xref: /openbmc/linux/net/sctp/socket.c (revision 33ac9dba)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 extern struct kmem_cache *sctp_bucket_cachep;
106 extern long sysctl_sctp_mem[3];
107 extern int sysctl_sctp_rmem[3];
108 extern int sysctl_sctp_wmem[3];
109 
110 static int sctp_memory_pressure;
111 static atomic_long_t sctp_memory_allocated;
112 struct percpu_counter sctp_sockets_allocated;
113 
114 static void sctp_enter_memory_pressure(struct sock *sk)
115 {
116 	sctp_memory_pressure = 1;
117 }
118 
119 
120 /* Get the sndbuf space available at the time on the association.  */
121 static inline int sctp_wspace(struct sctp_association *asoc)
122 {
123 	int amt;
124 
125 	if (asoc->ep->sndbuf_policy)
126 		amt = asoc->sndbuf_used;
127 	else
128 		amt = sk_wmem_alloc_get(asoc->base.sk);
129 
130 	if (amt >= asoc->base.sk->sk_sndbuf) {
131 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
132 			amt = 0;
133 		else {
134 			amt = sk_stream_wspace(asoc->base.sk);
135 			if (amt < 0)
136 				amt = 0;
137 		}
138 	} else {
139 		amt = asoc->base.sk->sk_sndbuf - amt;
140 	}
141 	return amt;
142 }
143 
144 /* Increment the used sndbuf space count of the corresponding association by
145  * the size of the outgoing data chunk.
146  * Also, set the skb destructor for sndbuf accounting later.
147  *
148  * Since it is always 1-1 between chunk and skb, and also a new skb is always
149  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
150  * destructor in the data chunk skb for the purpose of the sndbuf space
151  * tracking.
152  */
153 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
154 {
155 	struct sctp_association *asoc = chunk->asoc;
156 	struct sock *sk = asoc->base.sk;
157 
158 	/* The sndbuf space is tracked per association.  */
159 	sctp_association_hold(asoc);
160 
161 	skb_set_owner_w(chunk->skb, sk);
162 
163 	chunk->skb->destructor = sctp_wfree;
164 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
165 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
166 
167 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
168 				sizeof(struct sk_buff) +
169 				sizeof(struct sctp_chunk);
170 
171 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
172 	sk->sk_wmem_queued += chunk->skb->truesize;
173 	sk_mem_charge(sk, chunk->skb->truesize);
174 }
175 
176 /* Verify that this is a valid address. */
177 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
178 				   int len)
179 {
180 	struct sctp_af *af;
181 
182 	/* Verify basic sockaddr. */
183 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
184 	if (!af)
185 		return -EINVAL;
186 
187 	/* Is this a valid SCTP address?  */
188 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
189 		return -EINVAL;
190 
191 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
192 		return -EINVAL;
193 
194 	return 0;
195 }
196 
197 /* Look up the association by its id.  If this is not a UDP-style
198  * socket, the ID field is always ignored.
199  */
200 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
201 {
202 	struct sctp_association *asoc = NULL;
203 
204 	/* If this is not a UDP-style socket, assoc id should be ignored. */
205 	if (!sctp_style(sk, UDP)) {
206 		/* Return NULL if the socket state is not ESTABLISHED. It
207 		 * could be a TCP-style listening socket or a socket which
208 		 * hasn't yet called connect() to establish an association.
209 		 */
210 		if (!sctp_sstate(sk, ESTABLISHED))
211 			return NULL;
212 
213 		/* Get the first and the only association from the list. */
214 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
215 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
216 					  struct sctp_association, asocs);
217 		return asoc;
218 	}
219 
220 	/* Otherwise this is a UDP-style socket. */
221 	if (!id || (id == (sctp_assoc_t)-1))
222 		return NULL;
223 
224 	spin_lock_bh(&sctp_assocs_id_lock);
225 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
226 	spin_unlock_bh(&sctp_assocs_id_lock);
227 
228 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
229 		return NULL;
230 
231 	return asoc;
232 }
233 
234 /* Look up the transport from an address and an assoc id. If both address and
235  * id are specified, the associations matching the address and the id should be
236  * the same.
237  */
238 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
239 					      struct sockaddr_storage *addr,
240 					      sctp_assoc_t id)
241 {
242 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
243 	struct sctp_transport *transport;
244 	union sctp_addr *laddr = (union sctp_addr *)addr;
245 
246 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
247 					       laddr,
248 					       &transport);
249 
250 	if (!addr_asoc)
251 		return NULL;
252 
253 	id_asoc = sctp_id2assoc(sk, id);
254 	if (id_asoc && (id_asoc != addr_asoc))
255 		return NULL;
256 
257 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
258 						(union sctp_addr *)addr);
259 
260 	return transport;
261 }
262 
263 /* API 3.1.2 bind() - UDP Style Syntax
264  * The syntax of bind() is,
265  *
266  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
267  *
268  *   sd      - the socket descriptor returned by socket().
269  *   addr    - the address structure (struct sockaddr_in or struct
270  *             sockaddr_in6 [RFC 2553]),
271  *   addr_len - the size of the address structure.
272  */
273 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
274 {
275 	int retval = 0;
276 
277 	lock_sock(sk);
278 
279 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
280 		 addr, addr_len);
281 
282 	/* Disallow binding twice. */
283 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
284 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
285 				      addr_len);
286 	else
287 		retval = -EINVAL;
288 
289 	release_sock(sk);
290 
291 	return retval;
292 }
293 
294 static long sctp_get_port_local(struct sock *, union sctp_addr *);
295 
296 /* Verify this is a valid sockaddr. */
297 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
298 					union sctp_addr *addr, int len)
299 {
300 	struct sctp_af *af;
301 
302 	/* Check minimum size.  */
303 	if (len < sizeof (struct sockaddr))
304 		return NULL;
305 
306 	/* V4 mapped address are really of AF_INET family */
307 	if (addr->sa.sa_family == AF_INET6 &&
308 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
309 		if (!opt->pf->af_supported(AF_INET, opt))
310 			return NULL;
311 	} else {
312 		/* Does this PF support this AF? */
313 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
314 			return NULL;
315 	}
316 
317 	/* If we get this far, af is valid. */
318 	af = sctp_get_af_specific(addr->sa.sa_family);
319 
320 	if (len < af->sockaddr_len)
321 		return NULL;
322 
323 	return af;
324 }
325 
326 /* Bind a local address either to an endpoint or to an association.  */
327 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
328 {
329 	struct net *net = sock_net(sk);
330 	struct sctp_sock *sp = sctp_sk(sk);
331 	struct sctp_endpoint *ep = sp->ep;
332 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
333 	struct sctp_af *af;
334 	unsigned short snum;
335 	int ret = 0;
336 
337 	/* Common sockaddr verification. */
338 	af = sctp_sockaddr_af(sp, addr, len);
339 	if (!af) {
340 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
341 			 __func__, sk, addr, len);
342 		return -EINVAL;
343 	}
344 
345 	snum = ntohs(addr->v4.sin_port);
346 
347 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
348 		 __func__, sk, &addr->sa, bp->port, snum, len);
349 
350 	/* PF specific bind() address verification. */
351 	if (!sp->pf->bind_verify(sp, addr))
352 		return -EADDRNOTAVAIL;
353 
354 	/* We must either be unbound, or bind to the same port.
355 	 * It's OK to allow 0 ports if we are already bound.
356 	 * We'll just inhert an already bound port in this case
357 	 */
358 	if (bp->port) {
359 		if (!snum)
360 			snum = bp->port;
361 		else if (snum != bp->port) {
362 			pr_debug("%s: new port %d doesn't match existing port "
363 				 "%d\n", __func__, snum, bp->port);
364 			return -EINVAL;
365 		}
366 	}
367 
368 	if (snum && snum < PROT_SOCK &&
369 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
370 		return -EACCES;
371 
372 	/* See if the address matches any of the addresses we may have
373 	 * already bound before checking against other endpoints.
374 	 */
375 	if (sctp_bind_addr_match(bp, addr, sp))
376 		return -EINVAL;
377 
378 	/* Make sure we are allowed to bind here.
379 	 * The function sctp_get_port_local() does duplicate address
380 	 * detection.
381 	 */
382 	addr->v4.sin_port = htons(snum);
383 	if ((ret = sctp_get_port_local(sk, addr))) {
384 		return -EADDRINUSE;
385 	}
386 
387 	/* Refresh ephemeral port.  */
388 	if (!bp->port)
389 		bp->port = inet_sk(sk)->inet_num;
390 
391 	/* Add the address to the bind address list.
392 	 * Use GFP_ATOMIC since BHs will be disabled.
393 	 */
394 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
395 
396 	/* Copy back into socket for getsockname() use. */
397 	if (!ret) {
398 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 		sp->pf->to_sk_saddr(addr, sk);
400 	}
401 
402 	return ret;
403 }
404 
405  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406  *
407  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408  * at any one time.  If a sender, after sending an ASCONF chunk, decides
409  * it needs to transfer another ASCONF Chunk, it MUST wait until the
410  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411  * subsequent ASCONF. Note this restriction binds each side, so at any
412  * time two ASCONF may be in-transit on any given association (one sent
413  * from each endpoint).
414  */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 			    struct sctp_chunk *chunk)
417 {
418 	struct net 	*net = sock_net(asoc->base.sk);
419 	int		retval = 0;
420 
421 	/* If there is an outstanding ASCONF chunk, queue it for later
422 	 * transmission.
423 	 */
424 	if (asoc->addip_last_asconf) {
425 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 		goto out;
427 	}
428 
429 	/* Hold the chunk until an ASCONF_ACK is received. */
430 	sctp_chunk_hold(chunk);
431 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 	if (retval)
433 		sctp_chunk_free(chunk);
434 	else
435 		asoc->addip_last_asconf = chunk;
436 
437 out:
438 	return retval;
439 }
440 
441 /* Add a list of addresses as bind addresses to local endpoint or
442  * association.
443  *
444  * Basically run through each address specified in the addrs/addrcnt
445  * array/length pair, determine if it is IPv6 or IPv4 and call
446  * sctp_do_bind() on it.
447  *
448  * If any of them fails, then the operation will be reversed and the
449  * ones that were added will be removed.
450  *
451  * Only sctp_setsockopt_bindx() is supposed to call this function.
452  */
453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454 {
455 	int cnt;
456 	int retval = 0;
457 	void *addr_buf;
458 	struct sockaddr *sa_addr;
459 	struct sctp_af *af;
460 
461 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 		 addrs, addrcnt);
463 
464 	addr_buf = addrs;
465 	for (cnt = 0; cnt < addrcnt; cnt++) {
466 		/* The list may contain either IPv4 or IPv6 address;
467 		 * determine the address length for walking thru the list.
468 		 */
469 		sa_addr = addr_buf;
470 		af = sctp_get_af_specific(sa_addr->sa_family);
471 		if (!af) {
472 			retval = -EINVAL;
473 			goto err_bindx_add;
474 		}
475 
476 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 				      af->sockaddr_len);
478 
479 		addr_buf += af->sockaddr_len;
480 
481 err_bindx_add:
482 		if (retval < 0) {
483 			/* Failed. Cleanup the ones that have been added */
484 			if (cnt > 0)
485 				sctp_bindx_rem(sk, addrs, cnt);
486 			return retval;
487 		}
488 	}
489 
490 	return retval;
491 }
492 
493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494  * associations that are part of the endpoint indicating that a list of local
495  * addresses are added to the endpoint.
496  *
497  * If any of the addresses is already in the bind address list of the
498  * association, we do not send the chunk for that association.  But it will not
499  * affect other associations.
500  *
501  * Only sctp_setsockopt_bindx() is supposed to call this function.
502  */
503 static int sctp_send_asconf_add_ip(struct sock		*sk,
504 				   struct sockaddr	*addrs,
505 				   int 			addrcnt)
506 {
507 	struct net *net = sock_net(sk);
508 	struct sctp_sock		*sp;
509 	struct sctp_endpoint		*ep;
510 	struct sctp_association		*asoc;
511 	struct sctp_bind_addr		*bp;
512 	struct sctp_chunk		*chunk;
513 	struct sctp_sockaddr_entry	*laddr;
514 	union sctp_addr			*addr;
515 	union sctp_addr			saveaddr;
516 	void				*addr_buf;
517 	struct sctp_af			*af;
518 	struct list_head		*p;
519 	int 				i;
520 	int 				retval = 0;
521 
522 	if (!net->sctp.addip_enable)
523 		return retval;
524 
525 	sp = sctp_sk(sk);
526 	ep = sp->ep;
527 
528 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 		 __func__, sk, addrs, addrcnt);
530 
531 	list_for_each_entry(asoc, &ep->asocs, asocs) {
532 		if (!asoc->peer.asconf_capable)
533 			continue;
534 
535 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 			continue;
537 
538 		if (!sctp_state(asoc, ESTABLISHED))
539 			continue;
540 
541 		/* Check if any address in the packed array of addresses is
542 		 * in the bind address list of the association. If so,
543 		 * do not send the asconf chunk to its peer, but continue with
544 		 * other associations.
545 		 */
546 		addr_buf = addrs;
547 		for (i = 0; i < addrcnt; i++) {
548 			addr = addr_buf;
549 			af = sctp_get_af_specific(addr->v4.sin_family);
550 			if (!af) {
551 				retval = -EINVAL;
552 				goto out;
553 			}
554 
555 			if (sctp_assoc_lookup_laddr(asoc, addr))
556 				break;
557 
558 			addr_buf += af->sockaddr_len;
559 		}
560 		if (i < addrcnt)
561 			continue;
562 
563 		/* Use the first valid address in bind addr list of
564 		 * association as Address Parameter of ASCONF CHUNK.
565 		 */
566 		bp = &asoc->base.bind_addr;
567 		p = bp->address_list.next;
568 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 						   addrcnt, SCTP_PARAM_ADD_IP);
571 		if (!chunk) {
572 			retval = -ENOMEM;
573 			goto out;
574 		}
575 
576 		/* Add the new addresses to the bind address list with
577 		 * use_as_src set to 0.
578 		 */
579 		addr_buf = addrs;
580 		for (i = 0; i < addrcnt; i++) {
581 			addr = addr_buf;
582 			af = sctp_get_af_specific(addr->v4.sin_family);
583 			memcpy(&saveaddr, addr, af->sockaddr_len);
584 			retval = sctp_add_bind_addr(bp, &saveaddr,
585 						    SCTP_ADDR_NEW, GFP_ATOMIC);
586 			addr_buf += af->sockaddr_len;
587 		}
588 		if (asoc->src_out_of_asoc_ok) {
589 			struct sctp_transport *trans;
590 
591 			list_for_each_entry(trans,
592 			    &asoc->peer.transport_addr_list, transports) {
593 				/* Clear the source and route cache */
594 				dst_release(trans->dst);
595 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
596 				    2*asoc->pathmtu, 4380));
597 				trans->ssthresh = asoc->peer.i.a_rwnd;
598 				trans->rto = asoc->rto_initial;
599 				sctp_max_rto(asoc, trans);
600 				trans->rtt = trans->srtt = trans->rttvar = 0;
601 				sctp_transport_route(trans, NULL,
602 				    sctp_sk(asoc->base.sk));
603 			}
604 		}
605 		retval = sctp_send_asconf(asoc, chunk);
606 	}
607 
608 out:
609 	return retval;
610 }
611 
612 /* Remove a list of addresses from bind addresses list.  Do not remove the
613  * last address.
614  *
615  * Basically run through each address specified in the addrs/addrcnt
616  * array/length pair, determine if it is IPv6 or IPv4 and call
617  * sctp_del_bind() on it.
618  *
619  * If any of them fails, then the operation will be reversed and the
620  * ones that were removed will be added back.
621  *
622  * At least one address has to be left; if only one address is
623  * available, the operation will return -EBUSY.
624  *
625  * Only sctp_setsockopt_bindx() is supposed to call this function.
626  */
627 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
628 {
629 	struct sctp_sock *sp = sctp_sk(sk);
630 	struct sctp_endpoint *ep = sp->ep;
631 	int cnt;
632 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
633 	int retval = 0;
634 	void *addr_buf;
635 	union sctp_addr *sa_addr;
636 	struct sctp_af *af;
637 
638 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
639 		 __func__, sk, addrs, addrcnt);
640 
641 	addr_buf = addrs;
642 	for (cnt = 0; cnt < addrcnt; cnt++) {
643 		/* If the bind address list is empty or if there is only one
644 		 * bind address, there is nothing more to be removed (we need
645 		 * at least one address here).
646 		 */
647 		if (list_empty(&bp->address_list) ||
648 		    (sctp_list_single_entry(&bp->address_list))) {
649 			retval = -EBUSY;
650 			goto err_bindx_rem;
651 		}
652 
653 		sa_addr = addr_buf;
654 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
655 		if (!af) {
656 			retval = -EINVAL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (!af->addr_valid(sa_addr, sp, NULL)) {
661 			retval = -EADDRNOTAVAIL;
662 			goto err_bindx_rem;
663 		}
664 
665 		if (sa_addr->v4.sin_port &&
666 		    sa_addr->v4.sin_port != htons(bp->port)) {
667 			retval = -EINVAL;
668 			goto err_bindx_rem;
669 		}
670 
671 		if (!sa_addr->v4.sin_port)
672 			sa_addr->v4.sin_port = htons(bp->port);
673 
674 		/* FIXME - There is probably a need to check if sk->sk_saddr and
675 		 * sk->sk_rcv_addr are currently set to one of the addresses to
676 		 * be removed. This is something which needs to be looked into
677 		 * when we are fixing the outstanding issues with multi-homing
678 		 * socket routing and failover schemes. Refer to comments in
679 		 * sctp_do_bind(). -daisy
680 		 */
681 		retval = sctp_del_bind_addr(bp, sa_addr);
682 
683 		addr_buf += af->sockaddr_len;
684 err_bindx_rem:
685 		if (retval < 0) {
686 			/* Failed. Add the ones that has been removed back */
687 			if (cnt > 0)
688 				sctp_bindx_add(sk, addrs, cnt);
689 			return retval;
690 		}
691 	}
692 
693 	return retval;
694 }
695 
696 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
697  * the associations that are part of the endpoint indicating that a list of
698  * local addresses are removed from the endpoint.
699  *
700  * If any of the addresses is already in the bind address list of the
701  * association, we do not send the chunk for that association.  But it will not
702  * affect other associations.
703  *
704  * Only sctp_setsockopt_bindx() is supposed to call this function.
705  */
706 static int sctp_send_asconf_del_ip(struct sock		*sk,
707 				   struct sockaddr	*addrs,
708 				   int			addrcnt)
709 {
710 	struct net *net = sock_net(sk);
711 	struct sctp_sock	*sp;
712 	struct sctp_endpoint	*ep;
713 	struct sctp_association	*asoc;
714 	struct sctp_transport	*transport;
715 	struct sctp_bind_addr	*bp;
716 	struct sctp_chunk	*chunk;
717 	union sctp_addr		*laddr;
718 	void			*addr_buf;
719 	struct sctp_af		*af;
720 	struct sctp_sockaddr_entry *saddr;
721 	int 			i;
722 	int 			retval = 0;
723 	int			stored = 0;
724 
725 	chunk = NULL;
726 	if (!net->sctp.addip_enable)
727 		return retval;
728 
729 	sp = sctp_sk(sk);
730 	ep = sp->ep;
731 
732 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
733 		 __func__, sk, addrs, addrcnt);
734 
735 	list_for_each_entry(asoc, &ep->asocs, asocs) {
736 
737 		if (!asoc->peer.asconf_capable)
738 			continue;
739 
740 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
741 			continue;
742 
743 		if (!sctp_state(asoc, ESTABLISHED))
744 			continue;
745 
746 		/* Check if any address in the packed array of addresses is
747 		 * not present in the bind address list of the association.
748 		 * If so, do not send the asconf chunk to its peer, but
749 		 * continue with other associations.
750 		 */
751 		addr_buf = addrs;
752 		for (i = 0; i < addrcnt; i++) {
753 			laddr = addr_buf;
754 			af = sctp_get_af_specific(laddr->v4.sin_family);
755 			if (!af) {
756 				retval = -EINVAL;
757 				goto out;
758 			}
759 
760 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
761 				break;
762 
763 			addr_buf += af->sockaddr_len;
764 		}
765 		if (i < addrcnt)
766 			continue;
767 
768 		/* Find one address in the association's bind address list
769 		 * that is not in the packed array of addresses. This is to
770 		 * make sure that we do not delete all the addresses in the
771 		 * association.
772 		 */
773 		bp = &asoc->base.bind_addr;
774 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
775 					       addrcnt, sp);
776 		if ((laddr == NULL) && (addrcnt == 1)) {
777 			if (asoc->asconf_addr_del_pending)
778 				continue;
779 			asoc->asconf_addr_del_pending =
780 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
781 			if (asoc->asconf_addr_del_pending == NULL) {
782 				retval = -ENOMEM;
783 				goto out;
784 			}
785 			asoc->asconf_addr_del_pending->sa.sa_family =
786 				    addrs->sa_family;
787 			asoc->asconf_addr_del_pending->v4.sin_port =
788 				    htons(bp->port);
789 			if (addrs->sa_family == AF_INET) {
790 				struct sockaddr_in *sin;
791 
792 				sin = (struct sockaddr_in *)addrs;
793 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
794 			} else if (addrs->sa_family == AF_INET6) {
795 				struct sockaddr_in6 *sin6;
796 
797 				sin6 = (struct sockaddr_in6 *)addrs;
798 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
799 			}
800 
801 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
802 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
803 				 asoc->asconf_addr_del_pending);
804 
805 			asoc->src_out_of_asoc_ok = 1;
806 			stored = 1;
807 			goto skip_mkasconf;
808 		}
809 
810 		if (laddr == NULL)
811 			return -EINVAL;
812 
813 		/* We do not need RCU protection throughout this loop
814 		 * because this is done under a socket lock from the
815 		 * setsockopt call.
816 		 */
817 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
818 						   SCTP_PARAM_DEL_IP);
819 		if (!chunk) {
820 			retval = -ENOMEM;
821 			goto out;
822 		}
823 
824 skip_mkasconf:
825 		/* Reset use_as_src flag for the addresses in the bind address
826 		 * list that are to be deleted.
827 		 */
828 		addr_buf = addrs;
829 		for (i = 0; i < addrcnt; i++) {
830 			laddr = addr_buf;
831 			af = sctp_get_af_specific(laddr->v4.sin_family);
832 			list_for_each_entry(saddr, &bp->address_list, list) {
833 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
834 					saddr->state = SCTP_ADDR_DEL;
835 			}
836 			addr_buf += af->sockaddr_len;
837 		}
838 
839 		/* Update the route and saddr entries for all the transports
840 		 * as some of the addresses in the bind address list are
841 		 * about to be deleted and cannot be used as source addresses.
842 		 */
843 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
844 					transports) {
845 			dst_release(transport->dst);
846 			sctp_transport_route(transport, NULL,
847 					     sctp_sk(asoc->base.sk));
848 		}
849 
850 		if (stored)
851 			/* We don't need to transmit ASCONF */
852 			continue;
853 		retval = sctp_send_asconf(asoc, chunk);
854 	}
855 out:
856 	return retval;
857 }
858 
859 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
860 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
861 {
862 	struct sock *sk = sctp_opt2sk(sp);
863 	union sctp_addr *addr;
864 	struct sctp_af *af;
865 
866 	/* It is safe to write port space in caller. */
867 	addr = &addrw->a;
868 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
869 	af = sctp_get_af_specific(addr->sa.sa_family);
870 	if (!af)
871 		return -EINVAL;
872 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
873 		return -EINVAL;
874 
875 	if (addrw->state == SCTP_ADDR_NEW)
876 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
877 	else
878 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
879 }
880 
881 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
882  *
883  * API 8.1
884  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
885  *                int flags);
886  *
887  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
888  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
889  * or IPv6 addresses.
890  *
891  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
892  * Section 3.1.2 for this usage.
893  *
894  * addrs is a pointer to an array of one or more socket addresses. Each
895  * address is contained in its appropriate structure (i.e. struct
896  * sockaddr_in or struct sockaddr_in6) the family of the address type
897  * must be used to distinguish the address length (note that this
898  * representation is termed a "packed array" of addresses). The caller
899  * specifies the number of addresses in the array with addrcnt.
900  *
901  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
902  * -1, and sets errno to the appropriate error code.
903  *
904  * For SCTP, the port given in each socket address must be the same, or
905  * sctp_bindx() will fail, setting errno to EINVAL.
906  *
907  * The flags parameter is formed from the bitwise OR of zero or more of
908  * the following currently defined flags:
909  *
910  * SCTP_BINDX_ADD_ADDR
911  *
912  * SCTP_BINDX_REM_ADDR
913  *
914  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
915  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
916  * addresses from the association. The two flags are mutually exclusive;
917  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
918  * not remove all addresses from an association; sctp_bindx() will
919  * reject such an attempt with EINVAL.
920  *
921  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
922  * additional addresses with an endpoint after calling bind().  Or use
923  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
924  * socket is associated with so that no new association accepted will be
925  * associated with those addresses. If the endpoint supports dynamic
926  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
927  * endpoint to send the appropriate message to the peer to change the
928  * peers address lists.
929  *
930  * Adding and removing addresses from a connected association is
931  * optional functionality. Implementations that do not support this
932  * functionality should return EOPNOTSUPP.
933  *
934  * Basically do nothing but copying the addresses from user to kernel
935  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
936  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
937  * from userspace.
938  *
939  * We don't use copy_from_user() for optimization: we first do the
940  * sanity checks (buffer size -fast- and access check-healthy
941  * pointer); if all of those succeed, then we can alloc the memory
942  * (expensive operation) needed to copy the data to kernel. Then we do
943  * the copying without checking the user space area
944  * (__copy_from_user()).
945  *
946  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
947  * it.
948  *
949  * sk        The sk of the socket
950  * addrs     The pointer to the addresses in user land
951  * addrssize Size of the addrs buffer
952  * op        Operation to perform (add or remove, see the flags of
953  *           sctp_bindx)
954  *
955  * Returns 0 if ok, <0 errno code on error.
956  */
957 static int sctp_setsockopt_bindx(struct sock *sk,
958 				 struct sockaddr __user *addrs,
959 				 int addrs_size, int op)
960 {
961 	struct sockaddr *kaddrs;
962 	int err;
963 	int addrcnt = 0;
964 	int walk_size = 0;
965 	struct sockaddr *sa_addr;
966 	void *addr_buf;
967 	struct sctp_af *af;
968 
969 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
970 		 __func__, sk, addrs, addrs_size, op);
971 
972 	if (unlikely(addrs_size <= 0))
973 		return -EINVAL;
974 
975 	/* Check the user passed a healthy pointer.  */
976 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
977 		return -EFAULT;
978 
979 	/* Alloc space for the address array in kernel memory.  */
980 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
981 	if (unlikely(!kaddrs))
982 		return -ENOMEM;
983 
984 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
985 		kfree(kaddrs);
986 		return -EFAULT;
987 	}
988 
989 	/* Walk through the addrs buffer and count the number of addresses. */
990 	addr_buf = kaddrs;
991 	while (walk_size < addrs_size) {
992 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
993 			kfree(kaddrs);
994 			return -EINVAL;
995 		}
996 
997 		sa_addr = addr_buf;
998 		af = sctp_get_af_specific(sa_addr->sa_family);
999 
1000 		/* If the address family is not supported or if this address
1001 		 * causes the address buffer to overflow return EINVAL.
1002 		 */
1003 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1004 			kfree(kaddrs);
1005 			return -EINVAL;
1006 		}
1007 		addrcnt++;
1008 		addr_buf += af->sockaddr_len;
1009 		walk_size += af->sockaddr_len;
1010 	}
1011 
1012 	/* Do the work. */
1013 	switch (op) {
1014 	case SCTP_BINDX_ADD_ADDR:
1015 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1016 		if (err)
1017 			goto out;
1018 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1019 		break;
1020 
1021 	case SCTP_BINDX_REM_ADDR:
1022 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1023 		if (err)
1024 			goto out;
1025 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1026 		break;
1027 
1028 	default:
1029 		err = -EINVAL;
1030 		break;
1031 	}
1032 
1033 out:
1034 	kfree(kaddrs);
1035 
1036 	return err;
1037 }
1038 
1039 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1040  *
1041  * Common routine for handling connect() and sctp_connectx().
1042  * Connect will come in with just a single address.
1043  */
1044 static int __sctp_connect(struct sock *sk,
1045 			  struct sockaddr *kaddrs,
1046 			  int addrs_size,
1047 			  sctp_assoc_t *assoc_id)
1048 {
1049 	struct net *net = sock_net(sk);
1050 	struct sctp_sock *sp;
1051 	struct sctp_endpoint *ep;
1052 	struct sctp_association *asoc = NULL;
1053 	struct sctp_association *asoc2;
1054 	struct sctp_transport *transport;
1055 	union sctp_addr to;
1056 	sctp_scope_t scope;
1057 	long timeo;
1058 	int err = 0;
1059 	int addrcnt = 0;
1060 	int walk_size = 0;
1061 	union sctp_addr *sa_addr = NULL;
1062 	void *addr_buf;
1063 	unsigned short port;
1064 	unsigned int f_flags = 0;
1065 
1066 	sp = sctp_sk(sk);
1067 	ep = sp->ep;
1068 
1069 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1070 	 * state - UDP-style peeled off socket or a TCP-style socket that
1071 	 * is already connected.
1072 	 * It cannot be done even on a TCP-style listening socket.
1073 	 */
1074 	if (sctp_sstate(sk, ESTABLISHED) ||
1075 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076 		err = -EISCONN;
1077 		goto out_free;
1078 	}
1079 
1080 	/* Walk through the addrs buffer and count the number of addresses. */
1081 	addr_buf = kaddrs;
1082 	while (walk_size < addrs_size) {
1083 		struct sctp_af *af;
1084 
1085 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1086 			err = -EINVAL;
1087 			goto out_free;
1088 		}
1089 
1090 		sa_addr = addr_buf;
1091 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1092 
1093 		/* If the address family is not supported or if this address
1094 		 * causes the address buffer to overflow return EINVAL.
1095 		 */
1096 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1097 			err = -EINVAL;
1098 			goto out_free;
1099 		}
1100 
1101 		port = ntohs(sa_addr->v4.sin_port);
1102 
1103 		/* Save current address so we can work with it */
1104 		memcpy(&to, sa_addr, af->sockaddr_len);
1105 
1106 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1107 		if (err)
1108 			goto out_free;
1109 
1110 		/* Make sure the destination port is correctly set
1111 		 * in all addresses.
1112 		 */
1113 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1114 			err = -EINVAL;
1115 			goto out_free;
1116 		}
1117 
1118 		/* Check if there already is a matching association on the
1119 		 * endpoint (other than the one created here).
1120 		 */
1121 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1122 		if (asoc2 && asoc2 != asoc) {
1123 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1124 				err = -EISCONN;
1125 			else
1126 				err = -EALREADY;
1127 			goto out_free;
1128 		}
1129 
1130 		/* If we could not find a matching association on the endpoint,
1131 		 * make sure that there is no peeled-off association matching
1132 		 * the peer address even on another socket.
1133 		 */
1134 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1135 			err = -EADDRNOTAVAIL;
1136 			goto out_free;
1137 		}
1138 
1139 		if (!asoc) {
1140 			/* If a bind() or sctp_bindx() is not called prior to
1141 			 * an sctp_connectx() call, the system picks an
1142 			 * ephemeral port and will choose an address set
1143 			 * equivalent to binding with a wildcard address.
1144 			 */
1145 			if (!ep->base.bind_addr.port) {
1146 				if (sctp_autobind(sk)) {
1147 					err = -EAGAIN;
1148 					goto out_free;
1149 				}
1150 			} else {
1151 				/*
1152 				 * If an unprivileged user inherits a 1-many
1153 				 * style socket with open associations on a
1154 				 * privileged port, it MAY be permitted to
1155 				 * accept new associations, but it SHOULD NOT
1156 				 * be permitted to open new associations.
1157 				 */
1158 				if (ep->base.bind_addr.port < PROT_SOCK &&
1159 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1160 					err = -EACCES;
1161 					goto out_free;
1162 				}
1163 			}
1164 
1165 			scope = sctp_scope(&to);
1166 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1167 			if (!asoc) {
1168 				err = -ENOMEM;
1169 				goto out_free;
1170 			}
1171 
1172 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1173 							      GFP_KERNEL);
1174 			if (err < 0) {
1175 				goto out_free;
1176 			}
1177 
1178 		}
1179 
1180 		/* Prime the peer's transport structures.  */
1181 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1182 						SCTP_UNKNOWN);
1183 		if (!transport) {
1184 			err = -ENOMEM;
1185 			goto out_free;
1186 		}
1187 
1188 		addrcnt++;
1189 		addr_buf += af->sockaddr_len;
1190 		walk_size += af->sockaddr_len;
1191 	}
1192 
1193 	/* In case the user of sctp_connectx() wants an association
1194 	 * id back, assign one now.
1195 	 */
1196 	if (assoc_id) {
1197 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1198 		if (err < 0)
1199 			goto out_free;
1200 	}
1201 
1202 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1203 	if (err < 0) {
1204 		goto out_free;
1205 	}
1206 
1207 	/* Initialize sk's dport and daddr for getpeername() */
1208 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1209 	sp->pf->to_sk_daddr(sa_addr, sk);
1210 	sk->sk_err = 0;
1211 
1212 	/* in-kernel sockets don't generally have a file allocated to them
1213 	 * if all they do is call sock_create_kern().
1214 	 */
1215 	if (sk->sk_socket->file)
1216 		f_flags = sk->sk_socket->file->f_flags;
1217 
1218 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1219 
1220 	err = sctp_wait_for_connect(asoc, &timeo);
1221 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1222 		*assoc_id = asoc->assoc_id;
1223 
1224 	/* Don't free association on exit. */
1225 	asoc = NULL;
1226 
1227 out_free:
1228 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1229 		 __func__, asoc, kaddrs, err);
1230 
1231 	if (asoc) {
1232 		/* sctp_primitive_ASSOCIATE may have added this association
1233 		 * To the hash table, try to unhash it, just in case, its a noop
1234 		 * if it wasn't hashed so we're safe
1235 		 */
1236 		sctp_unhash_established(asoc);
1237 		sctp_association_free(asoc);
1238 	}
1239 	return err;
1240 }
1241 
1242 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1243  *
1244  * API 8.9
1245  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1246  * 			sctp_assoc_t *asoc);
1247  *
1248  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1249  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1250  * or IPv6 addresses.
1251  *
1252  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1253  * Section 3.1.2 for this usage.
1254  *
1255  * addrs is a pointer to an array of one or more socket addresses. Each
1256  * address is contained in its appropriate structure (i.e. struct
1257  * sockaddr_in or struct sockaddr_in6) the family of the address type
1258  * must be used to distengish the address length (note that this
1259  * representation is termed a "packed array" of addresses). The caller
1260  * specifies the number of addresses in the array with addrcnt.
1261  *
1262  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1263  * the association id of the new association.  On failure, sctp_connectx()
1264  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1265  * is not touched by the kernel.
1266  *
1267  * For SCTP, the port given in each socket address must be the same, or
1268  * sctp_connectx() will fail, setting errno to EINVAL.
1269  *
1270  * An application can use sctp_connectx to initiate an association with
1271  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1272  * allows a caller to specify multiple addresses at which a peer can be
1273  * reached.  The way the SCTP stack uses the list of addresses to set up
1274  * the association is implementation dependent.  This function only
1275  * specifies that the stack will try to make use of all the addresses in
1276  * the list when needed.
1277  *
1278  * Note that the list of addresses passed in is only used for setting up
1279  * the association.  It does not necessarily equal the set of addresses
1280  * the peer uses for the resulting association.  If the caller wants to
1281  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1282  * retrieve them after the association has been set up.
1283  *
1284  * Basically do nothing but copying the addresses from user to kernel
1285  * land and invoking either sctp_connectx(). This is used for tunneling
1286  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1287  *
1288  * We don't use copy_from_user() for optimization: we first do the
1289  * sanity checks (buffer size -fast- and access check-healthy
1290  * pointer); if all of those succeed, then we can alloc the memory
1291  * (expensive operation) needed to copy the data to kernel. Then we do
1292  * the copying without checking the user space area
1293  * (__copy_from_user()).
1294  *
1295  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1296  * it.
1297  *
1298  * sk        The sk of the socket
1299  * addrs     The pointer to the addresses in user land
1300  * addrssize Size of the addrs buffer
1301  *
1302  * Returns >=0 if ok, <0 errno code on error.
1303  */
1304 static int __sctp_setsockopt_connectx(struct sock *sk,
1305 				      struct sockaddr __user *addrs,
1306 				      int addrs_size,
1307 				      sctp_assoc_t *assoc_id)
1308 {
1309 	int err = 0;
1310 	struct sockaddr *kaddrs;
1311 
1312 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1313 		 __func__, sk, addrs, addrs_size);
1314 
1315 	if (unlikely(addrs_size <= 0))
1316 		return -EINVAL;
1317 
1318 	/* Check the user passed a healthy pointer.  */
1319 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1320 		return -EFAULT;
1321 
1322 	/* Alloc space for the address array in kernel memory.  */
1323 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1324 	if (unlikely(!kaddrs))
1325 		return -ENOMEM;
1326 
1327 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1328 		err = -EFAULT;
1329 	} else {
1330 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1331 	}
1332 
1333 	kfree(kaddrs);
1334 
1335 	return err;
1336 }
1337 
1338 /*
1339  * This is an older interface.  It's kept for backward compatibility
1340  * to the option that doesn't provide association id.
1341  */
1342 static int sctp_setsockopt_connectx_old(struct sock *sk,
1343 					struct sockaddr __user *addrs,
1344 					int addrs_size)
1345 {
1346 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1347 }
1348 
1349 /*
1350  * New interface for the API.  The since the API is done with a socket
1351  * option, to make it simple we feed back the association id is as a return
1352  * indication to the call.  Error is always negative and association id is
1353  * always positive.
1354  */
1355 static int sctp_setsockopt_connectx(struct sock *sk,
1356 				    struct sockaddr __user *addrs,
1357 				    int addrs_size)
1358 {
1359 	sctp_assoc_t assoc_id = 0;
1360 	int err = 0;
1361 
1362 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1363 
1364 	if (err)
1365 		return err;
1366 	else
1367 		return assoc_id;
1368 }
1369 
1370 /*
1371  * New (hopefully final) interface for the API.
1372  * We use the sctp_getaddrs_old structure so that use-space library
1373  * can avoid any unnecessary allocations. The only different part
1374  * is that we store the actual length of the address buffer into the
1375  * addrs_num structure member. That way we can re-use the existing
1376  * code.
1377  */
1378 #ifdef CONFIG_COMPAT
1379 struct compat_sctp_getaddrs_old {
1380 	sctp_assoc_t	assoc_id;
1381 	s32		addr_num;
1382 	compat_uptr_t	addrs;		/* struct sockaddr * */
1383 };
1384 #endif
1385 
1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1387 				     char __user *optval,
1388 				     int __user *optlen)
1389 {
1390 	struct sctp_getaddrs_old param;
1391 	sctp_assoc_t assoc_id = 0;
1392 	int err = 0;
1393 
1394 #ifdef CONFIG_COMPAT
1395 	if (is_compat_task()) {
1396 		struct compat_sctp_getaddrs_old param32;
1397 
1398 		if (len < sizeof(param32))
1399 			return -EINVAL;
1400 		if (copy_from_user(&param32, optval, sizeof(param32)))
1401 			return -EFAULT;
1402 
1403 		param.assoc_id = param32.assoc_id;
1404 		param.addr_num = param32.addr_num;
1405 		param.addrs = compat_ptr(param32.addrs);
1406 	} else
1407 #endif
1408 	{
1409 		if (len < sizeof(param))
1410 			return -EINVAL;
1411 		if (copy_from_user(&param, optval, sizeof(param)))
1412 			return -EFAULT;
1413 	}
1414 
1415 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1416 					 param.addrs, param.addr_num,
1417 					 &assoc_id);
1418 	if (err == 0 || err == -EINPROGRESS) {
1419 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1420 			return -EFAULT;
1421 		if (put_user(sizeof(assoc_id), optlen))
1422 			return -EFAULT;
1423 	}
1424 
1425 	return err;
1426 }
1427 
1428 /* API 3.1.4 close() - UDP Style Syntax
1429  * Applications use close() to perform graceful shutdown (as described in
1430  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1431  * by a UDP-style socket.
1432  *
1433  * The syntax is
1434  *
1435  *   ret = close(int sd);
1436  *
1437  *   sd      - the socket descriptor of the associations to be closed.
1438  *
1439  * To gracefully shutdown a specific association represented by the
1440  * UDP-style socket, an application should use the sendmsg() call,
1441  * passing no user data, but including the appropriate flag in the
1442  * ancillary data (see Section xxxx).
1443  *
1444  * If sd in the close() call is a branched-off socket representing only
1445  * one association, the shutdown is performed on that association only.
1446  *
1447  * 4.1.6 close() - TCP Style Syntax
1448  *
1449  * Applications use close() to gracefully close down an association.
1450  *
1451  * The syntax is:
1452  *
1453  *    int close(int sd);
1454  *
1455  *      sd      - the socket descriptor of the association to be closed.
1456  *
1457  * After an application calls close() on a socket descriptor, no further
1458  * socket operations will succeed on that descriptor.
1459  *
1460  * API 7.1.4 SO_LINGER
1461  *
1462  * An application using the TCP-style socket can use this option to
1463  * perform the SCTP ABORT primitive.  The linger option structure is:
1464  *
1465  *  struct  linger {
1466  *     int     l_onoff;                // option on/off
1467  *     int     l_linger;               // linger time
1468  * };
1469  *
1470  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1471  * to 0, calling close() is the same as the ABORT primitive.  If the
1472  * value is set to a negative value, the setsockopt() call will return
1473  * an error.  If the value is set to a positive value linger_time, the
1474  * close() can be blocked for at most linger_time ms.  If the graceful
1475  * shutdown phase does not finish during this period, close() will
1476  * return but the graceful shutdown phase continues in the system.
1477  */
1478 static void sctp_close(struct sock *sk, long timeout)
1479 {
1480 	struct net *net = sock_net(sk);
1481 	struct sctp_endpoint *ep;
1482 	struct sctp_association *asoc;
1483 	struct list_head *pos, *temp;
1484 	unsigned int data_was_unread;
1485 
1486 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1487 
1488 	lock_sock(sk);
1489 	sk->sk_shutdown = SHUTDOWN_MASK;
1490 	sk->sk_state = SCTP_SS_CLOSING;
1491 
1492 	ep = sctp_sk(sk)->ep;
1493 
1494 	/* Clean up any skbs sitting on the receive queue.  */
1495 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1496 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1497 
1498 	/* Walk all associations on an endpoint.  */
1499 	list_for_each_safe(pos, temp, &ep->asocs) {
1500 		asoc = list_entry(pos, struct sctp_association, asocs);
1501 
1502 		if (sctp_style(sk, TCP)) {
1503 			/* A closed association can still be in the list if
1504 			 * it belongs to a TCP-style listening socket that is
1505 			 * not yet accepted. If so, free it. If not, send an
1506 			 * ABORT or SHUTDOWN based on the linger options.
1507 			 */
1508 			if (sctp_state(asoc, CLOSED)) {
1509 				sctp_unhash_established(asoc);
1510 				sctp_association_free(asoc);
1511 				continue;
1512 			}
1513 		}
1514 
1515 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1516 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1517 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1518 			struct sctp_chunk *chunk;
1519 
1520 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1521 			if (chunk)
1522 				sctp_primitive_ABORT(net, asoc, chunk);
1523 		} else
1524 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1525 	}
1526 
1527 	/* On a TCP-style socket, block for at most linger_time if set. */
1528 	if (sctp_style(sk, TCP) && timeout)
1529 		sctp_wait_for_close(sk, timeout);
1530 
1531 	/* This will run the backlog queue.  */
1532 	release_sock(sk);
1533 
1534 	/* Supposedly, no process has access to the socket, but
1535 	 * the net layers still may.
1536 	 */
1537 	local_bh_disable();
1538 	bh_lock_sock(sk);
1539 
1540 	/* Hold the sock, since sk_common_release() will put sock_put()
1541 	 * and we have just a little more cleanup.
1542 	 */
1543 	sock_hold(sk);
1544 	sk_common_release(sk);
1545 
1546 	bh_unlock_sock(sk);
1547 	local_bh_enable();
1548 
1549 	sock_put(sk);
1550 
1551 	SCTP_DBG_OBJCNT_DEC(sock);
1552 }
1553 
1554 /* Handle EPIPE error. */
1555 static int sctp_error(struct sock *sk, int flags, int err)
1556 {
1557 	if (err == -EPIPE)
1558 		err = sock_error(sk) ? : -EPIPE;
1559 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1560 		send_sig(SIGPIPE, current, 0);
1561 	return err;
1562 }
1563 
1564 /* API 3.1.3 sendmsg() - UDP Style Syntax
1565  *
1566  * An application uses sendmsg() and recvmsg() calls to transmit data to
1567  * and receive data from its peer.
1568  *
1569  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1570  *                  int flags);
1571  *
1572  *  socket  - the socket descriptor of the endpoint.
1573  *  message - pointer to the msghdr structure which contains a single
1574  *            user message and possibly some ancillary data.
1575  *
1576  *            See Section 5 for complete description of the data
1577  *            structures.
1578  *
1579  *  flags   - flags sent or received with the user message, see Section
1580  *            5 for complete description of the flags.
1581  *
1582  * Note:  This function could use a rewrite especially when explicit
1583  * connect support comes in.
1584  */
1585 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1586 
1587 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1588 
1589 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1590 			struct msghdr *msg, size_t msg_len)
1591 {
1592 	struct net *net = sock_net(sk);
1593 	struct sctp_sock *sp;
1594 	struct sctp_endpoint *ep;
1595 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1596 	struct sctp_transport *transport, *chunk_tp;
1597 	struct sctp_chunk *chunk;
1598 	union sctp_addr to;
1599 	struct sockaddr *msg_name = NULL;
1600 	struct sctp_sndrcvinfo default_sinfo;
1601 	struct sctp_sndrcvinfo *sinfo;
1602 	struct sctp_initmsg *sinit;
1603 	sctp_assoc_t associd = 0;
1604 	sctp_cmsgs_t cmsgs = { NULL };
1605 	sctp_scope_t scope;
1606 	bool fill_sinfo_ttl = false;
1607 	struct sctp_datamsg *datamsg;
1608 	int msg_flags = msg->msg_flags;
1609 	__u16 sinfo_flags = 0;
1610 	long timeo;
1611 	int err;
1612 
1613 	err = 0;
1614 	sp = sctp_sk(sk);
1615 	ep = sp->ep;
1616 
1617 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1618 		 msg, msg_len, ep);
1619 
1620 	/* We cannot send a message over a TCP-style listening socket. */
1621 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1622 		err = -EPIPE;
1623 		goto out_nounlock;
1624 	}
1625 
1626 	/* Parse out the SCTP CMSGs.  */
1627 	err = sctp_msghdr_parse(msg, &cmsgs);
1628 	if (err) {
1629 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1630 		goto out_nounlock;
1631 	}
1632 
1633 	/* Fetch the destination address for this packet.  This
1634 	 * address only selects the association--it is not necessarily
1635 	 * the address we will send to.
1636 	 * For a peeled-off socket, msg_name is ignored.
1637 	 */
1638 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1639 		int msg_namelen = msg->msg_namelen;
1640 
1641 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1642 				       msg_namelen);
1643 		if (err)
1644 			return err;
1645 
1646 		if (msg_namelen > sizeof(to))
1647 			msg_namelen = sizeof(to);
1648 		memcpy(&to, msg->msg_name, msg_namelen);
1649 		msg_name = msg->msg_name;
1650 	}
1651 
1652 	sinit = cmsgs.init;
1653 	if (cmsgs.sinfo != NULL) {
1654 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1655 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1656 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1657 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1658 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1659 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1660 
1661 		sinfo = &default_sinfo;
1662 		fill_sinfo_ttl = true;
1663 	} else {
1664 		sinfo = cmsgs.srinfo;
1665 	}
1666 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1667 	if (sinfo) {
1668 		sinfo_flags = sinfo->sinfo_flags;
1669 		associd = sinfo->sinfo_assoc_id;
1670 	}
1671 
1672 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1673 		 msg_len, sinfo_flags);
1674 
1675 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1676 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1677 		err = -EINVAL;
1678 		goto out_nounlock;
1679 	}
1680 
1681 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1682 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1683 	 * If SCTP_ABORT is set, the message length could be non zero with
1684 	 * the msg_iov set to the user abort reason.
1685 	 */
1686 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1687 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1688 		err = -EINVAL;
1689 		goto out_nounlock;
1690 	}
1691 
1692 	/* If SCTP_ADDR_OVER is set, there must be an address
1693 	 * specified in msg_name.
1694 	 */
1695 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1696 		err = -EINVAL;
1697 		goto out_nounlock;
1698 	}
1699 
1700 	transport = NULL;
1701 
1702 	pr_debug("%s: about to look up association\n", __func__);
1703 
1704 	lock_sock(sk);
1705 
1706 	/* If a msg_name has been specified, assume this is to be used.  */
1707 	if (msg_name) {
1708 		/* Look for a matching association on the endpoint. */
1709 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1710 		if (!asoc) {
1711 			/* If we could not find a matching association on the
1712 			 * endpoint, make sure that it is not a TCP-style
1713 			 * socket that already has an association or there is
1714 			 * no peeled-off association on another socket.
1715 			 */
1716 			if ((sctp_style(sk, TCP) &&
1717 			     sctp_sstate(sk, ESTABLISHED)) ||
1718 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1719 				err = -EADDRNOTAVAIL;
1720 				goto out_unlock;
1721 			}
1722 		}
1723 	} else {
1724 		asoc = sctp_id2assoc(sk, associd);
1725 		if (!asoc) {
1726 			err = -EPIPE;
1727 			goto out_unlock;
1728 		}
1729 	}
1730 
1731 	if (asoc) {
1732 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1733 
1734 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1735 		 * socket that has an association in CLOSED state. This can
1736 		 * happen when an accepted socket has an association that is
1737 		 * already CLOSED.
1738 		 */
1739 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1740 			err = -EPIPE;
1741 			goto out_unlock;
1742 		}
1743 
1744 		if (sinfo_flags & SCTP_EOF) {
1745 			pr_debug("%s: shutting down association:%p\n",
1746 				 __func__, asoc);
1747 
1748 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1749 			err = 0;
1750 			goto out_unlock;
1751 		}
1752 		if (sinfo_flags & SCTP_ABORT) {
1753 
1754 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1755 			if (!chunk) {
1756 				err = -ENOMEM;
1757 				goto out_unlock;
1758 			}
1759 
1760 			pr_debug("%s: aborting association:%p\n",
1761 				 __func__, asoc);
1762 
1763 			sctp_primitive_ABORT(net, asoc, chunk);
1764 			err = 0;
1765 			goto out_unlock;
1766 		}
1767 	}
1768 
1769 	/* Do we need to create the association?  */
1770 	if (!asoc) {
1771 		pr_debug("%s: there is no association yet\n", __func__);
1772 
1773 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1774 			err = -EINVAL;
1775 			goto out_unlock;
1776 		}
1777 
1778 		/* Check for invalid stream against the stream counts,
1779 		 * either the default or the user specified stream counts.
1780 		 */
1781 		if (sinfo) {
1782 			if (!sinit || !sinit->sinit_num_ostreams) {
1783 				/* Check against the defaults. */
1784 				if (sinfo->sinfo_stream >=
1785 				    sp->initmsg.sinit_num_ostreams) {
1786 					err = -EINVAL;
1787 					goto out_unlock;
1788 				}
1789 			} else {
1790 				/* Check against the requested.  */
1791 				if (sinfo->sinfo_stream >=
1792 				    sinit->sinit_num_ostreams) {
1793 					err = -EINVAL;
1794 					goto out_unlock;
1795 				}
1796 			}
1797 		}
1798 
1799 		/*
1800 		 * API 3.1.2 bind() - UDP Style Syntax
1801 		 * If a bind() or sctp_bindx() is not called prior to a
1802 		 * sendmsg() call that initiates a new association, the
1803 		 * system picks an ephemeral port and will choose an address
1804 		 * set equivalent to binding with a wildcard address.
1805 		 */
1806 		if (!ep->base.bind_addr.port) {
1807 			if (sctp_autobind(sk)) {
1808 				err = -EAGAIN;
1809 				goto out_unlock;
1810 			}
1811 		} else {
1812 			/*
1813 			 * If an unprivileged user inherits a one-to-many
1814 			 * style socket with open associations on a privileged
1815 			 * port, it MAY be permitted to accept new associations,
1816 			 * but it SHOULD NOT be permitted to open new
1817 			 * associations.
1818 			 */
1819 			if (ep->base.bind_addr.port < PROT_SOCK &&
1820 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1821 				err = -EACCES;
1822 				goto out_unlock;
1823 			}
1824 		}
1825 
1826 		scope = sctp_scope(&to);
1827 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1828 		if (!new_asoc) {
1829 			err = -ENOMEM;
1830 			goto out_unlock;
1831 		}
1832 		asoc = new_asoc;
1833 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1834 		if (err < 0) {
1835 			err = -ENOMEM;
1836 			goto out_free;
1837 		}
1838 
1839 		/* If the SCTP_INIT ancillary data is specified, set all
1840 		 * the association init values accordingly.
1841 		 */
1842 		if (sinit) {
1843 			if (sinit->sinit_num_ostreams) {
1844 				asoc->c.sinit_num_ostreams =
1845 					sinit->sinit_num_ostreams;
1846 			}
1847 			if (sinit->sinit_max_instreams) {
1848 				asoc->c.sinit_max_instreams =
1849 					sinit->sinit_max_instreams;
1850 			}
1851 			if (sinit->sinit_max_attempts) {
1852 				asoc->max_init_attempts
1853 					= sinit->sinit_max_attempts;
1854 			}
1855 			if (sinit->sinit_max_init_timeo) {
1856 				asoc->max_init_timeo =
1857 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1858 			}
1859 		}
1860 
1861 		/* Prime the peer's transport structures.  */
1862 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1863 		if (!transport) {
1864 			err = -ENOMEM;
1865 			goto out_free;
1866 		}
1867 	}
1868 
1869 	/* ASSERT: we have a valid association at this point.  */
1870 	pr_debug("%s: we have a valid association\n", __func__);
1871 
1872 	if (!sinfo) {
1873 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1874 		 * one with some defaults.
1875 		 */
1876 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1877 		default_sinfo.sinfo_stream = asoc->default_stream;
1878 		default_sinfo.sinfo_flags = asoc->default_flags;
1879 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1880 		default_sinfo.sinfo_context = asoc->default_context;
1881 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1882 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1883 
1884 		sinfo = &default_sinfo;
1885 	} else if (fill_sinfo_ttl) {
1886 		/* In case SNDINFO was specified, we still need to fill
1887 		 * it with a default ttl from the assoc here.
1888 		 */
1889 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1890 	}
1891 
1892 	/* API 7.1.7, the sndbuf size per association bounds the
1893 	 * maximum size of data that can be sent in a single send call.
1894 	 */
1895 	if (msg_len > sk->sk_sndbuf) {
1896 		err = -EMSGSIZE;
1897 		goto out_free;
1898 	}
1899 
1900 	if (asoc->pmtu_pending)
1901 		sctp_assoc_pending_pmtu(sk, asoc);
1902 
1903 	/* If fragmentation is disabled and the message length exceeds the
1904 	 * association fragmentation point, return EMSGSIZE.  The I-D
1905 	 * does not specify what this error is, but this looks like
1906 	 * a great fit.
1907 	 */
1908 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1909 		err = -EMSGSIZE;
1910 		goto out_free;
1911 	}
1912 
1913 	/* Check for invalid stream. */
1914 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1915 		err = -EINVAL;
1916 		goto out_free;
1917 	}
1918 
1919 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1920 	if (!sctp_wspace(asoc)) {
1921 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1922 		if (err)
1923 			goto out_free;
1924 	}
1925 
1926 	/* If an address is passed with the sendto/sendmsg call, it is used
1927 	 * to override the primary destination address in the TCP model, or
1928 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1929 	 */
1930 	if ((sctp_style(sk, TCP) && msg_name) ||
1931 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1932 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1933 		if (!chunk_tp) {
1934 			err = -EINVAL;
1935 			goto out_free;
1936 		}
1937 	} else
1938 		chunk_tp = NULL;
1939 
1940 	/* Auto-connect, if we aren't connected already. */
1941 	if (sctp_state(asoc, CLOSED)) {
1942 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1943 		if (err < 0)
1944 			goto out_free;
1945 
1946 		pr_debug("%s: we associated primitively\n", __func__);
1947 	}
1948 
1949 	/* Break the message into multiple chunks of maximum size. */
1950 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1951 	if (IS_ERR(datamsg)) {
1952 		err = PTR_ERR(datamsg);
1953 		goto out_free;
1954 	}
1955 
1956 	/* Now send the (possibly) fragmented message. */
1957 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1958 		sctp_chunk_hold(chunk);
1959 
1960 		/* Do accounting for the write space.  */
1961 		sctp_set_owner_w(chunk);
1962 
1963 		chunk->transport = chunk_tp;
1964 	}
1965 
1966 	/* Send it to the lower layers.  Note:  all chunks
1967 	 * must either fail or succeed.   The lower layer
1968 	 * works that way today.  Keep it that way or this
1969 	 * breaks.
1970 	 */
1971 	err = sctp_primitive_SEND(net, asoc, datamsg);
1972 	/* Did the lower layer accept the chunk? */
1973 	if (err) {
1974 		sctp_datamsg_free(datamsg);
1975 		goto out_free;
1976 	}
1977 
1978 	pr_debug("%s: we sent primitively\n", __func__);
1979 
1980 	sctp_datamsg_put(datamsg);
1981 	err = msg_len;
1982 
1983 	/* If we are already past ASSOCIATE, the lower
1984 	 * layers are responsible for association cleanup.
1985 	 */
1986 	goto out_unlock;
1987 
1988 out_free:
1989 	if (new_asoc) {
1990 		sctp_unhash_established(asoc);
1991 		sctp_association_free(asoc);
1992 	}
1993 out_unlock:
1994 	release_sock(sk);
1995 
1996 out_nounlock:
1997 	return sctp_error(sk, msg_flags, err);
1998 
1999 #if 0
2000 do_sock_err:
2001 	if (msg_len)
2002 		err = msg_len;
2003 	else
2004 		err = sock_error(sk);
2005 	goto out;
2006 
2007 do_interrupted:
2008 	if (msg_len)
2009 		err = msg_len;
2010 	goto out;
2011 #endif /* 0 */
2012 }
2013 
2014 /* This is an extended version of skb_pull() that removes the data from the
2015  * start of a skb even when data is spread across the list of skb's in the
2016  * frag_list. len specifies the total amount of data that needs to be removed.
2017  * when 'len' bytes could be removed from the skb, it returns 0.
2018  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2019  * could not be removed.
2020  */
2021 static int sctp_skb_pull(struct sk_buff *skb, int len)
2022 {
2023 	struct sk_buff *list;
2024 	int skb_len = skb_headlen(skb);
2025 	int rlen;
2026 
2027 	if (len <= skb_len) {
2028 		__skb_pull(skb, len);
2029 		return 0;
2030 	}
2031 	len -= skb_len;
2032 	__skb_pull(skb, skb_len);
2033 
2034 	skb_walk_frags(skb, list) {
2035 		rlen = sctp_skb_pull(list, len);
2036 		skb->len -= (len-rlen);
2037 		skb->data_len -= (len-rlen);
2038 
2039 		if (!rlen)
2040 			return 0;
2041 
2042 		len = rlen;
2043 	}
2044 
2045 	return len;
2046 }
2047 
2048 /* API 3.1.3  recvmsg() - UDP Style Syntax
2049  *
2050  *  ssize_t recvmsg(int socket, struct msghdr *message,
2051  *                    int flags);
2052  *
2053  *  socket  - the socket descriptor of the endpoint.
2054  *  message - pointer to the msghdr structure which contains a single
2055  *            user message and possibly some ancillary data.
2056  *
2057  *            See Section 5 for complete description of the data
2058  *            structures.
2059  *
2060  *  flags   - flags sent or received with the user message, see Section
2061  *            5 for complete description of the flags.
2062  */
2063 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2064 			struct msghdr *msg, size_t len, int noblock,
2065 			int flags, int *addr_len)
2066 {
2067 	struct sctp_ulpevent *event = NULL;
2068 	struct sctp_sock *sp = sctp_sk(sk);
2069 	struct sk_buff *skb;
2070 	int copied;
2071 	int err = 0;
2072 	int skb_len;
2073 
2074 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2075 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2076 		 addr_len);
2077 
2078 	lock_sock(sk);
2079 
2080 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2081 		err = -ENOTCONN;
2082 		goto out;
2083 	}
2084 
2085 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2086 	if (!skb)
2087 		goto out;
2088 
2089 	/* Get the total length of the skb including any skb's in the
2090 	 * frag_list.
2091 	 */
2092 	skb_len = skb->len;
2093 
2094 	copied = skb_len;
2095 	if (copied > len)
2096 		copied = len;
2097 
2098 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2099 
2100 	event = sctp_skb2event(skb);
2101 
2102 	if (err)
2103 		goto out_free;
2104 
2105 	sock_recv_ts_and_drops(msg, sk, skb);
2106 	if (sctp_ulpevent_is_notification(event)) {
2107 		msg->msg_flags |= MSG_NOTIFICATION;
2108 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2109 	} else {
2110 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2111 	}
2112 
2113 	/* Check if we allow SCTP_NXTINFO. */
2114 	if (sp->recvnxtinfo)
2115 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2116 	/* Check if we allow SCTP_RCVINFO. */
2117 	if (sp->recvrcvinfo)
2118 		sctp_ulpevent_read_rcvinfo(event, msg);
2119 	/* Check if we allow SCTP_SNDRCVINFO. */
2120 	if (sp->subscribe.sctp_data_io_event)
2121 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2122 
2123 #if 0
2124 	/* FIXME: we should be calling IP/IPv6 layers.  */
2125 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2126 		ip_cmsg_recv(msg, skb);
2127 #endif
2128 
2129 	err = copied;
2130 
2131 	/* If skb's length exceeds the user's buffer, update the skb and
2132 	 * push it back to the receive_queue so that the next call to
2133 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2134 	 */
2135 	if (skb_len > copied) {
2136 		msg->msg_flags &= ~MSG_EOR;
2137 		if (flags & MSG_PEEK)
2138 			goto out_free;
2139 		sctp_skb_pull(skb, copied);
2140 		skb_queue_head(&sk->sk_receive_queue, skb);
2141 
2142 		/* When only partial message is copied to the user, increase
2143 		 * rwnd by that amount. If all the data in the skb is read,
2144 		 * rwnd is updated when the event is freed.
2145 		 */
2146 		if (!sctp_ulpevent_is_notification(event))
2147 			sctp_assoc_rwnd_increase(event->asoc, copied);
2148 		goto out;
2149 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2150 		   (event->msg_flags & MSG_EOR))
2151 		msg->msg_flags |= MSG_EOR;
2152 	else
2153 		msg->msg_flags &= ~MSG_EOR;
2154 
2155 out_free:
2156 	if (flags & MSG_PEEK) {
2157 		/* Release the skb reference acquired after peeking the skb in
2158 		 * sctp_skb_recv_datagram().
2159 		 */
2160 		kfree_skb(skb);
2161 	} else {
2162 		/* Free the event which includes releasing the reference to
2163 		 * the owner of the skb, freeing the skb and updating the
2164 		 * rwnd.
2165 		 */
2166 		sctp_ulpevent_free(event);
2167 	}
2168 out:
2169 	release_sock(sk);
2170 	return err;
2171 }
2172 
2173 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2174  *
2175  * This option is a on/off flag.  If enabled no SCTP message
2176  * fragmentation will be performed.  Instead if a message being sent
2177  * exceeds the current PMTU size, the message will NOT be sent and
2178  * instead a error will be indicated to the user.
2179  */
2180 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2181 					     char __user *optval,
2182 					     unsigned int optlen)
2183 {
2184 	int val;
2185 
2186 	if (optlen < sizeof(int))
2187 		return -EINVAL;
2188 
2189 	if (get_user(val, (int __user *)optval))
2190 		return -EFAULT;
2191 
2192 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2193 
2194 	return 0;
2195 }
2196 
2197 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2198 				  unsigned int optlen)
2199 {
2200 	struct sctp_association *asoc;
2201 	struct sctp_ulpevent *event;
2202 
2203 	if (optlen > sizeof(struct sctp_event_subscribe))
2204 		return -EINVAL;
2205 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2206 		return -EFAULT;
2207 
2208 	if (sctp_sk(sk)->subscribe.sctp_data_io_event)
2209 		pr_warn_ratelimited(DEPRECATED "%s (pid %d) "
2210 				    "Requested SCTP_SNDRCVINFO event.\n"
2211 				    "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n",
2212 				    current->comm, task_pid_nr(current));
2213 
2214 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2215 	 * if there is no data to be sent or retransmit, the stack will
2216 	 * immediately send up this notification.
2217 	 */
2218 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2219 				       &sctp_sk(sk)->subscribe)) {
2220 		asoc = sctp_id2assoc(sk, 0);
2221 
2222 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2223 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2224 					GFP_ATOMIC);
2225 			if (!event)
2226 				return -ENOMEM;
2227 
2228 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2229 		}
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2236  *
2237  * This socket option is applicable to the UDP-style socket only.  When
2238  * set it will cause associations that are idle for more than the
2239  * specified number of seconds to automatically close.  An association
2240  * being idle is defined an association that has NOT sent or received
2241  * user data.  The special value of '0' indicates that no automatic
2242  * close of any associations should be performed.  The option expects an
2243  * integer defining the number of seconds of idle time before an
2244  * association is closed.
2245  */
2246 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2247 				     unsigned int optlen)
2248 {
2249 	struct sctp_sock *sp = sctp_sk(sk);
2250 	struct net *net = sock_net(sk);
2251 
2252 	/* Applicable to UDP-style socket only */
2253 	if (sctp_style(sk, TCP))
2254 		return -EOPNOTSUPP;
2255 	if (optlen != sizeof(int))
2256 		return -EINVAL;
2257 	if (copy_from_user(&sp->autoclose, optval, optlen))
2258 		return -EFAULT;
2259 
2260 	if (sp->autoclose > net->sctp.max_autoclose)
2261 		sp->autoclose = net->sctp.max_autoclose;
2262 
2263 	return 0;
2264 }
2265 
2266 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2267  *
2268  * Applications can enable or disable heartbeats for any peer address of
2269  * an association, modify an address's heartbeat interval, force a
2270  * heartbeat to be sent immediately, and adjust the address's maximum
2271  * number of retransmissions sent before an address is considered
2272  * unreachable.  The following structure is used to access and modify an
2273  * address's parameters:
2274  *
2275  *  struct sctp_paddrparams {
2276  *     sctp_assoc_t            spp_assoc_id;
2277  *     struct sockaddr_storage spp_address;
2278  *     uint32_t                spp_hbinterval;
2279  *     uint16_t                spp_pathmaxrxt;
2280  *     uint32_t                spp_pathmtu;
2281  *     uint32_t                spp_sackdelay;
2282  *     uint32_t                spp_flags;
2283  * };
2284  *
2285  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2286  *                     application, and identifies the association for
2287  *                     this query.
2288  *   spp_address     - This specifies which address is of interest.
2289  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2290  *                     in milliseconds.  If a  value of zero
2291  *                     is present in this field then no changes are to
2292  *                     be made to this parameter.
2293  *   spp_pathmaxrxt  - This contains the maximum number of
2294  *                     retransmissions before this address shall be
2295  *                     considered unreachable. If a  value of zero
2296  *                     is present in this field then no changes are to
2297  *                     be made to this parameter.
2298  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2299  *                     specified here will be the "fixed" path mtu.
2300  *                     Note that if the spp_address field is empty
2301  *                     then all associations on this address will
2302  *                     have this fixed path mtu set upon them.
2303  *
2304  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2305  *                     the number of milliseconds that sacks will be delayed
2306  *                     for. This value will apply to all addresses of an
2307  *                     association if the spp_address field is empty. Note
2308  *                     also, that if delayed sack is enabled and this
2309  *                     value is set to 0, no change is made to the last
2310  *                     recorded delayed sack timer value.
2311  *
2312  *   spp_flags       - These flags are used to control various features
2313  *                     on an association. The flag field may contain
2314  *                     zero or more of the following options.
2315  *
2316  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2317  *                     specified address. Note that if the address
2318  *                     field is empty all addresses for the association
2319  *                     have heartbeats enabled upon them.
2320  *
2321  *                     SPP_HB_DISABLE - Disable heartbeats on the
2322  *                     speicifed address. Note that if the address
2323  *                     field is empty all addresses for the association
2324  *                     will have their heartbeats disabled. Note also
2325  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2326  *                     mutually exclusive, only one of these two should
2327  *                     be specified. Enabling both fields will have
2328  *                     undetermined results.
2329  *
2330  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2331  *                     to be made immediately.
2332  *
2333  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2334  *                     heartbeat delayis to be set to the value of 0
2335  *                     milliseconds.
2336  *
2337  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2338  *                     discovery upon the specified address. Note that
2339  *                     if the address feild is empty then all addresses
2340  *                     on the association are effected.
2341  *
2342  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2343  *                     discovery upon the specified address. Note that
2344  *                     if the address feild is empty then all addresses
2345  *                     on the association are effected. Not also that
2346  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2347  *                     exclusive. Enabling both will have undetermined
2348  *                     results.
2349  *
2350  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2351  *                     on delayed sack. The time specified in spp_sackdelay
2352  *                     is used to specify the sack delay for this address. Note
2353  *                     that if spp_address is empty then all addresses will
2354  *                     enable delayed sack and take on the sack delay
2355  *                     value specified in spp_sackdelay.
2356  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2357  *                     off delayed sack. If the spp_address field is blank then
2358  *                     delayed sack is disabled for the entire association. Note
2359  *                     also that this field is mutually exclusive to
2360  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2361  *                     results.
2362  */
2363 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2364 				       struct sctp_transport   *trans,
2365 				       struct sctp_association *asoc,
2366 				       struct sctp_sock        *sp,
2367 				       int                      hb_change,
2368 				       int                      pmtud_change,
2369 				       int                      sackdelay_change)
2370 {
2371 	int error;
2372 
2373 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2374 		struct net *net = sock_net(trans->asoc->base.sk);
2375 
2376 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2377 		if (error)
2378 			return error;
2379 	}
2380 
2381 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2382 	 * this field is ignored.  Note also that a value of zero indicates
2383 	 * the current setting should be left unchanged.
2384 	 */
2385 	if (params->spp_flags & SPP_HB_ENABLE) {
2386 
2387 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2388 		 * set.  This lets us use 0 value when this flag
2389 		 * is set.
2390 		 */
2391 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2392 			params->spp_hbinterval = 0;
2393 
2394 		if (params->spp_hbinterval ||
2395 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2396 			if (trans) {
2397 				trans->hbinterval =
2398 				    msecs_to_jiffies(params->spp_hbinterval);
2399 			} else if (asoc) {
2400 				asoc->hbinterval =
2401 				    msecs_to_jiffies(params->spp_hbinterval);
2402 			} else {
2403 				sp->hbinterval = params->spp_hbinterval;
2404 			}
2405 		}
2406 	}
2407 
2408 	if (hb_change) {
2409 		if (trans) {
2410 			trans->param_flags =
2411 				(trans->param_flags & ~SPP_HB) | hb_change;
2412 		} else if (asoc) {
2413 			asoc->param_flags =
2414 				(asoc->param_flags & ~SPP_HB) | hb_change;
2415 		} else {
2416 			sp->param_flags =
2417 				(sp->param_flags & ~SPP_HB) | hb_change;
2418 		}
2419 	}
2420 
2421 	/* When Path MTU discovery is disabled the value specified here will
2422 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2423 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2424 	 * effect).
2425 	 */
2426 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2427 		if (trans) {
2428 			trans->pathmtu = params->spp_pathmtu;
2429 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2430 		} else if (asoc) {
2431 			asoc->pathmtu = params->spp_pathmtu;
2432 			sctp_frag_point(asoc, params->spp_pathmtu);
2433 		} else {
2434 			sp->pathmtu = params->spp_pathmtu;
2435 		}
2436 	}
2437 
2438 	if (pmtud_change) {
2439 		if (trans) {
2440 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2441 				(params->spp_flags & SPP_PMTUD_ENABLE);
2442 			trans->param_flags =
2443 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2444 			if (update) {
2445 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2446 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2447 			}
2448 		} else if (asoc) {
2449 			asoc->param_flags =
2450 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2451 		} else {
2452 			sp->param_flags =
2453 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2454 		}
2455 	}
2456 
2457 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2458 	 * value of this field is ignored.  Note also that a value of zero
2459 	 * indicates the current setting should be left unchanged.
2460 	 */
2461 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2462 		if (trans) {
2463 			trans->sackdelay =
2464 				msecs_to_jiffies(params->spp_sackdelay);
2465 		} else if (asoc) {
2466 			asoc->sackdelay =
2467 				msecs_to_jiffies(params->spp_sackdelay);
2468 		} else {
2469 			sp->sackdelay = params->spp_sackdelay;
2470 		}
2471 	}
2472 
2473 	if (sackdelay_change) {
2474 		if (trans) {
2475 			trans->param_flags =
2476 				(trans->param_flags & ~SPP_SACKDELAY) |
2477 				sackdelay_change;
2478 		} else if (asoc) {
2479 			asoc->param_flags =
2480 				(asoc->param_flags & ~SPP_SACKDELAY) |
2481 				sackdelay_change;
2482 		} else {
2483 			sp->param_flags =
2484 				(sp->param_flags & ~SPP_SACKDELAY) |
2485 				sackdelay_change;
2486 		}
2487 	}
2488 
2489 	/* Note that a value of zero indicates the current setting should be
2490 	   left unchanged.
2491 	 */
2492 	if (params->spp_pathmaxrxt) {
2493 		if (trans) {
2494 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2495 		} else if (asoc) {
2496 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2497 		} else {
2498 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2499 		}
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2506 					    char __user *optval,
2507 					    unsigned int optlen)
2508 {
2509 	struct sctp_paddrparams  params;
2510 	struct sctp_transport   *trans = NULL;
2511 	struct sctp_association *asoc = NULL;
2512 	struct sctp_sock        *sp = sctp_sk(sk);
2513 	int error;
2514 	int hb_change, pmtud_change, sackdelay_change;
2515 
2516 	if (optlen != sizeof(struct sctp_paddrparams))
2517 		return -EINVAL;
2518 
2519 	if (copy_from_user(&params, optval, optlen))
2520 		return -EFAULT;
2521 
2522 	/* Validate flags and value parameters. */
2523 	hb_change        = params.spp_flags & SPP_HB;
2524 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2525 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2526 
2527 	if (hb_change        == SPP_HB ||
2528 	    pmtud_change     == SPP_PMTUD ||
2529 	    sackdelay_change == SPP_SACKDELAY ||
2530 	    params.spp_sackdelay > 500 ||
2531 	    (params.spp_pathmtu &&
2532 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2533 		return -EINVAL;
2534 
2535 	/* If an address other than INADDR_ANY is specified, and
2536 	 * no transport is found, then the request is invalid.
2537 	 */
2538 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2539 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2540 					       params.spp_assoc_id);
2541 		if (!trans)
2542 			return -EINVAL;
2543 	}
2544 
2545 	/* Get association, if assoc_id != 0 and the socket is a one
2546 	 * to many style socket, and an association was not found, then
2547 	 * the id was invalid.
2548 	 */
2549 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2550 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2551 		return -EINVAL;
2552 
2553 	/* Heartbeat demand can only be sent on a transport or
2554 	 * association, but not a socket.
2555 	 */
2556 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2557 		return -EINVAL;
2558 
2559 	/* Process parameters. */
2560 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2561 					    hb_change, pmtud_change,
2562 					    sackdelay_change);
2563 
2564 	if (error)
2565 		return error;
2566 
2567 	/* If changes are for association, also apply parameters to each
2568 	 * transport.
2569 	 */
2570 	if (!trans && asoc) {
2571 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2572 				transports) {
2573 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2574 						    hb_change, pmtud_change,
2575 						    sackdelay_change);
2576 		}
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2583 {
2584 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2585 }
2586 
2587 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2588 {
2589 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2590 }
2591 
2592 /*
2593  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2594  *
2595  * This option will effect the way delayed acks are performed.  This
2596  * option allows you to get or set the delayed ack time, in
2597  * milliseconds.  It also allows changing the delayed ack frequency.
2598  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2599  * the assoc_id is 0, then this sets or gets the endpoints default
2600  * values.  If the assoc_id field is non-zero, then the set or get
2601  * effects the specified association for the one to many model (the
2602  * assoc_id field is ignored by the one to one model).  Note that if
2603  * sack_delay or sack_freq are 0 when setting this option, then the
2604  * current values will remain unchanged.
2605  *
2606  * struct sctp_sack_info {
2607  *     sctp_assoc_t            sack_assoc_id;
2608  *     uint32_t                sack_delay;
2609  *     uint32_t                sack_freq;
2610  * };
2611  *
2612  * sack_assoc_id -  This parameter, indicates which association the user
2613  *    is performing an action upon.  Note that if this field's value is
2614  *    zero then the endpoints default value is changed (effecting future
2615  *    associations only).
2616  *
2617  * sack_delay -  This parameter contains the number of milliseconds that
2618  *    the user is requesting the delayed ACK timer be set to.  Note that
2619  *    this value is defined in the standard to be between 200 and 500
2620  *    milliseconds.
2621  *
2622  * sack_freq -  This parameter contains the number of packets that must
2623  *    be received before a sack is sent without waiting for the delay
2624  *    timer to expire.  The default value for this is 2, setting this
2625  *    value to 1 will disable the delayed sack algorithm.
2626  */
2627 
2628 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2629 				       char __user *optval, unsigned int optlen)
2630 {
2631 	struct sctp_sack_info    params;
2632 	struct sctp_transport   *trans = NULL;
2633 	struct sctp_association *asoc = NULL;
2634 	struct sctp_sock        *sp = sctp_sk(sk);
2635 
2636 	if (optlen == sizeof(struct sctp_sack_info)) {
2637 		if (copy_from_user(&params, optval, optlen))
2638 			return -EFAULT;
2639 
2640 		if (params.sack_delay == 0 && params.sack_freq == 0)
2641 			return 0;
2642 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2643 		pr_warn_ratelimited(DEPRECATED
2644 				    "%s (pid %d) "
2645 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2646 				    "Use struct sctp_sack_info instead\n",
2647 				    current->comm, task_pid_nr(current));
2648 		if (copy_from_user(&params, optval, optlen))
2649 			return -EFAULT;
2650 
2651 		if (params.sack_delay == 0)
2652 			params.sack_freq = 1;
2653 		else
2654 			params.sack_freq = 0;
2655 	} else
2656 		return -EINVAL;
2657 
2658 	/* Validate value parameter. */
2659 	if (params.sack_delay > 500)
2660 		return -EINVAL;
2661 
2662 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2663 	 * to many style socket, and an association was not found, then
2664 	 * the id was invalid.
2665 	 */
2666 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2667 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2668 		return -EINVAL;
2669 
2670 	if (params.sack_delay) {
2671 		if (asoc) {
2672 			asoc->sackdelay =
2673 				msecs_to_jiffies(params.sack_delay);
2674 			asoc->param_flags =
2675 				sctp_spp_sackdelay_enable(asoc->param_flags);
2676 		} else {
2677 			sp->sackdelay = params.sack_delay;
2678 			sp->param_flags =
2679 				sctp_spp_sackdelay_enable(sp->param_flags);
2680 		}
2681 	}
2682 
2683 	if (params.sack_freq == 1) {
2684 		if (asoc) {
2685 			asoc->param_flags =
2686 				sctp_spp_sackdelay_disable(asoc->param_flags);
2687 		} else {
2688 			sp->param_flags =
2689 				sctp_spp_sackdelay_disable(sp->param_flags);
2690 		}
2691 	} else if (params.sack_freq > 1) {
2692 		if (asoc) {
2693 			asoc->sackfreq = params.sack_freq;
2694 			asoc->param_flags =
2695 				sctp_spp_sackdelay_enable(asoc->param_flags);
2696 		} else {
2697 			sp->sackfreq = params.sack_freq;
2698 			sp->param_flags =
2699 				sctp_spp_sackdelay_enable(sp->param_flags);
2700 		}
2701 	}
2702 
2703 	/* If change is for association, also apply to each transport. */
2704 	if (asoc) {
2705 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2706 				transports) {
2707 			if (params.sack_delay) {
2708 				trans->sackdelay =
2709 					msecs_to_jiffies(params.sack_delay);
2710 				trans->param_flags =
2711 					sctp_spp_sackdelay_enable(trans->param_flags);
2712 			}
2713 			if (params.sack_freq == 1) {
2714 				trans->param_flags =
2715 					sctp_spp_sackdelay_disable(trans->param_flags);
2716 			} else if (params.sack_freq > 1) {
2717 				trans->sackfreq = params.sack_freq;
2718 				trans->param_flags =
2719 					sctp_spp_sackdelay_enable(trans->param_flags);
2720 			}
2721 		}
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2728  *
2729  * Applications can specify protocol parameters for the default association
2730  * initialization.  The option name argument to setsockopt() and getsockopt()
2731  * is SCTP_INITMSG.
2732  *
2733  * Setting initialization parameters is effective only on an unconnected
2734  * socket (for UDP-style sockets only future associations are effected
2735  * by the change).  With TCP-style sockets, this option is inherited by
2736  * sockets derived from a listener socket.
2737  */
2738 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2739 {
2740 	struct sctp_initmsg sinit;
2741 	struct sctp_sock *sp = sctp_sk(sk);
2742 
2743 	if (optlen != sizeof(struct sctp_initmsg))
2744 		return -EINVAL;
2745 	if (copy_from_user(&sinit, optval, optlen))
2746 		return -EFAULT;
2747 
2748 	if (sinit.sinit_num_ostreams)
2749 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2750 	if (sinit.sinit_max_instreams)
2751 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2752 	if (sinit.sinit_max_attempts)
2753 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2754 	if (sinit.sinit_max_init_timeo)
2755 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2756 
2757 	return 0;
2758 }
2759 
2760 /*
2761  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2762  *
2763  *   Applications that wish to use the sendto() system call may wish to
2764  *   specify a default set of parameters that would normally be supplied
2765  *   through the inclusion of ancillary data.  This socket option allows
2766  *   such an application to set the default sctp_sndrcvinfo structure.
2767  *   The application that wishes to use this socket option simply passes
2768  *   in to this call the sctp_sndrcvinfo structure defined in Section
2769  *   5.2.2) The input parameters accepted by this call include
2770  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2771  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2772  *   to this call if the caller is using the UDP model.
2773  */
2774 static int sctp_setsockopt_default_send_param(struct sock *sk,
2775 					      char __user *optval,
2776 					      unsigned int optlen)
2777 {
2778 	struct sctp_sock *sp = sctp_sk(sk);
2779 	struct sctp_association *asoc;
2780 	struct sctp_sndrcvinfo info;
2781 
2782 	if (optlen != sizeof(info))
2783 		return -EINVAL;
2784 	if (copy_from_user(&info, optval, optlen))
2785 		return -EFAULT;
2786 	if (info.sinfo_flags &
2787 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2788 	      SCTP_ABORT | SCTP_EOF))
2789 		return -EINVAL;
2790 
2791 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2792 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2793 		return -EINVAL;
2794 	if (asoc) {
2795 		asoc->default_stream = info.sinfo_stream;
2796 		asoc->default_flags = info.sinfo_flags;
2797 		asoc->default_ppid = info.sinfo_ppid;
2798 		asoc->default_context = info.sinfo_context;
2799 		asoc->default_timetolive = info.sinfo_timetolive;
2800 	} else {
2801 		sp->default_stream = info.sinfo_stream;
2802 		sp->default_flags = info.sinfo_flags;
2803 		sp->default_ppid = info.sinfo_ppid;
2804 		sp->default_context = info.sinfo_context;
2805 		sp->default_timetolive = info.sinfo_timetolive;
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2812  * (SCTP_DEFAULT_SNDINFO)
2813  */
2814 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2815 					   char __user *optval,
2816 					   unsigned int optlen)
2817 {
2818 	struct sctp_sock *sp = sctp_sk(sk);
2819 	struct sctp_association *asoc;
2820 	struct sctp_sndinfo info;
2821 
2822 	if (optlen != sizeof(info))
2823 		return -EINVAL;
2824 	if (copy_from_user(&info, optval, optlen))
2825 		return -EFAULT;
2826 	if (info.snd_flags &
2827 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2828 	      SCTP_ABORT | SCTP_EOF))
2829 		return -EINVAL;
2830 
2831 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2832 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2833 		return -EINVAL;
2834 	if (asoc) {
2835 		asoc->default_stream = info.snd_sid;
2836 		asoc->default_flags = info.snd_flags;
2837 		asoc->default_ppid = info.snd_ppid;
2838 		asoc->default_context = info.snd_context;
2839 	} else {
2840 		sp->default_stream = info.snd_sid;
2841 		sp->default_flags = info.snd_flags;
2842 		sp->default_ppid = info.snd_ppid;
2843 		sp->default_context = info.snd_context;
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2850  *
2851  * Requests that the local SCTP stack use the enclosed peer address as
2852  * the association primary.  The enclosed address must be one of the
2853  * association peer's addresses.
2854  */
2855 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2856 					unsigned int optlen)
2857 {
2858 	struct sctp_prim prim;
2859 	struct sctp_transport *trans;
2860 
2861 	if (optlen != sizeof(struct sctp_prim))
2862 		return -EINVAL;
2863 
2864 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2865 		return -EFAULT;
2866 
2867 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2868 	if (!trans)
2869 		return -EINVAL;
2870 
2871 	sctp_assoc_set_primary(trans->asoc, trans);
2872 
2873 	return 0;
2874 }
2875 
2876 /*
2877  * 7.1.5 SCTP_NODELAY
2878  *
2879  * Turn on/off any Nagle-like algorithm.  This means that packets are
2880  * generally sent as soon as possible and no unnecessary delays are
2881  * introduced, at the cost of more packets in the network.  Expects an
2882  *  integer boolean flag.
2883  */
2884 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2885 				   unsigned int optlen)
2886 {
2887 	int val;
2888 
2889 	if (optlen < sizeof(int))
2890 		return -EINVAL;
2891 	if (get_user(val, (int __user *)optval))
2892 		return -EFAULT;
2893 
2894 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2895 	return 0;
2896 }
2897 
2898 /*
2899  *
2900  * 7.1.1 SCTP_RTOINFO
2901  *
2902  * The protocol parameters used to initialize and bound retransmission
2903  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2904  * and modify these parameters.
2905  * All parameters are time values, in milliseconds.  A value of 0, when
2906  * modifying the parameters, indicates that the current value should not
2907  * be changed.
2908  *
2909  */
2910 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2911 {
2912 	struct sctp_rtoinfo rtoinfo;
2913 	struct sctp_association *asoc;
2914 	unsigned long rto_min, rto_max;
2915 	struct sctp_sock *sp = sctp_sk(sk);
2916 
2917 	if (optlen != sizeof (struct sctp_rtoinfo))
2918 		return -EINVAL;
2919 
2920 	if (copy_from_user(&rtoinfo, optval, optlen))
2921 		return -EFAULT;
2922 
2923 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2924 
2925 	/* Set the values to the specific association */
2926 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2927 		return -EINVAL;
2928 
2929 	rto_max = rtoinfo.srto_max;
2930 	rto_min = rtoinfo.srto_min;
2931 
2932 	if (rto_max)
2933 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2934 	else
2935 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2936 
2937 	if (rto_min)
2938 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2939 	else
2940 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2941 
2942 	if (rto_min > rto_max)
2943 		return -EINVAL;
2944 
2945 	if (asoc) {
2946 		if (rtoinfo.srto_initial != 0)
2947 			asoc->rto_initial =
2948 				msecs_to_jiffies(rtoinfo.srto_initial);
2949 		asoc->rto_max = rto_max;
2950 		asoc->rto_min = rto_min;
2951 	} else {
2952 		/* If there is no association or the association-id = 0
2953 		 * set the values to the endpoint.
2954 		 */
2955 		if (rtoinfo.srto_initial != 0)
2956 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2957 		sp->rtoinfo.srto_max = rto_max;
2958 		sp->rtoinfo.srto_min = rto_min;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 /*
2965  *
2966  * 7.1.2 SCTP_ASSOCINFO
2967  *
2968  * This option is used to tune the maximum retransmission attempts
2969  * of the association.
2970  * Returns an error if the new association retransmission value is
2971  * greater than the sum of the retransmission value  of the peer.
2972  * See [SCTP] for more information.
2973  *
2974  */
2975 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2976 {
2977 
2978 	struct sctp_assocparams assocparams;
2979 	struct sctp_association *asoc;
2980 
2981 	if (optlen != sizeof(struct sctp_assocparams))
2982 		return -EINVAL;
2983 	if (copy_from_user(&assocparams, optval, optlen))
2984 		return -EFAULT;
2985 
2986 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2987 
2988 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2989 		return -EINVAL;
2990 
2991 	/* Set the values to the specific association */
2992 	if (asoc) {
2993 		if (assocparams.sasoc_asocmaxrxt != 0) {
2994 			__u32 path_sum = 0;
2995 			int   paths = 0;
2996 			struct sctp_transport *peer_addr;
2997 
2998 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2999 					transports) {
3000 				path_sum += peer_addr->pathmaxrxt;
3001 				paths++;
3002 			}
3003 
3004 			/* Only validate asocmaxrxt if we have more than
3005 			 * one path/transport.  We do this because path
3006 			 * retransmissions are only counted when we have more
3007 			 * then one path.
3008 			 */
3009 			if (paths > 1 &&
3010 			    assocparams.sasoc_asocmaxrxt > path_sum)
3011 				return -EINVAL;
3012 
3013 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3014 		}
3015 
3016 		if (assocparams.sasoc_cookie_life != 0)
3017 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3018 	} else {
3019 		/* Set the values to the endpoint */
3020 		struct sctp_sock *sp = sctp_sk(sk);
3021 
3022 		if (assocparams.sasoc_asocmaxrxt != 0)
3023 			sp->assocparams.sasoc_asocmaxrxt =
3024 						assocparams.sasoc_asocmaxrxt;
3025 		if (assocparams.sasoc_cookie_life != 0)
3026 			sp->assocparams.sasoc_cookie_life =
3027 						assocparams.sasoc_cookie_life;
3028 	}
3029 	return 0;
3030 }
3031 
3032 /*
3033  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3034  *
3035  * This socket option is a boolean flag which turns on or off mapped V4
3036  * addresses.  If this option is turned on and the socket is type
3037  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3038  * If this option is turned off, then no mapping will be done of V4
3039  * addresses and a user will receive both PF_INET6 and PF_INET type
3040  * addresses on the socket.
3041  */
3042 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3043 {
3044 	int val;
3045 	struct sctp_sock *sp = sctp_sk(sk);
3046 
3047 	if (optlen < sizeof(int))
3048 		return -EINVAL;
3049 	if (get_user(val, (int __user *)optval))
3050 		return -EFAULT;
3051 	if (val)
3052 		sp->v4mapped = 1;
3053 	else
3054 		sp->v4mapped = 0;
3055 
3056 	return 0;
3057 }
3058 
3059 /*
3060  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3061  * This option will get or set the maximum size to put in any outgoing
3062  * SCTP DATA chunk.  If a message is larger than this size it will be
3063  * fragmented by SCTP into the specified size.  Note that the underlying
3064  * SCTP implementation may fragment into smaller sized chunks when the
3065  * PMTU of the underlying association is smaller than the value set by
3066  * the user.  The default value for this option is '0' which indicates
3067  * the user is NOT limiting fragmentation and only the PMTU will effect
3068  * SCTP's choice of DATA chunk size.  Note also that values set larger
3069  * than the maximum size of an IP datagram will effectively let SCTP
3070  * control fragmentation (i.e. the same as setting this option to 0).
3071  *
3072  * The following structure is used to access and modify this parameter:
3073  *
3074  * struct sctp_assoc_value {
3075  *   sctp_assoc_t assoc_id;
3076  *   uint32_t assoc_value;
3077  * };
3078  *
3079  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3080  *    For one-to-many style sockets this parameter indicates which
3081  *    association the user is performing an action upon.  Note that if
3082  *    this field's value is zero then the endpoints default value is
3083  *    changed (effecting future associations only).
3084  * assoc_value:  This parameter specifies the maximum size in bytes.
3085  */
3086 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3087 {
3088 	struct sctp_assoc_value params;
3089 	struct sctp_association *asoc;
3090 	struct sctp_sock *sp = sctp_sk(sk);
3091 	int val;
3092 
3093 	if (optlen == sizeof(int)) {
3094 		pr_warn_ratelimited(DEPRECATED
3095 				    "%s (pid %d) "
3096 				    "Use of int in maxseg socket option.\n"
3097 				    "Use struct sctp_assoc_value instead\n",
3098 				    current->comm, task_pid_nr(current));
3099 		if (copy_from_user(&val, optval, optlen))
3100 			return -EFAULT;
3101 		params.assoc_id = 0;
3102 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3103 		if (copy_from_user(&params, optval, optlen))
3104 			return -EFAULT;
3105 		val = params.assoc_value;
3106 	} else
3107 		return -EINVAL;
3108 
3109 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3110 		return -EINVAL;
3111 
3112 	asoc = sctp_id2assoc(sk, params.assoc_id);
3113 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3114 		return -EINVAL;
3115 
3116 	if (asoc) {
3117 		if (val == 0) {
3118 			val = asoc->pathmtu;
3119 			val -= sp->pf->af->net_header_len;
3120 			val -= sizeof(struct sctphdr) +
3121 					sizeof(struct sctp_data_chunk);
3122 		}
3123 		asoc->user_frag = val;
3124 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3125 	} else {
3126 		sp->user_frag = val;
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 
3133 /*
3134  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3135  *
3136  *   Requests that the peer mark the enclosed address as the association
3137  *   primary. The enclosed address must be one of the association's
3138  *   locally bound addresses. The following structure is used to make a
3139  *   set primary request:
3140  */
3141 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3142 					     unsigned int optlen)
3143 {
3144 	struct net *net = sock_net(sk);
3145 	struct sctp_sock	*sp;
3146 	struct sctp_association	*asoc = NULL;
3147 	struct sctp_setpeerprim	prim;
3148 	struct sctp_chunk	*chunk;
3149 	struct sctp_af		*af;
3150 	int 			err;
3151 
3152 	sp = sctp_sk(sk);
3153 
3154 	if (!net->sctp.addip_enable)
3155 		return -EPERM;
3156 
3157 	if (optlen != sizeof(struct sctp_setpeerprim))
3158 		return -EINVAL;
3159 
3160 	if (copy_from_user(&prim, optval, optlen))
3161 		return -EFAULT;
3162 
3163 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3164 	if (!asoc)
3165 		return -EINVAL;
3166 
3167 	if (!asoc->peer.asconf_capable)
3168 		return -EPERM;
3169 
3170 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3171 		return -EPERM;
3172 
3173 	if (!sctp_state(asoc, ESTABLISHED))
3174 		return -ENOTCONN;
3175 
3176 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3177 	if (!af)
3178 		return -EINVAL;
3179 
3180 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3181 		return -EADDRNOTAVAIL;
3182 
3183 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3184 		return -EADDRNOTAVAIL;
3185 
3186 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3187 	chunk = sctp_make_asconf_set_prim(asoc,
3188 					  (union sctp_addr *)&prim.sspp_addr);
3189 	if (!chunk)
3190 		return -ENOMEM;
3191 
3192 	err = sctp_send_asconf(asoc, chunk);
3193 
3194 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3195 
3196 	return err;
3197 }
3198 
3199 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3200 					    unsigned int optlen)
3201 {
3202 	struct sctp_setadaptation adaptation;
3203 
3204 	if (optlen != sizeof(struct sctp_setadaptation))
3205 		return -EINVAL;
3206 	if (copy_from_user(&adaptation, optval, optlen))
3207 		return -EFAULT;
3208 
3209 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3210 
3211 	return 0;
3212 }
3213 
3214 /*
3215  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3216  *
3217  * The context field in the sctp_sndrcvinfo structure is normally only
3218  * used when a failed message is retrieved holding the value that was
3219  * sent down on the actual send call.  This option allows the setting of
3220  * a default context on an association basis that will be received on
3221  * reading messages from the peer.  This is especially helpful in the
3222  * one-2-many model for an application to keep some reference to an
3223  * internal state machine that is processing messages on the
3224  * association.  Note that the setting of this value only effects
3225  * received messages from the peer and does not effect the value that is
3226  * saved with outbound messages.
3227  */
3228 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3229 				   unsigned int optlen)
3230 {
3231 	struct sctp_assoc_value params;
3232 	struct sctp_sock *sp;
3233 	struct sctp_association *asoc;
3234 
3235 	if (optlen != sizeof(struct sctp_assoc_value))
3236 		return -EINVAL;
3237 	if (copy_from_user(&params, optval, optlen))
3238 		return -EFAULT;
3239 
3240 	sp = sctp_sk(sk);
3241 
3242 	if (params.assoc_id != 0) {
3243 		asoc = sctp_id2assoc(sk, params.assoc_id);
3244 		if (!asoc)
3245 			return -EINVAL;
3246 		asoc->default_rcv_context = params.assoc_value;
3247 	} else {
3248 		sp->default_rcv_context = params.assoc_value;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 /*
3255  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3256  *
3257  * This options will at a minimum specify if the implementation is doing
3258  * fragmented interleave.  Fragmented interleave, for a one to many
3259  * socket, is when subsequent calls to receive a message may return
3260  * parts of messages from different associations.  Some implementations
3261  * may allow you to turn this value on or off.  If so, when turned off,
3262  * no fragment interleave will occur (which will cause a head of line
3263  * blocking amongst multiple associations sharing the same one to many
3264  * socket).  When this option is turned on, then each receive call may
3265  * come from a different association (thus the user must receive data
3266  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3267  * association each receive belongs to.
3268  *
3269  * This option takes a boolean value.  A non-zero value indicates that
3270  * fragmented interleave is on.  A value of zero indicates that
3271  * fragmented interleave is off.
3272  *
3273  * Note that it is important that an implementation that allows this
3274  * option to be turned on, have it off by default.  Otherwise an unaware
3275  * application using the one to many model may become confused and act
3276  * incorrectly.
3277  */
3278 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3279 					       char __user *optval,
3280 					       unsigned int optlen)
3281 {
3282 	int val;
3283 
3284 	if (optlen != sizeof(int))
3285 		return -EINVAL;
3286 	if (get_user(val, (int __user *)optval))
3287 		return -EFAULT;
3288 
3289 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3290 
3291 	return 0;
3292 }
3293 
3294 /*
3295  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3296  *       (SCTP_PARTIAL_DELIVERY_POINT)
3297  *
3298  * This option will set or get the SCTP partial delivery point.  This
3299  * point is the size of a message where the partial delivery API will be
3300  * invoked to help free up rwnd space for the peer.  Setting this to a
3301  * lower value will cause partial deliveries to happen more often.  The
3302  * calls argument is an integer that sets or gets the partial delivery
3303  * point.  Note also that the call will fail if the user attempts to set
3304  * this value larger than the socket receive buffer size.
3305  *
3306  * Note that any single message having a length smaller than or equal to
3307  * the SCTP partial delivery point will be delivered in one single read
3308  * call as long as the user provided buffer is large enough to hold the
3309  * message.
3310  */
3311 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3312 						  char __user *optval,
3313 						  unsigned int optlen)
3314 {
3315 	u32 val;
3316 
3317 	if (optlen != sizeof(u32))
3318 		return -EINVAL;
3319 	if (get_user(val, (int __user *)optval))
3320 		return -EFAULT;
3321 
3322 	/* Note: We double the receive buffer from what the user sets
3323 	 * it to be, also initial rwnd is based on rcvbuf/2.
3324 	 */
3325 	if (val > (sk->sk_rcvbuf >> 1))
3326 		return -EINVAL;
3327 
3328 	sctp_sk(sk)->pd_point = val;
3329 
3330 	return 0; /* is this the right error code? */
3331 }
3332 
3333 /*
3334  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3335  *
3336  * This option will allow a user to change the maximum burst of packets
3337  * that can be emitted by this association.  Note that the default value
3338  * is 4, and some implementations may restrict this setting so that it
3339  * can only be lowered.
3340  *
3341  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3342  * future associations inheriting the socket value.
3343  */
3344 static int sctp_setsockopt_maxburst(struct sock *sk,
3345 				    char __user *optval,
3346 				    unsigned int optlen)
3347 {
3348 	struct sctp_assoc_value params;
3349 	struct sctp_sock *sp;
3350 	struct sctp_association *asoc;
3351 	int val;
3352 	int assoc_id = 0;
3353 
3354 	if (optlen == sizeof(int)) {
3355 		pr_warn_ratelimited(DEPRECATED
3356 				    "%s (pid %d) "
3357 				    "Use of int in max_burst socket option deprecated.\n"
3358 				    "Use struct sctp_assoc_value instead\n",
3359 				    current->comm, task_pid_nr(current));
3360 		if (copy_from_user(&val, optval, optlen))
3361 			return -EFAULT;
3362 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3363 		if (copy_from_user(&params, optval, optlen))
3364 			return -EFAULT;
3365 		val = params.assoc_value;
3366 		assoc_id = params.assoc_id;
3367 	} else
3368 		return -EINVAL;
3369 
3370 	sp = sctp_sk(sk);
3371 
3372 	if (assoc_id != 0) {
3373 		asoc = sctp_id2assoc(sk, assoc_id);
3374 		if (!asoc)
3375 			return -EINVAL;
3376 		asoc->max_burst = val;
3377 	} else
3378 		sp->max_burst = val;
3379 
3380 	return 0;
3381 }
3382 
3383 /*
3384  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3385  *
3386  * This set option adds a chunk type that the user is requesting to be
3387  * received only in an authenticated way.  Changes to the list of chunks
3388  * will only effect future associations on the socket.
3389  */
3390 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3391 				      char __user *optval,
3392 				      unsigned int optlen)
3393 {
3394 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3395 	struct sctp_authchunk val;
3396 
3397 	if (!ep->auth_enable)
3398 		return -EACCES;
3399 
3400 	if (optlen != sizeof(struct sctp_authchunk))
3401 		return -EINVAL;
3402 	if (copy_from_user(&val, optval, optlen))
3403 		return -EFAULT;
3404 
3405 	switch (val.sauth_chunk) {
3406 	case SCTP_CID_INIT:
3407 	case SCTP_CID_INIT_ACK:
3408 	case SCTP_CID_SHUTDOWN_COMPLETE:
3409 	case SCTP_CID_AUTH:
3410 		return -EINVAL;
3411 	}
3412 
3413 	/* add this chunk id to the endpoint */
3414 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3415 }
3416 
3417 /*
3418  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3419  *
3420  * This option gets or sets the list of HMAC algorithms that the local
3421  * endpoint requires the peer to use.
3422  */
3423 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3424 				      char __user *optval,
3425 				      unsigned int optlen)
3426 {
3427 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3428 	struct sctp_hmacalgo *hmacs;
3429 	u32 idents;
3430 	int err;
3431 
3432 	if (!ep->auth_enable)
3433 		return -EACCES;
3434 
3435 	if (optlen < sizeof(struct sctp_hmacalgo))
3436 		return -EINVAL;
3437 
3438 	hmacs = memdup_user(optval, optlen);
3439 	if (IS_ERR(hmacs))
3440 		return PTR_ERR(hmacs);
3441 
3442 	idents = hmacs->shmac_num_idents;
3443 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3444 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3445 		err = -EINVAL;
3446 		goto out;
3447 	}
3448 
3449 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3450 out:
3451 	kfree(hmacs);
3452 	return err;
3453 }
3454 
3455 /*
3456  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3457  *
3458  * This option will set a shared secret key which is used to build an
3459  * association shared key.
3460  */
3461 static int sctp_setsockopt_auth_key(struct sock *sk,
3462 				    char __user *optval,
3463 				    unsigned int optlen)
3464 {
3465 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3466 	struct sctp_authkey *authkey;
3467 	struct sctp_association *asoc;
3468 	int ret;
3469 
3470 	if (!ep->auth_enable)
3471 		return -EACCES;
3472 
3473 	if (optlen <= sizeof(struct sctp_authkey))
3474 		return -EINVAL;
3475 
3476 	authkey = memdup_user(optval, optlen);
3477 	if (IS_ERR(authkey))
3478 		return PTR_ERR(authkey);
3479 
3480 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3481 		ret = -EINVAL;
3482 		goto out;
3483 	}
3484 
3485 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3486 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3487 		ret = -EINVAL;
3488 		goto out;
3489 	}
3490 
3491 	ret = sctp_auth_set_key(ep, asoc, authkey);
3492 out:
3493 	kzfree(authkey);
3494 	return ret;
3495 }
3496 
3497 /*
3498  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3499  *
3500  * This option will get or set the active shared key to be used to build
3501  * the association shared key.
3502  */
3503 static int sctp_setsockopt_active_key(struct sock *sk,
3504 				      char __user *optval,
3505 				      unsigned int optlen)
3506 {
3507 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3508 	struct sctp_authkeyid val;
3509 	struct sctp_association *asoc;
3510 
3511 	if (!ep->auth_enable)
3512 		return -EACCES;
3513 
3514 	if (optlen != sizeof(struct sctp_authkeyid))
3515 		return -EINVAL;
3516 	if (copy_from_user(&val, optval, optlen))
3517 		return -EFAULT;
3518 
3519 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3520 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3521 		return -EINVAL;
3522 
3523 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3524 }
3525 
3526 /*
3527  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3528  *
3529  * This set option will delete a shared secret key from use.
3530  */
3531 static int sctp_setsockopt_del_key(struct sock *sk,
3532 				   char __user *optval,
3533 				   unsigned int optlen)
3534 {
3535 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3536 	struct sctp_authkeyid val;
3537 	struct sctp_association *asoc;
3538 
3539 	if (!ep->auth_enable)
3540 		return -EACCES;
3541 
3542 	if (optlen != sizeof(struct sctp_authkeyid))
3543 		return -EINVAL;
3544 	if (copy_from_user(&val, optval, optlen))
3545 		return -EFAULT;
3546 
3547 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3548 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3549 		return -EINVAL;
3550 
3551 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3552 
3553 }
3554 
3555 /*
3556  * 8.1.23 SCTP_AUTO_ASCONF
3557  *
3558  * This option will enable or disable the use of the automatic generation of
3559  * ASCONF chunks to add and delete addresses to an existing association.  Note
3560  * that this option has two caveats namely: a) it only affects sockets that
3561  * are bound to all addresses available to the SCTP stack, and b) the system
3562  * administrator may have an overriding control that turns the ASCONF feature
3563  * off no matter what setting the socket option may have.
3564  * This option expects an integer boolean flag, where a non-zero value turns on
3565  * the option, and a zero value turns off the option.
3566  * Note. In this implementation, socket operation overrides default parameter
3567  * being set by sysctl as well as FreeBSD implementation
3568  */
3569 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3570 					unsigned int optlen)
3571 {
3572 	int val;
3573 	struct sctp_sock *sp = sctp_sk(sk);
3574 
3575 	if (optlen < sizeof(int))
3576 		return -EINVAL;
3577 	if (get_user(val, (int __user *)optval))
3578 		return -EFAULT;
3579 	if (!sctp_is_ep_boundall(sk) && val)
3580 		return -EINVAL;
3581 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3582 		return 0;
3583 
3584 	if (val == 0 && sp->do_auto_asconf) {
3585 		list_del(&sp->auto_asconf_list);
3586 		sp->do_auto_asconf = 0;
3587 	} else if (val && !sp->do_auto_asconf) {
3588 		list_add_tail(&sp->auto_asconf_list,
3589 		    &sock_net(sk)->sctp.auto_asconf_splist);
3590 		sp->do_auto_asconf = 1;
3591 	}
3592 	return 0;
3593 }
3594 
3595 /*
3596  * SCTP_PEER_ADDR_THLDS
3597  *
3598  * This option allows us to alter the partially failed threshold for one or all
3599  * transports in an association.  See Section 6.1 of:
3600  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3601  */
3602 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3603 					    char __user *optval,
3604 					    unsigned int optlen)
3605 {
3606 	struct sctp_paddrthlds val;
3607 	struct sctp_transport *trans;
3608 	struct sctp_association *asoc;
3609 
3610 	if (optlen < sizeof(struct sctp_paddrthlds))
3611 		return -EINVAL;
3612 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3613 			   sizeof(struct sctp_paddrthlds)))
3614 		return -EFAULT;
3615 
3616 
3617 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3618 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3619 		if (!asoc)
3620 			return -ENOENT;
3621 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3622 				    transports) {
3623 			if (val.spt_pathmaxrxt)
3624 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3625 			trans->pf_retrans = val.spt_pathpfthld;
3626 		}
3627 
3628 		if (val.spt_pathmaxrxt)
3629 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3630 		asoc->pf_retrans = val.spt_pathpfthld;
3631 	} else {
3632 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3633 					       val.spt_assoc_id);
3634 		if (!trans)
3635 			return -ENOENT;
3636 
3637 		if (val.spt_pathmaxrxt)
3638 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3639 		trans->pf_retrans = val.spt_pathpfthld;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3646 				       char __user *optval,
3647 				       unsigned int optlen)
3648 {
3649 	int val;
3650 
3651 	if (optlen < sizeof(int))
3652 		return -EINVAL;
3653 	if (get_user(val, (int __user *) optval))
3654 		return -EFAULT;
3655 
3656 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3657 
3658 	return 0;
3659 }
3660 
3661 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3662 				       char __user *optval,
3663 				       unsigned int optlen)
3664 {
3665 	int val;
3666 
3667 	if (optlen < sizeof(int))
3668 		return -EINVAL;
3669 	if (get_user(val, (int __user *) optval))
3670 		return -EFAULT;
3671 
3672 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3673 
3674 	return 0;
3675 }
3676 
3677 /* API 6.2 setsockopt(), getsockopt()
3678  *
3679  * Applications use setsockopt() and getsockopt() to set or retrieve
3680  * socket options.  Socket options are used to change the default
3681  * behavior of sockets calls.  They are described in Section 7.
3682  *
3683  * The syntax is:
3684  *
3685  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3686  *                    int __user *optlen);
3687  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3688  *                    int optlen);
3689  *
3690  *   sd      - the socket descript.
3691  *   level   - set to IPPROTO_SCTP for all SCTP options.
3692  *   optname - the option name.
3693  *   optval  - the buffer to store the value of the option.
3694  *   optlen  - the size of the buffer.
3695  */
3696 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3697 			   char __user *optval, unsigned int optlen)
3698 {
3699 	int retval = 0;
3700 
3701 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3702 
3703 	/* I can hardly begin to describe how wrong this is.  This is
3704 	 * so broken as to be worse than useless.  The API draft
3705 	 * REALLY is NOT helpful here...  I am not convinced that the
3706 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3707 	 * are at all well-founded.
3708 	 */
3709 	if (level != SOL_SCTP) {
3710 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3711 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3712 		goto out_nounlock;
3713 	}
3714 
3715 	lock_sock(sk);
3716 
3717 	switch (optname) {
3718 	case SCTP_SOCKOPT_BINDX_ADD:
3719 		/* 'optlen' is the size of the addresses buffer. */
3720 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3721 					       optlen, SCTP_BINDX_ADD_ADDR);
3722 		break;
3723 
3724 	case SCTP_SOCKOPT_BINDX_REM:
3725 		/* 'optlen' is the size of the addresses buffer. */
3726 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3727 					       optlen, SCTP_BINDX_REM_ADDR);
3728 		break;
3729 
3730 	case SCTP_SOCKOPT_CONNECTX_OLD:
3731 		/* 'optlen' is the size of the addresses buffer. */
3732 		retval = sctp_setsockopt_connectx_old(sk,
3733 					    (struct sockaddr __user *)optval,
3734 					    optlen);
3735 		break;
3736 
3737 	case SCTP_SOCKOPT_CONNECTX:
3738 		/* 'optlen' is the size of the addresses buffer. */
3739 		retval = sctp_setsockopt_connectx(sk,
3740 					    (struct sockaddr __user *)optval,
3741 					    optlen);
3742 		break;
3743 
3744 	case SCTP_DISABLE_FRAGMENTS:
3745 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3746 		break;
3747 
3748 	case SCTP_EVENTS:
3749 		retval = sctp_setsockopt_events(sk, optval, optlen);
3750 		break;
3751 
3752 	case SCTP_AUTOCLOSE:
3753 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3754 		break;
3755 
3756 	case SCTP_PEER_ADDR_PARAMS:
3757 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3758 		break;
3759 
3760 	case SCTP_DELAYED_SACK:
3761 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3762 		break;
3763 	case SCTP_PARTIAL_DELIVERY_POINT:
3764 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3765 		break;
3766 
3767 	case SCTP_INITMSG:
3768 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3769 		break;
3770 	case SCTP_DEFAULT_SEND_PARAM:
3771 		retval = sctp_setsockopt_default_send_param(sk, optval,
3772 							    optlen);
3773 		break;
3774 	case SCTP_DEFAULT_SNDINFO:
3775 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3776 		break;
3777 	case SCTP_PRIMARY_ADDR:
3778 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3779 		break;
3780 	case SCTP_SET_PEER_PRIMARY_ADDR:
3781 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3782 		break;
3783 	case SCTP_NODELAY:
3784 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3785 		break;
3786 	case SCTP_RTOINFO:
3787 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3788 		break;
3789 	case SCTP_ASSOCINFO:
3790 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3791 		break;
3792 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3793 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3794 		break;
3795 	case SCTP_MAXSEG:
3796 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3797 		break;
3798 	case SCTP_ADAPTATION_LAYER:
3799 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3800 		break;
3801 	case SCTP_CONTEXT:
3802 		retval = sctp_setsockopt_context(sk, optval, optlen);
3803 		break;
3804 	case SCTP_FRAGMENT_INTERLEAVE:
3805 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3806 		break;
3807 	case SCTP_MAX_BURST:
3808 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3809 		break;
3810 	case SCTP_AUTH_CHUNK:
3811 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3812 		break;
3813 	case SCTP_HMAC_IDENT:
3814 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3815 		break;
3816 	case SCTP_AUTH_KEY:
3817 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3818 		break;
3819 	case SCTP_AUTH_ACTIVE_KEY:
3820 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3821 		break;
3822 	case SCTP_AUTH_DELETE_KEY:
3823 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3824 		break;
3825 	case SCTP_AUTO_ASCONF:
3826 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3827 		break;
3828 	case SCTP_PEER_ADDR_THLDS:
3829 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3830 		break;
3831 	case SCTP_RECVRCVINFO:
3832 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3833 		break;
3834 	case SCTP_RECVNXTINFO:
3835 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3836 		break;
3837 	default:
3838 		retval = -ENOPROTOOPT;
3839 		break;
3840 	}
3841 
3842 	release_sock(sk);
3843 
3844 out_nounlock:
3845 	return retval;
3846 }
3847 
3848 /* API 3.1.6 connect() - UDP Style Syntax
3849  *
3850  * An application may use the connect() call in the UDP model to initiate an
3851  * association without sending data.
3852  *
3853  * The syntax is:
3854  *
3855  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3856  *
3857  * sd: the socket descriptor to have a new association added to.
3858  *
3859  * nam: the address structure (either struct sockaddr_in or struct
3860  *    sockaddr_in6 defined in RFC2553 [7]).
3861  *
3862  * len: the size of the address.
3863  */
3864 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3865 			int addr_len)
3866 {
3867 	int err = 0;
3868 	struct sctp_af *af;
3869 
3870 	lock_sock(sk);
3871 
3872 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3873 		 addr, addr_len);
3874 
3875 	/* Validate addr_len before calling common connect/connectx routine. */
3876 	af = sctp_get_af_specific(addr->sa_family);
3877 	if (!af || addr_len < af->sockaddr_len) {
3878 		err = -EINVAL;
3879 	} else {
3880 		/* Pass correct addr len to common routine (so it knows there
3881 		 * is only one address being passed.
3882 		 */
3883 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3884 	}
3885 
3886 	release_sock(sk);
3887 	return err;
3888 }
3889 
3890 /* FIXME: Write comments. */
3891 static int sctp_disconnect(struct sock *sk, int flags)
3892 {
3893 	return -EOPNOTSUPP; /* STUB */
3894 }
3895 
3896 /* 4.1.4 accept() - TCP Style Syntax
3897  *
3898  * Applications use accept() call to remove an established SCTP
3899  * association from the accept queue of the endpoint.  A new socket
3900  * descriptor will be returned from accept() to represent the newly
3901  * formed association.
3902  */
3903 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3904 {
3905 	struct sctp_sock *sp;
3906 	struct sctp_endpoint *ep;
3907 	struct sock *newsk = NULL;
3908 	struct sctp_association *asoc;
3909 	long timeo;
3910 	int error = 0;
3911 
3912 	lock_sock(sk);
3913 
3914 	sp = sctp_sk(sk);
3915 	ep = sp->ep;
3916 
3917 	if (!sctp_style(sk, TCP)) {
3918 		error = -EOPNOTSUPP;
3919 		goto out;
3920 	}
3921 
3922 	if (!sctp_sstate(sk, LISTENING)) {
3923 		error = -EINVAL;
3924 		goto out;
3925 	}
3926 
3927 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3928 
3929 	error = sctp_wait_for_accept(sk, timeo);
3930 	if (error)
3931 		goto out;
3932 
3933 	/* We treat the list of associations on the endpoint as the accept
3934 	 * queue and pick the first association on the list.
3935 	 */
3936 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3937 
3938 	newsk = sp->pf->create_accept_sk(sk, asoc);
3939 	if (!newsk) {
3940 		error = -ENOMEM;
3941 		goto out;
3942 	}
3943 
3944 	/* Populate the fields of the newsk from the oldsk and migrate the
3945 	 * asoc to the newsk.
3946 	 */
3947 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3948 
3949 out:
3950 	release_sock(sk);
3951 	*err = error;
3952 	return newsk;
3953 }
3954 
3955 /* The SCTP ioctl handler. */
3956 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3957 {
3958 	int rc = -ENOTCONN;
3959 
3960 	lock_sock(sk);
3961 
3962 	/*
3963 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3964 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3965 	 */
3966 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3967 		goto out;
3968 
3969 	switch (cmd) {
3970 	case SIOCINQ: {
3971 		struct sk_buff *skb;
3972 		unsigned int amount = 0;
3973 
3974 		skb = skb_peek(&sk->sk_receive_queue);
3975 		if (skb != NULL) {
3976 			/*
3977 			 * We will only return the amount of this packet since
3978 			 * that is all that will be read.
3979 			 */
3980 			amount = skb->len;
3981 		}
3982 		rc = put_user(amount, (int __user *)arg);
3983 		break;
3984 	}
3985 	default:
3986 		rc = -ENOIOCTLCMD;
3987 		break;
3988 	}
3989 out:
3990 	release_sock(sk);
3991 	return rc;
3992 }
3993 
3994 /* This is the function which gets called during socket creation to
3995  * initialized the SCTP-specific portion of the sock.
3996  * The sock structure should already be zero-filled memory.
3997  */
3998 static int sctp_init_sock(struct sock *sk)
3999 {
4000 	struct net *net = sock_net(sk);
4001 	struct sctp_sock *sp;
4002 
4003 	pr_debug("%s: sk:%p\n", __func__, sk);
4004 
4005 	sp = sctp_sk(sk);
4006 
4007 	/* Initialize the SCTP per socket area.  */
4008 	switch (sk->sk_type) {
4009 	case SOCK_SEQPACKET:
4010 		sp->type = SCTP_SOCKET_UDP;
4011 		break;
4012 	case SOCK_STREAM:
4013 		sp->type = SCTP_SOCKET_TCP;
4014 		break;
4015 	default:
4016 		return -ESOCKTNOSUPPORT;
4017 	}
4018 
4019 	/* Initialize default send parameters. These parameters can be
4020 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4021 	 */
4022 	sp->default_stream = 0;
4023 	sp->default_ppid = 0;
4024 	sp->default_flags = 0;
4025 	sp->default_context = 0;
4026 	sp->default_timetolive = 0;
4027 
4028 	sp->default_rcv_context = 0;
4029 	sp->max_burst = net->sctp.max_burst;
4030 
4031 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4032 
4033 	/* Initialize default setup parameters. These parameters
4034 	 * can be modified with the SCTP_INITMSG socket option or
4035 	 * overridden by the SCTP_INIT CMSG.
4036 	 */
4037 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4038 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4039 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4040 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4041 
4042 	/* Initialize default RTO related parameters.  These parameters can
4043 	 * be modified for with the SCTP_RTOINFO socket option.
4044 	 */
4045 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4046 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4047 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4048 
4049 	/* Initialize default association related parameters. These parameters
4050 	 * can be modified with the SCTP_ASSOCINFO socket option.
4051 	 */
4052 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4053 	sp->assocparams.sasoc_number_peer_destinations = 0;
4054 	sp->assocparams.sasoc_peer_rwnd = 0;
4055 	sp->assocparams.sasoc_local_rwnd = 0;
4056 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4057 
4058 	/* Initialize default event subscriptions. By default, all the
4059 	 * options are off.
4060 	 */
4061 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4062 
4063 	/* Default Peer Address Parameters.  These defaults can
4064 	 * be modified via SCTP_PEER_ADDR_PARAMS
4065 	 */
4066 	sp->hbinterval  = net->sctp.hb_interval;
4067 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4068 	sp->pathmtu     = 0; /* allow default discovery */
4069 	sp->sackdelay   = net->sctp.sack_timeout;
4070 	sp->sackfreq	= 2;
4071 	sp->param_flags = SPP_HB_ENABLE |
4072 			  SPP_PMTUD_ENABLE |
4073 			  SPP_SACKDELAY_ENABLE;
4074 
4075 	/* If enabled no SCTP message fragmentation will be performed.
4076 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4077 	 */
4078 	sp->disable_fragments = 0;
4079 
4080 	/* Enable Nagle algorithm by default.  */
4081 	sp->nodelay           = 0;
4082 
4083 	sp->recvrcvinfo = 0;
4084 	sp->recvnxtinfo = 0;
4085 
4086 	/* Enable by default. */
4087 	sp->v4mapped          = 1;
4088 
4089 	/* Auto-close idle associations after the configured
4090 	 * number of seconds.  A value of 0 disables this
4091 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4092 	 * for UDP-style sockets only.
4093 	 */
4094 	sp->autoclose         = 0;
4095 
4096 	/* User specified fragmentation limit. */
4097 	sp->user_frag         = 0;
4098 
4099 	sp->adaptation_ind = 0;
4100 
4101 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4102 
4103 	/* Control variables for partial data delivery. */
4104 	atomic_set(&sp->pd_mode, 0);
4105 	skb_queue_head_init(&sp->pd_lobby);
4106 	sp->frag_interleave = 0;
4107 
4108 	/* Create a per socket endpoint structure.  Even if we
4109 	 * change the data structure relationships, this may still
4110 	 * be useful for storing pre-connect address information.
4111 	 */
4112 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4113 	if (!sp->ep)
4114 		return -ENOMEM;
4115 
4116 	sp->hmac = NULL;
4117 
4118 	sk->sk_destruct = sctp_destruct_sock;
4119 
4120 	SCTP_DBG_OBJCNT_INC(sock);
4121 
4122 	local_bh_disable();
4123 	percpu_counter_inc(&sctp_sockets_allocated);
4124 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4125 	if (net->sctp.default_auto_asconf) {
4126 		list_add_tail(&sp->auto_asconf_list,
4127 		    &net->sctp.auto_asconf_splist);
4128 		sp->do_auto_asconf = 1;
4129 	} else
4130 		sp->do_auto_asconf = 0;
4131 	local_bh_enable();
4132 
4133 	return 0;
4134 }
4135 
4136 /* Cleanup any SCTP per socket resources.  */
4137 static void sctp_destroy_sock(struct sock *sk)
4138 {
4139 	struct sctp_sock *sp;
4140 
4141 	pr_debug("%s: sk:%p\n", __func__, sk);
4142 
4143 	/* Release our hold on the endpoint. */
4144 	sp = sctp_sk(sk);
4145 	/* This could happen during socket init, thus we bail out
4146 	 * early, since the rest of the below is not setup either.
4147 	 */
4148 	if (sp->ep == NULL)
4149 		return;
4150 
4151 	if (sp->do_auto_asconf) {
4152 		sp->do_auto_asconf = 0;
4153 		list_del(&sp->auto_asconf_list);
4154 	}
4155 	sctp_endpoint_free(sp->ep);
4156 	local_bh_disable();
4157 	percpu_counter_dec(&sctp_sockets_allocated);
4158 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4159 	local_bh_enable();
4160 }
4161 
4162 /* Triggered when there are no references on the socket anymore */
4163 static void sctp_destruct_sock(struct sock *sk)
4164 {
4165 	struct sctp_sock *sp = sctp_sk(sk);
4166 
4167 	/* Free up the HMAC transform. */
4168 	crypto_free_hash(sp->hmac);
4169 
4170 	inet_sock_destruct(sk);
4171 }
4172 
4173 /* API 4.1.7 shutdown() - TCP Style Syntax
4174  *     int shutdown(int socket, int how);
4175  *
4176  *     sd      - the socket descriptor of the association to be closed.
4177  *     how     - Specifies the type of shutdown.  The  values  are
4178  *               as follows:
4179  *               SHUT_RD
4180  *                     Disables further receive operations. No SCTP
4181  *                     protocol action is taken.
4182  *               SHUT_WR
4183  *                     Disables further send operations, and initiates
4184  *                     the SCTP shutdown sequence.
4185  *               SHUT_RDWR
4186  *                     Disables further send  and  receive  operations
4187  *                     and initiates the SCTP shutdown sequence.
4188  */
4189 static void sctp_shutdown(struct sock *sk, int how)
4190 {
4191 	struct net *net = sock_net(sk);
4192 	struct sctp_endpoint *ep;
4193 	struct sctp_association *asoc;
4194 
4195 	if (!sctp_style(sk, TCP))
4196 		return;
4197 
4198 	if (how & SEND_SHUTDOWN) {
4199 		ep = sctp_sk(sk)->ep;
4200 		if (!list_empty(&ep->asocs)) {
4201 			asoc = list_entry(ep->asocs.next,
4202 					  struct sctp_association, asocs);
4203 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4204 		}
4205 	}
4206 }
4207 
4208 /* 7.2.1 Association Status (SCTP_STATUS)
4209 
4210  * Applications can retrieve current status information about an
4211  * association, including association state, peer receiver window size,
4212  * number of unacked data chunks, and number of data chunks pending
4213  * receipt.  This information is read-only.
4214  */
4215 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4216 				       char __user *optval,
4217 				       int __user *optlen)
4218 {
4219 	struct sctp_status status;
4220 	struct sctp_association *asoc = NULL;
4221 	struct sctp_transport *transport;
4222 	sctp_assoc_t associd;
4223 	int retval = 0;
4224 
4225 	if (len < sizeof(status)) {
4226 		retval = -EINVAL;
4227 		goto out;
4228 	}
4229 
4230 	len = sizeof(status);
4231 	if (copy_from_user(&status, optval, len)) {
4232 		retval = -EFAULT;
4233 		goto out;
4234 	}
4235 
4236 	associd = status.sstat_assoc_id;
4237 	asoc = sctp_id2assoc(sk, associd);
4238 	if (!asoc) {
4239 		retval = -EINVAL;
4240 		goto out;
4241 	}
4242 
4243 	transport = asoc->peer.primary_path;
4244 
4245 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4246 	status.sstat_state = asoc->state;
4247 	status.sstat_rwnd =  asoc->peer.rwnd;
4248 	status.sstat_unackdata = asoc->unack_data;
4249 
4250 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4251 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4252 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4253 	status.sstat_fragmentation_point = asoc->frag_point;
4254 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4255 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4256 			transport->af_specific->sockaddr_len);
4257 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4258 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4259 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4260 	status.sstat_primary.spinfo_state = transport->state;
4261 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4262 	status.sstat_primary.spinfo_srtt = transport->srtt;
4263 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4264 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4265 
4266 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4267 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4268 
4269 	if (put_user(len, optlen)) {
4270 		retval = -EFAULT;
4271 		goto out;
4272 	}
4273 
4274 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4275 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4276 		 status.sstat_assoc_id);
4277 
4278 	if (copy_to_user(optval, &status, len)) {
4279 		retval = -EFAULT;
4280 		goto out;
4281 	}
4282 
4283 out:
4284 	return retval;
4285 }
4286 
4287 
4288 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4289  *
4290  * Applications can retrieve information about a specific peer address
4291  * of an association, including its reachability state, congestion
4292  * window, and retransmission timer values.  This information is
4293  * read-only.
4294  */
4295 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4296 					  char __user *optval,
4297 					  int __user *optlen)
4298 {
4299 	struct sctp_paddrinfo pinfo;
4300 	struct sctp_transport *transport;
4301 	int retval = 0;
4302 
4303 	if (len < sizeof(pinfo)) {
4304 		retval = -EINVAL;
4305 		goto out;
4306 	}
4307 
4308 	len = sizeof(pinfo);
4309 	if (copy_from_user(&pinfo, optval, len)) {
4310 		retval = -EFAULT;
4311 		goto out;
4312 	}
4313 
4314 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4315 					   pinfo.spinfo_assoc_id);
4316 	if (!transport)
4317 		return -EINVAL;
4318 
4319 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4320 	pinfo.spinfo_state = transport->state;
4321 	pinfo.spinfo_cwnd = transport->cwnd;
4322 	pinfo.spinfo_srtt = transport->srtt;
4323 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4324 	pinfo.spinfo_mtu = transport->pathmtu;
4325 
4326 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4327 		pinfo.spinfo_state = SCTP_ACTIVE;
4328 
4329 	if (put_user(len, optlen)) {
4330 		retval = -EFAULT;
4331 		goto out;
4332 	}
4333 
4334 	if (copy_to_user(optval, &pinfo, len)) {
4335 		retval = -EFAULT;
4336 		goto out;
4337 	}
4338 
4339 out:
4340 	return retval;
4341 }
4342 
4343 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4344  *
4345  * This option is a on/off flag.  If enabled no SCTP message
4346  * fragmentation will be performed.  Instead if a message being sent
4347  * exceeds the current PMTU size, the message will NOT be sent and
4348  * instead a error will be indicated to the user.
4349  */
4350 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4351 					char __user *optval, int __user *optlen)
4352 {
4353 	int val;
4354 
4355 	if (len < sizeof(int))
4356 		return -EINVAL;
4357 
4358 	len = sizeof(int);
4359 	val = (sctp_sk(sk)->disable_fragments == 1);
4360 	if (put_user(len, optlen))
4361 		return -EFAULT;
4362 	if (copy_to_user(optval, &val, len))
4363 		return -EFAULT;
4364 	return 0;
4365 }
4366 
4367 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4368  *
4369  * This socket option is used to specify various notifications and
4370  * ancillary data the user wishes to receive.
4371  */
4372 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4373 				  int __user *optlen)
4374 {
4375 	if (len <= 0)
4376 		return -EINVAL;
4377 	if (len > sizeof(struct sctp_event_subscribe))
4378 		len = sizeof(struct sctp_event_subscribe);
4379 	if (put_user(len, optlen))
4380 		return -EFAULT;
4381 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4382 		return -EFAULT;
4383 	return 0;
4384 }
4385 
4386 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4387  *
4388  * This socket option is applicable to the UDP-style socket only.  When
4389  * set it will cause associations that are idle for more than the
4390  * specified number of seconds to automatically close.  An association
4391  * being idle is defined an association that has NOT sent or received
4392  * user data.  The special value of '0' indicates that no automatic
4393  * close of any associations should be performed.  The option expects an
4394  * integer defining the number of seconds of idle time before an
4395  * association is closed.
4396  */
4397 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4398 {
4399 	/* Applicable to UDP-style socket only */
4400 	if (sctp_style(sk, TCP))
4401 		return -EOPNOTSUPP;
4402 	if (len < sizeof(int))
4403 		return -EINVAL;
4404 	len = sizeof(int);
4405 	if (put_user(len, optlen))
4406 		return -EFAULT;
4407 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4408 		return -EFAULT;
4409 	return 0;
4410 }
4411 
4412 /* Helper routine to branch off an association to a new socket.  */
4413 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4414 {
4415 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4416 	struct sctp_sock *sp = sctp_sk(sk);
4417 	struct socket *sock;
4418 	int err = 0;
4419 
4420 	if (!asoc)
4421 		return -EINVAL;
4422 
4423 	/* An association cannot be branched off from an already peeled-off
4424 	 * socket, nor is this supported for tcp style sockets.
4425 	 */
4426 	if (!sctp_style(sk, UDP))
4427 		return -EINVAL;
4428 
4429 	/* Create a new socket.  */
4430 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4431 	if (err < 0)
4432 		return err;
4433 
4434 	sctp_copy_sock(sock->sk, sk, asoc);
4435 
4436 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4437 	 * Set the daddr and initialize id to something more random
4438 	 */
4439 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4440 
4441 	/* Populate the fields of the newsk from the oldsk and migrate the
4442 	 * asoc to the newsk.
4443 	 */
4444 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4445 
4446 	*sockp = sock;
4447 
4448 	return err;
4449 }
4450 EXPORT_SYMBOL(sctp_do_peeloff);
4451 
4452 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4453 {
4454 	sctp_peeloff_arg_t peeloff;
4455 	struct socket *newsock;
4456 	struct file *newfile;
4457 	int retval = 0;
4458 
4459 	if (len < sizeof(sctp_peeloff_arg_t))
4460 		return -EINVAL;
4461 	len = sizeof(sctp_peeloff_arg_t);
4462 	if (copy_from_user(&peeloff, optval, len))
4463 		return -EFAULT;
4464 
4465 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4466 	if (retval < 0)
4467 		goto out;
4468 
4469 	/* Map the socket to an unused fd that can be returned to the user.  */
4470 	retval = get_unused_fd_flags(0);
4471 	if (retval < 0) {
4472 		sock_release(newsock);
4473 		goto out;
4474 	}
4475 
4476 	newfile = sock_alloc_file(newsock, 0, NULL);
4477 	if (unlikely(IS_ERR(newfile))) {
4478 		put_unused_fd(retval);
4479 		sock_release(newsock);
4480 		return PTR_ERR(newfile);
4481 	}
4482 
4483 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4484 		 retval);
4485 
4486 	/* Return the fd mapped to the new socket.  */
4487 	if (put_user(len, optlen)) {
4488 		fput(newfile);
4489 		put_unused_fd(retval);
4490 		return -EFAULT;
4491 	}
4492 	peeloff.sd = retval;
4493 	if (copy_to_user(optval, &peeloff, len)) {
4494 		fput(newfile);
4495 		put_unused_fd(retval);
4496 		return -EFAULT;
4497 	}
4498 	fd_install(retval, newfile);
4499 out:
4500 	return retval;
4501 }
4502 
4503 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4504  *
4505  * Applications can enable or disable heartbeats for any peer address of
4506  * an association, modify an address's heartbeat interval, force a
4507  * heartbeat to be sent immediately, and adjust the address's maximum
4508  * number of retransmissions sent before an address is considered
4509  * unreachable.  The following structure is used to access and modify an
4510  * address's parameters:
4511  *
4512  *  struct sctp_paddrparams {
4513  *     sctp_assoc_t            spp_assoc_id;
4514  *     struct sockaddr_storage spp_address;
4515  *     uint32_t                spp_hbinterval;
4516  *     uint16_t                spp_pathmaxrxt;
4517  *     uint32_t                spp_pathmtu;
4518  *     uint32_t                spp_sackdelay;
4519  *     uint32_t                spp_flags;
4520  * };
4521  *
4522  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4523  *                     application, and identifies the association for
4524  *                     this query.
4525  *   spp_address     - This specifies which address is of interest.
4526  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4527  *                     in milliseconds.  If a  value of zero
4528  *                     is present in this field then no changes are to
4529  *                     be made to this parameter.
4530  *   spp_pathmaxrxt  - This contains the maximum number of
4531  *                     retransmissions before this address shall be
4532  *                     considered unreachable. If a  value of zero
4533  *                     is present in this field then no changes are to
4534  *                     be made to this parameter.
4535  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4536  *                     specified here will be the "fixed" path mtu.
4537  *                     Note that if the spp_address field is empty
4538  *                     then all associations on this address will
4539  *                     have this fixed path mtu set upon them.
4540  *
4541  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4542  *                     the number of milliseconds that sacks will be delayed
4543  *                     for. This value will apply to all addresses of an
4544  *                     association if the spp_address field is empty. Note
4545  *                     also, that if delayed sack is enabled and this
4546  *                     value is set to 0, no change is made to the last
4547  *                     recorded delayed sack timer value.
4548  *
4549  *   spp_flags       - These flags are used to control various features
4550  *                     on an association. The flag field may contain
4551  *                     zero or more of the following options.
4552  *
4553  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4554  *                     specified address. Note that if the address
4555  *                     field is empty all addresses for the association
4556  *                     have heartbeats enabled upon them.
4557  *
4558  *                     SPP_HB_DISABLE - Disable heartbeats on the
4559  *                     speicifed address. Note that if the address
4560  *                     field is empty all addresses for the association
4561  *                     will have their heartbeats disabled. Note also
4562  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4563  *                     mutually exclusive, only one of these two should
4564  *                     be specified. Enabling both fields will have
4565  *                     undetermined results.
4566  *
4567  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4568  *                     to be made immediately.
4569  *
4570  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4571  *                     discovery upon the specified address. Note that
4572  *                     if the address feild is empty then all addresses
4573  *                     on the association are effected.
4574  *
4575  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4576  *                     discovery upon the specified address. Note that
4577  *                     if the address feild is empty then all addresses
4578  *                     on the association are effected. Not also that
4579  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4580  *                     exclusive. Enabling both will have undetermined
4581  *                     results.
4582  *
4583  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4584  *                     on delayed sack. The time specified in spp_sackdelay
4585  *                     is used to specify the sack delay for this address. Note
4586  *                     that if spp_address is empty then all addresses will
4587  *                     enable delayed sack and take on the sack delay
4588  *                     value specified in spp_sackdelay.
4589  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4590  *                     off delayed sack. If the spp_address field is blank then
4591  *                     delayed sack is disabled for the entire association. Note
4592  *                     also that this field is mutually exclusive to
4593  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4594  *                     results.
4595  */
4596 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4597 					    char __user *optval, int __user *optlen)
4598 {
4599 	struct sctp_paddrparams  params;
4600 	struct sctp_transport   *trans = NULL;
4601 	struct sctp_association *asoc = NULL;
4602 	struct sctp_sock        *sp = sctp_sk(sk);
4603 
4604 	if (len < sizeof(struct sctp_paddrparams))
4605 		return -EINVAL;
4606 	len = sizeof(struct sctp_paddrparams);
4607 	if (copy_from_user(&params, optval, len))
4608 		return -EFAULT;
4609 
4610 	/* If an address other than INADDR_ANY is specified, and
4611 	 * no transport is found, then the request is invalid.
4612 	 */
4613 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4614 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4615 					       params.spp_assoc_id);
4616 		if (!trans) {
4617 			pr_debug("%s: failed no transport\n", __func__);
4618 			return -EINVAL;
4619 		}
4620 	}
4621 
4622 	/* Get association, if assoc_id != 0 and the socket is a one
4623 	 * to many style socket, and an association was not found, then
4624 	 * the id was invalid.
4625 	 */
4626 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4627 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4628 		pr_debug("%s: failed no association\n", __func__);
4629 		return -EINVAL;
4630 	}
4631 
4632 	if (trans) {
4633 		/* Fetch transport values. */
4634 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4635 		params.spp_pathmtu    = trans->pathmtu;
4636 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4637 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4638 
4639 		/*draft-11 doesn't say what to return in spp_flags*/
4640 		params.spp_flags      = trans->param_flags;
4641 	} else if (asoc) {
4642 		/* Fetch association values. */
4643 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4644 		params.spp_pathmtu    = asoc->pathmtu;
4645 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4646 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4647 
4648 		/*draft-11 doesn't say what to return in spp_flags*/
4649 		params.spp_flags      = asoc->param_flags;
4650 	} else {
4651 		/* Fetch socket values. */
4652 		params.spp_hbinterval = sp->hbinterval;
4653 		params.spp_pathmtu    = sp->pathmtu;
4654 		params.spp_sackdelay  = sp->sackdelay;
4655 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4656 
4657 		/*draft-11 doesn't say what to return in spp_flags*/
4658 		params.spp_flags      = sp->param_flags;
4659 	}
4660 
4661 	if (copy_to_user(optval, &params, len))
4662 		return -EFAULT;
4663 
4664 	if (put_user(len, optlen))
4665 		return -EFAULT;
4666 
4667 	return 0;
4668 }
4669 
4670 /*
4671  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4672  *
4673  * This option will effect the way delayed acks are performed.  This
4674  * option allows you to get or set the delayed ack time, in
4675  * milliseconds.  It also allows changing the delayed ack frequency.
4676  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4677  * the assoc_id is 0, then this sets or gets the endpoints default
4678  * values.  If the assoc_id field is non-zero, then the set or get
4679  * effects the specified association for the one to many model (the
4680  * assoc_id field is ignored by the one to one model).  Note that if
4681  * sack_delay or sack_freq are 0 when setting this option, then the
4682  * current values will remain unchanged.
4683  *
4684  * struct sctp_sack_info {
4685  *     sctp_assoc_t            sack_assoc_id;
4686  *     uint32_t                sack_delay;
4687  *     uint32_t                sack_freq;
4688  * };
4689  *
4690  * sack_assoc_id -  This parameter, indicates which association the user
4691  *    is performing an action upon.  Note that if this field's value is
4692  *    zero then the endpoints default value is changed (effecting future
4693  *    associations only).
4694  *
4695  * sack_delay -  This parameter contains the number of milliseconds that
4696  *    the user is requesting the delayed ACK timer be set to.  Note that
4697  *    this value is defined in the standard to be between 200 and 500
4698  *    milliseconds.
4699  *
4700  * sack_freq -  This parameter contains the number of packets that must
4701  *    be received before a sack is sent without waiting for the delay
4702  *    timer to expire.  The default value for this is 2, setting this
4703  *    value to 1 will disable the delayed sack algorithm.
4704  */
4705 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4706 					    char __user *optval,
4707 					    int __user *optlen)
4708 {
4709 	struct sctp_sack_info    params;
4710 	struct sctp_association *asoc = NULL;
4711 	struct sctp_sock        *sp = sctp_sk(sk);
4712 
4713 	if (len >= sizeof(struct sctp_sack_info)) {
4714 		len = sizeof(struct sctp_sack_info);
4715 
4716 		if (copy_from_user(&params, optval, len))
4717 			return -EFAULT;
4718 	} else if (len == sizeof(struct sctp_assoc_value)) {
4719 		pr_warn_ratelimited(DEPRECATED
4720 				    "%s (pid %d) "
4721 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4722 				    "Use struct sctp_sack_info instead\n",
4723 				    current->comm, task_pid_nr(current));
4724 		if (copy_from_user(&params, optval, len))
4725 			return -EFAULT;
4726 	} else
4727 		return -EINVAL;
4728 
4729 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4730 	 * to many style socket, and an association was not found, then
4731 	 * the id was invalid.
4732 	 */
4733 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4734 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4735 		return -EINVAL;
4736 
4737 	if (asoc) {
4738 		/* Fetch association values. */
4739 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4740 			params.sack_delay = jiffies_to_msecs(
4741 				asoc->sackdelay);
4742 			params.sack_freq = asoc->sackfreq;
4743 
4744 		} else {
4745 			params.sack_delay = 0;
4746 			params.sack_freq = 1;
4747 		}
4748 	} else {
4749 		/* Fetch socket values. */
4750 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4751 			params.sack_delay  = sp->sackdelay;
4752 			params.sack_freq = sp->sackfreq;
4753 		} else {
4754 			params.sack_delay  = 0;
4755 			params.sack_freq = 1;
4756 		}
4757 	}
4758 
4759 	if (copy_to_user(optval, &params, len))
4760 		return -EFAULT;
4761 
4762 	if (put_user(len, optlen))
4763 		return -EFAULT;
4764 
4765 	return 0;
4766 }
4767 
4768 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4769  *
4770  * Applications can specify protocol parameters for the default association
4771  * initialization.  The option name argument to setsockopt() and getsockopt()
4772  * is SCTP_INITMSG.
4773  *
4774  * Setting initialization parameters is effective only on an unconnected
4775  * socket (for UDP-style sockets only future associations are effected
4776  * by the change).  With TCP-style sockets, this option is inherited by
4777  * sockets derived from a listener socket.
4778  */
4779 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4780 {
4781 	if (len < sizeof(struct sctp_initmsg))
4782 		return -EINVAL;
4783 	len = sizeof(struct sctp_initmsg);
4784 	if (put_user(len, optlen))
4785 		return -EFAULT;
4786 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4787 		return -EFAULT;
4788 	return 0;
4789 }
4790 
4791 
4792 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4793 				      char __user *optval, int __user *optlen)
4794 {
4795 	struct sctp_association *asoc;
4796 	int cnt = 0;
4797 	struct sctp_getaddrs getaddrs;
4798 	struct sctp_transport *from;
4799 	void __user *to;
4800 	union sctp_addr temp;
4801 	struct sctp_sock *sp = sctp_sk(sk);
4802 	int addrlen;
4803 	size_t space_left;
4804 	int bytes_copied;
4805 
4806 	if (len < sizeof(struct sctp_getaddrs))
4807 		return -EINVAL;
4808 
4809 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4810 		return -EFAULT;
4811 
4812 	/* For UDP-style sockets, id specifies the association to query.  */
4813 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4814 	if (!asoc)
4815 		return -EINVAL;
4816 
4817 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4818 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4819 
4820 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4821 				transports) {
4822 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4823 		addrlen = sctp_get_pf_specific(sk->sk_family)
4824 			      ->addr_to_user(sp, &temp);
4825 		if (space_left < addrlen)
4826 			return -ENOMEM;
4827 		if (copy_to_user(to, &temp, addrlen))
4828 			return -EFAULT;
4829 		to += addrlen;
4830 		cnt++;
4831 		space_left -= addrlen;
4832 	}
4833 
4834 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4835 		return -EFAULT;
4836 	bytes_copied = ((char __user *)to) - optval;
4837 	if (put_user(bytes_copied, optlen))
4838 		return -EFAULT;
4839 
4840 	return 0;
4841 }
4842 
4843 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4844 			    size_t space_left, int *bytes_copied)
4845 {
4846 	struct sctp_sockaddr_entry *addr;
4847 	union sctp_addr temp;
4848 	int cnt = 0;
4849 	int addrlen;
4850 	struct net *net = sock_net(sk);
4851 
4852 	rcu_read_lock();
4853 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4854 		if (!addr->valid)
4855 			continue;
4856 
4857 		if ((PF_INET == sk->sk_family) &&
4858 		    (AF_INET6 == addr->a.sa.sa_family))
4859 			continue;
4860 		if ((PF_INET6 == sk->sk_family) &&
4861 		    inet_v6_ipv6only(sk) &&
4862 		    (AF_INET == addr->a.sa.sa_family))
4863 			continue;
4864 		memcpy(&temp, &addr->a, sizeof(temp));
4865 		if (!temp.v4.sin_port)
4866 			temp.v4.sin_port = htons(port);
4867 
4868 		addrlen = sctp_get_pf_specific(sk->sk_family)
4869 			      ->addr_to_user(sctp_sk(sk), &temp);
4870 
4871 		if (space_left < addrlen) {
4872 			cnt =  -ENOMEM;
4873 			break;
4874 		}
4875 		memcpy(to, &temp, addrlen);
4876 
4877 		to += addrlen;
4878 		cnt++;
4879 		space_left -= addrlen;
4880 		*bytes_copied += addrlen;
4881 	}
4882 	rcu_read_unlock();
4883 
4884 	return cnt;
4885 }
4886 
4887 
4888 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4889 				       char __user *optval, int __user *optlen)
4890 {
4891 	struct sctp_bind_addr *bp;
4892 	struct sctp_association *asoc;
4893 	int cnt = 0;
4894 	struct sctp_getaddrs getaddrs;
4895 	struct sctp_sockaddr_entry *addr;
4896 	void __user *to;
4897 	union sctp_addr temp;
4898 	struct sctp_sock *sp = sctp_sk(sk);
4899 	int addrlen;
4900 	int err = 0;
4901 	size_t space_left;
4902 	int bytes_copied = 0;
4903 	void *addrs;
4904 	void *buf;
4905 
4906 	if (len < sizeof(struct sctp_getaddrs))
4907 		return -EINVAL;
4908 
4909 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4910 		return -EFAULT;
4911 
4912 	/*
4913 	 *  For UDP-style sockets, id specifies the association to query.
4914 	 *  If the id field is set to the value '0' then the locally bound
4915 	 *  addresses are returned without regard to any particular
4916 	 *  association.
4917 	 */
4918 	if (0 == getaddrs.assoc_id) {
4919 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4920 	} else {
4921 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4922 		if (!asoc)
4923 			return -EINVAL;
4924 		bp = &asoc->base.bind_addr;
4925 	}
4926 
4927 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4928 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4929 
4930 	addrs = kmalloc(space_left, GFP_KERNEL);
4931 	if (!addrs)
4932 		return -ENOMEM;
4933 
4934 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4935 	 * addresses from the global local address list.
4936 	 */
4937 	if (sctp_list_single_entry(&bp->address_list)) {
4938 		addr = list_entry(bp->address_list.next,
4939 				  struct sctp_sockaddr_entry, list);
4940 		if (sctp_is_any(sk, &addr->a)) {
4941 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4942 						space_left, &bytes_copied);
4943 			if (cnt < 0) {
4944 				err = cnt;
4945 				goto out;
4946 			}
4947 			goto copy_getaddrs;
4948 		}
4949 	}
4950 
4951 	buf = addrs;
4952 	/* Protection on the bound address list is not needed since
4953 	 * in the socket option context we hold a socket lock and
4954 	 * thus the bound address list can't change.
4955 	 */
4956 	list_for_each_entry(addr, &bp->address_list, list) {
4957 		memcpy(&temp, &addr->a, sizeof(temp));
4958 		addrlen = sctp_get_pf_specific(sk->sk_family)
4959 			      ->addr_to_user(sp, &temp);
4960 		if (space_left < addrlen) {
4961 			err =  -ENOMEM; /*fixme: right error?*/
4962 			goto out;
4963 		}
4964 		memcpy(buf, &temp, addrlen);
4965 		buf += addrlen;
4966 		bytes_copied += addrlen;
4967 		cnt++;
4968 		space_left -= addrlen;
4969 	}
4970 
4971 copy_getaddrs:
4972 	if (copy_to_user(to, addrs, bytes_copied)) {
4973 		err = -EFAULT;
4974 		goto out;
4975 	}
4976 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4977 		err = -EFAULT;
4978 		goto out;
4979 	}
4980 	if (put_user(bytes_copied, optlen))
4981 		err = -EFAULT;
4982 out:
4983 	kfree(addrs);
4984 	return err;
4985 }
4986 
4987 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4988  *
4989  * Requests that the local SCTP stack use the enclosed peer address as
4990  * the association primary.  The enclosed address must be one of the
4991  * association peer's addresses.
4992  */
4993 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4994 					char __user *optval, int __user *optlen)
4995 {
4996 	struct sctp_prim prim;
4997 	struct sctp_association *asoc;
4998 	struct sctp_sock *sp = sctp_sk(sk);
4999 
5000 	if (len < sizeof(struct sctp_prim))
5001 		return -EINVAL;
5002 
5003 	len = sizeof(struct sctp_prim);
5004 
5005 	if (copy_from_user(&prim, optval, len))
5006 		return -EFAULT;
5007 
5008 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5009 	if (!asoc)
5010 		return -EINVAL;
5011 
5012 	if (!asoc->peer.primary_path)
5013 		return -ENOTCONN;
5014 
5015 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5016 		asoc->peer.primary_path->af_specific->sockaddr_len);
5017 
5018 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5019 			(union sctp_addr *)&prim.ssp_addr);
5020 
5021 	if (put_user(len, optlen))
5022 		return -EFAULT;
5023 	if (copy_to_user(optval, &prim, len))
5024 		return -EFAULT;
5025 
5026 	return 0;
5027 }
5028 
5029 /*
5030  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5031  *
5032  * Requests that the local endpoint set the specified Adaptation Layer
5033  * Indication parameter for all future INIT and INIT-ACK exchanges.
5034  */
5035 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5036 				  char __user *optval, int __user *optlen)
5037 {
5038 	struct sctp_setadaptation adaptation;
5039 
5040 	if (len < sizeof(struct sctp_setadaptation))
5041 		return -EINVAL;
5042 
5043 	len = sizeof(struct sctp_setadaptation);
5044 
5045 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5046 
5047 	if (put_user(len, optlen))
5048 		return -EFAULT;
5049 	if (copy_to_user(optval, &adaptation, len))
5050 		return -EFAULT;
5051 
5052 	return 0;
5053 }
5054 
5055 /*
5056  *
5057  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5058  *
5059  *   Applications that wish to use the sendto() system call may wish to
5060  *   specify a default set of parameters that would normally be supplied
5061  *   through the inclusion of ancillary data.  This socket option allows
5062  *   such an application to set the default sctp_sndrcvinfo structure.
5063 
5064 
5065  *   The application that wishes to use this socket option simply passes
5066  *   in to this call the sctp_sndrcvinfo structure defined in Section
5067  *   5.2.2) The input parameters accepted by this call include
5068  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5069  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5070  *   to this call if the caller is using the UDP model.
5071  *
5072  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5073  */
5074 static int sctp_getsockopt_default_send_param(struct sock *sk,
5075 					int len, char __user *optval,
5076 					int __user *optlen)
5077 {
5078 	struct sctp_sock *sp = sctp_sk(sk);
5079 	struct sctp_association *asoc;
5080 	struct sctp_sndrcvinfo info;
5081 
5082 	if (len < sizeof(info))
5083 		return -EINVAL;
5084 
5085 	len = sizeof(info);
5086 
5087 	if (copy_from_user(&info, optval, len))
5088 		return -EFAULT;
5089 
5090 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5091 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5092 		return -EINVAL;
5093 	if (asoc) {
5094 		info.sinfo_stream = asoc->default_stream;
5095 		info.sinfo_flags = asoc->default_flags;
5096 		info.sinfo_ppid = asoc->default_ppid;
5097 		info.sinfo_context = asoc->default_context;
5098 		info.sinfo_timetolive = asoc->default_timetolive;
5099 	} else {
5100 		info.sinfo_stream = sp->default_stream;
5101 		info.sinfo_flags = sp->default_flags;
5102 		info.sinfo_ppid = sp->default_ppid;
5103 		info.sinfo_context = sp->default_context;
5104 		info.sinfo_timetolive = sp->default_timetolive;
5105 	}
5106 
5107 	if (put_user(len, optlen))
5108 		return -EFAULT;
5109 	if (copy_to_user(optval, &info, len))
5110 		return -EFAULT;
5111 
5112 	return 0;
5113 }
5114 
5115 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5116  * (SCTP_DEFAULT_SNDINFO)
5117  */
5118 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5119 					   char __user *optval,
5120 					   int __user *optlen)
5121 {
5122 	struct sctp_sock *sp = sctp_sk(sk);
5123 	struct sctp_association *asoc;
5124 	struct sctp_sndinfo info;
5125 
5126 	if (len < sizeof(info))
5127 		return -EINVAL;
5128 
5129 	len = sizeof(info);
5130 
5131 	if (copy_from_user(&info, optval, len))
5132 		return -EFAULT;
5133 
5134 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5135 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5136 		return -EINVAL;
5137 	if (asoc) {
5138 		info.snd_sid = asoc->default_stream;
5139 		info.snd_flags = asoc->default_flags;
5140 		info.snd_ppid = asoc->default_ppid;
5141 		info.snd_context = asoc->default_context;
5142 	} else {
5143 		info.snd_sid = sp->default_stream;
5144 		info.snd_flags = sp->default_flags;
5145 		info.snd_ppid = sp->default_ppid;
5146 		info.snd_context = sp->default_context;
5147 	}
5148 
5149 	if (put_user(len, optlen))
5150 		return -EFAULT;
5151 	if (copy_to_user(optval, &info, len))
5152 		return -EFAULT;
5153 
5154 	return 0;
5155 }
5156 
5157 /*
5158  *
5159  * 7.1.5 SCTP_NODELAY
5160  *
5161  * Turn on/off any Nagle-like algorithm.  This means that packets are
5162  * generally sent as soon as possible and no unnecessary delays are
5163  * introduced, at the cost of more packets in the network.  Expects an
5164  * integer boolean flag.
5165  */
5166 
5167 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5168 				   char __user *optval, int __user *optlen)
5169 {
5170 	int val;
5171 
5172 	if (len < sizeof(int))
5173 		return -EINVAL;
5174 
5175 	len = sizeof(int);
5176 	val = (sctp_sk(sk)->nodelay == 1);
5177 	if (put_user(len, optlen))
5178 		return -EFAULT;
5179 	if (copy_to_user(optval, &val, len))
5180 		return -EFAULT;
5181 	return 0;
5182 }
5183 
5184 /*
5185  *
5186  * 7.1.1 SCTP_RTOINFO
5187  *
5188  * The protocol parameters used to initialize and bound retransmission
5189  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5190  * and modify these parameters.
5191  * All parameters are time values, in milliseconds.  A value of 0, when
5192  * modifying the parameters, indicates that the current value should not
5193  * be changed.
5194  *
5195  */
5196 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5197 				char __user *optval,
5198 				int __user *optlen) {
5199 	struct sctp_rtoinfo rtoinfo;
5200 	struct sctp_association *asoc;
5201 
5202 	if (len < sizeof (struct sctp_rtoinfo))
5203 		return -EINVAL;
5204 
5205 	len = sizeof(struct sctp_rtoinfo);
5206 
5207 	if (copy_from_user(&rtoinfo, optval, len))
5208 		return -EFAULT;
5209 
5210 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5211 
5212 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5213 		return -EINVAL;
5214 
5215 	/* Values corresponding to the specific association. */
5216 	if (asoc) {
5217 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5218 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5219 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5220 	} else {
5221 		/* Values corresponding to the endpoint. */
5222 		struct sctp_sock *sp = sctp_sk(sk);
5223 
5224 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5225 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5226 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5227 	}
5228 
5229 	if (put_user(len, optlen))
5230 		return -EFAULT;
5231 
5232 	if (copy_to_user(optval, &rtoinfo, len))
5233 		return -EFAULT;
5234 
5235 	return 0;
5236 }
5237 
5238 /*
5239  *
5240  * 7.1.2 SCTP_ASSOCINFO
5241  *
5242  * This option is used to tune the maximum retransmission attempts
5243  * of the association.
5244  * Returns an error if the new association retransmission value is
5245  * greater than the sum of the retransmission value  of the peer.
5246  * See [SCTP] for more information.
5247  *
5248  */
5249 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5250 				     char __user *optval,
5251 				     int __user *optlen)
5252 {
5253 
5254 	struct sctp_assocparams assocparams;
5255 	struct sctp_association *asoc;
5256 	struct list_head *pos;
5257 	int cnt = 0;
5258 
5259 	if (len < sizeof (struct sctp_assocparams))
5260 		return -EINVAL;
5261 
5262 	len = sizeof(struct sctp_assocparams);
5263 
5264 	if (copy_from_user(&assocparams, optval, len))
5265 		return -EFAULT;
5266 
5267 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5268 
5269 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5270 		return -EINVAL;
5271 
5272 	/* Values correspoinding to the specific association */
5273 	if (asoc) {
5274 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5275 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5276 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5277 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5278 
5279 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5280 			cnt++;
5281 		}
5282 
5283 		assocparams.sasoc_number_peer_destinations = cnt;
5284 	} else {
5285 		/* Values corresponding to the endpoint */
5286 		struct sctp_sock *sp = sctp_sk(sk);
5287 
5288 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5289 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5290 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5291 		assocparams.sasoc_cookie_life =
5292 					sp->assocparams.sasoc_cookie_life;
5293 		assocparams.sasoc_number_peer_destinations =
5294 					sp->assocparams.
5295 					sasoc_number_peer_destinations;
5296 	}
5297 
5298 	if (put_user(len, optlen))
5299 		return -EFAULT;
5300 
5301 	if (copy_to_user(optval, &assocparams, len))
5302 		return -EFAULT;
5303 
5304 	return 0;
5305 }
5306 
5307 /*
5308  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5309  *
5310  * This socket option is a boolean flag which turns on or off mapped V4
5311  * addresses.  If this option is turned on and the socket is type
5312  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5313  * If this option is turned off, then no mapping will be done of V4
5314  * addresses and a user will receive both PF_INET6 and PF_INET type
5315  * addresses on the socket.
5316  */
5317 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5318 				    char __user *optval, int __user *optlen)
5319 {
5320 	int val;
5321 	struct sctp_sock *sp = sctp_sk(sk);
5322 
5323 	if (len < sizeof(int))
5324 		return -EINVAL;
5325 
5326 	len = sizeof(int);
5327 	val = sp->v4mapped;
5328 	if (put_user(len, optlen))
5329 		return -EFAULT;
5330 	if (copy_to_user(optval, &val, len))
5331 		return -EFAULT;
5332 
5333 	return 0;
5334 }
5335 
5336 /*
5337  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5338  * (chapter and verse is quoted at sctp_setsockopt_context())
5339  */
5340 static int sctp_getsockopt_context(struct sock *sk, int len,
5341 				   char __user *optval, int __user *optlen)
5342 {
5343 	struct sctp_assoc_value params;
5344 	struct sctp_sock *sp;
5345 	struct sctp_association *asoc;
5346 
5347 	if (len < sizeof(struct sctp_assoc_value))
5348 		return -EINVAL;
5349 
5350 	len = sizeof(struct sctp_assoc_value);
5351 
5352 	if (copy_from_user(&params, optval, len))
5353 		return -EFAULT;
5354 
5355 	sp = sctp_sk(sk);
5356 
5357 	if (params.assoc_id != 0) {
5358 		asoc = sctp_id2assoc(sk, params.assoc_id);
5359 		if (!asoc)
5360 			return -EINVAL;
5361 		params.assoc_value = asoc->default_rcv_context;
5362 	} else {
5363 		params.assoc_value = sp->default_rcv_context;
5364 	}
5365 
5366 	if (put_user(len, optlen))
5367 		return -EFAULT;
5368 	if (copy_to_user(optval, &params, len))
5369 		return -EFAULT;
5370 
5371 	return 0;
5372 }
5373 
5374 /*
5375  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5376  * This option will get or set the maximum size to put in any outgoing
5377  * SCTP DATA chunk.  If a message is larger than this size it will be
5378  * fragmented by SCTP into the specified size.  Note that the underlying
5379  * SCTP implementation may fragment into smaller sized chunks when the
5380  * PMTU of the underlying association is smaller than the value set by
5381  * the user.  The default value for this option is '0' which indicates
5382  * the user is NOT limiting fragmentation and only the PMTU will effect
5383  * SCTP's choice of DATA chunk size.  Note also that values set larger
5384  * than the maximum size of an IP datagram will effectively let SCTP
5385  * control fragmentation (i.e. the same as setting this option to 0).
5386  *
5387  * The following structure is used to access and modify this parameter:
5388  *
5389  * struct sctp_assoc_value {
5390  *   sctp_assoc_t assoc_id;
5391  *   uint32_t assoc_value;
5392  * };
5393  *
5394  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5395  *    For one-to-many style sockets this parameter indicates which
5396  *    association the user is performing an action upon.  Note that if
5397  *    this field's value is zero then the endpoints default value is
5398  *    changed (effecting future associations only).
5399  * assoc_value:  This parameter specifies the maximum size in bytes.
5400  */
5401 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5402 				  char __user *optval, int __user *optlen)
5403 {
5404 	struct sctp_assoc_value params;
5405 	struct sctp_association *asoc;
5406 
5407 	if (len == sizeof(int)) {
5408 		pr_warn_ratelimited(DEPRECATED
5409 				    "%s (pid %d) "
5410 				    "Use of int in maxseg socket option.\n"
5411 				    "Use struct sctp_assoc_value instead\n",
5412 				    current->comm, task_pid_nr(current));
5413 		params.assoc_id = 0;
5414 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5415 		len = sizeof(struct sctp_assoc_value);
5416 		if (copy_from_user(&params, optval, sizeof(params)))
5417 			return -EFAULT;
5418 	} else
5419 		return -EINVAL;
5420 
5421 	asoc = sctp_id2assoc(sk, params.assoc_id);
5422 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5423 		return -EINVAL;
5424 
5425 	if (asoc)
5426 		params.assoc_value = asoc->frag_point;
5427 	else
5428 		params.assoc_value = sctp_sk(sk)->user_frag;
5429 
5430 	if (put_user(len, optlen))
5431 		return -EFAULT;
5432 	if (len == sizeof(int)) {
5433 		if (copy_to_user(optval, &params.assoc_value, len))
5434 			return -EFAULT;
5435 	} else {
5436 		if (copy_to_user(optval, &params, len))
5437 			return -EFAULT;
5438 	}
5439 
5440 	return 0;
5441 }
5442 
5443 /*
5444  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5445  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5446  */
5447 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5448 					       char __user *optval, int __user *optlen)
5449 {
5450 	int val;
5451 
5452 	if (len < sizeof(int))
5453 		return -EINVAL;
5454 
5455 	len = sizeof(int);
5456 
5457 	val = sctp_sk(sk)->frag_interleave;
5458 	if (put_user(len, optlen))
5459 		return -EFAULT;
5460 	if (copy_to_user(optval, &val, len))
5461 		return -EFAULT;
5462 
5463 	return 0;
5464 }
5465 
5466 /*
5467  * 7.1.25.  Set or Get the sctp partial delivery point
5468  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5469  */
5470 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5471 						  char __user *optval,
5472 						  int __user *optlen)
5473 {
5474 	u32 val;
5475 
5476 	if (len < sizeof(u32))
5477 		return -EINVAL;
5478 
5479 	len = sizeof(u32);
5480 
5481 	val = sctp_sk(sk)->pd_point;
5482 	if (put_user(len, optlen))
5483 		return -EFAULT;
5484 	if (copy_to_user(optval, &val, len))
5485 		return -EFAULT;
5486 
5487 	return 0;
5488 }
5489 
5490 /*
5491  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5492  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5493  */
5494 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5495 				    char __user *optval,
5496 				    int __user *optlen)
5497 {
5498 	struct sctp_assoc_value params;
5499 	struct sctp_sock *sp;
5500 	struct sctp_association *asoc;
5501 
5502 	if (len == sizeof(int)) {
5503 		pr_warn_ratelimited(DEPRECATED
5504 				    "%s (pid %d) "
5505 				    "Use of int in max_burst socket option.\n"
5506 				    "Use struct sctp_assoc_value instead\n",
5507 				    current->comm, task_pid_nr(current));
5508 		params.assoc_id = 0;
5509 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5510 		len = sizeof(struct sctp_assoc_value);
5511 		if (copy_from_user(&params, optval, len))
5512 			return -EFAULT;
5513 	} else
5514 		return -EINVAL;
5515 
5516 	sp = sctp_sk(sk);
5517 
5518 	if (params.assoc_id != 0) {
5519 		asoc = sctp_id2assoc(sk, params.assoc_id);
5520 		if (!asoc)
5521 			return -EINVAL;
5522 		params.assoc_value = asoc->max_burst;
5523 	} else
5524 		params.assoc_value = sp->max_burst;
5525 
5526 	if (len == sizeof(int)) {
5527 		if (copy_to_user(optval, &params.assoc_value, len))
5528 			return -EFAULT;
5529 	} else {
5530 		if (copy_to_user(optval, &params, len))
5531 			return -EFAULT;
5532 	}
5533 
5534 	return 0;
5535 
5536 }
5537 
5538 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5539 				    char __user *optval, int __user *optlen)
5540 {
5541 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5542 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5543 	struct sctp_hmac_algo_param *hmacs;
5544 	__u16 data_len = 0;
5545 	u32 num_idents;
5546 
5547 	if (!ep->auth_enable)
5548 		return -EACCES;
5549 
5550 	hmacs = ep->auth_hmacs_list;
5551 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5552 
5553 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5554 		return -EINVAL;
5555 
5556 	len = sizeof(struct sctp_hmacalgo) + data_len;
5557 	num_idents = data_len / sizeof(u16);
5558 
5559 	if (put_user(len, optlen))
5560 		return -EFAULT;
5561 	if (put_user(num_idents, &p->shmac_num_idents))
5562 		return -EFAULT;
5563 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5564 		return -EFAULT;
5565 	return 0;
5566 }
5567 
5568 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5569 				    char __user *optval, int __user *optlen)
5570 {
5571 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5572 	struct sctp_authkeyid val;
5573 	struct sctp_association *asoc;
5574 
5575 	if (!ep->auth_enable)
5576 		return -EACCES;
5577 
5578 	if (len < sizeof(struct sctp_authkeyid))
5579 		return -EINVAL;
5580 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5581 		return -EFAULT;
5582 
5583 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5584 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5585 		return -EINVAL;
5586 
5587 	if (asoc)
5588 		val.scact_keynumber = asoc->active_key_id;
5589 	else
5590 		val.scact_keynumber = ep->active_key_id;
5591 
5592 	len = sizeof(struct sctp_authkeyid);
5593 	if (put_user(len, optlen))
5594 		return -EFAULT;
5595 	if (copy_to_user(optval, &val, len))
5596 		return -EFAULT;
5597 
5598 	return 0;
5599 }
5600 
5601 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5602 				    char __user *optval, int __user *optlen)
5603 {
5604 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5605 	struct sctp_authchunks __user *p = (void __user *)optval;
5606 	struct sctp_authchunks val;
5607 	struct sctp_association *asoc;
5608 	struct sctp_chunks_param *ch;
5609 	u32    num_chunks = 0;
5610 	char __user *to;
5611 
5612 	if (!ep->auth_enable)
5613 		return -EACCES;
5614 
5615 	if (len < sizeof(struct sctp_authchunks))
5616 		return -EINVAL;
5617 
5618 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5619 		return -EFAULT;
5620 
5621 	to = p->gauth_chunks;
5622 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5623 	if (!asoc)
5624 		return -EINVAL;
5625 
5626 	ch = asoc->peer.peer_chunks;
5627 	if (!ch)
5628 		goto num;
5629 
5630 	/* See if the user provided enough room for all the data */
5631 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5632 	if (len < num_chunks)
5633 		return -EINVAL;
5634 
5635 	if (copy_to_user(to, ch->chunks, num_chunks))
5636 		return -EFAULT;
5637 num:
5638 	len = sizeof(struct sctp_authchunks) + num_chunks;
5639 	if (put_user(len, optlen))
5640 		return -EFAULT;
5641 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5642 		return -EFAULT;
5643 	return 0;
5644 }
5645 
5646 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5647 				    char __user *optval, int __user *optlen)
5648 {
5649 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5650 	struct sctp_authchunks __user *p = (void __user *)optval;
5651 	struct sctp_authchunks val;
5652 	struct sctp_association *asoc;
5653 	struct sctp_chunks_param *ch;
5654 	u32    num_chunks = 0;
5655 	char __user *to;
5656 
5657 	if (!ep->auth_enable)
5658 		return -EACCES;
5659 
5660 	if (len < sizeof(struct sctp_authchunks))
5661 		return -EINVAL;
5662 
5663 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5664 		return -EFAULT;
5665 
5666 	to = p->gauth_chunks;
5667 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5668 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5669 		return -EINVAL;
5670 
5671 	if (asoc)
5672 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5673 	else
5674 		ch = ep->auth_chunk_list;
5675 
5676 	if (!ch)
5677 		goto num;
5678 
5679 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5680 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5681 		return -EINVAL;
5682 
5683 	if (copy_to_user(to, ch->chunks, num_chunks))
5684 		return -EFAULT;
5685 num:
5686 	len = sizeof(struct sctp_authchunks) + num_chunks;
5687 	if (put_user(len, optlen))
5688 		return -EFAULT;
5689 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5690 		return -EFAULT;
5691 
5692 	return 0;
5693 }
5694 
5695 /*
5696  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5697  * This option gets the current number of associations that are attached
5698  * to a one-to-many style socket.  The option value is an uint32_t.
5699  */
5700 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5701 				    char __user *optval, int __user *optlen)
5702 {
5703 	struct sctp_sock *sp = sctp_sk(sk);
5704 	struct sctp_association *asoc;
5705 	u32 val = 0;
5706 
5707 	if (sctp_style(sk, TCP))
5708 		return -EOPNOTSUPP;
5709 
5710 	if (len < sizeof(u32))
5711 		return -EINVAL;
5712 
5713 	len = sizeof(u32);
5714 
5715 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5716 		val++;
5717 	}
5718 
5719 	if (put_user(len, optlen))
5720 		return -EFAULT;
5721 	if (copy_to_user(optval, &val, len))
5722 		return -EFAULT;
5723 
5724 	return 0;
5725 }
5726 
5727 /*
5728  * 8.1.23 SCTP_AUTO_ASCONF
5729  * See the corresponding setsockopt entry as description
5730  */
5731 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5732 				   char __user *optval, int __user *optlen)
5733 {
5734 	int val = 0;
5735 
5736 	if (len < sizeof(int))
5737 		return -EINVAL;
5738 
5739 	len = sizeof(int);
5740 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5741 		val = 1;
5742 	if (put_user(len, optlen))
5743 		return -EFAULT;
5744 	if (copy_to_user(optval, &val, len))
5745 		return -EFAULT;
5746 	return 0;
5747 }
5748 
5749 /*
5750  * 8.2.6. Get the Current Identifiers of Associations
5751  *        (SCTP_GET_ASSOC_ID_LIST)
5752  *
5753  * This option gets the current list of SCTP association identifiers of
5754  * the SCTP associations handled by a one-to-many style socket.
5755  */
5756 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5757 				    char __user *optval, int __user *optlen)
5758 {
5759 	struct sctp_sock *sp = sctp_sk(sk);
5760 	struct sctp_association *asoc;
5761 	struct sctp_assoc_ids *ids;
5762 	u32 num = 0;
5763 
5764 	if (sctp_style(sk, TCP))
5765 		return -EOPNOTSUPP;
5766 
5767 	if (len < sizeof(struct sctp_assoc_ids))
5768 		return -EINVAL;
5769 
5770 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5771 		num++;
5772 	}
5773 
5774 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5775 		return -EINVAL;
5776 
5777 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5778 
5779 	ids = kmalloc(len, GFP_KERNEL);
5780 	if (unlikely(!ids))
5781 		return -ENOMEM;
5782 
5783 	ids->gaids_number_of_ids = num;
5784 	num = 0;
5785 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5786 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5787 	}
5788 
5789 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5790 		kfree(ids);
5791 		return -EFAULT;
5792 	}
5793 
5794 	kfree(ids);
5795 	return 0;
5796 }
5797 
5798 /*
5799  * SCTP_PEER_ADDR_THLDS
5800  *
5801  * This option allows us to fetch the partially failed threshold for one or all
5802  * transports in an association.  See Section 6.1 of:
5803  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5804  */
5805 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5806 					    char __user *optval,
5807 					    int len,
5808 					    int __user *optlen)
5809 {
5810 	struct sctp_paddrthlds val;
5811 	struct sctp_transport *trans;
5812 	struct sctp_association *asoc;
5813 
5814 	if (len < sizeof(struct sctp_paddrthlds))
5815 		return -EINVAL;
5816 	len = sizeof(struct sctp_paddrthlds);
5817 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5818 		return -EFAULT;
5819 
5820 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5821 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5822 		if (!asoc)
5823 			return -ENOENT;
5824 
5825 		val.spt_pathpfthld = asoc->pf_retrans;
5826 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5827 	} else {
5828 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5829 					       val.spt_assoc_id);
5830 		if (!trans)
5831 			return -ENOENT;
5832 
5833 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5834 		val.spt_pathpfthld = trans->pf_retrans;
5835 	}
5836 
5837 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5838 		return -EFAULT;
5839 
5840 	return 0;
5841 }
5842 
5843 /*
5844  * SCTP_GET_ASSOC_STATS
5845  *
5846  * This option retrieves local per endpoint statistics. It is modeled
5847  * after OpenSolaris' implementation
5848  */
5849 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5850 				       char __user *optval,
5851 				       int __user *optlen)
5852 {
5853 	struct sctp_assoc_stats sas;
5854 	struct sctp_association *asoc = NULL;
5855 
5856 	/* User must provide at least the assoc id */
5857 	if (len < sizeof(sctp_assoc_t))
5858 		return -EINVAL;
5859 
5860 	/* Allow the struct to grow and fill in as much as possible */
5861 	len = min_t(size_t, len, sizeof(sas));
5862 
5863 	if (copy_from_user(&sas, optval, len))
5864 		return -EFAULT;
5865 
5866 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5867 	if (!asoc)
5868 		return -EINVAL;
5869 
5870 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5871 	sas.sas_gapcnt = asoc->stats.gapcnt;
5872 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5873 	sas.sas_osacks = asoc->stats.osacks;
5874 	sas.sas_isacks = asoc->stats.isacks;
5875 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5876 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5877 	sas.sas_oodchunks = asoc->stats.oodchunks;
5878 	sas.sas_iodchunks = asoc->stats.iodchunks;
5879 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5880 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5881 	sas.sas_idupchunks = asoc->stats.idupchunks;
5882 	sas.sas_opackets = asoc->stats.opackets;
5883 	sas.sas_ipackets = asoc->stats.ipackets;
5884 
5885 	/* New high max rto observed, will return 0 if not a single
5886 	 * RTO update took place. obs_rto_ipaddr will be bogus
5887 	 * in such a case
5888 	 */
5889 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5890 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5891 		sizeof(struct sockaddr_storage));
5892 
5893 	/* Mark beginning of a new observation period */
5894 	asoc->stats.max_obs_rto = asoc->rto_min;
5895 
5896 	if (put_user(len, optlen))
5897 		return -EFAULT;
5898 
5899 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5900 
5901 	if (copy_to_user(optval, &sas, len))
5902 		return -EFAULT;
5903 
5904 	return 0;
5905 }
5906 
5907 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5908 				       char __user *optval,
5909 				       int __user *optlen)
5910 {
5911 	int val = 0;
5912 
5913 	if (len < sizeof(int))
5914 		return -EINVAL;
5915 
5916 	len = sizeof(int);
5917 	if (sctp_sk(sk)->recvrcvinfo)
5918 		val = 1;
5919 	if (put_user(len, optlen))
5920 		return -EFAULT;
5921 	if (copy_to_user(optval, &val, len))
5922 		return -EFAULT;
5923 
5924 	return 0;
5925 }
5926 
5927 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5928 				       char __user *optval,
5929 				       int __user *optlen)
5930 {
5931 	int val = 0;
5932 
5933 	if (len < sizeof(int))
5934 		return -EINVAL;
5935 
5936 	len = sizeof(int);
5937 	if (sctp_sk(sk)->recvnxtinfo)
5938 		val = 1;
5939 	if (put_user(len, optlen))
5940 		return -EFAULT;
5941 	if (copy_to_user(optval, &val, len))
5942 		return -EFAULT;
5943 
5944 	return 0;
5945 }
5946 
5947 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5948 			   char __user *optval, int __user *optlen)
5949 {
5950 	int retval = 0;
5951 	int len;
5952 
5953 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5954 
5955 	/* I can hardly begin to describe how wrong this is.  This is
5956 	 * so broken as to be worse than useless.  The API draft
5957 	 * REALLY is NOT helpful here...  I am not convinced that the
5958 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5959 	 * are at all well-founded.
5960 	 */
5961 	if (level != SOL_SCTP) {
5962 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5963 
5964 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5965 		return retval;
5966 	}
5967 
5968 	if (get_user(len, optlen))
5969 		return -EFAULT;
5970 
5971 	lock_sock(sk);
5972 
5973 	switch (optname) {
5974 	case SCTP_STATUS:
5975 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5976 		break;
5977 	case SCTP_DISABLE_FRAGMENTS:
5978 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5979 							   optlen);
5980 		break;
5981 	case SCTP_EVENTS:
5982 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5983 		break;
5984 	case SCTP_AUTOCLOSE:
5985 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5986 		break;
5987 	case SCTP_SOCKOPT_PEELOFF:
5988 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5989 		break;
5990 	case SCTP_PEER_ADDR_PARAMS:
5991 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5992 							  optlen);
5993 		break;
5994 	case SCTP_DELAYED_SACK:
5995 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5996 							  optlen);
5997 		break;
5998 	case SCTP_INITMSG:
5999 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6000 		break;
6001 	case SCTP_GET_PEER_ADDRS:
6002 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6003 						    optlen);
6004 		break;
6005 	case SCTP_GET_LOCAL_ADDRS:
6006 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6007 						     optlen);
6008 		break;
6009 	case SCTP_SOCKOPT_CONNECTX3:
6010 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6011 		break;
6012 	case SCTP_DEFAULT_SEND_PARAM:
6013 		retval = sctp_getsockopt_default_send_param(sk, len,
6014 							    optval, optlen);
6015 		break;
6016 	case SCTP_DEFAULT_SNDINFO:
6017 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6018 							 optval, optlen);
6019 		break;
6020 	case SCTP_PRIMARY_ADDR:
6021 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6022 		break;
6023 	case SCTP_NODELAY:
6024 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6025 		break;
6026 	case SCTP_RTOINFO:
6027 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6028 		break;
6029 	case SCTP_ASSOCINFO:
6030 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6031 		break;
6032 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6033 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6034 		break;
6035 	case SCTP_MAXSEG:
6036 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6037 		break;
6038 	case SCTP_GET_PEER_ADDR_INFO:
6039 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6040 							optlen);
6041 		break;
6042 	case SCTP_ADAPTATION_LAYER:
6043 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6044 							optlen);
6045 		break;
6046 	case SCTP_CONTEXT:
6047 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6048 		break;
6049 	case SCTP_FRAGMENT_INTERLEAVE:
6050 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6051 							     optlen);
6052 		break;
6053 	case SCTP_PARTIAL_DELIVERY_POINT:
6054 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6055 								optlen);
6056 		break;
6057 	case SCTP_MAX_BURST:
6058 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6059 		break;
6060 	case SCTP_AUTH_KEY:
6061 	case SCTP_AUTH_CHUNK:
6062 	case SCTP_AUTH_DELETE_KEY:
6063 		retval = -EOPNOTSUPP;
6064 		break;
6065 	case SCTP_HMAC_IDENT:
6066 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6067 		break;
6068 	case SCTP_AUTH_ACTIVE_KEY:
6069 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6070 		break;
6071 	case SCTP_PEER_AUTH_CHUNKS:
6072 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6073 							optlen);
6074 		break;
6075 	case SCTP_LOCAL_AUTH_CHUNKS:
6076 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6077 							optlen);
6078 		break;
6079 	case SCTP_GET_ASSOC_NUMBER:
6080 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6081 		break;
6082 	case SCTP_GET_ASSOC_ID_LIST:
6083 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6084 		break;
6085 	case SCTP_AUTO_ASCONF:
6086 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6087 		break;
6088 	case SCTP_PEER_ADDR_THLDS:
6089 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6090 		break;
6091 	case SCTP_GET_ASSOC_STATS:
6092 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6093 		break;
6094 	case SCTP_RECVRCVINFO:
6095 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6096 		break;
6097 	case SCTP_RECVNXTINFO:
6098 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6099 		break;
6100 	default:
6101 		retval = -ENOPROTOOPT;
6102 		break;
6103 	}
6104 
6105 	release_sock(sk);
6106 	return retval;
6107 }
6108 
6109 static void sctp_hash(struct sock *sk)
6110 {
6111 	/* STUB */
6112 }
6113 
6114 static void sctp_unhash(struct sock *sk)
6115 {
6116 	/* STUB */
6117 }
6118 
6119 /* Check if port is acceptable.  Possibly find first available port.
6120  *
6121  * The port hash table (contained in the 'global' SCTP protocol storage
6122  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6123  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6124  * list (the list number is the port number hashed out, so as you
6125  * would expect from a hash function, all the ports in a given list have
6126  * such a number that hashes out to the same list number; you were
6127  * expecting that, right?); so each list has a set of ports, with a
6128  * link to the socket (struct sock) that uses it, the port number and
6129  * a fastreuse flag (FIXME: NPI ipg).
6130  */
6131 static struct sctp_bind_bucket *sctp_bucket_create(
6132 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6133 
6134 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6135 {
6136 	struct sctp_bind_hashbucket *head; /* hash list */
6137 	struct sctp_bind_bucket *pp;
6138 	unsigned short snum;
6139 	int ret;
6140 
6141 	snum = ntohs(addr->v4.sin_port);
6142 
6143 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6144 
6145 	local_bh_disable();
6146 
6147 	if (snum == 0) {
6148 		/* Search for an available port. */
6149 		int low, high, remaining, index;
6150 		unsigned int rover;
6151 		struct net *net = sock_net(sk);
6152 
6153 		inet_get_local_port_range(net, &low, &high);
6154 		remaining = (high - low) + 1;
6155 		rover = prandom_u32() % remaining + low;
6156 
6157 		do {
6158 			rover++;
6159 			if ((rover < low) || (rover > high))
6160 				rover = low;
6161 			if (inet_is_local_reserved_port(net, rover))
6162 				continue;
6163 			index = sctp_phashfn(sock_net(sk), rover);
6164 			head = &sctp_port_hashtable[index];
6165 			spin_lock(&head->lock);
6166 			sctp_for_each_hentry(pp, &head->chain)
6167 				if ((pp->port == rover) &&
6168 				    net_eq(sock_net(sk), pp->net))
6169 					goto next;
6170 			break;
6171 		next:
6172 			spin_unlock(&head->lock);
6173 		} while (--remaining > 0);
6174 
6175 		/* Exhausted local port range during search? */
6176 		ret = 1;
6177 		if (remaining <= 0)
6178 			goto fail;
6179 
6180 		/* OK, here is the one we will use.  HEAD (the port
6181 		 * hash table list entry) is non-NULL and we hold it's
6182 		 * mutex.
6183 		 */
6184 		snum = rover;
6185 	} else {
6186 		/* We are given an specific port number; we verify
6187 		 * that it is not being used. If it is used, we will
6188 		 * exahust the search in the hash list corresponding
6189 		 * to the port number (snum) - we detect that with the
6190 		 * port iterator, pp being NULL.
6191 		 */
6192 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6193 		spin_lock(&head->lock);
6194 		sctp_for_each_hentry(pp, &head->chain) {
6195 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6196 				goto pp_found;
6197 		}
6198 	}
6199 	pp = NULL;
6200 	goto pp_not_found;
6201 pp_found:
6202 	if (!hlist_empty(&pp->owner)) {
6203 		/* We had a port hash table hit - there is an
6204 		 * available port (pp != NULL) and it is being
6205 		 * used by other socket (pp->owner not empty); that other
6206 		 * socket is going to be sk2.
6207 		 */
6208 		int reuse = sk->sk_reuse;
6209 		struct sock *sk2;
6210 
6211 		pr_debug("%s: found a possible match\n", __func__);
6212 
6213 		if (pp->fastreuse && sk->sk_reuse &&
6214 			sk->sk_state != SCTP_SS_LISTENING)
6215 			goto success;
6216 
6217 		/* Run through the list of sockets bound to the port
6218 		 * (pp->port) [via the pointers bind_next and
6219 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6220 		 * we get the endpoint they describe and run through
6221 		 * the endpoint's list of IP (v4 or v6) addresses,
6222 		 * comparing each of the addresses with the address of
6223 		 * the socket sk. If we find a match, then that means
6224 		 * that this port/socket (sk) combination are already
6225 		 * in an endpoint.
6226 		 */
6227 		sk_for_each_bound(sk2, &pp->owner) {
6228 			struct sctp_endpoint *ep2;
6229 			ep2 = sctp_sk(sk2)->ep;
6230 
6231 			if (sk == sk2 ||
6232 			    (reuse && sk2->sk_reuse &&
6233 			     sk2->sk_state != SCTP_SS_LISTENING))
6234 				continue;
6235 
6236 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6237 						 sctp_sk(sk2), sctp_sk(sk))) {
6238 				ret = (long)sk2;
6239 				goto fail_unlock;
6240 			}
6241 		}
6242 
6243 		pr_debug("%s: found a match\n", __func__);
6244 	}
6245 pp_not_found:
6246 	/* If there was a hash table miss, create a new port.  */
6247 	ret = 1;
6248 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6249 		goto fail_unlock;
6250 
6251 	/* In either case (hit or miss), make sure fastreuse is 1 only
6252 	 * if sk->sk_reuse is too (that is, if the caller requested
6253 	 * SO_REUSEADDR on this socket -sk-).
6254 	 */
6255 	if (hlist_empty(&pp->owner)) {
6256 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6257 			pp->fastreuse = 1;
6258 		else
6259 			pp->fastreuse = 0;
6260 	} else if (pp->fastreuse &&
6261 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6262 		pp->fastreuse = 0;
6263 
6264 	/* We are set, so fill up all the data in the hash table
6265 	 * entry, tie the socket list information with the rest of the
6266 	 * sockets FIXME: Blurry, NPI (ipg).
6267 	 */
6268 success:
6269 	if (!sctp_sk(sk)->bind_hash) {
6270 		inet_sk(sk)->inet_num = snum;
6271 		sk_add_bind_node(sk, &pp->owner);
6272 		sctp_sk(sk)->bind_hash = pp;
6273 	}
6274 	ret = 0;
6275 
6276 fail_unlock:
6277 	spin_unlock(&head->lock);
6278 
6279 fail:
6280 	local_bh_enable();
6281 	return ret;
6282 }
6283 
6284 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6285  * port is requested.
6286  */
6287 static int sctp_get_port(struct sock *sk, unsigned short snum)
6288 {
6289 	union sctp_addr addr;
6290 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6291 
6292 	/* Set up a dummy address struct from the sk. */
6293 	af->from_sk(&addr, sk);
6294 	addr.v4.sin_port = htons(snum);
6295 
6296 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6297 	return !!sctp_get_port_local(sk, &addr);
6298 }
6299 
6300 /*
6301  *  Move a socket to LISTENING state.
6302  */
6303 static int sctp_listen_start(struct sock *sk, int backlog)
6304 {
6305 	struct sctp_sock *sp = sctp_sk(sk);
6306 	struct sctp_endpoint *ep = sp->ep;
6307 	struct crypto_hash *tfm = NULL;
6308 	char alg[32];
6309 
6310 	/* Allocate HMAC for generating cookie. */
6311 	if (!sp->hmac && sp->sctp_hmac_alg) {
6312 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6313 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6314 		if (IS_ERR(tfm)) {
6315 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6316 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6317 			return -ENOSYS;
6318 		}
6319 		sctp_sk(sk)->hmac = tfm;
6320 	}
6321 
6322 	/*
6323 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6324 	 * call that allows new associations to be accepted, the system
6325 	 * picks an ephemeral port and will choose an address set equivalent
6326 	 * to binding with a wildcard address.
6327 	 *
6328 	 * This is not currently spelled out in the SCTP sockets
6329 	 * extensions draft, but follows the practice as seen in TCP
6330 	 * sockets.
6331 	 *
6332 	 */
6333 	sk->sk_state = SCTP_SS_LISTENING;
6334 	if (!ep->base.bind_addr.port) {
6335 		if (sctp_autobind(sk))
6336 			return -EAGAIN;
6337 	} else {
6338 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6339 			sk->sk_state = SCTP_SS_CLOSED;
6340 			return -EADDRINUSE;
6341 		}
6342 	}
6343 
6344 	sk->sk_max_ack_backlog = backlog;
6345 	sctp_hash_endpoint(ep);
6346 	return 0;
6347 }
6348 
6349 /*
6350  * 4.1.3 / 5.1.3 listen()
6351  *
6352  *   By default, new associations are not accepted for UDP style sockets.
6353  *   An application uses listen() to mark a socket as being able to
6354  *   accept new associations.
6355  *
6356  *   On TCP style sockets, applications use listen() to ready the SCTP
6357  *   endpoint for accepting inbound associations.
6358  *
6359  *   On both types of endpoints a backlog of '0' disables listening.
6360  *
6361  *  Move a socket to LISTENING state.
6362  */
6363 int sctp_inet_listen(struct socket *sock, int backlog)
6364 {
6365 	struct sock *sk = sock->sk;
6366 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6367 	int err = -EINVAL;
6368 
6369 	if (unlikely(backlog < 0))
6370 		return err;
6371 
6372 	lock_sock(sk);
6373 
6374 	/* Peeled-off sockets are not allowed to listen().  */
6375 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6376 		goto out;
6377 
6378 	if (sock->state != SS_UNCONNECTED)
6379 		goto out;
6380 
6381 	/* If backlog is zero, disable listening. */
6382 	if (!backlog) {
6383 		if (sctp_sstate(sk, CLOSED))
6384 			goto out;
6385 
6386 		err = 0;
6387 		sctp_unhash_endpoint(ep);
6388 		sk->sk_state = SCTP_SS_CLOSED;
6389 		if (sk->sk_reuse)
6390 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6391 		goto out;
6392 	}
6393 
6394 	/* If we are already listening, just update the backlog */
6395 	if (sctp_sstate(sk, LISTENING))
6396 		sk->sk_max_ack_backlog = backlog;
6397 	else {
6398 		err = sctp_listen_start(sk, backlog);
6399 		if (err)
6400 			goto out;
6401 	}
6402 
6403 	err = 0;
6404 out:
6405 	release_sock(sk);
6406 	return err;
6407 }
6408 
6409 /*
6410  * This function is done by modeling the current datagram_poll() and the
6411  * tcp_poll().  Note that, based on these implementations, we don't
6412  * lock the socket in this function, even though it seems that,
6413  * ideally, locking or some other mechanisms can be used to ensure
6414  * the integrity of the counters (sndbuf and wmem_alloc) used
6415  * in this place.  We assume that we don't need locks either until proven
6416  * otherwise.
6417  *
6418  * Another thing to note is that we include the Async I/O support
6419  * here, again, by modeling the current TCP/UDP code.  We don't have
6420  * a good way to test with it yet.
6421  */
6422 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6423 {
6424 	struct sock *sk = sock->sk;
6425 	struct sctp_sock *sp = sctp_sk(sk);
6426 	unsigned int mask;
6427 
6428 	poll_wait(file, sk_sleep(sk), wait);
6429 
6430 	/* A TCP-style listening socket becomes readable when the accept queue
6431 	 * is not empty.
6432 	 */
6433 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6434 		return (!list_empty(&sp->ep->asocs)) ?
6435 			(POLLIN | POLLRDNORM) : 0;
6436 
6437 	mask = 0;
6438 
6439 	/* Is there any exceptional events?  */
6440 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6441 		mask |= POLLERR |
6442 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6443 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6444 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6445 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6446 		mask |= POLLHUP;
6447 
6448 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6449 	if (!skb_queue_empty(&sk->sk_receive_queue))
6450 		mask |= POLLIN | POLLRDNORM;
6451 
6452 	/* The association is either gone or not ready.  */
6453 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6454 		return mask;
6455 
6456 	/* Is it writable?  */
6457 	if (sctp_writeable(sk)) {
6458 		mask |= POLLOUT | POLLWRNORM;
6459 	} else {
6460 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6461 		/*
6462 		 * Since the socket is not locked, the buffer
6463 		 * might be made available after the writeable check and
6464 		 * before the bit is set.  This could cause a lost I/O
6465 		 * signal.  tcp_poll() has a race breaker for this race
6466 		 * condition.  Based on their implementation, we put
6467 		 * in the following code to cover it as well.
6468 		 */
6469 		if (sctp_writeable(sk))
6470 			mask |= POLLOUT | POLLWRNORM;
6471 	}
6472 	return mask;
6473 }
6474 
6475 /********************************************************************
6476  * 2nd Level Abstractions
6477  ********************************************************************/
6478 
6479 static struct sctp_bind_bucket *sctp_bucket_create(
6480 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6481 {
6482 	struct sctp_bind_bucket *pp;
6483 
6484 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6485 	if (pp) {
6486 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6487 		pp->port = snum;
6488 		pp->fastreuse = 0;
6489 		INIT_HLIST_HEAD(&pp->owner);
6490 		pp->net = net;
6491 		hlist_add_head(&pp->node, &head->chain);
6492 	}
6493 	return pp;
6494 }
6495 
6496 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6497 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6498 {
6499 	if (pp && hlist_empty(&pp->owner)) {
6500 		__hlist_del(&pp->node);
6501 		kmem_cache_free(sctp_bucket_cachep, pp);
6502 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6503 	}
6504 }
6505 
6506 /* Release this socket's reference to a local port.  */
6507 static inline void __sctp_put_port(struct sock *sk)
6508 {
6509 	struct sctp_bind_hashbucket *head =
6510 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6511 						  inet_sk(sk)->inet_num)];
6512 	struct sctp_bind_bucket *pp;
6513 
6514 	spin_lock(&head->lock);
6515 	pp = sctp_sk(sk)->bind_hash;
6516 	__sk_del_bind_node(sk);
6517 	sctp_sk(sk)->bind_hash = NULL;
6518 	inet_sk(sk)->inet_num = 0;
6519 	sctp_bucket_destroy(pp);
6520 	spin_unlock(&head->lock);
6521 }
6522 
6523 void sctp_put_port(struct sock *sk)
6524 {
6525 	local_bh_disable();
6526 	__sctp_put_port(sk);
6527 	local_bh_enable();
6528 }
6529 
6530 /*
6531  * The system picks an ephemeral port and choose an address set equivalent
6532  * to binding with a wildcard address.
6533  * One of those addresses will be the primary address for the association.
6534  * This automatically enables the multihoming capability of SCTP.
6535  */
6536 static int sctp_autobind(struct sock *sk)
6537 {
6538 	union sctp_addr autoaddr;
6539 	struct sctp_af *af;
6540 	__be16 port;
6541 
6542 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6543 	af = sctp_sk(sk)->pf->af;
6544 
6545 	port = htons(inet_sk(sk)->inet_num);
6546 	af->inaddr_any(&autoaddr, port);
6547 
6548 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6549 }
6550 
6551 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6552  *
6553  * From RFC 2292
6554  * 4.2 The cmsghdr Structure *
6555  *
6556  * When ancillary data is sent or received, any number of ancillary data
6557  * objects can be specified by the msg_control and msg_controllen members of
6558  * the msghdr structure, because each object is preceded by
6559  * a cmsghdr structure defining the object's length (the cmsg_len member).
6560  * Historically Berkeley-derived implementations have passed only one object
6561  * at a time, but this API allows multiple objects to be
6562  * passed in a single call to sendmsg() or recvmsg(). The following example
6563  * shows two ancillary data objects in a control buffer.
6564  *
6565  *   |<--------------------------- msg_controllen -------------------------->|
6566  *   |                                                                       |
6567  *
6568  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6569  *
6570  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6571  *   |                                   |                                   |
6572  *
6573  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6574  *
6575  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6576  *   |                                |  |                                |  |
6577  *
6578  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6579  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6580  *
6581  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6582  *
6583  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6584  *    ^
6585  *    |
6586  *
6587  * msg_control
6588  * points here
6589  */
6590 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6591 {
6592 	struct cmsghdr *cmsg;
6593 	struct msghdr *my_msg = (struct msghdr *)msg;
6594 
6595 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
6596 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6597 		if (!CMSG_OK(my_msg, cmsg))
6598 			return -EINVAL;
6599 
6600 		/* Should we parse this header or ignore?  */
6601 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6602 			continue;
6603 
6604 		/* Strictly check lengths following example in SCM code.  */
6605 		switch (cmsg->cmsg_type) {
6606 		case SCTP_INIT:
6607 			/* SCTP Socket API Extension
6608 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6609 			 *
6610 			 * This cmsghdr structure provides information for
6611 			 * initializing new SCTP associations with sendmsg().
6612 			 * The SCTP_INITMSG socket option uses this same data
6613 			 * structure.  This structure is not used for
6614 			 * recvmsg().
6615 			 *
6616 			 * cmsg_level    cmsg_type      cmsg_data[]
6617 			 * ------------  ------------   ----------------------
6618 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6619 			 */
6620 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6621 				return -EINVAL;
6622 
6623 			cmsgs->init = CMSG_DATA(cmsg);
6624 			break;
6625 
6626 		case SCTP_SNDRCV:
6627 			/* SCTP Socket API Extension
6628 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6629 			 *
6630 			 * This cmsghdr structure specifies SCTP options for
6631 			 * sendmsg() and describes SCTP header information
6632 			 * about a received message through recvmsg().
6633 			 *
6634 			 * cmsg_level    cmsg_type      cmsg_data[]
6635 			 * ------------  ------------   ----------------------
6636 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6637 			 */
6638 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6639 				return -EINVAL;
6640 
6641 			cmsgs->srinfo = CMSG_DATA(cmsg);
6642 
6643 			if (cmsgs->srinfo->sinfo_flags &
6644 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6645 			      SCTP_ABORT | SCTP_EOF))
6646 				return -EINVAL;
6647 			break;
6648 
6649 		case SCTP_SNDINFO:
6650 			/* SCTP Socket API Extension
6651 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6652 			 *
6653 			 * This cmsghdr structure specifies SCTP options for
6654 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6655 			 * SCTP_SNDRCV which has been deprecated.
6656 			 *
6657 			 * cmsg_level    cmsg_type      cmsg_data[]
6658 			 * ------------  ------------   ---------------------
6659 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6660 			 */
6661 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6662 				return -EINVAL;
6663 
6664 			cmsgs->sinfo = CMSG_DATA(cmsg);
6665 
6666 			if (cmsgs->sinfo->snd_flags &
6667 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6668 			      SCTP_ABORT | SCTP_EOF))
6669 				return -EINVAL;
6670 			break;
6671 		default:
6672 			return -EINVAL;
6673 		}
6674 	}
6675 
6676 	return 0;
6677 }
6678 
6679 /*
6680  * Wait for a packet..
6681  * Note: This function is the same function as in core/datagram.c
6682  * with a few modifications to make lksctp work.
6683  */
6684 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6685 {
6686 	int error;
6687 	DEFINE_WAIT(wait);
6688 
6689 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6690 
6691 	/* Socket errors? */
6692 	error = sock_error(sk);
6693 	if (error)
6694 		goto out;
6695 
6696 	if (!skb_queue_empty(&sk->sk_receive_queue))
6697 		goto ready;
6698 
6699 	/* Socket shut down?  */
6700 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6701 		goto out;
6702 
6703 	/* Sequenced packets can come disconnected.  If so we report the
6704 	 * problem.
6705 	 */
6706 	error = -ENOTCONN;
6707 
6708 	/* Is there a good reason to think that we may receive some data?  */
6709 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6710 		goto out;
6711 
6712 	/* Handle signals.  */
6713 	if (signal_pending(current))
6714 		goto interrupted;
6715 
6716 	/* Let another process have a go.  Since we are going to sleep
6717 	 * anyway.  Note: This may cause odd behaviors if the message
6718 	 * does not fit in the user's buffer, but this seems to be the
6719 	 * only way to honor MSG_DONTWAIT realistically.
6720 	 */
6721 	release_sock(sk);
6722 	*timeo_p = schedule_timeout(*timeo_p);
6723 	lock_sock(sk);
6724 
6725 ready:
6726 	finish_wait(sk_sleep(sk), &wait);
6727 	return 0;
6728 
6729 interrupted:
6730 	error = sock_intr_errno(*timeo_p);
6731 
6732 out:
6733 	finish_wait(sk_sleep(sk), &wait);
6734 	*err = error;
6735 	return error;
6736 }
6737 
6738 /* Receive a datagram.
6739  * Note: This is pretty much the same routine as in core/datagram.c
6740  * with a few changes to make lksctp work.
6741  */
6742 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6743 				       int noblock, int *err)
6744 {
6745 	int error;
6746 	struct sk_buff *skb;
6747 	long timeo;
6748 
6749 	timeo = sock_rcvtimeo(sk, noblock);
6750 
6751 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6752 		 MAX_SCHEDULE_TIMEOUT);
6753 
6754 	do {
6755 		/* Again only user level code calls this function,
6756 		 * so nothing interrupt level
6757 		 * will suddenly eat the receive_queue.
6758 		 *
6759 		 *  Look at current nfs client by the way...
6760 		 *  However, this function was correct in any case. 8)
6761 		 */
6762 		if (flags & MSG_PEEK) {
6763 			spin_lock_bh(&sk->sk_receive_queue.lock);
6764 			skb = skb_peek(&sk->sk_receive_queue);
6765 			if (skb)
6766 				atomic_inc(&skb->users);
6767 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6768 		} else {
6769 			skb = skb_dequeue(&sk->sk_receive_queue);
6770 		}
6771 
6772 		if (skb)
6773 			return skb;
6774 
6775 		/* Caller is allowed not to check sk->sk_err before calling. */
6776 		error = sock_error(sk);
6777 		if (error)
6778 			goto no_packet;
6779 
6780 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6781 			break;
6782 
6783 		if (sk_can_busy_loop(sk) &&
6784 		    sk_busy_loop(sk, noblock))
6785 			continue;
6786 
6787 		/* User doesn't want to wait.  */
6788 		error = -EAGAIN;
6789 		if (!timeo)
6790 			goto no_packet;
6791 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6792 
6793 	return NULL;
6794 
6795 no_packet:
6796 	*err = error;
6797 	return NULL;
6798 }
6799 
6800 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6801 static void __sctp_write_space(struct sctp_association *asoc)
6802 {
6803 	struct sock *sk = asoc->base.sk;
6804 	struct socket *sock = sk->sk_socket;
6805 
6806 	if ((sctp_wspace(asoc) > 0) && sock) {
6807 		if (waitqueue_active(&asoc->wait))
6808 			wake_up_interruptible(&asoc->wait);
6809 
6810 		if (sctp_writeable(sk)) {
6811 			wait_queue_head_t *wq = sk_sleep(sk);
6812 
6813 			if (wq && waitqueue_active(wq))
6814 				wake_up_interruptible(wq);
6815 
6816 			/* Note that we try to include the Async I/O support
6817 			 * here by modeling from the current TCP/UDP code.
6818 			 * We have not tested with it yet.
6819 			 */
6820 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6821 				sock_wake_async(sock,
6822 						SOCK_WAKE_SPACE, POLL_OUT);
6823 		}
6824 	}
6825 }
6826 
6827 static void sctp_wake_up_waiters(struct sock *sk,
6828 				 struct sctp_association *asoc)
6829 {
6830 	struct sctp_association *tmp = asoc;
6831 
6832 	/* We do accounting for the sndbuf space per association,
6833 	 * so we only need to wake our own association.
6834 	 */
6835 	if (asoc->ep->sndbuf_policy)
6836 		return __sctp_write_space(asoc);
6837 
6838 	/* If association goes down and is just flushing its
6839 	 * outq, then just normally notify others.
6840 	 */
6841 	if (asoc->base.dead)
6842 		return sctp_write_space(sk);
6843 
6844 	/* Accounting for the sndbuf space is per socket, so we
6845 	 * need to wake up others, try to be fair and in case of
6846 	 * other associations, let them have a go first instead
6847 	 * of just doing a sctp_write_space() call.
6848 	 *
6849 	 * Note that we reach sctp_wake_up_waiters() only when
6850 	 * associations free up queued chunks, thus we are under
6851 	 * lock and the list of associations on a socket is
6852 	 * guaranteed not to change.
6853 	 */
6854 	for (tmp = list_next_entry(tmp, asocs); 1;
6855 	     tmp = list_next_entry(tmp, asocs)) {
6856 		/* Manually skip the head element. */
6857 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6858 			continue;
6859 		/* Wake up association. */
6860 		__sctp_write_space(tmp);
6861 		/* We've reached the end. */
6862 		if (tmp == asoc)
6863 			break;
6864 	}
6865 }
6866 
6867 /* Do accounting for the sndbuf space.
6868  * Decrement the used sndbuf space of the corresponding association by the
6869  * data size which was just transmitted(freed).
6870  */
6871 static void sctp_wfree(struct sk_buff *skb)
6872 {
6873 	struct sctp_association *asoc;
6874 	struct sctp_chunk *chunk;
6875 	struct sock *sk;
6876 
6877 	/* Get the saved chunk pointer.  */
6878 	chunk = *((struct sctp_chunk **)(skb->cb));
6879 	asoc = chunk->asoc;
6880 	sk = asoc->base.sk;
6881 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6882 				sizeof(struct sk_buff) +
6883 				sizeof(struct sctp_chunk);
6884 
6885 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6886 
6887 	/*
6888 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6889 	 */
6890 	sk->sk_wmem_queued   -= skb->truesize;
6891 	sk_mem_uncharge(sk, skb->truesize);
6892 
6893 	sock_wfree(skb);
6894 	sctp_wake_up_waiters(sk, asoc);
6895 
6896 	sctp_association_put(asoc);
6897 }
6898 
6899 /* Do accounting for the receive space on the socket.
6900  * Accounting for the association is done in ulpevent.c
6901  * We set this as a destructor for the cloned data skbs so that
6902  * accounting is done at the correct time.
6903  */
6904 void sctp_sock_rfree(struct sk_buff *skb)
6905 {
6906 	struct sock *sk = skb->sk;
6907 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6908 
6909 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6910 
6911 	/*
6912 	 * Mimic the behavior of sock_rfree
6913 	 */
6914 	sk_mem_uncharge(sk, event->rmem_len);
6915 }
6916 
6917 
6918 /* Helper function to wait for space in the sndbuf.  */
6919 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6920 				size_t msg_len)
6921 {
6922 	struct sock *sk = asoc->base.sk;
6923 	int err = 0;
6924 	long current_timeo = *timeo_p;
6925 	DEFINE_WAIT(wait);
6926 
6927 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6928 		 *timeo_p, msg_len);
6929 
6930 	/* Increment the association's refcnt.  */
6931 	sctp_association_hold(asoc);
6932 
6933 	/* Wait on the association specific sndbuf space. */
6934 	for (;;) {
6935 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6936 					  TASK_INTERRUPTIBLE);
6937 		if (!*timeo_p)
6938 			goto do_nonblock;
6939 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6940 		    asoc->base.dead)
6941 			goto do_error;
6942 		if (signal_pending(current))
6943 			goto do_interrupted;
6944 		if (msg_len <= sctp_wspace(asoc))
6945 			break;
6946 
6947 		/* Let another process have a go.  Since we are going
6948 		 * to sleep anyway.
6949 		 */
6950 		release_sock(sk);
6951 		current_timeo = schedule_timeout(current_timeo);
6952 		BUG_ON(sk != asoc->base.sk);
6953 		lock_sock(sk);
6954 
6955 		*timeo_p = current_timeo;
6956 	}
6957 
6958 out:
6959 	finish_wait(&asoc->wait, &wait);
6960 
6961 	/* Release the association's refcnt.  */
6962 	sctp_association_put(asoc);
6963 
6964 	return err;
6965 
6966 do_error:
6967 	err = -EPIPE;
6968 	goto out;
6969 
6970 do_interrupted:
6971 	err = sock_intr_errno(*timeo_p);
6972 	goto out;
6973 
6974 do_nonblock:
6975 	err = -EAGAIN;
6976 	goto out;
6977 }
6978 
6979 void sctp_data_ready(struct sock *sk)
6980 {
6981 	struct socket_wq *wq;
6982 
6983 	rcu_read_lock();
6984 	wq = rcu_dereference(sk->sk_wq);
6985 	if (wq_has_sleeper(wq))
6986 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6987 						POLLRDNORM | POLLRDBAND);
6988 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6989 	rcu_read_unlock();
6990 }
6991 
6992 /* If socket sndbuf has changed, wake up all per association waiters.  */
6993 void sctp_write_space(struct sock *sk)
6994 {
6995 	struct sctp_association *asoc;
6996 
6997 	/* Wake up the tasks in each wait queue.  */
6998 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6999 		__sctp_write_space(asoc);
7000 	}
7001 }
7002 
7003 /* Is there any sndbuf space available on the socket?
7004  *
7005  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7006  * associations on the same socket.  For a UDP-style socket with
7007  * multiple associations, it is possible for it to be "unwriteable"
7008  * prematurely.  I assume that this is acceptable because
7009  * a premature "unwriteable" is better than an accidental "writeable" which
7010  * would cause an unwanted block under certain circumstances.  For the 1-1
7011  * UDP-style sockets or TCP-style sockets, this code should work.
7012  *  - Daisy
7013  */
7014 static int sctp_writeable(struct sock *sk)
7015 {
7016 	int amt = 0;
7017 
7018 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7019 	if (amt < 0)
7020 		amt = 0;
7021 	return amt;
7022 }
7023 
7024 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7025  * returns immediately with EINPROGRESS.
7026  */
7027 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7028 {
7029 	struct sock *sk = asoc->base.sk;
7030 	int err = 0;
7031 	long current_timeo = *timeo_p;
7032 	DEFINE_WAIT(wait);
7033 
7034 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7035 
7036 	/* Increment the association's refcnt.  */
7037 	sctp_association_hold(asoc);
7038 
7039 	for (;;) {
7040 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7041 					  TASK_INTERRUPTIBLE);
7042 		if (!*timeo_p)
7043 			goto do_nonblock;
7044 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7045 			break;
7046 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7047 		    asoc->base.dead)
7048 			goto do_error;
7049 		if (signal_pending(current))
7050 			goto do_interrupted;
7051 
7052 		if (sctp_state(asoc, ESTABLISHED))
7053 			break;
7054 
7055 		/* Let another process have a go.  Since we are going
7056 		 * to sleep anyway.
7057 		 */
7058 		release_sock(sk);
7059 		current_timeo = schedule_timeout(current_timeo);
7060 		lock_sock(sk);
7061 
7062 		*timeo_p = current_timeo;
7063 	}
7064 
7065 out:
7066 	finish_wait(&asoc->wait, &wait);
7067 
7068 	/* Release the association's refcnt.  */
7069 	sctp_association_put(asoc);
7070 
7071 	return err;
7072 
7073 do_error:
7074 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7075 		err = -ETIMEDOUT;
7076 	else
7077 		err = -ECONNREFUSED;
7078 	goto out;
7079 
7080 do_interrupted:
7081 	err = sock_intr_errno(*timeo_p);
7082 	goto out;
7083 
7084 do_nonblock:
7085 	err = -EINPROGRESS;
7086 	goto out;
7087 }
7088 
7089 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7090 {
7091 	struct sctp_endpoint *ep;
7092 	int err = 0;
7093 	DEFINE_WAIT(wait);
7094 
7095 	ep = sctp_sk(sk)->ep;
7096 
7097 
7098 	for (;;) {
7099 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7100 					  TASK_INTERRUPTIBLE);
7101 
7102 		if (list_empty(&ep->asocs)) {
7103 			release_sock(sk);
7104 			timeo = schedule_timeout(timeo);
7105 			lock_sock(sk);
7106 		}
7107 
7108 		err = -EINVAL;
7109 		if (!sctp_sstate(sk, LISTENING))
7110 			break;
7111 
7112 		err = 0;
7113 		if (!list_empty(&ep->asocs))
7114 			break;
7115 
7116 		err = sock_intr_errno(timeo);
7117 		if (signal_pending(current))
7118 			break;
7119 
7120 		err = -EAGAIN;
7121 		if (!timeo)
7122 			break;
7123 	}
7124 
7125 	finish_wait(sk_sleep(sk), &wait);
7126 
7127 	return err;
7128 }
7129 
7130 static void sctp_wait_for_close(struct sock *sk, long timeout)
7131 {
7132 	DEFINE_WAIT(wait);
7133 
7134 	do {
7135 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7136 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7137 			break;
7138 		release_sock(sk);
7139 		timeout = schedule_timeout(timeout);
7140 		lock_sock(sk);
7141 	} while (!signal_pending(current) && timeout);
7142 
7143 	finish_wait(sk_sleep(sk), &wait);
7144 }
7145 
7146 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7147 {
7148 	struct sk_buff *frag;
7149 
7150 	if (!skb->data_len)
7151 		goto done;
7152 
7153 	/* Don't forget the fragments. */
7154 	skb_walk_frags(skb, frag)
7155 		sctp_skb_set_owner_r_frag(frag, sk);
7156 
7157 done:
7158 	sctp_skb_set_owner_r(skb, sk);
7159 }
7160 
7161 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7162 		    struct sctp_association *asoc)
7163 {
7164 	struct inet_sock *inet = inet_sk(sk);
7165 	struct inet_sock *newinet;
7166 
7167 	newsk->sk_type = sk->sk_type;
7168 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7169 	newsk->sk_flags = sk->sk_flags;
7170 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7171 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7172 	newsk->sk_reuse = sk->sk_reuse;
7173 
7174 	newsk->sk_shutdown = sk->sk_shutdown;
7175 	newsk->sk_destruct = sctp_destruct_sock;
7176 	newsk->sk_family = sk->sk_family;
7177 	newsk->sk_protocol = IPPROTO_SCTP;
7178 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7179 	newsk->sk_sndbuf = sk->sk_sndbuf;
7180 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7181 	newsk->sk_lingertime = sk->sk_lingertime;
7182 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7183 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7184 
7185 	newinet = inet_sk(newsk);
7186 
7187 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7188 	 * getsockname() and getpeername()
7189 	 */
7190 	newinet->inet_sport = inet->inet_sport;
7191 	newinet->inet_saddr = inet->inet_saddr;
7192 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7193 	newinet->inet_dport = htons(asoc->peer.port);
7194 	newinet->pmtudisc = inet->pmtudisc;
7195 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7196 
7197 	newinet->uc_ttl = inet->uc_ttl;
7198 	newinet->mc_loop = 1;
7199 	newinet->mc_ttl = 1;
7200 	newinet->mc_index = 0;
7201 	newinet->mc_list = NULL;
7202 }
7203 
7204 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7205  * and its messages to the newsk.
7206  */
7207 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7208 			      struct sctp_association *assoc,
7209 			      sctp_socket_type_t type)
7210 {
7211 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7212 	struct sctp_sock *newsp = sctp_sk(newsk);
7213 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7214 	struct sctp_endpoint *newep = newsp->ep;
7215 	struct sk_buff *skb, *tmp;
7216 	struct sctp_ulpevent *event;
7217 	struct sctp_bind_hashbucket *head;
7218 	struct list_head tmplist;
7219 
7220 	/* Migrate socket buffer sizes and all the socket level options to the
7221 	 * new socket.
7222 	 */
7223 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7224 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7225 	/* Brute force copy old sctp opt. */
7226 	if (oldsp->do_auto_asconf) {
7227 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
7228 		inet_sk_copy_descendant(newsk, oldsk);
7229 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
7230 	} else
7231 		inet_sk_copy_descendant(newsk, oldsk);
7232 
7233 	/* Restore the ep value that was overwritten with the above structure
7234 	 * copy.
7235 	 */
7236 	newsp->ep = newep;
7237 	newsp->hmac = NULL;
7238 
7239 	/* Hook this new socket in to the bind_hash list. */
7240 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7241 						 inet_sk(oldsk)->inet_num)];
7242 	local_bh_disable();
7243 	spin_lock(&head->lock);
7244 	pp = sctp_sk(oldsk)->bind_hash;
7245 	sk_add_bind_node(newsk, &pp->owner);
7246 	sctp_sk(newsk)->bind_hash = pp;
7247 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7248 	spin_unlock(&head->lock);
7249 	local_bh_enable();
7250 
7251 	/* Copy the bind_addr list from the original endpoint to the new
7252 	 * endpoint so that we can handle restarts properly
7253 	 */
7254 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7255 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7256 
7257 	/* Move any messages in the old socket's receive queue that are for the
7258 	 * peeled off association to the new socket's receive queue.
7259 	 */
7260 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7261 		event = sctp_skb2event(skb);
7262 		if (event->asoc == assoc) {
7263 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7264 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7265 			sctp_skb_set_owner_r_frag(skb, newsk);
7266 		}
7267 	}
7268 
7269 	/* Clean up any messages pending delivery due to partial
7270 	 * delivery.   Three cases:
7271 	 * 1) No partial deliver;  no work.
7272 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7273 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7274 	 */
7275 	skb_queue_head_init(&newsp->pd_lobby);
7276 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7277 
7278 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7279 		struct sk_buff_head *queue;
7280 
7281 		/* Decide which queue to move pd_lobby skbs to. */
7282 		if (assoc->ulpq.pd_mode) {
7283 			queue = &newsp->pd_lobby;
7284 		} else
7285 			queue = &newsk->sk_receive_queue;
7286 
7287 		/* Walk through the pd_lobby, looking for skbs that
7288 		 * need moved to the new socket.
7289 		 */
7290 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7291 			event = sctp_skb2event(skb);
7292 			if (event->asoc == assoc) {
7293 				__skb_unlink(skb, &oldsp->pd_lobby);
7294 				__skb_queue_tail(queue, skb);
7295 				sctp_skb_set_owner_r_frag(skb, newsk);
7296 			}
7297 		}
7298 
7299 		/* Clear up any skbs waiting for the partial
7300 		 * delivery to finish.
7301 		 */
7302 		if (assoc->ulpq.pd_mode)
7303 			sctp_clear_pd(oldsk, NULL);
7304 
7305 	}
7306 
7307 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7308 		sctp_skb_set_owner_r_frag(skb, newsk);
7309 
7310 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7311 		sctp_skb_set_owner_r_frag(skb, newsk);
7312 
7313 	/* Set the type of socket to indicate that it is peeled off from the
7314 	 * original UDP-style socket or created with the accept() call on a
7315 	 * TCP-style socket..
7316 	 */
7317 	newsp->type = type;
7318 
7319 	/* Mark the new socket "in-use" by the user so that any packets
7320 	 * that may arrive on the association after we've moved it are
7321 	 * queued to the backlog.  This prevents a potential race between
7322 	 * backlog processing on the old socket and new-packet processing
7323 	 * on the new socket.
7324 	 *
7325 	 * The caller has just allocated newsk so we can guarantee that other
7326 	 * paths won't try to lock it and then oldsk.
7327 	 */
7328 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7329 	sctp_assoc_migrate(assoc, newsk);
7330 
7331 	/* If the association on the newsk is already closed before accept()
7332 	 * is called, set RCV_SHUTDOWN flag.
7333 	 */
7334 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7335 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7336 
7337 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7338 	release_sock(newsk);
7339 }
7340 
7341 
7342 /* This proto struct describes the ULP interface for SCTP.  */
7343 struct proto sctp_prot = {
7344 	.name        =	"SCTP",
7345 	.owner       =	THIS_MODULE,
7346 	.close       =	sctp_close,
7347 	.connect     =	sctp_connect,
7348 	.disconnect  =	sctp_disconnect,
7349 	.accept      =	sctp_accept,
7350 	.ioctl       =	sctp_ioctl,
7351 	.init        =	sctp_init_sock,
7352 	.destroy     =	sctp_destroy_sock,
7353 	.shutdown    =	sctp_shutdown,
7354 	.setsockopt  =	sctp_setsockopt,
7355 	.getsockopt  =	sctp_getsockopt,
7356 	.sendmsg     =	sctp_sendmsg,
7357 	.recvmsg     =	sctp_recvmsg,
7358 	.bind        =	sctp_bind,
7359 	.backlog_rcv =	sctp_backlog_rcv,
7360 	.hash        =	sctp_hash,
7361 	.unhash      =	sctp_unhash,
7362 	.get_port    =	sctp_get_port,
7363 	.obj_size    =  sizeof(struct sctp_sock),
7364 	.sysctl_mem  =  sysctl_sctp_mem,
7365 	.sysctl_rmem =  sysctl_sctp_rmem,
7366 	.sysctl_wmem =  sysctl_sctp_wmem,
7367 	.memory_pressure = &sctp_memory_pressure,
7368 	.enter_memory_pressure = sctp_enter_memory_pressure,
7369 	.memory_allocated = &sctp_memory_allocated,
7370 	.sockets_allocated = &sctp_sockets_allocated,
7371 };
7372 
7373 #if IS_ENABLED(CONFIG_IPV6)
7374 
7375 struct proto sctpv6_prot = {
7376 	.name		= "SCTPv6",
7377 	.owner		= THIS_MODULE,
7378 	.close		= sctp_close,
7379 	.connect	= sctp_connect,
7380 	.disconnect	= sctp_disconnect,
7381 	.accept		= sctp_accept,
7382 	.ioctl		= sctp_ioctl,
7383 	.init		= sctp_init_sock,
7384 	.destroy	= sctp_destroy_sock,
7385 	.shutdown	= sctp_shutdown,
7386 	.setsockopt	= sctp_setsockopt,
7387 	.getsockopt	= sctp_getsockopt,
7388 	.sendmsg	= sctp_sendmsg,
7389 	.recvmsg	= sctp_recvmsg,
7390 	.bind		= sctp_bind,
7391 	.backlog_rcv	= sctp_backlog_rcv,
7392 	.hash		= sctp_hash,
7393 	.unhash		= sctp_unhash,
7394 	.get_port	= sctp_get_port,
7395 	.obj_size	= sizeof(struct sctp6_sock),
7396 	.sysctl_mem	= sysctl_sctp_mem,
7397 	.sysctl_rmem	= sysctl_sctp_rmem,
7398 	.sysctl_wmem	= sysctl_sctp_wmem,
7399 	.memory_pressure = &sctp_memory_pressure,
7400 	.enter_memory_pressure = sctp_enter_memory_pressure,
7401 	.memory_allocated = &sctp_memory_allocated,
7402 	.sockets_allocated = &sctp_sockets_allocated,
7403 };
7404 #endif /* IS_ENABLED(CONFIG_IPV6) */
7405