1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 #include <trace/events/sock.h> 63 64 #include <linux/socket.h> /* for sa_family_t */ 65 #include <linux/export.h> 66 #include <net/sock.h> 67 #include <net/sctp/sctp.h> 68 #include <net/sctp/sm.h> 69 #include <net/sctp/stream_sched.h> 70 71 /* Forward declarations for internal helper functions. */ 72 static bool sctp_writeable(const struct sock *sk); 73 static void sctp_wfree(struct sk_buff *skb); 74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 75 size_t msg_len); 76 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 77 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 78 static int sctp_wait_for_accept(struct sock *sk, long timeo); 79 static void sctp_wait_for_close(struct sock *sk, long timeo); 80 static void sctp_destruct_sock(struct sock *sk); 81 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 82 union sctp_addr *addr, int len); 83 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 84 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf(struct sctp_association *asoc, 88 struct sctp_chunk *chunk); 89 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 90 static int sctp_autobind(struct sock *sk); 91 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 92 struct sctp_association *assoc, 93 enum sctp_socket_type type); 94 95 static unsigned long sctp_memory_pressure; 96 static atomic_long_t sctp_memory_allocated; 97 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 98 struct percpu_counter sctp_sockets_allocated; 99 100 static void sctp_enter_memory_pressure(struct sock *sk) 101 { 102 WRITE_ONCE(sctp_memory_pressure, 1); 103 } 104 105 106 /* Get the sndbuf space available at the time on the association. */ 107 static inline int sctp_wspace(struct sctp_association *asoc) 108 { 109 struct sock *sk = asoc->base.sk; 110 111 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 112 : sk_stream_wspace(sk); 113 } 114 115 /* Increment the used sndbuf space count of the corresponding association by 116 * the size of the outgoing data chunk. 117 * Also, set the skb destructor for sndbuf accounting later. 118 * 119 * Since it is always 1-1 between chunk and skb, and also a new skb is always 120 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 121 * destructor in the data chunk skb for the purpose of the sndbuf space 122 * tracking. 123 */ 124 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 125 { 126 struct sctp_association *asoc = chunk->asoc; 127 struct sock *sk = asoc->base.sk; 128 129 /* The sndbuf space is tracked per association. */ 130 sctp_association_hold(asoc); 131 132 if (chunk->shkey) 133 sctp_auth_shkey_hold(chunk->shkey); 134 135 skb_set_owner_w(chunk->skb, sk); 136 137 chunk->skb->destructor = sctp_wfree; 138 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 139 skb_shinfo(chunk->skb)->destructor_arg = chunk; 140 141 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 142 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 143 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); 144 sk_mem_charge(sk, chunk->skb->truesize); 145 } 146 147 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 148 { 149 skb_orphan(chunk->skb); 150 } 151 152 #define traverse_and_process() \ 153 do { \ 154 msg = chunk->msg; \ 155 if (msg == prev_msg) \ 156 continue; \ 157 list_for_each_entry(c, &msg->chunks, frag_list) { \ 158 if ((clear && asoc->base.sk == c->skb->sk) || \ 159 (!clear && asoc->base.sk != c->skb->sk)) \ 160 cb(c); \ 161 } \ 162 prev_msg = msg; \ 163 } while (0) 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 bool clear, 167 void (*cb)(struct sctp_chunk *)) 168 169 { 170 struct sctp_datamsg *msg, *prev_msg = NULL; 171 struct sctp_outq *q = &asoc->outqueue; 172 struct sctp_chunk *chunk, *c; 173 struct sctp_transport *t; 174 175 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 176 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 177 traverse_and_process(); 178 179 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 180 traverse_and_process(); 181 182 list_for_each_entry(chunk, &q->sacked, transmitted_list) 183 traverse_and_process(); 184 185 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 186 traverse_and_process(); 187 188 list_for_each_entry(chunk, &q->out_chunk_list, list) 189 traverse_and_process(); 190 } 191 192 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 193 void (*cb)(struct sk_buff *, struct sock *)) 194 195 { 196 struct sk_buff *skb, *tmp; 197 198 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 199 cb(skb, sk); 200 201 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 202 cb(skb, sk); 203 204 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 205 cb(skb, sk); 206 } 207 208 /* Verify that this is a valid address. */ 209 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 210 int len) 211 { 212 struct sctp_af *af; 213 214 /* Verify basic sockaddr. */ 215 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 216 if (!af) 217 return -EINVAL; 218 219 /* Is this a valid SCTP address? */ 220 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 221 return -EINVAL; 222 223 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 224 return -EINVAL; 225 226 return 0; 227 } 228 229 /* Look up the association by its id. If this is not a UDP-style 230 * socket, the ID field is always ignored. 231 */ 232 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 233 { 234 struct sctp_association *asoc = NULL; 235 236 /* If this is not a UDP-style socket, assoc id should be ignored. */ 237 if (!sctp_style(sk, UDP)) { 238 /* Return NULL if the socket state is not ESTABLISHED. It 239 * could be a TCP-style listening socket or a socket which 240 * hasn't yet called connect() to establish an association. 241 */ 242 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 243 return NULL; 244 245 /* Get the first and the only association from the list. */ 246 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 247 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 248 struct sctp_association, asocs); 249 return asoc; 250 } 251 252 /* Otherwise this is a UDP-style socket. */ 253 if (id <= SCTP_ALL_ASSOC) 254 return NULL; 255 256 spin_lock_bh(&sctp_assocs_id_lock); 257 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 258 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 259 asoc = NULL; 260 spin_unlock_bh(&sctp_assocs_id_lock); 261 262 return asoc; 263 } 264 265 /* Look up the transport from an address and an assoc id. If both address and 266 * id are specified, the associations matching the address and the id should be 267 * the same. 268 */ 269 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 270 struct sockaddr_storage *addr, 271 sctp_assoc_t id) 272 { 273 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 274 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 275 union sctp_addr *laddr = (union sctp_addr *)addr; 276 struct sctp_transport *transport; 277 278 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 279 return NULL; 280 281 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 282 laddr, 283 &transport); 284 285 if (!addr_asoc) 286 return NULL; 287 288 id_asoc = sctp_id2assoc(sk, id); 289 if (id_asoc && (id_asoc != addr_asoc)) 290 return NULL; 291 292 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 293 (union sctp_addr *)addr); 294 295 return transport; 296 } 297 298 /* API 3.1.2 bind() - UDP Style Syntax 299 * The syntax of bind() is, 300 * 301 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 302 * 303 * sd - the socket descriptor returned by socket(). 304 * addr - the address structure (struct sockaddr_in or struct 305 * sockaddr_in6 [RFC 2553]), 306 * addr_len - the size of the address structure. 307 */ 308 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 309 { 310 int retval = 0; 311 312 lock_sock(sk); 313 314 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 315 addr, addr_len); 316 317 /* Disallow binding twice. */ 318 if (!sctp_sk(sk)->ep->base.bind_addr.port) 319 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 320 addr_len); 321 else 322 retval = -EINVAL; 323 324 release_sock(sk); 325 326 return retval; 327 } 328 329 static int sctp_get_port_local(struct sock *, union sctp_addr *); 330 331 /* Verify this is a valid sockaddr. */ 332 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 333 union sctp_addr *addr, int len) 334 { 335 struct sctp_af *af; 336 337 /* Check minimum size. */ 338 if (len < sizeof (struct sockaddr)) 339 return NULL; 340 341 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 342 return NULL; 343 344 if (addr->sa.sa_family == AF_INET6) { 345 if (len < SIN6_LEN_RFC2133) 346 return NULL; 347 /* V4 mapped address are really of AF_INET family */ 348 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 349 !opt->pf->af_supported(AF_INET, opt)) 350 return NULL; 351 } 352 353 /* If we get this far, af is valid. */ 354 af = sctp_get_af_specific(addr->sa.sa_family); 355 356 if (len < af->sockaddr_len) 357 return NULL; 358 359 return af; 360 } 361 362 static void sctp_auto_asconf_init(struct sctp_sock *sp) 363 { 364 struct net *net = sock_net(&sp->inet.sk); 365 366 if (net->sctp.default_auto_asconf) { 367 spin_lock_bh(&net->sctp.addr_wq_lock); 368 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 369 spin_unlock_bh(&net->sctp.addr_wq_lock); 370 sp->do_auto_asconf = 1; 371 } 372 } 373 374 /* Bind a local address either to an endpoint or to an association. */ 375 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 376 { 377 struct net *net = sock_net(sk); 378 struct sctp_sock *sp = sctp_sk(sk); 379 struct sctp_endpoint *ep = sp->ep; 380 struct sctp_bind_addr *bp = &ep->base.bind_addr; 381 struct sctp_af *af; 382 unsigned short snum; 383 int ret = 0; 384 385 /* Common sockaddr verification. */ 386 af = sctp_sockaddr_af(sp, addr, len); 387 if (!af) { 388 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 389 __func__, sk, addr, len); 390 return -EINVAL; 391 } 392 393 snum = ntohs(addr->v4.sin_port); 394 395 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 396 __func__, sk, &addr->sa, bp->port, snum, len); 397 398 /* PF specific bind() address verification. */ 399 if (!sp->pf->bind_verify(sp, addr)) 400 return -EADDRNOTAVAIL; 401 402 /* We must either be unbound, or bind to the same port. 403 * It's OK to allow 0 ports if we are already bound. 404 * We'll just inhert an already bound port in this case 405 */ 406 if (bp->port) { 407 if (!snum) 408 snum = bp->port; 409 else if (snum != bp->port) { 410 pr_debug("%s: new port %d doesn't match existing port " 411 "%d\n", __func__, snum, bp->port); 412 return -EINVAL; 413 } 414 } 415 416 if (snum && inet_port_requires_bind_service(net, snum) && 417 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 418 return -EACCES; 419 420 /* See if the address matches any of the addresses we may have 421 * already bound before checking against other endpoints. 422 */ 423 if (sctp_bind_addr_match(bp, addr, sp)) 424 return -EINVAL; 425 426 /* Make sure we are allowed to bind here. 427 * The function sctp_get_port_local() does duplicate address 428 * detection. 429 */ 430 addr->v4.sin_port = htons(snum); 431 if (sctp_get_port_local(sk, addr)) 432 return -EADDRINUSE; 433 434 /* Refresh ephemeral port. */ 435 if (!bp->port) { 436 bp->port = inet_sk(sk)->inet_num; 437 sctp_auto_asconf_init(sp); 438 } 439 440 /* Add the address to the bind address list. 441 * Use GFP_ATOMIC since BHs will be disabled. 442 */ 443 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 444 SCTP_ADDR_SRC, GFP_ATOMIC); 445 446 if (ret) { 447 sctp_put_port(sk); 448 return ret; 449 } 450 /* Copy back into socket for getsockname() use. */ 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 454 return ret; 455 } 456 457 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 458 * 459 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 460 * at any one time. If a sender, after sending an ASCONF chunk, decides 461 * it needs to transfer another ASCONF Chunk, it MUST wait until the 462 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 463 * subsequent ASCONF. Note this restriction binds each side, so at any 464 * time two ASCONF may be in-transit on any given association (one sent 465 * from each endpoint). 466 */ 467 static int sctp_send_asconf(struct sctp_association *asoc, 468 struct sctp_chunk *chunk) 469 { 470 int retval = 0; 471 472 /* If there is an outstanding ASCONF chunk, queue it for later 473 * transmission. 474 */ 475 if (asoc->addip_last_asconf) { 476 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 477 goto out; 478 } 479 480 /* Hold the chunk until an ASCONF_ACK is received. */ 481 sctp_chunk_hold(chunk); 482 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 483 if (retval) 484 sctp_chunk_free(chunk); 485 else 486 asoc->addip_last_asconf = chunk; 487 488 out: 489 return retval; 490 } 491 492 /* Add a list of addresses as bind addresses to local endpoint or 493 * association. 494 * 495 * Basically run through each address specified in the addrs/addrcnt 496 * array/length pair, determine if it is IPv6 or IPv4 and call 497 * sctp_do_bind() on it. 498 * 499 * If any of them fails, then the operation will be reversed and the 500 * ones that were added will be removed. 501 * 502 * Only sctp_setsockopt_bindx() is supposed to call this function. 503 */ 504 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 505 { 506 int cnt; 507 int retval = 0; 508 void *addr_buf; 509 struct sockaddr *sa_addr; 510 struct sctp_af *af; 511 512 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 513 addrs, addrcnt); 514 515 addr_buf = addrs; 516 for (cnt = 0; cnt < addrcnt; cnt++) { 517 /* The list may contain either IPv4 or IPv6 address; 518 * determine the address length for walking thru the list. 519 */ 520 sa_addr = addr_buf; 521 af = sctp_get_af_specific(sa_addr->sa_family); 522 if (!af) { 523 retval = -EINVAL; 524 goto err_bindx_add; 525 } 526 527 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 528 af->sockaddr_len); 529 530 addr_buf += af->sockaddr_len; 531 532 err_bindx_add: 533 if (retval < 0) { 534 /* Failed. Cleanup the ones that have been added */ 535 if (cnt > 0) 536 sctp_bindx_rem(sk, addrs, cnt); 537 return retval; 538 } 539 } 540 541 return retval; 542 } 543 544 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 545 * associations that are part of the endpoint indicating that a list of local 546 * addresses are added to the endpoint. 547 * 548 * If any of the addresses is already in the bind address list of the 549 * association, we do not send the chunk for that association. But it will not 550 * affect other associations. 551 * 552 * Only sctp_setsockopt_bindx() is supposed to call this function. 553 */ 554 static int sctp_send_asconf_add_ip(struct sock *sk, 555 struct sockaddr *addrs, 556 int addrcnt) 557 { 558 struct sctp_sock *sp; 559 struct sctp_endpoint *ep; 560 struct sctp_association *asoc; 561 struct sctp_bind_addr *bp; 562 struct sctp_chunk *chunk; 563 struct sctp_sockaddr_entry *laddr; 564 union sctp_addr *addr; 565 union sctp_addr saveaddr; 566 void *addr_buf; 567 struct sctp_af *af; 568 struct list_head *p; 569 int i; 570 int retval = 0; 571 572 sp = sctp_sk(sk); 573 ep = sp->ep; 574 575 if (!ep->asconf_enable) 576 return retval; 577 578 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 579 __func__, sk, addrs, addrcnt); 580 581 list_for_each_entry(asoc, &ep->asocs, asocs) { 582 if (!asoc->peer.asconf_capable) 583 continue; 584 585 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 586 continue; 587 588 if (!sctp_state(asoc, ESTABLISHED)) 589 continue; 590 591 /* Check if any address in the packed array of addresses is 592 * in the bind address list of the association. If so, 593 * do not send the asconf chunk to its peer, but continue with 594 * other associations. 595 */ 596 addr_buf = addrs; 597 for (i = 0; i < addrcnt; i++) { 598 addr = addr_buf; 599 af = sctp_get_af_specific(addr->v4.sin_family); 600 if (!af) { 601 retval = -EINVAL; 602 goto out; 603 } 604 605 if (sctp_assoc_lookup_laddr(asoc, addr)) 606 break; 607 608 addr_buf += af->sockaddr_len; 609 } 610 if (i < addrcnt) 611 continue; 612 613 /* Use the first valid address in bind addr list of 614 * association as Address Parameter of ASCONF CHUNK. 615 */ 616 bp = &asoc->base.bind_addr; 617 p = bp->address_list.next; 618 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 619 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 620 addrcnt, SCTP_PARAM_ADD_IP); 621 if (!chunk) { 622 retval = -ENOMEM; 623 goto out; 624 } 625 626 /* Add the new addresses to the bind address list with 627 * use_as_src set to 0. 628 */ 629 addr_buf = addrs; 630 for (i = 0; i < addrcnt; i++) { 631 addr = addr_buf; 632 af = sctp_get_af_specific(addr->v4.sin_family); 633 memcpy(&saveaddr, addr, af->sockaddr_len); 634 retval = sctp_add_bind_addr(bp, &saveaddr, 635 sizeof(saveaddr), 636 SCTP_ADDR_NEW, GFP_ATOMIC); 637 addr_buf += af->sockaddr_len; 638 } 639 if (asoc->src_out_of_asoc_ok) { 640 struct sctp_transport *trans; 641 642 list_for_each_entry(trans, 643 &asoc->peer.transport_addr_list, transports) { 644 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 645 2*asoc->pathmtu, 4380)); 646 trans->ssthresh = asoc->peer.i.a_rwnd; 647 trans->rto = asoc->rto_initial; 648 sctp_max_rto(asoc, trans); 649 trans->rtt = trans->srtt = trans->rttvar = 0; 650 /* Clear the source and route cache */ 651 sctp_transport_route(trans, NULL, 652 sctp_sk(asoc->base.sk)); 653 } 654 } 655 retval = sctp_send_asconf(asoc, chunk); 656 } 657 658 out: 659 return retval; 660 } 661 662 /* Remove a list of addresses from bind addresses list. Do not remove the 663 * last address. 664 * 665 * Basically run through each address specified in the addrs/addrcnt 666 * array/length pair, determine if it is IPv6 or IPv4 and call 667 * sctp_del_bind() on it. 668 * 669 * If any of them fails, then the operation will be reversed and the 670 * ones that were removed will be added back. 671 * 672 * At least one address has to be left; if only one address is 673 * available, the operation will return -EBUSY. 674 * 675 * Only sctp_setsockopt_bindx() is supposed to call this function. 676 */ 677 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 678 { 679 struct sctp_sock *sp = sctp_sk(sk); 680 struct sctp_endpoint *ep = sp->ep; 681 int cnt; 682 struct sctp_bind_addr *bp = &ep->base.bind_addr; 683 int retval = 0; 684 void *addr_buf; 685 union sctp_addr *sa_addr; 686 struct sctp_af *af; 687 688 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 689 __func__, sk, addrs, addrcnt); 690 691 addr_buf = addrs; 692 for (cnt = 0; cnt < addrcnt; cnt++) { 693 /* If the bind address list is empty or if there is only one 694 * bind address, there is nothing more to be removed (we need 695 * at least one address here). 696 */ 697 if (list_empty(&bp->address_list) || 698 (sctp_list_single_entry(&bp->address_list))) { 699 retval = -EBUSY; 700 goto err_bindx_rem; 701 } 702 703 sa_addr = addr_buf; 704 af = sctp_get_af_specific(sa_addr->sa.sa_family); 705 if (!af) { 706 retval = -EINVAL; 707 goto err_bindx_rem; 708 } 709 710 if (!af->addr_valid(sa_addr, sp, NULL)) { 711 retval = -EADDRNOTAVAIL; 712 goto err_bindx_rem; 713 } 714 715 if (sa_addr->v4.sin_port && 716 sa_addr->v4.sin_port != htons(bp->port)) { 717 retval = -EINVAL; 718 goto err_bindx_rem; 719 } 720 721 if (!sa_addr->v4.sin_port) 722 sa_addr->v4.sin_port = htons(bp->port); 723 724 /* FIXME - There is probably a need to check if sk->sk_saddr and 725 * sk->sk_rcv_addr are currently set to one of the addresses to 726 * be removed. This is something which needs to be looked into 727 * when we are fixing the outstanding issues with multi-homing 728 * socket routing and failover schemes. Refer to comments in 729 * sctp_do_bind(). -daisy 730 */ 731 retval = sctp_del_bind_addr(bp, sa_addr); 732 733 addr_buf += af->sockaddr_len; 734 err_bindx_rem: 735 if (retval < 0) { 736 /* Failed. Add the ones that has been removed back */ 737 if (cnt > 0) 738 sctp_bindx_add(sk, addrs, cnt); 739 return retval; 740 } 741 } 742 743 return retval; 744 } 745 746 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 747 * the associations that are part of the endpoint indicating that a list of 748 * local addresses are removed from the endpoint. 749 * 750 * If any of the addresses is already in the bind address list of the 751 * association, we do not send the chunk for that association. But it will not 752 * affect other associations. 753 * 754 * Only sctp_setsockopt_bindx() is supposed to call this function. 755 */ 756 static int sctp_send_asconf_del_ip(struct sock *sk, 757 struct sockaddr *addrs, 758 int addrcnt) 759 { 760 struct sctp_sock *sp; 761 struct sctp_endpoint *ep; 762 struct sctp_association *asoc; 763 struct sctp_transport *transport; 764 struct sctp_bind_addr *bp; 765 struct sctp_chunk *chunk; 766 union sctp_addr *laddr; 767 void *addr_buf; 768 struct sctp_af *af; 769 struct sctp_sockaddr_entry *saddr; 770 int i; 771 int retval = 0; 772 int stored = 0; 773 774 chunk = NULL; 775 sp = sctp_sk(sk); 776 ep = sp->ep; 777 778 if (!ep->asconf_enable) 779 return retval; 780 781 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 782 __func__, sk, addrs, addrcnt); 783 784 list_for_each_entry(asoc, &ep->asocs, asocs) { 785 786 if (!asoc->peer.asconf_capable) 787 continue; 788 789 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 790 continue; 791 792 if (!sctp_state(asoc, ESTABLISHED)) 793 continue; 794 795 /* Check if any address in the packed array of addresses is 796 * not present in the bind address list of the association. 797 * If so, do not send the asconf chunk to its peer, but 798 * continue with other associations. 799 */ 800 addr_buf = addrs; 801 for (i = 0; i < addrcnt; i++) { 802 laddr = addr_buf; 803 af = sctp_get_af_specific(laddr->v4.sin_family); 804 if (!af) { 805 retval = -EINVAL; 806 goto out; 807 } 808 809 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 810 break; 811 812 addr_buf += af->sockaddr_len; 813 } 814 if (i < addrcnt) 815 continue; 816 817 /* Find one address in the association's bind address list 818 * that is not in the packed array of addresses. This is to 819 * make sure that we do not delete all the addresses in the 820 * association. 821 */ 822 bp = &asoc->base.bind_addr; 823 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 824 addrcnt, sp); 825 if ((laddr == NULL) && (addrcnt == 1)) { 826 if (asoc->asconf_addr_del_pending) 827 continue; 828 asoc->asconf_addr_del_pending = 829 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 830 if (asoc->asconf_addr_del_pending == NULL) { 831 retval = -ENOMEM; 832 goto out; 833 } 834 asoc->asconf_addr_del_pending->sa.sa_family = 835 addrs->sa_family; 836 asoc->asconf_addr_del_pending->v4.sin_port = 837 htons(bp->port); 838 if (addrs->sa_family == AF_INET) { 839 struct sockaddr_in *sin; 840 841 sin = (struct sockaddr_in *)addrs; 842 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 843 } else if (addrs->sa_family == AF_INET6) { 844 struct sockaddr_in6 *sin6; 845 846 sin6 = (struct sockaddr_in6 *)addrs; 847 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 848 } 849 850 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 851 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 852 asoc->asconf_addr_del_pending); 853 854 asoc->src_out_of_asoc_ok = 1; 855 stored = 1; 856 goto skip_mkasconf; 857 } 858 859 if (laddr == NULL) 860 return -EINVAL; 861 862 /* We do not need RCU protection throughout this loop 863 * because this is done under a socket lock from the 864 * setsockopt call. 865 */ 866 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 867 SCTP_PARAM_DEL_IP); 868 if (!chunk) { 869 retval = -ENOMEM; 870 goto out; 871 } 872 873 skip_mkasconf: 874 /* Reset use_as_src flag for the addresses in the bind address 875 * list that are to be deleted. 876 */ 877 addr_buf = addrs; 878 for (i = 0; i < addrcnt; i++) { 879 laddr = addr_buf; 880 af = sctp_get_af_specific(laddr->v4.sin_family); 881 list_for_each_entry(saddr, &bp->address_list, list) { 882 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 883 saddr->state = SCTP_ADDR_DEL; 884 } 885 addr_buf += af->sockaddr_len; 886 } 887 888 /* Update the route and saddr entries for all the transports 889 * as some of the addresses in the bind address list are 890 * about to be deleted and cannot be used as source addresses. 891 */ 892 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 893 transports) { 894 sctp_transport_route(transport, NULL, 895 sctp_sk(asoc->base.sk)); 896 } 897 898 if (stored) 899 /* We don't need to transmit ASCONF */ 900 continue; 901 retval = sctp_send_asconf(asoc, chunk); 902 } 903 out: 904 return retval; 905 } 906 907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 909 { 910 struct sock *sk = sctp_opt2sk(sp); 911 union sctp_addr *addr; 912 struct sctp_af *af; 913 914 /* It is safe to write port space in caller. */ 915 addr = &addrw->a; 916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 917 af = sctp_get_af_specific(addr->sa.sa_family); 918 if (!af) 919 return -EINVAL; 920 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 921 return -EINVAL; 922 923 if (addrw->state == SCTP_ADDR_NEW) 924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 925 else 926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 927 } 928 929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 930 * 931 * API 8.1 932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 933 * int flags); 934 * 935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 937 * or IPv6 addresses. 938 * 939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 940 * Section 3.1.2 for this usage. 941 * 942 * addrs is a pointer to an array of one or more socket addresses. Each 943 * address is contained in its appropriate structure (i.e. struct 944 * sockaddr_in or struct sockaddr_in6) the family of the address type 945 * must be used to distinguish the address length (note that this 946 * representation is termed a "packed array" of addresses). The caller 947 * specifies the number of addresses in the array with addrcnt. 948 * 949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 950 * -1, and sets errno to the appropriate error code. 951 * 952 * For SCTP, the port given in each socket address must be the same, or 953 * sctp_bindx() will fail, setting errno to EINVAL. 954 * 955 * The flags parameter is formed from the bitwise OR of zero or more of 956 * the following currently defined flags: 957 * 958 * SCTP_BINDX_ADD_ADDR 959 * 960 * SCTP_BINDX_REM_ADDR 961 * 962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 964 * addresses from the association. The two flags are mutually exclusive; 965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 966 * not remove all addresses from an association; sctp_bindx() will 967 * reject such an attempt with EINVAL. 968 * 969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 970 * additional addresses with an endpoint after calling bind(). Or use 971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 972 * socket is associated with so that no new association accepted will be 973 * associated with those addresses. If the endpoint supports dynamic 974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 975 * endpoint to send the appropriate message to the peer to change the 976 * peers address lists. 977 * 978 * Adding and removing addresses from a connected association is 979 * optional functionality. Implementations that do not support this 980 * functionality should return EOPNOTSUPP. 981 * 982 * Basically do nothing but copying the addresses from user to kernel 983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 985 * from userspace. 986 * 987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 988 * it. 989 * 990 * sk The sk of the socket 991 * addrs The pointer to the addresses 992 * addrssize Size of the addrs buffer 993 * op Operation to perform (add or remove, see the flags of 994 * sctp_bindx) 995 * 996 * Returns 0 if ok, <0 errno code on error. 997 */ 998 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 999 int addrs_size, int op) 1000 { 1001 int err; 1002 int addrcnt = 0; 1003 int walk_size = 0; 1004 struct sockaddr *sa_addr; 1005 void *addr_buf = addrs; 1006 struct sctp_af *af; 1007 1008 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1009 __func__, sk, addr_buf, addrs_size, op); 1010 1011 if (unlikely(addrs_size <= 0)) 1012 return -EINVAL; 1013 1014 /* Walk through the addrs buffer and count the number of addresses. */ 1015 while (walk_size < addrs_size) { 1016 if (walk_size + sizeof(sa_family_t) > addrs_size) 1017 return -EINVAL; 1018 1019 sa_addr = addr_buf; 1020 af = sctp_get_af_specific(sa_addr->sa_family); 1021 1022 /* If the address family is not supported or if this address 1023 * causes the address buffer to overflow return EINVAL. 1024 */ 1025 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1026 return -EINVAL; 1027 addrcnt++; 1028 addr_buf += af->sockaddr_len; 1029 walk_size += af->sockaddr_len; 1030 } 1031 1032 /* Do the work. */ 1033 switch (op) { 1034 case SCTP_BINDX_ADD_ADDR: 1035 /* Allow security module to validate bindx addresses. */ 1036 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1037 addrs, addrs_size); 1038 if (err) 1039 return err; 1040 err = sctp_bindx_add(sk, addrs, addrcnt); 1041 if (err) 1042 return err; 1043 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, addrs, addrcnt); 1046 if (err) 1047 return err; 1048 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1049 1050 default: 1051 return -EINVAL; 1052 } 1053 } 1054 1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1056 int addrlen) 1057 { 1058 int err; 1059 1060 lock_sock(sk); 1061 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1062 release_sock(sk); 1063 return err; 1064 } 1065 1066 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1067 const union sctp_addr *daddr, 1068 const struct sctp_initmsg *init, 1069 struct sctp_transport **tp) 1070 { 1071 struct sctp_association *asoc; 1072 struct sock *sk = ep->base.sk; 1073 struct net *net = sock_net(sk); 1074 enum sctp_scope scope; 1075 int err; 1076 1077 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1078 return -EADDRNOTAVAIL; 1079 1080 if (!ep->base.bind_addr.port) { 1081 if (sctp_autobind(sk)) 1082 return -EAGAIN; 1083 } else { 1084 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1085 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1086 return -EACCES; 1087 } 1088 1089 scope = sctp_scope(daddr); 1090 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1091 if (!asoc) 1092 return -ENOMEM; 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1095 if (err < 0) 1096 goto free; 1097 1098 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1099 if (!*tp) { 1100 err = -ENOMEM; 1101 goto free; 1102 } 1103 1104 if (!init) 1105 return 0; 1106 1107 if (init->sinit_num_ostreams) { 1108 __u16 outcnt = init->sinit_num_ostreams; 1109 1110 asoc->c.sinit_num_ostreams = outcnt; 1111 /* outcnt has been changed, need to re-init stream */ 1112 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1113 if (err) 1114 goto free; 1115 } 1116 1117 if (init->sinit_max_instreams) 1118 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1119 1120 if (init->sinit_max_attempts) 1121 asoc->max_init_attempts = init->sinit_max_attempts; 1122 1123 if (init->sinit_max_init_timeo) 1124 asoc->max_init_timeo = 1125 msecs_to_jiffies(init->sinit_max_init_timeo); 1126 1127 return 0; 1128 free: 1129 sctp_association_free(asoc); 1130 return err; 1131 } 1132 1133 static int sctp_connect_add_peer(struct sctp_association *asoc, 1134 union sctp_addr *daddr, int addr_len) 1135 { 1136 struct sctp_endpoint *ep = asoc->ep; 1137 struct sctp_association *old; 1138 struct sctp_transport *t; 1139 int err; 1140 1141 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1142 if (err) 1143 return err; 1144 1145 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1146 if (old && old != asoc) 1147 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1148 : -EALREADY; 1149 1150 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1151 return -EADDRNOTAVAIL; 1152 1153 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1154 if (!t) 1155 return -ENOMEM; 1156 1157 return 0; 1158 } 1159 1160 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1161 * 1162 * Common routine for handling connect() and sctp_connectx(). 1163 * Connect will come in with just a single address. 1164 */ 1165 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1166 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1167 { 1168 struct sctp_sock *sp = sctp_sk(sk); 1169 struct sctp_endpoint *ep = sp->ep; 1170 struct sctp_transport *transport; 1171 struct sctp_association *asoc; 1172 void *addr_buf = kaddrs; 1173 union sctp_addr *daddr; 1174 struct sctp_af *af; 1175 int walk_size, err; 1176 long timeo; 1177 1178 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1179 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1180 return -EISCONN; 1181 1182 daddr = addr_buf; 1183 af = sctp_get_af_specific(daddr->sa.sa_family); 1184 if (!af || af->sockaddr_len > addrs_size) 1185 return -EINVAL; 1186 1187 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1188 if (err) 1189 return err; 1190 1191 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1192 if (asoc) 1193 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1194 : -EALREADY; 1195 1196 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1197 if (err) 1198 return err; 1199 asoc = transport->asoc; 1200 1201 addr_buf += af->sockaddr_len; 1202 walk_size = af->sockaddr_len; 1203 while (walk_size < addrs_size) { 1204 err = -EINVAL; 1205 if (walk_size + sizeof(sa_family_t) > addrs_size) 1206 goto out_free; 1207 1208 daddr = addr_buf; 1209 af = sctp_get_af_specific(daddr->sa.sa_family); 1210 if (!af || af->sockaddr_len + walk_size > addrs_size) 1211 goto out_free; 1212 1213 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1214 goto out_free; 1215 1216 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1217 if (err) 1218 goto out_free; 1219 1220 addr_buf += af->sockaddr_len; 1221 walk_size += af->sockaddr_len; 1222 } 1223 1224 /* In case the user of sctp_connectx() wants an association 1225 * id back, assign one now. 1226 */ 1227 if (assoc_id) { 1228 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1229 if (err < 0) 1230 goto out_free; 1231 } 1232 1233 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1234 if (err < 0) 1235 goto out_free; 1236 1237 /* Initialize sk's dport and daddr for getpeername() */ 1238 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1239 sp->pf->to_sk_daddr(daddr, sk); 1240 sk->sk_err = 0; 1241 1242 if (assoc_id) 1243 *assoc_id = asoc->assoc_id; 1244 1245 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1246 return sctp_wait_for_connect(asoc, &timeo); 1247 1248 out_free: 1249 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1250 __func__, asoc, kaddrs, err); 1251 sctp_association_free(asoc); 1252 return err; 1253 } 1254 1255 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1256 * 1257 * API 8.9 1258 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1259 * sctp_assoc_t *asoc); 1260 * 1261 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1262 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1263 * or IPv6 addresses. 1264 * 1265 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1266 * Section 3.1.2 for this usage. 1267 * 1268 * addrs is a pointer to an array of one or more socket addresses. Each 1269 * address is contained in its appropriate structure (i.e. struct 1270 * sockaddr_in or struct sockaddr_in6) the family of the address type 1271 * must be used to distengish the address length (note that this 1272 * representation is termed a "packed array" of addresses). The caller 1273 * specifies the number of addresses in the array with addrcnt. 1274 * 1275 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1276 * the association id of the new association. On failure, sctp_connectx() 1277 * returns -1, and sets errno to the appropriate error code. The assoc_id 1278 * is not touched by the kernel. 1279 * 1280 * For SCTP, the port given in each socket address must be the same, or 1281 * sctp_connectx() will fail, setting errno to EINVAL. 1282 * 1283 * An application can use sctp_connectx to initiate an association with 1284 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1285 * allows a caller to specify multiple addresses at which a peer can be 1286 * reached. The way the SCTP stack uses the list of addresses to set up 1287 * the association is implementation dependent. This function only 1288 * specifies that the stack will try to make use of all the addresses in 1289 * the list when needed. 1290 * 1291 * Note that the list of addresses passed in is only used for setting up 1292 * the association. It does not necessarily equal the set of addresses 1293 * the peer uses for the resulting association. If the caller wants to 1294 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1295 * retrieve them after the association has been set up. 1296 * 1297 * Basically do nothing but copying the addresses from user to kernel 1298 * land and invoking either sctp_connectx(). This is used for tunneling 1299 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1300 * 1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1302 * it. 1303 * 1304 * sk The sk of the socket 1305 * addrs The pointer to the addresses 1306 * addrssize Size of the addrs buffer 1307 * 1308 * Returns >=0 if ok, <0 errno code on error. 1309 */ 1310 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1311 int addrs_size, sctp_assoc_t *assoc_id) 1312 { 1313 int err = 0, flags = 0; 1314 1315 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1316 __func__, sk, kaddrs, addrs_size); 1317 1318 /* make sure the 1st addr's sa_family is accessible later */ 1319 if (unlikely(addrs_size < sizeof(sa_family_t))) 1320 return -EINVAL; 1321 1322 /* Allow security module to validate connectx addresses. */ 1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1324 (struct sockaddr *)kaddrs, 1325 addrs_size); 1326 if (err) 1327 return err; 1328 1329 /* in-kernel sockets don't generally have a file allocated to them 1330 * if all they do is call sock_create_kern(). 1331 */ 1332 if (sk->sk_socket->file) 1333 flags = sk->sk_socket->file->f_flags; 1334 1335 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1336 } 1337 1338 /* 1339 * This is an older interface. It's kept for backward compatibility 1340 * to the option that doesn't provide association id. 1341 */ 1342 static int sctp_setsockopt_connectx_old(struct sock *sk, 1343 struct sockaddr *kaddrs, 1344 int addrs_size) 1345 { 1346 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1347 } 1348 1349 /* 1350 * New interface for the API. The since the API is done with a socket 1351 * option, to make it simple we feed back the association id is as a return 1352 * indication to the call. Error is always negative and association id is 1353 * always positive. 1354 */ 1355 static int sctp_setsockopt_connectx(struct sock *sk, 1356 struct sockaddr *kaddrs, 1357 int addrs_size) 1358 { 1359 sctp_assoc_t assoc_id = 0; 1360 int err = 0; 1361 1362 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1363 1364 if (err) 1365 return err; 1366 else 1367 return assoc_id; 1368 } 1369 1370 /* 1371 * New (hopefully final) interface for the API. 1372 * We use the sctp_getaddrs_old structure so that use-space library 1373 * can avoid any unnecessary allocations. The only different part 1374 * is that we store the actual length of the address buffer into the 1375 * addrs_num structure member. That way we can re-use the existing 1376 * code. 1377 */ 1378 #ifdef CONFIG_COMPAT 1379 struct compat_sctp_getaddrs_old { 1380 sctp_assoc_t assoc_id; 1381 s32 addr_num; 1382 compat_uptr_t addrs; /* struct sockaddr * */ 1383 }; 1384 #endif 1385 1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1387 char __user *optval, 1388 int __user *optlen) 1389 { 1390 struct sctp_getaddrs_old param; 1391 sctp_assoc_t assoc_id = 0; 1392 struct sockaddr *kaddrs; 1393 int err = 0; 1394 1395 #ifdef CONFIG_COMPAT 1396 if (in_compat_syscall()) { 1397 struct compat_sctp_getaddrs_old param32; 1398 1399 if (len < sizeof(param32)) 1400 return -EINVAL; 1401 if (copy_from_user(¶m32, optval, sizeof(param32))) 1402 return -EFAULT; 1403 1404 param.assoc_id = param32.assoc_id; 1405 param.addr_num = param32.addr_num; 1406 param.addrs = compat_ptr(param32.addrs); 1407 } else 1408 #endif 1409 { 1410 if (len < sizeof(param)) 1411 return -EINVAL; 1412 if (copy_from_user(¶m, optval, sizeof(param))) 1413 return -EFAULT; 1414 } 1415 1416 kaddrs = memdup_user(param.addrs, param.addr_num); 1417 if (IS_ERR(kaddrs)) 1418 return PTR_ERR(kaddrs); 1419 1420 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1421 kfree(kaddrs); 1422 if (err == 0 || err == -EINPROGRESS) { 1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1424 return -EFAULT; 1425 if (put_user(sizeof(assoc_id), optlen)) 1426 return -EFAULT; 1427 } 1428 1429 return err; 1430 } 1431 1432 /* API 3.1.4 close() - UDP Style Syntax 1433 * Applications use close() to perform graceful shutdown (as described in 1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1435 * by a UDP-style socket. 1436 * 1437 * The syntax is 1438 * 1439 * ret = close(int sd); 1440 * 1441 * sd - the socket descriptor of the associations to be closed. 1442 * 1443 * To gracefully shutdown a specific association represented by the 1444 * UDP-style socket, an application should use the sendmsg() call, 1445 * passing no user data, but including the appropriate flag in the 1446 * ancillary data (see Section xxxx). 1447 * 1448 * If sd in the close() call is a branched-off socket representing only 1449 * one association, the shutdown is performed on that association only. 1450 * 1451 * 4.1.6 close() - TCP Style Syntax 1452 * 1453 * Applications use close() to gracefully close down an association. 1454 * 1455 * The syntax is: 1456 * 1457 * int close(int sd); 1458 * 1459 * sd - the socket descriptor of the association to be closed. 1460 * 1461 * After an application calls close() on a socket descriptor, no further 1462 * socket operations will succeed on that descriptor. 1463 * 1464 * API 7.1.4 SO_LINGER 1465 * 1466 * An application using the TCP-style socket can use this option to 1467 * perform the SCTP ABORT primitive. The linger option structure is: 1468 * 1469 * struct linger { 1470 * int l_onoff; // option on/off 1471 * int l_linger; // linger time 1472 * }; 1473 * 1474 * To enable the option, set l_onoff to 1. If the l_linger value is set 1475 * to 0, calling close() is the same as the ABORT primitive. If the 1476 * value is set to a negative value, the setsockopt() call will return 1477 * an error. If the value is set to a positive value linger_time, the 1478 * close() can be blocked for at most linger_time ms. If the graceful 1479 * shutdown phase does not finish during this period, close() will 1480 * return but the graceful shutdown phase continues in the system. 1481 */ 1482 static void sctp_close(struct sock *sk, long timeout) 1483 { 1484 struct net *net = sock_net(sk); 1485 struct sctp_endpoint *ep; 1486 struct sctp_association *asoc; 1487 struct list_head *pos, *temp; 1488 unsigned int data_was_unread; 1489 1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1491 1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1493 sk->sk_shutdown = SHUTDOWN_MASK; 1494 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1495 1496 ep = sctp_sk(sk)->ep; 1497 1498 /* Clean up any skbs sitting on the receive queue. */ 1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1501 1502 /* Walk all associations on an endpoint. */ 1503 list_for_each_safe(pos, temp, &ep->asocs) { 1504 asoc = list_entry(pos, struct sctp_association, asocs); 1505 1506 if (sctp_style(sk, TCP)) { 1507 /* A closed association can still be in the list if 1508 * it belongs to a TCP-style listening socket that is 1509 * not yet accepted. If so, free it. If not, send an 1510 * ABORT or SHUTDOWN based on the linger options. 1511 */ 1512 if (sctp_state(asoc, CLOSED)) { 1513 sctp_association_free(asoc); 1514 continue; 1515 } 1516 } 1517 1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1519 !skb_queue_empty(&asoc->ulpq.reasm) || 1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1522 struct sctp_chunk *chunk; 1523 1524 chunk = sctp_make_abort_user(asoc, NULL, 0); 1525 sctp_primitive_ABORT(net, asoc, chunk); 1526 } else 1527 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1528 } 1529 1530 /* On a TCP-style socket, block for at most linger_time if set. */ 1531 if (sctp_style(sk, TCP) && timeout) 1532 sctp_wait_for_close(sk, timeout); 1533 1534 /* This will run the backlog queue. */ 1535 release_sock(sk); 1536 1537 /* Supposedly, no process has access to the socket, but 1538 * the net layers still may. 1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1540 * held and that should be grabbed before socket lock. 1541 */ 1542 spin_lock_bh(&net->sctp.addr_wq_lock); 1543 bh_lock_sock_nested(sk); 1544 1545 /* Hold the sock, since sk_common_release() will put sock_put() 1546 * and we have just a little more cleanup. 1547 */ 1548 sock_hold(sk); 1549 sk_common_release(sk); 1550 1551 bh_unlock_sock(sk); 1552 spin_unlock_bh(&net->sctp.addr_wq_lock); 1553 1554 sock_put(sk); 1555 1556 SCTP_DBG_OBJCNT_DEC(sock); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct sctp_association *asoc; 1663 struct cmsghdr *cmsg; 1664 __be32 flowinfo = 0; 1665 struct sctp_af *af; 1666 int err; 1667 1668 *tp = NULL; 1669 1670 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1671 return -EINVAL; 1672 1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1674 sctp_sstate(sk, CLOSING))) 1675 return -EADDRNOTAVAIL; 1676 1677 /* Label connection socket for first association 1-to-many 1678 * style for client sequence socket()->sendmsg(). This 1679 * needs to be done before sctp_assoc_add_peer() as that will 1680 * set up the initial packet that needs to account for any 1681 * security ip options (CIPSO/CALIPSO) added to the packet. 1682 */ 1683 af = sctp_get_af_specific(daddr->sa.sa_family); 1684 if (!af) 1685 return -EINVAL; 1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1687 (struct sockaddr *)daddr, 1688 af->sockaddr_len); 1689 if (err < 0) 1690 return err; 1691 1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1693 if (err) 1694 return err; 1695 asoc = (*tp)->asoc; 1696 1697 if (!cmsgs->addrs_msg) 1698 return 0; 1699 1700 if (daddr->sa.sa_family == AF_INET6) 1701 flowinfo = daddr->v6.sin6_flowinfo; 1702 1703 /* sendv addr list parse */ 1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1705 union sctp_addr _daddr; 1706 int dlen; 1707 1708 if (cmsg->cmsg_level != IPPROTO_SCTP || 1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1710 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1711 continue; 1712 1713 daddr = &_daddr; 1714 memset(daddr, 0, sizeof(*daddr)); 1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1717 if (dlen < sizeof(struct in_addr)) { 1718 err = -EINVAL; 1719 goto free; 1720 } 1721 1722 dlen = sizeof(struct in_addr); 1723 daddr->v4.sin_family = AF_INET; 1724 daddr->v4.sin_port = htons(asoc->peer.port); 1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1726 } else { 1727 if (dlen < sizeof(struct in6_addr)) { 1728 err = -EINVAL; 1729 goto free; 1730 } 1731 1732 dlen = sizeof(struct in6_addr); 1733 daddr->v6.sin6_flowinfo = flowinfo; 1734 daddr->v6.sin6_family = AF_INET6; 1735 daddr->v6.sin6_port = htons(asoc->peer.port); 1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1737 } 1738 1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1740 if (err) 1741 goto free; 1742 } 1743 1744 return 0; 1745 1746 free: 1747 sctp_association_free(asoc); 1748 return err; 1749 } 1750 1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1752 __u16 sflags, struct msghdr *msg, 1753 size_t msg_len) 1754 { 1755 struct sock *sk = asoc->base.sk; 1756 struct net *net = sock_net(sk); 1757 1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1759 return -EPIPE; 1760 1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1762 !sctp_state(asoc, ESTABLISHED)) 1763 return 0; 1764 1765 if (sflags & SCTP_EOF) { 1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1767 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1768 1769 return 0; 1770 } 1771 1772 if (sflags & SCTP_ABORT) { 1773 struct sctp_chunk *chunk; 1774 1775 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1776 if (!chunk) 1777 return -ENOMEM; 1778 1779 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1780 sctp_primitive_ABORT(net, asoc, chunk); 1781 iov_iter_revert(&msg->msg_iter, msg_len); 1782 1783 return 0; 1784 } 1785 1786 return 1; 1787 } 1788 1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1790 struct msghdr *msg, size_t msg_len, 1791 struct sctp_transport *transport, 1792 struct sctp_sndrcvinfo *sinfo) 1793 { 1794 struct sock *sk = asoc->base.sk; 1795 struct sctp_sock *sp = sctp_sk(sk); 1796 struct net *net = sock_net(sk); 1797 struct sctp_datamsg *datamsg; 1798 bool wait_connect = false; 1799 struct sctp_chunk *chunk; 1800 long timeo; 1801 int err; 1802 1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1804 err = -EINVAL; 1805 goto err; 1806 } 1807 1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1810 if (err) 1811 goto err; 1812 } 1813 1814 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1815 err = -EMSGSIZE; 1816 goto err; 1817 } 1818 1819 if (asoc->pmtu_pending) { 1820 if (sp->param_flags & SPP_PMTUD_ENABLE) 1821 sctp_assoc_sync_pmtu(asoc); 1822 asoc->pmtu_pending = 0; 1823 } 1824 1825 if (sctp_wspace(asoc) < (int)msg_len) 1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1827 1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1830 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1831 if (err) 1832 goto err; 1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1834 err = -EINVAL; 1835 goto err; 1836 } 1837 } 1838 1839 if (sctp_state(asoc, CLOSED)) { 1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1841 if (err) 1842 goto err; 1843 1844 if (asoc->ep->intl_enable) { 1845 timeo = sock_sndtimeo(sk, 0); 1846 err = sctp_wait_for_connect(asoc, &timeo); 1847 if (err) { 1848 err = -ESRCH; 1849 goto err; 1850 } 1851 } else { 1852 wait_connect = true; 1853 } 1854 1855 pr_debug("%s: we associated primitively\n", __func__); 1856 } 1857 1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1859 if (IS_ERR(datamsg)) { 1860 err = PTR_ERR(datamsg); 1861 goto err; 1862 } 1863 1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1865 1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1867 sctp_chunk_hold(chunk); 1868 sctp_set_owner_w(chunk); 1869 chunk->transport = transport; 1870 } 1871 1872 err = sctp_primitive_SEND(net, asoc, datamsg); 1873 if (err) { 1874 sctp_datamsg_free(datamsg); 1875 goto err; 1876 } 1877 1878 pr_debug("%s: we sent primitively\n", __func__); 1879 1880 sctp_datamsg_put(datamsg); 1881 1882 if (unlikely(wait_connect)) { 1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1884 sctp_wait_for_connect(asoc, &timeo); 1885 } 1886 1887 err = msg_len; 1888 1889 err: 1890 return err; 1891 } 1892 1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1894 const struct msghdr *msg, 1895 struct sctp_cmsgs *cmsgs) 1896 { 1897 union sctp_addr *daddr = NULL; 1898 int err; 1899 1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1901 int len = msg->msg_namelen; 1902 1903 if (len > sizeof(*daddr)) 1904 len = sizeof(*daddr); 1905 1906 daddr = (union sctp_addr *)msg->msg_name; 1907 1908 err = sctp_verify_addr(sk, daddr, len); 1909 if (err) 1910 return ERR_PTR(err); 1911 } 1912 1913 return daddr; 1914 } 1915 1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1917 struct sctp_sndrcvinfo *sinfo, 1918 struct sctp_cmsgs *cmsgs) 1919 { 1920 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1921 sinfo->sinfo_stream = asoc->default_stream; 1922 sinfo->sinfo_ppid = asoc->default_ppid; 1923 sinfo->sinfo_context = asoc->default_context; 1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1925 1926 if (!cmsgs->prinfo) 1927 sinfo->sinfo_flags = asoc->default_flags; 1928 } 1929 1930 if (!cmsgs->srinfo && !cmsgs->prinfo) 1931 sinfo->sinfo_timetolive = asoc->default_timetolive; 1932 1933 if (cmsgs->authinfo) { 1934 /* Reuse sinfo_tsn to indicate that authinfo was set and 1935 * sinfo_ssn to save the keyid on tx path. 1936 */ 1937 sinfo->sinfo_tsn = 1; 1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1939 } 1940 } 1941 1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1943 { 1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1945 struct sctp_transport *transport = NULL; 1946 struct sctp_sndrcvinfo _sinfo, *sinfo; 1947 struct sctp_association *asoc, *tmp; 1948 struct sctp_cmsgs cmsgs; 1949 union sctp_addr *daddr; 1950 bool new = false; 1951 __u16 sflags; 1952 int err; 1953 1954 /* Parse and get snd_info */ 1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1956 if (err) 1957 goto out; 1958 1959 sinfo = &_sinfo; 1960 sflags = sinfo->sinfo_flags; 1961 1962 /* Get daddr from msg */ 1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1964 if (IS_ERR(daddr)) { 1965 err = PTR_ERR(daddr); 1966 goto out; 1967 } 1968 1969 lock_sock(sk); 1970 1971 /* SCTP_SENDALL process */ 1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1975 msg_len); 1976 if (err == 0) 1977 continue; 1978 if (err < 0) 1979 goto out_unlock; 1980 1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1982 1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1984 NULL, sinfo); 1985 if (err < 0) 1986 goto out_unlock; 1987 1988 iov_iter_revert(&msg->msg_iter, err); 1989 } 1990 1991 goto out_unlock; 1992 } 1993 1994 /* Get and check or create asoc */ 1995 if (daddr) { 1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1997 if (asoc) { 1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1999 msg_len); 2000 if (err <= 0) 2001 goto out_unlock; 2002 } else { 2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2004 &transport); 2005 if (err) 2006 goto out_unlock; 2007 2008 asoc = transport->asoc; 2009 new = true; 2010 } 2011 2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2013 transport = NULL; 2014 } else { 2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2016 if (!asoc) { 2017 err = -EPIPE; 2018 goto out_unlock; 2019 } 2020 2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2022 if (err <= 0) 2023 goto out_unlock; 2024 } 2025 2026 /* Update snd_info with the asoc */ 2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2028 2029 /* Send msg to the asoc */ 2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2031 if (err < 0 && err != -ESRCH && new) 2032 sctp_association_free(asoc); 2033 2034 out_unlock: 2035 release_sock(sk); 2036 out: 2037 return sctp_error(sk, msg->msg_flags, err); 2038 } 2039 2040 /* This is an extended version of skb_pull() that removes the data from the 2041 * start of a skb even when data is spread across the list of skb's in the 2042 * frag_list. len specifies the total amount of data that needs to be removed. 2043 * when 'len' bytes could be removed from the skb, it returns 0. 2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2045 * could not be removed. 2046 */ 2047 static int sctp_skb_pull(struct sk_buff *skb, int len) 2048 { 2049 struct sk_buff *list; 2050 int skb_len = skb_headlen(skb); 2051 int rlen; 2052 2053 if (len <= skb_len) { 2054 __skb_pull(skb, len); 2055 return 0; 2056 } 2057 len -= skb_len; 2058 __skb_pull(skb, skb_len); 2059 2060 skb_walk_frags(skb, list) { 2061 rlen = sctp_skb_pull(list, len); 2062 skb->len -= (len-rlen); 2063 skb->data_len -= (len-rlen); 2064 2065 if (!rlen) 2066 return 0; 2067 2068 len = rlen; 2069 } 2070 2071 return len; 2072 } 2073 2074 /* API 3.1.3 recvmsg() - UDP Style Syntax 2075 * 2076 * ssize_t recvmsg(int socket, struct msghdr *message, 2077 * int flags); 2078 * 2079 * socket - the socket descriptor of the endpoint. 2080 * message - pointer to the msghdr structure which contains a single 2081 * user message and possibly some ancillary data. 2082 * 2083 * See Section 5 for complete description of the data 2084 * structures. 2085 * 2086 * flags - flags sent or received with the user message, see Section 2087 * 5 for complete description of the flags. 2088 */ 2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2090 int flags, int *addr_len) 2091 { 2092 struct sctp_ulpevent *event = NULL; 2093 struct sctp_sock *sp = sctp_sk(sk); 2094 struct sk_buff *skb, *head_skb; 2095 int copied; 2096 int err = 0; 2097 int skb_len; 2098 2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2100 __func__, sk, msg, len, flags, addr_len); 2101 2102 if (unlikely(flags & MSG_ERRQUEUE)) 2103 return inet_recv_error(sk, msg, len, addr_len); 2104 2105 if (sk_can_busy_loop(sk) && 2106 skb_queue_empty_lockless(&sk->sk_receive_queue)) 2107 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2108 2109 lock_sock(sk); 2110 2111 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2112 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2113 err = -ENOTCONN; 2114 goto out; 2115 } 2116 2117 skb = sctp_skb_recv_datagram(sk, flags, &err); 2118 if (!skb) 2119 goto out; 2120 2121 /* Get the total length of the skb including any skb's in the 2122 * frag_list. 2123 */ 2124 skb_len = skb->len; 2125 2126 copied = skb_len; 2127 if (copied > len) 2128 copied = len; 2129 2130 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2131 2132 event = sctp_skb2event(skb); 2133 2134 if (err) 2135 goto out_free; 2136 2137 if (event->chunk && event->chunk->head_skb) 2138 head_skb = event->chunk->head_skb; 2139 else 2140 head_skb = skb; 2141 sock_recv_cmsgs(msg, sk, head_skb); 2142 if (sctp_ulpevent_is_notification(event)) { 2143 msg->msg_flags |= MSG_NOTIFICATION; 2144 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2145 } else { 2146 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2147 } 2148 2149 /* Check if we allow SCTP_NXTINFO. */ 2150 if (sp->recvnxtinfo) 2151 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2152 /* Check if we allow SCTP_RCVINFO. */ 2153 if (sp->recvrcvinfo) 2154 sctp_ulpevent_read_rcvinfo(event, msg); 2155 /* Check if we allow SCTP_SNDRCVINFO. */ 2156 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2157 sctp_ulpevent_read_sndrcvinfo(event, msg); 2158 2159 err = copied; 2160 2161 /* If skb's length exceeds the user's buffer, update the skb and 2162 * push it back to the receive_queue so that the next call to 2163 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2164 */ 2165 if (skb_len > copied) { 2166 msg->msg_flags &= ~MSG_EOR; 2167 if (flags & MSG_PEEK) 2168 goto out_free; 2169 sctp_skb_pull(skb, copied); 2170 skb_queue_head(&sk->sk_receive_queue, skb); 2171 2172 /* When only partial message is copied to the user, increase 2173 * rwnd by that amount. If all the data in the skb is read, 2174 * rwnd is updated when the event is freed. 2175 */ 2176 if (!sctp_ulpevent_is_notification(event)) 2177 sctp_assoc_rwnd_increase(event->asoc, copied); 2178 goto out; 2179 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2180 (event->msg_flags & MSG_EOR)) 2181 msg->msg_flags |= MSG_EOR; 2182 else 2183 msg->msg_flags &= ~MSG_EOR; 2184 2185 out_free: 2186 if (flags & MSG_PEEK) { 2187 /* Release the skb reference acquired after peeking the skb in 2188 * sctp_skb_recv_datagram(). 2189 */ 2190 kfree_skb(skb); 2191 } else { 2192 /* Free the event which includes releasing the reference to 2193 * the owner of the skb, freeing the skb and updating the 2194 * rwnd. 2195 */ 2196 sctp_ulpevent_free(event); 2197 } 2198 out: 2199 release_sock(sk); 2200 return err; 2201 } 2202 2203 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2204 * 2205 * This option is a on/off flag. If enabled no SCTP message 2206 * fragmentation will be performed. Instead if a message being sent 2207 * exceeds the current PMTU size, the message will NOT be sent and 2208 * instead a error will be indicated to the user. 2209 */ 2210 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2211 unsigned int optlen) 2212 { 2213 if (optlen < sizeof(int)) 2214 return -EINVAL; 2215 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2216 return 0; 2217 } 2218 2219 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2220 unsigned int optlen) 2221 { 2222 struct sctp_sock *sp = sctp_sk(sk); 2223 struct sctp_association *asoc; 2224 int i; 2225 2226 if (optlen > sizeof(struct sctp_event_subscribe)) 2227 return -EINVAL; 2228 2229 for (i = 0; i < optlen; i++) 2230 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2231 sn_type[i]); 2232 2233 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2234 asoc->subscribe = sctp_sk(sk)->subscribe; 2235 2236 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2237 * if there is no data to be sent or retransmit, the stack will 2238 * immediately send up this notification. 2239 */ 2240 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2241 struct sctp_ulpevent *event; 2242 2243 asoc = sctp_id2assoc(sk, 0); 2244 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2245 event = sctp_ulpevent_make_sender_dry_event(asoc, 2246 GFP_USER | __GFP_NOWARN); 2247 if (!event) 2248 return -ENOMEM; 2249 2250 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2251 } 2252 } 2253 2254 return 0; 2255 } 2256 2257 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2258 * 2259 * This socket option is applicable to the UDP-style socket only. When 2260 * set it will cause associations that are idle for more than the 2261 * specified number of seconds to automatically close. An association 2262 * being idle is defined an association that has NOT sent or received 2263 * user data. The special value of '0' indicates that no automatic 2264 * close of any associations should be performed. The option expects an 2265 * integer defining the number of seconds of idle time before an 2266 * association is closed. 2267 */ 2268 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2269 unsigned int optlen) 2270 { 2271 struct sctp_sock *sp = sctp_sk(sk); 2272 struct net *net = sock_net(sk); 2273 2274 /* Applicable to UDP-style socket only */ 2275 if (sctp_style(sk, TCP)) 2276 return -EOPNOTSUPP; 2277 if (optlen != sizeof(int)) 2278 return -EINVAL; 2279 2280 sp->autoclose = *optval; 2281 if (sp->autoclose > net->sctp.max_autoclose) 2282 sp->autoclose = net->sctp.max_autoclose; 2283 2284 return 0; 2285 } 2286 2287 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2288 * 2289 * Applications can enable or disable heartbeats for any peer address of 2290 * an association, modify an address's heartbeat interval, force a 2291 * heartbeat to be sent immediately, and adjust the address's maximum 2292 * number of retransmissions sent before an address is considered 2293 * unreachable. The following structure is used to access and modify an 2294 * address's parameters: 2295 * 2296 * struct sctp_paddrparams { 2297 * sctp_assoc_t spp_assoc_id; 2298 * struct sockaddr_storage spp_address; 2299 * uint32_t spp_hbinterval; 2300 * uint16_t spp_pathmaxrxt; 2301 * uint32_t spp_pathmtu; 2302 * uint32_t spp_sackdelay; 2303 * uint32_t spp_flags; 2304 * uint32_t spp_ipv6_flowlabel; 2305 * uint8_t spp_dscp; 2306 * }; 2307 * 2308 * spp_assoc_id - (one-to-many style socket) This is filled in the 2309 * application, and identifies the association for 2310 * this query. 2311 * spp_address - This specifies which address is of interest. 2312 * spp_hbinterval - This contains the value of the heartbeat interval, 2313 * in milliseconds. If a value of zero 2314 * is present in this field then no changes are to 2315 * be made to this parameter. 2316 * spp_pathmaxrxt - This contains the maximum number of 2317 * retransmissions before this address shall be 2318 * considered unreachable. If a value of zero 2319 * is present in this field then no changes are to 2320 * be made to this parameter. 2321 * spp_pathmtu - When Path MTU discovery is disabled the value 2322 * specified here will be the "fixed" path mtu. 2323 * Note that if the spp_address field is empty 2324 * then all associations on this address will 2325 * have this fixed path mtu set upon them. 2326 * 2327 * spp_sackdelay - When delayed sack is enabled, this value specifies 2328 * the number of milliseconds that sacks will be delayed 2329 * for. This value will apply to all addresses of an 2330 * association if the spp_address field is empty. Note 2331 * also, that if delayed sack is enabled and this 2332 * value is set to 0, no change is made to the last 2333 * recorded delayed sack timer value. 2334 * 2335 * spp_flags - These flags are used to control various features 2336 * on an association. The flag field may contain 2337 * zero or more of the following options. 2338 * 2339 * SPP_HB_ENABLE - Enable heartbeats on the 2340 * specified address. Note that if the address 2341 * field is empty all addresses for the association 2342 * have heartbeats enabled upon them. 2343 * 2344 * SPP_HB_DISABLE - Disable heartbeats on the 2345 * speicifed address. Note that if the address 2346 * field is empty all addresses for the association 2347 * will have their heartbeats disabled. Note also 2348 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2349 * mutually exclusive, only one of these two should 2350 * be specified. Enabling both fields will have 2351 * undetermined results. 2352 * 2353 * SPP_HB_DEMAND - Request a user initiated heartbeat 2354 * to be made immediately. 2355 * 2356 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2357 * heartbeat delayis to be set to the value of 0 2358 * milliseconds. 2359 * 2360 * SPP_PMTUD_ENABLE - This field will enable PMTU 2361 * discovery upon the specified address. Note that 2362 * if the address feild is empty then all addresses 2363 * on the association are effected. 2364 * 2365 * SPP_PMTUD_DISABLE - This field will disable PMTU 2366 * discovery upon the specified address. Note that 2367 * if the address feild is empty then all addresses 2368 * on the association are effected. Not also that 2369 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2370 * exclusive. Enabling both will have undetermined 2371 * results. 2372 * 2373 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2374 * on delayed sack. The time specified in spp_sackdelay 2375 * is used to specify the sack delay for this address. Note 2376 * that if spp_address is empty then all addresses will 2377 * enable delayed sack and take on the sack delay 2378 * value specified in spp_sackdelay. 2379 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2380 * off delayed sack. If the spp_address field is blank then 2381 * delayed sack is disabled for the entire association. Note 2382 * also that this field is mutually exclusive to 2383 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2384 * results. 2385 * 2386 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2387 * setting of the IPV6 flow label value. The value is 2388 * contained in the spp_ipv6_flowlabel field. 2389 * Upon retrieval, this flag will be set to indicate that 2390 * the spp_ipv6_flowlabel field has a valid value returned. 2391 * If a specific destination address is set (in the 2392 * spp_address field), then the value returned is that of 2393 * the address. If just an association is specified (and 2394 * no address), then the association's default flow label 2395 * is returned. If neither an association nor a destination 2396 * is specified, then the socket's default flow label is 2397 * returned. For non-IPv6 sockets, this flag will be left 2398 * cleared. 2399 * 2400 * SPP_DSCP: Setting this flag enables the setting of the 2401 * Differentiated Services Code Point (DSCP) value 2402 * associated with either the association or a specific 2403 * address. The value is obtained in the spp_dscp field. 2404 * Upon retrieval, this flag will be set to indicate that 2405 * the spp_dscp field has a valid value returned. If a 2406 * specific destination address is set when called (in the 2407 * spp_address field), then that specific destination 2408 * address's DSCP value is returned. If just an association 2409 * is specified, then the association's default DSCP is 2410 * returned. If neither an association nor a destination is 2411 * specified, then the socket's default DSCP is returned. 2412 * 2413 * spp_ipv6_flowlabel 2414 * - This field is used in conjunction with the 2415 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2416 * The 20 least significant bits are used for the flow 2417 * label. This setting has precedence over any IPv6-layer 2418 * setting. 2419 * 2420 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2421 * and contains the DSCP. The 6 most significant bits are 2422 * used for the DSCP. This setting has precedence over any 2423 * IPv4- or IPv6- layer setting. 2424 */ 2425 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2426 struct sctp_transport *trans, 2427 struct sctp_association *asoc, 2428 struct sctp_sock *sp, 2429 int hb_change, 2430 int pmtud_change, 2431 int sackdelay_change) 2432 { 2433 int error; 2434 2435 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2436 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2437 trans->asoc, trans); 2438 if (error) 2439 return error; 2440 } 2441 2442 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2443 * this field is ignored. Note also that a value of zero indicates 2444 * the current setting should be left unchanged. 2445 */ 2446 if (params->spp_flags & SPP_HB_ENABLE) { 2447 2448 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2449 * set. This lets us use 0 value when this flag 2450 * is set. 2451 */ 2452 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2453 params->spp_hbinterval = 0; 2454 2455 if (params->spp_hbinterval || 2456 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2457 if (trans) { 2458 trans->hbinterval = 2459 msecs_to_jiffies(params->spp_hbinterval); 2460 sctp_transport_reset_hb_timer(trans); 2461 } else if (asoc) { 2462 asoc->hbinterval = 2463 msecs_to_jiffies(params->spp_hbinterval); 2464 } else { 2465 sp->hbinterval = params->spp_hbinterval; 2466 } 2467 } 2468 } 2469 2470 if (hb_change) { 2471 if (trans) { 2472 trans->param_flags = 2473 (trans->param_flags & ~SPP_HB) | hb_change; 2474 } else if (asoc) { 2475 asoc->param_flags = 2476 (asoc->param_flags & ~SPP_HB) | hb_change; 2477 } else { 2478 sp->param_flags = 2479 (sp->param_flags & ~SPP_HB) | hb_change; 2480 } 2481 } 2482 2483 /* When Path MTU discovery is disabled the value specified here will 2484 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2485 * include the flag SPP_PMTUD_DISABLE for this field to have any 2486 * effect). 2487 */ 2488 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2489 if (trans) { 2490 trans->pathmtu = params->spp_pathmtu; 2491 sctp_assoc_sync_pmtu(asoc); 2492 } else if (asoc) { 2493 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2494 } else { 2495 sp->pathmtu = params->spp_pathmtu; 2496 } 2497 } 2498 2499 if (pmtud_change) { 2500 if (trans) { 2501 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2502 (params->spp_flags & SPP_PMTUD_ENABLE); 2503 trans->param_flags = 2504 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2505 if (update) { 2506 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2507 sctp_assoc_sync_pmtu(asoc); 2508 } 2509 sctp_transport_pl_reset(trans); 2510 } else if (asoc) { 2511 asoc->param_flags = 2512 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2513 } else { 2514 sp->param_flags = 2515 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2516 } 2517 } 2518 2519 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2520 * value of this field is ignored. Note also that a value of zero 2521 * indicates the current setting should be left unchanged. 2522 */ 2523 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2524 if (trans) { 2525 trans->sackdelay = 2526 msecs_to_jiffies(params->spp_sackdelay); 2527 } else if (asoc) { 2528 asoc->sackdelay = 2529 msecs_to_jiffies(params->spp_sackdelay); 2530 } else { 2531 sp->sackdelay = params->spp_sackdelay; 2532 } 2533 } 2534 2535 if (sackdelay_change) { 2536 if (trans) { 2537 trans->param_flags = 2538 (trans->param_flags & ~SPP_SACKDELAY) | 2539 sackdelay_change; 2540 } else if (asoc) { 2541 asoc->param_flags = 2542 (asoc->param_flags & ~SPP_SACKDELAY) | 2543 sackdelay_change; 2544 } else { 2545 sp->param_flags = 2546 (sp->param_flags & ~SPP_SACKDELAY) | 2547 sackdelay_change; 2548 } 2549 } 2550 2551 /* Note that a value of zero indicates the current setting should be 2552 left unchanged. 2553 */ 2554 if (params->spp_pathmaxrxt) { 2555 if (trans) { 2556 trans->pathmaxrxt = params->spp_pathmaxrxt; 2557 } else if (asoc) { 2558 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2559 } else { 2560 sp->pathmaxrxt = params->spp_pathmaxrxt; 2561 } 2562 } 2563 2564 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2565 if (trans) { 2566 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2567 trans->flowlabel = params->spp_ipv6_flowlabel & 2568 SCTP_FLOWLABEL_VAL_MASK; 2569 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2570 } 2571 } else if (asoc) { 2572 struct sctp_transport *t; 2573 2574 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2575 transports) { 2576 if (t->ipaddr.sa.sa_family != AF_INET6) 2577 continue; 2578 t->flowlabel = params->spp_ipv6_flowlabel & 2579 SCTP_FLOWLABEL_VAL_MASK; 2580 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2581 } 2582 asoc->flowlabel = params->spp_ipv6_flowlabel & 2583 SCTP_FLOWLABEL_VAL_MASK; 2584 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2585 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2586 sp->flowlabel = params->spp_ipv6_flowlabel & 2587 SCTP_FLOWLABEL_VAL_MASK; 2588 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2589 } 2590 } 2591 2592 if (params->spp_flags & SPP_DSCP) { 2593 if (trans) { 2594 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2595 trans->dscp |= SCTP_DSCP_SET_MASK; 2596 } else if (asoc) { 2597 struct sctp_transport *t; 2598 2599 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2600 transports) { 2601 t->dscp = params->spp_dscp & 2602 SCTP_DSCP_VAL_MASK; 2603 t->dscp |= SCTP_DSCP_SET_MASK; 2604 } 2605 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2606 asoc->dscp |= SCTP_DSCP_SET_MASK; 2607 } else { 2608 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2609 sp->dscp |= SCTP_DSCP_SET_MASK; 2610 } 2611 } 2612 2613 return 0; 2614 } 2615 2616 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2617 struct sctp_paddrparams *params, 2618 unsigned int optlen) 2619 { 2620 struct sctp_transport *trans = NULL; 2621 struct sctp_association *asoc = NULL; 2622 struct sctp_sock *sp = sctp_sk(sk); 2623 int error; 2624 int hb_change, pmtud_change, sackdelay_change; 2625 2626 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2627 spp_ipv6_flowlabel), 4)) { 2628 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2629 return -EINVAL; 2630 } else if (optlen != sizeof(*params)) { 2631 return -EINVAL; 2632 } 2633 2634 /* Validate flags and value parameters. */ 2635 hb_change = params->spp_flags & SPP_HB; 2636 pmtud_change = params->spp_flags & SPP_PMTUD; 2637 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2638 2639 if (hb_change == SPP_HB || 2640 pmtud_change == SPP_PMTUD || 2641 sackdelay_change == SPP_SACKDELAY || 2642 params->spp_sackdelay > 500 || 2643 (params->spp_pathmtu && 2644 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2645 return -EINVAL; 2646 2647 /* If an address other than INADDR_ANY is specified, and 2648 * no transport is found, then the request is invalid. 2649 */ 2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2651 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2652 params->spp_assoc_id); 2653 if (!trans) 2654 return -EINVAL; 2655 } 2656 2657 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2658 * socket is a one to many style socket, and an association 2659 * was not found, then the id was invalid. 2660 */ 2661 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2662 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2663 sctp_style(sk, UDP)) 2664 return -EINVAL; 2665 2666 /* Heartbeat demand can only be sent on a transport or 2667 * association, but not a socket. 2668 */ 2669 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2670 return -EINVAL; 2671 2672 /* Process parameters. */ 2673 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2674 hb_change, pmtud_change, 2675 sackdelay_change); 2676 2677 if (error) 2678 return error; 2679 2680 /* If changes are for association, also apply parameters to each 2681 * transport. 2682 */ 2683 if (!trans && asoc) { 2684 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2685 transports) { 2686 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2687 hb_change, pmtud_change, 2688 sackdelay_change); 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2696 { 2697 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2698 } 2699 2700 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2701 { 2702 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2703 } 2704 2705 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2706 struct sctp_association *asoc) 2707 { 2708 struct sctp_transport *trans; 2709 2710 if (params->sack_delay) { 2711 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2712 asoc->param_flags = 2713 sctp_spp_sackdelay_enable(asoc->param_flags); 2714 } 2715 if (params->sack_freq == 1) { 2716 asoc->param_flags = 2717 sctp_spp_sackdelay_disable(asoc->param_flags); 2718 } else if (params->sack_freq > 1) { 2719 asoc->sackfreq = params->sack_freq; 2720 asoc->param_flags = 2721 sctp_spp_sackdelay_enable(asoc->param_flags); 2722 } 2723 2724 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2725 transports) { 2726 if (params->sack_delay) { 2727 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 if (params->sack_freq == 1) { 2732 trans->param_flags = 2733 sctp_spp_sackdelay_disable(trans->param_flags); 2734 } else if (params->sack_freq > 1) { 2735 trans->sackfreq = params->sack_freq; 2736 trans->param_flags = 2737 sctp_spp_sackdelay_enable(trans->param_flags); 2738 } 2739 } 2740 } 2741 2742 /* 2743 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2744 * 2745 * This option will effect the way delayed acks are performed. This 2746 * option allows you to get or set the delayed ack time, in 2747 * milliseconds. It also allows changing the delayed ack frequency. 2748 * Changing the frequency to 1 disables the delayed sack algorithm. If 2749 * the assoc_id is 0, then this sets or gets the endpoints default 2750 * values. If the assoc_id field is non-zero, then the set or get 2751 * effects the specified association for the one to many model (the 2752 * assoc_id field is ignored by the one to one model). Note that if 2753 * sack_delay or sack_freq are 0 when setting this option, then the 2754 * current values will remain unchanged. 2755 * 2756 * struct sctp_sack_info { 2757 * sctp_assoc_t sack_assoc_id; 2758 * uint32_t sack_delay; 2759 * uint32_t sack_freq; 2760 * }; 2761 * 2762 * sack_assoc_id - This parameter, indicates which association the user 2763 * is performing an action upon. Note that if this field's value is 2764 * zero then the endpoints default value is changed (effecting future 2765 * associations only). 2766 * 2767 * sack_delay - This parameter contains the number of milliseconds that 2768 * the user is requesting the delayed ACK timer be set to. Note that 2769 * this value is defined in the standard to be between 200 and 500 2770 * milliseconds. 2771 * 2772 * sack_freq - This parameter contains the number of packets that must 2773 * be received before a sack is sent without waiting for the delay 2774 * timer to expire. The default value for this is 2, setting this 2775 * value to 1 will disable the delayed sack algorithm. 2776 */ 2777 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2778 struct sctp_sack_info *params) 2779 { 2780 struct sctp_sock *sp = sctp_sk(sk); 2781 struct sctp_association *asoc; 2782 2783 /* Validate value parameter. */ 2784 if (params->sack_delay > 500) 2785 return -EINVAL; 2786 2787 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2788 * socket is a one to many style socket, and an association 2789 * was not found, then the id was invalid. 2790 */ 2791 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2792 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2793 sctp_style(sk, UDP)) 2794 return -EINVAL; 2795 2796 if (asoc) { 2797 sctp_apply_asoc_delayed_ack(params, asoc); 2798 2799 return 0; 2800 } 2801 2802 if (sctp_style(sk, TCP)) 2803 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2804 2805 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2806 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2807 if (params->sack_delay) { 2808 sp->sackdelay = params->sack_delay; 2809 sp->param_flags = 2810 sctp_spp_sackdelay_enable(sp->param_flags); 2811 } 2812 if (params->sack_freq == 1) { 2813 sp->param_flags = 2814 sctp_spp_sackdelay_disable(sp->param_flags); 2815 } else if (params->sack_freq > 1) { 2816 sp->sackfreq = params->sack_freq; 2817 sp->param_flags = 2818 sctp_spp_sackdelay_enable(sp->param_flags); 2819 } 2820 } 2821 2822 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2823 params->sack_assoc_id == SCTP_ALL_ASSOC) 2824 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2825 sctp_apply_asoc_delayed_ack(params, asoc); 2826 2827 return 0; 2828 } 2829 2830 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2831 struct sctp_sack_info *params, 2832 unsigned int optlen) 2833 { 2834 if (optlen == sizeof(struct sctp_assoc_value)) { 2835 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2836 struct sctp_sack_info p; 2837 2838 pr_warn_ratelimited(DEPRECATED 2839 "%s (pid %d) " 2840 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2841 "Use struct sctp_sack_info instead\n", 2842 current->comm, task_pid_nr(current)); 2843 2844 p.sack_assoc_id = v->assoc_id; 2845 p.sack_delay = v->assoc_value; 2846 p.sack_freq = v->assoc_value ? 0 : 1; 2847 return __sctp_setsockopt_delayed_ack(sk, &p); 2848 } 2849 2850 if (optlen != sizeof(struct sctp_sack_info)) 2851 return -EINVAL; 2852 if (params->sack_delay == 0 && params->sack_freq == 0) 2853 return 0; 2854 return __sctp_setsockopt_delayed_ack(sk, params); 2855 } 2856 2857 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2858 * 2859 * Applications can specify protocol parameters for the default association 2860 * initialization. The option name argument to setsockopt() and getsockopt() 2861 * is SCTP_INITMSG. 2862 * 2863 * Setting initialization parameters is effective only on an unconnected 2864 * socket (for UDP-style sockets only future associations are effected 2865 * by the change). With TCP-style sockets, this option is inherited by 2866 * sockets derived from a listener socket. 2867 */ 2868 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2869 unsigned int optlen) 2870 { 2871 struct sctp_sock *sp = sctp_sk(sk); 2872 2873 if (optlen != sizeof(struct sctp_initmsg)) 2874 return -EINVAL; 2875 2876 if (sinit->sinit_num_ostreams) 2877 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2878 if (sinit->sinit_max_instreams) 2879 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2880 if (sinit->sinit_max_attempts) 2881 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2882 if (sinit->sinit_max_init_timeo) 2883 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2884 2885 return 0; 2886 } 2887 2888 /* 2889 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2890 * 2891 * Applications that wish to use the sendto() system call may wish to 2892 * specify a default set of parameters that would normally be supplied 2893 * through the inclusion of ancillary data. This socket option allows 2894 * such an application to set the default sctp_sndrcvinfo structure. 2895 * The application that wishes to use this socket option simply passes 2896 * in to this call the sctp_sndrcvinfo structure defined in Section 2897 * 5.2.2) The input parameters accepted by this call include 2898 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2899 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2900 * to this call if the caller is using the UDP model. 2901 */ 2902 static int sctp_setsockopt_default_send_param(struct sock *sk, 2903 struct sctp_sndrcvinfo *info, 2904 unsigned int optlen) 2905 { 2906 struct sctp_sock *sp = sctp_sk(sk); 2907 struct sctp_association *asoc; 2908 2909 if (optlen != sizeof(*info)) 2910 return -EINVAL; 2911 if (info->sinfo_flags & 2912 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2913 SCTP_ABORT | SCTP_EOF)) 2914 return -EINVAL; 2915 2916 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2917 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2918 sctp_style(sk, UDP)) 2919 return -EINVAL; 2920 2921 if (asoc) { 2922 asoc->default_stream = info->sinfo_stream; 2923 asoc->default_flags = info->sinfo_flags; 2924 asoc->default_ppid = info->sinfo_ppid; 2925 asoc->default_context = info->sinfo_context; 2926 asoc->default_timetolive = info->sinfo_timetolive; 2927 2928 return 0; 2929 } 2930 2931 if (sctp_style(sk, TCP)) 2932 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2933 2934 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2935 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2936 sp->default_stream = info->sinfo_stream; 2937 sp->default_flags = info->sinfo_flags; 2938 sp->default_ppid = info->sinfo_ppid; 2939 sp->default_context = info->sinfo_context; 2940 sp->default_timetolive = info->sinfo_timetolive; 2941 } 2942 2943 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2944 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2945 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2946 asoc->default_stream = info->sinfo_stream; 2947 asoc->default_flags = info->sinfo_flags; 2948 asoc->default_ppid = info->sinfo_ppid; 2949 asoc->default_context = info->sinfo_context; 2950 asoc->default_timetolive = info->sinfo_timetolive; 2951 } 2952 } 2953 2954 return 0; 2955 } 2956 2957 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2958 * (SCTP_DEFAULT_SNDINFO) 2959 */ 2960 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2961 struct sctp_sndinfo *info, 2962 unsigned int optlen) 2963 { 2964 struct sctp_sock *sp = sctp_sk(sk); 2965 struct sctp_association *asoc; 2966 2967 if (optlen != sizeof(*info)) 2968 return -EINVAL; 2969 if (info->snd_flags & 2970 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2971 SCTP_ABORT | SCTP_EOF)) 2972 return -EINVAL; 2973 2974 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2975 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2976 sctp_style(sk, UDP)) 2977 return -EINVAL; 2978 2979 if (asoc) { 2980 asoc->default_stream = info->snd_sid; 2981 asoc->default_flags = info->snd_flags; 2982 asoc->default_ppid = info->snd_ppid; 2983 asoc->default_context = info->snd_context; 2984 2985 return 0; 2986 } 2987 2988 if (sctp_style(sk, TCP)) 2989 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2990 2991 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2992 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2993 sp->default_stream = info->snd_sid; 2994 sp->default_flags = info->snd_flags; 2995 sp->default_ppid = info->snd_ppid; 2996 sp->default_context = info->snd_context; 2997 } 2998 2999 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 3000 info->snd_assoc_id == SCTP_ALL_ASSOC) { 3001 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3002 asoc->default_stream = info->snd_sid; 3003 asoc->default_flags = info->snd_flags; 3004 asoc->default_ppid = info->snd_ppid; 3005 asoc->default_context = info->snd_context; 3006 } 3007 } 3008 3009 return 0; 3010 } 3011 3012 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3013 * 3014 * Requests that the local SCTP stack use the enclosed peer address as 3015 * the association primary. The enclosed address must be one of the 3016 * association peer's addresses. 3017 */ 3018 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3019 unsigned int optlen) 3020 { 3021 struct sctp_transport *trans; 3022 struct sctp_af *af; 3023 int err; 3024 3025 if (optlen != sizeof(struct sctp_prim)) 3026 return -EINVAL; 3027 3028 /* Allow security module to validate address but need address len. */ 3029 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3030 if (!af) 3031 return -EINVAL; 3032 3033 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3034 (struct sockaddr *)&prim->ssp_addr, 3035 af->sockaddr_len); 3036 if (err) 3037 return err; 3038 3039 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3040 if (!trans) 3041 return -EINVAL; 3042 3043 sctp_assoc_set_primary(trans->asoc, trans); 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * 7.1.5 SCTP_NODELAY 3050 * 3051 * Turn on/off any Nagle-like algorithm. This means that packets are 3052 * generally sent as soon as possible and no unnecessary delays are 3053 * introduced, at the cost of more packets in the network. Expects an 3054 * integer boolean flag. 3055 */ 3056 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3057 unsigned int optlen) 3058 { 3059 if (optlen < sizeof(int)) 3060 return -EINVAL; 3061 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3062 return 0; 3063 } 3064 3065 /* 3066 * 3067 * 7.1.1 SCTP_RTOINFO 3068 * 3069 * The protocol parameters used to initialize and bound retransmission 3070 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3071 * and modify these parameters. 3072 * All parameters are time values, in milliseconds. A value of 0, when 3073 * modifying the parameters, indicates that the current value should not 3074 * be changed. 3075 * 3076 */ 3077 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3078 struct sctp_rtoinfo *rtoinfo, 3079 unsigned int optlen) 3080 { 3081 struct sctp_association *asoc; 3082 unsigned long rto_min, rto_max; 3083 struct sctp_sock *sp = sctp_sk(sk); 3084 3085 if (optlen != sizeof (struct sctp_rtoinfo)) 3086 return -EINVAL; 3087 3088 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3089 3090 /* Set the values to the specific association */ 3091 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3092 sctp_style(sk, UDP)) 3093 return -EINVAL; 3094 3095 rto_max = rtoinfo->srto_max; 3096 rto_min = rtoinfo->srto_min; 3097 3098 if (rto_max) 3099 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3100 else 3101 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3102 3103 if (rto_min) 3104 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3105 else 3106 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3107 3108 if (rto_min > rto_max) 3109 return -EINVAL; 3110 3111 if (asoc) { 3112 if (rtoinfo->srto_initial != 0) 3113 asoc->rto_initial = 3114 msecs_to_jiffies(rtoinfo->srto_initial); 3115 asoc->rto_max = rto_max; 3116 asoc->rto_min = rto_min; 3117 } else { 3118 /* If there is no association or the association-id = 0 3119 * set the values to the endpoint. 3120 */ 3121 if (rtoinfo->srto_initial != 0) 3122 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3123 sp->rtoinfo.srto_max = rto_max; 3124 sp->rtoinfo.srto_min = rto_min; 3125 } 3126 3127 return 0; 3128 } 3129 3130 /* 3131 * 3132 * 7.1.2 SCTP_ASSOCINFO 3133 * 3134 * This option is used to tune the maximum retransmission attempts 3135 * of the association. 3136 * Returns an error if the new association retransmission value is 3137 * greater than the sum of the retransmission value of the peer. 3138 * See [SCTP] for more information. 3139 * 3140 */ 3141 static int sctp_setsockopt_associnfo(struct sock *sk, 3142 struct sctp_assocparams *assocparams, 3143 unsigned int optlen) 3144 { 3145 3146 struct sctp_association *asoc; 3147 3148 if (optlen != sizeof(struct sctp_assocparams)) 3149 return -EINVAL; 3150 3151 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3152 3153 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3154 sctp_style(sk, UDP)) 3155 return -EINVAL; 3156 3157 /* Set the values to the specific association */ 3158 if (asoc) { 3159 if (assocparams->sasoc_asocmaxrxt != 0) { 3160 __u32 path_sum = 0; 3161 int paths = 0; 3162 struct sctp_transport *peer_addr; 3163 3164 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3165 transports) { 3166 path_sum += peer_addr->pathmaxrxt; 3167 paths++; 3168 } 3169 3170 /* Only validate asocmaxrxt if we have more than 3171 * one path/transport. We do this because path 3172 * retransmissions are only counted when we have more 3173 * then one path. 3174 */ 3175 if (paths > 1 && 3176 assocparams->sasoc_asocmaxrxt > path_sum) 3177 return -EINVAL; 3178 3179 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3180 } 3181 3182 if (assocparams->sasoc_cookie_life != 0) 3183 asoc->cookie_life = 3184 ms_to_ktime(assocparams->sasoc_cookie_life); 3185 } else { 3186 /* Set the values to the endpoint */ 3187 struct sctp_sock *sp = sctp_sk(sk); 3188 3189 if (assocparams->sasoc_asocmaxrxt != 0) 3190 sp->assocparams.sasoc_asocmaxrxt = 3191 assocparams->sasoc_asocmaxrxt; 3192 if (assocparams->sasoc_cookie_life != 0) 3193 sp->assocparams.sasoc_cookie_life = 3194 assocparams->sasoc_cookie_life; 3195 } 3196 return 0; 3197 } 3198 3199 /* 3200 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3201 * 3202 * This socket option is a boolean flag which turns on or off mapped V4 3203 * addresses. If this option is turned on and the socket is type 3204 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3205 * If this option is turned off, then no mapping will be done of V4 3206 * addresses and a user will receive both PF_INET6 and PF_INET type 3207 * addresses on the socket. 3208 */ 3209 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3210 unsigned int optlen) 3211 { 3212 struct sctp_sock *sp = sctp_sk(sk); 3213 3214 if (optlen < sizeof(int)) 3215 return -EINVAL; 3216 if (*val) 3217 sp->v4mapped = 1; 3218 else 3219 sp->v4mapped = 0; 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3226 * This option will get or set the maximum size to put in any outgoing 3227 * SCTP DATA chunk. If a message is larger than this size it will be 3228 * fragmented by SCTP into the specified size. Note that the underlying 3229 * SCTP implementation may fragment into smaller sized chunks when the 3230 * PMTU of the underlying association is smaller than the value set by 3231 * the user. The default value for this option is '0' which indicates 3232 * the user is NOT limiting fragmentation and only the PMTU will effect 3233 * SCTP's choice of DATA chunk size. Note also that values set larger 3234 * than the maximum size of an IP datagram will effectively let SCTP 3235 * control fragmentation (i.e. the same as setting this option to 0). 3236 * 3237 * The following structure is used to access and modify this parameter: 3238 * 3239 * struct sctp_assoc_value { 3240 * sctp_assoc_t assoc_id; 3241 * uint32_t assoc_value; 3242 * }; 3243 * 3244 * assoc_id: This parameter is ignored for one-to-one style sockets. 3245 * For one-to-many style sockets this parameter indicates which 3246 * association the user is performing an action upon. Note that if 3247 * this field's value is zero then the endpoints default value is 3248 * changed (effecting future associations only). 3249 * assoc_value: This parameter specifies the maximum size in bytes. 3250 */ 3251 static int sctp_setsockopt_maxseg(struct sock *sk, 3252 struct sctp_assoc_value *params, 3253 unsigned int optlen) 3254 { 3255 struct sctp_sock *sp = sctp_sk(sk); 3256 struct sctp_association *asoc; 3257 sctp_assoc_t assoc_id; 3258 int val; 3259 3260 if (optlen == sizeof(int)) { 3261 pr_warn_ratelimited(DEPRECATED 3262 "%s (pid %d) " 3263 "Use of int in maxseg socket option.\n" 3264 "Use struct sctp_assoc_value instead\n", 3265 current->comm, task_pid_nr(current)); 3266 assoc_id = SCTP_FUTURE_ASSOC; 3267 val = *(int *)params; 3268 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3269 assoc_id = params->assoc_id; 3270 val = params->assoc_value; 3271 } else { 3272 return -EINVAL; 3273 } 3274 3275 asoc = sctp_id2assoc(sk, assoc_id); 3276 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3277 sctp_style(sk, UDP)) 3278 return -EINVAL; 3279 3280 if (val) { 3281 int min_len, max_len; 3282 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3283 sizeof(struct sctp_data_chunk); 3284 3285 min_len = sctp_min_frag_point(sp, datasize); 3286 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3287 3288 if (val < min_len || val > max_len) 3289 return -EINVAL; 3290 } 3291 3292 if (asoc) { 3293 asoc->user_frag = val; 3294 sctp_assoc_update_frag_point(asoc); 3295 } else { 3296 sp->user_frag = val; 3297 } 3298 3299 return 0; 3300 } 3301 3302 3303 /* 3304 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3305 * 3306 * Requests that the peer mark the enclosed address as the association 3307 * primary. The enclosed address must be one of the association's 3308 * locally bound addresses. The following structure is used to make a 3309 * set primary request: 3310 */ 3311 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3312 struct sctp_setpeerprim *prim, 3313 unsigned int optlen) 3314 { 3315 struct sctp_sock *sp; 3316 struct sctp_association *asoc = NULL; 3317 struct sctp_chunk *chunk; 3318 struct sctp_af *af; 3319 int err; 3320 3321 sp = sctp_sk(sk); 3322 3323 if (!sp->ep->asconf_enable) 3324 return -EPERM; 3325 3326 if (optlen != sizeof(struct sctp_setpeerprim)) 3327 return -EINVAL; 3328 3329 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3330 if (!asoc) 3331 return -EINVAL; 3332 3333 if (!asoc->peer.asconf_capable) 3334 return -EPERM; 3335 3336 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3337 return -EPERM; 3338 3339 if (!sctp_state(asoc, ESTABLISHED)) 3340 return -ENOTCONN; 3341 3342 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3343 if (!af) 3344 return -EINVAL; 3345 3346 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3347 return -EADDRNOTAVAIL; 3348 3349 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3350 return -EADDRNOTAVAIL; 3351 3352 /* Allow security module to validate address. */ 3353 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3354 (struct sockaddr *)&prim->sspp_addr, 3355 af->sockaddr_len); 3356 if (err) 3357 return err; 3358 3359 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3360 chunk = sctp_make_asconf_set_prim(asoc, 3361 (union sctp_addr *)&prim->sspp_addr); 3362 if (!chunk) 3363 return -ENOMEM; 3364 3365 err = sctp_send_asconf(asoc, chunk); 3366 3367 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3368 3369 return err; 3370 } 3371 3372 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3373 struct sctp_setadaptation *adapt, 3374 unsigned int optlen) 3375 { 3376 if (optlen != sizeof(struct sctp_setadaptation)) 3377 return -EINVAL; 3378 3379 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3380 3381 return 0; 3382 } 3383 3384 /* 3385 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3386 * 3387 * The context field in the sctp_sndrcvinfo structure is normally only 3388 * used when a failed message is retrieved holding the value that was 3389 * sent down on the actual send call. This option allows the setting of 3390 * a default context on an association basis that will be received on 3391 * reading messages from the peer. This is especially helpful in the 3392 * one-2-many model for an application to keep some reference to an 3393 * internal state machine that is processing messages on the 3394 * association. Note that the setting of this value only effects 3395 * received messages from the peer and does not effect the value that is 3396 * saved with outbound messages. 3397 */ 3398 static int sctp_setsockopt_context(struct sock *sk, 3399 struct sctp_assoc_value *params, 3400 unsigned int optlen) 3401 { 3402 struct sctp_sock *sp = sctp_sk(sk); 3403 struct sctp_association *asoc; 3404 3405 if (optlen != sizeof(struct sctp_assoc_value)) 3406 return -EINVAL; 3407 3408 asoc = sctp_id2assoc(sk, params->assoc_id); 3409 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3410 sctp_style(sk, UDP)) 3411 return -EINVAL; 3412 3413 if (asoc) { 3414 asoc->default_rcv_context = params->assoc_value; 3415 3416 return 0; 3417 } 3418 3419 if (sctp_style(sk, TCP)) 3420 params->assoc_id = SCTP_FUTURE_ASSOC; 3421 3422 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3423 params->assoc_id == SCTP_ALL_ASSOC) 3424 sp->default_rcv_context = params->assoc_value; 3425 3426 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3427 params->assoc_id == SCTP_ALL_ASSOC) 3428 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3429 asoc->default_rcv_context = params->assoc_value; 3430 3431 return 0; 3432 } 3433 3434 /* 3435 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3436 * 3437 * This options will at a minimum specify if the implementation is doing 3438 * fragmented interleave. Fragmented interleave, for a one to many 3439 * socket, is when subsequent calls to receive a message may return 3440 * parts of messages from different associations. Some implementations 3441 * may allow you to turn this value on or off. If so, when turned off, 3442 * no fragment interleave will occur (which will cause a head of line 3443 * blocking amongst multiple associations sharing the same one to many 3444 * socket). When this option is turned on, then each receive call may 3445 * come from a different association (thus the user must receive data 3446 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3447 * association each receive belongs to. 3448 * 3449 * This option takes a boolean value. A non-zero value indicates that 3450 * fragmented interleave is on. A value of zero indicates that 3451 * fragmented interleave is off. 3452 * 3453 * Note that it is important that an implementation that allows this 3454 * option to be turned on, have it off by default. Otherwise an unaware 3455 * application using the one to many model may become confused and act 3456 * incorrectly. 3457 */ 3458 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3459 unsigned int optlen) 3460 { 3461 if (optlen != sizeof(int)) 3462 return -EINVAL; 3463 3464 sctp_sk(sk)->frag_interleave = !!*val; 3465 3466 if (!sctp_sk(sk)->frag_interleave) 3467 sctp_sk(sk)->ep->intl_enable = 0; 3468 3469 return 0; 3470 } 3471 3472 /* 3473 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3474 * (SCTP_PARTIAL_DELIVERY_POINT) 3475 * 3476 * This option will set or get the SCTP partial delivery point. This 3477 * point is the size of a message where the partial delivery API will be 3478 * invoked to help free up rwnd space for the peer. Setting this to a 3479 * lower value will cause partial deliveries to happen more often. The 3480 * calls argument is an integer that sets or gets the partial delivery 3481 * point. Note also that the call will fail if the user attempts to set 3482 * this value larger than the socket receive buffer size. 3483 * 3484 * Note that any single message having a length smaller than or equal to 3485 * the SCTP partial delivery point will be delivered in one single read 3486 * call as long as the user provided buffer is large enough to hold the 3487 * message. 3488 */ 3489 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3490 unsigned int optlen) 3491 { 3492 if (optlen != sizeof(u32)) 3493 return -EINVAL; 3494 3495 /* Note: We double the receive buffer from what the user sets 3496 * it to be, also initial rwnd is based on rcvbuf/2. 3497 */ 3498 if (*val > (sk->sk_rcvbuf >> 1)) 3499 return -EINVAL; 3500 3501 sctp_sk(sk)->pd_point = *val; 3502 3503 return 0; /* is this the right error code? */ 3504 } 3505 3506 /* 3507 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3508 * 3509 * This option will allow a user to change the maximum burst of packets 3510 * that can be emitted by this association. Note that the default value 3511 * is 4, and some implementations may restrict this setting so that it 3512 * can only be lowered. 3513 * 3514 * NOTE: This text doesn't seem right. Do this on a socket basis with 3515 * future associations inheriting the socket value. 3516 */ 3517 static int sctp_setsockopt_maxburst(struct sock *sk, 3518 struct sctp_assoc_value *params, 3519 unsigned int optlen) 3520 { 3521 struct sctp_sock *sp = sctp_sk(sk); 3522 struct sctp_association *asoc; 3523 sctp_assoc_t assoc_id; 3524 u32 assoc_value; 3525 3526 if (optlen == sizeof(int)) { 3527 pr_warn_ratelimited(DEPRECATED 3528 "%s (pid %d) " 3529 "Use of int in max_burst socket option deprecated.\n" 3530 "Use struct sctp_assoc_value instead\n", 3531 current->comm, task_pid_nr(current)); 3532 assoc_id = SCTP_FUTURE_ASSOC; 3533 assoc_value = *((int *)params); 3534 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3535 assoc_id = params->assoc_id; 3536 assoc_value = params->assoc_value; 3537 } else 3538 return -EINVAL; 3539 3540 asoc = sctp_id2assoc(sk, assoc_id); 3541 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3542 return -EINVAL; 3543 3544 if (asoc) { 3545 asoc->max_burst = assoc_value; 3546 3547 return 0; 3548 } 3549 3550 if (sctp_style(sk, TCP)) 3551 assoc_id = SCTP_FUTURE_ASSOC; 3552 3553 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3554 sp->max_burst = assoc_value; 3555 3556 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3557 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3558 asoc->max_burst = assoc_value; 3559 3560 return 0; 3561 } 3562 3563 /* 3564 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3565 * 3566 * This set option adds a chunk type that the user is requesting to be 3567 * received only in an authenticated way. Changes to the list of chunks 3568 * will only effect future associations on the socket. 3569 */ 3570 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3571 struct sctp_authchunk *val, 3572 unsigned int optlen) 3573 { 3574 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3575 3576 if (!ep->auth_enable) 3577 return -EACCES; 3578 3579 if (optlen != sizeof(struct sctp_authchunk)) 3580 return -EINVAL; 3581 3582 switch (val->sauth_chunk) { 3583 case SCTP_CID_INIT: 3584 case SCTP_CID_INIT_ACK: 3585 case SCTP_CID_SHUTDOWN_COMPLETE: 3586 case SCTP_CID_AUTH: 3587 return -EINVAL; 3588 } 3589 3590 /* add this chunk id to the endpoint */ 3591 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3592 } 3593 3594 /* 3595 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3596 * 3597 * This option gets or sets the list of HMAC algorithms that the local 3598 * endpoint requires the peer to use. 3599 */ 3600 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3601 struct sctp_hmacalgo *hmacs, 3602 unsigned int optlen) 3603 { 3604 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3605 u32 idents; 3606 3607 if (!ep->auth_enable) 3608 return -EACCES; 3609 3610 if (optlen < sizeof(struct sctp_hmacalgo)) 3611 return -EINVAL; 3612 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3613 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3614 3615 idents = hmacs->shmac_num_idents; 3616 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3617 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3618 return -EINVAL; 3619 3620 return sctp_auth_ep_set_hmacs(ep, hmacs); 3621 } 3622 3623 /* 3624 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3625 * 3626 * This option will set a shared secret key which is used to build an 3627 * association shared key. 3628 */ 3629 static int sctp_setsockopt_auth_key(struct sock *sk, 3630 struct sctp_authkey *authkey, 3631 unsigned int optlen) 3632 { 3633 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3634 struct sctp_association *asoc; 3635 int ret = -EINVAL; 3636 3637 if (optlen <= sizeof(struct sctp_authkey)) 3638 return -EINVAL; 3639 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3640 * this. 3641 */ 3642 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3643 3644 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3645 goto out; 3646 3647 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3648 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3649 sctp_style(sk, UDP)) 3650 goto out; 3651 3652 if (asoc) { 3653 ret = sctp_auth_set_key(ep, asoc, authkey); 3654 goto out; 3655 } 3656 3657 if (sctp_style(sk, TCP)) 3658 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3659 3660 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3661 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3662 ret = sctp_auth_set_key(ep, asoc, authkey); 3663 if (ret) 3664 goto out; 3665 } 3666 3667 ret = 0; 3668 3669 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3670 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3671 list_for_each_entry(asoc, &ep->asocs, asocs) { 3672 int res = sctp_auth_set_key(ep, asoc, authkey); 3673 3674 if (res && !ret) 3675 ret = res; 3676 } 3677 } 3678 3679 out: 3680 memzero_explicit(authkey, optlen); 3681 return ret; 3682 } 3683 3684 /* 3685 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3686 * 3687 * This option will get or set the active shared key to be used to build 3688 * the association shared key. 3689 */ 3690 static int sctp_setsockopt_active_key(struct sock *sk, 3691 struct sctp_authkeyid *val, 3692 unsigned int optlen) 3693 { 3694 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3695 struct sctp_association *asoc; 3696 int ret = 0; 3697 3698 if (optlen != sizeof(struct sctp_authkeyid)) 3699 return -EINVAL; 3700 3701 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3702 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3703 sctp_style(sk, UDP)) 3704 return -EINVAL; 3705 3706 if (asoc) 3707 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3708 3709 if (sctp_style(sk, TCP)) 3710 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3711 3712 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3713 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3714 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3715 if (ret) 3716 return ret; 3717 } 3718 3719 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3720 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3721 list_for_each_entry(asoc, &ep->asocs, asocs) { 3722 int res = sctp_auth_set_active_key(ep, asoc, 3723 val->scact_keynumber); 3724 3725 if (res && !ret) 3726 ret = res; 3727 } 3728 } 3729 3730 return ret; 3731 } 3732 3733 /* 3734 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3735 * 3736 * This set option will delete a shared secret key from use. 3737 */ 3738 static int sctp_setsockopt_del_key(struct sock *sk, 3739 struct sctp_authkeyid *val, 3740 unsigned int optlen) 3741 { 3742 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3743 struct sctp_association *asoc; 3744 int ret = 0; 3745 3746 if (optlen != sizeof(struct sctp_authkeyid)) 3747 return -EINVAL; 3748 3749 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3750 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3751 sctp_style(sk, UDP)) 3752 return -EINVAL; 3753 3754 if (asoc) 3755 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3756 3757 if (sctp_style(sk, TCP)) 3758 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3759 3760 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3761 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3762 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3763 if (ret) 3764 return ret; 3765 } 3766 3767 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3768 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3769 list_for_each_entry(asoc, &ep->asocs, asocs) { 3770 int res = sctp_auth_del_key_id(ep, asoc, 3771 val->scact_keynumber); 3772 3773 if (res && !ret) 3774 ret = res; 3775 } 3776 } 3777 3778 return ret; 3779 } 3780 3781 /* 3782 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3783 * 3784 * This set option will deactivate a shared secret key. 3785 */ 3786 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3787 struct sctp_authkeyid *val, 3788 unsigned int optlen) 3789 { 3790 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3791 struct sctp_association *asoc; 3792 int ret = 0; 3793 3794 if (optlen != sizeof(struct sctp_authkeyid)) 3795 return -EINVAL; 3796 3797 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3798 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3799 sctp_style(sk, UDP)) 3800 return -EINVAL; 3801 3802 if (asoc) 3803 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3804 3805 if (sctp_style(sk, TCP)) 3806 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3807 3808 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3809 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3810 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3811 if (ret) 3812 return ret; 3813 } 3814 3815 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3816 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3817 list_for_each_entry(asoc, &ep->asocs, asocs) { 3818 int res = sctp_auth_deact_key_id(ep, asoc, 3819 val->scact_keynumber); 3820 3821 if (res && !ret) 3822 ret = res; 3823 } 3824 } 3825 3826 return ret; 3827 } 3828 3829 /* 3830 * 8.1.23 SCTP_AUTO_ASCONF 3831 * 3832 * This option will enable or disable the use of the automatic generation of 3833 * ASCONF chunks to add and delete addresses to an existing association. Note 3834 * that this option has two caveats namely: a) it only affects sockets that 3835 * are bound to all addresses available to the SCTP stack, and b) the system 3836 * administrator may have an overriding control that turns the ASCONF feature 3837 * off no matter what setting the socket option may have. 3838 * This option expects an integer boolean flag, where a non-zero value turns on 3839 * the option, and a zero value turns off the option. 3840 * Note. In this implementation, socket operation overrides default parameter 3841 * being set by sysctl as well as FreeBSD implementation 3842 */ 3843 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3844 unsigned int optlen) 3845 { 3846 struct sctp_sock *sp = sctp_sk(sk); 3847 3848 if (optlen < sizeof(int)) 3849 return -EINVAL; 3850 if (!sctp_is_ep_boundall(sk) && *val) 3851 return -EINVAL; 3852 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3853 return 0; 3854 3855 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3856 if (*val == 0 && sp->do_auto_asconf) { 3857 list_del(&sp->auto_asconf_list); 3858 sp->do_auto_asconf = 0; 3859 } else if (*val && !sp->do_auto_asconf) { 3860 list_add_tail(&sp->auto_asconf_list, 3861 &sock_net(sk)->sctp.auto_asconf_splist); 3862 sp->do_auto_asconf = 1; 3863 } 3864 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3865 return 0; 3866 } 3867 3868 /* 3869 * SCTP_PEER_ADDR_THLDS 3870 * 3871 * This option allows us to alter the partially failed threshold for one or all 3872 * transports in an association. See Section 6.1 of: 3873 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3874 */ 3875 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3876 struct sctp_paddrthlds_v2 *val, 3877 unsigned int optlen, bool v2) 3878 { 3879 struct sctp_transport *trans; 3880 struct sctp_association *asoc; 3881 int len; 3882 3883 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3884 if (optlen < len) 3885 return -EINVAL; 3886 3887 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3888 return -EINVAL; 3889 3890 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3891 trans = sctp_addr_id2transport(sk, &val->spt_address, 3892 val->spt_assoc_id); 3893 if (!trans) 3894 return -ENOENT; 3895 3896 if (val->spt_pathmaxrxt) 3897 trans->pathmaxrxt = val->spt_pathmaxrxt; 3898 if (v2) 3899 trans->ps_retrans = val->spt_pathcpthld; 3900 trans->pf_retrans = val->spt_pathpfthld; 3901 3902 return 0; 3903 } 3904 3905 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3906 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3907 sctp_style(sk, UDP)) 3908 return -EINVAL; 3909 3910 if (asoc) { 3911 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3912 transports) { 3913 if (val->spt_pathmaxrxt) 3914 trans->pathmaxrxt = val->spt_pathmaxrxt; 3915 if (v2) 3916 trans->ps_retrans = val->spt_pathcpthld; 3917 trans->pf_retrans = val->spt_pathpfthld; 3918 } 3919 3920 if (val->spt_pathmaxrxt) 3921 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3922 if (v2) 3923 asoc->ps_retrans = val->spt_pathcpthld; 3924 asoc->pf_retrans = val->spt_pathpfthld; 3925 } else { 3926 struct sctp_sock *sp = sctp_sk(sk); 3927 3928 if (val->spt_pathmaxrxt) 3929 sp->pathmaxrxt = val->spt_pathmaxrxt; 3930 if (v2) 3931 sp->ps_retrans = val->spt_pathcpthld; 3932 sp->pf_retrans = val->spt_pathpfthld; 3933 } 3934 3935 return 0; 3936 } 3937 3938 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3939 unsigned int optlen) 3940 { 3941 if (optlen < sizeof(int)) 3942 return -EINVAL; 3943 3944 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3945 3946 return 0; 3947 } 3948 3949 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3950 unsigned int optlen) 3951 { 3952 if (optlen < sizeof(int)) 3953 return -EINVAL; 3954 3955 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3956 3957 return 0; 3958 } 3959 3960 static int sctp_setsockopt_pr_supported(struct sock *sk, 3961 struct sctp_assoc_value *params, 3962 unsigned int optlen) 3963 { 3964 struct sctp_association *asoc; 3965 3966 if (optlen != sizeof(*params)) 3967 return -EINVAL; 3968 3969 asoc = sctp_id2assoc(sk, params->assoc_id); 3970 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3971 sctp_style(sk, UDP)) 3972 return -EINVAL; 3973 3974 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3975 3976 return 0; 3977 } 3978 3979 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3980 struct sctp_default_prinfo *info, 3981 unsigned int optlen) 3982 { 3983 struct sctp_sock *sp = sctp_sk(sk); 3984 struct sctp_association *asoc; 3985 int retval = -EINVAL; 3986 3987 if (optlen != sizeof(*info)) 3988 goto out; 3989 3990 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3991 goto out; 3992 3993 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3994 info->pr_value = 0; 3995 3996 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3997 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3998 sctp_style(sk, UDP)) 3999 goto out; 4000 4001 retval = 0; 4002 4003 if (asoc) { 4004 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 4005 asoc->default_timetolive = info->pr_value; 4006 goto out; 4007 } 4008 4009 if (sctp_style(sk, TCP)) 4010 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4011 4012 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4013 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4014 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4015 sp->default_timetolive = info->pr_value; 4016 } 4017 4018 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4019 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4020 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4021 SCTP_PR_SET_POLICY(asoc->default_flags, 4022 info->pr_policy); 4023 asoc->default_timetolive = info->pr_value; 4024 } 4025 } 4026 4027 out: 4028 return retval; 4029 } 4030 4031 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4032 struct sctp_assoc_value *params, 4033 unsigned int optlen) 4034 { 4035 struct sctp_association *asoc; 4036 int retval = -EINVAL; 4037 4038 if (optlen != sizeof(*params)) 4039 goto out; 4040 4041 asoc = sctp_id2assoc(sk, params->assoc_id); 4042 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4043 sctp_style(sk, UDP)) 4044 goto out; 4045 4046 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4047 4048 retval = 0; 4049 4050 out: 4051 return retval; 4052 } 4053 4054 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4055 struct sctp_assoc_value *params, 4056 unsigned int optlen) 4057 { 4058 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4059 struct sctp_association *asoc; 4060 int retval = -EINVAL; 4061 4062 if (optlen != sizeof(*params)) 4063 goto out; 4064 4065 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4066 goto out; 4067 4068 asoc = sctp_id2assoc(sk, params->assoc_id); 4069 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4070 sctp_style(sk, UDP)) 4071 goto out; 4072 4073 retval = 0; 4074 4075 if (asoc) { 4076 asoc->strreset_enable = params->assoc_value; 4077 goto out; 4078 } 4079 4080 if (sctp_style(sk, TCP)) 4081 params->assoc_id = SCTP_FUTURE_ASSOC; 4082 4083 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4084 params->assoc_id == SCTP_ALL_ASSOC) 4085 ep->strreset_enable = params->assoc_value; 4086 4087 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4088 params->assoc_id == SCTP_ALL_ASSOC) 4089 list_for_each_entry(asoc, &ep->asocs, asocs) 4090 asoc->strreset_enable = params->assoc_value; 4091 4092 out: 4093 return retval; 4094 } 4095 4096 static int sctp_setsockopt_reset_streams(struct sock *sk, 4097 struct sctp_reset_streams *params, 4098 unsigned int optlen) 4099 { 4100 struct sctp_association *asoc; 4101 4102 if (optlen < sizeof(*params)) 4103 return -EINVAL; 4104 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4105 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4106 sizeof(__u16) * sizeof(*params)); 4107 4108 if (params->srs_number_streams * sizeof(__u16) > 4109 optlen - sizeof(*params)) 4110 return -EINVAL; 4111 4112 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4113 if (!asoc) 4114 return -EINVAL; 4115 4116 return sctp_send_reset_streams(asoc, params); 4117 } 4118 4119 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4120 unsigned int optlen) 4121 { 4122 struct sctp_association *asoc; 4123 4124 if (optlen != sizeof(*associd)) 4125 return -EINVAL; 4126 4127 asoc = sctp_id2assoc(sk, *associd); 4128 if (!asoc) 4129 return -EINVAL; 4130 4131 return sctp_send_reset_assoc(asoc); 4132 } 4133 4134 static int sctp_setsockopt_add_streams(struct sock *sk, 4135 struct sctp_add_streams *params, 4136 unsigned int optlen) 4137 { 4138 struct sctp_association *asoc; 4139 4140 if (optlen != sizeof(*params)) 4141 return -EINVAL; 4142 4143 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4144 if (!asoc) 4145 return -EINVAL; 4146 4147 return sctp_send_add_streams(asoc, params); 4148 } 4149 4150 static int sctp_setsockopt_scheduler(struct sock *sk, 4151 struct sctp_assoc_value *params, 4152 unsigned int optlen) 4153 { 4154 struct sctp_sock *sp = sctp_sk(sk); 4155 struct sctp_association *asoc; 4156 int retval = 0; 4157 4158 if (optlen < sizeof(*params)) 4159 return -EINVAL; 4160 4161 if (params->assoc_value > SCTP_SS_MAX) 4162 return -EINVAL; 4163 4164 asoc = sctp_id2assoc(sk, params->assoc_id); 4165 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4166 sctp_style(sk, UDP)) 4167 return -EINVAL; 4168 4169 if (asoc) 4170 return sctp_sched_set_sched(asoc, params->assoc_value); 4171 4172 if (sctp_style(sk, TCP)) 4173 params->assoc_id = SCTP_FUTURE_ASSOC; 4174 4175 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4176 params->assoc_id == SCTP_ALL_ASSOC) 4177 sp->default_ss = params->assoc_value; 4178 4179 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4180 params->assoc_id == SCTP_ALL_ASSOC) { 4181 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4182 int ret = sctp_sched_set_sched(asoc, 4183 params->assoc_value); 4184 4185 if (ret && !retval) 4186 retval = ret; 4187 } 4188 } 4189 4190 return retval; 4191 } 4192 4193 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4194 struct sctp_stream_value *params, 4195 unsigned int optlen) 4196 { 4197 struct sctp_association *asoc; 4198 int retval = -EINVAL; 4199 4200 if (optlen < sizeof(*params)) 4201 goto out; 4202 4203 asoc = sctp_id2assoc(sk, params->assoc_id); 4204 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4205 sctp_style(sk, UDP)) 4206 goto out; 4207 4208 if (asoc) { 4209 retval = sctp_sched_set_value(asoc, params->stream_id, 4210 params->stream_value, GFP_KERNEL); 4211 goto out; 4212 } 4213 4214 retval = 0; 4215 4216 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4217 int ret = sctp_sched_set_value(asoc, params->stream_id, 4218 params->stream_value, 4219 GFP_KERNEL); 4220 if (ret && !retval) /* try to return the 1st error. */ 4221 retval = ret; 4222 } 4223 4224 out: 4225 return retval; 4226 } 4227 4228 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4229 struct sctp_assoc_value *p, 4230 unsigned int optlen) 4231 { 4232 struct sctp_sock *sp = sctp_sk(sk); 4233 struct sctp_association *asoc; 4234 4235 if (optlen < sizeof(*p)) 4236 return -EINVAL; 4237 4238 asoc = sctp_id2assoc(sk, p->assoc_id); 4239 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4240 return -EINVAL; 4241 4242 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4243 return -EPERM; 4244 } 4245 4246 sp->ep->intl_enable = !!p->assoc_value; 4247 return 0; 4248 } 4249 4250 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4251 unsigned int optlen) 4252 { 4253 if (!sctp_style(sk, TCP)) 4254 return -EOPNOTSUPP; 4255 4256 if (sctp_sk(sk)->ep->base.bind_addr.port) 4257 return -EFAULT; 4258 4259 if (optlen < sizeof(int)) 4260 return -EINVAL; 4261 4262 sctp_sk(sk)->reuse = !!*val; 4263 4264 return 0; 4265 } 4266 4267 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4268 struct sctp_association *asoc) 4269 { 4270 struct sctp_ulpevent *event; 4271 4272 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4273 4274 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4275 if (sctp_outq_is_empty(&asoc->outqueue)) { 4276 event = sctp_ulpevent_make_sender_dry_event(asoc, 4277 GFP_USER | __GFP_NOWARN); 4278 if (!event) 4279 return -ENOMEM; 4280 4281 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4282 } 4283 } 4284 4285 return 0; 4286 } 4287 4288 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4289 unsigned int optlen) 4290 { 4291 struct sctp_sock *sp = sctp_sk(sk); 4292 struct sctp_association *asoc; 4293 int retval = 0; 4294 4295 if (optlen < sizeof(*param)) 4296 return -EINVAL; 4297 4298 if (param->se_type < SCTP_SN_TYPE_BASE || 4299 param->se_type > SCTP_SN_TYPE_MAX) 4300 return -EINVAL; 4301 4302 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4303 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4304 sctp_style(sk, UDP)) 4305 return -EINVAL; 4306 4307 if (asoc) 4308 return sctp_assoc_ulpevent_type_set(param, asoc); 4309 4310 if (sctp_style(sk, TCP)) 4311 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4312 4313 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4314 param->se_assoc_id == SCTP_ALL_ASSOC) 4315 sctp_ulpevent_type_set(&sp->subscribe, 4316 param->se_type, param->se_on); 4317 4318 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4319 param->se_assoc_id == SCTP_ALL_ASSOC) { 4320 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4321 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4322 4323 if (ret && !retval) 4324 retval = ret; 4325 } 4326 } 4327 4328 return retval; 4329 } 4330 4331 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4332 struct sctp_assoc_value *params, 4333 unsigned int optlen) 4334 { 4335 struct sctp_association *asoc; 4336 struct sctp_endpoint *ep; 4337 int retval = -EINVAL; 4338 4339 if (optlen != sizeof(*params)) 4340 goto out; 4341 4342 asoc = sctp_id2assoc(sk, params->assoc_id); 4343 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4344 sctp_style(sk, UDP)) 4345 goto out; 4346 4347 ep = sctp_sk(sk)->ep; 4348 ep->asconf_enable = !!params->assoc_value; 4349 4350 if (ep->asconf_enable && ep->auth_enable) { 4351 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4352 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4353 } 4354 4355 retval = 0; 4356 4357 out: 4358 return retval; 4359 } 4360 4361 static int sctp_setsockopt_auth_supported(struct sock *sk, 4362 struct sctp_assoc_value *params, 4363 unsigned int optlen) 4364 { 4365 struct sctp_association *asoc; 4366 struct sctp_endpoint *ep; 4367 int retval = -EINVAL; 4368 4369 if (optlen != sizeof(*params)) 4370 goto out; 4371 4372 asoc = sctp_id2assoc(sk, params->assoc_id); 4373 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4374 sctp_style(sk, UDP)) 4375 goto out; 4376 4377 ep = sctp_sk(sk)->ep; 4378 if (params->assoc_value) { 4379 retval = sctp_auth_init(ep, GFP_KERNEL); 4380 if (retval) 4381 goto out; 4382 if (ep->asconf_enable) { 4383 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4384 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4385 } 4386 } 4387 4388 ep->auth_enable = !!params->assoc_value; 4389 retval = 0; 4390 4391 out: 4392 return retval; 4393 } 4394 4395 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4396 struct sctp_assoc_value *params, 4397 unsigned int optlen) 4398 { 4399 struct sctp_association *asoc; 4400 int retval = -EINVAL; 4401 4402 if (optlen != sizeof(*params)) 4403 goto out; 4404 4405 asoc = sctp_id2assoc(sk, params->assoc_id); 4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4407 sctp_style(sk, UDP)) 4408 goto out; 4409 4410 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4411 retval = 0; 4412 4413 out: 4414 return retval; 4415 } 4416 4417 static int sctp_setsockopt_pf_expose(struct sock *sk, 4418 struct sctp_assoc_value *params, 4419 unsigned int optlen) 4420 { 4421 struct sctp_association *asoc; 4422 int retval = -EINVAL; 4423 4424 if (optlen != sizeof(*params)) 4425 goto out; 4426 4427 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4428 goto out; 4429 4430 asoc = sctp_id2assoc(sk, params->assoc_id); 4431 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4432 sctp_style(sk, UDP)) 4433 goto out; 4434 4435 if (asoc) 4436 asoc->pf_expose = params->assoc_value; 4437 else 4438 sctp_sk(sk)->pf_expose = params->assoc_value; 4439 retval = 0; 4440 4441 out: 4442 return retval; 4443 } 4444 4445 static int sctp_setsockopt_encap_port(struct sock *sk, 4446 struct sctp_udpencaps *encap, 4447 unsigned int optlen) 4448 { 4449 struct sctp_association *asoc; 4450 struct sctp_transport *t; 4451 __be16 encap_port; 4452 4453 if (optlen != sizeof(*encap)) 4454 return -EINVAL; 4455 4456 /* If an address other than INADDR_ANY is specified, and 4457 * no transport is found, then the request is invalid. 4458 */ 4459 encap_port = (__force __be16)encap->sue_port; 4460 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4461 t = sctp_addr_id2transport(sk, &encap->sue_address, 4462 encap->sue_assoc_id); 4463 if (!t) 4464 return -EINVAL; 4465 4466 t->encap_port = encap_port; 4467 return 0; 4468 } 4469 4470 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4471 * socket is a one to many style socket, and an association 4472 * was not found, then the id was invalid. 4473 */ 4474 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4475 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4476 sctp_style(sk, UDP)) 4477 return -EINVAL; 4478 4479 /* If changes are for association, also apply encap_port to 4480 * each transport. 4481 */ 4482 if (asoc) { 4483 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4484 transports) 4485 t->encap_port = encap_port; 4486 4487 asoc->encap_port = encap_port; 4488 return 0; 4489 } 4490 4491 sctp_sk(sk)->encap_port = encap_port; 4492 return 0; 4493 } 4494 4495 static int sctp_setsockopt_probe_interval(struct sock *sk, 4496 struct sctp_probeinterval *params, 4497 unsigned int optlen) 4498 { 4499 struct sctp_association *asoc; 4500 struct sctp_transport *t; 4501 __u32 probe_interval; 4502 4503 if (optlen != sizeof(*params)) 4504 return -EINVAL; 4505 4506 probe_interval = params->spi_interval; 4507 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4508 return -EINVAL; 4509 4510 /* If an address other than INADDR_ANY is specified, and 4511 * no transport is found, then the request is invalid. 4512 */ 4513 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4514 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4515 params->spi_assoc_id); 4516 if (!t) 4517 return -EINVAL; 4518 4519 t->probe_interval = msecs_to_jiffies(probe_interval); 4520 sctp_transport_pl_reset(t); 4521 return 0; 4522 } 4523 4524 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4525 * socket is a one to many style socket, and an association 4526 * was not found, then the id was invalid. 4527 */ 4528 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4529 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4530 sctp_style(sk, UDP)) 4531 return -EINVAL; 4532 4533 /* If changes are for association, also apply probe_interval to 4534 * each transport. 4535 */ 4536 if (asoc) { 4537 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4538 t->probe_interval = msecs_to_jiffies(probe_interval); 4539 sctp_transport_pl_reset(t); 4540 } 4541 4542 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4543 return 0; 4544 } 4545 4546 sctp_sk(sk)->probe_interval = probe_interval; 4547 return 0; 4548 } 4549 4550 /* API 6.2 setsockopt(), getsockopt() 4551 * 4552 * Applications use setsockopt() and getsockopt() to set or retrieve 4553 * socket options. Socket options are used to change the default 4554 * behavior of sockets calls. They are described in Section 7. 4555 * 4556 * The syntax is: 4557 * 4558 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4559 * int __user *optlen); 4560 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4561 * int optlen); 4562 * 4563 * sd - the socket descript. 4564 * level - set to IPPROTO_SCTP for all SCTP options. 4565 * optname - the option name. 4566 * optval - the buffer to store the value of the option. 4567 * optlen - the size of the buffer. 4568 */ 4569 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4570 sockptr_t optval, unsigned int optlen) 4571 { 4572 void *kopt = NULL; 4573 int retval = 0; 4574 4575 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4576 4577 /* I can hardly begin to describe how wrong this is. This is 4578 * so broken as to be worse than useless. The API draft 4579 * REALLY is NOT helpful here... I am not convinced that the 4580 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4581 * are at all well-founded. 4582 */ 4583 if (level != SOL_SCTP) { 4584 struct sctp_af *af = sctp_sk(sk)->pf->af; 4585 4586 return af->setsockopt(sk, level, optname, optval, optlen); 4587 } 4588 4589 if (optlen > 0) { 4590 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4591 optlen = min_t(unsigned int, optlen, 4592 PAGE_ALIGN(USHRT_MAX + 4593 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4594 kopt = memdup_sockptr(optval, optlen); 4595 if (IS_ERR(kopt)) 4596 return PTR_ERR(kopt); 4597 } 4598 4599 lock_sock(sk); 4600 4601 switch (optname) { 4602 case SCTP_SOCKOPT_BINDX_ADD: 4603 /* 'optlen' is the size of the addresses buffer. */ 4604 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4605 SCTP_BINDX_ADD_ADDR); 4606 break; 4607 4608 case SCTP_SOCKOPT_BINDX_REM: 4609 /* 'optlen' is the size of the addresses buffer. */ 4610 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4611 SCTP_BINDX_REM_ADDR); 4612 break; 4613 4614 case SCTP_SOCKOPT_CONNECTX_OLD: 4615 /* 'optlen' is the size of the addresses buffer. */ 4616 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4617 break; 4618 4619 case SCTP_SOCKOPT_CONNECTX: 4620 /* 'optlen' is the size of the addresses buffer. */ 4621 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4622 break; 4623 4624 case SCTP_DISABLE_FRAGMENTS: 4625 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4626 break; 4627 4628 case SCTP_EVENTS: 4629 retval = sctp_setsockopt_events(sk, kopt, optlen); 4630 break; 4631 4632 case SCTP_AUTOCLOSE: 4633 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4634 break; 4635 4636 case SCTP_PEER_ADDR_PARAMS: 4637 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4638 break; 4639 4640 case SCTP_DELAYED_SACK: 4641 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4642 break; 4643 case SCTP_PARTIAL_DELIVERY_POINT: 4644 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4645 break; 4646 4647 case SCTP_INITMSG: 4648 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4649 break; 4650 case SCTP_DEFAULT_SEND_PARAM: 4651 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4652 break; 4653 case SCTP_DEFAULT_SNDINFO: 4654 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4655 break; 4656 case SCTP_PRIMARY_ADDR: 4657 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4658 break; 4659 case SCTP_SET_PEER_PRIMARY_ADDR: 4660 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4661 break; 4662 case SCTP_NODELAY: 4663 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4664 break; 4665 case SCTP_RTOINFO: 4666 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4667 break; 4668 case SCTP_ASSOCINFO: 4669 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4670 break; 4671 case SCTP_I_WANT_MAPPED_V4_ADDR: 4672 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4673 break; 4674 case SCTP_MAXSEG: 4675 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4676 break; 4677 case SCTP_ADAPTATION_LAYER: 4678 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4679 break; 4680 case SCTP_CONTEXT: 4681 retval = sctp_setsockopt_context(sk, kopt, optlen); 4682 break; 4683 case SCTP_FRAGMENT_INTERLEAVE: 4684 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4685 break; 4686 case SCTP_MAX_BURST: 4687 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4688 break; 4689 case SCTP_AUTH_CHUNK: 4690 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4691 break; 4692 case SCTP_HMAC_IDENT: 4693 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4694 break; 4695 case SCTP_AUTH_KEY: 4696 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4697 break; 4698 case SCTP_AUTH_ACTIVE_KEY: 4699 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4700 break; 4701 case SCTP_AUTH_DELETE_KEY: 4702 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4703 break; 4704 case SCTP_AUTH_DEACTIVATE_KEY: 4705 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4706 break; 4707 case SCTP_AUTO_ASCONF: 4708 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4709 break; 4710 case SCTP_PEER_ADDR_THLDS: 4711 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4712 false); 4713 break; 4714 case SCTP_PEER_ADDR_THLDS_V2: 4715 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4716 true); 4717 break; 4718 case SCTP_RECVRCVINFO: 4719 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4720 break; 4721 case SCTP_RECVNXTINFO: 4722 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4723 break; 4724 case SCTP_PR_SUPPORTED: 4725 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4726 break; 4727 case SCTP_DEFAULT_PRINFO: 4728 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4729 break; 4730 case SCTP_RECONFIG_SUPPORTED: 4731 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4732 break; 4733 case SCTP_ENABLE_STREAM_RESET: 4734 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4735 break; 4736 case SCTP_RESET_STREAMS: 4737 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4738 break; 4739 case SCTP_RESET_ASSOC: 4740 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4741 break; 4742 case SCTP_ADD_STREAMS: 4743 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4744 break; 4745 case SCTP_STREAM_SCHEDULER: 4746 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4747 break; 4748 case SCTP_STREAM_SCHEDULER_VALUE: 4749 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4750 break; 4751 case SCTP_INTERLEAVING_SUPPORTED: 4752 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4753 optlen); 4754 break; 4755 case SCTP_REUSE_PORT: 4756 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4757 break; 4758 case SCTP_EVENT: 4759 retval = sctp_setsockopt_event(sk, kopt, optlen); 4760 break; 4761 case SCTP_ASCONF_SUPPORTED: 4762 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4763 break; 4764 case SCTP_AUTH_SUPPORTED: 4765 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4766 break; 4767 case SCTP_ECN_SUPPORTED: 4768 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4769 break; 4770 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4771 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4772 break; 4773 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4774 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4775 break; 4776 case SCTP_PLPMTUD_PROBE_INTERVAL: 4777 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4778 break; 4779 default: 4780 retval = -ENOPROTOOPT; 4781 break; 4782 } 4783 4784 release_sock(sk); 4785 kfree(kopt); 4786 return retval; 4787 } 4788 4789 /* API 3.1.6 connect() - UDP Style Syntax 4790 * 4791 * An application may use the connect() call in the UDP model to initiate an 4792 * association without sending data. 4793 * 4794 * The syntax is: 4795 * 4796 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4797 * 4798 * sd: the socket descriptor to have a new association added to. 4799 * 4800 * nam: the address structure (either struct sockaddr_in or struct 4801 * sockaddr_in6 defined in RFC2553 [7]). 4802 * 4803 * len: the size of the address. 4804 */ 4805 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4806 int addr_len, int flags) 4807 { 4808 struct sctp_af *af; 4809 int err = -EINVAL; 4810 4811 lock_sock(sk); 4812 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4813 addr, addr_len); 4814 4815 /* Validate addr_len before calling common connect/connectx routine. */ 4816 af = sctp_get_af_specific(addr->sa_family); 4817 if (af && addr_len >= af->sockaddr_len) 4818 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4819 4820 release_sock(sk); 4821 return err; 4822 } 4823 4824 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4825 int addr_len, int flags) 4826 { 4827 if (addr_len < sizeof(uaddr->sa_family)) 4828 return -EINVAL; 4829 4830 if (uaddr->sa_family == AF_UNSPEC) 4831 return -EOPNOTSUPP; 4832 4833 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4834 } 4835 4836 /* FIXME: Write comments. */ 4837 static int sctp_disconnect(struct sock *sk, int flags) 4838 { 4839 return -EOPNOTSUPP; /* STUB */ 4840 } 4841 4842 /* 4.1.4 accept() - TCP Style Syntax 4843 * 4844 * Applications use accept() call to remove an established SCTP 4845 * association from the accept queue of the endpoint. A new socket 4846 * descriptor will be returned from accept() to represent the newly 4847 * formed association. 4848 */ 4849 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4850 { 4851 struct sctp_sock *sp; 4852 struct sctp_endpoint *ep; 4853 struct sock *newsk = NULL; 4854 struct sctp_association *asoc; 4855 long timeo; 4856 int error = 0; 4857 4858 lock_sock(sk); 4859 4860 sp = sctp_sk(sk); 4861 ep = sp->ep; 4862 4863 if (!sctp_style(sk, TCP)) { 4864 error = -EOPNOTSUPP; 4865 goto out; 4866 } 4867 4868 if (!sctp_sstate(sk, LISTENING)) { 4869 error = -EINVAL; 4870 goto out; 4871 } 4872 4873 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4874 4875 error = sctp_wait_for_accept(sk, timeo); 4876 if (error) 4877 goto out; 4878 4879 /* We treat the list of associations on the endpoint as the accept 4880 * queue and pick the first association on the list. 4881 */ 4882 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4883 4884 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4885 if (!newsk) { 4886 error = -ENOMEM; 4887 goto out; 4888 } 4889 4890 /* Populate the fields of the newsk from the oldsk and migrate the 4891 * asoc to the newsk. 4892 */ 4893 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4894 if (error) { 4895 sk_common_release(newsk); 4896 newsk = NULL; 4897 } 4898 4899 out: 4900 release_sock(sk); 4901 *err = error; 4902 return newsk; 4903 } 4904 4905 /* The SCTP ioctl handler. */ 4906 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4907 { 4908 int rc = -ENOTCONN; 4909 4910 lock_sock(sk); 4911 4912 /* 4913 * SEQPACKET-style sockets in LISTENING state are valid, for 4914 * SCTP, so only discard TCP-style sockets in LISTENING state. 4915 */ 4916 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4917 goto out; 4918 4919 switch (cmd) { 4920 case SIOCINQ: { 4921 struct sk_buff *skb; 4922 *karg = 0; 4923 4924 skb = skb_peek(&sk->sk_receive_queue); 4925 if (skb != NULL) { 4926 /* 4927 * We will only return the amount of this packet since 4928 * that is all that will be read. 4929 */ 4930 *karg = skb->len; 4931 } 4932 rc = 0; 4933 break; 4934 } 4935 default: 4936 rc = -ENOIOCTLCMD; 4937 break; 4938 } 4939 out: 4940 release_sock(sk); 4941 return rc; 4942 } 4943 4944 /* This is the function which gets called during socket creation to 4945 * initialized the SCTP-specific portion of the sock. 4946 * The sock structure should already be zero-filled memory. 4947 */ 4948 static int sctp_init_sock(struct sock *sk) 4949 { 4950 struct net *net = sock_net(sk); 4951 struct sctp_sock *sp; 4952 4953 pr_debug("%s: sk:%p\n", __func__, sk); 4954 4955 sp = sctp_sk(sk); 4956 4957 /* Initialize the SCTP per socket area. */ 4958 switch (sk->sk_type) { 4959 case SOCK_SEQPACKET: 4960 sp->type = SCTP_SOCKET_UDP; 4961 break; 4962 case SOCK_STREAM: 4963 sp->type = SCTP_SOCKET_TCP; 4964 break; 4965 default: 4966 return -ESOCKTNOSUPPORT; 4967 } 4968 4969 sk->sk_gso_type = SKB_GSO_SCTP; 4970 4971 /* Initialize default send parameters. These parameters can be 4972 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4973 */ 4974 sp->default_stream = 0; 4975 sp->default_ppid = 0; 4976 sp->default_flags = 0; 4977 sp->default_context = 0; 4978 sp->default_timetolive = 0; 4979 4980 sp->default_rcv_context = 0; 4981 sp->max_burst = net->sctp.max_burst; 4982 4983 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4984 4985 /* Initialize default setup parameters. These parameters 4986 * can be modified with the SCTP_INITMSG socket option or 4987 * overridden by the SCTP_INIT CMSG. 4988 */ 4989 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4990 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4991 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4992 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4993 4994 /* Initialize default RTO related parameters. These parameters can 4995 * be modified for with the SCTP_RTOINFO socket option. 4996 */ 4997 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4998 sp->rtoinfo.srto_max = net->sctp.rto_max; 4999 sp->rtoinfo.srto_min = net->sctp.rto_min; 5000 5001 /* Initialize default association related parameters. These parameters 5002 * can be modified with the SCTP_ASSOCINFO socket option. 5003 */ 5004 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5005 sp->assocparams.sasoc_number_peer_destinations = 0; 5006 sp->assocparams.sasoc_peer_rwnd = 0; 5007 sp->assocparams.sasoc_local_rwnd = 0; 5008 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5009 5010 /* Initialize default event subscriptions. By default, all the 5011 * options are off. 5012 */ 5013 sp->subscribe = 0; 5014 5015 /* Default Peer Address Parameters. These defaults can 5016 * be modified via SCTP_PEER_ADDR_PARAMS 5017 */ 5018 sp->hbinterval = net->sctp.hb_interval; 5019 sp->udp_port = htons(net->sctp.udp_port); 5020 sp->encap_port = htons(net->sctp.encap_port); 5021 sp->pathmaxrxt = net->sctp.max_retrans_path; 5022 sp->pf_retrans = net->sctp.pf_retrans; 5023 sp->ps_retrans = net->sctp.ps_retrans; 5024 sp->pf_expose = net->sctp.pf_expose; 5025 sp->pathmtu = 0; /* allow default discovery */ 5026 sp->sackdelay = net->sctp.sack_timeout; 5027 sp->sackfreq = 2; 5028 sp->param_flags = SPP_HB_ENABLE | 5029 SPP_PMTUD_ENABLE | 5030 SPP_SACKDELAY_ENABLE; 5031 sp->default_ss = SCTP_SS_DEFAULT; 5032 5033 /* If enabled no SCTP message fragmentation will be performed. 5034 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5035 */ 5036 sp->disable_fragments = 0; 5037 5038 /* Enable Nagle algorithm by default. */ 5039 sp->nodelay = 0; 5040 5041 sp->recvrcvinfo = 0; 5042 sp->recvnxtinfo = 0; 5043 5044 /* Enable by default. */ 5045 sp->v4mapped = 1; 5046 5047 /* Auto-close idle associations after the configured 5048 * number of seconds. A value of 0 disables this 5049 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5050 * for UDP-style sockets only. 5051 */ 5052 sp->autoclose = 0; 5053 5054 /* User specified fragmentation limit. */ 5055 sp->user_frag = 0; 5056 5057 sp->adaptation_ind = 0; 5058 5059 sp->pf = sctp_get_pf_specific(sk->sk_family); 5060 5061 /* Control variables for partial data delivery. */ 5062 atomic_set(&sp->pd_mode, 0); 5063 skb_queue_head_init(&sp->pd_lobby); 5064 sp->frag_interleave = 0; 5065 sp->probe_interval = net->sctp.probe_interval; 5066 5067 /* Create a per socket endpoint structure. Even if we 5068 * change the data structure relationships, this may still 5069 * be useful for storing pre-connect address information. 5070 */ 5071 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5072 if (!sp->ep) 5073 return -ENOMEM; 5074 5075 sp->hmac = NULL; 5076 5077 sk->sk_destruct = sctp_destruct_sock; 5078 5079 SCTP_DBG_OBJCNT_INC(sock); 5080 5081 sk_sockets_allocated_inc(sk); 5082 sock_prot_inuse_add(net, sk->sk_prot, 1); 5083 5084 return 0; 5085 } 5086 5087 /* Cleanup any SCTP per socket resources. Must be called with 5088 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5089 */ 5090 static void sctp_destroy_sock(struct sock *sk) 5091 { 5092 struct sctp_sock *sp; 5093 5094 pr_debug("%s: sk:%p\n", __func__, sk); 5095 5096 /* Release our hold on the endpoint. */ 5097 sp = sctp_sk(sk); 5098 /* This could happen during socket init, thus we bail out 5099 * early, since the rest of the below is not setup either. 5100 */ 5101 if (sp->ep == NULL) 5102 return; 5103 5104 if (sp->do_auto_asconf) { 5105 sp->do_auto_asconf = 0; 5106 list_del(&sp->auto_asconf_list); 5107 } 5108 sctp_endpoint_free(sp->ep); 5109 sk_sockets_allocated_dec(sk); 5110 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5111 } 5112 5113 /* Triggered when there are no references on the socket anymore */ 5114 static void sctp_destruct_common(struct sock *sk) 5115 { 5116 struct sctp_sock *sp = sctp_sk(sk); 5117 5118 /* Free up the HMAC transform. */ 5119 crypto_free_shash(sp->hmac); 5120 } 5121 5122 static void sctp_destruct_sock(struct sock *sk) 5123 { 5124 sctp_destruct_common(sk); 5125 inet_sock_destruct(sk); 5126 } 5127 5128 /* API 4.1.7 shutdown() - TCP Style Syntax 5129 * int shutdown(int socket, int how); 5130 * 5131 * sd - the socket descriptor of the association to be closed. 5132 * how - Specifies the type of shutdown. The values are 5133 * as follows: 5134 * SHUT_RD 5135 * Disables further receive operations. No SCTP 5136 * protocol action is taken. 5137 * SHUT_WR 5138 * Disables further send operations, and initiates 5139 * the SCTP shutdown sequence. 5140 * SHUT_RDWR 5141 * Disables further send and receive operations 5142 * and initiates the SCTP shutdown sequence. 5143 */ 5144 static void sctp_shutdown(struct sock *sk, int how) 5145 { 5146 struct net *net = sock_net(sk); 5147 struct sctp_endpoint *ep; 5148 5149 if (!sctp_style(sk, TCP)) 5150 return; 5151 5152 ep = sctp_sk(sk)->ep; 5153 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5154 struct sctp_association *asoc; 5155 5156 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5157 asoc = list_entry(ep->asocs.next, 5158 struct sctp_association, asocs); 5159 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5160 } 5161 } 5162 5163 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5164 struct sctp_info *info) 5165 { 5166 struct sctp_transport *prim; 5167 struct list_head *pos; 5168 int mask; 5169 5170 memset(info, 0, sizeof(*info)); 5171 if (!asoc) { 5172 struct sctp_sock *sp = sctp_sk(sk); 5173 5174 info->sctpi_s_autoclose = sp->autoclose; 5175 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5176 info->sctpi_s_pd_point = sp->pd_point; 5177 info->sctpi_s_nodelay = sp->nodelay; 5178 info->sctpi_s_disable_fragments = sp->disable_fragments; 5179 info->sctpi_s_v4mapped = sp->v4mapped; 5180 info->sctpi_s_frag_interleave = sp->frag_interleave; 5181 info->sctpi_s_type = sp->type; 5182 5183 return 0; 5184 } 5185 5186 info->sctpi_tag = asoc->c.my_vtag; 5187 info->sctpi_state = asoc->state; 5188 info->sctpi_rwnd = asoc->a_rwnd; 5189 info->sctpi_unackdata = asoc->unack_data; 5190 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5191 info->sctpi_instrms = asoc->stream.incnt; 5192 info->sctpi_outstrms = asoc->stream.outcnt; 5193 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5194 info->sctpi_inqueue++; 5195 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5196 info->sctpi_outqueue++; 5197 info->sctpi_overall_error = asoc->overall_error_count; 5198 info->sctpi_max_burst = asoc->max_burst; 5199 info->sctpi_maxseg = asoc->frag_point; 5200 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5201 info->sctpi_peer_tag = asoc->c.peer_vtag; 5202 5203 mask = asoc->peer.intl_capable << 1; 5204 mask = (mask | asoc->peer.ecn_capable) << 1; 5205 mask = (mask | asoc->peer.ipv4_address) << 1; 5206 mask = (mask | asoc->peer.ipv6_address) << 1; 5207 mask = (mask | asoc->peer.reconf_capable) << 1; 5208 mask = (mask | asoc->peer.asconf_capable) << 1; 5209 mask = (mask | asoc->peer.prsctp_capable) << 1; 5210 mask = (mask | asoc->peer.auth_capable); 5211 info->sctpi_peer_capable = mask; 5212 mask = asoc->peer.sack_needed << 1; 5213 mask = (mask | asoc->peer.sack_generation) << 1; 5214 mask = (mask | asoc->peer.zero_window_announced); 5215 info->sctpi_peer_sack = mask; 5216 5217 info->sctpi_isacks = asoc->stats.isacks; 5218 info->sctpi_osacks = asoc->stats.osacks; 5219 info->sctpi_opackets = asoc->stats.opackets; 5220 info->sctpi_ipackets = asoc->stats.ipackets; 5221 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5222 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5223 info->sctpi_idupchunks = asoc->stats.idupchunks; 5224 info->sctpi_gapcnt = asoc->stats.gapcnt; 5225 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5226 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5227 info->sctpi_oodchunks = asoc->stats.oodchunks; 5228 info->sctpi_iodchunks = asoc->stats.iodchunks; 5229 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5230 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5231 5232 prim = asoc->peer.primary_path; 5233 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5234 info->sctpi_p_state = prim->state; 5235 info->sctpi_p_cwnd = prim->cwnd; 5236 info->sctpi_p_srtt = prim->srtt; 5237 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5238 info->sctpi_p_hbinterval = prim->hbinterval; 5239 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5240 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5241 info->sctpi_p_ssthresh = prim->ssthresh; 5242 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5243 info->sctpi_p_flight_size = prim->flight_size; 5244 info->sctpi_p_error = prim->error_count; 5245 5246 return 0; 5247 } 5248 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5249 5250 /* use callback to avoid exporting the core structure */ 5251 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5252 { 5253 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5254 5255 rhashtable_walk_start(iter); 5256 } 5257 5258 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5259 { 5260 rhashtable_walk_stop(iter); 5261 rhashtable_walk_exit(iter); 5262 } 5263 5264 struct sctp_transport *sctp_transport_get_next(struct net *net, 5265 struct rhashtable_iter *iter) 5266 { 5267 struct sctp_transport *t; 5268 5269 t = rhashtable_walk_next(iter); 5270 for (; t; t = rhashtable_walk_next(iter)) { 5271 if (IS_ERR(t)) { 5272 if (PTR_ERR(t) == -EAGAIN) 5273 continue; 5274 break; 5275 } 5276 5277 if (!sctp_transport_hold(t)) 5278 continue; 5279 5280 if (net_eq(t->asoc->base.net, net) && 5281 t->asoc->peer.primary_path == t) 5282 break; 5283 5284 sctp_transport_put(t); 5285 } 5286 5287 return t; 5288 } 5289 5290 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5291 struct rhashtable_iter *iter, 5292 int pos) 5293 { 5294 struct sctp_transport *t; 5295 5296 if (!pos) 5297 return SEQ_START_TOKEN; 5298 5299 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5300 if (!--pos) 5301 break; 5302 sctp_transport_put(t); 5303 } 5304 5305 return t; 5306 } 5307 5308 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5309 void *p) { 5310 int err = 0; 5311 int hash = 0; 5312 struct sctp_endpoint *ep; 5313 struct sctp_hashbucket *head; 5314 5315 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5316 hash++, head++) { 5317 read_lock_bh(&head->lock); 5318 sctp_for_each_hentry(ep, &head->chain) { 5319 err = cb(ep, p); 5320 if (err) 5321 break; 5322 } 5323 read_unlock_bh(&head->lock); 5324 } 5325 5326 return err; 5327 } 5328 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5329 5330 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5331 const union sctp_addr *laddr, 5332 const union sctp_addr *paddr, void *p, int dif) 5333 { 5334 struct sctp_transport *transport; 5335 struct sctp_endpoint *ep; 5336 int err = -ENOENT; 5337 5338 rcu_read_lock(); 5339 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5340 if (!transport) { 5341 rcu_read_unlock(); 5342 return err; 5343 } 5344 ep = transport->asoc->ep; 5345 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5346 sctp_transport_put(transport); 5347 rcu_read_unlock(); 5348 return err; 5349 } 5350 rcu_read_unlock(); 5351 5352 err = cb(ep, transport, p); 5353 sctp_endpoint_put(ep); 5354 sctp_transport_put(transport); 5355 return err; 5356 } 5357 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5358 5359 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5360 struct net *net, int *pos, void *p) 5361 { 5362 struct rhashtable_iter hti; 5363 struct sctp_transport *tsp; 5364 struct sctp_endpoint *ep; 5365 int ret; 5366 5367 again: 5368 ret = 0; 5369 sctp_transport_walk_start(&hti); 5370 5371 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5372 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5373 ep = tsp->asoc->ep; 5374 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5375 ret = cb(ep, tsp, p); 5376 if (ret) 5377 break; 5378 sctp_endpoint_put(ep); 5379 } 5380 (*pos)++; 5381 sctp_transport_put(tsp); 5382 } 5383 sctp_transport_walk_stop(&hti); 5384 5385 if (ret) { 5386 if (cb_done && !cb_done(ep, tsp, p)) { 5387 (*pos)++; 5388 sctp_endpoint_put(ep); 5389 sctp_transport_put(tsp); 5390 goto again; 5391 } 5392 sctp_endpoint_put(ep); 5393 sctp_transport_put(tsp); 5394 } 5395 5396 return ret; 5397 } 5398 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5399 5400 /* 7.2.1 Association Status (SCTP_STATUS) 5401 5402 * Applications can retrieve current status information about an 5403 * association, including association state, peer receiver window size, 5404 * number of unacked data chunks, and number of data chunks pending 5405 * receipt. This information is read-only. 5406 */ 5407 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5408 char __user *optval, 5409 int __user *optlen) 5410 { 5411 struct sctp_status status; 5412 struct sctp_association *asoc = NULL; 5413 struct sctp_transport *transport; 5414 sctp_assoc_t associd; 5415 int retval = 0; 5416 5417 if (len < sizeof(status)) { 5418 retval = -EINVAL; 5419 goto out; 5420 } 5421 5422 len = sizeof(status); 5423 if (copy_from_user(&status, optval, len)) { 5424 retval = -EFAULT; 5425 goto out; 5426 } 5427 5428 associd = status.sstat_assoc_id; 5429 asoc = sctp_id2assoc(sk, associd); 5430 if (!asoc) { 5431 retval = -EINVAL; 5432 goto out; 5433 } 5434 5435 transport = asoc->peer.primary_path; 5436 5437 status.sstat_assoc_id = sctp_assoc2id(asoc); 5438 status.sstat_state = sctp_assoc_to_state(asoc); 5439 status.sstat_rwnd = asoc->peer.rwnd; 5440 status.sstat_unackdata = asoc->unack_data; 5441 5442 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5443 status.sstat_instrms = asoc->stream.incnt; 5444 status.sstat_outstrms = asoc->stream.outcnt; 5445 status.sstat_fragmentation_point = asoc->frag_point; 5446 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5447 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5448 transport->af_specific->sockaddr_len); 5449 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5450 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5451 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5452 status.sstat_primary.spinfo_state = transport->state; 5453 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5454 status.sstat_primary.spinfo_srtt = transport->srtt; 5455 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5456 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5457 5458 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5459 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5460 5461 if (put_user(len, optlen)) { 5462 retval = -EFAULT; 5463 goto out; 5464 } 5465 5466 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5467 __func__, len, status.sstat_state, status.sstat_rwnd, 5468 status.sstat_assoc_id); 5469 5470 if (copy_to_user(optval, &status, len)) { 5471 retval = -EFAULT; 5472 goto out; 5473 } 5474 5475 out: 5476 return retval; 5477 } 5478 5479 5480 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5481 * 5482 * Applications can retrieve information about a specific peer address 5483 * of an association, including its reachability state, congestion 5484 * window, and retransmission timer values. This information is 5485 * read-only. 5486 */ 5487 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5488 char __user *optval, 5489 int __user *optlen) 5490 { 5491 struct sctp_paddrinfo pinfo; 5492 struct sctp_transport *transport; 5493 int retval = 0; 5494 5495 if (len < sizeof(pinfo)) { 5496 retval = -EINVAL; 5497 goto out; 5498 } 5499 5500 len = sizeof(pinfo); 5501 if (copy_from_user(&pinfo, optval, len)) { 5502 retval = -EFAULT; 5503 goto out; 5504 } 5505 5506 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5507 pinfo.spinfo_assoc_id); 5508 if (!transport) { 5509 retval = -EINVAL; 5510 goto out; 5511 } 5512 5513 if (transport->state == SCTP_PF && 5514 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5515 retval = -EACCES; 5516 goto out; 5517 } 5518 5519 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5520 pinfo.spinfo_state = transport->state; 5521 pinfo.spinfo_cwnd = transport->cwnd; 5522 pinfo.spinfo_srtt = transport->srtt; 5523 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5524 pinfo.spinfo_mtu = transport->pathmtu; 5525 5526 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5527 pinfo.spinfo_state = SCTP_ACTIVE; 5528 5529 if (put_user(len, optlen)) { 5530 retval = -EFAULT; 5531 goto out; 5532 } 5533 5534 if (copy_to_user(optval, &pinfo, len)) { 5535 retval = -EFAULT; 5536 goto out; 5537 } 5538 5539 out: 5540 return retval; 5541 } 5542 5543 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5544 * 5545 * This option is a on/off flag. If enabled no SCTP message 5546 * fragmentation will be performed. Instead if a message being sent 5547 * exceeds the current PMTU size, the message will NOT be sent and 5548 * instead a error will be indicated to the user. 5549 */ 5550 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5551 char __user *optval, int __user *optlen) 5552 { 5553 int val; 5554 5555 if (len < sizeof(int)) 5556 return -EINVAL; 5557 5558 len = sizeof(int); 5559 val = (sctp_sk(sk)->disable_fragments == 1); 5560 if (put_user(len, optlen)) 5561 return -EFAULT; 5562 if (copy_to_user(optval, &val, len)) 5563 return -EFAULT; 5564 return 0; 5565 } 5566 5567 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5568 * 5569 * This socket option is used to specify various notifications and 5570 * ancillary data the user wishes to receive. 5571 */ 5572 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5573 int __user *optlen) 5574 { 5575 struct sctp_event_subscribe subscribe; 5576 __u8 *sn_type = (__u8 *)&subscribe; 5577 int i; 5578 5579 if (len == 0) 5580 return -EINVAL; 5581 if (len > sizeof(struct sctp_event_subscribe)) 5582 len = sizeof(struct sctp_event_subscribe); 5583 if (put_user(len, optlen)) 5584 return -EFAULT; 5585 5586 for (i = 0; i < len; i++) 5587 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5588 SCTP_SN_TYPE_BASE + i); 5589 5590 if (copy_to_user(optval, &subscribe, len)) 5591 return -EFAULT; 5592 5593 return 0; 5594 } 5595 5596 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5597 * 5598 * This socket option is applicable to the UDP-style socket only. When 5599 * set it will cause associations that are idle for more than the 5600 * specified number of seconds to automatically close. An association 5601 * being idle is defined an association that has NOT sent or received 5602 * user data. The special value of '0' indicates that no automatic 5603 * close of any associations should be performed. The option expects an 5604 * integer defining the number of seconds of idle time before an 5605 * association is closed. 5606 */ 5607 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5608 { 5609 /* Applicable to UDP-style socket only */ 5610 if (sctp_style(sk, TCP)) 5611 return -EOPNOTSUPP; 5612 if (len < sizeof(int)) 5613 return -EINVAL; 5614 len = sizeof(int); 5615 if (put_user(len, optlen)) 5616 return -EFAULT; 5617 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5618 return -EFAULT; 5619 return 0; 5620 } 5621 5622 /* Helper routine to branch off an association to a new socket. */ 5623 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5624 { 5625 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5626 struct sctp_sock *sp = sctp_sk(sk); 5627 struct socket *sock; 5628 int err = 0; 5629 5630 /* Do not peel off from one netns to another one. */ 5631 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5632 return -EINVAL; 5633 5634 if (!asoc) 5635 return -EINVAL; 5636 5637 /* An association cannot be branched off from an already peeled-off 5638 * socket, nor is this supported for tcp style sockets. 5639 */ 5640 if (!sctp_style(sk, UDP)) 5641 return -EINVAL; 5642 5643 /* Create a new socket. */ 5644 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5645 if (err < 0) 5646 return err; 5647 5648 sctp_copy_sock(sock->sk, sk, asoc); 5649 5650 /* Make peeled-off sockets more like 1-1 accepted sockets. 5651 * Set the daddr and initialize id to something more random and also 5652 * copy over any ip options. 5653 */ 5654 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5655 sp->pf->copy_ip_options(sk, sock->sk); 5656 5657 /* Populate the fields of the newsk from the oldsk and migrate the 5658 * asoc to the newsk. 5659 */ 5660 err = sctp_sock_migrate(sk, sock->sk, asoc, 5661 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5662 if (err) { 5663 sock_release(sock); 5664 sock = NULL; 5665 } 5666 5667 *sockp = sock; 5668 5669 return err; 5670 } 5671 EXPORT_SYMBOL(sctp_do_peeloff); 5672 5673 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5674 struct file **newfile, unsigned flags) 5675 { 5676 struct socket *newsock; 5677 int retval; 5678 5679 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5680 if (retval < 0) 5681 goto out; 5682 5683 /* Map the socket to an unused fd that can be returned to the user. */ 5684 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5685 if (retval < 0) { 5686 sock_release(newsock); 5687 goto out; 5688 } 5689 5690 *newfile = sock_alloc_file(newsock, 0, NULL); 5691 if (IS_ERR(*newfile)) { 5692 put_unused_fd(retval); 5693 retval = PTR_ERR(*newfile); 5694 *newfile = NULL; 5695 return retval; 5696 } 5697 5698 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5699 retval); 5700 5701 peeloff->sd = retval; 5702 5703 if (flags & SOCK_NONBLOCK) 5704 (*newfile)->f_flags |= O_NONBLOCK; 5705 out: 5706 return retval; 5707 } 5708 5709 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5710 { 5711 sctp_peeloff_arg_t peeloff; 5712 struct file *newfile = NULL; 5713 int retval = 0; 5714 5715 if (len < sizeof(sctp_peeloff_arg_t)) 5716 return -EINVAL; 5717 len = sizeof(sctp_peeloff_arg_t); 5718 if (copy_from_user(&peeloff, optval, len)) 5719 return -EFAULT; 5720 5721 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5722 if (retval < 0) 5723 goto out; 5724 5725 /* Return the fd mapped to the new socket. */ 5726 if (put_user(len, optlen)) { 5727 fput(newfile); 5728 put_unused_fd(retval); 5729 return -EFAULT; 5730 } 5731 5732 if (copy_to_user(optval, &peeloff, len)) { 5733 fput(newfile); 5734 put_unused_fd(retval); 5735 return -EFAULT; 5736 } 5737 fd_install(retval, newfile); 5738 out: 5739 return retval; 5740 } 5741 5742 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5743 char __user *optval, int __user *optlen) 5744 { 5745 sctp_peeloff_flags_arg_t peeloff; 5746 struct file *newfile = NULL; 5747 int retval = 0; 5748 5749 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5750 return -EINVAL; 5751 len = sizeof(sctp_peeloff_flags_arg_t); 5752 if (copy_from_user(&peeloff, optval, len)) 5753 return -EFAULT; 5754 5755 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5756 &newfile, peeloff.flags); 5757 if (retval < 0) 5758 goto out; 5759 5760 /* Return the fd mapped to the new socket. */ 5761 if (put_user(len, optlen)) { 5762 fput(newfile); 5763 put_unused_fd(retval); 5764 return -EFAULT; 5765 } 5766 5767 if (copy_to_user(optval, &peeloff, len)) { 5768 fput(newfile); 5769 put_unused_fd(retval); 5770 return -EFAULT; 5771 } 5772 fd_install(retval, newfile); 5773 out: 5774 return retval; 5775 } 5776 5777 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5778 * 5779 * Applications can enable or disable heartbeats for any peer address of 5780 * an association, modify an address's heartbeat interval, force a 5781 * heartbeat to be sent immediately, and adjust the address's maximum 5782 * number of retransmissions sent before an address is considered 5783 * unreachable. The following structure is used to access and modify an 5784 * address's parameters: 5785 * 5786 * struct sctp_paddrparams { 5787 * sctp_assoc_t spp_assoc_id; 5788 * struct sockaddr_storage spp_address; 5789 * uint32_t spp_hbinterval; 5790 * uint16_t spp_pathmaxrxt; 5791 * uint32_t spp_pathmtu; 5792 * uint32_t spp_sackdelay; 5793 * uint32_t spp_flags; 5794 * }; 5795 * 5796 * spp_assoc_id - (one-to-many style socket) This is filled in the 5797 * application, and identifies the association for 5798 * this query. 5799 * spp_address - This specifies which address is of interest. 5800 * spp_hbinterval - This contains the value of the heartbeat interval, 5801 * in milliseconds. If a value of zero 5802 * is present in this field then no changes are to 5803 * be made to this parameter. 5804 * spp_pathmaxrxt - This contains the maximum number of 5805 * retransmissions before this address shall be 5806 * considered unreachable. If a value of zero 5807 * is present in this field then no changes are to 5808 * be made to this parameter. 5809 * spp_pathmtu - When Path MTU discovery is disabled the value 5810 * specified here will be the "fixed" path mtu. 5811 * Note that if the spp_address field is empty 5812 * then all associations on this address will 5813 * have this fixed path mtu set upon them. 5814 * 5815 * spp_sackdelay - When delayed sack is enabled, this value specifies 5816 * the number of milliseconds that sacks will be delayed 5817 * for. This value will apply to all addresses of an 5818 * association if the spp_address field is empty. Note 5819 * also, that if delayed sack is enabled and this 5820 * value is set to 0, no change is made to the last 5821 * recorded delayed sack timer value. 5822 * 5823 * spp_flags - These flags are used to control various features 5824 * on an association. The flag field may contain 5825 * zero or more of the following options. 5826 * 5827 * SPP_HB_ENABLE - Enable heartbeats on the 5828 * specified address. Note that if the address 5829 * field is empty all addresses for the association 5830 * have heartbeats enabled upon them. 5831 * 5832 * SPP_HB_DISABLE - Disable heartbeats on the 5833 * speicifed address. Note that if the address 5834 * field is empty all addresses for the association 5835 * will have their heartbeats disabled. Note also 5836 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5837 * mutually exclusive, only one of these two should 5838 * be specified. Enabling both fields will have 5839 * undetermined results. 5840 * 5841 * SPP_HB_DEMAND - Request a user initiated heartbeat 5842 * to be made immediately. 5843 * 5844 * SPP_PMTUD_ENABLE - This field will enable PMTU 5845 * discovery upon the specified address. Note that 5846 * if the address feild is empty then all addresses 5847 * on the association are effected. 5848 * 5849 * SPP_PMTUD_DISABLE - This field will disable PMTU 5850 * discovery upon the specified address. Note that 5851 * if the address feild is empty then all addresses 5852 * on the association are effected. Not also that 5853 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5854 * exclusive. Enabling both will have undetermined 5855 * results. 5856 * 5857 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5858 * on delayed sack. The time specified in spp_sackdelay 5859 * is used to specify the sack delay for this address. Note 5860 * that if spp_address is empty then all addresses will 5861 * enable delayed sack and take on the sack delay 5862 * value specified in spp_sackdelay. 5863 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5864 * off delayed sack. If the spp_address field is blank then 5865 * delayed sack is disabled for the entire association. Note 5866 * also that this field is mutually exclusive to 5867 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5868 * results. 5869 * 5870 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5871 * setting of the IPV6 flow label value. The value is 5872 * contained in the spp_ipv6_flowlabel field. 5873 * Upon retrieval, this flag will be set to indicate that 5874 * the spp_ipv6_flowlabel field has a valid value returned. 5875 * If a specific destination address is set (in the 5876 * spp_address field), then the value returned is that of 5877 * the address. If just an association is specified (and 5878 * no address), then the association's default flow label 5879 * is returned. If neither an association nor a destination 5880 * is specified, then the socket's default flow label is 5881 * returned. For non-IPv6 sockets, this flag will be left 5882 * cleared. 5883 * 5884 * SPP_DSCP: Setting this flag enables the setting of the 5885 * Differentiated Services Code Point (DSCP) value 5886 * associated with either the association or a specific 5887 * address. The value is obtained in the spp_dscp field. 5888 * Upon retrieval, this flag will be set to indicate that 5889 * the spp_dscp field has a valid value returned. If a 5890 * specific destination address is set when called (in the 5891 * spp_address field), then that specific destination 5892 * address's DSCP value is returned. If just an association 5893 * is specified, then the association's default DSCP is 5894 * returned. If neither an association nor a destination is 5895 * specified, then the socket's default DSCP is returned. 5896 * 5897 * spp_ipv6_flowlabel 5898 * - This field is used in conjunction with the 5899 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5900 * The 20 least significant bits are used for the flow 5901 * label. This setting has precedence over any IPv6-layer 5902 * setting. 5903 * 5904 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5905 * and contains the DSCP. The 6 most significant bits are 5906 * used for the DSCP. This setting has precedence over any 5907 * IPv4- or IPv6- layer setting. 5908 */ 5909 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5910 char __user *optval, int __user *optlen) 5911 { 5912 struct sctp_paddrparams params; 5913 struct sctp_transport *trans = NULL; 5914 struct sctp_association *asoc = NULL; 5915 struct sctp_sock *sp = sctp_sk(sk); 5916 5917 if (len >= sizeof(params)) 5918 len = sizeof(params); 5919 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5920 spp_ipv6_flowlabel), 4)) 5921 len = ALIGN(offsetof(struct sctp_paddrparams, 5922 spp_ipv6_flowlabel), 4); 5923 else 5924 return -EINVAL; 5925 5926 if (copy_from_user(¶ms, optval, len)) 5927 return -EFAULT; 5928 5929 /* If an address other than INADDR_ANY is specified, and 5930 * no transport is found, then the request is invalid. 5931 */ 5932 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5933 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5934 params.spp_assoc_id); 5935 if (!trans) { 5936 pr_debug("%s: failed no transport\n", __func__); 5937 return -EINVAL; 5938 } 5939 } 5940 5941 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5942 * socket is a one to many style socket, and an association 5943 * was not found, then the id was invalid. 5944 */ 5945 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5946 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5947 sctp_style(sk, UDP)) { 5948 pr_debug("%s: failed no association\n", __func__); 5949 return -EINVAL; 5950 } 5951 5952 if (trans) { 5953 /* Fetch transport values. */ 5954 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5955 params.spp_pathmtu = trans->pathmtu; 5956 params.spp_pathmaxrxt = trans->pathmaxrxt; 5957 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5958 5959 /*draft-11 doesn't say what to return in spp_flags*/ 5960 params.spp_flags = trans->param_flags; 5961 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5962 params.spp_ipv6_flowlabel = trans->flowlabel & 5963 SCTP_FLOWLABEL_VAL_MASK; 5964 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5965 } 5966 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5967 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5968 params.spp_flags |= SPP_DSCP; 5969 } 5970 } else if (asoc) { 5971 /* Fetch association values. */ 5972 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5973 params.spp_pathmtu = asoc->pathmtu; 5974 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5975 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5976 5977 /*draft-11 doesn't say what to return in spp_flags*/ 5978 params.spp_flags = asoc->param_flags; 5979 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5980 params.spp_ipv6_flowlabel = asoc->flowlabel & 5981 SCTP_FLOWLABEL_VAL_MASK; 5982 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5983 } 5984 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5985 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5986 params.spp_flags |= SPP_DSCP; 5987 } 5988 } else { 5989 /* Fetch socket values. */ 5990 params.spp_hbinterval = sp->hbinterval; 5991 params.spp_pathmtu = sp->pathmtu; 5992 params.spp_sackdelay = sp->sackdelay; 5993 params.spp_pathmaxrxt = sp->pathmaxrxt; 5994 5995 /*draft-11 doesn't say what to return in spp_flags*/ 5996 params.spp_flags = sp->param_flags; 5997 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5998 params.spp_ipv6_flowlabel = sp->flowlabel & 5999 SCTP_FLOWLABEL_VAL_MASK; 6000 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6001 } 6002 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6003 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6004 params.spp_flags |= SPP_DSCP; 6005 } 6006 } 6007 6008 if (copy_to_user(optval, ¶ms, len)) 6009 return -EFAULT; 6010 6011 if (put_user(len, optlen)) 6012 return -EFAULT; 6013 6014 return 0; 6015 } 6016 6017 /* 6018 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6019 * 6020 * This option will effect the way delayed acks are performed. This 6021 * option allows you to get or set the delayed ack time, in 6022 * milliseconds. It also allows changing the delayed ack frequency. 6023 * Changing the frequency to 1 disables the delayed sack algorithm. If 6024 * the assoc_id is 0, then this sets or gets the endpoints default 6025 * values. If the assoc_id field is non-zero, then the set or get 6026 * effects the specified association for the one to many model (the 6027 * assoc_id field is ignored by the one to one model). Note that if 6028 * sack_delay or sack_freq are 0 when setting this option, then the 6029 * current values will remain unchanged. 6030 * 6031 * struct sctp_sack_info { 6032 * sctp_assoc_t sack_assoc_id; 6033 * uint32_t sack_delay; 6034 * uint32_t sack_freq; 6035 * }; 6036 * 6037 * sack_assoc_id - This parameter, indicates which association the user 6038 * is performing an action upon. Note that if this field's value is 6039 * zero then the endpoints default value is changed (effecting future 6040 * associations only). 6041 * 6042 * sack_delay - This parameter contains the number of milliseconds that 6043 * the user is requesting the delayed ACK timer be set to. Note that 6044 * this value is defined in the standard to be between 200 and 500 6045 * milliseconds. 6046 * 6047 * sack_freq - This parameter contains the number of packets that must 6048 * be received before a sack is sent without waiting for the delay 6049 * timer to expire. The default value for this is 2, setting this 6050 * value to 1 will disable the delayed sack algorithm. 6051 */ 6052 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6053 char __user *optval, 6054 int __user *optlen) 6055 { 6056 struct sctp_sack_info params; 6057 struct sctp_association *asoc = NULL; 6058 struct sctp_sock *sp = sctp_sk(sk); 6059 6060 if (len >= sizeof(struct sctp_sack_info)) { 6061 len = sizeof(struct sctp_sack_info); 6062 6063 if (copy_from_user(¶ms, optval, len)) 6064 return -EFAULT; 6065 } else if (len == sizeof(struct sctp_assoc_value)) { 6066 pr_warn_ratelimited(DEPRECATED 6067 "%s (pid %d) " 6068 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6069 "Use struct sctp_sack_info instead\n", 6070 current->comm, task_pid_nr(current)); 6071 if (copy_from_user(¶ms, optval, len)) 6072 return -EFAULT; 6073 } else 6074 return -EINVAL; 6075 6076 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6077 * socket is a one to many style socket, and an association 6078 * was not found, then the id was invalid. 6079 */ 6080 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6081 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6082 sctp_style(sk, UDP)) 6083 return -EINVAL; 6084 6085 if (asoc) { 6086 /* Fetch association values. */ 6087 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6088 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6089 params.sack_freq = asoc->sackfreq; 6090 6091 } else { 6092 params.sack_delay = 0; 6093 params.sack_freq = 1; 6094 } 6095 } else { 6096 /* Fetch socket values. */ 6097 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6098 params.sack_delay = sp->sackdelay; 6099 params.sack_freq = sp->sackfreq; 6100 } else { 6101 params.sack_delay = 0; 6102 params.sack_freq = 1; 6103 } 6104 } 6105 6106 if (copy_to_user(optval, ¶ms, len)) 6107 return -EFAULT; 6108 6109 if (put_user(len, optlen)) 6110 return -EFAULT; 6111 6112 return 0; 6113 } 6114 6115 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6116 * 6117 * Applications can specify protocol parameters for the default association 6118 * initialization. The option name argument to setsockopt() and getsockopt() 6119 * is SCTP_INITMSG. 6120 * 6121 * Setting initialization parameters is effective only on an unconnected 6122 * socket (for UDP-style sockets only future associations are effected 6123 * by the change). With TCP-style sockets, this option is inherited by 6124 * sockets derived from a listener socket. 6125 */ 6126 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6127 { 6128 if (len < sizeof(struct sctp_initmsg)) 6129 return -EINVAL; 6130 len = sizeof(struct sctp_initmsg); 6131 if (put_user(len, optlen)) 6132 return -EFAULT; 6133 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6134 return -EFAULT; 6135 return 0; 6136 } 6137 6138 6139 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6140 char __user *optval, int __user *optlen) 6141 { 6142 struct sctp_association *asoc; 6143 int cnt = 0; 6144 struct sctp_getaddrs getaddrs; 6145 struct sctp_transport *from; 6146 void __user *to; 6147 union sctp_addr temp; 6148 struct sctp_sock *sp = sctp_sk(sk); 6149 int addrlen; 6150 size_t space_left; 6151 int bytes_copied; 6152 6153 if (len < sizeof(struct sctp_getaddrs)) 6154 return -EINVAL; 6155 6156 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6157 return -EFAULT; 6158 6159 /* For UDP-style sockets, id specifies the association to query. */ 6160 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6161 if (!asoc) 6162 return -EINVAL; 6163 6164 to = optval + offsetof(struct sctp_getaddrs, addrs); 6165 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6166 6167 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6168 transports) { 6169 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6170 addrlen = sctp_get_pf_specific(sk->sk_family) 6171 ->addr_to_user(sp, &temp); 6172 if (space_left < addrlen) 6173 return -ENOMEM; 6174 if (copy_to_user(to, &temp, addrlen)) 6175 return -EFAULT; 6176 to += addrlen; 6177 cnt++; 6178 space_left -= addrlen; 6179 } 6180 6181 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6182 return -EFAULT; 6183 bytes_copied = ((char __user *)to) - optval; 6184 if (put_user(bytes_copied, optlen)) 6185 return -EFAULT; 6186 6187 return 0; 6188 } 6189 6190 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6191 size_t space_left, int *bytes_copied) 6192 { 6193 struct sctp_sockaddr_entry *addr; 6194 union sctp_addr temp; 6195 int cnt = 0; 6196 int addrlen; 6197 struct net *net = sock_net(sk); 6198 6199 rcu_read_lock(); 6200 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6201 if (!addr->valid) 6202 continue; 6203 6204 if ((PF_INET == sk->sk_family) && 6205 (AF_INET6 == addr->a.sa.sa_family)) 6206 continue; 6207 if ((PF_INET6 == sk->sk_family) && 6208 inet_v6_ipv6only(sk) && 6209 (AF_INET == addr->a.sa.sa_family)) 6210 continue; 6211 memcpy(&temp, &addr->a, sizeof(temp)); 6212 if (!temp.v4.sin_port) 6213 temp.v4.sin_port = htons(port); 6214 6215 addrlen = sctp_get_pf_specific(sk->sk_family) 6216 ->addr_to_user(sctp_sk(sk), &temp); 6217 6218 if (space_left < addrlen) { 6219 cnt = -ENOMEM; 6220 break; 6221 } 6222 memcpy(to, &temp, addrlen); 6223 6224 to += addrlen; 6225 cnt++; 6226 space_left -= addrlen; 6227 *bytes_copied += addrlen; 6228 } 6229 rcu_read_unlock(); 6230 6231 return cnt; 6232 } 6233 6234 6235 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6236 char __user *optval, int __user *optlen) 6237 { 6238 struct sctp_bind_addr *bp; 6239 struct sctp_association *asoc; 6240 int cnt = 0; 6241 struct sctp_getaddrs getaddrs; 6242 struct sctp_sockaddr_entry *addr; 6243 void __user *to; 6244 union sctp_addr temp; 6245 struct sctp_sock *sp = sctp_sk(sk); 6246 int addrlen; 6247 int err = 0; 6248 size_t space_left; 6249 int bytes_copied = 0; 6250 void *addrs; 6251 void *buf; 6252 6253 if (len < sizeof(struct sctp_getaddrs)) 6254 return -EINVAL; 6255 6256 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6257 return -EFAULT; 6258 6259 /* 6260 * For UDP-style sockets, id specifies the association to query. 6261 * If the id field is set to the value '0' then the locally bound 6262 * addresses are returned without regard to any particular 6263 * association. 6264 */ 6265 if (0 == getaddrs.assoc_id) { 6266 bp = &sctp_sk(sk)->ep->base.bind_addr; 6267 } else { 6268 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6269 if (!asoc) 6270 return -EINVAL; 6271 bp = &asoc->base.bind_addr; 6272 } 6273 6274 to = optval + offsetof(struct sctp_getaddrs, addrs); 6275 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6276 6277 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6278 if (!addrs) 6279 return -ENOMEM; 6280 6281 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6282 * addresses from the global local address list. 6283 */ 6284 if (sctp_list_single_entry(&bp->address_list)) { 6285 addr = list_entry(bp->address_list.next, 6286 struct sctp_sockaddr_entry, list); 6287 if (sctp_is_any(sk, &addr->a)) { 6288 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6289 space_left, &bytes_copied); 6290 if (cnt < 0) { 6291 err = cnt; 6292 goto out; 6293 } 6294 goto copy_getaddrs; 6295 } 6296 } 6297 6298 buf = addrs; 6299 /* Protection on the bound address list is not needed since 6300 * in the socket option context we hold a socket lock and 6301 * thus the bound address list can't change. 6302 */ 6303 list_for_each_entry(addr, &bp->address_list, list) { 6304 memcpy(&temp, &addr->a, sizeof(temp)); 6305 addrlen = sctp_get_pf_specific(sk->sk_family) 6306 ->addr_to_user(sp, &temp); 6307 if (space_left < addrlen) { 6308 err = -ENOMEM; /*fixme: right error?*/ 6309 goto out; 6310 } 6311 memcpy(buf, &temp, addrlen); 6312 buf += addrlen; 6313 bytes_copied += addrlen; 6314 cnt++; 6315 space_left -= addrlen; 6316 } 6317 6318 copy_getaddrs: 6319 if (copy_to_user(to, addrs, bytes_copied)) { 6320 err = -EFAULT; 6321 goto out; 6322 } 6323 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6324 err = -EFAULT; 6325 goto out; 6326 } 6327 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6328 * but we can't change it anymore. 6329 */ 6330 if (put_user(bytes_copied, optlen)) 6331 err = -EFAULT; 6332 out: 6333 kfree(addrs); 6334 return err; 6335 } 6336 6337 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6338 * 6339 * Requests that the local SCTP stack use the enclosed peer address as 6340 * the association primary. The enclosed address must be one of the 6341 * association peer's addresses. 6342 */ 6343 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6344 char __user *optval, int __user *optlen) 6345 { 6346 struct sctp_prim prim; 6347 struct sctp_association *asoc; 6348 struct sctp_sock *sp = sctp_sk(sk); 6349 6350 if (len < sizeof(struct sctp_prim)) 6351 return -EINVAL; 6352 6353 len = sizeof(struct sctp_prim); 6354 6355 if (copy_from_user(&prim, optval, len)) 6356 return -EFAULT; 6357 6358 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6359 if (!asoc) 6360 return -EINVAL; 6361 6362 if (!asoc->peer.primary_path) 6363 return -ENOTCONN; 6364 6365 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6366 asoc->peer.primary_path->af_specific->sockaddr_len); 6367 6368 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6369 (union sctp_addr *)&prim.ssp_addr); 6370 6371 if (put_user(len, optlen)) 6372 return -EFAULT; 6373 if (copy_to_user(optval, &prim, len)) 6374 return -EFAULT; 6375 6376 return 0; 6377 } 6378 6379 /* 6380 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6381 * 6382 * Requests that the local endpoint set the specified Adaptation Layer 6383 * Indication parameter for all future INIT and INIT-ACK exchanges. 6384 */ 6385 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6386 char __user *optval, int __user *optlen) 6387 { 6388 struct sctp_setadaptation adaptation; 6389 6390 if (len < sizeof(struct sctp_setadaptation)) 6391 return -EINVAL; 6392 6393 len = sizeof(struct sctp_setadaptation); 6394 6395 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6396 6397 if (put_user(len, optlen)) 6398 return -EFAULT; 6399 if (copy_to_user(optval, &adaptation, len)) 6400 return -EFAULT; 6401 6402 return 0; 6403 } 6404 6405 /* 6406 * 6407 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6408 * 6409 * Applications that wish to use the sendto() system call may wish to 6410 * specify a default set of parameters that would normally be supplied 6411 * through the inclusion of ancillary data. This socket option allows 6412 * such an application to set the default sctp_sndrcvinfo structure. 6413 6414 6415 * The application that wishes to use this socket option simply passes 6416 * in to this call the sctp_sndrcvinfo structure defined in Section 6417 * 5.2.2) The input parameters accepted by this call include 6418 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6419 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6420 * to this call if the caller is using the UDP model. 6421 * 6422 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6423 */ 6424 static int sctp_getsockopt_default_send_param(struct sock *sk, 6425 int len, char __user *optval, 6426 int __user *optlen) 6427 { 6428 struct sctp_sock *sp = sctp_sk(sk); 6429 struct sctp_association *asoc; 6430 struct sctp_sndrcvinfo info; 6431 6432 if (len < sizeof(info)) 6433 return -EINVAL; 6434 6435 len = sizeof(info); 6436 6437 if (copy_from_user(&info, optval, len)) 6438 return -EFAULT; 6439 6440 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6441 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6442 sctp_style(sk, UDP)) 6443 return -EINVAL; 6444 6445 if (asoc) { 6446 info.sinfo_stream = asoc->default_stream; 6447 info.sinfo_flags = asoc->default_flags; 6448 info.sinfo_ppid = asoc->default_ppid; 6449 info.sinfo_context = asoc->default_context; 6450 info.sinfo_timetolive = asoc->default_timetolive; 6451 } else { 6452 info.sinfo_stream = sp->default_stream; 6453 info.sinfo_flags = sp->default_flags; 6454 info.sinfo_ppid = sp->default_ppid; 6455 info.sinfo_context = sp->default_context; 6456 info.sinfo_timetolive = sp->default_timetolive; 6457 } 6458 6459 if (put_user(len, optlen)) 6460 return -EFAULT; 6461 if (copy_to_user(optval, &info, len)) 6462 return -EFAULT; 6463 6464 return 0; 6465 } 6466 6467 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6468 * (SCTP_DEFAULT_SNDINFO) 6469 */ 6470 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6471 char __user *optval, 6472 int __user *optlen) 6473 { 6474 struct sctp_sock *sp = sctp_sk(sk); 6475 struct sctp_association *asoc; 6476 struct sctp_sndinfo info; 6477 6478 if (len < sizeof(info)) 6479 return -EINVAL; 6480 6481 len = sizeof(info); 6482 6483 if (copy_from_user(&info, optval, len)) 6484 return -EFAULT; 6485 6486 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6487 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6488 sctp_style(sk, UDP)) 6489 return -EINVAL; 6490 6491 if (asoc) { 6492 info.snd_sid = asoc->default_stream; 6493 info.snd_flags = asoc->default_flags; 6494 info.snd_ppid = asoc->default_ppid; 6495 info.snd_context = asoc->default_context; 6496 } else { 6497 info.snd_sid = sp->default_stream; 6498 info.snd_flags = sp->default_flags; 6499 info.snd_ppid = sp->default_ppid; 6500 info.snd_context = sp->default_context; 6501 } 6502 6503 if (put_user(len, optlen)) 6504 return -EFAULT; 6505 if (copy_to_user(optval, &info, len)) 6506 return -EFAULT; 6507 6508 return 0; 6509 } 6510 6511 /* 6512 * 6513 * 7.1.5 SCTP_NODELAY 6514 * 6515 * Turn on/off any Nagle-like algorithm. This means that packets are 6516 * generally sent as soon as possible and no unnecessary delays are 6517 * introduced, at the cost of more packets in the network. Expects an 6518 * integer boolean flag. 6519 */ 6520 6521 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6522 char __user *optval, int __user *optlen) 6523 { 6524 int val; 6525 6526 if (len < sizeof(int)) 6527 return -EINVAL; 6528 6529 len = sizeof(int); 6530 val = (sctp_sk(sk)->nodelay == 1); 6531 if (put_user(len, optlen)) 6532 return -EFAULT; 6533 if (copy_to_user(optval, &val, len)) 6534 return -EFAULT; 6535 return 0; 6536 } 6537 6538 /* 6539 * 6540 * 7.1.1 SCTP_RTOINFO 6541 * 6542 * The protocol parameters used to initialize and bound retransmission 6543 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6544 * and modify these parameters. 6545 * All parameters are time values, in milliseconds. A value of 0, when 6546 * modifying the parameters, indicates that the current value should not 6547 * be changed. 6548 * 6549 */ 6550 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6551 char __user *optval, 6552 int __user *optlen) { 6553 struct sctp_rtoinfo rtoinfo; 6554 struct sctp_association *asoc; 6555 6556 if (len < sizeof (struct sctp_rtoinfo)) 6557 return -EINVAL; 6558 6559 len = sizeof(struct sctp_rtoinfo); 6560 6561 if (copy_from_user(&rtoinfo, optval, len)) 6562 return -EFAULT; 6563 6564 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6565 6566 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6567 sctp_style(sk, UDP)) 6568 return -EINVAL; 6569 6570 /* Values corresponding to the specific association. */ 6571 if (asoc) { 6572 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6573 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6574 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6575 } else { 6576 /* Values corresponding to the endpoint. */ 6577 struct sctp_sock *sp = sctp_sk(sk); 6578 6579 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6580 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6581 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6582 } 6583 6584 if (put_user(len, optlen)) 6585 return -EFAULT; 6586 6587 if (copy_to_user(optval, &rtoinfo, len)) 6588 return -EFAULT; 6589 6590 return 0; 6591 } 6592 6593 /* 6594 * 6595 * 7.1.2 SCTP_ASSOCINFO 6596 * 6597 * This option is used to tune the maximum retransmission attempts 6598 * of the association. 6599 * Returns an error if the new association retransmission value is 6600 * greater than the sum of the retransmission value of the peer. 6601 * See [SCTP] for more information. 6602 * 6603 */ 6604 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6605 char __user *optval, 6606 int __user *optlen) 6607 { 6608 6609 struct sctp_assocparams assocparams; 6610 struct sctp_association *asoc; 6611 struct list_head *pos; 6612 int cnt = 0; 6613 6614 if (len < sizeof (struct sctp_assocparams)) 6615 return -EINVAL; 6616 6617 len = sizeof(struct sctp_assocparams); 6618 6619 if (copy_from_user(&assocparams, optval, len)) 6620 return -EFAULT; 6621 6622 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6623 6624 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6625 sctp_style(sk, UDP)) 6626 return -EINVAL; 6627 6628 /* Values correspoinding to the specific association */ 6629 if (asoc) { 6630 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6631 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6632 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6633 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6634 6635 list_for_each(pos, &asoc->peer.transport_addr_list) { 6636 cnt++; 6637 } 6638 6639 assocparams.sasoc_number_peer_destinations = cnt; 6640 } else { 6641 /* Values corresponding to the endpoint */ 6642 struct sctp_sock *sp = sctp_sk(sk); 6643 6644 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6645 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6646 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6647 assocparams.sasoc_cookie_life = 6648 sp->assocparams.sasoc_cookie_life; 6649 assocparams.sasoc_number_peer_destinations = 6650 sp->assocparams. 6651 sasoc_number_peer_destinations; 6652 } 6653 6654 if (put_user(len, optlen)) 6655 return -EFAULT; 6656 6657 if (copy_to_user(optval, &assocparams, len)) 6658 return -EFAULT; 6659 6660 return 0; 6661 } 6662 6663 /* 6664 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6665 * 6666 * This socket option is a boolean flag which turns on or off mapped V4 6667 * addresses. If this option is turned on and the socket is type 6668 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6669 * If this option is turned off, then no mapping will be done of V4 6670 * addresses and a user will receive both PF_INET6 and PF_INET type 6671 * addresses on the socket. 6672 */ 6673 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6674 char __user *optval, int __user *optlen) 6675 { 6676 int val; 6677 struct sctp_sock *sp = sctp_sk(sk); 6678 6679 if (len < sizeof(int)) 6680 return -EINVAL; 6681 6682 len = sizeof(int); 6683 val = sp->v4mapped; 6684 if (put_user(len, optlen)) 6685 return -EFAULT; 6686 if (copy_to_user(optval, &val, len)) 6687 return -EFAULT; 6688 6689 return 0; 6690 } 6691 6692 /* 6693 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6694 * (chapter and verse is quoted at sctp_setsockopt_context()) 6695 */ 6696 static int sctp_getsockopt_context(struct sock *sk, int len, 6697 char __user *optval, int __user *optlen) 6698 { 6699 struct sctp_assoc_value params; 6700 struct sctp_association *asoc; 6701 6702 if (len < sizeof(struct sctp_assoc_value)) 6703 return -EINVAL; 6704 6705 len = sizeof(struct sctp_assoc_value); 6706 6707 if (copy_from_user(¶ms, optval, len)) 6708 return -EFAULT; 6709 6710 asoc = sctp_id2assoc(sk, params.assoc_id); 6711 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6712 sctp_style(sk, UDP)) 6713 return -EINVAL; 6714 6715 params.assoc_value = asoc ? asoc->default_rcv_context 6716 : sctp_sk(sk)->default_rcv_context; 6717 6718 if (put_user(len, optlen)) 6719 return -EFAULT; 6720 if (copy_to_user(optval, ¶ms, len)) 6721 return -EFAULT; 6722 6723 return 0; 6724 } 6725 6726 /* 6727 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6728 * This option will get or set the maximum size to put in any outgoing 6729 * SCTP DATA chunk. If a message is larger than this size it will be 6730 * fragmented by SCTP into the specified size. Note that the underlying 6731 * SCTP implementation may fragment into smaller sized chunks when the 6732 * PMTU of the underlying association is smaller than the value set by 6733 * the user. The default value for this option is '0' which indicates 6734 * the user is NOT limiting fragmentation and only the PMTU will effect 6735 * SCTP's choice of DATA chunk size. Note also that values set larger 6736 * than the maximum size of an IP datagram will effectively let SCTP 6737 * control fragmentation (i.e. the same as setting this option to 0). 6738 * 6739 * The following structure is used to access and modify this parameter: 6740 * 6741 * struct sctp_assoc_value { 6742 * sctp_assoc_t assoc_id; 6743 * uint32_t assoc_value; 6744 * }; 6745 * 6746 * assoc_id: This parameter is ignored for one-to-one style sockets. 6747 * For one-to-many style sockets this parameter indicates which 6748 * association the user is performing an action upon. Note that if 6749 * this field's value is zero then the endpoints default value is 6750 * changed (effecting future associations only). 6751 * assoc_value: This parameter specifies the maximum size in bytes. 6752 */ 6753 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6754 char __user *optval, int __user *optlen) 6755 { 6756 struct sctp_assoc_value params; 6757 struct sctp_association *asoc; 6758 6759 if (len == sizeof(int)) { 6760 pr_warn_ratelimited(DEPRECATED 6761 "%s (pid %d) " 6762 "Use of int in maxseg socket option.\n" 6763 "Use struct sctp_assoc_value instead\n", 6764 current->comm, task_pid_nr(current)); 6765 params.assoc_id = SCTP_FUTURE_ASSOC; 6766 } else if (len >= sizeof(struct sctp_assoc_value)) { 6767 len = sizeof(struct sctp_assoc_value); 6768 if (copy_from_user(¶ms, optval, len)) 6769 return -EFAULT; 6770 } else 6771 return -EINVAL; 6772 6773 asoc = sctp_id2assoc(sk, params.assoc_id); 6774 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6775 sctp_style(sk, UDP)) 6776 return -EINVAL; 6777 6778 if (asoc) 6779 params.assoc_value = asoc->frag_point; 6780 else 6781 params.assoc_value = sctp_sk(sk)->user_frag; 6782 6783 if (put_user(len, optlen)) 6784 return -EFAULT; 6785 if (len == sizeof(int)) { 6786 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6787 return -EFAULT; 6788 } else { 6789 if (copy_to_user(optval, ¶ms, len)) 6790 return -EFAULT; 6791 } 6792 6793 return 0; 6794 } 6795 6796 /* 6797 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6798 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6799 */ 6800 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6801 char __user *optval, int __user *optlen) 6802 { 6803 int val; 6804 6805 if (len < sizeof(int)) 6806 return -EINVAL; 6807 6808 len = sizeof(int); 6809 6810 val = sctp_sk(sk)->frag_interleave; 6811 if (put_user(len, optlen)) 6812 return -EFAULT; 6813 if (copy_to_user(optval, &val, len)) 6814 return -EFAULT; 6815 6816 return 0; 6817 } 6818 6819 /* 6820 * 7.1.25. Set or Get the sctp partial delivery point 6821 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6822 */ 6823 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6824 char __user *optval, 6825 int __user *optlen) 6826 { 6827 u32 val; 6828 6829 if (len < sizeof(u32)) 6830 return -EINVAL; 6831 6832 len = sizeof(u32); 6833 6834 val = sctp_sk(sk)->pd_point; 6835 if (put_user(len, optlen)) 6836 return -EFAULT; 6837 if (copy_to_user(optval, &val, len)) 6838 return -EFAULT; 6839 6840 return 0; 6841 } 6842 6843 /* 6844 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6845 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6846 */ 6847 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6848 char __user *optval, 6849 int __user *optlen) 6850 { 6851 struct sctp_assoc_value params; 6852 struct sctp_association *asoc; 6853 6854 if (len == sizeof(int)) { 6855 pr_warn_ratelimited(DEPRECATED 6856 "%s (pid %d) " 6857 "Use of int in max_burst socket option.\n" 6858 "Use struct sctp_assoc_value instead\n", 6859 current->comm, task_pid_nr(current)); 6860 params.assoc_id = SCTP_FUTURE_ASSOC; 6861 } else if (len >= sizeof(struct sctp_assoc_value)) { 6862 len = sizeof(struct sctp_assoc_value); 6863 if (copy_from_user(¶ms, optval, len)) 6864 return -EFAULT; 6865 } else 6866 return -EINVAL; 6867 6868 asoc = sctp_id2assoc(sk, params.assoc_id); 6869 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6870 sctp_style(sk, UDP)) 6871 return -EINVAL; 6872 6873 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6874 6875 if (len == sizeof(int)) { 6876 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6877 return -EFAULT; 6878 } else { 6879 if (copy_to_user(optval, ¶ms, len)) 6880 return -EFAULT; 6881 } 6882 6883 return 0; 6884 6885 } 6886 6887 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6888 char __user *optval, int __user *optlen) 6889 { 6890 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6891 struct sctp_hmacalgo __user *p = (void __user *)optval; 6892 struct sctp_hmac_algo_param *hmacs; 6893 __u16 data_len = 0; 6894 u32 num_idents; 6895 int i; 6896 6897 if (!ep->auth_enable) 6898 return -EACCES; 6899 6900 hmacs = ep->auth_hmacs_list; 6901 data_len = ntohs(hmacs->param_hdr.length) - 6902 sizeof(struct sctp_paramhdr); 6903 6904 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6905 return -EINVAL; 6906 6907 len = sizeof(struct sctp_hmacalgo) + data_len; 6908 num_idents = data_len / sizeof(u16); 6909 6910 if (put_user(len, optlen)) 6911 return -EFAULT; 6912 if (put_user(num_idents, &p->shmac_num_idents)) 6913 return -EFAULT; 6914 for (i = 0; i < num_idents; i++) { 6915 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6916 6917 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6918 return -EFAULT; 6919 } 6920 return 0; 6921 } 6922 6923 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6924 char __user *optval, int __user *optlen) 6925 { 6926 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6927 struct sctp_authkeyid val; 6928 struct sctp_association *asoc; 6929 6930 if (len < sizeof(struct sctp_authkeyid)) 6931 return -EINVAL; 6932 6933 len = sizeof(struct sctp_authkeyid); 6934 if (copy_from_user(&val, optval, len)) 6935 return -EFAULT; 6936 6937 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6938 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6939 return -EINVAL; 6940 6941 if (asoc) { 6942 if (!asoc->peer.auth_capable) 6943 return -EACCES; 6944 val.scact_keynumber = asoc->active_key_id; 6945 } else { 6946 if (!ep->auth_enable) 6947 return -EACCES; 6948 val.scact_keynumber = ep->active_key_id; 6949 } 6950 6951 if (put_user(len, optlen)) 6952 return -EFAULT; 6953 if (copy_to_user(optval, &val, len)) 6954 return -EFAULT; 6955 6956 return 0; 6957 } 6958 6959 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6960 char __user *optval, int __user *optlen) 6961 { 6962 struct sctp_authchunks __user *p = (void __user *)optval; 6963 struct sctp_authchunks val; 6964 struct sctp_association *asoc; 6965 struct sctp_chunks_param *ch; 6966 u32 num_chunks = 0; 6967 char __user *to; 6968 6969 if (len < sizeof(struct sctp_authchunks)) 6970 return -EINVAL; 6971 6972 if (copy_from_user(&val, optval, sizeof(val))) 6973 return -EFAULT; 6974 6975 to = p->gauth_chunks; 6976 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6977 if (!asoc) 6978 return -EINVAL; 6979 6980 if (!asoc->peer.auth_capable) 6981 return -EACCES; 6982 6983 ch = asoc->peer.peer_chunks; 6984 if (!ch) 6985 goto num; 6986 6987 /* See if the user provided enough room for all the data */ 6988 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6989 if (len < num_chunks) 6990 return -EINVAL; 6991 6992 if (copy_to_user(to, ch->chunks, num_chunks)) 6993 return -EFAULT; 6994 num: 6995 len = sizeof(struct sctp_authchunks) + num_chunks; 6996 if (put_user(len, optlen)) 6997 return -EFAULT; 6998 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6999 return -EFAULT; 7000 return 0; 7001 } 7002 7003 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7004 char __user *optval, int __user *optlen) 7005 { 7006 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7007 struct sctp_authchunks __user *p = (void __user *)optval; 7008 struct sctp_authchunks val; 7009 struct sctp_association *asoc; 7010 struct sctp_chunks_param *ch; 7011 u32 num_chunks = 0; 7012 char __user *to; 7013 7014 if (len < sizeof(struct sctp_authchunks)) 7015 return -EINVAL; 7016 7017 if (copy_from_user(&val, optval, sizeof(val))) 7018 return -EFAULT; 7019 7020 to = p->gauth_chunks; 7021 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7022 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7023 sctp_style(sk, UDP)) 7024 return -EINVAL; 7025 7026 if (asoc) { 7027 if (!asoc->peer.auth_capable) 7028 return -EACCES; 7029 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7030 } else { 7031 if (!ep->auth_enable) 7032 return -EACCES; 7033 ch = ep->auth_chunk_list; 7034 } 7035 if (!ch) 7036 goto num; 7037 7038 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7039 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7040 return -EINVAL; 7041 7042 if (copy_to_user(to, ch->chunks, num_chunks)) 7043 return -EFAULT; 7044 num: 7045 len = sizeof(struct sctp_authchunks) + num_chunks; 7046 if (put_user(len, optlen)) 7047 return -EFAULT; 7048 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7049 return -EFAULT; 7050 7051 return 0; 7052 } 7053 7054 /* 7055 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7056 * This option gets the current number of associations that are attached 7057 * to a one-to-many style socket. The option value is an uint32_t. 7058 */ 7059 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7060 char __user *optval, int __user *optlen) 7061 { 7062 struct sctp_sock *sp = sctp_sk(sk); 7063 struct sctp_association *asoc; 7064 u32 val = 0; 7065 7066 if (sctp_style(sk, TCP)) 7067 return -EOPNOTSUPP; 7068 7069 if (len < sizeof(u32)) 7070 return -EINVAL; 7071 7072 len = sizeof(u32); 7073 7074 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7075 val++; 7076 } 7077 7078 if (put_user(len, optlen)) 7079 return -EFAULT; 7080 if (copy_to_user(optval, &val, len)) 7081 return -EFAULT; 7082 7083 return 0; 7084 } 7085 7086 /* 7087 * 8.1.23 SCTP_AUTO_ASCONF 7088 * See the corresponding setsockopt entry as description 7089 */ 7090 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7091 char __user *optval, int __user *optlen) 7092 { 7093 int val = 0; 7094 7095 if (len < sizeof(int)) 7096 return -EINVAL; 7097 7098 len = sizeof(int); 7099 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7100 val = 1; 7101 if (put_user(len, optlen)) 7102 return -EFAULT; 7103 if (copy_to_user(optval, &val, len)) 7104 return -EFAULT; 7105 return 0; 7106 } 7107 7108 /* 7109 * 8.2.6. Get the Current Identifiers of Associations 7110 * (SCTP_GET_ASSOC_ID_LIST) 7111 * 7112 * This option gets the current list of SCTP association identifiers of 7113 * the SCTP associations handled by a one-to-many style socket. 7114 */ 7115 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7116 char __user *optval, int __user *optlen) 7117 { 7118 struct sctp_sock *sp = sctp_sk(sk); 7119 struct sctp_association *asoc; 7120 struct sctp_assoc_ids *ids; 7121 size_t ids_size; 7122 u32 num = 0; 7123 7124 if (sctp_style(sk, TCP)) 7125 return -EOPNOTSUPP; 7126 7127 if (len < sizeof(struct sctp_assoc_ids)) 7128 return -EINVAL; 7129 7130 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7131 num++; 7132 } 7133 7134 ids_size = struct_size(ids, gaids_assoc_id, num); 7135 if (len < ids_size) 7136 return -EINVAL; 7137 7138 len = ids_size; 7139 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7140 if (unlikely(!ids)) 7141 return -ENOMEM; 7142 7143 ids->gaids_number_of_ids = num; 7144 num = 0; 7145 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7146 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7147 } 7148 7149 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7150 kfree(ids); 7151 return -EFAULT; 7152 } 7153 7154 kfree(ids); 7155 return 0; 7156 } 7157 7158 /* 7159 * SCTP_PEER_ADDR_THLDS 7160 * 7161 * This option allows us to fetch the partially failed threshold for one or all 7162 * transports in an association. See Section 6.1 of: 7163 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7164 */ 7165 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7166 char __user *optval, int len, 7167 int __user *optlen, bool v2) 7168 { 7169 struct sctp_paddrthlds_v2 val; 7170 struct sctp_transport *trans; 7171 struct sctp_association *asoc; 7172 int min; 7173 7174 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7175 if (len < min) 7176 return -EINVAL; 7177 len = min; 7178 if (copy_from_user(&val, optval, len)) 7179 return -EFAULT; 7180 7181 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7182 trans = sctp_addr_id2transport(sk, &val.spt_address, 7183 val.spt_assoc_id); 7184 if (!trans) 7185 return -ENOENT; 7186 7187 val.spt_pathmaxrxt = trans->pathmaxrxt; 7188 val.spt_pathpfthld = trans->pf_retrans; 7189 val.spt_pathcpthld = trans->ps_retrans; 7190 7191 goto out; 7192 } 7193 7194 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7195 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7196 sctp_style(sk, UDP)) 7197 return -EINVAL; 7198 7199 if (asoc) { 7200 val.spt_pathpfthld = asoc->pf_retrans; 7201 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7202 val.spt_pathcpthld = asoc->ps_retrans; 7203 } else { 7204 struct sctp_sock *sp = sctp_sk(sk); 7205 7206 val.spt_pathpfthld = sp->pf_retrans; 7207 val.spt_pathmaxrxt = sp->pathmaxrxt; 7208 val.spt_pathcpthld = sp->ps_retrans; 7209 } 7210 7211 out: 7212 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7213 return -EFAULT; 7214 7215 return 0; 7216 } 7217 7218 /* 7219 * SCTP_GET_ASSOC_STATS 7220 * 7221 * This option retrieves local per endpoint statistics. It is modeled 7222 * after OpenSolaris' implementation 7223 */ 7224 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7225 char __user *optval, 7226 int __user *optlen) 7227 { 7228 struct sctp_assoc_stats sas; 7229 struct sctp_association *asoc = NULL; 7230 7231 /* User must provide at least the assoc id */ 7232 if (len < sizeof(sctp_assoc_t)) 7233 return -EINVAL; 7234 7235 /* Allow the struct to grow and fill in as much as possible */ 7236 len = min_t(size_t, len, sizeof(sas)); 7237 7238 if (copy_from_user(&sas, optval, len)) 7239 return -EFAULT; 7240 7241 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7242 if (!asoc) 7243 return -EINVAL; 7244 7245 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7246 sas.sas_gapcnt = asoc->stats.gapcnt; 7247 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7248 sas.sas_osacks = asoc->stats.osacks; 7249 sas.sas_isacks = asoc->stats.isacks; 7250 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7251 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7252 sas.sas_oodchunks = asoc->stats.oodchunks; 7253 sas.sas_iodchunks = asoc->stats.iodchunks; 7254 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7255 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7256 sas.sas_idupchunks = asoc->stats.idupchunks; 7257 sas.sas_opackets = asoc->stats.opackets; 7258 sas.sas_ipackets = asoc->stats.ipackets; 7259 7260 /* New high max rto observed, will return 0 if not a single 7261 * RTO update took place. obs_rto_ipaddr will be bogus 7262 * in such a case 7263 */ 7264 sas.sas_maxrto = asoc->stats.max_obs_rto; 7265 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7266 sizeof(struct sockaddr_storage)); 7267 7268 /* Mark beginning of a new observation period */ 7269 asoc->stats.max_obs_rto = asoc->rto_min; 7270 7271 if (put_user(len, optlen)) 7272 return -EFAULT; 7273 7274 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7275 7276 if (copy_to_user(optval, &sas, len)) 7277 return -EFAULT; 7278 7279 return 0; 7280 } 7281 7282 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7283 char __user *optval, 7284 int __user *optlen) 7285 { 7286 int val = 0; 7287 7288 if (len < sizeof(int)) 7289 return -EINVAL; 7290 7291 len = sizeof(int); 7292 if (sctp_sk(sk)->recvrcvinfo) 7293 val = 1; 7294 if (put_user(len, optlen)) 7295 return -EFAULT; 7296 if (copy_to_user(optval, &val, len)) 7297 return -EFAULT; 7298 7299 return 0; 7300 } 7301 7302 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7303 char __user *optval, 7304 int __user *optlen) 7305 { 7306 int val = 0; 7307 7308 if (len < sizeof(int)) 7309 return -EINVAL; 7310 7311 len = sizeof(int); 7312 if (sctp_sk(sk)->recvnxtinfo) 7313 val = 1; 7314 if (put_user(len, optlen)) 7315 return -EFAULT; 7316 if (copy_to_user(optval, &val, len)) 7317 return -EFAULT; 7318 7319 return 0; 7320 } 7321 7322 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7323 char __user *optval, 7324 int __user *optlen) 7325 { 7326 struct sctp_assoc_value params; 7327 struct sctp_association *asoc; 7328 int retval = -EFAULT; 7329 7330 if (len < sizeof(params)) { 7331 retval = -EINVAL; 7332 goto out; 7333 } 7334 7335 len = sizeof(params); 7336 if (copy_from_user(¶ms, optval, len)) 7337 goto out; 7338 7339 asoc = sctp_id2assoc(sk, params.assoc_id); 7340 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7341 sctp_style(sk, UDP)) { 7342 retval = -EINVAL; 7343 goto out; 7344 } 7345 7346 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7347 : sctp_sk(sk)->ep->prsctp_enable; 7348 7349 if (put_user(len, optlen)) 7350 goto out; 7351 7352 if (copy_to_user(optval, ¶ms, len)) 7353 goto out; 7354 7355 retval = 0; 7356 7357 out: 7358 return retval; 7359 } 7360 7361 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7362 char __user *optval, 7363 int __user *optlen) 7364 { 7365 struct sctp_default_prinfo info; 7366 struct sctp_association *asoc; 7367 int retval = -EFAULT; 7368 7369 if (len < sizeof(info)) { 7370 retval = -EINVAL; 7371 goto out; 7372 } 7373 7374 len = sizeof(info); 7375 if (copy_from_user(&info, optval, len)) 7376 goto out; 7377 7378 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7379 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7380 sctp_style(sk, UDP)) { 7381 retval = -EINVAL; 7382 goto out; 7383 } 7384 7385 if (asoc) { 7386 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7387 info.pr_value = asoc->default_timetolive; 7388 } else { 7389 struct sctp_sock *sp = sctp_sk(sk); 7390 7391 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7392 info.pr_value = sp->default_timetolive; 7393 } 7394 7395 if (put_user(len, optlen)) 7396 goto out; 7397 7398 if (copy_to_user(optval, &info, len)) 7399 goto out; 7400 7401 retval = 0; 7402 7403 out: 7404 return retval; 7405 } 7406 7407 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7408 char __user *optval, 7409 int __user *optlen) 7410 { 7411 struct sctp_prstatus params; 7412 struct sctp_association *asoc; 7413 int policy; 7414 int retval = -EINVAL; 7415 7416 if (len < sizeof(params)) 7417 goto out; 7418 7419 len = sizeof(params); 7420 if (copy_from_user(¶ms, optval, len)) { 7421 retval = -EFAULT; 7422 goto out; 7423 } 7424 7425 policy = params.sprstat_policy; 7426 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7427 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7428 goto out; 7429 7430 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7431 if (!asoc) 7432 goto out; 7433 7434 if (policy == SCTP_PR_SCTP_ALL) { 7435 params.sprstat_abandoned_unsent = 0; 7436 params.sprstat_abandoned_sent = 0; 7437 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7438 params.sprstat_abandoned_unsent += 7439 asoc->abandoned_unsent[policy]; 7440 params.sprstat_abandoned_sent += 7441 asoc->abandoned_sent[policy]; 7442 } 7443 } else { 7444 params.sprstat_abandoned_unsent = 7445 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7446 params.sprstat_abandoned_sent = 7447 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7448 } 7449 7450 if (put_user(len, optlen)) { 7451 retval = -EFAULT; 7452 goto out; 7453 } 7454 7455 if (copy_to_user(optval, ¶ms, len)) { 7456 retval = -EFAULT; 7457 goto out; 7458 } 7459 7460 retval = 0; 7461 7462 out: 7463 return retval; 7464 } 7465 7466 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7467 char __user *optval, 7468 int __user *optlen) 7469 { 7470 struct sctp_stream_out_ext *streamoute; 7471 struct sctp_association *asoc; 7472 struct sctp_prstatus params; 7473 int retval = -EINVAL; 7474 int policy; 7475 7476 if (len < sizeof(params)) 7477 goto out; 7478 7479 len = sizeof(params); 7480 if (copy_from_user(¶ms, optval, len)) { 7481 retval = -EFAULT; 7482 goto out; 7483 } 7484 7485 policy = params.sprstat_policy; 7486 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7487 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7488 goto out; 7489 7490 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7491 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7492 goto out; 7493 7494 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7495 if (!streamoute) { 7496 /* Not allocated yet, means all stats are 0 */ 7497 params.sprstat_abandoned_unsent = 0; 7498 params.sprstat_abandoned_sent = 0; 7499 retval = 0; 7500 goto out; 7501 } 7502 7503 if (policy == SCTP_PR_SCTP_ALL) { 7504 params.sprstat_abandoned_unsent = 0; 7505 params.sprstat_abandoned_sent = 0; 7506 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7507 params.sprstat_abandoned_unsent += 7508 streamoute->abandoned_unsent[policy]; 7509 params.sprstat_abandoned_sent += 7510 streamoute->abandoned_sent[policy]; 7511 } 7512 } else { 7513 params.sprstat_abandoned_unsent = 7514 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7515 params.sprstat_abandoned_sent = 7516 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7517 } 7518 7519 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7520 retval = -EFAULT; 7521 goto out; 7522 } 7523 7524 retval = 0; 7525 7526 out: 7527 return retval; 7528 } 7529 7530 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7531 char __user *optval, 7532 int __user *optlen) 7533 { 7534 struct sctp_assoc_value params; 7535 struct sctp_association *asoc; 7536 int retval = -EFAULT; 7537 7538 if (len < sizeof(params)) { 7539 retval = -EINVAL; 7540 goto out; 7541 } 7542 7543 len = sizeof(params); 7544 if (copy_from_user(¶ms, optval, len)) 7545 goto out; 7546 7547 asoc = sctp_id2assoc(sk, params.assoc_id); 7548 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7549 sctp_style(sk, UDP)) { 7550 retval = -EINVAL; 7551 goto out; 7552 } 7553 7554 params.assoc_value = asoc ? asoc->peer.reconf_capable 7555 : sctp_sk(sk)->ep->reconf_enable; 7556 7557 if (put_user(len, optlen)) 7558 goto out; 7559 7560 if (copy_to_user(optval, ¶ms, len)) 7561 goto out; 7562 7563 retval = 0; 7564 7565 out: 7566 return retval; 7567 } 7568 7569 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7570 char __user *optval, 7571 int __user *optlen) 7572 { 7573 struct sctp_assoc_value params; 7574 struct sctp_association *asoc; 7575 int retval = -EFAULT; 7576 7577 if (len < sizeof(params)) { 7578 retval = -EINVAL; 7579 goto out; 7580 } 7581 7582 len = sizeof(params); 7583 if (copy_from_user(¶ms, optval, len)) 7584 goto out; 7585 7586 asoc = sctp_id2assoc(sk, params.assoc_id); 7587 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7588 sctp_style(sk, UDP)) { 7589 retval = -EINVAL; 7590 goto out; 7591 } 7592 7593 params.assoc_value = asoc ? asoc->strreset_enable 7594 : sctp_sk(sk)->ep->strreset_enable; 7595 7596 if (put_user(len, optlen)) 7597 goto out; 7598 7599 if (copy_to_user(optval, ¶ms, len)) 7600 goto out; 7601 7602 retval = 0; 7603 7604 out: 7605 return retval; 7606 } 7607 7608 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7609 char __user *optval, 7610 int __user *optlen) 7611 { 7612 struct sctp_assoc_value params; 7613 struct sctp_association *asoc; 7614 int retval = -EFAULT; 7615 7616 if (len < sizeof(params)) { 7617 retval = -EINVAL; 7618 goto out; 7619 } 7620 7621 len = sizeof(params); 7622 if (copy_from_user(¶ms, optval, len)) 7623 goto out; 7624 7625 asoc = sctp_id2assoc(sk, params.assoc_id); 7626 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7627 sctp_style(sk, UDP)) { 7628 retval = -EINVAL; 7629 goto out; 7630 } 7631 7632 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7633 : sctp_sk(sk)->default_ss; 7634 7635 if (put_user(len, optlen)) 7636 goto out; 7637 7638 if (copy_to_user(optval, ¶ms, len)) 7639 goto out; 7640 7641 retval = 0; 7642 7643 out: 7644 return retval; 7645 } 7646 7647 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7648 char __user *optval, 7649 int __user *optlen) 7650 { 7651 struct sctp_stream_value params; 7652 struct sctp_association *asoc; 7653 int retval = -EFAULT; 7654 7655 if (len < sizeof(params)) { 7656 retval = -EINVAL; 7657 goto out; 7658 } 7659 7660 len = sizeof(params); 7661 if (copy_from_user(¶ms, optval, len)) 7662 goto out; 7663 7664 asoc = sctp_id2assoc(sk, params.assoc_id); 7665 if (!asoc) { 7666 retval = -EINVAL; 7667 goto out; 7668 } 7669 7670 retval = sctp_sched_get_value(asoc, params.stream_id, 7671 ¶ms.stream_value); 7672 if (retval) 7673 goto out; 7674 7675 if (put_user(len, optlen)) { 7676 retval = -EFAULT; 7677 goto out; 7678 } 7679 7680 if (copy_to_user(optval, ¶ms, len)) { 7681 retval = -EFAULT; 7682 goto out; 7683 } 7684 7685 out: 7686 return retval; 7687 } 7688 7689 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7690 char __user *optval, 7691 int __user *optlen) 7692 { 7693 struct sctp_assoc_value params; 7694 struct sctp_association *asoc; 7695 int retval = -EFAULT; 7696 7697 if (len < sizeof(params)) { 7698 retval = -EINVAL; 7699 goto out; 7700 } 7701 7702 len = sizeof(params); 7703 if (copy_from_user(¶ms, optval, len)) 7704 goto out; 7705 7706 asoc = sctp_id2assoc(sk, params.assoc_id); 7707 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7708 sctp_style(sk, UDP)) { 7709 retval = -EINVAL; 7710 goto out; 7711 } 7712 7713 params.assoc_value = asoc ? asoc->peer.intl_capable 7714 : sctp_sk(sk)->ep->intl_enable; 7715 7716 if (put_user(len, optlen)) 7717 goto out; 7718 7719 if (copy_to_user(optval, ¶ms, len)) 7720 goto out; 7721 7722 retval = 0; 7723 7724 out: 7725 return retval; 7726 } 7727 7728 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7729 char __user *optval, 7730 int __user *optlen) 7731 { 7732 int val; 7733 7734 if (len < sizeof(int)) 7735 return -EINVAL; 7736 7737 len = sizeof(int); 7738 val = sctp_sk(sk)->reuse; 7739 if (put_user(len, optlen)) 7740 return -EFAULT; 7741 7742 if (copy_to_user(optval, &val, len)) 7743 return -EFAULT; 7744 7745 return 0; 7746 } 7747 7748 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7749 int __user *optlen) 7750 { 7751 struct sctp_association *asoc; 7752 struct sctp_event param; 7753 __u16 subscribe; 7754 7755 if (len < sizeof(param)) 7756 return -EINVAL; 7757 7758 len = sizeof(param); 7759 if (copy_from_user(¶m, optval, len)) 7760 return -EFAULT; 7761 7762 if (param.se_type < SCTP_SN_TYPE_BASE || 7763 param.se_type > SCTP_SN_TYPE_MAX) 7764 return -EINVAL; 7765 7766 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7767 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7768 sctp_style(sk, UDP)) 7769 return -EINVAL; 7770 7771 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7772 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7773 7774 if (put_user(len, optlen)) 7775 return -EFAULT; 7776 7777 if (copy_to_user(optval, ¶m, len)) 7778 return -EFAULT; 7779 7780 return 0; 7781 } 7782 7783 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7784 char __user *optval, 7785 int __user *optlen) 7786 { 7787 struct sctp_assoc_value params; 7788 struct sctp_association *asoc; 7789 int retval = -EFAULT; 7790 7791 if (len < sizeof(params)) { 7792 retval = -EINVAL; 7793 goto out; 7794 } 7795 7796 len = sizeof(params); 7797 if (copy_from_user(¶ms, optval, len)) 7798 goto out; 7799 7800 asoc = sctp_id2assoc(sk, params.assoc_id); 7801 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7802 sctp_style(sk, UDP)) { 7803 retval = -EINVAL; 7804 goto out; 7805 } 7806 7807 params.assoc_value = asoc ? asoc->peer.asconf_capable 7808 : sctp_sk(sk)->ep->asconf_enable; 7809 7810 if (put_user(len, optlen)) 7811 goto out; 7812 7813 if (copy_to_user(optval, ¶ms, len)) 7814 goto out; 7815 7816 retval = 0; 7817 7818 out: 7819 return retval; 7820 } 7821 7822 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7823 char __user *optval, 7824 int __user *optlen) 7825 { 7826 struct sctp_assoc_value params; 7827 struct sctp_association *asoc; 7828 int retval = -EFAULT; 7829 7830 if (len < sizeof(params)) { 7831 retval = -EINVAL; 7832 goto out; 7833 } 7834 7835 len = sizeof(params); 7836 if (copy_from_user(¶ms, optval, len)) 7837 goto out; 7838 7839 asoc = sctp_id2assoc(sk, params.assoc_id); 7840 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7841 sctp_style(sk, UDP)) { 7842 retval = -EINVAL; 7843 goto out; 7844 } 7845 7846 params.assoc_value = asoc ? asoc->peer.auth_capable 7847 : sctp_sk(sk)->ep->auth_enable; 7848 7849 if (put_user(len, optlen)) 7850 goto out; 7851 7852 if (copy_to_user(optval, ¶ms, len)) 7853 goto out; 7854 7855 retval = 0; 7856 7857 out: 7858 return retval; 7859 } 7860 7861 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7862 char __user *optval, 7863 int __user *optlen) 7864 { 7865 struct sctp_assoc_value params; 7866 struct sctp_association *asoc; 7867 int retval = -EFAULT; 7868 7869 if (len < sizeof(params)) { 7870 retval = -EINVAL; 7871 goto out; 7872 } 7873 7874 len = sizeof(params); 7875 if (copy_from_user(¶ms, optval, len)) 7876 goto out; 7877 7878 asoc = sctp_id2assoc(sk, params.assoc_id); 7879 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7880 sctp_style(sk, UDP)) { 7881 retval = -EINVAL; 7882 goto out; 7883 } 7884 7885 params.assoc_value = asoc ? asoc->peer.ecn_capable 7886 : sctp_sk(sk)->ep->ecn_enable; 7887 7888 if (put_user(len, optlen)) 7889 goto out; 7890 7891 if (copy_to_user(optval, ¶ms, len)) 7892 goto out; 7893 7894 retval = 0; 7895 7896 out: 7897 return retval; 7898 } 7899 7900 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7901 char __user *optval, 7902 int __user *optlen) 7903 { 7904 struct sctp_assoc_value params; 7905 struct sctp_association *asoc; 7906 int retval = -EFAULT; 7907 7908 if (len < sizeof(params)) { 7909 retval = -EINVAL; 7910 goto out; 7911 } 7912 7913 len = sizeof(params); 7914 if (copy_from_user(¶ms, optval, len)) 7915 goto out; 7916 7917 asoc = sctp_id2assoc(sk, params.assoc_id); 7918 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7919 sctp_style(sk, UDP)) { 7920 retval = -EINVAL; 7921 goto out; 7922 } 7923 7924 params.assoc_value = asoc ? asoc->pf_expose 7925 : sctp_sk(sk)->pf_expose; 7926 7927 if (put_user(len, optlen)) 7928 goto out; 7929 7930 if (copy_to_user(optval, ¶ms, len)) 7931 goto out; 7932 7933 retval = 0; 7934 7935 out: 7936 return retval; 7937 } 7938 7939 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7940 char __user *optval, int __user *optlen) 7941 { 7942 struct sctp_association *asoc; 7943 struct sctp_udpencaps encap; 7944 struct sctp_transport *t; 7945 __be16 encap_port; 7946 7947 if (len < sizeof(encap)) 7948 return -EINVAL; 7949 7950 len = sizeof(encap); 7951 if (copy_from_user(&encap, optval, len)) 7952 return -EFAULT; 7953 7954 /* If an address other than INADDR_ANY is specified, and 7955 * no transport is found, then the request is invalid. 7956 */ 7957 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7958 t = sctp_addr_id2transport(sk, &encap.sue_address, 7959 encap.sue_assoc_id); 7960 if (!t) { 7961 pr_debug("%s: failed no transport\n", __func__); 7962 return -EINVAL; 7963 } 7964 7965 encap_port = t->encap_port; 7966 goto out; 7967 } 7968 7969 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7970 * socket is a one to many style socket, and an association 7971 * was not found, then the id was invalid. 7972 */ 7973 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7974 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7975 sctp_style(sk, UDP)) { 7976 pr_debug("%s: failed no association\n", __func__); 7977 return -EINVAL; 7978 } 7979 7980 if (asoc) { 7981 encap_port = asoc->encap_port; 7982 goto out; 7983 } 7984 7985 encap_port = sctp_sk(sk)->encap_port; 7986 7987 out: 7988 encap.sue_port = (__force uint16_t)encap_port; 7989 if (copy_to_user(optval, &encap, len)) 7990 return -EFAULT; 7991 7992 if (put_user(len, optlen)) 7993 return -EFAULT; 7994 7995 return 0; 7996 } 7997 7998 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7999 char __user *optval, 8000 int __user *optlen) 8001 { 8002 struct sctp_probeinterval params; 8003 struct sctp_association *asoc; 8004 struct sctp_transport *t; 8005 __u32 probe_interval; 8006 8007 if (len < sizeof(params)) 8008 return -EINVAL; 8009 8010 len = sizeof(params); 8011 if (copy_from_user(¶ms, optval, len)) 8012 return -EFAULT; 8013 8014 /* If an address other than INADDR_ANY is specified, and 8015 * no transport is found, then the request is invalid. 8016 */ 8017 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8018 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8019 params.spi_assoc_id); 8020 if (!t) { 8021 pr_debug("%s: failed no transport\n", __func__); 8022 return -EINVAL; 8023 } 8024 8025 probe_interval = jiffies_to_msecs(t->probe_interval); 8026 goto out; 8027 } 8028 8029 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8030 * socket is a one to many style socket, and an association 8031 * was not found, then the id was invalid. 8032 */ 8033 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8034 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8035 sctp_style(sk, UDP)) { 8036 pr_debug("%s: failed no association\n", __func__); 8037 return -EINVAL; 8038 } 8039 8040 if (asoc) { 8041 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8042 goto out; 8043 } 8044 8045 probe_interval = sctp_sk(sk)->probe_interval; 8046 8047 out: 8048 params.spi_interval = probe_interval; 8049 if (copy_to_user(optval, ¶ms, len)) 8050 return -EFAULT; 8051 8052 if (put_user(len, optlen)) 8053 return -EFAULT; 8054 8055 return 0; 8056 } 8057 8058 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8059 char __user *optval, int __user *optlen) 8060 { 8061 int retval = 0; 8062 int len; 8063 8064 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8065 8066 /* I can hardly begin to describe how wrong this is. This is 8067 * so broken as to be worse than useless. The API draft 8068 * REALLY is NOT helpful here... I am not convinced that the 8069 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8070 * are at all well-founded. 8071 */ 8072 if (level != SOL_SCTP) { 8073 struct sctp_af *af = sctp_sk(sk)->pf->af; 8074 8075 retval = af->getsockopt(sk, level, optname, optval, optlen); 8076 return retval; 8077 } 8078 8079 if (get_user(len, optlen)) 8080 return -EFAULT; 8081 8082 if (len < 0) 8083 return -EINVAL; 8084 8085 lock_sock(sk); 8086 8087 switch (optname) { 8088 case SCTP_STATUS: 8089 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8090 break; 8091 case SCTP_DISABLE_FRAGMENTS: 8092 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8093 optlen); 8094 break; 8095 case SCTP_EVENTS: 8096 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8097 break; 8098 case SCTP_AUTOCLOSE: 8099 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8100 break; 8101 case SCTP_SOCKOPT_PEELOFF: 8102 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8103 break; 8104 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8105 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8106 break; 8107 case SCTP_PEER_ADDR_PARAMS: 8108 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8109 optlen); 8110 break; 8111 case SCTP_DELAYED_SACK: 8112 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8113 optlen); 8114 break; 8115 case SCTP_INITMSG: 8116 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8117 break; 8118 case SCTP_GET_PEER_ADDRS: 8119 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8120 optlen); 8121 break; 8122 case SCTP_GET_LOCAL_ADDRS: 8123 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8124 optlen); 8125 break; 8126 case SCTP_SOCKOPT_CONNECTX3: 8127 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8128 break; 8129 case SCTP_DEFAULT_SEND_PARAM: 8130 retval = sctp_getsockopt_default_send_param(sk, len, 8131 optval, optlen); 8132 break; 8133 case SCTP_DEFAULT_SNDINFO: 8134 retval = sctp_getsockopt_default_sndinfo(sk, len, 8135 optval, optlen); 8136 break; 8137 case SCTP_PRIMARY_ADDR: 8138 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8139 break; 8140 case SCTP_NODELAY: 8141 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8142 break; 8143 case SCTP_RTOINFO: 8144 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8145 break; 8146 case SCTP_ASSOCINFO: 8147 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8148 break; 8149 case SCTP_I_WANT_MAPPED_V4_ADDR: 8150 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8151 break; 8152 case SCTP_MAXSEG: 8153 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8154 break; 8155 case SCTP_GET_PEER_ADDR_INFO: 8156 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8157 optlen); 8158 break; 8159 case SCTP_ADAPTATION_LAYER: 8160 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8161 optlen); 8162 break; 8163 case SCTP_CONTEXT: 8164 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8165 break; 8166 case SCTP_FRAGMENT_INTERLEAVE: 8167 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8168 optlen); 8169 break; 8170 case SCTP_PARTIAL_DELIVERY_POINT: 8171 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8172 optlen); 8173 break; 8174 case SCTP_MAX_BURST: 8175 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8176 break; 8177 case SCTP_AUTH_KEY: 8178 case SCTP_AUTH_CHUNK: 8179 case SCTP_AUTH_DELETE_KEY: 8180 case SCTP_AUTH_DEACTIVATE_KEY: 8181 retval = -EOPNOTSUPP; 8182 break; 8183 case SCTP_HMAC_IDENT: 8184 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8185 break; 8186 case SCTP_AUTH_ACTIVE_KEY: 8187 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8188 break; 8189 case SCTP_PEER_AUTH_CHUNKS: 8190 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8191 optlen); 8192 break; 8193 case SCTP_LOCAL_AUTH_CHUNKS: 8194 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8195 optlen); 8196 break; 8197 case SCTP_GET_ASSOC_NUMBER: 8198 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8199 break; 8200 case SCTP_GET_ASSOC_ID_LIST: 8201 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8202 break; 8203 case SCTP_AUTO_ASCONF: 8204 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8205 break; 8206 case SCTP_PEER_ADDR_THLDS: 8207 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8208 optlen, false); 8209 break; 8210 case SCTP_PEER_ADDR_THLDS_V2: 8211 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8212 optlen, true); 8213 break; 8214 case SCTP_GET_ASSOC_STATS: 8215 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8216 break; 8217 case SCTP_RECVRCVINFO: 8218 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8219 break; 8220 case SCTP_RECVNXTINFO: 8221 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8222 break; 8223 case SCTP_PR_SUPPORTED: 8224 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8225 break; 8226 case SCTP_DEFAULT_PRINFO: 8227 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8228 optlen); 8229 break; 8230 case SCTP_PR_ASSOC_STATUS: 8231 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8232 optlen); 8233 break; 8234 case SCTP_PR_STREAM_STATUS: 8235 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8236 optlen); 8237 break; 8238 case SCTP_RECONFIG_SUPPORTED: 8239 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8240 optlen); 8241 break; 8242 case SCTP_ENABLE_STREAM_RESET: 8243 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8244 optlen); 8245 break; 8246 case SCTP_STREAM_SCHEDULER: 8247 retval = sctp_getsockopt_scheduler(sk, len, optval, 8248 optlen); 8249 break; 8250 case SCTP_STREAM_SCHEDULER_VALUE: 8251 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8252 optlen); 8253 break; 8254 case SCTP_INTERLEAVING_SUPPORTED: 8255 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8256 optlen); 8257 break; 8258 case SCTP_REUSE_PORT: 8259 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8260 break; 8261 case SCTP_EVENT: 8262 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8263 break; 8264 case SCTP_ASCONF_SUPPORTED: 8265 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8266 optlen); 8267 break; 8268 case SCTP_AUTH_SUPPORTED: 8269 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8270 optlen); 8271 break; 8272 case SCTP_ECN_SUPPORTED: 8273 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8274 break; 8275 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8276 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8277 break; 8278 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8279 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8280 break; 8281 case SCTP_PLPMTUD_PROBE_INTERVAL: 8282 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8283 break; 8284 default: 8285 retval = -ENOPROTOOPT; 8286 break; 8287 } 8288 8289 release_sock(sk); 8290 return retval; 8291 } 8292 8293 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8294 { 8295 if (level == SOL_SCTP) { 8296 switch (optname) { 8297 case SCTP_SOCKOPT_PEELOFF: 8298 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8299 case SCTP_SOCKOPT_CONNECTX3: 8300 return true; 8301 default: 8302 return false; 8303 } 8304 } 8305 8306 return false; 8307 } 8308 8309 static int sctp_hash(struct sock *sk) 8310 { 8311 /* STUB */ 8312 return 0; 8313 } 8314 8315 static void sctp_unhash(struct sock *sk) 8316 { 8317 /* STUB */ 8318 } 8319 8320 /* Check if port is acceptable. Possibly find first available port. 8321 * 8322 * The port hash table (contained in the 'global' SCTP protocol storage 8323 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8324 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8325 * list (the list number is the port number hashed out, so as you 8326 * would expect from a hash function, all the ports in a given list have 8327 * such a number that hashes out to the same list number; you were 8328 * expecting that, right?); so each list has a set of ports, with a 8329 * link to the socket (struct sock) that uses it, the port number and 8330 * a fastreuse flag (FIXME: NPI ipg). 8331 */ 8332 static struct sctp_bind_bucket *sctp_bucket_create( 8333 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8334 8335 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8336 { 8337 struct sctp_sock *sp = sctp_sk(sk); 8338 bool reuse = (sk->sk_reuse || sp->reuse); 8339 struct sctp_bind_hashbucket *head; /* hash list */ 8340 struct net *net = sock_net(sk); 8341 kuid_t uid = sock_i_uid(sk); 8342 struct sctp_bind_bucket *pp; 8343 unsigned short snum; 8344 int ret; 8345 8346 snum = ntohs(addr->v4.sin_port); 8347 8348 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8349 8350 if (snum == 0) { 8351 /* Search for an available port. */ 8352 int low, high, remaining, index; 8353 unsigned int rover; 8354 8355 inet_sk_get_local_port_range(sk, &low, &high); 8356 remaining = (high - low) + 1; 8357 rover = get_random_u32_below(remaining) + low; 8358 8359 do { 8360 rover++; 8361 if ((rover < low) || (rover > high)) 8362 rover = low; 8363 if (inet_is_local_reserved_port(net, rover)) 8364 continue; 8365 index = sctp_phashfn(net, rover); 8366 head = &sctp_port_hashtable[index]; 8367 spin_lock_bh(&head->lock); 8368 sctp_for_each_hentry(pp, &head->chain) 8369 if ((pp->port == rover) && 8370 net_eq(net, pp->net)) 8371 goto next; 8372 break; 8373 next: 8374 spin_unlock_bh(&head->lock); 8375 cond_resched(); 8376 } while (--remaining > 0); 8377 8378 /* Exhausted local port range during search? */ 8379 ret = 1; 8380 if (remaining <= 0) 8381 return ret; 8382 8383 /* OK, here is the one we will use. HEAD (the port 8384 * hash table list entry) is non-NULL and we hold it's 8385 * mutex. 8386 */ 8387 snum = rover; 8388 } else { 8389 /* We are given an specific port number; we verify 8390 * that it is not being used. If it is used, we will 8391 * exahust the search in the hash list corresponding 8392 * to the port number (snum) - we detect that with the 8393 * port iterator, pp being NULL. 8394 */ 8395 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8396 spin_lock_bh(&head->lock); 8397 sctp_for_each_hentry(pp, &head->chain) { 8398 if ((pp->port == snum) && net_eq(pp->net, net)) 8399 goto pp_found; 8400 } 8401 } 8402 pp = NULL; 8403 goto pp_not_found; 8404 pp_found: 8405 if (!hlist_empty(&pp->owner)) { 8406 /* We had a port hash table hit - there is an 8407 * available port (pp != NULL) and it is being 8408 * used by other socket (pp->owner not empty); that other 8409 * socket is going to be sk2. 8410 */ 8411 struct sock *sk2; 8412 8413 pr_debug("%s: found a possible match\n", __func__); 8414 8415 if ((pp->fastreuse && reuse && 8416 sk->sk_state != SCTP_SS_LISTENING) || 8417 (pp->fastreuseport && sk->sk_reuseport && 8418 uid_eq(pp->fastuid, uid))) 8419 goto success; 8420 8421 /* Run through the list of sockets bound to the port 8422 * (pp->port) [via the pointers bind_next and 8423 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8424 * we get the endpoint they describe and run through 8425 * the endpoint's list of IP (v4 or v6) addresses, 8426 * comparing each of the addresses with the address of 8427 * the socket sk. If we find a match, then that means 8428 * that this port/socket (sk) combination are already 8429 * in an endpoint. 8430 */ 8431 sk_for_each_bound(sk2, &pp->owner) { 8432 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8433 struct sctp_sock *sp2 = sctp_sk(sk2); 8434 struct sctp_endpoint *ep2 = sp2->ep; 8435 8436 if (sk == sk2 || 8437 (reuse && (sk2->sk_reuse || sp2->reuse) && 8438 sk2->sk_state != SCTP_SS_LISTENING) || 8439 (sk->sk_reuseport && sk2->sk_reuseport && 8440 uid_eq(uid, sock_i_uid(sk2)))) 8441 continue; 8442 8443 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8444 sk->sk_bound_dev_if == bound_dev_if2) && 8445 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8446 addr, sp2, sp)) { 8447 ret = 1; 8448 goto fail_unlock; 8449 } 8450 } 8451 8452 pr_debug("%s: found a match\n", __func__); 8453 } 8454 pp_not_found: 8455 /* If there was a hash table miss, create a new port. */ 8456 ret = 1; 8457 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8458 goto fail_unlock; 8459 8460 /* In either case (hit or miss), make sure fastreuse is 1 only 8461 * if sk->sk_reuse is too (that is, if the caller requested 8462 * SO_REUSEADDR on this socket -sk-). 8463 */ 8464 if (hlist_empty(&pp->owner)) { 8465 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8466 pp->fastreuse = 1; 8467 else 8468 pp->fastreuse = 0; 8469 8470 if (sk->sk_reuseport) { 8471 pp->fastreuseport = 1; 8472 pp->fastuid = uid; 8473 } else { 8474 pp->fastreuseport = 0; 8475 } 8476 } else { 8477 if (pp->fastreuse && 8478 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8479 pp->fastreuse = 0; 8480 8481 if (pp->fastreuseport && 8482 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8483 pp->fastreuseport = 0; 8484 } 8485 8486 /* We are set, so fill up all the data in the hash table 8487 * entry, tie the socket list information with the rest of the 8488 * sockets FIXME: Blurry, NPI (ipg). 8489 */ 8490 success: 8491 if (!sp->bind_hash) { 8492 inet_sk(sk)->inet_num = snum; 8493 sk_add_bind_node(sk, &pp->owner); 8494 sp->bind_hash = pp; 8495 } 8496 ret = 0; 8497 8498 fail_unlock: 8499 spin_unlock_bh(&head->lock); 8500 return ret; 8501 } 8502 8503 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8504 * port is requested. 8505 */ 8506 static int sctp_get_port(struct sock *sk, unsigned short snum) 8507 { 8508 union sctp_addr addr; 8509 struct sctp_af *af = sctp_sk(sk)->pf->af; 8510 8511 /* Set up a dummy address struct from the sk. */ 8512 af->from_sk(&addr, sk); 8513 addr.v4.sin_port = htons(snum); 8514 8515 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8516 return sctp_get_port_local(sk, &addr); 8517 } 8518 8519 /* 8520 * Move a socket to LISTENING state. 8521 */ 8522 static int sctp_listen_start(struct sock *sk, int backlog) 8523 { 8524 struct sctp_sock *sp = sctp_sk(sk); 8525 struct sctp_endpoint *ep = sp->ep; 8526 struct crypto_shash *tfm = NULL; 8527 char alg[32]; 8528 int err; 8529 8530 /* Allocate HMAC for generating cookie. */ 8531 if (!sp->hmac && sp->sctp_hmac_alg) { 8532 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8533 tfm = crypto_alloc_shash(alg, 0, 0); 8534 if (IS_ERR(tfm)) { 8535 net_info_ratelimited("failed to load transform for %s: %ld\n", 8536 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8537 return -ENOSYS; 8538 } 8539 sctp_sk(sk)->hmac = tfm; 8540 } 8541 8542 /* 8543 * If a bind() or sctp_bindx() is not called prior to a listen() 8544 * call that allows new associations to be accepted, the system 8545 * picks an ephemeral port and will choose an address set equivalent 8546 * to binding with a wildcard address. 8547 * 8548 * This is not currently spelled out in the SCTP sockets 8549 * extensions draft, but follows the practice as seen in TCP 8550 * sockets. 8551 * 8552 */ 8553 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8554 if (!ep->base.bind_addr.port) { 8555 if (sctp_autobind(sk)) { 8556 err = -EAGAIN; 8557 goto err; 8558 } 8559 } else { 8560 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8561 err = -EADDRINUSE; 8562 goto err; 8563 } 8564 } 8565 8566 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8567 err = sctp_hash_endpoint(ep); 8568 if (err) 8569 goto err; 8570 8571 return 0; 8572 err: 8573 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8574 return err; 8575 } 8576 8577 /* 8578 * 4.1.3 / 5.1.3 listen() 8579 * 8580 * By default, new associations are not accepted for UDP style sockets. 8581 * An application uses listen() to mark a socket as being able to 8582 * accept new associations. 8583 * 8584 * On TCP style sockets, applications use listen() to ready the SCTP 8585 * endpoint for accepting inbound associations. 8586 * 8587 * On both types of endpoints a backlog of '0' disables listening. 8588 * 8589 * Move a socket to LISTENING state. 8590 */ 8591 int sctp_inet_listen(struct socket *sock, int backlog) 8592 { 8593 struct sock *sk = sock->sk; 8594 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8595 int err = -EINVAL; 8596 8597 if (unlikely(backlog < 0)) 8598 return err; 8599 8600 lock_sock(sk); 8601 8602 /* Peeled-off sockets are not allowed to listen(). */ 8603 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8604 goto out; 8605 8606 if (sock->state != SS_UNCONNECTED) 8607 goto out; 8608 8609 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8610 goto out; 8611 8612 /* If backlog is zero, disable listening. */ 8613 if (!backlog) { 8614 if (sctp_sstate(sk, CLOSED)) 8615 goto out; 8616 8617 err = 0; 8618 sctp_unhash_endpoint(ep); 8619 sk->sk_state = SCTP_SS_CLOSED; 8620 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8621 sctp_sk(sk)->bind_hash->fastreuse = 1; 8622 goto out; 8623 } 8624 8625 /* If we are already listening, just update the backlog */ 8626 if (sctp_sstate(sk, LISTENING)) 8627 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8628 else { 8629 err = sctp_listen_start(sk, backlog); 8630 if (err) 8631 goto out; 8632 } 8633 8634 err = 0; 8635 out: 8636 release_sock(sk); 8637 return err; 8638 } 8639 8640 /* 8641 * This function is done by modeling the current datagram_poll() and the 8642 * tcp_poll(). Note that, based on these implementations, we don't 8643 * lock the socket in this function, even though it seems that, 8644 * ideally, locking or some other mechanisms can be used to ensure 8645 * the integrity of the counters (sndbuf and wmem_alloc) used 8646 * in this place. We assume that we don't need locks either until proven 8647 * otherwise. 8648 * 8649 * Another thing to note is that we include the Async I/O support 8650 * here, again, by modeling the current TCP/UDP code. We don't have 8651 * a good way to test with it yet. 8652 */ 8653 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8654 { 8655 struct sock *sk = sock->sk; 8656 struct sctp_sock *sp = sctp_sk(sk); 8657 __poll_t mask; 8658 8659 poll_wait(file, sk_sleep(sk), wait); 8660 8661 sock_rps_record_flow(sk); 8662 8663 /* A TCP-style listening socket becomes readable when the accept queue 8664 * is not empty. 8665 */ 8666 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8667 return (!list_empty(&sp->ep->asocs)) ? 8668 (EPOLLIN | EPOLLRDNORM) : 0; 8669 8670 mask = 0; 8671 8672 /* Is there any exceptional events? */ 8673 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8674 mask |= EPOLLERR | 8675 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8676 if (sk->sk_shutdown & RCV_SHUTDOWN) 8677 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8678 if (sk->sk_shutdown == SHUTDOWN_MASK) 8679 mask |= EPOLLHUP; 8680 8681 /* Is it readable? Reconsider this code with TCP-style support. */ 8682 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8683 mask |= EPOLLIN | EPOLLRDNORM; 8684 8685 /* The association is either gone or not ready. */ 8686 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8687 return mask; 8688 8689 /* Is it writable? */ 8690 if (sctp_writeable(sk)) { 8691 mask |= EPOLLOUT | EPOLLWRNORM; 8692 } else { 8693 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8694 /* 8695 * Since the socket is not locked, the buffer 8696 * might be made available after the writeable check and 8697 * before the bit is set. This could cause a lost I/O 8698 * signal. tcp_poll() has a race breaker for this race 8699 * condition. Based on their implementation, we put 8700 * in the following code to cover it as well. 8701 */ 8702 if (sctp_writeable(sk)) 8703 mask |= EPOLLOUT | EPOLLWRNORM; 8704 } 8705 return mask; 8706 } 8707 8708 /******************************************************************** 8709 * 2nd Level Abstractions 8710 ********************************************************************/ 8711 8712 static struct sctp_bind_bucket *sctp_bucket_create( 8713 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8714 { 8715 struct sctp_bind_bucket *pp; 8716 8717 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8718 if (pp) { 8719 SCTP_DBG_OBJCNT_INC(bind_bucket); 8720 pp->port = snum; 8721 pp->fastreuse = 0; 8722 INIT_HLIST_HEAD(&pp->owner); 8723 pp->net = net; 8724 hlist_add_head(&pp->node, &head->chain); 8725 } 8726 return pp; 8727 } 8728 8729 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8730 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8731 { 8732 if (pp && hlist_empty(&pp->owner)) { 8733 __hlist_del(&pp->node); 8734 kmem_cache_free(sctp_bucket_cachep, pp); 8735 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8736 } 8737 } 8738 8739 /* Release this socket's reference to a local port. */ 8740 static inline void __sctp_put_port(struct sock *sk) 8741 { 8742 struct sctp_bind_hashbucket *head = 8743 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8744 inet_sk(sk)->inet_num)]; 8745 struct sctp_bind_bucket *pp; 8746 8747 spin_lock(&head->lock); 8748 pp = sctp_sk(sk)->bind_hash; 8749 __sk_del_bind_node(sk); 8750 sctp_sk(sk)->bind_hash = NULL; 8751 inet_sk(sk)->inet_num = 0; 8752 sctp_bucket_destroy(pp); 8753 spin_unlock(&head->lock); 8754 } 8755 8756 void sctp_put_port(struct sock *sk) 8757 { 8758 local_bh_disable(); 8759 __sctp_put_port(sk); 8760 local_bh_enable(); 8761 } 8762 8763 /* 8764 * The system picks an ephemeral port and choose an address set equivalent 8765 * to binding with a wildcard address. 8766 * One of those addresses will be the primary address for the association. 8767 * This automatically enables the multihoming capability of SCTP. 8768 */ 8769 static int sctp_autobind(struct sock *sk) 8770 { 8771 union sctp_addr autoaddr; 8772 struct sctp_af *af; 8773 __be16 port; 8774 8775 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8776 af = sctp_sk(sk)->pf->af; 8777 8778 port = htons(inet_sk(sk)->inet_num); 8779 af->inaddr_any(&autoaddr, port); 8780 8781 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8782 } 8783 8784 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8785 * 8786 * From RFC 2292 8787 * 4.2 The cmsghdr Structure * 8788 * 8789 * When ancillary data is sent or received, any number of ancillary data 8790 * objects can be specified by the msg_control and msg_controllen members of 8791 * the msghdr structure, because each object is preceded by 8792 * a cmsghdr structure defining the object's length (the cmsg_len member). 8793 * Historically Berkeley-derived implementations have passed only one object 8794 * at a time, but this API allows multiple objects to be 8795 * passed in a single call to sendmsg() or recvmsg(). The following example 8796 * shows two ancillary data objects in a control buffer. 8797 * 8798 * |<--------------------------- msg_controllen -------------------------->| 8799 * | | 8800 * 8801 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8802 * 8803 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8804 * | | | 8805 * 8806 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8807 * 8808 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8809 * | | | | | 8810 * 8811 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8812 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8813 * 8814 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8815 * 8816 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8817 * ^ 8818 * | 8819 * 8820 * msg_control 8821 * points here 8822 */ 8823 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8824 { 8825 struct msghdr *my_msg = (struct msghdr *)msg; 8826 struct cmsghdr *cmsg; 8827 8828 for_each_cmsghdr(cmsg, my_msg) { 8829 if (!CMSG_OK(my_msg, cmsg)) 8830 return -EINVAL; 8831 8832 /* Should we parse this header or ignore? */ 8833 if (cmsg->cmsg_level != IPPROTO_SCTP) 8834 continue; 8835 8836 /* Strictly check lengths following example in SCM code. */ 8837 switch (cmsg->cmsg_type) { 8838 case SCTP_INIT: 8839 /* SCTP Socket API Extension 8840 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8841 * 8842 * This cmsghdr structure provides information for 8843 * initializing new SCTP associations with sendmsg(). 8844 * The SCTP_INITMSG socket option uses this same data 8845 * structure. This structure is not used for 8846 * recvmsg(). 8847 * 8848 * cmsg_level cmsg_type cmsg_data[] 8849 * ------------ ------------ ---------------------- 8850 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8851 */ 8852 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8853 return -EINVAL; 8854 8855 cmsgs->init = CMSG_DATA(cmsg); 8856 break; 8857 8858 case SCTP_SNDRCV: 8859 /* SCTP Socket API Extension 8860 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8861 * 8862 * This cmsghdr structure specifies SCTP options for 8863 * sendmsg() and describes SCTP header information 8864 * about a received message through recvmsg(). 8865 * 8866 * cmsg_level cmsg_type cmsg_data[] 8867 * ------------ ------------ ---------------------- 8868 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8869 */ 8870 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8871 return -EINVAL; 8872 8873 cmsgs->srinfo = CMSG_DATA(cmsg); 8874 8875 if (cmsgs->srinfo->sinfo_flags & 8876 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8877 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8878 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8879 return -EINVAL; 8880 break; 8881 8882 case SCTP_SNDINFO: 8883 /* SCTP Socket API Extension 8884 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8885 * 8886 * This cmsghdr structure specifies SCTP options for 8887 * sendmsg(). This structure and SCTP_RCVINFO replaces 8888 * SCTP_SNDRCV which has been deprecated. 8889 * 8890 * cmsg_level cmsg_type cmsg_data[] 8891 * ------------ ------------ --------------------- 8892 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8893 */ 8894 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8895 return -EINVAL; 8896 8897 cmsgs->sinfo = CMSG_DATA(cmsg); 8898 8899 if (cmsgs->sinfo->snd_flags & 8900 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8901 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8902 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8903 return -EINVAL; 8904 break; 8905 case SCTP_PRINFO: 8906 /* SCTP Socket API Extension 8907 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8908 * 8909 * This cmsghdr structure specifies SCTP options for sendmsg(). 8910 * 8911 * cmsg_level cmsg_type cmsg_data[] 8912 * ------------ ------------ --------------------- 8913 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8914 */ 8915 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8916 return -EINVAL; 8917 8918 cmsgs->prinfo = CMSG_DATA(cmsg); 8919 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8920 return -EINVAL; 8921 8922 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8923 cmsgs->prinfo->pr_value = 0; 8924 break; 8925 case SCTP_AUTHINFO: 8926 /* SCTP Socket API Extension 8927 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8928 * 8929 * This cmsghdr structure specifies SCTP options for sendmsg(). 8930 * 8931 * cmsg_level cmsg_type cmsg_data[] 8932 * ------------ ------------ --------------------- 8933 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8934 */ 8935 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8936 return -EINVAL; 8937 8938 cmsgs->authinfo = CMSG_DATA(cmsg); 8939 break; 8940 case SCTP_DSTADDRV4: 8941 case SCTP_DSTADDRV6: 8942 /* SCTP Socket API Extension 8943 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8944 * 8945 * This cmsghdr structure specifies SCTP options for sendmsg(). 8946 * 8947 * cmsg_level cmsg_type cmsg_data[] 8948 * ------------ ------------ --------------------- 8949 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8950 * ------------ ------------ --------------------- 8951 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8952 */ 8953 cmsgs->addrs_msg = my_msg; 8954 break; 8955 default: 8956 return -EINVAL; 8957 } 8958 } 8959 8960 return 0; 8961 } 8962 8963 /* 8964 * Wait for a packet.. 8965 * Note: This function is the same function as in core/datagram.c 8966 * with a few modifications to make lksctp work. 8967 */ 8968 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8969 { 8970 int error; 8971 DEFINE_WAIT(wait); 8972 8973 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8974 8975 /* Socket errors? */ 8976 error = sock_error(sk); 8977 if (error) 8978 goto out; 8979 8980 if (!skb_queue_empty(&sk->sk_receive_queue)) 8981 goto ready; 8982 8983 /* Socket shut down? */ 8984 if (sk->sk_shutdown & RCV_SHUTDOWN) 8985 goto out; 8986 8987 /* Sequenced packets can come disconnected. If so we report the 8988 * problem. 8989 */ 8990 error = -ENOTCONN; 8991 8992 /* Is there a good reason to think that we may receive some data? */ 8993 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8994 goto out; 8995 8996 /* Handle signals. */ 8997 if (signal_pending(current)) 8998 goto interrupted; 8999 9000 /* Let another process have a go. Since we are going to sleep 9001 * anyway. Note: This may cause odd behaviors if the message 9002 * does not fit in the user's buffer, but this seems to be the 9003 * only way to honor MSG_DONTWAIT realistically. 9004 */ 9005 release_sock(sk); 9006 *timeo_p = schedule_timeout(*timeo_p); 9007 lock_sock(sk); 9008 9009 ready: 9010 finish_wait(sk_sleep(sk), &wait); 9011 return 0; 9012 9013 interrupted: 9014 error = sock_intr_errno(*timeo_p); 9015 9016 out: 9017 finish_wait(sk_sleep(sk), &wait); 9018 *err = error; 9019 return error; 9020 } 9021 9022 /* Receive a datagram. 9023 * Note: This is pretty much the same routine as in core/datagram.c 9024 * with a few changes to make lksctp work. 9025 */ 9026 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9027 { 9028 int error; 9029 struct sk_buff *skb; 9030 long timeo; 9031 9032 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9033 9034 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9035 MAX_SCHEDULE_TIMEOUT); 9036 9037 do { 9038 /* Again only user level code calls this function, 9039 * so nothing interrupt level 9040 * will suddenly eat the receive_queue. 9041 * 9042 * Look at current nfs client by the way... 9043 * However, this function was correct in any case. 8) 9044 */ 9045 if (flags & MSG_PEEK) { 9046 skb = skb_peek(&sk->sk_receive_queue); 9047 if (skb) 9048 refcount_inc(&skb->users); 9049 } else { 9050 skb = __skb_dequeue(&sk->sk_receive_queue); 9051 } 9052 9053 if (skb) 9054 return skb; 9055 9056 /* Caller is allowed not to check sk->sk_err before calling. */ 9057 error = sock_error(sk); 9058 if (error) 9059 goto no_packet; 9060 9061 if (sk->sk_shutdown & RCV_SHUTDOWN) 9062 break; 9063 9064 9065 /* User doesn't want to wait. */ 9066 error = -EAGAIN; 9067 if (!timeo) 9068 goto no_packet; 9069 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9070 9071 return NULL; 9072 9073 no_packet: 9074 *err = error; 9075 return NULL; 9076 } 9077 9078 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9079 static void __sctp_write_space(struct sctp_association *asoc) 9080 { 9081 struct sock *sk = asoc->base.sk; 9082 9083 if (sctp_wspace(asoc) <= 0) 9084 return; 9085 9086 if (waitqueue_active(&asoc->wait)) 9087 wake_up_interruptible(&asoc->wait); 9088 9089 if (sctp_writeable(sk)) { 9090 struct socket_wq *wq; 9091 9092 rcu_read_lock(); 9093 wq = rcu_dereference(sk->sk_wq); 9094 if (wq) { 9095 if (waitqueue_active(&wq->wait)) 9096 wake_up_interruptible(&wq->wait); 9097 9098 /* Note that we try to include the Async I/O support 9099 * here by modeling from the current TCP/UDP code. 9100 * We have not tested with it yet. 9101 */ 9102 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9103 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9104 } 9105 rcu_read_unlock(); 9106 } 9107 } 9108 9109 static void sctp_wake_up_waiters(struct sock *sk, 9110 struct sctp_association *asoc) 9111 { 9112 struct sctp_association *tmp = asoc; 9113 9114 /* We do accounting for the sndbuf space per association, 9115 * so we only need to wake our own association. 9116 */ 9117 if (asoc->ep->sndbuf_policy) 9118 return __sctp_write_space(asoc); 9119 9120 /* If association goes down and is just flushing its 9121 * outq, then just normally notify others. 9122 */ 9123 if (asoc->base.dead) 9124 return sctp_write_space(sk); 9125 9126 /* Accounting for the sndbuf space is per socket, so we 9127 * need to wake up others, try to be fair and in case of 9128 * other associations, let them have a go first instead 9129 * of just doing a sctp_write_space() call. 9130 * 9131 * Note that we reach sctp_wake_up_waiters() only when 9132 * associations free up queued chunks, thus we are under 9133 * lock and the list of associations on a socket is 9134 * guaranteed not to change. 9135 */ 9136 for (tmp = list_next_entry(tmp, asocs); 1; 9137 tmp = list_next_entry(tmp, asocs)) { 9138 /* Manually skip the head element. */ 9139 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9140 continue; 9141 /* Wake up association. */ 9142 __sctp_write_space(tmp); 9143 /* We've reached the end. */ 9144 if (tmp == asoc) 9145 break; 9146 } 9147 } 9148 9149 /* Do accounting for the sndbuf space. 9150 * Decrement the used sndbuf space of the corresponding association by the 9151 * data size which was just transmitted(freed). 9152 */ 9153 static void sctp_wfree(struct sk_buff *skb) 9154 { 9155 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9156 struct sctp_association *asoc = chunk->asoc; 9157 struct sock *sk = asoc->base.sk; 9158 9159 sk_mem_uncharge(sk, skb->truesize); 9160 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); 9161 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9162 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9163 &sk->sk_wmem_alloc)); 9164 9165 if (chunk->shkey) { 9166 struct sctp_shared_key *shkey = chunk->shkey; 9167 9168 /* refcnt == 2 and !list_empty mean after this release, it's 9169 * not being used anywhere, and it's time to notify userland 9170 * that this shkey can be freed if it's been deactivated. 9171 */ 9172 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9173 refcount_read(&shkey->refcnt) == 2) { 9174 struct sctp_ulpevent *ev; 9175 9176 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9177 SCTP_AUTH_FREE_KEY, 9178 GFP_KERNEL); 9179 if (ev) 9180 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9181 } 9182 sctp_auth_shkey_release(chunk->shkey); 9183 } 9184 9185 sock_wfree(skb); 9186 sctp_wake_up_waiters(sk, asoc); 9187 9188 sctp_association_put(asoc); 9189 } 9190 9191 /* Do accounting for the receive space on the socket. 9192 * Accounting for the association is done in ulpevent.c 9193 * We set this as a destructor for the cloned data skbs so that 9194 * accounting is done at the correct time. 9195 */ 9196 void sctp_sock_rfree(struct sk_buff *skb) 9197 { 9198 struct sock *sk = skb->sk; 9199 struct sctp_ulpevent *event = sctp_skb2event(skb); 9200 9201 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9202 9203 /* 9204 * Mimic the behavior of sock_rfree 9205 */ 9206 sk_mem_uncharge(sk, event->rmem_len); 9207 } 9208 9209 9210 /* Helper function to wait for space in the sndbuf. */ 9211 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9212 size_t msg_len) 9213 { 9214 struct sock *sk = asoc->base.sk; 9215 long current_timeo = *timeo_p; 9216 DEFINE_WAIT(wait); 9217 int err = 0; 9218 9219 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9220 *timeo_p, msg_len); 9221 9222 /* Increment the association's refcnt. */ 9223 sctp_association_hold(asoc); 9224 9225 /* Wait on the association specific sndbuf space. */ 9226 for (;;) { 9227 prepare_to_wait_exclusive(&asoc->wait, &wait, 9228 TASK_INTERRUPTIBLE); 9229 if (asoc->base.dead) 9230 goto do_dead; 9231 if (!*timeo_p) 9232 goto do_nonblock; 9233 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9234 goto do_error; 9235 if (signal_pending(current)) 9236 goto do_interrupted; 9237 if ((int)msg_len <= sctp_wspace(asoc) && 9238 sk_wmem_schedule(sk, msg_len)) 9239 break; 9240 9241 /* Let another process have a go. Since we are going 9242 * to sleep anyway. 9243 */ 9244 release_sock(sk); 9245 current_timeo = schedule_timeout(current_timeo); 9246 lock_sock(sk); 9247 if (sk != asoc->base.sk) 9248 goto do_error; 9249 9250 *timeo_p = current_timeo; 9251 } 9252 9253 out: 9254 finish_wait(&asoc->wait, &wait); 9255 9256 /* Release the association's refcnt. */ 9257 sctp_association_put(asoc); 9258 9259 return err; 9260 9261 do_dead: 9262 err = -ESRCH; 9263 goto out; 9264 9265 do_error: 9266 err = -EPIPE; 9267 goto out; 9268 9269 do_interrupted: 9270 err = sock_intr_errno(*timeo_p); 9271 goto out; 9272 9273 do_nonblock: 9274 err = -EAGAIN; 9275 goto out; 9276 } 9277 9278 void sctp_data_ready(struct sock *sk) 9279 { 9280 struct socket_wq *wq; 9281 9282 trace_sk_data_ready(sk); 9283 9284 rcu_read_lock(); 9285 wq = rcu_dereference(sk->sk_wq); 9286 if (skwq_has_sleeper(wq)) 9287 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9288 EPOLLRDNORM | EPOLLRDBAND); 9289 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9290 rcu_read_unlock(); 9291 } 9292 9293 /* If socket sndbuf has changed, wake up all per association waiters. */ 9294 void sctp_write_space(struct sock *sk) 9295 { 9296 struct sctp_association *asoc; 9297 9298 /* Wake up the tasks in each wait queue. */ 9299 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9300 __sctp_write_space(asoc); 9301 } 9302 } 9303 9304 /* Is there any sndbuf space available on the socket? 9305 * 9306 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9307 * associations on the same socket. For a UDP-style socket with 9308 * multiple associations, it is possible for it to be "unwriteable" 9309 * prematurely. I assume that this is acceptable because 9310 * a premature "unwriteable" is better than an accidental "writeable" which 9311 * would cause an unwanted block under certain circumstances. For the 1-1 9312 * UDP-style sockets or TCP-style sockets, this code should work. 9313 * - Daisy 9314 */ 9315 static bool sctp_writeable(const struct sock *sk) 9316 { 9317 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); 9318 } 9319 9320 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9321 * returns immediately with EINPROGRESS. 9322 */ 9323 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9324 { 9325 struct sock *sk = asoc->base.sk; 9326 int err = 0; 9327 long current_timeo = *timeo_p; 9328 DEFINE_WAIT(wait); 9329 9330 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9331 9332 /* Increment the association's refcnt. */ 9333 sctp_association_hold(asoc); 9334 9335 for (;;) { 9336 prepare_to_wait_exclusive(&asoc->wait, &wait, 9337 TASK_INTERRUPTIBLE); 9338 if (!*timeo_p) 9339 goto do_nonblock; 9340 if (sk->sk_shutdown & RCV_SHUTDOWN) 9341 break; 9342 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9343 asoc->base.dead) 9344 goto do_error; 9345 if (signal_pending(current)) 9346 goto do_interrupted; 9347 9348 if (sctp_state(asoc, ESTABLISHED)) 9349 break; 9350 9351 /* Let another process have a go. Since we are going 9352 * to sleep anyway. 9353 */ 9354 release_sock(sk); 9355 current_timeo = schedule_timeout(current_timeo); 9356 lock_sock(sk); 9357 9358 *timeo_p = current_timeo; 9359 } 9360 9361 out: 9362 finish_wait(&asoc->wait, &wait); 9363 9364 /* Release the association's refcnt. */ 9365 sctp_association_put(asoc); 9366 9367 return err; 9368 9369 do_error: 9370 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9371 err = -ETIMEDOUT; 9372 else 9373 err = -ECONNREFUSED; 9374 goto out; 9375 9376 do_interrupted: 9377 err = sock_intr_errno(*timeo_p); 9378 goto out; 9379 9380 do_nonblock: 9381 err = -EINPROGRESS; 9382 goto out; 9383 } 9384 9385 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9386 { 9387 struct sctp_endpoint *ep; 9388 int err = 0; 9389 DEFINE_WAIT(wait); 9390 9391 ep = sctp_sk(sk)->ep; 9392 9393 9394 for (;;) { 9395 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9396 TASK_INTERRUPTIBLE); 9397 9398 if (list_empty(&ep->asocs)) { 9399 release_sock(sk); 9400 timeo = schedule_timeout(timeo); 9401 lock_sock(sk); 9402 } 9403 9404 err = -EINVAL; 9405 if (!sctp_sstate(sk, LISTENING)) 9406 break; 9407 9408 err = 0; 9409 if (!list_empty(&ep->asocs)) 9410 break; 9411 9412 err = sock_intr_errno(timeo); 9413 if (signal_pending(current)) 9414 break; 9415 9416 err = -EAGAIN; 9417 if (!timeo) 9418 break; 9419 } 9420 9421 finish_wait(sk_sleep(sk), &wait); 9422 9423 return err; 9424 } 9425 9426 static void sctp_wait_for_close(struct sock *sk, long timeout) 9427 { 9428 DEFINE_WAIT(wait); 9429 9430 do { 9431 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9432 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9433 break; 9434 release_sock(sk); 9435 timeout = schedule_timeout(timeout); 9436 lock_sock(sk); 9437 } while (!signal_pending(current) && timeout); 9438 9439 finish_wait(sk_sleep(sk), &wait); 9440 } 9441 9442 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9443 { 9444 struct sk_buff *frag; 9445 9446 if (!skb->data_len) 9447 goto done; 9448 9449 /* Don't forget the fragments. */ 9450 skb_walk_frags(skb, frag) 9451 sctp_skb_set_owner_r_frag(frag, sk); 9452 9453 done: 9454 sctp_skb_set_owner_r(skb, sk); 9455 } 9456 9457 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9458 struct sctp_association *asoc) 9459 { 9460 struct inet_sock *inet = inet_sk(sk); 9461 struct inet_sock *newinet; 9462 struct sctp_sock *sp = sctp_sk(sk); 9463 9464 newsk->sk_type = sk->sk_type; 9465 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9466 newsk->sk_flags = sk->sk_flags; 9467 newsk->sk_tsflags = sk->sk_tsflags; 9468 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9469 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9470 newsk->sk_reuse = sk->sk_reuse; 9471 sctp_sk(newsk)->reuse = sp->reuse; 9472 9473 newsk->sk_shutdown = sk->sk_shutdown; 9474 newsk->sk_destruct = sk->sk_destruct; 9475 newsk->sk_family = sk->sk_family; 9476 newsk->sk_protocol = IPPROTO_SCTP; 9477 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9478 newsk->sk_sndbuf = sk->sk_sndbuf; 9479 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9480 newsk->sk_lingertime = sk->sk_lingertime; 9481 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9482 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9483 newsk->sk_rxhash = sk->sk_rxhash; 9484 9485 newinet = inet_sk(newsk); 9486 9487 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9488 * getsockname() and getpeername() 9489 */ 9490 newinet->inet_sport = inet->inet_sport; 9491 newinet->inet_saddr = inet->inet_saddr; 9492 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9493 newinet->inet_dport = htons(asoc->peer.port); 9494 newinet->pmtudisc = inet->pmtudisc; 9495 atomic_set(&newinet->inet_id, get_random_u16()); 9496 9497 newinet->uc_ttl = inet->uc_ttl; 9498 inet_set_bit(MC_LOOP, newsk); 9499 newinet->mc_ttl = 1; 9500 newinet->mc_index = 0; 9501 newinet->mc_list = NULL; 9502 9503 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9504 net_enable_timestamp(); 9505 9506 /* Set newsk security attributes from original sk and connection 9507 * security attribute from asoc. 9508 */ 9509 security_sctp_sk_clone(asoc, sk, newsk); 9510 } 9511 9512 static inline void sctp_copy_descendant(struct sock *sk_to, 9513 const struct sock *sk_from) 9514 { 9515 size_t ancestor_size = sizeof(struct inet_sock); 9516 9517 ancestor_size += sk_from->sk_prot->obj_size; 9518 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9519 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9520 } 9521 9522 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9523 * and its messages to the newsk. 9524 */ 9525 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9526 struct sctp_association *assoc, 9527 enum sctp_socket_type type) 9528 { 9529 struct sctp_sock *oldsp = sctp_sk(oldsk); 9530 struct sctp_sock *newsp = sctp_sk(newsk); 9531 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9532 struct sctp_endpoint *newep = newsp->ep; 9533 struct sk_buff *skb, *tmp; 9534 struct sctp_ulpevent *event; 9535 struct sctp_bind_hashbucket *head; 9536 int err; 9537 9538 /* Migrate socket buffer sizes and all the socket level options to the 9539 * new socket. 9540 */ 9541 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9542 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9543 /* Brute force copy old sctp opt. */ 9544 sctp_copy_descendant(newsk, oldsk); 9545 9546 /* Restore the ep value that was overwritten with the above structure 9547 * copy. 9548 */ 9549 newsp->ep = newep; 9550 newsp->hmac = NULL; 9551 9552 /* Hook this new socket in to the bind_hash list. */ 9553 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9554 inet_sk(oldsk)->inet_num)]; 9555 spin_lock_bh(&head->lock); 9556 pp = sctp_sk(oldsk)->bind_hash; 9557 sk_add_bind_node(newsk, &pp->owner); 9558 sctp_sk(newsk)->bind_hash = pp; 9559 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9560 spin_unlock_bh(&head->lock); 9561 9562 /* Copy the bind_addr list from the original endpoint to the new 9563 * endpoint so that we can handle restarts properly 9564 */ 9565 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9566 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9567 if (err) 9568 return err; 9569 9570 /* New ep's auth_hmacs should be set if old ep's is set, in case 9571 * that net->sctp.auth_enable has been changed to 0 by users and 9572 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9573 */ 9574 if (oldsp->ep->auth_hmacs) { 9575 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9576 if (err) 9577 return err; 9578 } 9579 9580 sctp_auto_asconf_init(newsp); 9581 9582 /* Move any messages in the old socket's receive queue that are for the 9583 * peeled off association to the new socket's receive queue. 9584 */ 9585 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9586 event = sctp_skb2event(skb); 9587 if (event->asoc == assoc) { 9588 __skb_unlink(skb, &oldsk->sk_receive_queue); 9589 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9590 sctp_skb_set_owner_r_frag(skb, newsk); 9591 } 9592 } 9593 9594 /* Clean up any messages pending delivery due to partial 9595 * delivery. Three cases: 9596 * 1) No partial deliver; no work. 9597 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9598 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9599 */ 9600 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9601 9602 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9603 struct sk_buff_head *queue; 9604 9605 /* Decide which queue to move pd_lobby skbs to. */ 9606 if (assoc->ulpq.pd_mode) { 9607 queue = &newsp->pd_lobby; 9608 } else 9609 queue = &newsk->sk_receive_queue; 9610 9611 /* Walk through the pd_lobby, looking for skbs that 9612 * need moved to the new socket. 9613 */ 9614 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9615 event = sctp_skb2event(skb); 9616 if (event->asoc == assoc) { 9617 __skb_unlink(skb, &oldsp->pd_lobby); 9618 __skb_queue_tail(queue, skb); 9619 sctp_skb_set_owner_r_frag(skb, newsk); 9620 } 9621 } 9622 9623 /* Clear up any skbs waiting for the partial 9624 * delivery to finish. 9625 */ 9626 if (assoc->ulpq.pd_mode) 9627 sctp_clear_pd(oldsk, NULL); 9628 9629 } 9630 9631 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9632 9633 /* Set the type of socket to indicate that it is peeled off from the 9634 * original UDP-style socket or created with the accept() call on a 9635 * TCP-style socket.. 9636 */ 9637 newsp->type = type; 9638 9639 /* Mark the new socket "in-use" by the user so that any packets 9640 * that may arrive on the association after we've moved it are 9641 * queued to the backlog. This prevents a potential race between 9642 * backlog processing on the old socket and new-packet processing 9643 * on the new socket. 9644 * 9645 * The caller has just allocated newsk so we can guarantee that other 9646 * paths won't try to lock it and then oldsk. 9647 */ 9648 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9649 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9650 sctp_assoc_migrate(assoc, newsk); 9651 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9652 9653 /* If the association on the newsk is already closed before accept() 9654 * is called, set RCV_SHUTDOWN flag. 9655 */ 9656 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9657 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9658 newsk->sk_shutdown |= RCV_SHUTDOWN; 9659 } else { 9660 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9661 } 9662 9663 release_sock(newsk); 9664 9665 return 0; 9666 } 9667 9668 9669 /* This proto struct describes the ULP interface for SCTP. */ 9670 struct proto sctp_prot = { 9671 .name = "SCTP", 9672 .owner = THIS_MODULE, 9673 .close = sctp_close, 9674 .disconnect = sctp_disconnect, 9675 .accept = sctp_accept, 9676 .ioctl = sctp_ioctl, 9677 .init = sctp_init_sock, 9678 .destroy = sctp_destroy_sock, 9679 .shutdown = sctp_shutdown, 9680 .setsockopt = sctp_setsockopt, 9681 .getsockopt = sctp_getsockopt, 9682 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9683 .sendmsg = sctp_sendmsg, 9684 .recvmsg = sctp_recvmsg, 9685 .bind = sctp_bind, 9686 .bind_add = sctp_bind_add, 9687 .backlog_rcv = sctp_backlog_rcv, 9688 .hash = sctp_hash, 9689 .unhash = sctp_unhash, 9690 .no_autobind = true, 9691 .obj_size = sizeof(struct sctp_sock), 9692 .useroffset = offsetof(struct sctp_sock, subscribe), 9693 .usersize = offsetof(struct sctp_sock, initmsg) - 9694 offsetof(struct sctp_sock, subscribe) + 9695 sizeof_field(struct sctp_sock, initmsg), 9696 .sysctl_mem = sysctl_sctp_mem, 9697 .sysctl_rmem = sysctl_sctp_rmem, 9698 .sysctl_wmem = sysctl_sctp_wmem, 9699 .memory_pressure = &sctp_memory_pressure, 9700 .enter_memory_pressure = sctp_enter_memory_pressure, 9701 9702 .memory_allocated = &sctp_memory_allocated, 9703 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9704 9705 .sockets_allocated = &sctp_sockets_allocated, 9706 }; 9707 9708 #if IS_ENABLED(CONFIG_IPV6) 9709 9710 static void sctp_v6_destruct_sock(struct sock *sk) 9711 { 9712 sctp_destruct_common(sk); 9713 inet6_sock_destruct(sk); 9714 } 9715 9716 static int sctp_v6_init_sock(struct sock *sk) 9717 { 9718 int ret = sctp_init_sock(sk); 9719 9720 if (!ret) 9721 sk->sk_destruct = sctp_v6_destruct_sock; 9722 9723 return ret; 9724 } 9725 9726 struct proto sctpv6_prot = { 9727 .name = "SCTPv6", 9728 .owner = THIS_MODULE, 9729 .close = sctp_close, 9730 .disconnect = sctp_disconnect, 9731 .accept = sctp_accept, 9732 .ioctl = sctp_ioctl, 9733 .init = sctp_v6_init_sock, 9734 .destroy = sctp_destroy_sock, 9735 .shutdown = sctp_shutdown, 9736 .setsockopt = sctp_setsockopt, 9737 .getsockopt = sctp_getsockopt, 9738 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9739 .sendmsg = sctp_sendmsg, 9740 .recvmsg = sctp_recvmsg, 9741 .bind = sctp_bind, 9742 .bind_add = sctp_bind_add, 9743 .backlog_rcv = sctp_backlog_rcv, 9744 .hash = sctp_hash, 9745 .unhash = sctp_unhash, 9746 .no_autobind = true, 9747 .obj_size = sizeof(struct sctp6_sock), 9748 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9749 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9750 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9751 offsetof(struct sctp6_sock, sctp.subscribe) + 9752 sizeof_field(struct sctp6_sock, sctp.initmsg), 9753 .sysctl_mem = sysctl_sctp_mem, 9754 .sysctl_rmem = sysctl_sctp_rmem, 9755 .sysctl_wmem = sysctl_sctp_wmem, 9756 .memory_pressure = &sctp_memory_pressure, 9757 .enter_memory_pressure = sctp_enter_memory_pressure, 9758 9759 .memory_allocated = &sctp_memory_allocated, 9760 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9761 9762 .sockets_allocated = &sctp_sockets_allocated, 9763 }; 9764 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9765