1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = vmemdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kvfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kvfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kvfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = vmemdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kvfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 iov_iter_revert(&msg->msg_iter, msg_len); 1870 1871 return 0; 1872 } 1873 1874 return 1; 1875 } 1876 1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1878 struct msghdr *msg, size_t msg_len, 1879 struct sctp_transport *transport, 1880 struct sctp_sndrcvinfo *sinfo) 1881 { 1882 struct sock *sk = asoc->base.sk; 1883 struct sctp_sock *sp = sctp_sk(sk); 1884 struct net *net = sock_net(sk); 1885 struct sctp_datamsg *datamsg; 1886 bool wait_connect = false; 1887 struct sctp_chunk *chunk; 1888 long timeo; 1889 int err; 1890 1891 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1892 err = -EINVAL; 1893 goto err; 1894 } 1895 1896 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1897 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1898 if (err) 1899 goto err; 1900 } 1901 1902 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1903 err = -EMSGSIZE; 1904 goto err; 1905 } 1906 1907 if (asoc->pmtu_pending) { 1908 if (sp->param_flags & SPP_PMTUD_ENABLE) 1909 sctp_assoc_sync_pmtu(asoc); 1910 asoc->pmtu_pending = 0; 1911 } 1912 1913 if (sctp_wspace(asoc) < (int)msg_len) 1914 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1915 1916 if (sctp_wspace(asoc) <= 0) { 1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1918 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1919 if (err) 1920 goto err; 1921 } 1922 1923 if (sctp_state(asoc, CLOSED)) { 1924 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1925 if (err) 1926 goto err; 1927 1928 if (sp->strm_interleave) { 1929 timeo = sock_sndtimeo(sk, 0); 1930 err = sctp_wait_for_connect(asoc, &timeo); 1931 if (err) { 1932 err = -ESRCH; 1933 goto err; 1934 } 1935 } else { 1936 wait_connect = true; 1937 } 1938 1939 pr_debug("%s: we associated primitively\n", __func__); 1940 } 1941 1942 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1943 if (IS_ERR(datamsg)) { 1944 err = PTR_ERR(datamsg); 1945 goto err; 1946 } 1947 1948 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1949 1950 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1951 sctp_chunk_hold(chunk); 1952 sctp_set_owner_w(chunk); 1953 chunk->transport = transport; 1954 } 1955 1956 err = sctp_primitive_SEND(net, asoc, datamsg); 1957 if (err) { 1958 sctp_datamsg_free(datamsg); 1959 goto err; 1960 } 1961 1962 pr_debug("%s: we sent primitively\n", __func__); 1963 1964 sctp_datamsg_put(datamsg); 1965 1966 if (unlikely(wait_connect)) { 1967 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1968 sctp_wait_for_connect(asoc, &timeo); 1969 } 1970 1971 err = msg_len; 1972 1973 err: 1974 return err; 1975 } 1976 1977 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1978 const struct msghdr *msg, 1979 struct sctp_cmsgs *cmsgs) 1980 { 1981 union sctp_addr *daddr = NULL; 1982 int err; 1983 1984 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1985 int len = msg->msg_namelen; 1986 1987 if (len > sizeof(*daddr)) 1988 len = sizeof(*daddr); 1989 1990 daddr = (union sctp_addr *)msg->msg_name; 1991 1992 err = sctp_verify_addr(sk, daddr, len); 1993 if (err) 1994 return ERR_PTR(err); 1995 } 1996 1997 return daddr; 1998 } 1999 2000 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2001 struct sctp_sndrcvinfo *sinfo, 2002 struct sctp_cmsgs *cmsgs) 2003 { 2004 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2005 sinfo->sinfo_stream = asoc->default_stream; 2006 sinfo->sinfo_ppid = asoc->default_ppid; 2007 sinfo->sinfo_context = asoc->default_context; 2008 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2009 2010 if (!cmsgs->prinfo) 2011 sinfo->sinfo_flags = asoc->default_flags; 2012 } 2013 2014 if (!cmsgs->srinfo && !cmsgs->prinfo) 2015 sinfo->sinfo_timetolive = asoc->default_timetolive; 2016 2017 if (cmsgs->authinfo) { 2018 /* Reuse sinfo_tsn to indicate that authinfo was set and 2019 * sinfo_ssn to save the keyid on tx path. 2020 */ 2021 sinfo->sinfo_tsn = 1; 2022 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2023 } 2024 } 2025 2026 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2027 { 2028 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2029 struct sctp_transport *transport = NULL; 2030 struct sctp_sndrcvinfo _sinfo, *sinfo; 2031 struct sctp_association *asoc, *tmp; 2032 struct sctp_cmsgs cmsgs; 2033 union sctp_addr *daddr; 2034 bool new = false; 2035 __u16 sflags; 2036 int err; 2037 2038 /* Parse and get snd_info */ 2039 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2040 if (err) 2041 goto out; 2042 2043 sinfo = &_sinfo; 2044 sflags = sinfo->sinfo_flags; 2045 2046 /* Get daddr from msg */ 2047 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2048 if (IS_ERR(daddr)) { 2049 err = PTR_ERR(daddr); 2050 goto out; 2051 } 2052 2053 lock_sock(sk); 2054 2055 /* SCTP_SENDALL process */ 2056 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2057 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2058 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2059 msg_len); 2060 if (err == 0) 2061 continue; 2062 if (err < 0) 2063 goto out_unlock; 2064 2065 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2066 2067 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2068 NULL, sinfo); 2069 if (err < 0) 2070 goto out_unlock; 2071 2072 iov_iter_revert(&msg->msg_iter, err); 2073 } 2074 2075 goto out_unlock; 2076 } 2077 2078 /* Get and check or create asoc */ 2079 if (daddr) { 2080 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2081 if (asoc) { 2082 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2083 msg_len); 2084 if (err <= 0) 2085 goto out_unlock; 2086 } else { 2087 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2088 &transport); 2089 if (err) 2090 goto out_unlock; 2091 2092 asoc = transport->asoc; 2093 new = true; 2094 } 2095 2096 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2097 transport = NULL; 2098 } else { 2099 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2100 if (!asoc) { 2101 err = -EPIPE; 2102 goto out_unlock; 2103 } 2104 2105 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2106 if (err <= 0) 2107 goto out_unlock; 2108 } 2109 2110 /* Update snd_info with the asoc */ 2111 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2112 2113 /* Send msg to the asoc */ 2114 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2115 if (err < 0 && err != -ESRCH && new) 2116 sctp_association_free(asoc); 2117 2118 out_unlock: 2119 release_sock(sk); 2120 out: 2121 return sctp_error(sk, msg->msg_flags, err); 2122 } 2123 2124 /* This is an extended version of skb_pull() that removes the data from the 2125 * start of a skb even when data is spread across the list of skb's in the 2126 * frag_list. len specifies the total amount of data that needs to be removed. 2127 * when 'len' bytes could be removed from the skb, it returns 0. 2128 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2129 * could not be removed. 2130 */ 2131 static int sctp_skb_pull(struct sk_buff *skb, int len) 2132 { 2133 struct sk_buff *list; 2134 int skb_len = skb_headlen(skb); 2135 int rlen; 2136 2137 if (len <= skb_len) { 2138 __skb_pull(skb, len); 2139 return 0; 2140 } 2141 len -= skb_len; 2142 __skb_pull(skb, skb_len); 2143 2144 skb_walk_frags(skb, list) { 2145 rlen = sctp_skb_pull(list, len); 2146 skb->len -= (len-rlen); 2147 skb->data_len -= (len-rlen); 2148 2149 if (!rlen) 2150 return 0; 2151 2152 len = rlen; 2153 } 2154 2155 return len; 2156 } 2157 2158 /* API 3.1.3 recvmsg() - UDP Style Syntax 2159 * 2160 * ssize_t recvmsg(int socket, struct msghdr *message, 2161 * int flags); 2162 * 2163 * socket - the socket descriptor of the endpoint. 2164 * message - pointer to the msghdr structure which contains a single 2165 * user message and possibly some ancillary data. 2166 * 2167 * See Section 5 for complete description of the data 2168 * structures. 2169 * 2170 * flags - flags sent or received with the user message, see Section 2171 * 5 for complete description of the flags. 2172 */ 2173 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2174 int noblock, int flags, int *addr_len) 2175 { 2176 struct sctp_ulpevent *event = NULL; 2177 struct sctp_sock *sp = sctp_sk(sk); 2178 struct sk_buff *skb, *head_skb; 2179 int copied; 2180 int err = 0; 2181 int skb_len; 2182 2183 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2184 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2185 addr_len); 2186 2187 lock_sock(sk); 2188 2189 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2190 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2191 err = -ENOTCONN; 2192 goto out; 2193 } 2194 2195 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2196 if (!skb) 2197 goto out; 2198 2199 /* Get the total length of the skb including any skb's in the 2200 * frag_list. 2201 */ 2202 skb_len = skb->len; 2203 2204 copied = skb_len; 2205 if (copied > len) 2206 copied = len; 2207 2208 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2209 2210 event = sctp_skb2event(skb); 2211 2212 if (err) 2213 goto out_free; 2214 2215 if (event->chunk && event->chunk->head_skb) 2216 head_skb = event->chunk->head_skb; 2217 else 2218 head_skb = skb; 2219 sock_recv_ts_and_drops(msg, sk, head_skb); 2220 if (sctp_ulpevent_is_notification(event)) { 2221 msg->msg_flags |= MSG_NOTIFICATION; 2222 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2223 } else { 2224 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2225 } 2226 2227 /* Check if we allow SCTP_NXTINFO. */ 2228 if (sp->recvnxtinfo) 2229 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2230 /* Check if we allow SCTP_RCVINFO. */ 2231 if (sp->recvrcvinfo) 2232 sctp_ulpevent_read_rcvinfo(event, msg); 2233 /* Check if we allow SCTP_SNDRCVINFO. */ 2234 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2235 sctp_ulpevent_read_sndrcvinfo(event, msg); 2236 2237 err = copied; 2238 2239 /* If skb's length exceeds the user's buffer, update the skb and 2240 * push it back to the receive_queue so that the next call to 2241 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2242 */ 2243 if (skb_len > copied) { 2244 msg->msg_flags &= ~MSG_EOR; 2245 if (flags & MSG_PEEK) 2246 goto out_free; 2247 sctp_skb_pull(skb, copied); 2248 skb_queue_head(&sk->sk_receive_queue, skb); 2249 2250 /* When only partial message is copied to the user, increase 2251 * rwnd by that amount. If all the data in the skb is read, 2252 * rwnd is updated when the event is freed. 2253 */ 2254 if (!sctp_ulpevent_is_notification(event)) 2255 sctp_assoc_rwnd_increase(event->asoc, copied); 2256 goto out; 2257 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2258 (event->msg_flags & MSG_EOR)) 2259 msg->msg_flags |= MSG_EOR; 2260 else 2261 msg->msg_flags &= ~MSG_EOR; 2262 2263 out_free: 2264 if (flags & MSG_PEEK) { 2265 /* Release the skb reference acquired after peeking the skb in 2266 * sctp_skb_recv_datagram(). 2267 */ 2268 kfree_skb(skb); 2269 } else { 2270 /* Free the event which includes releasing the reference to 2271 * the owner of the skb, freeing the skb and updating the 2272 * rwnd. 2273 */ 2274 sctp_ulpevent_free(event); 2275 } 2276 out: 2277 release_sock(sk); 2278 return err; 2279 } 2280 2281 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2282 * 2283 * This option is a on/off flag. If enabled no SCTP message 2284 * fragmentation will be performed. Instead if a message being sent 2285 * exceeds the current PMTU size, the message will NOT be sent and 2286 * instead a error will be indicated to the user. 2287 */ 2288 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2289 char __user *optval, 2290 unsigned int optlen) 2291 { 2292 int val; 2293 2294 if (optlen < sizeof(int)) 2295 return -EINVAL; 2296 2297 if (get_user(val, (int __user *)optval)) 2298 return -EFAULT; 2299 2300 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2301 2302 return 0; 2303 } 2304 2305 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2306 unsigned int optlen) 2307 { 2308 struct sctp_event_subscribe subscribe; 2309 __u8 *sn_type = (__u8 *)&subscribe; 2310 struct sctp_sock *sp = sctp_sk(sk); 2311 struct sctp_association *asoc; 2312 int i; 2313 2314 if (optlen > sizeof(struct sctp_event_subscribe)) 2315 return -EINVAL; 2316 2317 if (copy_from_user(&subscribe, optval, optlen)) 2318 return -EFAULT; 2319 2320 for (i = 0; i < optlen; i++) 2321 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2322 sn_type[i]); 2323 2324 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2325 asoc->subscribe = sctp_sk(sk)->subscribe; 2326 2327 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2328 * if there is no data to be sent or retransmit, the stack will 2329 * immediately send up this notification. 2330 */ 2331 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2332 struct sctp_ulpevent *event; 2333 2334 asoc = sctp_id2assoc(sk, 0); 2335 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2336 event = sctp_ulpevent_make_sender_dry_event(asoc, 2337 GFP_USER | __GFP_NOWARN); 2338 if (!event) 2339 return -ENOMEM; 2340 2341 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2342 } 2343 } 2344 2345 return 0; 2346 } 2347 2348 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2349 * 2350 * This socket option is applicable to the UDP-style socket only. When 2351 * set it will cause associations that are idle for more than the 2352 * specified number of seconds to automatically close. An association 2353 * being idle is defined an association that has NOT sent or received 2354 * user data. The special value of '0' indicates that no automatic 2355 * close of any associations should be performed. The option expects an 2356 * integer defining the number of seconds of idle time before an 2357 * association is closed. 2358 */ 2359 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2360 unsigned int optlen) 2361 { 2362 struct sctp_sock *sp = sctp_sk(sk); 2363 struct net *net = sock_net(sk); 2364 2365 /* Applicable to UDP-style socket only */ 2366 if (sctp_style(sk, TCP)) 2367 return -EOPNOTSUPP; 2368 if (optlen != sizeof(int)) 2369 return -EINVAL; 2370 if (copy_from_user(&sp->autoclose, optval, optlen)) 2371 return -EFAULT; 2372 2373 if (sp->autoclose > net->sctp.max_autoclose) 2374 sp->autoclose = net->sctp.max_autoclose; 2375 2376 return 0; 2377 } 2378 2379 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2380 * 2381 * Applications can enable or disable heartbeats for any peer address of 2382 * an association, modify an address's heartbeat interval, force a 2383 * heartbeat to be sent immediately, and adjust the address's maximum 2384 * number of retransmissions sent before an address is considered 2385 * unreachable. The following structure is used to access and modify an 2386 * address's parameters: 2387 * 2388 * struct sctp_paddrparams { 2389 * sctp_assoc_t spp_assoc_id; 2390 * struct sockaddr_storage spp_address; 2391 * uint32_t spp_hbinterval; 2392 * uint16_t spp_pathmaxrxt; 2393 * uint32_t spp_pathmtu; 2394 * uint32_t spp_sackdelay; 2395 * uint32_t spp_flags; 2396 * uint32_t spp_ipv6_flowlabel; 2397 * uint8_t spp_dscp; 2398 * }; 2399 * 2400 * spp_assoc_id - (one-to-many style socket) This is filled in the 2401 * application, and identifies the association for 2402 * this query. 2403 * spp_address - This specifies which address is of interest. 2404 * spp_hbinterval - This contains the value of the heartbeat interval, 2405 * in milliseconds. If a value of zero 2406 * is present in this field then no changes are to 2407 * be made to this parameter. 2408 * spp_pathmaxrxt - This contains the maximum number of 2409 * retransmissions before this address shall be 2410 * considered unreachable. If a value of zero 2411 * is present in this field then no changes are to 2412 * be made to this parameter. 2413 * spp_pathmtu - When Path MTU discovery is disabled the value 2414 * specified here will be the "fixed" path mtu. 2415 * Note that if the spp_address field is empty 2416 * then all associations on this address will 2417 * have this fixed path mtu set upon them. 2418 * 2419 * spp_sackdelay - When delayed sack is enabled, this value specifies 2420 * the number of milliseconds that sacks will be delayed 2421 * for. This value will apply to all addresses of an 2422 * association if the spp_address field is empty. Note 2423 * also, that if delayed sack is enabled and this 2424 * value is set to 0, no change is made to the last 2425 * recorded delayed sack timer value. 2426 * 2427 * spp_flags - These flags are used to control various features 2428 * on an association. The flag field may contain 2429 * zero or more of the following options. 2430 * 2431 * SPP_HB_ENABLE - Enable heartbeats on the 2432 * specified address. Note that if the address 2433 * field is empty all addresses for the association 2434 * have heartbeats enabled upon them. 2435 * 2436 * SPP_HB_DISABLE - Disable heartbeats on the 2437 * speicifed address. Note that if the address 2438 * field is empty all addresses for the association 2439 * will have their heartbeats disabled. Note also 2440 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2441 * mutually exclusive, only one of these two should 2442 * be specified. Enabling both fields will have 2443 * undetermined results. 2444 * 2445 * SPP_HB_DEMAND - Request a user initiated heartbeat 2446 * to be made immediately. 2447 * 2448 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2449 * heartbeat delayis to be set to the value of 0 2450 * milliseconds. 2451 * 2452 * SPP_PMTUD_ENABLE - This field will enable PMTU 2453 * discovery upon the specified address. Note that 2454 * if the address feild is empty then all addresses 2455 * on the association are effected. 2456 * 2457 * SPP_PMTUD_DISABLE - This field will disable PMTU 2458 * discovery upon the specified address. Note that 2459 * if the address feild is empty then all addresses 2460 * on the association are effected. Not also that 2461 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2462 * exclusive. Enabling both will have undetermined 2463 * results. 2464 * 2465 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2466 * on delayed sack. The time specified in spp_sackdelay 2467 * is used to specify the sack delay for this address. Note 2468 * that if spp_address is empty then all addresses will 2469 * enable delayed sack and take on the sack delay 2470 * value specified in spp_sackdelay. 2471 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2472 * off delayed sack. If the spp_address field is blank then 2473 * delayed sack is disabled for the entire association. Note 2474 * also that this field is mutually exclusive to 2475 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2476 * results. 2477 * 2478 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2479 * setting of the IPV6 flow label value. The value is 2480 * contained in the spp_ipv6_flowlabel field. 2481 * Upon retrieval, this flag will be set to indicate that 2482 * the spp_ipv6_flowlabel field has a valid value returned. 2483 * If a specific destination address is set (in the 2484 * spp_address field), then the value returned is that of 2485 * the address. If just an association is specified (and 2486 * no address), then the association's default flow label 2487 * is returned. If neither an association nor a destination 2488 * is specified, then the socket's default flow label is 2489 * returned. For non-IPv6 sockets, this flag will be left 2490 * cleared. 2491 * 2492 * SPP_DSCP: Setting this flag enables the setting of the 2493 * Differentiated Services Code Point (DSCP) value 2494 * associated with either the association or a specific 2495 * address. The value is obtained in the spp_dscp field. 2496 * Upon retrieval, this flag will be set to indicate that 2497 * the spp_dscp field has a valid value returned. If a 2498 * specific destination address is set when called (in the 2499 * spp_address field), then that specific destination 2500 * address's DSCP value is returned. If just an association 2501 * is specified, then the association's default DSCP is 2502 * returned. If neither an association nor a destination is 2503 * specified, then the socket's default DSCP is returned. 2504 * 2505 * spp_ipv6_flowlabel 2506 * - This field is used in conjunction with the 2507 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2508 * The 20 least significant bits are used for the flow 2509 * label. This setting has precedence over any IPv6-layer 2510 * setting. 2511 * 2512 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2513 * and contains the DSCP. The 6 most significant bits are 2514 * used for the DSCP. This setting has precedence over any 2515 * IPv4- or IPv6- layer setting. 2516 */ 2517 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2518 struct sctp_transport *trans, 2519 struct sctp_association *asoc, 2520 struct sctp_sock *sp, 2521 int hb_change, 2522 int pmtud_change, 2523 int sackdelay_change) 2524 { 2525 int error; 2526 2527 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2528 struct net *net = sock_net(trans->asoc->base.sk); 2529 2530 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2531 if (error) 2532 return error; 2533 } 2534 2535 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2536 * this field is ignored. Note also that a value of zero indicates 2537 * the current setting should be left unchanged. 2538 */ 2539 if (params->spp_flags & SPP_HB_ENABLE) { 2540 2541 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2542 * set. This lets us use 0 value when this flag 2543 * is set. 2544 */ 2545 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2546 params->spp_hbinterval = 0; 2547 2548 if (params->spp_hbinterval || 2549 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2550 if (trans) { 2551 trans->hbinterval = 2552 msecs_to_jiffies(params->spp_hbinterval); 2553 } else if (asoc) { 2554 asoc->hbinterval = 2555 msecs_to_jiffies(params->spp_hbinterval); 2556 } else { 2557 sp->hbinterval = params->spp_hbinterval; 2558 } 2559 } 2560 } 2561 2562 if (hb_change) { 2563 if (trans) { 2564 trans->param_flags = 2565 (trans->param_flags & ~SPP_HB) | hb_change; 2566 } else if (asoc) { 2567 asoc->param_flags = 2568 (asoc->param_flags & ~SPP_HB) | hb_change; 2569 } else { 2570 sp->param_flags = 2571 (sp->param_flags & ~SPP_HB) | hb_change; 2572 } 2573 } 2574 2575 /* When Path MTU discovery is disabled the value specified here will 2576 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2577 * include the flag SPP_PMTUD_DISABLE for this field to have any 2578 * effect). 2579 */ 2580 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2581 if (trans) { 2582 trans->pathmtu = params->spp_pathmtu; 2583 sctp_assoc_sync_pmtu(asoc); 2584 } else if (asoc) { 2585 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2586 } else { 2587 sp->pathmtu = params->spp_pathmtu; 2588 } 2589 } 2590 2591 if (pmtud_change) { 2592 if (trans) { 2593 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2594 (params->spp_flags & SPP_PMTUD_ENABLE); 2595 trans->param_flags = 2596 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2597 if (update) { 2598 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2599 sctp_assoc_sync_pmtu(asoc); 2600 } 2601 } else if (asoc) { 2602 asoc->param_flags = 2603 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2604 } else { 2605 sp->param_flags = 2606 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2607 } 2608 } 2609 2610 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2611 * value of this field is ignored. Note also that a value of zero 2612 * indicates the current setting should be left unchanged. 2613 */ 2614 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2615 if (trans) { 2616 trans->sackdelay = 2617 msecs_to_jiffies(params->spp_sackdelay); 2618 } else if (asoc) { 2619 asoc->sackdelay = 2620 msecs_to_jiffies(params->spp_sackdelay); 2621 } else { 2622 sp->sackdelay = params->spp_sackdelay; 2623 } 2624 } 2625 2626 if (sackdelay_change) { 2627 if (trans) { 2628 trans->param_flags = 2629 (trans->param_flags & ~SPP_SACKDELAY) | 2630 sackdelay_change; 2631 } else if (asoc) { 2632 asoc->param_flags = 2633 (asoc->param_flags & ~SPP_SACKDELAY) | 2634 sackdelay_change; 2635 } else { 2636 sp->param_flags = 2637 (sp->param_flags & ~SPP_SACKDELAY) | 2638 sackdelay_change; 2639 } 2640 } 2641 2642 /* Note that a value of zero indicates the current setting should be 2643 left unchanged. 2644 */ 2645 if (params->spp_pathmaxrxt) { 2646 if (trans) { 2647 trans->pathmaxrxt = params->spp_pathmaxrxt; 2648 } else if (asoc) { 2649 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2650 } else { 2651 sp->pathmaxrxt = params->spp_pathmaxrxt; 2652 } 2653 } 2654 2655 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2656 if (trans) { 2657 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2658 trans->flowlabel = params->spp_ipv6_flowlabel & 2659 SCTP_FLOWLABEL_VAL_MASK; 2660 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2661 } 2662 } else if (asoc) { 2663 struct sctp_transport *t; 2664 2665 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2666 transports) { 2667 if (t->ipaddr.sa.sa_family != AF_INET6) 2668 continue; 2669 t->flowlabel = params->spp_ipv6_flowlabel & 2670 SCTP_FLOWLABEL_VAL_MASK; 2671 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2672 } 2673 asoc->flowlabel = params->spp_ipv6_flowlabel & 2674 SCTP_FLOWLABEL_VAL_MASK; 2675 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2676 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2677 sp->flowlabel = params->spp_ipv6_flowlabel & 2678 SCTP_FLOWLABEL_VAL_MASK; 2679 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2680 } 2681 } 2682 2683 if (params->spp_flags & SPP_DSCP) { 2684 if (trans) { 2685 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2686 trans->dscp |= SCTP_DSCP_SET_MASK; 2687 } else if (asoc) { 2688 struct sctp_transport *t; 2689 2690 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2691 transports) { 2692 t->dscp = params->spp_dscp & 2693 SCTP_DSCP_VAL_MASK; 2694 t->dscp |= SCTP_DSCP_SET_MASK; 2695 } 2696 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2697 asoc->dscp |= SCTP_DSCP_SET_MASK; 2698 } else { 2699 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2700 sp->dscp |= SCTP_DSCP_SET_MASK; 2701 } 2702 } 2703 2704 return 0; 2705 } 2706 2707 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2708 char __user *optval, 2709 unsigned int optlen) 2710 { 2711 struct sctp_paddrparams params; 2712 struct sctp_transport *trans = NULL; 2713 struct sctp_association *asoc = NULL; 2714 struct sctp_sock *sp = sctp_sk(sk); 2715 int error; 2716 int hb_change, pmtud_change, sackdelay_change; 2717 2718 if (optlen == sizeof(params)) { 2719 if (copy_from_user(¶ms, optval, optlen)) 2720 return -EFAULT; 2721 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2722 spp_ipv6_flowlabel), 4)) { 2723 if (copy_from_user(¶ms, optval, optlen)) 2724 return -EFAULT; 2725 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2726 return -EINVAL; 2727 } else { 2728 return -EINVAL; 2729 } 2730 2731 /* Validate flags and value parameters. */ 2732 hb_change = params.spp_flags & SPP_HB; 2733 pmtud_change = params.spp_flags & SPP_PMTUD; 2734 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2735 2736 if (hb_change == SPP_HB || 2737 pmtud_change == SPP_PMTUD || 2738 sackdelay_change == SPP_SACKDELAY || 2739 params.spp_sackdelay > 500 || 2740 (params.spp_pathmtu && 2741 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2742 return -EINVAL; 2743 2744 /* If an address other than INADDR_ANY is specified, and 2745 * no transport is found, then the request is invalid. 2746 */ 2747 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2748 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2749 params.spp_assoc_id); 2750 if (!trans) 2751 return -EINVAL; 2752 } 2753 2754 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2755 * socket is a one to many style socket, and an association 2756 * was not found, then the id was invalid. 2757 */ 2758 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2759 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2760 sctp_style(sk, UDP)) 2761 return -EINVAL; 2762 2763 /* Heartbeat demand can only be sent on a transport or 2764 * association, but not a socket. 2765 */ 2766 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2767 return -EINVAL; 2768 2769 /* Process parameters. */ 2770 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2771 hb_change, pmtud_change, 2772 sackdelay_change); 2773 2774 if (error) 2775 return error; 2776 2777 /* If changes are for association, also apply parameters to each 2778 * transport. 2779 */ 2780 if (!trans && asoc) { 2781 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2782 transports) { 2783 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2784 hb_change, pmtud_change, 2785 sackdelay_change); 2786 } 2787 } 2788 2789 return 0; 2790 } 2791 2792 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2793 { 2794 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2795 } 2796 2797 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2798 { 2799 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2800 } 2801 2802 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2803 struct sctp_association *asoc) 2804 { 2805 struct sctp_transport *trans; 2806 2807 if (params->sack_delay) { 2808 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2809 asoc->param_flags = 2810 sctp_spp_sackdelay_enable(asoc->param_flags); 2811 } 2812 if (params->sack_freq == 1) { 2813 asoc->param_flags = 2814 sctp_spp_sackdelay_disable(asoc->param_flags); 2815 } else if (params->sack_freq > 1) { 2816 asoc->sackfreq = params->sack_freq; 2817 asoc->param_flags = 2818 sctp_spp_sackdelay_enable(asoc->param_flags); 2819 } 2820 2821 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2822 transports) { 2823 if (params->sack_delay) { 2824 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2825 trans->param_flags = 2826 sctp_spp_sackdelay_enable(trans->param_flags); 2827 } 2828 if (params->sack_freq == 1) { 2829 trans->param_flags = 2830 sctp_spp_sackdelay_disable(trans->param_flags); 2831 } else if (params->sack_freq > 1) { 2832 trans->sackfreq = params->sack_freq; 2833 trans->param_flags = 2834 sctp_spp_sackdelay_enable(trans->param_flags); 2835 } 2836 } 2837 } 2838 2839 /* 2840 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2841 * 2842 * This option will effect the way delayed acks are performed. This 2843 * option allows you to get or set the delayed ack time, in 2844 * milliseconds. It also allows changing the delayed ack frequency. 2845 * Changing the frequency to 1 disables the delayed sack algorithm. If 2846 * the assoc_id is 0, then this sets or gets the endpoints default 2847 * values. If the assoc_id field is non-zero, then the set or get 2848 * effects the specified association for the one to many model (the 2849 * assoc_id field is ignored by the one to one model). Note that if 2850 * sack_delay or sack_freq are 0 when setting this option, then the 2851 * current values will remain unchanged. 2852 * 2853 * struct sctp_sack_info { 2854 * sctp_assoc_t sack_assoc_id; 2855 * uint32_t sack_delay; 2856 * uint32_t sack_freq; 2857 * }; 2858 * 2859 * sack_assoc_id - This parameter, indicates which association the user 2860 * is performing an action upon. Note that if this field's value is 2861 * zero then the endpoints default value is changed (effecting future 2862 * associations only). 2863 * 2864 * sack_delay - This parameter contains the number of milliseconds that 2865 * the user is requesting the delayed ACK timer be set to. Note that 2866 * this value is defined in the standard to be between 200 and 500 2867 * milliseconds. 2868 * 2869 * sack_freq - This parameter contains the number of packets that must 2870 * be received before a sack is sent without waiting for the delay 2871 * timer to expire. The default value for this is 2, setting this 2872 * value to 1 will disable the delayed sack algorithm. 2873 */ 2874 2875 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2876 char __user *optval, unsigned int optlen) 2877 { 2878 struct sctp_sock *sp = sctp_sk(sk); 2879 struct sctp_association *asoc; 2880 struct sctp_sack_info params; 2881 2882 if (optlen == sizeof(struct sctp_sack_info)) { 2883 if (copy_from_user(¶ms, optval, optlen)) 2884 return -EFAULT; 2885 2886 if (params.sack_delay == 0 && params.sack_freq == 0) 2887 return 0; 2888 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2889 pr_warn_ratelimited(DEPRECATED 2890 "%s (pid %d) " 2891 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2892 "Use struct sctp_sack_info instead\n", 2893 current->comm, task_pid_nr(current)); 2894 if (copy_from_user(¶ms, optval, optlen)) 2895 return -EFAULT; 2896 2897 if (params.sack_delay == 0) 2898 params.sack_freq = 1; 2899 else 2900 params.sack_freq = 0; 2901 } else 2902 return -EINVAL; 2903 2904 /* Validate value parameter. */ 2905 if (params.sack_delay > 500) 2906 return -EINVAL; 2907 2908 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2909 * socket is a one to many style socket, and an association 2910 * was not found, then the id was invalid. 2911 */ 2912 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2913 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2914 sctp_style(sk, UDP)) 2915 return -EINVAL; 2916 2917 if (asoc) { 2918 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2919 2920 return 0; 2921 } 2922 2923 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2924 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2925 if (params.sack_delay) { 2926 sp->sackdelay = params.sack_delay; 2927 sp->param_flags = 2928 sctp_spp_sackdelay_enable(sp->param_flags); 2929 } 2930 if (params.sack_freq == 1) { 2931 sp->param_flags = 2932 sctp_spp_sackdelay_disable(sp->param_flags); 2933 } else if (params.sack_freq > 1) { 2934 sp->sackfreq = params.sack_freq; 2935 sp->param_flags = 2936 sctp_spp_sackdelay_enable(sp->param_flags); 2937 } 2938 } 2939 2940 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2941 params.sack_assoc_id == SCTP_ALL_ASSOC) 2942 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2943 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2944 2945 return 0; 2946 } 2947 2948 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2949 * 2950 * Applications can specify protocol parameters for the default association 2951 * initialization. The option name argument to setsockopt() and getsockopt() 2952 * is SCTP_INITMSG. 2953 * 2954 * Setting initialization parameters is effective only on an unconnected 2955 * socket (for UDP-style sockets only future associations are effected 2956 * by the change). With TCP-style sockets, this option is inherited by 2957 * sockets derived from a listener socket. 2958 */ 2959 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2960 { 2961 struct sctp_initmsg sinit; 2962 struct sctp_sock *sp = sctp_sk(sk); 2963 2964 if (optlen != sizeof(struct sctp_initmsg)) 2965 return -EINVAL; 2966 if (copy_from_user(&sinit, optval, optlen)) 2967 return -EFAULT; 2968 2969 if (sinit.sinit_num_ostreams) 2970 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2971 if (sinit.sinit_max_instreams) 2972 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2973 if (sinit.sinit_max_attempts) 2974 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2975 if (sinit.sinit_max_init_timeo) 2976 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2977 2978 return 0; 2979 } 2980 2981 /* 2982 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2983 * 2984 * Applications that wish to use the sendto() system call may wish to 2985 * specify a default set of parameters that would normally be supplied 2986 * through the inclusion of ancillary data. This socket option allows 2987 * such an application to set the default sctp_sndrcvinfo structure. 2988 * The application that wishes to use this socket option simply passes 2989 * in to this call the sctp_sndrcvinfo structure defined in Section 2990 * 5.2.2) The input parameters accepted by this call include 2991 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2992 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2993 * to this call if the caller is using the UDP model. 2994 */ 2995 static int sctp_setsockopt_default_send_param(struct sock *sk, 2996 char __user *optval, 2997 unsigned int optlen) 2998 { 2999 struct sctp_sock *sp = sctp_sk(sk); 3000 struct sctp_association *asoc; 3001 struct sctp_sndrcvinfo info; 3002 3003 if (optlen != sizeof(info)) 3004 return -EINVAL; 3005 if (copy_from_user(&info, optval, optlen)) 3006 return -EFAULT; 3007 if (info.sinfo_flags & 3008 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3009 SCTP_ABORT | SCTP_EOF)) 3010 return -EINVAL; 3011 3012 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3013 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3014 sctp_style(sk, UDP)) 3015 return -EINVAL; 3016 3017 if (asoc) { 3018 asoc->default_stream = info.sinfo_stream; 3019 asoc->default_flags = info.sinfo_flags; 3020 asoc->default_ppid = info.sinfo_ppid; 3021 asoc->default_context = info.sinfo_context; 3022 asoc->default_timetolive = info.sinfo_timetolive; 3023 3024 return 0; 3025 } 3026 3027 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3028 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3029 sp->default_stream = info.sinfo_stream; 3030 sp->default_flags = info.sinfo_flags; 3031 sp->default_ppid = info.sinfo_ppid; 3032 sp->default_context = info.sinfo_context; 3033 sp->default_timetolive = info.sinfo_timetolive; 3034 } 3035 3036 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3037 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3038 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3039 asoc->default_stream = info.sinfo_stream; 3040 asoc->default_flags = info.sinfo_flags; 3041 asoc->default_ppid = info.sinfo_ppid; 3042 asoc->default_context = info.sinfo_context; 3043 asoc->default_timetolive = info.sinfo_timetolive; 3044 } 3045 } 3046 3047 return 0; 3048 } 3049 3050 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3051 * (SCTP_DEFAULT_SNDINFO) 3052 */ 3053 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3054 char __user *optval, 3055 unsigned int optlen) 3056 { 3057 struct sctp_sock *sp = sctp_sk(sk); 3058 struct sctp_association *asoc; 3059 struct sctp_sndinfo info; 3060 3061 if (optlen != sizeof(info)) 3062 return -EINVAL; 3063 if (copy_from_user(&info, optval, optlen)) 3064 return -EFAULT; 3065 if (info.snd_flags & 3066 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3067 SCTP_ABORT | SCTP_EOF)) 3068 return -EINVAL; 3069 3070 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3071 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3072 sctp_style(sk, UDP)) 3073 return -EINVAL; 3074 3075 if (asoc) { 3076 asoc->default_stream = info.snd_sid; 3077 asoc->default_flags = info.snd_flags; 3078 asoc->default_ppid = info.snd_ppid; 3079 asoc->default_context = info.snd_context; 3080 3081 return 0; 3082 } 3083 3084 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3085 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3086 sp->default_stream = info.snd_sid; 3087 sp->default_flags = info.snd_flags; 3088 sp->default_ppid = info.snd_ppid; 3089 sp->default_context = info.snd_context; 3090 } 3091 3092 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3093 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3094 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3095 asoc->default_stream = info.snd_sid; 3096 asoc->default_flags = info.snd_flags; 3097 asoc->default_ppid = info.snd_ppid; 3098 asoc->default_context = info.snd_context; 3099 } 3100 } 3101 3102 return 0; 3103 } 3104 3105 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3106 * 3107 * Requests that the local SCTP stack use the enclosed peer address as 3108 * the association primary. The enclosed address must be one of the 3109 * association peer's addresses. 3110 */ 3111 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3112 unsigned int optlen) 3113 { 3114 struct sctp_prim prim; 3115 struct sctp_transport *trans; 3116 struct sctp_af *af; 3117 int err; 3118 3119 if (optlen != sizeof(struct sctp_prim)) 3120 return -EINVAL; 3121 3122 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3123 return -EFAULT; 3124 3125 /* Allow security module to validate address but need address len. */ 3126 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3127 if (!af) 3128 return -EINVAL; 3129 3130 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3131 (struct sockaddr *)&prim.ssp_addr, 3132 af->sockaddr_len); 3133 if (err) 3134 return err; 3135 3136 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3137 if (!trans) 3138 return -EINVAL; 3139 3140 sctp_assoc_set_primary(trans->asoc, trans); 3141 3142 return 0; 3143 } 3144 3145 /* 3146 * 7.1.5 SCTP_NODELAY 3147 * 3148 * Turn on/off any Nagle-like algorithm. This means that packets are 3149 * generally sent as soon as possible and no unnecessary delays are 3150 * introduced, at the cost of more packets in the network. Expects an 3151 * integer boolean flag. 3152 */ 3153 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3154 unsigned int optlen) 3155 { 3156 int val; 3157 3158 if (optlen < sizeof(int)) 3159 return -EINVAL; 3160 if (get_user(val, (int __user *)optval)) 3161 return -EFAULT; 3162 3163 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3164 return 0; 3165 } 3166 3167 /* 3168 * 3169 * 7.1.1 SCTP_RTOINFO 3170 * 3171 * The protocol parameters used to initialize and bound retransmission 3172 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3173 * and modify these parameters. 3174 * All parameters are time values, in milliseconds. A value of 0, when 3175 * modifying the parameters, indicates that the current value should not 3176 * be changed. 3177 * 3178 */ 3179 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3180 { 3181 struct sctp_rtoinfo rtoinfo; 3182 struct sctp_association *asoc; 3183 unsigned long rto_min, rto_max; 3184 struct sctp_sock *sp = sctp_sk(sk); 3185 3186 if (optlen != sizeof (struct sctp_rtoinfo)) 3187 return -EINVAL; 3188 3189 if (copy_from_user(&rtoinfo, optval, optlen)) 3190 return -EFAULT; 3191 3192 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3193 3194 /* Set the values to the specific association */ 3195 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3196 sctp_style(sk, UDP)) 3197 return -EINVAL; 3198 3199 rto_max = rtoinfo.srto_max; 3200 rto_min = rtoinfo.srto_min; 3201 3202 if (rto_max) 3203 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3204 else 3205 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3206 3207 if (rto_min) 3208 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3209 else 3210 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3211 3212 if (rto_min > rto_max) 3213 return -EINVAL; 3214 3215 if (asoc) { 3216 if (rtoinfo.srto_initial != 0) 3217 asoc->rto_initial = 3218 msecs_to_jiffies(rtoinfo.srto_initial); 3219 asoc->rto_max = rto_max; 3220 asoc->rto_min = rto_min; 3221 } else { 3222 /* If there is no association or the association-id = 0 3223 * set the values to the endpoint. 3224 */ 3225 if (rtoinfo.srto_initial != 0) 3226 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3227 sp->rtoinfo.srto_max = rto_max; 3228 sp->rtoinfo.srto_min = rto_min; 3229 } 3230 3231 return 0; 3232 } 3233 3234 /* 3235 * 3236 * 7.1.2 SCTP_ASSOCINFO 3237 * 3238 * This option is used to tune the maximum retransmission attempts 3239 * of the association. 3240 * Returns an error if the new association retransmission value is 3241 * greater than the sum of the retransmission value of the peer. 3242 * See [SCTP] for more information. 3243 * 3244 */ 3245 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3246 { 3247 3248 struct sctp_assocparams assocparams; 3249 struct sctp_association *asoc; 3250 3251 if (optlen != sizeof(struct sctp_assocparams)) 3252 return -EINVAL; 3253 if (copy_from_user(&assocparams, optval, optlen)) 3254 return -EFAULT; 3255 3256 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3257 3258 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3259 sctp_style(sk, UDP)) 3260 return -EINVAL; 3261 3262 /* Set the values to the specific association */ 3263 if (asoc) { 3264 if (assocparams.sasoc_asocmaxrxt != 0) { 3265 __u32 path_sum = 0; 3266 int paths = 0; 3267 struct sctp_transport *peer_addr; 3268 3269 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3270 transports) { 3271 path_sum += peer_addr->pathmaxrxt; 3272 paths++; 3273 } 3274 3275 /* Only validate asocmaxrxt if we have more than 3276 * one path/transport. We do this because path 3277 * retransmissions are only counted when we have more 3278 * then one path. 3279 */ 3280 if (paths > 1 && 3281 assocparams.sasoc_asocmaxrxt > path_sum) 3282 return -EINVAL; 3283 3284 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3285 } 3286 3287 if (assocparams.sasoc_cookie_life != 0) 3288 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3289 } else { 3290 /* Set the values to the endpoint */ 3291 struct sctp_sock *sp = sctp_sk(sk); 3292 3293 if (assocparams.sasoc_asocmaxrxt != 0) 3294 sp->assocparams.sasoc_asocmaxrxt = 3295 assocparams.sasoc_asocmaxrxt; 3296 if (assocparams.sasoc_cookie_life != 0) 3297 sp->assocparams.sasoc_cookie_life = 3298 assocparams.sasoc_cookie_life; 3299 } 3300 return 0; 3301 } 3302 3303 /* 3304 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3305 * 3306 * This socket option is a boolean flag which turns on or off mapped V4 3307 * addresses. If this option is turned on and the socket is type 3308 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3309 * If this option is turned off, then no mapping will be done of V4 3310 * addresses and a user will receive both PF_INET6 and PF_INET type 3311 * addresses on the socket. 3312 */ 3313 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3314 { 3315 int val; 3316 struct sctp_sock *sp = sctp_sk(sk); 3317 3318 if (optlen < sizeof(int)) 3319 return -EINVAL; 3320 if (get_user(val, (int __user *)optval)) 3321 return -EFAULT; 3322 if (val) 3323 sp->v4mapped = 1; 3324 else 3325 sp->v4mapped = 0; 3326 3327 return 0; 3328 } 3329 3330 /* 3331 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3332 * This option will get or set the maximum size to put in any outgoing 3333 * SCTP DATA chunk. If a message is larger than this size it will be 3334 * fragmented by SCTP into the specified size. Note that the underlying 3335 * SCTP implementation may fragment into smaller sized chunks when the 3336 * PMTU of the underlying association is smaller than the value set by 3337 * the user. The default value for this option is '0' which indicates 3338 * the user is NOT limiting fragmentation and only the PMTU will effect 3339 * SCTP's choice of DATA chunk size. Note also that values set larger 3340 * than the maximum size of an IP datagram will effectively let SCTP 3341 * control fragmentation (i.e. the same as setting this option to 0). 3342 * 3343 * The following structure is used to access and modify this parameter: 3344 * 3345 * struct sctp_assoc_value { 3346 * sctp_assoc_t assoc_id; 3347 * uint32_t assoc_value; 3348 * }; 3349 * 3350 * assoc_id: This parameter is ignored for one-to-one style sockets. 3351 * For one-to-many style sockets this parameter indicates which 3352 * association the user is performing an action upon. Note that if 3353 * this field's value is zero then the endpoints default value is 3354 * changed (effecting future associations only). 3355 * assoc_value: This parameter specifies the maximum size in bytes. 3356 */ 3357 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3358 { 3359 struct sctp_sock *sp = sctp_sk(sk); 3360 struct sctp_assoc_value params; 3361 struct sctp_association *asoc; 3362 int val; 3363 3364 if (optlen == sizeof(int)) { 3365 pr_warn_ratelimited(DEPRECATED 3366 "%s (pid %d) " 3367 "Use of int in maxseg socket option.\n" 3368 "Use struct sctp_assoc_value instead\n", 3369 current->comm, task_pid_nr(current)); 3370 if (copy_from_user(&val, optval, optlen)) 3371 return -EFAULT; 3372 params.assoc_id = SCTP_FUTURE_ASSOC; 3373 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3374 if (copy_from_user(¶ms, optval, optlen)) 3375 return -EFAULT; 3376 val = params.assoc_value; 3377 } else { 3378 return -EINVAL; 3379 } 3380 3381 asoc = sctp_id2assoc(sk, params.assoc_id); 3382 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3383 sctp_style(sk, UDP)) 3384 return -EINVAL; 3385 3386 if (val) { 3387 int min_len, max_len; 3388 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3389 sizeof(struct sctp_data_chunk); 3390 3391 min_len = sctp_min_frag_point(sp, datasize); 3392 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3393 3394 if (val < min_len || val > max_len) 3395 return -EINVAL; 3396 } 3397 3398 if (asoc) { 3399 asoc->user_frag = val; 3400 sctp_assoc_update_frag_point(asoc); 3401 } else { 3402 sp->user_frag = val; 3403 } 3404 3405 return 0; 3406 } 3407 3408 3409 /* 3410 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3411 * 3412 * Requests that the peer mark the enclosed address as the association 3413 * primary. The enclosed address must be one of the association's 3414 * locally bound addresses. The following structure is used to make a 3415 * set primary request: 3416 */ 3417 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3418 unsigned int optlen) 3419 { 3420 struct net *net = sock_net(sk); 3421 struct sctp_sock *sp; 3422 struct sctp_association *asoc = NULL; 3423 struct sctp_setpeerprim prim; 3424 struct sctp_chunk *chunk; 3425 struct sctp_af *af; 3426 int err; 3427 3428 sp = sctp_sk(sk); 3429 3430 if (!net->sctp.addip_enable) 3431 return -EPERM; 3432 3433 if (optlen != sizeof(struct sctp_setpeerprim)) 3434 return -EINVAL; 3435 3436 if (copy_from_user(&prim, optval, optlen)) 3437 return -EFAULT; 3438 3439 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3440 if (!asoc) 3441 return -EINVAL; 3442 3443 if (!asoc->peer.asconf_capable) 3444 return -EPERM; 3445 3446 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3447 return -EPERM; 3448 3449 if (!sctp_state(asoc, ESTABLISHED)) 3450 return -ENOTCONN; 3451 3452 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3453 if (!af) 3454 return -EINVAL; 3455 3456 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3457 return -EADDRNOTAVAIL; 3458 3459 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3460 return -EADDRNOTAVAIL; 3461 3462 /* Allow security module to validate address. */ 3463 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3464 (struct sockaddr *)&prim.sspp_addr, 3465 af->sockaddr_len); 3466 if (err) 3467 return err; 3468 3469 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3470 chunk = sctp_make_asconf_set_prim(asoc, 3471 (union sctp_addr *)&prim.sspp_addr); 3472 if (!chunk) 3473 return -ENOMEM; 3474 3475 err = sctp_send_asconf(asoc, chunk); 3476 3477 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3478 3479 return err; 3480 } 3481 3482 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3483 unsigned int optlen) 3484 { 3485 struct sctp_setadaptation adaptation; 3486 3487 if (optlen != sizeof(struct sctp_setadaptation)) 3488 return -EINVAL; 3489 if (copy_from_user(&adaptation, optval, optlen)) 3490 return -EFAULT; 3491 3492 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3493 3494 return 0; 3495 } 3496 3497 /* 3498 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3499 * 3500 * The context field in the sctp_sndrcvinfo structure is normally only 3501 * used when a failed message is retrieved holding the value that was 3502 * sent down on the actual send call. This option allows the setting of 3503 * a default context on an association basis that will be received on 3504 * reading messages from the peer. This is especially helpful in the 3505 * one-2-many model for an application to keep some reference to an 3506 * internal state machine that is processing messages on the 3507 * association. Note that the setting of this value only effects 3508 * received messages from the peer and does not effect the value that is 3509 * saved with outbound messages. 3510 */ 3511 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3512 unsigned int optlen) 3513 { 3514 struct sctp_sock *sp = sctp_sk(sk); 3515 struct sctp_assoc_value params; 3516 struct sctp_association *asoc; 3517 3518 if (optlen != sizeof(struct sctp_assoc_value)) 3519 return -EINVAL; 3520 if (copy_from_user(¶ms, optval, optlen)) 3521 return -EFAULT; 3522 3523 asoc = sctp_id2assoc(sk, params.assoc_id); 3524 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3525 sctp_style(sk, UDP)) 3526 return -EINVAL; 3527 3528 if (asoc) { 3529 asoc->default_rcv_context = params.assoc_value; 3530 3531 return 0; 3532 } 3533 3534 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3535 params.assoc_id == SCTP_ALL_ASSOC) 3536 sp->default_rcv_context = params.assoc_value; 3537 3538 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3539 params.assoc_id == SCTP_ALL_ASSOC) 3540 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3541 asoc->default_rcv_context = params.assoc_value; 3542 3543 return 0; 3544 } 3545 3546 /* 3547 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3548 * 3549 * This options will at a minimum specify if the implementation is doing 3550 * fragmented interleave. Fragmented interleave, for a one to many 3551 * socket, is when subsequent calls to receive a message may return 3552 * parts of messages from different associations. Some implementations 3553 * may allow you to turn this value on or off. If so, when turned off, 3554 * no fragment interleave will occur (which will cause a head of line 3555 * blocking amongst multiple associations sharing the same one to many 3556 * socket). When this option is turned on, then each receive call may 3557 * come from a different association (thus the user must receive data 3558 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3559 * association each receive belongs to. 3560 * 3561 * This option takes a boolean value. A non-zero value indicates that 3562 * fragmented interleave is on. A value of zero indicates that 3563 * fragmented interleave is off. 3564 * 3565 * Note that it is important that an implementation that allows this 3566 * option to be turned on, have it off by default. Otherwise an unaware 3567 * application using the one to many model may become confused and act 3568 * incorrectly. 3569 */ 3570 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3571 char __user *optval, 3572 unsigned int optlen) 3573 { 3574 int val; 3575 3576 if (optlen != sizeof(int)) 3577 return -EINVAL; 3578 if (get_user(val, (int __user *)optval)) 3579 return -EFAULT; 3580 3581 sctp_sk(sk)->frag_interleave = !!val; 3582 3583 if (!sctp_sk(sk)->frag_interleave) 3584 sctp_sk(sk)->strm_interleave = 0; 3585 3586 return 0; 3587 } 3588 3589 /* 3590 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3591 * (SCTP_PARTIAL_DELIVERY_POINT) 3592 * 3593 * This option will set or get the SCTP partial delivery point. This 3594 * point is the size of a message where the partial delivery API will be 3595 * invoked to help free up rwnd space for the peer. Setting this to a 3596 * lower value will cause partial deliveries to happen more often. The 3597 * calls argument is an integer that sets or gets the partial delivery 3598 * point. Note also that the call will fail if the user attempts to set 3599 * this value larger than the socket receive buffer size. 3600 * 3601 * Note that any single message having a length smaller than or equal to 3602 * the SCTP partial delivery point will be delivered in one single read 3603 * call as long as the user provided buffer is large enough to hold the 3604 * message. 3605 */ 3606 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3607 char __user *optval, 3608 unsigned int optlen) 3609 { 3610 u32 val; 3611 3612 if (optlen != sizeof(u32)) 3613 return -EINVAL; 3614 if (get_user(val, (int __user *)optval)) 3615 return -EFAULT; 3616 3617 /* Note: We double the receive buffer from what the user sets 3618 * it to be, also initial rwnd is based on rcvbuf/2. 3619 */ 3620 if (val > (sk->sk_rcvbuf >> 1)) 3621 return -EINVAL; 3622 3623 sctp_sk(sk)->pd_point = val; 3624 3625 return 0; /* is this the right error code? */ 3626 } 3627 3628 /* 3629 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3630 * 3631 * This option will allow a user to change the maximum burst of packets 3632 * that can be emitted by this association. Note that the default value 3633 * is 4, and some implementations may restrict this setting so that it 3634 * can only be lowered. 3635 * 3636 * NOTE: This text doesn't seem right. Do this on a socket basis with 3637 * future associations inheriting the socket value. 3638 */ 3639 static int sctp_setsockopt_maxburst(struct sock *sk, 3640 char __user *optval, 3641 unsigned int optlen) 3642 { 3643 struct sctp_sock *sp = sctp_sk(sk); 3644 struct sctp_assoc_value params; 3645 struct sctp_association *asoc; 3646 3647 if (optlen == sizeof(int)) { 3648 pr_warn_ratelimited(DEPRECATED 3649 "%s (pid %d) " 3650 "Use of int in max_burst socket option deprecated.\n" 3651 "Use struct sctp_assoc_value instead\n", 3652 current->comm, task_pid_nr(current)); 3653 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3654 return -EFAULT; 3655 params.assoc_id = SCTP_FUTURE_ASSOC; 3656 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3657 if (copy_from_user(¶ms, optval, optlen)) 3658 return -EFAULT; 3659 } else 3660 return -EINVAL; 3661 3662 asoc = sctp_id2assoc(sk, params.assoc_id); 3663 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3664 sctp_style(sk, UDP)) 3665 return -EINVAL; 3666 3667 if (asoc) { 3668 asoc->max_burst = params.assoc_value; 3669 3670 return 0; 3671 } 3672 3673 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3674 params.assoc_id == SCTP_ALL_ASSOC) 3675 sp->max_burst = params.assoc_value; 3676 3677 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3678 params.assoc_id == SCTP_ALL_ASSOC) 3679 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3680 asoc->max_burst = params.assoc_value; 3681 3682 return 0; 3683 } 3684 3685 /* 3686 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3687 * 3688 * This set option adds a chunk type that the user is requesting to be 3689 * received only in an authenticated way. Changes to the list of chunks 3690 * will only effect future associations on the socket. 3691 */ 3692 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3693 char __user *optval, 3694 unsigned int optlen) 3695 { 3696 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3697 struct sctp_authchunk val; 3698 3699 if (!ep->auth_enable) 3700 return -EACCES; 3701 3702 if (optlen != sizeof(struct sctp_authchunk)) 3703 return -EINVAL; 3704 if (copy_from_user(&val, optval, optlen)) 3705 return -EFAULT; 3706 3707 switch (val.sauth_chunk) { 3708 case SCTP_CID_INIT: 3709 case SCTP_CID_INIT_ACK: 3710 case SCTP_CID_SHUTDOWN_COMPLETE: 3711 case SCTP_CID_AUTH: 3712 return -EINVAL; 3713 } 3714 3715 /* add this chunk id to the endpoint */ 3716 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3717 } 3718 3719 /* 3720 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3721 * 3722 * This option gets or sets the list of HMAC algorithms that the local 3723 * endpoint requires the peer to use. 3724 */ 3725 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3726 char __user *optval, 3727 unsigned int optlen) 3728 { 3729 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3730 struct sctp_hmacalgo *hmacs; 3731 u32 idents; 3732 int err; 3733 3734 if (!ep->auth_enable) 3735 return -EACCES; 3736 3737 if (optlen < sizeof(struct sctp_hmacalgo)) 3738 return -EINVAL; 3739 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3740 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3741 3742 hmacs = memdup_user(optval, optlen); 3743 if (IS_ERR(hmacs)) 3744 return PTR_ERR(hmacs); 3745 3746 idents = hmacs->shmac_num_idents; 3747 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3748 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3749 err = -EINVAL; 3750 goto out; 3751 } 3752 3753 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3754 out: 3755 kfree(hmacs); 3756 return err; 3757 } 3758 3759 /* 3760 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3761 * 3762 * This option will set a shared secret key which is used to build an 3763 * association shared key. 3764 */ 3765 static int sctp_setsockopt_auth_key(struct sock *sk, 3766 char __user *optval, 3767 unsigned int optlen) 3768 { 3769 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3770 struct sctp_authkey *authkey; 3771 struct sctp_association *asoc; 3772 int ret = -EINVAL; 3773 3774 if (!ep->auth_enable) 3775 return -EACCES; 3776 3777 if (optlen <= sizeof(struct sctp_authkey)) 3778 return -EINVAL; 3779 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3780 * this. 3781 */ 3782 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3783 3784 authkey = memdup_user(optval, optlen); 3785 if (IS_ERR(authkey)) 3786 return PTR_ERR(authkey); 3787 3788 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3789 goto out; 3790 3791 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3792 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3793 sctp_style(sk, UDP)) 3794 goto out; 3795 3796 if (asoc) { 3797 ret = sctp_auth_set_key(ep, asoc, authkey); 3798 goto out; 3799 } 3800 3801 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3802 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3803 ret = sctp_auth_set_key(ep, asoc, authkey); 3804 if (ret) 3805 goto out; 3806 } 3807 3808 ret = 0; 3809 3810 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3811 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3812 list_for_each_entry(asoc, &ep->asocs, asocs) { 3813 int res = sctp_auth_set_key(ep, asoc, authkey); 3814 3815 if (res && !ret) 3816 ret = res; 3817 } 3818 } 3819 3820 out: 3821 kzfree(authkey); 3822 return ret; 3823 } 3824 3825 /* 3826 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3827 * 3828 * This option will get or set the active shared key to be used to build 3829 * the association shared key. 3830 */ 3831 static int sctp_setsockopt_active_key(struct sock *sk, 3832 char __user *optval, 3833 unsigned int optlen) 3834 { 3835 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3836 struct sctp_association *asoc; 3837 struct sctp_authkeyid val; 3838 int ret = 0; 3839 3840 if (!ep->auth_enable) 3841 return -EACCES; 3842 3843 if (optlen != sizeof(struct sctp_authkeyid)) 3844 return -EINVAL; 3845 if (copy_from_user(&val, optval, optlen)) 3846 return -EFAULT; 3847 3848 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3849 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3850 sctp_style(sk, UDP)) 3851 return -EINVAL; 3852 3853 if (asoc) 3854 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3855 3856 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3857 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3858 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3859 if (ret) 3860 return ret; 3861 } 3862 3863 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3864 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3865 list_for_each_entry(asoc, &ep->asocs, asocs) { 3866 int res = sctp_auth_set_active_key(ep, asoc, 3867 val.scact_keynumber); 3868 3869 if (res && !ret) 3870 ret = res; 3871 } 3872 } 3873 3874 return ret; 3875 } 3876 3877 /* 3878 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3879 * 3880 * This set option will delete a shared secret key from use. 3881 */ 3882 static int sctp_setsockopt_del_key(struct sock *sk, 3883 char __user *optval, 3884 unsigned int optlen) 3885 { 3886 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3887 struct sctp_association *asoc; 3888 struct sctp_authkeyid val; 3889 int ret = 0; 3890 3891 if (!ep->auth_enable) 3892 return -EACCES; 3893 3894 if (optlen != sizeof(struct sctp_authkeyid)) 3895 return -EINVAL; 3896 if (copy_from_user(&val, optval, optlen)) 3897 return -EFAULT; 3898 3899 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3900 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3901 sctp_style(sk, UDP)) 3902 return -EINVAL; 3903 3904 if (asoc) 3905 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3906 3907 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3908 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3909 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3910 if (ret) 3911 return ret; 3912 } 3913 3914 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3915 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3916 list_for_each_entry(asoc, &ep->asocs, asocs) { 3917 int res = sctp_auth_del_key_id(ep, asoc, 3918 val.scact_keynumber); 3919 3920 if (res && !ret) 3921 ret = res; 3922 } 3923 } 3924 3925 return ret; 3926 } 3927 3928 /* 3929 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3930 * 3931 * This set option will deactivate a shared secret key. 3932 */ 3933 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3934 unsigned int optlen) 3935 { 3936 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3937 struct sctp_association *asoc; 3938 struct sctp_authkeyid val; 3939 int ret = 0; 3940 3941 if (!ep->auth_enable) 3942 return -EACCES; 3943 3944 if (optlen != sizeof(struct sctp_authkeyid)) 3945 return -EINVAL; 3946 if (copy_from_user(&val, optval, optlen)) 3947 return -EFAULT; 3948 3949 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3950 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3951 sctp_style(sk, UDP)) 3952 return -EINVAL; 3953 3954 if (asoc) 3955 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3956 3957 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3958 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3959 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3960 if (ret) 3961 return ret; 3962 } 3963 3964 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3965 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3966 list_for_each_entry(asoc, &ep->asocs, asocs) { 3967 int res = sctp_auth_deact_key_id(ep, asoc, 3968 val.scact_keynumber); 3969 3970 if (res && !ret) 3971 ret = res; 3972 } 3973 } 3974 3975 return ret; 3976 } 3977 3978 /* 3979 * 8.1.23 SCTP_AUTO_ASCONF 3980 * 3981 * This option will enable or disable the use of the automatic generation of 3982 * ASCONF chunks to add and delete addresses to an existing association. Note 3983 * that this option has two caveats namely: a) it only affects sockets that 3984 * are bound to all addresses available to the SCTP stack, and b) the system 3985 * administrator may have an overriding control that turns the ASCONF feature 3986 * off no matter what setting the socket option may have. 3987 * This option expects an integer boolean flag, where a non-zero value turns on 3988 * the option, and a zero value turns off the option. 3989 * Note. In this implementation, socket operation overrides default parameter 3990 * being set by sysctl as well as FreeBSD implementation 3991 */ 3992 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3993 unsigned int optlen) 3994 { 3995 int val; 3996 struct sctp_sock *sp = sctp_sk(sk); 3997 3998 if (optlen < sizeof(int)) 3999 return -EINVAL; 4000 if (get_user(val, (int __user *)optval)) 4001 return -EFAULT; 4002 if (!sctp_is_ep_boundall(sk) && val) 4003 return -EINVAL; 4004 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4005 return 0; 4006 4007 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4008 if (val == 0 && sp->do_auto_asconf) { 4009 list_del(&sp->auto_asconf_list); 4010 sp->do_auto_asconf = 0; 4011 } else if (val && !sp->do_auto_asconf) { 4012 list_add_tail(&sp->auto_asconf_list, 4013 &sock_net(sk)->sctp.auto_asconf_splist); 4014 sp->do_auto_asconf = 1; 4015 } 4016 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4017 return 0; 4018 } 4019 4020 /* 4021 * SCTP_PEER_ADDR_THLDS 4022 * 4023 * This option allows us to alter the partially failed threshold for one or all 4024 * transports in an association. See Section 6.1 of: 4025 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4026 */ 4027 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4028 char __user *optval, 4029 unsigned int optlen) 4030 { 4031 struct sctp_paddrthlds val; 4032 struct sctp_transport *trans; 4033 struct sctp_association *asoc; 4034 4035 if (optlen < sizeof(struct sctp_paddrthlds)) 4036 return -EINVAL; 4037 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4038 sizeof(struct sctp_paddrthlds))) 4039 return -EFAULT; 4040 4041 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4042 trans = sctp_addr_id2transport(sk, &val.spt_address, 4043 val.spt_assoc_id); 4044 if (!trans) 4045 return -ENOENT; 4046 4047 if (val.spt_pathmaxrxt) 4048 trans->pathmaxrxt = val.spt_pathmaxrxt; 4049 trans->pf_retrans = val.spt_pathpfthld; 4050 4051 return 0; 4052 } 4053 4054 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4055 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4056 sctp_style(sk, UDP)) 4057 return -EINVAL; 4058 4059 if (asoc) { 4060 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4061 transports) { 4062 if (val.spt_pathmaxrxt) 4063 trans->pathmaxrxt = val.spt_pathmaxrxt; 4064 trans->pf_retrans = val.spt_pathpfthld; 4065 } 4066 4067 if (val.spt_pathmaxrxt) 4068 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4069 asoc->pf_retrans = val.spt_pathpfthld; 4070 } else { 4071 struct sctp_sock *sp = sctp_sk(sk); 4072 4073 if (val.spt_pathmaxrxt) 4074 sp->pathmaxrxt = val.spt_pathmaxrxt; 4075 sp->pf_retrans = val.spt_pathpfthld; 4076 } 4077 4078 return 0; 4079 } 4080 4081 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4082 char __user *optval, 4083 unsigned int optlen) 4084 { 4085 int val; 4086 4087 if (optlen < sizeof(int)) 4088 return -EINVAL; 4089 if (get_user(val, (int __user *) optval)) 4090 return -EFAULT; 4091 4092 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4093 4094 return 0; 4095 } 4096 4097 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4098 char __user *optval, 4099 unsigned int optlen) 4100 { 4101 int val; 4102 4103 if (optlen < sizeof(int)) 4104 return -EINVAL; 4105 if (get_user(val, (int __user *) optval)) 4106 return -EFAULT; 4107 4108 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4109 4110 return 0; 4111 } 4112 4113 static int sctp_setsockopt_pr_supported(struct sock *sk, 4114 char __user *optval, 4115 unsigned int optlen) 4116 { 4117 struct sctp_assoc_value params; 4118 struct sctp_association *asoc; 4119 4120 if (optlen != sizeof(params)) 4121 return -EINVAL; 4122 4123 if (copy_from_user(¶ms, optval, optlen)) 4124 return -EFAULT; 4125 4126 asoc = sctp_id2assoc(sk, params.assoc_id); 4127 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4128 sctp_style(sk, UDP)) 4129 return -EINVAL; 4130 4131 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4132 4133 return 0; 4134 } 4135 4136 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4137 char __user *optval, 4138 unsigned int optlen) 4139 { 4140 struct sctp_sock *sp = sctp_sk(sk); 4141 struct sctp_default_prinfo info; 4142 struct sctp_association *asoc; 4143 int retval = -EINVAL; 4144 4145 if (optlen != sizeof(info)) 4146 goto out; 4147 4148 if (copy_from_user(&info, optval, sizeof(info))) { 4149 retval = -EFAULT; 4150 goto out; 4151 } 4152 4153 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4154 goto out; 4155 4156 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4157 info.pr_value = 0; 4158 4159 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4160 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4161 sctp_style(sk, UDP)) 4162 goto out; 4163 4164 retval = 0; 4165 4166 if (asoc) { 4167 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4168 asoc->default_timetolive = info.pr_value; 4169 goto out; 4170 } 4171 4172 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4173 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4174 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4175 sp->default_timetolive = info.pr_value; 4176 } 4177 4178 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4179 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4180 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4181 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4182 asoc->default_timetolive = info.pr_value; 4183 } 4184 } 4185 4186 out: 4187 return retval; 4188 } 4189 4190 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4191 char __user *optval, 4192 unsigned int optlen) 4193 { 4194 struct sctp_assoc_value params; 4195 struct sctp_association *asoc; 4196 int retval = -EINVAL; 4197 4198 if (optlen != sizeof(params)) 4199 goto out; 4200 4201 if (copy_from_user(¶ms, optval, optlen)) { 4202 retval = -EFAULT; 4203 goto out; 4204 } 4205 4206 asoc = sctp_id2assoc(sk, params.assoc_id); 4207 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4208 sctp_style(sk, UDP)) 4209 goto out; 4210 4211 if (asoc) 4212 asoc->reconf_enable = !!params.assoc_value; 4213 else 4214 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4215 4216 retval = 0; 4217 4218 out: 4219 return retval; 4220 } 4221 4222 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4223 char __user *optval, 4224 unsigned int optlen) 4225 { 4226 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4227 struct sctp_assoc_value params; 4228 struct sctp_association *asoc; 4229 int retval = -EINVAL; 4230 4231 if (optlen != sizeof(params)) 4232 goto out; 4233 4234 if (copy_from_user(¶ms, optval, optlen)) { 4235 retval = -EFAULT; 4236 goto out; 4237 } 4238 4239 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4240 goto out; 4241 4242 asoc = sctp_id2assoc(sk, params.assoc_id); 4243 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4244 sctp_style(sk, UDP)) 4245 goto out; 4246 4247 retval = 0; 4248 4249 if (asoc) { 4250 asoc->strreset_enable = params.assoc_value; 4251 goto out; 4252 } 4253 4254 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4255 params.assoc_id == SCTP_ALL_ASSOC) 4256 ep->strreset_enable = params.assoc_value; 4257 4258 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4259 params.assoc_id == SCTP_ALL_ASSOC) 4260 list_for_each_entry(asoc, &ep->asocs, asocs) 4261 asoc->strreset_enable = params.assoc_value; 4262 4263 out: 4264 return retval; 4265 } 4266 4267 static int sctp_setsockopt_reset_streams(struct sock *sk, 4268 char __user *optval, 4269 unsigned int optlen) 4270 { 4271 struct sctp_reset_streams *params; 4272 struct sctp_association *asoc; 4273 int retval = -EINVAL; 4274 4275 if (optlen < sizeof(*params)) 4276 return -EINVAL; 4277 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4278 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4279 sizeof(__u16) * sizeof(*params)); 4280 4281 params = memdup_user(optval, optlen); 4282 if (IS_ERR(params)) 4283 return PTR_ERR(params); 4284 4285 if (params->srs_number_streams * sizeof(__u16) > 4286 optlen - sizeof(*params)) 4287 goto out; 4288 4289 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4290 if (!asoc) 4291 goto out; 4292 4293 retval = sctp_send_reset_streams(asoc, params); 4294 4295 out: 4296 kfree(params); 4297 return retval; 4298 } 4299 4300 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4301 char __user *optval, 4302 unsigned int optlen) 4303 { 4304 struct sctp_association *asoc; 4305 sctp_assoc_t associd; 4306 int retval = -EINVAL; 4307 4308 if (optlen != sizeof(associd)) 4309 goto out; 4310 4311 if (copy_from_user(&associd, optval, optlen)) { 4312 retval = -EFAULT; 4313 goto out; 4314 } 4315 4316 asoc = sctp_id2assoc(sk, associd); 4317 if (!asoc) 4318 goto out; 4319 4320 retval = sctp_send_reset_assoc(asoc); 4321 4322 out: 4323 return retval; 4324 } 4325 4326 static int sctp_setsockopt_add_streams(struct sock *sk, 4327 char __user *optval, 4328 unsigned int optlen) 4329 { 4330 struct sctp_association *asoc; 4331 struct sctp_add_streams params; 4332 int retval = -EINVAL; 4333 4334 if (optlen != sizeof(params)) 4335 goto out; 4336 4337 if (copy_from_user(¶ms, optval, optlen)) { 4338 retval = -EFAULT; 4339 goto out; 4340 } 4341 4342 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4343 if (!asoc) 4344 goto out; 4345 4346 retval = sctp_send_add_streams(asoc, ¶ms); 4347 4348 out: 4349 return retval; 4350 } 4351 4352 static int sctp_setsockopt_scheduler(struct sock *sk, 4353 char __user *optval, 4354 unsigned int optlen) 4355 { 4356 struct sctp_sock *sp = sctp_sk(sk); 4357 struct sctp_association *asoc; 4358 struct sctp_assoc_value params; 4359 int retval = 0; 4360 4361 if (optlen < sizeof(params)) 4362 return -EINVAL; 4363 4364 optlen = sizeof(params); 4365 if (copy_from_user(¶ms, optval, optlen)) 4366 return -EFAULT; 4367 4368 if (params.assoc_value > SCTP_SS_MAX) 4369 return -EINVAL; 4370 4371 asoc = sctp_id2assoc(sk, params.assoc_id); 4372 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4373 sctp_style(sk, UDP)) 4374 return -EINVAL; 4375 4376 if (asoc) 4377 return sctp_sched_set_sched(asoc, params.assoc_value); 4378 4379 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4380 params.assoc_id == SCTP_ALL_ASSOC) 4381 sp->default_ss = params.assoc_value; 4382 4383 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4384 params.assoc_id == SCTP_ALL_ASSOC) { 4385 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4386 int ret = sctp_sched_set_sched(asoc, 4387 params.assoc_value); 4388 4389 if (ret && !retval) 4390 retval = ret; 4391 } 4392 } 4393 4394 return retval; 4395 } 4396 4397 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4398 char __user *optval, 4399 unsigned int optlen) 4400 { 4401 struct sctp_stream_value params; 4402 struct sctp_association *asoc; 4403 int retval = -EINVAL; 4404 4405 if (optlen < sizeof(params)) 4406 goto out; 4407 4408 optlen = sizeof(params); 4409 if (copy_from_user(¶ms, optval, optlen)) { 4410 retval = -EFAULT; 4411 goto out; 4412 } 4413 4414 asoc = sctp_id2assoc(sk, params.assoc_id); 4415 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4416 sctp_style(sk, UDP)) 4417 goto out; 4418 4419 if (asoc) { 4420 retval = sctp_sched_set_value(asoc, params.stream_id, 4421 params.stream_value, GFP_KERNEL); 4422 goto out; 4423 } 4424 4425 retval = 0; 4426 4427 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4428 int ret = sctp_sched_set_value(asoc, params.stream_id, 4429 params.stream_value, GFP_KERNEL); 4430 if (ret && !retval) /* try to return the 1st error. */ 4431 retval = ret; 4432 } 4433 4434 out: 4435 return retval; 4436 } 4437 4438 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4439 char __user *optval, 4440 unsigned int optlen) 4441 { 4442 struct sctp_sock *sp = sctp_sk(sk); 4443 struct sctp_assoc_value params; 4444 struct sctp_association *asoc; 4445 int retval = -EINVAL; 4446 4447 if (optlen < sizeof(params)) 4448 goto out; 4449 4450 optlen = sizeof(params); 4451 if (copy_from_user(¶ms, optval, optlen)) { 4452 retval = -EFAULT; 4453 goto out; 4454 } 4455 4456 asoc = sctp_id2assoc(sk, params.assoc_id); 4457 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4458 sctp_style(sk, UDP)) 4459 goto out; 4460 4461 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4462 retval = -EPERM; 4463 goto out; 4464 } 4465 4466 sp->strm_interleave = !!params.assoc_value; 4467 4468 retval = 0; 4469 4470 out: 4471 return retval; 4472 } 4473 4474 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4475 unsigned int optlen) 4476 { 4477 int val; 4478 4479 if (!sctp_style(sk, TCP)) 4480 return -EOPNOTSUPP; 4481 4482 if (sctp_sk(sk)->ep->base.bind_addr.port) 4483 return -EFAULT; 4484 4485 if (optlen < sizeof(int)) 4486 return -EINVAL; 4487 4488 if (get_user(val, (int __user *)optval)) 4489 return -EFAULT; 4490 4491 sctp_sk(sk)->reuse = !!val; 4492 4493 return 0; 4494 } 4495 4496 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4497 struct sctp_association *asoc) 4498 { 4499 struct sctp_ulpevent *event; 4500 4501 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4502 4503 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4504 if (sctp_outq_is_empty(&asoc->outqueue)) { 4505 event = sctp_ulpevent_make_sender_dry_event(asoc, 4506 GFP_USER | __GFP_NOWARN); 4507 if (!event) 4508 return -ENOMEM; 4509 4510 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4511 } 4512 } 4513 4514 return 0; 4515 } 4516 4517 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4518 unsigned int optlen) 4519 { 4520 struct sctp_sock *sp = sctp_sk(sk); 4521 struct sctp_association *asoc; 4522 struct sctp_event param; 4523 int retval = 0; 4524 4525 if (optlen < sizeof(param)) 4526 return -EINVAL; 4527 4528 optlen = sizeof(param); 4529 if (copy_from_user(¶m, optval, optlen)) 4530 return -EFAULT; 4531 4532 if (param.se_type < SCTP_SN_TYPE_BASE || 4533 param.se_type > SCTP_SN_TYPE_MAX) 4534 return -EINVAL; 4535 4536 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4537 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4538 sctp_style(sk, UDP)) 4539 return -EINVAL; 4540 4541 if (asoc) 4542 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4543 4544 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4545 param.se_assoc_id == SCTP_ALL_ASSOC) 4546 sctp_ulpevent_type_set(&sp->subscribe, 4547 param.se_type, param.se_on); 4548 4549 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4550 param.se_assoc_id == SCTP_ALL_ASSOC) { 4551 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4552 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4553 4554 if (ret && !retval) 4555 retval = ret; 4556 } 4557 } 4558 4559 return retval; 4560 } 4561 4562 /* API 6.2 setsockopt(), getsockopt() 4563 * 4564 * Applications use setsockopt() and getsockopt() to set or retrieve 4565 * socket options. Socket options are used to change the default 4566 * behavior of sockets calls. They are described in Section 7. 4567 * 4568 * The syntax is: 4569 * 4570 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4571 * int __user *optlen); 4572 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4573 * int optlen); 4574 * 4575 * sd - the socket descript. 4576 * level - set to IPPROTO_SCTP for all SCTP options. 4577 * optname - the option name. 4578 * optval - the buffer to store the value of the option. 4579 * optlen - the size of the buffer. 4580 */ 4581 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4582 char __user *optval, unsigned int optlen) 4583 { 4584 int retval = 0; 4585 4586 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4587 4588 /* I can hardly begin to describe how wrong this is. This is 4589 * so broken as to be worse than useless. The API draft 4590 * REALLY is NOT helpful here... I am not convinced that the 4591 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4592 * are at all well-founded. 4593 */ 4594 if (level != SOL_SCTP) { 4595 struct sctp_af *af = sctp_sk(sk)->pf->af; 4596 retval = af->setsockopt(sk, level, optname, optval, optlen); 4597 goto out_nounlock; 4598 } 4599 4600 lock_sock(sk); 4601 4602 switch (optname) { 4603 case SCTP_SOCKOPT_BINDX_ADD: 4604 /* 'optlen' is the size of the addresses buffer. */ 4605 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4606 optlen, SCTP_BINDX_ADD_ADDR); 4607 break; 4608 4609 case SCTP_SOCKOPT_BINDX_REM: 4610 /* 'optlen' is the size of the addresses buffer. */ 4611 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4612 optlen, SCTP_BINDX_REM_ADDR); 4613 break; 4614 4615 case SCTP_SOCKOPT_CONNECTX_OLD: 4616 /* 'optlen' is the size of the addresses buffer. */ 4617 retval = sctp_setsockopt_connectx_old(sk, 4618 (struct sockaddr __user *)optval, 4619 optlen); 4620 break; 4621 4622 case SCTP_SOCKOPT_CONNECTX: 4623 /* 'optlen' is the size of the addresses buffer. */ 4624 retval = sctp_setsockopt_connectx(sk, 4625 (struct sockaddr __user *)optval, 4626 optlen); 4627 break; 4628 4629 case SCTP_DISABLE_FRAGMENTS: 4630 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4631 break; 4632 4633 case SCTP_EVENTS: 4634 retval = sctp_setsockopt_events(sk, optval, optlen); 4635 break; 4636 4637 case SCTP_AUTOCLOSE: 4638 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4639 break; 4640 4641 case SCTP_PEER_ADDR_PARAMS: 4642 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4643 break; 4644 4645 case SCTP_DELAYED_SACK: 4646 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4647 break; 4648 case SCTP_PARTIAL_DELIVERY_POINT: 4649 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4650 break; 4651 4652 case SCTP_INITMSG: 4653 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4654 break; 4655 case SCTP_DEFAULT_SEND_PARAM: 4656 retval = sctp_setsockopt_default_send_param(sk, optval, 4657 optlen); 4658 break; 4659 case SCTP_DEFAULT_SNDINFO: 4660 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4661 break; 4662 case SCTP_PRIMARY_ADDR: 4663 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4664 break; 4665 case SCTP_SET_PEER_PRIMARY_ADDR: 4666 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4667 break; 4668 case SCTP_NODELAY: 4669 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4670 break; 4671 case SCTP_RTOINFO: 4672 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4673 break; 4674 case SCTP_ASSOCINFO: 4675 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4676 break; 4677 case SCTP_I_WANT_MAPPED_V4_ADDR: 4678 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4679 break; 4680 case SCTP_MAXSEG: 4681 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4682 break; 4683 case SCTP_ADAPTATION_LAYER: 4684 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4685 break; 4686 case SCTP_CONTEXT: 4687 retval = sctp_setsockopt_context(sk, optval, optlen); 4688 break; 4689 case SCTP_FRAGMENT_INTERLEAVE: 4690 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4691 break; 4692 case SCTP_MAX_BURST: 4693 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4694 break; 4695 case SCTP_AUTH_CHUNK: 4696 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4697 break; 4698 case SCTP_HMAC_IDENT: 4699 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4700 break; 4701 case SCTP_AUTH_KEY: 4702 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4703 break; 4704 case SCTP_AUTH_ACTIVE_KEY: 4705 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4706 break; 4707 case SCTP_AUTH_DELETE_KEY: 4708 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4709 break; 4710 case SCTP_AUTH_DEACTIVATE_KEY: 4711 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4712 break; 4713 case SCTP_AUTO_ASCONF: 4714 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4715 break; 4716 case SCTP_PEER_ADDR_THLDS: 4717 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4718 break; 4719 case SCTP_RECVRCVINFO: 4720 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4721 break; 4722 case SCTP_RECVNXTINFO: 4723 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4724 break; 4725 case SCTP_PR_SUPPORTED: 4726 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4727 break; 4728 case SCTP_DEFAULT_PRINFO: 4729 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4730 break; 4731 case SCTP_RECONFIG_SUPPORTED: 4732 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4733 break; 4734 case SCTP_ENABLE_STREAM_RESET: 4735 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4736 break; 4737 case SCTP_RESET_STREAMS: 4738 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4739 break; 4740 case SCTP_RESET_ASSOC: 4741 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4742 break; 4743 case SCTP_ADD_STREAMS: 4744 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4745 break; 4746 case SCTP_STREAM_SCHEDULER: 4747 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4748 break; 4749 case SCTP_STREAM_SCHEDULER_VALUE: 4750 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4751 break; 4752 case SCTP_INTERLEAVING_SUPPORTED: 4753 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4754 optlen); 4755 break; 4756 case SCTP_REUSE_PORT: 4757 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4758 break; 4759 case SCTP_EVENT: 4760 retval = sctp_setsockopt_event(sk, optval, optlen); 4761 break; 4762 default: 4763 retval = -ENOPROTOOPT; 4764 break; 4765 } 4766 4767 release_sock(sk); 4768 4769 out_nounlock: 4770 return retval; 4771 } 4772 4773 /* API 3.1.6 connect() - UDP Style Syntax 4774 * 4775 * An application may use the connect() call in the UDP model to initiate an 4776 * association without sending data. 4777 * 4778 * The syntax is: 4779 * 4780 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4781 * 4782 * sd: the socket descriptor to have a new association added to. 4783 * 4784 * nam: the address structure (either struct sockaddr_in or struct 4785 * sockaddr_in6 defined in RFC2553 [7]). 4786 * 4787 * len: the size of the address. 4788 */ 4789 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4790 int addr_len, int flags) 4791 { 4792 struct inet_sock *inet = inet_sk(sk); 4793 struct sctp_af *af; 4794 int err = 0; 4795 4796 lock_sock(sk); 4797 4798 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4799 addr, addr_len); 4800 4801 /* We may need to bind the socket. */ 4802 if (!inet->inet_num) { 4803 if (sk->sk_prot->get_port(sk, 0)) { 4804 release_sock(sk); 4805 return -EAGAIN; 4806 } 4807 inet->inet_sport = htons(inet->inet_num); 4808 } 4809 4810 /* Validate addr_len before calling common connect/connectx routine. */ 4811 af = sctp_get_af_specific(addr->sa_family); 4812 if (!af || addr_len < af->sockaddr_len) { 4813 err = -EINVAL; 4814 } else { 4815 /* Pass correct addr len to common routine (so it knows there 4816 * is only one address being passed. 4817 */ 4818 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4819 } 4820 4821 release_sock(sk); 4822 return err; 4823 } 4824 4825 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4826 int addr_len, int flags) 4827 { 4828 if (addr_len < sizeof(uaddr->sa_family)) 4829 return -EINVAL; 4830 4831 if (uaddr->sa_family == AF_UNSPEC) 4832 return -EOPNOTSUPP; 4833 4834 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4835 } 4836 4837 /* FIXME: Write comments. */ 4838 static int sctp_disconnect(struct sock *sk, int flags) 4839 { 4840 return -EOPNOTSUPP; /* STUB */ 4841 } 4842 4843 /* 4.1.4 accept() - TCP Style Syntax 4844 * 4845 * Applications use accept() call to remove an established SCTP 4846 * association from the accept queue of the endpoint. A new socket 4847 * descriptor will be returned from accept() to represent the newly 4848 * formed association. 4849 */ 4850 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4851 { 4852 struct sctp_sock *sp; 4853 struct sctp_endpoint *ep; 4854 struct sock *newsk = NULL; 4855 struct sctp_association *asoc; 4856 long timeo; 4857 int error = 0; 4858 4859 lock_sock(sk); 4860 4861 sp = sctp_sk(sk); 4862 ep = sp->ep; 4863 4864 if (!sctp_style(sk, TCP)) { 4865 error = -EOPNOTSUPP; 4866 goto out; 4867 } 4868 4869 if (!sctp_sstate(sk, LISTENING)) { 4870 error = -EINVAL; 4871 goto out; 4872 } 4873 4874 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4875 4876 error = sctp_wait_for_accept(sk, timeo); 4877 if (error) 4878 goto out; 4879 4880 /* We treat the list of associations on the endpoint as the accept 4881 * queue and pick the first association on the list. 4882 */ 4883 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4884 4885 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4886 if (!newsk) { 4887 error = -ENOMEM; 4888 goto out; 4889 } 4890 4891 /* Populate the fields of the newsk from the oldsk and migrate the 4892 * asoc to the newsk. 4893 */ 4894 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4895 if (error) { 4896 sk_common_release(newsk); 4897 newsk = NULL; 4898 } 4899 4900 out: 4901 release_sock(sk); 4902 *err = error; 4903 return newsk; 4904 } 4905 4906 /* The SCTP ioctl handler. */ 4907 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4908 { 4909 int rc = -ENOTCONN; 4910 4911 lock_sock(sk); 4912 4913 /* 4914 * SEQPACKET-style sockets in LISTENING state are valid, for 4915 * SCTP, so only discard TCP-style sockets in LISTENING state. 4916 */ 4917 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4918 goto out; 4919 4920 switch (cmd) { 4921 case SIOCINQ: { 4922 struct sk_buff *skb; 4923 unsigned int amount = 0; 4924 4925 skb = skb_peek(&sk->sk_receive_queue); 4926 if (skb != NULL) { 4927 /* 4928 * We will only return the amount of this packet since 4929 * that is all that will be read. 4930 */ 4931 amount = skb->len; 4932 } 4933 rc = put_user(amount, (int __user *)arg); 4934 break; 4935 } 4936 default: 4937 rc = -ENOIOCTLCMD; 4938 break; 4939 } 4940 out: 4941 release_sock(sk); 4942 return rc; 4943 } 4944 4945 /* This is the function which gets called during socket creation to 4946 * initialized the SCTP-specific portion of the sock. 4947 * The sock structure should already be zero-filled memory. 4948 */ 4949 static int sctp_init_sock(struct sock *sk) 4950 { 4951 struct net *net = sock_net(sk); 4952 struct sctp_sock *sp; 4953 4954 pr_debug("%s: sk:%p\n", __func__, sk); 4955 4956 sp = sctp_sk(sk); 4957 4958 /* Initialize the SCTP per socket area. */ 4959 switch (sk->sk_type) { 4960 case SOCK_SEQPACKET: 4961 sp->type = SCTP_SOCKET_UDP; 4962 break; 4963 case SOCK_STREAM: 4964 sp->type = SCTP_SOCKET_TCP; 4965 break; 4966 default: 4967 return -ESOCKTNOSUPPORT; 4968 } 4969 4970 sk->sk_gso_type = SKB_GSO_SCTP; 4971 4972 /* Initialize default send parameters. These parameters can be 4973 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4974 */ 4975 sp->default_stream = 0; 4976 sp->default_ppid = 0; 4977 sp->default_flags = 0; 4978 sp->default_context = 0; 4979 sp->default_timetolive = 0; 4980 4981 sp->default_rcv_context = 0; 4982 sp->max_burst = net->sctp.max_burst; 4983 4984 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4985 4986 /* Initialize default setup parameters. These parameters 4987 * can be modified with the SCTP_INITMSG socket option or 4988 * overridden by the SCTP_INIT CMSG. 4989 */ 4990 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4991 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4992 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4993 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4994 4995 /* Initialize default RTO related parameters. These parameters can 4996 * be modified for with the SCTP_RTOINFO socket option. 4997 */ 4998 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4999 sp->rtoinfo.srto_max = net->sctp.rto_max; 5000 sp->rtoinfo.srto_min = net->sctp.rto_min; 5001 5002 /* Initialize default association related parameters. These parameters 5003 * can be modified with the SCTP_ASSOCINFO socket option. 5004 */ 5005 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5006 sp->assocparams.sasoc_number_peer_destinations = 0; 5007 sp->assocparams.sasoc_peer_rwnd = 0; 5008 sp->assocparams.sasoc_local_rwnd = 0; 5009 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5010 5011 /* Initialize default event subscriptions. By default, all the 5012 * options are off. 5013 */ 5014 sp->subscribe = 0; 5015 5016 /* Default Peer Address Parameters. These defaults can 5017 * be modified via SCTP_PEER_ADDR_PARAMS 5018 */ 5019 sp->hbinterval = net->sctp.hb_interval; 5020 sp->pathmaxrxt = net->sctp.max_retrans_path; 5021 sp->pf_retrans = net->sctp.pf_retrans; 5022 sp->pathmtu = 0; /* allow default discovery */ 5023 sp->sackdelay = net->sctp.sack_timeout; 5024 sp->sackfreq = 2; 5025 sp->param_flags = SPP_HB_ENABLE | 5026 SPP_PMTUD_ENABLE | 5027 SPP_SACKDELAY_ENABLE; 5028 sp->default_ss = SCTP_SS_DEFAULT; 5029 5030 /* If enabled no SCTP message fragmentation will be performed. 5031 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5032 */ 5033 sp->disable_fragments = 0; 5034 5035 /* Enable Nagle algorithm by default. */ 5036 sp->nodelay = 0; 5037 5038 sp->recvrcvinfo = 0; 5039 sp->recvnxtinfo = 0; 5040 5041 /* Enable by default. */ 5042 sp->v4mapped = 1; 5043 5044 /* Auto-close idle associations after the configured 5045 * number of seconds. A value of 0 disables this 5046 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5047 * for UDP-style sockets only. 5048 */ 5049 sp->autoclose = 0; 5050 5051 /* User specified fragmentation limit. */ 5052 sp->user_frag = 0; 5053 5054 sp->adaptation_ind = 0; 5055 5056 sp->pf = sctp_get_pf_specific(sk->sk_family); 5057 5058 /* Control variables for partial data delivery. */ 5059 atomic_set(&sp->pd_mode, 0); 5060 skb_queue_head_init(&sp->pd_lobby); 5061 sp->frag_interleave = 0; 5062 5063 /* Create a per socket endpoint structure. Even if we 5064 * change the data structure relationships, this may still 5065 * be useful for storing pre-connect address information. 5066 */ 5067 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5068 if (!sp->ep) 5069 return -ENOMEM; 5070 5071 sp->hmac = NULL; 5072 5073 sk->sk_destruct = sctp_destruct_sock; 5074 5075 SCTP_DBG_OBJCNT_INC(sock); 5076 5077 local_bh_disable(); 5078 sk_sockets_allocated_inc(sk); 5079 sock_prot_inuse_add(net, sk->sk_prot, 1); 5080 5081 /* Nothing can fail after this block, otherwise 5082 * sctp_destroy_sock() will be called without addr_wq_lock held 5083 */ 5084 if (net->sctp.default_auto_asconf) { 5085 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5086 list_add_tail(&sp->auto_asconf_list, 5087 &net->sctp.auto_asconf_splist); 5088 sp->do_auto_asconf = 1; 5089 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5090 } else { 5091 sp->do_auto_asconf = 0; 5092 } 5093 5094 local_bh_enable(); 5095 5096 return 0; 5097 } 5098 5099 /* Cleanup any SCTP per socket resources. Must be called with 5100 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5101 */ 5102 static void sctp_destroy_sock(struct sock *sk) 5103 { 5104 struct sctp_sock *sp; 5105 5106 pr_debug("%s: sk:%p\n", __func__, sk); 5107 5108 /* Release our hold on the endpoint. */ 5109 sp = sctp_sk(sk); 5110 /* This could happen during socket init, thus we bail out 5111 * early, since the rest of the below is not setup either. 5112 */ 5113 if (sp->ep == NULL) 5114 return; 5115 5116 if (sp->do_auto_asconf) { 5117 sp->do_auto_asconf = 0; 5118 list_del(&sp->auto_asconf_list); 5119 } 5120 sctp_endpoint_free(sp->ep); 5121 local_bh_disable(); 5122 sk_sockets_allocated_dec(sk); 5123 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5124 local_bh_enable(); 5125 } 5126 5127 /* Triggered when there are no references on the socket anymore */ 5128 static void sctp_destruct_sock(struct sock *sk) 5129 { 5130 struct sctp_sock *sp = sctp_sk(sk); 5131 5132 /* Free up the HMAC transform. */ 5133 crypto_free_shash(sp->hmac); 5134 5135 inet_sock_destruct(sk); 5136 } 5137 5138 /* API 4.1.7 shutdown() - TCP Style Syntax 5139 * int shutdown(int socket, int how); 5140 * 5141 * sd - the socket descriptor of the association to be closed. 5142 * how - Specifies the type of shutdown. The values are 5143 * as follows: 5144 * SHUT_RD 5145 * Disables further receive operations. No SCTP 5146 * protocol action is taken. 5147 * SHUT_WR 5148 * Disables further send operations, and initiates 5149 * the SCTP shutdown sequence. 5150 * SHUT_RDWR 5151 * Disables further send and receive operations 5152 * and initiates the SCTP shutdown sequence. 5153 */ 5154 static void sctp_shutdown(struct sock *sk, int how) 5155 { 5156 struct net *net = sock_net(sk); 5157 struct sctp_endpoint *ep; 5158 5159 if (!sctp_style(sk, TCP)) 5160 return; 5161 5162 ep = sctp_sk(sk)->ep; 5163 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5164 struct sctp_association *asoc; 5165 5166 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5167 asoc = list_entry(ep->asocs.next, 5168 struct sctp_association, asocs); 5169 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5170 } 5171 } 5172 5173 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5174 struct sctp_info *info) 5175 { 5176 struct sctp_transport *prim; 5177 struct list_head *pos; 5178 int mask; 5179 5180 memset(info, 0, sizeof(*info)); 5181 if (!asoc) { 5182 struct sctp_sock *sp = sctp_sk(sk); 5183 5184 info->sctpi_s_autoclose = sp->autoclose; 5185 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5186 info->sctpi_s_pd_point = sp->pd_point; 5187 info->sctpi_s_nodelay = sp->nodelay; 5188 info->sctpi_s_disable_fragments = sp->disable_fragments; 5189 info->sctpi_s_v4mapped = sp->v4mapped; 5190 info->sctpi_s_frag_interleave = sp->frag_interleave; 5191 info->sctpi_s_type = sp->type; 5192 5193 return 0; 5194 } 5195 5196 info->sctpi_tag = asoc->c.my_vtag; 5197 info->sctpi_state = asoc->state; 5198 info->sctpi_rwnd = asoc->a_rwnd; 5199 info->sctpi_unackdata = asoc->unack_data; 5200 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5201 info->sctpi_instrms = asoc->stream.incnt; 5202 info->sctpi_outstrms = asoc->stream.outcnt; 5203 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5204 info->sctpi_inqueue++; 5205 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5206 info->sctpi_outqueue++; 5207 info->sctpi_overall_error = asoc->overall_error_count; 5208 info->sctpi_max_burst = asoc->max_burst; 5209 info->sctpi_maxseg = asoc->frag_point; 5210 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5211 info->sctpi_peer_tag = asoc->c.peer_vtag; 5212 5213 mask = asoc->peer.ecn_capable << 1; 5214 mask = (mask | asoc->peer.ipv4_address) << 1; 5215 mask = (mask | asoc->peer.ipv6_address) << 1; 5216 mask = (mask | asoc->peer.hostname_address) << 1; 5217 mask = (mask | asoc->peer.asconf_capable) << 1; 5218 mask = (mask | asoc->peer.prsctp_capable) << 1; 5219 mask = (mask | asoc->peer.auth_capable); 5220 info->sctpi_peer_capable = mask; 5221 mask = asoc->peer.sack_needed << 1; 5222 mask = (mask | asoc->peer.sack_generation) << 1; 5223 mask = (mask | asoc->peer.zero_window_announced); 5224 info->sctpi_peer_sack = mask; 5225 5226 info->sctpi_isacks = asoc->stats.isacks; 5227 info->sctpi_osacks = asoc->stats.osacks; 5228 info->sctpi_opackets = asoc->stats.opackets; 5229 info->sctpi_ipackets = asoc->stats.ipackets; 5230 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5231 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5232 info->sctpi_idupchunks = asoc->stats.idupchunks; 5233 info->sctpi_gapcnt = asoc->stats.gapcnt; 5234 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5235 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5236 info->sctpi_oodchunks = asoc->stats.oodchunks; 5237 info->sctpi_iodchunks = asoc->stats.iodchunks; 5238 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5239 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5240 5241 prim = asoc->peer.primary_path; 5242 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5243 info->sctpi_p_state = prim->state; 5244 info->sctpi_p_cwnd = prim->cwnd; 5245 info->sctpi_p_srtt = prim->srtt; 5246 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5247 info->sctpi_p_hbinterval = prim->hbinterval; 5248 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5249 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5250 info->sctpi_p_ssthresh = prim->ssthresh; 5251 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5252 info->sctpi_p_flight_size = prim->flight_size; 5253 info->sctpi_p_error = prim->error_count; 5254 5255 return 0; 5256 } 5257 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5258 5259 /* use callback to avoid exporting the core structure */ 5260 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5261 { 5262 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5263 5264 rhashtable_walk_start(iter); 5265 } 5266 5267 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5268 { 5269 rhashtable_walk_stop(iter); 5270 rhashtable_walk_exit(iter); 5271 } 5272 5273 struct sctp_transport *sctp_transport_get_next(struct net *net, 5274 struct rhashtable_iter *iter) 5275 { 5276 struct sctp_transport *t; 5277 5278 t = rhashtable_walk_next(iter); 5279 for (; t; t = rhashtable_walk_next(iter)) { 5280 if (IS_ERR(t)) { 5281 if (PTR_ERR(t) == -EAGAIN) 5282 continue; 5283 break; 5284 } 5285 5286 if (!sctp_transport_hold(t)) 5287 continue; 5288 5289 if (net_eq(sock_net(t->asoc->base.sk), net) && 5290 t->asoc->peer.primary_path == t) 5291 break; 5292 5293 sctp_transport_put(t); 5294 } 5295 5296 return t; 5297 } 5298 5299 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5300 struct rhashtable_iter *iter, 5301 int pos) 5302 { 5303 struct sctp_transport *t; 5304 5305 if (!pos) 5306 return SEQ_START_TOKEN; 5307 5308 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5309 if (!--pos) 5310 break; 5311 sctp_transport_put(t); 5312 } 5313 5314 return t; 5315 } 5316 5317 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5318 void *p) { 5319 int err = 0; 5320 int hash = 0; 5321 struct sctp_ep_common *epb; 5322 struct sctp_hashbucket *head; 5323 5324 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5325 hash++, head++) { 5326 read_lock_bh(&head->lock); 5327 sctp_for_each_hentry(epb, &head->chain) { 5328 err = cb(sctp_ep(epb), p); 5329 if (err) 5330 break; 5331 } 5332 read_unlock_bh(&head->lock); 5333 } 5334 5335 return err; 5336 } 5337 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5338 5339 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5340 struct net *net, 5341 const union sctp_addr *laddr, 5342 const union sctp_addr *paddr, void *p) 5343 { 5344 struct sctp_transport *transport; 5345 int err; 5346 5347 rcu_read_lock(); 5348 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5349 rcu_read_unlock(); 5350 if (!transport) 5351 return -ENOENT; 5352 5353 err = cb(transport, p); 5354 sctp_transport_put(transport); 5355 5356 return err; 5357 } 5358 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5359 5360 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5361 int (*cb_done)(struct sctp_transport *, void *), 5362 struct net *net, int *pos, void *p) { 5363 struct rhashtable_iter hti; 5364 struct sctp_transport *tsp; 5365 int ret; 5366 5367 again: 5368 ret = 0; 5369 sctp_transport_walk_start(&hti); 5370 5371 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5372 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5373 ret = cb(tsp, p); 5374 if (ret) 5375 break; 5376 (*pos)++; 5377 sctp_transport_put(tsp); 5378 } 5379 sctp_transport_walk_stop(&hti); 5380 5381 if (ret) { 5382 if (cb_done && !cb_done(tsp, p)) { 5383 (*pos)++; 5384 sctp_transport_put(tsp); 5385 goto again; 5386 } 5387 sctp_transport_put(tsp); 5388 } 5389 5390 return ret; 5391 } 5392 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5393 5394 /* 7.2.1 Association Status (SCTP_STATUS) 5395 5396 * Applications can retrieve current status information about an 5397 * association, including association state, peer receiver window size, 5398 * number of unacked data chunks, and number of data chunks pending 5399 * receipt. This information is read-only. 5400 */ 5401 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5402 char __user *optval, 5403 int __user *optlen) 5404 { 5405 struct sctp_status status; 5406 struct sctp_association *asoc = NULL; 5407 struct sctp_transport *transport; 5408 sctp_assoc_t associd; 5409 int retval = 0; 5410 5411 if (len < sizeof(status)) { 5412 retval = -EINVAL; 5413 goto out; 5414 } 5415 5416 len = sizeof(status); 5417 if (copy_from_user(&status, optval, len)) { 5418 retval = -EFAULT; 5419 goto out; 5420 } 5421 5422 associd = status.sstat_assoc_id; 5423 asoc = sctp_id2assoc(sk, associd); 5424 if (!asoc) { 5425 retval = -EINVAL; 5426 goto out; 5427 } 5428 5429 transport = asoc->peer.primary_path; 5430 5431 status.sstat_assoc_id = sctp_assoc2id(asoc); 5432 status.sstat_state = sctp_assoc_to_state(asoc); 5433 status.sstat_rwnd = asoc->peer.rwnd; 5434 status.sstat_unackdata = asoc->unack_data; 5435 5436 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5437 status.sstat_instrms = asoc->stream.incnt; 5438 status.sstat_outstrms = asoc->stream.outcnt; 5439 status.sstat_fragmentation_point = asoc->frag_point; 5440 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5441 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5442 transport->af_specific->sockaddr_len); 5443 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5444 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5445 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5446 status.sstat_primary.spinfo_state = transport->state; 5447 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5448 status.sstat_primary.spinfo_srtt = transport->srtt; 5449 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5450 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5451 5452 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5453 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5454 5455 if (put_user(len, optlen)) { 5456 retval = -EFAULT; 5457 goto out; 5458 } 5459 5460 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5461 __func__, len, status.sstat_state, status.sstat_rwnd, 5462 status.sstat_assoc_id); 5463 5464 if (copy_to_user(optval, &status, len)) { 5465 retval = -EFAULT; 5466 goto out; 5467 } 5468 5469 out: 5470 return retval; 5471 } 5472 5473 5474 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5475 * 5476 * Applications can retrieve information about a specific peer address 5477 * of an association, including its reachability state, congestion 5478 * window, and retransmission timer values. This information is 5479 * read-only. 5480 */ 5481 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5482 char __user *optval, 5483 int __user *optlen) 5484 { 5485 struct sctp_paddrinfo pinfo; 5486 struct sctp_transport *transport; 5487 int retval = 0; 5488 5489 if (len < sizeof(pinfo)) { 5490 retval = -EINVAL; 5491 goto out; 5492 } 5493 5494 len = sizeof(pinfo); 5495 if (copy_from_user(&pinfo, optval, len)) { 5496 retval = -EFAULT; 5497 goto out; 5498 } 5499 5500 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5501 pinfo.spinfo_assoc_id); 5502 if (!transport) 5503 return -EINVAL; 5504 5505 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5506 pinfo.spinfo_state = transport->state; 5507 pinfo.spinfo_cwnd = transport->cwnd; 5508 pinfo.spinfo_srtt = transport->srtt; 5509 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5510 pinfo.spinfo_mtu = transport->pathmtu; 5511 5512 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5513 pinfo.spinfo_state = SCTP_ACTIVE; 5514 5515 if (put_user(len, optlen)) { 5516 retval = -EFAULT; 5517 goto out; 5518 } 5519 5520 if (copy_to_user(optval, &pinfo, len)) { 5521 retval = -EFAULT; 5522 goto out; 5523 } 5524 5525 out: 5526 return retval; 5527 } 5528 5529 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5530 * 5531 * This option is a on/off flag. If enabled no SCTP message 5532 * fragmentation will be performed. Instead if a message being sent 5533 * exceeds the current PMTU size, the message will NOT be sent and 5534 * instead a error will be indicated to the user. 5535 */ 5536 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5537 char __user *optval, int __user *optlen) 5538 { 5539 int val; 5540 5541 if (len < sizeof(int)) 5542 return -EINVAL; 5543 5544 len = sizeof(int); 5545 val = (sctp_sk(sk)->disable_fragments == 1); 5546 if (put_user(len, optlen)) 5547 return -EFAULT; 5548 if (copy_to_user(optval, &val, len)) 5549 return -EFAULT; 5550 return 0; 5551 } 5552 5553 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5554 * 5555 * This socket option is used to specify various notifications and 5556 * ancillary data the user wishes to receive. 5557 */ 5558 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5559 int __user *optlen) 5560 { 5561 struct sctp_event_subscribe subscribe; 5562 __u8 *sn_type = (__u8 *)&subscribe; 5563 int i; 5564 5565 if (len == 0) 5566 return -EINVAL; 5567 if (len > sizeof(struct sctp_event_subscribe)) 5568 len = sizeof(struct sctp_event_subscribe); 5569 if (put_user(len, optlen)) 5570 return -EFAULT; 5571 5572 for (i = 0; i < len; i++) 5573 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5574 SCTP_SN_TYPE_BASE + i); 5575 5576 if (copy_to_user(optval, &subscribe, len)) 5577 return -EFAULT; 5578 5579 return 0; 5580 } 5581 5582 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5583 * 5584 * This socket option is applicable to the UDP-style socket only. When 5585 * set it will cause associations that are idle for more than the 5586 * specified number of seconds to automatically close. An association 5587 * being idle is defined an association that has NOT sent or received 5588 * user data. The special value of '0' indicates that no automatic 5589 * close of any associations should be performed. The option expects an 5590 * integer defining the number of seconds of idle time before an 5591 * association is closed. 5592 */ 5593 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5594 { 5595 /* Applicable to UDP-style socket only */ 5596 if (sctp_style(sk, TCP)) 5597 return -EOPNOTSUPP; 5598 if (len < sizeof(int)) 5599 return -EINVAL; 5600 len = sizeof(int); 5601 if (put_user(len, optlen)) 5602 return -EFAULT; 5603 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5604 return -EFAULT; 5605 return 0; 5606 } 5607 5608 /* Helper routine to branch off an association to a new socket. */ 5609 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5610 { 5611 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5612 struct sctp_sock *sp = sctp_sk(sk); 5613 struct socket *sock; 5614 int err = 0; 5615 5616 /* Do not peel off from one netns to another one. */ 5617 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5618 return -EINVAL; 5619 5620 if (!asoc) 5621 return -EINVAL; 5622 5623 /* An association cannot be branched off from an already peeled-off 5624 * socket, nor is this supported for tcp style sockets. 5625 */ 5626 if (!sctp_style(sk, UDP)) 5627 return -EINVAL; 5628 5629 /* Create a new socket. */ 5630 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5631 if (err < 0) 5632 return err; 5633 5634 sctp_copy_sock(sock->sk, sk, asoc); 5635 5636 /* Make peeled-off sockets more like 1-1 accepted sockets. 5637 * Set the daddr and initialize id to something more random and also 5638 * copy over any ip options. 5639 */ 5640 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5641 sp->pf->copy_ip_options(sk, sock->sk); 5642 5643 /* Populate the fields of the newsk from the oldsk and migrate the 5644 * asoc to the newsk. 5645 */ 5646 err = sctp_sock_migrate(sk, sock->sk, asoc, 5647 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5648 if (err) { 5649 sock_release(sock); 5650 sock = NULL; 5651 } 5652 5653 *sockp = sock; 5654 5655 return err; 5656 } 5657 EXPORT_SYMBOL(sctp_do_peeloff); 5658 5659 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5660 struct file **newfile, unsigned flags) 5661 { 5662 struct socket *newsock; 5663 int retval; 5664 5665 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5666 if (retval < 0) 5667 goto out; 5668 5669 /* Map the socket to an unused fd that can be returned to the user. */ 5670 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5671 if (retval < 0) { 5672 sock_release(newsock); 5673 goto out; 5674 } 5675 5676 *newfile = sock_alloc_file(newsock, 0, NULL); 5677 if (IS_ERR(*newfile)) { 5678 put_unused_fd(retval); 5679 retval = PTR_ERR(*newfile); 5680 *newfile = NULL; 5681 return retval; 5682 } 5683 5684 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5685 retval); 5686 5687 peeloff->sd = retval; 5688 5689 if (flags & SOCK_NONBLOCK) 5690 (*newfile)->f_flags |= O_NONBLOCK; 5691 out: 5692 return retval; 5693 } 5694 5695 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5696 { 5697 sctp_peeloff_arg_t peeloff; 5698 struct file *newfile = NULL; 5699 int retval = 0; 5700 5701 if (len < sizeof(sctp_peeloff_arg_t)) 5702 return -EINVAL; 5703 len = sizeof(sctp_peeloff_arg_t); 5704 if (copy_from_user(&peeloff, optval, len)) 5705 return -EFAULT; 5706 5707 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5708 if (retval < 0) 5709 goto out; 5710 5711 /* Return the fd mapped to the new socket. */ 5712 if (put_user(len, optlen)) { 5713 fput(newfile); 5714 put_unused_fd(retval); 5715 return -EFAULT; 5716 } 5717 5718 if (copy_to_user(optval, &peeloff, len)) { 5719 fput(newfile); 5720 put_unused_fd(retval); 5721 return -EFAULT; 5722 } 5723 fd_install(retval, newfile); 5724 out: 5725 return retval; 5726 } 5727 5728 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5729 char __user *optval, int __user *optlen) 5730 { 5731 sctp_peeloff_flags_arg_t peeloff; 5732 struct file *newfile = NULL; 5733 int retval = 0; 5734 5735 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5736 return -EINVAL; 5737 len = sizeof(sctp_peeloff_flags_arg_t); 5738 if (copy_from_user(&peeloff, optval, len)) 5739 return -EFAULT; 5740 5741 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5742 &newfile, peeloff.flags); 5743 if (retval < 0) 5744 goto out; 5745 5746 /* Return the fd mapped to the new socket. */ 5747 if (put_user(len, optlen)) { 5748 fput(newfile); 5749 put_unused_fd(retval); 5750 return -EFAULT; 5751 } 5752 5753 if (copy_to_user(optval, &peeloff, len)) { 5754 fput(newfile); 5755 put_unused_fd(retval); 5756 return -EFAULT; 5757 } 5758 fd_install(retval, newfile); 5759 out: 5760 return retval; 5761 } 5762 5763 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5764 * 5765 * Applications can enable or disable heartbeats for any peer address of 5766 * an association, modify an address's heartbeat interval, force a 5767 * heartbeat to be sent immediately, and adjust the address's maximum 5768 * number of retransmissions sent before an address is considered 5769 * unreachable. The following structure is used to access and modify an 5770 * address's parameters: 5771 * 5772 * struct sctp_paddrparams { 5773 * sctp_assoc_t spp_assoc_id; 5774 * struct sockaddr_storage spp_address; 5775 * uint32_t spp_hbinterval; 5776 * uint16_t spp_pathmaxrxt; 5777 * uint32_t spp_pathmtu; 5778 * uint32_t spp_sackdelay; 5779 * uint32_t spp_flags; 5780 * }; 5781 * 5782 * spp_assoc_id - (one-to-many style socket) This is filled in the 5783 * application, and identifies the association for 5784 * this query. 5785 * spp_address - This specifies which address is of interest. 5786 * spp_hbinterval - This contains the value of the heartbeat interval, 5787 * in milliseconds. If a value of zero 5788 * is present in this field then no changes are to 5789 * be made to this parameter. 5790 * spp_pathmaxrxt - This contains the maximum number of 5791 * retransmissions before this address shall be 5792 * considered unreachable. If a value of zero 5793 * is present in this field then no changes are to 5794 * be made to this parameter. 5795 * spp_pathmtu - When Path MTU discovery is disabled the value 5796 * specified here will be the "fixed" path mtu. 5797 * Note that if the spp_address field is empty 5798 * then all associations on this address will 5799 * have this fixed path mtu set upon them. 5800 * 5801 * spp_sackdelay - When delayed sack is enabled, this value specifies 5802 * the number of milliseconds that sacks will be delayed 5803 * for. This value will apply to all addresses of an 5804 * association if the spp_address field is empty. Note 5805 * also, that if delayed sack is enabled and this 5806 * value is set to 0, no change is made to the last 5807 * recorded delayed sack timer value. 5808 * 5809 * spp_flags - These flags are used to control various features 5810 * on an association. The flag field may contain 5811 * zero or more of the following options. 5812 * 5813 * SPP_HB_ENABLE - Enable heartbeats on the 5814 * specified address. Note that if the address 5815 * field is empty all addresses for the association 5816 * have heartbeats enabled upon them. 5817 * 5818 * SPP_HB_DISABLE - Disable heartbeats on the 5819 * speicifed address. Note that if the address 5820 * field is empty all addresses for the association 5821 * will have their heartbeats disabled. Note also 5822 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5823 * mutually exclusive, only one of these two should 5824 * be specified. Enabling both fields will have 5825 * undetermined results. 5826 * 5827 * SPP_HB_DEMAND - Request a user initiated heartbeat 5828 * to be made immediately. 5829 * 5830 * SPP_PMTUD_ENABLE - This field will enable PMTU 5831 * discovery upon the specified address. Note that 5832 * if the address feild is empty then all addresses 5833 * on the association are effected. 5834 * 5835 * SPP_PMTUD_DISABLE - This field will disable PMTU 5836 * discovery upon the specified address. Note that 5837 * if the address feild is empty then all addresses 5838 * on the association are effected. Not also that 5839 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5840 * exclusive. Enabling both will have undetermined 5841 * results. 5842 * 5843 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5844 * on delayed sack. The time specified in spp_sackdelay 5845 * is used to specify the sack delay for this address. Note 5846 * that if spp_address is empty then all addresses will 5847 * enable delayed sack and take on the sack delay 5848 * value specified in spp_sackdelay. 5849 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5850 * off delayed sack. If the spp_address field is blank then 5851 * delayed sack is disabled for the entire association. Note 5852 * also that this field is mutually exclusive to 5853 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5854 * results. 5855 * 5856 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5857 * setting of the IPV6 flow label value. The value is 5858 * contained in the spp_ipv6_flowlabel field. 5859 * Upon retrieval, this flag will be set to indicate that 5860 * the spp_ipv6_flowlabel field has a valid value returned. 5861 * If a specific destination address is set (in the 5862 * spp_address field), then the value returned is that of 5863 * the address. If just an association is specified (and 5864 * no address), then the association's default flow label 5865 * is returned. If neither an association nor a destination 5866 * is specified, then the socket's default flow label is 5867 * returned. For non-IPv6 sockets, this flag will be left 5868 * cleared. 5869 * 5870 * SPP_DSCP: Setting this flag enables the setting of the 5871 * Differentiated Services Code Point (DSCP) value 5872 * associated with either the association or a specific 5873 * address. The value is obtained in the spp_dscp field. 5874 * Upon retrieval, this flag will be set to indicate that 5875 * the spp_dscp field has a valid value returned. If a 5876 * specific destination address is set when called (in the 5877 * spp_address field), then that specific destination 5878 * address's DSCP value is returned. If just an association 5879 * is specified, then the association's default DSCP is 5880 * returned. If neither an association nor a destination is 5881 * specified, then the socket's default DSCP is returned. 5882 * 5883 * spp_ipv6_flowlabel 5884 * - This field is used in conjunction with the 5885 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5886 * The 20 least significant bits are used for the flow 5887 * label. This setting has precedence over any IPv6-layer 5888 * setting. 5889 * 5890 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5891 * and contains the DSCP. The 6 most significant bits are 5892 * used for the DSCP. This setting has precedence over any 5893 * IPv4- or IPv6- layer setting. 5894 */ 5895 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5896 char __user *optval, int __user *optlen) 5897 { 5898 struct sctp_paddrparams params; 5899 struct sctp_transport *trans = NULL; 5900 struct sctp_association *asoc = NULL; 5901 struct sctp_sock *sp = sctp_sk(sk); 5902 5903 if (len >= sizeof(params)) 5904 len = sizeof(params); 5905 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5906 spp_ipv6_flowlabel), 4)) 5907 len = ALIGN(offsetof(struct sctp_paddrparams, 5908 spp_ipv6_flowlabel), 4); 5909 else 5910 return -EINVAL; 5911 5912 if (copy_from_user(¶ms, optval, len)) 5913 return -EFAULT; 5914 5915 /* If an address other than INADDR_ANY is specified, and 5916 * no transport is found, then the request is invalid. 5917 */ 5918 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5919 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5920 params.spp_assoc_id); 5921 if (!trans) { 5922 pr_debug("%s: failed no transport\n", __func__); 5923 return -EINVAL; 5924 } 5925 } 5926 5927 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5928 * socket is a one to many style socket, and an association 5929 * was not found, then the id was invalid. 5930 */ 5931 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5932 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5933 sctp_style(sk, UDP)) { 5934 pr_debug("%s: failed no association\n", __func__); 5935 return -EINVAL; 5936 } 5937 5938 if (trans) { 5939 /* Fetch transport values. */ 5940 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5941 params.spp_pathmtu = trans->pathmtu; 5942 params.spp_pathmaxrxt = trans->pathmaxrxt; 5943 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5944 5945 /*draft-11 doesn't say what to return in spp_flags*/ 5946 params.spp_flags = trans->param_flags; 5947 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5948 params.spp_ipv6_flowlabel = trans->flowlabel & 5949 SCTP_FLOWLABEL_VAL_MASK; 5950 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5951 } 5952 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5953 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5954 params.spp_flags |= SPP_DSCP; 5955 } 5956 } else if (asoc) { 5957 /* Fetch association values. */ 5958 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5959 params.spp_pathmtu = asoc->pathmtu; 5960 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5961 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5962 5963 /*draft-11 doesn't say what to return in spp_flags*/ 5964 params.spp_flags = asoc->param_flags; 5965 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5966 params.spp_ipv6_flowlabel = asoc->flowlabel & 5967 SCTP_FLOWLABEL_VAL_MASK; 5968 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5969 } 5970 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5971 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5972 params.spp_flags |= SPP_DSCP; 5973 } 5974 } else { 5975 /* Fetch socket values. */ 5976 params.spp_hbinterval = sp->hbinterval; 5977 params.spp_pathmtu = sp->pathmtu; 5978 params.spp_sackdelay = sp->sackdelay; 5979 params.spp_pathmaxrxt = sp->pathmaxrxt; 5980 5981 /*draft-11 doesn't say what to return in spp_flags*/ 5982 params.spp_flags = sp->param_flags; 5983 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5984 params.spp_ipv6_flowlabel = sp->flowlabel & 5985 SCTP_FLOWLABEL_VAL_MASK; 5986 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5987 } 5988 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5989 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5990 params.spp_flags |= SPP_DSCP; 5991 } 5992 } 5993 5994 if (copy_to_user(optval, ¶ms, len)) 5995 return -EFAULT; 5996 5997 if (put_user(len, optlen)) 5998 return -EFAULT; 5999 6000 return 0; 6001 } 6002 6003 /* 6004 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6005 * 6006 * This option will effect the way delayed acks are performed. This 6007 * option allows you to get or set the delayed ack time, in 6008 * milliseconds. It also allows changing the delayed ack frequency. 6009 * Changing the frequency to 1 disables the delayed sack algorithm. If 6010 * the assoc_id is 0, then this sets or gets the endpoints default 6011 * values. If the assoc_id field is non-zero, then the set or get 6012 * effects the specified association for the one to many model (the 6013 * assoc_id field is ignored by the one to one model). Note that if 6014 * sack_delay or sack_freq are 0 when setting this option, then the 6015 * current values will remain unchanged. 6016 * 6017 * struct sctp_sack_info { 6018 * sctp_assoc_t sack_assoc_id; 6019 * uint32_t sack_delay; 6020 * uint32_t sack_freq; 6021 * }; 6022 * 6023 * sack_assoc_id - This parameter, indicates which association the user 6024 * is performing an action upon. Note that if this field's value is 6025 * zero then the endpoints default value is changed (effecting future 6026 * associations only). 6027 * 6028 * sack_delay - This parameter contains the number of milliseconds that 6029 * the user is requesting the delayed ACK timer be set to. Note that 6030 * this value is defined in the standard to be between 200 and 500 6031 * milliseconds. 6032 * 6033 * sack_freq - This parameter contains the number of packets that must 6034 * be received before a sack is sent without waiting for the delay 6035 * timer to expire. The default value for this is 2, setting this 6036 * value to 1 will disable the delayed sack algorithm. 6037 */ 6038 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6039 char __user *optval, 6040 int __user *optlen) 6041 { 6042 struct sctp_sack_info params; 6043 struct sctp_association *asoc = NULL; 6044 struct sctp_sock *sp = sctp_sk(sk); 6045 6046 if (len >= sizeof(struct sctp_sack_info)) { 6047 len = sizeof(struct sctp_sack_info); 6048 6049 if (copy_from_user(¶ms, optval, len)) 6050 return -EFAULT; 6051 } else if (len == sizeof(struct sctp_assoc_value)) { 6052 pr_warn_ratelimited(DEPRECATED 6053 "%s (pid %d) " 6054 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6055 "Use struct sctp_sack_info instead\n", 6056 current->comm, task_pid_nr(current)); 6057 if (copy_from_user(¶ms, optval, len)) 6058 return -EFAULT; 6059 } else 6060 return -EINVAL; 6061 6062 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6063 * socket is a one to many style socket, and an association 6064 * was not found, then the id was invalid. 6065 */ 6066 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6067 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6068 sctp_style(sk, UDP)) 6069 return -EINVAL; 6070 6071 if (asoc) { 6072 /* Fetch association values. */ 6073 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6074 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6075 params.sack_freq = asoc->sackfreq; 6076 6077 } else { 6078 params.sack_delay = 0; 6079 params.sack_freq = 1; 6080 } 6081 } else { 6082 /* Fetch socket values. */ 6083 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6084 params.sack_delay = sp->sackdelay; 6085 params.sack_freq = sp->sackfreq; 6086 } else { 6087 params.sack_delay = 0; 6088 params.sack_freq = 1; 6089 } 6090 } 6091 6092 if (copy_to_user(optval, ¶ms, len)) 6093 return -EFAULT; 6094 6095 if (put_user(len, optlen)) 6096 return -EFAULT; 6097 6098 return 0; 6099 } 6100 6101 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6102 * 6103 * Applications can specify protocol parameters for the default association 6104 * initialization. The option name argument to setsockopt() and getsockopt() 6105 * is SCTP_INITMSG. 6106 * 6107 * Setting initialization parameters is effective only on an unconnected 6108 * socket (for UDP-style sockets only future associations are effected 6109 * by the change). With TCP-style sockets, this option is inherited by 6110 * sockets derived from a listener socket. 6111 */ 6112 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6113 { 6114 if (len < sizeof(struct sctp_initmsg)) 6115 return -EINVAL; 6116 len = sizeof(struct sctp_initmsg); 6117 if (put_user(len, optlen)) 6118 return -EFAULT; 6119 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6120 return -EFAULT; 6121 return 0; 6122 } 6123 6124 6125 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6126 char __user *optval, int __user *optlen) 6127 { 6128 struct sctp_association *asoc; 6129 int cnt = 0; 6130 struct sctp_getaddrs getaddrs; 6131 struct sctp_transport *from; 6132 void __user *to; 6133 union sctp_addr temp; 6134 struct sctp_sock *sp = sctp_sk(sk); 6135 int addrlen; 6136 size_t space_left; 6137 int bytes_copied; 6138 6139 if (len < sizeof(struct sctp_getaddrs)) 6140 return -EINVAL; 6141 6142 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6143 return -EFAULT; 6144 6145 /* For UDP-style sockets, id specifies the association to query. */ 6146 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6147 if (!asoc) 6148 return -EINVAL; 6149 6150 to = optval + offsetof(struct sctp_getaddrs, addrs); 6151 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6152 6153 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6154 transports) { 6155 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6156 addrlen = sctp_get_pf_specific(sk->sk_family) 6157 ->addr_to_user(sp, &temp); 6158 if (space_left < addrlen) 6159 return -ENOMEM; 6160 if (copy_to_user(to, &temp, addrlen)) 6161 return -EFAULT; 6162 to += addrlen; 6163 cnt++; 6164 space_left -= addrlen; 6165 } 6166 6167 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6168 return -EFAULT; 6169 bytes_copied = ((char __user *)to) - optval; 6170 if (put_user(bytes_copied, optlen)) 6171 return -EFAULT; 6172 6173 return 0; 6174 } 6175 6176 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6177 size_t space_left, int *bytes_copied) 6178 { 6179 struct sctp_sockaddr_entry *addr; 6180 union sctp_addr temp; 6181 int cnt = 0; 6182 int addrlen; 6183 struct net *net = sock_net(sk); 6184 6185 rcu_read_lock(); 6186 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6187 if (!addr->valid) 6188 continue; 6189 6190 if ((PF_INET == sk->sk_family) && 6191 (AF_INET6 == addr->a.sa.sa_family)) 6192 continue; 6193 if ((PF_INET6 == sk->sk_family) && 6194 inet_v6_ipv6only(sk) && 6195 (AF_INET == addr->a.sa.sa_family)) 6196 continue; 6197 memcpy(&temp, &addr->a, sizeof(temp)); 6198 if (!temp.v4.sin_port) 6199 temp.v4.sin_port = htons(port); 6200 6201 addrlen = sctp_get_pf_specific(sk->sk_family) 6202 ->addr_to_user(sctp_sk(sk), &temp); 6203 6204 if (space_left < addrlen) { 6205 cnt = -ENOMEM; 6206 break; 6207 } 6208 memcpy(to, &temp, addrlen); 6209 6210 to += addrlen; 6211 cnt++; 6212 space_left -= addrlen; 6213 *bytes_copied += addrlen; 6214 } 6215 rcu_read_unlock(); 6216 6217 return cnt; 6218 } 6219 6220 6221 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6222 char __user *optval, int __user *optlen) 6223 { 6224 struct sctp_bind_addr *bp; 6225 struct sctp_association *asoc; 6226 int cnt = 0; 6227 struct sctp_getaddrs getaddrs; 6228 struct sctp_sockaddr_entry *addr; 6229 void __user *to; 6230 union sctp_addr temp; 6231 struct sctp_sock *sp = sctp_sk(sk); 6232 int addrlen; 6233 int err = 0; 6234 size_t space_left; 6235 int bytes_copied = 0; 6236 void *addrs; 6237 void *buf; 6238 6239 if (len < sizeof(struct sctp_getaddrs)) 6240 return -EINVAL; 6241 6242 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6243 return -EFAULT; 6244 6245 /* 6246 * For UDP-style sockets, id specifies the association to query. 6247 * If the id field is set to the value '0' then the locally bound 6248 * addresses are returned without regard to any particular 6249 * association. 6250 */ 6251 if (0 == getaddrs.assoc_id) { 6252 bp = &sctp_sk(sk)->ep->base.bind_addr; 6253 } else { 6254 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6255 if (!asoc) 6256 return -EINVAL; 6257 bp = &asoc->base.bind_addr; 6258 } 6259 6260 to = optval + offsetof(struct sctp_getaddrs, addrs); 6261 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6262 6263 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6264 if (!addrs) 6265 return -ENOMEM; 6266 6267 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6268 * addresses from the global local address list. 6269 */ 6270 if (sctp_list_single_entry(&bp->address_list)) { 6271 addr = list_entry(bp->address_list.next, 6272 struct sctp_sockaddr_entry, list); 6273 if (sctp_is_any(sk, &addr->a)) { 6274 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6275 space_left, &bytes_copied); 6276 if (cnt < 0) { 6277 err = cnt; 6278 goto out; 6279 } 6280 goto copy_getaddrs; 6281 } 6282 } 6283 6284 buf = addrs; 6285 /* Protection on the bound address list is not needed since 6286 * in the socket option context we hold a socket lock and 6287 * thus the bound address list can't change. 6288 */ 6289 list_for_each_entry(addr, &bp->address_list, list) { 6290 memcpy(&temp, &addr->a, sizeof(temp)); 6291 addrlen = sctp_get_pf_specific(sk->sk_family) 6292 ->addr_to_user(sp, &temp); 6293 if (space_left < addrlen) { 6294 err = -ENOMEM; /*fixme: right error?*/ 6295 goto out; 6296 } 6297 memcpy(buf, &temp, addrlen); 6298 buf += addrlen; 6299 bytes_copied += addrlen; 6300 cnt++; 6301 space_left -= addrlen; 6302 } 6303 6304 copy_getaddrs: 6305 if (copy_to_user(to, addrs, bytes_copied)) { 6306 err = -EFAULT; 6307 goto out; 6308 } 6309 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6310 err = -EFAULT; 6311 goto out; 6312 } 6313 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6314 * but we can't change it anymore. 6315 */ 6316 if (put_user(bytes_copied, optlen)) 6317 err = -EFAULT; 6318 out: 6319 kfree(addrs); 6320 return err; 6321 } 6322 6323 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6324 * 6325 * Requests that the local SCTP stack use the enclosed peer address as 6326 * the association primary. The enclosed address must be one of the 6327 * association peer's addresses. 6328 */ 6329 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6330 char __user *optval, int __user *optlen) 6331 { 6332 struct sctp_prim prim; 6333 struct sctp_association *asoc; 6334 struct sctp_sock *sp = sctp_sk(sk); 6335 6336 if (len < sizeof(struct sctp_prim)) 6337 return -EINVAL; 6338 6339 len = sizeof(struct sctp_prim); 6340 6341 if (copy_from_user(&prim, optval, len)) 6342 return -EFAULT; 6343 6344 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6345 if (!asoc) 6346 return -EINVAL; 6347 6348 if (!asoc->peer.primary_path) 6349 return -ENOTCONN; 6350 6351 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6352 asoc->peer.primary_path->af_specific->sockaddr_len); 6353 6354 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6355 (union sctp_addr *)&prim.ssp_addr); 6356 6357 if (put_user(len, optlen)) 6358 return -EFAULT; 6359 if (copy_to_user(optval, &prim, len)) 6360 return -EFAULT; 6361 6362 return 0; 6363 } 6364 6365 /* 6366 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6367 * 6368 * Requests that the local endpoint set the specified Adaptation Layer 6369 * Indication parameter for all future INIT and INIT-ACK exchanges. 6370 */ 6371 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6372 char __user *optval, int __user *optlen) 6373 { 6374 struct sctp_setadaptation adaptation; 6375 6376 if (len < sizeof(struct sctp_setadaptation)) 6377 return -EINVAL; 6378 6379 len = sizeof(struct sctp_setadaptation); 6380 6381 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6382 6383 if (put_user(len, optlen)) 6384 return -EFAULT; 6385 if (copy_to_user(optval, &adaptation, len)) 6386 return -EFAULT; 6387 6388 return 0; 6389 } 6390 6391 /* 6392 * 6393 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6394 * 6395 * Applications that wish to use the sendto() system call may wish to 6396 * specify a default set of parameters that would normally be supplied 6397 * through the inclusion of ancillary data. This socket option allows 6398 * such an application to set the default sctp_sndrcvinfo structure. 6399 6400 6401 * The application that wishes to use this socket option simply passes 6402 * in to this call the sctp_sndrcvinfo structure defined in Section 6403 * 5.2.2) The input parameters accepted by this call include 6404 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6405 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6406 * to this call if the caller is using the UDP model. 6407 * 6408 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6409 */ 6410 static int sctp_getsockopt_default_send_param(struct sock *sk, 6411 int len, char __user *optval, 6412 int __user *optlen) 6413 { 6414 struct sctp_sock *sp = sctp_sk(sk); 6415 struct sctp_association *asoc; 6416 struct sctp_sndrcvinfo info; 6417 6418 if (len < sizeof(info)) 6419 return -EINVAL; 6420 6421 len = sizeof(info); 6422 6423 if (copy_from_user(&info, optval, len)) 6424 return -EFAULT; 6425 6426 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6427 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6428 sctp_style(sk, UDP)) 6429 return -EINVAL; 6430 6431 if (asoc) { 6432 info.sinfo_stream = asoc->default_stream; 6433 info.sinfo_flags = asoc->default_flags; 6434 info.sinfo_ppid = asoc->default_ppid; 6435 info.sinfo_context = asoc->default_context; 6436 info.sinfo_timetolive = asoc->default_timetolive; 6437 } else { 6438 info.sinfo_stream = sp->default_stream; 6439 info.sinfo_flags = sp->default_flags; 6440 info.sinfo_ppid = sp->default_ppid; 6441 info.sinfo_context = sp->default_context; 6442 info.sinfo_timetolive = sp->default_timetolive; 6443 } 6444 6445 if (put_user(len, optlen)) 6446 return -EFAULT; 6447 if (copy_to_user(optval, &info, len)) 6448 return -EFAULT; 6449 6450 return 0; 6451 } 6452 6453 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6454 * (SCTP_DEFAULT_SNDINFO) 6455 */ 6456 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6457 char __user *optval, 6458 int __user *optlen) 6459 { 6460 struct sctp_sock *sp = sctp_sk(sk); 6461 struct sctp_association *asoc; 6462 struct sctp_sndinfo info; 6463 6464 if (len < sizeof(info)) 6465 return -EINVAL; 6466 6467 len = sizeof(info); 6468 6469 if (copy_from_user(&info, optval, len)) 6470 return -EFAULT; 6471 6472 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6473 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6474 sctp_style(sk, UDP)) 6475 return -EINVAL; 6476 6477 if (asoc) { 6478 info.snd_sid = asoc->default_stream; 6479 info.snd_flags = asoc->default_flags; 6480 info.snd_ppid = asoc->default_ppid; 6481 info.snd_context = asoc->default_context; 6482 } else { 6483 info.snd_sid = sp->default_stream; 6484 info.snd_flags = sp->default_flags; 6485 info.snd_ppid = sp->default_ppid; 6486 info.snd_context = sp->default_context; 6487 } 6488 6489 if (put_user(len, optlen)) 6490 return -EFAULT; 6491 if (copy_to_user(optval, &info, len)) 6492 return -EFAULT; 6493 6494 return 0; 6495 } 6496 6497 /* 6498 * 6499 * 7.1.5 SCTP_NODELAY 6500 * 6501 * Turn on/off any Nagle-like algorithm. This means that packets are 6502 * generally sent as soon as possible and no unnecessary delays are 6503 * introduced, at the cost of more packets in the network. Expects an 6504 * integer boolean flag. 6505 */ 6506 6507 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6508 char __user *optval, int __user *optlen) 6509 { 6510 int val; 6511 6512 if (len < sizeof(int)) 6513 return -EINVAL; 6514 6515 len = sizeof(int); 6516 val = (sctp_sk(sk)->nodelay == 1); 6517 if (put_user(len, optlen)) 6518 return -EFAULT; 6519 if (copy_to_user(optval, &val, len)) 6520 return -EFAULT; 6521 return 0; 6522 } 6523 6524 /* 6525 * 6526 * 7.1.1 SCTP_RTOINFO 6527 * 6528 * The protocol parameters used to initialize and bound retransmission 6529 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6530 * and modify these parameters. 6531 * All parameters are time values, in milliseconds. A value of 0, when 6532 * modifying the parameters, indicates that the current value should not 6533 * be changed. 6534 * 6535 */ 6536 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6537 char __user *optval, 6538 int __user *optlen) { 6539 struct sctp_rtoinfo rtoinfo; 6540 struct sctp_association *asoc; 6541 6542 if (len < sizeof (struct sctp_rtoinfo)) 6543 return -EINVAL; 6544 6545 len = sizeof(struct sctp_rtoinfo); 6546 6547 if (copy_from_user(&rtoinfo, optval, len)) 6548 return -EFAULT; 6549 6550 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6551 6552 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6553 sctp_style(sk, UDP)) 6554 return -EINVAL; 6555 6556 /* Values corresponding to the specific association. */ 6557 if (asoc) { 6558 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6559 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6560 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6561 } else { 6562 /* Values corresponding to the endpoint. */ 6563 struct sctp_sock *sp = sctp_sk(sk); 6564 6565 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6566 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6567 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6568 } 6569 6570 if (put_user(len, optlen)) 6571 return -EFAULT; 6572 6573 if (copy_to_user(optval, &rtoinfo, len)) 6574 return -EFAULT; 6575 6576 return 0; 6577 } 6578 6579 /* 6580 * 6581 * 7.1.2 SCTP_ASSOCINFO 6582 * 6583 * This option is used to tune the maximum retransmission attempts 6584 * of the association. 6585 * Returns an error if the new association retransmission value is 6586 * greater than the sum of the retransmission value of the peer. 6587 * See [SCTP] for more information. 6588 * 6589 */ 6590 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6591 char __user *optval, 6592 int __user *optlen) 6593 { 6594 6595 struct sctp_assocparams assocparams; 6596 struct sctp_association *asoc; 6597 struct list_head *pos; 6598 int cnt = 0; 6599 6600 if (len < sizeof (struct sctp_assocparams)) 6601 return -EINVAL; 6602 6603 len = sizeof(struct sctp_assocparams); 6604 6605 if (copy_from_user(&assocparams, optval, len)) 6606 return -EFAULT; 6607 6608 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6609 6610 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6611 sctp_style(sk, UDP)) 6612 return -EINVAL; 6613 6614 /* Values correspoinding to the specific association */ 6615 if (asoc) { 6616 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6617 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6618 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6619 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6620 6621 list_for_each(pos, &asoc->peer.transport_addr_list) { 6622 cnt++; 6623 } 6624 6625 assocparams.sasoc_number_peer_destinations = cnt; 6626 } else { 6627 /* Values corresponding to the endpoint */ 6628 struct sctp_sock *sp = sctp_sk(sk); 6629 6630 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6631 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6632 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6633 assocparams.sasoc_cookie_life = 6634 sp->assocparams.sasoc_cookie_life; 6635 assocparams.sasoc_number_peer_destinations = 6636 sp->assocparams. 6637 sasoc_number_peer_destinations; 6638 } 6639 6640 if (put_user(len, optlen)) 6641 return -EFAULT; 6642 6643 if (copy_to_user(optval, &assocparams, len)) 6644 return -EFAULT; 6645 6646 return 0; 6647 } 6648 6649 /* 6650 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6651 * 6652 * This socket option is a boolean flag which turns on or off mapped V4 6653 * addresses. If this option is turned on and the socket is type 6654 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6655 * If this option is turned off, then no mapping will be done of V4 6656 * addresses and a user will receive both PF_INET6 and PF_INET type 6657 * addresses on the socket. 6658 */ 6659 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6660 char __user *optval, int __user *optlen) 6661 { 6662 int val; 6663 struct sctp_sock *sp = sctp_sk(sk); 6664 6665 if (len < sizeof(int)) 6666 return -EINVAL; 6667 6668 len = sizeof(int); 6669 val = sp->v4mapped; 6670 if (put_user(len, optlen)) 6671 return -EFAULT; 6672 if (copy_to_user(optval, &val, len)) 6673 return -EFAULT; 6674 6675 return 0; 6676 } 6677 6678 /* 6679 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6680 * (chapter and verse is quoted at sctp_setsockopt_context()) 6681 */ 6682 static int sctp_getsockopt_context(struct sock *sk, int len, 6683 char __user *optval, int __user *optlen) 6684 { 6685 struct sctp_assoc_value params; 6686 struct sctp_association *asoc; 6687 6688 if (len < sizeof(struct sctp_assoc_value)) 6689 return -EINVAL; 6690 6691 len = sizeof(struct sctp_assoc_value); 6692 6693 if (copy_from_user(¶ms, optval, len)) 6694 return -EFAULT; 6695 6696 asoc = sctp_id2assoc(sk, params.assoc_id); 6697 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6698 sctp_style(sk, UDP)) 6699 return -EINVAL; 6700 6701 params.assoc_value = asoc ? asoc->default_rcv_context 6702 : sctp_sk(sk)->default_rcv_context; 6703 6704 if (put_user(len, optlen)) 6705 return -EFAULT; 6706 if (copy_to_user(optval, ¶ms, len)) 6707 return -EFAULT; 6708 6709 return 0; 6710 } 6711 6712 /* 6713 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6714 * This option will get or set the maximum size to put in any outgoing 6715 * SCTP DATA chunk. If a message is larger than this size it will be 6716 * fragmented by SCTP into the specified size. Note that the underlying 6717 * SCTP implementation may fragment into smaller sized chunks when the 6718 * PMTU of the underlying association is smaller than the value set by 6719 * the user. The default value for this option is '0' which indicates 6720 * the user is NOT limiting fragmentation and only the PMTU will effect 6721 * SCTP's choice of DATA chunk size. Note also that values set larger 6722 * than the maximum size of an IP datagram will effectively let SCTP 6723 * control fragmentation (i.e. the same as setting this option to 0). 6724 * 6725 * The following structure is used to access and modify this parameter: 6726 * 6727 * struct sctp_assoc_value { 6728 * sctp_assoc_t assoc_id; 6729 * uint32_t assoc_value; 6730 * }; 6731 * 6732 * assoc_id: This parameter is ignored for one-to-one style sockets. 6733 * For one-to-many style sockets this parameter indicates which 6734 * association the user is performing an action upon. Note that if 6735 * this field's value is zero then the endpoints default value is 6736 * changed (effecting future associations only). 6737 * assoc_value: This parameter specifies the maximum size in bytes. 6738 */ 6739 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6740 char __user *optval, int __user *optlen) 6741 { 6742 struct sctp_assoc_value params; 6743 struct sctp_association *asoc; 6744 6745 if (len == sizeof(int)) { 6746 pr_warn_ratelimited(DEPRECATED 6747 "%s (pid %d) " 6748 "Use of int in maxseg socket option.\n" 6749 "Use struct sctp_assoc_value instead\n", 6750 current->comm, task_pid_nr(current)); 6751 params.assoc_id = SCTP_FUTURE_ASSOC; 6752 } else if (len >= sizeof(struct sctp_assoc_value)) { 6753 len = sizeof(struct sctp_assoc_value); 6754 if (copy_from_user(¶ms, optval, len)) 6755 return -EFAULT; 6756 } else 6757 return -EINVAL; 6758 6759 asoc = sctp_id2assoc(sk, params.assoc_id); 6760 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6761 sctp_style(sk, UDP)) 6762 return -EINVAL; 6763 6764 if (asoc) 6765 params.assoc_value = asoc->frag_point; 6766 else 6767 params.assoc_value = sctp_sk(sk)->user_frag; 6768 6769 if (put_user(len, optlen)) 6770 return -EFAULT; 6771 if (len == sizeof(int)) { 6772 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6773 return -EFAULT; 6774 } else { 6775 if (copy_to_user(optval, ¶ms, len)) 6776 return -EFAULT; 6777 } 6778 6779 return 0; 6780 } 6781 6782 /* 6783 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6784 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6785 */ 6786 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6787 char __user *optval, int __user *optlen) 6788 { 6789 int val; 6790 6791 if (len < sizeof(int)) 6792 return -EINVAL; 6793 6794 len = sizeof(int); 6795 6796 val = sctp_sk(sk)->frag_interleave; 6797 if (put_user(len, optlen)) 6798 return -EFAULT; 6799 if (copy_to_user(optval, &val, len)) 6800 return -EFAULT; 6801 6802 return 0; 6803 } 6804 6805 /* 6806 * 7.1.25. Set or Get the sctp partial delivery point 6807 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6808 */ 6809 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6810 char __user *optval, 6811 int __user *optlen) 6812 { 6813 u32 val; 6814 6815 if (len < sizeof(u32)) 6816 return -EINVAL; 6817 6818 len = sizeof(u32); 6819 6820 val = sctp_sk(sk)->pd_point; 6821 if (put_user(len, optlen)) 6822 return -EFAULT; 6823 if (copy_to_user(optval, &val, len)) 6824 return -EFAULT; 6825 6826 return 0; 6827 } 6828 6829 /* 6830 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6831 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6832 */ 6833 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6834 char __user *optval, 6835 int __user *optlen) 6836 { 6837 struct sctp_assoc_value params; 6838 struct sctp_association *asoc; 6839 6840 if (len == sizeof(int)) { 6841 pr_warn_ratelimited(DEPRECATED 6842 "%s (pid %d) " 6843 "Use of int in max_burst socket option.\n" 6844 "Use struct sctp_assoc_value instead\n", 6845 current->comm, task_pid_nr(current)); 6846 params.assoc_id = SCTP_FUTURE_ASSOC; 6847 } else if (len >= sizeof(struct sctp_assoc_value)) { 6848 len = sizeof(struct sctp_assoc_value); 6849 if (copy_from_user(¶ms, optval, len)) 6850 return -EFAULT; 6851 } else 6852 return -EINVAL; 6853 6854 asoc = sctp_id2assoc(sk, params.assoc_id); 6855 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6856 sctp_style(sk, UDP)) 6857 return -EINVAL; 6858 6859 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6860 6861 if (len == sizeof(int)) { 6862 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6863 return -EFAULT; 6864 } else { 6865 if (copy_to_user(optval, ¶ms, len)) 6866 return -EFAULT; 6867 } 6868 6869 return 0; 6870 6871 } 6872 6873 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6874 char __user *optval, int __user *optlen) 6875 { 6876 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6877 struct sctp_hmacalgo __user *p = (void __user *)optval; 6878 struct sctp_hmac_algo_param *hmacs; 6879 __u16 data_len = 0; 6880 u32 num_idents; 6881 int i; 6882 6883 if (!ep->auth_enable) 6884 return -EACCES; 6885 6886 hmacs = ep->auth_hmacs_list; 6887 data_len = ntohs(hmacs->param_hdr.length) - 6888 sizeof(struct sctp_paramhdr); 6889 6890 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6891 return -EINVAL; 6892 6893 len = sizeof(struct sctp_hmacalgo) + data_len; 6894 num_idents = data_len / sizeof(u16); 6895 6896 if (put_user(len, optlen)) 6897 return -EFAULT; 6898 if (put_user(num_idents, &p->shmac_num_idents)) 6899 return -EFAULT; 6900 for (i = 0; i < num_idents; i++) { 6901 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6902 6903 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6904 return -EFAULT; 6905 } 6906 return 0; 6907 } 6908 6909 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6910 char __user *optval, int __user *optlen) 6911 { 6912 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6913 struct sctp_authkeyid val; 6914 struct sctp_association *asoc; 6915 6916 if (!ep->auth_enable) 6917 return -EACCES; 6918 6919 if (len < sizeof(struct sctp_authkeyid)) 6920 return -EINVAL; 6921 6922 len = sizeof(struct sctp_authkeyid); 6923 if (copy_from_user(&val, optval, len)) 6924 return -EFAULT; 6925 6926 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6927 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6928 return -EINVAL; 6929 6930 if (asoc) 6931 val.scact_keynumber = asoc->active_key_id; 6932 else 6933 val.scact_keynumber = ep->active_key_id; 6934 6935 if (put_user(len, optlen)) 6936 return -EFAULT; 6937 if (copy_to_user(optval, &val, len)) 6938 return -EFAULT; 6939 6940 return 0; 6941 } 6942 6943 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6944 char __user *optval, int __user *optlen) 6945 { 6946 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6947 struct sctp_authchunks __user *p = (void __user *)optval; 6948 struct sctp_authchunks val; 6949 struct sctp_association *asoc; 6950 struct sctp_chunks_param *ch; 6951 u32 num_chunks = 0; 6952 char __user *to; 6953 6954 if (!ep->auth_enable) 6955 return -EACCES; 6956 6957 if (len < sizeof(struct sctp_authchunks)) 6958 return -EINVAL; 6959 6960 if (copy_from_user(&val, optval, sizeof(val))) 6961 return -EFAULT; 6962 6963 to = p->gauth_chunks; 6964 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6965 if (!asoc) 6966 return -EINVAL; 6967 6968 ch = asoc->peer.peer_chunks; 6969 if (!ch) 6970 goto num; 6971 6972 /* See if the user provided enough room for all the data */ 6973 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6974 if (len < num_chunks) 6975 return -EINVAL; 6976 6977 if (copy_to_user(to, ch->chunks, num_chunks)) 6978 return -EFAULT; 6979 num: 6980 len = sizeof(struct sctp_authchunks) + num_chunks; 6981 if (put_user(len, optlen)) 6982 return -EFAULT; 6983 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6984 return -EFAULT; 6985 return 0; 6986 } 6987 6988 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6989 char __user *optval, int __user *optlen) 6990 { 6991 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6992 struct sctp_authchunks __user *p = (void __user *)optval; 6993 struct sctp_authchunks val; 6994 struct sctp_association *asoc; 6995 struct sctp_chunks_param *ch; 6996 u32 num_chunks = 0; 6997 char __user *to; 6998 6999 if (!ep->auth_enable) 7000 return -EACCES; 7001 7002 if (len < sizeof(struct sctp_authchunks)) 7003 return -EINVAL; 7004 7005 if (copy_from_user(&val, optval, sizeof(val))) 7006 return -EFAULT; 7007 7008 to = p->gauth_chunks; 7009 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7010 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7011 sctp_style(sk, UDP)) 7012 return -EINVAL; 7013 7014 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7015 : ep->auth_chunk_list; 7016 if (!ch) 7017 goto num; 7018 7019 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7020 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7021 return -EINVAL; 7022 7023 if (copy_to_user(to, ch->chunks, num_chunks)) 7024 return -EFAULT; 7025 num: 7026 len = sizeof(struct sctp_authchunks) + num_chunks; 7027 if (put_user(len, optlen)) 7028 return -EFAULT; 7029 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7030 return -EFAULT; 7031 7032 return 0; 7033 } 7034 7035 /* 7036 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7037 * This option gets the current number of associations that are attached 7038 * to a one-to-many style socket. The option value is an uint32_t. 7039 */ 7040 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7041 char __user *optval, int __user *optlen) 7042 { 7043 struct sctp_sock *sp = sctp_sk(sk); 7044 struct sctp_association *asoc; 7045 u32 val = 0; 7046 7047 if (sctp_style(sk, TCP)) 7048 return -EOPNOTSUPP; 7049 7050 if (len < sizeof(u32)) 7051 return -EINVAL; 7052 7053 len = sizeof(u32); 7054 7055 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7056 val++; 7057 } 7058 7059 if (put_user(len, optlen)) 7060 return -EFAULT; 7061 if (copy_to_user(optval, &val, len)) 7062 return -EFAULT; 7063 7064 return 0; 7065 } 7066 7067 /* 7068 * 8.1.23 SCTP_AUTO_ASCONF 7069 * See the corresponding setsockopt entry as description 7070 */ 7071 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7072 char __user *optval, int __user *optlen) 7073 { 7074 int val = 0; 7075 7076 if (len < sizeof(int)) 7077 return -EINVAL; 7078 7079 len = sizeof(int); 7080 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7081 val = 1; 7082 if (put_user(len, optlen)) 7083 return -EFAULT; 7084 if (copy_to_user(optval, &val, len)) 7085 return -EFAULT; 7086 return 0; 7087 } 7088 7089 /* 7090 * 8.2.6. Get the Current Identifiers of Associations 7091 * (SCTP_GET_ASSOC_ID_LIST) 7092 * 7093 * This option gets the current list of SCTP association identifiers of 7094 * the SCTP associations handled by a one-to-many style socket. 7095 */ 7096 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7097 char __user *optval, int __user *optlen) 7098 { 7099 struct sctp_sock *sp = sctp_sk(sk); 7100 struct sctp_association *asoc; 7101 struct sctp_assoc_ids *ids; 7102 u32 num = 0; 7103 7104 if (sctp_style(sk, TCP)) 7105 return -EOPNOTSUPP; 7106 7107 if (len < sizeof(struct sctp_assoc_ids)) 7108 return -EINVAL; 7109 7110 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7111 num++; 7112 } 7113 7114 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7115 return -EINVAL; 7116 7117 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7118 7119 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7120 if (unlikely(!ids)) 7121 return -ENOMEM; 7122 7123 ids->gaids_number_of_ids = num; 7124 num = 0; 7125 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7126 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7127 } 7128 7129 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7130 kfree(ids); 7131 return -EFAULT; 7132 } 7133 7134 kfree(ids); 7135 return 0; 7136 } 7137 7138 /* 7139 * SCTP_PEER_ADDR_THLDS 7140 * 7141 * This option allows us to fetch the partially failed threshold for one or all 7142 * transports in an association. See Section 6.1 of: 7143 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7144 */ 7145 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7146 char __user *optval, 7147 int len, 7148 int __user *optlen) 7149 { 7150 struct sctp_paddrthlds val; 7151 struct sctp_transport *trans; 7152 struct sctp_association *asoc; 7153 7154 if (len < sizeof(struct sctp_paddrthlds)) 7155 return -EINVAL; 7156 len = sizeof(struct sctp_paddrthlds); 7157 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7158 return -EFAULT; 7159 7160 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7161 trans = sctp_addr_id2transport(sk, &val.spt_address, 7162 val.spt_assoc_id); 7163 if (!trans) 7164 return -ENOENT; 7165 7166 val.spt_pathmaxrxt = trans->pathmaxrxt; 7167 val.spt_pathpfthld = trans->pf_retrans; 7168 7169 return 0; 7170 } 7171 7172 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7173 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7174 sctp_style(sk, UDP)) 7175 return -EINVAL; 7176 7177 if (asoc) { 7178 val.spt_pathpfthld = asoc->pf_retrans; 7179 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7180 } else { 7181 struct sctp_sock *sp = sctp_sk(sk); 7182 7183 val.spt_pathpfthld = sp->pf_retrans; 7184 val.spt_pathmaxrxt = sp->pathmaxrxt; 7185 } 7186 7187 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7188 return -EFAULT; 7189 7190 return 0; 7191 } 7192 7193 /* 7194 * SCTP_GET_ASSOC_STATS 7195 * 7196 * This option retrieves local per endpoint statistics. It is modeled 7197 * after OpenSolaris' implementation 7198 */ 7199 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7200 char __user *optval, 7201 int __user *optlen) 7202 { 7203 struct sctp_assoc_stats sas; 7204 struct sctp_association *asoc = NULL; 7205 7206 /* User must provide at least the assoc id */ 7207 if (len < sizeof(sctp_assoc_t)) 7208 return -EINVAL; 7209 7210 /* Allow the struct to grow and fill in as much as possible */ 7211 len = min_t(size_t, len, sizeof(sas)); 7212 7213 if (copy_from_user(&sas, optval, len)) 7214 return -EFAULT; 7215 7216 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7217 if (!asoc) 7218 return -EINVAL; 7219 7220 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7221 sas.sas_gapcnt = asoc->stats.gapcnt; 7222 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7223 sas.sas_osacks = asoc->stats.osacks; 7224 sas.sas_isacks = asoc->stats.isacks; 7225 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7226 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7227 sas.sas_oodchunks = asoc->stats.oodchunks; 7228 sas.sas_iodchunks = asoc->stats.iodchunks; 7229 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7230 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7231 sas.sas_idupchunks = asoc->stats.idupchunks; 7232 sas.sas_opackets = asoc->stats.opackets; 7233 sas.sas_ipackets = asoc->stats.ipackets; 7234 7235 /* New high max rto observed, will return 0 if not a single 7236 * RTO update took place. obs_rto_ipaddr will be bogus 7237 * in such a case 7238 */ 7239 sas.sas_maxrto = asoc->stats.max_obs_rto; 7240 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7241 sizeof(struct sockaddr_storage)); 7242 7243 /* Mark beginning of a new observation period */ 7244 asoc->stats.max_obs_rto = asoc->rto_min; 7245 7246 if (put_user(len, optlen)) 7247 return -EFAULT; 7248 7249 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7250 7251 if (copy_to_user(optval, &sas, len)) 7252 return -EFAULT; 7253 7254 return 0; 7255 } 7256 7257 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7258 char __user *optval, 7259 int __user *optlen) 7260 { 7261 int val = 0; 7262 7263 if (len < sizeof(int)) 7264 return -EINVAL; 7265 7266 len = sizeof(int); 7267 if (sctp_sk(sk)->recvrcvinfo) 7268 val = 1; 7269 if (put_user(len, optlen)) 7270 return -EFAULT; 7271 if (copy_to_user(optval, &val, len)) 7272 return -EFAULT; 7273 7274 return 0; 7275 } 7276 7277 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7278 char __user *optval, 7279 int __user *optlen) 7280 { 7281 int val = 0; 7282 7283 if (len < sizeof(int)) 7284 return -EINVAL; 7285 7286 len = sizeof(int); 7287 if (sctp_sk(sk)->recvnxtinfo) 7288 val = 1; 7289 if (put_user(len, optlen)) 7290 return -EFAULT; 7291 if (copy_to_user(optval, &val, len)) 7292 return -EFAULT; 7293 7294 return 0; 7295 } 7296 7297 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7298 char __user *optval, 7299 int __user *optlen) 7300 { 7301 struct sctp_assoc_value params; 7302 struct sctp_association *asoc; 7303 int retval = -EFAULT; 7304 7305 if (len < sizeof(params)) { 7306 retval = -EINVAL; 7307 goto out; 7308 } 7309 7310 len = sizeof(params); 7311 if (copy_from_user(¶ms, optval, len)) 7312 goto out; 7313 7314 asoc = sctp_id2assoc(sk, params.assoc_id); 7315 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7316 sctp_style(sk, UDP)) { 7317 retval = -EINVAL; 7318 goto out; 7319 } 7320 7321 params.assoc_value = asoc ? asoc->prsctp_enable 7322 : sctp_sk(sk)->ep->prsctp_enable; 7323 7324 if (put_user(len, optlen)) 7325 goto out; 7326 7327 if (copy_to_user(optval, ¶ms, len)) 7328 goto out; 7329 7330 retval = 0; 7331 7332 out: 7333 return retval; 7334 } 7335 7336 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7337 char __user *optval, 7338 int __user *optlen) 7339 { 7340 struct sctp_default_prinfo info; 7341 struct sctp_association *asoc; 7342 int retval = -EFAULT; 7343 7344 if (len < sizeof(info)) { 7345 retval = -EINVAL; 7346 goto out; 7347 } 7348 7349 len = sizeof(info); 7350 if (copy_from_user(&info, optval, len)) 7351 goto out; 7352 7353 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7354 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7355 sctp_style(sk, UDP)) { 7356 retval = -EINVAL; 7357 goto out; 7358 } 7359 7360 if (asoc) { 7361 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7362 info.pr_value = asoc->default_timetolive; 7363 } else { 7364 struct sctp_sock *sp = sctp_sk(sk); 7365 7366 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7367 info.pr_value = sp->default_timetolive; 7368 } 7369 7370 if (put_user(len, optlen)) 7371 goto out; 7372 7373 if (copy_to_user(optval, &info, len)) 7374 goto out; 7375 7376 retval = 0; 7377 7378 out: 7379 return retval; 7380 } 7381 7382 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7383 char __user *optval, 7384 int __user *optlen) 7385 { 7386 struct sctp_prstatus params; 7387 struct sctp_association *asoc; 7388 int policy; 7389 int retval = -EINVAL; 7390 7391 if (len < sizeof(params)) 7392 goto out; 7393 7394 len = sizeof(params); 7395 if (copy_from_user(¶ms, optval, len)) { 7396 retval = -EFAULT; 7397 goto out; 7398 } 7399 7400 policy = params.sprstat_policy; 7401 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7402 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7403 goto out; 7404 7405 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7406 if (!asoc) 7407 goto out; 7408 7409 if (policy == SCTP_PR_SCTP_ALL) { 7410 params.sprstat_abandoned_unsent = 0; 7411 params.sprstat_abandoned_sent = 0; 7412 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7413 params.sprstat_abandoned_unsent += 7414 asoc->abandoned_unsent[policy]; 7415 params.sprstat_abandoned_sent += 7416 asoc->abandoned_sent[policy]; 7417 } 7418 } else { 7419 params.sprstat_abandoned_unsent = 7420 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7421 params.sprstat_abandoned_sent = 7422 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7423 } 7424 7425 if (put_user(len, optlen)) { 7426 retval = -EFAULT; 7427 goto out; 7428 } 7429 7430 if (copy_to_user(optval, ¶ms, len)) { 7431 retval = -EFAULT; 7432 goto out; 7433 } 7434 7435 retval = 0; 7436 7437 out: 7438 return retval; 7439 } 7440 7441 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7442 char __user *optval, 7443 int __user *optlen) 7444 { 7445 struct sctp_stream_out_ext *streamoute; 7446 struct sctp_association *asoc; 7447 struct sctp_prstatus params; 7448 int retval = -EINVAL; 7449 int policy; 7450 7451 if (len < sizeof(params)) 7452 goto out; 7453 7454 len = sizeof(params); 7455 if (copy_from_user(¶ms, optval, len)) { 7456 retval = -EFAULT; 7457 goto out; 7458 } 7459 7460 policy = params.sprstat_policy; 7461 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7462 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7463 goto out; 7464 7465 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7466 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7467 goto out; 7468 7469 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7470 if (!streamoute) { 7471 /* Not allocated yet, means all stats are 0 */ 7472 params.sprstat_abandoned_unsent = 0; 7473 params.sprstat_abandoned_sent = 0; 7474 retval = 0; 7475 goto out; 7476 } 7477 7478 if (policy == SCTP_PR_SCTP_ALL) { 7479 params.sprstat_abandoned_unsent = 0; 7480 params.sprstat_abandoned_sent = 0; 7481 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7482 params.sprstat_abandoned_unsent += 7483 streamoute->abandoned_unsent[policy]; 7484 params.sprstat_abandoned_sent += 7485 streamoute->abandoned_sent[policy]; 7486 } 7487 } else { 7488 params.sprstat_abandoned_unsent = 7489 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7490 params.sprstat_abandoned_sent = 7491 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7492 } 7493 7494 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7495 retval = -EFAULT; 7496 goto out; 7497 } 7498 7499 retval = 0; 7500 7501 out: 7502 return retval; 7503 } 7504 7505 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7506 char __user *optval, 7507 int __user *optlen) 7508 { 7509 struct sctp_assoc_value params; 7510 struct sctp_association *asoc; 7511 int retval = -EFAULT; 7512 7513 if (len < sizeof(params)) { 7514 retval = -EINVAL; 7515 goto out; 7516 } 7517 7518 len = sizeof(params); 7519 if (copy_from_user(¶ms, optval, len)) 7520 goto out; 7521 7522 asoc = sctp_id2assoc(sk, params.assoc_id); 7523 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7524 sctp_style(sk, UDP)) { 7525 retval = -EINVAL; 7526 goto out; 7527 } 7528 7529 params.assoc_value = asoc ? asoc->reconf_enable 7530 : sctp_sk(sk)->ep->reconf_enable; 7531 7532 if (put_user(len, optlen)) 7533 goto out; 7534 7535 if (copy_to_user(optval, ¶ms, len)) 7536 goto out; 7537 7538 retval = 0; 7539 7540 out: 7541 return retval; 7542 } 7543 7544 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7545 char __user *optval, 7546 int __user *optlen) 7547 { 7548 struct sctp_assoc_value params; 7549 struct sctp_association *asoc; 7550 int retval = -EFAULT; 7551 7552 if (len < sizeof(params)) { 7553 retval = -EINVAL; 7554 goto out; 7555 } 7556 7557 len = sizeof(params); 7558 if (copy_from_user(¶ms, optval, len)) 7559 goto out; 7560 7561 asoc = sctp_id2assoc(sk, params.assoc_id); 7562 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7563 sctp_style(sk, UDP)) { 7564 retval = -EINVAL; 7565 goto out; 7566 } 7567 7568 params.assoc_value = asoc ? asoc->strreset_enable 7569 : sctp_sk(sk)->ep->strreset_enable; 7570 7571 if (put_user(len, optlen)) 7572 goto out; 7573 7574 if (copy_to_user(optval, ¶ms, len)) 7575 goto out; 7576 7577 retval = 0; 7578 7579 out: 7580 return retval; 7581 } 7582 7583 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7584 char __user *optval, 7585 int __user *optlen) 7586 { 7587 struct sctp_assoc_value params; 7588 struct sctp_association *asoc; 7589 int retval = -EFAULT; 7590 7591 if (len < sizeof(params)) { 7592 retval = -EINVAL; 7593 goto out; 7594 } 7595 7596 len = sizeof(params); 7597 if (copy_from_user(¶ms, optval, len)) 7598 goto out; 7599 7600 asoc = sctp_id2assoc(sk, params.assoc_id); 7601 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7602 sctp_style(sk, UDP)) { 7603 retval = -EINVAL; 7604 goto out; 7605 } 7606 7607 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7608 : sctp_sk(sk)->default_ss; 7609 7610 if (put_user(len, optlen)) 7611 goto out; 7612 7613 if (copy_to_user(optval, ¶ms, len)) 7614 goto out; 7615 7616 retval = 0; 7617 7618 out: 7619 return retval; 7620 } 7621 7622 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7623 char __user *optval, 7624 int __user *optlen) 7625 { 7626 struct sctp_stream_value params; 7627 struct sctp_association *asoc; 7628 int retval = -EFAULT; 7629 7630 if (len < sizeof(params)) { 7631 retval = -EINVAL; 7632 goto out; 7633 } 7634 7635 len = sizeof(params); 7636 if (copy_from_user(¶ms, optval, len)) 7637 goto out; 7638 7639 asoc = sctp_id2assoc(sk, params.assoc_id); 7640 if (!asoc) { 7641 retval = -EINVAL; 7642 goto out; 7643 } 7644 7645 retval = sctp_sched_get_value(asoc, params.stream_id, 7646 ¶ms.stream_value); 7647 if (retval) 7648 goto out; 7649 7650 if (put_user(len, optlen)) { 7651 retval = -EFAULT; 7652 goto out; 7653 } 7654 7655 if (copy_to_user(optval, ¶ms, len)) { 7656 retval = -EFAULT; 7657 goto out; 7658 } 7659 7660 out: 7661 return retval; 7662 } 7663 7664 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7665 char __user *optval, 7666 int __user *optlen) 7667 { 7668 struct sctp_assoc_value params; 7669 struct sctp_association *asoc; 7670 int retval = -EFAULT; 7671 7672 if (len < sizeof(params)) { 7673 retval = -EINVAL; 7674 goto out; 7675 } 7676 7677 len = sizeof(params); 7678 if (copy_from_user(¶ms, optval, len)) 7679 goto out; 7680 7681 asoc = sctp_id2assoc(sk, params.assoc_id); 7682 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7683 sctp_style(sk, UDP)) { 7684 retval = -EINVAL; 7685 goto out; 7686 } 7687 7688 params.assoc_value = asoc ? asoc->intl_enable 7689 : sctp_sk(sk)->strm_interleave; 7690 7691 if (put_user(len, optlen)) 7692 goto out; 7693 7694 if (copy_to_user(optval, ¶ms, len)) 7695 goto out; 7696 7697 retval = 0; 7698 7699 out: 7700 return retval; 7701 } 7702 7703 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7704 char __user *optval, 7705 int __user *optlen) 7706 { 7707 int val; 7708 7709 if (len < sizeof(int)) 7710 return -EINVAL; 7711 7712 len = sizeof(int); 7713 val = sctp_sk(sk)->reuse; 7714 if (put_user(len, optlen)) 7715 return -EFAULT; 7716 7717 if (copy_to_user(optval, &val, len)) 7718 return -EFAULT; 7719 7720 return 0; 7721 } 7722 7723 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7724 int __user *optlen) 7725 { 7726 struct sctp_association *asoc; 7727 struct sctp_event param; 7728 __u16 subscribe; 7729 7730 if (len < sizeof(param)) 7731 return -EINVAL; 7732 7733 len = sizeof(param); 7734 if (copy_from_user(¶m, optval, len)) 7735 return -EFAULT; 7736 7737 if (param.se_type < SCTP_SN_TYPE_BASE || 7738 param.se_type > SCTP_SN_TYPE_MAX) 7739 return -EINVAL; 7740 7741 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7742 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7743 sctp_style(sk, UDP)) 7744 return -EINVAL; 7745 7746 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7747 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7748 7749 if (put_user(len, optlen)) 7750 return -EFAULT; 7751 7752 if (copy_to_user(optval, ¶m, len)) 7753 return -EFAULT; 7754 7755 return 0; 7756 } 7757 7758 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7759 char __user *optval, int __user *optlen) 7760 { 7761 int retval = 0; 7762 int len; 7763 7764 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7765 7766 /* I can hardly begin to describe how wrong this is. This is 7767 * so broken as to be worse than useless. The API draft 7768 * REALLY is NOT helpful here... I am not convinced that the 7769 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7770 * are at all well-founded. 7771 */ 7772 if (level != SOL_SCTP) { 7773 struct sctp_af *af = sctp_sk(sk)->pf->af; 7774 7775 retval = af->getsockopt(sk, level, optname, optval, optlen); 7776 return retval; 7777 } 7778 7779 if (get_user(len, optlen)) 7780 return -EFAULT; 7781 7782 if (len < 0) 7783 return -EINVAL; 7784 7785 lock_sock(sk); 7786 7787 switch (optname) { 7788 case SCTP_STATUS: 7789 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7790 break; 7791 case SCTP_DISABLE_FRAGMENTS: 7792 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7793 optlen); 7794 break; 7795 case SCTP_EVENTS: 7796 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7797 break; 7798 case SCTP_AUTOCLOSE: 7799 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7800 break; 7801 case SCTP_SOCKOPT_PEELOFF: 7802 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7803 break; 7804 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7805 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7806 break; 7807 case SCTP_PEER_ADDR_PARAMS: 7808 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7809 optlen); 7810 break; 7811 case SCTP_DELAYED_SACK: 7812 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7813 optlen); 7814 break; 7815 case SCTP_INITMSG: 7816 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7817 break; 7818 case SCTP_GET_PEER_ADDRS: 7819 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7820 optlen); 7821 break; 7822 case SCTP_GET_LOCAL_ADDRS: 7823 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7824 optlen); 7825 break; 7826 case SCTP_SOCKOPT_CONNECTX3: 7827 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7828 break; 7829 case SCTP_DEFAULT_SEND_PARAM: 7830 retval = sctp_getsockopt_default_send_param(sk, len, 7831 optval, optlen); 7832 break; 7833 case SCTP_DEFAULT_SNDINFO: 7834 retval = sctp_getsockopt_default_sndinfo(sk, len, 7835 optval, optlen); 7836 break; 7837 case SCTP_PRIMARY_ADDR: 7838 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7839 break; 7840 case SCTP_NODELAY: 7841 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7842 break; 7843 case SCTP_RTOINFO: 7844 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7845 break; 7846 case SCTP_ASSOCINFO: 7847 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7848 break; 7849 case SCTP_I_WANT_MAPPED_V4_ADDR: 7850 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7851 break; 7852 case SCTP_MAXSEG: 7853 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7854 break; 7855 case SCTP_GET_PEER_ADDR_INFO: 7856 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7857 optlen); 7858 break; 7859 case SCTP_ADAPTATION_LAYER: 7860 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7861 optlen); 7862 break; 7863 case SCTP_CONTEXT: 7864 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7865 break; 7866 case SCTP_FRAGMENT_INTERLEAVE: 7867 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7868 optlen); 7869 break; 7870 case SCTP_PARTIAL_DELIVERY_POINT: 7871 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7872 optlen); 7873 break; 7874 case SCTP_MAX_BURST: 7875 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7876 break; 7877 case SCTP_AUTH_KEY: 7878 case SCTP_AUTH_CHUNK: 7879 case SCTP_AUTH_DELETE_KEY: 7880 case SCTP_AUTH_DEACTIVATE_KEY: 7881 retval = -EOPNOTSUPP; 7882 break; 7883 case SCTP_HMAC_IDENT: 7884 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7885 break; 7886 case SCTP_AUTH_ACTIVE_KEY: 7887 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7888 break; 7889 case SCTP_PEER_AUTH_CHUNKS: 7890 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7891 optlen); 7892 break; 7893 case SCTP_LOCAL_AUTH_CHUNKS: 7894 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7895 optlen); 7896 break; 7897 case SCTP_GET_ASSOC_NUMBER: 7898 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7899 break; 7900 case SCTP_GET_ASSOC_ID_LIST: 7901 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7902 break; 7903 case SCTP_AUTO_ASCONF: 7904 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7905 break; 7906 case SCTP_PEER_ADDR_THLDS: 7907 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7908 break; 7909 case SCTP_GET_ASSOC_STATS: 7910 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7911 break; 7912 case SCTP_RECVRCVINFO: 7913 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7914 break; 7915 case SCTP_RECVNXTINFO: 7916 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7917 break; 7918 case SCTP_PR_SUPPORTED: 7919 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7920 break; 7921 case SCTP_DEFAULT_PRINFO: 7922 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7923 optlen); 7924 break; 7925 case SCTP_PR_ASSOC_STATUS: 7926 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7927 optlen); 7928 break; 7929 case SCTP_PR_STREAM_STATUS: 7930 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7931 optlen); 7932 break; 7933 case SCTP_RECONFIG_SUPPORTED: 7934 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7935 optlen); 7936 break; 7937 case SCTP_ENABLE_STREAM_RESET: 7938 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7939 optlen); 7940 break; 7941 case SCTP_STREAM_SCHEDULER: 7942 retval = sctp_getsockopt_scheduler(sk, len, optval, 7943 optlen); 7944 break; 7945 case SCTP_STREAM_SCHEDULER_VALUE: 7946 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7947 optlen); 7948 break; 7949 case SCTP_INTERLEAVING_SUPPORTED: 7950 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7951 optlen); 7952 break; 7953 case SCTP_REUSE_PORT: 7954 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7955 break; 7956 case SCTP_EVENT: 7957 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7958 break; 7959 default: 7960 retval = -ENOPROTOOPT; 7961 break; 7962 } 7963 7964 release_sock(sk); 7965 return retval; 7966 } 7967 7968 static int sctp_hash(struct sock *sk) 7969 { 7970 /* STUB */ 7971 return 0; 7972 } 7973 7974 static void sctp_unhash(struct sock *sk) 7975 { 7976 /* STUB */ 7977 } 7978 7979 /* Check if port is acceptable. Possibly find first available port. 7980 * 7981 * The port hash table (contained in the 'global' SCTP protocol storage 7982 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7983 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7984 * list (the list number is the port number hashed out, so as you 7985 * would expect from a hash function, all the ports in a given list have 7986 * such a number that hashes out to the same list number; you were 7987 * expecting that, right?); so each list has a set of ports, with a 7988 * link to the socket (struct sock) that uses it, the port number and 7989 * a fastreuse flag (FIXME: NPI ipg). 7990 */ 7991 static struct sctp_bind_bucket *sctp_bucket_create( 7992 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7993 7994 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7995 { 7996 struct sctp_sock *sp = sctp_sk(sk); 7997 bool reuse = (sk->sk_reuse || sp->reuse); 7998 struct sctp_bind_hashbucket *head; /* hash list */ 7999 kuid_t uid = sock_i_uid(sk); 8000 struct sctp_bind_bucket *pp; 8001 unsigned short snum; 8002 int ret; 8003 8004 snum = ntohs(addr->v4.sin_port); 8005 8006 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8007 8008 local_bh_disable(); 8009 8010 if (snum == 0) { 8011 /* Search for an available port. */ 8012 int low, high, remaining, index; 8013 unsigned int rover; 8014 struct net *net = sock_net(sk); 8015 8016 inet_get_local_port_range(net, &low, &high); 8017 remaining = (high - low) + 1; 8018 rover = prandom_u32() % remaining + low; 8019 8020 do { 8021 rover++; 8022 if ((rover < low) || (rover > high)) 8023 rover = low; 8024 if (inet_is_local_reserved_port(net, rover)) 8025 continue; 8026 index = sctp_phashfn(sock_net(sk), rover); 8027 head = &sctp_port_hashtable[index]; 8028 spin_lock(&head->lock); 8029 sctp_for_each_hentry(pp, &head->chain) 8030 if ((pp->port == rover) && 8031 net_eq(sock_net(sk), pp->net)) 8032 goto next; 8033 break; 8034 next: 8035 spin_unlock(&head->lock); 8036 } while (--remaining > 0); 8037 8038 /* Exhausted local port range during search? */ 8039 ret = 1; 8040 if (remaining <= 0) 8041 goto fail; 8042 8043 /* OK, here is the one we will use. HEAD (the port 8044 * hash table list entry) is non-NULL and we hold it's 8045 * mutex. 8046 */ 8047 snum = rover; 8048 } else { 8049 /* We are given an specific port number; we verify 8050 * that it is not being used. If it is used, we will 8051 * exahust the search in the hash list corresponding 8052 * to the port number (snum) - we detect that with the 8053 * port iterator, pp being NULL. 8054 */ 8055 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8056 spin_lock(&head->lock); 8057 sctp_for_each_hentry(pp, &head->chain) { 8058 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8059 goto pp_found; 8060 } 8061 } 8062 pp = NULL; 8063 goto pp_not_found; 8064 pp_found: 8065 if (!hlist_empty(&pp->owner)) { 8066 /* We had a port hash table hit - there is an 8067 * available port (pp != NULL) and it is being 8068 * used by other socket (pp->owner not empty); that other 8069 * socket is going to be sk2. 8070 */ 8071 struct sock *sk2; 8072 8073 pr_debug("%s: found a possible match\n", __func__); 8074 8075 if ((pp->fastreuse && reuse && 8076 sk->sk_state != SCTP_SS_LISTENING) || 8077 (pp->fastreuseport && sk->sk_reuseport && 8078 uid_eq(pp->fastuid, uid))) 8079 goto success; 8080 8081 /* Run through the list of sockets bound to the port 8082 * (pp->port) [via the pointers bind_next and 8083 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8084 * we get the endpoint they describe and run through 8085 * the endpoint's list of IP (v4 or v6) addresses, 8086 * comparing each of the addresses with the address of 8087 * the socket sk. If we find a match, then that means 8088 * that this port/socket (sk) combination are already 8089 * in an endpoint. 8090 */ 8091 sk_for_each_bound(sk2, &pp->owner) { 8092 struct sctp_sock *sp2 = sctp_sk(sk2); 8093 struct sctp_endpoint *ep2 = sp2->ep; 8094 8095 if (sk == sk2 || 8096 (reuse && (sk2->sk_reuse || sp2->reuse) && 8097 sk2->sk_state != SCTP_SS_LISTENING) || 8098 (sk->sk_reuseport && sk2->sk_reuseport && 8099 uid_eq(uid, sock_i_uid(sk2)))) 8100 continue; 8101 8102 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8103 addr, sp2, sp)) { 8104 ret = (long)sk2; 8105 goto fail_unlock; 8106 } 8107 } 8108 8109 pr_debug("%s: found a match\n", __func__); 8110 } 8111 pp_not_found: 8112 /* If there was a hash table miss, create a new port. */ 8113 ret = 1; 8114 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8115 goto fail_unlock; 8116 8117 /* In either case (hit or miss), make sure fastreuse is 1 only 8118 * if sk->sk_reuse is too (that is, if the caller requested 8119 * SO_REUSEADDR on this socket -sk-). 8120 */ 8121 if (hlist_empty(&pp->owner)) { 8122 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8123 pp->fastreuse = 1; 8124 else 8125 pp->fastreuse = 0; 8126 8127 if (sk->sk_reuseport) { 8128 pp->fastreuseport = 1; 8129 pp->fastuid = uid; 8130 } else { 8131 pp->fastreuseport = 0; 8132 } 8133 } else { 8134 if (pp->fastreuse && 8135 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8136 pp->fastreuse = 0; 8137 8138 if (pp->fastreuseport && 8139 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8140 pp->fastreuseport = 0; 8141 } 8142 8143 /* We are set, so fill up all the data in the hash table 8144 * entry, tie the socket list information with the rest of the 8145 * sockets FIXME: Blurry, NPI (ipg). 8146 */ 8147 success: 8148 if (!sp->bind_hash) { 8149 inet_sk(sk)->inet_num = snum; 8150 sk_add_bind_node(sk, &pp->owner); 8151 sp->bind_hash = pp; 8152 } 8153 ret = 0; 8154 8155 fail_unlock: 8156 spin_unlock(&head->lock); 8157 8158 fail: 8159 local_bh_enable(); 8160 return ret; 8161 } 8162 8163 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8164 * port is requested. 8165 */ 8166 static int sctp_get_port(struct sock *sk, unsigned short snum) 8167 { 8168 union sctp_addr addr; 8169 struct sctp_af *af = sctp_sk(sk)->pf->af; 8170 8171 /* Set up a dummy address struct from the sk. */ 8172 af->from_sk(&addr, sk); 8173 addr.v4.sin_port = htons(snum); 8174 8175 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8176 return !!sctp_get_port_local(sk, &addr); 8177 } 8178 8179 /* 8180 * Move a socket to LISTENING state. 8181 */ 8182 static int sctp_listen_start(struct sock *sk, int backlog) 8183 { 8184 struct sctp_sock *sp = sctp_sk(sk); 8185 struct sctp_endpoint *ep = sp->ep; 8186 struct crypto_shash *tfm = NULL; 8187 char alg[32]; 8188 8189 /* Allocate HMAC for generating cookie. */ 8190 if (!sp->hmac && sp->sctp_hmac_alg) { 8191 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8192 tfm = crypto_alloc_shash(alg, 0, 0); 8193 if (IS_ERR(tfm)) { 8194 net_info_ratelimited("failed to load transform for %s: %ld\n", 8195 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8196 return -ENOSYS; 8197 } 8198 sctp_sk(sk)->hmac = tfm; 8199 } 8200 8201 /* 8202 * If a bind() or sctp_bindx() is not called prior to a listen() 8203 * call that allows new associations to be accepted, the system 8204 * picks an ephemeral port and will choose an address set equivalent 8205 * to binding with a wildcard address. 8206 * 8207 * This is not currently spelled out in the SCTP sockets 8208 * extensions draft, but follows the practice as seen in TCP 8209 * sockets. 8210 * 8211 */ 8212 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8213 if (!ep->base.bind_addr.port) { 8214 if (sctp_autobind(sk)) 8215 return -EAGAIN; 8216 } else { 8217 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8218 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8219 return -EADDRINUSE; 8220 } 8221 } 8222 8223 sk->sk_max_ack_backlog = backlog; 8224 return sctp_hash_endpoint(ep); 8225 } 8226 8227 /* 8228 * 4.1.3 / 5.1.3 listen() 8229 * 8230 * By default, new associations are not accepted for UDP style sockets. 8231 * An application uses listen() to mark a socket as being able to 8232 * accept new associations. 8233 * 8234 * On TCP style sockets, applications use listen() to ready the SCTP 8235 * endpoint for accepting inbound associations. 8236 * 8237 * On both types of endpoints a backlog of '0' disables listening. 8238 * 8239 * Move a socket to LISTENING state. 8240 */ 8241 int sctp_inet_listen(struct socket *sock, int backlog) 8242 { 8243 struct sock *sk = sock->sk; 8244 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8245 int err = -EINVAL; 8246 8247 if (unlikely(backlog < 0)) 8248 return err; 8249 8250 lock_sock(sk); 8251 8252 /* Peeled-off sockets are not allowed to listen(). */ 8253 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8254 goto out; 8255 8256 if (sock->state != SS_UNCONNECTED) 8257 goto out; 8258 8259 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8260 goto out; 8261 8262 /* If backlog is zero, disable listening. */ 8263 if (!backlog) { 8264 if (sctp_sstate(sk, CLOSED)) 8265 goto out; 8266 8267 err = 0; 8268 sctp_unhash_endpoint(ep); 8269 sk->sk_state = SCTP_SS_CLOSED; 8270 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8271 sctp_sk(sk)->bind_hash->fastreuse = 1; 8272 goto out; 8273 } 8274 8275 /* If we are already listening, just update the backlog */ 8276 if (sctp_sstate(sk, LISTENING)) 8277 sk->sk_max_ack_backlog = backlog; 8278 else { 8279 err = sctp_listen_start(sk, backlog); 8280 if (err) 8281 goto out; 8282 } 8283 8284 err = 0; 8285 out: 8286 release_sock(sk); 8287 return err; 8288 } 8289 8290 /* 8291 * This function is done by modeling the current datagram_poll() and the 8292 * tcp_poll(). Note that, based on these implementations, we don't 8293 * lock the socket in this function, even though it seems that, 8294 * ideally, locking or some other mechanisms can be used to ensure 8295 * the integrity of the counters (sndbuf and wmem_alloc) used 8296 * in this place. We assume that we don't need locks either until proven 8297 * otherwise. 8298 * 8299 * Another thing to note is that we include the Async I/O support 8300 * here, again, by modeling the current TCP/UDP code. We don't have 8301 * a good way to test with it yet. 8302 */ 8303 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8304 { 8305 struct sock *sk = sock->sk; 8306 struct sctp_sock *sp = sctp_sk(sk); 8307 __poll_t mask; 8308 8309 poll_wait(file, sk_sleep(sk), wait); 8310 8311 sock_rps_record_flow(sk); 8312 8313 /* A TCP-style listening socket becomes readable when the accept queue 8314 * is not empty. 8315 */ 8316 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8317 return (!list_empty(&sp->ep->asocs)) ? 8318 (EPOLLIN | EPOLLRDNORM) : 0; 8319 8320 mask = 0; 8321 8322 /* Is there any exceptional events? */ 8323 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8324 mask |= EPOLLERR | 8325 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8326 if (sk->sk_shutdown & RCV_SHUTDOWN) 8327 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8328 if (sk->sk_shutdown == SHUTDOWN_MASK) 8329 mask |= EPOLLHUP; 8330 8331 /* Is it readable? Reconsider this code with TCP-style support. */ 8332 if (!skb_queue_empty(&sk->sk_receive_queue)) 8333 mask |= EPOLLIN | EPOLLRDNORM; 8334 8335 /* The association is either gone or not ready. */ 8336 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8337 return mask; 8338 8339 /* Is it writable? */ 8340 if (sctp_writeable(sk)) { 8341 mask |= EPOLLOUT | EPOLLWRNORM; 8342 } else { 8343 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8344 /* 8345 * Since the socket is not locked, the buffer 8346 * might be made available after the writeable check and 8347 * before the bit is set. This could cause a lost I/O 8348 * signal. tcp_poll() has a race breaker for this race 8349 * condition. Based on their implementation, we put 8350 * in the following code to cover it as well. 8351 */ 8352 if (sctp_writeable(sk)) 8353 mask |= EPOLLOUT | EPOLLWRNORM; 8354 } 8355 return mask; 8356 } 8357 8358 /******************************************************************** 8359 * 2nd Level Abstractions 8360 ********************************************************************/ 8361 8362 static struct sctp_bind_bucket *sctp_bucket_create( 8363 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8364 { 8365 struct sctp_bind_bucket *pp; 8366 8367 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8368 if (pp) { 8369 SCTP_DBG_OBJCNT_INC(bind_bucket); 8370 pp->port = snum; 8371 pp->fastreuse = 0; 8372 INIT_HLIST_HEAD(&pp->owner); 8373 pp->net = net; 8374 hlist_add_head(&pp->node, &head->chain); 8375 } 8376 return pp; 8377 } 8378 8379 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8380 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8381 { 8382 if (pp && hlist_empty(&pp->owner)) { 8383 __hlist_del(&pp->node); 8384 kmem_cache_free(sctp_bucket_cachep, pp); 8385 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8386 } 8387 } 8388 8389 /* Release this socket's reference to a local port. */ 8390 static inline void __sctp_put_port(struct sock *sk) 8391 { 8392 struct sctp_bind_hashbucket *head = 8393 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8394 inet_sk(sk)->inet_num)]; 8395 struct sctp_bind_bucket *pp; 8396 8397 spin_lock(&head->lock); 8398 pp = sctp_sk(sk)->bind_hash; 8399 __sk_del_bind_node(sk); 8400 sctp_sk(sk)->bind_hash = NULL; 8401 inet_sk(sk)->inet_num = 0; 8402 sctp_bucket_destroy(pp); 8403 spin_unlock(&head->lock); 8404 } 8405 8406 void sctp_put_port(struct sock *sk) 8407 { 8408 local_bh_disable(); 8409 __sctp_put_port(sk); 8410 local_bh_enable(); 8411 } 8412 8413 /* 8414 * The system picks an ephemeral port and choose an address set equivalent 8415 * to binding with a wildcard address. 8416 * One of those addresses will be the primary address for the association. 8417 * This automatically enables the multihoming capability of SCTP. 8418 */ 8419 static int sctp_autobind(struct sock *sk) 8420 { 8421 union sctp_addr autoaddr; 8422 struct sctp_af *af; 8423 __be16 port; 8424 8425 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8426 af = sctp_sk(sk)->pf->af; 8427 8428 port = htons(inet_sk(sk)->inet_num); 8429 af->inaddr_any(&autoaddr, port); 8430 8431 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8432 } 8433 8434 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8435 * 8436 * From RFC 2292 8437 * 4.2 The cmsghdr Structure * 8438 * 8439 * When ancillary data is sent or received, any number of ancillary data 8440 * objects can be specified by the msg_control and msg_controllen members of 8441 * the msghdr structure, because each object is preceded by 8442 * a cmsghdr structure defining the object's length (the cmsg_len member). 8443 * Historically Berkeley-derived implementations have passed only one object 8444 * at a time, but this API allows multiple objects to be 8445 * passed in a single call to sendmsg() or recvmsg(). The following example 8446 * shows two ancillary data objects in a control buffer. 8447 * 8448 * |<--------------------------- msg_controllen -------------------------->| 8449 * | | 8450 * 8451 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8452 * 8453 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8454 * | | | 8455 * 8456 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8457 * 8458 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8459 * | | | | | 8460 * 8461 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8462 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8463 * 8464 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8465 * 8466 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8467 * ^ 8468 * | 8469 * 8470 * msg_control 8471 * points here 8472 */ 8473 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8474 { 8475 struct msghdr *my_msg = (struct msghdr *)msg; 8476 struct cmsghdr *cmsg; 8477 8478 for_each_cmsghdr(cmsg, my_msg) { 8479 if (!CMSG_OK(my_msg, cmsg)) 8480 return -EINVAL; 8481 8482 /* Should we parse this header or ignore? */ 8483 if (cmsg->cmsg_level != IPPROTO_SCTP) 8484 continue; 8485 8486 /* Strictly check lengths following example in SCM code. */ 8487 switch (cmsg->cmsg_type) { 8488 case SCTP_INIT: 8489 /* SCTP Socket API Extension 8490 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8491 * 8492 * This cmsghdr structure provides information for 8493 * initializing new SCTP associations with sendmsg(). 8494 * The SCTP_INITMSG socket option uses this same data 8495 * structure. This structure is not used for 8496 * recvmsg(). 8497 * 8498 * cmsg_level cmsg_type cmsg_data[] 8499 * ------------ ------------ ---------------------- 8500 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8501 */ 8502 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8503 return -EINVAL; 8504 8505 cmsgs->init = CMSG_DATA(cmsg); 8506 break; 8507 8508 case SCTP_SNDRCV: 8509 /* SCTP Socket API Extension 8510 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8511 * 8512 * This cmsghdr structure specifies SCTP options for 8513 * sendmsg() and describes SCTP header information 8514 * about a received message through recvmsg(). 8515 * 8516 * cmsg_level cmsg_type cmsg_data[] 8517 * ------------ ------------ ---------------------- 8518 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8519 */ 8520 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8521 return -EINVAL; 8522 8523 cmsgs->srinfo = CMSG_DATA(cmsg); 8524 8525 if (cmsgs->srinfo->sinfo_flags & 8526 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8527 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8528 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8529 return -EINVAL; 8530 break; 8531 8532 case SCTP_SNDINFO: 8533 /* SCTP Socket API Extension 8534 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8535 * 8536 * This cmsghdr structure specifies SCTP options for 8537 * sendmsg(). This structure and SCTP_RCVINFO replaces 8538 * SCTP_SNDRCV which has been deprecated. 8539 * 8540 * cmsg_level cmsg_type cmsg_data[] 8541 * ------------ ------------ --------------------- 8542 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8543 */ 8544 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8545 return -EINVAL; 8546 8547 cmsgs->sinfo = CMSG_DATA(cmsg); 8548 8549 if (cmsgs->sinfo->snd_flags & 8550 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8551 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8552 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8553 return -EINVAL; 8554 break; 8555 case SCTP_PRINFO: 8556 /* SCTP Socket API Extension 8557 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8558 * 8559 * This cmsghdr structure specifies SCTP options for sendmsg(). 8560 * 8561 * cmsg_level cmsg_type cmsg_data[] 8562 * ------------ ------------ --------------------- 8563 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8564 */ 8565 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8566 return -EINVAL; 8567 8568 cmsgs->prinfo = CMSG_DATA(cmsg); 8569 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8570 return -EINVAL; 8571 8572 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8573 cmsgs->prinfo->pr_value = 0; 8574 break; 8575 case SCTP_AUTHINFO: 8576 /* SCTP Socket API Extension 8577 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8578 * 8579 * This cmsghdr structure specifies SCTP options for sendmsg(). 8580 * 8581 * cmsg_level cmsg_type cmsg_data[] 8582 * ------------ ------------ --------------------- 8583 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8584 */ 8585 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8586 return -EINVAL; 8587 8588 cmsgs->authinfo = CMSG_DATA(cmsg); 8589 break; 8590 case SCTP_DSTADDRV4: 8591 case SCTP_DSTADDRV6: 8592 /* SCTP Socket API Extension 8593 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8594 * 8595 * This cmsghdr structure specifies SCTP options for sendmsg(). 8596 * 8597 * cmsg_level cmsg_type cmsg_data[] 8598 * ------------ ------------ --------------------- 8599 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8600 * ------------ ------------ --------------------- 8601 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8602 */ 8603 cmsgs->addrs_msg = my_msg; 8604 break; 8605 default: 8606 return -EINVAL; 8607 } 8608 } 8609 8610 return 0; 8611 } 8612 8613 /* 8614 * Wait for a packet.. 8615 * Note: This function is the same function as in core/datagram.c 8616 * with a few modifications to make lksctp work. 8617 */ 8618 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8619 { 8620 int error; 8621 DEFINE_WAIT(wait); 8622 8623 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8624 8625 /* Socket errors? */ 8626 error = sock_error(sk); 8627 if (error) 8628 goto out; 8629 8630 if (!skb_queue_empty(&sk->sk_receive_queue)) 8631 goto ready; 8632 8633 /* Socket shut down? */ 8634 if (sk->sk_shutdown & RCV_SHUTDOWN) 8635 goto out; 8636 8637 /* Sequenced packets can come disconnected. If so we report the 8638 * problem. 8639 */ 8640 error = -ENOTCONN; 8641 8642 /* Is there a good reason to think that we may receive some data? */ 8643 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8644 goto out; 8645 8646 /* Handle signals. */ 8647 if (signal_pending(current)) 8648 goto interrupted; 8649 8650 /* Let another process have a go. Since we are going to sleep 8651 * anyway. Note: This may cause odd behaviors if the message 8652 * does not fit in the user's buffer, but this seems to be the 8653 * only way to honor MSG_DONTWAIT realistically. 8654 */ 8655 release_sock(sk); 8656 *timeo_p = schedule_timeout(*timeo_p); 8657 lock_sock(sk); 8658 8659 ready: 8660 finish_wait(sk_sleep(sk), &wait); 8661 return 0; 8662 8663 interrupted: 8664 error = sock_intr_errno(*timeo_p); 8665 8666 out: 8667 finish_wait(sk_sleep(sk), &wait); 8668 *err = error; 8669 return error; 8670 } 8671 8672 /* Receive a datagram. 8673 * Note: This is pretty much the same routine as in core/datagram.c 8674 * with a few changes to make lksctp work. 8675 */ 8676 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8677 int noblock, int *err) 8678 { 8679 int error; 8680 struct sk_buff *skb; 8681 long timeo; 8682 8683 timeo = sock_rcvtimeo(sk, noblock); 8684 8685 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8686 MAX_SCHEDULE_TIMEOUT); 8687 8688 do { 8689 /* Again only user level code calls this function, 8690 * so nothing interrupt level 8691 * will suddenly eat the receive_queue. 8692 * 8693 * Look at current nfs client by the way... 8694 * However, this function was correct in any case. 8) 8695 */ 8696 if (flags & MSG_PEEK) { 8697 skb = skb_peek(&sk->sk_receive_queue); 8698 if (skb) 8699 refcount_inc(&skb->users); 8700 } else { 8701 skb = __skb_dequeue(&sk->sk_receive_queue); 8702 } 8703 8704 if (skb) 8705 return skb; 8706 8707 /* Caller is allowed not to check sk->sk_err before calling. */ 8708 error = sock_error(sk); 8709 if (error) 8710 goto no_packet; 8711 8712 if (sk->sk_shutdown & RCV_SHUTDOWN) 8713 break; 8714 8715 if (sk_can_busy_loop(sk)) { 8716 sk_busy_loop(sk, noblock); 8717 8718 if (!skb_queue_empty(&sk->sk_receive_queue)) 8719 continue; 8720 } 8721 8722 /* User doesn't want to wait. */ 8723 error = -EAGAIN; 8724 if (!timeo) 8725 goto no_packet; 8726 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8727 8728 return NULL; 8729 8730 no_packet: 8731 *err = error; 8732 return NULL; 8733 } 8734 8735 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8736 static void __sctp_write_space(struct sctp_association *asoc) 8737 { 8738 struct sock *sk = asoc->base.sk; 8739 8740 if (sctp_wspace(asoc) <= 0) 8741 return; 8742 8743 if (waitqueue_active(&asoc->wait)) 8744 wake_up_interruptible(&asoc->wait); 8745 8746 if (sctp_writeable(sk)) { 8747 struct socket_wq *wq; 8748 8749 rcu_read_lock(); 8750 wq = rcu_dereference(sk->sk_wq); 8751 if (wq) { 8752 if (waitqueue_active(&wq->wait)) 8753 wake_up_interruptible(&wq->wait); 8754 8755 /* Note that we try to include the Async I/O support 8756 * here by modeling from the current TCP/UDP code. 8757 * We have not tested with it yet. 8758 */ 8759 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8760 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8761 } 8762 rcu_read_unlock(); 8763 } 8764 } 8765 8766 static void sctp_wake_up_waiters(struct sock *sk, 8767 struct sctp_association *asoc) 8768 { 8769 struct sctp_association *tmp = asoc; 8770 8771 /* We do accounting for the sndbuf space per association, 8772 * so we only need to wake our own association. 8773 */ 8774 if (asoc->ep->sndbuf_policy) 8775 return __sctp_write_space(asoc); 8776 8777 /* If association goes down and is just flushing its 8778 * outq, then just normally notify others. 8779 */ 8780 if (asoc->base.dead) 8781 return sctp_write_space(sk); 8782 8783 /* Accounting for the sndbuf space is per socket, so we 8784 * need to wake up others, try to be fair and in case of 8785 * other associations, let them have a go first instead 8786 * of just doing a sctp_write_space() call. 8787 * 8788 * Note that we reach sctp_wake_up_waiters() only when 8789 * associations free up queued chunks, thus we are under 8790 * lock and the list of associations on a socket is 8791 * guaranteed not to change. 8792 */ 8793 for (tmp = list_next_entry(tmp, asocs); 1; 8794 tmp = list_next_entry(tmp, asocs)) { 8795 /* Manually skip the head element. */ 8796 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8797 continue; 8798 /* Wake up association. */ 8799 __sctp_write_space(tmp); 8800 /* We've reached the end. */ 8801 if (tmp == asoc) 8802 break; 8803 } 8804 } 8805 8806 /* Do accounting for the sndbuf space. 8807 * Decrement the used sndbuf space of the corresponding association by the 8808 * data size which was just transmitted(freed). 8809 */ 8810 static void sctp_wfree(struct sk_buff *skb) 8811 { 8812 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8813 struct sctp_association *asoc = chunk->asoc; 8814 struct sock *sk = asoc->base.sk; 8815 8816 sk_mem_uncharge(sk, skb->truesize); 8817 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8818 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8819 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8820 &sk->sk_wmem_alloc)); 8821 8822 if (chunk->shkey) { 8823 struct sctp_shared_key *shkey = chunk->shkey; 8824 8825 /* refcnt == 2 and !list_empty mean after this release, it's 8826 * not being used anywhere, and it's time to notify userland 8827 * that this shkey can be freed if it's been deactivated. 8828 */ 8829 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8830 refcount_read(&shkey->refcnt) == 2) { 8831 struct sctp_ulpevent *ev; 8832 8833 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8834 SCTP_AUTH_FREE_KEY, 8835 GFP_KERNEL); 8836 if (ev) 8837 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8838 } 8839 sctp_auth_shkey_release(chunk->shkey); 8840 } 8841 8842 sock_wfree(skb); 8843 sctp_wake_up_waiters(sk, asoc); 8844 8845 sctp_association_put(asoc); 8846 } 8847 8848 /* Do accounting for the receive space on the socket. 8849 * Accounting for the association is done in ulpevent.c 8850 * We set this as a destructor for the cloned data skbs so that 8851 * accounting is done at the correct time. 8852 */ 8853 void sctp_sock_rfree(struct sk_buff *skb) 8854 { 8855 struct sock *sk = skb->sk; 8856 struct sctp_ulpevent *event = sctp_skb2event(skb); 8857 8858 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8859 8860 /* 8861 * Mimic the behavior of sock_rfree 8862 */ 8863 sk_mem_uncharge(sk, event->rmem_len); 8864 } 8865 8866 8867 /* Helper function to wait for space in the sndbuf. */ 8868 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8869 size_t msg_len) 8870 { 8871 struct sock *sk = asoc->base.sk; 8872 long current_timeo = *timeo_p; 8873 DEFINE_WAIT(wait); 8874 int err = 0; 8875 8876 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8877 *timeo_p, msg_len); 8878 8879 /* Increment the association's refcnt. */ 8880 sctp_association_hold(asoc); 8881 8882 /* Wait on the association specific sndbuf space. */ 8883 for (;;) { 8884 prepare_to_wait_exclusive(&asoc->wait, &wait, 8885 TASK_INTERRUPTIBLE); 8886 if (asoc->base.dead) 8887 goto do_dead; 8888 if (!*timeo_p) 8889 goto do_nonblock; 8890 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8891 goto do_error; 8892 if (signal_pending(current)) 8893 goto do_interrupted; 8894 if ((int)msg_len <= sctp_wspace(asoc)) 8895 break; 8896 8897 /* Let another process have a go. Since we are going 8898 * to sleep anyway. 8899 */ 8900 release_sock(sk); 8901 current_timeo = schedule_timeout(current_timeo); 8902 lock_sock(sk); 8903 if (sk != asoc->base.sk) 8904 goto do_error; 8905 8906 *timeo_p = current_timeo; 8907 } 8908 8909 out: 8910 finish_wait(&asoc->wait, &wait); 8911 8912 /* Release the association's refcnt. */ 8913 sctp_association_put(asoc); 8914 8915 return err; 8916 8917 do_dead: 8918 err = -ESRCH; 8919 goto out; 8920 8921 do_error: 8922 err = -EPIPE; 8923 goto out; 8924 8925 do_interrupted: 8926 err = sock_intr_errno(*timeo_p); 8927 goto out; 8928 8929 do_nonblock: 8930 err = -EAGAIN; 8931 goto out; 8932 } 8933 8934 void sctp_data_ready(struct sock *sk) 8935 { 8936 struct socket_wq *wq; 8937 8938 rcu_read_lock(); 8939 wq = rcu_dereference(sk->sk_wq); 8940 if (skwq_has_sleeper(wq)) 8941 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8942 EPOLLRDNORM | EPOLLRDBAND); 8943 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8944 rcu_read_unlock(); 8945 } 8946 8947 /* If socket sndbuf has changed, wake up all per association waiters. */ 8948 void sctp_write_space(struct sock *sk) 8949 { 8950 struct sctp_association *asoc; 8951 8952 /* Wake up the tasks in each wait queue. */ 8953 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8954 __sctp_write_space(asoc); 8955 } 8956 } 8957 8958 /* Is there any sndbuf space available on the socket? 8959 * 8960 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8961 * associations on the same socket. For a UDP-style socket with 8962 * multiple associations, it is possible for it to be "unwriteable" 8963 * prematurely. I assume that this is acceptable because 8964 * a premature "unwriteable" is better than an accidental "writeable" which 8965 * would cause an unwanted block under certain circumstances. For the 1-1 8966 * UDP-style sockets or TCP-style sockets, this code should work. 8967 * - Daisy 8968 */ 8969 static bool sctp_writeable(struct sock *sk) 8970 { 8971 return sk->sk_sndbuf > sk->sk_wmem_queued; 8972 } 8973 8974 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8975 * returns immediately with EINPROGRESS. 8976 */ 8977 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8978 { 8979 struct sock *sk = asoc->base.sk; 8980 int err = 0; 8981 long current_timeo = *timeo_p; 8982 DEFINE_WAIT(wait); 8983 8984 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8985 8986 /* Increment the association's refcnt. */ 8987 sctp_association_hold(asoc); 8988 8989 for (;;) { 8990 prepare_to_wait_exclusive(&asoc->wait, &wait, 8991 TASK_INTERRUPTIBLE); 8992 if (!*timeo_p) 8993 goto do_nonblock; 8994 if (sk->sk_shutdown & RCV_SHUTDOWN) 8995 break; 8996 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8997 asoc->base.dead) 8998 goto do_error; 8999 if (signal_pending(current)) 9000 goto do_interrupted; 9001 9002 if (sctp_state(asoc, ESTABLISHED)) 9003 break; 9004 9005 /* Let another process have a go. Since we are going 9006 * to sleep anyway. 9007 */ 9008 release_sock(sk); 9009 current_timeo = schedule_timeout(current_timeo); 9010 lock_sock(sk); 9011 9012 *timeo_p = current_timeo; 9013 } 9014 9015 out: 9016 finish_wait(&asoc->wait, &wait); 9017 9018 /* Release the association's refcnt. */ 9019 sctp_association_put(asoc); 9020 9021 return err; 9022 9023 do_error: 9024 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9025 err = -ETIMEDOUT; 9026 else 9027 err = -ECONNREFUSED; 9028 goto out; 9029 9030 do_interrupted: 9031 err = sock_intr_errno(*timeo_p); 9032 goto out; 9033 9034 do_nonblock: 9035 err = -EINPROGRESS; 9036 goto out; 9037 } 9038 9039 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9040 { 9041 struct sctp_endpoint *ep; 9042 int err = 0; 9043 DEFINE_WAIT(wait); 9044 9045 ep = sctp_sk(sk)->ep; 9046 9047 9048 for (;;) { 9049 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9050 TASK_INTERRUPTIBLE); 9051 9052 if (list_empty(&ep->asocs)) { 9053 release_sock(sk); 9054 timeo = schedule_timeout(timeo); 9055 lock_sock(sk); 9056 } 9057 9058 err = -EINVAL; 9059 if (!sctp_sstate(sk, LISTENING)) 9060 break; 9061 9062 err = 0; 9063 if (!list_empty(&ep->asocs)) 9064 break; 9065 9066 err = sock_intr_errno(timeo); 9067 if (signal_pending(current)) 9068 break; 9069 9070 err = -EAGAIN; 9071 if (!timeo) 9072 break; 9073 } 9074 9075 finish_wait(sk_sleep(sk), &wait); 9076 9077 return err; 9078 } 9079 9080 static void sctp_wait_for_close(struct sock *sk, long timeout) 9081 { 9082 DEFINE_WAIT(wait); 9083 9084 do { 9085 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9086 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9087 break; 9088 release_sock(sk); 9089 timeout = schedule_timeout(timeout); 9090 lock_sock(sk); 9091 } while (!signal_pending(current) && timeout); 9092 9093 finish_wait(sk_sleep(sk), &wait); 9094 } 9095 9096 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9097 { 9098 struct sk_buff *frag; 9099 9100 if (!skb->data_len) 9101 goto done; 9102 9103 /* Don't forget the fragments. */ 9104 skb_walk_frags(skb, frag) 9105 sctp_skb_set_owner_r_frag(frag, sk); 9106 9107 done: 9108 sctp_skb_set_owner_r(skb, sk); 9109 } 9110 9111 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9112 struct sctp_association *asoc) 9113 { 9114 struct inet_sock *inet = inet_sk(sk); 9115 struct inet_sock *newinet; 9116 struct sctp_sock *sp = sctp_sk(sk); 9117 struct sctp_endpoint *ep = sp->ep; 9118 9119 newsk->sk_type = sk->sk_type; 9120 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9121 newsk->sk_flags = sk->sk_flags; 9122 newsk->sk_tsflags = sk->sk_tsflags; 9123 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9124 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9125 newsk->sk_reuse = sk->sk_reuse; 9126 sctp_sk(newsk)->reuse = sp->reuse; 9127 9128 newsk->sk_shutdown = sk->sk_shutdown; 9129 newsk->sk_destruct = sctp_destruct_sock; 9130 newsk->sk_family = sk->sk_family; 9131 newsk->sk_protocol = IPPROTO_SCTP; 9132 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9133 newsk->sk_sndbuf = sk->sk_sndbuf; 9134 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9135 newsk->sk_lingertime = sk->sk_lingertime; 9136 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9137 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9138 newsk->sk_rxhash = sk->sk_rxhash; 9139 9140 newinet = inet_sk(newsk); 9141 9142 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9143 * getsockname() and getpeername() 9144 */ 9145 newinet->inet_sport = inet->inet_sport; 9146 newinet->inet_saddr = inet->inet_saddr; 9147 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9148 newinet->inet_dport = htons(asoc->peer.port); 9149 newinet->pmtudisc = inet->pmtudisc; 9150 newinet->inet_id = asoc->next_tsn ^ jiffies; 9151 9152 newinet->uc_ttl = inet->uc_ttl; 9153 newinet->mc_loop = 1; 9154 newinet->mc_ttl = 1; 9155 newinet->mc_index = 0; 9156 newinet->mc_list = NULL; 9157 9158 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9159 net_enable_timestamp(); 9160 9161 /* Set newsk security attributes from orginal sk and connection 9162 * security attribute from ep. 9163 */ 9164 security_sctp_sk_clone(ep, sk, newsk); 9165 } 9166 9167 static inline void sctp_copy_descendant(struct sock *sk_to, 9168 const struct sock *sk_from) 9169 { 9170 int ancestor_size = sizeof(struct inet_sock) + 9171 sizeof(struct sctp_sock) - 9172 offsetof(struct sctp_sock, auto_asconf_list); 9173 9174 if (sk_from->sk_family == PF_INET6) 9175 ancestor_size += sizeof(struct ipv6_pinfo); 9176 9177 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9178 } 9179 9180 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9181 * and its messages to the newsk. 9182 */ 9183 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9184 struct sctp_association *assoc, 9185 enum sctp_socket_type type) 9186 { 9187 struct sctp_sock *oldsp = sctp_sk(oldsk); 9188 struct sctp_sock *newsp = sctp_sk(newsk); 9189 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9190 struct sctp_endpoint *newep = newsp->ep; 9191 struct sk_buff *skb, *tmp; 9192 struct sctp_ulpevent *event; 9193 struct sctp_bind_hashbucket *head; 9194 int err; 9195 9196 /* Migrate socket buffer sizes and all the socket level options to the 9197 * new socket. 9198 */ 9199 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9200 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9201 /* Brute force copy old sctp opt. */ 9202 sctp_copy_descendant(newsk, oldsk); 9203 9204 /* Restore the ep value that was overwritten with the above structure 9205 * copy. 9206 */ 9207 newsp->ep = newep; 9208 newsp->hmac = NULL; 9209 9210 /* Hook this new socket in to the bind_hash list. */ 9211 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9212 inet_sk(oldsk)->inet_num)]; 9213 spin_lock_bh(&head->lock); 9214 pp = sctp_sk(oldsk)->bind_hash; 9215 sk_add_bind_node(newsk, &pp->owner); 9216 sctp_sk(newsk)->bind_hash = pp; 9217 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9218 spin_unlock_bh(&head->lock); 9219 9220 /* Copy the bind_addr list from the original endpoint to the new 9221 * endpoint so that we can handle restarts properly 9222 */ 9223 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9224 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9225 if (err) 9226 return err; 9227 9228 /* New ep's auth_hmacs should be set if old ep's is set, in case 9229 * that net->sctp.auth_enable has been changed to 0 by users and 9230 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9231 */ 9232 if (oldsp->ep->auth_hmacs) { 9233 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9234 if (err) 9235 return err; 9236 } 9237 9238 /* Move any messages in the old socket's receive queue that are for the 9239 * peeled off association to the new socket's receive queue. 9240 */ 9241 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9242 event = sctp_skb2event(skb); 9243 if (event->asoc == assoc) { 9244 __skb_unlink(skb, &oldsk->sk_receive_queue); 9245 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9246 sctp_skb_set_owner_r_frag(skb, newsk); 9247 } 9248 } 9249 9250 /* Clean up any messages pending delivery due to partial 9251 * delivery. Three cases: 9252 * 1) No partial deliver; no work. 9253 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9254 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9255 */ 9256 skb_queue_head_init(&newsp->pd_lobby); 9257 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9258 9259 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9260 struct sk_buff_head *queue; 9261 9262 /* Decide which queue to move pd_lobby skbs to. */ 9263 if (assoc->ulpq.pd_mode) { 9264 queue = &newsp->pd_lobby; 9265 } else 9266 queue = &newsk->sk_receive_queue; 9267 9268 /* Walk through the pd_lobby, looking for skbs that 9269 * need moved to the new socket. 9270 */ 9271 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9272 event = sctp_skb2event(skb); 9273 if (event->asoc == assoc) { 9274 __skb_unlink(skb, &oldsp->pd_lobby); 9275 __skb_queue_tail(queue, skb); 9276 sctp_skb_set_owner_r_frag(skb, newsk); 9277 } 9278 } 9279 9280 /* Clear up any skbs waiting for the partial 9281 * delivery to finish. 9282 */ 9283 if (assoc->ulpq.pd_mode) 9284 sctp_clear_pd(oldsk, NULL); 9285 9286 } 9287 9288 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9289 9290 /* Set the type of socket to indicate that it is peeled off from the 9291 * original UDP-style socket or created with the accept() call on a 9292 * TCP-style socket.. 9293 */ 9294 newsp->type = type; 9295 9296 /* Mark the new socket "in-use" by the user so that any packets 9297 * that may arrive on the association after we've moved it are 9298 * queued to the backlog. This prevents a potential race between 9299 * backlog processing on the old socket and new-packet processing 9300 * on the new socket. 9301 * 9302 * The caller has just allocated newsk so we can guarantee that other 9303 * paths won't try to lock it and then oldsk. 9304 */ 9305 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9306 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9307 sctp_assoc_migrate(assoc, newsk); 9308 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9309 9310 /* If the association on the newsk is already closed before accept() 9311 * is called, set RCV_SHUTDOWN flag. 9312 */ 9313 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9314 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9315 newsk->sk_shutdown |= RCV_SHUTDOWN; 9316 } else { 9317 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9318 } 9319 9320 release_sock(newsk); 9321 9322 return 0; 9323 } 9324 9325 9326 /* This proto struct describes the ULP interface for SCTP. */ 9327 struct proto sctp_prot = { 9328 .name = "SCTP", 9329 .owner = THIS_MODULE, 9330 .close = sctp_close, 9331 .disconnect = sctp_disconnect, 9332 .accept = sctp_accept, 9333 .ioctl = sctp_ioctl, 9334 .init = sctp_init_sock, 9335 .destroy = sctp_destroy_sock, 9336 .shutdown = sctp_shutdown, 9337 .setsockopt = sctp_setsockopt, 9338 .getsockopt = sctp_getsockopt, 9339 .sendmsg = sctp_sendmsg, 9340 .recvmsg = sctp_recvmsg, 9341 .bind = sctp_bind, 9342 .backlog_rcv = sctp_backlog_rcv, 9343 .hash = sctp_hash, 9344 .unhash = sctp_unhash, 9345 .get_port = sctp_get_port, 9346 .obj_size = sizeof(struct sctp_sock), 9347 .useroffset = offsetof(struct sctp_sock, subscribe), 9348 .usersize = offsetof(struct sctp_sock, initmsg) - 9349 offsetof(struct sctp_sock, subscribe) + 9350 sizeof_field(struct sctp_sock, initmsg), 9351 .sysctl_mem = sysctl_sctp_mem, 9352 .sysctl_rmem = sysctl_sctp_rmem, 9353 .sysctl_wmem = sysctl_sctp_wmem, 9354 .memory_pressure = &sctp_memory_pressure, 9355 .enter_memory_pressure = sctp_enter_memory_pressure, 9356 .memory_allocated = &sctp_memory_allocated, 9357 .sockets_allocated = &sctp_sockets_allocated, 9358 }; 9359 9360 #if IS_ENABLED(CONFIG_IPV6) 9361 9362 #include <net/transp_v6.h> 9363 static void sctp_v6_destroy_sock(struct sock *sk) 9364 { 9365 sctp_destroy_sock(sk); 9366 inet6_destroy_sock(sk); 9367 } 9368 9369 struct proto sctpv6_prot = { 9370 .name = "SCTPv6", 9371 .owner = THIS_MODULE, 9372 .close = sctp_close, 9373 .disconnect = sctp_disconnect, 9374 .accept = sctp_accept, 9375 .ioctl = sctp_ioctl, 9376 .init = sctp_init_sock, 9377 .destroy = sctp_v6_destroy_sock, 9378 .shutdown = sctp_shutdown, 9379 .setsockopt = sctp_setsockopt, 9380 .getsockopt = sctp_getsockopt, 9381 .sendmsg = sctp_sendmsg, 9382 .recvmsg = sctp_recvmsg, 9383 .bind = sctp_bind, 9384 .backlog_rcv = sctp_backlog_rcv, 9385 .hash = sctp_hash, 9386 .unhash = sctp_unhash, 9387 .get_port = sctp_get_port, 9388 .obj_size = sizeof(struct sctp6_sock), 9389 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9390 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9391 offsetof(struct sctp6_sock, sctp.subscribe) + 9392 sizeof_field(struct sctp6_sock, sctp.initmsg), 9393 .sysctl_mem = sysctl_sctp_mem, 9394 .sysctl_rmem = sysctl_sctp_rmem, 9395 .sysctl_wmem = sysctl_sctp_wmem, 9396 .memory_pressure = &sctp_memory_pressure, 9397 .enter_memory_pressure = sctp_enter_memory_pressure, 9398 .memory_allocated = &sctp_memory_allocated, 9399 .sockets_allocated = &sctp_sockets_allocated, 9400 }; 9401 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9402