xref: /openbmc/linux/net/sctp/socket.c (revision 2645d8d0)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			     struct sctp_association *assoc,
107 			     enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = vmemdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kvfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kvfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kvfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = vmemdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kvfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 		iov_iter_revert(&msg->msg_iter, msg_len);
1870 
1871 		return 0;
1872 	}
1873 
1874 	return 1;
1875 }
1876 
1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1878 				struct msghdr *msg, size_t msg_len,
1879 				struct sctp_transport *transport,
1880 				struct sctp_sndrcvinfo *sinfo)
1881 {
1882 	struct sock *sk = asoc->base.sk;
1883 	struct sctp_sock *sp = sctp_sk(sk);
1884 	struct net *net = sock_net(sk);
1885 	struct sctp_datamsg *datamsg;
1886 	bool wait_connect = false;
1887 	struct sctp_chunk *chunk;
1888 	long timeo;
1889 	int err;
1890 
1891 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1892 		err = -EINVAL;
1893 		goto err;
1894 	}
1895 
1896 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1897 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1898 		if (err)
1899 			goto err;
1900 	}
1901 
1902 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1903 		err = -EMSGSIZE;
1904 		goto err;
1905 	}
1906 
1907 	if (asoc->pmtu_pending) {
1908 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1909 			sctp_assoc_sync_pmtu(asoc);
1910 		asoc->pmtu_pending = 0;
1911 	}
1912 
1913 	if (sctp_wspace(asoc) < (int)msg_len)
1914 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1915 
1916 	if (sctp_wspace(asoc) <= 0) {
1917 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1918 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1919 		if (err)
1920 			goto err;
1921 	}
1922 
1923 	if (sctp_state(asoc, CLOSED)) {
1924 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1925 		if (err)
1926 			goto err;
1927 
1928 		if (sp->strm_interleave) {
1929 			timeo = sock_sndtimeo(sk, 0);
1930 			err = sctp_wait_for_connect(asoc, &timeo);
1931 			if (err) {
1932 				err = -ESRCH;
1933 				goto err;
1934 			}
1935 		} else {
1936 			wait_connect = true;
1937 		}
1938 
1939 		pr_debug("%s: we associated primitively\n", __func__);
1940 	}
1941 
1942 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1943 	if (IS_ERR(datamsg)) {
1944 		err = PTR_ERR(datamsg);
1945 		goto err;
1946 	}
1947 
1948 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1949 
1950 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1951 		sctp_chunk_hold(chunk);
1952 		sctp_set_owner_w(chunk);
1953 		chunk->transport = transport;
1954 	}
1955 
1956 	err = sctp_primitive_SEND(net, asoc, datamsg);
1957 	if (err) {
1958 		sctp_datamsg_free(datamsg);
1959 		goto err;
1960 	}
1961 
1962 	pr_debug("%s: we sent primitively\n", __func__);
1963 
1964 	sctp_datamsg_put(datamsg);
1965 
1966 	if (unlikely(wait_connect)) {
1967 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1968 		sctp_wait_for_connect(asoc, &timeo);
1969 	}
1970 
1971 	err = msg_len;
1972 
1973 err:
1974 	return err;
1975 }
1976 
1977 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1978 					       const struct msghdr *msg,
1979 					       struct sctp_cmsgs *cmsgs)
1980 {
1981 	union sctp_addr *daddr = NULL;
1982 	int err;
1983 
1984 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1985 		int len = msg->msg_namelen;
1986 
1987 		if (len > sizeof(*daddr))
1988 			len = sizeof(*daddr);
1989 
1990 		daddr = (union sctp_addr *)msg->msg_name;
1991 
1992 		err = sctp_verify_addr(sk, daddr, len);
1993 		if (err)
1994 			return ERR_PTR(err);
1995 	}
1996 
1997 	return daddr;
1998 }
1999 
2000 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2001 				      struct sctp_sndrcvinfo *sinfo,
2002 				      struct sctp_cmsgs *cmsgs)
2003 {
2004 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2005 		sinfo->sinfo_stream = asoc->default_stream;
2006 		sinfo->sinfo_ppid = asoc->default_ppid;
2007 		sinfo->sinfo_context = asoc->default_context;
2008 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2009 
2010 		if (!cmsgs->prinfo)
2011 			sinfo->sinfo_flags = asoc->default_flags;
2012 	}
2013 
2014 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2015 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2016 
2017 	if (cmsgs->authinfo) {
2018 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2019 		 * sinfo_ssn to save the keyid on tx path.
2020 		 */
2021 		sinfo->sinfo_tsn = 1;
2022 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2023 	}
2024 }
2025 
2026 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2027 {
2028 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2029 	struct sctp_transport *transport = NULL;
2030 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2031 	struct sctp_association *asoc, *tmp;
2032 	struct sctp_cmsgs cmsgs;
2033 	union sctp_addr *daddr;
2034 	bool new = false;
2035 	__u16 sflags;
2036 	int err;
2037 
2038 	/* Parse and get snd_info */
2039 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2040 	if (err)
2041 		goto out;
2042 
2043 	sinfo  = &_sinfo;
2044 	sflags = sinfo->sinfo_flags;
2045 
2046 	/* Get daddr from msg */
2047 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2048 	if (IS_ERR(daddr)) {
2049 		err = PTR_ERR(daddr);
2050 		goto out;
2051 	}
2052 
2053 	lock_sock(sk);
2054 
2055 	/* SCTP_SENDALL process */
2056 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2057 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
2058 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2059 							msg_len);
2060 			if (err == 0)
2061 				continue;
2062 			if (err < 0)
2063 				goto out_unlock;
2064 
2065 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2066 
2067 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2068 						   NULL, sinfo);
2069 			if (err < 0)
2070 				goto out_unlock;
2071 
2072 			iov_iter_revert(&msg->msg_iter, err);
2073 		}
2074 
2075 		goto out_unlock;
2076 	}
2077 
2078 	/* Get and check or create asoc */
2079 	if (daddr) {
2080 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2081 		if (asoc) {
2082 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2083 							msg_len);
2084 			if (err <= 0)
2085 				goto out_unlock;
2086 		} else {
2087 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2088 						    &transport);
2089 			if (err)
2090 				goto out_unlock;
2091 
2092 			asoc = transport->asoc;
2093 			new = true;
2094 		}
2095 
2096 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2097 			transport = NULL;
2098 	} else {
2099 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2100 		if (!asoc) {
2101 			err = -EPIPE;
2102 			goto out_unlock;
2103 		}
2104 
2105 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2106 		if (err <= 0)
2107 			goto out_unlock;
2108 	}
2109 
2110 	/* Update snd_info with the asoc */
2111 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2112 
2113 	/* Send msg to the asoc */
2114 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2115 	if (err < 0 && err != -ESRCH && new)
2116 		sctp_association_free(asoc);
2117 
2118 out_unlock:
2119 	release_sock(sk);
2120 out:
2121 	return sctp_error(sk, msg->msg_flags, err);
2122 }
2123 
2124 /* This is an extended version of skb_pull() that removes the data from the
2125  * start of a skb even when data is spread across the list of skb's in the
2126  * frag_list. len specifies the total amount of data that needs to be removed.
2127  * when 'len' bytes could be removed from the skb, it returns 0.
2128  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2129  * could not be removed.
2130  */
2131 static int sctp_skb_pull(struct sk_buff *skb, int len)
2132 {
2133 	struct sk_buff *list;
2134 	int skb_len = skb_headlen(skb);
2135 	int rlen;
2136 
2137 	if (len <= skb_len) {
2138 		__skb_pull(skb, len);
2139 		return 0;
2140 	}
2141 	len -= skb_len;
2142 	__skb_pull(skb, skb_len);
2143 
2144 	skb_walk_frags(skb, list) {
2145 		rlen = sctp_skb_pull(list, len);
2146 		skb->len -= (len-rlen);
2147 		skb->data_len -= (len-rlen);
2148 
2149 		if (!rlen)
2150 			return 0;
2151 
2152 		len = rlen;
2153 	}
2154 
2155 	return len;
2156 }
2157 
2158 /* API 3.1.3  recvmsg() - UDP Style Syntax
2159  *
2160  *  ssize_t recvmsg(int socket, struct msghdr *message,
2161  *                    int flags);
2162  *
2163  *  socket  - the socket descriptor of the endpoint.
2164  *  message - pointer to the msghdr structure which contains a single
2165  *            user message and possibly some ancillary data.
2166  *
2167  *            See Section 5 for complete description of the data
2168  *            structures.
2169  *
2170  *  flags   - flags sent or received with the user message, see Section
2171  *            5 for complete description of the flags.
2172  */
2173 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2174 			int noblock, int flags, int *addr_len)
2175 {
2176 	struct sctp_ulpevent *event = NULL;
2177 	struct sctp_sock *sp = sctp_sk(sk);
2178 	struct sk_buff *skb, *head_skb;
2179 	int copied;
2180 	int err = 0;
2181 	int skb_len;
2182 
2183 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2184 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2185 		 addr_len);
2186 
2187 	lock_sock(sk);
2188 
2189 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2190 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2191 		err = -ENOTCONN;
2192 		goto out;
2193 	}
2194 
2195 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2196 	if (!skb)
2197 		goto out;
2198 
2199 	/* Get the total length of the skb including any skb's in the
2200 	 * frag_list.
2201 	 */
2202 	skb_len = skb->len;
2203 
2204 	copied = skb_len;
2205 	if (copied > len)
2206 		copied = len;
2207 
2208 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2209 
2210 	event = sctp_skb2event(skb);
2211 
2212 	if (err)
2213 		goto out_free;
2214 
2215 	if (event->chunk && event->chunk->head_skb)
2216 		head_skb = event->chunk->head_skb;
2217 	else
2218 		head_skb = skb;
2219 	sock_recv_ts_and_drops(msg, sk, head_skb);
2220 	if (sctp_ulpevent_is_notification(event)) {
2221 		msg->msg_flags |= MSG_NOTIFICATION;
2222 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2223 	} else {
2224 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2225 	}
2226 
2227 	/* Check if we allow SCTP_NXTINFO. */
2228 	if (sp->recvnxtinfo)
2229 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2230 	/* Check if we allow SCTP_RCVINFO. */
2231 	if (sp->recvrcvinfo)
2232 		sctp_ulpevent_read_rcvinfo(event, msg);
2233 	/* Check if we allow SCTP_SNDRCVINFO. */
2234 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2235 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2236 
2237 	err = copied;
2238 
2239 	/* If skb's length exceeds the user's buffer, update the skb and
2240 	 * push it back to the receive_queue so that the next call to
2241 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2242 	 */
2243 	if (skb_len > copied) {
2244 		msg->msg_flags &= ~MSG_EOR;
2245 		if (flags & MSG_PEEK)
2246 			goto out_free;
2247 		sctp_skb_pull(skb, copied);
2248 		skb_queue_head(&sk->sk_receive_queue, skb);
2249 
2250 		/* When only partial message is copied to the user, increase
2251 		 * rwnd by that amount. If all the data in the skb is read,
2252 		 * rwnd is updated when the event is freed.
2253 		 */
2254 		if (!sctp_ulpevent_is_notification(event))
2255 			sctp_assoc_rwnd_increase(event->asoc, copied);
2256 		goto out;
2257 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2258 		   (event->msg_flags & MSG_EOR))
2259 		msg->msg_flags |= MSG_EOR;
2260 	else
2261 		msg->msg_flags &= ~MSG_EOR;
2262 
2263 out_free:
2264 	if (flags & MSG_PEEK) {
2265 		/* Release the skb reference acquired after peeking the skb in
2266 		 * sctp_skb_recv_datagram().
2267 		 */
2268 		kfree_skb(skb);
2269 	} else {
2270 		/* Free the event which includes releasing the reference to
2271 		 * the owner of the skb, freeing the skb and updating the
2272 		 * rwnd.
2273 		 */
2274 		sctp_ulpevent_free(event);
2275 	}
2276 out:
2277 	release_sock(sk);
2278 	return err;
2279 }
2280 
2281 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2282  *
2283  * This option is a on/off flag.  If enabled no SCTP message
2284  * fragmentation will be performed.  Instead if a message being sent
2285  * exceeds the current PMTU size, the message will NOT be sent and
2286  * instead a error will be indicated to the user.
2287  */
2288 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2289 					     char __user *optval,
2290 					     unsigned int optlen)
2291 {
2292 	int val;
2293 
2294 	if (optlen < sizeof(int))
2295 		return -EINVAL;
2296 
2297 	if (get_user(val, (int __user *)optval))
2298 		return -EFAULT;
2299 
2300 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2301 
2302 	return 0;
2303 }
2304 
2305 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2306 				  unsigned int optlen)
2307 {
2308 	struct sctp_event_subscribe subscribe;
2309 	__u8 *sn_type = (__u8 *)&subscribe;
2310 	struct sctp_sock *sp = sctp_sk(sk);
2311 	struct sctp_association *asoc;
2312 	int i;
2313 
2314 	if (optlen > sizeof(struct sctp_event_subscribe))
2315 		return -EINVAL;
2316 
2317 	if (copy_from_user(&subscribe, optval, optlen))
2318 		return -EFAULT;
2319 
2320 	for (i = 0; i < optlen; i++)
2321 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2322 				       sn_type[i]);
2323 
2324 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2325 		asoc->subscribe = sctp_sk(sk)->subscribe;
2326 
2327 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2328 	 * if there is no data to be sent or retransmit, the stack will
2329 	 * immediately send up this notification.
2330 	 */
2331 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2332 		struct sctp_ulpevent *event;
2333 
2334 		asoc = sctp_id2assoc(sk, 0);
2335 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2336 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2337 					GFP_USER | __GFP_NOWARN);
2338 			if (!event)
2339 				return -ENOMEM;
2340 
2341 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2342 		}
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2349  *
2350  * This socket option is applicable to the UDP-style socket only.  When
2351  * set it will cause associations that are idle for more than the
2352  * specified number of seconds to automatically close.  An association
2353  * being idle is defined an association that has NOT sent or received
2354  * user data.  The special value of '0' indicates that no automatic
2355  * close of any associations should be performed.  The option expects an
2356  * integer defining the number of seconds of idle time before an
2357  * association is closed.
2358  */
2359 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2360 				     unsigned int optlen)
2361 {
2362 	struct sctp_sock *sp = sctp_sk(sk);
2363 	struct net *net = sock_net(sk);
2364 
2365 	/* Applicable to UDP-style socket only */
2366 	if (sctp_style(sk, TCP))
2367 		return -EOPNOTSUPP;
2368 	if (optlen != sizeof(int))
2369 		return -EINVAL;
2370 	if (copy_from_user(&sp->autoclose, optval, optlen))
2371 		return -EFAULT;
2372 
2373 	if (sp->autoclose > net->sctp.max_autoclose)
2374 		sp->autoclose = net->sctp.max_autoclose;
2375 
2376 	return 0;
2377 }
2378 
2379 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2380  *
2381  * Applications can enable or disable heartbeats for any peer address of
2382  * an association, modify an address's heartbeat interval, force a
2383  * heartbeat to be sent immediately, and adjust the address's maximum
2384  * number of retransmissions sent before an address is considered
2385  * unreachable.  The following structure is used to access and modify an
2386  * address's parameters:
2387  *
2388  *  struct sctp_paddrparams {
2389  *     sctp_assoc_t            spp_assoc_id;
2390  *     struct sockaddr_storage spp_address;
2391  *     uint32_t                spp_hbinterval;
2392  *     uint16_t                spp_pathmaxrxt;
2393  *     uint32_t                spp_pathmtu;
2394  *     uint32_t                spp_sackdelay;
2395  *     uint32_t                spp_flags;
2396  *     uint32_t                spp_ipv6_flowlabel;
2397  *     uint8_t                 spp_dscp;
2398  * };
2399  *
2400  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2401  *                     application, and identifies the association for
2402  *                     this query.
2403  *   spp_address     - This specifies which address is of interest.
2404  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2405  *                     in milliseconds.  If a  value of zero
2406  *                     is present in this field then no changes are to
2407  *                     be made to this parameter.
2408  *   spp_pathmaxrxt  - This contains the maximum number of
2409  *                     retransmissions before this address shall be
2410  *                     considered unreachable. If a  value of zero
2411  *                     is present in this field then no changes are to
2412  *                     be made to this parameter.
2413  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2414  *                     specified here will be the "fixed" path mtu.
2415  *                     Note that if the spp_address field is empty
2416  *                     then all associations on this address will
2417  *                     have this fixed path mtu set upon them.
2418  *
2419  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2420  *                     the number of milliseconds that sacks will be delayed
2421  *                     for. This value will apply to all addresses of an
2422  *                     association if the spp_address field is empty. Note
2423  *                     also, that if delayed sack is enabled and this
2424  *                     value is set to 0, no change is made to the last
2425  *                     recorded delayed sack timer value.
2426  *
2427  *   spp_flags       - These flags are used to control various features
2428  *                     on an association. The flag field may contain
2429  *                     zero or more of the following options.
2430  *
2431  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2432  *                     specified address. Note that if the address
2433  *                     field is empty all addresses for the association
2434  *                     have heartbeats enabled upon them.
2435  *
2436  *                     SPP_HB_DISABLE - Disable heartbeats on the
2437  *                     speicifed address. Note that if the address
2438  *                     field is empty all addresses for the association
2439  *                     will have their heartbeats disabled. Note also
2440  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2441  *                     mutually exclusive, only one of these two should
2442  *                     be specified. Enabling both fields will have
2443  *                     undetermined results.
2444  *
2445  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2446  *                     to be made immediately.
2447  *
2448  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2449  *                     heartbeat delayis to be set to the value of 0
2450  *                     milliseconds.
2451  *
2452  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2453  *                     discovery upon the specified address. Note that
2454  *                     if the address feild is empty then all addresses
2455  *                     on the association are effected.
2456  *
2457  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2458  *                     discovery upon the specified address. Note that
2459  *                     if the address feild is empty then all addresses
2460  *                     on the association are effected. Not also that
2461  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2462  *                     exclusive. Enabling both will have undetermined
2463  *                     results.
2464  *
2465  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2466  *                     on delayed sack. The time specified in spp_sackdelay
2467  *                     is used to specify the sack delay for this address. Note
2468  *                     that if spp_address is empty then all addresses will
2469  *                     enable delayed sack and take on the sack delay
2470  *                     value specified in spp_sackdelay.
2471  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2472  *                     off delayed sack. If the spp_address field is blank then
2473  *                     delayed sack is disabled for the entire association. Note
2474  *                     also that this field is mutually exclusive to
2475  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2476  *                     results.
2477  *
2478  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2479  *                     setting of the IPV6 flow label value.  The value is
2480  *                     contained in the spp_ipv6_flowlabel field.
2481  *                     Upon retrieval, this flag will be set to indicate that
2482  *                     the spp_ipv6_flowlabel field has a valid value returned.
2483  *                     If a specific destination address is set (in the
2484  *                     spp_address field), then the value returned is that of
2485  *                     the address.  If just an association is specified (and
2486  *                     no address), then the association's default flow label
2487  *                     is returned.  If neither an association nor a destination
2488  *                     is specified, then the socket's default flow label is
2489  *                     returned.  For non-IPv6 sockets, this flag will be left
2490  *                     cleared.
2491  *
2492  *                     SPP_DSCP:  Setting this flag enables the setting of the
2493  *                     Differentiated Services Code Point (DSCP) value
2494  *                     associated with either the association or a specific
2495  *                     address.  The value is obtained in the spp_dscp field.
2496  *                     Upon retrieval, this flag will be set to indicate that
2497  *                     the spp_dscp field has a valid value returned.  If a
2498  *                     specific destination address is set when called (in the
2499  *                     spp_address field), then that specific destination
2500  *                     address's DSCP value is returned.  If just an association
2501  *                     is specified, then the association's default DSCP is
2502  *                     returned.  If neither an association nor a destination is
2503  *                     specified, then the socket's default DSCP is returned.
2504  *
2505  *   spp_ipv6_flowlabel
2506  *                   - This field is used in conjunction with the
2507  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2508  *                     The 20 least significant bits are used for the flow
2509  *                     label.  This setting has precedence over any IPv6-layer
2510  *                     setting.
2511  *
2512  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2513  *                     and contains the DSCP.  The 6 most significant bits are
2514  *                     used for the DSCP.  This setting has precedence over any
2515  *                     IPv4- or IPv6- layer setting.
2516  */
2517 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2518 				       struct sctp_transport   *trans,
2519 				       struct sctp_association *asoc,
2520 				       struct sctp_sock        *sp,
2521 				       int                      hb_change,
2522 				       int                      pmtud_change,
2523 				       int                      sackdelay_change)
2524 {
2525 	int error;
2526 
2527 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2528 		struct net *net = sock_net(trans->asoc->base.sk);
2529 
2530 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2531 		if (error)
2532 			return error;
2533 	}
2534 
2535 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2536 	 * this field is ignored.  Note also that a value of zero indicates
2537 	 * the current setting should be left unchanged.
2538 	 */
2539 	if (params->spp_flags & SPP_HB_ENABLE) {
2540 
2541 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2542 		 * set.  This lets us use 0 value when this flag
2543 		 * is set.
2544 		 */
2545 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2546 			params->spp_hbinterval = 0;
2547 
2548 		if (params->spp_hbinterval ||
2549 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2550 			if (trans) {
2551 				trans->hbinterval =
2552 				    msecs_to_jiffies(params->spp_hbinterval);
2553 			} else if (asoc) {
2554 				asoc->hbinterval =
2555 				    msecs_to_jiffies(params->spp_hbinterval);
2556 			} else {
2557 				sp->hbinterval = params->spp_hbinterval;
2558 			}
2559 		}
2560 	}
2561 
2562 	if (hb_change) {
2563 		if (trans) {
2564 			trans->param_flags =
2565 				(trans->param_flags & ~SPP_HB) | hb_change;
2566 		} else if (asoc) {
2567 			asoc->param_flags =
2568 				(asoc->param_flags & ~SPP_HB) | hb_change;
2569 		} else {
2570 			sp->param_flags =
2571 				(sp->param_flags & ~SPP_HB) | hb_change;
2572 		}
2573 	}
2574 
2575 	/* When Path MTU discovery is disabled the value specified here will
2576 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2577 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2578 	 * effect).
2579 	 */
2580 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2581 		if (trans) {
2582 			trans->pathmtu = params->spp_pathmtu;
2583 			sctp_assoc_sync_pmtu(asoc);
2584 		} else if (asoc) {
2585 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2586 		} else {
2587 			sp->pathmtu = params->spp_pathmtu;
2588 		}
2589 	}
2590 
2591 	if (pmtud_change) {
2592 		if (trans) {
2593 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2594 				(params->spp_flags & SPP_PMTUD_ENABLE);
2595 			trans->param_flags =
2596 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2597 			if (update) {
2598 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2599 				sctp_assoc_sync_pmtu(asoc);
2600 			}
2601 		} else if (asoc) {
2602 			asoc->param_flags =
2603 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2604 		} else {
2605 			sp->param_flags =
2606 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2607 		}
2608 	}
2609 
2610 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2611 	 * value of this field is ignored.  Note also that a value of zero
2612 	 * indicates the current setting should be left unchanged.
2613 	 */
2614 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2615 		if (trans) {
2616 			trans->sackdelay =
2617 				msecs_to_jiffies(params->spp_sackdelay);
2618 		} else if (asoc) {
2619 			asoc->sackdelay =
2620 				msecs_to_jiffies(params->spp_sackdelay);
2621 		} else {
2622 			sp->sackdelay = params->spp_sackdelay;
2623 		}
2624 	}
2625 
2626 	if (sackdelay_change) {
2627 		if (trans) {
2628 			trans->param_flags =
2629 				(trans->param_flags & ~SPP_SACKDELAY) |
2630 				sackdelay_change;
2631 		} else if (asoc) {
2632 			asoc->param_flags =
2633 				(asoc->param_flags & ~SPP_SACKDELAY) |
2634 				sackdelay_change;
2635 		} else {
2636 			sp->param_flags =
2637 				(sp->param_flags & ~SPP_SACKDELAY) |
2638 				sackdelay_change;
2639 		}
2640 	}
2641 
2642 	/* Note that a value of zero indicates the current setting should be
2643 	   left unchanged.
2644 	 */
2645 	if (params->spp_pathmaxrxt) {
2646 		if (trans) {
2647 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2648 		} else if (asoc) {
2649 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2650 		} else {
2651 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2652 		}
2653 	}
2654 
2655 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2656 		if (trans) {
2657 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2658 				trans->flowlabel = params->spp_ipv6_flowlabel &
2659 						   SCTP_FLOWLABEL_VAL_MASK;
2660 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2661 			}
2662 		} else if (asoc) {
2663 			struct sctp_transport *t;
2664 
2665 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2666 					    transports) {
2667 				if (t->ipaddr.sa.sa_family != AF_INET6)
2668 					continue;
2669 				t->flowlabel = params->spp_ipv6_flowlabel &
2670 					       SCTP_FLOWLABEL_VAL_MASK;
2671 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2672 			}
2673 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2674 					  SCTP_FLOWLABEL_VAL_MASK;
2675 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2676 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2677 			sp->flowlabel = params->spp_ipv6_flowlabel &
2678 					SCTP_FLOWLABEL_VAL_MASK;
2679 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2680 		}
2681 	}
2682 
2683 	if (params->spp_flags & SPP_DSCP) {
2684 		if (trans) {
2685 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2686 			trans->dscp |= SCTP_DSCP_SET_MASK;
2687 		} else if (asoc) {
2688 			struct sctp_transport *t;
2689 
2690 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2691 					    transports) {
2692 				t->dscp = params->spp_dscp &
2693 					  SCTP_DSCP_VAL_MASK;
2694 				t->dscp |= SCTP_DSCP_SET_MASK;
2695 			}
2696 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2697 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2698 		} else {
2699 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2700 			sp->dscp |= SCTP_DSCP_SET_MASK;
2701 		}
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2708 					    char __user *optval,
2709 					    unsigned int optlen)
2710 {
2711 	struct sctp_paddrparams  params;
2712 	struct sctp_transport   *trans = NULL;
2713 	struct sctp_association *asoc = NULL;
2714 	struct sctp_sock        *sp = sctp_sk(sk);
2715 	int error;
2716 	int hb_change, pmtud_change, sackdelay_change;
2717 
2718 	if (optlen == sizeof(params)) {
2719 		if (copy_from_user(&params, optval, optlen))
2720 			return -EFAULT;
2721 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2722 					    spp_ipv6_flowlabel), 4)) {
2723 		if (copy_from_user(&params, optval, optlen))
2724 			return -EFAULT;
2725 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2726 			return -EINVAL;
2727 	} else {
2728 		return -EINVAL;
2729 	}
2730 
2731 	/* Validate flags and value parameters. */
2732 	hb_change        = params.spp_flags & SPP_HB;
2733 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2734 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2735 
2736 	if (hb_change        == SPP_HB ||
2737 	    pmtud_change     == SPP_PMTUD ||
2738 	    sackdelay_change == SPP_SACKDELAY ||
2739 	    params.spp_sackdelay > 500 ||
2740 	    (params.spp_pathmtu &&
2741 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2742 		return -EINVAL;
2743 
2744 	/* If an address other than INADDR_ANY is specified, and
2745 	 * no transport is found, then the request is invalid.
2746 	 */
2747 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2748 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2749 					       params.spp_assoc_id);
2750 		if (!trans)
2751 			return -EINVAL;
2752 	}
2753 
2754 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2755 	 * socket is a one to many style socket, and an association
2756 	 * was not found, then the id was invalid.
2757 	 */
2758 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2759 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2760 	    sctp_style(sk, UDP))
2761 		return -EINVAL;
2762 
2763 	/* Heartbeat demand can only be sent on a transport or
2764 	 * association, but not a socket.
2765 	 */
2766 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2767 		return -EINVAL;
2768 
2769 	/* Process parameters. */
2770 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2771 					    hb_change, pmtud_change,
2772 					    sackdelay_change);
2773 
2774 	if (error)
2775 		return error;
2776 
2777 	/* If changes are for association, also apply parameters to each
2778 	 * transport.
2779 	 */
2780 	if (!trans && asoc) {
2781 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2782 				transports) {
2783 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2784 						    hb_change, pmtud_change,
2785 						    sackdelay_change);
2786 		}
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2793 {
2794 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2795 }
2796 
2797 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2798 {
2799 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2800 }
2801 
2802 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2803 					struct sctp_association *asoc)
2804 {
2805 	struct sctp_transport *trans;
2806 
2807 	if (params->sack_delay) {
2808 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2809 		asoc->param_flags =
2810 			sctp_spp_sackdelay_enable(asoc->param_flags);
2811 	}
2812 	if (params->sack_freq == 1) {
2813 		asoc->param_flags =
2814 			sctp_spp_sackdelay_disable(asoc->param_flags);
2815 	} else if (params->sack_freq > 1) {
2816 		asoc->sackfreq = params->sack_freq;
2817 		asoc->param_flags =
2818 			sctp_spp_sackdelay_enable(asoc->param_flags);
2819 	}
2820 
2821 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2822 			    transports) {
2823 		if (params->sack_delay) {
2824 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2825 			trans->param_flags =
2826 				sctp_spp_sackdelay_enable(trans->param_flags);
2827 		}
2828 		if (params->sack_freq == 1) {
2829 			trans->param_flags =
2830 				sctp_spp_sackdelay_disable(trans->param_flags);
2831 		} else if (params->sack_freq > 1) {
2832 			trans->sackfreq = params->sack_freq;
2833 			trans->param_flags =
2834 				sctp_spp_sackdelay_enable(trans->param_flags);
2835 		}
2836 	}
2837 }
2838 
2839 /*
2840  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2841  *
2842  * This option will effect the way delayed acks are performed.  This
2843  * option allows you to get or set the delayed ack time, in
2844  * milliseconds.  It also allows changing the delayed ack frequency.
2845  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2846  * the assoc_id is 0, then this sets or gets the endpoints default
2847  * values.  If the assoc_id field is non-zero, then the set or get
2848  * effects the specified association for the one to many model (the
2849  * assoc_id field is ignored by the one to one model).  Note that if
2850  * sack_delay or sack_freq are 0 when setting this option, then the
2851  * current values will remain unchanged.
2852  *
2853  * struct sctp_sack_info {
2854  *     sctp_assoc_t            sack_assoc_id;
2855  *     uint32_t                sack_delay;
2856  *     uint32_t                sack_freq;
2857  * };
2858  *
2859  * sack_assoc_id -  This parameter, indicates which association the user
2860  *    is performing an action upon.  Note that if this field's value is
2861  *    zero then the endpoints default value is changed (effecting future
2862  *    associations only).
2863  *
2864  * sack_delay -  This parameter contains the number of milliseconds that
2865  *    the user is requesting the delayed ACK timer be set to.  Note that
2866  *    this value is defined in the standard to be between 200 and 500
2867  *    milliseconds.
2868  *
2869  * sack_freq -  This parameter contains the number of packets that must
2870  *    be received before a sack is sent without waiting for the delay
2871  *    timer to expire.  The default value for this is 2, setting this
2872  *    value to 1 will disable the delayed sack algorithm.
2873  */
2874 
2875 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2876 				       char __user *optval, unsigned int optlen)
2877 {
2878 	struct sctp_sock *sp = sctp_sk(sk);
2879 	struct sctp_association *asoc;
2880 	struct sctp_sack_info params;
2881 
2882 	if (optlen == sizeof(struct sctp_sack_info)) {
2883 		if (copy_from_user(&params, optval, optlen))
2884 			return -EFAULT;
2885 
2886 		if (params.sack_delay == 0 && params.sack_freq == 0)
2887 			return 0;
2888 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2889 		pr_warn_ratelimited(DEPRECATED
2890 				    "%s (pid %d) "
2891 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2892 				    "Use struct sctp_sack_info instead\n",
2893 				    current->comm, task_pid_nr(current));
2894 		if (copy_from_user(&params, optval, optlen))
2895 			return -EFAULT;
2896 
2897 		if (params.sack_delay == 0)
2898 			params.sack_freq = 1;
2899 		else
2900 			params.sack_freq = 0;
2901 	} else
2902 		return -EINVAL;
2903 
2904 	/* Validate value parameter. */
2905 	if (params.sack_delay > 500)
2906 		return -EINVAL;
2907 
2908 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2909 	 * socket is a one to many style socket, and an association
2910 	 * was not found, then the id was invalid.
2911 	 */
2912 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2913 	if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2914 	    sctp_style(sk, UDP))
2915 		return -EINVAL;
2916 
2917 	if (asoc) {
2918 		sctp_apply_asoc_delayed_ack(&params, asoc);
2919 
2920 		return 0;
2921 	}
2922 
2923 	if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2924 	    params.sack_assoc_id == SCTP_ALL_ASSOC) {
2925 		if (params.sack_delay) {
2926 			sp->sackdelay = params.sack_delay;
2927 			sp->param_flags =
2928 				sctp_spp_sackdelay_enable(sp->param_flags);
2929 		}
2930 		if (params.sack_freq == 1) {
2931 			sp->param_flags =
2932 				sctp_spp_sackdelay_disable(sp->param_flags);
2933 		} else if (params.sack_freq > 1) {
2934 			sp->sackfreq = params.sack_freq;
2935 			sp->param_flags =
2936 				sctp_spp_sackdelay_enable(sp->param_flags);
2937 		}
2938 	}
2939 
2940 	if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2941 	    params.sack_assoc_id == SCTP_ALL_ASSOC)
2942 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2943 			sctp_apply_asoc_delayed_ack(&params, asoc);
2944 
2945 	return 0;
2946 }
2947 
2948 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2949  *
2950  * Applications can specify protocol parameters for the default association
2951  * initialization.  The option name argument to setsockopt() and getsockopt()
2952  * is SCTP_INITMSG.
2953  *
2954  * Setting initialization parameters is effective only on an unconnected
2955  * socket (for UDP-style sockets only future associations are effected
2956  * by the change).  With TCP-style sockets, this option is inherited by
2957  * sockets derived from a listener socket.
2958  */
2959 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2960 {
2961 	struct sctp_initmsg sinit;
2962 	struct sctp_sock *sp = sctp_sk(sk);
2963 
2964 	if (optlen != sizeof(struct sctp_initmsg))
2965 		return -EINVAL;
2966 	if (copy_from_user(&sinit, optval, optlen))
2967 		return -EFAULT;
2968 
2969 	if (sinit.sinit_num_ostreams)
2970 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2971 	if (sinit.sinit_max_instreams)
2972 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2973 	if (sinit.sinit_max_attempts)
2974 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2975 	if (sinit.sinit_max_init_timeo)
2976 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2977 
2978 	return 0;
2979 }
2980 
2981 /*
2982  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2983  *
2984  *   Applications that wish to use the sendto() system call may wish to
2985  *   specify a default set of parameters that would normally be supplied
2986  *   through the inclusion of ancillary data.  This socket option allows
2987  *   such an application to set the default sctp_sndrcvinfo structure.
2988  *   The application that wishes to use this socket option simply passes
2989  *   in to this call the sctp_sndrcvinfo structure defined in Section
2990  *   5.2.2) The input parameters accepted by this call include
2991  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2992  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2993  *   to this call if the caller is using the UDP model.
2994  */
2995 static int sctp_setsockopt_default_send_param(struct sock *sk,
2996 					      char __user *optval,
2997 					      unsigned int optlen)
2998 {
2999 	struct sctp_sock *sp = sctp_sk(sk);
3000 	struct sctp_association *asoc;
3001 	struct sctp_sndrcvinfo info;
3002 
3003 	if (optlen != sizeof(info))
3004 		return -EINVAL;
3005 	if (copy_from_user(&info, optval, optlen))
3006 		return -EFAULT;
3007 	if (info.sinfo_flags &
3008 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3009 	      SCTP_ABORT | SCTP_EOF))
3010 		return -EINVAL;
3011 
3012 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3013 	if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
3014 	    sctp_style(sk, UDP))
3015 		return -EINVAL;
3016 
3017 	if (asoc) {
3018 		asoc->default_stream = info.sinfo_stream;
3019 		asoc->default_flags = info.sinfo_flags;
3020 		asoc->default_ppid = info.sinfo_ppid;
3021 		asoc->default_context = info.sinfo_context;
3022 		asoc->default_timetolive = info.sinfo_timetolive;
3023 
3024 		return 0;
3025 	}
3026 
3027 	if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
3028 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3029 		sp->default_stream = info.sinfo_stream;
3030 		sp->default_flags = info.sinfo_flags;
3031 		sp->default_ppid = info.sinfo_ppid;
3032 		sp->default_context = info.sinfo_context;
3033 		sp->default_timetolive = info.sinfo_timetolive;
3034 	}
3035 
3036 	if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
3037 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3038 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3039 			asoc->default_stream = info.sinfo_stream;
3040 			asoc->default_flags = info.sinfo_flags;
3041 			asoc->default_ppid = info.sinfo_ppid;
3042 			asoc->default_context = info.sinfo_context;
3043 			asoc->default_timetolive = info.sinfo_timetolive;
3044 		}
3045 	}
3046 
3047 	return 0;
3048 }
3049 
3050 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3051  * (SCTP_DEFAULT_SNDINFO)
3052  */
3053 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3054 					   char __user *optval,
3055 					   unsigned int optlen)
3056 {
3057 	struct sctp_sock *sp = sctp_sk(sk);
3058 	struct sctp_association *asoc;
3059 	struct sctp_sndinfo info;
3060 
3061 	if (optlen != sizeof(info))
3062 		return -EINVAL;
3063 	if (copy_from_user(&info, optval, optlen))
3064 		return -EFAULT;
3065 	if (info.snd_flags &
3066 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3067 	      SCTP_ABORT | SCTP_EOF))
3068 		return -EINVAL;
3069 
3070 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3071 	if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
3072 	    sctp_style(sk, UDP))
3073 		return -EINVAL;
3074 
3075 	if (asoc) {
3076 		asoc->default_stream = info.snd_sid;
3077 		asoc->default_flags = info.snd_flags;
3078 		asoc->default_ppid = info.snd_ppid;
3079 		asoc->default_context = info.snd_context;
3080 
3081 		return 0;
3082 	}
3083 
3084 	if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
3085 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3086 		sp->default_stream = info.snd_sid;
3087 		sp->default_flags = info.snd_flags;
3088 		sp->default_ppid = info.snd_ppid;
3089 		sp->default_context = info.snd_context;
3090 	}
3091 
3092 	if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3093 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3094 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3095 			asoc->default_stream = info.snd_sid;
3096 			asoc->default_flags = info.snd_flags;
3097 			asoc->default_ppid = info.snd_ppid;
3098 			asoc->default_context = info.snd_context;
3099 		}
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3106  *
3107  * Requests that the local SCTP stack use the enclosed peer address as
3108  * the association primary.  The enclosed address must be one of the
3109  * association peer's addresses.
3110  */
3111 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3112 					unsigned int optlen)
3113 {
3114 	struct sctp_prim prim;
3115 	struct sctp_transport *trans;
3116 	struct sctp_af *af;
3117 	int err;
3118 
3119 	if (optlen != sizeof(struct sctp_prim))
3120 		return -EINVAL;
3121 
3122 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3123 		return -EFAULT;
3124 
3125 	/* Allow security module to validate address but need address len. */
3126 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3127 	if (!af)
3128 		return -EINVAL;
3129 
3130 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3131 					 (struct sockaddr *)&prim.ssp_addr,
3132 					 af->sockaddr_len);
3133 	if (err)
3134 		return err;
3135 
3136 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3137 	if (!trans)
3138 		return -EINVAL;
3139 
3140 	sctp_assoc_set_primary(trans->asoc, trans);
3141 
3142 	return 0;
3143 }
3144 
3145 /*
3146  * 7.1.5 SCTP_NODELAY
3147  *
3148  * Turn on/off any Nagle-like algorithm.  This means that packets are
3149  * generally sent as soon as possible and no unnecessary delays are
3150  * introduced, at the cost of more packets in the network.  Expects an
3151  *  integer boolean flag.
3152  */
3153 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3154 				   unsigned int optlen)
3155 {
3156 	int val;
3157 
3158 	if (optlen < sizeof(int))
3159 		return -EINVAL;
3160 	if (get_user(val, (int __user *)optval))
3161 		return -EFAULT;
3162 
3163 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3164 	return 0;
3165 }
3166 
3167 /*
3168  *
3169  * 7.1.1 SCTP_RTOINFO
3170  *
3171  * The protocol parameters used to initialize and bound retransmission
3172  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3173  * and modify these parameters.
3174  * All parameters are time values, in milliseconds.  A value of 0, when
3175  * modifying the parameters, indicates that the current value should not
3176  * be changed.
3177  *
3178  */
3179 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3180 {
3181 	struct sctp_rtoinfo rtoinfo;
3182 	struct sctp_association *asoc;
3183 	unsigned long rto_min, rto_max;
3184 	struct sctp_sock *sp = sctp_sk(sk);
3185 
3186 	if (optlen != sizeof (struct sctp_rtoinfo))
3187 		return -EINVAL;
3188 
3189 	if (copy_from_user(&rtoinfo, optval, optlen))
3190 		return -EFAULT;
3191 
3192 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3193 
3194 	/* Set the values to the specific association */
3195 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3196 	    sctp_style(sk, UDP))
3197 		return -EINVAL;
3198 
3199 	rto_max = rtoinfo.srto_max;
3200 	rto_min = rtoinfo.srto_min;
3201 
3202 	if (rto_max)
3203 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3204 	else
3205 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3206 
3207 	if (rto_min)
3208 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3209 	else
3210 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3211 
3212 	if (rto_min > rto_max)
3213 		return -EINVAL;
3214 
3215 	if (asoc) {
3216 		if (rtoinfo.srto_initial != 0)
3217 			asoc->rto_initial =
3218 				msecs_to_jiffies(rtoinfo.srto_initial);
3219 		asoc->rto_max = rto_max;
3220 		asoc->rto_min = rto_min;
3221 	} else {
3222 		/* If there is no association or the association-id = 0
3223 		 * set the values to the endpoint.
3224 		 */
3225 		if (rtoinfo.srto_initial != 0)
3226 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3227 		sp->rtoinfo.srto_max = rto_max;
3228 		sp->rtoinfo.srto_min = rto_min;
3229 	}
3230 
3231 	return 0;
3232 }
3233 
3234 /*
3235  *
3236  * 7.1.2 SCTP_ASSOCINFO
3237  *
3238  * This option is used to tune the maximum retransmission attempts
3239  * of the association.
3240  * Returns an error if the new association retransmission value is
3241  * greater than the sum of the retransmission value  of the peer.
3242  * See [SCTP] for more information.
3243  *
3244  */
3245 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3246 {
3247 
3248 	struct sctp_assocparams assocparams;
3249 	struct sctp_association *asoc;
3250 
3251 	if (optlen != sizeof(struct sctp_assocparams))
3252 		return -EINVAL;
3253 	if (copy_from_user(&assocparams, optval, optlen))
3254 		return -EFAULT;
3255 
3256 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3257 
3258 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3259 	    sctp_style(sk, UDP))
3260 		return -EINVAL;
3261 
3262 	/* Set the values to the specific association */
3263 	if (asoc) {
3264 		if (assocparams.sasoc_asocmaxrxt != 0) {
3265 			__u32 path_sum = 0;
3266 			int   paths = 0;
3267 			struct sctp_transport *peer_addr;
3268 
3269 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3270 					transports) {
3271 				path_sum += peer_addr->pathmaxrxt;
3272 				paths++;
3273 			}
3274 
3275 			/* Only validate asocmaxrxt if we have more than
3276 			 * one path/transport.  We do this because path
3277 			 * retransmissions are only counted when we have more
3278 			 * then one path.
3279 			 */
3280 			if (paths > 1 &&
3281 			    assocparams.sasoc_asocmaxrxt > path_sum)
3282 				return -EINVAL;
3283 
3284 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3285 		}
3286 
3287 		if (assocparams.sasoc_cookie_life != 0)
3288 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3289 	} else {
3290 		/* Set the values to the endpoint */
3291 		struct sctp_sock *sp = sctp_sk(sk);
3292 
3293 		if (assocparams.sasoc_asocmaxrxt != 0)
3294 			sp->assocparams.sasoc_asocmaxrxt =
3295 						assocparams.sasoc_asocmaxrxt;
3296 		if (assocparams.sasoc_cookie_life != 0)
3297 			sp->assocparams.sasoc_cookie_life =
3298 						assocparams.sasoc_cookie_life;
3299 	}
3300 	return 0;
3301 }
3302 
3303 /*
3304  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3305  *
3306  * This socket option is a boolean flag which turns on or off mapped V4
3307  * addresses.  If this option is turned on and the socket is type
3308  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3309  * If this option is turned off, then no mapping will be done of V4
3310  * addresses and a user will receive both PF_INET6 and PF_INET type
3311  * addresses on the socket.
3312  */
3313 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3314 {
3315 	int val;
3316 	struct sctp_sock *sp = sctp_sk(sk);
3317 
3318 	if (optlen < sizeof(int))
3319 		return -EINVAL;
3320 	if (get_user(val, (int __user *)optval))
3321 		return -EFAULT;
3322 	if (val)
3323 		sp->v4mapped = 1;
3324 	else
3325 		sp->v4mapped = 0;
3326 
3327 	return 0;
3328 }
3329 
3330 /*
3331  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3332  * This option will get or set the maximum size to put in any outgoing
3333  * SCTP DATA chunk.  If a message is larger than this size it will be
3334  * fragmented by SCTP into the specified size.  Note that the underlying
3335  * SCTP implementation may fragment into smaller sized chunks when the
3336  * PMTU of the underlying association is smaller than the value set by
3337  * the user.  The default value for this option is '0' which indicates
3338  * the user is NOT limiting fragmentation and only the PMTU will effect
3339  * SCTP's choice of DATA chunk size.  Note also that values set larger
3340  * than the maximum size of an IP datagram will effectively let SCTP
3341  * control fragmentation (i.e. the same as setting this option to 0).
3342  *
3343  * The following structure is used to access and modify this parameter:
3344  *
3345  * struct sctp_assoc_value {
3346  *   sctp_assoc_t assoc_id;
3347  *   uint32_t assoc_value;
3348  * };
3349  *
3350  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3351  *    For one-to-many style sockets this parameter indicates which
3352  *    association the user is performing an action upon.  Note that if
3353  *    this field's value is zero then the endpoints default value is
3354  *    changed (effecting future associations only).
3355  * assoc_value:  This parameter specifies the maximum size in bytes.
3356  */
3357 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3358 {
3359 	struct sctp_sock *sp = sctp_sk(sk);
3360 	struct sctp_assoc_value params;
3361 	struct sctp_association *asoc;
3362 	int val;
3363 
3364 	if (optlen == sizeof(int)) {
3365 		pr_warn_ratelimited(DEPRECATED
3366 				    "%s (pid %d) "
3367 				    "Use of int in maxseg socket option.\n"
3368 				    "Use struct sctp_assoc_value instead\n",
3369 				    current->comm, task_pid_nr(current));
3370 		if (copy_from_user(&val, optval, optlen))
3371 			return -EFAULT;
3372 		params.assoc_id = SCTP_FUTURE_ASSOC;
3373 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3374 		if (copy_from_user(&params, optval, optlen))
3375 			return -EFAULT;
3376 		val = params.assoc_value;
3377 	} else {
3378 		return -EINVAL;
3379 	}
3380 
3381 	asoc = sctp_id2assoc(sk, params.assoc_id);
3382 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3383 	    sctp_style(sk, UDP))
3384 		return -EINVAL;
3385 
3386 	if (val) {
3387 		int min_len, max_len;
3388 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3389 				 sizeof(struct sctp_data_chunk);
3390 
3391 		min_len = sctp_min_frag_point(sp, datasize);
3392 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3393 
3394 		if (val < min_len || val > max_len)
3395 			return -EINVAL;
3396 	}
3397 
3398 	if (asoc) {
3399 		asoc->user_frag = val;
3400 		sctp_assoc_update_frag_point(asoc);
3401 	} else {
3402 		sp->user_frag = val;
3403 	}
3404 
3405 	return 0;
3406 }
3407 
3408 
3409 /*
3410  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3411  *
3412  *   Requests that the peer mark the enclosed address as the association
3413  *   primary. The enclosed address must be one of the association's
3414  *   locally bound addresses. The following structure is used to make a
3415  *   set primary request:
3416  */
3417 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3418 					     unsigned int optlen)
3419 {
3420 	struct net *net = sock_net(sk);
3421 	struct sctp_sock	*sp;
3422 	struct sctp_association	*asoc = NULL;
3423 	struct sctp_setpeerprim	prim;
3424 	struct sctp_chunk	*chunk;
3425 	struct sctp_af		*af;
3426 	int 			err;
3427 
3428 	sp = sctp_sk(sk);
3429 
3430 	if (!net->sctp.addip_enable)
3431 		return -EPERM;
3432 
3433 	if (optlen != sizeof(struct sctp_setpeerprim))
3434 		return -EINVAL;
3435 
3436 	if (copy_from_user(&prim, optval, optlen))
3437 		return -EFAULT;
3438 
3439 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3440 	if (!asoc)
3441 		return -EINVAL;
3442 
3443 	if (!asoc->peer.asconf_capable)
3444 		return -EPERM;
3445 
3446 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3447 		return -EPERM;
3448 
3449 	if (!sctp_state(asoc, ESTABLISHED))
3450 		return -ENOTCONN;
3451 
3452 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3453 	if (!af)
3454 		return -EINVAL;
3455 
3456 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3457 		return -EADDRNOTAVAIL;
3458 
3459 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3460 		return -EADDRNOTAVAIL;
3461 
3462 	/* Allow security module to validate address. */
3463 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3464 					 (struct sockaddr *)&prim.sspp_addr,
3465 					 af->sockaddr_len);
3466 	if (err)
3467 		return err;
3468 
3469 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3470 	chunk = sctp_make_asconf_set_prim(asoc,
3471 					  (union sctp_addr *)&prim.sspp_addr);
3472 	if (!chunk)
3473 		return -ENOMEM;
3474 
3475 	err = sctp_send_asconf(asoc, chunk);
3476 
3477 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3478 
3479 	return err;
3480 }
3481 
3482 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3483 					    unsigned int optlen)
3484 {
3485 	struct sctp_setadaptation adaptation;
3486 
3487 	if (optlen != sizeof(struct sctp_setadaptation))
3488 		return -EINVAL;
3489 	if (copy_from_user(&adaptation, optval, optlen))
3490 		return -EFAULT;
3491 
3492 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3493 
3494 	return 0;
3495 }
3496 
3497 /*
3498  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3499  *
3500  * The context field in the sctp_sndrcvinfo structure is normally only
3501  * used when a failed message is retrieved holding the value that was
3502  * sent down on the actual send call.  This option allows the setting of
3503  * a default context on an association basis that will be received on
3504  * reading messages from the peer.  This is especially helpful in the
3505  * one-2-many model for an application to keep some reference to an
3506  * internal state machine that is processing messages on the
3507  * association.  Note that the setting of this value only effects
3508  * received messages from the peer and does not effect the value that is
3509  * saved with outbound messages.
3510  */
3511 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3512 				   unsigned int optlen)
3513 {
3514 	struct sctp_sock *sp = sctp_sk(sk);
3515 	struct sctp_assoc_value params;
3516 	struct sctp_association *asoc;
3517 
3518 	if (optlen != sizeof(struct sctp_assoc_value))
3519 		return -EINVAL;
3520 	if (copy_from_user(&params, optval, optlen))
3521 		return -EFAULT;
3522 
3523 	asoc = sctp_id2assoc(sk, params.assoc_id);
3524 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3525 	    sctp_style(sk, UDP))
3526 		return -EINVAL;
3527 
3528 	if (asoc) {
3529 		asoc->default_rcv_context = params.assoc_value;
3530 
3531 		return 0;
3532 	}
3533 
3534 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3535 	    params.assoc_id == SCTP_ALL_ASSOC)
3536 		sp->default_rcv_context = params.assoc_value;
3537 
3538 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3539 	    params.assoc_id == SCTP_ALL_ASSOC)
3540 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3541 			asoc->default_rcv_context = params.assoc_value;
3542 
3543 	return 0;
3544 }
3545 
3546 /*
3547  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3548  *
3549  * This options will at a minimum specify if the implementation is doing
3550  * fragmented interleave.  Fragmented interleave, for a one to many
3551  * socket, is when subsequent calls to receive a message may return
3552  * parts of messages from different associations.  Some implementations
3553  * may allow you to turn this value on or off.  If so, when turned off,
3554  * no fragment interleave will occur (which will cause a head of line
3555  * blocking amongst multiple associations sharing the same one to many
3556  * socket).  When this option is turned on, then each receive call may
3557  * come from a different association (thus the user must receive data
3558  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3559  * association each receive belongs to.
3560  *
3561  * This option takes a boolean value.  A non-zero value indicates that
3562  * fragmented interleave is on.  A value of zero indicates that
3563  * fragmented interleave is off.
3564  *
3565  * Note that it is important that an implementation that allows this
3566  * option to be turned on, have it off by default.  Otherwise an unaware
3567  * application using the one to many model may become confused and act
3568  * incorrectly.
3569  */
3570 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3571 					       char __user *optval,
3572 					       unsigned int optlen)
3573 {
3574 	int val;
3575 
3576 	if (optlen != sizeof(int))
3577 		return -EINVAL;
3578 	if (get_user(val, (int __user *)optval))
3579 		return -EFAULT;
3580 
3581 	sctp_sk(sk)->frag_interleave = !!val;
3582 
3583 	if (!sctp_sk(sk)->frag_interleave)
3584 		sctp_sk(sk)->strm_interleave = 0;
3585 
3586 	return 0;
3587 }
3588 
3589 /*
3590  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3591  *       (SCTP_PARTIAL_DELIVERY_POINT)
3592  *
3593  * This option will set or get the SCTP partial delivery point.  This
3594  * point is the size of a message where the partial delivery API will be
3595  * invoked to help free up rwnd space for the peer.  Setting this to a
3596  * lower value will cause partial deliveries to happen more often.  The
3597  * calls argument is an integer that sets or gets the partial delivery
3598  * point.  Note also that the call will fail if the user attempts to set
3599  * this value larger than the socket receive buffer size.
3600  *
3601  * Note that any single message having a length smaller than or equal to
3602  * the SCTP partial delivery point will be delivered in one single read
3603  * call as long as the user provided buffer is large enough to hold the
3604  * message.
3605  */
3606 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3607 						  char __user *optval,
3608 						  unsigned int optlen)
3609 {
3610 	u32 val;
3611 
3612 	if (optlen != sizeof(u32))
3613 		return -EINVAL;
3614 	if (get_user(val, (int __user *)optval))
3615 		return -EFAULT;
3616 
3617 	/* Note: We double the receive buffer from what the user sets
3618 	 * it to be, also initial rwnd is based on rcvbuf/2.
3619 	 */
3620 	if (val > (sk->sk_rcvbuf >> 1))
3621 		return -EINVAL;
3622 
3623 	sctp_sk(sk)->pd_point = val;
3624 
3625 	return 0; /* is this the right error code? */
3626 }
3627 
3628 /*
3629  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3630  *
3631  * This option will allow a user to change the maximum burst of packets
3632  * that can be emitted by this association.  Note that the default value
3633  * is 4, and some implementations may restrict this setting so that it
3634  * can only be lowered.
3635  *
3636  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3637  * future associations inheriting the socket value.
3638  */
3639 static int sctp_setsockopt_maxburst(struct sock *sk,
3640 				    char __user *optval,
3641 				    unsigned int optlen)
3642 {
3643 	struct sctp_sock *sp = sctp_sk(sk);
3644 	struct sctp_assoc_value params;
3645 	struct sctp_association *asoc;
3646 
3647 	if (optlen == sizeof(int)) {
3648 		pr_warn_ratelimited(DEPRECATED
3649 				    "%s (pid %d) "
3650 				    "Use of int in max_burst socket option deprecated.\n"
3651 				    "Use struct sctp_assoc_value instead\n",
3652 				    current->comm, task_pid_nr(current));
3653 		if (copy_from_user(&params.assoc_value, optval, optlen))
3654 			return -EFAULT;
3655 		params.assoc_id = SCTP_FUTURE_ASSOC;
3656 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3657 		if (copy_from_user(&params, optval, optlen))
3658 			return -EFAULT;
3659 	} else
3660 		return -EINVAL;
3661 
3662 	asoc = sctp_id2assoc(sk, params.assoc_id);
3663 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3664 	    sctp_style(sk, UDP))
3665 		return -EINVAL;
3666 
3667 	if (asoc) {
3668 		asoc->max_burst = params.assoc_value;
3669 
3670 		return 0;
3671 	}
3672 
3673 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3674 	    params.assoc_id == SCTP_ALL_ASSOC)
3675 		sp->max_burst = params.assoc_value;
3676 
3677 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3678 	    params.assoc_id == SCTP_ALL_ASSOC)
3679 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3680 			asoc->max_burst = params.assoc_value;
3681 
3682 	return 0;
3683 }
3684 
3685 /*
3686  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3687  *
3688  * This set option adds a chunk type that the user is requesting to be
3689  * received only in an authenticated way.  Changes to the list of chunks
3690  * will only effect future associations on the socket.
3691  */
3692 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3693 				      char __user *optval,
3694 				      unsigned int optlen)
3695 {
3696 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3697 	struct sctp_authchunk val;
3698 
3699 	if (!ep->auth_enable)
3700 		return -EACCES;
3701 
3702 	if (optlen != sizeof(struct sctp_authchunk))
3703 		return -EINVAL;
3704 	if (copy_from_user(&val, optval, optlen))
3705 		return -EFAULT;
3706 
3707 	switch (val.sauth_chunk) {
3708 	case SCTP_CID_INIT:
3709 	case SCTP_CID_INIT_ACK:
3710 	case SCTP_CID_SHUTDOWN_COMPLETE:
3711 	case SCTP_CID_AUTH:
3712 		return -EINVAL;
3713 	}
3714 
3715 	/* add this chunk id to the endpoint */
3716 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3717 }
3718 
3719 /*
3720  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3721  *
3722  * This option gets or sets the list of HMAC algorithms that the local
3723  * endpoint requires the peer to use.
3724  */
3725 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3726 				      char __user *optval,
3727 				      unsigned int optlen)
3728 {
3729 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3730 	struct sctp_hmacalgo *hmacs;
3731 	u32 idents;
3732 	int err;
3733 
3734 	if (!ep->auth_enable)
3735 		return -EACCES;
3736 
3737 	if (optlen < sizeof(struct sctp_hmacalgo))
3738 		return -EINVAL;
3739 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3740 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3741 
3742 	hmacs = memdup_user(optval, optlen);
3743 	if (IS_ERR(hmacs))
3744 		return PTR_ERR(hmacs);
3745 
3746 	idents = hmacs->shmac_num_idents;
3747 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3748 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3749 		err = -EINVAL;
3750 		goto out;
3751 	}
3752 
3753 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3754 out:
3755 	kfree(hmacs);
3756 	return err;
3757 }
3758 
3759 /*
3760  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3761  *
3762  * This option will set a shared secret key which is used to build an
3763  * association shared key.
3764  */
3765 static int sctp_setsockopt_auth_key(struct sock *sk,
3766 				    char __user *optval,
3767 				    unsigned int optlen)
3768 {
3769 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3770 	struct sctp_authkey *authkey;
3771 	struct sctp_association *asoc;
3772 	int ret = -EINVAL;
3773 
3774 	if (!ep->auth_enable)
3775 		return -EACCES;
3776 
3777 	if (optlen <= sizeof(struct sctp_authkey))
3778 		return -EINVAL;
3779 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3780 	 * this.
3781 	 */
3782 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3783 
3784 	authkey = memdup_user(optval, optlen);
3785 	if (IS_ERR(authkey))
3786 		return PTR_ERR(authkey);
3787 
3788 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3789 		goto out;
3790 
3791 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3792 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3793 	    sctp_style(sk, UDP))
3794 		goto out;
3795 
3796 	if (asoc) {
3797 		ret = sctp_auth_set_key(ep, asoc, authkey);
3798 		goto out;
3799 	}
3800 
3801 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3802 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3803 		ret = sctp_auth_set_key(ep, asoc, authkey);
3804 		if (ret)
3805 			goto out;
3806 	}
3807 
3808 	ret = 0;
3809 
3810 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3811 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3812 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3813 			int res = sctp_auth_set_key(ep, asoc, authkey);
3814 
3815 			if (res && !ret)
3816 				ret = res;
3817 		}
3818 	}
3819 
3820 out:
3821 	kzfree(authkey);
3822 	return ret;
3823 }
3824 
3825 /*
3826  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3827  *
3828  * This option will get or set the active shared key to be used to build
3829  * the association shared key.
3830  */
3831 static int sctp_setsockopt_active_key(struct sock *sk,
3832 				      char __user *optval,
3833 				      unsigned int optlen)
3834 {
3835 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3836 	struct sctp_association *asoc;
3837 	struct sctp_authkeyid val;
3838 	int ret = 0;
3839 
3840 	if (!ep->auth_enable)
3841 		return -EACCES;
3842 
3843 	if (optlen != sizeof(struct sctp_authkeyid))
3844 		return -EINVAL;
3845 	if (copy_from_user(&val, optval, optlen))
3846 		return -EFAULT;
3847 
3848 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3849 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3850 	    sctp_style(sk, UDP))
3851 		return -EINVAL;
3852 
3853 	if (asoc)
3854 		return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3855 
3856 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3857 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3858 		ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3859 		if (ret)
3860 			return ret;
3861 	}
3862 
3863 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3864 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3865 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3866 			int res = sctp_auth_set_active_key(ep, asoc,
3867 							   val.scact_keynumber);
3868 
3869 			if (res && !ret)
3870 				ret = res;
3871 		}
3872 	}
3873 
3874 	return ret;
3875 }
3876 
3877 /*
3878  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3879  *
3880  * This set option will delete a shared secret key from use.
3881  */
3882 static int sctp_setsockopt_del_key(struct sock *sk,
3883 				   char __user *optval,
3884 				   unsigned int optlen)
3885 {
3886 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3887 	struct sctp_association *asoc;
3888 	struct sctp_authkeyid val;
3889 	int ret = 0;
3890 
3891 	if (!ep->auth_enable)
3892 		return -EACCES;
3893 
3894 	if (optlen != sizeof(struct sctp_authkeyid))
3895 		return -EINVAL;
3896 	if (copy_from_user(&val, optval, optlen))
3897 		return -EFAULT;
3898 
3899 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3900 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3901 	    sctp_style(sk, UDP))
3902 		return -EINVAL;
3903 
3904 	if (asoc)
3905 		return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3906 
3907 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3908 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3909 		ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3910 		if (ret)
3911 			return ret;
3912 	}
3913 
3914 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3915 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3916 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3917 			int res = sctp_auth_del_key_id(ep, asoc,
3918 						       val.scact_keynumber);
3919 
3920 			if (res && !ret)
3921 				ret = res;
3922 		}
3923 	}
3924 
3925 	return ret;
3926 }
3927 
3928 /*
3929  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3930  *
3931  * This set option will deactivate a shared secret key.
3932  */
3933 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3934 					  unsigned int optlen)
3935 {
3936 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3937 	struct sctp_association *asoc;
3938 	struct sctp_authkeyid val;
3939 	int ret = 0;
3940 
3941 	if (!ep->auth_enable)
3942 		return -EACCES;
3943 
3944 	if (optlen != sizeof(struct sctp_authkeyid))
3945 		return -EINVAL;
3946 	if (copy_from_user(&val, optval, optlen))
3947 		return -EFAULT;
3948 
3949 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3950 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3951 	    sctp_style(sk, UDP))
3952 		return -EINVAL;
3953 
3954 	if (asoc)
3955 		return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3956 
3957 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3958 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3959 		ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3960 		if (ret)
3961 			return ret;
3962 	}
3963 
3964 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3965 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3966 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3967 			int res = sctp_auth_deact_key_id(ep, asoc,
3968 							 val.scact_keynumber);
3969 
3970 			if (res && !ret)
3971 				ret = res;
3972 		}
3973 	}
3974 
3975 	return ret;
3976 }
3977 
3978 /*
3979  * 8.1.23 SCTP_AUTO_ASCONF
3980  *
3981  * This option will enable or disable the use of the automatic generation of
3982  * ASCONF chunks to add and delete addresses to an existing association.  Note
3983  * that this option has two caveats namely: a) it only affects sockets that
3984  * are bound to all addresses available to the SCTP stack, and b) the system
3985  * administrator may have an overriding control that turns the ASCONF feature
3986  * off no matter what setting the socket option may have.
3987  * This option expects an integer boolean flag, where a non-zero value turns on
3988  * the option, and a zero value turns off the option.
3989  * Note. In this implementation, socket operation overrides default parameter
3990  * being set by sysctl as well as FreeBSD implementation
3991  */
3992 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3993 					unsigned int optlen)
3994 {
3995 	int val;
3996 	struct sctp_sock *sp = sctp_sk(sk);
3997 
3998 	if (optlen < sizeof(int))
3999 		return -EINVAL;
4000 	if (get_user(val, (int __user *)optval))
4001 		return -EFAULT;
4002 	if (!sctp_is_ep_boundall(sk) && val)
4003 		return -EINVAL;
4004 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
4005 		return 0;
4006 
4007 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4008 	if (val == 0 && sp->do_auto_asconf) {
4009 		list_del(&sp->auto_asconf_list);
4010 		sp->do_auto_asconf = 0;
4011 	} else if (val && !sp->do_auto_asconf) {
4012 		list_add_tail(&sp->auto_asconf_list,
4013 		    &sock_net(sk)->sctp.auto_asconf_splist);
4014 		sp->do_auto_asconf = 1;
4015 	}
4016 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4017 	return 0;
4018 }
4019 
4020 /*
4021  * SCTP_PEER_ADDR_THLDS
4022  *
4023  * This option allows us to alter the partially failed threshold for one or all
4024  * transports in an association.  See Section 6.1 of:
4025  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
4026  */
4027 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
4028 					    char __user *optval,
4029 					    unsigned int optlen)
4030 {
4031 	struct sctp_paddrthlds val;
4032 	struct sctp_transport *trans;
4033 	struct sctp_association *asoc;
4034 
4035 	if (optlen < sizeof(struct sctp_paddrthlds))
4036 		return -EINVAL;
4037 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
4038 			   sizeof(struct sctp_paddrthlds)))
4039 		return -EFAULT;
4040 
4041 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
4042 		trans = sctp_addr_id2transport(sk, &val.spt_address,
4043 					       val.spt_assoc_id);
4044 		if (!trans)
4045 			return -ENOENT;
4046 
4047 		if (val.spt_pathmaxrxt)
4048 			trans->pathmaxrxt = val.spt_pathmaxrxt;
4049 		trans->pf_retrans = val.spt_pathpfthld;
4050 
4051 		return 0;
4052 	}
4053 
4054 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
4055 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
4056 	    sctp_style(sk, UDP))
4057 		return -EINVAL;
4058 
4059 	if (asoc) {
4060 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
4061 				    transports) {
4062 			if (val.spt_pathmaxrxt)
4063 				trans->pathmaxrxt = val.spt_pathmaxrxt;
4064 			trans->pf_retrans = val.spt_pathpfthld;
4065 		}
4066 
4067 		if (val.spt_pathmaxrxt)
4068 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
4069 		asoc->pf_retrans = val.spt_pathpfthld;
4070 	} else {
4071 		struct sctp_sock *sp = sctp_sk(sk);
4072 
4073 		if (val.spt_pathmaxrxt)
4074 			sp->pathmaxrxt = val.spt_pathmaxrxt;
4075 		sp->pf_retrans = val.spt_pathpfthld;
4076 	}
4077 
4078 	return 0;
4079 }
4080 
4081 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
4082 				       char __user *optval,
4083 				       unsigned int optlen)
4084 {
4085 	int val;
4086 
4087 	if (optlen < sizeof(int))
4088 		return -EINVAL;
4089 	if (get_user(val, (int __user *) optval))
4090 		return -EFAULT;
4091 
4092 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4093 
4094 	return 0;
4095 }
4096 
4097 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4098 				       char __user *optval,
4099 				       unsigned int optlen)
4100 {
4101 	int val;
4102 
4103 	if (optlen < sizeof(int))
4104 		return -EINVAL;
4105 	if (get_user(val, (int __user *) optval))
4106 		return -EFAULT;
4107 
4108 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4109 
4110 	return 0;
4111 }
4112 
4113 static int sctp_setsockopt_pr_supported(struct sock *sk,
4114 					char __user *optval,
4115 					unsigned int optlen)
4116 {
4117 	struct sctp_assoc_value params;
4118 	struct sctp_association *asoc;
4119 
4120 	if (optlen != sizeof(params))
4121 		return -EINVAL;
4122 
4123 	if (copy_from_user(&params, optval, optlen))
4124 		return -EFAULT;
4125 
4126 	asoc = sctp_id2assoc(sk, params.assoc_id);
4127 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4128 	    sctp_style(sk, UDP))
4129 		return -EINVAL;
4130 
4131 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4132 
4133 	return 0;
4134 }
4135 
4136 static int sctp_setsockopt_default_prinfo(struct sock *sk,
4137 					  char __user *optval,
4138 					  unsigned int optlen)
4139 {
4140 	struct sctp_sock *sp = sctp_sk(sk);
4141 	struct sctp_default_prinfo info;
4142 	struct sctp_association *asoc;
4143 	int retval = -EINVAL;
4144 
4145 	if (optlen != sizeof(info))
4146 		goto out;
4147 
4148 	if (copy_from_user(&info, optval, sizeof(info))) {
4149 		retval = -EFAULT;
4150 		goto out;
4151 	}
4152 
4153 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4154 		goto out;
4155 
4156 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
4157 		info.pr_value = 0;
4158 
4159 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4160 	if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4161 	    sctp_style(sk, UDP))
4162 		goto out;
4163 
4164 	retval = 0;
4165 
4166 	if (asoc) {
4167 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4168 		asoc->default_timetolive = info.pr_value;
4169 		goto out;
4170 	}
4171 
4172 	if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4173 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4174 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4175 		sp->default_timetolive = info.pr_value;
4176 	}
4177 
4178 	if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4179 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4180 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4181 			SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4182 			asoc->default_timetolive = info.pr_value;
4183 		}
4184 	}
4185 
4186 out:
4187 	return retval;
4188 }
4189 
4190 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4191 					      char __user *optval,
4192 					      unsigned int optlen)
4193 {
4194 	struct sctp_assoc_value params;
4195 	struct sctp_association *asoc;
4196 	int retval = -EINVAL;
4197 
4198 	if (optlen != sizeof(params))
4199 		goto out;
4200 
4201 	if (copy_from_user(&params, optval, optlen)) {
4202 		retval = -EFAULT;
4203 		goto out;
4204 	}
4205 
4206 	asoc = sctp_id2assoc(sk, params.assoc_id);
4207 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4208 	    sctp_style(sk, UDP))
4209 		goto out;
4210 
4211 	if (asoc)
4212 		asoc->reconf_enable = !!params.assoc_value;
4213 	else
4214 		sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4215 
4216 	retval = 0;
4217 
4218 out:
4219 	return retval;
4220 }
4221 
4222 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4223 					   char __user *optval,
4224 					   unsigned int optlen)
4225 {
4226 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4227 	struct sctp_assoc_value params;
4228 	struct sctp_association *asoc;
4229 	int retval = -EINVAL;
4230 
4231 	if (optlen != sizeof(params))
4232 		goto out;
4233 
4234 	if (copy_from_user(&params, optval, optlen)) {
4235 		retval = -EFAULT;
4236 		goto out;
4237 	}
4238 
4239 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4240 		goto out;
4241 
4242 	asoc = sctp_id2assoc(sk, params.assoc_id);
4243 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4244 	    sctp_style(sk, UDP))
4245 		goto out;
4246 
4247 	retval = 0;
4248 
4249 	if (asoc) {
4250 		asoc->strreset_enable = params.assoc_value;
4251 		goto out;
4252 	}
4253 
4254 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4255 	    params.assoc_id == SCTP_ALL_ASSOC)
4256 		ep->strreset_enable = params.assoc_value;
4257 
4258 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4259 	    params.assoc_id == SCTP_ALL_ASSOC)
4260 		list_for_each_entry(asoc, &ep->asocs, asocs)
4261 			asoc->strreset_enable = params.assoc_value;
4262 
4263 out:
4264 	return retval;
4265 }
4266 
4267 static int sctp_setsockopt_reset_streams(struct sock *sk,
4268 					 char __user *optval,
4269 					 unsigned int optlen)
4270 {
4271 	struct sctp_reset_streams *params;
4272 	struct sctp_association *asoc;
4273 	int retval = -EINVAL;
4274 
4275 	if (optlen < sizeof(*params))
4276 		return -EINVAL;
4277 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4278 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4279 					     sizeof(__u16) * sizeof(*params));
4280 
4281 	params = memdup_user(optval, optlen);
4282 	if (IS_ERR(params))
4283 		return PTR_ERR(params);
4284 
4285 	if (params->srs_number_streams * sizeof(__u16) >
4286 	    optlen - sizeof(*params))
4287 		goto out;
4288 
4289 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4290 	if (!asoc)
4291 		goto out;
4292 
4293 	retval = sctp_send_reset_streams(asoc, params);
4294 
4295 out:
4296 	kfree(params);
4297 	return retval;
4298 }
4299 
4300 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4301 				       char __user *optval,
4302 				       unsigned int optlen)
4303 {
4304 	struct sctp_association *asoc;
4305 	sctp_assoc_t associd;
4306 	int retval = -EINVAL;
4307 
4308 	if (optlen != sizeof(associd))
4309 		goto out;
4310 
4311 	if (copy_from_user(&associd, optval, optlen)) {
4312 		retval = -EFAULT;
4313 		goto out;
4314 	}
4315 
4316 	asoc = sctp_id2assoc(sk, associd);
4317 	if (!asoc)
4318 		goto out;
4319 
4320 	retval = sctp_send_reset_assoc(asoc);
4321 
4322 out:
4323 	return retval;
4324 }
4325 
4326 static int sctp_setsockopt_add_streams(struct sock *sk,
4327 				       char __user *optval,
4328 				       unsigned int optlen)
4329 {
4330 	struct sctp_association *asoc;
4331 	struct sctp_add_streams params;
4332 	int retval = -EINVAL;
4333 
4334 	if (optlen != sizeof(params))
4335 		goto out;
4336 
4337 	if (copy_from_user(&params, optval, optlen)) {
4338 		retval = -EFAULT;
4339 		goto out;
4340 	}
4341 
4342 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4343 	if (!asoc)
4344 		goto out;
4345 
4346 	retval = sctp_send_add_streams(asoc, &params);
4347 
4348 out:
4349 	return retval;
4350 }
4351 
4352 static int sctp_setsockopt_scheduler(struct sock *sk,
4353 				     char __user *optval,
4354 				     unsigned int optlen)
4355 {
4356 	struct sctp_sock *sp = sctp_sk(sk);
4357 	struct sctp_association *asoc;
4358 	struct sctp_assoc_value params;
4359 	int retval = 0;
4360 
4361 	if (optlen < sizeof(params))
4362 		return -EINVAL;
4363 
4364 	optlen = sizeof(params);
4365 	if (copy_from_user(&params, optval, optlen))
4366 		return -EFAULT;
4367 
4368 	if (params.assoc_value > SCTP_SS_MAX)
4369 		return -EINVAL;
4370 
4371 	asoc = sctp_id2assoc(sk, params.assoc_id);
4372 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4373 	    sctp_style(sk, UDP))
4374 		return -EINVAL;
4375 
4376 	if (asoc)
4377 		return sctp_sched_set_sched(asoc, params.assoc_value);
4378 
4379 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4380 	    params.assoc_id == SCTP_ALL_ASSOC)
4381 		sp->default_ss = params.assoc_value;
4382 
4383 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4384 	    params.assoc_id == SCTP_ALL_ASSOC) {
4385 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4386 			int ret = sctp_sched_set_sched(asoc,
4387 						       params.assoc_value);
4388 
4389 			if (ret && !retval)
4390 				retval = ret;
4391 		}
4392 	}
4393 
4394 	return retval;
4395 }
4396 
4397 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4398 					   char __user *optval,
4399 					   unsigned int optlen)
4400 {
4401 	struct sctp_stream_value params;
4402 	struct sctp_association *asoc;
4403 	int retval = -EINVAL;
4404 
4405 	if (optlen < sizeof(params))
4406 		goto out;
4407 
4408 	optlen = sizeof(params);
4409 	if (copy_from_user(&params, optval, optlen)) {
4410 		retval = -EFAULT;
4411 		goto out;
4412 	}
4413 
4414 	asoc = sctp_id2assoc(sk, params.assoc_id);
4415 	if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4416 	    sctp_style(sk, UDP))
4417 		goto out;
4418 
4419 	if (asoc) {
4420 		retval = sctp_sched_set_value(asoc, params.stream_id,
4421 					      params.stream_value, GFP_KERNEL);
4422 		goto out;
4423 	}
4424 
4425 	retval = 0;
4426 
4427 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4428 		int ret = sctp_sched_set_value(asoc, params.stream_id,
4429 					       params.stream_value, GFP_KERNEL);
4430 		if (ret && !retval) /* try to return the 1st error. */
4431 			retval = ret;
4432 	}
4433 
4434 out:
4435 	return retval;
4436 }
4437 
4438 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4439 						  char __user *optval,
4440 						  unsigned int optlen)
4441 {
4442 	struct sctp_sock *sp = sctp_sk(sk);
4443 	struct sctp_assoc_value params;
4444 	struct sctp_association *asoc;
4445 	int retval = -EINVAL;
4446 
4447 	if (optlen < sizeof(params))
4448 		goto out;
4449 
4450 	optlen = sizeof(params);
4451 	if (copy_from_user(&params, optval, optlen)) {
4452 		retval = -EFAULT;
4453 		goto out;
4454 	}
4455 
4456 	asoc = sctp_id2assoc(sk, params.assoc_id);
4457 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4458 	    sctp_style(sk, UDP))
4459 		goto out;
4460 
4461 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4462 		retval = -EPERM;
4463 		goto out;
4464 	}
4465 
4466 	sp->strm_interleave = !!params.assoc_value;
4467 
4468 	retval = 0;
4469 
4470 out:
4471 	return retval;
4472 }
4473 
4474 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4475 				      unsigned int optlen)
4476 {
4477 	int val;
4478 
4479 	if (!sctp_style(sk, TCP))
4480 		return -EOPNOTSUPP;
4481 
4482 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4483 		return -EFAULT;
4484 
4485 	if (optlen < sizeof(int))
4486 		return -EINVAL;
4487 
4488 	if (get_user(val, (int __user *)optval))
4489 		return -EFAULT;
4490 
4491 	sctp_sk(sk)->reuse = !!val;
4492 
4493 	return 0;
4494 }
4495 
4496 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4497 					struct sctp_association *asoc)
4498 {
4499 	struct sctp_ulpevent *event;
4500 
4501 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4502 
4503 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4504 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4505 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4506 					GFP_USER | __GFP_NOWARN);
4507 			if (!event)
4508 				return -ENOMEM;
4509 
4510 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4511 		}
4512 	}
4513 
4514 	return 0;
4515 }
4516 
4517 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4518 				 unsigned int optlen)
4519 {
4520 	struct sctp_sock *sp = sctp_sk(sk);
4521 	struct sctp_association *asoc;
4522 	struct sctp_event param;
4523 	int retval = 0;
4524 
4525 	if (optlen < sizeof(param))
4526 		return -EINVAL;
4527 
4528 	optlen = sizeof(param);
4529 	if (copy_from_user(&param, optval, optlen))
4530 		return -EFAULT;
4531 
4532 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4533 	    param.se_type > SCTP_SN_TYPE_MAX)
4534 		return -EINVAL;
4535 
4536 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4537 	if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4538 	    sctp_style(sk, UDP))
4539 		return -EINVAL;
4540 
4541 	if (asoc)
4542 		return sctp_assoc_ulpevent_type_set(&param, asoc);
4543 
4544 	if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4545 	    param.se_assoc_id == SCTP_ALL_ASSOC)
4546 		sctp_ulpevent_type_set(&sp->subscribe,
4547 				       param.se_type, param.se_on);
4548 
4549 	if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4550 	    param.se_assoc_id == SCTP_ALL_ASSOC) {
4551 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4552 			int ret = sctp_assoc_ulpevent_type_set(&param, asoc);
4553 
4554 			if (ret && !retval)
4555 				retval = ret;
4556 		}
4557 	}
4558 
4559 	return retval;
4560 }
4561 
4562 /* API 6.2 setsockopt(), getsockopt()
4563  *
4564  * Applications use setsockopt() and getsockopt() to set or retrieve
4565  * socket options.  Socket options are used to change the default
4566  * behavior of sockets calls.  They are described in Section 7.
4567  *
4568  * The syntax is:
4569  *
4570  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4571  *                    int __user *optlen);
4572  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4573  *                    int optlen);
4574  *
4575  *   sd      - the socket descript.
4576  *   level   - set to IPPROTO_SCTP for all SCTP options.
4577  *   optname - the option name.
4578  *   optval  - the buffer to store the value of the option.
4579  *   optlen  - the size of the buffer.
4580  */
4581 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4582 			   char __user *optval, unsigned int optlen)
4583 {
4584 	int retval = 0;
4585 
4586 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4587 
4588 	/* I can hardly begin to describe how wrong this is.  This is
4589 	 * so broken as to be worse than useless.  The API draft
4590 	 * REALLY is NOT helpful here...  I am not convinced that the
4591 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4592 	 * are at all well-founded.
4593 	 */
4594 	if (level != SOL_SCTP) {
4595 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4596 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4597 		goto out_nounlock;
4598 	}
4599 
4600 	lock_sock(sk);
4601 
4602 	switch (optname) {
4603 	case SCTP_SOCKOPT_BINDX_ADD:
4604 		/* 'optlen' is the size of the addresses buffer. */
4605 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4606 					       optlen, SCTP_BINDX_ADD_ADDR);
4607 		break;
4608 
4609 	case SCTP_SOCKOPT_BINDX_REM:
4610 		/* 'optlen' is the size of the addresses buffer. */
4611 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4612 					       optlen, SCTP_BINDX_REM_ADDR);
4613 		break;
4614 
4615 	case SCTP_SOCKOPT_CONNECTX_OLD:
4616 		/* 'optlen' is the size of the addresses buffer. */
4617 		retval = sctp_setsockopt_connectx_old(sk,
4618 					    (struct sockaddr __user *)optval,
4619 					    optlen);
4620 		break;
4621 
4622 	case SCTP_SOCKOPT_CONNECTX:
4623 		/* 'optlen' is the size of the addresses buffer. */
4624 		retval = sctp_setsockopt_connectx(sk,
4625 					    (struct sockaddr __user *)optval,
4626 					    optlen);
4627 		break;
4628 
4629 	case SCTP_DISABLE_FRAGMENTS:
4630 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4631 		break;
4632 
4633 	case SCTP_EVENTS:
4634 		retval = sctp_setsockopt_events(sk, optval, optlen);
4635 		break;
4636 
4637 	case SCTP_AUTOCLOSE:
4638 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4639 		break;
4640 
4641 	case SCTP_PEER_ADDR_PARAMS:
4642 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4643 		break;
4644 
4645 	case SCTP_DELAYED_SACK:
4646 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4647 		break;
4648 	case SCTP_PARTIAL_DELIVERY_POINT:
4649 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4650 		break;
4651 
4652 	case SCTP_INITMSG:
4653 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4654 		break;
4655 	case SCTP_DEFAULT_SEND_PARAM:
4656 		retval = sctp_setsockopt_default_send_param(sk, optval,
4657 							    optlen);
4658 		break;
4659 	case SCTP_DEFAULT_SNDINFO:
4660 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4661 		break;
4662 	case SCTP_PRIMARY_ADDR:
4663 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4664 		break;
4665 	case SCTP_SET_PEER_PRIMARY_ADDR:
4666 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4667 		break;
4668 	case SCTP_NODELAY:
4669 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4670 		break;
4671 	case SCTP_RTOINFO:
4672 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4673 		break;
4674 	case SCTP_ASSOCINFO:
4675 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4676 		break;
4677 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4678 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4679 		break;
4680 	case SCTP_MAXSEG:
4681 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4682 		break;
4683 	case SCTP_ADAPTATION_LAYER:
4684 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4685 		break;
4686 	case SCTP_CONTEXT:
4687 		retval = sctp_setsockopt_context(sk, optval, optlen);
4688 		break;
4689 	case SCTP_FRAGMENT_INTERLEAVE:
4690 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4691 		break;
4692 	case SCTP_MAX_BURST:
4693 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4694 		break;
4695 	case SCTP_AUTH_CHUNK:
4696 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4697 		break;
4698 	case SCTP_HMAC_IDENT:
4699 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4700 		break;
4701 	case SCTP_AUTH_KEY:
4702 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4703 		break;
4704 	case SCTP_AUTH_ACTIVE_KEY:
4705 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4706 		break;
4707 	case SCTP_AUTH_DELETE_KEY:
4708 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4709 		break;
4710 	case SCTP_AUTH_DEACTIVATE_KEY:
4711 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4712 		break;
4713 	case SCTP_AUTO_ASCONF:
4714 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4715 		break;
4716 	case SCTP_PEER_ADDR_THLDS:
4717 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4718 		break;
4719 	case SCTP_RECVRCVINFO:
4720 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4721 		break;
4722 	case SCTP_RECVNXTINFO:
4723 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4724 		break;
4725 	case SCTP_PR_SUPPORTED:
4726 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4727 		break;
4728 	case SCTP_DEFAULT_PRINFO:
4729 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4730 		break;
4731 	case SCTP_RECONFIG_SUPPORTED:
4732 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4733 		break;
4734 	case SCTP_ENABLE_STREAM_RESET:
4735 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4736 		break;
4737 	case SCTP_RESET_STREAMS:
4738 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4739 		break;
4740 	case SCTP_RESET_ASSOC:
4741 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4742 		break;
4743 	case SCTP_ADD_STREAMS:
4744 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4745 		break;
4746 	case SCTP_STREAM_SCHEDULER:
4747 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4748 		break;
4749 	case SCTP_STREAM_SCHEDULER_VALUE:
4750 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4751 		break;
4752 	case SCTP_INTERLEAVING_SUPPORTED:
4753 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4754 								optlen);
4755 		break;
4756 	case SCTP_REUSE_PORT:
4757 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4758 		break;
4759 	case SCTP_EVENT:
4760 		retval = sctp_setsockopt_event(sk, optval, optlen);
4761 		break;
4762 	default:
4763 		retval = -ENOPROTOOPT;
4764 		break;
4765 	}
4766 
4767 	release_sock(sk);
4768 
4769 out_nounlock:
4770 	return retval;
4771 }
4772 
4773 /* API 3.1.6 connect() - UDP Style Syntax
4774  *
4775  * An application may use the connect() call in the UDP model to initiate an
4776  * association without sending data.
4777  *
4778  * The syntax is:
4779  *
4780  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4781  *
4782  * sd: the socket descriptor to have a new association added to.
4783  *
4784  * nam: the address structure (either struct sockaddr_in or struct
4785  *    sockaddr_in6 defined in RFC2553 [7]).
4786  *
4787  * len: the size of the address.
4788  */
4789 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4790 			int addr_len, int flags)
4791 {
4792 	struct inet_sock *inet = inet_sk(sk);
4793 	struct sctp_af *af;
4794 	int err = 0;
4795 
4796 	lock_sock(sk);
4797 
4798 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4799 		 addr, addr_len);
4800 
4801 	/* We may need to bind the socket. */
4802 	if (!inet->inet_num) {
4803 		if (sk->sk_prot->get_port(sk, 0)) {
4804 			release_sock(sk);
4805 			return -EAGAIN;
4806 		}
4807 		inet->inet_sport = htons(inet->inet_num);
4808 	}
4809 
4810 	/* Validate addr_len before calling common connect/connectx routine. */
4811 	af = sctp_get_af_specific(addr->sa_family);
4812 	if (!af || addr_len < af->sockaddr_len) {
4813 		err = -EINVAL;
4814 	} else {
4815 		/* Pass correct addr len to common routine (so it knows there
4816 		 * is only one address being passed.
4817 		 */
4818 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4819 	}
4820 
4821 	release_sock(sk);
4822 	return err;
4823 }
4824 
4825 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4826 		      int addr_len, int flags)
4827 {
4828 	if (addr_len < sizeof(uaddr->sa_family))
4829 		return -EINVAL;
4830 
4831 	if (uaddr->sa_family == AF_UNSPEC)
4832 		return -EOPNOTSUPP;
4833 
4834 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4835 }
4836 
4837 /* FIXME: Write comments. */
4838 static int sctp_disconnect(struct sock *sk, int flags)
4839 {
4840 	return -EOPNOTSUPP; /* STUB */
4841 }
4842 
4843 /* 4.1.4 accept() - TCP Style Syntax
4844  *
4845  * Applications use accept() call to remove an established SCTP
4846  * association from the accept queue of the endpoint.  A new socket
4847  * descriptor will be returned from accept() to represent the newly
4848  * formed association.
4849  */
4850 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4851 {
4852 	struct sctp_sock *sp;
4853 	struct sctp_endpoint *ep;
4854 	struct sock *newsk = NULL;
4855 	struct sctp_association *asoc;
4856 	long timeo;
4857 	int error = 0;
4858 
4859 	lock_sock(sk);
4860 
4861 	sp = sctp_sk(sk);
4862 	ep = sp->ep;
4863 
4864 	if (!sctp_style(sk, TCP)) {
4865 		error = -EOPNOTSUPP;
4866 		goto out;
4867 	}
4868 
4869 	if (!sctp_sstate(sk, LISTENING)) {
4870 		error = -EINVAL;
4871 		goto out;
4872 	}
4873 
4874 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4875 
4876 	error = sctp_wait_for_accept(sk, timeo);
4877 	if (error)
4878 		goto out;
4879 
4880 	/* We treat the list of associations on the endpoint as the accept
4881 	 * queue and pick the first association on the list.
4882 	 */
4883 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4884 
4885 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4886 	if (!newsk) {
4887 		error = -ENOMEM;
4888 		goto out;
4889 	}
4890 
4891 	/* Populate the fields of the newsk from the oldsk and migrate the
4892 	 * asoc to the newsk.
4893 	 */
4894 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4895 	if (error) {
4896 		sk_common_release(newsk);
4897 		newsk = NULL;
4898 	}
4899 
4900 out:
4901 	release_sock(sk);
4902 	*err = error;
4903 	return newsk;
4904 }
4905 
4906 /* The SCTP ioctl handler. */
4907 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4908 {
4909 	int rc = -ENOTCONN;
4910 
4911 	lock_sock(sk);
4912 
4913 	/*
4914 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4915 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4916 	 */
4917 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4918 		goto out;
4919 
4920 	switch (cmd) {
4921 	case SIOCINQ: {
4922 		struct sk_buff *skb;
4923 		unsigned int amount = 0;
4924 
4925 		skb = skb_peek(&sk->sk_receive_queue);
4926 		if (skb != NULL) {
4927 			/*
4928 			 * We will only return the amount of this packet since
4929 			 * that is all that will be read.
4930 			 */
4931 			amount = skb->len;
4932 		}
4933 		rc = put_user(amount, (int __user *)arg);
4934 		break;
4935 	}
4936 	default:
4937 		rc = -ENOIOCTLCMD;
4938 		break;
4939 	}
4940 out:
4941 	release_sock(sk);
4942 	return rc;
4943 }
4944 
4945 /* This is the function which gets called during socket creation to
4946  * initialized the SCTP-specific portion of the sock.
4947  * The sock structure should already be zero-filled memory.
4948  */
4949 static int sctp_init_sock(struct sock *sk)
4950 {
4951 	struct net *net = sock_net(sk);
4952 	struct sctp_sock *sp;
4953 
4954 	pr_debug("%s: sk:%p\n", __func__, sk);
4955 
4956 	sp = sctp_sk(sk);
4957 
4958 	/* Initialize the SCTP per socket area.  */
4959 	switch (sk->sk_type) {
4960 	case SOCK_SEQPACKET:
4961 		sp->type = SCTP_SOCKET_UDP;
4962 		break;
4963 	case SOCK_STREAM:
4964 		sp->type = SCTP_SOCKET_TCP;
4965 		break;
4966 	default:
4967 		return -ESOCKTNOSUPPORT;
4968 	}
4969 
4970 	sk->sk_gso_type = SKB_GSO_SCTP;
4971 
4972 	/* Initialize default send parameters. These parameters can be
4973 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4974 	 */
4975 	sp->default_stream = 0;
4976 	sp->default_ppid = 0;
4977 	sp->default_flags = 0;
4978 	sp->default_context = 0;
4979 	sp->default_timetolive = 0;
4980 
4981 	sp->default_rcv_context = 0;
4982 	sp->max_burst = net->sctp.max_burst;
4983 
4984 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4985 
4986 	/* Initialize default setup parameters. These parameters
4987 	 * can be modified with the SCTP_INITMSG socket option or
4988 	 * overridden by the SCTP_INIT CMSG.
4989 	 */
4990 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4991 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4992 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4993 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4994 
4995 	/* Initialize default RTO related parameters.  These parameters can
4996 	 * be modified for with the SCTP_RTOINFO socket option.
4997 	 */
4998 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4999 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
5000 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
5001 
5002 	/* Initialize default association related parameters. These parameters
5003 	 * can be modified with the SCTP_ASSOCINFO socket option.
5004 	 */
5005 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5006 	sp->assocparams.sasoc_number_peer_destinations = 0;
5007 	sp->assocparams.sasoc_peer_rwnd = 0;
5008 	sp->assocparams.sasoc_local_rwnd = 0;
5009 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5010 
5011 	/* Initialize default event subscriptions. By default, all the
5012 	 * options are off.
5013 	 */
5014 	sp->subscribe = 0;
5015 
5016 	/* Default Peer Address Parameters.  These defaults can
5017 	 * be modified via SCTP_PEER_ADDR_PARAMS
5018 	 */
5019 	sp->hbinterval  = net->sctp.hb_interval;
5020 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5021 	sp->pf_retrans  = net->sctp.pf_retrans;
5022 	sp->pathmtu     = 0; /* allow default discovery */
5023 	sp->sackdelay   = net->sctp.sack_timeout;
5024 	sp->sackfreq	= 2;
5025 	sp->param_flags = SPP_HB_ENABLE |
5026 			  SPP_PMTUD_ENABLE |
5027 			  SPP_SACKDELAY_ENABLE;
5028 	sp->default_ss = SCTP_SS_DEFAULT;
5029 
5030 	/* If enabled no SCTP message fragmentation will be performed.
5031 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5032 	 */
5033 	sp->disable_fragments = 0;
5034 
5035 	/* Enable Nagle algorithm by default.  */
5036 	sp->nodelay           = 0;
5037 
5038 	sp->recvrcvinfo = 0;
5039 	sp->recvnxtinfo = 0;
5040 
5041 	/* Enable by default. */
5042 	sp->v4mapped          = 1;
5043 
5044 	/* Auto-close idle associations after the configured
5045 	 * number of seconds.  A value of 0 disables this
5046 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5047 	 * for UDP-style sockets only.
5048 	 */
5049 	sp->autoclose         = 0;
5050 
5051 	/* User specified fragmentation limit. */
5052 	sp->user_frag         = 0;
5053 
5054 	sp->adaptation_ind = 0;
5055 
5056 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5057 
5058 	/* Control variables for partial data delivery. */
5059 	atomic_set(&sp->pd_mode, 0);
5060 	skb_queue_head_init(&sp->pd_lobby);
5061 	sp->frag_interleave = 0;
5062 
5063 	/* Create a per socket endpoint structure.  Even if we
5064 	 * change the data structure relationships, this may still
5065 	 * be useful for storing pre-connect address information.
5066 	 */
5067 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5068 	if (!sp->ep)
5069 		return -ENOMEM;
5070 
5071 	sp->hmac = NULL;
5072 
5073 	sk->sk_destruct = sctp_destruct_sock;
5074 
5075 	SCTP_DBG_OBJCNT_INC(sock);
5076 
5077 	local_bh_disable();
5078 	sk_sockets_allocated_inc(sk);
5079 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5080 
5081 	/* Nothing can fail after this block, otherwise
5082 	 * sctp_destroy_sock() will be called without addr_wq_lock held
5083 	 */
5084 	if (net->sctp.default_auto_asconf) {
5085 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5086 		list_add_tail(&sp->auto_asconf_list,
5087 		    &net->sctp.auto_asconf_splist);
5088 		sp->do_auto_asconf = 1;
5089 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5090 	} else {
5091 		sp->do_auto_asconf = 0;
5092 	}
5093 
5094 	local_bh_enable();
5095 
5096 	return 0;
5097 }
5098 
5099 /* Cleanup any SCTP per socket resources. Must be called with
5100  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5101  */
5102 static void sctp_destroy_sock(struct sock *sk)
5103 {
5104 	struct sctp_sock *sp;
5105 
5106 	pr_debug("%s: sk:%p\n", __func__, sk);
5107 
5108 	/* Release our hold on the endpoint. */
5109 	sp = sctp_sk(sk);
5110 	/* This could happen during socket init, thus we bail out
5111 	 * early, since the rest of the below is not setup either.
5112 	 */
5113 	if (sp->ep == NULL)
5114 		return;
5115 
5116 	if (sp->do_auto_asconf) {
5117 		sp->do_auto_asconf = 0;
5118 		list_del(&sp->auto_asconf_list);
5119 	}
5120 	sctp_endpoint_free(sp->ep);
5121 	local_bh_disable();
5122 	sk_sockets_allocated_dec(sk);
5123 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5124 	local_bh_enable();
5125 }
5126 
5127 /* Triggered when there are no references on the socket anymore */
5128 static void sctp_destruct_sock(struct sock *sk)
5129 {
5130 	struct sctp_sock *sp = sctp_sk(sk);
5131 
5132 	/* Free up the HMAC transform. */
5133 	crypto_free_shash(sp->hmac);
5134 
5135 	inet_sock_destruct(sk);
5136 }
5137 
5138 /* API 4.1.7 shutdown() - TCP Style Syntax
5139  *     int shutdown(int socket, int how);
5140  *
5141  *     sd      - the socket descriptor of the association to be closed.
5142  *     how     - Specifies the type of shutdown.  The  values  are
5143  *               as follows:
5144  *               SHUT_RD
5145  *                     Disables further receive operations. No SCTP
5146  *                     protocol action is taken.
5147  *               SHUT_WR
5148  *                     Disables further send operations, and initiates
5149  *                     the SCTP shutdown sequence.
5150  *               SHUT_RDWR
5151  *                     Disables further send  and  receive  operations
5152  *                     and initiates the SCTP shutdown sequence.
5153  */
5154 static void sctp_shutdown(struct sock *sk, int how)
5155 {
5156 	struct net *net = sock_net(sk);
5157 	struct sctp_endpoint *ep;
5158 
5159 	if (!sctp_style(sk, TCP))
5160 		return;
5161 
5162 	ep = sctp_sk(sk)->ep;
5163 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5164 		struct sctp_association *asoc;
5165 
5166 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5167 		asoc = list_entry(ep->asocs.next,
5168 				  struct sctp_association, asocs);
5169 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5170 	}
5171 }
5172 
5173 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5174 		       struct sctp_info *info)
5175 {
5176 	struct sctp_transport *prim;
5177 	struct list_head *pos;
5178 	int mask;
5179 
5180 	memset(info, 0, sizeof(*info));
5181 	if (!asoc) {
5182 		struct sctp_sock *sp = sctp_sk(sk);
5183 
5184 		info->sctpi_s_autoclose = sp->autoclose;
5185 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5186 		info->sctpi_s_pd_point = sp->pd_point;
5187 		info->sctpi_s_nodelay = sp->nodelay;
5188 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5189 		info->sctpi_s_v4mapped = sp->v4mapped;
5190 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5191 		info->sctpi_s_type = sp->type;
5192 
5193 		return 0;
5194 	}
5195 
5196 	info->sctpi_tag = asoc->c.my_vtag;
5197 	info->sctpi_state = asoc->state;
5198 	info->sctpi_rwnd = asoc->a_rwnd;
5199 	info->sctpi_unackdata = asoc->unack_data;
5200 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5201 	info->sctpi_instrms = asoc->stream.incnt;
5202 	info->sctpi_outstrms = asoc->stream.outcnt;
5203 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5204 		info->sctpi_inqueue++;
5205 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5206 		info->sctpi_outqueue++;
5207 	info->sctpi_overall_error = asoc->overall_error_count;
5208 	info->sctpi_max_burst = asoc->max_burst;
5209 	info->sctpi_maxseg = asoc->frag_point;
5210 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5211 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5212 
5213 	mask = asoc->peer.ecn_capable << 1;
5214 	mask = (mask | asoc->peer.ipv4_address) << 1;
5215 	mask = (mask | asoc->peer.ipv6_address) << 1;
5216 	mask = (mask | asoc->peer.hostname_address) << 1;
5217 	mask = (mask | asoc->peer.asconf_capable) << 1;
5218 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5219 	mask = (mask | asoc->peer.auth_capable);
5220 	info->sctpi_peer_capable = mask;
5221 	mask = asoc->peer.sack_needed << 1;
5222 	mask = (mask | asoc->peer.sack_generation) << 1;
5223 	mask = (mask | asoc->peer.zero_window_announced);
5224 	info->sctpi_peer_sack = mask;
5225 
5226 	info->sctpi_isacks = asoc->stats.isacks;
5227 	info->sctpi_osacks = asoc->stats.osacks;
5228 	info->sctpi_opackets = asoc->stats.opackets;
5229 	info->sctpi_ipackets = asoc->stats.ipackets;
5230 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5231 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5232 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5233 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5234 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5235 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5236 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5237 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5238 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5239 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5240 
5241 	prim = asoc->peer.primary_path;
5242 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5243 	info->sctpi_p_state = prim->state;
5244 	info->sctpi_p_cwnd = prim->cwnd;
5245 	info->sctpi_p_srtt = prim->srtt;
5246 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5247 	info->sctpi_p_hbinterval = prim->hbinterval;
5248 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5249 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5250 	info->sctpi_p_ssthresh = prim->ssthresh;
5251 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5252 	info->sctpi_p_flight_size = prim->flight_size;
5253 	info->sctpi_p_error = prim->error_count;
5254 
5255 	return 0;
5256 }
5257 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5258 
5259 /* use callback to avoid exporting the core structure */
5260 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5261 {
5262 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5263 
5264 	rhashtable_walk_start(iter);
5265 }
5266 
5267 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5268 {
5269 	rhashtable_walk_stop(iter);
5270 	rhashtable_walk_exit(iter);
5271 }
5272 
5273 struct sctp_transport *sctp_transport_get_next(struct net *net,
5274 					       struct rhashtable_iter *iter)
5275 {
5276 	struct sctp_transport *t;
5277 
5278 	t = rhashtable_walk_next(iter);
5279 	for (; t; t = rhashtable_walk_next(iter)) {
5280 		if (IS_ERR(t)) {
5281 			if (PTR_ERR(t) == -EAGAIN)
5282 				continue;
5283 			break;
5284 		}
5285 
5286 		if (!sctp_transport_hold(t))
5287 			continue;
5288 
5289 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5290 		    t->asoc->peer.primary_path == t)
5291 			break;
5292 
5293 		sctp_transport_put(t);
5294 	}
5295 
5296 	return t;
5297 }
5298 
5299 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5300 					      struct rhashtable_iter *iter,
5301 					      int pos)
5302 {
5303 	struct sctp_transport *t;
5304 
5305 	if (!pos)
5306 		return SEQ_START_TOKEN;
5307 
5308 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5309 		if (!--pos)
5310 			break;
5311 		sctp_transport_put(t);
5312 	}
5313 
5314 	return t;
5315 }
5316 
5317 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5318 			   void *p) {
5319 	int err = 0;
5320 	int hash = 0;
5321 	struct sctp_ep_common *epb;
5322 	struct sctp_hashbucket *head;
5323 
5324 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5325 	     hash++, head++) {
5326 		read_lock_bh(&head->lock);
5327 		sctp_for_each_hentry(epb, &head->chain) {
5328 			err = cb(sctp_ep(epb), p);
5329 			if (err)
5330 				break;
5331 		}
5332 		read_unlock_bh(&head->lock);
5333 	}
5334 
5335 	return err;
5336 }
5337 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5338 
5339 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5340 				  struct net *net,
5341 				  const union sctp_addr *laddr,
5342 				  const union sctp_addr *paddr, void *p)
5343 {
5344 	struct sctp_transport *transport;
5345 	int err;
5346 
5347 	rcu_read_lock();
5348 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5349 	rcu_read_unlock();
5350 	if (!transport)
5351 		return -ENOENT;
5352 
5353 	err = cb(transport, p);
5354 	sctp_transport_put(transport);
5355 
5356 	return err;
5357 }
5358 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5359 
5360 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5361 			    int (*cb_done)(struct sctp_transport *, void *),
5362 			    struct net *net, int *pos, void *p) {
5363 	struct rhashtable_iter hti;
5364 	struct sctp_transport *tsp;
5365 	int ret;
5366 
5367 again:
5368 	ret = 0;
5369 	sctp_transport_walk_start(&hti);
5370 
5371 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5372 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5373 		ret = cb(tsp, p);
5374 		if (ret)
5375 			break;
5376 		(*pos)++;
5377 		sctp_transport_put(tsp);
5378 	}
5379 	sctp_transport_walk_stop(&hti);
5380 
5381 	if (ret) {
5382 		if (cb_done && !cb_done(tsp, p)) {
5383 			(*pos)++;
5384 			sctp_transport_put(tsp);
5385 			goto again;
5386 		}
5387 		sctp_transport_put(tsp);
5388 	}
5389 
5390 	return ret;
5391 }
5392 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5393 
5394 /* 7.2.1 Association Status (SCTP_STATUS)
5395 
5396  * Applications can retrieve current status information about an
5397  * association, including association state, peer receiver window size,
5398  * number of unacked data chunks, and number of data chunks pending
5399  * receipt.  This information is read-only.
5400  */
5401 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5402 				       char __user *optval,
5403 				       int __user *optlen)
5404 {
5405 	struct sctp_status status;
5406 	struct sctp_association *asoc = NULL;
5407 	struct sctp_transport *transport;
5408 	sctp_assoc_t associd;
5409 	int retval = 0;
5410 
5411 	if (len < sizeof(status)) {
5412 		retval = -EINVAL;
5413 		goto out;
5414 	}
5415 
5416 	len = sizeof(status);
5417 	if (copy_from_user(&status, optval, len)) {
5418 		retval = -EFAULT;
5419 		goto out;
5420 	}
5421 
5422 	associd = status.sstat_assoc_id;
5423 	asoc = sctp_id2assoc(sk, associd);
5424 	if (!asoc) {
5425 		retval = -EINVAL;
5426 		goto out;
5427 	}
5428 
5429 	transport = asoc->peer.primary_path;
5430 
5431 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5432 	status.sstat_state = sctp_assoc_to_state(asoc);
5433 	status.sstat_rwnd =  asoc->peer.rwnd;
5434 	status.sstat_unackdata = asoc->unack_data;
5435 
5436 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5437 	status.sstat_instrms = asoc->stream.incnt;
5438 	status.sstat_outstrms = asoc->stream.outcnt;
5439 	status.sstat_fragmentation_point = asoc->frag_point;
5440 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5441 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5442 			transport->af_specific->sockaddr_len);
5443 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5444 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5445 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5446 	status.sstat_primary.spinfo_state = transport->state;
5447 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5448 	status.sstat_primary.spinfo_srtt = transport->srtt;
5449 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5450 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5451 
5452 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5453 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5454 
5455 	if (put_user(len, optlen)) {
5456 		retval = -EFAULT;
5457 		goto out;
5458 	}
5459 
5460 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5461 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5462 		 status.sstat_assoc_id);
5463 
5464 	if (copy_to_user(optval, &status, len)) {
5465 		retval = -EFAULT;
5466 		goto out;
5467 	}
5468 
5469 out:
5470 	return retval;
5471 }
5472 
5473 
5474 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5475  *
5476  * Applications can retrieve information about a specific peer address
5477  * of an association, including its reachability state, congestion
5478  * window, and retransmission timer values.  This information is
5479  * read-only.
5480  */
5481 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5482 					  char __user *optval,
5483 					  int __user *optlen)
5484 {
5485 	struct sctp_paddrinfo pinfo;
5486 	struct sctp_transport *transport;
5487 	int retval = 0;
5488 
5489 	if (len < sizeof(pinfo)) {
5490 		retval = -EINVAL;
5491 		goto out;
5492 	}
5493 
5494 	len = sizeof(pinfo);
5495 	if (copy_from_user(&pinfo, optval, len)) {
5496 		retval = -EFAULT;
5497 		goto out;
5498 	}
5499 
5500 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5501 					   pinfo.spinfo_assoc_id);
5502 	if (!transport)
5503 		return -EINVAL;
5504 
5505 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5506 	pinfo.spinfo_state = transport->state;
5507 	pinfo.spinfo_cwnd = transport->cwnd;
5508 	pinfo.spinfo_srtt = transport->srtt;
5509 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5510 	pinfo.spinfo_mtu = transport->pathmtu;
5511 
5512 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5513 		pinfo.spinfo_state = SCTP_ACTIVE;
5514 
5515 	if (put_user(len, optlen)) {
5516 		retval = -EFAULT;
5517 		goto out;
5518 	}
5519 
5520 	if (copy_to_user(optval, &pinfo, len)) {
5521 		retval = -EFAULT;
5522 		goto out;
5523 	}
5524 
5525 out:
5526 	return retval;
5527 }
5528 
5529 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5530  *
5531  * This option is a on/off flag.  If enabled no SCTP message
5532  * fragmentation will be performed.  Instead if a message being sent
5533  * exceeds the current PMTU size, the message will NOT be sent and
5534  * instead a error will be indicated to the user.
5535  */
5536 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5537 					char __user *optval, int __user *optlen)
5538 {
5539 	int val;
5540 
5541 	if (len < sizeof(int))
5542 		return -EINVAL;
5543 
5544 	len = sizeof(int);
5545 	val = (sctp_sk(sk)->disable_fragments == 1);
5546 	if (put_user(len, optlen))
5547 		return -EFAULT;
5548 	if (copy_to_user(optval, &val, len))
5549 		return -EFAULT;
5550 	return 0;
5551 }
5552 
5553 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5554  *
5555  * This socket option is used to specify various notifications and
5556  * ancillary data the user wishes to receive.
5557  */
5558 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5559 				  int __user *optlen)
5560 {
5561 	struct sctp_event_subscribe subscribe;
5562 	__u8 *sn_type = (__u8 *)&subscribe;
5563 	int i;
5564 
5565 	if (len == 0)
5566 		return -EINVAL;
5567 	if (len > sizeof(struct sctp_event_subscribe))
5568 		len = sizeof(struct sctp_event_subscribe);
5569 	if (put_user(len, optlen))
5570 		return -EFAULT;
5571 
5572 	for (i = 0; i < len; i++)
5573 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5574 							SCTP_SN_TYPE_BASE + i);
5575 
5576 	if (copy_to_user(optval, &subscribe, len))
5577 		return -EFAULT;
5578 
5579 	return 0;
5580 }
5581 
5582 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5583  *
5584  * This socket option is applicable to the UDP-style socket only.  When
5585  * set it will cause associations that are idle for more than the
5586  * specified number of seconds to automatically close.  An association
5587  * being idle is defined an association that has NOT sent or received
5588  * user data.  The special value of '0' indicates that no automatic
5589  * close of any associations should be performed.  The option expects an
5590  * integer defining the number of seconds of idle time before an
5591  * association is closed.
5592  */
5593 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5594 {
5595 	/* Applicable to UDP-style socket only */
5596 	if (sctp_style(sk, TCP))
5597 		return -EOPNOTSUPP;
5598 	if (len < sizeof(int))
5599 		return -EINVAL;
5600 	len = sizeof(int);
5601 	if (put_user(len, optlen))
5602 		return -EFAULT;
5603 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5604 		return -EFAULT;
5605 	return 0;
5606 }
5607 
5608 /* Helper routine to branch off an association to a new socket.  */
5609 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5610 {
5611 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5612 	struct sctp_sock *sp = sctp_sk(sk);
5613 	struct socket *sock;
5614 	int err = 0;
5615 
5616 	/* Do not peel off from one netns to another one. */
5617 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5618 		return -EINVAL;
5619 
5620 	if (!asoc)
5621 		return -EINVAL;
5622 
5623 	/* An association cannot be branched off from an already peeled-off
5624 	 * socket, nor is this supported for tcp style sockets.
5625 	 */
5626 	if (!sctp_style(sk, UDP))
5627 		return -EINVAL;
5628 
5629 	/* Create a new socket.  */
5630 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5631 	if (err < 0)
5632 		return err;
5633 
5634 	sctp_copy_sock(sock->sk, sk, asoc);
5635 
5636 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5637 	 * Set the daddr and initialize id to something more random and also
5638 	 * copy over any ip options.
5639 	 */
5640 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5641 	sp->pf->copy_ip_options(sk, sock->sk);
5642 
5643 	/* Populate the fields of the newsk from the oldsk and migrate the
5644 	 * asoc to the newsk.
5645 	 */
5646 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5647 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5648 	if (err) {
5649 		sock_release(sock);
5650 		sock = NULL;
5651 	}
5652 
5653 	*sockp = sock;
5654 
5655 	return err;
5656 }
5657 EXPORT_SYMBOL(sctp_do_peeloff);
5658 
5659 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5660 					  struct file **newfile, unsigned flags)
5661 {
5662 	struct socket *newsock;
5663 	int retval;
5664 
5665 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5666 	if (retval < 0)
5667 		goto out;
5668 
5669 	/* Map the socket to an unused fd that can be returned to the user.  */
5670 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5671 	if (retval < 0) {
5672 		sock_release(newsock);
5673 		goto out;
5674 	}
5675 
5676 	*newfile = sock_alloc_file(newsock, 0, NULL);
5677 	if (IS_ERR(*newfile)) {
5678 		put_unused_fd(retval);
5679 		retval = PTR_ERR(*newfile);
5680 		*newfile = NULL;
5681 		return retval;
5682 	}
5683 
5684 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5685 		 retval);
5686 
5687 	peeloff->sd = retval;
5688 
5689 	if (flags & SOCK_NONBLOCK)
5690 		(*newfile)->f_flags |= O_NONBLOCK;
5691 out:
5692 	return retval;
5693 }
5694 
5695 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5696 {
5697 	sctp_peeloff_arg_t peeloff;
5698 	struct file *newfile = NULL;
5699 	int retval = 0;
5700 
5701 	if (len < sizeof(sctp_peeloff_arg_t))
5702 		return -EINVAL;
5703 	len = sizeof(sctp_peeloff_arg_t);
5704 	if (copy_from_user(&peeloff, optval, len))
5705 		return -EFAULT;
5706 
5707 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5708 	if (retval < 0)
5709 		goto out;
5710 
5711 	/* Return the fd mapped to the new socket.  */
5712 	if (put_user(len, optlen)) {
5713 		fput(newfile);
5714 		put_unused_fd(retval);
5715 		return -EFAULT;
5716 	}
5717 
5718 	if (copy_to_user(optval, &peeloff, len)) {
5719 		fput(newfile);
5720 		put_unused_fd(retval);
5721 		return -EFAULT;
5722 	}
5723 	fd_install(retval, newfile);
5724 out:
5725 	return retval;
5726 }
5727 
5728 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5729 					 char __user *optval, int __user *optlen)
5730 {
5731 	sctp_peeloff_flags_arg_t peeloff;
5732 	struct file *newfile = NULL;
5733 	int retval = 0;
5734 
5735 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5736 		return -EINVAL;
5737 	len = sizeof(sctp_peeloff_flags_arg_t);
5738 	if (copy_from_user(&peeloff, optval, len))
5739 		return -EFAULT;
5740 
5741 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5742 						&newfile, peeloff.flags);
5743 	if (retval < 0)
5744 		goto out;
5745 
5746 	/* Return the fd mapped to the new socket.  */
5747 	if (put_user(len, optlen)) {
5748 		fput(newfile);
5749 		put_unused_fd(retval);
5750 		return -EFAULT;
5751 	}
5752 
5753 	if (copy_to_user(optval, &peeloff, len)) {
5754 		fput(newfile);
5755 		put_unused_fd(retval);
5756 		return -EFAULT;
5757 	}
5758 	fd_install(retval, newfile);
5759 out:
5760 	return retval;
5761 }
5762 
5763 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5764  *
5765  * Applications can enable or disable heartbeats for any peer address of
5766  * an association, modify an address's heartbeat interval, force a
5767  * heartbeat to be sent immediately, and adjust the address's maximum
5768  * number of retransmissions sent before an address is considered
5769  * unreachable.  The following structure is used to access and modify an
5770  * address's parameters:
5771  *
5772  *  struct sctp_paddrparams {
5773  *     sctp_assoc_t            spp_assoc_id;
5774  *     struct sockaddr_storage spp_address;
5775  *     uint32_t                spp_hbinterval;
5776  *     uint16_t                spp_pathmaxrxt;
5777  *     uint32_t                spp_pathmtu;
5778  *     uint32_t                spp_sackdelay;
5779  *     uint32_t                spp_flags;
5780  * };
5781  *
5782  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5783  *                     application, and identifies the association for
5784  *                     this query.
5785  *   spp_address     - This specifies which address is of interest.
5786  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5787  *                     in milliseconds.  If a  value of zero
5788  *                     is present in this field then no changes are to
5789  *                     be made to this parameter.
5790  *   spp_pathmaxrxt  - This contains the maximum number of
5791  *                     retransmissions before this address shall be
5792  *                     considered unreachable. If a  value of zero
5793  *                     is present in this field then no changes are to
5794  *                     be made to this parameter.
5795  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5796  *                     specified here will be the "fixed" path mtu.
5797  *                     Note that if the spp_address field is empty
5798  *                     then all associations on this address will
5799  *                     have this fixed path mtu set upon them.
5800  *
5801  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5802  *                     the number of milliseconds that sacks will be delayed
5803  *                     for. This value will apply to all addresses of an
5804  *                     association if the spp_address field is empty. Note
5805  *                     also, that if delayed sack is enabled and this
5806  *                     value is set to 0, no change is made to the last
5807  *                     recorded delayed sack timer value.
5808  *
5809  *   spp_flags       - These flags are used to control various features
5810  *                     on an association. The flag field may contain
5811  *                     zero or more of the following options.
5812  *
5813  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5814  *                     specified address. Note that if the address
5815  *                     field is empty all addresses for the association
5816  *                     have heartbeats enabled upon them.
5817  *
5818  *                     SPP_HB_DISABLE - Disable heartbeats on the
5819  *                     speicifed address. Note that if the address
5820  *                     field is empty all addresses for the association
5821  *                     will have their heartbeats disabled. Note also
5822  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5823  *                     mutually exclusive, only one of these two should
5824  *                     be specified. Enabling both fields will have
5825  *                     undetermined results.
5826  *
5827  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5828  *                     to be made immediately.
5829  *
5830  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5831  *                     discovery upon the specified address. Note that
5832  *                     if the address feild is empty then all addresses
5833  *                     on the association are effected.
5834  *
5835  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5836  *                     discovery upon the specified address. Note that
5837  *                     if the address feild is empty then all addresses
5838  *                     on the association are effected. Not also that
5839  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5840  *                     exclusive. Enabling both will have undetermined
5841  *                     results.
5842  *
5843  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5844  *                     on delayed sack. The time specified in spp_sackdelay
5845  *                     is used to specify the sack delay for this address. Note
5846  *                     that if spp_address is empty then all addresses will
5847  *                     enable delayed sack and take on the sack delay
5848  *                     value specified in spp_sackdelay.
5849  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5850  *                     off delayed sack. If the spp_address field is blank then
5851  *                     delayed sack is disabled for the entire association. Note
5852  *                     also that this field is mutually exclusive to
5853  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5854  *                     results.
5855  *
5856  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5857  *                     setting of the IPV6 flow label value.  The value is
5858  *                     contained in the spp_ipv6_flowlabel field.
5859  *                     Upon retrieval, this flag will be set to indicate that
5860  *                     the spp_ipv6_flowlabel field has a valid value returned.
5861  *                     If a specific destination address is set (in the
5862  *                     spp_address field), then the value returned is that of
5863  *                     the address.  If just an association is specified (and
5864  *                     no address), then the association's default flow label
5865  *                     is returned.  If neither an association nor a destination
5866  *                     is specified, then the socket's default flow label is
5867  *                     returned.  For non-IPv6 sockets, this flag will be left
5868  *                     cleared.
5869  *
5870  *                     SPP_DSCP:  Setting this flag enables the setting of the
5871  *                     Differentiated Services Code Point (DSCP) value
5872  *                     associated with either the association or a specific
5873  *                     address.  The value is obtained in the spp_dscp field.
5874  *                     Upon retrieval, this flag will be set to indicate that
5875  *                     the spp_dscp field has a valid value returned.  If a
5876  *                     specific destination address is set when called (in the
5877  *                     spp_address field), then that specific destination
5878  *                     address's DSCP value is returned.  If just an association
5879  *                     is specified, then the association's default DSCP is
5880  *                     returned.  If neither an association nor a destination is
5881  *                     specified, then the socket's default DSCP is returned.
5882  *
5883  *   spp_ipv6_flowlabel
5884  *                   - This field is used in conjunction with the
5885  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5886  *                     The 20 least significant bits are used for the flow
5887  *                     label.  This setting has precedence over any IPv6-layer
5888  *                     setting.
5889  *
5890  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5891  *                     and contains the DSCP.  The 6 most significant bits are
5892  *                     used for the DSCP.  This setting has precedence over any
5893  *                     IPv4- or IPv6- layer setting.
5894  */
5895 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5896 					    char __user *optval, int __user *optlen)
5897 {
5898 	struct sctp_paddrparams  params;
5899 	struct sctp_transport   *trans = NULL;
5900 	struct sctp_association *asoc = NULL;
5901 	struct sctp_sock        *sp = sctp_sk(sk);
5902 
5903 	if (len >= sizeof(params))
5904 		len = sizeof(params);
5905 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5906 				       spp_ipv6_flowlabel), 4))
5907 		len = ALIGN(offsetof(struct sctp_paddrparams,
5908 				     spp_ipv6_flowlabel), 4);
5909 	else
5910 		return -EINVAL;
5911 
5912 	if (copy_from_user(&params, optval, len))
5913 		return -EFAULT;
5914 
5915 	/* If an address other than INADDR_ANY is specified, and
5916 	 * no transport is found, then the request is invalid.
5917 	 */
5918 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5919 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5920 					       params.spp_assoc_id);
5921 		if (!trans) {
5922 			pr_debug("%s: failed no transport\n", __func__);
5923 			return -EINVAL;
5924 		}
5925 	}
5926 
5927 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5928 	 * socket is a one to many style socket, and an association
5929 	 * was not found, then the id was invalid.
5930 	 */
5931 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5932 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5933 	    sctp_style(sk, UDP)) {
5934 		pr_debug("%s: failed no association\n", __func__);
5935 		return -EINVAL;
5936 	}
5937 
5938 	if (trans) {
5939 		/* Fetch transport values. */
5940 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5941 		params.spp_pathmtu    = trans->pathmtu;
5942 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5943 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5944 
5945 		/*draft-11 doesn't say what to return in spp_flags*/
5946 		params.spp_flags      = trans->param_flags;
5947 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5948 			params.spp_ipv6_flowlabel = trans->flowlabel &
5949 						    SCTP_FLOWLABEL_VAL_MASK;
5950 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5951 		}
5952 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5953 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5954 			params.spp_flags |= SPP_DSCP;
5955 		}
5956 	} else if (asoc) {
5957 		/* Fetch association values. */
5958 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5959 		params.spp_pathmtu    = asoc->pathmtu;
5960 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5961 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5962 
5963 		/*draft-11 doesn't say what to return in spp_flags*/
5964 		params.spp_flags      = asoc->param_flags;
5965 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5966 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5967 						    SCTP_FLOWLABEL_VAL_MASK;
5968 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5969 		}
5970 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5971 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5972 			params.spp_flags |= SPP_DSCP;
5973 		}
5974 	} else {
5975 		/* Fetch socket values. */
5976 		params.spp_hbinterval = sp->hbinterval;
5977 		params.spp_pathmtu    = sp->pathmtu;
5978 		params.spp_sackdelay  = sp->sackdelay;
5979 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5980 
5981 		/*draft-11 doesn't say what to return in spp_flags*/
5982 		params.spp_flags      = sp->param_flags;
5983 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5984 			params.spp_ipv6_flowlabel = sp->flowlabel &
5985 						    SCTP_FLOWLABEL_VAL_MASK;
5986 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5987 		}
5988 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5989 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5990 			params.spp_flags |= SPP_DSCP;
5991 		}
5992 	}
5993 
5994 	if (copy_to_user(optval, &params, len))
5995 		return -EFAULT;
5996 
5997 	if (put_user(len, optlen))
5998 		return -EFAULT;
5999 
6000 	return 0;
6001 }
6002 
6003 /*
6004  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
6005  *
6006  * This option will effect the way delayed acks are performed.  This
6007  * option allows you to get or set the delayed ack time, in
6008  * milliseconds.  It also allows changing the delayed ack frequency.
6009  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6010  * the assoc_id is 0, then this sets or gets the endpoints default
6011  * values.  If the assoc_id field is non-zero, then the set or get
6012  * effects the specified association for the one to many model (the
6013  * assoc_id field is ignored by the one to one model).  Note that if
6014  * sack_delay or sack_freq are 0 when setting this option, then the
6015  * current values will remain unchanged.
6016  *
6017  * struct sctp_sack_info {
6018  *     sctp_assoc_t            sack_assoc_id;
6019  *     uint32_t                sack_delay;
6020  *     uint32_t                sack_freq;
6021  * };
6022  *
6023  * sack_assoc_id -  This parameter, indicates which association the user
6024  *    is performing an action upon.  Note that if this field's value is
6025  *    zero then the endpoints default value is changed (effecting future
6026  *    associations only).
6027  *
6028  * sack_delay -  This parameter contains the number of milliseconds that
6029  *    the user is requesting the delayed ACK timer be set to.  Note that
6030  *    this value is defined in the standard to be between 200 and 500
6031  *    milliseconds.
6032  *
6033  * sack_freq -  This parameter contains the number of packets that must
6034  *    be received before a sack is sent without waiting for the delay
6035  *    timer to expire.  The default value for this is 2, setting this
6036  *    value to 1 will disable the delayed sack algorithm.
6037  */
6038 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6039 					    char __user *optval,
6040 					    int __user *optlen)
6041 {
6042 	struct sctp_sack_info    params;
6043 	struct sctp_association *asoc = NULL;
6044 	struct sctp_sock        *sp = sctp_sk(sk);
6045 
6046 	if (len >= sizeof(struct sctp_sack_info)) {
6047 		len = sizeof(struct sctp_sack_info);
6048 
6049 		if (copy_from_user(&params, optval, len))
6050 			return -EFAULT;
6051 	} else if (len == sizeof(struct sctp_assoc_value)) {
6052 		pr_warn_ratelimited(DEPRECATED
6053 				    "%s (pid %d) "
6054 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6055 				    "Use struct sctp_sack_info instead\n",
6056 				    current->comm, task_pid_nr(current));
6057 		if (copy_from_user(&params, optval, len))
6058 			return -EFAULT;
6059 	} else
6060 		return -EINVAL;
6061 
6062 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6063 	 * socket is a one to many style socket, and an association
6064 	 * was not found, then the id was invalid.
6065 	 */
6066 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6067 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6068 	    sctp_style(sk, UDP))
6069 		return -EINVAL;
6070 
6071 	if (asoc) {
6072 		/* Fetch association values. */
6073 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6074 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6075 			params.sack_freq = asoc->sackfreq;
6076 
6077 		} else {
6078 			params.sack_delay = 0;
6079 			params.sack_freq = 1;
6080 		}
6081 	} else {
6082 		/* Fetch socket values. */
6083 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6084 			params.sack_delay  = sp->sackdelay;
6085 			params.sack_freq = sp->sackfreq;
6086 		} else {
6087 			params.sack_delay  = 0;
6088 			params.sack_freq = 1;
6089 		}
6090 	}
6091 
6092 	if (copy_to_user(optval, &params, len))
6093 		return -EFAULT;
6094 
6095 	if (put_user(len, optlen))
6096 		return -EFAULT;
6097 
6098 	return 0;
6099 }
6100 
6101 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6102  *
6103  * Applications can specify protocol parameters for the default association
6104  * initialization.  The option name argument to setsockopt() and getsockopt()
6105  * is SCTP_INITMSG.
6106  *
6107  * Setting initialization parameters is effective only on an unconnected
6108  * socket (for UDP-style sockets only future associations are effected
6109  * by the change).  With TCP-style sockets, this option is inherited by
6110  * sockets derived from a listener socket.
6111  */
6112 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6113 {
6114 	if (len < sizeof(struct sctp_initmsg))
6115 		return -EINVAL;
6116 	len = sizeof(struct sctp_initmsg);
6117 	if (put_user(len, optlen))
6118 		return -EFAULT;
6119 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6120 		return -EFAULT;
6121 	return 0;
6122 }
6123 
6124 
6125 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6126 				      char __user *optval, int __user *optlen)
6127 {
6128 	struct sctp_association *asoc;
6129 	int cnt = 0;
6130 	struct sctp_getaddrs getaddrs;
6131 	struct sctp_transport *from;
6132 	void __user *to;
6133 	union sctp_addr temp;
6134 	struct sctp_sock *sp = sctp_sk(sk);
6135 	int addrlen;
6136 	size_t space_left;
6137 	int bytes_copied;
6138 
6139 	if (len < sizeof(struct sctp_getaddrs))
6140 		return -EINVAL;
6141 
6142 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6143 		return -EFAULT;
6144 
6145 	/* For UDP-style sockets, id specifies the association to query.  */
6146 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6147 	if (!asoc)
6148 		return -EINVAL;
6149 
6150 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6151 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6152 
6153 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6154 				transports) {
6155 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6156 		addrlen = sctp_get_pf_specific(sk->sk_family)
6157 			      ->addr_to_user(sp, &temp);
6158 		if (space_left < addrlen)
6159 			return -ENOMEM;
6160 		if (copy_to_user(to, &temp, addrlen))
6161 			return -EFAULT;
6162 		to += addrlen;
6163 		cnt++;
6164 		space_left -= addrlen;
6165 	}
6166 
6167 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6168 		return -EFAULT;
6169 	bytes_copied = ((char __user *)to) - optval;
6170 	if (put_user(bytes_copied, optlen))
6171 		return -EFAULT;
6172 
6173 	return 0;
6174 }
6175 
6176 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6177 			    size_t space_left, int *bytes_copied)
6178 {
6179 	struct sctp_sockaddr_entry *addr;
6180 	union sctp_addr temp;
6181 	int cnt = 0;
6182 	int addrlen;
6183 	struct net *net = sock_net(sk);
6184 
6185 	rcu_read_lock();
6186 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6187 		if (!addr->valid)
6188 			continue;
6189 
6190 		if ((PF_INET == sk->sk_family) &&
6191 		    (AF_INET6 == addr->a.sa.sa_family))
6192 			continue;
6193 		if ((PF_INET6 == sk->sk_family) &&
6194 		    inet_v6_ipv6only(sk) &&
6195 		    (AF_INET == addr->a.sa.sa_family))
6196 			continue;
6197 		memcpy(&temp, &addr->a, sizeof(temp));
6198 		if (!temp.v4.sin_port)
6199 			temp.v4.sin_port = htons(port);
6200 
6201 		addrlen = sctp_get_pf_specific(sk->sk_family)
6202 			      ->addr_to_user(sctp_sk(sk), &temp);
6203 
6204 		if (space_left < addrlen) {
6205 			cnt =  -ENOMEM;
6206 			break;
6207 		}
6208 		memcpy(to, &temp, addrlen);
6209 
6210 		to += addrlen;
6211 		cnt++;
6212 		space_left -= addrlen;
6213 		*bytes_copied += addrlen;
6214 	}
6215 	rcu_read_unlock();
6216 
6217 	return cnt;
6218 }
6219 
6220 
6221 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6222 				       char __user *optval, int __user *optlen)
6223 {
6224 	struct sctp_bind_addr *bp;
6225 	struct sctp_association *asoc;
6226 	int cnt = 0;
6227 	struct sctp_getaddrs getaddrs;
6228 	struct sctp_sockaddr_entry *addr;
6229 	void __user *to;
6230 	union sctp_addr temp;
6231 	struct sctp_sock *sp = sctp_sk(sk);
6232 	int addrlen;
6233 	int err = 0;
6234 	size_t space_left;
6235 	int bytes_copied = 0;
6236 	void *addrs;
6237 	void *buf;
6238 
6239 	if (len < sizeof(struct sctp_getaddrs))
6240 		return -EINVAL;
6241 
6242 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6243 		return -EFAULT;
6244 
6245 	/*
6246 	 *  For UDP-style sockets, id specifies the association to query.
6247 	 *  If the id field is set to the value '0' then the locally bound
6248 	 *  addresses are returned without regard to any particular
6249 	 *  association.
6250 	 */
6251 	if (0 == getaddrs.assoc_id) {
6252 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6253 	} else {
6254 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6255 		if (!asoc)
6256 			return -EINVAL;
6257 		bp = &asoc->base.bind_addr;
6258 	}
6259 
6260 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6261 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6262 
6263 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6264 	if (!addrs)
6265 		return -ENOMEM;
6266 
6267 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6268 	 * addresses from the global local address list.
6269 	 */
6270 	if (sctp_list_single_entry(&bp->address_list)) {
6271 		addr = list_entry(bp->address_list.next,
6272 				  struct sctp_sockaddr_entry, list);
6273 		if (sctp_is_any(sk, &addr->a)) {
6274 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6275 						space_left, &bytes_copied);
6276 			if (cnt < 0) {
6277 				err = cnt;
6278 				goto out;
6279 			}
6280 			goto copy_getaddrs;
6281 		}
6282 	}
6283 
6284 	buf = addrs;
6285 	/* Protection on the bound address list is not needed since
6286 	 * in the socket option context we hold a socket lock and
6287 	 * thus the bound address list can't change.
6288 	 */
6289 	list_for_each_entry(addr, &bp->address_list, list) {
6290 		memcpy(&temp, &addr->a, sizeof(temp));
6291 		addrlen = sctp_get_pf_specific(sk->sk_family)
6292 			      ->addr_to_user(sp, &temp);
6293 		if (space_left < addrlen) {
6294 			err =  -ENOMEM; /*fixme: right error?*/
6295 			goto out;
6296 		}
6297 		memcpy(buf, &temp, addrlen);
6298 		buf += addrlen;
6299 		bytes_copied += addrlen;
6300 		cnt++;
6301 		space_left -= addrlen;
6302 	}
6303 
6304 copy_getaddrs:
6305 	if (copy_to_user(to, addrs, bytes_copied)) {
6306 		err = -EFAULT;
6307 		goto out;
6308 	}
6309 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6310 		err = -EFAULT;
6311 		goto out;
6312 	}
6313 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6314 	 * but we can't change it anymore.
6315 	 */
6316 	if (put_user(bytes_copied, optlen))
6317 		err = -EFAULT;
6318 out:
6319 	kfree(addrs);
6320 	return err;
6321 }
6322 
6323 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6324  *
6325  * Requests that the local SCTP stack use the enclosed peer address as
6326  * the association primary.  The enclosed address must be one of the
6327  * association peer's addresses.
6328  */
6329 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6330 					char __user *optval, int __user *optlen)
6331 {
6332 	struct sctp_prim prim;
6333 	struct sctp_association *asoc;
6334 	struct sctp_sock *sp = sctp_sk(sk);
6335 
6336 	if (len < sizeof(struct sctp_prim))
6337 		return -EINVAL;
6338 
6339 	len = sizeof(struct sctp_prim);
6340 
6341 	if (copy_from_user(&prim, optval, len))
6342 		return -EFAULT;
6343 
6344 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6345 	if (!asoc)
6346 		return -EINVAL;
6347 
6348 	if (!asoc->peer.primary_path)
6349 		return -ENOTCONN;
6350 
6351 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6352 		asoc->peer.primary_path->af_specific->sockaddr_len);
6353 
6354 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6355 			(union sctp_addr *)&prim.ssp_addr);
6356 
6357 	if (put_user(len, optlen))
6358 		return -EFAULT;
6359 	if (copy_to_user(optval, &prim, len))
6360 		return -EFAULT;
6361 
6362 	return 0;
6363 }
6364 
6365 /*
6366  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6367  *
6368  * Requests that the local endpoint set the specified Adaptation Layer
6369  * Indication parameter for all future INIT and INIT-ACK exchanges.
6370  */
6371 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6372 				  char __user *optval, int __user *optlen)
6373 {
6374 	struct sctp_setadaptation adaptation;
6375 
6376 	if (len < sizeof(struct sctp_setadaptation))
6377 		return -EINVAL;
6378 
6379 	len = sizeof(struct sctp_setadaptation);
6380 
6381 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6382 
6383 	if (put_user(len, optlen))
6384 		return -EFAULT;
6385 	if (copy_to_user(optval, &adaptation, len))
6386 		return -EFAULT;
6387 
6388 	return 0;
6389 }
6390 
6391 /*
6392  *
6393  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6394  *
6395  *   Applications that wish to use the sendto() system call may wish to
6396  *   specify a default set of parameters that would normally be supplied
6397  *   through the inclusion of ancillary data.  This socket option allows
6398  *   such an application to set the default sctp_sndrcvinfo structure.
6399 
6400 
6401  *   The application that wishes to use this socket option simply passes
6402  *   in to this call the sctp_sndrcvinfo structure defined in Section
6403  *   5.2.2) The input parameters accepted by this call include
6404  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6405  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6406  *   to this call if the caller is using the UDP model.
6407  *
6408  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6409  */
6410 static int sctp_getsockopt_default_send_param(struct sock *sk,
6411 					int len, char __user *optval,
6412 					int __user *optlen)
6413 {
6414 	struct sctp_sock *sp = sctp_sk(sk);
6415 	struct sctp_association *asoc;
6416 	struct sctp_sndrcvinfo info;
6417 
6418 	if (len < sizeof(info))
6419 		return -EINVAL;
6420 
6421 	len = sizeof(info);
6422 
6423 	if (copy_from_user(&info, optval, len))
6424 		return -EFAULT;
6425 
6426 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6427 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6428 	    sctp_style(sk, UDP))
6429 		return -EINVAL;
6430 
6431 	if (asoc) {
6432 		info.sinfo_stream = asoc->default_stream;
6433 		info.sinfo_flags = asoc->default_flags;
6434 		info.sinfo_ppid = asoc->default_ppid;
6435 		info.sinfo_context = asoc->default_context;
6436 		info.sinfo_timetolive = asoc->default_timetolive;
6437 	} else {
6438 		info.sinfo_stream = sp->default_stream;
6439 		info.sinfo_flags = sp->default_flags;
6440 		info.sinfo_ppid = sp->default_ppid;
6441 		info.sinfo_context = sp->default_context;
6442 		info.sinfo_timetolive = sp->default_timetolive;
6443 	}
6444 
6445 	if (put_user(len, optlen))
6446 		return -EFAULT;
6447 	if (copy_to_user(optval, &info, len))
6448 		return -EFAULT;
6449 
6450 	return 0;
6451 }
6452 
6453 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6454  * (SCTP_DEFAULT_SNDINFO)
6455  */
6456 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6457 					   char __user *optval,
6458 					   int __user *optlen)
6459 {
6460 	struct sctp_sock *sp = sctp_sk(sk);
6461 	struct sctp_association *asoc;
6462 	struct sctp_sndinfo info;
6463 
6464 	if (len < sizeof(info))
6465 		return -EINVAL;
6466 
6467 	len = sizeof(info);
6468 
6469 	if (copy_from_user(&info, optval, len))
6470 		return -EFAULT;
6471 
6472 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6473 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6474 	    sctp_style(sk, UDP))
6475 		return -EINVAL;
6476 
6477 	if (asoc) {
6478 		info.snd_sid = asoc->default_stream;
6479 		info.snd_flags = asoc->default_flags;
6480 		info.snd_ppid = asoc->default_ppid;
6481 		info.snd_context = asoc->default_context;
6482 	} else {
6483 		info.snd_sid = sp->default_stream;
6484 		info.snd_flags = sp->default_flags;
6485 		info.snd_ppid = sp->default_ppid;
6486 		info.snd_context = sp->default_context;
6487 	}
6488 
6489 	if (put_user(len, optlen))
6490 		return -EFAULT;
6491 	if (copy_to_user(optval, &info, len))
6492 		return -EFAULT;
6493 
6494 	return 0;
6495 }
6496 
6497 /*
6498  *
6499  * 7.1.5 SCTP_NODELAY
6500  *
6501  * Turn on/off any Nagle-like algorithm.  This means that packets are
6502  * generally sent as soon as possible and no unnecessary delays are
6503  * introduced, at the cost of more packets in the network.  Expects an
6504  * integer boolean flag.
6505  */
6506 
6507 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6508 				   char __user *optval, int __user *optlen)
6509 {
6510 	int val;
6511 
6512 	if (len < sizeof(int))
6513 		return -EINVAL;
6514 
6515 	len = sizeof(int);
6516 	val = (sctp_sk(sk)->nodelay == 1);
6517 	if (put_user(len, optlen))
6518 		return -EFAULT;
6519 	if (copy_to_user(optval, &val, len))
6520 		return -EFAULT;
6521 	return 0;
6522 }
6523 
6524 /*
6525  *
6526  * 7.1.1 SCTP_RTOINFO
6527  *
6528  * The protocol parameters used to initialize and bound retransmission
6529  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6530  * and modify these parameters.
6531  * All parameters are time values, in milliseconds.  A value of 0, when
6532  * modifying the parameters, indicates that the current value should not
6533  * be changed.
6534  *
6535  */
6536 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6537 				char __user *optval,
6538 				int __user *optlen) {
6539 	struct sctp_rtoinfo rtoinfo;
6540 	struct sctp_association *asoc;
6541 
6542 	if (len < sizeof (struct sctp_rtoinfo))
6543 		return -EINVAL;
6544 
6545 	len = sizeof(struct sctp_rtoinfo);
6546 
6547 	if (copy_from_user(&rtoinfo, optval, len))
6548 		return -EFAULT;
6549 
6550 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6551 
6552 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6553 	    sctp_style(sk, UDP))
6554 		return -EINVAL;
6555 
6556 	/* Values corresponding to the specific association. */
6557 	if (asoc) {
6558 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6559 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6560 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6561 	} else {
6562 		/* Values corresponding to the endpoint. */
6563 		struct sctp_sock *sp = sctp_sk(sk);
6564 
6565 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6566 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6567 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6568 	}
6569 
6570 	if (put_user(len, optlen))
6571 		return -EFAULT;
6572 
6573 	if (copy_to_user(optval, &rtoinfo, len))
6574 		return -EFAULT;
6575 
6576 	return 0;
6577 }
6578 
6579 /*
6580  *
6581  * 7.1.2 SCTP_ASSOCINFO
6582  *
6583  * This option is used to tune the maximum retransmission attempts
6584  * of the association.
6585  * Returns an error if the new association retransmission value is
6586  * greater than the sum of the retransmission value  of the peer.
6587  * See [SCTP] for more information.
6588  *
6589  */
6590 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6591 				     char __user *optval,
6592 				     int __user *optlen)
6593 {
6594 
6595 	struct sctp_assocparams assocparams;
6596 	struct sctp_association *asoc;
6597 	struct list_head *pos;
6598 	int cnt = 0;
6599 
6600 	if (len < sizeof (struct sctp_assocparams))
6601 		return -EINVAL;
6602 
6603 	len = sizeof(struct sctp_assocparams);
6604 
6605 	if (copy_from_user(&assocparams, optval, len))
6606 		return -EFAULT;
6607 
6608 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6609 
6610 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6611 	    sctp_style(sk, UDP))
6612 		return -EINVAL;
6613 
6614 	/* Values correspoinding to the specific association */
6615 	if (asoc) {
6616 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6617 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6618 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6619 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6620 
6621 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6622 			cnt++;
6623 		}
6624 
6625 		assocparams.sasoc_number_peer_destinations = cnt;
6626 	} else {
6627 		/* Values corresponding to the endpoint */
6628 		struct sctp_sock *sp = sctp_sk(sk);
6629 
6630 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6631 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6632 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6633 		assocparams.sasoc_cookie_life =
6634 					sp->assocparams.sasoc_cookie_life;
6635 		assocparams.sasoc_number_peer_destinations =
6636 					sp->assocparams.
6637 					sasoc_number_peer_destinations;
6638 	}
6639 
6640 	if (put_user(len, optlen))
6641 		return -EFAULT;
6642 
6643 	if (copy_to_user(optval, &assocparams, len))
6644 		return -EFAULT;
6645 
6646 	return 0;
6647 }
6648 
6649 /*
6650  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6651  *
6652  * This socket option is a boolean flag which turns on or off mapped V4
6653  * addresses.  If this option is turned on and the socket is type
6654  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6655  * If this option is turned off, then no mapping will be done of V4
6656  * addresses and a user will receive both PF_INET6 and PF_INET type
6657  * addresses on the socket.
6658  */
6659 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6660 				    char __user *optval, int __user *optlen)
6661 {
6662 	int val;
6663 	struct sctp_sock *sp = sctp_sk(sk);
6664 
6665 	if (len < sizeof(int))
6666 		return -EINVAL;
6667 
6668 	len = sizeof(int);
6669 	val = sp->v4mapped;
6670 	if (put_user(len, optlen))
6671 		return -EFAULT;
6672 	if (copy_to_user(optval, &val, len))
6673 		return -EFAULT;
6674 
6675 	return 0;
6676 }
6677 
6678 /*
6679  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6680  * (chapter and verse is quoted at sctp_setsockopt_context())
6681  */
6682 static int sctp_getsockopt_context(struct sock *sk, int len,
6683 				   char __user *optval, int __user *optlen)
6684 {
6685 	struct sctp_assoc_value params;
6686 	struct sctp_association *asoc;
6687 
6688 	if (len < sizeof(struct sctp_assoc_value))
6689 		return -EINVAL;
6690 
6691 	len = sizeof(struct sctp_assoc_value);
6692 
6693 	if (copy_from_user(&params, optval, len))
6694 		return -EFAULT;
6695 
6696 	asoc = sctp_id2assoc(sk, params.assoc_id);
6697 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6698 	    sctp_style(sk, UDP))
6699 		return -EINVAL;
6700 
6701 	params.assoc_value = asoc ? asoc->default_rcv_context
6702 				  : sctp_sk(sk)->default_rcv_context;
6703 
6704 	if (put_user(len, optlen))
6705 		return -EFAULT;
6706 	if (copy_to_user(optval, &params, len))
6707 		return -EFAULT;
6708 
6709 	return 0;
6710 }
6711 
6712 /*
6713  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6714  * This option will get or set the maximum size to put in any outgoing
6715  * SCTP DATA chunk.  If a message is larger than this size it will be
6716  * fragmented by SCTP into the specified size.  Note that the underlying
6717  * SCTP implementation may fragment into smaller sized chunks when the
6718  * PMTU of the underlying association is smaller than the value set by
6719  * the user.  The default value for this option is '0' which indicates
6720  * the user is NOT limiting fragmentation and only the PMTU will effect
6721  * SCTP's choice of DATA chunk size.  Note also that values set larger
6722  * than the maximum size of an IP datagram will effectively let SCTP
6723  * control fragmentation (i.e. the same as setting this option to 0).
6724  *
6725  * The following structure is used to access and modify this parameter:
6726  *
6727  * struct sctp_assoc_value {
6728  *   sctp_assoc_t assoc_id;
6729  *   uint32_t assoc_value;
6730  * };
6731  *
6732  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6733  *    For one-to-many style sockets this parameter indicates which
6734  *    association the user is performing an action upon.  Note that if
6735  *    this field's value is zero then the endpoints default value is
6736  *    changed (effecting future associations only).
6737  * assoc_value:  This parameter specifies the maximum size in bytes.
6738  */
6739 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6740 				  char __user *optval, int __user *optlen)
6741 {
6742 	struct sctp_assoc_value params;
6743 	struct sctp_association *asoc;
6744 
6745 	if (len == sizeof(int)) {
6746 		pr_warn_ratelimited(DEPRECATED
6747 				    "%s (pid %d) "
6748 				    "Use of int in maxseg socket option.\n"
6749 				    "Use struct sctp_assoc_value instead\n",
6750 				    current->comm, task_pid_nr(current));
6751 		params.assoc_id = SCTP_FUTURE_ASSOC;
6752 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6753 		len = sizeof(struct sctp_assoc_value);
6754 		if (copy_from_user(&params, optval, len))
6755 			return -EFAULT;
6756 	} else
6757 		return -EINVAL;
6758 
6759 	asoc = sctp_id2assoc(sk, params.assoc_id);
6760 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6761 	    sctp_style(sk, UDP))
6762 		return -EINVAL;
6763 
6764 	if (asoc)
6765 		params.assoc_value = asoc->frag_point;
6766 	else
6767 		params.assoc_value = sctp_sk(sk)->user_frag;
6768 
6769 	if (put_user(len, optlen))
6770 		return -EFAULT;
6771 	if (len == sizeof(int)) {
6772 		if (copy_to_user(optval, &params.assoc_value, len))
6773 			return -EFAULT;
6774 	} else {
6775 		if (copy_to_user(optval, &params, len))
6776 			return -EFAULT;
6777 	}
6778 
6779 	return 0;
6780 }
6781 
6782 /*
6783  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6784  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6785  */
6786 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6787 					       char __user *optval, int __user *optlen)
6788 {
6789 	int val;
6790 
6791 	if (len < sizeof(int))
6792 		return -EINVAL;
6793 
6794 	len = sizeof(int);
6795 
6796 	val = sctp_sk(sk)->frag_interleave;
6797 	if (put_user(len, optlen))
6798 		return -EFAULT;
6799 	if (copy_to_user(optval, &val, len))
6800 		return -EFAULT;
6801 
6802 	return 0;
6803 }
6804 
6805 /*
6806  * 7.1.25.  Set or Get the sctp partial delivery point
6807  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6808  */
6809 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6810 						  char __user *optval,
6811 						  int __user *optlen)
6812 {
6813 	u32 val;
6814 
6815 	if (len < sizeof(u32))
6816 		return -EINVAL;
6817 
6818 	len = sizeof(u32);
6819 
6820 	val = sctp_sk(sk)->pd_point;
6821 	if (put_user(len, optlen))
6822 		return -EFAULT;
6823 	if (copy_to_user(optval, &val, len))
6824 		return -EFAULT;
6825 
6826 	return 0;
6827 }
6828 
6829 /*
6830  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6831  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6832  */
6833 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6834 				    char __user *optval,
6835 				    int __user *optlen)
6836 {
6837 	struct sctp_assoc_value params;
6838 	struct sctp_association *asoc;
6839 
6840 	if (len == sizeof(int)) {
6841 		pr_warn_ratelimited(DEPRECATED
6842 				    "%s (pid %d) "
6843 				    "Use of int in max_burst socket option.\n"
6844 				    "Use struct sctp_assoc_value instead\n",
6845 				    current->comm, task_pid_nr(current));
6846 		params.assoc_id = SCTP_FUTURE_ASSOC;
6847 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6848 		len = sizeof(struct sctp_assoc_value);
6849 		if (copy_from_user(&params, optval, len))
6850 			return -EFAULT;
6851 	} else
6852 		return -EINVAL;
6853 
6854 	asoc = sctp_id2assoc(sk, params.assoc_id);
6855 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6856 	    sctp_style(sk, UDP))
6857 		return -EINVAL;
6858 
6859 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6860 
6861 	if (len == sizeof(int)) {
6862 		if (copy_to_user(optval, &params.assoc_value, len))
6863 			return -EFAULT;
6864 	} else {
6865 		if (copy_to_user(optval, &params, len))
6866 			return -EFAULT;
6867 	}
6868 
6869 	return 0;
6870 
6871 }
6872 
6873 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6874 				    char __user *optval, int __user *optlen)
6875 {
6876 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6877 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6878 	struct sctp_hmac_algo_param *hmacs;
6879 	__u16 data_len = 0;
6880 	u32 num_idents;
6881 	int i;
6882 
6883 	if (!ep->auth_enable)
6884 		return -EACCES;
6885 
6886 	hmacs = ep->auth_hmacs_list;
6887 	data_len = ntohs(hmacs->param_hdr.length) -
6888 		   sizeof(struct sctp_paramhdr);
6889 
6890 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6891 		return -EINVAL;
6892 
6893 	len = sizeof(struct sctp_hmacalgo) + data_len;
6894 	num_idents = data_len / sizeof(u16);
6895 
6896 	if (put_user(len, optlen))
6897 		return -EFAULT;
6898 	if (put_user(num_idents, &p->shmac_num_idents))
6899 		return -EFAULT;
6900 	for (i = 0; i < num_idents; i++) {
6901 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6902 
6903 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6904 			return -EFAULT;
6905 	}
6906 	return 0;
6907 }
6908 
6909 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6910 				    char __user *optval, int __user *optlen)
6911 {
6912 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6913 	struct sctp_authkeyid val;
6914 	struct sctp_association *asoc;
6915 
6916 	if (!ep->auth_enable)
6917 		return -EACCES;
6918 
6919 	if (len < sizeof(struct sctp_authkeyid))
6920 		return -EINVAL;
6921 
6922 	len = sizeof(struct sctp_authkeyid);
6923 	if (copy_from_user(&val, optval, len))
6924 		return -EFAULT;
6925 
6926 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6927 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6928 		return -EINVAL;
6929 
6930 	if (asoc)
6931 		val.scact_keynumber = asoc->active_key_id;
6932 	else
6933 		val.scact_keynumber = ep->active_key_id;
6934 
6935 	if (put_user(len, optlen))
6936 		return -EFAULT;
6937 	if (copy_to_user(optval, &val, len))
6938 		return -EFAULT;
6939 
6940 	return 0;
6941 }
6942 
6943 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6944 				    char __user *optval, int __user *optlen)
6945 {
6946 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6947 	struct sctp_authchunks __user *p = (void __user *)optval;
6948 	struct sctp_authchunks val;
6949 	struct sctp_association *asoc;
6950 	struct sctp_chunks_param *ch;
6951 	u32    num_chunks = 0;
6952 	char __user *to;
6953 
6954 	if (!ep->auth_enable)
6955 		return -EACCES;
6956 
6957 	if (len < sizeof(struct sctp_authchunks))
6958 		return -EINVAL;
6959 
6960 	if (copy_from_user(&val, optval, sizeof(val)))
6961 		return -EFAULT;
6962 
6963 	to = p->gauth_chunks;
6964 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6965 	if (!asoc)
6966 		return -EINVAL;
6967 
6968 	ch = asoc->peer.peer_chunks;
6969 	if (!ch)
6970 		goto num;
6971 
6972 	/* See if the user provided enough room for all the data */
6973 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6974 	if (len < num_chunks)
6975 		return -EINVAL;
6976 
6977 	if (copy_to_user(to, ch->chunks, num_chunks))
6978 		return -EFAULT;
6979 num:
6980 	len = sizeof(struct sctp_authchunks) + num_chunks;
6981 	if (put_user(len, optlen))
6982 		return -EFAULT;
6983 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6984 		return -EFAULT;
6985 	return 0;
6986 }
6987 
6988 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6989 				    char __user *optval, int __user *optlen)
6990 {
6991 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6992 	struct sctp_authchunks __user *p = (void __user *)optval;
6993 	struct sctp_authchunks val;
6994 	struct sctp_association *asoc;
6995 	struct sctp_chunks_param *ch;
6996 	u32    num_chunks = 0;
6997 	char __user *to;
6998 
6999 	if (!ep->auth_enable)
7000 		return -EACCES;
7001 
7002 	if (len < sizeof(struct sctp_authchunks))
7003 		return -EINVAL;
7004 
7005 	if (copy_from_user(&val, optval, sizeof(val)))
7006 		return -EFAULT;
7007 
7008 	to = p->gauth_chunks;
7009 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7010 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7011 	    sctp_style(sk, UDP))
7012 		return -EINVAL;
7013 
7014 	ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks
7015 		  : ep->auth_chunk_list;
7016 	if (!ch)
7017 		goto num;
7018 
7019 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7020 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7021 		return -EINVAL;
7022 
7023 	if (copy_to_user(to, ch->chunks, num_chunks))
7024 		return -EFAULT;
7025 num:
7026 	len = sizeof(struct sctp_authchunks) + num_chunks;
7027 	if (put_user(len, optlen))
7028 		return -EFAULT;
7029 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7030 		return -EFAULT;
7031 
7032 	return 0;
7033 }
7034 
7035 /*
7036  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7037  * This option gets the current number of associations that are attached
7038  * to a one-to-many style socket.  The option value is an uint32_t.
7039  */
7040 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7041 				    char __user *optval, int __user *optlen)
7042 {
7043 	struct sctp_sock *sp = sctp_sk(sk);
7044 	struct sctp_association *asoc;
7045 	u32 val = 0;
7046 
7047 	if (sctp_style(sk, TCP))
7048 		return -EOPNOTSUPP;
7049 
7050 	if (len < sizeof(u32))
7051 		return -EINVAL;
7052 
7053 	len = sizeof(u32);
7054 
7055 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7056 		val++;
7057 	}
7058 
7059 	if (put_user(len, optlen))
7060 		return -EFAULT;
7061 	if (copy_to_user(optval, &val, len))
7062 		return -EFAULT;
7063 
7064 	return 0;
7065 }
7066 
7067 /*
7068  * 8.1.23 SCTP_AUTO_ASCONF
7069  * See the corresponding setsockopt entry as description
7070  */
7071 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7072 				   char __user *optval, int __user *optlen)
7073 {
7074 	int val = 0;
7075 
7076 	if (len < sizeof(int))
7077 		return -EINVAL;
7078 
7079 	len = sizeof(int);
7080 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7081 		val = 1;
7082 	if (put_user(len, optlen))
7083 		return -EFAULT;
7084 	if (copy_to_user(optval, &val, len))
7085 		return -EFAULT;
7086 	return 0;
7087 }
7088 
7089 /*
7090  * 8.2.6. Get the Current Identifiers of Associations
7091  *        (SCTP_GET_ASSOC_ID_LIST)
7092  *
7093  * This option gets the current list of SCTP association identifiers of
7094  * the SCTP associations handled by a one-to-many style socket.
7095  */
7096 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7097 				    char __user *optval, int __user *optlen)
7098 {
7099 	struct sctp_sock *sp = sctp_sk(sk);
7100 	struct sctp_association *asoc;
7101 	struct sctp_assoc_ids *ids;
7102 	u32 num = 0;
7103 
7104 	if (sctp_style(sk, TCP))
7105 		return -EOPNOTSUPP;
7106 
7107 	if (len < sizeof(struct sctp_assoc_ids))
7108 		return -EINVAL;
7109 
7110 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7111 		num++;
7112 	}
7113 
7114 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7115 		return -EINVAL;
7116 
7117 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7118 
7119 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7120 	if (unlikely(!ids))
7121 		return -ENOMEM;
7122 
7123 	ids->gaids_number_of_ids = num;
7124 	num = 0;
7125 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7126 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7127 	}
7128 
7129 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7130 		kfree(ids);
7131 		return -EFAULT;
7132 	}
7133 
7134 	kfree(ids);
7135 	return 0;
7136 }
7137 
7138 /*
7139  * SCTP_PEER_ADDR_THLDS
7140  *
7141  * This option allows us to fetch the partially failed threshold for one or all
7142  * transports in an association.  See Section 6.1 of:
7143  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7144  */
7145 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7146 					    char __user *optval,
7147 					    int len,
7148 					    int __user *optlen)
7149 {
7150 	struct sctp_paddrthlds val;
7151 	struct sctp_transport *trans;
7152 	struct sctp_association *asoc;
7153 
7154 	if (len < sizeof(struct sctp_paddrthlds))
7155 		return -EINVAL;
7156 	len = sizeof(struct sctp_paddrthlds);
7157 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
7158 		return -EFAULT;
7159 
7160 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7161 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7162 					       val.spt_assoc_id);
7163 		if (!trans)
7164 			return -ENOENT;
7165 
7166 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7167 		val.spt_pathpfthld = trans->pf_retrans;
7168 
7169 		return 0;
7170 	}
7171 
7172 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7173 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7174 	    sctp_style(sk, UDP))
7175 		return -EINVAL;
7176 
7177 	if (asoc) {
7178 		val.spt_pathpfthld = asoc->pf_retrans;
7179 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7180 	} else {
7181 		struct sctp_sock *sp = sctp_sk(sk);
7182 
7183 		val.spt_pathpfthld = sp->pf_retrans;
7184 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7185 	}
7186 
7187 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7188 		return -EFAULT;
7189 
7190 	return 0;
7191 }
7192 
7193 /*
7194  * SCTP_GET_ASSOC_STATS
7195  *
7196  * This option retrieves local per endpoint statistics. It is modeled
7197  * after OpenSolaris' implementation
7198  */
7199 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7200 				       char __user *optval,
7201 				       int __user *optlen)
7202 {
7203 	struct sctp_assoc_stats sas;
7204 	struct sctp_association *asoc = NULL;
7205 
7206 	/* User must provide at least the assoc id */
7207 	if (len < sizeof(sctp_assoc_t))
7208 		return -EINVAL;
7209 
7210 	/* Allow the struct to grow and fill in as much as possible */
7211 	len = min_t(size_t, len, sizeof(sas));
7212 
7213 	if (copy_from_user(&sas, optval, len))
7214 		return -EFAULT;
7215 
7216 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7217 	if (!asoc)
7218 		return -EINVAL;
7219 
7220 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7221 	sas.sas_gapcnt = asoc->stats.gapcnt;
7222 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7223 	sas.sas_osacks = asoc->stats.osacks;
7224 	sas.sas_isacks = asoc->stats.isacks;
7225 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7226 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7227 	sas.sas_oodchunks = asoc->stats.oodchunks;
7228 	sas.sas_iodchunks = asoc->stats.iodchunks;
7229 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7230 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7231 	sas.sas_idupchunks = asoc->stats.idupchunks;
7232 	sas.sas_opackets = asoc->stats.opackets;
7233 	sas.sas_ipackets = asoc->stats.ipackets;
7234 
7235 	/* New high max rto observed, will return 0 if not a single
7236 	 * RTO update took place. obs_rto_ipaddr will be bogus
7237 	 * in such a case
7238 	 */
7239 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7240 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7241 		sizeof(struct sockaddr_storage));
7242 
7243 	/* Mark beginning of a new observation period */
7244 	asoc->stats.max_obs_rto = asoc->rto_min;
7245 
7246 	if (put_user(len, optlen))
7247 		return -EFAULT;
7248 
7249 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7250 
7251 	if (copy_to_user(optval, &sas, len))
7252 		return -EFAULT;
7253 
7254 	return 0;
7255 }
7256 
7257 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7258 				       char __user *optval,
7259 				       int __user *optlen)
7260 {
7261 	int val = 0;
7262 
7263 	if (len < sizeof(int))
7264 		return -EINVAL;
7265 
7266 	len = sizeof(int);
7267 	if (sctp_sk(sk)->recvrcvinfo)
7268 		val = 1;
7269 	if (put_user(len, optlen))
7270 		return -EFAULT;
7271 	if (copy_to_user(optval, &val, len))
7272 		return -EFAULT;
7273 
7274 	return 0;
7275 }
7276 
7277 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7278 				       char __user *optval,
7279 				       int __user *optlen)
7280 {
7281 	int val = 0;
7282 
7283 	if (len < sizeof(int))
7284 		return -EINVAL;
7285 
7286 	len = sizeof(int);
7287 	if (sctp_sk(sk)->recvnxtinfo)
7288 		val = 1;
7289 	if (put_user(len, optlen))
7290 		return -EFAULT;
7291 	if (copy_to_user(optval, &val, len))
7292 		return -EFAULT;
7293 
7294 	return 0;
7295 }
7296 
7297 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7298 					char __user *optval,
7299 					int __user *optlen)
7300 {
7301 	struct sctp_assoc_value params;
7302 	struct sctp_association *asoc;
7303 	int retval = -EFAULT;
7304 
7305 	if (len < sizeof(params)) {
7306 		retval = -EINVAL;
7307 		goto out;
7308 	}
7309 
7310 	len = sizeof(params);
7311 	if (copy_from_user(&params, optval, len))
7312 		goto out;
7313 
7314 	asoc = sctp_id2assoc(sk, params.assoc_id);
7315 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7316 	    sctp_style(sk, UDP)) {
7317 		retval = -EINVAL;
7318 		goto out;
7319 	}
7320 
7321 	params.assoc_value = asoc ? asoc->prsctp_enable
7322 				  : sctp_sk(sk)->ep->prsctp_enable;
7323 
7324 	if (put_user(len, optlen))
7325 		goto out;
7326 
7327 	if (copy_to_user(optval, &params, len))
7328 		goto out;
7329 
7330 	retval = 0;
7331 
7332 out:
7333 	return retval;
7334 }
7335 
7336 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7337 					  char __user *optval,
7338 					  int __user *optlen)
7339 {
7340 	struct sctp_default_prinfo info;
7341 	struct sctp_association *asoc;
7342 	int retval = -EFAULT;
7343 
7344 	if (len < sizeof(info)) {
7345 		retval = -EINVAL;
7346 		goto out;
7347 	}
7348 
7349 	len = sizeof(info);
7350 	if (copy_from_user(&info, optval, len))
7351 		goto out;
7352 
7353 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7354 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7355 	    sctp_style(sk, UDP)) {
7356 		retval = -EINVAL;
7357 		goto out;
7358 	}
7359 
7360 	if (asoc) {
7361 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7362 		info.pr_value = asoc->default_timetolive;
7363 	} else {
7364 		struct sctp_sock *sp = sctp_sk(sk);
7365 
7366 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7367 		info.pr_value = sp->default_timetolive;
7368 	}
7369 
7370 	if (put_user(len, optlen))
7371 		goto out;
7372 
7373 	if (copy_to_user(optval, &info, len))
7374 		goto out;
7375 
7376 	retval = 0;
7377 
7378 out:
7379 	return retval;
7380 }
7381 
7382 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7383 					  char __user *optval,
7384 					  int __user *optlen)
7385 {
7386 	struct sctp_prstatus params;
7387 	struct sctp_association *asoc;
7388 	int policy;
7389 	int retval = -EINVAL;
7390 
7391 	if (len < sizeof(params))
7392 		goto out;
7393 
7394 	len = sizeof(params);
7395 	if (copy_from_user(&params, optval, len)) {
7396 		retval = -EFAULT;
7397 		goto out;
7398 	}
7399 
7400 	policy = params.sprstat_policy;
7401 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7402 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7403 		goto out;
7404 
7405 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7406 	if (!asoc)
7407 		goto out;
7408 
7409 	if (policy == SCTP_PR_SCTP_ALL) {
7410 		params.sprstat_abandoned_unsent = 0;
7411 		params.sprstat_abandoned_sent = 0;
7412 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7413 			params.sprstat_abandoned_unsent +=
7414 				asoc->abandoned_unsent[policy];
7415 			params.sprstat_abandoned_sent +=
7416 				asoc->abandoned_sent[policy];
7417 		}
7418 	} else {
7419 		params.sprstat_abandoned_unsent =
7420 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7421 		params.sprstat_abandoned_sent =
7422 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7423 	}
7424 
7425 	if (put_user(len, optlen)) {
7426 		retval = -EFAULT;
7427 		goto out;
7428 	}
7429 
7430 	if (copy_to_user(optval, &params, len)) {
7431 		retval = -EFAULT;
7432 		goto out;
7433 	}
7434 
7435 	retval = 0;
7436 
7437 out:
7438 	return retval;
7439 }
7440 
7441 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7442 					   char __user *optval,
7443 					   int __user *optlen)
7444 {
7445 	struct sctp_stream_out_ext *streamoute;
7446 	struct sctp_association *asoc;
7447 	struct sctp_prstatus params;
7448 	int retval = -EINVAL;
7449 	int policy;
7450 
7451 	if (len < sizeof(params))
7452 		goto out;
7453 
7454 	len = sizeof(params);
7455 	if (copy_from_user(&params, optval, len)) {
7456 		retval = -EFAULT;
7457 		goto out;
7458 	}
7459 
7460 	policy = params.sprstat_policy;
7461 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7462 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7463 		goto out;
7464 
7465 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7466 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7467 		goto out;
7468 
7469 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7470 	if (!streamoute) {
7471 		/* Not allocated yet, means all stats are 0 */
7472 		params.sprstat_abandoned_unsent = 0;
7473 		params.sprstat_abandoned_sent = 0;
7474 		retval = 0;
7475 		goto out;
7476 	}
7477 
7478 	if (policy == SCTP_PR_SCTP_ALL) {
7479 		params.sprstat_abandoned_unsent = 0;
7480 		params.sprstat_abandoned_sent = 0;
7481 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7482 			params.sprstat_abandoned_unsent +=
7483 				streamoute->abandoned_unsent[policy];
7484 			params.sprstat_abandoned_sent +=
7485 				streamoute->abandoned_sent[policy];
7486 		}
7487 	} else {
7488 		params.sprstat_abandoned_unsent =
7489 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7490 		params.sprstat_abandoned_sent =
7491 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7492 	}
7493 
7494 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7495 		retval = -EFAULT;
7496 		goto out;
7497 	}
7498 
7499 	retval = 0;
7500 
7501 out:
7502 	return retval;
7503 }
7504 
7505 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7506 					      char __user *optval,
7507 					      int __user *optlen)
7508 {
7509 	struct sctp_assoc_value params;
7510 	struct sctp_association *asoc;
7511 	int retval = -EFAULT;
7512 
7513 	if (len < sizeof(params)) {
7514 		retval = -EINVAL;
7515 		goto out;
7516 	}
7517 
7518 	len = sizeof(params);
7519 	if (copy_from_user(&params, optval, len))
7520 		goto out;
7521 
7522 	asoc = sctp_id2assoc(sk, params.assoc_id);
7523 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7524 	    sctp_style(sk, UDP)) {
7525 		retval = -EINVAL;
7526 		goto out;
7527 	}
7528 
7529 	params.assoc_value = asoc ? asoc->reconf_enable
7530 				  : sctp_sk(sk)->ep->reconf_enable;
7531 
7532 	if (put_user(len, optlen))
7533 		goto out;
7534 
7535 	if (copy_to_user(optval, &params, len))
7536 		goto out;
7537 
7538 	retval = 0;
7539 
7540 out:
7541 	return retval;
7542 }
7543 
7544 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7545 					   char __user *optval,
7546 					   int __user *optlen)
7547 {
7548 	struct sctp_assoc_value params;
7549 	struct sctp_association *asoc;
7550 	int retval = -EFAULT;
7551 
7552 	if (len < sizeof(params)) {
7553 		retval = -EINVAL;
7554 		goto out;
7555 	}
7556 
7557 	len = sizeof(params);
7558 	if (copy_from_user(&params, optval, len))
7559 		goto out;
7560 
7561 	asoc = sctp_id2assoc(sk, params.assoc_id);
7562 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7563 	    sctp_style(sk, UDP)) {
7564 		retval = -EINVAL;
7565 		goto out;
7566 	}
7567 
7568 	params.assoc_value = asoc ? asoc->strreset_enable
7569 				  : sctp_sk(sk)->ep->strreset_enable;
7570 
7571 	if (put_user(len, optlen))
7572 		goto out;
7573 
7574 	if (copy_to_user(optval, &params, len))
7575 		goto out;
7576 
7577 	retval = 0;
7578 
7579 out:
7580 	return retval;
7581 }
7582 
7583 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7584 				     char __user *optval,
7585 				     int __user *optlen)
7586 {
7587 	struct sctp_assoc_value params;
7588 	struct sctp_association *asoc;
7589 	int retval = -EFAULT;
7590 
7591 	if (len < sizeof(params)) {
7592 		retval = -EINVAL;
7593 		goto out;
7594 	}
7595 
7596 	len = sizeof(params);
7597 	if (copy_from_user(&params, optval, len))
7598 		goto out;
7599 
7600 	asoc = sctp_id2assoc(sk, params.assoc_id);
7601 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7602 	    sctp_style(sk, UDP)) {
7603 		retval = -EINVAL;
7604 		goto out;
7605 	}
7606 
7607 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7608 				  : sctp_sk(sk)->default_ss;
7609 
7610 	if (put_user(len, optlen))
7611 		goto out;
7612 
7613 	if (copy_to_user(optval, &params, len))
7614 		goto out;
7615 
7616 	retval = 0;
7617 
7618 out:
7619 	return retval;
7620 }
7621 
7622 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7623 					   char __user *optval,
7624 					   int __user *optlen)
7625 {
7626 	struct sctp_stream_value params;
7627 	struct sctp_association *asoc;
7628 	int retval = -EFAULT;
7629 
7630 	if (len < sizeof(params)) {
7631 		retval = -EINVAL;
7632 		goto out;
7633 	}
7634 
7635 	len = sizeof(params);
7636 	if (copy_from_user(&params, optval, len))
7637 		goto out;
7638 
7639 	asoc = sctp_id2assoc(sk, params.assoc_id);
7640 	if (!asoc) {
7641 		retval = -EINVAL;
7642 		goto out;
7643 	}
7644 
7645 	retval = sctp_sched_get_value(asoc, params.stream_id,
7646 				      &params.stream_value);
7647 	if (retval)
7648 		goto out;
7649 
7650 	if (put_user(len, optlen)) {
7651 		retval = -EFAULT;
7652 		goto out;
7653 	}
7654 
7655 	if (copy_to_user(optval, &params, len)) {
7656 		retval = -EFAULT;
7657 		goto out;
7658 	}
7659 
7660 out:
7661 	return retval;
7662 }
7663 
7664 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7665 						  char __user *optval,
7666 						  int __user *optlen)
7667 {
7668 	struct sctp_assoc_value params;
7669 	struct sctp_association *asoc;
7670 	int retval = -EFAULT;
7671 
7672 	if (len < sizeof(params)) {
7673 		retval = -EINVAL;
7674 		goto out;
7675 	}
7676 
7677 	len = sizeof(params);
7678 	if (copy_from_user(&params, optval, len))
7679 		goto out;
7680 
7681 	asoc = sctp_id2assoc(sk, params.assoc_id);
7682 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7683 	    sctp_style(sk, UDP)) {
7684 		retval = -EINVAL;
7685 		goto out;
7686 	}
7687 
7688 	params.assoc_value = asoc ? asoc->intl_enable
7689 				  : sctp_sk(sk)->strm_interleave;
7690 
7691 	if (put_user(len, optlen))
7692 		goto out;
7693 
7694 	if (copy_to_user(optval, &params, len))
7695 		goto out;
7696 
7697 	retval = 0;
7698 
7699 out:
7700 	return retval;
7701 }
7702 
7703 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7704 				      char __user *optval,
7705 				      int __user *optlen)
7706 {
7707 	int val;
7708 
7709 	if (len < sizeof(int))
7710 		return -EINVAL;
7711 
7712 	len = sizeof(int);
7713 	val = sctp_sk(sk)->reuse;
7714 	if (put_user(len, optlen))
7715 		return -EFAULT;
7716 
7717 	if (copy_to_user(optval, &val, len))
7718 		return -EFAULT;
7719 
7720 	return 0;
7721 }
7722 
7723 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7724 				 int __user *optlen)
7725 {
7726 	struct sctp_association *asoc;
7727 	struct sctp_event param;
7728 	__u16 subscribe;
7729 
7730 	if (len < sizeof(param))
7731 		return -EINVAL;
7732 
7733 	len = sizeof(param);
7734 	if (copy_from_user(&param, optval, len))
7735 		return -EFAULT;
7736 
7737 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7738 	    param.se_type > SCTP_SN_TYPE_MAX)
7739 		return -EINVAL;
7740 
7741 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7742 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7743 	    sctp_style(sk, UDP))
7744 		return -EINVAL;
7745 
7746 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7747 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7748 
7749 	if (put_user(len, optlen))
7750 		return -EFAULT;
7751 
7752 	if (copy_to_user(optval, &param, len))
7753 		return -EFAULT;
7754 
7755 	return 0;
7756 }
7757 
7758 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7759 			   char __user *optval, int __user *optlen)
7760 {
7761 	int retval = 0;
7762 	int len;
7763 
7764 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7765 
7766 	/* I can hardly begin to describe how wrong this is.  This is
7767 	 * so broken as to be worse than useless.  The API draft
7768 	 * REALLY is NOT helpful here...  I am not convinced that the
7769 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7770 	 * are at all well-founded.
7771 	 */
7772 	if (level != SOL_SCTP) {
7773 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7774 
7775 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7776 		return retval;
7777 	}
7778 
7779 	if (get_user(len, optlen))
7780 		return -EFAULT;
7781 
7782 	if (len < 0)
7783 		return -EINVAL;
7784 
7785 	lock_sock(sk);
7786 
7787 	switch (optname) {
7788 	case SCTP_STATUS:
7789 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7790 		break;
7791 	case SCTP_DISABLE_FRAGMENTS:
7792 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7793 							   optlen);
7794 		break;
7795 	case SCTP_EVENTS:
7796 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7797 		break;
7798 	case SCTP_AUTOCLOSE:
7799 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7800 		break;
7801 	case SCTP_SOCKOPT_PEELOFF:
7802 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7803 		break;
7804 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7805 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7806 		break;
7807 	case SCTP_PEER_ADDR_PARAMS:
7808 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7809 							  optlen);
7810 		break;
7811 	case SCTP_DELAYED_SACK:
7812 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7813 							  optlen);
7814 		break;
7815 	case SCTP_INITMSG:
7816 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7817 		break;
7818 	case SCTP_GET_PEER_ADDRS:
7819 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7820 						    optlen);
7821 		break;
7822 	case SCTP_GET_LOCAL_ADDRS:
7823 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7824 						     optlen);
7825 		break;
7826 	case SCTP_SOCKOPT_CONNECTX3:
7827 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7828 		break;
7829 	case SCTP_DEFAULT_SEND_PARAM:
7830 		retval = sctp_getsockopt_default_send_param(sk, len,
7831 							    optval, optlen);
7832 		break;
7833 	case SCTP_DEFAULT_SNDINFO:
7834 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7835 							 optval, optlen);
7836 		break;
7837 	case SCTP_PRIMARY_ADDR:
7838 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7839 		break;
7840 	case SCTP_NODELAY:
7841 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7842 		break;
7843 	case SCTP_RTOINFO:
7844 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7845 		break;
7846 	case SCTP_ASSOCINFO:
7847 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7848 		break;
7849 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7850 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7851 		break;
7852 	case SCTP_MAXSEG:
7853 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7854 		break;
7855 	case SCTP_GET_PEER_ADDR_INFO:
7856 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7857 							optlen);
7858 		break;
7859 	case SCTP_ADAPTATION_LAYER:
7860 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7861 							optlen);
7862 		break;
7863 	case SCTP_CONTEXT:
7864 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7865 		break;
7866 	case SCTP_FRAGMENT_INTERLEAVE:
7867 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7868 							     optlen);
7869 		break;
7870 	case SCTP_PARTIAL_DELIVERY_POINT:
7871 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7872 								optlen);
7873 		break;
7874 	case SCTP_MAX_BURST:
7875 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7876 		break;
7877 	case SCTP_AUTH_KEY:
7878 	case SCTP_AUTH_CHUNK:
7879 	case SCTP_AUTH_DELETE_KEY:
7880 	case SCTP_AUTH_DEACTIVATE_KEY:
7881 		retval = -EOPNOTSUPP;
7882 		break;
7883 	case SCTP_HMAC_IDENT:
7884 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7885 		break;
7886 	case SCTP_AUTH_ACTIVE_KEY:
7887 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7888 		break;
7889 	case SCTP_PEER_AUTH_CHUNKS:
7890 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7891 							optlen);
7892 		break;
7893 	case SCTP_LOCAL_AUTH_CHUNKS:
7894 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7895 							optlen);
7896 		break;
7897 	case SCTP_GET_ASSOC_NUMBER:
7898 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7899 		break;
7900 	case SCTP_GET_ASSOC_ID_LIST:
7901 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7902 		break;
7903 	case SCTP_AUTO_ASCONF:
7904 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7905 		break;
7906 	case SCTP_PEER_ADDR_THLDS:
7907 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7908 		break;
7909 	case SCTP_GET_ASSOC_STATS:
7910 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7911 		break;
7912 	case SCTP_RECVRCVINFO:
7913 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7914 		break;
7915 	case SCTP_RECVNXTINFO:
7916 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7917 		break;
7918 	case SCTP_PR_SUPPORTED:
7919 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7920 		break;
7921 	case SCTP_DEFAULT_PRINFO:
7922 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7923 							optlen);
7924 		break;
7925 	case SCTP_PR_ASSOC_STATUS:
7926 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7927 							optlen);
7928 		break;
7929 	case SCTP_PR_STREAM_STATUS:
7930 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7931 							 optlen);
7932 		break;
7933 	case SCTP_RECONFIG_SUPPORTED:
7934 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7935 							    optlen);
7936 		break;
7937 	case SCTP_ENABLE_STREAM_RESET:
7938 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7939 							 optlen);
7940 		break;
7941 	case SCTP_STREAM_SCHEDULER:
7942 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7943 						   optlen);
7944 		break;
7945 	case SCTP_STREAM_SCHEDULER_VALUE:
7946 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7947 							 optlen);
7948 		break;
7949 	case SCTP_INTERLEAVING_SUPPORTED:
7950 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7951 								optlen);
7952 		break;
7953 	case SCTP_REUSE_PORT:
7954 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7955 		break;
7956 	case SCTP_EVENT:
7957 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7958 		break;
7959 	default:
7960 		retval = -ENOPROTOOPT;
7961 		break;
7962 	}
7963 
7964 	release_sock(sk);
7965 	return retval;
7966 }
7967 
7968 static int sctp_hash(struct sock *sk)
7969 {
7970 	/* STUB */
7971 	return 0;
7972 }
7973 
7974 static void sctp_unhash(struct sock *sk)
7975 {
7976 	/* STUB */
7977 }
7978 
7979 /* Check if port is acceptable.  Possibly find first available port.
7980  *
7981  * The port hash table (contained in the 'global' SCTP protocol storage
7982  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7983  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7984  * list (the list number is the port number hashed out, so as you
7985  * would expect from a hash function, all the ports in a given list have
7986  * such a number that hashes out to the same list number; you were
7987  * expecting that, right?); so each list has a set of ports, with a
7988  * link to the socket (struct sock) that uses it, the port number and
7989  * a fastreuse flag (FIXME: NPI ipg).
7990  */
7991 static struct sctp_bind_bucket *sctp_bucket_create(
7992 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7993 
7994 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7995 {
7996 	struct sctp_sock *sp = sctp_sk(sk);
7997 	bool reuse = (sk->sk_reuse || sp->reuse);
7998 	struct sctp_bind_hashbucket *head; /* hash list */
7999 	kuid_t uid = sock_i_uid(sk);
8000 	struct sctp_bind_bucket *pp;
8001 	unsigned short snum;
8002 	int ret;
8003 
8004 	snum = ntohs(addr->v4.sin_port);
8005 
8006 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8007 
8008 	local_bh_disable();
8009 
8010 	if (snum == 0) {
8011 		/* Search for an available port. */
8012 		int low, high, remaining, index;
8013 		unsigned int rover;
8014 		struct net *net = sock_net(sk);
8015 
8016 		inet_get_local_port_range(net, &low, &high);
8017 		remaining = (high - low) + 1;
8018 		rover = prandom_u32() % remaining + low;
8019 
8020 		do {
8021 			rover++;
8022 			if ((rover < low) || (rover > high))
8023 				rover = low;
8024 			if (inet_is_local_reserved_port(net, rover))
8025 				continue;
8026 			index = sctp_phashfn(sock_net(sk), rover);
8027 			head = &sctp_port_hashtable[index];
8028 			spin_lock(&head->lock);
8029 			sctp_for_each_hentry(pp, &head->chain)
8030 				if ((pp->port == rover) &&
8031 				    net_eq(sock_net(sk), pp->net))
8032 					goto next;
8033 			break;
8034 		next:
8035 			spin_unlock(&head->lock);
8036 		} while (--remaining > 0);
8037 
8038 		/* Exhausted local port range during search? */
8039 		ret = 1;
8040 		if (remaining <= 0)
8041 			goto fail;
8042 
8043 		/* OK, here is the one we will use.  HEAD (the port
8044 		 * hash table list entry) is non-NULL and we hold it's
8045 		 * mutex.
8046 		 */
8047 		snum = rover;
8048 	} else {
8049 		/* We are given an specific port number; we verify
8050 		 * that it is not being used. If it is used, we will
8051 		 * exahust the search in the hash list corresponding
8052 		 * to the port number (snum) - we detect that with the
8053 		 * port iterator, pp being NULL.
8054 		 */
8055 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
8056 		spin_lock(&head->lock);
8057 		sctp_for_each_hentry(pp, &head->chain) {
8058 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
8059 				goto pp_found;
8060 		}
8061 	}
8062 	pp = NULL;
8063 	goto pp_not_found;
8064 pp_found:
8065 	if (!hlist_empty(&pp->owner)) {
8066 		/* We had a port hash table hit - there is an
8067 		 * available port (pp != NULL) and it is being
8068 		 * used by other socket (pp->owner not empty); that other
8069 		 * socket is going to be sk2.
8070 		 */
8071 		struct sock *sk2;
8072 
8073 		pr_debug("%s: found a possible match\n", __func__);
8074 
8075 		if ((pp->fastreuse && reuse &&
8076 		     sk->sk_state != SCTP_SS_LISTENING) ||
8077 		    (pp->fastreuseport && sk->sk_reuseport &&
8078 		     uid_eq(pp->fastuid, uid)))
8079 			goto success;
8080 
8081 		/* Run through the list of sockets bound to the port
8082 		 * (pp->port) [via the pointers bind_next and
8083 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8084 		 * we get the endpoint they describe and run through
8085 		 * the endpoint's list of IP (v4 or v6) addresses,
8086 		 * comparing each of the addresses with the address of
8087 		 * the socket sk. If we find a match, then that means
8088 		 * that this port/socket (sk) combination are already
8089 		 * in an endpoint.
8090 		 */
8091 		sk_for_each_bound(sk2, &pp->owner) {
8092 			struct sctp_sock *sp2 = sctp_sk(sk2);
8093 			struct sctp_endpoint *ep2 = sp2->ep;
8094 
8095 			if (sk == sk2 ||
8096 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8097 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8098 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8099 			     uid_eq(uid, sock_i_uid(sk2))))
8100 				continue;
8101 
8102 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8103 						    addr, sp2, sp)) {
8104 				ret = (long)sk2;
8105 				goto fail_unlock;
8106 			}
8107 		}
8108 
8109 		pr_debug("%s: found a match\n", __func__);
8110 	}
8111 pp_not_found:
8112 	/* If there was a hash table miss, create a new port.  */
8113 	ret = 1;
8114 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
8115 		goto fail_unlock;
8116 
8117 	/* In either case (hit or miss), make sure fastreuse is 1 only
8118 	 * if sk->sk_reuse is too (that is, if the caller requested
8119 	 * SO_REUSEADDR on this socket -sk-).
8120 	 */
8121 	if (hlist_empty(&pp->owner)) {
8122 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8123 			pp->fastreuse = 1;
8124 		else
8125 			pp->fastreuse = 0;
8126 
8127 		if (sk->sk_reuseport) {
8128 			pp->fastreuseport = 1;
8129 			pp->fastuid = uid;
8130 		} else {
8131 			pp->fastreuseport = 0;
8132 		}
8133 	} else {
8134 		if (pp->fastreuse &&
8135 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8136 			pp->fastreuse = 0;
8137 
8138 		if (pp->fastreuseport &&
8139 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8140 			pp->fastreuseport = 0;
8141 	}
8142 
8143 	/* We are set, so fill up all the data in the hash table
8144 	 * entry, tie the socket list information with the rest of the
8145 	 * sockets FIXME: Blurry, NPI (ipg).
8146 	 */
8147 success:
8148 	if (!sp->bind_hash) {
8149 		inet_sk(sk)->inet_num = snum;
8150 		sk_add_bind_node(sk, &pp->owner);
8151 		sp->bind_hash = pp;
8152 	}
8153 	ret = 0;
8154 
8155 fail_unlock:
8156 	spin_unlock(&head->lock);
8157 
8158 fail:
8159 	local_bh_enable();
8160 	return ret;
8161 }
8162 
8163 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8164  * port is requested.
8165  */
8166 static int sctp_get_port(struct sock *sk, unsigned short snum)
8167 {
8168 	union sctp_addr addr;
8169 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8170 
8171 	/* Set up a dummy address struct from the sk. */
8172 	af->from_sk(&addr, sk);
8173 	addr.v4.sin_port = htons(snum);
8174 
8175 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8176 	return !!sctp_get_port_local(sk, &addr);
8177 }
8178 
8179 /*
8180  *  Move a socket to LISTENING state.
8181  */
8182 static int sctp_listen_start(struct sock *sk, int backlog)
8183 {
8184 	struct sctp_sock *sp = sctp_sk(sk);
8185 	struct sctp_endpoint *ep = sp->ep;
8186 	struct crypto_shash *tfm = NULL;
8187 	char alg[32];
8188 
8189 	/* Allocate HMAC for generating cookie. */
8190 	if (!sp->hmac && sp->sctp_hmac_alg) {
8191 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8192 		tfm = crypto_alloc_shash(alg, 0, 0);
8193 		if (IS_ERR(tfm)) {
8194 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8195 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8196 			return -ENOSYS;
8197 		}
8198 		sctp_sk(sk)->hmac = tfm;
8199 	}
8200 
8201 	/*
8202 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8203 	 * call that allows new associations to be accepted, the system
8204 	 * picks an ephemeral port and will choose an address set equivalent
8205 	 * to binding with a wildcard address.
8206 	 *
8207 	 * This is not currently spelled out in the SCTP sockets
8208 	 * extensions draft, but follows the practice as seen in TCP
8209 	 * sockets.
8210 	 *
8211 	 */
8212 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8213 	if (!ep->base.bind_addr.port) {
8214 		if (sctp_autobind(sk))
8215 			return -EAGAIN;
8216 	} else {
8217 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8218 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8219 			return -EADDRINUSE;
8220 		}
8221 	}
8222 
8223 	sk->sk_max_ack_backlog = backlog;
8224 	return sctp_hash_endpoint(ep);
8225 }
8226 
8227 /*
8228  * 4.1.3 / 5.1.3 listen()
8229  *
8230  *   By default, new associations are not accepted for UDP style sockets.
8231  *   An application uses listen() to mark a socket as being able to
8232  *   accept new associations.
8233  *
8234  *   On TCP style sockets, applications use listen() to ready the SCTP
8235  *   endpoint for accepting inbound associations.
8236  *
8237  *   On both types of endpoints a backlog of '0' disables listening.
8238  *
8239  *  Move a socket to LISTENING state.
8240  */
8241 int sctp_inet_listen(struct socket *sock, int backlog)
8242 {
8243 	struct sock *sk = sock->sk;
8244 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8245 	int err = -EINVAL;
8246 
8247 	if (unlikely(backlog < 0))
8248 		return err;
8249 
8250 	lock_sock(sk);
8251 
8252 	/* Peeled-off sockets are not allowed to listen().  */
8253 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8254 		goto out;
8255 
8256 	if (sock->state != SS_UNCONNECTED)
8257 		goto out;
8258 
8259 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8260 		goto out;
8261 
8262 	/* If backlog is zero, disable listening. */
8263 	if (!backlog) {
8264 		if (sctp_sstate(sk, CLOSED))
8265 			goto out;
8266 
8267 		err = 0;
8268 		sctp_unhash_endpoint(ep);
8269 		sk->sk_state = SCTP_SS_CLOSED;
8270 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8271 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8272 		goto out;
8273 	}
8274 
8275 	/* If we are already listening, just update the backlog */
8276 	if (sctp_sstate(sk, LISTENING))
8277 		sk->sk_max_ack_backlog = backlog;
8278 	else {
8279 		err = sctp_listen_start(sk, backlog);
8280 		if (err)
8281 			goto out;
8282 	}
8283 
8284 	err = 0;
8285 out:
8286 	release_sock(sk);
8287 	return err;
8288 }
8289 
8290 /*
8291  * This function is done by modeling the current datagram_poll() and the
8292  * tcp_poll().  Note that, based on these implementations, we don't
8293  * lock the socket in this function, even though it seems that,
8294  * ideally, locking or some other mechanisms can be used to ensure
8295  * the integrity of the counters (sndbuf and wmem_alloc) used
8296  * in this place.  We assume that we don't need locks either until proven
8297  * otherwise.
8298  *
8299  * Another thing to note is that we include the Async I/O support
8300  * here, again, by modeling the current TCP/UDP code.  We don't have
8301  * a good way to test with it yet.
8302  */
8303 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8304 {
8305 	struct sock *sk = sock->sk;
8306 	struct sctp_sock *sp = sctp_sk(sk);
8307 	__poll_t mask;
8308 
8309 	poll_wait(file, sk_sleep(sk), wait);
8310 
8311 	sock_rps_record_flow(sk);
8312 
8313 	/* A TCP-style listening socket becomes readable when the accept queue
8314 	 * is not empty.
8315 	 */
8316 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8317 		return (!list_empty(&sp->ep->asocs)) ?
8318 			(EPOLLIN | EPOLLRDNORM) : 0;
8319 
8320 	mask = 0;
8321 
8322 	/* Is there any exceptional events?  */
8323 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8324 		mask |= EPOLLERR |
8325 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8326 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8327 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8328 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8329 		mask |= EPOLLHUP;
8330 
8331 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8332 	if (!skb_queue_empty(&sk->sk_receive_queue))
8333 		mask |= EPOLLIN | EPOLLRDNORM;
8334 
8335 	/* The association is either gone or not ready.  */
8336 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8337 		return mask;
8338 
8339 	/* Is it writable?  */
8340 	if (sctp_writeable(sk)) {
8341 		mask |= EPOLLOUT | EPOLLWRNORM;
8342 	} else {
8343 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8344 		/*
8345 		 * Since the socket is not locked, the buffer
8346 		 * might be made available after the writeable check and
8347 		 * before the bit is set.  This could cause a lost I/O
8348 		 * signal.  tcp_poll() has a race breaker for this race
8349 		 * condition.  Based on their implementation, we put
8350 		 * in the following code to cover it as well.
8351 		 */
8352 		if (sctp_writeable(sk))
8353 			mask |= EPOLLOUT | EPOLLWRNORM;
8354 	}
8355 	return mask;
8356 }
8357 
8358 /********************************************************************
8359  * 2nd Level Abstractions
8360  ********************************************************************/
8361 
8362 static struct sctp_bind_bucket *sctp_bucket_create(
8363 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8364 {
8365 	struct sctp_bind_bucket *pp;
8366 
8367 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8368 	if (pp) {
8369 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8370 		pp->port = snum;
8371 		pp->fastreuse = 0;
8372 		INIT_HLIST_HEAD(&pp->owner);
8373 		pp->net = net;
8374 		hlist_add_head(&pp->node, &head->chain);
8375 	}
8376 	return pp;
8377 }
8378 
8379 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8380 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8381 {
8382 	if (pp && hlist_empty(&pp->owner)) {
8383 		__hlist_del(&pp->node);
8384 		kmem_cache_free(sctp_bucket_cachep, pp);
8385 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8386 	}
8387 }
8388 
8389 /* Release this socket's reference to a local port.  */
8390 static inline void __sctp_put_port(struct sock *sk)
8391 {
8392 	struct sctp_bind_hashbucket *head =
8393 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8394 						  inet_sk(sk)->inet_num)];
8395 	struct sctp_bind_bucket *pp;
8396 
8397 	spin_lock(&head->lock);
8398 	pp = sctp_sk(sk)->bind_hash;
8399 	__sk_del_bind_node(sk);
8400 	sctp_sk(sk)->bind_hash = NULL;
8401 	inet_sk(sk)->inet_num = 0;
8402 	sctp_bucket_destroy(pp);
8403 	spin_unlock(&head->lock);
8404 }
8405 
8406 void sctp_put_port(struct sock *sk)
8407 {
8408 	local_bh_disable();
8409 	__sctp_put_port(sk);
8410 	local_bh_enable();
8411 }
8412 
8413 /*
8414  * The system picks an ephemeral port and choose an address set equivalent
8415  * to binding with a wildcard address.
8416  * One of those addresses will be the primary address for the association.
8417  * This automatically enables the multihoming capability of SCTP.
8418  */
8419 static int sctp_autobind(struct sock *sk)
8420 {
8421 	union sctp_addr autoaddr;
8422 	struct sctp_af *af;
8423 	__be16 port;
8424 
8425 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8426 	af = sctp_sk(sk)->pf->af;
8427 
8428 	port = htons(inet_sk(sk)->inet_num);
8429 	af->inaddr_any(&autoaddr, port);
8430 
8431 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8432 }
8433 
8434 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8435  *
8436  * From RFC 2292
8437  * 4.2 The cmsghdr Structure *
8438  *
8439  * When ancillary data is sent or received, any number of ancillary data
8440  * objects can be specified by the msg_control and msg_controllen members of
8441  * the msghdr structure, because each object is preceded by
8442  * a cmsghdr structure defining the object's length (the cmsg_len member).
8443  * Historically Berkeley-derived implementations have passed only one object
8444  * at a time, but this API allows multiple objects to be
8445  * passed in a single call to sendmsg() or recvmsg(). The following example
8446  * shows two ancillary data objects in a control buffer.
8447  *
8448  *   |<--------------------------- msg_controllen -------------------------->|
8449  *   |                                                                       |
8450  *
8451  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8452  *
8453  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8454  *   |                                   |                                   |
8455  *
8456  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8457  *
8458  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8459  *   |                                |  |                                |  |
8460  *
8461  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8462  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8463  *
8464  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8465  *
8466  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8467  *    ^
8468  *    |
8469  *
8470  * msg_control
8471  * points here
8472  */
8473 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8474 {
8475 	struct msghdr *my_msg = (struct msghdr *)msg;
8476 	struct cmsghdr *cmsg;
8477 
8478 	for_each_cmsghdr(cmsg, my_msg) {
8479 		if (!CMSG_OK(my_msg, cmsg))
8480 			return -EINVAL;
8481 
8482 		/* Should we parse this header or ignore?  */
8483 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8484 			continue;
8485 
8486 		/* Strictly check lengths following example in SCM code.  */
8487 		switch (cmsg->cmsg_type) {
8488 		case SCTP_INIT:
8489 			/* SCTP Socket API Extension
8490 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8491 			 *
8492 			 * This cmsghdr structure provides information for
8493 			 * initializing new SCTP associations with sendmsg().
8494 			 * The SCTP_INITMSG socket option uses this same data
8495 			 * structure.  This structure is not used for
8496 			 * recvmsg().
8497 			 *
8498 			 * cmsg_level    cmsg_type      cmsg_data[]
8499 			 * ------------  ------------   ----------------------
8500 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8501 			 */
8502 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8503 				return -EINVAL;
8504 
8505 			cmsgs->init = CMSG_DATA(cmsg);
8506 			break;
8507 
8508 		case SCTP_SNDRCV:
8509 			/* SCTP Socket API Extension
8510 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8511 			 *
8512 			 * This cmsghdr structure specifies SCTP options for
8513 			 * sendmsg() and describes SCTP header information
8514 			 * about a received message through recvmsg().
8515 			 *
8516 			 * cmsg_level    cmsg_type      cmsg_data[]
8517 			 * ------------  ------------   ----------------------
8518 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8519 			 */
8520 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8521 				return -EINVAL;
8522 
8523 			cmsgs->srinfo = CMSG_DATA(cmsg);
8524 
8525 			if (cmsgs->srinfo->sinfo_flags &
8526 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8527 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8528 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8529 				return -EINVAL;
8530 			break;
8531 
8532 		case SCTP_SNDINFO:
8533 			/* SCTP Socket API Extension
8534 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8535 			 *
8536 			 * This cmsghdr structure specifies SCTP options for
8537 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8538 			 * SCTP_SNDRCV which has been deprecated.
8539 			 *
8540 			 * cmsg_level    cmsg_type      cmsg_data[]
8541 			 * ------------  ------------   ---------------------
8542 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8543 			 */
8544 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8545 				return -EINVAL;
8546 
8547 			cmsgs->sinfo = CMSG_DATA(cmsg);
8548 
8549 			if (cmsgs->sinfo->snd_flags &
8550 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8551 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8552 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8553 				return -EINVAL;
8554 			break;
8555 		case SCTP_PRINFO:
8556 			/* SCTP Socket API Extension
8557 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8558 			 *
8559 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8560 			 *
8561 			 * cmsg_level    cmsg_type      cmsg_data[]
8562 			 * ------------  ------------   ---------------------
8563 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8564 			 */
8565 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8566 				return -EINVAL;
8567 
8568 			cmsgs->prinfo = CMSG_DATA(cmsg);
8569 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8570 				return -EINVAL;
8571 
8572 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8573 				cmsgs->prinfo->pr_value = 0;
8574 			break;
8575 		case SCTP_AUTHINFO:
8576 			/* SCTP Socket API Extension
8577 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8578 			 *
8579 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8580 			 *
8581 			 * cmsg_level    cmsg_type      cmsg_data[]
8582 			 * ------------  ------------   ---------------------
8583 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8584 			 */
8585 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8586 				return -EINVAL;
8587 
8588 			cmsgs->authinfo = CMSG_DATA(cmsg);
8589 			break;
8590 		case SCTP_DSTADDRV4:
8591 		case SCTP_DSTADDRV6:
8592 			/* SCTP Socket API Extension
8593 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8594 			 *
8595 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8596 			 *
8597 			 * cmsg_level    cmsg_type         cmsg_data[]
8598 			 * ------------  ------------   ---------------------
8599 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8600 			 * ------------  ------------   ---------------------
8601 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8602 			 */
8603 			cmsgs->addrs_msg = my_msg;
8604 			break;
8605 		default:
8606 			return -EINVAL;
8607 		}
8608 	}
8609 
8610 	return 0;
8611 }
8612 
8613 /*
8614  * Wait for a packet..
8615  * Note: This function is the same function as in core/datagram.c
8616  * with a few modifications to make lksctp work.
8617  */
8618 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8619 {
8620 	int error;
8621 	DEFINE_WAIT(wait);
8622 
8623 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8624 
8625 	/* Socket errors? */
8626 	error = sock_error(sk);
8627 	if (error)
8628 		goto out;
8629 
8630 	if (!skb_queue_empty(&sk->sk_receive_queue))
8631 		goto ready;
8632 
8633 	/* Socket shut down?  */
8634 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8635 		goto out;
8636 
8637 	/* Sequenced packets can come disconnected.  If so we report the
8638 	 * problem.
8639 	 */
8640 	error = -ENOTCONN;
8641 
8642 	/* Is there a good reason to think that we may receive some data?  */
8643 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8644 		goto out;
8645 
8646 	/* Handle signals.  */
8647 	if (signal_pending(current))
8648 		goto interrupted;
8649 
8650 	/* Let another process have a go.  Since we are going to sleep
8651 	 * anyway.  Note: This may cause odd behaviors if the message
8652 	 * does not fit in the user's buffer, but this seems to be the
8653 	 * only way to honor MSG_DONTWAIT realistically.
8654 	 */
8655 	release_sock(sk);
8656 	*timeo_p = schedule_timeout(*timeo_p);
8657 	lock_sock(sk);
8658 
8659 ready:
8660 	finish_wait(sk_sleep(sk), &wait);
8661 	return 0;
8662 
8663 interrupted:
8664 	error = sock_intr_errno(*timeo_p);
8665 
8666 out:
8667 	finish_wait(sk_sleep(sk), &wait);
8668 	*err = error;
8669 	return error;
8670 }
8671 
8672 /* Receive a datagram.
8673  * Note: This is pretty much the same routine as in core/datagram.c
8674  * with a few changes to make lksctp work.
8675  */
8676 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8677 				       int noblock, int *err)
8678 {
8679 	int error;
8680 	struct sk_buff *skb;
8681 	long timeo;
8682 
8683 	timeo = sock_rcvtimeo(sk, noblock);
8684 
8685 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8686 		 MAX_SCHEDULE_TIMEOUT);
8687 
8688 	do {
8689 		/* Again only user level code calls this function,
8690 		 * so nothing interrupt level
8691 		 * will suddenly eat the receive_queue.
8692 		 *
8693 		 *  Look at current nfs client by the way...
8694 		 *  However, this function was correct in any case. 8)
8695 		 */
8696 		if (flags & MSG_PEEK) {
8697 			skb = skb_peek(&sk->sk_receive_queue);
8698 			if (skb)
8699 				refcount_inc(&skb->users);
8700 		} else {
8701 			skb = __skb_dequeue(&sk->sk_receive_queue);
8702 		}
8703 
8704 		if (skb)
8705 			return skb;
8706 
8707 		/* Caller is allowed not to check sk->sk_err before calling. */
8708 		error = sock_error(sk);
8709 		if (error)
8710 			goto no_packet;
8711 
8712 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8713 			break;
8714 
8715 		if (sk_can_busy_loop(sk)) {
8716 			sk_busy_loop(sk, noblock);
8717 
8718 			if (!skb_queue_empty(&sk->sk_receive_queue))
8719 				continue;
8720 		}
8721 
8722 		/* User doesn't want to wait.  */
8723 		error = -EAGAIN;
8724 		if (!timeo)
8725 			goto no_packet;
8726 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8727 
8728 	return NULL;
8729 
8730 no_packet:
8731 	*err = error;
8732 	return NULL;
8733 }
8734 
8735 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8736 static void __sctp_write_space(struct sctp_association *asoc)
8737 {
8738 	struct sock *sk = asoc->base.sk;
8739 
8740 	if (sctp_wspace(asoc) <= 0)
8741 		return;
8742 
8743 	if (waitqueue_active(&asoc->wait))
8744 		wake_up_interruptible(&asoc->wait);
8745 
8746 	if (sctp_writeable(sk)) {
8747 		struct socket_wq *wq;
8748 
8749 		rcu_read_lock();
8750 		wq = rcu_dereference(sk->sk_wq);
8751 		if (wq) {
8752 			if (waitqueue_active(&wq->wait))
8753 				wake_up_interruptible(&wq->wait);
8754 
8755 			/* Note that we try to include the Async I/O support
8756 			 * here by modeling from the current TCP/UDP code.
8757 			 * We have not tested with it yet.
8758 			 */
8759 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8760 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8761 		}
8762 		rcu_read_unlock();
8763 	}
8764 }
8765 
8766 static void sctp_wake_up_waiters(struct sock *sk,
8767 				 struct sctp_association *asoc)
8768 {
8769 	struct sctp_association *tmp = asoc;
8770 
8771 	/* We do accounting for the sndbuf space per association,
8772 	 * so we only need to wake our own association.
8773 	 */
8774 	if (asoc->ep->sndbuf_policy)
8775 		return __sctp_write_space(asoc);
8776 
8777 	/* If association goes down and is just flushing its
8778 	 * outq, then just normally notify others.
8779 	 */
8780 	if (asoc->base.dead)
8781 		return sctp_write_space(sk);
8782 
8783 	/* Accounting for the sndbuf space is per socket, so we
8784 	 * need to wake up others, try to be fair and in case of
8785 	 * other associations, let them have a go first instead
8786 	 * of just doing a sctp_write_space() call.
8787 	 *
8788 	 * Note that we reach sctp_wake_up_waiters() only when
8789 	 * associations free up queued chunks, thus we are under
8790 	 * lock and the list of associations on a socket is
8791 	 * guaranteed not to change.
8792 	 */
8793 	for (tmp = list_next_entry(tmp, asocs); 1;
8794 	     tmp = list_next_entry(tmp, asocs)) {
8795 		/* Manually skip the head element. */
8796 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8797 			continue;
8798 		/* Wake up association. */
8799 		__sctp_write_space(tmp);
8800 		/* We've reached the end. */
8801 		if (tmp == asoc)
8802 			break;
8803 	}
8804 }
8805 
8806 /* Do accounting for the sndbuf space.
8807  * Decrement the used sndbuf space of the corresponding association by the
8808  * data size which was just transmitted(freed).
8809  */
8810 static void sctp_wfree(struct sk_buff *skb)
8811 {
8812 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8813 	struct sctp_association *asoc = chunk->asoc;
8814 	struct sock *sk = asoc->base.sk;
8815 
8816 	sk_mem_uncharge(sk, skb->truesize);
8817 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8818 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8819 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8820 				      &sk->sk_wmem_alloc));
8821 
8822 	if (chunk->shkey) {
8823 		struct sctp_shared_key *shkey = chunk->shkey;
8824 
8825 		/* refcnt == 2 and !list_empty mean after this release, it's
8826 		 * not being used anywhere, and it's time to notify userland
8827 		 * that this shkey can be freed if it's been deactivated.
8828 		 */
8829 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8830 		    refcount_read(&shkey->refcnt) == 2) {
8831 			struct sctp_ulpevent *ev;
8832 
8833 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8834 							SCTP_AUTH_FREE_KEY,
8835 							GFP_KERNEL);
8836 			if (ev)
8837 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8838 		}
8839 		sctp_auth_shkey_release(chunk->shkey);
8840 	}
8841 
8842 	sock_wfree(skb);
8843 	sctp_wake_up_waiters(sk, asoc);
8844 
8845 	sctp_association_put(asoc);
8846 }
8847 
8848 /* Do accounting for the receive space on the socket.
8849  * Accounting for the association is done in ulpevent.c
8850  * We set this as a destructor for the cloned data skbs so that
8851  * accounting is done at the correct time.
8852  */
8853 void sctp_sock_rfree(struct sk_buff *skb)
8854 {
8855 	struct sock *sk = skb->sk;
8856 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8857 
8858 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8859 
8860 	/*
8861 	 * Mimic the behavior of sock_rfree
8862 	 */
8863 	sk_mem_uncharge(sk, event->rmem_len);
8864 }
8865 
8866 
8867 /* Helper function to wait for space in the sndbuf.  */
8868 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8869 				size_t msg_len)
8870 {
8871 	struct sock *sk = asoc->base.sk;
8872 	long current_timeo = *timeo_p;
8873 	DEFINE_WAIT(wait);
8874 	int err = 0;
8875 
8876 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8877 		 *timeo_p, msg_len);
8878 
8879 	/* Increment the association's refcnt.  */
8880 	sctp_association_hold(asoc);
8881 
8882 	/* Wait on the association specific sndbuf space. */
8883 	for (;;) {
8884 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8885 					  TASK_INTERRUPTIBLE);
8886 		if (asoc->base.dead)
8887 			goto do_dead;
8888 		if (!*timeo_p)
8889 			goto do_nonblock;
8890 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8891 			goto do_error;
8892 		if (signal_pending(current))
8893 			goto do_interrupted;
8894 		if ((int)msg_len <= sctp_wspace(asoc))
8895 			break;
8896 
8897 		/* Let another process have a go.  Since we are going
8898 		 * to sleep anyway.
8899 		 */
8900 		release_sock(sk);
8901 		current_timeo = schedule_timeout(current_timeo);
8902 		lock_sock(sk);
8903 		if (sk != asoc->base.sk)
8904 			goto do_error;
8905 
8906 		*timeo_p = current_timeo;
8907 	}
8908 
8909 out:
8910 	finish_wait(&asoc->wait, &wait);
8911 
8912 	/* Release the association's refcnt.  */
8913 	sctp_association_put(asoc);
8914 
8915 	return err;
8916 
8917 do_dead:
8918 	err = -ESRCH;
8919 	goto out;
8920 
8921 do_error:
8922 	err = -EPIPE;
8923 	goto out;
8924 
8925 do_interrupted:
8926 	err = sock_intr_errno(*timeo_p);
8927 	goto out;
8928 
8929 do_nonblock:
8930 	err = -EAGAIN;
8931 	goto out;
8932 }
8933 
8934 void sctp_data_ready(struct sock *sk)
8935 {
8936 	struct socket_wq *wq;
8937 
8938 	rcu_read_lock();
8939 	wq = rcu_dereference(sk->sk_wq);
8940 	if (skwq_has_sleeper(wq))
8941 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8942 						EPOLLRDNORM | EPOLLRDBAND);
8943 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8944 	rcu_read_unlock();
8945 }
8946 
8947 /* If socket sndbuf has changed, wake up all per association waiters.  */
8948 void sctp_write_space(struct sock *sk)
8949 {
8950 	struct sctp_association *asoc;
8951 
8952 	/* Wake up the tasks in each wait queue.  */
8953 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8954 		__sctp_write_space(asoc);
8955 	}
8956 }
8957 
8958 /* Is there any sndbuf space available on the socket?
8959  *
8960  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8961  * associations on the same socket.  For a UDP-style socket with
8962  * multiple associations, it is possible for it to be "unwriteable"
8963  * prematurely.  I assume that this is acceptable because
8964  * a premature "unwriteable" is better than an accidental "writeable" which
8965  * would cause an unwanted block under certain circumstances.  For the 1-1
8966  * UDP-style sockets or TCP-style sockets, this code should work.
8967  *  - Daisy
8968  */
8969 static bool sctp_writeable(struct sock *sk)
8970 {
8971 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8972 }
8973 
8974 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8975  * returns immediately with EINPROGRESS.
8976  */
8977 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8978 {
8979 	struct sock *sk = asoc->base.sk;
8980 	int err = 0;
8981 	long current_timeo = *timeo_p;
8982 	DEFINE_WAIT(wait);
8983 
8984 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8985 
8986 	/* Increment the association's refcnt.  */
8987 	sctp_association_hold(asoc);
8988 
8989 	for (;;) {
8990 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8991 					  TASK_INTERRUPTIBLE);
8992 		if (!*timeo_p)
8993 			goto do_nonblock;
8994 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8995 			break;
8996 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8997 		    asoc->base.dead)
8998 			goto do_error;
8999 		if (signal_pending(current))
9000 			goto do_interrupted;
9001 
9002 		if (sctp_state(asoc, ESTABLISHED))
9003 			break;
9004 
9005 		/* Let another process have a go.  Since we are going
9006 		 * to sleep anyway.
9007 		 */
9008 		release_sock(sk);
9009 		current_timeo = schedule_timeout(current_timeo);
9010 		lock_sock(sk);
9011 
9012 		*timeo_p = current_timeo;
9013 	}
9014 
9015 out:
9016 	finish_wait(&asoc->wait, &wait);
9017 
9018 	/* Release the association's refcnt.  */
9019 	sctp_association_put(asoc);
9020 
9021 	return err;
9022 
9023 do_error:
9024 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9025 		err = -ETIMEDOUT;
9026 	else
9027 		err = -ECONNREFUSED;
9028 	goto out;
9029 
9030 do_interrupted:
9031 	err = sock_intr_errno(*timeo_p);
9032 	goto out;
9033 
9034 do_nonblock:
9035 	err = -EINPROGRESS;
9036 	goto out;
9037 }
9038 
9039 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9040 {
9041 	struct sctp_endpoint *ep;
9042 	int err = 0;
9043 	DEFINE_WAIT(wait);
9044 
9045 	ep = sctp_sk(sk)->ep;
9046 
9047 
9048 	for (;;) {
9049 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9050 					  TASK_INTERRUPTIBLE);
9051 
9052 		if (list_empty(&ep->asocs)) {
9053 			release_sock(sk);
9054 			timeo = schedule_timeout(timeo);
9055 			lock_sock(sk);
9056 		}
9057 
9058 		err = -EINVAL;
9059 		if (!sctp_sstate(sk, LISTENING))
9060 			break;
9061 
9062 		err = 0;
9063 		if (!list_empty(&ep->asocs))
9064 			break;
9065 
9066 		err = sock_intr_errno(timeo);
9067 		if (signal_pending(current))
9068 			break;
9069 
9070 		err = -EAGAIN;
9071 		if (!timeo)
9072 			break;
9073 	}
9074 
9075 	finish_wait(sk_sleep(sk), &wait);
9076 
9077 	return err;
9078 }
9079 
9080 static void sctp_wait_for_close(struct sock *sk, long timeout)
9081 {
9082 	DEFINE_WAIT(wait);
9083 
9084 	do {
9085 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9086 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9087 			break;
9088 		release_sock(sk);
9089 		timeout = schedule_timeout(timeout);
9090 		lock_sock(sk);
9091 	} while (!signal_pending(current) && timeout);
9092 
9093 	finish_wait(sk_sleep(sk), &wait);
9094 }
9095 
9096 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9097 {
9098 	struct sk_buff *frag;
9099 
9100 	if (!skb->data_len)
9101 		goto done;
9102 
9103 	/* Don't forget the fragments. */
9104 	skb_walk_frags(skb, frag)
9105 		sctp_skb_set_owner_r_frag(frag, sk);
9106 
9107 done:
9108 	sctp_skb_set_owner_r(skb, sk);
9109 }
9110 
9111 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9112 		    struct sctp_association *asoc)
9113 {
9114 	struct inet_sock *inet = inet_sk(sk);
9115 	struct inet_sock *newinet;
9116 	struct sctp_sock *sp = sctp_sk(sk);
9117 	struct sctp_endpoint *ep = sp->ep;
9118 
9119 	newsk->sk_type = sk->sk_type;
9120 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9121 	newsk->sk_flags = sk->sk_flags;
9122 	newsk->sk_tsflags = sk->sk_tsflags;
9123 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9124 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9125 	newsk->sk_reuse = sk->sk_reuse;
9126 	sctp_sk(newsk)->reuse = sp->reuse;
9127 
9128 	newsk->sk_shutdown = sk->sk_shutdown;
9129 	newsk->sk_destruct = sctp_destruct_sock;
9130 	newsk->sk_family = sk->sk_family;
9131 	newsk->sk_protocol = IPPROTO_SCTP;
9132 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9133 	newsk->sk_sndbuf = sk->sk_sndbuf;
9134 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9135 	newsk->sk_lingertime = sk->sk_lingertime;
9136 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9137 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9138 	newsk->sk_rxhash = sk->sk_rxhash;
9139 
9140 	newinet = inet_sk(newsk);
9141 
9142 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9143 	 * getsockname() and getpeername()
9144 	 */
9145 	newinet->inet_sport = inet->inet_sport;
9146 	newinet->inet_saddr = inet->inet_saddr;
9147 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9148 	newinet->inet_dport = htons(asoc->peer.port);
9149 	newinet->pmtudisc = inet->pmtudisc;
9150 	newinet->inet_id = asoc->next_tsn ^ jiffies;
9151 
9152 	newinet->uc_ttl = inet->uc_ttl;
9153 	newinet->mc_loop = 1;
9154 	newinet->mc_ttl = 1;
9155 	newinet->mc_index = 0;
9156 	newinet->mc_list = NULL;
9157 
9158 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9159 		net_enable_timestamp();
9160 
9161 	/* Set newsk security attributes from orginal sk and connection
9162 	 * security attribute from ep.
9163 	 */
9164 	security_sctp_sk_clone(ep, sk, newsk);
9165 }
9166 
9167 static inline void sctp_copy_descendant(struct sock *sk_to,
9168 					const struct sock *sk_from)
9169 {
9170 	int ancestor_size = sizeof(struct inet_sock) +
9171 			    sizeof(struct sctp_sock) -
9172 			    offsetof(struct sctp_sock, auto_asconf_list);
9173 
9174 	if (sk_from->sk_family == PF_INET6)
9175 		ancestor_size += sizeof(struct ipv6_pinfo);
9176 
9177 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9178 }
9179 
9180 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9181  * and its messages to the newsk.
9182  */
9183 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9184 			     struct sctp_association *assoc,
9185 			     enum sctp_socket_type type)
9186 {
9187 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9188 	struct sctp_sock *newsp = sctp_sk(newsk);
9189 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9190 	struct sctp_endpoint *newep = newsp->ep;
9191 	struct sk_buff *skb, *tmp;
9192 	struct sctp_ulpevent *event;
9193 	struct sctp_bind_hashbucket *head;
9194 	int err;
9195 
9196 	/* Migrate socket buffer sizes and all the socket level options to the
9197 	 * new socket.
9198 	 */
9199 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9200 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9201 	/* Brute force copy old sctp opt. */
9202 	sctp_copy_descendant(newsk, oldsk);
9203 
9204 	/* Restore the ep value that was overwritten with the above structure
9205 	 * copy.
9206 	 */
9207 	newsp->ep = newep;
9208 	newsp->hmac = NULL;
9209 
9210 	/* Hook this new socket in to the bind_hash list. */
9211 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9212 						 inet_sk(oldsk)->inet_num)];
9213 	spin_lock_bh(&head->lock);
9214 	pp = sctp_sk(oldsk)->bind_hash;
9215 	sk_add_bind_node(newsk, &pp->owner);
9216 	sctp_sk(newsk)->bind_hash = pp;
9217 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9218 	spin_unlock_bh(&head->lock);
9219 
9220 	/* Copy the bind_addr list from the original endpoint to the new
9221 	 * endpoint so that we can handle restarts properly
9222 	 */
9223 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9224 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9225 	if (err)
9226 		return err;
9227 
9228 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9229 	 * that net->sctp.auth_enable has been changed to 0 by users and
9230 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9231 	 */
9232 	if (oldsp->ep->auth_hmacs) {
9233 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9234 		if (err)
9235 			return err;
9236 	}
9237 
9238 	/* Move any messages in the old socket's receive queue that are for the
9239 	 * peeled off association to the new socket's receive queue.
9240 	 */
9241 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9242 		event = sctp_skb2event(skb);
9243 		if (event->asoc == assoc) {
9244 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9245 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9246 			sctp_skb_set_owner_r_frag(skb, newsk);
9247 		}
9248 	}
9249 
9250 	/* Clean up any messages pending delivery due to partial
9251 	 * delivery.   Three cases:
9252 	 * 1) No partial deliver;  no work.
9253 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9254 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9255 	 */
9256 	skb_queue_head_init(&newsp->pd_lobby);
9257 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9258 
9259 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9260 		struct sk_buff_head *queue;
9261 
9262 		/* Decide which queue to move pd_lobby skbs to. */
9263 		if (assoc->ulpq.pd_mode) {
9264 			queue = &newsp->pd_lobby;
9265 		} else
9266 			queue = &newsk->sk_receive_queue;
9267 
9268 		/* Walk through the pd_lobby, looking for skbs that
9269 		 * need moved to the new socket.
9270 		 */
9271 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9272 			event = sctp_skb2event(skb);
9273 			if (event->asoc == assoc) {
9274 				__skb_unlink(skb, &oldsp->pd_lobby);
9275 				__skb_queue_tail(queue, skb);
9276 				sctp_skb_set_owner_r_frag(skb, newsk);
9277 			}
9278 		}
9279 
9280 		/* Clear up any skbs waiting for the partial
9281 		 * delivery to finish.
9282 		 */
9283 		if (assoc->ulpq.pd_mode)
9284 			sctp_clear_pd(oldsk, NULL);
9285 
9286 	}
9287 
9288 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9289 
9290 	/* Set the type of socket to indicate that it is peeled off from the
9291 	 * original UDP-style socket or created with the accept() call on a
9292 	 * TCP-style socket..
9293 	 */
9294 	newsp->type = type;
9295 
9296 	/* Mark the new socket "in-use" by the user so that any packets
9297 	 * that may arrive on the association after we've moved it are
9298 	 * queued to the backlog.  This prevents a potential race between
9299 	 * backlog processing on the old socket and new-packet processing
9300 	 * on the new socket.
9301 	 *
9302 	 * The caller has just allocated newsk so we can guarantee that other
9303 	 * paths won't try to lock it and then oldsk.
9304 	 */
9305 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9306 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9307 	sctp_assoc_migrate(assoc, newsk);
9308 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9309 
9310 	/* If the association on the newsk is already closed before accept()
9311 	 * is called, set RCV_SHUTDOWN flag.
9312 	 */
9313 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9314 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9315 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9316 	} else {
9317 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9318 	}
9319 
9320 	release_sock(newsk);
9321 
9322 	return 0;
9323 }
9324 
9325 
9326 /* This proto struct describes the ULP interface for SCTP.  */
9327 struct proto sctp_prot = {
9328 	.name        =	"SCTP",
9329 	.owner       =	THIS_MODULE,
9330 	.close       =	sctp_close,
9331 	.disconnect  =	sctp_disconnect,
9332 	.accept      =	sctp_accept,
9333 	.ioctl       =	sctp_ioctl,
9334 	.init        =	sctp_init_sock,
9335 	.destroy     =	sctp_destroy_sock,
9336 	.shutdown    =	sctp_shutdown,
9337 	.setsockopt  =	sctp_setsockopt,
9338 	.getsockopt  =	sctp_getsockopt,
9339 	.sendmsg     =	sctp_sendmsg,
9340 	.recvmsg     =	sctp_recvmsg,
9341 	.bind        =	sctp_bind,
9342 	.backlog_rcv =	sctp_backlog_rcv,
9343 	.hash        =	sctp_hash,
9344 	.unhash      =	sctp_unhash,
9345 	.get_port    =	sctp_get_port,
9346 	.obj_size    =  sizeof(struct sctp_sock),
9347 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9348 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9349 				offsetof(struct sctp_sock, subscribe) +
9350 				sizeof_field(struct sctp_sock, initmsg),
9351 	.sysctl_mem  =  sysctl_sctp_mem,
9352 	.sysctl_rmem =  sysctl_sctp_rmem,
9353 	.sysctl_wmem =  sysctl_sctp_wmem,
9354 	.memory_pressure = &sctp_memory_pressure,
9355 	.enter_memory_pressure = sctp_enter_memory_pressure,
9356 	.memory_allocated = &sctp_memory_allocated,
9357 	.sockets_allocated = &sctp_sockets_allocated,
9358 };
9359 
9360 #if IS_ENABLED(CONFIG_IPV6)
9361 
9362 #include <net/transp_v6.h>
9363 static void sctp_v6_destroy_sock(struct sock *sk)
9364 {
9365 	sctp_destroy_sock(sk);
9366 	inet6_destroy_sock(sk);
9367 }
9368 
9369 struct proto sctpv6_prot = {
9370 	.name		= "SCTPv6",
9371 	.owner		= THIS_MODULE,
9372 	.close		= sctp_close,
9373 	.disconnect	= sctp_disconnect,
9374 	.accept		= sctp_accept,
9375 	.ioctl		= sctp_ioctl,
9376 	.init		= sctp_init_sock,
9377 	.destroy	= sctp_v6_destroy_sock,
9378 	.shutdown	= sctp_shutdown,
9379 	.setsockopt	= sctp_setsockopt,
9380 	.getsockopt	= sctp_getsockopt,
9381 	.sendmsg	= sctp_sendmsg,
9382 	.recvmsg	= sctp_recvmsg,
9383 	.bind		= sctp_bind,
9384 	.backlog_rcv	= sctp_backlog_rcv,
9385 	.hash		= sctp_hash,
9386 	.unhash		= sctp_unhash,
9387 	.get_port	= sctp_get_port,
9388 	.obj_size	= sizeof(struct sctp6_sock),
9389 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9390 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9391 				offsetof(struct sctp6_sock, sctp.subscribe) +
9392 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9393 	.sysctl_mem	= sysctl_sctp_mem,
9394 	.sysctl_rmem	= sysctl_sctp_rmem,
9395 	.sysctl_wmem	= sysctl_sctp_wmem,
9396 	.memory_pressure = &sctp_memory_pressure,
9397 	.enter_memory_pressure = sctp_enter_memory_pressure,
9398 	.memory_allocated = &sctp_memory_allocated,
9399 	.sockets_allocated = &sctp_sockets_allocated,
9400 };
9401 #endif /* IS_ENABLED(CONFIG_IPV6) */
9402