1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (!id || (id == (sctp_assoc_t)-1)) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = vmemdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kvfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kvfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kvfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = vmemdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kvfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 1870 return 0; 1871 } 1872 1873 return 1; 1874 } 1875 1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1877 struct msghdr *msg, size_t msg_len, 1878 struct sctp_transport *transport, 1879 struct sctp_sndrcvinfo *sinfo) 1880 { 1881 struct sock *sk = asoc->base.sk; 1882 struct sctp_sock *sp = sctp_sk(sk); 1883 struct net *net = sock_net(sk); 1884 struct sctp_datamsg *datamsg; 1885 bool wait_connect = false; 1886 struct sctp_chunk *chunk; 1887 long timeo; 1888 int err; 1889 1890 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1891 err = -EINVAL; 1892 goto err; 1893 } 1894 1895 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1896 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1897 if (err) 1898 goto err; 1899 } 1900 1901 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1902 err = -EMSGSIZE; 1903 goto err; 1904 } 1905 1906 if (asoc->pmtu_pending) { 1907 if (sp->param_flags & SPP_PMTUD_ENABLE) 1908 sctp_assoc_sync_pmtu(asoc); 1909 asoc->pmtu_pending = 0; 1910 } 1911 1912 if (sctp_wspace(asoc) < (int)msg_len) 1913 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1914 1915 if (sctp_wspace(asoc) <= 0) { 1916 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1918 if (err) 1919 goto err; 1920 } 1921 1922 if (sctp_state(asoc, CLOSED)) { 1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1924 if (err) 1925 goto err; 1926 1927 if (sp->strm_interleave) { 1928 timeo = sock_sndtimeo(sk, 0); 1929 err = sctp_wait_for_connect(asoc, &timeo); 1930 if (err) { 1931 err = -ESRCH; 1932 goto err; 1933 } 1934 } else { 1935 wait_connect = true; 1936 } 1937 1938 pr_debug("%s: we associated primitively\n", __func__); 1939 } 1940 1941 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1942 if (IS_ERR(datamsg)) { 1943 err = PTR_ERR(datamsg); 1944 goto err; 1945 } 1946 1947 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1948 1949 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1950 sctp_chunk_hold(chunk); 1951 sctp_set_owner_w(chunk); 1952 chunk->transport = transport; 1953 } 1954 1955 err = sctp_primitive_SEND(net, asoc, datamsg); 1956 if (err) { 1957 sctp_datamsg_free(datamsg); 1958 goto err; 1959 } 1960 1961 pr_debug("%s: we sent primitively\n", __func__); 1962 1963 sctp_datamsg_put(datamsg); 1964 1965 if (unlikely(wait_connect)) { 1966 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1967 sctp_wait_for_connect(asoc, &timeo); 1968 } 1969 1970 err = msg_len; 1971 1972 err: 1973 return err; 1974 } 1975 1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1977 const struct msghdr *msg, 1978 struct sctp_cmsgs *cmsgs) 1979 { 1980 union sctp_addr *daddr = NULL; 1981 int err; 1982 1983 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1984 int len = msg->msg_namelen; 1985 1986 if (len > sizeof(*daddr)) 1987 len = sizeof(*daddr); 1988 1989 daddr = (union sctp_addr *)msg->msg_name; 1990 1991 err = sctp_verify_addr(sk, daddr, len); 1992 if (err) 1993 return ERR_PTR(err); 1994 } 1995 1996 return daddr; 1997 } 1998 1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2000 struct sctp_sndrcvinfo *sinfo, 2001 struct sctp_cmsgs *cmsgs) 2002 { 2003 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2004 sinfo->sinfo_stream = asoc->default_stream; 2005 sinfo->sinfo_ppid = asoc->default_ppid; 2006 sinfo->sinfo_context = asoc->default_context; 2007 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2008 2009 if (!cmsgs->prinfo) 2010 sinfo->sinfo_flags = asoc->default_flags; 2011 } 2012 2013 if (!cmsgs->srinfo && !cmsgs->prinfo) 2014 sinfo->sinfo_timetolive = asoc->default_timetolive; 2015 2016 if (cmsgs->authinfo) { 2017 /* Reuse sinfo_tsn to indicate that authinfo was set and 2018 * sinfo_ssn to save the keyid on tx path. 2019 */ 2020 sinfo->sinfo_tsn = 1; 2021 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2022 } 2023 } 2024 2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2026 { 2027 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2028 struct sctp_transport *transport = NULL; 2029 struct sctp_sndrcvinfo _sinfo, *sinfo; 2030 struct sctp_association *asoc; 2031 struct sctp_cmsgs cmsgs; 2032 union sctp_addr *daddr; 2033 bool new = false; 2034 __u16 sflags; 2035 int err; 2036 2037 /* Parse and get snd_info */ 2038 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2039 if (err) 2040 goto out; 2041 2042 sinfo = &_sinfo; 2043 sflags = sinfo->sinfo_flags; 2044 2045 /* Get daddr from msg */ 2046 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2047 if (IS_ERR(daddr)) { 2048 err = PTR_ERR(daddr); 2049 goto out; 2050 } 2051 2052 lock_sock(sk); 2053 2054 /* SCTP_SENDALL process */ 2055 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2056 list_for_each_entry(asoc, &ep->asocs, asocs) { 2057 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2058 msg_len); 2059 if (err == 0) 2060 continue; 2061 if (err < 0) 2062 goto out_unlock; 2063 2064 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2065 2066 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2067 NULL, sinfo); 2068 if (err < 0) 2069 goto out_unlock; 2070 2071 iov_iter_revert(&msg->msg_iter, err); 2072 } 2073 2074 goto out_unlock; 2075 } 2076 2077 /* Get and check or create asoc */ 2078 if (daddr) { 2079 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2080 if (asoc) { 2081 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2082 msg_len); 2083 if (err <= 0) 2084 goto out_unlock; 2085 } else { 2086 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2087 &transport); 2088 if (err) 2089 goto out_unlock; 2090 2091 asoc = transport->asoc; 2092 new = true; 2093 } 2094 2095 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2096 transport = NULL; 2097 } else { 2098 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2099 if (!asoc) { 2100 err = -EPIPE; 2101 goto out_unlock; 2102 } 2103 2104 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2105 if (err <= 0) 2106 goto out_unlock; 2107 } 2108 2109 /* Update snd_info with the asoc */ 2110 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2111 2112 /* Send msg to the asoc */ 2113 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2114 if (err < 0 && err != -ESRCH && new) 2115 sctp_association_free(asoc); 2116 2117 out_unlock: 2118 release_sock(sk); 2119 out: 2120 return sctp_error(sk, msg->msg_flags, err); 2121 } 2122 2123 /* This is an extended version of skb_pull() that removes the data from the 2124 * start of a skb even when data is spread across the list of skb's in the 2125 * frag_list. len specifies the total amount of data that needs to be removed. 2126 * when 'len' bytes could be removed from the skb, it returns 0. 2127 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2128 * could not be removed. 2129 */ 2130 static int sctp_skb_pull(struct sk_buff *skb, int len) 2131 { 2132 struct sk_buff *list; 2133 int skb_len = skb_headlen(skb); 2134 int rlen; 2135 2136 if (len <= skb_len) { 2137 __skb_pull(skb, len); 2138 return 0; 2139 } 2140 len -= skb_len; 2141 __skb_pull(skb, skb_len); 2142 2143 skb_walk_frags(skb, list) { 2144 rlen = sctp_skb_pull(list, len); 2145 skb->len -= (len-rlen); 2146 skb->data_len -= (len-rlen); 2147 2148 if (!rlen) 2149 return 0; 2150 2151 len = rlen; 2152 } 2153 2154 return len; 2155 } 2156 2157 /* API 3.1.3 recvmsg() - UDP Style Syntax 2158 * 2159 * ssize_t recvmsg(int socket, struct msghdr *message, 2160 * int flags); 2161 * 2162 * socket - the socket descriptor of the endpoint. 2163 * message - pointer to the msghdr structure which contains a single 2164 * user message and possibly some ancillary data. 2165 * 2166 * See Section 5 for complete description of the data 2167 * structures. 2168 * 2169 * flags - flags sent or received with the user message, see Section 2170 * 5 for complete description of the flags. 2171 */ 2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2173 int noblock, int flags, int *addr_len) 2174 { 2175 struct sctp_ulpevent *event = NULL; 2176 struct sctp_sock *sp = sctp_sk(sk); 2177 struct sk_buff *skb, *head_skb; 2178 int copied; 2179 int err = 0; 2180 int skb_len; 2181 2182 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2183 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2184 addr_len); 2185 2186 lock_sock(sk); 2187 2188 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2189 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2190 err = -ENOTCONN; 2191 goto out; 2192 } 2193 2194 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2195 if (!skb) 2196 goto out; 2197 2198 /* Get the total length of the skb including any skb's in the 2199 * frag_list. 2200 */ 2201 skb_len = skb->len; 2202 2203 copied = skb_len; 2204 if (copied > len) 2205 copied = len; 2206 2207 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2208 2209 event = sctp_skb2event(skb); 2210 2211 if (err) 2212 goto out_free; 2213 2214 if (event->chunk && event->chunk->head_skb) 2215 head_skb = event->chunk->head_skb; 2216 else 2217 head_skb = skb; 2218 sock_recv_ts_and_drops(msg, sk, head_skb); 2219 if (sctp_ulpevent_is_notification(event)) { 2220 msg->msg_flags |= MSG_NOTIFICATION; 2221 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2222 } else { 2223 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2224 } 2225 2226 /* Check if we allow SCTP_NXTINFO. */ 2227 if (sp->recvnxtinfo) 2228 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2229 /* Check if we allow SCTP_RCVINFO. */ 2230 if (sp->recvrcvinfo) 2231 sctp_ulpevent_read_rcvinfo(event, msg); 2232 /* Check if we allow SCTP_SNDRCVINFO. */ 2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2234 sctp_ulpevent_read_sndrcvinfo(event, msg); 2235 2236 err = copied; 2237 2238 /* If skb's length exceeds the user's buffer, update the skb and 2239 * push it back to the receive_queue so that the next call to 2240 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2241 */ 2242 if (skb_len > copied) { 2243 msg->msg_flags &= ~MSG_EOR; 2244 if (flags & MSG_PEEK) 2245 goto out_free; 2246 sctp_skb_pull(skb, copied); 2247 skb_queue_head(&sk->sk_receive_queue, skb); 2248 2249 /* When only partial message is copied to the user, increase 2250 * rwnd by that amount. If all the data in the skb is read, 2251 * rwnd is updated when the event is freed. 2252 */ 2253 if (!sctp_ulpevent_is_notification(event)) 2254 sctp_assoc_rwnd_increase(event->asoc, copied); 2255 goto out; 2256 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2257 (event->msg_flags & MSG_EOR)) 2258 msg->msg_flags |= MSG_EOR; 2259 else 2260 msg->msg_flags &= ~MSG_EOR; 2261 2262 out_free: 2263 if (flags & MSG_PEEK) { 2264 /* Release the skb reference acquired after peeking the skb in 2265 * sctp_skb_recv_datagram(). 2266 */ 2267 kfree_skb(skb); 2268 } else { 2269 /* Free the event which includes releasing the reference to 2270 * the owner of the skb, freeing the skb and updating the 2271 * rwnd. 2272 */ 2273 sctp_ulpevent_free(event); 2274 } 2275 out: 2276 release_sock(sk); 2277 return err; 2278 } 2279 2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2281 * 2282 * This option is a on/off flag. If enabled no SCTP message 2283 * fragmentation will be performed. Instead if a message being sent 2284 * exceeds the current PMTU size, the message will NOT be sent and 2285 * instead a error will be indicated to the user. 2286 */ 2287 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2288 char __user *optval, 2289 unsigned int optlen) 2290 { 2291 int val; 2292 2293 if (optlen < sizeof(int)) 2294 return -EINVAL; 2295 2296 if (get_user(val, (int __user *)optval)) 2297 return -EFAULT; 2298 2299 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2300 2301 return 0; 2302 } 2303 2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2305 unsigned int optlen) 2306 { 2307 struct sctp_event_subscribe subscribe; 2308 __u8 *sn_type = (__u8 *)&subscribe; 2309 struct sctp_sock *sp = sctp_sk(sk); 2310 struct sctp_association *asoc; 2311 int i; 2312 2313 if (optlen > sizeof(struct sctp_event_subscribe)) 2314 return -EINVAL; 2315 2316 if (copy_from_user(&subscribe, optval, optlen)) 2317 return -EFAULT; 2318 2319 for (i = 0; i < optlen; i++) 2320 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2321 sn_type[i]); 2322 2323 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2324 asoc->subscribe = sctp_sk(sk)->subscribe; 2325 2326 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2327 * if there is no data to be sent or retransmit, the stack will 2328 * immediately send up this notification. 2329 */ 2330 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2331 struct sctp_ulpevent *event; 2332 2333 asoc = sctp_id2assoc(sk, 0); 2334 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2335 event = sctp_ulpevent_make_sender_dry_event(asoc, 2336 GFP_USER | __GFP_NOWARN); 2337 if (!event) 2338 return -ENOMEM; 2339 2340 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2348 * 2349 * This socket option is applicable to the UDP-style socket only. When 2350 * set it will cause associations that are idle for more than the 2351 * specified number of seconds to automatically close. An association 2352 * being idle is defined an association that has NOT sent or received 2353 * user data. The special value of '0' indicates that no automatic 2354 * close of any associations should be performed. The option expects an 2355 * integer defining the number of seconds of idle time before an 2356 * association is closed. 2357 */ 2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2359 unsigned int optlen) 2360 { 2361 struct sctp_sock *sp = sctp_sk(sk); 2362 struct net *net = sock_net(sk); 2363 2364 /* Applicable to UDP-style socket only */ 2365 if (sctp_style(sk, TCP)) 2366 return -EOPNOTSUPP; 2367 if (optlen != sizeof(int)) 2368 return -EINVAL; 2369 if (copy_from_user(&sp->autoclose, optval, optlen)) 2370 return -EFAULT; 2371 2372 if (sp->autoclose > net->sctp.max_autoclose) 2373 sp->autoclose = net->sctp.max_autoclose; 2374 2375 return 0; 2376 } 2377 2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2379 * 2380 * Applications can enable or disable heartbeats for any peer address of 2381 * an association, modify an address's heartbeat interval, force a 2382 * heartbeat to be sent immediately, and adjust the address's maximum 2383 * number of retransmissions sent before an address is considered 2384 * unreachable. The following structure is used to access and modify an 2385 * address's parameters: 2386 * 2387 * struct sctp_paddrparams { 2388 * sctp_assoc_t spp_assoc_id; 2389 * struct sockaddr_storage spp_address; 2390 * uint32_t spp_hbinterval; 2391 * uint16_t spp_pathmaxrxt; 2392 * uint32_t spp_pathmtu; 2393 * uint32_t spp_sackdelay; 2394 * uint32_t spp_flags; 2395 * uint32_t spp_ipv6_flowlabel; 2396 * uint8_t spp_dscp; 2397 * }; 2398 * 2399 * spp_assoc_id - (one-to-many style socket) This is filled in the 2400 * application, and identifies the association for 2401 * this query. 2402 * spp_address - This specifies which address is of interest. 2403 * spp_hbinterval - This contains the value of the heartbeat interval, 2404 * in milliseconds. If a value of zero 2405 * is present in this field then no changes are to 2406 * be made to this parameter. 2407 * spp_pathmaxrxt - This contains the maximum number of 2408 * retransmissions before this address shall be 2409 * considered unreachable. If a value of zero 2410 * is present in this field then no changes are to 2411 * be made to this parameter. 2412 * spp_pathmtu - When Path MTU discovery is disabled the value 2413 * specified here will be the "fixed" path mtu. 2414 * Note that if the spp_address field is empty 2415 * then all associations on this address will 2416 * have this fixed path mtu set upon them. 2417 * 2418 * spp_sackdelay - When delayed sack is enabled, this value specifies 2419 * the number of milliseconds that sacks will be delayed 2420 * for. This value will apply to all addresses of an 2421 * association if the spp_address field is empty. Note 2422 * also, that if delayed sack is enabled and this 2423 * value is set to 0, no change is made to the last 2424 * recorded delayed sack timer value. 2425 * 2426 * spp_flags - These flags are used to control various features 2427 * on an association. The flag field may contain 2428 * zero or more of the following options. 2429 * 2430 * SPP_HB_ENABLE - Enable heartbeats on the 2431 * specified address. Note that if the address 2432 * field is empty all addresses for the association 2433 * have heartbeats enabled upon them. 2434 * 2435 * SPP_HB_DISABLE - Disable heartbeats on the 2436 * speicifed address. Note that if the address 2437 * field is empty all addresses for the association 2438 * will have their heartbeats disabled. Note also 2439 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2440 * mutually exclusive, only one of these two should 2441 * be specified. Enabling both fields will have 2442 * undetermined results. 2443 * 2444 * SPP_HB_DEMAND - Request a user initiated heartbeat 2445 * to be made immediately. 2446 * 2447 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2448 * heartbeat delayis to be set to the value of 0 2449 * milliseconds. 2450 * 2451 * SPP_PMTUD_ENABLE - This field will enable PMTU 2452 * discovery upon the specified address. Note that 2453 * if the address feild is empty then all addresses 2454 * on the association are effected. 2455 * 2456 * SPP_PMTUD_DISABLE - This field will disable PMTU 2457 * discovery upon the specified address. Note that 2458 * if the address feild is empty then all addresses 2459 * on the association are effected. Not also that 2460 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2461 * exclusive. Enabling both will have undetermined 2462 * results. 2463 * 2464 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2465 * on delayed sack. The time specified in spp_sackdelay 2466 * is used to specify the sack delay for this address. Note 2467 * that if spp_address is empty then all addresses will 2468 * enable delayed sack and take on the sack delay 2469 * value specified in spp_sackdelay. 2470 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2471 * off delayed sack. If the spp_address field is blank then 2472 * delayed sack is disabled for the entire association. Note 2473 * also that this field is mutually exclusive to 2474 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2475 * results. 2476 * 2477 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2478 * setting of the IPV6 flow label value. The value is 2479 * contained in the spp_ipv6_flowlabel field. 2480 * Upon retrieval, this flag will be set to indicate that 2481 * the spp_ipv6_flowlabel field has a valid value returned. 2482 * If a specific destination address is set (in the 2483 * spp_address field), then the value returned is that of 2484 * the address. If just an association is specified (and 2485 * no address), then the association's default flow label 2486 * is returned. If neither an association nor a destination 2487 * is specified, then the socket's default flow label is 2488 * returned. For non-IPv6 sockets, this flag will be left 2489 * cleared. 2490 * 2491 * SPP_DSCP: Setting this flag enables the setting of the 2492 * Differentiated Services Code Point (DSCP) value 2493 * associated with either the association or a specific 2494 * address. The value is obtained in the spp_dscp field. 2495 * Upon retrieval, this flag will be set to indicate that 2496 * the spp_dscp field has a valid value returned. If a 2497 * specific destination address is set when called (in the 2498 * spp_address field), then that specific destination 2499 * address's DSCP value is returned. If just an association 2500 * is specified, then the association's default DSCP is 2501 * returned. If neither an association nor a destination is 2502 * specified, then the socket's default DSCP is returned. 2503 * 2504 * spp_ipv6_flowlabel 2505 * - This field is used in conjunction with the 2506 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2507 * The 20 least significant bits are used for the flow 2508 * label. This setting has precedence over any IPv6-layer 2509 * setting. 2510 * 2511 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2512 * and contains the DSCP. The 6 most significant bits are 2513 * used for the DSCP. This setting has precedence over any 2514 * IPv4- or IPv6- layer setting. 2515 */ 2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2517 struct sctp_transport *trans, 2518 struct sctp_association *asoc, 2519 struct sctp_sock *sp, 2520 int hb_change, 2521 int pmtud_change, 2522 int sackdelay_change) 2523 { 2524 int error; 2525 2526 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2527 struct net *net = sock_net(trans->asoc->base.sk); 2528 2529 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2530 if (error) 2531 return error; 2532 } 2533 2534 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2535 * this field is ignored. Note also that a value of zero indicates 2536 * the current setting should be left unchanged. 2537 */ 2538 if (params->spp_flags & SPP_HB_ENABLE) { 2539 2540 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2541 * set. This lets us use 0 value when this flag 2542 * is set. 2543 */ 2544 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2545 params->spp_hbinterval = 0; 2546 2547 if (params->spp_hbinterval || 2548 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2549 if (trans) { 2550 trans->hbinterval = 2551 msecs_to_jiffies(params->spp_hbinterval); 2552 } else if (asoc) { 2553 asoc->hbinterval = 2554 msecs_to_jiffies(params->spp_hbinterval); 2555 } else { 2556 sp->hbinterval = params->spp_hbinterval; 2557 } 2558 } 2559 } 2560 2561 if (hb_change) { 2562 if (trans) { 2563 trans->param_flags = 2564 (trans->param_flags & ~SPP_HB) | hb_change; 2565 } else if (asoc) { 2566 asoc->param_flags = 2567 (asoc->param_flags & ~SPP_HB) | hb_change; 2568 } else { 2569 sp->param_flags = 2570 (sp->param_flags & ~SPP_HB) | hb_change; 2571 } 2572 } 2573 2574 /* When Path MTU discovery is disabled the value specified here will 2575 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2576 * include the flag SPP_PMTUD_DISABLE for this field to have any 2577 * effect). 2578 */ 2579 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2580 if (trans) { 2581 trans->pathmtu = params->spp_pathmtu; 2582 sctp_assoc_sync_pmtu(asoc); 2583 } else if (asoc) { 2584 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2585 } else { 2586 sp->pathmtu = params->spp_pathmtu; 2587 } 2588 } 2589 2590 if (pmtud_change) { 2591 if (trans) { 2592 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2593 (params->spp_flags & SPP_PMTUD_ENABLE); 2594 trans->param_flags = 2595 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2596 if (update) { 2597 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2598 sctp_assoc_sync_pmtu(asoc); 2599 } 2600 } else if (asoc) { 2601 asoc->param_flags = 2602 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2603 } else { 2604 sp->param_flags = 2605 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2606 } 2607 } 2608 2609 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2610 * value of this field is ignored. Note also that a value of zero 2611 * indicates the current setting should be left unchanged. 2612 */ 2613 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2614 if (trans) { 2615 trans->sackdelay = 2616 msecs_to_jiffies(params->spp_sackdelay); 2617 } else if (asoc) { 2618 asoc->sackdelay = 2619 msecs_to_jiffies(params->spp_sackdelay); 2620 } else { 2621 sp->sackdelay = params->spp_sackdelay; 2622 } 2623 } 2624 2625 if (sackdelay_change) { 2626 if (trans) { 2627 trans->param_flags = 2628 (trans->param_flags & ~SPP_SACKDELAY) | 2629 sackdelay_change; 2630 } else if (asoc) { 2631 asoc->param_flags = 2632 (asoc->param_flags & ~SPP_SACKDELAY) | 2633 sackdelay_change; 2634 } else { 2635 sp->param_flags = 2636 (sp->param_flags & ~SPP_SACKDELAY) | 2637 sackdelay_change; 2638 } 2639 } 2640 2641 /* Note that a value of zero indicates the current setting should be 2642 left unchanged. 2643 */ 2644 if (params->spp_pathmaxrxt) { 2645 if (trans) { 2646 trans->pathmaxrxt = params->spp_pathmaxrxt; 2647 } else if (asoc) { 2648 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2649 } else { 2650 sp->pathmaxrxt = params->spp_pathmaxrxt; 2651 } 2652 } 2653 2654 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2655 if (trans) { 2656 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2657 trans->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 } else if (asoc) { 2662 struct sctp_transport *t; 2663 2664 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2665 transports) { 2666 if (t->ipaddr.sa.sa_family != AF_INET6) 2667 continue; 2668 t->flowlabel = params->spp_ipv6_flowlabel & 2669 SCTP_FLOWLABEL_VAL_MASK; 2670 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2671 } 2672 asoc->flowlabel = params->spp_ipv6_flowlabel & 2673 SCTP_FLOWLABEL_VAL_MASK; 2674 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2675 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2676 sp->flowlabel = params->spp_ipv6_flowlabel & 2677 SCTP_FLOWLABEL_VAL_MASK; 2678 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2679 } 2680 } 2681 2682 if (params->spp_flags & SPP_DSCP) { 2683 if (trans) { 2684 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 trans->dscp |= SCTP_DSCP_SET_MASK; 2686 } else if (asoc) { 2687 struct sctp_transport *t; 2688 2689 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2690 transports) { 2691 t->dscp = params->spp_dscp & 2692 SCTP_DSCP_VAL_MASK; 2693 t->dscp |= SCTP_DSCP_SET_MASK; 2694 } 2695 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2696 asoc->dscp |= SCTP_DSCP_SET_MASK; 2697 } else { 2698 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2699 sp->dscp |= SCTP_DSCP_SET_MASK; 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2707 char __user *optval, 2708 unsigned int optlen) 2709 { 2710 struct sctp_paddrparams params; 2711 struct sctp_transport *trans = NULL; 2712 struct sctp_association *asoc = NULL; 2713 struct sctp_sock *sp = sctp_sk(sk); 2714 int error; 2715 int hb_change, pmtud_change, sackdelay_change; 2716 2717 if (optlen == sizeof(params)) { 2718 if (copy_from_user(¶ms, optval, optlen)) 2719 return -EFAULT; 2720 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2721 spp_ipv6_flowlabel), 4)) { 2722 if (copy_from_user(¶ms, optval, optlen)) 2723 return -EFAULT; 2724 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2725 return -EINVAL; 2726 } else { 2727 return -EINVAL; 2728 } 2729 2730 /* Validate flags and value parameters. */ 2731 hb_change = params.spp_flags & SPP_HB; 2732 pmtud_change = params.spp_flags & SPP_PMTUD; 2733 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2734 2735 if (hb_change == SPP_HB || 2736 pmtud_change == SPP_PMTUD || 2737 sackdelay_change == SPP_SACKDELAY || 2738 params.spp_sackdelay > 500 || 2739 (params.spp_pathmtu && 2740 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2741 return -EINVAL; 2742 2743 /* If an address other than INADDR_ANY is specified, and 2744 * no transport is found, then the request is invalid. 2745 */ 2746 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2747 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2748 params.spp_assoc_id); 2749 if (!trans) 2750 return -EINVAL; 2751 } 2752 2753 /* Get association, if assoc_id != 0 and the socket is a one 2754 * to many style socket, and an association was not found, then 2755 * the id was invalid. 2756 */ 2757 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2758 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2759 return -EINVAL; 2760 2761 /* Heartbeat demand can only be sent on a transport or 2762 * association, but not a socket. 2763 */ 2764 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2765 return -EINVAL; 2766 2767 /* Process parameters. */ 2768 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2769 hb_change, pmtud_change, 2770 sackdelay_change); 2771 2772 if (error) 2773 return error; 2774 2775 /* If changes are for association, also apply parameters to each 2776 * transport. 2777 */ 2778 if (!trans && asoc) { 2779 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2780 transports) { 2781 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2782 hb_change, pmtud_change, 2783 sackdelay_change); 2784 } 2785 } 2786 2787 return 0; 2788 } 2789 2790 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2791 { 2792 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2793 } 2794 2795 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2796 { 2797 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2798 } 2799 2800 /* 2801 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2802 * 2803 * This option will effect the way delayed acks are performed. This 2804 * option allows you to get or set the delayed ack time, in 2805 * milliseconds. It also allows changing the delayed ack frequency. 2806 * Changing the frequency to 1 disables the delayed sack algorithm. If 2807 * the assoc_id is 0, then this sets or gets the endpoints default 2808 * values. If the assoc_id field is non-zero, then the set or get 2809 * effects the specified association for the one to many model (the 2810 * assoc_id field is ignored by the one to one model). Note that if 2811 * sack_delay or sack_freq are 0 when setting this option, then the 2812 * current values will remain unchanged. 2813 * 2814 * struct sctp_sack_info { 2815 * sctp_assoc_t sack_assoc_id; 2816 * uint32_t sack_delay; 2817 * uint32_t sack_freq; 2818 * }; 2819 * 2820 * sack_assoc_id - This parameter, indicates which association the user 2821 * is performing an action upon. Note that if this field's value is 2822 * zero then the endpoints default value is changed (effecting future 2823 * associations only). 2824 * 2825 * sack_delay - This parameter contains the number of milliseconds that 2826 * the user is requesting the delayed ACK timer be set to. Note that 2827 * this value is defined in the standard to be between 200 and 500 2828 * milliseconds. 2829 * 2830 * sack_freq - This parameter contains the number of packets that must 2831 * be received before a sack is sent without waiting for the delay 2832 * timer to expire. The default value for this is 2, setting this 2833 * value to 1 will disable the delayed sack algorithm. 2834 */ 2835 2836 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2837 char __user *optval, unsigned int optlen) 2838 { 2839 struct sctp_sack_info params; 2840 struct sctp_transport *trans = NULL; 2841 struct sctp_association *asoc = NULL; 2842 struct sctp_sock *sp = sctp_sk(sk); 2843 2844 if (optlen == sizeof(struct sctp_sack_info)) { 2845 if (copy_from_user(¶ms, optval, optlen)) 2846 return -EFAULT; 2847 2848 if (params.sack_delay == 0 && params.sack_freq == 0) 2849 return 0; 2850 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2851 pr_warn_ratelimited(DEPRECATED 2852 "%s (pid %d) " 2853 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2854 "Use struct sctp_sack_info instead\n", 2855 current->comm, task_pid_nr(current)); 2856 if (copy_from_user(¶ms, optval, optlen)) 2857 return -EFAULT; 2858 2859 if (params.sack_delay == 0) 2860 params.sack_freq = 1; 2861 else 2862 params.sack_freq = 0; 2863 } else 2864 return -EINVAL; 2865 2866 /* Validate value parameter. */ 2867 if (params.sack_delay > 500) 2868 return -EINVAL; 2869 2870 /* Get association, if sack_assoc_id != 0 and the socket is a one 2871 * to many style socket, and an association was not found, then 2872 * the id was invalid. 2873 */ 2874 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2875 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2876 return -EINVAL; 2877 2878 if (params.sack_delay) { 2879 if (asoc) { 2880 asoc->sackdelay = 2881 msecs_to_jiffies(params.sack_delay); 2882 asoc->param_flags = 2883 sctp_spp_sackdelay_enable(asoc->param_flags); 2884 } else { 2885 sp->sackdelay = params.sack_delay; 2886 sp->param_flags = 2887 sctp_spp_sackdelay_enable(sp->param_flags); 2888 } 2889 } 2890 2891 if (params.sack_freq == 1) { 2892 if (asoc) { 2893 asoc->param_flags = 2894 sctp_spp_sackdelay_disable(asoc->param_flags); 2895 } else { 2896 sp->param_flags = 2897 sctp_spp_sackdelay_disable(sp->param_flags); 2898 } 2899 } else if (params.sack_freq > 1) { 2900 if (asoc) { 2901 asoc->sackfreq = params.sack_freq; 2902 asoc->param_flags = 2903 sctp_spp_sackdelay_enable(asoc->param_flags); 2904 } else { 2905 sp->sackfreq = params.sack_freq; 2906 sp->param_flags = 2907 sctp_spp_sackdelay_enable(sp->param_flags); 2908 } 2909 } 2910 2911 /* If change is for association, also apply to each transport. */ 2912 if (asoc) { 2913 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2914 transports) { 2915 if (params.sack_delay) { 2916 trans->sackdelay = 2917 msecs_to_jiffies(params.sack_delay); 2918 trans->param_flags = 2919 sctp_spp_sackdelay_enable(trans->param_flags); 2920 } 2921 if (params.sack_freq == 1) { 2922 trans->param_flags = 2923 sctp_spp_sackdelay_disable(trans->param_flags); 2924 } else if (params.sack_freq > 1) { 2925 trans->sackfreq = params.sack_freq; 2926 trans->param_flags = 2927 sctp_spp_sackdelay_enable(trans->param_flags); 2928 } 2929 } 2930 } 2931 2932 return 0; 2933 } 2934 2935 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2936 * 2937 * Applications can specify protocol parameters for the default association 2938 * initialization. The option name argument to setsockopt() and getsockopt() 2939 * is SCTP_INITMSG. 2940 * 2941 * Setting initialization parameters is effective only on an unconnected 2942 * socket (for UDP-style sockets only future associations are effected 2943 * by the change). With TCP-style sockets, this option is inherited by 2944 * sockets derived from a listener socket. 2945 */ 2946 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2947 { 2948 struct sctp_initmsg sinit; 2949 struct sctp_sock *sp = sctp_sk(sk); 2950 2951 if (optlen != sizeof(struct sctp_initmsg)) 2952 return -EINVAL; 2953 if (copy_from_user(&sinit, optval, optlen)) 2954 return -EFAULT; 2955 2956 if (sinit.sinit_num_ostreams) 2957 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2958 if (sinit.sinit_max_instreams) 2959 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2960 if (sinit.sinit_max_attempts) 2961 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2962 if (sinit.sinit_max_init_timeo) 2963 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2964 2965 return 0; 2966 } 2967 2968 /* 2969 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2970 * 2971 * Applications that wish to use the sendto() system call may wish to 2972 * specify a default set of parameters that would normally be supplied 2973 * through the inclusion of ancillary data. This socket option allows 2974 * such an application to set the default sctp_sndrcvinfo structure. 2975 * The application that wishes to use this socket option simply passes 2976 * in to this call the sctp_sndrcvinfo structure defined in Section 2977 * 5.2.2) The input parameters accepted by this call include 2978 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2979 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2980 * to this call if the caller is using the UDP model. 2981 */ 2982 static int sctp_setsockopt_default_send_param(struct sock *sk, 2983 char __user *optval, 2984 unsigned int optlen) 2985 { 2986 struct sctp_sock *sp = sctp_sk(sk); 2987 struct sctp_association *asoc; 2988 struct sctp_sndrcvinfo info; 2989 2990 if (optlen != sizeof(info)) 2991 return -EINVAL; 2992 if (copy_from_user(&info, optval, optlen)) 2993 return -EFAULT; 2994 if (info.sinfo_flags & 2995 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2996 SCTP_ABORT | SCTP_EOF)) 2997 return -EINVAL; 2998 2999 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3000 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 3001 return -EINVAL; 3002 if (asoc) { 3003 asoc->default_stream = info.sinfo_stream; 3004 asoc->default_flags = info.sinfo_flags; 3005 asoc->default_ppid = info.sinfo_ppid; 3006 asoc->default_context = info.sinfo_context; 3007 asoc->default_timetolive = info.sinfo_timetolive; 3008 } else { 3009 sp->default_stream = info.sinfo_stream; 3010 sp->default_flags = info.sinfo_flags; 3011 sp->default_ppid = info.sinfo_ppid; 3012 sp->default_context = info.sinfo_context; 3013 sp->default_timetolive = info.sinfo_timetolive; 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3020 * (SCTP_DEFAULT_SNDINFO) 3021 */ 3022 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3023 char __user *optval, 3024 unsigned int optlen) 3025 { 3026 struct sctp_sock *sp = sctp_sk(sk); 3027 struct sctp_association *asoc; 3028 struct sctp_sndinfo info; 3029 3030 if (optlen != sizeof(info)) 3031 return -EINVAL; 3032 if (copy_from_user(&info, optval, optlen)) 3033 return -EFAULT; 3034 if (info.snd_flags & 3035 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3036 SCTP_ABORT | SCTP_EOF)) 3037 return -EINVAL; 3038 3039 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3040 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 3041 return -EINVAL; 3042 if (asoc) { 3043 asoc->default_stream = info.snd_sid; 3044 asoc->default_flags = info.snd_flags; 3045 asoc->default_ppid = info.snd_ppid; 3046 asoc->default_context = info.snd_context; 3047 } else { 3048 sp->default_stream = info.snd_sid; 3049 sp->default_flags = info.snd_flags; 3050 sp->default_ppid = info.snd_ppid; 3051 sp->default_context = info.snd_context; 3052 } 3053 3054 return 0; 3055 } 3056 3057 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3058 * 3059 * Requests that the local SCTP stack use the enclosed peer address as 3060 * the association primary. The enclosed address must be one of the 3061 * association peer's addresses. 3062 */ 3063 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3064 unsigned int optlen) 3065 { 3066 struct sctp_prim prim; 3067 struct sctp_transport *trans; 3068 struct sctp_af *af; 3069 int err; 3070 3071 if (optlen != sizeof(struct sctp_prim)) 3072 return -EINVAL; 3073 3074 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3075 return -EFAULT; 3076 3077 /* Allow security module to validate address but need address len. */ 3078 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3079 if (!af) 3080 return -EINVAL; 3081 3082 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3083 (struct sockaddr *)&prim.ssp_addr, 3084 af->sockaddr_len); 3085 if (err) 3086 return err; 3087 3088 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3089 if (!trans) 3090 return -EINVAL; 3091 3092 sctp_assoc_set_primary(trans->asoc, trans); 3093 3094 return 0; 3095 } 3096 3097 /* 3098 * 7.1.5 SCTP_NODELAY 3099 * 3100 * Turn on/off any Nagle-like algorithm. This means that packets are 3101 * generally sent as soon as possible and no unnecessary delays are 3102 * introduced, at the cost of more packets in the network. Expects an 3103 * integer boolean flag. 3104 */ 3105 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3106 unsigned int optlen) 3107 { 3108 int val; 3109 3110 if (optlen < sizeof(int)) 3111 return -EINVAL; 3112 if (get_user(val, (int __user *)optval)) 3113 return -EFAULT; 3114 3115 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3116 return 0; 3117 } 3118 3119 /* 3120 * 3121 * 7.1.1 SCTP_RTOINFO 3122 * 3123 * The protocol parameters used to initialize and bound retransmission 3124 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3125 * and modify these parameters. 3126 * All parameters are time values, in milliseconds. A value of 0, when 3127 * modifying the parameters, indicates that the current value should not 3128 * be changed. 3129 * 3130 */ 3131 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3132 { 3133 struct sctp_rtoinfo rtoinfo; 3134 struct sctp_association *asoc; 3135 unsigned long rto_min, rto_max; 3136 struct sctp_sock *sp = sctp_sk(sk); 3137 3138 if (optlen != sizeof (struct sctp_rtoinfo)) 3139 return -EINVAL; 3140 3141 if (copy_from_user(&rtoinfo, optval, optlen)) 3142 return -EFAULT; 3143 3144 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3145 3146 /* Set the values to the specific association */ 3147 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3148 return -EINVAL; 3149 3150 rto_max = rtoinfo.srto_max; 3151 rto_min = rtoinfo.srto_min; 3152 3153 if (rto_max) 3154 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3155 else 3156 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3157 3158 if (rto_min) 3159 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3160 else 3161 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3162 3163 if (rto_min > rto_max) 3164 return -EINVAL; 3165 3166 if (asoc) { 3167 if (rtoinfo.srto_initial != 0) 3168 asoc->rto_initial = 3169 msecs_to_jiffies(rtoinfo.srto_initial); 3170 asoc->rto_max = rto_max; 3171 asoc->rto_min = rto_min; 3172 } else { 3173 /* If there is no association or the association-id = 0 3174 * set the values to the endpoint. 3175 */ 3176 if (rtoinfo.srto_initial != 0) 3177 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3178 sp->rtoinfo.srto_max = rto_max; 3179 sp->rtoinfo.srto_min = rto_min; 3180 } 3181 3182 return 0; 3183 } 3184 3185 /* 3186 * 3187 * 7.1.2 SCTP_ASSOCINFO 3188 * 3189 * This option is used to tune the maximum retransmission attempts 3190 * of the association. 3191 * Returns an error if the new association retransmission value is 3192 * greater than the sum of the retransmission value of the peer. 3193 * See [SCTP] for more information. 3194 * 3195 */ 3196 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3197 { 3198 3199 struct sctp_assocparams assocparams; 3200 struct sctp_association *asoc; 3201 3202 if (optlen != sizeof(struct sctp_assocparams)) 3203 return -EINVAL; 3204 if (copy_from_user(&assocparams, optval, optlen)) 3205 return -EFAULT; 3206 3207 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3208 3209 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3210 return -EINVAL; 3211 3212 /* Set the values to the specific association */ 3213 if (asoc) { 3214 if (assocparams.sasoc_asocmaxrxt != 0) { 3215 __u32 path_sum = 0; 3216 int paths = 0; 3217 struct sctp_transport *peer_addr; 3218 3219 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3220 transports) { 3221 path_sum += peer_addr->pathmaxrxt; 3222 paths++; 3223 } 3224 3225 /* Only validate asocmaxrxt if we have more than 3226 * one path/transport. We do this because path 3227 * retransmissions are only counted when we have more 3228 * then one path. 3229 */ 3230 if (paths > 1 && 3231 assocparams.sasoc_asocmaxrxt > path_sum) 3232 return -EINVAL; 3233 3234 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3235 } 3236 3237 if (assocparams.sasoc_cookie_life != 0) 3238 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3239 } else { 3240 /* Set the values to the endpoint */ 3241 struct sctp_sock *sp = sctp_sk(sk); 3242 3243 if (assocparams.sasoc_asocmaxrxt != 0) 3244 sp->assocparams.sasoc_asocmaxrxt = 3245 assocparams.sasoc_asocmaxrxt; 3246 if (assocparams.sasoc_cookie_life != 0) 3247 sp->assocparams.sasoc_cookie_life = 3248 assocparams.sasoc_cookie_life; 3249 } 3250 return 0; 3251 } 3252 3253 /* 3254 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3255 * 3256 * This socket option is a boolean flag which turns on or off mapped V4 3257 * addresses. If this option is turned on and the socket is type 3258 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3259 * If this option is turned off, then no mapping will be done of V4 3260 * addresses and a user will receive both PF_INET6 and PF_INET type 3261 * addresses on the socket. 3262 */ 3263 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3264 { 3265 int val; 3266 struct sctp_sock *sp = sctp_sk(sk); 3267 3268 if (optlen < sizeof(int)) 3269 return -EINVAL; 3270 if (get_user(val, (int __user *)optval)) 3271 return -EFAULT; 3272 if (val) 3273 sp->v4mapped = 1; 3274 else 3275 sp->v4mapped = 0; 3276 3277 return 0; 3278 } 3279 3280 /* 3281 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3282 * This option will get or set the maximum size to put in any outgoing 3283 * SCTP DATA chunk. If a message is larger than this size it will be 3284 * fragmented by SCTP into the specified size. Note that the underlying 3285 * SCTP implementation may fragment into smaller sized chunks when the 3286 * PMTU of the underlying association is smaller than the value set by 3287 * the user. The default value for this option is '0' which indicates 3288 * the user is NOT limiting fragmentation and only the PMTU will effect 3289 * SCTP's choice of DATA chunk size. Note also that values set larger 3290 * than the maximum size of an IP datagram will effectively let SCTP 3291 * control fragmentation (i.e. the same as setting this option to 0). 3292 * 3293 * The following structure is used to access and modify this parameter: 3294 * 3295 * struct sctp_assoc_value { 3296 * sctp_assoc_t assoc_id; 3297 * uint32_t assoc_value; 3298 * }; 3299 * 3300 * assoc_id: This parameter is ignored for one-to-one style sockets. 3301 * For one-to-many style sockets this parameter indicates which 3302 * association the user is performing an action upon. Note that if 3303 * this field's value is zero then the endpoints default value is 3304 * changed (effecting future associations only). 3305 * assoc_value: This parameter specifies the maximum size in bytes. 3306 */ 3307 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3308 { 3309 struct sctp_sock *sp = sctp_sk(sk); 3310 struct sctp_assoc_value params; 3311 struct sctp_association *asoc; 3312 int val; 3313 3314 if (optlen == sizeof(int)) { 3315 pr_warn_ratelimited(DEPRECATED 3316 "%s (pid %d) " 3317 "Use of int in maxseg socket option.\n" 3318 "Use struct sctp_assoc_value instead\n", 3319 current->comm, task_pid_nr(current)); 3320 if (copy_from_user(&val, optval, optlen)) 3321 return -EFAULT; 3322 params.assoc_id = 0; 3323 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3324 if (copy_from_user(¶ms, optval, optlen)) 3325 return -EFAULT; 3326 val = params.assoc_value; 3327 } else { 3328 return -EINVAL; 3329 } 3330 3331 asoc = sctp_id2assoc(sk, params.assoc_id); 3332 3333 if (val) { 3334 int min_len, max_len; 3335 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3336 sizeof(struct sctp_data_chunk); 3337 3338 min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT, 3339 datasize); 3340 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3341 3342 if (val < min_len || val > max_len) 3343 return -EINVAL; 3344 } 3345 3346 if (asoc) { 3347 asoc->user_frag = val; 3348 sctp_assoc_update_frag_point(asoc); 3349 } else { 3350 if (params.assoc_id && sctp_style(sk, UDP)) 3351 return -EINVAL; 3352 sp->user_frag = val; 3353 } 3354 3355 return 0; 3356 } 3357 3358 3359 /* 3360 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3361 * 3362 * Requests that the peer mark the enclosed address as the association 3363 * primary. The enclosed address must be one of the association's 3364 * locally bound addresses. The following structure is used to make a 3365 * set primary request: 3366 */ 3367 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3368 unsigned int optlen) 3369 { 3370 struct net *net = sock_net(sk); 3371 struct sctp_sock *sp; 3372 struct sctp_association *asoc = NULL; 3373 struct sctp_setpeerprim prim; 3374 struct sctp_chunk *chunk; 3375 struct sctp_af *af; 3376 int err; 3377 3378 sp = sctp_sk(sk); 3379 3380 if (!net->sctp.addip_enable) 3381 return -EPERM; 3382 3383 if (optlen != sizeof(struct sctp_setpeerprim)) 3384 return -EINVAL; 3385 3386 if (copy_from_user(&prim, optval, optlen)) 3387 return -EFAULT; 3388 3389 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3390 if (!asoc) 3391 return -EINVAL; 3392 3393 if (!asoc->peer.asconf_capable) 3394 return -EPERM; 3395 3396 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3397 return -EPERM; 3398 3399 if (!sctp_state(asoc, ESTABLISHED)) 3400 return -ENOTCONN; 3401 3402 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3403 if (!af) 3404 return -EINVAL; 3405 3406 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3407 return -EADDRNOTAVAIL; 3408 3409 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3410 return -EADDRNOTAVAIL; 3411 3412 /* Allow security module to validate address. */ 3413 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3414 (struct sockaddr *)&prim.sspp_addr, 3415 af->sockaddr_len); 3416 if (err) 3417 return err; 3418 3419 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3420 chunk = sctp_make_asconf_set_prim(asoc, 3421 (union sctp_addr *)&prim.sspp_addr); 3422 if (!chunk) 3423 return -ENOMEM; 3424 3425 err = sctp_send_asconf(asoc, chunk); 3426 3427 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3428 3429 return err; 3430 } 3431 3432 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3433 unsigned int optlen) 3434 { 3435 struct sctp_setadaptation adaptation; 3436 3437 if (optlen != sizeof(struct sctp_setadaptation)) 3438 return -EINVAL; 3439 if (copy_from_user(&adaptation, optval, optlen)) 3440 return -EFAULT; 3441 3442 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3449 * 3450 * The context field in the sctp_sndrcvinfo structure is normally only 3451 * used when a failed message is retrieved holding the value that was 3452 * sent down on the actual send call. This option allows the setting of 3453 * a default context on an association basis that will be received on 3454 * reading messages from the peer. This is especially helpful in the 3455 * one-2-many model for an application to keep some reference to an 3456 * internal state machine that is processing messages on the 3457 * association. Note that the setting of this value only effects 3458 * received messages from the peer and does not effect the value that is 3459 * saved with outbound messages. 3460 */ 3461 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3462 unsigned int optlen) 3463 { 3464 struct sctp_assoc_value params; 3465 struct sctp_sock *sp; 3466 struct sctp_association *asoc; 3467 3468 if (optlen != sizeof(struct sctp_assoc_value)) 3469 return -EINVAL; 3470 if (copy_from_user(¶ms, optval, optlen)) 3471 return -EFAULT; 3472 3473 sp = sctp_sk(sk); 3474 3475 if (params.assoc_id != 0) { 3476 asoc = sctp_id2assoc(sk, params.assoc_id); 3477 if (!asoc) 3478 return -EINVAL; 3479 asoc->default_rcv_context = params.assoc_value; 3480 } else { 3481 sp->default_rcv_context = params.assoc_value; 3482 } 3483 3484 return 0; 3485 } 3486 3487 /* 3488 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3489 * 3490 * This options will at a minimum specify if the implementation is doing 3491 * fragmented interleave. Fragmented interleave, for a one to many 3492 * socket, is when subsequent calls to receive a message may return 3493 * parts of messages from different associations. Some implementations 3494 * may allow you to turn this value on or off. If so, when turned off, 3495 * no fragment interleave will occur (which will cause a head of line 3496 * blocking amongst multiple associations sharing the same one to many 3497 * socket). When this option is turned on, then each receive call may 3498 * come from a different association (thus the user must receive data 3499 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3500 * association each receive belongs to. 3501 * 3502 * This option takes a boolean value. A non-zero value indicates that 3503 * fragmented interleave is on. A value of zero indicates that 3504 * fragmented interleave is off. 3505 * 3506 * Note that it is important that an implementation that allows this 3507 * option to be turned on, have it off by default. Otherwise an unaware 3508 * application using the one to many model may become confused and act 3509 * incorrectly. 3510 */ 3511 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3512 char __user *optval, 3513 unsigned int optlen) 3514 { 3515 int val; 3516 3517 if (optlen != sizeof(int)) 3518 return -EINVAL; 3519 if (get_user(val, (int __user *)optval)) 3520 return -EFAULT; 3521 3522 sctp_sk(sk)->frag_interleave = !!val; 3523 3524 if (!sctp_sk(sk)->frag_interleave) 3525 sctp_sk(sk)->strm_interleave = 0; 3526 3527 return 0; 3528 } 3529 3530 /* 3531 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3532 * (SCTP_PARTIAL_DELIVERY_POINT) 3533 * 3534 * This option will set or get the SCTP partial delivery point. This 3535 * point is the size of a message where the partial delivery API will be 3536 * invoked to help free up rwnd space for the peer. Setting this to a 3537 * lower value will cause partial deliveries to happen more often. The 3538 * calls argument is an integer that sets or gets the partial delivery 3539 * point. Note also that the call will fail if the user attempts to set 3540 * this value larger than the socket receive buffer size. 3541 * 3542 * Note that any single message having a length smaller than or equal to 3543 * the SCTP partial delivery point will be delivered in one single read 3544 * call as long as the user provided buffer is large enough to hold the 3545 * message. 3546 */ 3547 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3548 char __user *optval, 3549 unsigned int optlen) 3550 { 3551 u32 val; 3552 3553 if (optlen != sizeof(u32)) 3554 return -EINVAL; 3555 if (get_user(val, (int __user *)optval)) 3556 return -EFAULT; 3557 3558 /* Note: We double the receive buffer from what the user sets 3559 * it to be, also initial rwnd is based on rcvbuf/2. 3560 */ 3561 if (val > (sk->sk_rcvbuf >> 1)) 3562 return -EINVAL; 3563 3564 sctp_sk(sk)->pd_point = val; 3565 3566 return 0; /* is this the right error code? */ 3567 } 3568 3569 /* 3570 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3571 * 3572 * This option will allow a user to change the maximum burst of packets 3573 * that can be emitted by this association. Note that the default value 3574 * is 4, and some implementations may restrict this setting so that it 3575 * can only be lowered. 3576 * 3577 * NOTE: This text doesn't seem right. Do this on a socket basis with 3578 * future associations inheriting the socket value. 3579 */ 3580 static int sctp_setsockopt_maxburst(struct sock *sk, 3581 char __user *optval, 3582 unsigned int optlen) 3583 { 3584 struct sctp_assoc_value params; 3585 struct sctp_sock *sp; 3586 struct sctp_association *asoc; 3587 int val; 3588 int assoc_id = 0; 3589 3590 if (optlen == sizeof(int)) { 3591 pr_warn_ratelimited(DEPRECATED 3592 "%s (pid %d) " 3593 "Use of int in max_burst socket option deprecated.\n" 3594 "Use struct sctp_assoc_value instead\n", 3595 current->comm, task_pid_nr(current)); 3596 if (copy_from_user(&val, optval, optlen)) 3597 return -EFAULT; 3598 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3599 if (copy_from_user(¶ms, optval, optlen)) 3600 return -EFAULT; 3601 val = params.assoc_value; 3602 assoc_id = params.assoc_id; 3603 } else 3604 return -EINVAL; 3605 3606 sp = sctp_sk(sk); 3607 3608 if (assoc_id != 0) { 3609 asoc = sctp_id2assoc(sk, assoc_id); 3610 if (!asoc) 3611 return -EINVAL; 3612 asoc->max_burst = val; 3613 } else 3614 sp->max_burst = val; 3615 3616 return 0; 3617 } 3618 3619 /* 3620 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3621 * 3622 * This set option adds a chunk type that the user is requesting to be 3623 * received only in an authenticated way. Changes to the list of chunks 3624 * will only effect future associations on the socket. 3625 */ 3626 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3627 char __user *optval, 3628 unsigned int optlen) 3629 { 3630 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3631 struct sctp_authchunk val; 3632 3633 if (!ep->auth_enable) 3634 return -EACCES; 3635 3636 if (optlen != sizeof(struct sctp_authchunk)) 3637 return -EINVAL; 3638 if (copy_from_user(&val, optval, optlen)) 3639 return -EFAULT; 3640 3641 switch (val.sauth_chunk) { 3642 case SCTP_CID_INIT: 3643 case SCTP_CID_INIT_ACK: 3644 case SCTP_CID_SHUTDOWN_COMPLETE: 3645 case SCTP_CID_AUTH: 3646 return -EINVAL; 3647 } 3648 3649 /* add this chunk id to the endpoint */ 3650 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3651 } 3652 3653 /* 3654 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3655 * 3656 * This option gets or sets the list of HMAC algorithms that the local 3657 * endpoint requires the peer to use. 3658 */ 3659 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3660 char __user *optval, 3661 unsigned int optlen) 3662 { 3663 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3664 struct sctp_hmacalgo *hmacs; 3665 u32 idents; 3666 int err; 3667 3668 if (!ep->auth_enable) 3669 return -EACCES; 3670 3671 if (optlen < sizeof(struct sctp_hmacalgo)) 3672 return -EINVAL; 3673 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3674 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3675 3676 hmacs = memdup_user(optval, optlen); 3677 if (IS_ERR(hmacs)) 3678 return PTR_ERR(hmacs); 3679 3680 idents = hmacs->shmac_num_idents; 3681 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3682 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3683 err = -EINVAL; 3684 goto out; 3685 } 3686 3687 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3688 out: 3689 kfree(hmacs); 3690 return err; 3691 } 3692 3693 /* 3694 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3695 * 3696 * This option will set a shared secret key which is used to build an 3697 * association shared key. 3698 */ 3699 static int sctp_setsockopt_auth_key(struct sock *sk, 3700 char __user *optval, 3701 unsigned int optlen) 3702 { 3703 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3704 struct sctp_authkey *authkey; 3705 struct sctp_association *asoc; 3706 int ret; 3707 3708 if (!ep->auth_enable) 3709 return -EACCES; 3710 3711 if (optlen <= sizeof(struct sctp_authkey)) 3712 return -EINVAL; 3713 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3714 * this. 3715 */ 3716 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3717 sizeof(struct sctp_authkey)); 3718 3719 authkey = memdup_user(optval, optlen); 3720 if (IS_ERR(authkey)) 3721 return PTR_ERR(authkey); 3722 3723 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3724 ret = -EINVAL; 3725 goto out; 3726 } 3727 3728 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3729 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3730 ret = -EINVAL; 3731 goto out; 3732 } 3733 3734 ret = sctp_auth_set_key(ep, asoc, authkey); 3735 out: 3736 kzfree(authkey); 3737 return ret; 3738 } 3739 3740 /* 3741 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3742 * 3743 * This option will get or set the active shared key to be used to build 3744 * the association shared key. 3745 */ 3746 static int sctp_setsockopt_active_key(struct sock *sk, 3747 char __user *optval, 3748 unsigned int optlen) 3749 { 3750 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3751 struct sctp_authkeyid val; 3752 struct sctp_association *asoc; 3753 3754 if (!ep->auth_enable) 3755 return -EACCES; 3756 3757 if (optlen != sizeof(struct sctp_authkeyid)) 3758 return -EINVAL; 3759 if (copy_from_user(&val, optval, optlen)) 3760 return -EFAULT; 3761 3762 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3763 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3764 return -EINVAL; 3765 3766 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3767 } 3768 3769 /* 3770 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3771 * 3772 * This set option will delete a shared secret key from use. 3773 */ 3774 static int sctp_setsockopt_del_key(struct sock *sk, 3775 char __user *optval, 3776 unsigned int optlen) 3777 { 3778 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3779 struct sctp_authkeyid val; 3780 struct sctp_association *asoc; 3781 3782 if (!ep->auth_enable) 3783 return -EACCES; 3784 3785 if (optlen != sizeof(struct sctp_authkeyid)) 3786 return -EINVAL; 3787 if (copy_from_user(&val, optval, optlen)) 3788 return -EFAULT; 3789 3790 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3791 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3792 return -EINVAL; 3793 3794 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3795 3796 } 3797 3798 /* 3799 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3800 * 3801 * This set option will deactivate a shared secret key. 3802 */ 3803 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3804 unsigned int optlen) 3805 { 3806 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3807 struct sctp_authkeyid val; 3808 struct sctp_association *asoc; 3809 3810 if (!ep->auth_enable) 3811 return -EACCES; 3812 3813 if (optlen != sizeof(struct sctp_authkeyid)) 3814 return -EINVAL; 3815 if (copy_from_user(&val, optval, optlen)) 3816 return -EFAULT; 3817 3818 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3819 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3820 return -EINVAL; 3821 3822 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3823 } 3824 3825 /* 3826 * 8.1.23 SCTP_AUTO_ASCONF 3827 * 3828 * This option will enable or disable the use of the automatic generation of 3829 * ASCONF chunks to add and delete addresses to an existing association. Note 3830 * that this option has two caveats namely: a) it only affects sockets that 3831 * are bound to all addresses available to the SCTP stack, and b) the system 3832 * administrator may have an overriding control that turns the ASCONF feature 3833 * off no matter what setting the socket option may have. 3834 * This option expects an integer boolean flag, where a non-zero value turns on 3835 * the option, and a zero value turns off the option. 3836 * Note. In this implementation, socket operation overrides default parameter 3837 * being set by sysctl as well as FreeBSD implementation 3838 */ 3839 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3840 unsigned int optlen) 3841 { 3842 int val; 3843 struct sctp_sock *sp = sctp_sk(sk); 3844 3845 if (optlen < sizeof(int)) 3846 return -EINVAL; 3847 if (get_user(val, (int __user *)optval)) 3848 return -EFAULT; 3849 if (!sctp_is_ep_boundall(sk) && val) 3850 return -EINVAL; 3851 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3852 return 0; 3853 3854 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3855 if (val == 0 && sp->do_auto_asconf) { 3856 list_del(&sp->auto_asconf_list); 3857 sp->do_auto_asconf = 0; 3858 } else if (val && !sp->do_auto_asconf) { 3859 list_add_tail(&sp->auto_asconf_list, 3860 &sock_net(sk)->sctp.auto_asconf_splist); 3861 sp->do_auto_asconf = 1; 3862 } 3863 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3864 return 0; 3865 } 3866 3867 /* 3868 * SCTP_PEER_ADDR_THLDS 3869 * 3870 * This option allows us to alter the partially failed threshold for one or all 3871 * transports in an association. See Section 6.1 of: 3872 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3873 */ 3874 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3875 char __user *optval, 3876 unsigned int optlen) 3877 { 3878 struct sctp_paddrthlds val; 3879 struct sctp_transport *trans; 3880 struct sctp_association *asoc; 3881 3882 if (optlen < sizeof(struct sctp_paddrthlds)) 3883 return -EINVAL; 3884 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3885 sizeof(struct sctp_paddrthlds))) 3886 return -EFAULT; 3887 3888 3889 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3890 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3891 if (!asoc) 3892 return -ENOENT; 3893 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3894 transports) { 3895 if (val.spt_pathmaxrxt) 3896 trans->pathmaxrxt = val.spt_pathmaxrxt; 3897 trans->pf_retrans = val.spt_pathpfthld; 3898 } 3899 3900 if (val.spt_pathmaxrxt) 3901 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3902 asoc->pf_retrans = val.spt_pathpfthld; 3903 } else { 3904 trans = sctp_addr_id2transport(sk, &val.spt_address, 3905 val.spt_assoc_id); 3906 if (!trans) 3907 return -ENOENT; 3908 3909 if (val.spt_pathmaxrxt) 3910 trans->pathmaxrxt = val.spt_pathmaxrxt; 3911 trans->pf_retrans = val.spt_pathpfthld; 3912 } 3913 3914 return 0; 3915 } 3916 3917 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3918 char __user *optval, 3919 unsigned int optlen) 3920 { 3921 int val; 3922 3923 if (optlen < sizeof(int)) 3924 return -EINVAL; 3925 if (get_user(val, (int __user *) optval)) 3926 return -EFAULT; 3927 3928 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3929 3930 return 0; 3931 } 3932 3933 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3934 char __user *optval, 3935 unsigned int optlen) 3936 { 3937 int val; 3938 3939 if (optlen < sizeof(int)) 3940 return -EINVAL; 3941 if (get_user(val, (int __user *) optval)) 3942 return -EFAULT; 3943 3944 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3945 3946 return 0; 3947 } 3948 3949 static int sctp_setsockopt_pr_supported(struct sock *sk, 3950 char __user *optval, 3951 unsigned int optlen) 3952 { 3953 struct sctp_assoc_value params; 3954 struct sctp_association *asoc; 3955 int retval = -EINVAL; 3956 3957 if (optlen != sizeof(params)) 3958 goto out; 3959 3960 if (copy_from_user(¶ms, optval, optlen)) { 3961 retval = -EFAULT; 3962 goto out; 3963 } 3964 3965 asoc = sctp_id2assoc(sk, params.assoc_id); 3966 if (asoc) { 3967 asoc->prsctp_enable = !!params.assoc_value; 3968 } else if (!params.assoc_id) { 3969 struct sctp_sock *sp = sctp_sk(sk); 3970 3971 sp->ep->prsctp_enable = !!params.assoc_value; 3972 } else { 3973 goto out; 3974 } 3975 3976 retval = 0; 3977 3978 out: 3979 return retval; 3980 } 3981 3982 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3983 char __user *optval, 3984 unsigned int optlen) 3985 { 3986 struct sctp_default_prinfo info; 3987 struct sctp_association *asoc; 3988 int retval = -EINVAL; 3989 3990 if (optlen != sizeof(info)) 3991 goto out; 3992 3993 if (copy_from_user(&info, optval, sizeof(info))) { 3994 retval = -EFAULT; 3995 goto out; 3996 } 3997 3998 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3999 goto out; 4000 4001 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4002 info.pr_value = 0; 4003 4004 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4005 if (asoc) { 4006 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4007 asoc->default_timetolive = info.pr_value; 4008 } else if (!info.pr_assoc_id) { 4009 struct sctp_sock *sp = sctp_sk(sk); 4010 4011 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4012 sp->default_timetolive = info.pr_value; 4013 } else { 4014 goto out; 4015 } 4016 4017 retval = 0; 4018 4019 out: 4020 return retval; 4021 } 4022 4023 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4024 char __user *optval, 4025 unsigned int optlen) 4026 { 4027 struct sctp_assoc_value params; 4028 struct sctp_association *asoc; 4029 int retval = -EINVAL; 4030 4031 if (optlen != sizeof(params)) 4032 goto out; 4033 4034 if (copy_from_user(¶ms, optval, optlen)) { 4035 retval = -EFAULT; 4036 goto out; 4037 } 4038 4039 asoc = sctp_id2assoc(sk, params.assoc_id); 4040 if (asoc) { 4041 asoc->reconf_enable = !!params.assoc_value; 4042 } else if (!params.assoc_id) { 4043 struct sctp_sock *sp = sctp_sk(sk); 4044 4045 sp->ep->reconf_enable = !!params.assoc_value; 4046 } else { 4047 goto out; 4048 } 4049 4050 retval = 0; 4051 4052 out: 4053 return retval; 4054 } 4055 4056 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4057 char __user *optval, 4058 unsigned int optlen) 4059 { 4060 struct sctp_assoc_value params; 4061 struct sctp_association *asoc; 4062 int retval = -EINVAL; 4063 4064 if (optlen != sizeof(params)) 4065 goto out; 4066 4067 if (copy_from_user(¶ms, optval, optlen)) { 4068 retval = -EFAULT; 4069 goto out; 4070 } 4071 4072 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4073 goto out; 4074 4075 asoc = sctp_id2assoc(sk, params.assoc_id); 4076 if (asoc) { 4077 asoc->strreset_enable = params.assoc_value; 4078 } else if (!params.assoc_id) { 4079 struct sctp_sock *sp = sctp_sk(sk); 4080 4081 sp->ep->strreset_enable = params.assoc_value; 4082 } else { 4083 goto out; 4084 } 4085 4086 retval = 0; 4087 4088 out: 4089 return retval; 4090 } 4091 4092 static int sctp_setsockopt_reset_streams(struct sock *sk, 4093 char __user *optval, 4094 unsigned int optlen) 4095 { 4096 struct sctp_reset_streams *params; 4097 struct sctp_association *asoc; 4098 int retval = -EINVAL; 4099 4100 if (optlen < sizeof(*params)) 4101 return -EINVAL; 4102 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4103 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4104 sizeof(__u16) * sizeof(*params)); 4105 4106 params = memdup_user(optval, optlen); 4107 if (IS_ERR(params)) 4108 return PTR_ERR(params); 4109 4110 if (params->srs_number_streams * sizeof(__u16) > 4111 optlen - sizeof(*params)) 4112 goto out; 4113 4114 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4115 if (!asoc) 4116 goto out; 4117 4118 retval = sctp_send_reset_streams(asoc, params); 4119 4120 out: 4121 kfree(params); 4122 return retval; 4123 } 4124 4125 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4126 char __user *optval, 4127 unsigned int optlen) 4128 { 4129 struct sctp_association *asoc; 4130 sctp_assoc_t associd; 4131 int retval = -EINVAL; 4132 4133 if (optlen != sizeof(associd)) 4134 goto out; 4135 4136 if (copy_from_user(&associd, optval, optlen)) { 4137 retval = -EFAULT; 4138 goto out; 4139 } 4140 4141 asoc = sctp_id2assoc(sk, associd); 4142 if (!asoc) 4143 goto out; 4144 4145 retval = sctp_send_reset_assoc(asoc); 4146 4147 out: 4148 return retval; 4149 } 4150 4151 static int sctp_setsockopt_add_streams(struct sock *sk, 4152 char __user *optval, 4153 unsigned int optlen) 4154 { 4155 struct sctp_association *asoc; 4156 struct sctp_add_streams params; 4157 int retval = -EINVAL; 4158 4159 if (optlen != sizeof(params)) 4160 goto out; 4161 4162 if (copy_from_user(¶ms, optval, optlen)) { 4163 retval = -EFAULT; 4164 goto out; 4165 } 4166 4167 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4168 if (!asoc) 4169 goto out; 4170 4171 retval = sctp_send_add_streams(asoc, ¶ms); 4172 4173 out: 4174 return retval; 4175 } 4176 4177 static int sctp_setsockopt_scheduler(struct sock *sk, 4178 char __user *optval, 4179 unsigned int optlen) 4180 { 4181 struct sctp_association *asoc; 4182 struct sctp_assoc_value params; 4183 int retval = -EINVAL; 4184 4185 if (optlen < sizeof(params)) 4186 goto out; 4187 4188 optlen = sizeof(params); 4189 if (copy_from_user(¶ms, optval, optlen)) { 4190 retval = -EFAULT; 4191 goto out; 4192 } 4193 4194 if (params.assoc_value > SCTP_SS_MAX) 4195 goto out; 4196 4197 asoc = sctp_id2assoc(sk, params.assoc_id); 4198 if (!asoc) 4199 goto out; 4200 4201 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4202 4203 out: 4204 return retval; 4205 } 4206 4207 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4208 char __user *optval, 4209 unsigned int optlen) 4210 { 4211 struct sctp_association *asoc; 4212 struct sctp_stream_value params; 4213 int retval = -EINVAL; 4214 4215 if (optlen < sizeof(params)) 4216 goto out; 4217 4218 optlen = sizeof(params); 4219 if (copy_from_user(¶ms, optval, optlen)) { 4220 retval = -EFAULT; 4221 goto out; 4222 } 4223 4224 asoc = sctp_id2assoc(sk, params.assoc_id); 4225 if (!asoc) 4226 goto out; 4227 4228 retval = sctp_sched_set_value(asoc, params.stream_id, 4229 params.stream_value, GFP_KERNEL); 4230 4231 out: 4232 return retval; 4233 } 4234 4235 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4236 char __user *optval, 4237 unsigned int optlen) 4238 { 4239 struct sctp_sock *sp = sctp_sk(sk); 4240 struct net *net = sock_net(sk); 4241 struct sctp_assoc_value params; 4242 int retval = -EINVAL; 4243 4244 if (optlen < sizeof(params)) 4245 goto out; 4246 4247 optlen = sizeof(params); 4248 if (copy_from_user(¶ms, optval, optlen)) { 4249 retval = -EFAULT; 4250 goto out; 4251 } 4252 4253 if (params.assoc_id) 4254 goto out; 4255 4256 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4257 retval = -EPERM; 4258 goto out; 4259 } 4260 4261 sp->strm_interleave = !!params.assoc_value; 4262 4263 retval = 0; 4264 4265 out: 4266 return retval; 4267 } 4268 4269 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4270 unsigned int optlen) 4271 { 4272 int val; 4273 4274 if (!sctp_style(sk, TCP)) 4275 return -EOPNOTSUPP; 4276 4277 if (sctp_sk(sk)->ep->base.bind_addr.port) 4278 return -EFAULT; 4279 4280 if (optlen < sizeof(int)) 4281 return -EINVAL; 4282 4283 if (get_user(val, (int __user *)optval)) 4284 return -EFAULT; 4285 4286 sctp_sk(sk)->reuse = !!val; 4287 4288 return 0; 4289 } 4290 4291 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4292 unsigned int optlen) 4293 { 4294 struct sctp_association *asoc; 4295 struct sctp_ulpevent *event; 4296 struct sctp_event param; 4297 int retval = 0; 4298 4299 if (optlen < sizeof(param)) { 4300 retval = -EINVAL; 4301 goto out; 4302 } 4303 4304 optlen = sizeof(param); 4305 if (copy_from_user(¶m, optval, optlen)) { 4306 retval = -EFAULT; 4307 goto out; 4308 } 4309 4310 if (param.se_type < SCTP_SN_TYPE_BASE || 4311 param.se_type > SCTP_SN_TYPE_MAX) { 4312 retval = -EINVAL; 4313 goto out; 4314 } 4315 4316 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4317 if (!asoc) { 4318 sctp_ulpevent_type_set(&sctp_sk(sk)->subscribe, 4319 param.se_type, param.se_on); 4320 goto out; 4321 } 4322 4323 sctp_ulpevent_type_set(&asoc->subscribe, param.se_type, param.se_on); 4324 4325 if (param.se_type == SCTP_SENDER_DRY_EVENT && param.se_on) { 4326 if (sctp_outq_is_empty(&asoc->outqueue)) { 4327 event = sctp_ulpevent_make_sender_dry_event(asoc, 4328 GFP_USER | __GFP_NOWARN); 4329 if (!event) { 4330 retval = -ENOMEM; 4331 goto out; 4332 } 4333 4334 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4335 } 4336 } 4337 4338 out: 4339 return retval; 4340 } 4341 4342 /* API 6.2 setsockopt(), getsockopt() 4343 * 4344 * Applications use setsockopt() and getsockopt() to set or retrieve 4345 * socket options. Socket options are used to change the default 4346 * behavior of sockets calls. They are described in Section 7. 4347 * 4348 * The syntax is: 4349 * 4350 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4351 * int __user *optlen); 4352 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4353 * int optlen); 4354 * 4355 * sd - the socket descript. 4356 * level - set to IPPROTO_SCTP for all SCTP options. 4357 * optname - the option name. 4358 * optval - the buffer to store the value of the option. 4359 * optlen - the size of the buffer. 4360 */ 4361 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4362 char __user *optval, unsigned int optlen) 4363 { 4364 int retval = 0; 4365 4366 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4367 4368 /* I can hardly begin to describe how wrong this is. This is 4369 * so broken as to be worse than useless. The API draft 4370 * REALLY is NOT helpful here... I am not convinced that the 4371 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4372 * are at all well-founded. 4373 */ 4374 if (level != SOL_SCTP) { 4375 struct sctp_af *af = sctp_sk(sk)->pf->af; 4376 retval = af->setsockopt(sk, level, optname, optval, optlen); 4377 goto out_nounlock; 4378 } 4379 4380 lock_sock(sk); 4381 4382 switch (optname) { 4383 case SCTP_SOCKOPT_BINDX_ADD: 4384 /* 'optlen' is the size of the addresses buffer. */ 4385 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4386 optlen, SCTP_BINDX_ADD_ADDR); 4387 break; 4388 4389 case SCTP_SOCKOPT_BINDX_REM: 4390 /* 'optlen' is the size of the addresses buffer. */ 4391 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4392 optlen, SCTP_BINDX_REM_ADDR); 4393 break; 4394 4395 case SCTP_SOCKOPT_CONNECTX_OLD: 4396 /* 'optlen' is the size of the addresses buffer. */ 4397 retval = sctp_setsockopt_connectx_old(sk, 4398 (struct sockaddr __user *)optval, 4399 optlen); 4400 break; 4401 4402 case SCTP_SOCKOPT_CONNECTX: 4403 /* 'optlen' is the size of the addresses buffer. */ 4404 retval = sctp_setsockopt_connectx(sk, 4405 (struct sockaddr __user *)optval, 4406 optlen); 4407 break; 4408 4409 case SCTP_DISABLE_FRAGMENTS: 4410 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4411 break; 4412 4413 case SCTP_EVENTS: 4414 retval = sctp_setsockopt_events(sk, optval, optlen); 4415 break; 4416 4417 case SCTP_AUTOCLOSE: 4418 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4419 break; 4420 4421 case SCTP_PEER_ADDR_PARAMS: 4422 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4423 break; 4424 4425 case SCTP_DELAYED_SACK: 4426 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4427 break; 4428 case SCTP_PARTIAL_DELIVERY_POINT: 4429 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4430 break; 4431 4432 case SCTP_INITMSG: 4433 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4434 break; 4435 case SCTP_DEFAULT_SEND_PARAM: 4436 retval = sctp_setsockopt_default_send_param(sk, optval, 4437 optlen); 4438 break; 4439 case SCTP_DEFAULT_SNDINFO: 4440 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4441 break; 4442 case SCTP_PRIMARY_ADDR: 4443 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4444 break; 4445 case SCTP_SET_PEER_PRIMARY_ADDR: 4446 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4447 break; 4448 case SCTP_NODELAY: 4449 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4450 break; 4451 case SCTP_RTOINFO: 4452 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4453 break; 4454 case SCTP_ASSOCINFO: 4455 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4456 break; 4457 case SCTP_I_WANT_MAPPED_V4_ADDR: 4458 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4459 break; 4460 case SCTP_MAXSEG: 4461 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4462 break; 4463 case SCTP_ADAPTATION_LAYER: 4464 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4465 break; 4466 case SCTP_CONTEXT: 4467 retval = sctp_setsockopt_context(sk, optval, optlen); 4468 break; 4469 case SCTP_FRAGMENT_INTERLEAVE: 4470 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4471 break; 4472 case SCTP_MAX_BURST: 4473 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4474 break; 4475 case SCTP_AUTH_CHUNK: 4476 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4477 break; 4478 case SCTP_HMAC_IDENT: 4479 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4480 break; 4481 case SCTP_AUTH_KEY: 4482 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4483 break; 4484 case SCTP_AUTH_ACTIVE_KEY: 4485 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4486 break; 4487 case SCTP_AUTH_DELETE_KEY: 4488 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4489 break; 4490 case SCTP_AUTH_DEACTIVATE_KEY: 4491 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4492 break; 4493 case SCTP_AUTO_ASCONF: 4494 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4495 break; 4496 case SCTP_PEER_ADDR_THLDS: 4497 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4498 break; 4499 case SCTP_RECVRCVINFO: 4500 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4501 break; 4502 case SCTP_RECVNXTINFO: 4503 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4504 break; 4505 case SCTP_PR_SUPPORTED: 4506 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4507 break; 4508 case SCTP_DEFAULT_PRINFO: 4509 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4510 break; 4511 case SCTP_RECONFIG_SUPPORTED: 4512 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4513 break; 4514 case SCTP_ENABLE_STREAM_RESET: 4515 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4516 break; 4517 case SCTP_RESET_STREAMS: 4518 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4519 break; 4520 case SCTP_RESET_ASSOC: 4521 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4522 break; 4523 case SCTP_ADD_STREAMS: 4524 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4525 break; 4526 case SCTP_STREAM_SCHEDULER: 4527 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4528 break; 4529 case SCTP_STREAM_SCHEDULER_VALUE: 4530 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4531 break; 4532 case SCTP_INTERLEAVING_SUPPORTED: 4533 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4534 optlen); 4535 break; 4536 case SCTP_REUSE_PORT: 4537 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4538 break; 4539 case SCTP_EVENT: 4540 retval = sctp_setsockopt_event(sk, optval, optlen); 4541 break; 4542 default: 4543 retval = -ENOPROTOOPT; 4544 break; 4545 } 4546 4547 release_sock(sk); 4548 4549 out_nounlock: 4550 return retval; 4551 } 4552 4553 /* API 3.1.6 connect() - UDP Style Syntax 4554 * 4555 * An application may use the connect() call in the UDP model to initiate an 4556 * association without sending data. 4557 * 4558 * The syntax is: 4559 * 4560 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4561 * 4562 * sd: the socket descriptor to have a new association added to. 4563 * 4564 * nam: the address structure (either struct sockaddr_in or struct 4565 * sockaddr_in6 defined in RFC2553 [7]). 4566 * 4567 * len: the size of the address. 4568 */ 4569 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4570 int addr_len, int flags) 4571 { 4572 struct inet_sock *inet = inet_sk(sk); 4573 struct sctp_af *af; 4574 int err = 0; 4575 4576 lock_sock(sk); 4577 4578 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4579 addr, addr_len); 4580 4581 /* We may need to bind the socket. */ 4582 if (!inet->inet_num) { 4583 if (sk->sk_prot->get_port(sk, 0)) { 4584 release_sock(sk); 4585 return -EAGAIN; 4586 } 4587 inet->inet_sport = htons(inet->inet_num); 4588 } 4589 4590 /* Validate addr_len before calling common connect/connectx routine. */ 4591 af = sctp_get_af_specific(addr->sa_family); 4592 if (!af || addr_len < af->sockaddr_len) { 4593 err = -EINVAL; 4594 } else { 4595 /* Pass correct addr len to common routine (so it knows there 4596 * is only one address being passed. 4597 */ 4598 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4599 } 4600 4601 release_sock(sk); 4602 return err; 4603 } 4604 4605 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4606 int addr_len, int flags) 4607 { 4608 if (addr_len < sizeof(uaddr->sa_family)) 4609 return -EINVAL; 4610 4611 if (uaddr->sa_family == AF_UNSPEC) 4612 return -EOPNOTSUPP; 4613 4614 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4615 } 4616 4617 /* FIXME: Write comments. */ 4618 static int sctp_disconnect(struct sock *sk, int flags) 4619 { 4620 return -EOPNOTSUPP; /* STUB */ 4621 } 4622 4623 /* 4.1.4 accept() - TCP Style Syntax 4624 * 4625 * Applications use accept() call to remove an established SCTP 4626 * association from the accept queue of the endpoint. A new socket 4627 * descriptor will be returned from accept() to represent the newly 4628 * formed association. 4629 */ 4630 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4631 { 4632 struct sctp_sock *sp; 4633 struct sctp_endpoint *ep; 4634 struct sock *newsk = NULL; 4635 struct sctp_association *asoc; 4636 long timeo; 4637 int error = 0; 4638 4639 lock_sock(sk); 4640 4641 sp = sctp_sk(sk); 4642 ep = sp->ep; 4643 4644 if (!sctp_style(sk, TCP)) { 4645 error = -EOPNOTSUPP; 4646 goto out; 4647 } 4648 4649 if (!sctp_sstate(sk, LISTENING)) { 4650 error = -EINVAL; 4651 goto out; 4652 } 4653 4654 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4655 4656 error = sctp_wait_for_accept(sk, timeo); 4657 if (error) 4658 goto out; 4659 4660 /* We treat the list of associations on the endpoint as the accept 4661 * queue and pick the first association on the list. 4662 */ 4663 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4664 4665 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4666 if (!newsk) { 4667 error = -ENOMEM; 4668 goto out; 4669 } 4670 4671 /* Populate the fields of the newsk from the oldsk and migrate the 4672 * asoc to the newsk. 4673 */ 4674 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4675 4676 out: 4677 release_sock(sk); 4678 *err = error; 4679 return newsk; 4680 } 4681 4682 /* The SCTP ioctl handler. */ 4683 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4684 { 4685 int rc = -ENOTCONN; 4686 4687 lock_sock(sk); 4688 4689 /* 4690 * SEQPACKET-style sockets in LISTENING state are valid, for 4691 * SCTP, so only discard TCP-style sockets in LISTENING state. 4692 */ 4693 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4694 goto out; 4695 4696 switch (cmd) { 4697 case SIOCINQ: { 4698 struct sk_buff *skb; 4699 unsigned int amount = 0; 4700 4701 skb = skb_peek(&sk->sk_receive_queue); 4702 if (skb != NULL) { 4703 /* 4704 * We will only return the amount of this packet since 4705 * that is all that will be read. 4706 */ 4707 amount = skb->len; 4708 } 4709 rc = put_user(amount, (int __user *)arg); 4710 break; 4711 } 4712 default: 4713 rc = -ENOIOCTLCMD; 4714 break; 4715 } 4716 out: 4717 release_sock(sk); 4718 return rc; 4719 } 4720 4721 /* This is the function which gets called during socket creation to 4722 * initialized the SCTP-specific portion of the sock. 4723 * The sock structure should already be zero-filled memory. 4724 */ 4725 static int sctp_init_sock(struct sock *sk) 4726 { 4727 struct net *net = sock_net(sk); 4728 struct sctp_sock *sp; 4729 4730 pr_debug("%s: sk:%p\n", __func__, sk); 4731 4732 sp = sctp_sk(sk); 4733 4734 /* Initialize the SCTP per socket area. */ 4735 switch (sk->sk_type) { 4736 case SOCK_SEQPACKET: 4737 sp->type = SCTP_SOCKET_UDP; 4738 break; 4739 case SOCK_STREAM: 4740 sp->type = SCTP_SOCKET_TCP; 4741 break; 4742 default: 4743 return -ESOCKTNOSUPPORT; 4744 } 4745 4746 sk->sk_gso_type = SKB_GSO_SCTP; 4747 4748 /* Initialize default send parameters. These parameters can be 4749 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4750 */ 4751 sp->default_stream = 0; 4752 sp->default_ppid = 0; 4753 sp->default_flags = 0; 4754 sp->default_context = 0; 4755 sp->default_timetolive = 0; 4756 4757 sp->default_rcv_context = 0; 4758 sp->max_burst = net->sctp.max_burst; 4759 4760 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4761 4762 /* Initialize default setup parameters. These parameters 4763 * can be modified with the SCTP_INITMSG socket option or 4764 * overridden by the SCTP_INIT CMSG. 4765 */ 4766 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4767 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4768 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4769 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4770 4771 /* Initialize default RTO related parameters. These parameters can 4772 * be modified for with the SCTP_RTOINFO socket option. 4773 */ 4774 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4775 sp->rtoinfo.srto_max = net->sctp.rto_max; 4776 sp->rtoinfo.srto_min = net->sctp.rto_min; 4777 4778 /* Initialize default association related parameters. These parameters 4779 * can be modified with the SCTP_ASSOCINFO socket option. 4780 */ 4781 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4782 sp->assocparams.sasoc_number_peer_destinations = 0; 4783 sp->assocparams.sasoc_peer_rwnd = 0; 4784 sp->assocparams.sasoc_local_rwnd = 0; 4785 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4786 4787 /* Initialize default event subscriptions. By default, all the 4788 * options are off. 4789 */ 4790 sp->subscribe = 0; 4791 4792 /* Default Peer Address Parameters. These defaults can 4793 * be modified via SCTP_PEER_ADDR_PARAMS 4794 */ 4795 sp->hbinterval = net->sctp.hb_interval; 4796 sp->pathmaxrxt = net->sctp.max_retrans_path; 4797 sp->pathmtu = 0; /* allow default discovery */ 4798 sp->sackdelay = net->sctp.sack_timeout; 4799 sp->sackfreq = 2; 4800 sp->param_flags = SPP_HB_ENABLE | 4801 SPP_PMTUD_ENABLE | 4802 SPP_SACKDELAY_ENABLE; 4803 4804 /* If enabled no SCTP message fragmentation will be performed. 4805 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4806 */ 4807 sp->disable_fragments = 0; 4808 4809 /* Enable Nagle algorithm by default. */ 4810 sp->nodelay = 0; 4811 4812 sp->recvrcvinfo = 0; 4813 sp->recvnxtinfo = 0; 4814 4815 /* Enable by default. */ 4816 sp->v4mapped = 1; 4817 4818 /* Auto-close idle associations after the configured 4819 * number of seconds. A value of 0 disables this 4820 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4821 * for UDP-style sockets only. 4822 */ 4823 sp->autoclose = 0; 4824 4825 /* User specified fragmentation limit. */ 4826 sp->user_frag = 0; 4827 4828 sp->adaptation_ind = 0; 4829 4830 sp->pf = sctp_get_pf_specific(sk->sk_family); 4831 4832 /* Control variables for partial data delivery. */ 4833 atomic_set(&sp->pd_mode, 0); 4834 skb_queue_head_init(&sp->pd_lobby); 4835 sp->frag_interleave = 0; 4836 4837 /* Create a per socket endpoint structure. Even if we 4838 * change the data structure relationships, this may still 4839 * be useful for storing pre-connect address information. 4840 */ 4841 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4842 if (!sp->ep) 4843 return -ENOMEM; 4844 4845 sp->hmac = NULL; 4846 4847 sk->sk_destruct = sctp_destruct_sock; 4848 4849 SCTP_DBG_OBJCNT_INC(sock); 4850 4851 local_bh_disable(); 4852 sk_sockets_allocated_inc(sk); 4853 sock_prot_inuse_add(net, sk->sk_prot, 1); 4854 4855 /* Nothing can fail after this block, otherwise 4856 * sctp_destroy_sock() will be called without addr_wq_lock held 4857 */ 4858 if (net->sctp.default_auto_asconf) { 4859 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4860 list_add_tail(&sp->auto_asconf_list, 4861 &net->sctp.auto_asconf_splist); 4862 sp->do_auto_asconf = 1; 4863 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4864 } else { 4865 sp->do_auto_asconf = 0; 4866 } 4867 4868 local_bh_enable(); 4869 4870 return 0; 4871 } 4872 4873 /* Cleanup any SCTP per socket resources. Must be called with 4874 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4875 */ 4876 static void sctp_destroy_sock(struct sock *sk) 4877 { 4878 struct sctp_sock *sp; 4879 4880 pr_debug("%s: sk:%p\n", __func__, sk); 4881 4882 /* Release our hold on the endpoint. */ 4883 sp = sctp_sk(sk); 4884 /* This could happen during socket init, thus we bail out 4885 * early, since the rest of the below is not setup either. 4886 */ 4887 if (sp->ep == NULL) 4888 return; 4889 4890 if (sp->do_auto_asconf) { 4891 sp->do_auto_asconf = 0; 4892 list_del(&sp->auto_asconf_list); 4893 } 4894 sctp_endpoint_free(sp->ep); 4895 local_bh_disable(); 4896 sk_sockets_allocated_dec(sk); 4897 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4898 local_bh_enable(); 4899 } 4900 4901 /* Triggered when there are no references on the socket anymore */ 4902 static void sctp_destruct_sock(struct sock *sk) 4903 { 4904 struct sctp_sock *sp = sctp_sk(sk); 4905 4906 /* Free up the HMAC transform. */ 4907 crypto_free_shash(sp->hmac); 4908 4909 inet_sock_destruct(sk); 4910 } 4911 4912 /* API 4.1.7 shutdown() - TCP Style Syntax 4913 * int shutdown(int socket, int how); 4914 * 4915 * sd - the socket descriptor of the association to be closed. 4916 * how - Specifies the type of shutdown. The values are 4917 * as follows: 4918 * SHUT_RD 4919 * Disables further receive operations. No SCTP 4920 * protocol action is taken. 4921 * SHUT_WR 4922 * Disables further send operations, and initiates 4923 * the SCTP shutdown sequence. 4924 * SHUT_RDWR 4925 * Disables further send and receive operations 4926 * and initiates the SCTP shutdown sequence. 4927 */ 4928 static void sctp_shutdown(struct sock *sk, int how) 4929 { 4930 struct net *net = sock_net(sk); 4931 struct sctp_endpoint *ep; 4932 4933 if (!sctp_style(sk, TCP)) 4934 return; 4935 4936 ep = sctp_sk(sk)->ep; 4937 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4938 struct sctp_association *asoc; 4939 4940 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4941 asoc = list_entry(ep->asocs.next, 4942 struct sctp_association, asocs); 4943 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4944 } 4945 } 4946 4947 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4948 struct sctp_info *info) 4949 { 4950 struct sctp_transport *prim; 4951 struct list_head *pos; 4952 int mask; 4953 4954 memset(info, 0, sizeof(*info)); 4955 if (!asoc) { 4956 struct sctp_sock *sp = sctp_sk(sk); 4957 4958 info->sctpi_s_autoclose = sp->autoclose; 4959 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4960 info->sctpi_s_pd_point = sp->pd_point; 4961 info->sctpi_s_nodelay = sp->nodelay; 4962 info->sctpi_s_disable_fragments = sp->disable_fragments; 4963 info->sctpi_s_v4mapped = sp->v4mapped; 4964 info->sctpi_s_frag_interleave = sp->frag_interleave; 4965 info->sctpi_s_type = sp->type; 4966 4967 return 0; 4968 } 4969 4970 info->sctpi_tag = asoc->c.my_vtag; 4971 info->sctpi_state = asoc->state; 4972 info->sctpi_rwnd = asoc->a_rwnd; 4973 info->sctpi_unackdata = asoc->unack_data; 4974 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4975 info->sctpi_instrms = asoc->stream.incnt; 4976 info->sctpi_outstrms = asoc->stream.outcnt; 4977 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4978 info->sctpi_inqueue++; 4979 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4980 info->sctpi_outqueue++; 4981 info->sctpi_overall_error = asoc->overall_error_count; 4982 info->sctpi_max_burst = asoc->max_burst; 4983 info->sctpi_maxseg = asoc->frag_point; 4984 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4985 info->sctpi_peer_tag = asoc->c.peer_vtag; 4986 4987 mask = asoc->peer.ecn_capable << 1; 4988 mask = (mask | asoc->peer.ipv4_address) << 1; 4989 mask = (mask | asoc->peer.ipv6_address) << 1; 4990 mask = (mask | asoc->peer.hostname_address) << 1; 4991 mask = (mask | asoc->peer.asconf_capable) << 1; 4992 mask = (mask | asoc->peer.prsctp_capable) << 1; 4993 mask = (mask | asoc->peer.auth_capable); 4994 info->sctpi_peer_capable = mask; 4995 mask = asoc->peer.sack_needed << 1; 4996 mask = (mask | asoc->peer.sack_generation) << 1; 4997 mask = (mask | asoc->peer.zero_window_announced); 4998 info->sctpi_peer_sack = mask; 4999 5000 info->sctpi_isacks = asoc->stats.isacks; 5001 info->sctpi_osacks = asoc->stats.osacks; 5002 info->sctpi_opackets = asoc->stats.opackets; 5003 info->sctpi_ipackets = asoc->stats.ipackets; 5004 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5005 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5006 info->sctpi_idupchunks = asoc->stats.idupchunks; 5007 info->sctpi_gapcnt = asoc->stats.gapcnt; 5008 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5009 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5010 info->sctpi_oodchunks = asoc->stats.oodchunks; 5011 info->sctpi_iodchunks = asoc->stats.iodchunks; 5012 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5013 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5014 5015 prim = asoc->peer.primary_path; 5016 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5017 info->sctpi_p_state = prim->state; 5018 info->sctpi_p_cwnd = prim->cwnd; 5019 info->sctpi_p_srtt = prim->srtt; 5020 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5021 info->sctpi_p_hbinterval = prim->hbinterval; 5022 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5023 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5024 info->sctpi_p_ssthresh = prim->ssthresh; 5025 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5026 info->sctpi_p_flight_size = prim->flight_size; 5027 info->sctpi_p_error = prim->error_count; 5028 5029 return 0; 5030 } 5031 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5032 5033 /* use callback to avoid exporting the core structure */ 5034 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5035 { 5036 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5037 5038 rhashtable_walk_start(iter); 5039 } 5040 5041 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5042 { 5043 rhashtable_walk_stop(iter); 5044 rhashtable_walk_exit(iter); 5045 } 5046 5047 struct sctp_transport *sctp_transport_get_next(struct net *net, 5048 struct rhashtable_iter *iter) 5049 { 5050 struct sctp_transport *t; 5051 5052 t = rhashtable_walk_next(iter); 5053 for (; t; t = rhashtable_walk_next(iter)) { 5054 if (IS_ERR(t)) { 5055 if (PTR_ERR(t) == -EAGAIN) 5056 continue; 5057 break; 5058 } 5059 5060 if (!sctp_transport_hold(t)) 5061 continue; 5062 5063 if (net_eq(sock_net(t->asoc->base.sk), net) && 5064 t->asoc->peer.primary_path == t) 5065 break; 5066 5067 sctp_transport_put(t); 5068 } 5069 5070 return t; 5071 } 5072 5073 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5074 struct rhashtable_iter *iter, 5075 int pos) 5076 { 5077 struct sctp_transport *t; 5078 5079 if (!pos) 5080 return SEQ_START_TOKEN; 5081 5082 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5083 if (!--pos) 5084 break; 5085 sctp_transport_put(t); 5086 } 5087 5088 return t; 5089 } 5090 5091 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5092 void *p) { 5093 int err = 0; 5094 int hash = 0; 5095 struct sctp_ep_common *epb; 5096 struct sctp_hashbucket *head; 5097 5098 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5099 hash++, head++) { 5100 read_lock_bh(&head->lock); 5101 sctp_for_each_hentry(epb, &head->chain) { 5102 err = cb(sctp_ep(epb), p); 5103 if (err) 5104 break; 5105 } 5106 read_unlock_bh(&head->lock); 5107 } 5108 5109 return err; 5110 } 5111 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5112 5113 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5114 struct net *net, 5115 const union sctp_addr *laddr, 5116 const union sctp_addr *paddr, void *p) 5117 { 5118 struct sctp_transport *transport; 5119 int err; 5120 5121 rcu_read_lock(); 5122 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5123 rcu_read_unlock(); 5124 if (!transport) 5125 return -ENOENT; 5126 5127 err = cb(transport, p); 5128 sctp_transport_put(transport); 5129 5130 return err; 5131 } 5132 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5133 5134 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5135 int (*cb_done)(struct sctp_transport *, void *), 5136 struct net *net, int *pos, void *p) { 5137 struct rhashtable_iter hti; 5138 struct sctp_transport *tsp; 5139 int ret; 5140 5141 again: 5142 ret = 0; 5143 sctp_transport_walk_start(&hti); 5144 5145 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5146 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5147 ret = cb(tsp, p); 5148 if (ret) 5149 break; 5150 (*pos)++; 5151 sctp_transport_put(tsp); 5152 } 5153 sctp_transport_walk_stop(&hti); 5154 5155 if (ret) { 5156 if (cb_done && !cb_done(tsp, p)) { 5157 (*pos)++; 5158 sctp_transport_put(tsp); 5159 goto again; 5160 } 5161 sctp_transport_put(tsp); 5162 } 5163 5164 return ret; 5165 } 5166 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5167 5168 /* 7.2.1 Association Status (SCTP_STATUS) 5169 5170 * Applications can retrieve current status information about an 5171 * association, including association state, peer receiver window size, 5172 * number of unacked data chunks, and number of data chunks pending 5173 * receipt. This information is read-only. 5174 */ 5175 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5176 char __user *optval, 5177 int __user *optlen) 5178 { 5179 struct sctp_status status; 5180 struct sctp_association *asoc = NULL; 5181 struct sctp_transport *transport; 5182 sctp_assoc_t associd; 5183 int retval = 0; 5184 5185 if (len < sizeof(status)) { 5186 retval = -EINVAL; 5187 goto out; 5188 } 5189 5190 len = sizeof(status); 5191 if (copy_from_user(&status, optval, len)) { 5192 retval = -EFAULT; 5193 goto out; 5194 } 5195 5196 associd = status.sstat_assoc_id; 5197 asoc = sctp_id2assoc(sk, associd); 5198 if (!asoc) { 5199 retval = -EINVAL; 5200 goto out; 5201 } 5202 5203 transport = asoc->peer.primary_path; 5204 5205 status.sstat_assoc_id = sctp_assoc2id(asoc); 5206 status.sstat_state = sctp_assoc_to_state(asoc); 5207 status.sstat_rwnd = asoc->peer.rwnd; 5208 status.sstat_unackdata = asoc->unack_data; 5209 5210 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5211 status.sstat_instrms = asoc->stream.incnt; 5212 status.sstat_outstrms = asoc->stream.outcnt; 5213 status.sstat_fragmentation_point = asoc->frag_point; 5214 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5215 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5216 transport->af_specific->sockaddr_len); 5217 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5218 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5219 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5220 status.sstat_primary.spinfo_state = transport->state; 5221 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5222 status.sstat_primary.spinfo_srtt = transport->srtt; 5223 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5224 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5225 5226 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5227 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5228 5229 if (put_user(len, optlen)) { 5230 retval = -EFAULT; 5231 goto out; 5232 } 5233 5234 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5235 __func__, len, status.sstat_state, status.sstat_rwnd, 5236 status.sstat_assoc_id); 5237 5238 if (copy_to_user(optval, &status, len)) { 5239 retval = -EFAULT; 5240 goto out; 5241 } 5242 5243 out: 5244 return retval; 5245 } 5246 5247 5248 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5249 * 5250 * Applications can retrieve information about a specific peer address 5251 * of an association, including its reachability state, congestion 5252 * window, and retransmission timer values. This information is 5253 * read-only. 5254 */ 5255 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5256 char __user *optval, 5257 int __user *optlen) 5258 { 5259 struct sctp_paddrinfo pinfo; 5260 struct sctp_transport *transport; 5261 int retval = 0; 5262 5263 if (len < sizeof(pinfo)) { 5264 retval = -EINVAL; 5265 goto out; 5266 } 5267 5268 len = sizeof(pinfo); 5269 if (copy_from_user(&pinfo, optval, len)) { 5270 retval = -EFAULT; 5271 goto out; 5272 } 5273 5274 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5275 pinfo.spinfo_assoc_id); 5276 if (!transport) 5277 return -EINVAL; 5278 5279 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5280 pinfo.spinfo_state = transport->state; 5281 pinfo.spinfo_cwnd = transport->cwnd; 5282 pinfo.spinfo_srtt = transport->srtt; 5283 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5284 pinfo.spinfo_mtu = transport->pathmtu; 5285 5286 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5287 pinfo.spinfo_state = SCTP_ACTIVE; 5288 5289 if (put_user(len, optlen)) { 5290 retval = -EFAULT; 5291 goto out; 5292 } 5293 5294 if (copy_to_user(optval, &pinfo, len)) { 5295 retval = -EFAULT; 5296 goto out; 5297 } 5298 5299 out: 5300 return retval; 5301 } 5302 5303 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5304 * 5305 * This option is a on/off flag. If enabled no SCTP message 5306 * fragmentation will be performed. Instead if a message being sent 5307 * exceeds the current PMTU size, the message will NOT be sent and 5308 * instead a error will be indicated to the user. 5309 */ 5310 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5311 char __user *optval, int __user *optlen) 5312 { 5313 int val; 5314 5315 if (len < sizeof(int)) 5316 return -EINVAL; 5317 5318 len = sizeof(int); 5319 val = (sctp_sk(sk)->disable_fragments == 1); 5320 if (put_user(len, optlen)) 5321 return -EFAULT; 5322 if (copy_to_user(optval, &val, len)) 5323 return -EFAULT; 5324 return 0; 5325 } 5326 5327 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5328 * 5329 * This socket option is used to specify various notifications and 5330 * ancillary data the user wishes to receive. 5331 */ 5332 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5333 int __user *optlen) 5334 { 5335 struct sctp_event_subscribe subscribe; 5336 __u8 *sn_type = (__u8 *)&subscribe; 5337 int i; 5338 5339 if (len == 0) 5340 return -EINVAL; 5341 if (len > sizeof(struct sctp_event_subscribe)) 5342 len = sizeof(struct sctp_event_subscribe); 5343 if (put_user(len, optlen)) 5344 return -EFAULT; 5345 5346 for (i = 0; i < len; i++) 5347 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5348 SCTP_SN_TYPE_BASE + i); 5349 5350 if (copy_to_user(optval, &subscribe, len)) 5351 return -EFAULT; 5352 5353 return 0; 5354 } 5355 5356 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5357 * 5358 * This socket option is applicable to the UDP-style socket only. When 5359 * set it will cause associations that are idle for more than the 5360 * specified number of seconds to automatically close. An association 5361 * being idle is defined an association that has NOT sent or received 5362 * user data. The special value of '0' indicates that no automatic 5363 * close of any associations should be performed. The option expects an 5364 * integer defining the number of seconds of idle time before an 5365 * association is closed. 5366 */ 5367 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5368 { 5369 /* Applicable to UDP-style socket only */ 5370 if (sctp_style(sk, TCP)) 5371 return -EOPNOTSUPP; 5372 if (len < sizeof(int)) 5373 return -EINVAL; 5374 len = sizeof(int); 5375 if (put_user(len, optlen)) 5376 return -EFAULT; 5377 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5378 return -EFAULT; 5379 return 0; 5380 } 5381 5382 /* Helper routine to branch off an association to a new socket. */ 5383 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5384 { 5385 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5386 struct sctp_sock *sp = sctp_sk(sk); 5387 struct socket *sock; 5388 int err = 0; 5389 5390 /* Do not peel off from one netns to another one. */ 5391 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5392 return -EINVAL; 5393 5394 if (!asoc) 5395 return -EINVAL; 5396 5397 /* An association cannot be branched off from an already peeled-off 5398 * socket, nor is this supported for tcp style sockets. 5399 */ 5400 if (!sctp_style(sk, UDP)) 5401 return -EINVAL; 5402 5403 /* Create a new socket. */ 5404 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5405 if (err < 0) 5406 return err; 5407 5408 sctp_copy_sock(sock->sk, sk, asoc); 5409 5410 /* Make peeled-off sockets more like 1-1 accepted sockets. 5411 * Set the daddr and initialize id to something more random and also 5412 * copy over any ip options. 5413 */ 5414 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5415 sp->pf->copy_ip_options(sk, sock->sk); 5416 5417 /* Populate the fields of the newsk from the oldsk and migrate the 5418 * asoc to the newsk. 5419 */ 5420 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5421 5422 *sockp = sock; 5423 5424 return err; 5425 } 5426 EXPORT_SYMBOL(sctp_do_peeloff); 5427 5428 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5429 struct file **newfile, unsigned flags) 5430 { 5431 struct socket *newsock; 5432 int retval; 5433 5434 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5435 if (retval < 0) 5436 goto out; 5437 5438 /* Map the socket to an unused fd that can be returned to the user. */ 5439 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5440 if (retval < 0) { 5441 sock_release(newsock); 5442 goto out; 5443 } 5444 5445 *newfile = sock_alloc_file(newsock, 0, NULL); 5446 if (IS_ERR(*newfile)) { 5447 put_unused_fd(retval); 5448 retval = PTR_ERR(*newfile); 5449 *newfile = NULL; 5450 return retval; 5451 } 5452 5453 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5454 retval); 5455 5456 peeloff->sd = retval; 5457 5458 if (flags & SOCK_NONBLOCK) 5459 (*newfile)->f_flags |= O_NONBLOCK; 5460 out: 5461 return retval; 5462 } 5463 5464 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5465 { 5466 sctp_peeloff_arg_t peeloff; 5467 struct file *newfile = NULL; 5468 int retval = 0; 5469 5470 if (len < sizeof(sctp_peeloff_arg_t)) 5471 return -EINVAL; 5472 len = sizeof(sctp_peeloff_arg_t); 5473 if (copy_from_user(&peeloff, optval, len)) 5474 return -EFAULT; 5475 5476 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5477 if (retval < 0) 5478 goto out; 5479 5480 /* Return the fd mapped to the new socket. */ 5481 if (put_user(len, optlen)) { 5482 fput(newfile); 5483 put_unused_fd(retval); 5484 return -EFAULT; 5485 } 5486 5487 if (copy_to_user(optval, &peeloff, len)) { 5488 fput(newfile); 5489 put_unused_fd(retval); 5490 return -EFAULT; 5491 } 5492 fd_install(retval, newfile); 5493 out: 5494 return retval; 5495 } 5496 5497 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5498 char __user *optval, int __user *optlen) 5499 { 5500 sctp_peeloff_flags_arg_t peeloff; 5501 struct file *newfile = NULL; 5502 int retval = 0; 5503 5504 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5505 return -EINVAL; 5506 len = sizeof(sctp_peeloff_flags_arg_t); 5507 if (copy_from_user(&peeloff, optval, len)) 5508 return -EFAULT; 5509 5510 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5511 &newfile, peeloff.flags); 5512 if (retval < 0) 5513 goto out; 5514 5515 /* Return the fd mapped to the new socket. */ 5516 if (put_user(len, optlen)) { 5517 fput(newfile); 5518 put_unused_fd(retval); 5519 return -EFAULT; 5520 } 5521 5522 if (copy_to_user(optval, &peeloff, len)) { 5523 fput(newfile); 5524 put_unused_fd(retval); 5525 return -EFAULT; 5526 } 5527 fd_install(retval, newfile); 5528 out: 5529 return retval; 5530 } 5531 5532 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5533 * 5534 * Applications can enable or disable heartbeats for any peer address of 5535 * an association, modify an address's heartbeat interval, force a 5536 * heartbeat to be sent immediately, and adjust the address's maximum 5537 * number of retransmissions sent before an address is considered 5538 * unreachable. The following structure is used to access and modify an 5539 * address's parameters: 5540 * 5541 * struct sctp_paddrparams { 5542 * sctp_assoc_t spp_assoc_id; 5543 * struct sockaddr_storage spp_address; 5544 * uint32_t spp_hbinterval; 5545 * uint16_t spp_pathmaxrxt; 5546 * uint32_t spp_pathmtu; 5547 * uint32_t spp_sackdelay; 5548 * uint32_t spp_flags; 5549 * }; 5550 * 5551 * spp_assoc_id - (one-to-many style socket) This is filled in the 5552 * application, and identifies the association for 5553 * this query. 5554 * spp_address - This specifies which address is of interest. 5555 * spp_hbinterval - This contains the value of the heartbeat interval, 5556 * in milliseconds. If a value of zero 5557 * is present in this field then no changes are to 5558 * be made to this parameter. 5559 * spp_pathmaxrxt - This contains the maximum number of 5560 * retransmissions before this address shall be 5561 * considered unreachable. If a value of zero 5562 * is present in this field then no changes are to 5563 * be made to this parameter. 5564 * spp_pathmtu - When Path MTU discovery is disabled the value 5565 * specified here will be the "fixed" path mtu. 5566 * Note that if the spp_address field is empty 5567 * then all associations on this address will 5568 * have this fixed path mtu set upon them. 5569 * 5570 * spp_sackdelay - When delayed sack is enabled, this value specifies 5571 * the number of milliseconds that sacks will be delayed 5572 * for. This value will apply to all addresses of an 5573 * association if the spp_address field is empty. Note 5574 * also, that if delayed sack is enabled and this 5575 * value is set to 0, no change is made to the last 5576 * recorded delayed sack timer value. 5577 * 5578 * spp_flags - These flags are used to control various features 5579 * on an association. The flag field may contain 5580 * zero or more of the following options. 5581 * 5582 * SPP_HB_ENABLE - Enable heartbeats on the 5583 * specified address. Note that if the address 5584 * field is empty all addresses for the association 5585 * have heartbeats enabled upon them. 5586 * 5587 * SPP_HB_DISABLE - Disable heartbeats on the 5588 * speicifed address. Note that if the address 5589 * field is empty all addresses for the association 5590 * will have their heartbeats disabled. Note also 5591 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5592 * mutually exclusive, only one of these two should 5593 * be specified. Enabling both fields will have 5594 * undetermined results. 5595 * 5596 * SPP_HB_DEMAND - Request a user initiated heartbeat 5597 * to be made immediately. 5598 * 5599 * SPP_PMTUD_ENABLE - This field will enable PMTU 5600 * discovery upon the specified address. Note that 5601 * if the address feild is empty then all addresses 5602 * on the association are effected. 5603 * 5604 * SPP_PMTUD_DISABLE - This field will disable PMTU 5605 * discovery upon the specified address. Note that 5606 * if the address feild is empty then all addresses 5607 * on the association are effected. Not also that 5608 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5609 * exclusive. Enabling both will have undetermined 5610 * results. 5611 * 5612 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5613 * on delayed sack. The time specified in spp_sackdelay 5614 * is used to specify the sack delay for this address. Note 5615 * that if spp_address is empty then all addresses will 5616 * enable delayed sack and take on the sack delay 5617 * value specified in spp_sackdelay. 5618 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5619 * off delayed sack. If the spp_address field is blank then 5620 * delayed sack is disabled for the entire association. Note 5621 * also that this field is mutually exclusive to 5622 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5623 * results. 5624 * 5625 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5626 * setting of the IPV6 flow label value. The value is 5627 * contained in the spp_ipv6_flowlabel field. 5628 * Upon retrieval, this flag will be set to indicate that 5629 * the spp_ipv6_flowlabel field has a valid value returned. 5630 * If a specific destination address is set (in the 5631 * spp_address field), then the value returned is that of 5632 * the address. If just an association is specified (and 5633 * no address), then the association's default flow label 5634 * is returned. If neither an association nor a destination 5635 * is specified, then the socket's default flow label is 5636 * returned. For non-IPv6 sockets, this flag will be left 5637 * cleared. 5638 * 5639 * SPP_DSCP: Setting this flag enables the setting of the 5640 * Differentiated Services Code Point (DSCP) value 5641 * associated with either the association or a specific 5642 * address. The value is obtained in the spp_dscp field. 5643 * Upon retrieval, this flag will be set to indicate that 5644 * the spp_dscp field has a valid value returned. If a 5645 * specific destination address is set when called (in the 5646 * spp_address field), then that specific destination 5647 * address's DSCP value is returned. If just an association 5648 * is specified, then the association's default DSCP is 5649 * returned. If neither an association nor a destination is 5650 * specified, then the socket's default DSCP is returned. 5651 * 5652 * spp_ipv6_flowlabel 5653 * - This field is used in conjunction with the 5654 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5655 * The 20 least significant bits are used for the flow 5656 * label. This setting has precedence over any IPv6-layer 5657 * setting. 5658 * 5659 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5660 * and contains the DSCP. The 6 most significant bits are 5661 * used for the DSCP. This setting has precedence over any 5662 * IPv4- or IPv6- layer setting. 5663 */ 5664 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5665 char __user *optval, int __user *optlen) 5666 { 5667 struct sctp_paddrparams params; 5668 struct sctp_transport *trans = NULL; 5669 struct sctp_association *asoc = NULL; 5670 struct sctp_sock *sp = sctp_sk(sk); 5671 5672 if (len >= sizeof(params)) 5673 len = sizeof(params); 5674 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5675 spp_ipv6_flowlabel), 4)) 5676 len = ALIGN(offsetof(struct sctp_paddrparams, 5677 spp_ipv6_flowlabel), 4); 5678 else 5679 return -EINVAL; 5680 5681 if (copy_from_user(¶ms, optval, len)) 5682 return -EFAULT; 5683 5684 /* If an address other than INADDR_ANY is specified, and 5685 * no transport is found, then the request is invalid. 5686 */ 5687 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5688 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5689 params.spp_assoc_id); 5690 if (!trans) { 5691 pr_debug("%s: failed no transport\n", __func__); 5692 return -EINVAL; 5693 } 5694 } 5695 5696 /* Get association, if assoc_id != 0 and the socket is a one 5697 * to many style socket, and an association was not found, then 5698 * the id was invalid. 5699 */ 5700 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5701 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5702 pr_debug("%s: failed no association\n", __func__); 5703 return -EINVAL; 5704 } 5705 5706 if (trans) { 5707 /* Fetch transport values. */ 5708 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5709 params.spp_pathmtu = trans->pathmtu; 5710 params.spp_pathmaxrxt = trans->pathmaxrxt; 5711 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5712 5713 /*draft-11 doesn't say what to return in spp_flags*/ 5714 params.spp_flags = trans->param_flags; 5715 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5716 params.spp_ipv6_flowlabel = trans->flowlabel & 5717 SCTP_FLOWLABEL_VAL_MASK; 5718 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5719 } 5720 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5721 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5722 params.spp_flags |= SPP_DSCP; 5723 } 5724 } else if (asoc) { 5725 /* Fetch association values. */ 5726 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5727 params.spp_pathmtu = asoc->pathmtu; 5728 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5729 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5730 5731 /*draft-11 doesn't say what to return in spp_flags*/ 5732 params.spp_flags = asoc->param_flags; 5733 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5734 params.spp_ipv6_flowlabel = asoc->flowlabel & 5735 SCTP_FLOWLABEL_VAL_MASK; 5736 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5737 } 5738 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5739 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5740 params.spp_flags |= SPP_DSCP; 5741 } 5742 } else { 5743 /* Fetch socket values. */ 5744 params.spp_hbinterval = sp->hbinterval; 5745 params.spp_pathmtu = sp->pathmtu; 5746 params.spp_sackdelay = sp->sackdelay; 5747 params.spp_pathmaxrxt = sp->pathmaxrxt; 5748 5749 /*draft-11 doesn't say what to return in spp_flags*/ 5750 params.spp_flags = sp->param_flags; 5751 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5752 params.spp_ipv6_flowlabel = sp->flowlabel & 5753 SCTP_FLOWLABEL_VAL_MASK; 5754 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5755 } 5756 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5757 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5758 params.spp_flags |= SPP_DSCP; 5759 } 5760 } 5761 5762 if (copy_to_user(optval, ¶ms, len)) 5763 return -EFAULT; 5764 5765 if (put_user(len, optlen)) 5766 return -EFAULT; 5767 5768 return 0; 5769 } 5770 5771 /* 5772 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5773 * 5774 * This option will effect the way delayed acks are performed. This 5775 * option allows you to get or set the delayed ack time, in 5776 * milliseconds. It also allows changing the delayed ack frequency. 5777 * Changing the frequency to 1 disables the delayed sack algorithm. If 5778 * the assoc_id is 0, then this sets or gets the endpoints default 5779 * values. If the assoc_id field is non-zero, then the set or get 5780 * effects the specified association for the one to many model (the 5781 * assoc_id field is ignored by the one to one model). Note that if 5782 * sack_delay or sack_freq are 0 when setting this option, then the 5783 * current values will remain unchanged. 5784 * 5785 * struct sctp_sack_info { 5786 * sctp_assoc_t sack_assoc_id; 5787 * uint32_t sack_delay; 5788 * uint32_t sack_freq; 5789 * }; 5790 * 5791 * sack_assoc_id - This parameter, indicates which association the user 5792 * is performing an action upon. Note that if this field's value is 5793 * zero then the endpoints default value is changed (effecting future 5794 * associations only). 5795 * 5796 * sack_delay - This parameter contains the number of milliseconds that 5797 * the user is requesting the delayed ACK timer be set to. Note that 5798 * this value is defined in the standard to be between 200 and 500 5799 * milliseconds. 5800 * 5801 * sack_freq - This parameter contains the number of packets that must 5802 * be received before a sack is sent without waiting for the delay 5803 * timer to expire. The default value for this is 2, setting this 5804 * value to 1 will disable the delayed sack algorithm. 5805 */ 5806 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5807 char __user *optval, 5808 int __user *optlen) 5809 { 5810 struct sctp_sack_info params; 5811 struct sctp_association *asoc = NULL; 5812 struct sctp_sock *sp = sctp_sk(sk); 5813 5814 if (len >= sizeof(struct sctp_sack_info)) { 5815 len = sizeof(struct sctp_sack_info); 5816 5817 if (copy_from_user(¶ms, optval, len)) 5818 return -EFAULT; 5819 } else if (len == sizeof(struct sctp_assoc_value)) { 5820 pr_warn_ratelimited(DEPRECATED 5821 "%s (pid %d) " 5822 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5823 "Use struct sctp_sack_info instead\n", 5824 current->comm, task_pid_nr(current)); 5825 if (copy_from_user(¶ms, optval, len)) 5826 return -EFAULT; 5827 } else 5828 return -EINVAL; 5829 5830 /* Get association, if sack_assoc_id != 0 and the socket is a one 5831 * to many style socket, and an association was not found, then 5832 * the id was invalid. 5833 */ 5834 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5835 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5836 return -EINVAL; 5837 5838 if (asoc) { 5839 /* Fetch association values. */ 5840 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5841 params.sack_delay = jiffies_to_msecs( 5842 asoc->sackdelay); 5843 params.sack_freq = asoc->sackfreq; 5844 5845 } else { 5846 params.sack_delay = 0; 5847 params.sack_freq = 1; 5848 } 5849 } else { 5850 /* Fetch socket values. */ 5851 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5852 params.sack_delay = sp->sackdelay; 5853 params.sack_freq = sp->sackfreq; 5854 } else { 5855 params.sack_delay = 0; 5856 params.sack_freq = 1; 5857 } 5858 } 5859 5860 if (copy_to_user(optval, ¶ms, len)) 5861 return -EFAULT; 5862 5863 if (put_user(len, optlen)) 5864 return -EFAULT; 5865 5866 return 0; 5867 } 5868 5869 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5870 * 5871 * Applications can specify protocol parameters for the default association 5872 * initialization. The option name argument to setsockopt() and getsockopt() 5873 * is SCTP_INITMSG. 5874 * 5875 * Setting initialization parameters is effective only on an unconnected 5876 * socket (for UDP-style sockets only future associations are effected 5877 * by the change). With TCP-style sockets, this option is inherited by 5878 * sockets derived from a listener socket. 5879 */ 5880 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5881 { 5882 if (len < sizeof(struct sctp_initmsg)) 5883 return -EINVAL; 5884 len = sizeof(struct sctp_initmsg); 5885 if (put_user(len, optlen)) 5886 return -EFAULT; 5887 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5888 return -EFAULT; 5889 return 0; 5890 } 5891 5892 5893 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5894 char __user *optval, int __user *optlen) 5895 { 5896 struct sctp_association *asoc; 5897 int cnt = 0; 5898 struct sctp_getaddrs getaddrs; 5899 struct sctp_transport *from; 5900 void __user *to; 5901 union sctp_addr temp; 5902 struct sctp_sock *sp = sctp_sk(sk); 5903 int addrlen; 5904 size_t space_left; 5905 int bytes_copied; 5906 5907 if (len < sizeof(struct sctp_getaddrs)) 5908 return -EINVAL; 5909 5910 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5911 return -EFAULT; 5912 5913 /* For UDP-style sockets, id specifies the association to query. */ 5914 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5915 if (!asoc) 5916 return -EINVAL; 5917 5918 to = optval + offsetof(struct sctp_getaddrs, addrs); 5919 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5920 5921 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5922 transports) { 5923 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5924 addrlen = sctp_get_pf_specific(sk->sk_family) 5925 ->addr_to_user(sp, &temp); 5926 if (space_left < addrlen) 5927 return -ENOMEM; 5928 if (copy_to_user(to, &temp, addrlen)) 5929 return -EFAULT; 5930 to += addrlen; 5931 cnt++; 5932 space_left -= addrlen; 5933 } 5934 5935 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5936 return -EFAULT; 5937 bytes_copied = ((char __user *)to) - optval; 5938 if (put_user(bytes_copied, optlen)) 5939 return -EFAULT; 5940 5941 return 0; 5942 } 5943 5944 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5945 size_t space_left, int *bytes_copied) 5946 { 5947 struct sctp_sockaddr_entry *addr; 5948 union sctp_addr temp; 5949 int cnt = 0; 5950 int addrlen; 5951 struct net *net = sock_net(sk); 5952 5953 rcu_read_lock(); 5954 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5955 if (!addr->valid) 5956 continue; 5957 5958 if ((PF_INET == sk->sk_family) && 5959 (AF_INET6 == addr->a.sa.sa_family)) 5960 continue; 5961 if ((PF_INET6 == sk->sk_family) && 5962 inet_v6_ipv6only(sk) && 5963 (AF_INET == addr->a.sa.sa_family)) 5964 continue; 5965 memcpy(&temp, &addr->a, sizeof(temp)); 5966 if (!temp.v4.sin_port) 5967 temp.v4.sin_port = htons(port); 5968 5969 addrlen = sctp_get_pf_specific(sk->sk_family) 5970 ->addr_to_user(sctp_sk(sk), &temp); 5971 5972 if (space_left < addrlen) { 5973 cnt = -ENOMEM; 5974 break; 5975 } 5976 memcpy(to, &temp, addrlen); 5977 5978 to += addrlen; 5979 cnt++; 5980 space_left -= addrlen; 5981 *bytes_copied += addrlen; 5982 } 5983 rcu_read_unlock(); 5984 5985 return cnt; 5986 } 5987 5988 5989 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5990 char __user *optval, int __user *optlen) 5991 { 5992 struct sctp_bind_addr *bp; 5993 struct sctp_association *asoc; 5994 int cnt = 0; 5995 struct sctp_getaddrs getaddrs; 5996 struct sctp_sockaddr_entry *addr; 5997 void __user *to; 5998 union sctp_addr temp; 5999 struct sctp_sock *sp = sctp_sk(sk); 6000 int addrlen; 6001 int err = 0; 6002 size_t space_left; 6003 int bytes_copied = 0; 6004 void *addrs; 6005 void *buf; 6006 6007 if (len < sizeof(struct sctp_getaddrs)) 6008 return -EINVAL; 6009 6010 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6011 return -EFAULT; 6012 6013 /* 6014 * For UDP-style sockets, id specifies the association to query. 6015 * If the id field is set to the value '0' then the locally bound 6016 * addresses are returned without regard to any particular 6017 * association. 6018 */ 6019 if (0 == getaddrs.assoc_id) { 6020 bp = &sctp_sk(sk)->ep->base.bind_addr; 6021 } else { 6022 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6023 if (!asoc) 6024 return -EINVAL; 6025 bp = &asoc->base.bind_addr; 6026 } 6027 6028 to = optval + offsetof(struct sctp_getaddrs, addrs); 6029 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6030 6031 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6032 if (!addrs) 6033 return -ENOMEM; 6034 6035 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6036 * addresses from the global local address list. 6037 */ 6038 if (sctp_list_single_entry(&bp->address_list)) { 6039 addr = list_entry(bp->address_list.next, 6040 struct sctp_sockaddr_entry, list); 6041 if (sctp_is_any(sk, &addr->a)) { 6042 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6043 space_left, &bytes_copied); 6044 if (cnt < 0) { 6045 err = cnt; 6046 goto out; 6047 } 6048 goto copy_getaddrs; 6049 } 6050 } 6051 6052 buf = addrs; 6053 /* Protection on the bound address list is not needed since 6054 * in the socket option context we hold a socket lock and 6055 * thus the bound address list can't change. 6056 */ 6057 list_for_each_entry(addr, &bp->address_list, list) { 6058 memcpy(&temp, &addr->a, sizeof(temp)); 6059 addrlen = sctp_get_pf_specific(sk->sk_family) 6060 ->addr_to_user(sp, &temp); 6061 if (space_left < addrlen) { 6062 err = -ENOMEM; /*fixme: right error?*/ 6063 goto out; 6064 } 6065 memcpy(buf, &temp, addrlen); 6066 buf += addrlen; 6067 bytes_copied += addrlen; 6068 cnt++; 6069 space_left -= addrlen; 6070 } 6071 6072 copy_getaddrs: 6073 if (copy_to_user(to, addrs, bytes_copied)) { 6074 err = -EFAULT; 6075 goto out; 6076 } 6077 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6078 err = -EFAULT; 6079 goto out; 6080 } 6081 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6082 * but we can't change it anymore. 6083 */ 6084 if (put_user(bytes_copied, optlen)) 6085 err = -EFAULT; 6086 out: 6087 kfree(addrs); 6088 return err; 6089 } 6090 6091 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6092 * 6093 * Requests that the local SCTP stack use the enclosed peer address as 6094 * the association primary. The enclosed address must be one of the 6095 * association peer's addresses. 6096 */ 6097 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6098 char __user *optval, int __user *optlen) 6099 { 6100 struct sctp_prim prim; 6101 struct sctp_association *asoc; 6102 struct sctp_sock *sp = sctp_sk(sk); 6103 6104 if (len < sizeof(struct sctp_prim)) 6105 return -EINVAL; 6106 6107 len = sizeof(struct sctp_prim); 6108 6109 if (copy_from_user(&prim, optval, len)) 6110 return -EFAULT; 6111 6112 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6113 if (!asoc) 6114 return -EINVAL; 6115 6116 if (!asoc->peer.primary_path) 6117 return -ENOTCONN; 6118 6119 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6120 asoc->peer.primary_path->af_specific->sockaddr_len); 6121 6122 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6123 (union sctp_addr *)&prim.ssp_addr); 6124 6125 if (put_user(len, optlen)) 6126 return -EFAULT; 6127 if (copy_to_user(optval, &prim, len)) 6128 return -EFAULT; 6129 6130 return 0; 6131 } 6132 6133 /* 6134 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6135 * 6136 * Requests that the local endpoint set the specified Adaptation Layer 6137 * Indication parameter for all future INIT and INIT-ACK exchanges. 6138 */ 6139 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6140 char __user *optval, int __user *optlen) 6141 { 6142 struct sctp_setadaptation adaptation; 6143 6144 if (len < sizeof(struct sctp_setadaptation)) 6145 return -EINVAL; 6146 6147 len = sizeof(struct sctp_setadaptation); 6148 6149 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6150 6151 if (put_user(len, optlen)) 6152 return -EFAULT; 6153 if (copy_to_user(optval, &adaptation, len)) 6154 return -EFAULT; 6155 6156 return 0; 6157 } 6158 6159 /* 6160 * 6161 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6162 * 6163 * Applications that wish to use the sendto() system call may wish to 6164 * specify a default set of parameters that would normally be supplied 6165 * through the inclusion of ancillary data. This socket option allows 6166 * such an application to set the default sctp_sndrcvinfo structure. 6167 6168 6169 * The application that wishes to use this socket option simply passes 6170 * in to this call the sctp_sndrcvinfo structure defined in Section 6171 * 5.2.2) The input parameters accepted by this call include 6172 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6173 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6174 * to this call if the caller is using the UDP model. 6175 * 6176 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6177 */ 6178 static int sctp_getsockopt_default_send_param(struct sock *sk, 6179 int len, char __user *optval, 6180 int __user *optlen) 6181 { 6182 struct sctp_sock *sp = sctp_sk(sk); 6183 struct sctp_association *asoc; 6184 struct sctp_sndrcvinfo info; 6185 6186 if (len < sizeof(info)) 6187 return -EINVAL; 6188 6189 len = sizeof(info); 6190 6191 if (copy_from_user(&info, optval, len)) 6192 return -EFAULT; 6193 6194 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6195 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 6196 return -EINVAL; 6197 if (asoc) { 6198 info.sinfo_stream = asoc->default_stream; 6199 info.sinfo_flags = asoc->default_flags; 6200 info.sinfo_ppid = asoc->default_ppid; 6201 info.sinfo_context = asoc->default_context; 6202 info.sinfo_timetolive = asoc->default_timetolive; 6203 } else { 6204 info.sinfo_stream = sp->default_stream; 6205 info.sinfo_flags = sp->default_flags; 6206 info.sinfo_ppid = sp->default_ppid; 6207 info.sinfo_context = sp->default_context; 6208 info.sinfo_timetolive = sp->default_timetolive; 6209 } 6210 6211 if (put_user(len, optlen)) 6212 return -EFAULT; 6213 if (copy_to_user(optval, &info, len)) 6214 return -EFAULT; 6215 6216 return 0; 6217 } 6218 6219 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6220 * (SCTP_DEFAULT_SNDINFO) 6221 */ 6222 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6223 char __user *optval, 6224 int __user *optlen) 6225 { 6226 struct sctp_sock *sp = sctp_sk(sk); 6227 struct sctp_association *asoc; 6228 struct sctp_sndinfo info; 6229 6230 if (len < sizeof(info)) 6231 return -EINVAL; 6232 6233 len = sizeof(info); 6234 6235 if (copy_from_user(&info, optval, len)) 6236 return -EFAULT; 6237 6238 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6239 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 6240 return -EINVAL; 6241 if (asoc) { 6242 info.snd_sid = asoc->default_stream; 6243 info.snd_flags = asoc->default_flags; 6244 info.snd_ppid = asoc->default_ppid; 6245 info.snd_context = asoc->default_context; 6246 } else { 6247 info.snd_sid = sp->default_stream; 6248 info.snd_flags = sp->default_flags; 6249 info.snd_ppid = sp->default_ppid; 6250 info.snd_context = sp->default_context; 6251 } 6252 6253 if (put_user(len, optlen)) 6254 return -EFAULT; 6255 if (copy_to_user(optval, &info, len)) 6256 return -EFAULT; 6257 6258 return 0; 6259 } 6260 6261 /* 6262 * 6263 * 7.1.5 SCTP_NODELAY 6264 * 6265 * Turn on/off any Nagle-like algorithm. This means that packets are 6266 * generally sent as soon as possible and no unnecessary delays are 6267 * introduced, at the cost of more packets in the network. Expects an 6268 * integer boolean flag. 6269 */ 6270 6271 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6272 char __user *optval, int __user *optlen) 6273 { 6274 int val; 6275 6276 if (len < sizeof(int)) 6277 return -EINVAL; 6278 6279 len = sizeof(int); 6280 val = (sctp_sk(sk)->nodelay == 1); 6281 if (put_user(len, optlen)) 6282 return -EFAULT; 6283 if (copy_to_user(optval, &val, len)) 6284 return -EFAULT; 6285 return 0; 6286 } 6287 6288 /* 6289 * 6290 * 7.1.1 SCTP_RTOINFO 6291 * 6292 * The protocol parameters used to initialize and bound retransmission 6293 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6294 * and modify these parameters. 6295 * All parameters are time values, in milliseconds. A value of 0, when 6296 * modifying the parameters, indicates that the current value should not 6297 * be changed. 6298 * 6299 */ 6300 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6301 char __user *optval, 6302 int __user *optlen) { 6303 struct sctp_rtoinfo rtoinfo; 6304 struct sctp_association *asoc; 6305 6306 if (len < sizeof (struct sctp_rtoinfo)) 6307 return -EINVAL; 6308 6309 len = sizeof(struct sctp_rtoinfo); 6310 6311 if (copy_from_user(&rtoinfo, optval, len)) 6312 return -EFAULT; 6313 6314 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6315 6316 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6317 return -EINVAL; 6318 6319 /* Values corresponding to the specific association. */ 6320 if (asoc) { 6321 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6322 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6323 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6324 } else { 6325 /* Values corresponding to the endpoint. */ 6326 struct sctp_sock *sp = sctp_sk(sk); 6327 6328 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6329 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6330 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6331 } 6332 6333 if (put_user(len, optlen)) 6334 return -EFAULT; 6335 6336 if (copy_to_user(optval, &rtoinfo, len)) 6337 return -EFAULT; 6338 6339 return 0; 6340 } 6341 6342 /* 6343 * 6344 * 7.1.2 SCTP_ASSOCINFO 6345 * 6346 * This option is used to tune the maximum retransmission attempts 6347 * of the association. 6348 * Returns an error if the new association retransmission value is 6349 * greater than the sum of the retransmission value of the peer. 6350 * See [SCTP] for more information. 6351 * 6352 */ 6353 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6354 char __user *optval, 6355 int __user *optlen) 6356 { 6357 6358 struct sctp_assocparams assocparams; 6359 struct sctp_association *asoc; 6360 struct list_head *pos; 6361 int cnt = 0; 6362 6363 if (len < sizeof (struct sctp_assocparams)) 6364 return -EINVAL; 6365 6366 len = sizeof(struct sctp_assocparams); 6367 6368 if (copy_from_user(&assocparams, optval, len)) 6369 return -EFAULT; 6370 6371 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6372 6373 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6374 return -EINVAL; 6375 6376 /* Values correspoinding to the specific association */ 6377 if (asoc) { 6378 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6379 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6380 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6381 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6382 6383 list_for_each(pos, &asoc->peer.transport_addr_list) { 6384 cnt++; 6385 } 6386 6387 assocparams.sasoc_number_peer_destinations = cnt; 6388 } else { 6389 /* Values corresponding to the endpoint */ 6390 struct sctp_sock *sp = sctp_sk(sk); 6391 6392 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6393 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6394 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6395 assocparams.sasoc_cookie_life = 6396 sp->assocparams.sasoc_cookie_life; 6397 assocparams.sasoc_number_peer_destinations = 6398 sp->assocparams. 6399 sasoc_number_peer_destinations; 6400 } 6401 6402 if (put_user(len, optlen)) 6403 return -EFAULT; 6404 6405 if (copy_to_user(optval, &assocparams, len)) 6406 return -EFAULT; 6407 6408 return 0; 6409 } 6410 6411 /* 6412 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6413 * 6414 * This socket option is a boolean flag which turns on or off mapped V4 6415 * addresses. If this option is turned on and the socket is type 6416 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6417 * If this option is turned off, then no mapping will be done of V4 6418 * addresses and a user will receive both PF_INET6 and PF_INET type 6419 * addresses on the socket. 6420 */ 6421 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6422 char __user *optval, int __user *optlen) 6423 { 6424 int val; 6425 struct sctp_sock *sp = sctp_sk(sk); 6426 6427 if (len < sizeof(int)) 6428 return -EINVAL; 6429 6430 len = sizeof(int); 6431 val = sp->v4mapped; 6432 if (put_user(len, optlen)) 6433 return -EFAULT; 6434 if (copy_to_user(optval, &val, len)) 6435 return -EFAULT; 6436 6437 return 0; 6438 } 6439 6440 /* 6441 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6442 * (chapter and verse is quoted at sctp_setsockopt_context()) 6443 */ 6444 static int sctp_getsockopt_context(struct sock *sk, int len, 6445 char __user *optval, int __user *optlen) 6446 { 6447 struct sctp_assoc_value params; 6448 struct sctp_sock *sp; 6449 struct sctp_association *asoc; 6450 6451 if (len < sizeof(struct sctp_assoc_value)) 6452 return -EINVAL; 6453 6454 len = sizeof(struct sctp_assoc_value); 6455 6456 if (copy_from_user(¶ms, optval, len)) 6457 return -EFAULT; 6458 6459 sp = sctp_sk(sk); 6460 6461 if (params.assoc_id != 0) { 6462 asoc = sctp_id2assoc(sk, params.assoc_id); 6463 if (!asoc) 6464 return -EINVAL; 6465 params.assoc_value = asoc->default_rcv_context; 6466 } else { 6467 params.assoc_value = sp->default_rcv_context; 6468 } 6469 6470 if (put_user(len, optlen)) 6471 return -EFAULT; 6472 if (copy_to_user(optval, ¶ms, len)) 6473 return -EFAULT; 6474 6475 return 0; 6476 } 6477 6478 /* 6479 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6480 * This option will get or set the maximum size to put in any outgoing 6481 * SCTP DATA chunk. If a message is larger than this size it will be 6482 * fragmented by SCTP into the specified size. Note that the underlying 6483 * SCTP implementation may fragment into smaller sized chunks when the 6484 * PMTU of the underlying association is smaller than the value set by 6485 * the user. The default value for this option is '0' which indicates 6486 * the user is NOT limiting fragmentation and only the PMTU will effect 6487 * SCTP's choice of DATA chunk size. Note also that values set larger 6488 * than the maximum size of an IP datagram will effectively let SCTP 6489 * control fragmentation (i.e. the same as setting this option to 0). 6490 * 6491 * The following structure is used to access and modify this parameter: 6492 * 6493 * struct sctp_assoc_value { 6494 * sctp_assoc_t assoc_id; 6495 * uint32_t assoc_value; 6496 * }; 6497 * 6498 * assoc_id: This parameter is ignored for one-to-one style sockets. 6499 * For one-to-many style sockets this parameter indicates which 6500 * association the user is performing an action upon. Note that if 6501 * this field's value is zero then the endpoints default value is 6502 * changed (effecting future associations only). 6503 * assoc_value: This parameter specifies the maximum size in bytes. 6504 */ 6505 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6506 char __user *optval, int __user *optlen) 6507 { 6508 struct sctp_assoc_value params; 6509 struct sctp_association *asoc; 6510 6511 if (len == sizeof(int)) { 6512 pr_warn_ratelimited(DEPRECATED 6513 "%s (pid %d) " 6514 "Use of int in maxseg socket option.\n" 6515 "Use struct sctp_assoc_value instead\n", 6516 current->comm, task_pid_nr(current)); 6517 params.assoc_id = 0; 6518 } else if (len >= sizeof(struct sctp_assoc_value)) { 6519 len = sizeof(struct sctp_assoc_value); 6520 if (copy_from_user(¶ms, optval, len)) 6521 return -EFAULT; 6522 } else 6523 return -EINVAL; 6524 6525 asoc = sctp_id2assoc(sk, params.assoc_id); 6526 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6527 return -EINVAL; 6528 6529 if (asoc) 6530 params.assoc_value = asoc->frag_point; 6531 else 6532 params.assoc_value = sctp_sk(sk)->user_frag; 6533 6534 if (put_user(len, optlen)) 6535 return -EFAULT; 6536 if (len == sizeof(int)) { 6537 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6538 return -EFAULT; 6539 } else { 6540 if (copy_to_user(optval, ¶ms, len)) 6541 return -EFAULT; 6542 } 6543 6544 return 0; 6545 } 6546 6547 /* 6548 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6549 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6550 */ 6551 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6552 char __user *optval, int __user *optlen) 6553 { 6554 int val; 6555 6556 if (len < sizeof(int)) 6557 return -EINVAL; 6558 6559 len = sizeof(int); 6560 6561 val = sctp_sk(sk)->frag_interleave; 6562 if (put_user(len, optlen)) 6563 return -EFAULT; 6564 if (copy_to_user(optval, &val, len)) 6565 return -EFAULT; 6566 6567 return 0; 6568 } 6569 6570 /* 6571 * 7.1.25. Set or Get the sctp partial delivery point 6572 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6573 */ 6574 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6575 char __user *optval, 6576 int __user *optlen) 6577 { 6578 u32 val; 6579 6580 if (len < sizeof(u32)) 6581 return -EINVAL; 6582 6583 len = sizeof(u32); 6584 6585 val = sctp_sk(sk)->pd_point; 6586 if (put_user(len, optlen)) 6587 return -EFAULT; 6588 if (copy_to_user(optval, &val, len)) 6589 return -EFAULT; 6590 6591 return 0; 6592 } 6593 6594 /* 6595 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6596 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6597 */ 6598 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6599 char __user *optval, 6600 int __user *optlen) 6601 { 6602 struct sctp_assoc_value params; 6603 struct sctp_sock *sp; 6604 struct sctp_association *asoc; 6605 6606 if (len == sizeof(int)) { 6607 pr_warn_ratelimited(DEPRECATED 6608 "%s (pid %d) " 6609 "Use of int in max_burst socket option.\n" 6610 "Use struct sctp_assoc_value instead\n", 6611 current->comm, task_pid_nr(current)); 6612 params.assoc_id = 0; 6613 } else if (len >= sizeof(struct sctp_assoc_value)) { 6614 len = sizeof(struct sctp_assoc_value); 6615 if (copy_from_user(¶ms, optval, len)) 6616 return -EFAULT; 6617 } else 6618 return -EINVAL; 6619 6620 sp = sctp_sk(sk); 6621 6622 if (params.assoc_id != 0) { 6623 asoc = sctp_id2assoc(sk, params.assoc_id); 6624 if (!asoc) 6625 return -EINVAL; 6626 params.assoc_value = asoc->max_burst; 6627 } else 6628 params.assoc_value = sp->max_burst; 6629 6630 if (len == sizeof(int)) { 6631 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6632 return -EFAULT; 6633 } else { 6634 if (copy_to_user(optval, ¶ms, len)) 6635 return -EFAULT; 6636 } 6637 6638 return 0; 6639 6640 } 6641 6642 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6643 char __user *optval, int __user *optlen) 6644 { 6645 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6646 struct sctp_hmacalgo __user *p = (void __user *)optval; 6647 struct sctp_hmac_algo_param *hmacs; 6648 __u16 data_len = 0; 6649 u32 num_idents; 6650 int i; 6651 6652 if (!ep->auth_enable) 6653 return -EACCES; 6654 6655 hmacs = ep->auth_hmacs_list; 6656 data_len = ntohs(hmacs->param_hdr.length) - 6657 sizeof(struct sctp_paramhdr); 6658 6659 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6660 return -EINVAL; 6661 6662 len = sizeof(struct sctp_hmacalgo) + data_len; 6663 num_idents = data_len / sizeof(u16); 6664 6665 if (put_user(len, optlen)) 6666 return -EFAULT; 6667 if (put_user(num_idents, &p->shmac_num_idents)) 6668 return -EFAULT; 6669 for (i = 0; i < num_idents; i++) { 6670 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6671 6672 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6673 return -EFAULT; 6674 } 6675 return 0; 6676 } 6677 6678 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6679 char __user *optval, int __user *optlen) 6680 { 6681 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6682 struct sctp_authkeyid val; 6683 struct sctp_association *asoc; 6684 6685 if (!ep->auth_enable) 6686 return -EACCES; 6687 6688 if (len < sizeof(struct sctp_authkeyid)) 6689 return -EINVAL; 6690 6691 len = sizeof(struct sctp_authkeyid); 6692 if (copy_from_user(&val, optval, len)) 6693 return -EFAULT; 6694 6695 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6696 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6697 return -EINVAL; 6698 6699 if (asoc) 6700 val.scact_keynumber = asoc->active_key_id; 6701 else 6702 val.scact_keynumber = ep->active_key_id; 6703 6704 if (put_user(len, optlen)) 6705 return -EFAULT; 6706 if (copy_to_user(optval, &val, len)) 6707 return -EFAULT; 6708 6709 return 0; 6710 } 6711 6712 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6713 char __user *optval, int __user *optlen) 6714 { 6715 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6716 struct sctp_authchunks __user *p = (void __user *)optval; 6717 struct sctp_authchunks val; 6718 struct sctp_association *asoc; 6719 struct sctp_chunks_param *ch; 6720 u32 num_chunks = 0; 6721 char __user *to; 6722 6723 if (!ep->auth_enable) 6724 return -EACCES; 6725 6726 if (len < sizeof(struct sctp_authchunks)) 6727 return -EINVAL; 6728 6729 if (copy_from_user(&val, optval, sizeof(val))) 6730 return -EFAULT; 6731 6732 to = p->gauth_chunks; 6733 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6734 if (!asoc) 6735 return -EINVAL; 6736 6737 ch = asoc->peer.peer_chunks; 6738 if (!ch) 6739 goto num; 6740 6741 /* See if the user provided enough room for all the data */ 6742 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6743 if (len < num_chunks) 6744 return -EINVAL; 6745 6746 if (copy_to_user(to, ch->chunks, num_chunks)) 6747 return -EFAULT; 6748 num: 6749 len = sizeof(struct sctp_authchunks) + num_chunks; 6750 if (put_user(len, optlen)) 6751 return -EFAULT; 6752 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6753 return -EFAULT; 6754 return 0; 6755 } 6756 6757 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6758 char __user *optval, int __user *optlen) 6759 { 6760 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6761 struct sctp_authchunks __user *p = (void __user *)optval; 6762 struct sctp_authchunks val; 6763 struct sctp_association *asoc; 6764 struct sctp_chunks_param *ch; 6765 u32 num_chunks = 0; 6766 char __user *to; 6767 6768 if (!ep->auth_enable) 6769 return -EACCES; 6770 6771 if (len < sizeof(struct sctp_authchunks)) 6772 return -EINVAL; 6773 6774 if (copy_from_user(&val, optval, sizeof(val))) 6775 return -EFAULT; 6776 6777 to = p->gauth_chunks; 6778 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6779 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6780 return -EINVAL; 6781 6782 if (asoc) 6783 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6784 else 6785 ch = ep->auth_chunk_list; 6786 6787 if (!ch) 6788 goto num; 6789 6790 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6791 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6792 return -EINVAL; 6793 6794 if (copy_to_user(to, ch->chunks, num_chunks)) 6795 return -EFAULT; 6796 num: 6797 len = sizeof(struct sctp_authchunks) + num_chunks; 6798 if (put_user(len, optlen)) 6799 return -EFAULT; 6800 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6801 return -EFAULT; 6802 6803 return 0; 6804 } 6805 6806 /* 6807 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6808 * This option gets the current number of associations that are attached 6809 * to a one-to-many style socket. The option value is an uint32_t. 6810 */ 6811 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6812 char __user *optval, int __user *optlen) 6813 { 6814 struct sctp_sock *sp = sctp_sk(sk); 6815 struct sctp_association *asoc; 6816 u32 val = 0; 6817 6818 if (sctp_style(sk, TCP)) 6819 return -EOPNOTSUPP; 6820 6821 if (len < sizeof(u32)) 6822 return -EINVAL; 6823 6824 len = sizeof(u32); 6825 6826 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6827 val++; 6828 } 6829 6830 if (put_user(len, optlen)) 6831 return -EFAULT; 6832 if (copy_to_user(optval, &val, len)) 6833 return -EFAULT; 6834 6835 return 0; 6836 } 6837 6838 /* 6839 * 8.1.23 SCTP_AUTO_ASCONF 6840 * See the corresponding setsockopt entry as description 6841 */ 6842 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6843 char __user *optval, int __user *optlen) 6844 { 6845 int val = 0; 6846 6847 if (len < sizeof(int)) 6848 return -EINVAL; 6849 6850 len = sizeof(int); 6851 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6852 val = 1; 6853 if (put_user(len, optlen)) 6854 return -EFAULT; 6855 if (copy_to_user(optval, &val, len)) 6856 return -EFAULT; 6857 return 0; 6858 } 6859 6860 /* 6861 * 8.2.6. Get the Current Identifiers of Associations 6862 * (SCTP_GET_ASSOC_ID_LIST) 6863 * 6864 * This option gets the current list of SCTP association identifiers of 6865 * the SCTP associations handled by a one-to-many style socket. 6866 */ 6867 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6868 char __user *optval, int __user *optlen) 6869 { 6870 struct sctp_sock *sp = sctp_sk(sk); 6871 struct sctp_association *asoc; 6872 struct sctp_assoc_ids *ids; 6873 u32 num = 0; 6874 6875 if (sctp_style(sk, TCP)) 6876 return -EOPNOTSUPP; 6877 6878 if (len < sizeof(struct sctp_assoc_ids)) 6879 return -EINVAL; 6880 6881 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6882 num++; 6883 } 6884 6885 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6886 return -EINVAL; 6887 6888 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6889 6890 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6891 if (unlikely(!ids)) 6892 return -ENOMEM; 6893 6894 ids->gaids_number_of_ids = num; 6895 num = 0; 6896 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6897 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6898 } 6899 6900 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6901 kfree(ids); 6902 return -EFAULT; 6903 } 6904 6905 kfree(ids); 6906 return 0; 6907 } 6908 6909 /* 6910 * SCTP_PEER_ADDR_THLDS 6911 * 6912 * This option allows us to fetch the partially failed threshold for one or all 6913 * transports in an association. See Section 6.1 of: 6914 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6915 */ 6916 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6917 char __user *optval, 6918 int len, 6919 int __user *optlen) 6920 { 6921 struct sctp_paddrthlds val; 6922 struct sctp_transport *trans; 6923 struct sctp_association *asoc; 6924 6925 if (len < sizeof(struct sctp_paddrthlds)) 6926 return -EINVAL; 6927 len = sizeof(struct sctp_paddrthlds); 6928 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6929 return -EFAULT; 6930 6931 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6932 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6933 if (!asoc) 6934 return -ENOENT; 6935 6936 val.spt_pathpfthld = asoc->pf_retrans; 6937 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6938 } else { 6939 trans = sctp_addr_id2transport(sk, &val.spt_address, 6940 val.spt_assoc_id); 6941 if (!trans) 6942 return -ENOENT; 6943 6944 val.spt_pathmaxrxt = trans->pathmaxrxt; 6945 val.spt_pathpfthld = trans->pf_retrans; 6946 } 6947 6948 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6949 return -EFAULT; 6950 6951 return 0; 6952 } 6953 6954 /* 6955 * SCTP_GET_ASSOC_STATS 6956 * 6957 * This option retrieves local per endpoint statistics. It is modeled 6958 * after OpenSolaris' implementation 6959 */ 6960 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6961 char __user *optval, 6962 int __user *optlen) 6963 { 6964 struct sctp_assoc_stats sas; 6965 struct sctp_association *asoc = NULL; 6966 6967 /* User must provide at least the assoc id */ 6968 if (len < sizeof(sctp_assoc_t)) 6969 return -EINVAL; 6970 6971 /* Allow the struct to grow and fill in as much as possible */ 6972 len = min_t(size_t, len, sizeof(sas)); 6973 6974 if (copy_from_user(&sas, optval, len)) 6975 return -EFAULT; 6976 6977 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6978 if (!asoc) 6979 return -EINVAL; 6980 6981 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6982 sas.sas_gapcnt = asoc->stats.gapcnt; 6983 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6984 sas.sas_osacks = asoc->stats.osacks; 6985 sas.sas_isacks = asoc->stats.isacks; 6986 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6987 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6988 sas.sas_oodchunks = asoc->stats.oodchunks; 6989 sas.sas_iodchunks = asoc->stats.iodchunks; 6990 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6991 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6992 sas.sas_idupchunks = asoc->stats.idupchunks; 6993 sas.sas_opackets = asoc->stats.opackets; 6994 sas.sas_ipackets = asoc->stats.ipackets; 6995 6996 /* New high max rto observed, will return 0 if not a single 6997 * RTO update took place. obs_rto_ipaddr will be bogus 6998 * in such a case 6999 */ 7000 sas.sas_maxrto = asoc->stats.max_obs_rto; 7001 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7002 sizeof(struct sockaddr_storage)); 7003 7004 /* Mark beginning of a new observation period */ 7005 asoc->stats.max_obs_rto = asoc->rto_min; 7006 7007 if (put_user(len, optlen)) 7008 return -EFAULT; 7009 7010 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7011 7012 if (copy_to_user(optval, &sas, len)) 7013 return -EFAULT; 7014 7015 return 0; 7016 } 7017 7018 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7019 char __user *optval, 7020 int __user *optlen) 7021 { 7022 int val = 0; 7023 7024 if (len < sizeof(int)) 7025 return -EINVAL; 7026 7027 len = sizeof(int); 7028 if (sctp_sk(sk)->recvrcvinfo) 7029 val = 1; 7030 if (put_user(len, optlen)) 7031 return -EFAULT; 7032 if (copy_to_user(optval, &val, len)) 7033 return -EFAULT; 7034 7035 return 0; 7036 } 7037 7038 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7039 char __user *optval, 7040 int __user *optlen) 7041 { 7042 int val = 0; 7043 7044 if (len < sizeof(int)) 7045 return -EINVAL; 7046 7047 len = sizeof(int); 7048 if (sctp_sk(sk)->recvnxtinfo) 7049 val = 1; 7050 if (put_user(len, optlen)) 7051 return -EFAULT; 7052 if (copy_to_user(optval, &val, len)) 7053 return -EFAULT; 7054 7055 return 0; 7056 } 7057 7058 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7059 char __user *optval, 7060 int __user *optlen) 7061 { 7062 struct sctp_assoc_value params; 7063 struct sctp_association *asoc; 7064 int retval = -EFAULT; 7065 7066 if (len < sizeof(params)) { 7067 retval = -EINVAL; 7068 goto out; 7069 } 7070 7071 len = sizeof(params); 7072 if (copy_from_user(¶ms, optval, len)) 7073 goto out; 7074 7075 asoc = sctp_id2assoc(sk, params.assoc_id); 7076 if (asoc) { 7077 params.assoc_value = asoc->prsctp_enable; 7078 } else if (!params.assoc_id) { 7079 struct sctp_sock *sp = sctp_sk(sk); 7080 7081 params.assoc_value = sp->ep->prsctp_enable; 7082 } else { 7083 retval = -EINVAL; 7084 goto out; 7085 } 7086 7087 if (put_user(len, optlen)) 7088 goto out; 7089 7090 if (copy_to_user(optval, ¶ms, len)) 7091 goto out; 7092 7093 retval = 0; 7094 7095 out: 7096 return retval; 7097 } 7098 7099 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7100 char __user *optval, 7101 int __user *optlen) 7102 { 7103 struct sctp_default_prinfo info; 7104 struct sctp_association *asoc; 7105 int retval = -EFAULT; 7106 7107 if (len < sizeof(info)) { 7108 retval = -EINVAL; 7109 goto out; 7110 } 7111 7112 len = sizeof(info); 7113 if (copy_from_user(&info, optval, len)) 7114 goto out; 7115 7116 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7117 if (asoc) { 7118 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7119 info.pr_value = asoc->default_timetolive; 7120 } else if (!info.pr_assoc_id) { 7121 struct sctp_sock *sp = sctp_sk(sk); 7122 7123 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7124 info.pr_value = sp->default_timetolive; 7125 } else { 7126 retval = -EINVAL; 7127 goto out; 7128 } 7129 7130 if (put_user(len, optlen)) 7131 goto out; 7132 7133 if (copy_to_user(optval, &info, len)) 7134 goto out; 7135 7136 retval = 0; 7137 7138 out: 7139 return retval; 7140 } 7141 7142 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7143 char __user *optval, 7144 int __user *optlen) 7145 { 7146 struct sctp_prstatus params; 7147 struct sctp_association *asoc; 7148 int policy; 7149 int retval = -EINVAL; 7150 7151 if (len < sizeof(params)) 7152 goto out; 7153 7154 len = sizeof(params); 7155 if (copy_from_user(¶ms, optval, len)) { 7156 retval = -EFAULT; 7157 goto out; 7158 } 7159 7160 policy = params.sprstat_policy; 7161 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7162 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7163 goto out; 7164 7165 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7166 if (!asoc) 7167 goto out; 7168 7169 if (policy == SCTP_PR_SCTP_ALL) { 7170 params.sprstat_abandoned_unsent = 0; 7171 params.sprstat_abandoned_sent = 0; 7172 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7173 params.sprstat_abandoned_unsent += 7174 asoc->abandoned_unsent[policy]; 7175 params.sprstat_abandoned_sent += 7176 asoc->abandoned_sent[policy]; 7177 } 7178 } else { 7179 params.sprstat_abandoned_unsent = 7180 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7181 params.sprstat_abandoned_sent = 7182 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7183 } 7184 7185 if (put_user(len, optlen)) { 7186 retval = -EFAULT; 7187 goto out; 7188 } 7189 7190 if (copy_to_user(optval, ¶ms, len)) { 7191 retval = -EFAULT; 7192 goto out; 7193 } 7194 7195 retval = 0; 7196 7197 out: 7198 return retval; 7199 } 7200 7201 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7202 char __user *optval, 7203 int __user *optlen) 7204 { 7205 struct sctp_stream_out_ext *streamoute; 7206 struct sctp_association *asoc; 7207 struct sctp_prstatus params; 7208 int retval = -EINVAL; 7209 int policy; 7210 7211 if (len < sizeof(params)) 7212 goto out; 7213 7214 len = sizeof(params); 7215 if (copy_from_user(¶ms, optval, len)) { 7216 retval = -EFAULT; 7217 goto out; 7218 } 7219 7220 policy = params.sprstat_policy; 7221 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7222 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7223 goto out; 7224 7225 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7226 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7227 goto out; 7228 7229 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7230 if (!streamoute) { 7231 /* Not allocated yet, means all stats are 0 */ 7232 params.sprstat_abandoned_unsent = 0; 7233 params.sprstat_abandoned_sent = 0; 7234 retval = 0; 7235 goto out; 7236 } 7237 7238 if (policy == SCTP_PR_SCTP_ALL) { 7239 params.sprstat_abandoned_unsent = 0; 7240 params.sprstat_abandoned_sent = 0; 7241 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7242 params.sprstat_abandoned_unsent += 7243 streamoute->abandoned_unsent[policy]; 7244 params.sprstat_abandoned_sent += 7245 streamoute->abandoned_sent[policy]; 7246 } 7247 } else { 7248 params.sprstat_abandoned_unsent = 7249 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7250 params.sprstat_abandoned_sent = 7251 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7252 } 7253 7254 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7255 retval = -EFAULT; 7256 goto out; 7257 } 7258 7259 retval = 0; 7260 7261 out: 7262 return retval; 7263 } 7264 7265 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7266 char __user *optval, 7267 int __user *optlen) 7268 { 7269 struct sctp_assoc_value params; 7270 struct sctp_association *asoc; 7271 int retval = -EFAULT; 7272 7273 if (len < sizeof(params)) { 7274 retval = -EINVAL; 7275 goto out; 7276 } 7277 7278 len = sizeof(params); 7279 if (copy_from_user(¶ms, optval, len)) 7280 goto out; 7281 7282 asoc = sctp_id2assoc(sk, params.assoc_id); 7283 if (asoc) { 7284 params.assoc_value = asoc->reconf_enable; 7285 } else if (!params.assoc_id) { 7286 struct sctp_sock *sp = sctp_sk(sk); 7287 7288 params.assoc_value = sp->ep->reconf_enable; 7289 } else { 7290 retval = -EINVAL; 7291 goto out; 7292 } 7293 7294 if (put_user(len, optlen)) 7295 goto out; 7296 7297 if (copy_to_user(optval, ¶ms, len)) 7298 goto out; 7299 7300 retval = 0; 7301 7302 out: 7303 return retval; 7304 } 7305 7306 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7307 char __user *optval, 7308 int __user *optlen) 7309 { 7310 struct sctp_assoc_value params; 7311 struct sctp_association *asoc; 7312 int retval = -EFAULT; 7313 7314 if (len < sizeof(params)) { 7315 retval = -EINVAL; 7316 goto out; 7317 } 7318 7319 len = sizeof(params); 7320 if (copy_from_user(¶ms, optval, len)) 7321 goto out; 7322 7323 asoc = sctp_id2assoc(sk, params.assoc_id); 7324 if (asoc) { 7325 params.assoc_value = asoc->strreset_enable; 7326 } else if (!params.assoc_id) { 7327 struct sctp_sock *sp = sctp_sk(sk); 7328 7329 params.assoc_value = sp->ep->strreset_enable; 7330 } else { 7331 retval = -EINVAL; 7332 goto out; 7333 } 7334 7335 if (put_user(len, optlen)) 7336 goto out; 7337 7338 if (copy_to_user(optval, ¶ms, len)) 7339 goto out; 7340 7341 retval = 0; 7342 7343 out: 7344 return retval; 7345 } 7346 7347 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7348 char __user *optval, 7349 int __user *optlen) 7350 { 7351 struct sctp_assoc_value params; 7352 struct sctp_association *asoc; 7353 int retval = -EFAULT; 7354 7355 if (len < sizeof(params)) { 7356 retval = -EINVAL; 7357 goto out; 7358 } 7359 7360 len = sizeof(params); 7361 if (copy_from_user(¶ms, optval, len)) 7362 goto out; 7363 7364 asoc = sctp_id2assoc(sk, params.assoc_id); 7365 if (!asoc) { 7366 retval = -EINVAL; 7367 goto out; 7368 } 7369 7370 params.assoc_value = sctp_sched_get_sched(asoc); 7371 7372 if (put_user(len, optlen)) 7373 goto out; 7374 7375 if (copy_to_user(optval, ¶ms, len)) 7376 goto out; 7377 7378 retval = 0; 7379 7380 out: 7381 return retval; 7382 } 7383 7384 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7385 char __user *optval, 7386 int __user *optlen) 7387 { 7388 struct sctp_stream_value params; 7389 struct sctp_association *asoc; 7390 int retval = -EFAULT; 7391 7392 if (len < sizeof(params)) { 7393 retval = -EINVAL; 7394 goto out; 7395 } 7396 7397 len = sizeof(params); 7398 if (copy_from_user(¶ms, optval, len)) 7399 goto out; 7400 7401 asoc = sctp_id2assoc(sk, params.assoc_id); 7402 if (!asoc) { 7403 retval = -EINVAL; 7404 goto out; 7405 } 7406 7407 retval = sctp_sched_get_value(asoc, params.stream_id, 7408 ¶ms.stream_value); 7409 if (retval) 7410 goto out; 7411 7412 if (put_user(len, optlen)) { 7413 retval = -EFAULT; 7414 goto out; 7415 } 7416 7417 if (copy_to_user(optval, ¶ms, len)) { 7418 retval = -EFAULT; 7419 goto out; 7420 } 7421 7422 out: 7423 return retval; 7424 } 7425 7426 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7427 char __user *optval, 7428 int __user *optlen) 7429 { 7430 struct sctp_assoc_value params; 7431 struct sctp_association *asoc; 7432 int retval = -EFAULT; 7433 7434 if (len < sizeof(params)) { 7435 retval = -EINVAL; 7436 goto out; 7437 } 7438 7439 len = sizeof(params); 7440 if (copy_from_user(¶ms, optval, len)) 7441 goto out; 7442 7443 asoc = sctp_id2assoc(sk, params.assoc_id); 7444 if (asoc) { 7445 params.assoc_value = asoc->intl_enable; 7446 } else if (!params.assoc_id) { 7447 struct sctp_sock *sp = sctp_sk(sk); 7448 7449 params.assoc_value = sp->strm_interleave; 7450 } else { 7451 retval = -EINVAL; 7452 goto out; 7453 } 7454 7455 if (put_user(len, optlen)) 7456 goto out; 7457 7458 if (copy_to_user(optval, ¶ms, len)) 7459 goto out; 7460 7461 retval = 0; 7462 7463 out: 7464 return retval; 7465 } 7466 7467 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7468 char __user *optval, 7469 int __user *optlen) 7470 { 7471 int val; 7472 7473 if (len < sizeof(int)) 7474 return -EINVAL; 7475 7476 len = sizeof(int); 7477 val = sctp_sk(sk)->reuse; 7478 if (put_user(len, optlen)) 7479 return -EFAULT; 7480 7481 if (copy_to_user(optval, &val, len)) 7482 return -EFAULT; 7483 7484 return 0; 7485 } 7486 7487 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7488 int __user *optlen) 7489 { 7490 struct sctp_association *asoc; 7491 struct sctp_event param; 7492 __u16 subscribe; 7493 7494 if (len < sizeof(param)) 7495 return -EINVAL; 7496 7497 len = sizeof(param); 7498 if (copy_from_user(¶m, optval, len)) 7499 return -EFAULT; 7500 7501 if (param.se_type < SCTP_SN_TYPE_BASE || 7502 param.se_type > SCTP_SN_TYPE_MAX) 7503 return -EINVAL; 7504 7505 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7506 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7507 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7508 7509 if (put_user(len, optlen)) 7510 return -EFAULT; 7511 7512 if (copy_to_user(optval, ¶m, len)) 7513 return -EFAULT; 7514 7515 return 0; 7516 } 7517 7518 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7519 char __user *optval, int __user *optlen) 7520 { 7521 int retval = 0; 7522 int len; 7523 7524 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7525 7526 /* I can hardly begin to describe how wrong this is. This is 7527 * so broken as to be worse than useless. The API draft 7528 * REALLY is NOT helpful here... I am not convinced that the 7529 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7530 * are at all well-founded. 7531 */ 7532 if (level != SOL_SCTP) { 7533 struct sctp_af *af = sctp_sk(sk)->pf->af; 7534 7535 retval = af->getsockopt(sk, level, optname, optval, optlen); 7536 return retval; 7537 } 7538 7539 if (get_user(len, optlen)) 7540 return -EFAULT; 7541 7542 if (len < 0) 7543 return -EINVAL; 7544 7545 lock_sock(sk); 7546 7547 switch (optname) { 7548 case SCTP_STATUS: 7549 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7550 break; 7551 case SCTP_DISABLE_FRAGMENTS: 7552 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7553 optlen); 7554 break; 7555 case SCTP_EVENTS: 7556 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7557 break; 7558 case SCTP_AUTOCLOSE: 7559 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7560 break; 7561 case SCTP_SOCKOPT_PEELOFF: 7562 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7563 break; 7564 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7565 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7566 break; 7567 case SCTP_PEER_ADDR_PARAMS: 7568 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7569 optlen); 7570 break; 7571 case SCTP_DELAYED_SACK: 7572 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7573 optlen); 7574 break; 7575 case SCTP_INITMSG: 7576 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7577 break; 7578 case SCTP_GET_PEER_ADDRS: 7579 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7580 optlen); 7581 break; 7582 case SCTP_GET_LOCAL_ADDRS: 7583 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7584 optlen); 7585 break; 7586 case SCTP_SOCKOPT_CONNECTX3: 7587 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7588 break; 7589 case SCTP_DEFAULT_SEND_PARAM: 7590 retval = sctp_getsockopt_default_send_param(sk, len, 7591 optval, optlen); 7592 break; 7593 case SCTP_DEFAULT_SNDINFO: 7594 retval = sctp_getsockopt_default_sndinfo(sk, len, 7595 optval, optlen); 7596 break; 7597 case SCTP_PRIMARY_ADDR: 7598 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7599 break; 7600 case SCTP_NODELAY: 7601 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7602 break; 7603 case SCTP_RTOINFO: 7604 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7605 break; 7606 case SCTP_ASSOCINFO: 7607 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7608 break; 7609 case SCTP_I_WANT_MAPPED_V4_ADDR: 7610 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7611 break; 7612 case SCTP_MAXSEG: 7613 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7614 break; 7615 case SCTP_GET_PEER_ADDR_INFO: 7616 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7617 optlen); 7618 break; 7619 case SCTP_ADAPTATION_LAYER: 7620 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7621 optlen); 7622 break; 7623 case SCTP_CONTEXT: 7624 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7625 break; 7626 case SCTP_FRAGMENT_INTERLEAVE: 7627 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7628 optlen); 7629 break; 7630 case SCTP_PARTIAL_DELIVERY_POINT: 7631 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7632 optlen); 7633 break; 7634 case SCTP_MAX_BURST: 7635 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7636 break; 7637 case SCTP_AUTH_KEY: 7638 case SCTP_AUTH_CHUNK: 7639 case SCTP_AUTH_DELETE_KEY: 7640 case SCTP_AUTH_DEACTIVATE_KEY: 7641 retval = -EOPNOTSUPP; 7642 break; 7643 case SCTP_HMAC_IDENT: 7644 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7645 break; 7646 case SCTP_AUTH_ACTIVE_KEY: 7647 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7648 break; 7649 case SCTP_PEER_AUTH_CHUNKS: 7650 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7651 optlen); 7652 break; 7653 case SCTP_LOCAL_AUTH_CHUNKS: 7654 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7655 optlen); 7656 break; 7657 case SCTP_GET_ASSOC_NUMBER: 7658 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7659 break; 7660 case SCTP_GET_ASSOC_ID_LIST: 7661 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7662 break; 7663 case SCTP_AUTO_ASCONF: 7664 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7665 break; 7666 case SCTP_PEER_ADDR_THLDS: 7667 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7668 break; 7669 case SCTP_GET_ASSOC_STATS: 7670 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7671 break; 7672 case SCTP_RECVRCVINFO: 7673 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7674 break; 7675 case SCTP_RECVNXTINFO: 7676 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7677 break; 7678 case SCTP_PR_SUPPORTED: 7679 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7680 break; 7681 case SCTP_DEFAULT_PRINFO: 7682 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7683 optlen); 7684 break; 7685 case SCTP_PR_ASSOC_STATUS: 7686 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7687 optlen); 7688 break; 7689 case SCTP_PR_STREAM_STATUS: 7690 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7691 optlen); 7692 break; 7693 case SCTP_RECONFIG_SUPPORTED: 7694 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7695 optlen); 7696 break; 7697 case SCTP_ENABLE_STREAM_RESET: 7698 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7699 optlen); 7700 break; 7701 case SCTP_STREAM_SCHEDULER: 7702 retval = sctp_getsockopt_scheduler(sk, len, optval, 7703 optlen); 7704 break; 7705 case SCTP_STREAM_SCHEDULER_VALUE: 7706 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7707 optlen); 7708 break; 7709 case SCTP_INTERLEAVING_SUPPORTED: 7710 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7711 optlen); 7712 break; 7713 case SCTP_REUSE_PORT: 7714 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7715 break; 7716 case SCTP_EVENT: 7717 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7718 break; 7719 default: 7720 retval = -ENOPROTOOPT; 7721 break; 7722 } 7723 7724 release_sock(sk); 7725 return retval; 7726 } 7727 7728 static int sctp_hash(struct sock *sk) 7729 { 7730 /* STUB */ 7731 return 0; 7732 } 7733 7734 static void sctp_unhash(struct sock *sk) 7735 { 7736 /* STUB */ 7737 } 7738 7739 /* Check if port is acceptable. Possibly find first available port. 7740 * 7741 * The port hash table (contained in the 'global' SCTP protocol storage 7742 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7743 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7744 * list (the list number is the port number hashed out, so as you 7745 * would expect from a hash function, all the ports in a given list have 7746 * such a number that hashes out to the same list number; you were 7747 * expecting that, right?); so each list has a set of ports, with a 7748 * link to the socket (struct sock) that uses it, the port number and 7749 * a fastreuse flag (FIXME: NPI ipg). 7750 */ 7751 static struct sctp_bind_bucket *sctp_bucket_create( 7752 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7753 7754 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7755 { 7756 struct sctp_sock *sp = sctp_sk(sk); 7757 bool reuse = (sk->sk_reuse || sp->reuse); 7758 struct sctp_bind_hashbucket *head; /* hash list */ 7759 kuid_t uid = sock_i_uid(sk); 7760 struct sctp_bind_bucket *pp; 7761 unsigned short snum; 7762 int ret; 7763 7764 snum = ntohs(addr->v4.sin_port); 7765 7766 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7767 7768 local_bh_disable(); 7769 7770 if (snum == 0) { 7771 /* Search for an available port. */ 7772 int low, high, remaining, index; 7773 unsigned int rover; 7774 struct net *net = sock_net(sk); 7775 7776 inet_get_local_port_range(net, &low, &high); 7777 remaining = (high - low) + 1; 7778 rover = prandom_u32() % remaining + low; 7779 7780 do { 7781 rover++; 7782 if ((rover < low) || (rover > high)) 7783 rover = low; 7784 if (inet_is_local_reserved_port(net, rover)) 7785 continue; 7786 index = sctp_phashfn(sock_net(sk), rover); 7787 head = &sctp_port_hashtable[index]; 7788 spin_lock(&head->lock); 7789 sctp_for_each_hentry(pp, &head->chain) 7790 if ((pp->port == rover) && 7791 net_eq(sock_net(sk), pp->net)) 7792 goto next; 7793 break; 7794 next: 7795 spin_unlock(&head->lock); 7796 } while (--remaining > 0); 7797 7798 /* Exhausted local port range during search? */ 7799 ret = 1; 7800 if (remaining <= 0) 7801 goto fail; 7802 7803 /* OK, here is the one we will use. HEAD (the port 7804 * hash table list entry) is non-NULL and we hold it's 7805 * mutex. 7806 */ 7807 snum = rover; 7808 } else { 7809 /* We are given an specific port number; we verify 7810 * that it is not being used. If it is used, we will 7811 * exahust the search in the hash list corresponding 7812 * to the port number (snum) - we detect that with the 7813 * port iterator, pp being NULL. 7814 */ 7815 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7816 spin_lock(&head->lock); 7817 sctp_for_each_hentry(pp, &head->chain) { 7818 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7819 goto pp_found; 7820 } 7821 } 7822 pp = NULL; 7823 goto pp_not_found; 7824 pp_found: 7825 if (!hlist_empty(&pp->owner)) { 7826 /* We had a port hash table hit - there is an 7827 * available port (pp != NULL) and it is being 7828 * used by other socket (pp->owner not empty); that other 7829 * socket is going to be sk2. 7830 */ 7831 struct sock *sk2; 7832 7833 pr_debug("%s: found a possible match\n", __func__); 7834 7835 if ((pp->fastreuse && reuse && 7836 sk->sk_state != SCTP_SS_LISTENING) || 7837 (pp->fastreuseport && sk->sk_reuseport && 7838 uid_eq(pp->fastuid, uid))) 7839 goto success; 7840 7841 /* Run through the list of sockets bound to the port 7842 * (pp->port) [via the pointers bind_next and 7843 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7844 * we get the endpoint they describe and run through 7845 * the endpoint's list of IP (v4 or v6) addresses, 7846 * comparing each of the addresses with the address of 7847 * the socket sk. If we find a match, then that means 7848 * that this port/socket (sk) combination are already 7849 * in an endpoint. 7850 */ 7851 sk_for_each_bound(sk2, &pp->owner) { 7852 struct sctp_sock *sp2 = sctp_sk(sk2); 7853 struct sctp_endpoint *ep2 = sp2->ep; 7854 7855 if (sk == sk2 || 7856 (reuse && (sk2->sk_reuse || sp2->reuse) && 7857 sk2->sk_state != SCTP_SS_LISTENING) || 7858 (sk->sk_reuseport && sk2->sk_reuseport && 7859 uid_eq(uid, sock_i_uid(sk2)))) 7860 continue; 7861 7862 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 7863 addr, sp2, sp)) { 7864 ret = (long)sk2; 7865 goto fail_unlock; 7866 } 7867 } 7868 7869 pr_debug("%s: found a match\n", __func__); 7870 } 7871 pp_not_found: 7872 /* If there was a hash table miss, create a new port. */ 7873 ret = 1; 7874 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7875 goto fail_unlock; 7876 7877 /* In either case (hit or miss), make sure fastreuse is 1 only 7878 * if sk->sk_reuse is too (that is, if the caller requested 7879 * SO_REUSEADDR on this socket -sk-). 7880 */ 7881 if (hlist_empty(&pp->owner)) { 7882 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 7883 pp->fastreuse = 1; 7884 else 7885 pp->fastreuse = 0; 7886 7887 if (sk->sk_reuseport) { 7888 pp->fastreuseport = 1; 7889 pp->fastuid = uid; 7890 } else { 7891 pp->fastreuseport = 0; 7892 } 7893 } else { 7894 if (pp->fastreuse && 7895 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 7896 pp->fastreuse = 0; 7897 7898 if (pp->fastreuseport && 7899 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 7900 pp->fastreuseport = 0; 7901 } 7902 7903 /* We are set, so fill up all the data in the hash table 7904 * entry, tie the socket list information with the rest of the 7905 * sockets FIXME: Blurry, NPI (ipg). 7906 */ 7907 success: 7908 if (!sp->bind_hash) { 7909 inet_sk(sk)->inet_num = snum; 7910 sk_add_bind_node(sk, &pp->owner); 7911 sp->bind_hash = pp; 7912 } 7913 ret = 0; 7914 7915 fail_unlock: 7916 spin_unlock(&head->lock); 7917 7918 fail: 7919 local_bh_enable(); 7920 return ret; 7921 } 7922 7923 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7924 * port is requested. 7925 */ 7926 static int sctp_get_port(struct sock *sk, unsigned short snum) 7927 { 7928 union sctp_addr addr; 7929 struct sctp_af *af = sctp_sk(sk)->pf->af; 7930 7931 /* Set up a dummy address struct from the sk. */ 7932 af->from_sk(&addr, sk); 7933 addr.v4.sin_port = htons(snum); 7934 7935 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7936 return !!sctp_get_port_local(sk, &addr); 7937 } 7938 7939 /* 7940 * Move a socket to LISTENING state. 7941 */ 7942 static int sctp_listen_start(struct sock *sk, int backlog) 7943 { 7944 struct sctp_sock *sp = sctp_sk(sk); 7945 struct sctp_endpoint *ep = sp->ep; 7946 struct crypto_shash *tfm = NULL; 7947 char alg[32]; 7948 7949 /* Allocate HMAC for generating cookie. */ 7950 if (!sp->hmac && sp->sctp_hmac_alg) { 7951 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7952 tfm = crypto_alloc_shash(alg, 0, 0); 7953 if (IS_ERR(tfm)) { 7954 net_info_ratelimited("failed to load transform for %s: %ld\n", 7955 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7956 return -ENOSYS; 7957 } 7958 sctp_sk(sk)->hmac = tfm; 7959 } 7960 7961 /* 7962 * If a bind() or sctp_bindx() is not called prior to a listen() 7963 * call that allows new associations to be accepted, the system 7964 * picks an ephemeral port and will choose an address set equivalent 7965 * to binding with a wildcard address. 7966 * 7967 * This is not currently spelled out in the SCTP sockets 7968 * extensions draft, but follows the practice as seen in TCP 7969 * sockets. 7970 * 7971 */ 7972 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7973 if (!ep->base.bind_addr.port) { 7974 if (sctp_autobind(sk)) 7975 return -EAGAIN; 7976 } else { 7977 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7978 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7979 return -EADDRINUSE; 7980 } 7981 } 7982 7983 sk->sk_max_ack_backlog = backlog; 7984 return sctp_hash_endpoint(ep); 7985 } 7986 7987 /* 7988 * 4.1.3 / 5.1.3 listen() 7989 * 7990 * By default, new associations are not accepted for UDP style sockets. 7991 * An application uses listen() to mark a socket as being able to 7992 * accept new associations. 7993 * 7994 * On TCP style sockets, applications use listen() to ready the SCTP 7995 * endpoint for accepting inbound associations. 7996 * 7997 * On both types of endpoints a backlog of '0' disables listening. 7998 * 7999 * Move a socket to LISTENING state. 8000 */ 8001 int sctp_inet_listen(struct socket *sock, int backlog) 8002 { 8003 struct sock *sk = sock->sk; 8004 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8005 int err = -EINVAL; 8006 8007 if (unlikely(backlog < 0)) 8008 return err; 8009 8010 lock_sock(sk); 8011 8012 /* Peeled-off sockets are not allowed to listen(). */ 8013 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8014 goto out; 8015 8016 if (sock->state != SS_UNCONNECTED) 8017 goto out; 8018 8019 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8020 goto out; 8021 8022 /* If backlog is zero, disable listening. */ 8023 if (!backlog) { 8024 if (sctp_sstate(sk, CLOSED)) 8025 goto out; 8026 8027 err = 0; 8028 sctp_unhash_endpoint(ep); 8029 sk->sk_state = SCTP_SS_CLOSED; 8030 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8031 sctp_sk(sk)->bind_hash->fastreuse = 1; 8032 goto out; 8033 } 8034 8035 /* If we are already listening, just update the backlog */ 8036 if (sctp_sstate(sk, LISTENING)) 8037 sk->sk_max_ack_backlog = backlog; 8038 else { 8039 err = sctp_listen_start(sk, backlog); 8040 if (err) 8041 goto out; 8042 } 8043 8044 err = 0; 8045 out: 8046 release_sock(sk); 8047 return err; 8048 } 8049 8050 /* 8051 * This function is done by modeling the current datagram_poll() and the 8052 * tcp_poll(). Note that, based on these implementations, we don't 8053 * lock the socket in this function, even though it seems that, 8054 * ideally, locking or some other mechanisms can be used to ensure 8055 * the integrity of the counters (sndbuf and wmem_alloc) used 8056 * in this place. We assume that we don't need locks either until proven 8057 * otherwise. 8058 * 8059 * Another thing to note is that we include the Async I/O support 8060 * here, again, by modeling the current TCP/UDP code. We don't have 8061 * a good way to test with it yet. 8062 */ 8063 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8064 { 8065 struct sock *sk = sock->sk; 8066 struct sctp_sock *sp = sctp_sk(sk); 8067 __poll_t mask; 8068 8069 poll_wait(file, sk_sleep(sk), wait); 8070 8071 sock_rps_record_flow(sk); 8072 8073 /* A TCP-style listening socket becomes readable when the accept queue 8074 * is not empty. 8075 */ 8076 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8077 return (!list_empty(&sp->ep->asocs)) ? 8078 (EPOLLIN | EPOLLRDNORM) : 0; 8079 8080 mask = 0; 8081 8082 /* Is there any exceptional events? */ 8083 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8084 mask |= EPOLLERR | 8085 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8086 if (sk->sk_shutdown & RCV_SHUTDOWN) 8087 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8088 if (sk->sk_shutdown == SHUTDOWN_MASK) 8089 mask |= EPOLLHUP; 8090 8091 /* Is it readable? Reconsider this code with TCP-style support. */ 8092 if (!skb_queue_empty(&sk->sk_receive_queue)) 8093 mask |= EPOLLIN | EPOLLRDNORM; 8094 8095 /* The association is either gone or not ready. */ 8096 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8097 return mask; 8098 8099 /* Is it writable? */ 8100 if (sctp_writeable(sk)) { 8101 mask |= EPOLLOUT | EPOLLWRNORM; 8102 } else { 8103 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8104 /* 8105 * Since the socket is not locked, the buffer 8106 * might be made available after the writeable check and 8107 * before the bit is set. This could cause a lost I/O 8108 * signal. tcp_poll() has a race breaker for this race 8109 * condition. Based on their implementation, we put 8110 * in the following code to cover it as well. 8111 */ 8112 if (sctp_writeable(sk)) 8113 mask |= EPOLLOUT | EPOLLWRNORM; 8114 } 8115 return mask; 8116 } 8117 8118 /******************************************************************** 8119 * 2nd Level Abstractions 8120 ********************************************************************/ 8121 8122 static struct sctp_bind_bucket *sctp_bucket_create( 8123 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8124 { 8125 struct sctp_bind_bucket *pp; 8126 8127 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8128 if (pp) { 8129 SCTP_DBG_OBJCNT_INC(bind_bucket); 8130 pp->port = snum; 8131 pp->fastreuse = 0; 8132 INIT_HLIST_HEAD(&pp->owner); 8133 pp->net = net; 8134 hlist_add_head(&pp->node, &head->chain); 8135 } 8136 return pp; 8137 } 8138 8139 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8140 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8141 { 8142 if (pp && hlist_empty(&pp->owner)) { 8143 __hlist_del(&pp->node); 8144 kmem_cache_free(sctp_bucket_cachep, pp); 8145 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8146 } 8147 } 8148 8149 /* Release this socket's reference to a local port. */ 8150 static inline void __sctp_put_port(struct sock *sk) 8151 { 8152 struct sctp_bind_hashbucket *head = 8153 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8154 inet_sk(sk)->inet_num)]; 8155 struct sctp_bind_bucket *pp; 8156 8157 spin_lock(&head->lock); 8158 pp = sctp_sk(sk)->bind_hash; 8159 __sk_del_bind_node(sk); 8160 sctp_sk(sk)->bind_hash = NULL; 8161 inet_sk(sk)->inet_num = 0; 8162 sctp_bucket_destroy(pp); 8163 spin_unlock(&head->lock); 8164 } 8165 8166 void sctp_put_port(struct sock *sk) 8167 { 8168 local_bh_disable(); 8169 __sctp_put_port(sk); 8170 local_bh_enable(); 8171 } 8172 8173 /* 8174 * The system picks an ephemeral port and choose an address set equivalent 8175 * to binding with a wildcard address. 8176 * One of those addresses will be the primary address for the association. 8177 * This automatically enables the multihoming capability of SCTP. 8178 */ 8179 static int sctp_autobind(struct sock *sk) 8180 { 8181 union sctp_addr autoaddr; 8182 struct sctp_af *af; 8183 __be16 port; 8184 8185 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8186 af = sctp_sk(sk)->pf->af; 8187 8188 port = htons(inet_sk(sk)->inet_num); 8189 af->inaddr_any(&autoaddr, port); 8190 8191 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8192 } 8193 8194 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8195 * 8196 * From RFC 2292 8197 * 4.2 The cmsghdr Structure * 8198 * 8199 * When ancillary data is sent or received, any number of ancillary data 8200 * objects can be specified by the msg_control and msg_controllen members of 8201 * the msghdr structure, because each object is preceded by 8202 * a cmsghdr structure defining the object's length (the cmsg_len member). 8203 * Historically Berkeley-derived implementations have passed only one object 8204 * at a time, but this API allows multiple objects to be 8205 * passed in a single call to sendmsg() or recvmsg(). The following example 8206 * shows two ancillary data objects in a control buffer. 8207 * 8208 * |<--------------------------- msg_controllen -------------------------->| 8209 * | | 8210 * 8211 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8212 * 8213 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8214 * | | | 8215 * 8216 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8217 * 8218 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8219 * | | | | | 8220 * 8221 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8222 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8223 * 8224 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8225 * 8226 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8227 * ^ 8228 * | 8229 * 8230 * msg_control 8231 * points here 8232 */ 8233 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8234 { 8235 struct msghdr *my_msg = (struct msghdr *)msg; 8236 struct cmsghdr *cmsg; 8237 8238 for_each_cmsghdr(cmsg, my_msg) { 8239 if (!CMSG_OK(my_msg, cmsg)) 8240 return -EINVAL; 8241 8242 /* Should we parse this header or ignore? */ 8243 if (cmsg->cmsg_level != IPPROTO_SCTP) 8244 continue; 8245 8246 /* Strictly check lengths following example in SCM code. */ 8247 switch (cmsg->cmsg_type) { 8248 case SCTP_INIT: 8249 /* SCTP Socket API Extension 8250 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8251 * 8252 * This cmsghdr structure provides information for 8253 * initializing new SCTP associations with sendmsg(). 8254 * The SCTP_INITMSG socket option uses this same data 8255 * structure. This structure is not used for 8256 * recvmsg(). 8257 * 8258 * cmsg_level cmsg_type cmsg_data[] 8259 * ------------ ------------ ---------------------- 8260 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8261 */ 8262 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8263 return -EINVAL; 8264 8265 cmsgs->init = CMSG_DATA(cmsg); 8266 break; 8267 8268 case SCTP_SNDRCV: 8269 /* SCTP Socket API Extension 8270 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8271 * 8272 * This cmsghdr structure specifies SCTP options for 8273 * sendmsg() and describes SCTP header information 8274 * about a received message through recvmsg(). 8275 * 8276 * cmsg_level cmsg_type cmsg_data[] 8277 * ------------ ------------ ---------------------- 8278 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8279 */ 8280 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8281 return -EINVAL; 8282 8283 cmsgs->srinfo = CMSG_DATA(cmsg); 8284 8285 if (cmsgs->srinfo->sinfo_flags & 8286 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8287 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8288 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8289 return -EINVAL; 8290 break; 8291 8292 case SCTP_SNDINFO: 8293 /* SCTP Socket API Extension 8294 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8295 * 8296 * This cmsghdr structure specifies SCTP options for 8297 * sendmsg(). This structure and SCTP_RCVINFO replaces 8298 * SCTP_SNDRCV which has been deprecated. 8299 * 8300 * cmsg_level cmsg_type cmsg_data[] 8301 * ------------ ------------ --------------------- 8302 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8303 */ 8304 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8305 return -EINVAL; 8306 8307 cmsgs->sinfo = CMSG_DATA(cmsg); 8308 8309 if (cmsgs->sinfo->snd_flags & 8310 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8311 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8312 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8313 return -EINVAL; 8314 break; 8315 case SCTP_PRINFO: 8316 /* SCTP Socket API Extension 8317 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8318 * 8319 * This cmsghdr structure specifies SCTP options for sendmsg(). 8320 * 8321 * cmsg_level cmsg_type cmsg_data[] 8322 * ------------ ------------ --------------------- 8323 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8324 */ 8325 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8326 return -EINVAL; 8327 8328 cmsgs->prinfo = CMSG_DATA(cmsg); 8329 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8330 return -EINVAL; 8331 8332 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8333 cmsgs->prinfo->pr_value = 0; 8334 break; 8335 case SCTP_AUTHINFO: 8336 /* SCTP Socket API Extension 8337 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8338 * 8339 * This cmsghdr structure specifies SCTP options for sendmsg(). 8340 * 8341 * cmsg_level cmsg_type cmsg_data[] 8342 * ------------ ------------ --------------------- 8343 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8344 */ 8345 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8346 return -EINVAL; 8347 8348 cmsgs->authinfo = CMSG_DATA(cmsg); 8349 break; 8350 case SCTP_DSTADDRV4: 8351 case SCTP_DSTADDRV6: 8352 /* SCTP Socket API Extension 8353 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8354 * 8355 * This cmsghdr structure specifies SCTP options for sendmsg(). 8356 * 8357 * cmsg_level cmsg_type cmsg_data[] 8358 * ------------ ------------ --------------------- 8359 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8360 * ------------ ------------ --------------------- 8361 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8362 */ 8363 cmsgs->addrs_msg = my_msg; 8364 break; 8365 default: 8366 return -EINVAL; 8367 } 8368 } 8369 8370 return 0; 8371 } 8372 8373 /* 8374 * Wait for a packet.. 8375 * Note: This function is the same function as in core/datagram.c 8376 * with a few modifications to make lksctp work. 8377 */ 8378 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8379 { 8380 int error; 8381 DEFINE_WAIT(wait); 8382 8383 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8384 8385 /* Socket errors? */ 8386 error = sock_error(sk); 8387 if (error) 8388 goto out; 8389 8390 if (!skb_queue_empty(&sk->sk_receive_queue)) 8391 goto ready; 8392 8393 /* Socket shut down? */ 8394 if (sk->sk_shutdown & RCV_SHUTDOWN) 8395 goto out; 8396 8397 /* Sequenced packets can come disconnected. If so we report the 8398 * problem. 8399 */ 8400 error = -ENOTCONN; 8401 8402 /* Is there a good reason to think that we may receive some data? */ 8403 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8404 goto out; 8405 8406 /* Handle signals. */ 8407 if (signal_pending(current)) 8408 goto interrupted; 8409 8410 /* Let another process have a go. Since we are going to sleep 8411 * anyway. Note: This may cause odd behaviors if the message 8412 * does not fit in the user's buffer, but this seems to be the 8413 * only way to honor MSG_DONTWAIT realistically. 8414 */ 8415 release_sock(sk); 8416 *timeo_p = schedule_timeout(*timeo_p); 8417 lock_sock(sk); 8418 8419 ready: 8420 finish_wait(sk_sleep(sk), &wait); 8421 return 0; 8422 8423 interrupted: 8424 error = sock_intr_errno(*timeo_p); 8425 8426 out: 8427 finish_wait(sk_sleep(sk), &wait); 8428 *err = error; 8429 return error; 8430 } 8431 8432 /* Receive a datagram. 8433 * Note: This is pretty much the same routine as in core/datagram.c 8434 * with a few changes to make lksctp work. 8435 */ 8436 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8437 int noblock, int *err) 8438 { 8439 int error; 8440 struct sk_buff *skb; 8441 long timeo; 8442 8443 timeo = sock_rcvtimeo(sk, noblock); 8444 8445 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8446 MAX_SCHEDULE_TIMEOUT); 8447 8448 do { 8449 /* Again only user level code calls this function, 8450 * so nothing interrupt level 8451 * will suddenly eat the receive_queue. 8452 * 8453 * Look at current nfs client by the way... 8454 * However, this function was correct in any case. 8) 8455 */ 8456 if (flags & MSG_PEEK) { 8457 skb = skb_peek(&sk->sk_receive_queue); 8458 if (skb) 8459 refcount_inc(&skb->users); 8460 } else { 8461 skb = __skb_dequeue(&sk->sk_receive_queue); 8462 } 8463 8464 if (skb) 8465 return skb; 8466 8467 /* Caller is allowed not to check sk->sk_err before calling. */ 8468 error = sock_error(sk); 8469 if (error) 8470 goto no_packet; 8471 8472 if (sk->sk_shutdown & RCV_SHUTDOWN) 8473 break; 8474 8475 if (sk_can_busy_loop(sk)) { 8476 sk_busy_loop(sk, noblock); 8477 8478 if (!skb_queue_empty(&sk->sk_receive_queue)) 8479 continue; 8480 } 8481 8482 /* User doesn't want to wait. */ 8483 error = -EAGAIN; 8484 if (!timeo) 8485 goto no_packet; 8486 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8487 8488 return NULL; 8489 8490 no_packet: 8491 *err = error; 8492 return NULL; 8493 } 8494 8495 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8496 static void __sctp_write_space(struct sctp_association *asoc) 8497 { 8498 struct sock *sk = asoc->base.sk; 8499 8500 if (sctp_wspace(asoc) <= 0) 8501 return; 8502 8503 if (waitqueue_active(&asoc->wait)) 8504 wake_up_interruptible(&asoc->wait); 8505 8506 if (sctp_writeable(sk)) { 8507 struct socket_wq *wq; 8508 8509 rcu_read_lock(); 8510 wq = rcu_dereference(sk->sk_wq); 8511 if (wq) { 8512 if (waitqueue_active(&wq->wait)) 8513 wake_up_interruptible(&wq->wait); 8514 8515 /* Note that we try to include the Async I/O support 8516 * here by modeling from the current TCP/UDP code. 8517 * We have not tested with it yet. 8518 */ 8519 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8520 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8521 } 8522 rcu_read_unlock(); 8523 } 8524 } 8525 8526 static void sctp_wake_up_waiters(struct sock *sk, 8527 struct sctp_association *asoc) 8528 { 8529 struct sctp_association *tmp = asoc; 8530 8531 /* We do accounting for the sndbuf space per association, 8532 * so we only need to wake our own association. 8533 */ 8534 if (asoc->ep->sndbuf_policy) 8535 return __sctp_write_space(asoc); 8536 8537 /* If association goes down and is just flushing its 8538 * outq, then just normally notify others. 8539 */ 8540 if (asoc->base.dead) 8541 return sctp_write_space(sk); 8542 8543 /* Accounting for the sndbuf space is per socket, so we 8544 * need to wake up others, try to be fair and in case of 8545 * other associations, let them have a go first instead 8546 * of just doing a sctp_write_space() call. 8547 * 8548 * Note that we reach sctp_wake_up_waiters() only when 8549 * associations free up queued chunks, thus we are under 8550 * lock and the list of associations on a socket is 8551 * guaranteed not to change. 8552 */ 8553 for (tmp = list_next_entry(tmp, asocs); 1; 8554 tmp = list_next_entry(tmp, asocs)) { 8555 /* Manually skip the head element. */ 8556 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8557 continue; 8558 /* Wake up association. */ 8559 __sctp_write_space(tmp); 8560 /* We've reached the end. */ 8561 if (tmp == asoc) 8562 break; 8563 } 8564 } 8565 8566 /* Do accounting for the sndbuf space. 8567 * Decrement the used sndbuf space of the corresponding association by the 8568 * data size which was just transmitted(freed). 8569 */ 8570 static void sctp_wfree(struct sk_buff *skb) 8571 { 8572 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8573 struct sctp_association *asoc = chunk->asoc; 8574 struct sock *sk = asoc->base.sk; 8575 8576 sk_mem_uncharge(sk, skb->truesize); 8577 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8578 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8579 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8580 &sk->sk_wmem_alloc)); 8581 8582 if (chunk->shkey) { 8583 struct sctp_shared_key *shkey = chunk->shkey; 8584 8585 /* refcnt == 2 and !list_empty mean after this release, it's 8586 * not being used anywhere, and it's time to notify userland 8587 * that this shkey can be freed if it's been deactivated. 8588 */ 8589 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8590 refcount_read(&shkey->refcnt) == 2) { 8591 struct sctp_ulpevent *ev; 8592 8593 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8594 SCTP_AUTH_FREE_KEY, 8595 GFP_KERNEL); 8596 if (ev) 8597 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8598 } 8599 sctp_auth_shkey_release(chunk->shkey); 8600 } 8601 8602 sock_wfree(skb); 8603 sctp_wake_up_waiters(sk, asoc); 8604 8605 sctp_association_put(asoc); 8606 } 8607 8608 /* Do accounting for the receive space on the socket. 8609 * Accounting for the association is done in ulpevent.c 8610 * We set this as a destructor for the cloned data skbs so that 8611 * accounting is done at the correct time. 8612 */ 8613 void sctp_sock_rfree(struct sk_buff *skb) 8614 { 8615 struct sock *sk = skb->sk; 8616 struct sctp_ulpevent *event = sctp_skb2event(skb); 8617 8618 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8619 8620 /* 8621 * Mimic the behavior of sock_rfree 8622 */ 8623 sk_mem_uncharge(sk, event->rmem_len); 8624 } 8625 8626 8627 /* Helper function to wait for space in the sndbuf. */ 8628 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8629 size_t msg_len) 8630 { 8631 struct sock *sk = asoc->base.sk; 8632 long current_timeo = *timeo_p; 8633 DEFINE_WAIT(wait); 8634 int err = 0; 8635 8636 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8637 *timeo_p, msg_len); 8638 8639 /* Increment the association's refcnt. */ 8640 sctp_association_hold(asoc); 8641 8642 /* Wait on the association specific sndbuf space. */ 8643 for (;;) { 8644 prepare_to_wait_exclusive(&asoc->wait, &wait, 8645 TASK_INTERRUPTIBLE); 8646 if (asoc->base.dead) 8647 goto do_dead; 8648 if (!*timeo_p) 8649 goto do_nonblock; 8650 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8651 goto do_error; 8652 if (signal_pending(current)) 8653 goto do_interrupted; 8654 if ((int)msg_len <= sctp_wspace(asoc)) 8655 break; 8656 8657 /* Let another process have a go. Since we are going 8658 * to sleep anyway. 8659 */ 8660 release_sock(sk); 8661 current_timeo = schedule_timeout(current_timeo); 8662 lock_sock(sk); 8663 if (sk != asoc->base.sk) 8664 goto do_error; 8665 8666 *timeo_p = current_timeo; 8667 } 8668 8669 out: 8670 finish_wait(&asoc->wait, &wait); 8671 8672 /* Release the association's refcnt. */ 8673 sctp_association_put(asoc); 8674 8675 return err; 8676 8677 do_dead: 8678 err = -ESRCH; 8679 goto out; 8680 8681 do_error: 8682 err = -EPIPE; 8683 goto out; 8684 8685 do_interrupted: 8686 err = sock_intr_errno(*timeo_p); 8687 goto out; 8688 8689 do_nonblock: 8690 err = -EAGAIN; 8691 goto out; 8692 } 8693 8694 void sctp_data_ready(struct sock *sk) 8695 { 8696 struct socket_wq *wq; 8697 8698 rcu_read_lock(); 8699 wq = rcu_dereference(sk->sk_wq); 8700 if (skwq_has_sleeper(wq)) 8701 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8702 EPOLLRDNORM | EPOLLRDBAND); 8703 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8704 rcu_read_unlock(); 8705 } 8706 8707 /* If socket sndbuf has changed, wake up all per association waiters. */ 8708 void sctp_write_space(struct sock *sk) 8709 { 8710 struct sctp_association *asoc; 8711 8712 /* Wake up the tasks in each wait queue. */ 8713 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8714 __sctp_write_space(asoc); 8715 } 8716 } 8717 8718 /* Is there any sndbuf space available on the socket? 8719 * 8720 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8721 * associations on the same socket. For a UDP-style socket with 8722 * multiple associations, it is possible for it to be "unwriteable" 8723 * prematurely. I assume that this is acceptable because 8724 * a premature "unwriteable" is better than an accidental "writeable" which 8725 * would cause an unwanted block under certain circumstances. For the 1-1 8726 * UDP-style sockets or TCP-style sockets, this code should work. 8727 * - Daisy 8728 */ 8729 static bool sctp_writeable(struct sock *sk) 8730 { 8731 return sk->sk_sndbuf > sk->sk_wmem_queued; 8732 } 8733 8734 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8735 * returns immediately with EINPROGRESS. 8736 */ 8737 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8738 { 8739 struct sock *sk = asoc->base.sk; 8740 int err = 0; 8741 long current_timeo = *timeo_p; 8742 DEFINE_WAIT(wait); 8743 8744 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8745 8746 /* Increment the association's refcnt. */ 8747 sctp_association_hold(asoc); 8748 8749 for (;;) { 8750 prepare_to_wait_exclusive(&asoc->wait, &wait, 8751 TASK_INTERRUPTIBLE); 8752 if (!*timeo_p) 8753 goto do_nonblock; 8754 if (sk->sk_shutdown & RCV_SHUTDOWN) 8755 break; 8756 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8757 asoc->base.dead) 8758 goto do_error; 8759 if (signal_pending(current)) 8760 goto do_interrupted; 8761 8762 if (sctp_state(asoc, ESTABLISHED)) 8763 break; 8764 8765 /* Let another process have a go. Since we are going 8766 * to sleep anyway. 8767 */ 8768 release_sock(sk); 8769 current_timeo = schedule_timeout(current_timeo); 8770 lock_sock(sk); 8771 8772 *timeo_p = current_timeo; 8773 } 8774 8775 out: 8776 finish_wait(&asoc->wait, &wait); 8777 8778 /* Release the association's refcnt. */ 8779 sctp_association_put(asoc); 8780 8781 return err; 8782 8783 do_error: 8784 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8785 err = -ETIMEDOUT; 8786 else 8787 err = -ECONNREFUSED; 8788 goto out; 8789 8790 do_interrupted: 8791 err = sock_intr_errno(*timeo_p); 8792 goto out; 8793 8794 do_nonblock: 8795 err = -EINPROGRESS; 8796 goto out; 8797 } 8798 8799 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8800 { 8801 struct sctp_endpoint *ep; 8802 int err = 0; 8803 DEFINE_WAIT(wait); 8804 8805 ep = sctp_sk(sk)->ep; 8806 8807 8808 for (;;) { 8809 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8810 TASK_INTERRUPTIBLE); 8811 8812 if (list_empty(&ep->asocs)) { 8813 release_sock(sk); 8814 timeo = schedule_timeout(timeo); 8815 lock_sock(sk); 8816 } 8817 8818 err = -EINVAL; 8819 if (!sctp_sstate(sk, LISTENING)) 8820 break; 8821 8822 err = 0; 8823 if (!list_empty(&ep->asocs)) 8824 break; 8825 8826 err = sock_intr_errno(timeo); 8827 if (signal_pending(current)) 8828 break; 8829 8830 err = -EAGAIN; 8831 if (!timeo) 8832 break; 8833 } 8834 8835 finish_wait(sk_sleep(sk), &wait); 8836 8837 return err; 8838 } 8839 8840 static void sctp_wait_for_close(struct sock *sk, long timeout) 8841 { 8842 DEFINE_WAIT(wait); 8843 8844 do { 8845 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8846 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8847 break; 8848 release_sock(sk); 8849 timeout = schedule_timeout(timeout); 8850 lock_sock(sk); 8851 } while (!signal_pending(current) && timeout); 8852 8853 finish_wait(sk_sleep(sk), &wait); 8854 } 8855 8856 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8857 { 8858 struct sk_buff *frag; 8859 8860 if (!skb->data_len) 8861 goto done; 8862 8863 /* Don't forget the fragments. */ 8864 skb_walk_frags(skb, frag) 8865 sctp_skb_set_owner_r_frag(frag, sk); 8866 8867 done: 8868 sctp_skb_set_owner_r(skb, sk); 8869 } 8870 8871 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8872 struct sctp_association *asoc) 8873 { 8874 struct inet_sock *inet = inet_sk(sk); 8875 struct inet_sock *newinet; 8876 struct sctp_sock *sp = sctp_sk(sk); 8877 struct sctp_endpoint *ep = sp->ep; 8878 8879 newsk->sk_type = sk->sk_type; 8880 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8881 newsk->sk_flags = sk->sk_flags; 8882 newsk->sk_tsflags = sk->sk_tsflags; 8883 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8884 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8885 newsk->sk_reuse = sk->sk_reuse; 8886 sctp_sk(newsk)->reuse = sp->reuse; 8887 8888 newsk->sk_shutdown = sk->sk_shutdown; 8889 newsk->sk_destruct = sctp_destruct_sock; 8890 newsk->sk_family = sk->sk_family; 8891 newsk->sk_protocol = IPPROTO_SCTP; 8892 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8893 newsk->sk_sndbuf = sk->sk_sndbuf; 8894 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8895 newsk->sk_lingertime = sk->sk_lingertime; 8896 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8897 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8898 newsk->sk_rxhash = sk->sk_rxhash; 8899 8900 newinet = inet_sk(newsk); 8901 8902 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8903 * getsockname() and getpeername() 8904 */ 8905 newinet->inet_sport = inet->inet_sport; 8906 newinet->inet_saddr = inet->inet_saddr; 8907 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8908 newinet->inet_dport = htons(asoc->peer.port); 8909 newinet->pmtudisc = inet->pmtudisc; 8910 newinet->inet_id = asoc->next_tsn ^ jiffies; 8911 8912 newinet->uc_ttl = inet->uc_ttl; 8913 newinet->mc_loop = 1; 8914 newinet->mc_ttl = 1; 8915 newinet->mc_index = 0; 8916 newinet->mc_list = NULL; 8917 8918 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8919 net_enable_timestamp(); 8920 8921 /* Set newsk security attributes from orginal sk and connection 8922 * security attribute from ep. 8923 */ 8924 security_sctp_sk_clone(ep, sk, newsk); 8925 } 8926 8927 static inline void sctp_copy_descendant(struct sock *sk_to, 8928 const struct sock *sk_from) 8929 { 8930 int ancestor_size = sizeof(struct inet_sock) + 8931 sizeof(struct sctp_sock) - 8932 offsetof(struct sctp_sock, auto_asconf_list); 8933 8934 if (sk_from->sk_family == PF_INET6) 8935 ancestor_size += sizeof(struct ipv6_pinfo); 8936 8937 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8938 } 8939 8940 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8941 * and its messages to the newsk. 8942 */ 8943 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8944 struct sctp_association *assoc, 8945 enum sctp_socket_type type) 8946 { 8947 struct sctp_sock *oldsp = sctp_sk(oldsk); 8948 struct sctp_sock *newsp = sctp_sk(newsk); 8949 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8950 struct sctp_endpoint *newep = newsp->ep; 8951 struct sk_buff *skb, *tmp; 8952 struct sctp_ulpevent *event; 8953 struct sctp_bind_hashbucket *head; 8954 8955 /* Migrate socket buffer sizes and all the socket level options to the 8956 * new socket. 8957 */ 8958 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8959 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8960 /* Brute force copy old sctp opt. */ 8961 sctp_copy_descendant(newsk, oldsk); 8962 8963 /* Restore the ep value that was overwritten with the above structure 8964 * copy. 8965 */ 8966 newsp->ep = newep; 8967 newsp->hmac = NULL; 8968 8969 /* Hook this new socket in to the bind_hash list. */ 8970 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8971 inet_sk(oldsk)->inet_num)]; 8972 spin_lock_bh(&head->lock); 8973 pp = sctp_sk(oldsk)->bind_hash; 8974 sk_add_bind_node(newsk, &pp->owner); 8975 sctp_sk(newsk)->bind_hash = pp; 8976 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8977 spin_unlock_bh(&head->lock); 8978 8979 /* Copy the bind_addr list from the original endpoint to the new 8980 * endpoint so that we can handle restarts properly 8981 */ 8982 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8983 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8984 8985 /* Move any messages in the old socket's receive queue that are for the 8986 * peeled off association to the new socket's receive queue. 8987 */ 8988 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8989 event = sctp_skb2event(skb); 8990 if (event->asoc == assoc) { 8991 __skb_unlink(skb, &oldsk->sk_receive_queue); 8992 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8993 sctp_skb_set_owner_r_frag(skb, newsk); 8994 } 8995 } 8996 8997 /* Clean up any messages pending delivery due to partial 8998 * delivery. Three cases: 8999 * 1) No partial deliver; no work. 9000 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9001 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9002 */ 9003 skb_queue_head_init(&newsp->pd_lobby); 9004 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9005 9006 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9007 struct sk_buff_head *queue; 9008 9009 /* Decide which queue to move pd_lobby skbs to. */ 9010 if (assoc->ulpq.pd_mode) { 9011 queue = &newsp->pd_lobby; 9012 } else 9013 queue = &newsk->sk_receive_queue; 9014 9015 /* Walk through the pd_lobby, looking for skbs that 9016 * need moved to the new socket. 9017 */ 9018 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9019 event = sctp_skb2event(skb); 9020 if (event->asoc == assoc) { 9021 __skb_unlink(skb, &oldsp->pd_lobby); 9022 __skb_queue_tail(queue, skb); 9023 sctp_skb_set_owner_r_frag(skb, newsk); 9024 } 9025 } 9026 9027 /* Clear up any skbs waiting for the partial 9028 * delivery to finish. 9029 */ 9030 if (assoc->ulpq.pd_mode) 9031 sctp_clear_pd(oldsk, NULL); 9032 9033 } 9034 9035 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9036 9037 /* Set the type of socket to indicate that it is peeled off from the 9038 * original UDP-style socket or created with the accept() call on a 9039 * TCP-style socket.. 9040 */ 9041 newsp->type = type; 9042 9043 /* Mark the new socket "in-use" by the user so that any packets 9044 * that may arrive on the association after we've moved it are 9045 * queued to the backlog. This prevents a potential race between 9046 * backlog processing on the old socket and new-packet processing 9047 * on the new socket. 9048 * 9049 * The caller has just allocated newsk so we can guarantee that other 9050 * paths won't try to lock it and then oldsk. 9051 */ 9052 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9053 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9054 sctp_assoc_migrate(assoc, newsk); 9055 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9056 9057 /* If the association on the newsk is already closed before accept() 9058 * is called, set RCV_SHUTDOWN flag. 9059 */ 9060 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9061 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9062 newsk->sk_shutdown |= RCV_SHUTDOWN; 9063 } else { 9064 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9065 } 9066 9067 release_sock(newsk); 9068 } 9069 9070 9071 /* This proto struct describes the ULP interface for SCTP. */ 9072 struct proto sctp_prot = { 9073 .name = "SCTP", 9074 .owner = THIS_MODULE, 9075 .close = sctp_close, 9076 .disconnect = sctp_disconnect, 9077 .accept = sctp_accept, 9078 .ioctl = sctp_ioctl, 9079 .init = sctp_init_sock, 9080 .destroy = sctp_destroy_sock, 9081 .shutdown = sctp_shutdown, 9082 .setsockopt = sctp_setsockopt, 9083 .getsockopt = sctp_getsockopt, 9084 .sendmsg = sctp_sendmsg, 9085 .recvmsg = sctp_recvmsg, 9086 .bind = sctp_bind, 9087 .backlog_rcv = sctp_backlog_rcv, 9088 .hash = sctp_hash, 9089 .unhash = sctp_unhash, 9090 .get_port = sctp_get_port, 9091 .obj_size = sizeof(struct sctp_sock), 9092 .useroffset = offsetof(struct sctp_sock, subscribe), 9093 .usersize = offsetof(struct sctp_sock, initmsg) - 9094 offsetof(struct sctp_sock, subscribe) + 9095 sizeof_field(struct sctp_sock, initmsg), 9096 .sysctl_mem = sysctl_sctp_mem, 9097 .sysctl_rmem = sysctl_sctp_rmem, 9098 .sysctl_wmem = sysctl_sctp_wmem, 9099 .memory_pressure = &sctp_memory_pressure, 9100 .enter_memory_pressure = sctp_enter_memory_pressure, 9101 .memory_allocated = &sctp_memory_allocated, 9102 .sockets_allocated = &sctp_sockets_allocated, 9103 }; 9104 9105 #if IS_ENABLED(CONFIG_IPV6) 9106 9107 #include <net/transp_v6.h> 9108 static void sctp_v6_destroy_sock(struct sock *sk) 9109 { 9110 sctp_destroy_sock(sk); 9111 inet6_destroy_sock(sk); 9112 } 9113 9114 struct proto sctpv6_prot = { 9115 .name = "SCTPv6", 9116 .owner = THIS_MODULE, 9117 .close = sctp_close, 9118 .disconnect = sctp_disconnect, 9119 .accept = sctp_accept, 9120 .ioctl = sctp_ioctl, 9121 .init = sctp_init_sock, 9122 .destroy = sctp_v6_destroy_sock, 9123 .shutdown = sctp_shutdown, 9124 .setsockopt = sctp_setsockopt, 9125 .getsockopt = sctp_getsockopt, 9126 .sendmsg = sctp_sendmsg, 9127 .recvmsg = sctp_recvmsg, 9128 .bind = sctp_bind, 9129 .backlog_rcv = sctp_backlog_rcv, 9130 .hash = sctp_hash, 9131 .unhash = sctp_unhash, 9132 .get_port = sctp_get_port, 9133 .obj_size = sizeof(struct sctp6_sock), 9134 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9135 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9136 offsetof(struct sctp6_sock, sctp.subscribe) + 9137 sizeof_field(struct sctp6_sock, sctp.initmsg), 9138 .sysctl_mem = sysctl_sctp_mem, 9139 .sysctl_rmem = sysctl_sctp_rmem, 9140 .sysctl_wmem = sysctl_sctp_wmem, 9141 .memory_pressure = &sctp_memory_pressure, 9142 .enter_memory_pressure = sctp_enter_memory_pressure, 9143 .memory_allocated = &sctp_memory_allocated, 9144 .sockets_allocated = &sctp_sockets_allocated, 9145 }; 9146 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9147