCTP ioctl handler. */ 4935 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4936 { 4937 int rc = -ENOTCONN; 4938 4939 lock_sock(sk); 4940 4941 /* 4942 * SEQPACKET-style sockets in LISTENING state are valid, for 4943 * SCTP, so only discard TCP-style sockets in LISTENING state. 4944 */ 4945 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4946 goto out; 4947 4948 switch (cmd) { 4949 case SIOCINQ: { 4950 struct sk_buff *skb; 4951 unsigned int amount = 0; 4952 4953 skb = skb_peek(&sk->sk_receive_queue); 4954 if (skb != NULL) { 4955 /* 4956 * We will only return the amount of this packet since 4957 * that is all that will be read. 4958 */ 4959 amount = skb->len; 4960 } 4961 rc = put_user(amount, (int __user *)arg); 4962 break; 4963 } 4964 default: 4965 rc = -ENOIOCTLCMD; 4966 break; 4967 } 4968 out: 4969 release_sock(sk); 4970 return rc; 4971 } 4972 4973 /* This is the function which gets called during socket creation to 4974 * initialized the SCTP-specific portion of the sock. 4975 * The sock structure should already be zero-filled memory. 4976 */ 4977 static int sctp_init_sock(struct sock *sk) 4978 { 4979 struct net *net = sock_net(sk); 4980 struct sctp_sock *sp; 4981 4982 pr_debug("%s: sk:%p\n", __func__, sk); 4983 4984 sp = sctp_sk(sk); 4985 4986 /* Initialize the SCTP per socket area. */ 4987 switch (sk->sk_type) { 4988 case SOCK_SEQPACKET: 4989 sp->type = SCTP_SOCKET_UDP; 4990 break; 4991 case SOCK_STREAM: 4992 sp->type = SCTP_SOCKET_TCP; 4993 break; 4994 default: 4995 return -ESOCKTNOSUPPORT; 4996 } 4997 4998 sk->sk_gso_type = SKB_GSO_SCTP; 4999 5000 /* Initialize default send parameters. These parameters can be 5001 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5002 */ 5003 sp->default_stream = 0; 5004 sp->default_ppid = 0; 5005 sp->default_flags = 0; 5006 sp->default_context = 0; 5007 sp->default_timetolive = 0; 5008 5009 sp->default_rcv_context = 0; 5010 sp->max_burst = net->sctp.max_burst; 5011 5012 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5013 5014 /* Initialize default setup parameters. These parameters 5015 * can be modified with the SCTP_INITMSG socket option or 5016 * overridden by the SCTP_INIT CMSG. 5017 */ 5018 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5019 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5020 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5021 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5022 5023 /* Initialize default RTO related parameters. These parameters can 5024 * be modified for with the SCTP_RTOINFO socket option. 5025 */ 5026 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5027 sp->rtoinfo.srto_max = net->sctp.rto_max; 5028 sp->rtoinfo.srto_min = net->sctp.rto_min; 5029 5030 /* Initialize default association related parameters. These parameters 5031 * can be modified with the SCTP_ASSOCINFO socket option. 5032 */ 5033 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5034 sp->assocparams.sasoc_number_peer_destinations = 0; 5035 sp->assocparams.sasoc_peer_rwnd = 0; 5036 sp->assocparams.sasoc_local_rwnd = 0; 5037 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5038 5039 /* Initialize default event subscriptions. By default, all the 5040 * options are off. 5041 */ 5042 sp->subscribe = 0; 5043 5044 /* Default Peer Address Parameters. These defaults can 5045 * be modified via SCTP_PEER_ADDR_PARAMS 5046 */ 5047 sp->hbinterval = net->sctp.hb_interval; 5048 sp->pathmaxrxt = net->sctp.max_retrans_path; 5049 sp->pf_retrans = net->sctp.pf_retrans; 5050 sp->pathmtu = 0; /* allow default discovery */ 5051 sp->sackdelay = net->sctp.sack_timeout; 5052 sp->sackfreq = 2; 5053 sp->param_flags = SPP_HB_ENABLE | 5054 SPP_PMTUD_ENABLE | 5055 SPP_SACKDELAY_ENABLE; 5056 sp->default_ss = SCTP_SS_DEFAULT; 5057 5058 /* If enabled no SCTP message fragmentation will be performed. 5059 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5060 */ 5061 sp->disable_fragments = 0; 5062 5063 /* Enable Nagle algorithm by default. */ 5064 sp->nodelay = 0; 5065 5066 sp->recvrcvinfo = 0; 5067 sp->recvnxtinfo = 0; 5068 5069 /* Enable by default. */ 5070 sp->v4mapped = 1; 5071 5072 /* Auto-close idle associations after the configured 5073 * number of seconds. A value of 0 disables this 5074 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5075 * for UDP-style sockets only. 5076 */ 5077 sp->autoclose = 0; 5078 5079 /* User specified fragmentation limit. */ 5080 sp->user_frag = 0; 5081 5082 sp->adaptation_ind = 0; 5083 5084 sp->pf = sctp_get_pf_specific(sk->sk_family); 5085 5086 /* Control variables for partial data delivery. */ 5087 atomic_set(&sp->pd_mode, 0); 5088 skb_queue_head_init(&sp->pd_lobby); 5089 sp->frag_interleave = 0; 5090 5091 /* Create a per socket endpoint structure. Even if we 5092 * change the data structure relationships, this may still 5093 * be useful for storing pre-connect address information. 5094 */ 5095 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5096 if (!sp->ep) 5097 return -ENOMEM; 5098 5099 sp->hmac = NULL; 5100 5101 sk->sk_destruct = sctp_destruct_sock; 5102 5103 SCTP_DBG_OBJCNT_INC(sock); 5104 5105 local_bh_disable(); 5106 sk_sockets_allocated_inc(sk); 5107 sock_prot_inuse_add(net, sk->sk_prot, 1); 5108 5109 /* Nothing can fail after this block, otherwise 5110 * sctp_destroy_sock() will be called without addr_wq_lock held 5111 */ 5112 if (net->sctp.default_auto_asconf) { 5113 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5114 list_add_tail(&sp->auto_asconf_list, 5115 &net->sctp.auto_asconf_splist); 5116 sp->do_auto_asconf = 1; 5117 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5118 } else { 5119 sp->do_auto_asconf = 0; 5120 } 5121 5122 local_bh_enable(); 5123 5124 return 0; 5125 } 5126 5127 /* Cleanup any SCTP per socket resources. Must be called with 5128 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5129 */ 5130 static void sctp_destroy_sock(struct sock *sk) 5131 { 5132 struct sctp_sock *sp; 5133 5134 pr_debug("%s: sk:%p\n", __func__, sk); 5135 5136 /* Release our hold on the endpoint. */ 5137 sp = sctp_sk(sk); 5138 /* This could happen during socket init, thus we bail out 5139 * early, since the rest of the below is not setup either. 5140 */ 5141 if (sp->ep == NULL) 5142 return; 5143 5144 if (sp->do_auto_asconf) { 5145 sp->do_auto_asconf = 0; 5146 list_del(&sp->auto_asconf_list); 5147 } 5148 sctp_endpoint_free(sp->ep); 5149 local_bh_disable(); 5150 sk_sockets_allocated_dec(sk); 5151 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5152 local_bh_enable(); 5153 } 5154 5155 /* Triggered when there are no references on the socket anymore */ 5156 static void sctp_destruct_sock(struct sock *sk) 5157 { 5158 struct sctp_sock *sp = sctp_sk(sk); 5159 5160 /* Free up the HMAC transform. */ 5161 crypto_free_shash(sp->hmac); 5162 5163 inet_sock_destruct(sk); 5164 } 5165 5166 /* API 4.1.7 shutdown() - TCP Style Syntax 5167 * int shutdown(int socket, int how); 5168 * 5169 * sd - the socket descriptor of the association to be closed. 5170 * how - Specifies the type of shutdown. The values are 5171 * as follows: 5172 * SHUT_RD 5173 * Disables further receive operations. No SCTP 5174 * protocol action is taken. 5175 * SHUT_WR 5176 * Disables further send operations, and initiates 5177 * the SCTP shutdown sequence. 5178 * SHUT_RDWR 5179 * Disables further send and receive operations 5180 * and initiates the SCTP shutdown sequence. 5181 */ 5182 static void sctp_shutdown(struct sock *sk, int how) 5183 { 5184 struct net *net = sock_net(sk); 5185 struct sctp_endpoint *ep; 5186 5187 if (!sctp_style(sk, TCP)) 5188 return; 5189 5190 ep = sctp_sk(sk)->ep; 5191 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5192 struct sctp_association *asoc; 5193 5194 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5195 asoc = list_entry(ep->asocs.next, 5196 struct sctp_association, asocs); 5197 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5198 } 5199 } 5200 5201 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5202 struct sctp_info *info) 5203 { 5204 struct sctp_transport *prim; 5205 struct list_head *pos; 5206 int mask; 5207 5208 memset(info, 0, sizeof(*info)); 5209 if (!asoc) { 5210 struct sctp_sock *sp = sctp_sk(sk); 5211 5212 info->sctpi_s_autoclose = sp->autoclose; 5213 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5214 info->sctpi_s_pd_point = sp->pd_point; 5215 info->sctpi_s_nodelay = sp->nodelay; 5216 info->sctpi_s_disable_fragments = sp->disable_fragments; 5217 info->sctpi_s_v4mapped = sp->v4mapped; 5218 info->sctpi_s_frag_interleave = sp->frag_interleave; 5219 info->sctpi_s_type = sp->type; 5220 5221 return 0; 5222 } 5223 5224 info->sctpi_tag = asoc->c.my_vtag; 5225 info->sctpi_state = asoc->state; 5226 info->sctpi_rwnd = asoc->a_rwnd; 5227 info->sctpi_unackdata = asoc->unack_data; 5228 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5229 info->sctpi_instrms = asoc->stream.incnt; 5230 info->sctpi_outstrms = asoc->stream.outcnt; 5231 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5232 info->sctpi_inqueue++; 5233 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5234 info->sctpi_outqueue++; 5235 info->sctpi_overall_error = asoc->overall_error_count; 5236 info->sctpi_max_burst = asoc->max_burst; 5237 info->sctpi_maxseg = asoc->frag_point; 5238 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5239 info->sctpi_peer_tag = asoc->c.peer_vtag; 5240 5241 mask = asoc->peer.ecn_capable << 1; 5242 mask = (mask | asoc->peer.ipv4_address) << 1; 5243 mask = (mask | asoc->peer.ipv6_address) << 1; 5244 mask = (mask | asoc->peer.hostname_address) << 1; 5245 mask = (mask | asoc->peer.asconf_capable) << 1; 5246 mask = (mask | asoc->peer.prsctp_capable) << 1; 5247 mask = (mask | asoc->peer.auth_capable); 5248 info->sctpi_peer_capable = mask; 5249 mask = asoc->peer.sack_needed << 1; 5250 mask = (mask | asoc->peer.sack_generation) << 1; 5251 mask = (mask | asoc->peer.zero_window_announced); 5252 info->sctpi_peer_sack = mask; 5253 5254 info->sctpi_isacks = asoc->stats.isacks; 5255 info->sctpi_osacks = asoc->stats.osacks; 5256 info->sctpi_opackets = asoc->stats.opackets; 5257 info->sctpi_ipackets = asoc->stats.ipackets; 5258 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5259 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5260 info->sctpi_idupchunks = asoc->stats.idupchunks; 5261 info->sctpi_gapcnt = asoc->stats.gapcnt; 5262 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5263 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5264 info->sctpi_oodchunks = asoc->stats.oodchunks; 5265 info->sctpi_iodchunks = asoc->stats.iodchunks; 5266 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5267 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5268 5269 prim = asoc->peer.primary_path; 5270 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5271 info->sctpi_p_state = prim->state; 5272 info->sctpi_p_cwnd = prim->cwnd; 5273 info->sctpi_p_srtt = prim->srtt; 5274 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5275 info->sctpi_p_hbinterval = prim->hbinterval; 5276 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5277 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5278 info->sctpi_p_ssthresh = prim->ssthresh; 5279 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5280 info->sctpi_p_flight_size = prim->flight_size; 5281 info->sctpi_p_error = prim->error_count; 5282 5283 return 0; 5284 } 5285 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5286 5287 /* use callback to avoid exporting the core structure */ 5288 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5289 { 5290 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5291 5292 rhashtable_walk_start(iter); 5293 } 5294 5295 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5296 { 5297 rhashtable_walk_stop(iter); 5298 rhashtable_walk_exit(iter); 5299 } 5300 5301 struct sctp_transport *sctp_transport_get_next(struct net *net, 5302 struct rhashtable_iter *iter) 5303 { 5304 struct sctp_transport *t; 5305 5306 t = rhashtable_walk_next(iter); 5307 for (; t; t = rhashtable_walk_next(iter)) { 5308 if (IS_ERR(t)) { 5309 if (PTR_ERR(t) == -EAGAIN) 5310 continue; 5311 break; 5312 } 5313 5314 if (!sctp_transport_hold(t)) 5315 continue; 5316 5317 if (net_eq(sock_net(t->asoc->base.sk), net) && 5318 t->asoc->peer.primary_path == t) 5319 break; 5320 5321 sctp_transport_put(t); 5322 } 5323 5324 return t; 5325 } 5326 5327 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5328 struct rhashtable_iter *iter, 5329 int pos) 5330 { 5331 struct sctp_transport *t; 5332 5333 if (!pos) 5334 return SEQ_START_TOKEN; 5335 5336 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5337 if (!--pos) 5338 break; 5339 sctp_transport_put(t); 5340 } 5341 5342 return t; 5343 } 5344 5345 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5346 void *p) { 5347 int err = 0; 5348 int hash = 0; 5349 struct sctp_ep_common *epb; 5350 struct sctp_hashbucket *head; 5351 5352 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5353 hash++, head++) { 5354 read_lock_bh(&head->lock); 5355 sctp_for_each_hentry(epb, &head->chain) { 5356 err = cb(sctp_ep(epb), p); 5357 if (err) 5358 break; 5359 } 5360 read_unlock_bh(&head->lock); 5361 } 5362 5363 return err; 5364 } 5365 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5366 5367 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5368 struct net *net, 5369 const union sctp_addr *laddr, 5370 const union sctp_addr *paddr, void *p) 5371 { 5372 struct sctp_transport *transport; 5373 int err; 5374 5375 rcu_read_lock(); 5376 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5377 rcu_read_unlock(); 5378 if (!transport) 5379 return -ENOENT; 5380 5381 err = cb(transport, p); 5382 sctp_transport_put(transport); 5383 5384 return err; 5385 } 5386 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5387 5388 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5389 int (*cb_done)(struct sctp_transport *, void *), 5390 struct net *net, int *pos, void *p) { 5391 struct rhashtable_iter hti; 5392 struct sctp_transport *tsp; 5393 int ret; 5394 5395 again: 5396 ret = 0; 5397 sctp_transport_walk_start(&hti); 5398 5399 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5400 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5401 ret = cb(tsp, p); 5402 if (ret) 5403 break; 5404 (*pos)++; 5405 sctp_transport_put(tsp); 5406 } 5407 sctp_transport_walk_stop(&hti); 5408 5409 if (ret) { 5410 if (cb_done && !cb_done(tsp, p)) { 5411 (*pos)++; 5412 sctp_transport_put(tsp); 5413 goto again; 5414 } 5415 sctp_transport_put(tsp); 5416 } 5417 5418 return ret; 5419 } 5420 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5421 5422 /* 7.2.1 Association Status (SCTP_STATUS) 5423 5424 * Applications can retrieve current status information about an 5425 * association, including association state, peer receiver window size, 5426 * number of unacked data chunks, and number of data chunks pending 5427 * receipt. This information is read-only. 5428 */ 5429 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5430 char __user *optval, 5431 int __user *optlen) 5432 { 5433 struct sctp_status status; 5434 struct sctp_association *asoc = NULL; 5435 struct sctp_transport *transport; 5436 sctp_assoc_t associd; 5437 int retval = 0; 5438 5439 if (len < sizeof(status)) { 5440 retval = -EINVAL; 5441 goto out; 5442 } 5443 5444 len = sizeof(status); 5445 if (copy_from_user(&status, optval, len)) { 5446 retval = -EFAULT; 5447 goto out; 5448 } 5449 5450 associd = status.sstat_assoc_id; 5451 asoc = sctp_id2assoc(sk, associd); 5452 if (!asoc) { 5453 retval = -EINVAL; 5454 goto out; 5455 } 5456 5457 transport = asoc->peer.primary_path; 5458 5459 status.sstat_assoc_id = sctp_assoc2id(asoc); 5460 status.sstat_state = sctp_assoc_to_state(asoc); 5461 status.sstat_rwnd = asoc->peer.rwnd; 5462 status.sstat_unackdata = asoc->unack_data; 5463 5464 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5465 status.sstat_instrms = asoc->stream.incnt; 5466 status.sstat_outstrms = asoc->stream.outcnt; 5467 status.sstat_fragmentation_point = asoc->frag_point; 5468 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5469 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5470 transport->af_specific->sockaddr_len); 5471 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5472 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5473 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5474 status.sstat_primary.spinfo_state = transport->state; 5475 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5476 status.sstat_primary.spinfo_srtt = transport->srtt; 5477 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5478 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5479 5480 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5481 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5482 5483 if (put_user(len, optlen)) { 5484 retval = -EFAULT; 5485 goto out; 5486 } 5487 5488 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5489 __func__, len, status.sstat_state, status.sstat_rwnd, 5490 status.sstat_assoc_id); 5491 5492 if (copy_to_user(optval, &status, len)) { 5493 retval = -EFAULT; 5494 goto out; 5495 } 5496 5497 out: 5498 return retval; 5499 } 5500 5501 5502 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5503 * 5504 * Applications can retrieve information about a specific peer address 5505 * of an association, including its reachability state, congestion 5506 * window, and retransmission timer values. This information is 5507 * read-only. 5508 */ 5509 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5510 char __user *optval, 5511 int __user *optlen) 5512 { 5513 struct sctp_paddrinfo pinfo; 5514 struct sctp_transport *transport; 5515 int retval = 0; 5516 5517 if (len < sizeof(pinfo)) { 5518 retval = -EINVAL; 5519 goto out; 5520 } 5521 5522 len = sizeof(pinfo); 5523 if (copy_from_user(&pinfo, optval, len)) { 5524 retval = -EFAULT; 5525 goto out; 5526 } 5527 5528 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5529 pinfo.spinfo_assoc_id); 5530 if (!transport) 5531 return -EINVAL; 5532 5533 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5534 pinfo.spinfo_state = transport->state; 5535 pinfo.spinfo_cwnd = transport->cwnd; 5536 pinfo.spinfo_srtt = transport->srtt; 5537 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5538 pinfo.spinfo_mtu = transport->pathmtu; 5539 5540 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5541 pinfo.spinfo_state = SCTP_ACTIVE; 5542 5543 if (put_user(len, optlen)) { 5544 retval = -EFAULT; 5545 goto out; 5546 } 5547 5548 if (copy_to_user(optval, &pinfo, len)) { 5549 retval = -EFAULT; 5550 goto out; 5551 } 5552 5553 out: 5554 return retval; 5555 } 5556 5557 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5558 * 5559 * This option is a on/off flag. If enabled no SCTP message 5560 * fragmentation will be performed. Instead if a message being sent 5561 * exceeds the current PMTU size, the message will NOT be sent and 5562 * instead a error will be indicated to the user. 5563 */ 5564 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5565 char __user *optval, int __user *optlen) 5566 { 5567 int val; 5568 5569 if (len < sizeof(int)) 5570 return -EINVAL; 5571 5572 len = sizeof(int); 5573 val = (sctp_sk(sk)->disable_fragments == 1); 5574 if (put_user(len, optlen)) 5575 return -EFAULT; 5576 if (copy_to_user(optval, &val, len)) 5577 return -EFAULT; 5578 return 0; 5579 } 5580 5581 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5582 * 5583 * This socket option is used to specify various notifications and 5584 * ancillary data the user wishes to receive. 5585 */ 5586 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5587 int __user *optlen) 5588 { 5589 struct sctp_event_subscribe subscribe; 5590 __u8 *sn_type = (__u8 *)&subscribe; 5591 int i; 5592 5593 if (len == 0) 5594 return -EINVAL; 5595 if (len > sizeof(struct sctp_event_subscribe)) 5596 len = sizeof(struct sctp_event_subscribe); 5597 if (put_user(len, optlen)) 5598 return -EFAULT; 5599 5600 for (i = 0; i < len; i++) 5601 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5602 SCTP_SN_TYPE_BASE + i); 5603 5604 if (copy_to_user(optval, &subscribe, len)) 5605 return -EFAULT; 5606 5607 return 0; 5608 } 5609 5610 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5611 * 5612 * This socket option is applicable to the UDP-style socket only. When 5613 * set it will cause associations that are idle for more than the 5614 * specified number of seconds to automatically close. An association 5615 * being idle is defined an association that has NOT sent or received 5616 * user data. The special value of '0' indicates that no automatic 5617 * close of any associations should be performed. The option expects an 5618 * integer defining the number of seconds of idle time before an 5619 * association is closed. 5620 */ 5621 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5622 { 5623 /* Applicable to UDP-style socket only */ 5624 if (sctp_style(sk, TCP)) 5625 return -EOPNOTSUPP; 5626 if (len < sizeof(int)) 5627 return -EINVAL; 5628 len = sizeof(int); 5629 if (put_user(len, optlen)) 5630 return -EFAULT; 5631 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5632 return -EFAULT; 5633 return 0; 5634 } 5635 5636 /* Helper routine to branch off an association to a new socket. */ 5637 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5638 { 5639 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5640 struct sctp_sock *sp = sctp_sk(sk); 5641 struct socket *sock; 5642 int err = 0; 5643 5644 /* Do not peel off from one netns to another one. */ 5645 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5646 return -EINVAL; 5647 5648 if (!asoc) 5649 return -EINVAL; 5650 5651 /* An association cannot be branched off from an already peeled-off 5652 * socket, nor is this supported for tcp style sockets. 5653 */ 5654 if (!sctp_style(sk, UDP)) 5655 return -EINVAL; 5656 5657 /* Create a new socket. */ 5658 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5659 if (err < 0) 5660 return err; 5661 5662 sctp_copy_sock(sock->sk, sk, asoc); 5663 5664 /* Make peeled-off sockets more like 1-1 accepted sockets. 5665 * Set the daddr and initialize id to something more random and also 5666 * copy over any ip options. 5667 */ 5668 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5669 sp->pf->copy_ip_options(sk, sock->sk); 5670 5671 /* Populate the fields of the newsk from the oldsk and migrate the 5672 * asoc to the newsk. 5673 */ 5674 err = sctp_sock_migrate(sk, sock->sk, asoc, 5675 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5676 if (err) { 5677 sock_release(sock); 5678 sock = NULL; 5679 } 5680 5681 *sockp = sock; 5682 5683 return err; 5684 } 5685 EXPORT_SYMBOL(sctp_do_peeloff); 5686 5687 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5688 struct file **newfile, unsigned flags) 5689 { 5690 struct socket *newsock; 5691 int retval; 5692 5693 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5694 if (retval < 0) 5695 goto out; 5696 5697 /* Map the socket to an unused fd that can be returned to the user. */ 5698 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5699 if (retval < 0) { 5700 sock_release(newsock); 5701 goto out; 5702 } 5703 5704 *newfile = sock_alloc_file(newsock, 0, NULL); 5705 if (IS_ERR(*newfile)) { 5706 put_unused_fd(retval); 5707 retval = PTR_ERR(*newfile); 5708 *newfile = NULL; 5709 return retval; 5710 } 5711 5712 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5713 retval); 5714 5715 peeloff->sd = retval; 5716 5717 if (flags & SOCK_NONBLOCK) 5718 (*newfile)->f_flags |= O_NONBLOCK; 5719 out: 5720 return retval; 5721 } 5722 5723 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5724 { 5725 sctp_peeloff_arg_t peeloff; 5726 struct file *newfile = NULL; 5727 int retval = 0; 5728 5729 if (len < sizeof(sctp_peeloff_arg_t)) 5730 return -EINVAL; 5731 len = sizeof(sctp_peeloff_arg_t); 5732 if (copy_from_user(&peeloff, optval, len)) 5733 return -EFAULT; 5734 5735 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5736 if (retval < 0) 5737 goto out; 5738 5739 /* Return the fd mapped to the new socket. */ 5740 if (put_user(len, optlen)) { 5741 fput(newfile); 5742 put_unused_fd(retval); 5743 return -EFAULT; 5744 } 5745 5746 if (copy_to_user(optval, &peeloff, len)) { 5747 fput(newfile); 5748 put_unused_fd(retval); 5749 return -EFAULT; 5750 } 5751 fd_install(retval, newfile); 5752 out: 5753 return retval; 5754 } 5755 5756 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5757 char __user *optval, int __user *optlen) 5758 { 5759 sctp_peeloff_flags_arg_t peeloff; 5760 struct file *newfile = NULL; 5761 int retval = 0; 5762 5763 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5764 return -EINVAL; 5765 len = sizeof(sctp_peeloff_flags_arg_t); 5766 if (copy_from_user(&peeloff, optval, len)) 5767 return -EFAULT; 5768 5769 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5770 &newfile, peeloff.flags); 5771 if (retval < 0) 5772 goto out; 5773 5774 /* Return the fd mapped to the new socket. */ 5775 if (put_user(len, optlen)) { 5776 fput(newfile); 5777 put_unused_fd(retval); 5778 return -EFAULT; 5779 } 5780 5781 if (copy_to_user(optval, &peeloff, len)) { 5782 fput(newfile); 5783 put_unused_fd(retval); 5784 return -EFAULT; 5785 } 5786 fd_install(retval, newfile); 5787 out: 5788 return retval; 5789 } 5790 5791 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5792 * 5793 * Applications can enable or disable heartbeats for any peer address of 5794 * an association, modify an address's heartbeat interval, force a 5795 * heartbeat to be sent immediately, and adjust the address's maximum 5796 * number of retransmissions sent before an address is considered 5797 * unreachable. The following structure is used to access and modify an 5798 * address's parameters: 5799 * 5800 * struct sctp_paddrparams { 5801 * sctp_assoc_t spp_assoc_id; 5802 * struct sockaddr_storage spp_address; 5803 * uint32_t spp_hbinterval; 5804 * uint16_t spp_pathmaxrxt; 5805 * uint32_t spp_pathmtu; 5806 * uint32_t spp_sackdelay; 5807 * uint32_t spp_flags; 5808 * }; 5809 * 5810 * spp_assoc_id - (one-to-many style socket) This is filled in the 5811 * application, and identifies the association for 5812 * this query. 5813 * spp_address - This specifies which address is of interest. 5814 * spp_hbinterval - This contains the value of the heartbeat interval, 5815 * in milliseconds. If a value of zero 5816 * is present in this field then no changes are to 5817 * be made to this parameter. 5818 * spp_pathmaxrxt - This contains the maximum number of 5819 * retransmissions before this address shall be 5820 * considered unreachable. If a value of zero 5821 * is present in this field then no changes are to 5822 * be made to this parameter. 5823 * spp_pathmtu - When Path MTU discovery is disabled the value 5824 * specified here will be the "fixed" path mtu. 5825 * Note that if the spp_address field is empty 5826 * then all associations on this address will 5827 * have this fixed path mtu set upon them. 5828 * 5829 * spp_sackdelay - When delayed sack is enabled, this value specifies 5830 * the number of milliseconds that sacks will be delayed 5831 * for. This value will apply to all addresses of an 5832 * association if the spp_address field is empty. Note 5833 * also, that if delayed sack is enabled and this 5834 * value is set to 0, no change is made to the last 5835 * recorded delayed sack timer value. 5836 * 5837 * spp_flags - These flags are used to control various features 5838 * on an association. The flag field may contain 5839 * zero or more of the following options. 5840 * 5841 * SPP_HB_ENABLE - Enable heartbeats on the 5842 * specified address. Note that if the address 5843 * field is empty all addresses for the association 5844 * have heartbeats enabled upon them. 5845 * 5846 * SPP_HB_DISABLE - Disable heartbeats on the 5847 * speicifed address. Note that if the address 5848 * field is empty all addresses for the association 5849 * will have their heartbeats disabled. Note also 5850 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5851 * mutually exclusive, only one of these two should 5852 * be specified. Enabling both fields will have 5853 * undetermined results. 5854 * 5855 * SPP_HB_DEMAND - Request a user initiated heartbeat 5856 * to be made immediately. 5857 * 5858 * SPP_PMTUD_ENABLE - This field will enable PMTU 5859 * discovery upon the specified address. Note that 5860 * if the address feild is empty then all addresses 5861 * on the association are effected. 5862 * 5863 * SPP_PMTUD_DISABLE - This field will disable PMTU 5864 * discovery upon the specified address. Note that 5865 * if the address feild is empty then all addresses 5866 * on the association are effected. Not also that 5867 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5868 * exclusive. Enabling both will have undetermined 5869 * results. 5870 * 5871 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5872 * on delayed sack. The time specified in spp_sackdelay 5873 * is used to specify the sack delay for this address. Note 5874 * that if spp_address is empty then all addresses will 5875 * enable delayed sack and take on the sack delay 5876 * value specified in spp_sackdelay. 5877 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5878 * off delayed sack. If the spp_address field is blank then 5879 * delayed sack is disabled for the entire association. Note 5880 * also that this field is mutually exclusive to 5881 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5882 * results. 5883 * 5884 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5885 * setting of the IPV6 flow label value. The value is 5886 * contained in the spp_ipv6_flowlabel field. 5887 * Upon retrieval, this flag will be set to indicate that 5888 * the spp_ipv6_flowlabel field has a valid value returned. 5889 * If a specific destination address is set (in the 5890 * spp_address field), then the value returned is that of 5891 * the address. If just an association is specified (and 5892 * no address), then the association's default flow label 5893 * is returned. If neither an association nor a destination 5894 * is specified, then the socket's default flow label is 5895 * returned. For non-IPv6 sockets, this flag will be left 5896 * cleared. 5897 * 5898 * SPP_DSCP: Setting this flag enables the setting of the 5899 * Differentiated Services Code Point (DSCP) value 5900 * associated with either the association or a specific 5901 * address. The value is obtained in the spp_dscp field. 5902 * Upon retrieval, this flag will be set to indicate that 5903 * the spp_dscp field has a valid value returned. If a 5904 * specific destination address is set when called (in the 5905 * spp_address field), then that specific destination 5906 * address's DSCP value is returned. If just an association 5907 * is specified, then the association's default DSCP is 5908 * returned. If neither an association nor a destination is 5909 * specified, then the socket's default DSCP is returned. 5910 * 5911 * spp_ipv6_flowlabel 5912 * - This field is used in conjunction with the 5913 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5914 * The 20 least significant bits are used for the flow 5915 * label. This setting has precedence over any IPv6-layer 5916 * setting. 5917 * 5918 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5919 * and contains the DSCP. The 6 most significant bits are 5920 * used for the DSCP. This setting has precedence over any 5921 * IPv4- or IPv6- layer setting. 5922 */ 5923 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5924 char __user *optval, int __user *optlen) 5925 { 5926 struct sctp_paddrparams params; 5927 struct sctp_transport *trans = NULL; 5928 struct sctp_association *asoc = NULL; 5929 struct sctp_sock *sp = sctp_sk(sk); 5930 5931 if (len >= sizeof(params)) 5932 len = sizeof(params); 5933 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5934 spp_ipv6_flowlabel), 4)) 5935 len = ALIGN(offsetof(struct sctp_paddrparams, 5936 spp_ipv6_flowlabel), 4); 5937 else 5938 return -EINVAL; 5939 5940 if (copy_from_user(¶ms, optval, len)) 5941 return -EFAULT; 5942 5943 /* If an address other than INADDR_ANY is specified, and 5944 * no transport is found, then the request is invalid. 5945 */ 5946 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5947 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5948 params.spp_assoc_id); 5949 if (!trans) { 5950 pr_debug("%s: failed no transport\n", __func__); 5951 return -EINVAL; 5952 } 5953 } 5954 5955 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5956 * socket is a one to many style socket, and an association 5957 * was not found, then the id was invalid. 5958 */ 5959 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5960 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5961 sctp_style(sk, UDP)) { 5962 pr_debug("%s: failed no association\n", __func__); 5963 return -EINVAL; 5964 } 5965 5966 if (trans) { 5967 /* Fetch transport values. */ 5968 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5969 params.spp_pathmtu = trans->pathmtu; 5970 params.spp_pathmaxrxt = trans->pathmaxrxt; 5971 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5972 5973 /*draft-11 doesn't say what to return in spp_flags*/ 5974 params.spp_flags = trans->param_flags; 5975 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5976 params.spp_ipv6_flowlabel = trans->flowlabel & 5977 SCTP_FLOWLABEL_VAL_MASK; 5978 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5979 } 5980 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5981 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5982 params.spp_flags |= SPP_DSCP; 5983 } 5984 } else if (asoc) { 5985 /* Fetch association values. */ 5986 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5987 params.spp_pathmtu = asoc->pathmtu; 5988 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5989 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5990 5991 /*draft-11 doesn't say what to return in spp_flags*/ 5992 params.spp_flags = asoc->param_flags; 5993 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5994 params.spp_ipv6_flowlabel = asoc->flowlabel & 5995 SCTP_FLOWLABEL_VAL_MASK; 5996 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5997 } 5998 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5999 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6000 params.spp_flags |= SPP_DSCP; 6001 } 6002 } else { 6003 /* Fetch socket values. */ 6004 params.spp_hbinterval = sp->hbinterval; 6005 params.spp_pathmtu = sp->pathmtu; 6006 params.spp_sackdelay = sp->sackdelay; 6007 params.spp_pathmaxrxt = sp->pathmaxrxt; 6008 6009 /*draft-11 doesn't say what to return in spp_flags*/ 6010 params.spp_flags = sp->param_flags; 6011 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6012 params.spp_ipv6_flowlabel = sp->flowlabel & 6013 SCTP_FLOWLABEL_VAL_MASK; 6014 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6015 } 6016 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6017 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6018 params.spp_flags |= SPP_DSCP; 6019 } 6020 } 6021 6022 if (copy_to_user(optval, ¶ms, len)) 6023 return -EFAULT; 6024 6025 if (put_user(len, optlen)) 6026 return -EFAULT; 6027 6028 return 0; 6029 } 6030 6031 /* 6032 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6033 * 6034 * This option will effect the way delayed acks are performed. This 6035 * option allows you to get or set the delayed ack time, in 6036 * milliseconds. It also allows changing the delayed ack frequency. 6037 * Changing the frequency to 1 disables the delayed sack algorithm. If 6038 * the assoc_id is 0, then this sets or gets the endpoints default 6039 * values. If the assoc_id field is non-zero, then the set or get 6040 * effects the specified association for the one to many model (the 6041 * assoc_id field is ignored by the one to one model). Note that if 6042 * sack_delay or sack_freq are 0 when setting this option, then the 6043 * current values will remain unchanged. 6044 * 6045 * struct sctp_sack_info { 6046 * sctp_assoc_t sack_assoc_id; 6047 * uint32_t sack_delay; 6048 * uint32_t sack_freq; 6049 * }; 6050 * 6051 * sack_assoc_id - This parameter, indicates which association the user 6052 * is performing an action upon. Note that if this field's value is 6053 * zero then the endpoints default value is changed (effecting future 6054 * associations only). 6055 * 6056 * sack_delay - This parameter contains the number of milliseconds that 6057 * the user is requesting the delayed ACK timer be set to. Note that 6058 * this value is defined in the standard to be between 200 and 500 6059 * milliseconds. 6060 * 6061 * sack_freq - This parameter contains the number of packets that must 6062 * be received before a sack is sent without waiting for the delay 6063 * timer to expire. The default value for this is 2, setting this 6064 * value to 1 will disable the delayed sack algorithm. 6065 */ 6066 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6067 char __user *optval, 6068 int __user *optlen) 6069 { 6070 struct sctp_sack_info params; 6071 struct sctp_association *asoc = NULL; 6072 struct sctp_sock *sp = sctp_sk(sk); 6073 6074 if (len >= sizeof(struct sctp_sack_info)) { 6075 len = sizeof(struct sctp_sack_info); 6076 6077 if (copy_from_user(¶ms, optval, len)) 6078 return -EFAULT; 6079 } else if (len == sizeof(struct sctp_assoc_value)) { 6080 pr_warn_ratelimited(DEPRECATED 6081 "%s (pid %d) " 6082 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6083 "Use struct sctp_sack_info instead\n", 6084 current->comm, task_pid_nr(current)); 6085 if (copy_from_user(¶ms, optval, len)) 6086 return -EFAULT; 6087 } else 6088 return -EINVAL; 6089 6090 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6091 * socket is a one to many style socket, and an association 6092 * was not found, then the id was invalid. 6093 */ 6094 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6095 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6096 sctp_style(sk, UDP)) 6097 return -EINVAL; 6098 6099 if (asoc) { 6100 /* Fetch association values. */ 6101 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6102 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6103 params.sack_freq = asoc->sackfreq; 6104 6105 } else { 6106 params.sack_delay = 0; 6107 params.sack_freq = 1; 6108 } 6109 } else { 6110 /* Fetch socket values. */ 6111 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6112 params.sack_delay = sp->sackdelay; 6113 params.sack_freq = sp->sackfreq; 6114 } else { 6115 params.sack_delay = 0; 6116 params.sack_freq = 1; 6117 } 6118 } 6119 6120 if (copy_to_user(optval, ¶ms, len)) 6121 return -EFAULT; 6122 6123 if (put_user(len, optlen)) 6124 return -EFAULT; 6125 6126 return 0; 6127 } 6128 6129 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6130 * 6131 * Applications can specify protocol parameters for the default association 6132 * initialization. The option name argument to setsockopt() and getsockopt() 6133 * is SCTP_INITMSG. 6134 * 6135 * Setting initialization parameters is effective only on an unconnected 6136 * socket (for UDP-style sockets only future associations are effected 6137 * by the change). With TCP-style sockets, this option is inherited by 6138 * sockets derived from a listener socket. 6139 */ 6140 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6141 { 6142 if (len < sizeof(struct sctp_initmsg)) 6143 return -EINVAL; 6144 len = sizeof(struct sctp_initmsg); 6145 if (put_user(len, optlen)) 6146 return -EFAULT; 6147 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6148 return -EFAULT; 6149 return 0; 6150 } 6151 6152 6153 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6154 char __user *optval, int __user *optlen) 6155 { 6156 struct sctp_association *asoc; 6157 int cnt = 0; 6158 struct sctp_getaddrs getaddrs; 6159 struct sctp_transport *from; 6160 void __user *to; 6161 union sctp_addr temp; 6162 struct sctp_sock *sp = sctp_sk(sk); 6163 int addrlen; 6164 size_t space_left; 6165 int bytes_copied; 6166 6167 if (len < sizeof(struct sctp_getaddrs)) 6168 return -EINVAL; 6169 6170 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6171 return -EFAULT; 6172 6173 /* For UDP-style sockets, id specifies the association to query. */ 6174 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6175 if (!asoc) 6176 return -EINVAL; 6177 6178 to = optval + offsetof(struct sctp_getaddrs, addrs); 6179 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6180 6181 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6182 transports) { 6183 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6184 addrlen = sctp_get_pf_specific(sk->sk_family) 6185 ->addr_to_user(sp, &temp); 6186 if (space_left < addrlen) 6187 return -ENOMEM; 6188 if (copy_to_user(to, &temp, addrlen)) 6189 return -EFAULT; 6190 to += addrlen; 6191 cnt++; 6192 space_left -= addrlen; 6193 } 6194 6195 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6196 return -EFAULT; 6197 bytes_copied = ((char __user *)to) - optval; 6198 if (put_user(bytes_copied, optlen)) 6199 return -EFAULT; 6200 6201 return 0; 6202 } 6203 6204 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6205 size_t space_left, int *bytes_copied) 6206 { 6207 struct sctp_sockaddr_entry *addr; 6208 union sctp_addr temp; 6209 int cnt = 0; 6210 int addrlen; 6211 struct net *net = sock_net(sk); 6212 6213 rcu_read_lock(); 6214 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6215 if (!addr->valid) 6216 continue; 6217 6218 if ((PF_INET == sk->sk_family) && 6219 (AF_INET6 == addr->a.sa.sa_family)) 6220 continue; 6221 if ((PF_INET6 == sk->sk_family) && 6222 inet_v6_ipv6only(sk) && 6223 (AF_INET == addr->a.sa.sa_family)) 6224 continue; 6225 memcpy(&temp, &addr->a, sizeof(temp)); 6226 if (!temp.v4.sin_port) 6227 temp.v4.sin_port = htons(port); 6228 6229 addrlen = sctp_get_pf_specific(sk->sk_family) 6230 ->addr_to_user(sctp_sk(sk), &temp); 6231 6232 if (space_left < addrlen) { 6233 cnt = -ENOMEM; 6234 break; 6235 } 6236 memcpy(to, &temp, addrlen); 6237 6238 to += addrlen; 6239 cnt++; 6240 space_left -= addrlen; 6241 *bytes_copied += addrlen; 6242 } 6243 rcu_read_unlock(); 6244 6245 return cnt; 6246 } 6247 6248 6249 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6250 char __user *optval, int __user *optlen) 6251 { 6252 struct sctp_bind_addr *bp; 6253 struct sctp_association *asoc; 6254 int cnt = 0; 6255 struct sctp_getaddrs getaddrs; 6256 struct sctp_sockaddr_entry *addr; 6257 void __user *to; 6258 union sctp_addr temp; 6259 struct sctp_sock *sp = sctp_sk(sk); 6260 int addrlen; 6261 int err = 0; 6262 size_t space_left; 6263 int bytes_copied = 0; 6264 void *addrs; 6265 void *buf; 6266 6267 if (len < sizeof(struct sctp_getaddrs)) 6268 return -EINVAL; 6269 6270 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6271 return -EFAULT; 6272 6273 /* 6274 * For UDP-style sockets, id specifies the association to query. 6275 * If the id field is set to the value '0' then the locally bound 6276 * addresses are returned without regard to any particular 6277 * association. 6278 */ 6279 if (0 == getaddrs.assoc_id) { 6280 bp = &sctp_sk(sk)->ep->base.bind_addr; 6281 } else { 6282 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6283 if (!asoc) 6284 return -EINVAL; 6285 bp = &asoc->base.bind_addr; 6286 } 6287 6288 to = optval + offsetof(struct sctp_getaddrs, addrs); 6289 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6290 6291 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6292 if (!addrs) 6293 return -ENOMEM; 6294 6295 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6296 * addresses from the global local address list. 6297 */ 6298 if (sctp_list_single_entry(&bp->address_list)) { 6299 addr = list_entry(bp->address_list.next, 6300 struct sctp_sockaddr_entry, list); 6301 if (sctp_is_any(sk, &addr->a)) { 6302 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6303 space_left, &bytes_copied); 6304 if (cnt < 0) { 6305 err = cnt; 6306 goto out; 6307 } 6308 goto copy_getaddrs; 6309 } 6310 } 6311 6312 buf = addrs; 6313 /* Protection on the bound address list is not needed since 6314 * in the socket option context we hold a socket lock and 6315 * thus the bound address list can't change. 6316 */ 6317 list_for_each_entry(addr, &bp->address_list, list) { 6318 memcpy(&temp, &addr->a, sizeof(temp)); 6319 addrlen = sctp_get_pf_specific(sk->sk_family) 6320 ->addr_to_user(sp, &temp); 6321 if (space_left < addrlen) { 6322 err = -ENOMEM; /*fixme: right error?*/ 6323 goto out; 6324 } 6325 memcpy(buf, &temp, addrlen); 6326 buf += addrlen; 6327 bytes_copied += addrlen; 6328 cnt++; 6329 space_left -= addrlen; 6330 } 6331 6332 copy_getaddrs: 6333 if (copy_to_user(to, addrs, bytes_copied)) { 6334 err = -EFAULT; 6335 goto out; 6336 } 6337 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6338 err = -EFAULT; 6339 goto out; 6340 } 6341 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6342 * but we can't change it anymore. 6343 */ 6344 if (put_user(bytes_copied, optlen)) 6345 err = -EFAULT; 6346 out: 6347 kfree(addrs); 6348 return err; 6349 } 6350 6351 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6352 * 6353 * Requests that the local SCTP stack use the enclosed peer address as 6354 * the association primary. The enclosed address must be one of the 6355 * association peer's addresses. 6356 */ 6357 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6358 char __user *optval, int __user *optlen) 6359 { 6360 struct sctp_prim prim; 6361 struct sctp_association *asoc; 6362 struct sctp_sock *sp = sctp_sk(sk); 6363 6364 if (len < sizeof(struct sctp_prim)) 6365 return -EINVAL; 6366 6367 len = sizeof(struct sctp_prim); 6368 6369 if (copy_from_user(&prim, optval, len)) 6370 return -EFAULT; 6371 6372 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6373 if (!asoc) 6374 return -EINVAL; 6375 6376 if (!asoc->peer.primary_path) 6377 return -ENOTCONN; 6378 6379 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6380 asoc->peer.primary_path->af_specific->sockaddr_len); 6381 6382 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6383 (union sctp_addr *)&prim.ssp_addr); 6384 6385 if (put_user(len, optlen)) 6386 return -EFAULT; 6387 if (copy_to_user(optval, &prim, len)) 6388 return -EFAULT; 6389 6390 return 0; 6391 } 6392 6393 /* 6394 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6395 * 6396 * Requests that the local endpoint set the specified Adaptation Layer 6397 * Indication parameter for all future INIT and INIT-ACK exchanges. 6398 */ 6399 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6400 char __user *optval, int __user *optlen) 6401 { 6402 struct sctp_setadaptation adaptation; 6403 6404 if (len < sizeof(struct sctp_setadaptation)) 6405 return -EINVAL; 6406 6407 len = sizeof(struct sctp_setadaptation); 6408 6409 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6410 6411 if (put_user(len, optlen)) 6412 return -EFAULT; 6413 if (copy_to_user(optval, &adaptation, len)) 6414 return -EFAULT; 6415 6416 return 0; 6417 } 6418 6419 /* 6420 * 6421 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6422 * 6423 * Applications that wish to use the sendto() system call may wish to 6424 * specify a default set of parameters that would normally be supplied 6425 * through the inclusion of ancillary data. This socket option allows 6426 * such an application to set the default sctp_sndrcvinfo structure. 6427 6428 6429 * The application that wishes to use this socket option simply passes 6430 * in to this call the sctp_sndrcvinfo structure defined in Section 6431 * 5.2.2) The input parameters accepted by this call include 6432 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6433 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6434 * to this call if the caller is using the UDP model. 6435 * 6436 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6437 */ 6438 static int sctp_getsockopt_default_send_param(struct sock *sk, 6439 int len, char __user *optval, 6440 int __user *optlen) 6441 { 6442 struct sctp_sock *sp = sctp_sk(sk); 6443 struct sctp_association *asoc; 6444 struct sctp_sndrcvinfo info; 6445 6446 if (len < sizeof(info)) 6447 return -EINVAL; 6448 6449 len = sizeof(info); 6450 6451 if (copy_from_user(&info, optval, len)) 6452 return -EFAULT; 6453 6454 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6455 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6456 sctp_style(sk, UDP)) 6457 return -EINVAL; 6458 6459 if (asoc) { 6460 info.sinfo_stream = asoc->default_stream; 6461 info.sinfo_flags = asoc->default_flags; 6462 info.sinfo_ppid = asoc->default_ppid; 6463 info.sinfo_context = asoc->default_context; 6464 info.sinfo_timetolive = asoc->default_timetolive; 6465 } else { 6466 info.sinfo_stream = sp->default_stream; 6467 info.sinfo_flags = sp->default_flags; 6468 info.sinfo_ppid = sp->default_ppid; 6469 info.sinfo_context = sp->default_context; 6470 info.sinfo_timetolive = sp->default_timetolive; 6471 } 6472 6473 if (put_user(len, optlen)) 6474 return -EFAULT; 6475 if (copy_to_user(optval, &info, len)) 6476 return -EFAULT; 6477 6478 return 0; 6479 } 6480 6481 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6482 * (SCTP_DEFAULT_SNDINFO) 6483 */ 6484 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6485 char __user *optval, 6486 int __user *optlen) 6487 { 6488 struct sctp_sock *sp = sctp_sk(sk); 6489 struct sctp_association *asoc; 6490 struct sctp_sndinfo info; 6491 6492 if (len < sizeof(info)) 6493 return -EINVAL; 6494 6495 len = sizeof(info); 6496 6497 if (copy_from_user(&info, optval, len)) 6498 return -EFAULT; 6499 6500 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6501 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6502 sctp_style(sk, UDP)) 6503 return -EINVAL; 6504 6505 if (asoc) { 6506 info.snd_sid = asoc->default_stream; 6507 info.snd_flags = asoc->default_flags; 6508 info.snd_ppid = asoc->default_ppid; 6509 info.snd_context = asoc->default_context; 6510 } else { 6511 info.snd_sid = sp->default_stream; 6512 info.snd_flags = sp->default_flags; 6513 info.snd_ppid = sp->default_ppid; 6514 info.snd_context = sp->default_context; 6515 } 6516 6517 if (put_user(len, optlen)) 6518 return -EFAULT; 6519 if (copy_to_user(optval, &info, len)) 6520 return -EFAULT; 6521 6522 return 0; 6523 } 6524 6525 /* 6526 * 6527 * 7.1.5 SCTP_NODELAY 6528 * 6529 * Turn on/off any Nagle-like algorithm. This means that packets are 6530 * generally sent as soon as possible and no unnecessary delays are 6531 * introduced, at the cost of more packets in the network. Expects an 6532 * integer boolean flag. 6533 */ 6534 6535 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6536 char __user *optval, int __user *optlen) 6537 { 6538 int val; 6539 6540 if (len < sizeof(int)) 6541 return -EINVAL; 6542 6543 len = sizeof(int); 6544 val = (sctp_sk(sk)->nodelay == 1); 6545 if (put_user(len, optlen)) 6546 return -EFAULT; 6547 if (copy_to_user(optval, &val, len)) 6548 return -EFAULT; 6549 return 0; 6550 } 6551 6552 /* 6553 * 6554 * 7.1.1 SCTP_RTOINFO 6555 * 6556 * The protocol parameters used to initialize and bound retransmission 6557 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6558 * and modify these parameters. 6559 * All parameters are time values, in milliseconds. A value of 0, when 6560 * modifying the parameters, indicates that the current value should not 6561 * be changed. 6562 * 6563 */ 6564 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6565 char __user *optval, 6566 int __user *optlen) { 6567 struct sctp_rtoinfo rtoinfo; 6568 struct sctp_association *asoc; 6569 6570 if (len < sizeof (struct sctp_rtoinfo)) 6571 return -EINVAL; 6572 6573 len = sizeof(struct sctp_rtoinfo); 6574 6575 if (copy_from_user(&rtoinfo, optval, len)) 6576 return -EFAULT; 6577 6578 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6579 6580 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6581 sctp_style(sk, UDP)) 6582 return -EINVAL; 6583 6584 /* Values corresponding to the specific association. */ 6585 if (asoc) { 6586 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6587 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6588 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6589 } else { 6590 /* Values corresponding to the endpoint. */ 6591 struct sctp_sock *sp = sctp_sk(sk); 6592 6593 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6594 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6595 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6596 } 6597 6598 if (put_user(len, optlen)) 6599 return -EFAULT; 6600 6601 if (copy_to_user(optval, &rtoinfo, len)) 6602 return -EFAULT; 6603 6604 return 0; 6605 } 6606 6607 /* 6608 * 6609 * 7.1.2 SCTP_ASSOCINFO 6610 * 6611 * This option is used to tune the maximum retransmission attempts 6612 * of the association. 6613 * Returns an error if the new association retransmission value is 6614 * greater than the sum of the retransmission value of the peer. 6615 * See [SCTP] for more information. 6616 * 6617 */ 6618 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6619 char __user *optval, 6620 int __user *optlen) 6621 { 6622 6623 struct sctp_assocparams assocparams; 6624 struct sctp_association *asoc; 6625 struct list_head *pos; 6626 int cnt = 0; 6627 6628 if (len < sizeof (struct sctp_assocparams)) 6629 return -EINVAL; 6630 6631 len = sizeof(struct sctp_assocparams); 6632 6633 if (copy_from_user(&assocparams, optval, len)) 6634 return -EFAULT; 6635 6636 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6637 6638 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6639 sctp_style(sk, UDP)) 6640 return -EINVAL; 6641 6642 /* Values correspoinding to the specific association */ 6643 if (asoc) { 6644 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6645 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6646 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6647 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6648 6649 list_for_each(pos, &asoc->peer.transport_addr_list) { 6650 cnt++; 6651 } 6652 6653 assocparams.sasoc_number_peer_destinations = cnt; 6654 } else { 6655 /* Values corresponding to the endpoint */ 6656 struct sctp_sock *sp = sctp_sk(sk); 6657 6658 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6659 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6660 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6661 assocparams.sasoc_cookie_life = 6662 sp->assocparams.sasoc_cookie_life; 6663 assocparams.sasoc_number_peer_destinations = 6664 sp->assocparams. 6665 sasoc_number_peer_destinations; 6666 } 6667 6668 if (put_user(len, optlen)) 6669 return -EFAULT; 6670 6671 if (copy_to_user(optval, &assocparams, len)) 6672 return -EFAULT; 6673 6674 return 0; 6675 } 6676 6677 /* 6678 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6679 * 6680 * This socket option is a boolean flag which turns on or off mapped V4 6681 * addresses. If this option is turned on and the socket is type 6682 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6683 * If this option is turned off, then no mapping will be done of V4 6684 * addresses and a user will receive both PF_INET6 and PF_INET type 6685 * addresses on the socket. 6686 */ 6687 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6688 char __user *optval, int __user *optlen) 6689 { 6690 int val; 6691 struct sctp_sock *sp = sctp_sk(sk); 6692 6693 if (len < sizeof(int)) 6694 return -EINVAL; 6695 6696 len = sizeof(int); 6697 val = sp->v4mapped; 6698 if (put_user(len, optlen)) 6699 return -EFAULT; 6700 if (copy_to_user(optval, &val, len)) 6701 return -EFAULT; 6702 6703 return 0; 6704 } 6705 6706 /* 6707 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6708 * (chapter and verse is quoted at sctp_setsockopt_context()) 6709 */ 6710 static int sctp_getsockopt_context(struct sock *sk, int len, 6711 char __user *optval, int __user *optlen) 6712 { 6713 struct sctp_assoc_value params; 6714 struct sctp_association *asoc; 6715 6716 if (len < sizeof(struct sctp_assoc_value)) 6717 return -EINVAL; 6718 6719 len = sizeof(struct sctp_assoc_value); 6720 6721 if (copy_from_user(¶ms, optval, len)) 6722 return -EFAULT; 6723 6724 asoc = sctp_id2assoc(sk, params.assoc_id); 6725 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6726 sctp_style(sk, UDP)) 6727 return -EINVAL; 6728 6729 params.assoc_value = asoc ? asoc->default_rcv_context 6730 : sctp_sk(sk)->default_rcv_context; 6731 6732 if (put_user(len, optlen)) 6733 return -EFAULT; 6734 if (copy_to_user(optval, ¶ms, len)) 6735 return -EFAULT; 6736 6737 return 0; 6738 } 6739 6740 /* 6741 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6742 * This option will get or set the maximum size to put in any outgoing 6743 * SCTP DATA chunk. If a message is larger than this size it will be 6744 * fragmented by SCTP into the specified size. Note that the underlying 6745 * SCTP implementation may fragment into smaller sized chunks when the 6746 * PMTU of the underlying association is smaller than the value set by 6747 * the user. The default value for this option is '0' which indicates 6748 * the user is NOT limiting fragmentation and only the PMTU will effect 6749 * SCTP's choice of DATA chunk size. Note also that values set larger 6750 * than the maximum size of an IP datagram will effectively let SCTP 6751 * control fragmentation (i.e. the same as setting this option to 0). 6752 * 6753 * The following structure is used to access and modify this parameter: 6754 * 6755 * struct sctp_assoc_value { 6756 * sctp_assoc_t assoc_id; 6757 * uint32_t assoc_value; 6758 * }; 6759 * 6760 * assoc_id: This parameter is ignored for one-to-one style sockets. 6761 * For one-to-many style sockets this parameter indicates which 6762 * association the user is performing an action upon. Note that if 6763 * this field's value is zero then the endpoints default value is 6764 * changed (effecting future associations only). 6765 * assoc_value: This parameter specifies the maximum size in bytes. 6766 */ 6767 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6768 char __user *optval, int __user *optlen) 6769 { 6770 struct sctp_assoc_value params; 6771 struct sctp_association *asoc; 6772 6773 if (len == sizeof(int)) { 6774 pr_warn_ratelimited(DEPRECATED 6775 "%s (pid %d) " 6776 "Use of int in maxseg socket option.\n" 6777 "Use struct sctp_assoc_value instead\n", 6778 current->comm, task_pid_nr(current)); 6779 params.assoc_id = SCTP_FUTURE_ASSOC; 6780 } else if (len >= sizeof(struct sctp_assoc_value)) { 6781 len = sizeof(struct sctp_assoc_value); 6782 if (copy_from_user(¶ms, optval, len)) 6783 return -EFAULT; 6784 } else 6785 return -EINVAL; 6786 6787 asoc = sctp_id2assoc(sk, params.assoc_id); 6788 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6789 sctp_style(sk, UDP)) 6790 return -EINVAL; 6791 6792 if (asoc) 6793 params.assoc_value = asoc->frag_point; 6794 else 6795 params.assoc_value = sctp_sk(sk)->user_frag; 6796 6797 if (put_user(len, optlen)) 6798 return -EFAULT; 6799 if (len == sizeof(int)) { 6800 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6801 return -EFAULT; 6802 } else { 6803 if (copy_to_user(optval, ¶ms, len)) 6804 return -EFAULT; 6805 } 6806 6807 return 0; 6808 } 6809 6810 /* 6811 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6812 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6813 */ 6814 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6815 char __user *optval, int __user *optlen) 6816 { 6817 int val; 6818 6819 if (len < sizeof(int)) 6820 return -EINVAL; 6821 6822 len = sizeof(int); 6823 6824 val = sctp_sk(sk)->frag_interleave; 6825 if (put_user(len, optlen)) 6826 return -EFAULT; 6827 if (copy_to_user(optval, &val, len)) 6828 return -EFAULT; 6829 6830 return 0; 6831 } 6832 6833 /* 6834 * 7.1.25. Set or Get the sctp partial delivery point 6835 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6836 */ 6837 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6838 char __user *optval, 6839 int __user *optlen) 6840 { 6841 u32 val; 6842 6843 if (len < sizeof(u32)) 6844 return -EINVAL; 6845 6846 len = sizeof(u32); 6847 6848 val = sctp_sk(sk)->pd_point; 6849 if (put_user(len, optlen)) 6850 return -EFAULT; 6851 if (copy_to_user(optval, &val, len)) 6852 return -EFAULT; 6853 6854 return 0; 6855 } 6856 6857 /* 6858 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6859 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6860 */ 6861 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6862 char __user *optval, 6863 int __user *optlen) 6864 { 6865 struct sctp_assoc_value params; 6866 struct sctp_association *asoc; 6867 6868 if (len == sizeof(int)) { 6869 pr_warn_ratelimited(DEPRECATED 6870 "%s (pid %d) " 6871 "Use of int in max_burst socket option.\n" 6872 "Use struct sctp_assoc_value instead\n", 6873 current->comm, task_pid_nr(current)); 6874 params.assoc_id = SCTP_FUTURE_ASSOC; 6875 } else if (len >= sizeof(struct sctp_assoc_value)) { 6876 len = sizeof(struct sctp_assoc_value); 6877 if (copy_from_user(¶ms, optval, len)) 6878 return -EFAULT; 6879 } else 6880 return -EINVAL; 6881 6882 asoc = sctp_id2assoc(sk, params.assoc_id); 6883 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6884 sctp_style(sk, UDP)) 6885 return -EINVAL; 6886 6887 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6888 6889 if (len == sizeof(int)) { 6890 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6891 return -EFAULT; 6892 } else { 6893 if (copy_to_user(optval, ¶ms, len)) 6894 return -EFAULT; 6895 } 6896 6897 return 0; 6898 6899 } 6900 6901 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6902 char __user *optval, int __user *optlen) 6903 { 6904 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6905 struct sctp_hmacalgo __user *p = (void __user *)optval; 6906 struct sctp_hmac_algo_param *hmacs; 6907 __u16 data_len = 0; 6908 u32 num_idents; 6909 int i; 6910 6911 if (!ep->auth_enable) 6912 return -EACCES; 6913 6914 hmacs = ep->auth_hmacs_list; 6915 data_len = ntohs(hmacs->param_hdr.length) - 6916 sizeof(struct sctp_paramhdr); 6917 6918 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6919 return -EINVAL; 6920 6921 len = sizeof(struct sctp_hmacalgo) + data_len; 6922 num_idents = data_len / sizeof(u16); 6923 6924 if (put_user(len, optlen)) 6925 return -EFAULT; 6926 if (put_user(num_idents, &p->shmac_num_idents)) 6927 return -EFAULT; 6928 for (i = 0; i < num_idents; i++) { 6929 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6930 6931 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6932 return -EFAULT; 6933 } 6934 return 0; 6935 } 6936 6937 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6938 char __user *optval, int __user *optlen) 6939 { 6940 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6941 struct sctp_authkeyid val; 6942 struct sctp_association *asoc; 6943 6944 if (!ep->auth_enable) 6945 return -EACCES; 6946 6947 if (len < sizeof(struct sctp_authkeyid)) 6948 return -EINVAL; 6949 6950 len = sizeof(struct sctp_authkeyid); 6951 if (copy_from_user(&val, optval, len)) 6952 return -EFAULT; 6953 6954 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6955 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6956 return -EINVAL; 6957 6958 if (asoc) 6959 val.scact_keynumber = asoc->active_key_id; 6960 else 6961 val.scact_keynumber = ep->active_key_id; 6962 6963 if (put_user(len, optlen)) 6964 return -EFAULT; 6965 if (copy_to_user(optval, &val, len)) 6966 return -EFAULT; 6967 6968 return 0; 6969 } 6970 6971 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6972 char __user *optval, int __user *optlen) 6973 { 6974 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6975 struct sctp_authchunks __user *p = (void __user *)optval; 6976 struct sctp_authchunks val; 6977 struct sctp_association *asoc; 6978 struct sctp_chunks_param *ch; 6979 u32 num_chunks = 0; 6980 char __user *to; 6981 6982 if (!ep->auth_enable) 6983 return -EACCES; 6984 6985 if (len < sizeof(struct sctp_authchunks)) 6986 return -EINVAL; 6987 6988 if (copy_from_user(&val, optval, sizeof(val))) 6989 return -EFAULT; 6990 6991 to = p->gauth_chunks; 6992 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6993 if (!asoc) 6994 return -EINVAL; 6995 6996 ch = asoc->peer.peer_chunks; 6997 if (!ch) 6998 goto num; 6999 7000 /* See if the user provided enough room for all the data */ 7001 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7002 if (len < num_chunks) 7003 return -EINVAL; 7004 7005 if (copy_to_user(to, ch->chunks, num_chunks)) 7006 return -EFAULT; 7007 num: 7008 len = sizeof(struct sctp_authchunks) + num_chunks; 7009 if (put_user(len, optlen)) 7010 return -EFAULT; 7011 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7012 return -EFAULT; 7013 return 0; 7014 } 7015 7016 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7017 char __user *optval, int __user *optlen) 7018 { 7019 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7020 struct sctp_authchunks __user *p = (void __user *)optval; 7021 struct sctp_authchunks val; 7022 struct sctp_association *asoc; 7023 struct sctp_chunks_param *ch; 7024 u32 num_chunks = 0; 7025 char __user *to; 7026 7027 if (!ep->auth_enable) 7028 return -EACCES; 7029 7030 if (len < sizeof(struct sctp_authchunks)) 7031 return -EINVAL; 7032 7033 if (copy_from_user(&val, optval, sizeof(val))) 7034 return -EFAULT; 7035 7036 to = p->gauth_chunks; 7037 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7038 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7039 sctp_style(sk, UDP)) 7040 return -EINVAL; 7041 7042 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7043 : ep->auth_chunk_list; 7044 if (!ch) 7045 goto num; 7046 7047 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7048 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7049 return -EINVAL; 7050 7051 if (copy_to_user(to, ch->chunks, num_chunks)) 7052 return -EFAULT; 7053 num: 7054 len = sizeof(struct sctp_authchunks) + num_chunks; 7055 if (put_user(len, optlen)) 7056 return -EFAULT; 7057 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7058 return -EFAULT; 7059 7060 return 0; 7061 } 7062 7063 /* 7064 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7065 * This option gets the current number of associations that are attached 7066 * to a one-to-many style socket. The option value is an uint32_t. 7067 */ 7068 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7069 char __user *optval, int __user *optlen) 7070 { 7071 struct sctp_sock *sp = sctp_sk(sk); 7072 struct sctp_association *asoc; 7073 u32 val = 0; 7074 7075 if (sctp_style(sk, TCP)) 7076 return -EOPNOTSUPP; 7077 7078 if (len < sizeof(u32)) 7079 return -EINVAL; 7080 7081 len = sizeof(u32); 7082 7083 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7084 val++; 7085 } 7086 7087 if (put_user(len, optlen)) 7088 return -EFAULT; 7089 if (copy_to_user(optval, &val, len)) 7090 return -EFAULT; 7091 7092 return 0; 7093 } 7094 7095 /* 7096 * 8.1.23 SCTP_AUTO_ASCONF 7097 * See the corresponding setsockopt entry as description 7098 */ 7099 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7100 char __user *optval, int __user *optlen) 7101 { 7102 int val = 0; 7103 7104 if (len < sizeof(int)) 7105 return -EINVAL; 7106 7107 len = sizeof(int); 7108 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7109 val = 1; 7110 if (put_user(len, optlen)) 7111 return -EFAULT; 7112 if (copy_to_user(optval, &val, len)) 7113 return -EFAULT; 7114 return 0; 7115 } 7116 7117 /* 7118 * 8.2.6. Get the Current Identifiers of Associations 7119 * (SCTP_GET_ASSOC_ID_LIST) 7120 * 7121 * This option gets the current list of SCTP association identifiers of 7122 * the SCTP associations handled by a one-to-many style socket. 7123 */ 7124 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7125 char __user *optval, int __user *optlen) 7126 { 7127 struct sctp_sock *sp = sctp_sk(sk); 7128 struct sctp_association *asoc; 7129 struct sctp_assoc_ids *ids; 7130 u32 num = 0; 7131 7132 if (sctp_style(sk, TCP)) 7133 return -EOPNOTSUPP; 7134 7135 if (len < sizeof(struct sctp_assoc_ids)) 7136 return -EINVAL; 7137 7138 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7139 num++; 7140 } 7141 7142 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7143 return -EINVAL; 7144 7145 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7146 7147 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7148 if (unlikely(!ids)) 7149 return -ENOMEM; 7150 7151 ids->gaids_number_of_ids = num; 7152 num = 0; 7153 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7154 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7155 } 7156 7157 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7158 kfree(ids); 7159 return -EFAULT; 7160 } 7161 7162 kfree(ids); 7163 return 0; 7164 } 7165 7166 /* 7167 * SCTP_PEER_ADDR_THLDS 7168 * 7169 * This option allows us to fetch the partially failed threshold for one or all 7170 * transports in an association. See Section 6.1 of: 7171 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7172 */ 7173 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7174 char __user *optval, 7175 int len, 7176 int __user *optlen) 7177 { 7178 struct sctp_paddrthlds val; 7179 struct sctp_transport *trans; 7180 struct sctp_association *asoc; 7181 7182 if (len < sizeof(struct sctp_paddrthlds)) 7183 return -EINVAL; 7184 len = sizeof(struct sctp_paddrthlds); 7185 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7186 return -EFAULT; 7187 7188 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7189 trans = sctp_addr_id2transport(sk, &val.spt_address, 7190 val.spt_assoc_id); 7191 if (!trans) 7192 return -ENOENT; 7193 7194 val.spt_pathmaxrxt = trans->pathmaxrxt; 7195 val.spt_pathpfthld = trans->pf_retrans; 7196 7197 return 0; 7198 } 7199 7200 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7201 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7202 sctp_style(sk, UDP)) 7203 return -EINVAL; 7204 7205 if (asoc) { 7206 val.spt_pathpfthld = asoc->pf_retrans; 7207 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7208 } else { 7209 struct sctp_sock *sp = sctp_sk(sk); 7210 7211 val.spt_pathpfthld = sp->pf_retrans; 7212 val.spt_pathmaxrxt = sp->pathmaxrxt; 7213 } 7214 7215 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7216 return -EFAULT; 7217 7218 return 0; 7219 } 7220 7221 /* 7222 * SCTP_GET_ASSOC_STATS 7223 * 7224 * This option retrieves local per endpoint statistics. It is modeled 7225 * after OpenSolaris' implementation 7226 */ 7227 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7228 char __user *optval, 7229 int __user *optlen) 7230 { 7231 struct sctp_assoc_stats sas; 7232 struct sctp_association *asoc = NULL; 7233 7234 /* User must provide at least the assoc id */ 7235 if (len < sizeof(sctp_assoc_t)) 7236 return -EINVAL; 7237 7238 /* Allow the struct to grow and fill in as much as possible */ 7239 len = min_t(size_t, len, sizeof(sas)); 7240 7241 if (copy_from_user(&sas, optval, len)) 7242 return -EFAULT; 7243 7244 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7245 if (!asoc) 7246 return -EINVAL; 7247 7248 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7249 sas.sas_gapcnt = asoc->stats.gapcnt; 7250 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7251 sas.sas_osacks = asoc->stats.osacks; 7252 sas.sas_isacks = asoc->stats.isacks; 7253 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7254 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7255 sas.sas_oodchunks = asoc->stats.oodchunks; 7256 sas.sas_iodchunks = asoc->stats.iodchunks; 7257 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7258 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7259 sas.sas_idupchunks = asoc->stats.idupchunks; 7260 sas.sas_opackets = asoc->stats.opackets; 7261 sas.sas_ipackets = asoc->stats.ipackets; 7262 7263 /* New high max rto observed, will return 0 if not a single 7264 * RTO update took place. obs_rto_ipaddr will be bogus 7265 * in such a case 7266 */ 7267 sas.sas_maxrto = asoc->stats.max_obs_rto; 7268 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7269 sizeof(struct sockaddr_storage)); 7270 7271 /* Mark beginning of a new observation period */ 7272 asoc->stats.max_obs_rto = asoc->rto_min; 7273 7274 if (put_user(len, optlen)) 7275 return -EFAULT; 7276 7277 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7278 7279 if (copy_to_user(optval, &sas, len)) 7280 return -EFAULT; 7281 7282 return 0; 7283 } 7284 7285 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7286 char __user *optval, 7287 int __user *optlen) 7288 { 7289 int val = 0; 7290 7291 if (len < sizeof(int)) 7292 return -EINVAL; 7293 7294 len = sizeof(int); 7295 if (sctp_sk(sk)->recvrcvinfo) 7296 val = 1; 7297 if (put_user(len, optlen)) 7298 return -EFAULT; 7299 if (copy_to_user(optval, &val, len)) 7300 return -EFAULT; 7301 7302 return 0; 7303 } 7304 7305 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7306 char __user *optval, 7307 int __user *optlen) 7308 { 7309 int val = 0; 7310 7311 if (len < sizeof(int)) 7312 return -EINVAL; 7313 7314 len = sizeof(int); 7315 if (sctp_sk(sk)->recvnxtinfo) 7316 val = 1; 7317 if (put_user(len, optlen)) 7318 return -EFAULT; 7319 if (copy_to_user(optval, &val, len)) 7320 return -EFAULT; 7321 7322 return 0; 7323 } 7324 7325 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7326 char __user *optval, 7327 int __user *optlen) 7328 { 7329 struct sctp_assoc_value params; 7330 struct sctp_association *asoc; 7331 int retval = -EFAULT; 7332 7333 if (len < sizeof(params)) { 7334 retval = -EINVAL; 7335 goto out; 7336 } 7337 7338 len = sizeof(params); 7339 if (copy_from_user(¶ms, optval, len)) 7340 goto out; 7341 7342 asoc = sctp_id2assoc(sk, params.assoc_id); 7343 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7344 sctp_style(sk, UDP)) { 7345 retval = -EINVAL; 7346 goto out; 7347 } 7348 7349 params.assoc_value = asoc ? asoc->prsctp_enable 7350 : sctp_sk(sk)->ep->prsctp_enable; 7351 7352 if (put_user(len, optlen)) 7353 goto out; 7354 7355 if (copy_to_user(optval, ¶ms, len)) 7356 goto out; 7357 7358 retval = 0; 7359 7360 out: 7361 return retval; 7362 } 7363 7364 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7365 char __user *optval, 7366 int __user *optlen) 7367 { 7368 struct sctp_default_prinfo info; 7369 struct sctp_association *asoc; 7370 int retval = -EFAULT; 7371 7372 if (len < sizeof(info)) { 7373 retval = -EINVAL; 7374 goto out; 7375 } 7376 7377 len = sizeof(info); 7378 if (copy_from_user(&info, optval, len)) 7379 goto out; 7380 7381 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7382 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7383 sctp_style(sk, UDP)) { 7384 retval = -EINVAL; 7385 goto out; 7386 } 7387 7388 if (asoc) { 7389 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7390 info.pr_value = asoc->default_timetolive; 7391 } else { 7392 struct sctp_sock *sp = sctp_sk(sk); 7393 7394 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7395 info.pr_value = sp->default_timetolive; 7396 } 7397 7398 if (put_user(len, optlen)) 7399 goto out; 7400 7401 if (copy_to_user(optval, &info, len)) 7402 goto out; 7403 7404 retval = 0; 7405 7406 out: 7407 return retval; 7408 } 7409 7410 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7411 char __user *optval, 7412 int __user *optlen) 7413 { 7414 struct sctp_prstatus params; 7415 struct sctp_association *asoc; 7416 int policy; 7417 int retval = -EINVAL; 7418 7419 if (len < sizeof(params)) 7420 goto out; 7421 7422 len = sizeof(params); 7423 if (copy_from_user(¶ms, optval, len)) { 7424 retval = -EFAULT; 7425 goto out; 7426 } 7427 7428 policy = params.sprstat_policy; 7429 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7430 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7431 goto out; 7432 7433 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7434 if (!asoc) 7435 goto out; 7436 7437 if (policy == SCTP_PR_SCTP_ALL) { 7438 params.sprstat_abandoned_unsent = 0; 7439 params.sprstat_abandoned_sent = 0; 7440 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7441 params.sprstat_abandoned_unsent += 7442 asoc->abandoned_unsent[policy]; 7443 params.sprstat_abandoned_sent += 7444 asoc->abandoned_sent[policy]; 7445 } 7446 } else { 7447 params.sprstat_abandoned_unsent = 7448 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7449 params.sprstat_abandoned_sent = 7450 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7451 } 7452 7453 if (put_user(len, optlen)) { 7454 retval = -EFAULT; 7455 goto out; 7456 } 7457 7458 if (copy_to_user(optval, ¶ms, len)) { 7459 retval = -EFAULT; 7460 goto out; 7461 } 7462 7463 retval = 0; 7464 7465 out: 7466 return retval; 7467 } 7468 7469 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7470 char __user *optval, 7471 int __user *optlen) 7472 { 7473 struct sctp_stream_out_ext *streamoute; 7474 struct sctp_association *asoc; 7475 struct sctp_prstatus params; 7476 int retval = -EINVAL; 7477 int policy; 7478 7479 if (len < sizeof(params)) 7480 goto out; 7481 7482 len = sizeof(params); 7483 if (copy_from_user(¶ms, optval, len)) { 7484 retval = -EFAULT; 7485 goto out; 7486 } 7487 7488 policy = params.sprstat_policy; 7489 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7490 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7491 goto out; 7492 7493 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7494 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7495 goto out; 7496 7497 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7498 if (!streamoute) { 7499 /* Not allocated yet, means all stats are 0 */ 7500 params.sprstat_abandoned_unsent = 0; 7501 params.sprstat_abandoned_sent = 0; 7502 retval = 0; 7503 goto out; 7504 } 7505 7506 if (policy == SCTP_PR_SCTP_ALL) { 7507 params.sprstat_abandoned_unsent = 0; 7508 params.sprstat_abandoned_sent = 0; 7509 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7510 params.sprstat_abandoned_unsent += 7511 streamoute->abandoned_unsent[policy]; 7512 params.sprstat_abandoned_sent += 7513 streamoute->abandoned_sent[policy]; 7514 } 7515 } else { 7516 params.sprstat_abandoned_unsent = 7517 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7518 params.sprstat_abandoned_sent = 7519 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7520 } 7521 7522 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7523 retval = -EFAULT; 7524 goto out; 7525 } 7526 7527 retval = 0; 7528 7529 out: 7530 return retval; 7531 } 7532 7533 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7534 char __user *optval, 7535 int __user *optlen) 7536 { 7537 struct sctp_assoc_value params; 7538 struct sctp_association *asoc; 7539 int retval = -EFAULT; 7540 7541 if (len < sizeof(params)) { 7542 retval = -EINVAL; 7543 goto out; 7544 } 7545 7546 len = sizeof(params); 7547 if (copy_from_user(¶ms, optval, len)) 7548 goto out; 7549 7550 asoc = sctp_id2assoc(sk, params.assoc_id); 7551 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7552 sctp_style(sk, UDP)) { 7553 retval = -EINVAL; 7554 goto out; 7555 } 7556 7557 params.assoc_value = asoc ? asoc->reconf_enable 7558 : sctp_sk(sk)->ep->reconf_enable; 7559 7560 if (put_user(len, optlen)) 7561 goto out; 7562 7563 if (copy_to_user(optval, ¶ms, len)) 7564 goto out; 7565 7566 retval = 0; 7567 7568 out: 7569 return retval; 7570 } 7571 7572 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7573 char __user *optval, 7574 int __user *optlen) 7575 { 7576 struct sctp_assoc_value params; 7577 struct sctp_association *asoc; 7578 int retval = -EFAULT; 7579 7580 if (len < sizeof(params)) { 7581 retval = -EINVAL; 7582 goto out; 7583 } 7584 7585 len = sizeof(params); 7586 if (copy_from_user(¶ms, optval, len)) 7587 goto out; 7588 7589 asoc = sctp_id2assoc(sk, params.assoc_id); 7590 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7591 sctp_style(sk, UDP)) { 7592 retval = -EINVAL; 7593 goto out; 7594 } 7595 7596 params.assoc_value = asoc ? asoc->strreset_enable 7597 : sctp_sk(sk)->ep->strreset_enable; 7598 7599 if (put_user(len, optlen)) 7600 goto out; 7601 7602 if (copy_to_user(optval, ¶ms, len)) 7603 goto out; 7604 7605 retval = 0; 7606 7607 out: 7608 return retval; 7609 } 7610 7611 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7612 char __user *optval, 7613 int __user *optlen) 7614 { 7615 struct sctp_assoc_value params; 7616 struct sctp_association *asoc; 7617 int retval = -EFAULT; 7618 7619 if (len < sizeof(params)) { 7620 retval = -EINVAL; 7621 goto out; 7622 } 7623 7624 len = sizeof(params); 7625 if (copy_from_user(¶ms, optval, len)) 7626 goto out; 7627 7628 asoc = sctp_id2assoc(sk, params.assoc_id); 7629 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7630 sctp_style(sk, UDP)) { 7631 retval = -EINVAL; 7632 goto out; 7633 } 7634 7635 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7636 : sctp_sk(sk)->default_ss; 7637 7638 if (put_user(len, optlen)) 7639 goto out; 7640 7641 if (copy_to_user(optval, ¶ms, len)) 7642 goto out; 7643 7644 retval = 0; 7645 7646 out: 7647 return retval; 7648 } 7649 7650 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7651 char __user *optval, 7652 int __user *optlen) 7653 { 7654 struct sctp_stream_value params; 7655 struct sctp_association *asoc; 7656 int retval = -EFAULT; 7657 7658 if (len < sizeof(params)) { 7659 retval = -EINVAL; 7660 goto out; 7661 } 7662 7663 len = sizeof(params); 7664 if (copy_from_user(¶ms, optval, len)) 7665 goto out; 7666 7667 asoc = sctp_id2assoc(sk, params.assoc_id); 7668 if (!asoc) { 7669 retval = -EINVAL; 7670 goto out; 7671 } 7672 7673 retval = sctp_sched_get_value(asoc, params.stream_id, 7674 ¶ms.stream_value); 7675 if (retval) 7676 goto out; 7677 7678 if (put_user(len, optlen)) { 7679 retval = -EFAULT; 7680 goto out; 7681 } 7682 7683 if (copy_to_user(optval, ¶ms, len)) { 7684 retval = -EFAULT; 7685 goto out; 7686 } 7687 7688 out: 7689 return retval; 7690 } 7691 7692 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7693 char __user *optval, 7694 int __user *optlen) 7695 { 7696 struct sctp_assoc_value params; 7697 struct sctp_association *asoc; 7698 int retval = -EFAULT; 7699 7700 if (len < sizeof(params)) { 7701 retval = -EINVAL; 7702 goto out; 7703 } 7704 7705 len = sizeof(params); 7706 if (copy_from_user(¶ms, optval, len)) 7707 goto out; 7708 7709 asoc = sctp_id2assoc(sk, params.assoc_id); 7710 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7711 sctp_style(sk, UDP)) { 7712 retval = -EINVAL; 7713 goto out; 7714 } 7715 7716 params.assoc_value = asoc ? asoc->intl_enable 7717 : sctp_sk(sk)->strm_interleave; 7718 7719 if (put_user(len, optlen)) 7720 goto out; 7721 7722 if (copy_to_user(optval, ¶ms, len)) 7723 goto out; 7724 7725 retval = 0; 7726 7727 out: 7728 return retval; 7729 } 7730 7731 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7732 char __user *optval, 7733 int __user *optlen) 7734 { 7735 int val; 7736 7737 if (len < sizeof(int)) 7738 return -EINVAL; 7739 7740 len = sizeof(int); 7741 val = sctp_sk(sk)->reuse; 7742 if (put_user(len, optlen)) 7743 return -EFAULT; 7744 7745 if (copy_to_user(optval, &val, len)) 7746 return -EFAULT; 7747 7748 return 0; 7749 } 7750 7751 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7752 int __user *optlen) 7753 { 7754 struct sctp_association *asoc; 7755 struct sctp_event param; 7756 __u16 subscribe; 7757 7758 if (len < sizeof(param)) 7759 return -EINVAL; 7760 7761 len = sizeof(param); 7762 if (copy_from_user(¶m, optval, len)) 7763 return -EFAULT; 7764 7765 if (param.se_type < SCTP_SN_TYPE_BASE || 7766 param.se_type > SCTP_SN_TYPE_MAX) 7767 return -EINVAL; 7768 7769 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7770 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7771 sctp_style(sk, UDP)) 7772 return -EINVAL; 7773 7774 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7775 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7776 7777 if (put_user(len, optlen)) 7778 return -EFAULT; 7779 7780 if (copy_to_user(optval, ¶m, len)) 7781 return -EFAULT; 7782 7783 return 0; 7784 } 7785 7786 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7787 char __user *optval, int __user *optlen) 7788 { 7789 int retval = 0; 7790 int len; 7791 7792 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7793 7794 /* I can hardly begin to describe how wrong this is. This is 7795 * so broken as to be worse than useless. The API draft 7796 * REALLY is NOT helpful here... I am not convinced that the 7797 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7798 * are at all well-founded. 7799 */ 7800 if (level != SOL_SCTP) { 7801 struct sctp_af *af = sctp_sk(sk)->pf->af; 7802 7803 retval = af->getsockopt(sk, level, optname, optval, optlen); 7804 return retval; 7805 } 7806 7807 if (get_user(len, optlen)) 7808 return -EFAULT; 7809 7810 if (len < 0) 7811 return -EINVAL; 7812 7813 lock_sock(sk); 7814 7815 switch (optname) { 7816 case SCTP_STATUS: 7817 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7818 break; 7819 case SCTP_DISABLE_FRAGMENTS: 7820 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7821 optlen); 7822 break; 7823 case SCTP_EVENTS: 7824 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7825 break; 7826 case SCTP_AUTOCLOSE: 7827 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7828 break; 7829 case SCTP_SOCKOPT_PEELOFF: 7830 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7831 break; 7832 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7833 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7834 break; 7835 case SCTP_PEER_ADDR_PARAMS: 7836 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7837 optlen); 7838 break; 7839 case SCTP_DELAYED_SACK: 7840 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7841 optlen); 7842 break; 7843 case SCTP_INITMSG: 7844 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7845 break; 7846 case SCTP_GET_PEER_ADDRS: 7847 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7848 optlen); 7849 break; 7850 case SCTP_GET_LOCAL_ADDRS: 7851 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7852 optlen); 7853 break; 7854 case SCTP_SOCKOPT_CONNECTX3: 7855 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7856 break; 7857 case SCTP_DEFAULT_SEND_PARAM: 7858 retval = sctp_getsockopt_default_send_param(sk, len, 7859 optval, optlen); 7860 break; 7861 case SCTP_DEFAULT_SNDINFO: 7862 retval = sctp_getsockopt_default_sndinfo(sk, len, 7863 optval, optlen); 7864 break; 7865 case SCTP_PRIMARY_ADDR: 7866 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7867 break; 7868 case SCTP_NODELAY: 7869 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7870 break; 7871 case SCTP_RTOINFO: 7872 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7873 break; 7874 case SCTP_ASSOCINFO: 7875 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7876 break; 7877 case SCTP_I_WANT_MAPPED_V4_ADDR: 7878 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7879 break; 7880 case SCTP_MAXSEG: 7881 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7882 break; 7883 case SCTP_GET_PEER_ADDR_INFO: 7884 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7885 optlen); 7886 break; 7887 case SCTP_ADAPTATION_LAYER: 7888 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7889 optlen); 7890 break; 7891 case SCTP_CONTEXT: 7892 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7893 break; 7894 case SCTP_FRAGMENT_INTERLEAVE: 7895 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7896 optlen); 7897 break; 7898 case SCTP_PARTIAL_DELIVERY_POINT: 7899 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7900 optlen); 7901 break; 7902 case SCTP_MAX_BURST: 7903 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7904 break; 7905 case SCTP_AUTH_KEY: 7906 case SCTP_AUTH_CHUNK: 7907 case SCTP_AUTH_DELETE_KEY: 7908 case SCTP_AUTH_DEACTIVATE_KEY: 7909 retval = -EOPNOTSUPP; 7910 break; 7911 case SCTP_HMAC_IDENT: 7912 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7913 break; 7914 case SCTP_AUTH_ACTIVE_KEY: 7915 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7916 break; 7917 case SCTP_PEER_AUTH_CHUNKS: 7918 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7919 optlen); 7920 break; 7921 case SCTP_LOCAL_AUTH_CHUNKS: 7922 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7923 optlen); 7924 break; 7925 case SCTP_GET_ASSOC_NUMBER: 7926 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7927 break; 7928 case SCTP_GET_ASSOC_ID_LIST: 7929 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7930 break; 7931 case SCTP_AUTO_ASCONF: 7932 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7933 break; 7934 case SCTP_PEER_ADDR_THLDS: 7935 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7936 break; 7937 case SCTP_GET_ASSOC_STATS: 7938 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7939 break; 7940 case SCTP_RECVRCVINFO: 7941 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7942 break; 7943 case SCTP_RECVNXTINFO: 7944 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7945 break; 7946 case SCTP_PR_SUPPORTED: 7947 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7948 break; 7949 case SCTP_DEFAULT_PRINFO: 7950 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7951 optlen); 7952 break; 7953 case SCTP_PR_ASSOC_STATUS: 7954 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7955 optlen); 7956 break; 7957 case SCTP_PR_STREAM_STATUS: 7958 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7959 optlen); 7960 break; 7961 case SCTP_RECONFIG_SUPPORTED: 7962 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7963 optlen); 7964 break; 7965 case SCTP_ENABLE_STREAM_RESET: 7966 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7967 optlen); 7968 break; 7969 case SCTP_STREAM_SCHEDULER: 7970 retval = sctp_getsockopt_scheduler(sk, len, optval, 7971 optlen); 7972 break; 7973 case SCTP_STREAM_SCHEDULER_VALUE: 7974 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7975 optlen); 7976 break; 7977 case SCTP_INTERLEAVING_SUPPORTED: 7978 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7979 optlen); 7980 break; 7981 case SCTP_REUSE_PORT: 7982 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7983 break; 7984 case SCTP_EVENT: 7985 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7986 break; 7987 default: 7988 retval = -ENOPROTOOPT; 7989 break; 7990 } 7991 7992 release_sock(sk); 7993 return retval; 7994 } 7995 7996 static int sctp_hash(struct sock *sk) 7997 { 7998 /* STUB */ 7999 return 0; 8000 } 8001 8002 static void sctp_unhash(struct sock *sk) 8003 { 8004 /* STUB */ 8005 } 8006 8007 /* Check if port is acceptable. Possibly find first available port. 8008 * 8009 * The port hash table (contained in the 'global' SCTP protocol storage 8010 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8011 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8012 * list (the list number is the port number hashed out, so as you 8013 * would expect from a hash function, all the ports in a given list have 8014 * such a number that hashes out to the same list number; you were 8015 * expecting that, right?); so each list has a set of ports, with a 8016 * link to the socket (struct sock) that uses it, the port number and 8017 * a fastreuse flag (FIXME: NPI ipg). 8018 */ 8019 static struct sctp_bind_bucket *sctp_bucket_create( 8020 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8021 8022 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8023 { 8024 struct sctp_sock *sp = sctp_sk(sk); 8025 bool reuse = (sk->sk_reuse || sp->reuse); 8026 struct sctp_bind_hashbucket *head; /* hash list */ 8027 kuid_t uid = sock_i_uid(sk); 8028 struct sctp_bind_bucket *pp; 8029 unsigned short snum; 8030 int ret; 8031 8032 snum = ntohs(addr->v4.sin_port); 8033 8034 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8035 8036 local_bh_disable(); 8037 8038 if (snum == 0) { 8039 /* Search for an available port. */ 8040 int low, high, remaining, index; 8041 unsigned int rover; 8042 struct net *net = sock_net(sk); 8043 8044 inet_get_local_port_range(net, &low, &high); 8045 remaining = (high - low) + 1; 8046 rover = prandom_u32() % remaining + low; 8047 8048 do { 8049 rover++; 8050 if ((rover < low) || (rover > high)) 8051 rover = low; 8052 if (inet_is_local_reserved_port(net, rover)) 8053 continue; 8054 index = sctp_phashfn(sock_net(sk), rover); 8055 head = &sctp_port_hashtable[index]; 8056 spin_lock(&head->lock); 8057 sctp_for_each_hentry(pp, &head->chain) 8058 if ((pp->port == rover) && 8059 net_eq(sock_net(sk), pp->net)) 8060 goto next; 8061 break; 8062 next: 8063 spin_unlock(&head->lock); 8064 } while (--remaining > 0); 8065 8066 /* Exhausted local port range during search? */ 8067 ret = 1; 8068 if (remaining <= 0) 8069 goto fail; 8070 8071 /* OK, here is the one we will use. HEAD (the port 8072 * hash table list entry) is non-NULL and we hold it's 8073 * mutex. 8074 */ 8075 snum = rover; 8076 } else { 8077 /* We are given an specific port number; we verify 8078 * that it is not being used. If it is used, we will 8079 * exahust the search in the hash list corresponding 8080 * to the port number (snum) - we detect that with the 8081 * port iterator, pp being NULL. 8082 */ 8083 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8084 spin_lock(&head->lock); 8085 sctp_for_each_hentry(pp, &head->chain) { 8086 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8087 goto pp_found; 8088 } 8089 } 8090 pp = NULL; 8091 goto pp_not_found; 8092 pp_found: 8093 if (!hlist_empty(&pp->owner)) { 8094 /* We had a port hash table hit - there is an 8095 * available port (pp != NULL) and it is being 8096 * used by other socket (pp->owner not empty); that other 8097 * socket is going to be sk2. 8098 */ 8099 struct sock *sk2; 8100 8101 pr_debug("%s: found a possible match\n", __func__); 8102 8103 if ((pp->fastreuse && reuse && 8104 sk->sk_state != SCTP_SS_LISTENING) || 8105 (pp->fastreuseport && sk->sk_reuseport && 8106 uid_eq(pp->fastuid, uid))) 8107 goto success; 8108 8109 /* Run through the list of sockets bound to the port 8110 * (pp->port) [via the pointers bind_next and 8111 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8112 * we get the endpoint they describe and run through 8113 * the endpoint's list of IP (v4 or v6) addresses, 8114 * comparing each of the addresses with the address of 8115 * the socket sk. If we find a match, then that means 8116 * that this port/socket (sk) combination are already 8117 * in an endpoint. 8118 */ 8119 sk_for_each_bound(sk2, &pp->owner) { 8120 struct sctp_sock *sp2 = sctp_sk(sk2); 8121 struct sctp_endpoint *ep2 = sp2->ep; 8122 8123 if (sk == sk2 || 8124 (reuse && (sk2->sk_reuse || sp2->reuse) && 8125 sk2->sk_state != SCTP_SS_LISTENING) || 8126 (sk->sk_reuseport && sk2->sk_reuseport && 8127 uid_eq(uid, sock_i_uid(sk2)))) 8128 continue; 8129 8130 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8131 addr, sp2, sp)) { 8132 ret = (long)sk2; 8133 goto fail_unlock; 8134 } 8135 } 8136 8137 pr_debug("%s: found a match\n", __func__); 8138 } 8139 pp_not_found: 8140 /* If there was a hash table miss, create a new port. */ 8141 ret = 1; 8142 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8143 goto fail_unlock; 8144 8145 /* In either case (hit or miss), make sure fastreuse is 1 only 8146 * if sk->sk_reuse is too (that is, if the caller requested 8147 * SO_REUSEADDR on this socket -sk-). 8148 */ 8149 if (hlist_empty(&pp->owner)) { 8150 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8151 pp->fastreuse = 1; 8152 else 8153 pp->fastreuse = 0; 8154 8155 if (sk->sk_reuseport) { 8156 pp->fastreuseport = 1; 8157 pp->fastuid = uid; 8158 } else { 8159 pp->fastreuseport = 0; 8160 } 8161 } else { 8162 if (pp->fastreuse && 8163 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8164 pp->fastreuse = 0; 8165 8166 if (pp->fastreuseport && 8167 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8168 pp->fastreuseport = 0; 8169 } 8170 8171 /* We are set, so fill up all the data in the hash table 8172 * entry, tie the socket list information with the rest of the 8173 * sockets FIXME: Blurry, NPI (ipg). 8174 */ 8175 success: 8176 if (!sp->bind_hash) { 8177 inet_sk(sk)->inet_num = snum; 8178 sk_add_bind_node(sk, &pp->owner); 8179 sp->bind_hash = pp; 8180 } 8181 ret = 0; 8182 8183 fail_unlock: 8184 spin_unlock(&head->lock); 8185 8186 fail: 8187 local_bh_enable(); 8188 return ret; 8189 } 8190 8191 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8192 * port is requested. 8193 */ 8194 static int sctp_get_port(struct sock *sk, unsigned short snum) 8195 { 8196 union sctp_addr addr; 8197 struct sctp_af *af = sctp_sk(sk)->pf->af; 8198 8199 /* Set up a dummy address struct from the sk. */ 8200 af->from_sk(&addr, sk); 8201 addr.v4.sin_port = htons(snum); 8202 8203 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8204 return !!sctp_get_port_local(sk, &addr); 8205 } 8206 8207 /* 8208 * Move a socket to LISTENING state. 8209 */ 8210 static int sctp_listen_start(struct sock *sk, int backlog) 8211 { 8212 struct sctp_sock *sp = sctp_sk(sk); 8213 struct sctp_endpoint *ep = sp->ep; 8214 struct crypto_shash *tfm = NULL; 8215 char alg[32]; 8216 8217 /* Allocate HMAC for generating cookie. */ 8218 if (!sp->hmac && sp->sctp_hmac_alg) { 8219 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8220 tfm = crypto_alloc_shash(alg, 0, 0); 8221 if (IS_ERR(tfm)) { 8222 net_info_ratelimited("failed to load transform for %s: %ld\n", 8223 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8224 return -ENOSYS; 8225 } 8226 sctp_sk(sk)->hmac = tfm; 8227 } 8228 8229 /* 8230 * If a bind() or sctp_bindx() is not called prior to a listen() 8231 * call that allows new associations to be accepted, the system 8232 * picks an ephemeral port and will choose an address set equivalent 8233 * to binding with a wildcard address. 8234 * 8235 * This is not currently spelled out in the SCTP sockets 8236 * extensions draft, but follows the practice as seen in TCP 8237 * sockets. 8238 * 8239 */ 8240 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8241 if (!ep->base.bind_addr.port) { 8242 if (sctp_autobind(sk)) 8243 return -EAGAIN; 8244 } else { 8245 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8246 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8247 return -EADDRINUSE; 8248 } 8249 } 8250 8251 sk->sk_max_ack_backlog = backlog; 8252 return sctp_hash_endpoint(ep); 8253 } 8254 8255 /* 8256 * 4.1.3 / 5.1.3 listen() 8257 * 8258 * By default, new associations are not accepted for UDP style sockets. 8259 * An application uses listen() to mark a socket as being able to 8260 * accept new associations. 8261 * 8262 * On TCP style sockets, applications use listen() to ready the SCTP 8263 * endpoint for accepting inbound associations. 8264 * 8265 * On both types of endpoints a backlog of '0' disables listening. 8266 * 8267 * Move a socket to LISTENING state. 8268 */ 8269 int sctp_inet_listen(struct socket *sock, int backlog) 8270 { 8271 struct sock *sk = sock->sk; 8272 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8273 int err = -EINVAL; 8274 8275 if (unlikely(backlog < 0)) 8276 return err; 8277 8278 lock_sock(sk); 8279 8280 /* Peeled-off sockets are not allowed to listen(). */ 8281 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8282 goto out; 8283 8284 if (sock->state != SS_UNCONNECTED) 8285 goto out; 8286 8287 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8288 goto out; 8289 8290 /* If backlog is zero, disable listening. */ 8291 if (!backlog) { 8292 if (sctp_sstate(sk, CLOSED)) 8293 goto out; 8294 8295 err = 0; 8296 sctp_unhash_endpoint(ep); 8297 sk->sk_state = SCTP_SS_CLOSED; 8298 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8299 sctp_sk(sk)->bind_hash->fastreuse = 1; 8300 goto out; 8301 } 8302 8303 /* If we are already listening, just update the backlog */ 8304 if (sctp_sstate(sk, LISTENING)) 8305 sk->sk_max_ack_backlog = backlog; 8306 else { 8307 err = sctp_listen_start(sk, backlog); 8308 if (err) 8309 goto out; 8310 } 8311 8312 err = 0; 8313 out: 8314 release_sock(sk); 8315 return err; 8316 } 8317 8318 /* 8319 * This function is done by modeling the current datagram_poll() and the 8320 * tcp_poll(). Note that, based on these implementations, we don't 8321 * lock the socket in this function, even though it seems that, 8322 * ideally, locking or some other mechanisms can be used to ensure 8323 * the integrity of the counters (sndbuf and wmem_alloc) used 8324 * in this place. We assume that we don't need locks either until proven 8325 * otherwise. 8326 * 8327 * Another thing to note is that we include the Async I/O support 8328 * here, again, by modeling the current TCP/UDP code. We don't have 8329 * a good way to test with it yet. 8330 */ 8331 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8332 { 8333 struct sock *sk = sock->sk; 8334 struct sctp_sock *sp = sctp_sk(sk); 8335 __poll_t mask; 8336 8337 poll_wait(file, sk_sleep(sk), wait); 8338 8339 sock_rps_record_flow(sk); 8340 8341 /* A TCP-style listening socket becomes readable when the accept queue 8342 * is not empty. 8343 */ 8344 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8345 return (!list_empty(&sp->ep->asocs)) ? 8346 (EPOLLIN | EPOLLRDNORM) : 0; 8347 8348 mask = 0; 8349 8350 /* Is there any exceptional events? */ 8351 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8352 mask |= EPOLLERR | 8353 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8354 if (sk->sk_shutdown & RCV_SHUTDOWN) 8355 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8356 if (sk->sk_shutdown == SHUTDOWN_MASK) 8357 mask |= EPOLLHUP; 8358 8359 /* Is it readable? Reconsider this code with TCP-style support. */ 8360 if (!skb_queue_empty(&sk->sk_receive_queue)) 8361 mask |= EPOLLIN | EPOLLRDNORM; 8362 8363 /* The association is either gone or not ready. */ 8364 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8365 return mask; 8366 8367 /* Is it writable? */ 8368 if (sctp_writeable(sk)) { 8369 mask |= EPOLLOUT | EPOLLWRNORM; 8370 } else { 8371 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8372 /* 8373 * Since the socket is not locked, the buffer 8374 * might be made available after the writeable check and 8375 * before the bit is set. This could cause a lost I/O 8376 * signal. tcp_poll() has a race breaker for this race 8377 * condition. Based on their implementation, we put 8378 * in the following code to cover it as well. 8379 */ 8380 if (sctp_writeable(sk)) 8381 mask |= EPOLLOUT | EPOLLWRNORM; 8382 } 8383 return mask; 8384 } 8385 8386 /******************************************************************** 8387 * 2nd Level Abstractions 8388 ********************************************************************/ 8389 8390 static struct sctp_bind_bucket *sctp_bucket_create( 8391 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8392 { 8393 struct sctp_bind_bucket *pp; 8394 8395 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8396 if (pp) { 8397 SCTP_DBG_OBJCNT_INC(bind_bucket); 8398 pp->port = snum; 8399 pp->fastreuse = 0; 8400 INIT_HLIST_HEAD(&pp->owner); 8401 pp->net = net; 8402 hlist_add_head(&pp->node, &head->chain); 8403 } 8404 return pp; 8405 } 8406 8407 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8408 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8409 { 8410 if (pp && hlist_empty(&pp->owner)) { 8411 __hlist_del(&pp->node); 8412 kmem_cache_free(sctp_bucket_cachep, pp); 8413 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8414 } 8415 } 8416 8417 /* Release this socket's reference to a local port. */ 8418 static inline void __sctp_put_port(struct sock *sk) 8419 { 8420 struct sctp_bind_hashbucket *head = 8421 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8422 inet_sk(sk)->inet_num)]; 8423 struct sctp_bind_bucket *pp; 8424 8425 spin_lock(&head->lock); 8426 pp = sctp_sk(sk)->bind_hash; 8427 __sk_del_bind_node(sk); 8428 sctp_sk(sk)->bind_hash = NULL; 8429 inet_sk(sk)->inet_num = 0; 8430 sctp_bucket_destroy(pp); 8431 spin_unlock(&head->lock); 8432 } 8433 8434 void sctp_put_port(struct sock *sk) 8435 { 8436 local_bh_disable(); 8437 __sctp_put_port(sk); 8438 local_bh_enable(); 8439 } 8440 8441 /* 8442 * The system picks an ephemeral port and choose an address set equivalent 8443 * to binding with a wildcard address. 8444 * One of those addresses will be the primary address for the association. 8445 * This automatically enables the multihoming capability of SCTP. 8446 */ 8447 static int sctp_autobind(struct sock *sk) 8448 { 8449 union sctp_addr autoaddr; 8450 struct sctp_af *af; 8451 __be16 port; 8452 8453 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8454 af = sctp_sk(sk)->pf->af; 8455 8456 port = htons(inet_sk(sk)->inet_num); 8457 af->inaddr_any(&autoaddr, port); 8458 8459 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8460 } 8461 8462 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8463 * 8464 * From RFC 2292 8465 * 4.2 The cmsghdr Structure * 8466 * 8467 * When ancillary data is sent or received, any number of ancillary data 8468 * objects can be specified by the msg_control and msg_controllen members of 8469 * the msghdr structure, because each object is preceded by 8470 * a cmsghdr structure defining the object's length (the cmsg_len member). 8471 * Historically Berkeley-derived implementations have passed only one object 8472 * at a time, but this API allows multiple objects to be 8473 * passed in a single call to sendmsg() or recvmsg(). The following example 8474 * shows two ancillary data objects in a control buffer. 8475 * 8476 * |<--------------------------- msg_controllen -------------------------->| 8477 * | | 8478 * 8479 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8480 * 8481 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8482 * | | | 8483 * 8484 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8485 * 8486 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8487 * | | | | | 8488 * 8489 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8490 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8491 * 8492 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8493 * 8494 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8495 * ^ 8496 * | 8497 * 8498 * msg_control 8499 * points here 8500 */ 8501 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8502 { 8503 struct msghdr *my_msg = (struct msghdr *)msg; 8504 struct cmsghdr *cmsg; 8505 8506 for_each_cmsghdr(cmsg, my_msg) { 8507 if (!CMSG_OK(my_msg, cmsg)) 8508 return -EINVAL; 8509 8510 /* Should we parse this header or ignore? */ 8511 if (cmsg->cmsg_level != IPPROTO_SCTP) 8512 continue; 8513 8514 /* Strictly check lengths following example in SCM code. */ 8515 switch (cmsg->cmsg_type) { 8516 case SCTP_INIT: 8517 /* SCTP Socket API Extension 8518 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8519 * 8520 * This cmsghdr structure provides information for 8521 * initializing new SCTP associations with sendmsg(). 8522 * The SCTP_INITMSG socket option uses this same data 8523 * structure. This structure is not used for 8524 * recvmsg(). 8525 * 8526 * cmsg_level cmsg_type cmsg_data[] 8527 * ------------ ------------ ---------------------- 8528 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8529 */ 8530 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8531 return -EINVAL; 8532 8533 cmsgs->init = CMSG_DATA(cmsg); 8534 break; 8535 8536 case SCTP_SNDRCV: 8537 /* SCTP Socket API Extension 8538 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8539 * 8540 * This cmsghdr structure specifies SCTP options for 8541 * sendmsg() and describes SCTP header information 8542 * about a received message through recvmsg(). 8543 * 8544 * cmsg_level cmsg_type cmsg_data[] 8545 * ------------ ------------ ---------------------- 8546 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8547 */ 8548 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8549 return -EINVAL; 8550 8551 cmsgs->srinfo = CMSG_DATA(cmsg); 8552 8553 if (cmsgs->srinfo->sinfo_flags & 8554 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8555 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8556 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8557 return -EINVAL; 8558 break; 8559 8560 case SCTP_SNDINFO: 8561 /* SCTP Socket API Extension 8562 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8563 * 8564 * This cmsghdr structure specifies SCTP options for 8565 * sendmsg(). This structure and SCTP_RCVINFO replaces 8566 * SCTP_SNDRCV which has been deprecated. 8567 * 8568 * cmsg_level cmsg_type cmsg_data[] 8569 * ------------ ------------ --------------------- 8570 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8571 */ 8572 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8573 return -EINVAL; 8574 8575 cmsgs->sinfo = CMSG_DATA(cmsg); 8576 8577 if (cmsgs->sinfo->snd_flags & 8578 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8579 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8580 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8581 return -EINVAL; 8582 break; 8583 case SCTP_PRINFO: 8584 /* SCTP Socket API Extension 8585 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8586 * 8587 * This cmsghdr structure specifies SCTP options for sendmsg(). 8588 * 8589 * cmsg_level cmsg_type cmsg_data[] 8590 * ------------ ------------ --------------------- 8591 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8592 */ 8593 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8594 return -EINVAL; 8595 8596 cmsgs->prinfo = CMSG_DATA(cmsg); 8597 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8598 return -EINVAL; 8599 8600 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8601 cmsgs->prinfo->pr_value = 0; 8602 break; 8603 case SCTP_AUTHINFO: 8604 /* SCTP Socket API Extension 8605 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8606 * 8607 * This cmsghdr structure specifies SCTP options for sendmsg(). 8608 * 8609 * cmsg_level cmsg_type cmsg_data[] 8610 * ------------ ------------ --------------------- 8611 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8612 */ 8613 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8614 return -EINVAL; 8615 8616 cmsgs->authinfo = CMSG_DATA(cmsg); 8617 break; 8618 case SCTP_DSTADDRV4: 8619 case SCTP_DSTADDRV6: 8620 /* SCTP Socket API Extension 8621 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8622 * 8623 * This cmsghdr structure specifies SCTP options for sendmsg(). 8624 * 8625 * cmsg_level cmsg_type cmsg_data[] 8626 * ------------ ------------ --------------------- 8627 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8628 * ------------ ------------ --------------------- 8629 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8630 */ 8631 cmsgs->addrs_msg = my_msg; 8632 break; 8633 default: 8634 return -EINVAL; 8635 } 8636 } 8637 8638 return 0; 8639 } 8640 8641 /* 8642 * Wait for a packet.. 8643 * Note: This function is the same function as in core/datagram.c 8644 * with a few modifications to make lksctp work. 8645 */ 8646 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8647 { 8648 int error; 8649 DEFINE_WAIT(wait); 8650 8651 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8652 8653 /* Socket errors? */ 8654 error = sock_error(sk); 8655 if (error) 8656 goto out; 8657 8658 if (!skb_queue_empty(&sk->sk_receive_queue)) 8659 goto ready; 8660 8661 /* Socket shut down? */ 8662 if (sk->sk_shutdown & RCV_SHUTDOWN) 8663 goto out; 8664 8665 /* Sequenced packets can come disconnected. If so we report the 8666 * problem. 8667 */ 8668 error = -ENOTCONN; 8669 8670 /* Is there a good reason to think that we may receive some data? */ 8671 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8672 goto out; 8673 8674 /* Handle signals. */ 8675 if (signal_pending(current)) 8676 goto interrupted; 8677 8678 /* Let another process have a go. Since we are going to sleep 8679 * anyway. Note: This may cause odd behaviors if the message 8680 * does not fit in the user's buffer, but this seems to be the 8681 * only way to honor MSG_DONTWAIT realistically. 8682 */ 8683 release_sock(sk); 8684 *timeo_p = schedule_timeout(*timeo_p); 8685 lock_sock(sk); 8686 8687 ready: 8688 finish_wait(sk_sleep(sk), &wait); 8689 return 0; 8690 8691 interrupted: 8692 error = sock_intr_errno(*timeo_p); 8693 8694 out: 8695 finish_wait(sk_sleep(sk), &wait); 8696 *err = error; 8697 return error; 8698 } 8699 8700 /* Receive a datagram. 8701 * Note: This is pretty much the same routine as in core/datagram.c 8702 * with a few changes to make lksctp work. 8703 */ 8704 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8705 int noblock, int *err) 8706 { 8707 int error; 8708 struct sk_buff *skb; 8709 long timeo; 8710 8711 timeo = sock_rcvtimeo(sk, noblock); 8712 8713 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8714 MAX_SCHEDULE_TIMEOUT); 8715 8716 do { 8717 /* Again only user level code calls this function, 8718 * so nothing interrupt level 8719 * will suddenly eat the receive_queue. 8720 * 8721 * Look at current nfs client by the way... 8722 * However, this function was correct in any case. 8) 8723 */ 8724 if (flags & MSG_PEEK) { 8725 skb = skb_peek(&sk->sk_receive_queue); 8726 if (skb) 8727 refcount_inc(&skb->users); 8728 } else { 8729 skb = __skb_dequeue(&sk->sk_receive_queue); 8730 } 8731 8732 if (skb) 8733 return skb; 8734 8735 /* Caller is allowed not to check sk->sk_err before calling. */ 8736 error = sock_error(sk); 8737 if (error) 8738 goto no_packet; 8739 8740 if (sk->sk_shutdown & RCV_SHUTDOWN) 8741 break; 8742 8743 if (sk_can_busy_loop(sk)) { 8744 sk_busy_loop(sk, noblock); 8745 8746 if (!skb_queue_empty(&sk->sk_receive_queue)) 8747 continue; 8748 } 8749 8750 /* User doesn't want to wait. */ 8751 error = -EAGAIN; 8752 if (!timeo) 8753 goto no_packet; 8754 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8755 8756 return NULL; 8757 8758 no_packet: 8759 *err = error; 8760 return NULL; 8761 } 8762 8763 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8764 static void __sctp_write_space(struct sctp_association *asoc) 8765 { 8766 struct sock *sk = asoc->base.sk; 8767 8768 if (sctp_wspace(asoc) <= 0) 8769 return; 8770 8771 if (waitqueue_active(&asoc->wait)) 8772 wake_up_interruptible(&asoc->wait); 8773 8774 if (sctp_writeable(sk)) { 8775 struct socket_wq *wq; 8776 8777 rcu_read_lock(); 8778 wq = rcu_dereference(sk->sk_wq); 8779 if (wq) { 8780 if (waitqueue_active(&wq->wait)) 8781 wake_up_interruptible(&wq->wait); 8782 8783 /* Note that we try to include the Async I/O support 8784 * here by modeling from the current TCP/UDP code. 8785 * We have not tested with it yet. 8786 */ 8787 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8788 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8789 } 8790 rcu_read_unlock(); 8791 } 8792 } 8793 8794 static void sctp_wake_up_waiters(struct sock *sk, 8795 struct sctp_association *asoc) 8796 { 8797 struct sctp_association *tmp = asoc; 8798 8799 /* We do accounting for the sndbuf space per association, 8800 * so we only need to wake our own association. 8801 */ 8802 if (asoc->ep->sndbuf_policy) 8803 return __sctp_write_space(asoc); 8804 8805 /* If association goes down and is just flushing its 8806 * outq, then just normally notify others. 8807 */ 8808 if (asoc->base.dead) 8809 return sctp_write_space(sk); 8810 8811 /* Accounting for the sndbuf space is per socket, so we 8812 * need to wake up others, try to be fair and in case of 8813 * other associations, let them have a go first instead 8814 * of just doing a sctp_write_space() call. 8815 * 8816 * Note that we reach sctp_wake_up_waiters() only when 8817 * associations free up queued chunks, thus we are under 8818 * lock and the list of associations on a socket is 8819 * guaranteed not to change. 8820 */ 8821 for (tmp = list_next_entry(tmp, asocs); 1; 8822 tmp = list_next_entry(tmp, asocs)) { 8823 /* Manually skip the head element. */ 8824 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8825 continue; 8826 /* Wake up association. */ 8827 __sctp_write_space(tmp); 8828 /* We've reached the end. */ 8829 if (tmp == asoc) 8830 break; 8831 } 8832 } 8833 8834 /* Do accounting for the sndbuf space. 8835 * Decrement the used sndbuf space of the corresponding association by the 8836 * data size which was just transmitted(freed). 8837 */ 8838 static void sctp_wfree(struct sk_buff *skb) 8839 { 8840 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8841 struct sctp_association *asoc = chunk->asoc; 8842 struct sock *sk = asoc->base.sk; 8843 8844 sk_mem_uncharge(sk, skb->truesize); 8845 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8846 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8847 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8848 &sk->sk_wmem_alloc)); 8849 8850 if (chunk->shkey) { 8851 struct sctp_shared_key *shkey = chunk->shkey; 8852 8853 /* refcnt == 2 and !list_empty mean after this release, it's 8854 * not being used anywhere, and it's time to notify userland 8855 * that this shkey can be freed if it's been deactivated. 8856 */ 8857 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8858 refcount_read(&shkey->refcnt) == 2) { 8859 struct sctp_ulpevent *ev; 8860 8861 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8862 SCTP_AUTH_FREE_KEY, 8863 GFP_KERNEL); 8864 if (ev) 8865 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8866 } 8867 sctp_auth_shkey_release(chunk->shkey); 8868 } 8869 8870 sock_wfree(skb); 8871 sctp_wake_up_waiters(sk, asoc); 8872 8873 sctp_association_put(asoc); 8874 } 8875 8876 /* Do accounting for the receive space on the socket. 8877 * Accounting for the association is done in ulpevent.c 8878 * We set this as a destructor for the cloned data skbs so that 8879 * accounting is done at the correct time. 8880 */ 8881 void sctp_sock_rfree(struct sk_buff *skb) 8882 { 8883 struct sock *sk = skb->sk; 8884 struct sctp_ulpevent *event = sctp_skb2event(skb); 8885 8886 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8887 8888 /* 8889 * Mimic the behavior of sock_rfree 8890 */ 8891 sk_mem_uncharge(sk, event->rmem_len); 8892 } 8893 8894 8895 /* Helper function to wait for space in the sndbuf. */ 8896 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8897 size_t msg_len) 8898 { 8899 struct sock *sk = asoc->base.sk; 8900 long current_timeo = *timeo_p; 8901 DEFINE_WAIT(wait); 8902 int err = 0; 8903 8904 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8905 *timeo_p, msg_len); 8906 8907 /* Increment the association's refcnt. */ 8908 sctp_association_hold(asoc); 8909 8910 /* Wait on the association specific sndbuf space. */ 8911 for (;;) { 8912 prepare_to_wait_exclusive(&asoc->wait, &wait, 8913 TASK_INTERRUPTIBLE); 8914 if (asoc->base.dead) 8915 goto do_dead; 8916 if (!*timeo_p) 8917 goto do_nonblock; 8918 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8919 goto do_error; 8920 if (signal_pending(current)) 8921 goto do_interrupted; 8922 if (sk_under_memory_pressure(sk)) 8923 sk_mem_reclaim(sk); 8924 if ((int)msg_len <= sctp_wspace(asoc) && 8925 sk_wmem_schedule(sk, msg_len)) 8926 break; 8927 8928 /* Let another process have a go. Since we are going 8929 * to sleep anyway. 8930 */ 8931 release_sock(sk); 8932 current_timeo = schedule_timeout(current_timeo); 8933 lock_sock(sk); 8934 if (sk != asoc->base.sk) 8935 goto do_error; 8936 8937 *timeo_p = current_timeo; 8938 } 8939 8940 out: 8941 finish_wait(&asoc->wait, &wait); 8942 8943 /* Release the association's refcnt. */ 8944 sctp_association_put(asoc); 8945 8946 return err; 8947 8948 do_dead: 8949 err = -ESRCH; 8950 goto out; 8951 8952 do_error: 8953 err = -EPIPE; 8954 goto out; 8955 8956 do_interrupted: 8957 err = sock_intr_errno(*timeo_p); 8958 goto out; 8959 8960 do_nonblock: 8961 err = -EAGAIN; 8962 goto out; 8963 } 8964 8965 void sctp_data_ready(struct sock *sk) 8966 { 8967 struct socket_wq *wq; 8968 8969 rcu_read_lock(); 8970 wq = rcu_dereference(sk->sk_wq); 8971 if (skwq_has_sleeper(wq)) 8972 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8973 EPOLLRDNORM | EPOLLRDBAND); 8974 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8975 rcu_read_unlock(); 8976 } 8977 8978 /* If socket sndbuf has changed, wake up all per association waiters. */ 8979 void sctp_write_space(struct sock *sk) 8980 { 8981 struct sctp_association *asoc; 8982 8983 /* Wake up the tasks in each wait queue. */ 8984 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8985 __sctp_write_space(asoc); 8986 } 8987 } 8988 8989 /* Is there any sndbuf space available on the socket? 8990 * 8991 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8992 * associations on the same socket. For a UDP-style socket with 8993 * multiple associations, it is possible for it to be "unwriteable" 8994 * prematurely. I assume that this is acceptable because 8995 * a premature "unwriteable" is better than an accidental "writeable" which 8996 * would cause an unwanted block under certain circumstances. For the 1-1 8997 * UDP-style sockets or TCP-style sockets, this code should work. 8998 * - Daisy 8999 */ 9000 static bool sctp_writeable(struct sock *sk) 9001 { 9002 return sk->sk_sndbuf > sk->sk_wmem_queued; 9003 } 9004 9005 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9006 * returns immediately with EINPROGRESS. 9007 */ 9008 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9009 { 9010 struct sock *sk = asoc->base.sk; 9011 int err = 0; 9012 long current_timeo = *timeo_p; 9013 DEFINE_WAIT(wait); 9014 9015 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9016 9017 /* Increment the association's refcnt. */ 9018 sctp_association_hold(asoc); 9019 9020 for (;;) { 9021 prepare_to_wait_exclusive(&asoc->wait, &wait, 9022 TASK_INTERRUPTIBLE); 9023 if (!*timeo_p) 9024 goto do_nonblock; 9025 if (sk->sk_shutdown & RCV_SHUTDOWN) 9026 break; 9027 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9028 asoc->base.dead) 9029 goto do_error; 9030 if (signal_pending(current)) 9031 goto do_interrupted; 9032 9033 if (sctp_state(asoc, ESTABLISHED)) 9034 break; 9035 9036 /* Let another process have a go. Since we are going 9037 * to sleep anyway. 9038 */ 9039 release_sock(sk); 9040 current_timeo = schedule_timeout(current_timeo); 9041 lock_sock(sk); 9042 9043 *timeo_p = current_timeo; 9044 } 9045 9046 out: 9047 finish_wait(&asoc->wait, &wait); 9048 9049 /* Release the association's refcnt. */ 9050 sctp_association_put(asoc); 9051 9052 return err; 9053 9054 do_error: 9055 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9056 err = -ETIMEDOUT; 9057 else 9058 err = -ECONNREFUSED; 9059 goto out; 9060 9061 do_interrupted: 9062 err = sock_intr_errno(*timeo_p); 9063 goto out; 9064 9065 do_nonblock: 9066 err = -EINPROGRESS; 9067 goto out; 9068 } 9069 9070 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9071 { 9072 struct sctp_endpoint *ep; 9073 int err = 0; 9074 DEFINE_WAIT(wait); 9075 9076 ep = sctp_sk(sk)->ep; 9077 9078 9079 for (;;) { 9080 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9081 TASK_INTERRUPTIBLE); 9082 9083 if (list_empty(&ep->asocs)) { 9084 release_sock(sk); 9085 timeo = schedule_timeout(timeo); 9086 lock_sock(sk); 9087 } 9088 9089 err = -EINVAL; 9090 if (!sctp_sstate(sk, LISTENING)) 9091 break; 9092 9093 err = 0; 9094 if (!list_empty(&ep->asocs)) 9095 break; 9096 9097 err = sock_intr_errno(timeo); 9098 if (signal_pending(current)) 9099 break; 9100 9101 err = -EAGAIN; 9102 if (!timeo) 9103 break; 9104 } 9105 9106 finish_wait(sk_sleep(sk), &wait); 9107 9108 return err; 9109 } 9110 9111 static void sctp_wait_for_close(struct sock *sk, long timeout) 9112 { 9113 DEFINE_WAIT(wait); 9114 9115 do { 9116 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9117 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9118 break; 9119 release_sock(sk); 9120 timeout = schedule_timeout(timeout); 9121 lock_sock(sk); 9122 } while (!signal_pending(current) && timeout); 9123 9124 finish_wait(sk_sleep(sk), &wait); 9125 } 9126 9127 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9128 { 9129 struct sk_buff *frag; 9130 9131 if (!skb->data_len) 9132 goto done; 9133 9134 /* Don't forget the fragments. */ 9135 skb_walk_frags(skb, frag) 9136 sctp_skb_set_owner_r_frag(frag, sk); 9137 9138 done: 9139 sctp_skb_set_owner_r(skb, sk); 9140 } 9141 9142 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9143 struct sctp_association *asoc) 9144 { 9145 struct inet_sock *inet = inet_sk(sk); 9146 struct inet_sock *newinet; 9147 struct sctp_sock *sp = sctp_sk(sk); 9148 struct sctp_endpoint *ep = sp->ep; 9149 9150 newsk->sk_type = sk->sk_type; 9151 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9152 newsk->sk_flags = sk->sk_flags; 9153 newsk->sk_tsflags = sk->sk_tsflags; 9154 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9155 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9156 newsk->sk_reuse = sk->sk_reuse; 9157 sctp_sk(newsk)->reuse = sp->reuse; 9158 9159 newsk->sk_shutdown = sk->sk_shutdown; 9160 newsk->sk_destruct = sctp_destruct_sock; 9161 newsk->sk_family = sk->sk_family; 9162 newsk->sk_protocol = IPPROTO_SCTP; 9163 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9164 newsk->sk_sndbuf = sk->sk_sndbuf; 9165 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9166 newsk->sk_lingertime = sk->sk_lingertime; 9167 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9168 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9169 newsk->sk_rxhash = sk->sk_rxhash; 9170 9171 newinet = inet_sk(newsk); 9172 9173 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9174 * getsockname() and getpeername() 9175 */ 9176 newinet->inet_sport = inet->inet_sport; 9177 newinet->inet_saddr = inet->inet_saddr; 9178 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9179 newinet->inet_dport = htons(asoc->peer.port); 9180 newinet->pmtudisc = inet->pmtudisc; 9181 newinet->inet_id = asoc->next_tsn ^ jiffies; 9182 9183 newinet->uc_ttl = inet->uc_ttl; 9184 newinet->mc_loop = 1; 9185 newinet->mc_ttl = 1; 9186 newinet->mc_index = 0; 9187 newinet->mc_list = NULL; 9188 9189 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9190 net_enable_timestamp(); 9191 9192 /* Set newsk security attributes from orginal sk and connection 9193 * security attribute from ep. 9194 */ 9195 security_sctp_sk_clone(ep, sk, newsk); 9196 } 9197 9198 static inline void sctp_copy_descendant(struct sock *sk_to, 9199 const struct sock *sk_from) 9200 { 9201 int ancestor_size = sizeof(struct inet_sock) + 9202 sizeof(struct sctp_sock) - 9203 offsetof(struct sctp_sock, pd_lobby); 9204 9205 if (sk_from->sk_family == PF_INET6) 9206 ancestor_size += sizeof(struct ipv6_pinfo); 9207 9208 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9209 } 9210 9211 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9212 * and its messages to the newsk. 9213 */ 9214 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9215 struct sctp_association *assoc, 9216 enum sctp_socket_type type) 9217 { 9218 struct sctp_sock *oldsp = sctp_sk(oldsk); 9219 struct sctp_sock *newsp = sctp_sk(newsk); 9220 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9221 struct sctp_endpoint *newep = newsp->ep; 9222 struct sk_buff *skb, *tmp; 9223 struct sctp_ulpevent *event; 9224 struct sctp_bind_hashbucket *head; 9225 int err; 9226 9227 /* Migrate socket buffer sizes and all the socket level options to the 9228 * new socket. 9229 */ 9230 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9231 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9232 /* Brute force copy old sctp opt. */ 9233 sctp_copy_descendant(newsk, oldsk); 9234 9235 /* Restore the ep value that was overwritten with the above structure 9236 * copy. 9237 */ 9238 newsp->ep = newep; 9239 newsp->hmac = NULL; 9240 9241 /* Hook this new socket in to the bind_hash list. */ 9242 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9243 inet_sk(oldsk)->inet_num)]; 9244 spin_lock_bh(&head->lock); 9245 pp = sctp_sk(oldsk)->bind_hash; 9246 sk_add_bind_node(newsk, &pp->owner); 9247 sctp_sk(newsk)->bind_hash = pp; 9248 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9249 spin_unlock_bh(&head->lock); 9250 9251 /* Copy the bind_addr list from the original endpoint to the new 9252 * endpoint so that we can handle restarts properly 9253 */ 9254 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9255 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9256 if (err) 9257 return err; 9258 9259 /* New ep's auth_hmacs should be set if old ep's is set, in case 9260 * that net->sctp.auth_enable has been changed to 0 by users and 9261 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9262 */ 9263 if (oldsp->ep->auth_hmacs) { 9264 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9265 if (err) 9266 return err; 9267 } 9268 9269 /* Move any messages in the old socket's receive queue that are for the 9270 * peeled off association to the new socket's receive queue. 9271 */ 9272 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9273 event = sctp_skb2event(skb); 9274 if (event->asoc == assoc) { 9275 __skb_unlink(skb, &oldsk->sk_receive_queue); 9276 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9277 sctp_skb_set_owner_r_frag(skb, newsk); 9278 } 9279 } 9280 9281 /* Clean up any messages pending delivery due to partial 9282 * delivery. Three cases: 9283 * 1) No partial deliver; no work. 9284 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9285 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9286 */ 9287 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9288 9289 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9290 struct sk_buff_head *queue; 9291 9292 /* Decide which queue to move pd_lobby skbs to. */ 9293 if (assoc->ulpq.pd_mode) { 9294 queue = &newsp->pd_lobby; 9295 } else 9296 queue = &newsk->sk_receive_queue; 9297 9298 /* Walk through the pd_lobby, looking for skbs that 9299 * need moved to the new socket. 9300 */ 9301 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9302 event = sctp_skb2event(skb); 9303 if (event->asoc == assoc) { 9304 __skb_unlink(skb, &oldsp->pd_lobby); 9305 __skb_queue_tail(queue, skb); 9306 sctp_skb_set_owner_r_frag(skb, newsk); 9307 } 9308 } 9309 9310 /* Clear up any skbs waiting for the partial 9311 * delivery to finish. 9312 */ 9313 if (assoc->ulpq.pd_mode) 9314 sctp_clear_pd(oldsk, NULL); 9315 9316 } 9317 9318 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9319 9320 /* Set the type of socket to indicate that it is peeled off from the 9321 * original UDP-style socket or created with the accept() call on a 9322 * TCP-style socket.. 9323 */ 9324 newsp->type = type; 9325 9326 /* Mark the new socket "in-use" by the user so that any packets 9327 * that may arrive on the association after we've moved it are 9328 * queued to the backlog. This prevents a potential race between 9329 * backlog processing on the old socket and new-packet processing 9330 * on the new socket. 9331 * 9332 * The caller has just allocated newsk so we can guarantee that other 9333 * paths won't try to lock it and then oldsk. 9334 */ 9335 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9336 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9337 sctp_assoc_migrate(assoc, newsk); 9338 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9339 9340 /* If the association on the newsk is already closed before accept() 9341 * is called, set RCV_SHUTDOWN flag. 9342 */ 9343 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9344 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9345 newsk->sk_shutdown |= RCV_SHUTDOWN; 9346 } else { 9347 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9348 } 9349 9350 release_sock(newsk); 9351 9352 return 0; 9353 } 9354 9355 9356 /* This proto struct describes the ULP interface for SCTP. */ 9357 struct proto sctp_prot = { 9358 .name = "SCTP", 9359 .owner = THIS_MODULE, 9360 .close = sctp_close, 9361 .disconnect = sctp_disconnect, 9362 .accept = sctp_accept, 9363 .ioctl = sctp_ioctl, 9364 .init = sctp_init_sock, 9365 .destroy = sctp_destroy_sock, 9366 .shutdown = sctp_shutdown, 9367 .setsockopt = sctp_setsockopt, 9368 .getsockopt = sctp_getsockopt, 9369 .sendmsg = sctp_sendmsg, 9370 .recvmsg = sctp_recvmsg, 9371 .bind = sctp_bind, 9372 .backlog_rcv = sctp_backlog_rcv, 9373 .hash = sctp_hash, 9374 .unhash = sctp_unhash, 9375 .get_port = sctp_get_port, 9376 .obj_size = sizeof(struct sctp_sock), 9377 .useroffset = offsetof(struct sctp_sock, subscribe), 9378 .usersize = offsetof(struct sctp_sock, initmsg) - 9379 offsetof(struct sctp_sock, subscribe) + 9380 sizeof_field(struct sctp_sock, initmsg), 9381 .sysctl_mem = sysctl_sctp_mem, 9382 .sysctl_rmem = sysctl_sctp_rmem, 9383 .sysctl_wmem = sysctl_sctp_wmem, 9384 .memory_pressure = &sctp_memory_pressure, 9385 .enter_memory_pressure = sctp_enter_memory_pressure, 9386 .memory_allocated = &sctp_memory_allocated, 9387 .sockets_allocated = &sctp_sockets_allocated, 9388 }; 9389 9390 #if IS_ENABLED(CONFIG_IPV6) 9391 9392 #include <net/transp_v6.h> 9393 static void sctp_v6_destroy_sock(struct sock *sk) 9394 { 9395 sctp_destroy_sock(sk); 9396 inet6_destroy_sock(sk); 9397 } 9398 9399 struct proto sctpv6_prot = { 9400 .name = "SCTPv6", 9401 .owner = THIS_MODULE, 9402 .close = sctp_close, 9403 .disconnect = sctp_disconnect, 9404 .accept = sctp_accept, 9405 .ioctl = sctp_ioctl, 9406 .init = sctp_init_sock, 9407 .destroy = sctp_v6_destroy_sock, 9408 .shutdown = sctp_shutdown, 9409 .setsockopt = sctp_setsockopt, 9410 .getsockopt = sctp_getsockopt, 9411 .sendmsg = sctp_sendmsg, 9412 .recvmsg = sctp_recvmsg, 9413 .bind = sctp_bind, 9414 .backlog_rcv = sctp_backlog_rcv, 9415 .hash = sctp_hash, 9416 .unhash = sctp_unhash, 9417 .get_port = sctp_get_port, 9418 .obj_size = sizeof(struct sctp6_sock), 9419 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9420 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9421 offsetof(struct sctp6_sock, sctp.subscribe) + 9422 sizeof_field(struct sctp6_sock, sctp.initmsg), 9423 .sysctl_mem = sysctl_sctp_mem, 9424 .sysctl_rmem = sysctl_sctp_rmem, 9425 .sysctl_wmem = sysctl_sctp_wmem, 9426 .memory_pressure = &sctp_memory_pressure, 9427 .enter_memory_pressure = sctp_enter_memory_pressure, 9428 .memory_allocated = &sctp_memory_allocated, 9429 .sockets_allocated = &sctp_sockets_allocated, 9430 }; 9431 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9432