1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 static atomic_t sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(void) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 315 /* If we get this far, af is valid. */ 316 af = sctp_get_af_specific(addr->sa.sa_family); 317 318 if (len < af->sockaddr_len) 319 return NULL; 320 321 return af; 322 } 323 324 /* Bind a local address either to an endpoint or to an association. */ 325 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 326 { 327 struct sctp_sock *sp = sctp_sk(sk); 328 struct sctp_endpoint *ep = sp->ep; 329 struct sctp_bind_addr *bp = &ep->base.bind_addr; 330 struct sctp_af *af; 331 unsigned short snum; 332 int ret = 0; 333 334 /* Common sockaddr verification. */ 335 af = sctp_sockaddr_af(sp, addr, len); 336 if (!af) { 337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 338 sk, addr, len); 339 return -EINVAL; 340 } 341 342 snum = ntohs(addr->v4.sin_port); 343 344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 345 ", port: %d, new port: %d, len: %d)\n", 346 sk, 347 addr, 348 bp->port, snum, 349 len); 350 351 /* PF specific bind() address verification. */ 352 if (!sp->pf->bind_verify(sp, addr)) 353 return -EADDRNOTAVAIL; 354 355 /* We must either be unbound, or bind to the same port. 356 * It's OK to allow 0 ports if we are already bound. 357 * We'll just inhert an already bound port in this case 358 */ 359 if (bp->port) { 360 if (!snum) 361 snum = bp->port; 362 else if (snum != bp->port) { 363 SCTP_DEBUG_PRINTK("sctp_do_bind:" 364 " New port %d does not match existing port " 365 "%d.\n", snum, bp->port); 366 return -EINVAL; 367 } 368 } 369 370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 371 return -EACCES; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 if (ret == (long) sk) { 380 /* This endpoint has a conflicting address. */ 381 return -EINVAL; 382 } else { 383 return -EADDRINUSE; 384 } 385 } 386 387 /* Refresh ephemeral port. */ 388 if (!bp->port) 389 bp->port = inet_sk(sk)->num; 390 391 /* Add the address to the bind address list. 392 * Use GFP_ATOMIC since BHs will be disabled. 393 */ 394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 395 396 /* Copy back into socket for getsockname() use. */ 397 if (!ret) { 398 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 399 af->to_sk_saddr(addr, sk); 400 } 401 402 return ret; 403 } 404 405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 406 * 407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 408 * at any one time. If a sender, after sending an ASCONF chunk, decides 409 * it needs to transfer another ASCONF Chunk, it MUST wait until the 410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 411 * subsequent ASCONF. Note this restriction binds each side, so at any 412 * time two ASCONF may be in-transit on any given association (one sent 413 * from each endpoint). 414 */ 415 static int sctp_send_asconf(struct sctp_association *asoc, 416 struct sctp_chunk *chunk) 417 { 418 int retval = 0; 419 420 /* If there is an outstanding ASCONF chunk, queue it for later 421 * transmission. 422 */ 423 if (asoc->addip_last_asconf) { 424 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 425 goto out; 426 } 427 428 /* Hold the chunk until an ASCONF_ACK is received. */ 429 sctp_chunk_hold(chunk); 430 retval = sctp_primitive_ASCONF(asoc, chunk); 431 if (retval) 432 sctp_chunk_free(chunk); 433 else 434 asoc->addip_last_asconf = chunk; 435 436 out: 437 return retval; 438 } 439 440 /* Add a list of addresses as bind addresses to local endpoint or 441 * association. 442 * 443 * Basically run through each address specified in the addrs/addrcnt 444 * array/length pair, determine if it is IPv6 or IPv4 and call 445 * sctp_do_bind() on it. 446 * 447 * If any of them fails, then the operation will be reversed and the 448 * ones that were added will be removed. 449 * 450 * Only sctp_setsockopt_bindx() is supposed to call this function. 451 */ 452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 453 { 454 int cnt; 455 int retval = 0; 456 void *addr_buf; 457 struct sockaddr *sa_addr; 458 struct sctp_af *af; 459 460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 461 sk, addrs, addrcnt); 462 463 addr_buf = addrs; 464 for (cnt = 0; cnt < addrcnt; cnt++) { 465 /* The list may contain either IPv4 or IPv6 address; 466 * determine the address length for walking thru the list. 467 */ 468 sa_addr = (struct sockaddr *)addr_buf; 469 af = sctp_get_af_specific(sa_addr->sa_family); 470 if (!af) { 471 retval = -EINVAL; 472 goto err_bindx_add; 473 } 474 475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 476 af->sockaddr_len); 477 478 addr_buf += af->sockaddr_len; 479 480 err_bindx_add: 481 if (retval < 0) { 482 /* Failed. Cleanup the ones that have been added */ 483 if (cnt > 0) 484 sctp_bindx_rem(sk, addrs, cnt); 485 return retval; 486 } 487 } 488 489 return retval; 490 } 491 492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 493 * associations that are part of the endpoint indicating that a list of local 494 * addresses are added to the endpoint. 495 * 496 * If any of the addresses is already in the bind address list of the 497 * association, we do not send the chunk for that association. But it will not 498 * affect other associations. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_send_asconf_add_ip(struct sock *sk, 503 struct sockaddr *addrs, 504 int addrcnt) 505 { 506 struct sctp_sock *sp; 507 struct sctp_endpoint *ep; 508 struct sctp_association *asoc; 509 struct sctp_bind_addr *bp; 510 struct sctp_chunk *chunk; 511 struct sctp_sockaddr_entry *laddr; 512 union sctp_addr *addr; 513 union sctp_addr saveaddr; 514 void *addr_buf; 515 struct sctp_af *af; 516 struct list_head *p; 517 int i; 518 int retval = 0; 519 520 if (!sctp_addip_enable) 521 return retval; 522 523 sp = sctp_sk(sk); 524 ep = sp->ep; 525 526 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 527 __func__, sk, addrs, addrcnt); 528 529 list_for_each_entry(asoc, &ep->asocs, asocs) { 530 531 if (!asoc->peer.asconf_capable) 532 continue; 533 534 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 535 continue; 536 537 if (!sctp_state(asoc, ESTABLISHED)) 538 continue; 539 540 /* Check if any address in the packed array of addresses is 541 * in the bind address list of the association. If so, 542 * do not send the asconf chunk to its peer, but continue with 543 * other associations. 544 */ 545 addr_buf = addrs; 546 for (i = 0; i < addrcnt; i++) { 547 addr = (union sctp_addr *)addr_buf; 548 af = sctp_get_af_specific(addr->v4.sin_family); 549 if (!af) { 550 retval = -EINVAL; 551 goto out; 552 } 553 554 if (sctp_assoc_lookup_laddr(asoc, addr)) 555 break; 556 557 addr_buf += af->sockaddr_len; 558 } 559 if (i < addrcnt) 560 continue; 561 562 /* Use the first valid address in bind addr list of 563 * association as Address Parameter of ASCONF CHUNK. 564 */ 565 bp = &asoc->base.bind_addr; 566 p = bp->address_list.next; 567 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 568 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 569 addrcnt, SCTP_PARAM_ADD_IP); 570 if (!chunk) { 571 retval = -ENOMEM; 572 goto out; 573 } 574 575 retval = sctp_send_asconf(asoc, chunk); 576 if (retval) 577 goto out; 578 579 /* Add the new addresses to the bind address list with 580 * use_as_src set to 0. 581 */ 582 addr_buf = addrs; 583 for (i = 0; i < addrcnt; i++) { 584 addr = (union sctp_addr *)addr_buf; 585 af = sctp_get_af_specific(addr->v4.sin_family); 586 memcpy(&saveaddr, addr, af->sockaddr_len); 587 retval = sctp_add_bind_addr(bp, &saveaddr, 588 SCTP_ADDR_NEW, GFP_ATOMIC); 589 addr_buf += af->sockaddr_len; 590 } 591 } 592 593 out: 594 return retval; 595 } 596 597 /* Remove a list of addresses from bind addresses list. Do not remove the 598 * last address. 599 * 600 * Basically run through each address specified in the addrs/addrcnt 601 * array/length pair, determine if it is IPv6 or IPv4 and call 602 * sctp_del_bind() on it. 603 * 604 * If any of them fails, then the operation will be reversed and the 605 * ones that were removed will be added back. 606 * 607 * At least one address has to be left; if only one address is 608 * available, the operation will return -EBUSY. 609 * 610 * Only sctp_setsockopt_bindx() is supposed to call this function. 611 */ 612 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 613 { 614 struct sctp_sock *sp = sctp_sk(sk); 615 struct sctp_endpoint *ep = sp->ep; 616 int cnt; 617 struct sctp_bind_addr *bp = &ep->base.bind_addr; 618 int retval = 0; 619 void *addr_buf; 620 union sctp_addr *sa_addr; 621 struct sctp_af *af; 622 623 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 624 sk, addrs, addrcnt); 625 626 addr_buf = addrs; 627 for (cnt = 0; cnt < addrcnt; cnt++) { 628 /* If the bind address list is empty or if there is only one 629 * bind address, there is nothing more to be removed (we need 630 * at least one address here). 631 */ 632 if (list_empty(&bp->address_list) || 633 (sctp_list_single_entry(&bp->address_list))) { 634 retval = -EBUSY; 635 goto err_bindx_rem; 636 } 637 638 sa_addr = (union sctp_addr *)addr_buf; 639 af = sctp_get_af_specific(sa_addr->sa.sa_family); 640 if (!af) { 641 retval = -EINVAL; 642 goto err_bindx_rem; 643 } 644 645 if (!af->addr_valid(sa_addr, sp, NULL)) { 646 retval = -EADDRNOTAVAIL; 647 goto err_bindx_rem; 648 } 649 650 if (sa_addr->v4.sin_port != htons(bp->port)) { 651 retval = -EINVAL; 652 goto err_bindx_rem; 653 } 654 655 /* FIXME - There is probably a need to check if sk->sk_saddr and 656 * sk->sk_rcv_addr are currently set to one of the addresses to 657 * be removed. This is something which needs to be looked into 658 * when we are fixing the outstanding issues with multi-homing 659 * socket routing and failover schemes. Refer to comments in 660 * sctp_do_bind(). -daisy 661 */ 662 retval = sctp_del_bind_addr(bp, sa_addr); 663 664 addr_buf += af->sockaddr_len; 665 err_bindx_rem: 666 if (retval < 0) { 667 /* Failed. Add the ones that has been removed back */ 668 if (cnt > 0) 669 sctp_bindx_add(sk, addrs, cnt); 670 return retval; 671 } 672 } 673 674 return retval; 675 } 676 677 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 678 * the associations that are part of the endpoint indicating that a list of 679 * local addresses are removed from the endpoint. 680 * 681 * If any of the addresses is already in the bind address list of the 682 * association, we do not send the chunk for that association. But it will not 683 * affect other associations. 684 * 685 * Only sctp_setsockopt_bindx() is supposed to call this function. 686 */ 687 static int sctp_send_asconf_del_ip(struct sock *sk, 688 struct sockaddr *addrs, 689 int addrcnt) 690 { 691 struct sctp_sock *sp; 692 struct sctp_endpoint *ep; 693 struct sctp_association *asoc; 694 struct sctp_transport *transport; 695 struct sctp_bind_addr *bp; 696 struct sctp_chunk *chunk; 697 union sctp_addr *laddr; 698 void *addr_buf; 699 struct sctp_af *af; 700 struct sctp_sockaddr_entry *saddr; 701 int i; 702 int retval = 0; 703 704 if (!sctp_addip_enable) 705 return retval; 706 707 sp = sctp_sk(sk); 708 ep = sp->ep; 709 710 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 711 __func__, sk, addrs, addrcnt); 712 713 list_for_each_entry(asoc, &ep->asocs, asocs) { 714 715 if (!asoc->peer.asconf_capable) 716 continue; 717 718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 719 continue; 720 721 if (!sctp_state(asoc, ESTABLISHED)) 722 continue; 723 724 /* Check if any address in the packed array of addresses is 725 * not present in the bind address list of the association. 726 * If so, do not send the asconf chunk to its peer, but 727 * continue with other associations. 728 */ 729 addr_buf = addrs; 730 for (i = 0; i < addrcnt; i++) { 731 laddr = (union sctp_addr *)addr_buf; 732 af = sctp_get_af_specific(laddr->v4.sin_family); 733 if (!af) { 734 retval = -EINVAL; 735 goto out; 736 } 737 738 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 739 break; 740 741 addr_buf += af->sockaddr_len; 742 } 743 if (i < addrcnt) 744 continue; 745 746 /* Find one address in the association's bind address list 747 * that is not in the packed array of addresses. This is to 748 * make sure that we do not delete all the addresses in the 749 * association. 750 */ 751 bp = &asoc->base.bind_addr; 752 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 753 addrcnt, sp); 754 if (!laddr) 755 continue; 756 757 /* We do not need RCU protection throughout this loop 758 * because this is done under a socket lock from the 759 * setsockopt call. 760 */ 761 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 762 SCTP_PARAM_DEL_IP); 763 if (!chunk) { 764 retval = -ENOMEM; 765 goto out; 766 } 767 768 /* Reset use_as_src flag for the addresses in the bind address 769 * list that are to be deleted. 770 */ 771 addr_buf = addrs; 772 for (i = 0; i < addrcnt; i++) { 773 laddr = (union sctp_addr *)addr_buf; 774 af = sctp_get_af_specific(laddr->v4.sin_family); 775 list_for_each_entry(saddr, &bp->address_list, list) { 776 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 777 saddr->state = SCTP_ADDR_DEL; 778 } 779 addr_buf += af->sockaddr_len; 780 } 781 782 /* Update the route and saddr entries for all the transports 783 * as some of the addresses in the bind address list are 784 * about to be deleted and cannot be used as source addresses. 785 */ 786 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 787 transports) { 788 dst_release(transport->dst); 789 sctp_transport_route(transport, NULL, 790 sctp_sk(asoc->base.sk)); 791 } 792 793 retval = sctp_send_asconf(asoc, chunk); 794 } 795 out: 796 return retval; 797 } 798 799 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 800 * 801 * API 8.1 802 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 803 * int flags); 804 * 805 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 806 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 807 * or IPv6 addresses. 808 * 809 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 810 * Section 3.1.2 for this usage. 811 * 812 * addrs is a pointer to an array of one or more socket addresses. Each 813 * address is contained in its appropriate structure (i.e. struct 814 * sockaddr_in or struct sockaddr_in6) the family of the address type 815 * must be used to distinguish the address length (note that this 816 * representation is termed a "packed array" of addresses). The caller 817 * specifies the number of addresses in the array with addrcnt. 818 * 819 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 820 * -1, and sets errno to the appropriate error code. 821 * 822 * For SCTP, the port given in each socket address must be the same, or 823 * sctp_bindx() will fail, setting errno to EINVAL. 824 * 825 * The flags parameter is formed from the bitwise OR of zero or more of 826 * the following currently defined flags: 827 * 828 * SCTP_BINDX_ADD_ADDR 829 * 830 * SCTP_BINDX_REM_ADDR 831 * 832 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 833 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 834 * addresses from the association. The two flags are mutually exclusive; 835 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 836 * not remove all addresses from an association; sctp_bindx() will 837 * reject such an attempt with EINVAL. 838 * 839 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 840 * additional addresses with an endpoint after calling bind(). Or use 841 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 842 * socket is associated with so that no new association accepted will be 843 * associated with those addresses. If the endpoint supports dynamic 844 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 845 * endpoint to send the appropriate message to the peer to change the 846 * peers address lists. 847 * 848 * Adding and removing addresses from a connected association is 849 * optional functionality. Implementations that do not support this 850 * functionality should return EOPNOTSUPP. 851 * 852 * Basically do nothing but copying the addresses from user to kernel 853 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 854 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 855 * from userspace. 856 * 857 * We don't use copy_from_user() for optimization: we first do the 858 * sanity checks (buffer size -fast- and access check-healthy 859 * pointer); if all of those succeed, then we can alloc the memory 860 * (expensive operation) needed to copy the data to kernel. Then we do 861 * the copying without checking the user space area 862 * (__copy_from_user()). 863 * 864 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 865 * it. 866 * 867 * sk The sk of the socket 868 * addrs The pointer to the addresses in user land 869 * addrssize Size of the addrs buffer 870 * op Operation to perform (add or remove, see the flags of 871 * sctp_bindx) 872 * 873 * Returns 0 if ok, <0 errno code on error. 874 */ 875 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 876 struct sockaddr __user *addrs, 877 int addrs_size, int op) 878 { 879 struct sockaddr *kaddrs; 880 int err; 881 int addrcnt = 0; 882 int walk_size = 0; 883 struct sockaddr *sa_addr; 884 void *addr_buf; 885 struct sctp_af *af; 886 887 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 888 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 889 890 if (unlikely(addrs_size <= 0)) 891 return -EINVAL; 892 893 /* Check the user passed a healthy pointer. */ 894 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 895 return -EFAULT; 896 897 /* Alloc space for the address array in kernel memory. */ 898 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 899 if (unlikely(!kaddrs)) 900 return -ENOMEM; 901 902 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 903 kfree(kaddrs); 904 return -EFAULT; 905 } 906 907 /* Walk through the addrs buffer and count the number of addresses. */ 908 addr_buf = kaddrs; 909 while (walk_size < addrs_size) { 910 sa_addr = (struct sockaddr *)addr_buf; 911 af = sctp_get_af_specific(sa_addr->sa_family); 912 913 /* If the address family is not supported or if this address 914 * causes the address buffer to overflow return EINVAL. 915 */ 916 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 917 kfree(kaddrs); 918 return -EINVAL; 919 } 920 addrcnt++; 921 addr_buf += af->sockaddr_len; 922 walk_size += af->sockaddr_len; 923 } 924 925 /* Do the work. */ 926 switch (op) { 927 case SCTP_BINDX_ADD_ADDR: 928 err = sctp_bindx_add(sk, kaddrs, addrcnt); 929 if (err) 930 goto out; 931 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 932 break; 933 934 case SCTP_BINDX_REM_ADDR: 935 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 936 if (err) 937 goto out; 938 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 939 break; 940 941 default: 942 err = -EINVAL; 943 break; 944 } 945 946 out: 947 kfree(kaddrs); 948 949 return err; 950 } 951 952 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 953 * 954 * Common routine for handling connect() and sctp_connectx(). 955 * Connect will come in with just a single address. 956 */ 957 static int __sctp_connect(struct sock* sk, 958 struct sockaddr *kaddrs, 959 int addrs_size) 960 { 961 struct sctp_sock *sp; 962 struct sctp_endpoint *ep; 963 struct sctp_association *asoc = NULL; 964 struct sctp_association *asoc2; 965 struct sctp_transport *transport; 966 union sctp_addr to; 967 struct sctp_af *af; 968 sctp_scope_t scope; 969 long timeo; 970 int err = 0; 971 int addrcnt = 0; 972 int walk_size = 0; 973 union sctp_addr *sa_addr = NULL; 974 void *addr_buf; 975 unsigned short port; 976 unsigned int f_flags = 0; 977 978 sp = sctp_sk(sk); 979 ep = sp->ep; 980 981 /* connect() cannot be done on a socket that is already in ESTABLISHED 982 * state - UDP-style peeled off socket or a TCP-style socket that 983 * is already connected. 984 * It cannot be done even on a TCP-style listening socket. 985 */ 986 if (sctp_sstate(sk, ESTABLISHED) || 987 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 988 err = -EISCONN; 989 goto out_free; 990 } 991 992 /* Walk through the addrs buffer and count the number of addresses. */ 993 addr_buf = kaddrs; 994 while (walk_size < addrs_size) { 995 sa_addr = (union sctp_addr *)addr_buf; 996 af = sctp_get_af_specific(sa_addr->sa.sa_family); 997 port = ntohs(sa_addr->v4.sin_port); 998 999 /* If the address family is not supported or if this address 1000 * causes the address buffer to overflow return EINVAL. 1001 */ 1002 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1003 err = -EINVAL; 1004 goto out_free; 1005 } 1006 1007 /* Save current address so we can work with it */ 1008 memcpy(&to, sa_addr, af->sockaddr_len); 1009 1010 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1011 if (err) 1012 goto out_free; 1013 1014 /* Make sure the destination port is correctly set 1015 * in all addresses. 1016 */ 1017 if (asoc && asoc->peer.port && asoc->peer.port != port) 1018 goto out_free; 1019 1020 1021 /* Check if there already is a matching association on the 1022 * endpoint (other than the one created here). 1023 */ 1024 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1025 if (asoc2 && asoc2 != asoc) { 1026 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1027 err = -EISCONN; 1028 else 1029 err = -EALREADY; 1030 goto out_free; 1031 } 1032 1033 /* If we could not find a matching association on the endpoint, 1034 * make sure that there is no peeled-off association matching 1035 * the peer address even on another socket. 1036 */ 1037 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1038 err = -EADDRNOTAVAIL; 1039 goto out_free; 1040 } 1041 1042 if (!asoc) { 1043 /* If a bind() or sctp_bindx() is not called prior to 1044 * an sctp_connectx() call, the system picks an 1045 * ephemeral port and will choose an address set 1046 * equivalent to binding with a wildcard address. 1047 */ 1048 if (!ep->base.bind_addr.port) { 1049 if (sctp_autobind(sk)) { 1050 err = -EAGAIN; 1051 goto out_free; 1052 } 1053 } else { 1054 /* 1055 * If an unprivileged user inherits a 1-many 1056 * style socket with open associations on a 1057 * privileged port, it MAY be permitted to 1058 * accept new associations, but it SHOULD NOT 1059 * be permitted to open new associations. 1060 */ 1061 if (ep->base.bind_addr.port < PROT_SOCK && 1062 !capable(CAP_NET_BIND_SERVICE)) { 1063 err = -EACCES; 1064 goto out_free; 1065 } 1066 } 1067 1068 scope = sctp_scope(&to); 1069 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1070 if (!asoc) { 1071 err = -ENOMEM; 1072 goto out_free; 1073 } 1074 } 1075 1076 /* Prime the peer's transport structures. */ 1077 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1078 SCTP_UNKNOWN); 1079 if (!transport) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 1084 addrcnt++; 1085 addr_buf += af->sockaddr_len; 1086 walk_size += af->sockaddr_len; 1087 } 1088 1089 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1090 if (err < 0) { 1091 goto out_free; 1092 } 1093 1094 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1095 if (err < 0) { 1096 goto out_free; 1097 } 1098 1099 /* Initialize sk's dport and daddr for getpeername() */ 1100 inet_sk(sk)->dport = htons(asoc->peer.port); 1101 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1102 af->to_sk_daddr(sa_addr, sk); 1103 sk->sk_err = 0; 1104 1105 /* in-kernel sockets don't generally have a file allocated to them 1106 * if all they do is call sock_create_kern(). 1107 */ 1108 if (sk->sk_socket->file) 1109 f_flags = sk->sk_socket->file->f_flags; 1110 1111 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1112 1113 err = sctp_wait_for_connect(asoc, &timeo); 1114 1115 /* Don't free association on exit. */ 1116 asoc = NULL; 1117 1118 out_free: 1119 1120 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1121 " kaddrs: %p err: %d\n", 1122 asoc, kaddrs, err); 1123 if (asoc) 1124 sctp_association_free(asoc); 1125 return err; 1126 } 1127 1128 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1129 * 1130 * API 8.9 1131 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1132 * 1133 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1134 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1135 * or IPv6 addresses. 1136 * 1137 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1138 * Section 3.1.2 for this usage. 1139 * 1140 * addrs is a pointer to an array of one or more socket addresses. Each 1141 * address is contained in its appropriate structure (i.e. struct 1142 * sockaddr_in or struct sockaddr_in6) the family of the address type 1143 * must be used to distengish the address length (note that this 1144 * representation is termed a "packed array" of addresses). The caller 1145 * specifies the number of addresses in the array with addrcnt. 1146 * 1147 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1148 * -1, and sets errno to the appropriate error code. 1149 * 1150 * For SCTP, the port given in each socket address must be the same, or 1151 * sctp_connectx() will fail, setting errno to EINVAL. 1152 * 1153 * An application can use sctp_connectx to initiate an association with 1154 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1155 * allows a caller to specify multiple addresses at which a peer can be 1156 * reached. The way the SCTP stack uses the list of addresses to set up 1157 * the association is implementation dependant. This function only 1158 * specifies that the stack will try to make use of all the addresses in 1159 * the list when needed. 1160 * 1161 * Note that the list of addresses passed in is only used for setting up 1162 * the association. It does not necessarily equal the set of addresses 1163 * the peer uses for the resulting association. If the caller wants to 1164 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1165 * retrieve them after the association has been set up. 1166 * 1167 * Basically do nothing but copying the addresses from user to kernel 1168 * land and invoking either sctp_connectx(). This is used for tunneling 1169 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1170 * 1171 * We don't use copy_from_user() for optimization: we first do the 1172 * sanity checks (buffer size -fast- and access check-healthy 1173 * pointer); if all of those succeed, then we can alloc the memory 1174 * (expensive operation) needed to copy the data to kernel. Then we do 1175 * the copying without checking the user space area 1176 * (__copy_from_user()). 1177 * 1178 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1179 * it. 1180 * 1181 * sk The sk of the socket 1182 * addrs The pointer to the addresses in user land 1183 * addrssize Size of the addrs buffer 1184 * 1185 * Returns 0 if ok, <0 errno code on error. 1186 */ 1187 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1188 struct sockaddr __user *addrs, 1189 int addrs_size) 1190 { 1191 int err = 0; 1192 struct sockaddr *kaddrs; 1193 1194 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1195 __func__, sk, addrs, addrs_size); 1196 1197 if (unlikely(addrs_size <= 0)) 1198 return -EINVAL; 1199 1200 /* Check the user passed a healthy pointer. */ 1201 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1202 return -EFAULT; 1203 1204 /* Alloc space for the address array in kernel memory. */ 1205 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1206 if (unlikely(!kaddrs)) 1207 return -ENOMEM; 1208 1209 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1210 err = -EFAULT; 1211 } else { 1212 err = __sctp_connect(sk, kaddrs, addrs_size); 1213 } 1214 1215 kfree(kaddrs); 1216 return err; 1217 } 1218 1219 /* API 3.1.4 close() - UDP Style Syntax 1220 * Applications use close() to perform graceful shutdown (as described in 1221 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1222 * by a UDP-style socket. 1223 * 1224 * The syntax is 1225 * 1226 * ret = close(int sd); 1227 * 1228 * sd - the socket descriptor of the associations to be closed. 1229 * 1230 * To gracefully shutdown a specific association represented by the 1231 * UDP-style socket, an application should use the sendmsg() call, 1232 * passing no user data, but including the appropriate flag in the 1233 * ancillary data (see Section xxxx). 1234 * 1235 * If sd in the close() call is a branched-off socket representing only 1236 * one association, the shutdown is performed on that association only. 1237 * 1238 * 4.1.6 close() - TCP Style Syntax 1239 * 1240 * Applications use close() to gracefully close down an association. 1241 * 1242 * The syntax is: 1243 * 1244 * int close(int sd); 1245 * 1246 * sd - the socket descriptor of the association to be closed. 1247 * 1248 * After an application calls close() on a socket descriptor, no further 1249 * socket operations will succeed on that descriptor. 1250 * 1251 * API 7.1.4 SO_LINGER 1252 * 1253 * An application using the TCP-style socket can use this option to 1254 * perform the SCTP ABORT primitive. The linger option structure is: 1255 * 1256 * struct linger { 1257 * int l_onoff; // option on/off 1258 * int l_linger; // linger time 1259 * }; 1260 * 1261 * To enable the option, set l_onoff to 1. If the l_linger value is set 1262 * to 0, calling close() is the same as the ABORT primitive. If the 1263 * value is set to a negative value, the setsockopt() call will return 1264 * an error. If the value is set to a positive value linger_time, the 1265 * close() can be blocked for at most linger_time ms. If the graceful 1266 * shutdown phase does not finish during this period, close() will 1267 * return but the graceful shutdown phase continues in the system. 1268 */ 1269 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1270 { 1271 struct sctp_endpoint *ep; 1272 struct sctp_association *asoc; 1273 struct list_head *pos, *temp; 1274 1275 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1276 1277 sctp_lock_sock(sk); 1278 sk->sk_shutdown = SHUTDOWN_MASK; 1279 1280 ep = sctp_sk(sk)->ep; 1281 1282 /* Walk all associations on an endpoint. */ 1283 list_for_each_safe(pos, temp, &ep->asocs) { 1284 asoc = list_entry(pos, struct sctp_association, asocs); 1285 1286 if (sctp_style(sk, TCP)) { 1287 /* A closed association can still be in the list if 1288 * it belongs to a TCP-style listening socket that is 1289 * not yet accepted. If so, free it. If not, send an 1290 * ABORT or SHUTDOWN based on the linger options. 1291 */ 1292 if (sctp_state(asoc, CLOSED)) { 1293 sctp_unhash_established(asoc); 1294 sctp_association_free(asoc); 1295 continue; 1296 } 1297 } 1298 1299 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1300 struct sctp_chunk *chunk; 1301 1302 chunk = sctp_make_abort_user(asoc, NULL, 0); 1303 if (chunk) 1304 sctp_primitive_ABORT(asoc, chunk); 1305 } else 1306 sctp_primitive_SHUTDOWN(asoc, NULL); 1307 } 1308 1309 /* Clean up any skbs sitting on the receive queue. */ 1310 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1311 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1312 1313 /* On a TCP-style socket, block for at most linger_time if set. */ 1314 if (sctp_style(sk, TCP) && timeout) 1315 sctp_wait_for_close(sk, timeout); 1316 1317 /* This will run the backlog queue. */ 1318 sctp_release_sock(sk); 1319 1320 /* Supposedly, no process has access to the socket, but 1321 * the net layers still may. 1322 */ 1323 sctp_local_bh_disable(); 1324 sctp_bh_lock_sock(sk); 1325 1326 /* Hold the sock, since sk_common_release() will put sock_put() 1327 * and we have just a little more cleanup. 1328 */ 1329 sock_hold(sk); 1330 sk_common_release(sk); 1331 1332 sctp_bh_unlock_sock(sk); 1333 sctp_local_bh_enable(); 1334 1335 sock_put(sk); 1336 1337 SCTP_DBG_OBJCNT_DEC(sock); 1338 } 1339 1340 /* Handle EPIPE error. */ 1341 static int sctp_error(struct sock *sk, int flags, int err) 1342 { 1343 if (err == -EPIPE) 1344 err = sock_error(sk) ? : -EPIPE; 1345 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1346 send_sig(SIGPIPE, current, 0); 1347 return err; 1348 } 1349 1350 /* API 3.1.3 sendmsg() - UDP Style Syntax 1351 * 1352 * An application uses sendmsg() and recvmsg() calls to transmit data to 1353 * and receive data from its peer. 1354 * 1355 * ssize_t sendmsg(int socket, const struct msghdr *message, 1356 * int flags); 1357 * 1358 * socket - the socket descriptor of the endpoint. 1359 * message - pointer to the msghdr structure which contains a single 1360 * user message and possibly some ancillary data. 1361 * 1362 * See Section 5 for complete description of the data 1363 * structures. 1364 * 1365 * flags - flags sent or received with the user message, see Section 1366 * 5 for complete description of the flags. 1367 * 1368 * Note: This function could use a rewrite especially when explicit 1369 * connect support comes in. 1370 */ 1371 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1372 1373 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1374 1375 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1376 struct msghdr *msg, size_t msg_len) 1377 { 1378 struct sctp_sock *sp; 1379 struct sctp_endpoint *ep; 1380 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1381 struct sctp_transport *transport, *chunk_tp; 1382 struct sctp_chunk *chunk; 1383 union sctp_addr to; 1384 struct sockaddr *msg_name = NULL; 1385 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1386 struct sctp_sndrcvinfo *sinfo; 1387 struct sctp_initmsg *sinit; 1388 sctp_assoc_t associd = 0; 1389 sctp_cmsgs_t cmsgs = { NULL }; 1390 int err; 1391 sctp_scope_t scope; 1392 long timeo; 1393 __u16 sinfo_flags = 0; 1394 struct sctp_datamsg *datamsg; 1395 int msg_flags = msg->msg_flags; 1396 1397 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1398 sk, msg, msg_len); 1399 1400 err = 0; 1401 sp = sctp_sk(sk); 1402 ep = sp->ep; 1403 1404 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1405 1406 /* We cannot send a message over a TCP-style listening socket. */ 1407 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1408 err = -EPIPE; 1409 goto out_nounlock; 1410 } 1411 1412 /* Parse out the SCTP CMSGs. */ 1413 err = sctp_msghdr_parse(msg, &cmsgs); 1414 1415 if (err) { 1416 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1417 goto out_nounlock; 1418 } 1419 1420 /* Fetch the destination address for this packet. This 1421 * address only selects the association--it is not necessarily 1422 * the address we will send to. 1423 * For a peeled-off socket, msg_name is ignored. 1424 */ 1425 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1426 int msg_namelen = msg->msg_namelen; 1427 1428 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1429 msg_namelen); 1430 if (err) 1431 return err; 1432 1433 if (msg_namelen > sizeof(to)) 1434 msg_namelen = sizeof(to); 1435 memcpy(&to, msg->msg_name, msg_namelen); 1436 msg_name = msg->msg_name; 1437 } 1438 1439 sinfo = cmsgs.info; 1440 sinit = cmsgs.init; 1441 1442 /* Did the user specify SNDRCVINFO? */ 1443 if (sinfo) { 1444 sinfo_flags = sinfo->sinfo_flags; 1445 associd = sinfo->sinfo_assoc_id; 1446 } 1447 1448 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1449 msg_len, sinfo_flags); 1450 1451 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1452 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1453 err = -EINVAL; 1454 goto out_nounlock; 1455 } 1456 1457 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1458 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1459 * If SCTP_ABORT is set, the message length could be non zero with 1460 * the msg_iov set to the user abort reason. 1461 */ 1462 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1463 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1464 err = -EINVAL; 1465 goto out_nounlock; 1466 } 1467 1468 /* If SCTP_ADDR_OVER is set, there must be an address 1469 * specified in msg_name. 1470 */ 1471 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1472 err = -EINVAL; 1473 goto out_nounlock; 1474 } 1475 1476 transport = NULL; 1477 1478 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1479 1480 sctp_lock_sock(sk); 1481 1482 /* If a msg_name has been specified, assume this is to be used. */ 1483 if (msg_name) { 1484 /* Look for a matching association on the endpoint. */ 1485 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1486 if (!asoc) { 1487 /* If we could not find a matching association on the 1488 * endpoint, make sure that it is not a TCP-style 1489 * socket that already has an association or there is 1490 * no peeled-off association on another socket. 1491 */ 1492 if ((sctp_style(sk, TCP) && 1493 sctp_sstate(sk, ESTABLISHED)) || 1494 sctp_endpoint_is_peeled_off(ep, &to)) { 1495 err = -EADDRNOTAVAIL; 1496 goto out_unlock; 1497 } 1498 } 1499 } else { 1500 asoc = sctp_id2assoc(sk, associd); 1501 if (!asoc) { 1502 err = -EPIPE; 1503 goto out_unlock; 1504 } 1505 } 1506 1507 if (asoc) { 1508 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1509 1510 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1511 * socket that has an association in CLOSED state. This can 1512 * happen when an accepted socket has an association that is 1513 * already CLOSED. 1514 */ 1515 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1516 err = -EPIPE; 1517 goto out_unlock; 1518 } 1519 1520 if (sinfo_flags & SCTP_EOF) { 1521 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1522 asoc); 1523 sctp_primitive_SHUTDOWN(asoc, NULL); 1524 err = 0; 1525 goto out_unlock; 1526 } 1527 if (sinfo_flags & SCTP_ABORT) { 1528 1529 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1530 if (!chunk) { 1531 err = -ENOMEM; 1532 goto out_unlock; 1533 } 1534 1535 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1536 sctp_primitive_ABORT(asoc, chunk); 1537 err = 0; 1538 goto out_unlock; 1539 } 1540 } 1541 1542 /* Do we need to create the association? */ 1543 if (!asoc) { 1544 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1545 1546 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1547 err = -EINVAL; 1548 goto out_unlock; 1549 } 1550 1551 /* Check for invalid stream against the stream counts, 1552 * either the default or the user specified stream counts. 1553 */ 1554 if (sinfo) { 1555 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1556 /* Check against the defaults. */ 1557 if (sinfo->sinfo_stream >= 1558 sp->initmsg.sinit_num_ostreams) { 1559 err = -EINVAL; 1560 goto out_unlock; 1561 } 1562 } else { 1563 /* Check against the requested. */ 1564 if (sinfo->sinfo_stream >= 1565 sinit->sinit_num_ostreams) { 1566 err = -EINVAL; 1567 goto out_unlock; 1568 } 1569 } 1570 } 1571 1572 /* 1573 * API 3.1.2 bind() - UDP Style Syntax 1574 * If a bind() or sctp_bindx() is not called prior to a 1575 * sendmsg() call that initiates a new association, the 1576 * system picks an ephemeral port and will choose an address 1577 * set equivalent to binding with a wildcard address. 1578 */ 1579 if (!ep->base.bind_addr.port) { 1580 if (sctp_autobind(sk)) { 1581 err = -EAGAIN; 1582 goto out_unlock; 1583 } 1584 } else { 1585 /* 1586 * If an unprivileged user inherits a one-to-many 1587 * style socket with open associations on a privileged 1588 * port, it MAY be permitted to accept new associations, 1589 * but it SHOULD NOT be permitted to open new 1590 * associations. 1591 */ 1592 if (ep->base.bind_addr.port < PROT_SOCK && 1593 !capable(CAP_NET_BIND_SERVICE)) { 1594 err = -EACCES; 1595 goto out_unlock; 1596 } 1597 } 1598 1599 scope = sctp_scope(&to); 1600 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1601 if (!new_asoc) { 1602 err = -ENOMEM; 1603 goto out_unlock; 1604 } 1605 asoc = new_asoc; 1606 1607 /* If the SCTP_INIT ancillary data is specified, set all 1608 * the association init values accordingly. 1609 */ 1610 if (sinit) { 1611 if (sinit->sinit_num_ostreams) { 1612 asoc->c.sinit_num_ostreams = 1613 sinit->sinit_num_ostreams; 1614 } 1615 if (sinit->sinit_max_instreams) { 1616 asoc->c.sinit_max_instreams = 1617 sinit->sinit_max_instreams; 1618 } 1619 if (sinit->sinit_max_attempts) { 1620 asoc->max_init_attempts 1621 = sinit->sinit_max_attempts; 1622 } 1623 if (sinit->sinit_max_init_timeo) { 1624 asoc->max_init_timeo = 1625 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1626 } 1627 } 1628 1629 /* Prime the peer's transport structures. */ 1630 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1631 if (!transport) { 1632 err = -ENOMEM; 1633 goto out_free; 1634 } 1635 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1636 if (err < 0) { 1637 err = -ENOMEM; 1638 goto out_free; 1639 } 1640 } 1641 1642 /* ASSERT: we have a valid association at this point. */ 1643 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1644 1645 if (!sinfo) { 1646 /* If the user didn't specify SNDRCVINFO, make up one with 1647 * some defaults. 1648 */ 1649 default_sinfo.sinfo_stream = asoc->default_stream; 1650 default_sinfo.sinfo_flags = asoc->default_flags; 1651 default_sinfo.sinfo_ppid = asoc->default_ppid; 1652 default_sinfo.sinfo_context = asoc->default_context; 1653 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1654 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1655 sinfo = &default_sinfo; 1656 } 1657 1658 /* API 7.1.7, the sndbuf size per association bounds the 1659 * maximum size of data that can be sent in a single send call. 1660 */ 1661 if (msg_len > sk->sk_sndbuf) { 1662 err = -EMSGSIZE; 1663 goto out_free; 1664 } 1665 1666 if (asoc->pmtu_pending) 1667 sctp_assoc_pending_pmtu(asoc); 1668 1669 /* If fragmentation is disabled and the message length exceeds the 1670 * association fragmentation point, return EMSGSIZE. The I-D 1671 * does not specify what this error is, but this looks like 1672 * a great fit. 1673 */ 1674 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1675 err = -EMSGSIZE; 1676 goto out_free; 1677 } 1678 1679 if (sinfo) { 1680 /* Check for invalid stream. */ 1681 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1682 err = -EINVAL; 1683 goto out_free; 1684 } 1685 } 1686 1687 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1688 if (!sctp_wspace(asoc)) { 1689 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1690 if (err) 1691 goto out_free; 1692 } 1693 1694 /* If an address is passed with the sendto/sendmsg call, it is used 1695 * to override the primary destination address in the TCP model, or 1696 * when SCTP_ADDR_OVER flag is set in the UDP model. 1697 */ 1698 if ((sctp_style(sk, TCP) && msg_name) || 1699 (sinfo_flags & SCTP_ADDR_OVER)) { 1700 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1701 if (!chunk_tp) { 1702 err = -EINVAL; 1703 goto out_free; 1704 } 1705 } else 1706 chunk_tp = NULL; 1707 1708 /* Auto-connect, if we aren't connected already. */ 1709 if (sctp_state(asoc, CLOSED)) { 1710 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1711 if (err < 0) 1712 goto out_free; 1713 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1714 } 1715 1716 /* Break the message into multiple chunks of maximum size. */ 1717 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1718 if (!datamsg) { 1719 err = -ENOMEM; 1720 goto out_free; 1721 } 1722 1723 /* Now send the (possibly) fragmented message. */ 1724 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1725 sctp_chunk_hold(chunk); 1726 1727 /* Do accounting for the write space. */ 1728 sctp_set_owner_w(chunk); 1729 1730 chunk->transport = chunk_tp; 1731 1732 /* Send it to the lower layers. Note: all chunks 1733 * must either fail or succeed. The lower layer 1734 * works that way today. Keep it that way or this 1735 * breaks. 1736 */ 1737 err = sctp_primitive_SEND(asoc, chunk); 1738 /* Did the lower layer accept the chunk? */ 1739 if (err) 1740 sctp_chunk_free(chunk); 1741 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1742 } 1743 1744 sctp_datamsg_put(datamsg); 1745 if (err) 1746 goto out_free; 1747 else 1748 err = msg_len; 1749 1750 /* If we are already past ASSOCIATE, the lower 1751 * layers are responsible for association cleanup. 1752 */ 1753 goto out_unlock; 1754 1755 out_free: 1756 if (new_asoc) 1757 sctp_association_free(asoc); 1758 out_unlock: 1759 sctp_release_sock(sk); 1760 1761 out_nounlock: 1762 return sctp_error(sk, msg_flags, err); 1763 1764 #if 0 1765 do_sock_err: 1766 if (msg_len) 1767 err = msg_len; 1768 else 1769 err = sock_error(sk); 1770 goto out; 1771 1772 do_interrupted: 1773 if (msg_len) 1774 err = msg_len; 1775 goto out; 1776 #endif /* 0 */ 1777 } 1778 1779 /* This is an extended version of skb_pull() that removes the data from the 1780 * start of a skb even when data is spread across the list of skb's in the 1781 * frag_list. len specifies the total amount of data that needs to be removed. 1782 * when 'len' bytes could be removed from the skb, it returns 0. 1783 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1784 * could not be removed. 1785 */ 1786 static int sctp_skb_pull(struct sk_buff *skb, int len) 1787 { 1788 struct sk_buff *list; 1789 int skb_len = skb_headlen(skb); 1790 int rlen; 1791 1792 if (len <= skb_len) { 1793 __skb_pull(skb, len); 1794 return 0; 1795 } 1796 len -= skb_len; 1797 __skb_pull(skb, skb_len); 1798 1799 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1800 rlen = sctp_skb_pull(list, len); 1801 skb->len -= (len-rlen); 1802 skb->data_len -= (len-rlen); 1803 1804 if (!rlen) 1805 return 0; 1806 1807 len = rlen; 1808 } 1809 1810 return len; 1811 } 1812 1813 /* API 3.1.3 recvmsg() - UDP Style Syntax 1814 * 1815 * ssize_t recvmsg(int socket, struct msghdr *message, 1816 * int flags); 1817 * 1818 * socket - the socket descriptor of the endpoint. 1819 * message - pointer to the msghdr structure which contains a single 1820 * user message and possibly some ancillary data. 1821 * 1822 * See Section 5 for complete description of the data 1823 * structures. 1824 * 1825 * flags - flags sent or received with the user message, see Section 1826 * 5 for complete description of the flags. 1827 */ 1828 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1829 1830 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1831 struct msghdr *msg, size_t len, int noblock, 1832 int flags, int *addr_len) 1833 { 1834 struct sctp_ulpevent *event = NULL; 1835 struct sctp_sock *sp = sctp_sk(sk); 1836 struct sk_buff *skb; 1837 int copied; 1838 int err = 0; 1839 int skb_len; 1840 1841 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1842 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1843 "len", len, "knoblauch", noblock, 1844 "flags", flags, "addr_len", addr_len); 1845 1846 sctp_lock_sock(sk); 1847 1848 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1849 err = -ENOTCONN; 1850 goto out; 1851 } 1852 1853 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1854 if (!skb) 1855 goto out; 1856 1857 /* Get the total length of the skb including any skb's in the 1858 * frag_list. 1859 */ 1860 skb_len = skb->len; 1861 1862 copied = skb_len; 1863 if (copied > len) 1864 copied = len; 1865 1866 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1867 1868 event = sctp_skb2event(skb); 1869 1870 if (err) 1871 goto out_free; 1872 1873 sock_recv_timestamp(msg, sk, skb); 1874 if (sctp_ulpevent_is_notification(event)) { 1875 msg->msg_flags |= MSG_NOTIFICATION; 1876 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1877 } else { 1878 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1879 } 1880 1881 /* Check if we allow SCTP_SNDRCVINFO. */ 1882 if (sp->subscribe.sctp_data_io_event) 1883 sctp_ulpevent_read_sndrcvinfo(event, msg); 1884 #if 0 1885 /* FIXME: we should be calling IP/IPv6 layers. */ 1886 if (sk->sk_protinfo.af_inet.cmsg_flags) 1887 ip_cmsg_recv(msg, skb); 1888 #endif 1889 1890 err = copied; 1891 1892 /* If skb's length exceeds the user's buffer, update the skb and 1893 * push it back to the receive_queue so that the next call to 1894 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1895 */ 1896 if (skb_len > copied) { 1897 msg->msg_flags &= ~MSG_EOR; 1898 if (flags & MSG_PEEK) 1899 goto out_free; 1900 sctp_skb_pull(skb, copied); 1901 skb_queue_head(&sk->sk_receive_queue, skb); 1902 1903 /* When only partial message is copied to the user, increase 1904 * rwnd by that amount. If all the data in the skb is read, 1905 * rwnd is updated when the event is freed. 1906 */ 1907 if (!sctp_ulpevent_is_notification(event)) 1908 sctp_assoc_rwnd_increase(event->asoc, copied); 1909 goto out; 1910 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1911 (event->msg_flags & MSG_EOR)) 1912 msg->msg_flags |= MSG_EOR; 1913 else 1914 msg->msg_flags &= ~MSG_EOR; 1915 1916 out_free: 1917 if (flags & MSG_PEEK) { 1918 /* Release the skb reference acquired after peeking the skb in 1919 * sctp_skb_recv_datagram(). 1920 */ 1921 kfree_skb(skb); 1922 } else { 1923 /* Free the event which includes releasing the reference to 1924 * the owner of the skb, freeing the skb and updating the 1925 * rwnd. 1926 */ 1927 sctp_ulpevent_free(event); 1928 } 1929 out: 1930 sctp_release_sock(sk); 1931 return err; 1932 } 1933 1934 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1935 * 1936 * This option is a on/off flag. If enabled no SCTP message 1937 * fragmentation will be performed. Instead if a message being sent 1938 * exceeds the current PMTU size, the message will NOT be sent and 1939 * instead a error will be indicated to the user. 1940 */ 1941 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1942 char __user *optval, int optlen) 1943 { 1944 int val; 1945 1946 if (optlen < sizeof(int)) 1947 return -EINVAL; 1948 1949 if (get_user(val, (int __user *)optval)) 1950 return -EFAULT; 1951 1952 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1953 1954 return 0; 1955 } 1956 1957 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1958 int optlen) 1959 { 1960 if (optlen > sizeof(struct sctp_event_subscribe)) 1961 return -EINVAL; 1962 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1963 return -EFAULT; 1964 return 0; 1965 } 1966 1967 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1968 * 1969 * This socket option is applicable to the UDP-style socket only. When 1970 * set it will cause associations that are idle for more than the 1971 * specified number of seconds to automatically close. An association 1972 * being idle is defined an association that has NOT sent or received 1973 * user data. The special value of '0' indicates that no automatic 1974 * close of any associations should be performed. The option expects an 1975 * integer defining the number of seconds of idle time before an 1976 * association is closed. 1977 */ 1978 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1979 int optlen) 1980 { 1981 struct sctp_sock *sp = sctp_sk(sk); 1982 1983 /* Applicable to UDP-style socket only */ 1984 if (sctp_style(sk, TCP)) 1985 return -EOPNOTSUPP; 1986 if (optlen != sizeof(int)) 1987 return -EINVAL; 1988 if (copy_from_user(&sp->autoclose, optval, optlen)) 1989 return -EFAULT; 1990 1991 return 0; 1992 } 1993 1994 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1995 * 1996 * Applications can enable or disable heartbeats for any peer address of 1997 * an association, modify an address's heartbeat interval, force a 1998 * heartbeat to be sent immediately, and adjust the address's maximum 1999 * number of retransmissions sent before an address is considered 2000 * unreachable. The following structure is used to access and modify an 2001 * address's parameters: 2002 * 2003 * struct sctp_paddrparams { 2004 * sctp_assoc_t spp_assoc_id; 2005 * struct sockaddr_storage spp_address; 2006 * uint32_t spp_hbinterval; 2007 * uint16_t spp_pathmaxrxt; 2008 * uint32_t spp_pathmtu; 2009 * uint32_t spp_sackdelay; 2010 * uint32_t spp_flags; 2011 * }; 2012 * 2013 * spp_assoc_id - (one-to-many style socket) This is filled in the 2014 * application, and identifies the association for 2015 * this query. 2016 * spp_address - This specifies which address is of interest. 2017 * spp_hbinterval - This contains the value of the heartbeat interval, 2018 * in milliseconds. If a value of zero 2019 * is present in this field then no changes are to 2020 * be made to this parameter. 2021 * spp_pathmaxrxt - This contains the maximum number of 2022 * retransmissions before this address shall be 2023 * considered unreachable. If a value of zero 2024 * is present in this field then no changes are to 2025 * be made to this parameter. 2026 * spp_pathmtu - When Path MTU discovery is disabled the value 2027 * specified here will be the "fixed" path mtu. 2028 * Note that if the spp_address field is empty 2029 * then all associations on this address will 2030 * have this fixed path mtu set upon them. 2031 * 2032 * spp_sackdelay - When delayed sack is enabled, this value specifies 2033 * the number of milliseconds that sacks will be delayed 2034 * for. This value will apply to all addresses of an 2035 * association if the spp_address field is empty. Note 2036 * also, that if delayed sack is enabled and this 2037 * value is set to 0, no change is made to the last 2038 * recorded delayed sack timer value. 2039 * 2040 * spp_flags - These flags are used to control various features 2041 * on an association. The flag field may contain 2042 * zero or more of the following options. 2043 * 2044 * SPP_HB_ENABLE - Enable heartbeats on the 2045 * specified address. Note that if the address 2046 * field is empty all addresses for the association 2047 * have heartbeats enabled upon them. 2048 * 2049 * SPP_HB_DISABLE - Disable heartbeats on the 2050 * speicifed address. Note that if the address 2051 * field is empty all addresses for the association 2052 * will have their heartbeats disabled. Note also 2053 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2054 * mutually exclusive, only one of these two should 2055 * be specified. Enabling both fields will have 2056 * undetermined results. 2057 * 2058 * SPP_HB_DEMAND - Request a user initiated heartbeat 2059 * to be made immediately. 2060 * 2061 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2062 * heartbeat delayis to be set to the value of 0 2063 * milliseconds. 2064 * 2065 * SPP_PMTUD_ENABLE - This field will enable PMTU 2066 * discovery upon the specified address. Note that 2067 * if the address feild is empty then all addresses 2068 * on the association are effected. 2069 * 2070 * SPP_PMTUD_DISABLE - This field will disable PMTU 2071 * discovery upon the specified address. Note that 2072 * if the address feild is empty then all addresses 2073 * on the association are effected. Not also that 2074 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2075 * exclusive. Enabling both will have undetermined 2076 * results. 2077 * 2078 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2079 * on delayed sack. The time specified in spp_sackdelay 2080 * is used to specify the sack delay for this address. Note 2081 * that if spp_address is empty then all addresses will 2082 * enable delayed sack and take on the sack delay 2083 * value specified in spp_sackdelay. 2084 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2085 * off delayed sack. If the spp_address field is blank then 2086 * delayed sack is disabled for the entire association. Note 2087 * also that this field is mutually exclusive to 2088 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2089 * results. 2090 */ 2091 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2092 struct sctp_transport *trans, 2093 struct sctp_association *asoc, 2094 struct sctp_sock *sp, 2095 int hb_change, 2096 int pmtud_change, 2097 int sackdelay_change) 2098 { 2099 int error; 2100 2101 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2102 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2103 if (error) 2104 return error; 2105 } 2106 2107 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2108 * this field is ignored. Note also that a value of zero indicates 2109 * the current setting should be left unchanged. 2110 */ 2111 if (params->spp_flags & SPP_HB_ENABLE) { 2112 2113 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2114 * set. This lets us use 0 value when this flag 2115 * is set. 2116 */ 2117 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2118 params->spp_hbinterval = 0; 2119 2120 if (params->spp_hbinterval || 2121 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2122 if (trans) { 2123 trans->hbinterval = 2124 msecs_to_jiffies(params->spp_hbinterval); 2125 } else if (asoc) { 2126 asoc->hbinterval = 2127 msecs_to_jiffies(params->spp_hbinterval); 2128 } else { 2129 sp->hbinterval = params->spp_hbinterval; 2130 } 2131 } 2132 } 2133 2134 if (hb_change) { 2135 if (trans) { 2136 trans->param_flags = 2137 (trans->param_flags & ~SPP_HB) | hb_change; 2138 } else if (asoc) { 2139 asoc->param_flags = 2140 (asoc->param_flags & ~SPP_HB) | hb_change; 2141 } else { 2142 sp->param_flags = 2143 (sp->param_flags & ~SPP_HB) | hb_change; 2144 } 2145 } 2146 2147 /* When Path MTU discovery is disabled the value specified here will 2148 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2149 * include the flag SPP_PMTUD_DISABLE for this field to have any 2150 * effect). 2151 */ 2152 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2153 if (trans) { 2154 trans->pathmtu = params->spp_pathmtu; 2155 sctp_assoc_sync_pmtu(asoc); 2156 } else if (asoc) { 2157 asoc->pathmtu = params->spp_pathmtu; 2158 sctp_frag_point(sp, params->spp_pathmtu); 2159 } else { 2160 sp->pathmtu = params->spp_pathmtu; 2161 } 2162 } 2163 2164 if (pmtud_change) { 2165 if (trans) { 2166 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2167 (params->spp_flags & SPP_PMTUD_ENABLE); 2168 trans->param_flags = 2169 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2170 if (update) { 2171 sctp_transport_pmtu(trans); 2172 sctp_assoc_sync_pmtu(asoc); 2173 } 2174 } else if (asoc) { 2175 asoc->param_flags = 2176 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2177 } else { 2178 sp->param_flags = 2179 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2180 } 2181 } 2182 2183 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2184 * value of this field is ignored. Note also that a value of zero 2185 * indicates the current setting should be left unchanged. 2186 */ 2187 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2188 if (trans) { 2189 trans->sackdelay = 2190 msecs_to_jiffies(params->spp_sackdelay); 2191 } else if (asoc) { 2192 asoc->sackdelay = 2193 msecs_to_jiffies(params->spp_sackdelay); 2194 } else { 2195 sp->sackdelay = params->spp_sackdelay; 2196 } 2197 } 2198 2199 if (sackdelay_change) { 2200 if (trans) { 2201 trans->param_flags = 2202 (trans->param_flags & ~SPP_SACKDELAY) | 2203 sackdelay_change; 2204 } else if (asoc) { 2205 asoc->param_flags = 2206 (asoc->param_flags & ~SPP_SACKDELAY) | 2207 sackdelay_change; 2208 } else { 2209 sp->param_flags = 2210 (sp->param_flags & ~SPP_SACKDELAY) | 2211 sackdelay_change; 2212 } 2213 } 2214 2215 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2216 * of this field is ignored. Note also that a value of zero 2217 * indicates the current setting should be left unchanged. 2218 */ 2219 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2220 if (trans) { 2221 trans->pathmaxrxt = params->spp_pathmaxrxt; 2222 } else if (asoc) { 2223 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2224 } else { 2225 sp->pathmaxrxt = params->spp_pathmaxrxt; 2226 } 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2233 char __user *optval, int optlen) 2234 { 2235 struct sctp_paddrparams params; 2236 struct sctp_transport *trans = NULL; 2237 struct sctp_association *asoc = NULL; 2238 struct sctp_sock *sp = sctp_sk(sk); 2239 int error; 2240 int hb_change, pmtud_change, sackdelay_change; 2241 2242 if (optlen != sizeof(struct sctp_paddrparams)) 2243 return - EINVAL; 2244 2245 if (copy_from_user(¶ms, optval, optlen)) 2246 return -EFAULT; 2247 2248 /* Validate flags and value parameters. */ 2249 hb_change = params.spp_flags & SPP_HB; 2250 pmtud_change = params.spp_flags & SPP_PMTUD; 2251 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2252 2253 if (hb_change == SPP_HB || 2254 pmtud_change == SPP_PMTUD || 2255 sackdelay_change == SPP_SACKDELAY || 2256 params.spp_sackdelay > 500 || 2257 (params.spp_pathmtu 2258 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2259 return -EINVAL; 2260 2261 /* If an address other than INADDR_ANY is specified, and 2262 * no transport is found, then the request is invalid. 2263 */ 2264 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2265 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2266 params.spp_assoc_id); 2267 if (!trans) 2268 return -EINVAL; 2269 } 2270 2271 /* Get association, if assoc_id != 0 and the socket is a one 2272 * to many style socket, and an association was not found, then 2273 * the id was invalid. 2274 */ 2275 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2276 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2277 return -EINVAL; 2278 2279 /* Heartbeat demand can only be sent on a transport or 2280 * association, but not a socket. 2281 */ 2282 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2283 return -EINVAL; 2284 2285 /* Process parameters. */ 2286 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2287 hb_change, pmtud_change, 2288 sackdelay_change); 2289 2290 if (error) 2291 return error; 2292 2293 /* If changes are for association, also apply parameters to each 2294 * transport. 2295 */ 2296 if (!trans && asoc) { 2297 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2298 transports) { 2299 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2300 hb_change, pmtud_change, 2301 sackdelay_change); 2302 } 2303 } 2304 2305 return 0; 2306 } 2307 2308 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2309 * 2310 * This options will get or set the delayed ack timer. The time is set 2311 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2312 * endpoints default delayed ack timer value. If the assoc_id field is 2313 * non-zero, then the set or get effects the specified association. 2314 * 2315 * struct sctp_assoc_value { 2316 * sctp_assoc_t assoc_id; 2317 * uint32_t assoc_value; 2318 * }; 2319 * 2320 * assoc_id - This parameter, indicates which association the 2321 * user is preforming an action upon. Note that if 2322 * this field's value is zero then the endpoints 2323 * default value is changed (effecting future 2324 * associations only). 2325 * 2326 * assoc_value - This parameter contains the number of milliseconds 2327 * that the user is requesting the delayed ACK timer 2328 * be set to. Note that this value is defined in 2329 * the standard to be between 200 and 500 milliseconds. 2330 * 2331 * Note: a value of zero will leave the value alone, 2332 * but disable SACK delay. A non-zero value will also 2333 * enable SACK delay. 2334 */ 2335 2336 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2337 char __user *optval, int optlen) 2338 { 2339 struct sctp_assoc_value params; 2340 struct sctp_transport *trans = NULL; 2341 struct sctp_association *asoc = NULL; 2342 struct sctp_sock *sp = sctp_sk(sk); 2343 2344 if (optlen != sizeof(struct sctp_assoc_value)) 2345 return - EINVAL; 2346 2347 if (copy_from_user(¶ms, optval, optlen)) 2348 return -EFAULT; 2349 2350 /* Validate value parameter. */ 2351 if (params.assoc_value > 500) 2352 return -EINVAL; 2353 2354 /* Get association, if assoc_id != 0 and the socket is a one 2355 * to many style socket, and an association was not found, then 2356 * the id was invalid. 2357 */ 2358 asoc = sctp_id2assoc(sk, params.assoc_id); 2359 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2360 return -EINVAL; 2361 2362 if (params.assoc_value) { 2363 if (asoc) { 2364 asoc->sackdelay = 2365 msecs_to_jiffies(params.assoc_value); 2366 asoc->param_flags = 2367 (asoc->param_flags & ~SPP_SACKDELAY) | 2368 SPP_SACKDELAY_ENABLE; 2369 } else { 2370 sp->sackdelay = params.assoc_value; 2371 sp->param_flags = 2372 (sp->param_flags & ~SPP_SACKDELAY) | 2373 SPP_SACKDELAY_ENABLE; 2374 } 2375 } else { 2376 if (asoc) { 2377 asoc->param_flags = 2378 (asoc->param_flags & ~SPP_SACKDELAY) | 2379 SPP_SACKDELAY_DISABLE; 2380 } else { 2381 sp->param_flags = 2382 (sp->param_flags & ~SPP_SACKDELAY) | 2383 SPP_SACKDELAY_DISABLE; 2384 } 2385 } 2386 2387 /* If change is for association, also apply to each transport. */ 2388 if (asoc) { 2389 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2390 transports) { 2391 if (params.assoc_value) { 2392 trans->sackdelay = 2393 msecs_to_jiffies(params.assoc_value); 2394 trans->param_flags = 2395 (trans->param_flags & ~SPP_SACKDELAY) | 2396 SPP_SACKDELAY_ENABLE; 2397 } else { 2398 trans->param_flags = 2399 (trans->param_flags & ~SPP_SACKDELAY) | 2400 SPP_SACKDELAY_DISABLE; 2401 } 2402 } 2403 } 2404 2405 return 0; 2406 } 2407 2408 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2409 * 2410 * Applications can specify protocol parameters for the default association 2411 * initialization. The option name argument to setsockopt() and getsockopt() 2412 * is SCTP_INITMSG. 2413 * 2414 * Setting initialization parameters is effective only on an unconnected 2415 * socket (for UDP-style sockets only future associations are effected 2416 * by the change). With TCP-style sockets, this option is inherited by 2417 * sockets derived from a listener socket. 2418 */ 2419 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2420 { 2421 struct sctp_initmsg sinit; 2422 struct sctp_sock *sp = sctp_sk(sk); 2423 2424 if (optlen != sizeof(struct sctp_initmsg)) 2425 return -EINVAL; 2426 if (copy_from_user(&sinit, optval, optlen)) 2427 return -EFAULT; 2428 2429 if (sinit.sinit_num_ostreams) 2430 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2431 if (sinit.sinit_max_instreams) 2432 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2433 if (sinit.sinit_max_attempts) 2434 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2435 if (sinit.sinit_max_init_timeo) 2436 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2437 2438 return 0; 2439 } 2440 2441 /* 2442 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2443 * 2444 * Applications that wish to use the sendto() system call may wish to 2445 * specify a default set of parameters that would normally be supplied 2446 * through the inclusion of ancillary data. This socket option allows 2447 * such an application to set the default sctp_sndrcvinfo structure. 2448 * The application that wishes to use this socket option simply passes 2449 * in to this call the sctp_sndrcvinfo structure defined in Section 2450 * 5.2.2) The input parameters accepted by this call include 2451 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2452 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2453 * to this call if the caller is using the UDP model. 2454 */ 2455 static int sctp_setsockopt_default_send_param(struct sock *sk, 2456 char __user *optval, int optlen) 2457 { 2458 struct sctp_sndrcvinfo info; 2459 struct sctp_association *asoc; 2460 struct sctp_sock *sp = sctp_sk(sk); 2461 2462 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2463 return -EINVAL; 2464 if (copy_from_user(&info, optval, optlen)) 2465 return -EFAULT; 2466 2467 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2468 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2469 return -EINVAL; 2470 2471 if (asoc) { 2472 asoc->default_stream = info.sinfo_stream; 2473 asoc->default_flags = info.sinfo_flags; 2474 asoc->default_ppid = info.sinfo_ppid; 2475 asoc->default_context = info.sinfo_context; 2476 asoc->default_timetolive = info.sinfo_timetolive; 2477 } else { 2478 sp->default_stream = info.sinfo_stream; 2479 sp->default_flags = info.sinfo_flags; 2480 sp->default_ppid = info.sinfo_ppid; 2481 sp->default_context = info.sinfo_context; 2482 sp->default_timetolive = info.sinfo_timetolive; 2483 } 2484 2485 return 0; 2486 } 2487 2488 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2489 * 2490 * Requests that the local SCTP stack use the enclosed peer address as 2491 * the association primary. The enclosed address must be one of the 2492 * association peer's addresses. 2493 */ 2494 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2495 int optlen) 2496 { 2497 struct sctp_prim prim; 2498 struct sctp_transport *trans; 2499 2500 if (optlen != sizeof(struct sctp_prim)) 2501 return -EINVAL; 2502 2503 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2504 return -EFAULT; 2505 2506 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2507 if (!trans) 2508 return -EINVAL; 2509 2510 sctp_assoc_set_primary(trans->asoc, trans); 2511 2512 return 0; 2513 } 2514 2515 /* 2516 * 7.1.5 SCTP_NODELAY 2517 * 2518 * Turn on/off any Nagle-like algorithm. This means that packets are 2519 * generally sent as soon as possible and no unnecessary delays are 2520 * introduced, at the cost of more packets in the network. Expects an 2521 * integer boolean flag. 2522 */ 2523 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2524 int optlen) 2525 { 2526 int val; 2527 2528 if (optlen < sizeof(int)) 2529 return -EINVAL; 2530 if (get_user(val, (int __user *)optval)) 2531 return -EFAULT; 2532 2533 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2534 return 0; 2535 } 2536 2537 /* 2538 * 2539 * 7.1.1 SCTP_RTOINFO 2540 * 2541 * The protocol parameters used to initialize and bound retransmission 2542 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2543 * and modify these parameters. 2544 * All parameters are time values, in milliseconds. A value of 0, when 2545 * modifying the parameters, indicates that the current value should not 2546 * be changed. 2547 * 2548 */ 2549 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2550 struct sctp_rtoinfo rtoinfo; 2551 struct sctp_association *asoc; 2552 2553 if (optlen != sizeof (struct sctp_rtoinfo)) 2554 return -EINVAL; 2555 2556 if (copy_from_user(&rtoinfo, optval, optlen)) 2557 return -EFAULT; 2558 2559 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2560 2561 /* Set the values to the specific association */ 2562 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2563 return -EINVAL; 2564 2565 if (asoc) { 2566 if (rtoinfo.srto_initial != 0) 2567 asoc->rto_initial = 2568 msecs_to_jiffies(rtoinfo.srto_initial); 2569 if (rtoinfo.srto_max != 0) 2570 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2571 if (rtoinfo.srto_min != 0) 2572 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2573 } else { 2574 /* If there is no association or the association-id = 0 2575 * set the values to the endpoint. 2576 */ 2577 struct sctp_sock *sp = sctp_sk(sk); 2578 2579 if (rtoinfo.srto_initial != 0) 2580 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2581 if (rtoinfo.srto_max != 0) 2582 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2583 if (rtoinfo.srto_min != 0) 2584 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2585 } 2586 2587 return 0; 2588 } 2589 2590 /* 2591 * 2592 * 7.1.2 SCTP_ASSOCINFO 2593 * 2594 * This option is used to tune the maximum retransmission attempts 2595 * of the association. 2596 * Returns an error if the new association retransmission value is 2597 * greater than the sum of the retransmission value of the peer. 2598 * See [SCTP] for more information. 2599 * 2600 */ 2601 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2602 { 2603 2604 struct sctp_assocparams assocparams; 2605 struct sctp_association *asoc; 2606 2607 if (optlen != sizeof(struct sctp_assocparams)) 2608 return -EINVAL; 2609 if (copy_from_user(&assocparams, optval, optlen)) 2610 return -EFAULT; 2611 2612 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2613 2614 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2615 return -EINVAL; 2616 2617 /* Set the values to the specific association */ 2618 if (asoc) { 2619 if (assocparams.sasoc_asocmaxrxt != 0) { 2620 __u32 path_sum = 0; 2621 int paths = 0; 2622 struct sctp_transport *peer_addr; 2623 2624 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2625 transports) { 2626 path_sum += peer_addr->pathmaxrxt; 2627 paths++; 2628 } 2629 2630 /* Only validate asocmaxrxt if we have more then 2631 * one path/transport. We do this because path 2632 * retransmissions are only counted when we have more 2633 * then one path. 2634 */ 2635 if (paths > 1 && 2636 assocparams.sasoc_asocmaxrxt > path_sum) 2637 return -EINVAL; 2638 2639 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2640 } 2641 2642 if (assocparams.sasoc_cookie_life != 0) { 2643 asoc->cookie_life.tv_sec = 2644 assocparams.sasoc_cookie_life / 1000; 2645 asoc->cookie_life.tv_usec = 2646 (assocparams.sasoc_cookie_life % 1000) 2647 * 1000; 2648 } 2649 } else { 2650 /* Set the values to the endpoint */ 2651 struct sctp_sock *sp = sctp_sk(sk); 2652 2653 if (assocparams.sasoc_asocmaxrxt != 0) 2654 sp->assocparams.sasoc_asocmaxrxt = 2655 assocparams.sasoc_asocmaxrxt; 2656 if (assocparams.sasoc_cookie_life != 0) 2657 sp->assocparams.sasoc_cookie_life = 2658 assocparams.sasoc_cookie_life; 2659 } 2660 return 0; 2661 } 2662 2663 /* 2664 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2665 * 2666 * This socket option is a boolean flag which turns on or off mapped V4 2667 * addresses. If this option is turned on and the socket is type 2668 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2669 * If this option is turned off, then no mapping will be done of V4 2670 * addresses and a user will receive both PF_INET6 and PF_INET type 2671 * addresses on the socket. 2672 */ 2673 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2674 { 2675 int val; 2676 struct sctp_sock *sp = sctp_sk(sk); 2677 2678 if (optlen < sizeof(int)) 2679 return -EINVAL; 2680 if (get_user(val, (int __user *)optval)) 2681 return -EFAULT; 2682 if (val) 2683 sp->v4mapped = 1; 2684 else 2685 sp->v4mapped = 0; 2686 2687 return 0; 2688 } 2689 2690 /* 2691 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2692 * 2693 * This socket option specifies the maximum size to put in any outgoing 2694 * SCTP chunk. If a message is larger than this size it will be 2695 * fragmented by SCTP into the specified size. Note that the underlying 2696 * SCTP implementation may fragment into smaller sized chunks when the 2697 * PMTU of the underlying association is smaller than the value set by 2698 * the user. 2699 */ 2700 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2701 { 2702 struct sctp_association *asoc; 2703 struct sctp_sock *sp = sctp_sk(sk); 2704 int val; 2705 2706 if (optlen < sizeof(int)) 2707 return -EINVAL; 2708 if (get_user(val, (int __user *)optval)) 2709 return -EFAULT; 2710 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2711 return -EINVAL; 2712 sp->user_frag = val; 2713 2714 /* Update the frag_point of the existing associations. */ 2715 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 2716 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2717 } 2718 2719 return 0; 2720 } 2721 2722 2723 /* 2724 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2725 * 2726 * Requests that the peer mark the enclosed address as the association 2727 * primary. The enclosed address must be one of the association's 2728 * locally bound addresses. The following structure is used to make a 2729 * set primary request: 2730 */ 2731 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2732 int optlen) 2733 { 2734 struct sctp_sock *sp; 2735 struct sctp_endpoint *ep; 2736 struct sctp_association *asoc = NULL; 2737 struct sctp_setpeerprim prim; 2738 struct sctp_chunk *chunk; 2739 int err; 2740 2741 sp = sctp_sk(sk); 2742 ep = sp->ep; 2743 2744 if (!sctp_addip_enable) 2745 return -EPERM; 2746 2747 if (optlen != sizeof(struct sctp_setpeerprim)) 2748 return -EINVAL; 2749 2750 if (copy_from_user(&prim, optval, optlen)) 2751 return -EFAULT; 2752 2753 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2754 if (!asoc) 2755 return -EINVAL; 2756 2757 if (!asoc->peer.asconf_capable) 2758 return -EPERM; 2759 2760 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2761 return -EPERM; 2762 2763 if (!sctp_state(asoc, ESTABLISHED)) 2764 return -ENOTCONN; 2765 2766 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2767 return -EADDRNOTAVAIL; 2768 2769 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2770 chunk = sctp_make_asconf_set_prim(asoc, 2771 (union sctp_addr *)&prim.sspp_addr); 2772 if (!chunk) 2773 return -ENOMEM; 2774 2775 err = sctp_send_asconf(asoc, chunk); 2776 2777 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2778 2779 return err; 2780 } 2781 2782 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2783 int optlen) 2784 { 2785 struct sctp_setadaptation adaptation; 2786 2787 if (optlen != sizeof(struct sctp_setadaptation)) 2788 return -EINVAL; 2789 if (copy_from_user(&adaptation, optval, optlen)) 2790 return -EFAULT; 2791 2792 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2793 2794 return 0; 2795 } 2796 2797 /* 2798 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2799 * 2800 * The context field in the sctp_sndrcvinfo structure is normally only 2801 * used when a failed message is retrieved holding the value that was 2802 * sent down on the actual send call. This option allows the setting of 2803 * a default context on an association basis that will be received on 2804 * reading messages from the peer. This is especially helpful in the 2805 * one-2-many model for an application to keep some reference to an 2806 * internal state machine that is processing messages on the 2807 * association. Note that the setting of this value only effects 2808 * received messages from the peer and does not effect the value that is 2809 * saved with outbound messages. 2810 */ 2811 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2812 int optlen) 2813 { 2814 struct sctp_assoc_value params; 2815 struct sctp_sock *sp; 2816 struct sctp_association *asoc; 2817 2818 if (optlen != sizeof(struct sctp_assoc_value)) 2819 return -EINVAL; 2820 if (copy_from_user(¶ms, optval, optlen)) 2821 return -EFAULT; 2822 2823 sp = sctp_sk(sk); 2824 2825 if (params.assoc_id != 0) { 2826 asoc = sctp_id2assoc(sk, params.assoc_id); 2827 if (!asoc) 2828 return -EINVAL; 2829 asoc->default_rcv_context = params.assoc_value; 2830 } else { 2831 sp->default_rcv_context = params.assoc_value; 2832 } 2833 2834 return 0; 2835 } 2836 2837 /* 2838 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2839 * 2840 * This options will at a minimum specify if the implementation is doing 2841 * fragmented interleave. Fragmented interleave, for a one to many 2842 * socket, is when subsequent calls to receive a message may return 2843 * parts of messages from different associations. Some implementations 2844 * may allow you to turn this value on or off. If so, when turned off, 2845 * no fragment interleave will occur (which will cause a head of line 2846 * blocking amongst multiple associations sharing the same one to many 2847 * socket). When this option is turned on, then each receive call may 2848 * come from a different association (thus the user must receive data 2849 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2850 * association each receive belongs to. 2851 * 2852 * This option takes a boolean value. A non-zero value indicates that 2853 * fragmented interleave is on. A value of zero indicates that 2854 * fragmented interleave is off. 2855 * 2856 * Note that it is important that an implementation that allows this 2857 * option to be turned on, have it off by default. Otherwise an unaware 2858 * application using the one to many model may become confused and act 2859 * incorrectly. 2860 */ 2861 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2862 char __user *optval, 2863 int optlen) 2864 { 2865 int val; 2866 2867 if (optlen != sizeof(int)) 2868 return -EINVAL; 2869 if (get_user(val, (int __user *)optval)) 2870 return -EFAULT; 2871 2872 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2873 2874 return 0; 2875 } 2876 2877 /* 2878 * 7.1.25. Set or Get the sctp partial delivery point 2879 * (SCTP_PARTIAL_DELIVERY_POINT) 2880 * This option will set or get the SCTP partial delivery point. This 2881 * point is the size of a message where the partial delivery API will be 2882 * invoked to help free up rwnd space for the peer. Setting this to a 2883 * lower value will cause partial delivery's to happen more often. The 2884 * calls argument is an integer that sets or gets the partial delivery 2885 * point. 2886 */ 2887 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2888 char __user *optval, 2889 int optlen) 2890 { 2891 u32 val; 2892 2893 if (optlen != sizeof(u32)) 2894 return -EINVAL; 2895 if (get_user(val, (int __user *)optval)) 2896 return -EFAULT; 2897 2898 sctp_sk(sk)->pd_point = val; 2899 2900 return 0; /* is this the right error code? */ 2901 } 2902 2903 /* 2904 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2905 * 2906 * This option will allow a user to change the maximum burst of packets 2907 * that can be emitted by this association. Note that the default value 2908 * is 4, and some implementations may restrict this setting so that it 2909 * can only be lowered. 2910 * 2911 * NOTE: This text doesn't seem right. Do this on a socket basis with 2912 * future associations inheriting the socket value. 2913 */ 2914 static int sctp_setsockopt_maxburst(struct sock *sk, 2915 char __user *optval, 2916 int optlen) 2917 { 2918 struct sctp_assoc_value params; 2919 struct sctp_sock *sp; 2920 struct sctp_association *asoc; 2921 int val; 2922 int assoc_id = 0; 2923 2924 if (optlen < sizeof(int)) 2925 return -EINVAL; 2926 2927 if (optlen == sizeof(int)) { 2928 printk(KERN_WARNING 2929 "SCTP: Use of int in max_burst socket option deprecated\n"); 2930 printk(KERN_WARNING 2931 "SCTP: Use struct sctp_assoc_value instead\n"); 2932 if (copy_from_user(&val, optval, optlen)) 2933 return -EFAULT; 2934 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2935 if (copy_from_user(¶ms, optval, optlen)) 2936 return -EFAULT; 2937 val = params.assoc_value; 2938 assoc_id = params.assoc_id; 2939 } else 2940 return -EINVAL; 2941 2942 sp = sctp_sk(sk); 2943 2944 if (assoc_id != 0) { 2945 asoc = sctp_id2assoc(sk, assoc_id); 2946 if (!asoc) 2947 return -EINVAL; 2948 asoc->max_burst = val; 2949 } else 2950 sp->max_burst = val; 2951 2952 return 0; 2953 } 2954 2955 /* 2956 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 2957 * 2958 * This set option adds a chunk type that the user is requesting to be 2959 * received only in an authenticated way. Changes to the list of chunks 2960 * will only effect future associations on the socket. 2961 */ 2962 static int sctp_setsockopt_auth_chunk(struct sock *sk, 2963 char __user *optval, 2964 int optlen) 2965 { 2966 struct sctp_authchunk val; 2967 2968 if (optlen != sizeof(struct sctp_authchunk)) 2969 return -EINVAL; 2970 if (copy_from_user(&val, optval, optlen)) 2971 return -EFAULT; 2972 2973 switch (val.sauth_chunk) { 2974 case SCTP_CID_INIT: 2975 case SCTP_CID_INIT_ACK: 2976 case SCTP_CID_SHUTDOWN_COMPLETE: 2977 case SCTP_CID_AUTH: 2978 return -EINVAL; 2979 } 2980 2981 /* add this chunk id to the endpoint */ 2982 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 2983 } 2984 2985 /* 2986 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 2987 * 2988 * This option gets or sets the list of HMAC algorithms that the local 2989 * endpoint requires the peer to use. 2990 */ 2991 static int sctp_setsockopt_hmac_ident(struct sock *sk, 2992 char __user *optval, 2993 int optlen) 2994 { 2995 struct sctp_hmacalgo *hmacs; 2996 int err; 2997 2998 if (optlen < sizeof(struct sctp_hmacalgo)) 2999 return -EINVAL; 3000 3001 hmacs = kmalloc(optlen, GFP_KERNEL); 3002 if (!hmacs) 3003 return -ENOMEM; 3004 3005 if (copy_from_user(hmacs, optval, optlen)) { 3006 err = -EFAULT; 3007 goto out; 3008 } 3009 3010 if (hmacs->shmac_num_idents == 0 || 3011 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) { 3012 err = -EINVAL; 3013 goto out; 3014 } 3015 3016 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3017 out: 3018 kfree(hmacs); 3019 return err; 3020 } 3021 3022 /* 3023 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3024 * 3025 * This option will set a shared secret key which is used to build an 3026 * association shared key. 3027 */ 3028 static int sctp_setsockopt_auth_key(struct sock *sk, 3029 char __user *optval, 3030 int optlen) 3031 { 3032 struct sctp_authkey *authkey; 3033 struct sctp_association *asoc; 3034 int ret; 3035 3036 if (optlen <= sizeof(struct sctp_authkey)) 3037 return -EINVAL; 3038 3039 authkey = kmalloc(optlen, GFP_KERNEL); 3040 if (!authkey) 3041 return -ENOMEM; 3042 3043 if (copy_from_user(authkey, optval, optlen)) { 3044 ret = -EFAULT; 3045 goto out; 3046 } 3047 3048 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3049 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3050 ret = -EINVAL; 3051 goto out; 3052 } 3053 3054 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3055 out: 3056 kfree(authkey); 3057 return ret; 3058 } 3059 3060 /* 3061 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3062 * 3063 * This option will get or set the active shared key to be used to build 3064 * the association shared key. 3065 */ 3066 static int sctp_setsockopt_active_key(struct sock *sk, 3067 char __user *optval, 3068 int optlen) 3069 { 3070 struct sctp_authkeyid val; 3071 struct sctp_association *asoc; 3072 3073 if (optlen != sizeof(struct sctp_authkeyid)) 3074 return -EINVAL; 3075 if (copy_from_user(&val, optval, optlen)) 3076 return -EFAULT; 3077 3078 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3079 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3080 return -EINVAL; 3081 3082 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3083 val.scact_keynumber); 3084 } 3085 3086 /* 3087 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3088 * 3089 * This set option will delete a shared secret key from use. 3090 */ 3091 static int sctp_setsockopt_del_key(struct sock *sk, 3092 char __user *optval, 3093 int optlen) 3094 { 3095 struct sctp_authkeyid val; 3096 struct sctp_association *asoc; 3097 3098 if (optlen != sizeof(struct sctp_authkeyid)) 3099 return -EINVAL; 3100 if (copy_from_user(&val, optval, optlen)) 3101 return -EFAULT; 3102 3103 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3104 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3105 return -EINVAL; 3106 3107 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3108 val.scact_keynumber); 3109 3110 } 3111 3112 3113 /* API 6.2 setsockopt(), getsockopt() 3114 * 3115 * Applications use setsockopt() and getsockopt() to set or retrieve 3116 * socket options. Socket options are used to change the default 3117 * behavior of sockets calls. They are described in Section 7. 3118 * 3119 * The syntax is: 3120 * 3121 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3122 * int __user *optlen); 3123 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3124 * int optlen); 3125 * 3126 * sd - the socket descript. 3127 * level - set to IPPROTO_SCTP for all SCTP options. 3128 * optname - the option name. 3129 * optval - the buffer to store the value of the option. 3130 * optlen - the size of the buffer. 3131 */ 3132 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3133 char __user *optval, int optlen) 3134 { 3135 int retval = 0; 3136 3137 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3138 sk, optname); 3139 3140 /* I can hardly begin to describe how wrong this is. This is 3141 * so broken as to be worse than useless. The API draft 3142 * REALLY is NOT helpful here... I am not convinced that the 3143 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3144 * are at all well-founded. 3145 */ 3146 if (level != SOL_SCTP) { 3147 struct sctp_af *af = sctp_sk(sk)->pf->af; 3148 retval = af->setsockopt(sk, level, optname, optval, optlen); 3149 goto out_nounlock; 3150 } 3151 3152 sctp_lock_sock(sk); 3153 3154 switch (optname) { 3155 case SCTP_SOCKOPT_BINDX_ADD: 3156 /* 'optlen' is the size of the addresses buffer. */ 3157 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3158 optlen, SCTP_BINDX_ADD_ADDR); 3159 break; 3160 3161 case SCTP_SOCKOPT_BINDX_REM: 3162 /* 'optlen' is the size of the addresses buffer. */ 3163 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3164 optlen, SCTP_BINDX_REM_ADDR); 3165 break; 3166 3167 case SCTP_SOCKOPT_CONNECTX: 3168 /* 'optlen' is the size of the addresses buffer. */ 3169 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 3170 optlen); 3171 break; 3172 3173 case SCTP_DISABLE_FRAGMENTS: 3174 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3175 break; 3176 3177 case SCTP_EVENTS: 3178 retval = sctp_setsockopt_events(sk, optval, optlen); 3179 break; 3180 3181 case SCTP_AUTOCLOSE: 3182 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3183 break; 3184 3185 case SCTP_PEER_ADDR_PARAMS: 3186 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3187 break; 3188 3189 case SCTP_DELAYED_ACK_TIME: 3190 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3191 break; 3192 case SCTP_PARTIAL_DELIVERY_POINT: 3193 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3194 break; 3195 3196 case SCTP_INITMSG: 3197 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3198 break; 3199 case SCTP_DEFAULT_SEND_PARAM: 3200 retval = sctp_setsockopt_default_send_param(sk, optval, 3201 optlen); 3202 break; 3203 case SCTP_PRIMARY_ADDR: 3204 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3205 break; 3206 case SCTP_SET_PEER_PRIMARY_ADDR: 3207 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3208 break; 3209 case SCTP_NODELAY: 3210 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3211 break; 3212 case SCTP_RTOINFO: 3213 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3214 break; 3215 case SCTP_ASSOCINFO: 3216 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3217 break; 3218 case SCTP_I_WANT_MAPPED_V4_ADDR: 3219 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3220 break; 3221 case SCTP_MAXSEG: 3222 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3223 break; 3224 case SCTP_ADAPTATION_LAYER: 3225 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3226 break; 3227 case SCTP_CONTEXT: 3228 retval = sctp_setsockopt_context(sk, optval, optlen); 3229 break; 3230 case SCTP_FRAGMENT_INTERLEAVE: 3231 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3232 break; 3233 case SCTP_MAX_BURST: 3234 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3235 break; 3236 case SCTP_AUTH_CHUNK: 3237 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3238 break; 3239 case SCTP_HMAC_IDENT: 3240 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3241 break; 3242 case SCTP_AUTH_KEY: 3243 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3244 break; 3245 case SCTP_AUTH_ACTIVE_KEY: 3246 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3247 break; 3248 case SCTP_AUTH_DELETE_KEY: 3249 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3250 break; 3251 default: 3252 retval = -ENOPROTOOPT; 3253 break; 3254 } 3255 3256 sctp_release_sock(sk); 3257 3258 out_nounlock: 3259 return retval; 3260 } 3261 3262 /* API 3.1.6 connect() - UDP Style Syntax 3263 * 3264 * An application may use the connect() call in the UDP model to initiate an 3265 * association without sending data. 3266 * 3267 * The syntax is: 3268 * 3269 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3270 * 3271 * sd: the socket descriptor to have a new association added to. 3272 * 3273 * nam: the address structure (either struct sockaddr_in or struct 3274 * sockaddr_in6 defined in RFC2553 [7]). 3275 * 3276 * len: the size of the address. 3277 */ 3278 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3279 int addr_len) 3280 { 3281 int err = 0; 3282 struct sctp_af *af; 3283 3284 sctp_lock_sock(sk); 3285 3286 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3287 __func__, sk, addr, addr_len); 3288 3289 /* Validate addr_len before calling common connect/connectx routine. */ 3290 af = sctp_get_af_specific(addr->sa_family); 3291 if (!af || addr_len < af->sockaddr_len) { 3292 err = -EINVAL; 3293 } else { 3294 /* Pass correct addr len to common routine (so it knows there 3295 * is only one address being passed. 3296 */ 3297 err = __sctp_connect(sk, addr, af->sockaddr_len); 3298 } 3299 3300 sctp_release_sock(sk); 3301 return err; 3302 } 3303 3304 /* FIXME: Write comments. */ 3305 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3306 { 3307 return -EOPNOTSUPP; /* STUB */ 3308 } 3309 3310 /* 4.1.4 accept() - TCP Style Syntax 3311 * 3312 * Applications use accept() call to remove an established SCTP 3313 * association from the accept queue of the endpoint. A new socket 3314 * descriptor will be returned from accept() to represent the newly 3315 * formed association. 3316 */ 3317 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3318 { 3319 struct sctp_sock *sp; 3320 struct sctp_endpoint *ep; 3321 struct sock *newsk = NULL; 3322 struct sctp_association *asoc; 3323 long timeo; 3324 int error = 0; 3325 3326 sctp_lock_sock(sk); 3327 3328 sp = sctp_sk(sk); 3329 ep = sp->ep; 3330 3331 if (!sctp_style(sk, TCP)) { 3332 error = -EOPNOTSUPP; 3333 goto out; 3334 } 3335 3336 if (!sctp_sstate(sk, LISTENING)) { 3337 error = -EINVAL; 3338 goto out; 3339 } 3340 3341 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3342 3343 error = sctp_wait_for_accept(sk, timeo); 3344 if (error) 3345 goto out; 3346 3347 /* We treat the list of associations on the endpoint as the accept 3348 * queue and pick the first association on the list. 3349 */ 3350 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3351 3352 newsk = sp->pf->create_accept_sk(sk, asoc); 3353 if (!newsk) { 3354 error = -ENOMEM; 3355 goto out; 3356 } 3357 3358 /* Populate the fields of the newsk from the oldsk and migrate the 3359 * asoc to the newsk. 3360 */ 3361 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3362 3363 out: 3364 sctp_release_sock(sk); 3365 *err = error; 3366 return newsk; 3367 } 3368 3369 /* The SCTP ioctl handler. */ 3370 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3371 { 3372 return -ENOIOCTLCMD; 3373 } 3374 3375 /* This is the function which gets called during socket creation to 3376 * initialized the SCTP-specific portion of the sock. 3377 * The sock structure should already be zero-filled memory. 3378 */ 3379 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3380 { 3381 struct sctp_endpoint *ep; 3382 struct sctp_sock *sp; 3383 3384 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3385 3386 sp = sctp_sk(sk); 3387 3388 /* Initialize the SCTP per socket area. */ 3389 switch (sk->sk_type) { 3390 case SOCK_SEQPACKET: 3391 sp->type = SCTP_SOCKET_UDP; 3392 break; 3393 case SOCK_STREAM: 3394 sp->type = SCTP_SOCKET_TCP; 3395 break; 3396 default: 3397 return -ESOCKTNOSUPPORT; 3398 } 3399 3400 /* Initialize default send parameters. These parameters can be 3401 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3402 */ 3403 sp->default_stream = 0; 3404 sp->default_ppid = 0; 3405 sp->default_flags = 0; 3406 sp->default_context = 0; 3407 sp->default_timetolive = 0; 3408 3409 sp->default_rcv_context = 0; 3410 sp->max_burst = sctp_max_burst; 3411 3412 /* Initialize default setup parameters. These parameters 3413 * can be modified with the SCTP_INITMSG socket option or 3414 * overridden by the SCTP_INIT CMSG. 3415 */ 3416 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3417 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3418 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3419 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3420 3421 /* Initialize default RTO related parameters. These parameters can 3422 * be modified for with the SCTP_RTOINFO socket option. 3423 */ 3424 sp->rtoinfo.srto_initial = sctp_rto_initial; 3425 sp->rtoinfo.srto_max = sctp_rto_max; 3426 sp->rtoinfo.srto_min = sctp_rto_min; 3427 3428 /* Initialize default association related parameters. These parameters 3429 * can be modified with the SCTP_ASSOCINFO socket option. 3430 */ 3431 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3432 sp->assocparams.sasoc_number_peer_destinations = 0; 3433 sp->assocparams.sasoc_peer_rwnd = 0; 3434 sp->assocparams.sasoc_local_rwnd = 0; 3435 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3436 3437 /* Initialize default event subscriptions. By default, all the 3438 * options are off. 3439 */ 3440 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3441 3442 /* Default Peer Address Parameters. These defaults can 3443 * be modified via SCTP_PEER_ADDR_PARAMS 3444 */ 3445 sp->hbinterval = sctp_hb_interval; 3446 sp->pathmaxrxt = sctp_max_retrans_path; 3447 sp->pathmtu = 0; // allow default discovery 3448 sp->sackdelay = sctp_sack_timeout; 3449 sp->param_flags = SPP_HB_ENABLE | 3450 SPP_PMTUD_ENABLE | 3451 SPP_SACKDELAY_ENABLE; 3452 3453 /* If enabled no SCTP message fragmentation will be performed. 3454 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3455 */ 3456 sp->disable_fragments = 0; 3457 3458 /* Enable Nagle algorithm by default. */ 3459 sp->nodelay = 0; 3460 3461 /* Enable by default. */ 3462 sp->v4mapped = 1; 3463 3464 /* Auto-close idle associations after the configured 3465 * number of seconds. A value of 0 disables this 3466 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3467 * for UDP-style sockets only. 3468 */ 3469 sp->autoclose = 0; 3470 3471 /* User specified fragmentation limit. */ 3472 sp->user_frag = 0; 3473 3474 sp->adaptation_ind = 0; 3475 3476 sp->pf = sctp_get_pf_specific(sk->sk_family); 3477 3478 /* Control variables for partial data delivery. */ 3479 atomic_set(&sp->pd_mode, 0); 3480 skb_queue_head_init(&sp->pd_lobby); 3481 sp->frag_interleave = 0; 3482 3483 /* Create a per socket endpoint structure. Even if we 3484 * change the data structure relationships, this may still 3485 * be useful for storing pre-connect address information. 3486 */ 3487 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3488 if (!ep) 3489 return -ENOMEM; 3490 3491 sp->ep = ep; 3492 sp->hmac = NULL; 3493 3494 SCTP_DBG_OBJCNT_INC(sock); 3495 atomic_inc(&sctp_sockets_allocated); 3496 return 0; 3497 } 3498 3499 /* Cleanup any SCTP per socket resources. */ 3500 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3501 { 3502 struct sctp_endpoint *ep; 3503 3504 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3505 3506 /* Release our hold on the endpoint. */ 3507 ep = sctp_sk(sk)->ep; 3508 sctp_endpoint_free(ep); 3509 atomic_dec(&sctp_sockets_allocated); 3510 return 0; 3511 } 3512 3513 /* API 4.1.7 shutdown() - TCP Style Syntax 3514 * int shutdown(int socket, int how); 3515 * 3516 * sd - the socket descriptor of the association to be closed. 3517 * how - Specifies the type of shutdown. The values are 3518 * as follows: 3519 * SHUT_RD 3520 * Disables further receive operations. No SCTP 3521 * protocol action is taken. 3522 * SHUT_WR 3523 * Disables further send operations, and initiates 3524 * the SCTP shutdown sequence. 3525 * SHUT_RDWR 3526 * Disables further send and receive operations 3527 * and initiates the SCTP shutdown sequence. 3528 */ 3529 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3530 { 3531 struct sctp_endpoint *ep; 3532 struct sctp_association *asoc; 3533 3534 if (!sctp_style(sk, TCP)) 3535 return; 3536 3537 if (how & SEND_SHUTDOWN) { 3538 ep = sctp_sk(sk)->ep; 3539 if (!list_empty(&ep->asocs)) { 3540 asoc = list_entry(ep->asocs.next, 3541 struct sctp_association, asocs); 3542 sctp_primitive_SHUTDOWN(asoc, NULL); 3543 } 3544 } 3545 } 3546 3547 /* 7.2.1 Association Status (SCTP_STATUS) 3548 3549 * Applications can retrieve current status information about an 3550 * association, including association state, peer receiver window size, 3551 * number of unacked data chunks, and number of data chunks pending 3552 * receipt. This information is read-only. 3553 */ 3554 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3555 char __user *optval, 3556 int __user *optlen) 3557 { 3558 struct sctp_status status; 3559 struct sctp_association *asoc = NULL; 3560 struct sctp_transport *transport; 3561 sctp_assoc_t associd; 3562 int retval = 0; 3563 3564 if (len < sizeof(status)) { 3565 retval = -EINVAL; 3566 goto out; 3567 } 3568 3569 len = sizeof(status); 3570 if (copy_from_user(&status, optval, len)) { 3571 retval = -EFAULT; 3572 goto out; 3573 } 3574 3575 associd = status.sstat_assoc_id; 3576 asoc = sctp_id2assoc(sk, associd); 3577 if (!asoc) { 3578 retval = -EINVAL; 3579 goto out; 3580 } 3581 3582 transport = asoc->peer.primary_path; 3583 3584 status.sstat_assoc_id = sctp_assoc2id(asoc); 3585 status.sstat_state = asoc->state; 3586 status.sstat_rwnd = asoc->peer.rwnd; 3587 status.sstat_unackdata = asoc->unack_data; 3588 3589 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3590 status.sstat_instrms = asoc->c.sinit_max_instreams; 3591 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3592 status.sstat_fragmentation_point = asoc->frag_point; 3593 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3594 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3595 transport->af_specific->sockaddr_len); 3596 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3597 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3598 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3599 status.sstat_primary.spinfo_state = transport->state; 3600 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3601 status.sstat_primary.spinfo_srtt = transport->srtt; 3602 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3603 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3604 3605 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3606 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3607 3608 if (put_user(len, optlen)) { 3609 retval = -EFAULT; 3610 goto out; 3611 } 3612 3613 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3614 len, status.sstat_state, status.sstat_rwnd, 3615 status.sstat_assoc_id); 3616 3617 if (copy_to_user(optval, &status, len)) { 3618 retval = -EFAULT; 3619 goto out; 3620 } 3621 3622 out: 3623 return (retval); 3624 } 3625 3626 3627 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3628 * 3629 * Applications can retrieve information about a specific peer address 3630 * of an association, including its reachability state, congestion 3631 * window, and retransmission timer values. This information is 3632 * read-only. 3633 */ 3634 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3635 char __user *optval, 3636 int __user *optlen) 3637 { 3638 struct sctp_paddrinfo pinfo; 3639 struct sctp_transport *transport; 3640 int retval = 0; 3641 3642 if (len < sizeof(pinfo)) { 3643 retval = -EINVAL; 3644 goto out; 3645 } 3646 3647 len = sizeof(pinfo); 3648 if (copy_from_user(&pinfo, optval, len)) { 3649 retval = -EFAULT; 3650 goto out; 3651 } 3652 3653 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3654 pinfo.spinfo_assoc_id); 3655 if (!transport) 3656 return -EINVAL; 3657 3658 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3659 pinfo.spinfo_state = transport->state; 3660 pinfo.spinfo_cwnd = transport->cwnd; 3661 pinfo.spinfo_srtt = transport->srtt; 3662 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3663 pinfo.spinfo_mtu = transport->pathmtu; 3664 3665 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3666 pinfo.spinfo_state = SCTP_ACTIVE; 3667 3668 if (put_user(len, optlen)) { 3669 retval = -EFAULT; 3670 goto out; 3671 } 3672 3673 if (copy_to_user(optval, &pinfo, len)) { 3674 retval = -EFAULT; 3675 goto out; 3676 } 3677 3678 out: 3679 return (retval); 3680 } 3681 3682 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3683 * 3684 * This option is a on/off flag. If enabled no SCTP message 3685 * fragmentation will be performed. Instead if a message being sent 3686 * exceeds the current PMTU size, the message will NOT be sent and 3687 * instead a error will be indicated to the user. 3688 */ 3689 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3690 char __user *optval, int __user *optlen) 3691 { 3692 int val; 3693 3694 if (len < sizeof(int)) 3695 return -EINVAL; 3696 3697 len = sizeof(int); 3698 val = (sctp_sk(sk)->disable_fragments == 1); 3699 if (put_user(len, optlen)) 3700 return -EFAULT; 3701 if (copy_to_user(optval, &val, len)) 3702 return -EFAULT; 3703 return 0; 3704 } 3705 3706 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3707 * 3708 * This socket option is used to specify various notifications and 3709 * ancillary data the user wishes to receive. 3710 */ 3711 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3712 int __user *optlen) 3713 { 3714 if (len < sizeof(struct sctp_event_subscribe)) 3715 return -EINVAL; 3716 len = sizeof(struct sctp_event_subscribe); 3717 if (put_user(len, optlen)) 3718 return -EFAULT; 3719 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3720 return -EFAULT; 3721 return 0; 3722 } 3723 3724 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3725 * 3726 * This socket option is applicable to the UDP-style socket only. When 3727 * set it will cause associations that are idle for more than the 3728 * specified number of seconds to automatically close. An association 3729 * being idle is defined an association that has NOT sent or received 3730 * user data. The special value of '0' indicates that no automatic 3731 * close of any associations should be performed. The option expects an 3732 * integer defining the number of seconds of idle time before an 3733 * association is closed. 3734 */ 3735 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3736 { 3737 /* Applicable to UDP-style socket only */ 3738 if (sctp_style(sk, TCP)) 3739 return -EOPNOTSUPP; 3740 if (len < sizeof(int)) 3741 return -EINVAL; 3742 len = sizeof(int); 3743 if (put_user(len, optlen)) 3744 return -EFAULT; 3745 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3746 return -EFAULT; 3747 return 0; 3748 } 3749 3750 /* Helper routine to branch off an association to a new socket. */ 3751 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3752 struct socket **sockp) 3753 { 3754 struct sock *sk = asoc->base.sk; 3755 struct socket *sock; 3756 struct inet_sock *inetsk; 3757 struct sctp_af *af; 3758 int err = 0; 3759 3760 /* An association cannot be branched off from an already peeled-off 3761 * socket, nor is this supported for tcp style sockets. 3762 */ 3763 if (!sctp_style(sk, UDP)) 3764 return -EINVAL; 3765 3766 /* Create a new socket. */ 3767 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3768 if (err < 0) 3769 return err; 3770 3771 /* Populate the fields of the newsk from the oldsk and migrate the 3772 * asoc to the newsk. 3773 */ 3774 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3775 3776 /* Make peeled-off sockets more like 1-1 accepted sockets. 3777 * Set the daddr and initialize id to something more random 3778 */ 3779 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3780 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3781 inetsk = inet_sk(sock->sk); 3782 inetsk->id = asoc->next_tsn ^ jiffies; 3783 3784 *sockp = sock; 3785 3786 return err; 3787 } 3788 3789 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3790 { 3791 sctp_peeloff_arg_t peeloff; 3792 struct socket *newsock; 3793 int retval = 0; 3794 struct sctp_association *asoc; 3795 3796 if (len < sizeof(sctp_peeloff_arg_t)) 3797 return -EINVAL; 3798 len = sizeof(sctp_peeloff_arg_t); 3799 if (copy_from_user(&peeloff, optval, len)) 3800 return -EFAULT; 3801 3802 asoc = sctp_id2assoc(sk, peeloff.associd); 3803 if (!asoc) { 3804 retval = -EINVAL; 3805 goto out; 3806 } 3807 3808 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 3809 3810 retval = sctp_do_peeloff(asoc, &newsock); 3811 if (retval < 0) 3812 goto out; 3813 3814 /* Map the socket to an unused fd that can be returned to the user. */ 3815 retval = sock_map_fd(newsock); 3816 if (retval < 0) { 3817 sock_release(newsock); 3818 goto out; 3819 } 3820 3821 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3822 __func__, sk, asoc, newsock->sk, retval); 3823 3824 /* Return the fd mapped to the new socket. */ 3825 peeloff.sd = retval; 3826 if (put_user(len, optlen)) 3827 return -EFAULT; 3828 if (copy_to_user(optval, &peeloff, len)) 3829 retval = -EFAULT; 3830 3831 out: 3832 return retval; 3833 } 3834 3835 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3836 * 3837 * Applications can enable or disable heartbeats for any peer address of 3838 * an association, modify an address's heartbeat interval, force a 3839 * heartbeat to be sent immediately, and adjust the address's maximum 3840 * number of retransmissions sent before an address is considered 3841 * unreachable. The following structure is used to access and modify an 3842 * address's parameters: 3843 * 3844 * struct sctp_paddrparams { 3845 * sctp_assoc_t spp_assoc_id; 3846 * struct sockaddr_storage spp_address; 3847 * uint32_t spp_hbinterval; 3848 * uint16_t spp_pathmaxrxt; 3849 * uint32_t spp_pathmtu; 3850 * uint32_t spp_sackdelay; 3851 * uint32_t spp_flags; 3852 * }; 3853 * 3854 * spp_assoc_id - (one-to-many style socket) This is filled in the 3855 * application, and identifies the association for 3856 * this query. 3857 * spp_address - This specifies which address is of interest. 3858 * spp_hbinterval - This contains the value of the heartbeat interval, 3859 * in milliseconds. If a value of zero 3860 * is present in this field then no changes are to 3861 * be made to this parameter. 3862 * spp_pathmaxrxt - This contains the maximum number of 3863 * retransmissions before this address shall be 3864 * considered unreachable. If a value of zero 3865 * is present in this field then no changes are to 3866 * be made to this parameter. 3867 * spp_pathmtu - When Path MTU discovery is disabled the value 3868 * specified here will be the "fixed" path mtu. 3869 * Note that if the spp_address field is empty 3870 * then all associations on this address will 3871 * have this fixed path mtu set upon them. 3872 * 3873 * spp_sackdelay - When delayed sack is enabled, this value specifies 3874 * the number of milliseconds that sacks will be delayed 3875 * for. This value will apply to all addresses of an 3876 * association if the spp_address field is empty. Note 3877 * also, that if delayed sack is enabled and this 3878 * value is set to 0, no change is made to the last 3879 * recorded delayed sack timer value. 3880 * 3881 * spp_flags - These flags are used to control various features 3882 * on an association. The flag field may contain 3883 * zero or more of the following options. 3884 * 3885 * SPP_HB_ENABLE - Enable heartbeats on the 3886 * specified address. Note that if the address 3887 * field is empty all addresses for the association 3888 * have heartbeats enabled upon them. 3889 * 3890 * SPP_HB_DISABLE - Disable heartbeats on the 3891 * speicifed address. Note that if the address 3892 * field is empty all addresses for the association 3893 * will have their heartbeats disabled. Note also 3894 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3895 * mutually exclusive, only one of these two should 3896 * be specified. Enabling both fields will have 3897 * undetermined results. 3898 * 3899 * SPP_HB_DEMAND - Request a user initiated heartbeat 3900 * to be made immediately. 3901 * 3902 * SPP_PMTUD_ENABLE - This field will enable PMTU 3903 * discovery upon the specified address. Note that 3904 * if the address feild is empty then all addresses 3905 * on the association are effected. 3906 * 3907 * SPP_PMTUD_DISABLE - This field will disable PMTU 3908 * discovery upon the specified address. Note that 3909 * if the address feild is empty then all addresses 3910 * on the association are effected. Not also that 3911 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3912 * exclusive. Enabling both will have undetermined 3913 * results. 3914 * 3915 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3916 * on delayed sack. The time specified in spp_sackdelay 3917 * is used to specify the sack delay for this address. Note 3918 * that if spp_address is empty then all addresses will 3919 * enable delayed sack and take on the sack delay 3920 * value specified in spp_sackdelay. 3921 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3922 * off delayed sack. If the spp_address field is blank then 3923 * delayed sack is disabled for the entire association. Note 3924 * also that this field is mutually exclusive to 3925 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3926 * results. 3927 */ 3928 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3929 char __user *optval, int __user *optlen) 3930 { 3931 struct sctp_paddrparams params; 3932 struct sctp_transport *trans = NULL; 3933 struct sctp_association *asoc = NULL; 3934 struct sctp_sock *sp = sctp_sk(sk); 3935 3936 if (len < sizeof(struct sctp_paddrparams)) 3937 return -EINVAL; 3938 len = sizeof(struct sctp_paddrparams); 3939 if (copy_from_user(¶ms, optval, len)) 3940 return -EFAULT; 3941 3942 /* If an address other than INADDR_ANY is specified, and 3943 * no transport is found, then the request is invalid. 3944 */ 3945 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3946 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3947 params.spp_assoc_id); 3948 if (!trans) { 3949 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3950 return -EINVAL; 3951 } 3952 } 3953 3954 /* Get association, if assoc_id != 0 and the socket is a one 3955 * to many style socket, and an association was not found, then 3956 * the id was invalid. 3957 */ 3958 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3959 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3960 SCTP_DEBUG_PRINTK("Failed no association\n"); 3961 return -EINVAL; 3962 } 3963 3964 if (trans) { 3965 /* Fetch transport values. */ 3966 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3967 params.spp_pathmtu = trans->pathmtu; 3968 params.spp_pathmaxrxt = trans->pathmaxrxt; 3969 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3970 3971 /*draft-11 doesn't say what to return in spp_flags*/ 3972 params.spp_flags = trans->param_flags; 3973 } else if (asoc) { 3974 /* Fetch association values. */ 3975 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3976 params.spp_pathmtu = asoc->pathmtu; 3977 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3978 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3979 3980 /*draft-11 doesn't say what to return in spp_flags*/ 3981 params.spp_flags = asoc->param_flags; 3982 } else { 3983 /* Fetch socket values. */ 3984 params.spp_hbinterval = sp->hbinterval; 3985 params.spp_pathmtu = sp->pathmtu; 3986 params.spp_sackdelay = sp->sackdelay; 3987 params.spp_pathmaxrxt = sp->pathmaxrxt; 3988 3989 /*draft-11 doesn't say what to return in spp_flags*/ 3990 params.spp_flags = sp->param_flags; 3991 } 3992 3993 if (copy_to_user(optval, ¶ms, len)) 3994 return -EFAULT; 3995 3996 if (put_user(len, optlen)) 3997 return -EFAULT; 3998 3999 return 0; 4000 } 4001 4002 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 4003 * 4004 * This options will get or set the delayed ack timer. The time is set 4005 * in milliseconds. If the assoc_id is 0, then this sets or gets the 4006 * endpoints default delayed ack timer value. If the assoc_id field is 4007 * non-zero, then the set or get effects the specified association. 4008 * 4009 * struct sctp_assoc_value { 4010 * sctp_assoc_t assoc_id; 4011 * uint32_t assoc_value; 4012 * }; 4013 * 4014 * assoc_id - This parameter, indicates which association the 4015 * user is preforming an action upon. Note that if 4016 * this field's value is zero then the endpoints 4017 * default value is changed (effecting future 4018 * associations only). 4019 * 4020 * assoc_value - This parameter contains the number of milliseconds 4021 * that the user is requesting the delayed ACK timer 4022 * be set to. Note that this value is defined in 4023 * the standard to be between 200 and 500 milliseconds. 4024 * 4025 * Note: a value of zero will leave the value alone, 4026 * but disable SACK delay. A non-zero value will also 4027 * enable SACK delay. 4028 */ 4029 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 4030 char __user *optval, 4031 int __user *optlen) 4032 { 4033 struct sctp_assoc_value params; 4034 struct sctp_association *asoc = NULL; 4035 struct sctp_sock *sp = sctp_sk(sk); 4036 4037 if (len < sizeof(struct sctp_assoc_value)) 4038 return - EINVAL; 4039 4040 len = sizeof(struct sctp_assoc_value); 4041 4042 if (copy_from_user(¶ms, optval, len)) 4043 return -EFAULT; 4044 4045 /* Get association, if assoc_id != 0 and the socket is a one 4046 * to many style socket, and an association was not found, then 4047 * the id was invalid. 4048 */ 4049 asoc = sctp_id2assoc(sk, params.assoc_id); 4050 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4051 return -EINVAL; 4052 4053 if (asoc) { 4054 /* Fetch association values. */ 4055 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 4056 params.assoc_value = jiffies_to_msecs( 4057 asoc->sackdelay); 4058 else 4059 params.assoc_value = 0; 4060 } else { 4061 /* Fetch socket values. */ 4062 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 4063 params.assoc_value = sp->sackdelay; 4064 else 4065 params.assoc_value = 0; 4066 } 4067 4068 if (copy_to_user(optval, ¶ms, len)) 4069 return -EFAULT; 4070 4071 if (put_user(len, optlen)) 4072 return -EFAULT; 4073 4074 return 0; 4075 } 4076 4077 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4078 * 4079 * Applications can specify protocol parameters for the default association 4080 * initialization. The option name argument to setsockopt() and getsockopt() 4081 * is SCTP_INITMSG. 4082 * 4083 * Setting initialization parameters is effective only on an unconnected 4084 * socket (for UDP-style sockets only future associations are effected 4085 * by the change). With TCP-style sockets, this option is inherited by 4086 * sockets derived from a listener socket. 4087 */ 4088 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4089 { 4090 if (len < sizeof(struct sctp_initmsg)) 4091 return -EINVAL; 4092 len = sizeof(struct sctp_initmsg); 4093 if (put_user(len, optlen)) 4094 return -EFAULT; 4095 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4096 return -EFAULT; 4097 return 0; 4098 } 4099 4100 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4101 char __user *optval, 4102 int __user *optlen) 4103 { 4104 sctp_assoc_t id; 4105 struct sctp_association *asoc; 4106 struct list_head *pos; 4107 int cnt = 0; 4108 4109 if (len < sizeof(sctp_assoc_t)) 4110 return -EINVAL; 4111 4112 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4113 return -EFAULT; 4114 4115 /* For UDP-style sockets, id specifies the association to query. */ 4116 asoc = sctp_id2assoc(sk, id); 4117 if (!asoc) 4118 return -EINVAL; 4119 4120 list_for_each(pos, &asoc->peer.transport_addr_list) { 4121 cnt ++; 4122 } 4123 4124 return cnt; 4125 } 4126 4127 /* 4128 * Old API for getting list of peer addresses. Does not work for 32-bit 4129 * programs running on a 64-bit kernel 4130 */ 4131 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4132 char __user *optval, 4133 int __user *optlen) 4134 { 4135 struct sctp_association *asoc; 4136 int cnt = 0; 4137 struct sctp_getaddrs_old getaddrs; 4138 struct sctp_transport *from; 4139 void __user *to; 4140 union sctp_addr temp; 4141 struct sctp_sock *sp = sctp_sk(sk); 4142 int addrlen; 4143 4144 if (len < sizeof(struct sctp_getaddrs_old)) 4145 return -EINVAL; 4146 4147 len = sizeof(struct sctp_getaddrs_old); 4148 4149 if (copy_from_user(&getaddrs, optval, len)) 4150 return -EFAULT; 4151 4152 if (getaddrs.addr_num <= 0) return -EINVAL; 4153 4154 /* For UDP-style sockets, id specifies the association to query. */ 4155 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4156 if (!asoc) 4157 return -EINVAL; 4158 4159 to = (void __user *)getaddrs.addrs; 4160 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4161 transports) { 4162 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4163 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4164 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4165 if (copy_to_user(to, &temp, addrlen)) 4166 return -EFAULT; 4167 to += addrlen ; 4168 cnt ++; 4169 if (cnt >= getaddrs.addr_num) break; 4170 } 4171 getaddrs.addr_num = cnt; 4172 if (put_user(len, optlen)) 4173 return -EFAULT; 4174 if (copy_to_user(optval, &getaddrs, len)) 4175 return -EFAULT; 4176 4177 return 0; 4178 } 4179 4180 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4181 char __user *optval, int __user *optlen) 4182 { 4183 struct sctp_association *asoc; 4184 int cnt = 0; 4185 struct sctp_getaddrs getaddrs; 4186 struct sctp_transport *from; 4187 void __user *to; 4188 union sctp_addr temp; 4189 struct sctp_sock *sp = sctp_sk(sk); 4190 int addrlen; 4191 size_t space_left; 4192 int bytes_copied; 4193 4194 if (len < sizeof(struct sctp_getaddrs)) 4195 return -EINVAL; 4196 4197 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4198 return -EFAULT; 4199 4200 /* For UDP-style sockets, id specifies the association to query. */ 4201 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4202 if (!asoc) 4203 return -EINVAL; 4204 4205 to = optval + offsetof(struct sctp_getaddrs,addrs); 4206 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4207 4208 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4209 transports) { 4210 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4211 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4212 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4213 if (space_left < addrlen) 4214 return -ENOMEM; 4215 if (copy_to_user(to, &temp, addrlen)) 4216 return -EFAULT; 4217 to += addrlen; 4218 cnt++; 4219 space_left -= addrlen; 4220 } 4221 4222 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4223 return -EFAULT; 4224 bytes_copied = ((char __user *)to) - optval; 4225 if (put_user(bytes_copied, optlen)) 4226 return -EFAULT; 4227 4228 return 0; 4229 } 4230 4231 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4232 char __user *optval, 4233 int __user *optlen) 4234 { 4235 sctp_assoc_t id; 4236 struct sctp_bind_addr *bp; 4237 struct sctp_association *asoc; 4238 struct sctp_sockaddr_entry *addr; 4239 int cnt = 0; 4240 4241 if (len < sizeof(sctp_assoc_t)) 4242 return -EINVAL; 4243 4244 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4245 return -EFAULT; 4246 4247 /* 4248 * For UDP-style sockets, id specifies the association to query. 4249 * If the id field is set to the value '0' then the locally bound 4250 * addresses are returned without regard to any particular 4251 * association. 4252 */ 4253 if (0 == id) { 4254 bp = &sctp_sk(sk)->ep->base.bind_addr; 4255 } else { 4256 asoc = sctp_id2assoc(sk, id); 4257 if (!asoc) 4258 return -EINVAL; 4259 bp = &asoc->base.bind_addr; 4260 } 4261 4262 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4263 * addresses from the global local address list. 4264 */ 4265 if (sctp_list_single_entry(&bp->address_list)) { 4266 addr = list_entry(bp->address_list.next, 4267 struct sctp_sockaddr_entry, list); 4268 if (sctp_is_any(&addr->a)) { 4269 rcu_read_lock(); 4270 list_for_each_entry_rcu(addr, 4271 &sctp_local_addr_list, list) { 4272 if (!addr->valid) 4273 continue; 4274 4275 if ((PF_INET == sk->sk_family) && 4276 (AF_INET6 == addr->a.sa.sa_family)) 4277 continue; 4278 4279 cnt++; 4280 } 4281 rcu_read_unlock(); 4282 } else { 4283 cnt = 1; 4284 } 4285 goto done; 4286 } 4287 4288 /* Protection on the bound address list is not needed, 4289 * since in the socket option context we hold the socket lock, 4290 * so there is no way that the bound address list can change. 4291 */ 4292 list_for_each_entry(addr, &bp->address_list, list) { 4293 cnt ++; 4294 } 4295 done: 4296 return cnt; 4297 } 4298 4299 /* Helper function that copies local addresses to user and returns the number 4300 * of addresses copied. 4301 */ 4302 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4303 int max_addrs, void *to, 4304 int *bytes_copied) 4305 { 4306 struct sctp_sockaddr_entry *addr; 4307 union sctp_addr temp; 4308 int cnt = 0; 4309 int addrlen; 4310 4311 rcu_read_lock(); 4312 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4313 if (!addr->valid) 4314 continue; 4315 4316 if ((PF_INET == sk->sk_family) && 4317 (AF_INET6 == addr->a.sa.sa_family)) 4318 continue; 4319 memcpy(&temp, &addr->a, sizeof(temp)); 4320 if (!temp.v4.sin_port) 4321 temp.v4.sin_port = htons(port); 4322 4323 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4324 &temp); 4325 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4326 memcpy(to, &temp, addrlen); 4327 4328 to += addrlen; 4329 *bytes_copied += addrlen; 4330 cnt ++; 4331 if (cnt >= max_addrs) break; 4332 } 4333 rcu_read_unlock(); 4334 4335 return cnt; 4336 } 4337 4338 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4339 size_t space_left, int *bytes_copied) 4340 { 4341 struct sctp_sockaddr_entry *addr; 4342 union sctp_addr temp; 4343 int cnt = 0; 4344 int addrlen; 4345 4346 rcu_read_lock(); 4347 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4348 if (!addr->valid) 4349 continue; 4350 4351 if ((PF_INET == sk->sk_family) && 4352 (AF_INET6 == addr->a.sa.sa_family)) 4353 continue; 4354 memcpy(&temp, &addr->a, sizeof(temp)); 4355 if (!temp.v4.sin_port) 4356 temp.v4.sin_port = htons(port); 4357 4358 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4359 &temp); 4360 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4361 if (space_left < addrlen) { 4362 cnt = -ENOMEM; 4363 break; 4364 } 4365 memcpy(to, &temp, addrlen); 4366 4367 to += addrlen; 4368 cnt ++; 4369 space_left -= addrlen; 4370 *bytes_copied += addrlen; 4371 } 4372 rcu_read_unlock(); 4373 4374 return cnt; 4375 } 4376 4377 /* Old API for getting list of local addresses. Does not work for 32-bit 4378 * programs running on a 64-bit kernel 4379 */ 4380 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4381 char __user *optval, int __user *optlen) 4382 { 4383 struct sctp_bind_addr *bp; 4384 struct sctp_association *asoc; 4385 int cnt = 0; 4386 struct sctp_getaddrs_old getaddrs; 4387 struct sctp_sockaddr_entry *addr; 4388 void __user *to; 4389 union sctp_addr temp; 4390 struct sctp_sock *sp = sctp_sk(sk); 4391 int addrlen; 4392 int err = 0; 4393 void *addrs; 4394 void *buf; 4395 int bytes_copied = 0; 4396 4397 if (len < sizeof(struct sctp_getaddrs_old)) 4398 return -EINVAL; 4399 4400 len = sizeof(struct sctp_getaddrs_old); 4401 if (copy_from_user(&getaddrs, optval, len)) 4402 return -EFAULT; 4403 4404 if (getaddrs.addr_num <= 0) return -EINVAL; 4405 /* 4406 * For UDP-style sockets, id specifies the association to query. 4407 * If the id field is set to the value '0' then the locally bound 4408 * addresses are returned without regard to any particular 4409 * association. 4410 */ 4411 if (0 == getaddrs.assoc_id) { 4412 bp = &sctp_sk(sk)->ep->base.bind_addr; 4413 } else { 4414 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4415 if (!asoc) 4416 return -EINVAL; 4417 bp = &asoc->base.bind_addr; 4418 } 4419 4420 to = getaddrs.addrs; 4421 4422 /* Allocate space for a local instance of packed array to hold all 4423 * the data. We store addresses here first and then put write them 4424 * to the user in one shot. 4425 */ 4426 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4427 GFP_KERNEL); 4428 if (!addrs) 4429 return -ENOMEM; 4430 4431 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4432 * addresses from the global local address list. 4433 */ 4434 if (sctp_list_single_entry(&bp->address_list)) { 4435 addr = list_entry(bp->address_list.next, 4436 struct sctp_sockaddr_entry, list); 4437 if (sctp_is_any(&addr->a)) { 4438 cnt = sctp_copy_laddrs_old(sk, bp->port, 4439 getaddrs.addr_num, 4440 addrs, &bytes_copied); 4441 goto copy_getaddrs; 4442 } 4443 } 4444 4445 buf = addrs; 4446 /* Protection on the bound address list is not needed since 4447 * in the socket option context we hold a socket lock and 4448 * thus the bound address list can't change. 4449 */ 4450 list_for_each_entry(addr, &bp->address_list, list) { 4451 memcpy(&temp, &addr->a, sizeof(temp)); 4452 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4453 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4454 memcpy(buf, &temp, addrlen); 4455 buf += addrlen; 4456 bytes_copied += addrlen; 4457 cnt ++; 4458 if (cnt >= getaddrs.addr_num) break; 4459 } 4460 4461 copy_getaddrs: 4462 /* copy the entire address list into the user provided space */ 4463 if (copy_to_user(to, addrs, bytes_copied)) { 4464 err = -EFAULT; 4465 goto error; 4466 } 4467 4468 /* copy the leading structure back to user */ 4469 getaddrs.addr_num = cnt; 4470 if (copy_to_user(optval, &getaddrs, len)) 4471 err = -EFAULT; 4472 4473 error: 4474 kfree(addrs); 4475 return err; 4476 } 4477 4478 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4479 char __user *optval, int __user *optlen) 4480 { 4481 struct sctp_bind_addr *bp; 4482 struct sctp_association *asoc; 4483 int cnt = 0; 4484 struct sctp_getaddrs getaddrs; 4485 struct sctp_sockaddr_entry *addr; 4486 void __user *to; 4487 union sctp_addr temp; 4488 struct sctp_sock *sp = sctp_sk(sk); 4489 int addrlen; 4490 int err = 0; 4491 size_t space_left; 4492 int bytes_copied = 0; 4493 void *addrs; 4494 void *buf; 4495 4496 if (len < sizeof(struct sctp_getaddrs)) 4497 return -EINVAL; 4498 4499 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4500 return -EFAULT; 4501 4502 /* 4503 * For UDP-style sockets, id specifies the association to query. 4504 * If the id field is set to the value '0' then the locally bound 4505 * addresses are returned without regard to any particular 4506 * association. 4507 */ 4508 if (0 == getaddrs.assoc_id) { 4509 bp = &sctp_sk(sk)->ep->base.bind_addr; 4510 } else { 4511 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4512 if (!asoc) 4513 return -EINVAL; 4514 bp = &asoc->base.bind_addr; 4515 } 4516 4517 to = optval + offsetof(struct sctp_getaddrs,addrs); 4518 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4519 4520 addrs = kmalloc(space_left, GFP_KERNEL); 4521 if (!addrs) 4522 return -ENOMEM; 4523 4524 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4525 * addresses from the global local address list. 4526 */ 4527 if (sctp_list_single_entry(&bp->address_list)) { 4528 addr = list_entry(bp->address_list.next, 4529 struct sctp_sockaddr_entry, list); 4530 if (sctp_is_any(&addr->a)) { 4531 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4532 space_left, &bytes_copied); 4533 if (cnt < 0) { 4534 err = cnt; 4535 goto out; 4536 } 4537 goto copy_getaddrs; 4538 } 4539 } 4540 4541 buf = addrs; 4542 /* Protection on the bound address list is not needed since 4543 * in the socket option context we hold a socket lock and 4544 * thus the bound address list can't change. 4545 */ 4546 list_for_each_entry(addr, &bp->address_list, list) { 4547 memcpy(&temp, &addr->a, sizeof(temp)); 4548 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4549 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4550 if (space_left < addrlen) { 4551 err = -ENOMEM; /*fixme: right error?*/ 4552 goto out; 4553 } 4554 memcpy(buf, &temp, addrlen); 4555 buf += addrlen; 4556 bytes_copied += addrlen; 4557 cnt ++; 4558 space_left -= addrlen; 4559 } 4560 4561 copy_getaddrs: 4562 if (copy_to_user(to, addrs, bytes_copied)) { 4563 err = -EFAULT; 4564 goto out; 4565 } 4566 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4567 err = -EFAULT; 4568 goto out; 4569 } 4570 if (put_user(bytes_copied, optlen)) 4571 err = -EFAULT; 4572 out: 4573 kfree(addrs); 4574 return err; 4575 } 4576 4577 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4578 * 4579 * Requests that the local SCTP stack use the enclosed peer address as 4580 * the association primary. The enclosed address must be one of the 4581 * association peer's addresses. 4582 */ 4583 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4584 char __user *optval, int __user *optlen) 4585 { 4586 struct sctp_prim prim; 4587 struct sctp_association *asoc; 4588 struct sctp_sock *sp = sctp_sk(sk); 4589 4590 if (len < sizeof(struct sctp_prim)) 4591 return -EINVAL; 4592 4593 len = sizeof(struct sctp_prim); 4594 4595 if (copy_from_user(&prim, optval, len)) 4596 return -EFAULT; 4597 4598 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4599 if (!asoc) 4600 return -EINVAL; 4601 4602 if (!asoc->peer.primary_path) 4603 return -ENOTCONN; 4604 4605 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4606 asoc->peer.primary_path->af_specific->sockaddr_len); 4607 4608 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4609 (union sctp_addr *)&prim.ssp_addr); 4610 4611 if (put_user(len, optlen)) 4612 return -EFAULT; 4613 if (copy_to_user(optval, &prim, len)) 4614 return -EFAULT; 4615 4616 return 0; 4617 } 4618 4619 /* 4620 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4621 * 4622 * Requests that the local endpoint set the specified Adaptation Layer 4623 * Indication parameter for all future INIT and INIT-ACK exchanges. 4624 */ 4625 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4626 char __user *optval, int __user *optlen) 4627 { 4628 struct sctp_setadaptation adaptation; 4629 4630 if (len < sizeof(struct sctp_setadaptation)) 4631 return -EINVAL; 4632 4633 len = sizeof(struct sctp_setadaptation); 4634 4635 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4636 4637 if (put_user(len, optlen)) 4638 return -EFAULT; 4639 if (copy_to_user(optval, &adaptation, len)) 4640 return -EFAULT; 4641 4642 return 0; 4643 } 4644 4645 /* 4646 * 4647 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4648 * 4649 * Applications that wish to use the sendto() system call may wish to 4650 * specify a default set of parameters that would normally be supplied 4651 * through the inclusion of ancillary data. This socket option allows 4652 * such an application to set the default sctp_sndrcvinfo structure. 4653 4654 4655 * The application that wishes to use this socket option simply passes 4656 * in to this call the sctp_sndrcvinfo structure defined in Section 4657 * 5.2.2) The input parameters accepted by this call include 4658 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4659 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4660 * to this call if the caller is using the UDP model. 4661 * 4662 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4663 */ 4664 static int sctp_getsockopt_default_send_param(struct sock *sk, 4665 int len, char __user *optval, 4666 int __user *optlen) 4667 { 4668 struct sctp_sndrcvinfo info; 4669 struct sctp_association *asoc; 4670 struct sctp_sock *sp = sctp_sk(sk); 4671 4672 if (len < sizeof(struct sctp_sndrcvinfo)) 4673 return -EINVAL; 4674 4675 len = sizeof(struct sctp_sndrcvinfo); 4676 4677 if (copy_from_user(&info, optval, len)) 4678 return -EFAULT; 4679 4680 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4681 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4682 return -EINVAL; 4683 4684 if (asoc) { 4685 info.sinfo_stream = asoc->default_stream; 4686 info.sinfo_flags = asoc->default_flags; 4687 info.sinfo_ppid = asoc->default_ppid; 4688 info.sinfo_context = asoc->default_context; 4689 info.sinfo_timetolive = asoc->default_timetolive; 4690 } else { 4691 info.sinfo_stream = sp->default_stream; 4692 info.sinfo_flags = sp->default_flags; 4693 info.sinfo_ppid = sp->default_ppid; 4694 info.sinfo_context = sp->default_context; 4695 info.sinfo_timetolive = sp->default_timetolive; 4696 } 4697 4698 if (put_user(len, optlen)) 4699 return -EFAULT; 4700 if (copy_to_user(optval, &info, len)) 4701 return -EFAULT; 4702 4703 return 0; 4704 } 4705 4706 /* 4707 * 4708 * 7.1.5 SCTP_NODELAY 4709 * 4710 * Turn on/off any Nagle-like algorithm. This means that packets are 4711 * generally sent as soon as possible and no unnecessary delays are 4712 * introduced, at the cost of more packets in the network. Expects an 4713 * integer boolean flag. 4714 */ 4715 4716 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4717 char __user *optval, int __user *optlen) 4718 { 4719 int val; 4720 4721 if (len < sizeof(int)) 4722 return -EINVAL; 4723 4724 len = sizeof(int); 4725 val = (sctp_sk(sk)->nodelay == 1); 4726 if (put_user(len, optlen)) 4727 return -EFAULT; 4728 if (copy_to_user(optval, &val, len)) 4729 return -EFAULT; 4730 return 0; 4731 } 4732 4733 /* 4734 * 4735 * 7.1.1 SCTP_RTOINFO 4736 * 4737 * The protocol parameters used to initialize and bound retransmission 4738 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4739 * and modify these parameters. 4740 * All parameters are time values, in milliseconds. A value of 0, when 4741 * modifying the parameters, indicates that the current value should not 4742 * be changed. 4743 * 4744 */ 4745 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4746 char __user *optval, 4747 int __user *optlen) { 4748 struct sctp_rtoinfo rtoinfo; 4749 struct sctp_association *asoc; 4750 4751 if (len < sizeof (struct sctp_rtoinfo)) 4752 return -EINVAL; 4753 4754 len = sizeof(struct sctp_rtoinfo); 4755 4756 if (copy_from_user(&rtoinfo, optval, len)) 4757 return -EFAULT; 4758 4759 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4760 4761 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4762 return -EINVAL; 4763 4764 /* Values corresponding to the specific association. */ 4765 if (asoc) { 4766 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4767 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4768 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4769 } else { 4770 /* Values corresponding to the endpoint. */ 4771 struct sctp_sock *sp = sctp_sk(sk); 4772 4773 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4774 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4775 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4776 } 4777 4778 if (put_user(len, optlen)) 4779 return -EFAULT; 4780 4781 if (copy_to_user(optval, &rtoinfo, len)) 4782 return -EFAULT; 4783 4784 return 0; 4785 } 4786 4787 /* 4788 * 4789 * 7.1.2 SCTP_ASSOCINFO 4790 * 4791 * This option is used to tune the maximum retransmission attempts 4792 * of the association. 4793 * Returns an error if the new association retransmission value is 4794 * greater than the sum of the retransmission value of the peer. 4795 * See [SCTP] for more information. 4796 * 4797 */ 4798 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4799 char __user *optval, 4800 int __user *optlen) 4801 { 4802 4803 struct sctp_assocparams assocparams; 4804 struct sctp_association *asoc; 4805 struct list_head *pos; 4806 int cnt = 0; 4807 4808 if (len < sizeof (struct sctp_assocparams)) 4809 return -EINVAL; 4810 4811 len = sizeof(struct sctp_assocparams); 4812 4813 if (copy_from_user(&assocparams, optval, len)) 4814 return -EFAULT; 4815 4816 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4817 4818 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4819 return -EINVAL; 4820 4821 /* Values correspoinding to the specific association */ 4822 if (asoc) { 4823 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4824 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4825 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4826 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4827 * 1000) + 4828 (asoc->cookie_life.tv_usec 4829 / 1000); 4830 4831 list_for_each(pos, &asoc->peer.transport_addr_list) { 4832 cnt ++; 4833 } 4834 4835 assocparams.sasoc_number_peer_destinations = cnt; 4836 } else { 4837 /* Values corresponding to the endpoint */ 4838 struct sctp_sock *sp = sctp_sk(sk); 4839 4840 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4841 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4842 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4843 assocparams.sasoc_cookie_life = 4844 sp->assocparams.sasoc_cookie_life; 4845 assocparams.sasoc_number_peer_destinations = 4846 sp->assocparams. 4847 sasoc_number_peer_destinations; 4848 } 4849 4850 if (put_user(len, optlen)) 4851 return -EFAULT; 4852 4853 if (copy_to_user(optval, &assocparams, len)) 4854 return -EFAULT; 4855 4856 return 0; 4857 } 4858 4859 /* 4860 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4861 * 4862 * This socket option is a boolean flag which turns on or off mapped V4 4863 * addresses. If this option is turned on and the socket is type 4864 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4865 * If this option is turned off, then no mapping will be done of V4 4866 * addresses and a user will receive both PF_INET6 and PF_INET type 4867 * addresses on the socket. 4868 */ 4869 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4870 char __user *optval, int __user *optlen) 4871 { 4872 int val; 4873 struct sctp_sock *sp = sctp_sk(sk); 4874 4875 if (len < sizeof(int)) 4876 return -EINVAL; 4877 4878 len = sizeof(int); 4879 val = sp->v4mapped; 4880 if (put_user(len, optlen)) 4881 return -EFAULT; 4882 if (copy_to_user(optval, &val, len)) 4883 return -EFAULT; 4884 4885 return 0; 4886 } 4887 4888 /* 4889 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4890 * (chapter and verse is quoted at sctp_setsockopt_context()) 4891 */ 4892 static int sctp_getsockopt_context(struct sock *sk, int len, 4893 char __user *optval, int __user *optlen) 4894 { 4895 struct sctp_assoc_value params; 4896 struct sctp_sock *sp; 4897 struct sctp_association *asoc; 4898 4899 if (len < sizeof(struct sctp_assoc_value)) 4900 return -EINVAL; 4901 4902 len = sizeof(struct sctp_assoc_value); 4903 4904 if (copy_from_user(¶ms, optval, len)) 4905 return -EFAULT; 4906 4907 sp = sctp_sk(sk); 4908 4909 if (params.assoc_id != 0) { 4910 asoc = sctp_id2assoc(sk, params.assoc_id); 4911 if (!asoc) 4912 return -EINVAL; 4913 params.assoc_value = asoc->default_rcv_context; 4914 } else { 4915 params.assoc_value = sp->default_rcv_context; 4916 } 4917 4918 if (put_user(len, optlen)) 4919 return -EFAULT; 4920 if (copy_to_user(optval, ¶ms, len)) 4921 return -EFAULT; 4922 4923 return 0; 4924 } 4925 4926 /* 4927 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4928 * 4929 * This socket option specifies the maximum size to put in any outgoing 4930 * SCTP chunk. If a message is larger than this size it will be 4931 * fragmented by SCTP into the specified size. Note that the underlying 4932 * SCTP implementation may fragment into smaller sized chunks when the 4933 * PMTU of the underlying association is smaller than the value set by 4934 * the user. 4935 */ 4936 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4937 char __user *optval, int __user *optlen) 4938 { 4939 int val; 4940 4941 if (len < sizeof(int)) 4942 return -EINVAL; 4943 4944 len = sizeof(int); 4945 4946 val = sctp_sk(sk)->user_frag; 4947 if (put_user(len, optlen)) 4948 return -EFAULT; 4949 if (copy_to_user(optval, &val, len)) 4950 return -EFAULT; 4951 4952 return 0; 4953 } 4954 4955 /* 4956 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4957 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4958 */ 4959 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4960 char __user *optval, int __user *optlen) 4961 { 4962 int val; 4963 4964 if (len < sizeof(int)) 4965 return -EINVAL; 4966 4967 len = sizeof(int); 4968 4969 val = sctp_sk(sk)->frag_interleave; 4970 if (put_user(len, optlen)) 4971 return -EFAULT; 4972 if (copy_to_user(optval, &val, len)) 4973 return -EFAULT; 4974 4975 return 0; 4976 } 4977 4978 /* 4979 * 7.1.25. Set or Get the sctp partial delivery point 4980 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4981 */ 4982 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4983 char __user *optval, 4984 int __user *optlen) 4985 { 4986 u32 val; 4987 4988 if (len < sizeof(u32)) 4989 return -EINVAL; 4990 4991 len = sizeof(u32); 4992 4993 val = sctp_sk(sk)->pd_point; 4994 if (put_user(len, optlen)) 4995 return -EFAULT; 4996 if (copy_to_user(optval, &val, len)) 4997 return -EFAULT; 4998 4999 return -ENOTSUPP; 5000 } 5001 5002 /* 5003 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5004 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5005 */ 5006 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5007 char __user *optval, 5008 int __user *optlen) 5009 { 5010 struct sctp_assoc_value params; 5011 struct sctp_sock *sp; 5012 struct sctp_association *asoc; 5013 5014 if (len < sizeof(int)) 5015 return -EINVAL; 5016 5017 if (len == sizeof(int)) { 5018 printk(KERN_WARNING 5019 "SCTP: Use of int in max_burst socket option deprecated\n"); 5020 printk(KERN_WARNING 5021 "SCTP: Use struct sctp_assoc_value instead\n"); 5022 params.assoc_id = 0; 5023 } else if (len == sizeof (struct sctp_assoc_value)) { 5024 if (copy_from_user(¶ms, optval, len)) 5025 return -EFAULT; 5026 } else 5027 return -EINVAL; 5028 5029 sp = sctp_sk(sk); 5030 5031 if (params.assoc_id != 0) { 5032 asoc = sctp_id2assoc(sk, params.assoc_id); 5033 if (!asoc) 5034 return -EINVAL; 5035 params.assoc_value = asoc->max_burst; 5036 } else 5037 params.assoc_value = sp->max_burst; 5038 5039 if (len == sizeof(int)) { 5040 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5041 return -EFAULT; 5042 } else { 5043 if (copy_to_user(optval, ¶ms, len)) 5044 return -EFAULT; 5045 } 5046 5047 return 0; 5048 5049 } 5050 5051 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5052 char __user *optval, int __user *optlen) 5053 { 5054 struct sctp_hmac_algo_param *hmacs; 5055 __u16 param_len; 5056 5057 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5058 param_len = ntohs(hmacs->param_hdr.length); 5059 5060 if (len < param_len) 5061 return -EINVAL; 5062 if (put_user(len, optlen)) 5063 return -EFAULT; 5064 if (copy_to_user(optval, hmacs->hmac_ids, len)) 5065 return -EFAULT; 5066 5067 return 0; 5068 } 5069 5070 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5071 char __user *optval, int __user *optlen) 5072 { 5073 struct sctp_authkeyid val; 5074 struct sctp_association *asoc; 5075 5076 if (len < sizeof(struct sctp_authkeyid)) 5077 return -EINVAL; 5078 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5079 return -EFAULT; 5080 5081 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5082 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5083 return -EINVAL; 5084 5085 if (asoc) 5086 val.scact_keynumber = asoc->active_key_id; 5087 else 5088 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5089 5090 return 0; 5091 } 5092 5093 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5094 char __user *optval, int __user *optlen) 5095 { 5096 struct sctp_authchunks __user *p = (void __user *)optval; 5097 struct sctp_authchunks val; 5098 struct sctp_association *asoc; 5099 struct sctp_chunks_param *ch; 5100 u32 num_chunks; 5101 char __user *to; 5102 5103 if (len <= sizeof(struct sctp_authchunks)) 5104 return -EINVAL; 5105 5106 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5107 return -EFAULT; 5108 5109 to = p->gauth_chunks; 5110 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5111 if (!asoc) 5112 return -EINVAL; 5113 5114 ch = asoc->peer.peer_chunks; 5115 5116 /* See if the user provided enough room for all the data */ 5117 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5118 if (len < num_chunks) 5119 return -EINVAL; 5120 5121 len = num_chunks; 5122 if (put_user(len, optlen)) 5123 return -EFAULT; 5124 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5125 return -EFAULT; 5126 if (copy_to_user(to, ch->chunks, len)) 5127 return -EFAULT; 5128 5129 return 0; 5130 } 5131 5132 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5133 char __user *optval, int __user *optlen) 5134 { 5135 struct sctp_authchunks __user *p = (void __user *)optval; 5136 struct sctp_authchunks val; 5137 struct sctp_association *asoc; 5138 struct sctp_chunks_param *ch; 5139 u32 num_chunks; 5140 char __user *to; 5141 5142 if (len <= sizeof(struct sctp_authchunks)) 5143 return -EINVAL; 5144 5145 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5146 return -EFAULT; 5147 5148 to = p->gauth_chunks; 5149 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5150 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5151 return -EINVAL; 5152 5153 if (asoc) 5154 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5155 else 5156 ch = sctp_sk(sk)->ep->auth_chunk_list; 5157 5158 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5159 if (len < num_chunks) 5160 return -EINVAL; 5161 5162 len = num_chunks; 5163 if (put_user(len, optlen)) 5164 return -EFAULT; 5165 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5166 return -EFAULT; 5167 if (copy_to_user(to, ch->chunks, len)) 5168 return -EFAULT; 5169 5170 return 0; 5171 } 5172 5173 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5174 char __user *optval, int __user *optlen) 5175 { 5176 int retval = 0; 5177 int len; 5178 5179 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5180 sk, optname); 5181 5182 /* I can hardly begin to describe how wrong this is. This is 5183 * so broken as to be worse than useless. The API draft 5184 * REALLY is NOT helpful here... I am not convinced that the 5185 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5186 * are at all well-founded. 5187 */ 5188 if (level != SOL_SCTP) { 5189 struct sctp_af *af = sctp_sk(sk)->pf->af; 5190 5191 retval = af->getsockopt(sk, level, optname, optval, optlen); 5192 return retval; 5193 } 5194 5195 if (get_user(len, optlen)) 5196 return -EFAULT; 5197 5198 sctp_lock_sock(sk); 5199 5200 switch (optname) { 5201 case SCTP_STATUS: 5202 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5203 break; 5204 case SCTP_DISABLE_FRAGMENTS: 5205 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5206 optlen); 5207 break; 5208 case SCTP_EVENTS: 5209 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5210 break; 5211 case SCTP_AUTOCLOSE: 5212 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5213 break; 5214 case SCTP_SOCKOPT_PEELOFF: 5215 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5216 break; 5217 case SCTP_PEER_ADDR_PARAMS: 5218 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5219 optlen); 5220 break; 5221 case SCTP_DELAYED_ACK_TIME: 5222 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 5223 optlen); 5224 break; 5225 case SCTP_INITMSG: 5226 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5227 break; 5228 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5229 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5230 optlen); 5231 break; 5232 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5233 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5234 optlen); 5235 break; 5236 case SCTP_GET_PEER_ADDRS_OLD: 5237 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5238 optlen); 5239 break; 5240 case SCTP_GET_LOCAL_ADDRS_OLD: 5241 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5242 optlen); 5243 break; 5244 case SCTP_GET_PEER_ADDRS: 5245 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5246 optlen); 5247 break; 5248 case SCTP_GET_LOCAL_ADDRS: 5249 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5250 optlen); 5251 break; 5252 case SCTP_DEFAULT_SEND_PARAM: 5253 retval = sctp_getsockopt_default_send_param(sk, len, 5254 optval, optlen); 5255 break; 5256 case SCTP_PRIMARY_ADDR: 5257 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5258 break; 5259 case SCTP_NODELAY: 5260 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5261 break; 5262 case SCTP_RTOINFO: 5263 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5264 break; 5265 case SCTP_ASSOCINFO: 5266 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5267 break; 5268 case SCTP_I_WANT_MAPPED_V4_ADDR: 5269 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5270 break; 5271 case SCTP_MAXSEG: 5272 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5273 break; 5274 case SCTP_GET_PEER_ADDR_INFO: 5275 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5276 optlen); 5277 break; 5278 case SCTP_ADAPTATION_LAYER: 5279 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5280 optlen); 5281 break; 5282 case SCTP_CONTEXT: 5283 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5284 break; 5285 case SCTP_FRAGMENT_INTERLEAVE: 5286 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5287 optlen); 5288 break; 5289 case SCTP_PARTIAL_DELIVERY_POINT: 5290 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5291 optlen); 5292 break; 5293 case SCTP_MAX_BURST: 5294 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5295 break; 5296 case SCTP_AUTH_KEY: 5297 case SCTP_AUTH_CHUNK: 5298 case SCTP_AUTH_DELETE_KEY: 5299 retval = -EOPNOTSUPP; 5300 break; 5301 case SCTP_HMAC_IDENT: 5302 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5303 break; 5304 case SCTP_AUTH_ACTIVE_KEY: 5305 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5306 break; 5307 case SCTP_PEER_AUTH_CHUNKS: 5308 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5309 optlen); 5310 break; 5311 case SCTP_LOCAL_AUTH_CHUNKS: 5312 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5313 optlen); 5314 break; 5315 default: 5316 retval = -ENOPROTOOPT; 5317 break; 5318 } 5319 5320 sctp_release_sock(sk); 5321 return retval; 5322 } 5323 5324 static void sctp_hash(struct sock *sk) 5325 { 5326 /* STUB */ 5327 } 5328 5329 static void sctp_unhash(struct sock *sk) 5330 { 5331 /* STUB */ 5332 } 5333 5334 /* Check if port is acceptable. Possibly find first available port. 5335 * 5336 * The port hash table (contained in the 'global' SCTP protocol storage 5337 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5338 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5339 * list (the list number is the port number hashed out, so as you 5340 * would expect from a hash function, all the ports in a given list have 5341 * such a number that hashes out to the same list number; you were 5342 * expecting that, right?); so each list has a set of ports, with a 5343 * link to the socket (struct sock) that uses it, the port number and 5344 * a fastreuse flag (FIXME: NPI ipg). 5345 */ 5346 static struct sctp_bind_bucket *sctp_bucket_create( 5347 struct sctp_bind_hashbucket *head, unsigned short snum); 5348 5349 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5350 { 5351 struct sctp_bind_hashbucket *head; /* hash list */ 5352 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5353 struct hlist_node *node; 5354 unsigned short snum; 5355 int ret; 5356 5357 snum = ntohs(addr->v4.sin_port); 5358 5359 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5360 sctp_local_bh_disable(); 5361 5362 if (snum == 0) { 5363 /* Search for an available port. */ 5364 int low, high, remaining, index; 5365 unsigned int rover; 5366 5367 inet_get_local_port_range(&low, &high); 5368 remaining = (high - low) + 1; 5369 rover = net_random() % remaining + low; 5370 5371 do { 5372 rover++; 5373 if ((rover < low) || (rover > high)) 5374 rover = low; 5375 index = sctp_phashfn(rover); 5376 head = &sctp_port_hashtable[index]; 5377 sctp_spin_lock(&head->lock); 5378 sctp_for_each_hentry(pp, node, &head->chain) 5379 if (pp->port == rover) 5380 goto next; 5381 break; 5382 next: 5383 sctp_spin_unlock(&head->lock); 5384 } while (--remaining > 0); 5385 5386 /* Exhausted local port range during search? */ 5387 ret = 1; 5388 if (remaining <= 0) 5389 goto fail; 5390 5391 /* OK, here is the one we will use. HEAD (the port 5392 * hash table list entry) is non-NULL and we hold it's 5393 * mutex. 5394 */ 5395 snum = rover; 5396 } else { 5397 /* We are given an specific port number; we verify 5398 * that it is not being used. If it is used, we will 5399 * exahust the search in the hash list corresponding 5400 * to the port number (snum) - we detect that with the 5401 * port iterator, pp being NULL. 5402 */ 5403 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5404 sctp_spin_lock(&head->lock); 5405 sctp_for_each_hentry(pp, node, &head->chain) { 5406 if (pp->port == snum) 5407 goto pp_found; 5408 } 5409 } 5410 pp = NULL; 5411 goto pp_not_found; 5412 pp_found: 5413 if (!hlist_empty(&pp->owner)) { 5414 /* We had a port hash table hit - there is an 5415 * available port (pp != NULL) and it is being 5416 * used by other socket (pp->owner not empty); that other 5417 * socket is going to be sk2. 5418 */ 5419 int reuse = sk->sk_reuse; 5420 struct sock *sk2; 5421 struct hlist_node *node; 5422 5423 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5424 if (pp->fastreuse && sk->sk_reuse && 5425 sk->sk_state != SCTP_SS_LISTENING) 5426 goto success; 5427 5428 /* Run through the list of sockets bound to the port 5429 * (pp->port) [via the pointers bind_next and 5430 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5431 * we get the endpoint they describe and run through 5432 * the endpoint's list of IP (v4 or v6) addresses, 5433 * comparing each of the addresses with the address of 5434 * the socket sk. If we find a match, then that means 5435 * that this port/socket (sk) combination are already 5436 * in an endpoint. 5437 */ 5438 sk_for_each_bound(sk2, node, &pp->owner) { 5439 struct sctp_endpoint *ep2; 5440 ep2 = sctp_sk(sk2)->ep; 5441 5442 if (reuse && sk2->sk_reuse && 5443 sk2->sk_state != SCTP_SS_LISTENING) 5444 continue; 5445 5446 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5447 sctp_sk(sk))) { 5448 ret = (long)sk2; 5449 goto fail_unlock; 5450 } 5451 } 5452 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5453 } 5454 pp_not_found: 5455 /* If there was a hash table miss, create a new port. */ 5456 ret = 1; 5457 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5458 goto fail_unlock; 5459 5460 /* In either case (hit or miss), make sure fastreuse is 1 only 5461 * if sk->sk_reuse is too (that is, if the caller requested 5462 * SO_REUSEADDR on this socket -sk-). 5463 */ 5464 if (hlist_empty(&pp->owner)) { 5465 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5466 pp->fastreuse = 1; 5467 else 5468 pp->fastreuse = 0; 5469 } else if (pp->fastreuse && 5470 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5471 pp->fastreuse = 0; 5472 5473 /* We are set, so fill up all the data in the hash table 5474 * entry, tie the socket list information with the rest of the 5475 * sockets FIXME: Blurry, NPI (ipg). 5476 */ 5477 success: 5478 if (!sctp_sk(sk)->bind_hash) { 5479 inet_sk(sk)->num = snum; 5480 sk_add_bind_node(sk, &pp->owner); 5481 sctp_sk(sk)->bind_hash = pp; 5482 } 5483 ret = 0; 5484 5485 fail_unlock: 5486 sctp_spin_unlock(&head->lock); 5487 5488 fail: 5489 sctp_local_bh_enable(); 5490 return ret; 5491 } 5492 5493 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5494 * port is requested. 5495 */ 5496 static int sctp_get_port(struct sock *sk, unsigned short snum) 5497 { 5498 long ret; 5499 union sctp_addr addr; 5500 struct sctp_af *af = sctp_sk(sk)->pf->af; 5501 5502 /* Set up a dummy address struct from the sk. */ 5503 af->from_sk(&addr, sk); 5504 addr.v4.sin_port = htons(snum); 5505 5506 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5507 ret = sctp_get_port_local(sk, &addr); 5508 5509 return (ret ? 1 : 0); 5510 } 5511 5512 /* 5513 * 3.1.3 listen() - UDP Style Syntax 5514 * 5515 * By default, new associations are not accepted for UDP style sockets. 5516 * An application uses listen() to mark a socket as being able to 5517 * accept new associations. 5518 */ 5519 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5520 { 5521 struct sctp_sock *sp = sctp_sk(sk); 5522 struct sctp_endpoint *ep = sp->ep; 5523 5524 /* Only UDP style sockets that are not peeled off are allowed to 5525 * listen(). 5526 */ 5527 if (!sctp_style(sk, UDP)) 5528 return -EINVAL; 5529 5530 /* If backlog is zero, disable listening. */ 5531 if (!backlog) { 5532 if (sctp_sstate(sk, CLOSED)) 5533 return 0; 5534 5535 sctp_unhash_endpoint(ep); 5536 sk->sk_state = SCTP_SS_CLOSED; 5537 return 0; 5538 } 5539 5540 /* Return if we are already listening. */ 5541 if (sctp_sstate(sk, LISTENING)) 5542 return 0; 5543 5544 /* 5545 * If a bind() or sctp_bindx() is not called prior to a listen() 5546 * call that allows new associations to be accepted, the system 5547 * picks an ephemeral port and will choose an address set equivalent 5548 * to binding with a wildcard address. 5549 * 5550 * This is not currently spelled out in the SCTP sockets 5551 * extensions draft, but follows the practice as seen in TCP 5552 * sockets. 5553 * 5554 * Additionally, turn off fastreuse flag since we are not listening 5555 */ 5556 sk->sk_state = SCTP_SS_LISTENING; 5557 if (!ep->base.bind_addr.port) { 5558 if (sctp_autobind(sk)) 5559 return -EAGAIN; 5560 } else 5561 sctp_sk(sk)->bind_hash->fastreuse = 0; 5562 5563 sctp_hash_endpoint(ep); 5564 return 0; 5565 } 5566 5567 /* 5568 * 4.1.3 listen() - TCP Style Syntax 5569 * 5570 * Applications uses listen() to ready the SCTP endpoint for accepting 5571 * inbound associations. 5572 */ 5573 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5574 { 5575 struct sctp_sock *sp = sctp_sk(sk); 5576 struct sctp_endpoint *ep = sp->ep; 5577 5578 /* If backlog is zero, disable listening. */ 5579 if (!backlog) { 5580 if (sctp_sstate(sk, CLOSED)) 5581 return 0; 5582 5583 sctp_unhash_endpoint(ep); 5584 sk->sk_state = SCTP_SS_CLOSED; 5585 return 0; 5586 } 5587 5588 if (sctp_sstate(sk, LISTENING)) 5589 return 0; 5590 5591 /* 5592 * If a bind() or sctp_bindx() is not called prior to a listen() 5593 * call that allows new associations to be accepted, the system 5594 * picks an ephemeral port and will choose an address set equivalent 5595 * to binding with a wildcard address. 5596 * 5597 * This is not currently spelled out in the SCTP sockets 5598 * extensions draft, but follows the practice as seen in TCP 5599 * sockets. 5600 */ 5601 sk->sk_state = SCTP_SS_LISTENING; 5602 if (!ep->base.bind_addr.port) { 5603 if (sctp_autobind(sk)) 5604 return -EAGAIN; 5605 } else 5606 sctp_sk(sk)->bind_hash->fastreuse = 0; 5607 5608 sk->sk_max_ack_backlog = backlog; 5609 sctp_hash_endpoint(ep); 5610 return 0; 5611 } 5612 5613 /* 5614 * Move a socket to LISTENING state. 5615 */ 5616 int sctp_inet_listen(struct socket *sock, int backlog) 5617 { 5618 struct sock *sk = sock->sk; 5619 struct crypto_hash *tfm = NULL; 5620 int err = -EINVAL; 5621 5622 if (unlikely(backlog < 0)) 5623 goto out; 5624 5625 sctp_lock_sock(sk); 5626 5627 if (sock->state != SS_UNCONNECTED) 5628 goto out; 5629 5630 /* Allocate HMAC for generating cookie. */ 5631 if (sctp_hmac_alg) { 5632 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5633 if (IS_ERR(tfm)) { 5634 if (net_ratelimit()) { 5635 printk(KERN_INFO 5636 "SCTP: failed to load transform for %s: %ld\n", 5637 sctp_hmac_alg, PTR_ERR(tfm)); 5638 } 5639 err = -ENOSYS; 5640 goto out; 5641 } 5642 } 5643 5644 switch (sock->type) { 5645 case SOCK_SEQPACKET: 5646 err = sctp_seqpacket_listen(sk, backlog); 5647 break; 5648 case SOCK_STREAM: 5649 err = sctp_stream_listen(sk, backlog); 5650 break; 5651 default: 5652 break; 5653 } 5654 5655 if (err) 5656 goto cleanup; 5657 5658 /* Store away the transform reference. */ 5659 sctp_sk(sk)->hmac = tfm; 5660 out: 5661 sctp_release_sock(sk); 5662 return err; 5663 cleanup: 5664 crypto_free_hash(tfm); 5665 goto out; 5666 } 5667 5668 /* 5669 * This function is done by modeling the current datagram_poll() and the 5670 * tcp_poll(). Note that, based on these implementations, we don't 5671 * lock the socket in this function, even though it seems that, 5672 * ideally, locking or some other mechanisms can be used to ensure 5673 * the integrity of the counters (sndbuf and wmem_alloc) used 5674 * in this place. We assume that we don't need locks either until proven 5675 * otherwise. 5676 * 5677 * Another thing to note is that we include the Async I/O support 5678 * here, again, by modeling the current TCP/UDP code. We don't have 5679 * a good way to test with it yet. 5680 */ 5681 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5682 { 5683 struct sock *sk = sock->sk; 5684 struct sctp_sock *sp = sctp_sk(sk); 5685 unsigned int mask; 5686 5687 poll_wait(file, sk->sk_sleep, wait); 5688 5689 /* A TCP-style listening socket becomes readable when the accept queue 5690 * is not empty. 5691 */ 5692 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5693 return (!list_empty(&sp->ep->asocs)) ? 5694 (POLLIN | POLLRDNORM) : 0; 5695 5696 mask = 0; 5697 5698 /* Is there any exceptional events? */ 5699 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5700 mask |= POLLERR; 5701 if (sk->sk_shutdown & RCV_SHUTDOWN) 5702 mask |= POLLRDHUP; 5703 if (sk->sk_shutdown == SHUTDOWN_MASK) 5704 mask |= POLLHUP; 5705 5706 /* Is it readable? Reconsider this code with TCP-style support. */ 5707 if (!skb_queue_empty(&sk->sk_receive_queue) || 5708 (sk->sk_shutdown & RCV_SHUTDOWN)) 5709 mask |= POLLIN | POLLRDNORM; 5710 5711 /* The association is either gone or not ready. */ 5712 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5713 return mask; 5714 5715 /* Is it writable? */ 5716 if (sctp_writeable(sk)) { 5717 mask |= POLLOUT | POLLWRNORM; 5718 } else { 5719 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5720 /* 5721 * Since the socket is not locked, the buffer 5722 * might be made available after the writeable check and 5723 * before the bit is set. This could cause a lost I/O 5724 * signal. tcp_poll() has a race breaker for this race 5725 * condition. Based on their implementation, we put 5726 * in the following code to cover it as well. 5727 */ 5728 if (sctp_writeable(sk)) 5729 mask |= POLLOUT | POLLWRNORM; 5730 } 5731 return mask; 5732 } 5733 5734 /******************************************************************** 5735 * 2nd Level Abstractions 5736 ********************************************************************/ 5737 5738 static struct sctp_bind_bucket *sctp_bucket_create( 5739 struct sctp_bind_hashbucket *head, unsigned short snum) 5740 { 5741 struct sctp_bind_bucket *pp; 5742 5743 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5744 if (pp) { 5745 SCTP_DBG_OBJCNT_INC(bind_bucket); 5746 pp->port = snum; 5747 pp->fastreuse = 0; 5748 INIT_HLIST_HEAD(&pp->owner); 5749 hlist_add_head(&pp->node, &head->chain); 5750 } 5751 return pp; 5752 } 5753 5754 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5755 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5756 { 5757 if (pp && hlist_empty(&pp->owner)) { 5758 __hlist_del(&pp->node); 5759 kmem_cache_free(sctp_bucket_cachep, pp); 5760 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5761 } 5762 } 5763 5764 /* Release this socket's reference to a local port. */ 5765 static inline void __sctp_put_port(struct sock *sk) 5766 { 5767 struct sctp_bind_hashbucket *head = 5768 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5769 struct sctp_bind_bucket *pp; 5770 5771 sctp_spin_lock(&head->lock); 5772 pp = sctp_sk(sk)->bind_hash; 5773 __sk_del_bind_node(sk); 5774 sctp_sk(sk)->bind_hash = NULL; 5775 inet_sk(sk)->num = 0; 5776 sctp_bucket_destroy(pp); 5777 sctp_spin_unlock(&head->lock); 5778 } 5779 5780 void sctp_put_port(struct sock *sk) 5781 { 5782 sctp_local_bh_disable(); 5783 __sctp_put_port(sk); 5784 sctp_local_bh_enable(); 5785 } 5786 5787 /* 5788 * The system picks an ephemeral port and choose an address set equivalent 5789 * to binding with a wildcard address. 5790 * One of those addresses will be the primary address for the association. 5791 * This automatically enables the multihoming capability of SCTP. 5792 */ 5793 static int sctp_autobind(struct sock *sk) 5794 { 5795 union sctp_addr autoaddr; 5796 struct sctp_af *af; 5797 __be16 port; 5798 5799 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5800 af = sctp_sk(sk)->pf->af; 5801 5802 port = htons(inet_sk(sk)->num); 5803 af->inaddr_any(&autoaddr, port); 5804 5805 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5806 } 5807 5808 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5809 * 5810 * From RFC 2292 5811 * 4.2 The cmsghdr Structure * 5812 * 5813 * When ancillary data is sent or received, any number of ancillary data 5814 * objects can be specified by the msg_control and msg_controllen members of 5815 * the msghdr structure, because each object is preceded by 5816 * a cmsghdr structure defining the object's length (the cmsg_len member). 5817 * Historically Berkeley-derived implementations have passed only one object 5818 * at a time, but this API allows multiple objects to be 5819 * passed in a single call to sendmsg() or recvmsg(). The following example 5820 * shows two ancillary data objects in a control buffer. 5821 * 5822 * |<--------------------------- msg_controllen -------------------------->| 5823 * | | 5824 * 5825 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5826 * 5827 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5828 * | | | 5829 * 5830 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5831 * 5832 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5833 * | | | | | 5834 * 5835 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5836 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5837 * 5838 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5839 * 5840 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5841 * ^ 5842 * | 5843 * 5844 * msg_control 5845 * points here 5846 */ 5847 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5848 sctp_cmsgs_t *cmsgs) 5849 { 5850 struct cmsghdr *cmsg; 5851 struct msghdr *my_msg = (struct msghdr *)msg; 5852 5853 for (cmsg = CMSG_FIRSTHDR(msg); 5854 cmsg != NULL; 5855 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 5856 if (!CMSG_OK(my_msg, cmsg)) 5857 return -EINVAL; 5858 5859 /* Should we parse this header or ignore? */ 5860 if (cmsg->cmsg_level != IPPROTO_SCTP) 5861 continue; 5862 5863 /* Strictly check lengths following example in SCM code. */ 5864 switch (cmsg->cmsg_type) { 5865 case SCTP_INIT: 5866 /* SCTP Socket API Extension 5867 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5868 * 5869 * This cmsghdr structure provides information for 5870 * initializing new SCTP associations with sendmsg(). 5871 * The SCTP_INITMSG socket option uses this same data 5872 * structure. This structure is not used for 5873 * recvmsg(). 5874 * 5875 * cmsg_level cmsg_type cmsg_data[] 5876 * ------------ ------------ ---------------------- 5877 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5878 */ 5879 if (cmsg->cmsg_len != 5880 CMSG_LEN(sizeof(struct sctp_initmsg))) 5881 return -EINVAL; 5882 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5883 break; 5884 5885 case SCTP_SNDRCV: 5886 /* SCTP Socket API Extension 5887 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5888 * 5889 * This cmsghdr structure specifies SCTP options for 5890 * sendmsg() and describes SCTP header information 5891 * about a received message through recvmsg(). 5892 * 5893 * cmsg_level cmsg_type cmsg_data[] 5894 * ------------ ------------ ---------------------- 5895 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5896 */ 5897 if (cmsg->cmsg_len != 5898 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5899 return -EINVAL; 5900 5901 cmsgs->info = 5902 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5903 5904 /* Minimally, validate the sinfo_flags. */ 5905 if (cmsgs->info->sinfo_flags & 5906 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5907 SCTP_ABORT | SCTP_EOF)) 5908 return -EINVAL; 5909 break; 5910 5911 default: 5912 return -EINVAL; 5913 } 5914 } 5915 return 0; 5916 } 5917 5918 /* 5919 * Wait for a packet.. 5920 * Note: This function is the same function as in core/datagram.c 5921 * with a few modifications to make lksctp work. 5922 */ 5923 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5924 { 5925 int error; 5926 DEFINE_WAIT(wait); 5927 5928 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5929 5930 /* Socket errors? */ 5931 error = sock_error(sk); 5932 if (error) 5933 goto out; 5934 5935 if (!skb_queue_empty(&sk->sk_receive_queue)) 5936 goto ready; 5937 5938 /* Socket shut down? */ 5939 if (sk->sk_shutdown & RCV_SHUTDOWN) 5940 goto out; 5941 5942 /* Sequenced packets can come disconnected. If so we report the 5943 * problem. 5944 */ 5945 error = -ENOTCONN; 5946 5947 /* Is there a good reason to think that we may receive some data? */ 5948 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5949 goto out; 5950 5951 /* Handle signals. */ 5952 if (signal_pending(current)) 5953 goto interrupted; 5954 5955 /* Let another process have a go. Since we are going to sleep 5956 * anyway. Note: This may cause odd behaviors if the message 5957 * does not fit in the user's buffer, but this seems to be the 5958 * only way to honor MSG_DONTWAIT realistically. 5959 */ 5960 sctp_release_sock(sk); 5961 *timeo_p = schedule_timeout(*timeo_p); 5962 sctp_lock_sock(sk); 5963 5964 ready: 5965 finish_wait(sk->sk_sleep, &wait); 5966 return 0; 5967 5968 interrupted: 5969 error = sock_intr_errno(*timeo_p); 5970 5971 out: 5972 finish_wait(sk->sk_sleep, &wait); 5973 *err = error; 5974 return error; 5975 } 5976 5977 /* Receive a datagram. 5978 * Note: This is pretty much the same routine as in core/datagram.c 5979 * with a few changes to make lksctp work. 5980 */ 5981 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5982 int noblock, int *err) 5983 { 5984 int error; 5985 struct sk_buff *skb; 5986 long timeo; 5987 5988 timeo = sock_rcvtimeo(sk, noblock); 5989 5990 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5991 timeo, MAX_SCHEDULE_TIMEOUT); 5992 5993 do { 5994 /* Again only user level code calls this function, 5995 * so nothing interrupt level 5996 * will suddenly eat the receive_queue. 5997 * 5998 * Look at current nfs client by the way... 5999 * However, this function was corrent in any case. 8) 6000 */ 6001 if (flags & MSG_PEEK) { 6002 spin_lock_bh(&sk->sk_receive_queue.lock); 6003 skb = skb_peek(&sk->sk_receive_queue); 6004 if (skb) 6005 atomic_inc(&skb->users); 6006 spin_unlock_bh(&sk->sk_receive_queue.lock); 6007 } else { 6008 skb = skb_dequeue(&sk->sk_receive_queue); 6009 } 6010 6011 if (skb) 6012 return skb; 6013 6014 /* Caller is allowed not to check sk->sk_err before calling. */ 6015 error = sock_error(sk); 6016 if (error) 6017 goto no_packet; 6018 6019 if (sk->sk_shutdown & RCV_SHUTDOWN) 6020 break; 6021 6022 /* User doesn't want to wait. */ 6023 error = -EAGAIN; 6024 if (!timeo) 6025 goto no_packet; 6026 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6027 6028 return NULL; 6029 6030 no_packet: 6031 *err = error; 6032 return NULL; 6033 } 6034 6035 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6036 static void __sctp_write_space(struct sctp_association *asoc) 6037 { 6038 struct sock *sk = asoc->base.sk; 6039 struct socket *sock = sk->sk_socket; 6040 6041 if ((sctp_wspace(asoc) > 0) && sock) { 6042 if (waitqueue_active(&asoc->wait)) 6043 wake_up_interruptible(&asoc->wait); 6044 6045 if (sctp_writeable(sk)) { 6046 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6047 wake_up_interruptible(sk->sk_sleep); 6048 6049 /* Note that we try to include the Async I/O support 6050 * here by modeling from the current TCP/UDP code. 6051 * We have not tested with it yet. 6052 */ 6053 if (sock->fasync_list && 6054 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6055 sock_wake_async(sock, 6056 SOCK_WAKE_SPACE, POLL_OUT); 6057 } 6058 } 6059 } 6060 6061 /* Do accounting for the sndbuf space. 6062 * Decrement the used sndbuf space of the corresponding association by the 6063 * data size which was just transmitted(freed). 6064 */ 6065 static void sctp_wfree(struct sk_buff *skb) 6066 { 6067 struct sctp_association *asoc; 6068 struct sctp_chunk *chunk; 6069 struct sock *sk; 6070 6071 /* Get the saved chunk pointer. */ 6072 chunk = *((struct sctp_chunk **)(skb->cb)); 6073 asoc = chunk->asoc; 6074 sk = asoc->base.sk; 6075 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6076 sizeof(struct sk_buff) + 6077 sizeof(struct sctp_chunk); 6078 6079 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6080 6081 /* 6082 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6083 */ 6084 sk->sk_wmem_queued -= skb->truesize; 6085 sk_mem_uncharge(sk, skb->truesize); 6086 6087 sock_wfree(skb); 6088 __sctp_write_space(asoc); 6089 6090 sctp_association_put(asoc); 6091 } 6092 6093 /* Do accounting for the receive space on the socket. 6094 * Accounting for the association is done in ulpevent.c 6095 * We set this as a destructor for the cloned data skbs so that 6096 * accounting is done at the correct time. 6097 */ 6098 void sctp_sock_rfree(struct sk_buff *skb) 6099 { 6100 struct sock *sk = skb->sk; 6101 struct sctp_ulpevent *event = sctp_skb2event(skb); 6102 6103 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6104 6105 /* 6106 * Mimic the behavior of sock_rfree 6107 */ 6108 sk_mem_uncharge(sk, event->rmem_len); 6109 } 6110 6111 6112 /* Helper function to wait for space in the sndbuf. */ 6113 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6114 size_t msg_len) 6115 { 6116 struct sock *sk = asoc->base.sk; 6117 int err = 0; 6118 long current_timeo = *timeo_p; 6119 DEFINE_WAIT(wait); 6120 6121 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6122 asoc, (long)(*timeo_p), msg_len); 6123 6124 /* Increment the association's refcnt. */ 6125 sctp_association_hold(asoc); 6126 6127 /* Wait on the association specific sndbuf space. */ 6128 for (;;) { 6129 prepare_to_wait_exclusive(&asoc->wait, &wait, 6130 TASK_INTERRUPTIBLE); 6131 if (!*timeo_p) 6132 goto do_nonblock; 6133 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6134 asoc->base.dead) 6135 goto do_error; 6136 if (signal_pending(current)) 6137 goto do_interrupted; 6138 if (msg_len <= sctp_wspace(asoc)) 6139 break; 6140 6141 /* Let another process have a go. Since we are going 6142 * to sleep anyway. 6143 */ 6144 sctp_release_sock(sk); 6145 current_timeo = schedule_timeout(current_timeo); 6146 BUG_ON(sk != asoc->base.sk); 6147 sctp_lock_sock(sk); 6148 6149 *timeo_p = current_timeo; 6150 } 6151 6152 out: 6153 finish_wait(&asoc->wait, &wait); 6154 6155 /* Release the association's refcnt. */ 6156 sctp_association_put(asoc); 6157 6158 return err; 6159 6160 do_error: 6161 err = -EPIPE; 6162 goto out; 6163 6164 do_interrupted: 6165 err = sock_intr_errno(*timeo_p); 6166 goto out; 6167 6168 do_nonblock: 6169 err = -EAGAIN; 6170 goto out; 6171 } 6172 6173 /* If socket sndbuf has changed, wake up all per association waiters. */ 6174 void sctp_write_space(struct sock *sk) 6175 { 6176 struct sctp_association *asoc; 6177 6178 /* Wake up the tasks in each wait queue. */ 6179 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6180 __sctp_write_space(asoc); 6181 } 6182 } 6183 6184 /* Is there any sndbuf space available on the socket? 6185 * 6186 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6187 * associations on the same socket. For a UDP-style socket with 6188 * multiple associations, it is possible for it to be "unwriteable" 6189 * prematurely. I assume that this is acceptable because 6190 * a premature "unwriteable" is better than an accidental "writeable" which 6191 * would cause an unwanted block under certain circumstances. For the 1-1 6192 * UDP-style sockets or TCP-style sockets, this code should work. 6193 * - Daisy 6194 */ 6195 static int sctp_writeable(struct sock *sk) 6196 { 6197 int amt = 0; 6198 6199 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 6200 if (amt < 0) 6201 amt = 0; 6202 return amt; 6203 } 6204 6205 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6206 * returns immediately with EINPROGRESS. 6207 */ 6208 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6209 { 6210 struct sock *sk = asoc->base.sk; 6211 int err = 0; 6212 long current_timeo = *timeo_p; 6213 DEFINE_WAIT(wait); 6214 6215 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6216 (long)(*timeo_p)); 6217 6218 /* Increment the association's refcnt. */ 6219 sctp_association_hold(asoc); 6220 6221 for (;;) { 6222 prepare_to_wait_exclusive(&asoc->wait, &wait, 6223 TASK_INTERRUPTIBLE); 6224 if (!*timeo_p) 6225 goto do_nonblock; 6226 if (sk->sk_shutdown & RCV_SHUTDOWN) 6227 break; 6228 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6229 asoc->base.dead) 6230 goto do_error; 6231 if (signal_pending(current)) 6232 goto do_interrupted; 6233 6234 if (sctp_state(asoc, ESTABLISHED)) 6235 break; 6236 6237 /* Let another process have a go. Since we are going 6238 * to sleep anyway. 6239 */ 6240 sctp_release_sock(sk); 6241 current_timeo = schedule_timeout(current_timeo); 6242 sctp_lock_sock(sk); 6243 6244 *timeo_p = current_timeo; 6245 } 6246 6247 out: 6248 finish_wait(&asoc->wait, &wait); 6249 6250 /* Release the association's refcnt. */ 6251 sctp_association_put(asoc); 6252 6253 return err; 6254 6255 do_error: 6256 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6257 err = -ETIMEDOUT; 6258 else 6259 err = -ECONNREFUSED; 6260 goto out; 6261 6262 do_interrupted: 6263 err = sock_intr_errno(*timeo_p); 6264 goto out; 6265 6266 do_nonblock: 6267 err = -EINPROGRESS; 6268 goto out; 6269 } 6270 6271 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6272 { 6273 struct sctp_endpoint *ep; 6274 int err = 0; 6275 DEFINE_WAIT(wait); 6276 6277 ep = sctp_sk(sk)->ep; 6278 6279 6280 for (;;) { 6281 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6282 TASK_INTERRUPTIBLE); 6283 6284 if (list_empty(&ep->asocs)) { 6285 sctp_release_sock(sk); 6286 timeo = schedule_timeout(timeo); 6287 sctp_lock_sock(sk); 6288 } 6289 6290 err = -EINVAL; 6291 if (!sctp_sstate(sk, LISTENING)) 6292 break; 6293 6294 err = 0; 6295 if (!list_empty(&ep->asocs)) 6296 break; 6297 6298 err = sock_intr_errno(timeo); 6299 if (signal_pending(current)) 6300 break; 6301 6302 err = -EAGAIN; 6303 if (!timeo) 6304 break; 6305 } 6306 6307 finish_wait(sk->sk_sleep, &wait); 6308 6309 return err; 6310 } 6311 6312 static void sctp_wait_for_close(struct sock *sk, long timeout) 6313 { 6314 DEFINE_WAIT(wait); 6315 6316 do { 6317 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6318 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6319 break; 6320 sctp_release_sock(sk); 6321 timeout = schedule_timeout(timeout); 6322 sctp_lock_sock(sk); 6323 } while (!signal_pending(current) && timeout); 6324 6325 finish_wait(sk->sk_sleep, &wait); 6326 } 6327 6328 static void sctp_sock_rfree_frag(struct sk_buff *skb) 6329 { 6330 struct sk_buff *frag; 6331 6332 if (!skb->data_len) 6333 goto done; 6334 6335 /* Don't forget the fragments. */ 6336 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6337 sctp_sock_rfree_frag(frag); 6338 6339 done: 6340 sctp_sock_rfree(skb); 6341 } 6342 6343 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6344 { 6345 struct sk_buff *frag; 6346 6347 if (!skb->data_len) 6348 goto done; 6349 6350 /* Don't forget the fragments. */ 6351 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6352 sctp_skb_set_owner_r_frag(frag, sk); 6353 6354 done: 6355 sctp_skb_set_owner_r(skb, sk); 6356 } 6357 6358 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6359 * and its messages to the newsk. 6360 */ 6361 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6362 struct sctp_association *assoc, 6363 sctp_socket_type_t type) 6364 { 6365 struct sctp_sock *oldsp = sctp_sk(oldsk); 6366 struct sctp_sock *newsp = sctp_sk(newsk); 6367 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6368 struct sctp_endpoint *newep = newsp->ep; 6369 struct sk_buff *skb, *tmp; 6370 struct sctp_ulpevent *event; 6371 struct sctp_bind_hashbucket *head; 6372 6373 /* Migrate socket buffer sizes and all the socket level options to the 6374 * new socket. 6375 */ 6376 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6377 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6378 /* Brute force copy old sctp opt. */ 6379 inet_sk_copy_descendant(newsk, oldsk); 6380 6381 /* Restore the ep value that was overwritten with the above structure 6382 * copy. 6383 */ 6384 newsp->ep = newep; 6385 newsp->hmac = NULL; 6386 6387 /* Hook this new socket in to the bind_hash list. */ 6388 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6389 sctp_local_bh_disable(); 6390 sctp_spin_lock(&head->lock); 6391 pp = sctp_sk(oldsk)->bind_hash; 6392 sk_add_bind_node(newsk, &pp->owner); 6393 sctp_sk(newsk)->bind_hash = pp; 6394 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6395 sctp_spin_unlock(&head->lock); 6396 sctp_local_bh_enable(); 6397 6398 /* Copy the bind_addr list from the original endpoint to the new 6399 * endpoint so that we can handle restarts properly 6400 */ 6401 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6402 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6403 6404 /* Move any messages in the old socket's receive queue that are for the 6405 * peeled off association to the new socket's receive queue. 6406 */ 6407 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6408 event = sctp_skb2event(skb); 6409 if (event->asoc == assoc) { 6410 sctp_sock_rfree_frag(skb); 6411 __skb_unlink(skb, &oldsk->sk_receive_queue); 6412 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6413 sctp_skb_set_owner_r_frag(skb, newsk); 6414 } 6415 } 6416 6417 /* Clean up any messages pending delivery due to partial 6418 * delivery. Three cases: 6419 * 1) No partial deliver; no work. 6420 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6421 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6422 */ 6423 skb_queue_head_init(&newsp->pd_lobby); 6424 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6425 6426 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6427 struct sk_buff_head *queue; 6428 6429 /* Decide which queue to move pd_lobby skbs to. */ 6430 if (assoc->ulpq.pd_mode) { 6431 queue = &newsp->pd_lobby; 6432 } else 6433 queue = &newsk->sk_receive_queue; 6434 6435 /* Walk through the pd_lobby, looking for skbs that 6436 * need moved to the new socket. 6437 */ 6438 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6439 event = sctp_skb2event(skb); 6440 if (event->asoc == assoc) { 6441 sctp_sock_rfree_frag(skb); 6442 __skb_unlink(skb, &oldsp->pd_lobby); 6443 __skb_queue_tail(queue, skb); 6444 sctp_skb_set_owner_r_frag(skb, newsk); 6445 } 6446 } 6447 6448 /* Clear up any skbs waiting for the partial 6449 * delivery to finish. 6450 */ 6451 if (assoc->ulpq.pd_mode) 6452 sctp_clear_pd(oldsk, NULL); 6453 6454 } 6455 6456 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6457 sctp_sock_rfree_frag(skb); 6458 sctp_skb_set_owner_r_frag(skb, newsk); 6459 } 6460 6461 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6462 sctp_sock_rfree_frag(skb); 6463 sctp_skb_set_owner_r_frag(skb, newsk); 6464 } 6465 6466 /* Set the type of socket to indicate that it is peeled off from the 6467 * original UDP-style socket or created with the accept() call on a 6468 * TCP-style socket.. 6469 */ 6470 newsp->type = type; 6471 6472 /* Mark the new socket "in-use" by the user so that any packets 6473 * that may arrive on the association after we've moved it are 6474 * queued to the backlog. This prevents a potential race between 6475 * backlog processing on the old socket and new-packet processing 6476 * on the new socket. 6477 * 6478 * The caller has just allocated newsk so we can guarantee that other 6479 * paths won't try to lock it and then oldsk. 6480 */ 6481 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6482 sctp_assoc_migrate(assoc, newsk); 6483 6484 /* If the association on the newsk is already closed before accept() 6485 * is called, set RCV_SHUTDOWN flag. 6486 */ 6487 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6488 newsk->sk_shutdown |= RCV_SHUTDOWN; 6489 6490 newsk->sk_state = SCTP_SS_ESTABLISHED; 6491 sctp_release_sock(newsk); 6492 } 6493 6494 6495 /* This proto struct describes the ULP interface for SCTP. */ 6496 struct proto sctp_prot = { 6497 .name = "SCTP", 6498 .owner = THIS_MODULE, 6499 .close = sctp_close, 6500 .connect = sctp_connect, 6501 .disconnect = sctp_disconnect, 6502 .accept = sctp_accept, 6503 .ioctl = sctp_ioctl, 6504 .init = sctp_init_sock, 6505 .destroy = sctp_destroy_sock, 6506 .shutdown = sctp_shutdown, 6507 .setsockopt = sctp_setsockopt, 6508 .getsockopt = sctp_getsockopt, 6509 .sendmsg = sctp_sendmsg, 6510 .recvmsg = sctp_recvmsg, 6511 .bind = sctp_bind, 6512 .backlog_rcv = sctp_backlog_rcv, 6513 .hash = sctp_hash, 6514 .unhash = sctp_unhash, 6515 .get_port = sctp_get_port, 6516 .obj_size = sizeof(struct sctp_sock), 6517 .sysctl_mem = sysctl_sctp_mem, 6518 .sysctl_rmem = sysctl_sctp_rmem, 6519 .sysctl_wmem = sysctl_sctp_wmem, 6520 .memory_pressure = &sctp_memory_pressure, 6521 .enter_memory_pressure = sctp_enter_memory_pressure, 6522 .memory_allocated = &sctp_memory_allocated, 6523 .sockets_allocated = &sctp_sockets_allocated, 6524 }; 6525 6526 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6527 6528 struct proto sctpv6_prot = { 6529 .name = "SCTPv6", 6530 .owner = THIS_MODULE, 6531 .close = sctp_close, 6532 .connect = sctp_connect, 6533 .disconnect = sctp_disconnect, 6534 .accept = sctp_accept, 6535 .ioctl = sctp_ioctl, 6536 .init = sctp_init_sock, 6537 .destroy = sctp_destroy_sock, 6538 .shutdown = sctp_shutdown, 6539 .setsockopt = sctp_setsockopt, 6540 .getsockopt = sctp_getsockopt, 6541 .sendmsg = sctp_sendmsg, 6542 .recvmsg = sctp_recvmsg, 6543 .bind = sctp_bind, 6544 .backlog_rcv = sctp_backlog_rcv, 6545 .hash = sctp_hash, 6546 .unhash = sctp_unhash, 6547 .get_port = sctp_get_port, 6548 .obj_size = sizeof(struct sctp6_sock), 6549 .sysctl_mem = sysctl_sctp_mem, 6550 .sysctl_rmem = sysctl_sctp_rmem, 6551 .sysctl_wmem = sysctl_sctp_wmem, 6552 .memory_pressure = &sctp_memory_pressure, 6553 .enter_memory_pressure = sctp_enter_memory_pressure, 6554 .memory_allocated = &sctp_memory_allocated, 6555 .sockets_allocated = &sctp_sockets_allocated, 6556 }; 6557 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6558