xref: /openbmc/linux/net/sctp/socket.c (revision 110e6f26)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_transport *transport;
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 
241 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 					       laddr,
243 					       &transport);
244 
245 	if (!addr_asoc)
246 		return NULL;
247 
248 	id_asoc = sctp_id2assoc(sk, id);
249 	if (id_asoc && (id_asoc != addr_asoc))
250 		return NULL;
251 
252 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 						(union sctp_addr *)addr);
254 
255 	return transport;
256 }
257 
258 /* API 3.1.2 bind() - UDP Style Syntax
259  * The syntax of bind() is,
260  *
261  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
262  *
263  *   sd      - the socket descriptor returned by socket().
264  *   addr    - the address structure (struct sockaddr_in or struct
265  *             sockaddr_in6 [RFC 2553]),
266  *   addr_len - the size of the address structure.
267  */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 	int retval = 0;
271 
272 	lock_sock(sk);
273 
274 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 		 addr, addr_len);
276 
277 	/* Disallow binding twice. */
278 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 				      addr_len);
281 	else
282 		retval = -EINVAL;
283 
284 	release_sock(sk);
285 
286 	return retval;
287 }
288 
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290 
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 					union sctp_addr *addr, int len)
294 {
295 	struct sctp_af *af;
296 
297 	/* Check minimum size.  */
298 	if (len < sizeof (struct sockaddr))
299 		return NULL;
300 
301 	/* V4 mapped address are really of AF_INET family */
302 	if (addr->sa.sa_family == AF_INET6 &&
303 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 		if (!opt->pf->af_supported(AF_INET, opt))
305 			return NULL;
306 	} else {
307 		/* Does this PF support this AF? */
308 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 			return NULL;
310 	}
311 
312 	/* If we get this far, af is valid. */
313 	af = sctp_get_af_specific(addr->sa.sa_family);
314 
315 	if (len < af->sockaddr_len)
316 		return NULL;
317 
318 	return af;
319 }
320 
321 /* Bind a local address either to an endpoint or to an association.  */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 	struct net *net = sock_net(sk);
325 	struct sctp_sock *sp = sctp_sk(sk);
326 	struct sctp_endpoint *ep = sp->ep;
327 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 	struct sctp_af *af;
329 	unsigned short snum;
330 	int ret = 0;
331 
332 	/* Common sockaddr verification. */
333 	af = sctp_sockaddr_af(sp, addr, len);
334 	if (!af) {
335 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 			 __func__, sk, addr, len);
337 		return -EINVAL;
338 	}
339 
340 	snum = ntohs(addr->v4.sin_port);
341 
342 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 		 __func__, sk, &addr->sa, bp->port, snum, len);
344 
345 	/* PF specific bind() address verification. */
346 	if (!sp->pf->bind_verify(sp, addr))
347 		return -EADDRNOTAVAIL;
348 
349 	/* We must either be unbound, or bind to the same port.
350 	 * It's OK to allow 0 ports if we are already bound.
351 	 * We'll just inhert an already bound port in this case
352 	 */
353 	if (bp->port) {
354 		if (!snum)
355 			snum = bp->port;
356 		else if (snum != bp->port) {
357 			pr_debug("%s: new port %d doesn't match existing port "
358 				 "%d\n", __func__, snum, bp->port);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	if (snum && snum < PROT_SOCK &&
364 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 		return -EACCES;
366 
367 	/* See if the address matches any of the addresses we may have
368 	 * already bound before checking against other endpoints.
369 	 */
370 	if (sctp_bind_addr_match(bp, addr, sp))
371 		return -EINVAL;
372 
373 	/* Make sure we are allowed to bind here.
374 	 * The function sctp_get_port_local() does duplicate address
375 	 * detection.
376 	 */
377 	addr->v4.sin_port = htons(snum);
378 	if ((ret = sctp_get_port_local(sk, addr))) {
379 		return -EADDRINUSE;
380 	}
381 
382 	/* Refresh ephemeral port.  */
383 	if (!bp->port)
384 		bp->port = inet_sk(sk)->inet_num;
385 
386 	/* Add the address to the bind address list.
387 	 * Use GFP_ATOMIC since BHs will be disabled.
388 	 */
389 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 				 SCTP_ADDR_SRC, GFP_ATOMIC);
391 
392 	/* Copy back into socket for getsockname() use. */
393 	if (!ret) {
394 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
395 		sp->pf->to_sk_saddr(addr, sk);
396 	}
397 
398 	return ret;
399 }
400 
401  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402  *
403  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404  * at any one time.  If a sender, after sending an ASCONF chunk, decides
405  * it needs to transfer another ASCONF Chunk, it MUST wait until the
406  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407  * subsequent ASCONF. Note this restriction binds each side, so at any
408  * time two ASCONF may be in-transit on any given association (one sent
409  * from each endpoint).
410  */
411 static int sctp_send_asconf(struct sctp_association *asoc,
412 			    struct sctp_chunk *chunk)
413 {
414 	struct net 	*net = sock_net(asoc->base.sk);
415 	int		retval = 0;
416 
417 	/* If there is an outstanding ASCONF chunk, queue it for later
418 	 * transmission.
419 	 */
420 	if (asoc->addip_last_asconf) {
421 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 		goto out;
423 	}
424 
425 	/* Hold the chunk until an ASCONF_ACK is received. */
426 	sctp_chunk_hold(chunk);
427 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 	if (retval)
429 		sctp_chunk_free(chunk);
430 	else
431 		asoc->addip_last_asconf = chunk;
432 
433 out:
434 	return retval;
435 }
436 
437 /* Add a list of addresses as bind addresses to local endpoint or
438  * association.
439  *
440  * Basically run through each address specified in the addrs/addrcnt
441  * array/length pair, determine if it is IPv6 or IPv4 and call
442  * sctp_do_bind() on it.
443  *
444  * If any of them fails, then the operation will be reversed and the
445  * ones that were added will be removed.
446  *
447  * Only sctp_setsockopt_bindx() is supposed to call this function.
448  */
449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450 {
451 	int cnt;
452 	int retval = 0;
453 	void *addr_buf;
454 	struct sockaddr *sa_addr;
455 	struct sctp_af *af;
456 
457 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
458 		 addrs, addrcnt);
459 
460 	addr_buf = addrs;
461 	for (cnt = 0; cnt < addrcnt; cnt++) {
462 		/* The list may contain either IPv4 or IPv6 address;
463 		 * determine the address length for walking thru the list.
464 		 */
465 		sa_addr = addr_buf;
466 		af = sctp_get_af_specific(sa_addr->sa_family);
467 		if (!af) {
468 			retval = -EINVAL;
469 			goto err_bindx_add;
470 		}
471 
472 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 				      af->sockaddr_len);
474 
475 		addr_buf += af->sockaddr_len;
476 
477 err_bindx_add:
478 		if (retval < 0) {
479 			/* Failed. Cleanup the ones that have been added */
480 			if (cnt > 0)
481 				sctp_bindx_rem(sk, addrs, cnt);
482 			return retval;
483 		}
484 	}
485 
486 	return retval;
487 }
488 
489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490  * associations that are part of the endpoint indicating that a list of local
491  * addresses are added to the endpoint.
492  *
493  * If any of the addresses is already in the bind address list of the
494  * association, we do not send the chunk for that association.  But it will not
495  * affect other associations.
496  *
497  * Only sctp_setsockopt_bindx() is supposed to call this function.
498  */
499 static int sctp_send_asconf_add_ip(struct sock		*sk,
500 				   struct sockaddr	*addrs,
501 				   int 			addrcnt)
502 {
503 	struct net *net = sock_net(sk);
504 	struct sctp_sock		*sp;
505 	struct sctp_endpoint		*ep;
506 	struct sctp_association		*asoc;
507 	struct sctp_bind_addr		*bp;
508 	struct sctp_chunk		*chunk;
509 	struct sctp_sockaddr_entry	*laddr;
510 	union sctp_addr			*addr;
511 	union sctp_addr			saveaddr;
512 	void				*addr_buf;
513 	struct sctp_af			*af;
514 	struct list_head		*p;
515 	int 				i;
516 	int 				retval = 0;
517 
518 	if (!net->sctp.addip_enable)
519 		return retval;
520 
521 	sp = sctp_sk(sk);
522 	ep = sp->ep;
523 
524 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
525 		 __func__, sk, addrs, addrcnt);
526 
527 	list_for_each_entry(asoc, &ep->asocs, asocs) {
528 		if (!asoc->peer.asconf_capable)
529 			continue;
530 
531 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 			continue;
533 
534 		if (!sctp_state(asoc, ESTABLISHED))
535 			continue;
536 
537 		/* Check if any address in the packed array of addresses is
538 		 * in the bind address list of the association. If so,
539 		 * do not send the asconf chunk to its peer, but continue with
540 		 * other associations.
541 		 */
542 		addr_buf = addrs;
543 		for (i = 0; i < addrcnt; i++) {
544 			addr = addr_buf;
545 			af = sctp_get_af_specific(addr->v4.sin_family);
546 			if (!af) {
547 				retval = -EINVAL;
548 				goto out;
549 			}
550 
551 			if (sctp_assoc_lookup_laddr(asoc, addr))
552 				break;
553 
554 			addr_buf += af->sockaddr_len;
555 		}
556 		if (i < addrcnt)
557 			continue;
558 
559 		/* Use the first valid address in bind addr list of
560 		 * association as Address Parameter of ASCONF CHUNK.
561 		 */
562 		bp = &asoc->base.bind_addr;
563 		p = bp->address_list.next;
564 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
565 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 						   addrcnt, SCTP_PARAM_ADD_IP);
567 		if (!chunk) {
568 			retval = -ENOMEM;
569 			goto out;
570 		}
571 
572 		/* Add the new addresses to the bind address list with
573 		 * use_as_src set to 0.
574 		 */
575 		addr_buf = addrs;
576 		for (i = 0; i < addrcnt; i++) {
577 			addr = addr_buf;
578 			af = sctp_get_af_specific(addr->v4.sin_family);
579 			memcpy(&saveaddr, addr, af->sockaddr_len);
580 			retval = sctp_add_bind_addr(bp, &saveaddr,
581 						    sizeof(saveaddr),
582 						    SCTP_ADDR_NEW, GFP_ATOMIC);
583 			addr_buf += af->sockaddr_len;
584 		}
585 		if (asoc->src_out_of_asoc_ok) {
586 			struct sctp_transport *trans;
587 
588 			list_for_each_entry(trans,
589 			    &asoc->peer.transport_addr_list, transports) {
590 				/* Clear the source and route cache */
591 				dst_release(trans->dst);
592 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
593 				    2*asoc->pathmtu, 4380));
594 				trans->ssthresh = asoc->peer.i.a_rwnd;
595 				trans->rto = asoc->rto_initial;
596 				sctp_max_rto(asoc, trans);
597 				trans->rtt = trans->srtt = trans->rttvar = 0;
598 				sctp_transport_route(trans, NULL,
599 				    sctp_sk(asoc->base.sk));
600 			}
601 		}
602 		retval = sctp_send_asconf(asoc, chunk);
603 	}
604 
605 out:
606 	return retval;
607 }
608 
609 /* Remove a list of addresses from bind addresses list.  Do not remove the
610  * last address.
611  *
612  * Basically run through each address specified in the addrs/addrcnt
613  * array/length pair, determine if it is IPv6 or IPv4 and call
614  * sctp_del_bind() on it.
615  *
616  * If any of them fails, then the operation will be reversed and the
617  * ones that were removed will be added back.
618  *
619  * At least one address has to be left; if only one address is
620  * available, the operation will return -EBUSY.
621  *
622  * Only sctp_setsockopt_bindx() is supposed to call this function.
623  */
624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625 {
626 	struct sctp_sock *sp = sctp_sk(sk);
627 	struct sctp_endpoint *ep = sp->ep;
628 	int cnt;
629 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 	int retval = 0;
631 	void *addr_buf;
632 	union sctp_addr *sa_addr;
633 	struct sctp_af *af;
634 
635 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
636 		 __func__, sk, addrs, addrcnt);
637 
638 	addr_buf = addrs;
639 	for (cnt = 0; cnt < addrcnt; cnt++) {
640 		/* If the bind address list is empty or if there is only one
641 		 * bind address, there is nothing more to be removed (we need
642 		 * at least one address here).
643 		 */
644 		if (list_empty(&bp->address_list) ||
645 		    (sctp_list_single_entry(&bp->address_list))) {
646 			retval = -EBUSY;
647 			goto err_bindx_rem;
648 		}
649 
650 		sa_addr = addr_buf;
651 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 		if (!af) {
653 			retval = -EINVAL;
654 			goto err_bindx_rem;
655 		}
656 
657 		if (!af->addr_valid(sa_addr, sp, NULL)) {
658 			retval = -EADDRNOTAVAIL;
659 			goto err_bindx_rem;
660 		}
661 
662 		if (sa_addr->v4.sin_port &&
663 		    sa_addr->v4.sin_port != htons(bp->port)) {
664 			retval = -EINVAL;
665 			goto err_bindx_rem;
666 		}
667 
668 		if (!sa_addr->v4.sin_port)
669 			sa_addr->v4.sin_port = htons(bp->port);
670 
671 		/* FIXME - There is probably a need to check if sk->sk_saddr and
672 		 * sk->sk_rcv_addr are currently set to one of the addresses to
673 		 * be removed. This is something which needs to be looked into
674 		 * when we are fixing the outstanding issues with multi-homing
675 		 * socket routing and failover schemes. Refer to comments in
676 		 * sctp_do_bind(). -daisy
677 		 */
678 		retval = sctp_del_bind_addr(bp, sa_addr);
679 
680 		addr_buf += af->sockaddr_len;
681 err_bindx_rem:
682 		if (retval < 0) {
683 			/* Failed. Add the ones that has been removed back */
684 			if (cnt > 0)
685 				sctp_bindx_add(sk, addrs, cnt);
686 			return retval;
687 		}
688 	}
689 
690 	return retval;
691 }
692 
693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694  * the associations that are part of the endpoint indicating that a list of
695  * local addresses are removed from the endpoint.
696  *
697  * If any of the addresses is already in the bind address list of the
698  * association, we do not send the chunk for that association.  But it will not
699  * affect other associations.
700  *
701  * Only sctp_setsockopt_bindx() is supposed to call this function.
702  */
703 static int sctp_send_asconf_del_ip(struct sock		*sk,
704 				   struct sockaddr	*addrs,
705 				   int			addrcnt)
706 {
707 	struct net *net = sock_net(sk);
708 	struct sctp_sock	*sp;
709 	struct sctp_endpoint	*ep;
710 	struct sctp_association	*asoc;
711 	struct sctp_transport	*transport;
712 	struct sctp_bind_addr	*bp;
713 	struct sctp_chunk	*chunk;
714 	union sctp_addr		*laddr;
715 	void			*addr_buf;
716 	struct sctp_af		*af;
717 	struct sctp_sockaddr_entry *saddr;
718 	int 			i;
719 	int 			retval = 0;
720 	int			stored = 0;
721 
722 	chunk = NULL;
723 	if (!net->sctp.addip_enable)
724 		return retval;
725 
726 	sp = sctp_sk(sk);
727 	ep = sp->ep;
728 
729 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
730 		 __func__, sk, addrs, addrcnt);
731 
732 	list_for_each_entry(asoc, &ep->asocs, asocs) {
733 
734 		if (!asoc->peer.asconf_capable)
735 			continue;
736 
737 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 			continue;
739 
740 		if (!sctp_state(asoc, ESTABLISHED))
741 			continue;
742 
743 		/* Check if any address in the packed array of addresses is
744 		 * not present in the bind address list of the association.
745 		 * If so, do not send the asconf chunk to its peer, but
746 		 * continue with other associations.
747 		 */
748 		addr_buf = addrs;
749 		for (i = 0; i < addrcnt; i++) {
750 			laddr = addr_buf;
751 			af = sctp_get_af_specific(laddr->v4.sin_family);
752 			if (!af) {
753 				retval = -EINVAL;
754 				goto out;
755 			}
756 
757 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 				break;
759 
760 			addr_buf += af->sockaddr_len;
761 		}
762 		if (i < addrcnt)
763 			continue;
764 
765 		/* Find one address in the association's bind address list
766 		 * that is not in the packed array of addresses. This is to
767 		 * make sure that we do not delete all the addresses in the
768 		 * association.
769 		 */
770 		bp = &asoc->base.bind_addr;
771 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 					       addrcnt, sp);
773 		if ((laddr == NULL) && (addrcnt == 1)) {
774 			if (asoc->asconf_addr_del_pending)
775 				continue;
776 			asoc->asconf_addr_del_pending =
777 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
778 			if (asoc->asconf_addr_del_pending == NULL) {
779 				retval = -ENOMEM;
780 				goto out;
781 			}
782 			asoc->asconf_addr_del_pending->sa.sa_family =
783 				    addrs->sa_family;
784 			asoc->asconf_addr_del_pending->v4.sin_port =
785 				    htons(bp->port);
786 			if (addrs->sa_family == AF_INET) {
787 				struct sockaddr_in *sin;
788 
789 				sin = (struct sockaddr_in *)addrs;
790 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 			} else if (addrs->sa_family == AF_INET6) {
792 				struct sockaddr_in6 *sin6;
793 
794 				sin6 = (struct sockaddr_in6 *)addrs;
795 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 			}
797 
798 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
799 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
800 				 asoc->asconf_addr_del_pending);
801 
802 			asoc->src_out_of_asoc_ok = 1;
803 			stored = 1;
804 			goto skip_mkasconf;
805 		}
806 
807 		if (laddr == NULL)
808 			return -EINVAL;
809 
810 		/* We do not need RCU protection throughout this loop
811 		 * because this is done under a socket lock from the
812 		 * setsockopt call.
813 		 */
814 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 						   SCTP_PARAM_DEL_IP);
816 		if (!chunk) {
817 			retval = -ENOMEM;
818 			goto out;
819 		}
820 
821 skip_mkasconf:
822 		/* Reset use_as_src flag for the addresses in the bind address
823 		 * list that are to be deleted.
824 		 */
825 		addr_buf = addrs;
826 		for (i = 0; i < addrcnt; i++) {
827 			laddr = addr_buf;
828 			af = sctp_get_af_specific(laddr->v4.sin_family);
829 			list_for_each_entry(saddr, &bp->address_list, list) {
830 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 					saddr->state = SCTP_ADDR_DEL;
832 			}
833 			addr_buf += af->sockaddr_len;
834 		}
835 
836 		/* Update the route and saddr entries for all the transports
837 		 * as some of the addresses in the bind address list are
838 		 * about to be deleted and cannot be used as source addresses.
839 		 */
840 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
841 					transports) {
842 			dst_release(transport->dst);
843 			sctp_transport_route(transport, NULL,
844 					     sctp_sk(asoc->base.sk));
845 		}
846 
847 		if (stored)
848 			/* We don't need to transmit ASCONF */
849 			continue;
850 		retval = sctp_send_asconf(asoc, chunk);
851 	}
852 out:
853 	return retval;
854 }
855 
856 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858 {
859 	struct sock *sk = sctp_opt2sk(sp);
860 	union sctp_addr *addr;
861 	struct sctp_af *af;
862 
863 	/* It is safe to write port space in caller. */
864 	addr = &addrw->a;
865 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
866 	af = sctp_get_af_specific(addr->sa.sa_family);
867 	if (!af)
868 		return -EINVAL;
869 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 		return -EINVAL;
871 
872 	if (addrw->state == SCTP_ADDR_NEW)
873 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 	else
875 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876 }
877 
878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879  *
880  * API 8.1
881  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882  *                int flags);
883  *
884  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886  * or IPv6 addresses.
887  *
888  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889  * Section 3.1.2 for this usage.
890  *
891  * addrs is a pointer to an array of one or more socket addresses. Each
892  * address is contained in its appropriate structure (i.e. struct
893  * sockaddr_in or struct sockaddr_in6) the family of the address type
894  * must be used to distinguish the address length (note that this
895  * representation is termed a "packed array" of addresses). The caller
896  * specifies the number of addresses in the array with addrcnt.
897  *
898  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899  * -1, and sets errno to the appropriate error code.
900  *
901  * For SCTP, the port given in each socket address must be the same, or
902  * sctp_bindx() will fail, setting errno to EINVAL.
903  *
904  * The flags parameter is formed from the bitwise OR of zero or more of
905  * the following currently defined flags:
906  *
907  * SCTP_BINDX_ADD_ADDR
908  *
909  * SCTP_BINDX_REM_ADDR
910  *
911  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913  * addresses from the association. The two flags are mutually exclusive;
914  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915  * not remove all addresses from an association; sctp_bindx() will
916  * reject such an attempt with EINVAL.
917  *
918  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919  * additional addresses with an endpoint after calling bind().  Or use
920  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921  * socket is associated with so that no new association accepted will be
922  * associated with those addresses. If the endpoint supports dynamic
923  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924  * endpoint to send the appropriate message to the peer to change the
925  * peers address lists.
926  *
927  * Adding and removing addresses from a connected association is
928  * optional functionality. Implementations that do not support this
929  * functionality should return EOPNOTSUPP.
930  *
931  * Basically do nothing but copying the addresses from user to kernel
932  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934  * from userspace.
935  *
936  * We don't use copy_from_user() for optimization: we first do the
937  * sanity checks (buffer size -fast- and access check-healthy
938  * pointer); if all of those succeed, then we can alloc the memory
939  * (expensive operation) needed to copy the data to kernel. Then we do
940  * the copying without checking the user space area
941  * (__copy_from_user()).
942  *
943  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944  * it.
945  *
946  * sk        The sk of the socket
947  * addrs     The pointer to the addresses in user land
948  * addrssize Size of the addrs buffer
949  * op        Operation to perform (add or remove, see the flags of
950  *           sctp_bindx)
951  *
952  * Returns 0 if ok, <0 errno code on error.
953  */
954 static int sctp_setsockopt_bindx(struct sock *sk,
955 				 struct sockaddr __user *addrs,
956 				 int addrs_size, int op)
957 {
958 	struct sockaddr *kaddrs;
959 	int err;
960 	int addrcnt = 0;
961 	int walk_size = 0;
962 	struct sockaddr *sa_addr;
963 	void *addr_buf;
964 	struct sctp_af *af;
965 
966 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
967 		 __func__, sk, addrs, addrs_size, op);
968 
969 	if (unlikely(addrs_size <= 0))
970 		return -EINVAL;
971 
972 	/* Check the user passed a healthy pointer.  */
973 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
974 		return -EFAULT;
975 
976 	/* Alloc space for the address array in kernel memory.  */
977 	kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
978 	if (unlikely(!kaddrs))
979 		return -ENOMEM;
980 
981 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 		kfree(kaddrs);
983 		return -EFAULT;
984 	}
985 
986 	/* Walk through the addrs buffer and count the number of addresses. */
987 	addr_buf = kaddrs;
988 	while (walk_size < addrs_size) {
989 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 			kfree(kaddrs);
991 			return -EINVAL;
992 		}
993 
994 		sa_addr = addr_buf;
995 		af = sctp_get_af_specific(sa_addr->sa_family);
996 
997 		/* If the address family is not supported or if this address
998 		 * causes the address buffer to overflow return EINVAL.
999 		 */
1000 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 			kfree(kaddrs);
1002 			return -EINVAL;
1003 		}
1004 		addrcnt++;
1005 		addr_buf += af->sockaddr_len;
1006 		walk_size += af->sockaddr_len;
1007 	}
1008 
1009 	/* Do the work. */
1010 	switch (op) {
1011 	case SCTP_BINDX_ADD_ADDR:
1012 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 		if (err)
1014 			goto out;
1015 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 		break;
1017 
1018 	case SCTP_BINDX_REM_ADDR:
1019 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 		if (err)
1021 			goto out;
1022 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 		break;
1024 
1025 	default:
1026 		err = -EINVAL;
1027 		break;
1028 	}
1029 
1030 out:
1031 	kfree(kaddrs);
1032 
1033 	return err;
1034 }
1035 
1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037  *
1038  * Common routine for handling connect() and sctp_connectx().
1039  * Connect will come in with just a single address.
1040  */
1041 static int __sctp_connect(struct sock *sk,
1042 			  struct sockaddr *kaddrs,
1043 			  int addrs_size,
1044 			  sctp_assoc_t *assoc_id)
1045 {
1046 	struct net *net = sock_net(sk);
1047 	struct sctp_sock *sp;
1048 	struct sctp_endpoint *ep;
1049 	struct sctp_association *asoc = NULL;
1050 	struct sctp_association *asoc2;
1051 	struct sctp_transport *transport;
1052 	union sctp_addr to;
1053 	sctp_scope_t scope;
1054 	long timeo;
1055 	int err = 0;
1056 	int addrcnt = 0;
1057 	int walk_size = 0;
1058 	union sctp_addr *sa_addr = NULL;
1059 	void *addr_buf;
1060 	unsigned short port;
1061 	unsigned int f_flags = 0;
1062 
1063 	sp = sctp_sk(sk);
1064 	ep = sp->ep;
1065 
1066 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1067 	 * state - UDP-style peeled off socket or a TCP-style socket that
1068 	 * is already connected.
1069 	 * It cannot be done even on a TCP-style listening socket.
1070 	 */
1071 	if (sctp_sstate(sk, ESTABLISHED) ||
1072 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 		err = -EISCONN;
1074 		goto out_free;
1075 	}
1076 
1077 	/* Walk through the addrs buffer and count the number of addresses. */
1078 	addr_buf = kaddrs;
1079 	while (walk_size < addrs_size) {
1080 		struct sctp_af *af;
1081 
1082 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 			err = -EINVAL;
1084 			goto out_free;
1085 		}
1086 
1087 		sa_addr = addr_buf;
1088 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089 
1090 		/* If the address family is not supported or if this address
1091 		 * causes the address buffer to overflow return EINVAL.
1092 		 */
1093 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 			err = -EINVAL;
1095 			goto out_free;
1096 		}
1097 
1098 		port = ntohs(sa_addr->v4.sin_port);
1099 
1100 		/* Save current address so we can work with it */
1101 		memcpy(&to, sa_addr, af->sockaddr_len);
1102 
1103 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 		if (err)
1105 			goto out_free;
1106 
1107 		/* Make sure the destination port is correctly set
1108 		 * in all addresses.
1109 		 */
1110 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 			err = -EINVAL;
1112 			goto out_free;
1113 		}
1114 
1115 		/* Check if there already is a matching association on the
1116 		 * endpoint (other than the one created here).
1117 		 */
1118 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 		if (asoc2 && asoc2 != asoc) {
1120 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 				err = -EISCONN;
1122 			else
1123 				err = -EALREADY;
1124 			goto out_free;
1125 		}
1126 
1127 		/* If we could not find a matching association on the endpoint,
1128 		 * make sure that there is no peeled-off association matching
1129 		 * the peer address even on another socket.
1130 		 */
1131 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 			err = -EADDRNOTAVAIL;
1133 			goto out_free;
1134 		}
1135 
1136 		if (!asoc) {
1137 			/* If a bind() or sctp_bindx() is not called prior to
1138 			 * an sctp_connectx() call, the system picks an
1139 			 * ephemeral port and will choose an address set
1140 			 * equivalent to binding with a wildcard address.
1141 			 */
1142 			if (!ep->base.bind_addr.port) {
1143 				if (sctp_autobind(sk)) {
1144 					err = -EAGAIN;
1145 					goto out_free;
1146 				}
1147 			} else {
1148 				/*
1149 				 * If an unprivileged user inherits a 1-many
1150 				 * style socket with open associations on a
1151 				 * privileged port, it MAY be permitted to
1152 				 * accept new associations, but it SHOULD NOT
1153 				 * be permitted to open new associations.
1154 				 */
1155 				if (ep->base.bind_addr.port < PROT_SOCK &&
1156 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 					err = -EACCES;
1158 					goto out_free;
1159 				}
1160 			}
1161 
1162 			scope = sctp_scope(&to);
1163 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 			if (!asoc) {
1165 				err = -ENOMEM;
1166 				goto out_free;
1167 			}
1168 
1169 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 							      GFP_KERNEL);
1171 			if (err < 0) {
1172 				goto out_free;
1173 			}
1174 
1175 		}
1176 
1177 		/* Prime the peer's transport structures.  */
1178 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 						SCTP_UNKNOWN);
1180 		if (!transport) {
1181 			err = -ENOMEM;
1182 			goto out_free;
1183 		}
1184 
1185 		addrcnt++;
1186 		addr_buf += af->sockaddr_len;
1187 		walk_size += af->sockaddr_len;
1188 	}
1189 
1190 	/* In case the user of sctp_connectx() wants an association
1191 	 * id back, assign one now.
1192 	 */
1193 	if (assoc_id) {
1194 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 		if (err < 0)
1196 			goto out_free;
1197 	}
1198 
1199 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 	if (err < 0) {
1201 		goto out_free;
1202 	}
1203 
1204 	/* Initialize sk's dport and daddr for getpeername() */
1205 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 	sp->pf->to_sk_daddr(sa_addr, sk);
1207 	sk->sk_err = 0;
1208 
1209 	/* in-kernel sockets don't generally have a file allocated to them
1210 	 * if all they do is call sock_create_kern().
1211 	 */
1212 	if (sk->sk_socket->file)
1213 		f_flags = sk->sk_socket->file->f_flags;
1214 
1215 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1216 
1217 	err = sctp_wait_for_connect(asoc, &timeo);
1218 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1219 		*assoc_id = asoc->assoc_id;
1220 
1221 	/* Don't free association on exit. */
1222 	asoc = NULL;
1223 
1224 out_free:
1225 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1226 		 __func__, asoc, kaddrs, err);
1227 
1228 	if (asoc) {
1229 		/* sctp_primitive_ASSOCIATE may have added this association
1230 		 * To the hash table, try to unhash it, just in case, its a noop
1231 		 * if it wasn't hashed so we're safe
1232 		 */
1233 		sctp_association_free(asoc);
1234 	}
1235 	return err;
1236 }
1237 
1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239  *
1240  * API 8.9
1241  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242  * 			sctp_assoc_t *asoc);
1243  *
1244  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246  * or IPv6 addresses.
1247  *
1248  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249  * Section 3.1.2 for this usage.
1250  *
1251  * addrs is a pointer to an array of one or more socket addresses. Each
1252  * address is contained in its appropriate structure (i.e. struct
1253  * sockaddr_in or struct sockaddr_in6) the family of the address type
1254  * must be used to distengish the address length (note that this
1255  * representation is termed a "packed array" of addresses). The caller
1256  * specifies the number of addresses in the array with addrcnt.
1257  *
1258  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259  * the association id of the new association.  On failure, sctp_connectx()
1260  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1261  * is not touched by the kernel.
1262  *
1263  * For SCTP, the port given in each socket address must be the same, or
1264  * sctp_connectx() will fail, setting errno to EINVAL.
1265  *
1266  * An application can use sctp_connectx to initiate an association with
1267  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1268  * allows a caller to specify multiple addresses at which a peer can be
1269  * reached.  The way the SCTP stack uses the list of addresses to set up
1270  * the association is implementation dependent.  This function only
1271  * specifies that the stack will try to make use of all the addresses in
1272  * the list when needed.
1273  *
1274  * Note that the list of addresses passed in is only used for setting up
1275  * the association.  It does not necessarily equal the set of addresses
1276  * the peer uses for the resulting association.  If the caller wants to
1277  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278  * retrieve them after the association has been set up.
1279  *
1280  * Basically do nothing but copying the addresses from user to kernel
1281  * land and invoking either sctp_connectx(). This is used for tunneling
1282  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283  *
1284  * We don't use copy_from_user() for optimization: we first do the
1285  * sanity checks (buffer size -fast- and access check-healthy
1286  * pointer); if all of those succeed, then we can alloc the memory
1287  * (expensive operation) needed to copy the data to kernel. Then we do
1288  * the copying without checking the user space area
1289  * (__copy_from_user()).
1290  *
1291  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292  * it.
1293  *
1294  * sk        The sk of the socket
1295  * addrs     The pointer to the addresses in user land
1296  * addrssize Size of the addrs buffer
1297  *
1298  * Returns >=0 if ok, <0 errno code on error.
1299  */
1300 static int __sctp_setsockopt_connectx(struct sock *sk,
1301 				      struct sockaddr __user *addrs,
1302 				      int addrs_size,
1303 				      sctp_assoc_t *assoc_id)
1304 {
1305 	struct sockaddr *kaddrs;
1306 	gfp_t gfp = GFP_KERNEL;
1307 	int err = 0;
1308 
1309 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1310 		 __func__, sk, addrs, addrs_size);
1311 
1312 	if (unlikely(addrs_size <= 0))
1313 		return -EINVAL;
1314 
1315 	/* Check the user passed a healthy pointer.  */
1316 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1317 		return -EFAULT;
1318 
1319 	/* Alloc space for the address array in kernel memory.  */
1320 	if (sk->sk_socket->file)
1321 		gfp = GFP_USER | __GFP_NOWARN;
1322 	kaddrs = kmalloc(addrs_size, gfp);
1323 	if (unlikely(!kaddrs))
1324 		return -ENOMEM;
1325 
1326 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 		err = -EFAULT;
1328 	} else {
1329 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 	}
1331 
1332 	kfree(kaddrs);
1333 
1334 	return err;
1335 }
1336 
1337 /*
1338  * This is an older interface.  It's kept for backward compatibility
1339  * to the option that doesn't provide association id.
1340  */
1341 static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 					struct sockaddr __user *addrs,
1343 					int addrs_size)
1344 {
1345 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347 
1348 /*
1349  * New interface for the API.  The since the API is done with a socket
1350  * option, to make it simple we feed back the association id is as a return
1351  * indication to the call.  Error is always negative and association id is
1352  * always positive.
1353  */
1354 static int sctp_setsockopt_connectx(struct sock *sk,
1355 				    struct sockaddr __user *addrs,
1356 				    int addrs_size)
1357 {
1358 	sctp_assoc_t assoc_id = 0;
1359 	int err = 0;
1360 
1361 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362 
1363 	if (err)
1364 		return err;
1365 	else
1366 		return assoc_id;
1367 }
1368 
1369 /*
1370  * New (hopefully final) interface for the API.
1371  * We use the sctp_getaddrs_old structure so that use-space library
1372  * can avoid any unnecessary allocations. The only different part
1373  * is that we store the actual length of the address buffer into the
1374  * addrs_num structure member. That way we can re-use the existing
1375  * code.
1376  */
1377 #ifdef CONFIG_COMPAT
1378 struct compat_sctp_getaddrs_old {
1379 	sctp_assoc_t	assoc_id;
1380 	s32		addr_num;
1381 	compat_uptr_t	addrs;		/* struct sockaddr * */
1382 };
1383 #endif
1384 
1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 				     char __user *optval,
1387 				     int __user *optlen)
1388 {
1389 	struct sctp_getaddrs_old param;
1390 	sctp_assoc_t assoc_id = 0;
1391 	int err = 0;
1392 
1393 #ifdef CONFIG_COMPAT
1394 	if (in_compat_syscall()) {
1395 		struct compat_sctp_getaddrs_old param32;
1396 
1397 		if (len < sizeof(param32))
1398 			return -EINVAL;
1399 		if (copy_from_user(&param32, optval, sizeof(param32)))
1400 			return -EFAULT;
1401 
1402 		param.assoc_id = param32.assoc_id;
1403 		param.addr_num = param32.addr_num;
1404 		param.addrs = compat_ptr(param32.addrs);
1405 	} else
1406 #endif
1407 	{
1408 		if (len < sizeof(param))
1409 			return -EINVAL;
1410 		if (copy_from_user(&param, optval, sizeof(param)))
1411 			return -EFAULT;
1412 	}
1413 
1414 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 					 param.addrs, param.addr_num,
1416 					 &assoc_id);
1417 	if (err == 0 || err == -EINPROGRESS) {
1418 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 			return -EFAULT;
1420 		if (put_user(sizeof(assoc_id), optlen))
1421 			return -EFAULT;
1422 	}
1423 
1424 	return err;
1425 }
1426 
1427 /* API 3.1.4 close() - UDP Style Syntax
1428  * Applications use close() to perform graceful shutdown (as described in
1429  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430  * by a UDP-style socket.
1431  *
1432  * The syntax is
1433  *
1434  *   ret = close(int sd);
1435  *
1436  *   sd      - the socket descriptor of the associations to be closed.
1437  *
1438  * To gracefully shutdown a specific association represented by the
1439  * UDP-style socket, an application should use the sendmsg() call,
1440  * passing no user data, but including the appropriate flag in the
1441  * ancillary data (see Section xxxx).
1442  *
1443  * If sd in the close() call is a branched-off socket representing only
1444  * one association, the shutdown is performed on that association only.
1445  *
1446  * 4.1.6 close() - TCP Style Syntax
1447  *
1448  * Applications use close() to gracefully close down an association.
1449  *
1450  * The syntax is:
1451  *
1452  *    int close(int sd);
1453  *
1454  *      sd      - the socket descriptor of the association to be closed.
1455  *
1456  * After an application calls close() on a socket descriptor, no further
1457  * socket operations will succeed on that descriptor.
1458  *
1459  * API 7.1.4 SO_LINGER
1460  *
1461  * An application using the TCP-style socket can use this option to
1462  * perform the SCTP ABORT primitive.  The linger option structure is:
1463  *
1464  *  struct  linger {
1465  *     int     l_onoff;                // option on/off
1466  *     int     l_linger;               // linger time
1467  * };
1468  *
1469  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1470  * to 0, calling close() is the same as the ABORT primitive.  If the
1471  * value is set to a negative value, the setsockopt() call will return
1472  * an error.  If the value is set to a positive value linger_time, the
1473  * close() can be blocked for at most linger_time ms.  If the graceful
1474  * shutdown phase does not finish during this period, close() will
1475  * return but the graceful shutdown phase continues in the system.
1476  */
1477 static void sctp_close(struct sock *sk, long timeout)
1478 {
1479 	struct net *net = sock_net(sk);
1480 	struct sctp_endpoint *ep;
1481 	struct sctp_association *asoc;
1482 	struct list_head *pos, *temp;
1483 	unsigned int data_was_unread;
1484 
1485 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486 
1487 	lock_sock(sk);
1488 	sk->sk_shutdown = SHUTDOWN_MASK;
1489 	sk->sk_state = SCTP_SS_CLOSING;
1490 
1491 	ep = sctp_sk(sk)->ep;
1492 
1493 	/* Clean up any skbs sitting on the receive queue.  */
1494 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496 
1497 	/* Walk all associations on an endpoint.  */
1498 	list_for_each_safe(pos, temp, &ep->asocs) {
1499 		asoc = list_entry(pos, struct sctp_association, asocs);
1500 
1501 		if (sctp_style(sk, TCP)) {
1502 			/* A closed association can still be in the list if
1503 			 * it belongs to a TCP-style listening socket that is
1504 			 * not yet accepted. If so, free it. If not, send an
1505 			 * ABORT or SHUTDOWN based on the linger options.
1506 			 */
1507 			if (sctp_state(asoc, CLOSED)) {
1508 				sctp_association_free(asoc);
1509 				continue;
1510 			}
1511 		}
1512 
1513 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1514 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1515 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1516 			struct sctp_chunk *chunk;
1517 
1518 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1519 			sctp_primitive_ABORT(net, asoc, chunk);
1520 		} else
1521 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1522 	}
1523 
1524 	/* On a TCP-style socket, block for at most linger_time if set. */
1525 	if (sctp_style(sk, TCP) && timeout)
1526 		sctp_wait_for_close(sk, timeout);
1527 
1528 	/* This will run the backlog queue.  */
1529 	release_sock(sk);
1530 
1531 	/* Supposedly, no process has access to the socket, but
1532 	 * the net layers still may.
1533 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1534 	 * held and that should be grabbed before socket lock.
1535 	 */
1536 	spin_lock_bh(&net->sctp.addr_wq_lock);
1537 	bh_lock_sock(sk);
1538 
1539 	/* Hold the sock, since sk_common_release() will put sock_put()
1540 	 * and we have just a little more cleanup.
1541 	 */
1542 	sock_hold(sk);
1543 	sk_common_release(sk);
1544 
1545 	bh_unlock_sock(sk);
1546 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1547 
1548 	sock_put(sk);
1549 
1550 	SCTP_DBG_OBJCNT_DEC(sock);
1551 }
1552 
1553 /* Handle EPIPE error. */
1554 static int sctp_error(struct sock *sk, int flags, int err)
1555 {
1556 	if (err == -EPIPE)
1557 		err = sock_error(sk) ? : -EPIPE;
1558 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 		send_sig(SIGPIPE, current, 0);
1560 	return err;
1561 }
1562 
1563 /* API 3.1.3 sendmsg() - UDP Style Syntax
1564  *
1565  * An application uses sendmsg() and recvmsg() calls to transmit data to
1566  * and receive data from its peer.
1567  *
1568  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1569  *                  int flags);
1570  *
1571  *  socket  - the socket descriptor of the endpoint.
1572  *  message - pointer to the msghdr structure which contains a single
1573  *            user message and possibly some ancillary data.
1574  *
1575  *            See Section 5 for complete description of the data
1576  *            structures.
1577  *
1578  *  flags   - flags sent or received with the user message, see Section
1579  *            5 for complete description of the flags.
1580  *
1581  * Note:  This function could use a rewrite especially when explicit
1582  * connect support comes in.
1583  */
1584 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1585 
1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587 
1588 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1589 {
1590 	struct net *net = sock_net(sk);
1591 	struct sctp_sock *sp;
1592 	struct sctp_endpoint *ep;
1593 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1594 	struct sctp_transport *transport, *chunk_tp;
1595 	struct sctp_chunk *chunk;
1596 	union sctp_addr to;
1597 	struct sockaddr *msg_name = NULL;
1598 	struct sctp_sndrcvinfo default_sinfo;
1599 	struct sctp_sndrcvinfo *sinfo;
1600 	struct sctp_initmsg *sinit;
1601 	sctp_assoc_t associd = 0;
1602 	sctp_cmsgs_t cmsgs = { NULL };
1603 	sctp_scope_t scope;
1604 	bool fill_sinfo_ttl = false, wait_connect = false;
1605 	struct sctp_datamsg *datamsg;
1606 	int msg_flags = msg->msg_flags;
1607 	__u16 sinfo_flags = 0;
1608 	long timeo;
1609 	int err;
1610 
1611 	err = 0;
1612 	sp = sctp_sk(sk);
1613 	ep = sp->ep;
1614 
1615 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 		 msg, msg_len, ep);
1617 
1618 	/* We cannot send a message over a TCP-style listening socket. */
1619 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 		err = -EPIPE;
1621 		goto out_nounlock;
1622 	}
1623 
1624 	/* Parse out the SCTP CMSGs.  */
1625 	err = sctp_msghdr_parse(msg, &cmsgs);
1626 	if (err) {
1627 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 		goto out_nounlock;
1629 	}
1630 
1631 	/* Fetch the destination address for this packet.  This
1632 	 * address only selects the association--it is not necessarily
1633 	 * the address we will send to.
1634 	 * For a peeled-off socket, msg_name is ignored.
1635 	 */
1636 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 		int msg_namelen = msg->msg_namelen;
1638 
1639 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 				       msg_namelen);
1641 		if (err)
1642 			return err;
1643 
1644 		if (msg_namelen > sizeof(to))
1645 			msg_namelen = sizeof(to);
1646 		memcpy(&to, msg->msg_name, msg_namelen);
1647 		msg_name = msg->msg_name;
1648 	}
1649 
1650 	sinit = cmsgs.init;
1651 	if (cmsgs.sinfo != NULL) {
1652 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1653 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1654 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1655 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1656 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1657 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1658 
1659 		sinfo = &default_sinfo;
1660 		fill_sinfo_ttl = true;
1661 	} else {
1662 		sinfo = cmsgs.srinfo;
1663 	}
1664 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1665 	if (sinfo) {
1666 		sinfo_flags = sinfo->sinfo_flags;
1667 		associd = sinfo->sinfo_assoc_id;
1668 	}
1669 
1670 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1671 		 msg_len, sinfo_flags);
1672 
1673 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1674 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1675 		err = -EINVAL;
1676 		goto out_nounlock;
1677 	}
1678 
1679 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1680 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1681 	 * If SCTP_ABORT is set, the message length could be non zero with
1682 	 * the msg_iov set to the user abort reason.
1683 	 */
1684 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1685 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1686 		err = -EINVAL;
1687 		goto out_nounlock;
1688 	}
1689 
1690 	/* If SCTP_ADDR_OVER is set, there must be an address
1691 	 * specified in msg_name.
1692 	 */
1693 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1694 		err = -EINVAL;
1695 		goto out_nounlock;
1696 	}
1697 
1698 	transport = NULL;
1699 
1700 	pr_debug("%s: about to look up association\n", __func__);
1701 
1702 	lock_sock(sk);
1703 
1704 	/* If a msg_name has been specified, assume this is to be used.  */
1705 	if (msg_name) {
1706 		/* Look for a matching association on the endpoint. */
1707 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1708 		if (!asoc) {
1709 			/* If we could not find a matching association on the
1710 			 * endpoint, make sure that it is not a TCP-style
1711 			 * socket that already has an association or there is
1712 			 * no peeled-off association on another socket.
1713 			 */
1714 			if ((sctp_style(sk, TCP) &&
1715 			     sctp_sstate(sk, ESTABLISHED)) ||
1716 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1717 				err = -EADDRNOTAVAIL;
1718 				goto out_unlock;
1719 			}
1720 		}
1721 	} else {
1722 		asoc = sctp_id2assoc(sk, associd);
1723 		if (!asoc) {
1724 			err = -EPIPE;
1725 			goto out_unlock;
1726 		}
1727 	}
1728 
1729 	if (asoc) {
1730 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1731 
1732 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1733 		 * socket that has an association in CLOSED state. This can
1734 		 * happen when an accepted socket has an association that is
1735 		 * already CLOSED.
1736 		 */
1737 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1738 			err = -EPIPE;
1739 			goto out_unlock;
1740 		}
1741 
1742 		if (sinfo_flags & SCTP_EOF) {
1743 			pr_debug("%s: shutting down association:%p\n",
1744 				 __func__, asoc);
1745 
1746 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1747 			err = 0;
1748 			goto out_unlock;
1749 		}
1750 		if (sinfo_flags & SCTP_ABORT) {
1751 
1752 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1753 			if (!chunk) {
1754 				err = -ENOMEM;
1755 				goto out_unlock;
1756 			}
1757 
1758 			pr_debug("%s: aborting association:%p\n",
1759 				 __func__, asoc);
1760 
1761 			sctp_primitive_ABORT(net, asoc, chunk);
1762 			err = 0;
1763 			goto out_unlock;
1764 		}
1765 	}
1766 
1767 	/* Do we need to create the association?  */
1768 	if (!asoc) {
1769 		pr_debug("%s: there is no association yet\n", __func__);
1770 
1771 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1772 			err = -EINVAL;
1773 			goto out_unlock;
1774 		}
1775 
1776 		/* Check for invalid stream against the stream counts,
1777 		 * either the default or the user specified stream counts.
1778 		 */
1779 		if (sinfo) {
1780 			if (!sinit || !sinit->sinit_num_ostreams) {
1781 				/* Check against the defaults. */
1782 				if (sinfo->sinfo_stream >=
1783 				    sp->initmsg.sinit_num_ostreams) {
1784 					err = -EINVAL;
1785 					goto out_unlock;
1786 				}
1787 			} else {
1788 				/* Check against the requested.  */
1789 				if (sinfo->sinfo_stream >=
1790 				    sinit->sinit_num_ostreams) {
1791 					err = -EINVAL;
1792 					goto out_unlock;
1793 				}
1794 			}
1795 		}
1796 
1797 		/*
1798 		 * API 3.1.2 bind() - UDP Style Syntax
1799 		 * If a bind() or sctp_bindx() is not called prior to a
1800 		 * sendmsg() call that initiates a new association, the
1801 		 * system picks an ephemeral port and will choose an address
1802 		 * set equivalent to binding with a wildcard address.
1803 		 */
1804 		if (!ep->base.bind_addr.port) {
1805 			if (sctp_autobind(sk)) {
1806 				err = -EAGAIN;
1807 				goto out_unlock;
1808 			}
1809 		} else {
1810 			/*
1811 			 * If an unprivileged user inherits a one-to-many
1812 			 * style socket with open associations on a privileged
1813 			 * port, it MAY be permitted to accept new associations,
1814 			 * but it SHOULD NOT be permitted to open new
1815 			 * associations.
1816 			 */
1817 			if (ep->base.bind_addr.port < PROT_SOCK &&
1818 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1819 				err = -EACCES;
1820 				goto out_unlock;
1821 			}
1822 		}
1823 
1824 		scope = sctp_scope(&to);
1825 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1826 		if (!new_asoc) {
1827 			err = -ENOMEM;
1828 			goto out_unlock;
1829 		}
1830 		asoc = new_asoc;
1831 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1832 		if (err < 0) {
1833 			err = -ENOMEM;
1834 			goto out_free;
1835 		}
1836 
1837 		/* If the SCTP_INIT ancillary data is specified, set all
1838 		 * the association init values accordingly.
1839 		 */
1840 		if (sinit) {
1841 			if (sinit->sinit_num_ostreams) {
1842 				asoc->c.sinit_num_ostreams =
1843 					sinit->sinit_num_ostreams;
1844 			}
1845 			if (sinit->sinit_max_instreams) {
1846 				asoc->c.sinit_max_instreams =
1847 					sinit->sinit_max_instreams;
1848 			}
1849 			if (sinit->sinit_max_attempts) {
1850 				asoc->max_init_attempts
1851 					= sinit->sinit_max_attempts;
1852 			}
1853 			if (sinit->sinit_max_init_timeo) {
1854 				asoc->max_init_timeo =
1855 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1856 			}
1857 		}
1858 
1859 		/* Prime the peer's transport structures.  */
1860 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1861 		if (!transport) {
1862 			err = -ENOMEM;
1863 			goto out_free;
1864 		}
1865 	}
1866 
1867 	/* ASSERT: we have a valid association at this point.  */
1868 	pr_debug("%s: we have a valid association\n", __func__);
1869 
1870 	if (!sinfo) {
1871 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1872 		 * one with some defaults.
1873 		 */
1874 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1875 		default_sinfo.sinfo_stream = asoc->default_stream;
1876 		default_sinfo.sinfo_flags = asoc->default_flags;
1877 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1878 		default_sinfo.sinfo_context = asoc->default_context;
1879 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1880 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1881 
1882 		sinfo = &default_sinfo;
1883 	} else if (fill_sinfo_ttl) {
1884 		/* In case SNDINFO was specified, we still need to fill
1885 		 * it with a default ttl from the assoc here.
1886 		 */
1887 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1888 	}
1889 
1890 	/* API 7.1.7, the sndbuf size per association bounds the
1891 	 * maximum size of data that can be sent in a single send call.
1892 	 */
1893 	if (msg_len > sk->sk_sndbuf) {
1894 		err = -EMSGSIZE;
1895 		goto out_free;
1896 	}
1897 
1898 	if (asoc->pmtu_pending)
1899 		sctp_assoc_pending_pmtu(sk, asoc);
1900 
1901 	/* If fragmentation is disabled and the message length exceeds the
1902 	 * association fragmentation point, return EMSGSIZE.  The I-D
1903 	 * does not specify what this error is, but this looks like
1904 	 * a great fit.
1905 	 */
1906 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1907 		err = -EMSGSIZE;
1908 		goto out_free;
1909 	}
1910 
1911 	/* Check for invalid stream. */
1912 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1913 		err = -EINVAL;
1914 		goto out_free;
1915 	}
1916 
1917 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1918 	if (!sctp_wspace(asoc)) {
1919 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1920 		if (err)
1921 			goto out_free;
1922 	}
1923 
1924 	/* If an address is passed with the sendto/sendmsg call, it is used
1925 	 * to override the primary destination address in the TCP model, or
1926 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1927 	 */
1928 	if ((sctp_style(sk, TCP) && msg_name) ||
1929 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1930 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1931 		if (!chunk_tp) {
1932 			err = -EINVAL;
1933 			goto out_free;
1934 		}
1935 	} else
1936 		chunk_tp = NULL;
1937 
1938 	/* Auto-connect, if we aren't connected already. */
1939 	if (sctp_state(asoc, CLOSED)) {
1940 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1941 		if (err < 0)
1942 			goto out_free;
1943 
1944 		wait_connect = true;
1945 		pr_debug("%s: we associated primitively\n", __func__);
1946 	}
1947 
1948 	/* Break the message into multiple chunks of maximum size. */
1949 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1950 	if (IS_ERR(datamsg)) {
1951 		err = PTR_ERR(datamsg);
1952 		goto out_free;
1953 	}
1954 
1955 	/* Now send the (possibly) fragmented message. */
1956 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1957 		/* Do accounting for the write space.  */
1958 		sctp_set_owner_w(chunk);
1959 
1960 		chunk->transport = chunk_tp;
1961 	}
1962 
1963 	/* Send it to the lower layers.  Note:  all chunks
1964 	 * must either fail or succeed.   The lower layer
1965 	 * works that way today.  Keep it that way or this
1966 	 * breaks.
1967 	 */
1968 	err = sctp_primitive_SEND(net, asoc, datamsg);
1969 	sctp_datamsg_put(datamsg);
1970 	/* Did the lower layer accept the chunk? */
1971 	if (err)
1972 		goto out_free;
1973 
1974 	pr_debug("%s: we sent primitively\n", __func__);
1975 
1976 	err = msg_len;
1977 
1978 	if (unlikely(wait_connect)) {
1979 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1980 		sctp_wait_for_connect(asoc, &timeo);
1981 	}
1982 
1983 	/* If we are already past ASSOCIATE, the lower
1984 	 * layers are responsible for association cleanup.
1985 	 */
1986 	goto out_unlock;
1987 
1988 out_free:
1989 	if (new_asoc)
1990 		sctp_association_free(asoc);
1991 out_unlock:
1992 	release_sock(sk);
1993 
1994 out_nounlock:
1995 	return sctp_error(sk, msg_flags, err);
1996 
1997 #if 0
1998 do_sock_err:
1999 	if (msg_len)
2000 		err = msg_len;
2001 	else
2002 		err = sock_error(sk);
2003 	goto out;
2004 
2005 do_interrupted:
2006 	if (msg_len)
2007 		err = msg_len;
2008 	goto out;
2009 #endif /* 0 */
2010 }
2011 
2012 /* This is an extended version of skb_pull() that removes the data from the
2013  * start of a skb even when data is spread across the list of skb's in the
2014  * frag_list. len specifies the total amount of data that needs to be removed.
2015  * when 'len' bytes could be removed from the skb, it returns 0.
2016  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2017  * could not be removed.
2018  */
2019 static int sctp_skb_pull(struct sk_buff *skb, int len)
2020 {
2021 	struct sk_buff *list;
2022 	int skb_len = skb_headlen(skb);
2023 	int rlen;
2024 
2025 	if (len <= skb_len) {
2026 		__skb_pull(skb, len);
2027 		return 0;
2028 	}
2029 	len -= skb_len;
2030 	__skb_pull(skb, skb_len);
2031 
2032 	skb_walk_frags(skb, list) {
2033 		rlen = sctp_skb_pull(list, len);
2034 		skb->len -= (len-rlen);
2035 		skb->data_len -= (len-rlen);
2036 
2037 		if (!rlen)
2038 			return 0;
2039 
2040 		len = rlen;
2041 	}
2042 
2043 	return len;
2044 }
2045 
2046 /* API 3.1.3  recvmsg() - UDP Style Syntax
2047  *
2048  *  ssize_t recvmsg(int socket, struct msghdr *message,
2049  *                    int flags);
2050  *
2051  *  socket  - the socket descriptor of the endpoint.
2052  *  message - pointer to the msghdr structure which contains a single
2053  *            user message and possibly some ancillary data.
2054  *
2055  *            See Section 5 for complete description of the data
2056  *            structures.
2057  *
2058  *  flags   - flags sent or received with the user message, see Section
2059  *            5 for complete description of the flags.
2060  */
2061 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2062 			int noblock, int flags, int *addr_len)
2063 {
2064 	struct sctp_ulpevent *event = NULL;
2065 	struct sctp_sock *sp = sctp_sk(sk);
2066 	struct sk_buff *skb;
2067 	int copied;
2068 	int err = 0;
2069 	int skb_len;
2070 
2071 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2072 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2073 		 addr_len);
2074 
2075 	lock_sock(sk);
2076 
2077 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2078 		err = -ENOTCONN;
2079 		goto out;
2080 	}
2081 
2082 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2083 	if (!skb)
2084 		goto out;
2085 
2086 	/* Get the total length of the skb including any skb's in the
2087 	 * frag_list.
2088 	 */
2089 	skb_len = skb->len;
2090 
2091 	copied = skb_len;
2092 	if (copied > len)
2093 		copied = len;
2094 
2095 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2096 
2097 	event = sctp_skb2event(skb);
2098 
2099 	if (err)
2100 		goto out_free;
2101 
2102 	sock_recv_ts_and_drops(msg, sk, skb);
2103 	if (sctp_ulpevent_is_notification(event)) {
2104 		msg->msg_flags |= MSG_NOTIFICATION;
2105 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2106 	} else {
2107 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2108 	}
2109 
2110 	/* Check if we allow SCTP_NXTINFO. */
2111 	if (sp->recvnxtinfo)
2112 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2113 	/* Check if we allow SCTP_RCVINFO. */
2114 	if (sp->recvrcvinfo)
2115 		sctp_ulpevent_read_rcvinfo(event, msg);
2116 	/* Check if we allow SCTP_SNDRCVINFO. */
2117 	if (sp->subscribe.sctp_data_io_event)
2118 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2119 
2120 	err = copied;
2121 
2122 	/* If skb's length exceeds the user's buffer, update the skb and
2123 	 * push it back to the receive_queue so that the next call to
2124 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2125 	 */
2126 	if (skb_len > copied) {
2127 		msg->msg_flags &= ~MSG_EOR;
2128 		if (flags & MSG_PEEK)
2129 			goto out_free;
2130 		sctp_skb_pull(skb, copied);
2131 		skb_queue_head(&sk->sk_receive_queue, skb);
2132 
2133 		/* When only partial message is copied to the user, increase
2134 		 * rwnd by that amount. If all the data in the skb is read,
2135 		 * rwnd is updated when the event is freed.
2136 		 */
2137 		if (!sctp_ulpevent_is_notification(event))
2138 			sctp_assoc_rwnd_increase(event->asoc, copied);
2139 		goto out;
2140 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2141 		   (event->msg_flags & MSG_EOR))
2142 		msg->msg_flags |= MSG_EOR;
2143 	else
2144 		msg->msg_flags &= ~MSG_EOR;
2145 
2146 out_free:
2147 	if (flags & MSG_PEEK) {
2148 		/* Release the skb reference acquired after peeking the skb in
2149 		 * sctp_skb_recv_datagram().
2150 		 */
2151 		kfree_skb(skb);
2152 	} else {
2153 		/* Free the event which includes releasing the reference to
2154 		 * the owner of the skb, freeing the skb and updating the
2155 		 * rwnd.
2156 		 */
2157 		sctp_ulpevent_free(event);
2158 	}
2159 out:
2160 	release_sock(sk);
2161 	return err;
2162 }
2163 
2164 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2165  *
2166  * This option is a on/off flag.  If enabled no SCTP message
2167  * fragmentation will be performed.  Instead if a message being sent
2168  * exceeds the current PMTU size, the message will NOT be sent and
2169  * instead a error will be indicated to the user.
2170  */
2171 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2172 					     char __user *optval,
2173 					     unsigned int optlen)
2174 {
2175 	int val;
2176 
2177 	if (optlen < sizeof(int))
2178 		return -EINVAL;
2179 
2180 	if (get_user(val, (int __user *)optval))
2181 		return -EFAULT;
2182 
2183 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2184 
2185 	return 0;
2186 }
2187 
2188 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2189 				  unsigned int optlen)
2190 {
2191 	struct sctp_association *asoc;
2192 	struct sctp_ulpevent *event;
2193 
2194 	if (optlen > sizeof(struct sctp_event_subscribe))
2195 		return -EINVAL;
2196 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2197 		return -EFAULT;
2198 
2199 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2200 	 * if there is no data to be sent or retransmit, the stack will
2201 	 * immediately send up this notification.
2202 	 */
2203 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2204 				       &sctp_sk(sk)->subscribe)) {
2205 		asoc = sctp_id2assoc(sk, 0);
2206 
2207 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2208 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2209 					GFP_ATOMIC);
2210 			if (!event)
2211 				return -ENOMEM;
2212 
2213 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2214 		}
2215 	}
2216 
2217 	return 0;
2218 }
2219 
2220 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2221  *
2222  * This socket option is applicable to the UDP-style socket only.  When
2223  * set it will cause associations that are idle for more than the
2224  * specified number of seconds to automatically close.  An association
2225  * being idle is defined an association that has NOT sent or received
2226  * user data.  The special value of '0' indicates that no automatic
2227  * close of any associations should be performed.  The option expects an
2228  * integer defining the number of seconds of idle time before an
2229  * association is closed.
2230  */
2231 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2232 				     unsigned int optlen)
2233 {
2234 	struct sctp_sock *sp = sctp_sk(sk);
2235 	struct net *net = sock_net(sk);
2236 
2237 	/* Applicable to UDP-style socket only */
2238 	if (sctp_style(sk, TCP))
2239 		return -EOPNOTSUPP;
2240 	if (optlen != sizeof(int))
2241 		return -EINVAL;
2242 	if (copy_from_user(&sp->autoclose, optval, optlen))
2243 		return -EFAULT;
2244 
2245 	if (sp->autoclose > net->sctp.max_autoclose)
2246 		sp->autoclose = net->sctp.max_autoclose;
2247 
2248 	return 0;
2249 }
2250 
2251 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2252  *
2253  * Applications can enable or disable heartbeats for any peer address of
2254  * an association, modify an address's heartbeat interval, force a
2255  * heartbeat to be sent immediately, and adjust the address's maximum
2256  * number of retransmissions sent before an address is considered
2257  * unreachable.  The following structure is used to access and modify an
2258  * address's parameters:
2259  *
2260  *  struct sctp_paddrparams {
2261  *     sctp_assoc_t            spp_assoc_id;
2262  *     struct sockaddr_storage spp_address;
2263  *     uint32_t                spp_hbinterval;
2264  *     uint16_t                spp_pathmaxrxt;
2265  *     uint32_t                spp_pathmtu;
2266  *     uint32_t                spp_sackdelay;
2267  *     uint32_t                spp_flags;
2268  * };
2269  *
2270  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2271  *                     application, and identifies the association for
2272  *                     this query.
2273  *   spp_address     - This specifies which address is of interest.
2274  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2275  *                     in milliseconds.  If a  value of zero
2276  *                     is present in this field then no changes are to
2277  *                     be made to this parameter.
2278  *   spp_pathmaxrxt  - This contains the maximum number of
2279  *                     retransmissions before this address shall be
2280  *                     considered unreachable. If a  value of zero
2281  *                     is present in this field then no changes are to
2282  *                     be made to this parameter.
2283  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2284  *                     specified here will be the "fixed" path mtu.
2285  *                     Note that if the spp_address field is empty
2286  *                     then all associations on this address will
2287  *                     have this fixed path mtu set upon them.
2288  *
2289  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2290  *                     the number of milliseconds that sacks will be delayed
2291  *                     for. This value will apply to all addresses of an
2292  *                     association if the spp_address field is empty. Note
2293  *                     also, that if delayed sack is enabled and this
2294  *                     value is set to 0, no change is made to the last
2295  *                     recorded delayed sack timer value.
2296  *
2297  *   spp_flags       - These flags are used to control various features
2298  *                     on an association. The flag field may contain
2299  *                     zero or more of the following options.
2300  *
2301  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2302  *                     specified address. Note that if the address
2303  *                     field is empty all addresses for the association
2304  *                     have heartbeats enabled upon them.
2305  *
2306  *                     SPP_HB_DISABLE - Disable heartbeats on the
2307  *                     speicifed address. Note that if the address
2308  *                     field is empty all addresses for the association
2309  *                     will have their heartbeats disabled. Note also
2310  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2311  *                     mutually exclusive, only one of these two should
2312  *                     be specified. Enabling both fields will have
2313  *                     undetermined results.
2314  *
2315  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2316  *                     to be made immediately.
2317  *
2318  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2319  *                     heartbeat delayis to be set to the value of 0
2320  *                     milliseconds.
2321  *
2322  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2323  *                     discovery upon the specified address. Note that
2324  *                     if the address feild is empty then all addresses
2325  *                     on the association are effected.
2326  *
2327  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2328  *                     discovery upon the specified address. Note that
2329  *                     if the address feild is empty then all addresses
2330  *                     on the association are effected. Not also that
2331  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2332  *                     exclusive. Enabling both will have undetermined
2333  *                     results.
2334  *
2335  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2336  *                     on delayed sack. The time specified in spp_sackdelay
2337  *                     is used to specify the sack delay for this address. Note
2338  *                     that if spp_address is empty then all addresses will
2339  *                     enable delayed sack and take on the sack delay
2340  *                     value specified in spp_sackdelay.
2341  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2342  *                     off delayed sack. If the spp_address field is blank then
2343  *                     delayed sack is disabled for the entire association. Note
2344  *                     also that this field is mutually exclusive to
2345  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2346  *                     results.
2347  */
2348 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2349 				       struct sctp_transport   *trans,
2350 				       struct sctp_association *asoc,
2351 				       struct sctp_sock        *sp,
2352 				       int                      hb_change,
2353 				       int                      pmtud_change,
2354 				       int                      sackdelay_change)
2355 {
2356 	int error;
2357 
2358 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2359 		struct net *net = sock_net(trans->asoc->base.sk);
2360 
2361 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2362 		if (error)
2363 			return error;
2364 	}
2365 
2366 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2367 	 * this field is ignored.  Note also that a value of zero indicates
2368 	 * the current setting should be left unchanged.
2369 	 */
2370 	if (params->spp_flags & SPP_HB_ENABLE) {
2371 
2372 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2373 		 * set.  This lets us use 0 value when this flag
2374 		 * is set.
2375 		 */
2376 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2377 			params->spp_hbinterval = 0;
2378 
2379 		if (params->spp_hbinterval ||
2380 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2381 			if (trans) {
2382 				trans->hbinterval =
2383 				    msecs_to_jiffies(params->spp_hbinterval);
2384 			} else if (asoc) {
2385 				asoc->hbinterval =
2386 				    msecs_to_jiffies(params->spp_hbinterval);
2387 			} else {
2388 				sp->hbinterval = params->spp_hbinterval;
2389 			}
2390 		}
2391 	}
2392 
2393 	if (hb_change) {
2394 		if (trans) {
2395 			trans->param_flags =
2396 				(trans->param_flags & ~SPP_HB) | hb_change;
2397 		} else if (asoc) {
2398 			asoc->param_flags =
2399 				(asoc->param_flags & ~SPP_HB) | hb_change;
2400 		} else {
2401 			sp->param_flags =
2402 				(sp->param_flags & ~SPP_HB) | hb_change;
2403 		}
2404 	}
2405 
2406 	/* When Path MTU discovery is disabled the value specified here will
2407 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2408 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2409 	 * effect).
2410 	 */
2411 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2412 		if (trans) {
2413 			trans->pathmtu = params->spp_pathmtu;
2414 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2415 		} else if (asoc) {
2416 			asoc->pathmtu = params->spp_pathmtu;
2417 			sctp_frag_point(asoc, params->spp_pathmtu);
2418 		} else {
2419 			sp->pathmtu = params->spp_pathmtu;
2420 		}
2421 	}
2422 
2423 	if (pmtud_change) {
2424 		if (trans) {
2425 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2426 				(params->spp_flags & SPP_PMTUD_ENABLE);
2427 			trans->param_flags =
2428 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2429 			if (update) {
2430 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2431 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2432 			}
2433 		} else if (asoc) {
2434 			asoc->param_flags =
2435 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2436 		} else {
2437 			sp->param_flags =
2438 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2439 		}
2440 	}
2441 
2442 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2443 	 * value of this field is ignored.  Note also that a value of zero
2444 	 * indicates the current setting should be left unchanged.
2445 	 */
2446 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2447 		if (trans) {
2448 			trans->sackdelay =
2449 				msecs_to_jiffies(params->spp_sackdelay);
2450 		} else if (asoc) {
2451 			asoc->sackdelay =
2452 				msecs_to_jiffies(params->spp_sackdelay);
2453 		} else {
2454 			sp->sackdelay = params->spp_sackdelay;
2455 		}
2456 	}
2457 
2458 	if (sackdelay_change) {
2459 		if (trans) {
2460 			trans->param_flags =
2461 				(trans->param_flags & ~SPP_SACKDELAY) |
2462 				sackdelay_change;
2463 		} else if (asoc) {
2464 			asoc->param_flags =
2465 				(asoc->param_flags & ~SPP_SACKDELAY) |
2466 				sackdelay_change;
2467 		} else {
2468 			sp->param_flags =
2469 				(sp->param_flags & ~SPP_SACKDELAY) |
2470 				sackdelay_change;
2471 		}
2472 	}
2473 
2474 	/* Note that a value of zero indicates the current setting should be
2475 	   left unchanged.
2476 	 */
2477 	if (params->spp_pathmaxrxt) {
2478 		if (trans) {
2479 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2480 		} else if (asoc) {
2481 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2482 		} else {
2483 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2484 		}
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2491 					    char __user *optval,
2492 					    unsigned int optlen)
2493 {
2494 	struct sctp_paddrparams  params;
2495 	struct sctp_transport   *trans = NULL;
2496 	struct sctp_association *asoc = NULL;
2497 	struct sctp_sock        *sp = sctp_sk(sk);
2498 	int error;
2499 	int hb_change, pmtud_change, sackdelay_change;
2500 
2501 	if (optlen != sizeof(struct sctp_paddrparams))
2502 		return -EINVAL;
2503 
2504 	if (copy_from_user(&params, optval, optlen))
2505 		return -EFAULT;
2506 
2507 	/* Validate flags and value parameters. */
2508 	hb_change        = params.spp_flags & SPP_HB;
2509 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2510 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2511 
2512 	if (hb_change        == SPP_HB ||
2513 	    pmtud_change     == SPP_PMTUD ||
2514 	    sackdelay_change == SPP_SACKDELAY ||
2515 	    params.spp_sackdelay > 500 ||
2516 	    (params.spp_pathmtu &&
2517 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2518 		return -EINVAL;
2519 
2520 	/* If an address other than INADDR_ANY is specified, and
2521 	 * no transport is found, then the request is invalid.
2522 	 */
2523 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2524 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2525 					       params.spp_assoc_id);
2526 		if (!trans)
2527 			return -EINVAL;
2528 	}
2529 
2530 	/* Get association, if assoc_id != 0 and the socket is a one
2531 	 * to many style socket, and an association was not found, then
2532 	 * the id was invalid.
2533 	 */
2534 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2535 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2536 		return -EINVAL;
2537 
2538 	/* Heartbeat demand can only be sent on a transport or
2539 	 * association, but not a socket.
2540 	 */
2541 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2542 		return -EINVAL;
2543 
2544 	/* Process parameters. */
2545 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2546 					    hb_change, pmtud_change,
2547 					    sackdelay_change);
2548 
2549 	if (error)
2550 		return error;
2551 
2552 	/* If changes are for association, also apply parameters to each
2553 	 * transport.
2554 	 */
2555 	if (!trans && asoc) {
2556 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2557 				transports) {
2558 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2559 						    hb_change, pmtud_change,
2560 						    sackdelay_change);
2561 		}
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2568 {
2569 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2570 }
2571 
2572 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2573 {
2574 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2575 }
2576 
2577 /*
2578  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2579  *
2580  * This option will effect the way delayed acks are performed.  This
2581  * option allows you to get or set the delayed ack time, in
2582  * milliseconds.  It also allows changing the delayed ack frequency.
2583  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2584  * the assoc_id is 0, then this sets or gets the endpoints default
2585  * values.  If the assoc_id field is non-zero, then the set or get
2586  * effects the specified association for the one to many model (the
2587  * assoc_id field is ignored by the one to one model).  Note that if
2588  * sack_delay or sack_freq are 0 when setting this option, then the
2589  * current values will remain unchanged.
2590  *
2591  * struct sctp_sack_info {
2592  *     sctp_assoc_t            sack_assoc_id;
2593  *     uint32_t                sack_delay;
2594  *     uint32_t                sack_freq;
2595  * };
2596  *
2597  * sack_assoc_id -  This parameter, indicates which association the user
2598  *    is performing an action upon.  Note that if this field's value is
2599  *    zero then the endpoints default value is changed (effecting future
2600  *    associations only).
2601  *
2602  * sack_delay -  This parameter contains the number of milliseconds that
2603  *    the user is requesting the delayed ACK timer be set to.  Note that
2604  *    this value is defined in the standard to be between 200 and 500
2605  *    milliseconds.
2606  *
2607  * sack_freq -  This parameter contains the number of packets that must
2608  *    be received before a sack is sent without waiting for the delay
2609  *    timer to expire.  The default value for this is 2, setting this
2610  *    value to 1 will disable the delayed sack algorithm.
2611  */
2612 
2613 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2614 				       char __user *optval, unsigned int optlen)
2615 {
2616 	struct sctp_sack_info    params;
2617 	struct sctp_transport   *trans = NULL;
2618 	struct sctp_association *asoc = NULL;
2619 	struct sctp_sock        *sp = sctp_sk(sk);
2620 
2621 	if (optlen == sizeof(struct sctp_sack_info)) {
2622 		if (copy_from_user(&params, optval, optlen))
2623 			return -EFAULT;
2624 
2625 		if (params.sack_delay == 0 && params.sack_freq == 0)
2626 			return 0;
2627 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2628 		pr_warn_ratelimited(DEPRECATED
2629 				    "%s (pid %d) "
2630 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2631 				    "Use struct sctp_sack_info instead\n",
2632 				    current->comm, task_pid_nr(current));
2633 		if (copy_from_user(&params, optval, optlen))
2634 			return -EFAULT;
2635 
2636 		if (params.sack_delay == 0)
2637 			params.sack_freq = 1;
2638 		else
2639 			params.sack_freq = 0;
2640 	} else
2641 		return -EINVAL;
2642 
2643 	/* Validate value parameter. */
2644 	if (params.sack_delay > 500)
2645 		return -EINVAL;
2646 
2647 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2648 	 * to many style socket, and an association was not found, then
2649 	 * the id was invalid.
2650 	 */
2651 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2652 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2653 		return -EINVAL;
2654 
2655 	if (params.sack_delay) {
2656 		if (asoc) {
2657 			asoc->sackdelay =
2658 				msecs_to_jiffies(params.sack_delay);
2659 			asoc->param_flags =
2660 				sctp_spp_sackdelay_enable(asoc->param_flags);
2661 		} else {
2662 			sp->sackdelay = params.sack_delay;
2663 			sp->param_flags =
2664 				sctp_spp_sackdelay_enable(sp->param_flags);
2665 		}
2666 	}
2667 
2668 	if (params.sack_freq == 1) {
2669 		if (asoc) {
2670 			asoc->param_flags =
2671 				sctp_spp_sackdelay_disable(asoc->param_flags);
2672 		} else {
2673 			sp->param_flags =
2674 				sctp_spp_sackdelay_disable(sp->param_flags);
2675 		}
2676 	} else if (params.sack_freq > 1) {
2677 		if (asoc) {
2678 			asoc->sackfreq = params.sack_freq;
2679 			asoc->param_flags =
2680 				sctp_spp_sackdelay_enable(asoc->param_flags);
2681 		} else {
2682 			sp->sackfreq = params.sack_freq;
2683 			sp->param_flags =
2684 				sctp_spp_sackdelay_enable(sp->param_flags);
2685 		}
2686 	}
2687 
2688 	/* If change is for association, also apply to each transport. */
2689 	if (asoc) {
2690 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2691 				transports) {
2692 			if (params.sack_delay) {
2693 				trans->sackdelay =
2694 					msecs_to_jiffies(params.sack_delay);
2695 				trans->param_flags =
2696 					sctp_spp_sackdelay_enable(trans->param_flags);
2697 			}
2698 			if (params.sack_freq == 1) {
2699 				trans->param_flags =
2700 					sctp_spp_sackdelay_disable(trans->param_flags);
2701 			} else if (params.sack_freq > 1) {
2702 				trans->sackfreq = params.sack_freq;
2703 				trans->param_flags =
2704 					sctp_spp_sackdelay_enable(trans->param_flags);
2705 			}
2706 		}
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2713  *
2714  * Applications can specify protocol parameters for the default association
2715  * initialization.  The option name argument to setsockopt() and getsockopt()
2716  * is SCTP_INITMSG.
2717  *
2718  * Setting initialization parameters is effective only on an unconnected
2719  * socket (for UDP-style sockets only future associations are effected
2720  * by the change).  With TCP-style sockets, this option is inherited by
2721  * sockets derived from a listener socket.
2722  */
2723 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2724 {
2725 	struct sctp_initmsg sinit;
2726 	struct sctp_sock *sp = sctp_sk(sk);
2727 
2728 	if (optlen != sizeof(struct sctp_initmsg))
2729 		return -EINVAL;
2730 	if (copy_from_user(&sinit, optval, optlen))
2731 		return -EFAULT;
2732 
2733 	if (sinit.sinit_num_ostreams)
2734 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2735 	if (sinit.sinit_max_instreams)
2736 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2737 	if (sinit.sinit_max_attempts)
2738 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2739 	if (sinit.sinit_max_init_timeo)
2740 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2741 
2742 	return 0;
2743 }
2744 
2745 /*
2746  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2747  *
2748  *   Applications that wish to use the sendto() system call may wish to
2749  *   specify a default set of parameters that would normally be supplied
2750  *   through the inclusion of ancillary data.  This socket option allows
2751  *   such an application to set the default sctp_sndrcvinfo structure.
2752  *   The application that wishes to use this socket option simply passes
2753  *   in to this call the sctp_sndrcvinfo structure defined in Section
2754  *   5.2.2) The input parameters accepted by this call include
2755  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2756  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2757  *   to this call if the caller is using the UDP model.
2758  */
2759 static int sctp_setsockopt_default_send_param(struct sock *sk,
2760 					      char __user *optval,
2761 					      unsigned int optlen)
2762 {
2763 	struct sctp_sock *sp = sctp_sk(sk);
2764 	struct sctp_association *asoc;
2765 	struct sctp_sndrcvinfo info;
2766 
2767 	if (optlen != sizeof(info))
2768 		return -EINVAL;
2769 	if (copy_from_user(&info, optval, optlen))
2770 		return -EFAULT;
2771 	if (info.sinfo_flags &
2772 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2773 	      SCTP_ABORT | SCTP_EOF))
2774 		return -EINVAL;
2775 
2776 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2777 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2778 		return -EINVAL;
2779 	if (asoc) {
2780 		asoc->default_stream = info.sinfo_stream;
2781 		asoc->default_flags = info.sinfo_flags;
2782 		asoc->default_ppid = info.sinfo_ppid;
2783 		asoc->default_context = info.sinfo_context;
2784 		asoc->default_timetolive = info.sinfo_timetolive;
2785 	} else {
2786 		sp->default_stream = info.sinfo_stream;
2787 		sp->default_flags = info.sinfo_flags;
2788 		sp->default_ppid = info.sinfo_ppid;
2789 		sp->default_context = info.sinfo_context;
2790 		sp->default_timetolive = info.sinfo_timetolive;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2797  * (SCTP_DEFAULT_SNDINFO)
2798  */
2799 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2800 					   char __user *optval,
2801 					   unsigned int optlen)
2802 {
2803 	struct sctp_sock *sp = sctp_sk(sk);
2804 	struct sctp_association *asoc;
2805 	struct sctp_sndinfo info;
2806 
2807 	if (optlen != sizeof(info))
2808 		return -EINVAL;
2809 	if (copy_from_user(&info, optval, optlen))
2810 		return -EFAULT;
2811 	if (info.snd_flags &
2812 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2813 	      SCTP_ABORT | SCTP_EOF))
2814 		return -EINVAL;
2815 
2816 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2817 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2818 		return -EINVAL;
2819 	if (asoc) {
2820 		asoc->default_stream = info.snd_sid;
2821 		asoc->default_flags = info.snd_flags;
2822 		asoc->default_ppid = info.snd_ppid;
2823 		asoc->default_context = info.snd_context;
2824 	} else {
2825 		sp->default_stream = info.snd_sid;
2826 		sp->default_flags = info.snd_flags;
2827 		sp->default_ppid = info.snd_ppid;
2828 		sp->default_context = info.snd_context;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2835  *
2836  * Requests that the local SCTP stack use the enclosed peer address as
2837  * the association primary.  The enclosed address must be one of the
2838  * association peer's addresses.
2839  */
2840 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2841 					unsigned int optlen)
2842 {
2843 	struct sctp_prim prim;
2844 	struct sctp_transport *trans;
2845 
2846 	if (optlen != sizeof(struct sctp_prim))
2847 		return -EINVAL;
2848 
2849 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2850 		return -EFAULT;
2851 
2852 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2853 	if (!trans)
2854 		return -EINVAL;
2855 
2856 	sctp_assoc_set_primary(trans->asoc, trans);
2857 
2858 	return 0;
2859 }
2860 
2861 /*
2862  * 7.1.5 SCTP_NODELAY
2863  *
2864  * Turn on/off any Nagle-like algorithm.  This means that packets are
2865  * generally sent as soon as possible and no unnecessary delays are
2866  * introduced, at the cost of more packets in the network.  Expects an
2867  *  integer boolean flag.
2868  */
2869 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2870 				   unsigned int optlen)
2871 {
2872 	int val;
2873 
2874 	if (optlen < sizeof(int))
2875 		return -EINVAL;
2876 	if (get_user(val, (int __user *)optval))
2877 		return -EFAULT;
2878 
2879 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2880 	return 0;
2881 }
2882 
2883 /*
2884  *
2885  * 7.1.1 SCTP_RTOINFO
2886  *
2887  * The protocol parameters used to initialize and bound retransmission
2888  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2889  * and modify these parameters.
2890  * All parameters are time values, in milliseconds.  A value of 0, when
2891  * modifying the parameters, indicates that the current value should not
2892  * be changed.
2893  *
2894  */
2895 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2896 {
2897 	struct sctp_rtoinfo rtoinfo;
2898 	struct sctp_association *asoc;
2899 	unsigned long rto_min, rto_max;
2900 	struct sctp_sock *sp = sctp_sk(sk);
2901 
2902 	if (optlen != sizeof (struct sctp_rtoinfo))
2903 		return -EINVAL;
2904 
2905 	if (copy_from_user(&rtoinfo, optval, optlen))
2906 		return -EFAULT;
2907 
2908 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2909 
2910 	/* Set the values to the specific association */
2911 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2912 		return -EINVAL;
2913 
2914 	rto_max = rtoinfo.srto_max;
2915 	rto_min = rtoinfo.srto_min;
2916 
2917 	if (rto_max)
2918 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2919 	else
2920 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2921 
2922 	if (rto_min)
2923 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2924 	else
2925 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2926 
2927 	if (rto_min > rto_max)
2928 		return -EINVAL;
2929 
2930 	if (asoc) {
2931 		if (rtoinfo.srto_initial != 0)
2932 			asoc->rto_initial =
2933 				msecs_to_jiffies(rtoinfo.srto_initial);
2934 		asoc->rto_max = rto_max;
2935 		asoc->rto_min = rto_min;
2936 	} else {
2937 		/* If there is no association or the association-id = 0
2938 		 * set the values to the endpoint.
2939 		 */
2940 		if (rtoinfo.srto_initial != 0)
2941 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2942 		sp->rtoinfo.srto_max = rto_max;
2943 		sp->rtoinfo.srto_min = rto_min;
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  *
2951  * 7.1.2 SCTP_ASSOCINFO
2952  *
2953  * This option is used to tune the maximum retransmission attempts
2954  * of the association.
2955  * Returns an error if the new association retransmission value is
2956  * greater than the sum of the retransmission value  of the peer.
2957  * See [SCTP] for more information.
2958  *
2959  */
2960 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2961 {
2962 
2963 	struct sctp_assocparams assocparams;
2964 	struct sctp_association *asoc;
2965 
2966 	if (optlen != sizeof(struct sctp_assocparams))
2967 		return -EINVAL;
2968 	if (copy_from_user(&assocparams, optval, optlen))
2969 		return -EFAULT;
2970 
2971 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2972 
2973 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2974 		return -EINVAL;
2975 
2976 	/* Set the values to the specific association */
2977 	if (asoc) {
2978 		if (assocparams.sasoc_asocmaxrxt != 0) {
2979 			__u32 path_sum = 0;
2980 			int   paths = 0;
2981 			struct sctp_transport *peer_addr;
2982 
2983 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2984 					transports) {
2985 				path_sum += peer_addr->pathmaxrxt;
2986 				paths++;
2987 			}
2988 
2989 			/* Only validate asocmaxrxt if we have more than
2990 			 * one path/transport.  We do this because path
2991 			 * retransmissions are only counted when we have more
2992 			 * then one path.
2993 			 */
2994 			if (paths > 1 &&
2995 			    assocparams.sasoc_asocmaxrxt > path_sum)
2996 				return -EINVAL;
2997 
2998 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2999 		}
3000 
3001 		if (assocparams.sasoc_cookie_life != 0)
3002 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3003 	} else {
3004 		/* Set the values to the endpoint */
3005 		struct sctp_sock *sp = sctp_sk(sk);
3006 
3007 		if (assocparams.sasoc_asocmaxrxt != 0)
3008 			sp->assocparams.sasoc_asocmaxrxt =
3009 						assocparams.sasoc_asocmaxrxt;
3010 		if (assocparams.sasoc_cookie_life != 0)
3011 			sp->assocparams.sasoc_cookie_life =
3012 						assocparams.sasoc_cookie_life;
3013 	}
3014 	return 0;
3015 }
3016 
3017 /*
3018  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3019  *
3020  * This socket option is a boolean flag which turns on or off mapped V4
3021  * addresses.  If this option is turned on and the socket is type
3022  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3023  * If this option is turned off, then no mapping will be done of V4
3024  * addresses and a user will receive both PF_INET6 and PF_INET type
3025  * addresses on the socket.
3026  */
3027 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3028 {
3029 	int val;
3030 	struct sctp_sock *sp = sctp_sk(sk);
3031 
3032 	if (optlen < sizeof(int))
3033 		return -EINVAL;
3034 	if (get_user(val, (int __user *)optval))
3035 		return -EFAULT;
3036 	if (val)
3037 		sp->v4mapped = 1;
3038 	else
3039 		sp->v4mapped = 0;
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3046  * This option will get or set the maximum size to put in any outgoing
3047  * SCTP DATA chunk.  If a message is larger than this size it will be
3048  * fragmented by SCTP into the specified size.  Note that the underlying
3049  * SCTP implementation may fragment into smaller sized chunks when the
3050  * PMTU of the underlying association is smaller than the value set by
3051  * the user.  The default value for this option is '0' which indicates
3052  * the user is NOT limiting fragmentation and only the PMTU will effect
3053  * SCTP's choice of DATA chunk size.  Note also that values set larger
3054  * than the maximum size of an IP datagram will effectively let SCTP
3055  * control fragmentation (i.e. the same as setting this option to 0).
3056  *
3057  * The following structure is used to access and modify this parameter:
3058  *
3059  * struct sctp_assoc_value {
3060  *   sctp_assoc_t assoc_id;
3061  *   uint32_t assoc_value;
3062  * };
3063  *
3064  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3065  *    For one-to-many style sockets this parameter indicates which
3066  *    association the user is performing an action upon.  Note that if
3067  *    this field's value is zero then the endpoints default value is
3068  *    changed (effecting future associations only).
3069  * assoc_value:  This parameter specifies the maximum size in bytes.
3070  */
3071 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3072 {
3073 	struct sctp_assoc_value params;
3074 	struct sctp_association *asoc;
3075 	struct sctp_sock *sp = sctp_sk(sk);
3076 	int val;
3077 
3078 	if (optlen == sizeof(int)) {
3079 		pr_warn_ratelimited(DEPRECATED
3080 				    "%s (pid %d) "
3081 				    "Use of int in maxseg socket option.\n"
3082 				    "Use struct sctp_assoc_value instead\n",
3083 				    current->comm, task_pid_nr(current));
3084 		if (copy_from_user(&val, optval, optlen))
3085 			return -EFAULT;
3086 		params.assoc_id = 0;
3087 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3088 		if (copy_from_user(&params, optval, optlen))
3089 			return -EFAULT;
3090 		val = params.assoc_value;
3091 	} else
3092 		return -EINVAL;
3093 
3094 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3095 		return -EINVAL;
3096 
3097 	asoc = sctp_id2assoc(sk, params.assoc_id);
3098 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3099 		return -EINVAL;
3100 
3101 	if (asoc) {
3102 		if (val == 0) {
3103 			val = asoc->pathmtu;
3104 			val -= sp->pf->af->net_header_len;
3105 			val -= sizeof(struct sctphdr) +
3106 					sizeof(struct sctp_data_chunk);
3107 		}
3108 		asoc->user_frag = val;
3109 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3110 	} else {
3111 		sp->user_frag = val;
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 
3118 /*
3119  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3120  *
3121  *   Requests that the peer mark the enclosed address as the association
3122  *   primary. The enclosed address must be one of the association's
3123  *   locally bound addresses. The following structure is used to make a
3124  *   set primary request:
3125  */
3126 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3127 					     unsigned int optlen)
3128 {
3129 	struct net *net = sock_net(sk);
3130 	struct sctp_sock	*sp;
3131 	struct sctp_association	*asoc = NULL;
3132 	struct sctp_setpeerprim	prim;
3133 	struct sctp_chunk	*chunk;
3134 	struct sctp_af		*af;
3135 	int 			err;
3136 
3137 	sp = sctp_sk(sk);
3138 
3139 	if (!net->sctp.addip_enable)
3140 		return -EPERM;
3141 
3142 	if (optlen != sizeof(struct sctp_setpeerprim))
3143 		return -EINVAL;
3144 
3145 	if (copy_from_user(&prim, optval, optlen))
3146 		return -EFAULT;
3147 
3148 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3149 	if (!asoc)
3150 		return -EINVAL;
3151 
3152 	if (!asoc->peer.asconf_capable)
3153 		return -EPERM;
3154 
3155 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3156 		return -EPERM;
3157 
3158 	if (!sctp_state(asoc, ESTABLISHED))
3159 		return -ENOTCONN;
3160 
3161 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3162 	if (!af)
3163 		return -EINVAL;
3164 
3165 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3166 		return -EADDRNOTAVAIL;
3167 
3168 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3169 		return -EADDRNOTAVAIL;
3170 
3171 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3172 	chunk = sctp_make_asconf_set_prim(asoc,
3173 					  (union sctp_addr *)&prim.sspp_addr);
3174 	if (!chunk)
3175 		return -ENOMEM;
3176 
3177 	err = sctp_send_asconf(asoc, chunk);
3178 
3179 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3180 
3181 	return err;
3182 }
3183 
3184 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3185 					    unsigned int optlen)
3186 {
3187 	struct sctp_setadaptation adaptation;
3188 
3189 	if (optlen != sizeof(struct sctp_setadaptation))
3190 		return -EINVAL;
3191 	if (copy_from_user(&adaptation, optval, optlen))
3192 		return -EFAULT;
3193 
3194 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3195 
3196 	return 0;
3197 }
3198 
3199 /*
3200  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3201  *
3202  * The context field in the sctp_sndrcvinfo structure is normally only
3203  * used when a failed message is retrieved holding the value that was
3204  * sent down on the actual send call.  This option allows the setting of
3205  * a default context on an association basis that will be received on
3206  * reading messages from the peer.  This is especially helpful in the
3207  * one-2-many model for an application to keep some reference to an
3208  * internal state machine that is processing messages on the
3209  * association.  Note that the setting of this value only effects
3210  * received messages from the peer and does not effect the value that is
3211  * saved with outbound messages.
3212  */
3213 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3214 				   unsigned int optlen)
3215 {
3216 	struct sctp_assoc_value params;
3217 	struct sctp_sock *sp;
3218 	struct sctp_association *asoc;
3219 
3220 	if (optlen != sizeof(struct sctp_assoc_value))
3221 		return -EINVAL;
3222 	if (copy_from_user(&params, optval, optlen))
3223 		return -EFAULT;
3224 
3225 	sp = sctp_sk(sk);
3226 
3227 	if (params.assoc_id != 0) {
3228 		asoc = sctp_id2assoc(sk, params.assoc_id);
3229 		if (!asoc)
3230 			return -EINVAL;
3231 		asoc->default_rcv_context = params.assoc_value;
3232 	} else {
3233 		sp->default_rcv_context = params.assoc_value;
3234 	}
3235 
3236 	return 0;
3237 }
3238 
3239 /*
3240  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3241  *
3242  * This options will at a minimum specify if the implementation is doing
3243  * fragmented interleave.  Fragmented interleave, for a one to many
3244  * socket, is when subsequent calls to receive a message may return
3245  * parts of messages from different associations.  Some implementations
3246  * may allow you to turn this value on or off.  If so, when turned off,
3247  * no fragment interleave will occur (which will cause a head of line
3248  * blocking amongst multiple associations sharing the same one to many
3249  * socket).  When this option is turned on, then each receive call may
3250  * come from a different association (thus the user must receive data
3251  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3252  * association each receive belongs to.
3253  *
3254  * This option takes a boolean value.  A non-zero value indicates that
3255  * fragmented interleave is on.  A value of zero indicates that
3256  * fragmented interleave is off.
3257  *
3258  * Note that it is important that an implementation that allows this
3259  * option to be turned on, have it off by default.  Otherwise an unaware
3260  * application using the one to many model may become confused and act
3261  * incorrectly.
3262  */
3263 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3264 					       char __user *optval,
3265 					       unsigned int optlen)
3266 {
3267 	int val;
3268 
3269 	if (optlen != sizeof(int))
3270 		return -EINVAL;
3271 	if (get_user(val, (int __user *)optval))
3272 		return -EFAULT;
3273 
3274 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3275 
3276 	return 0;
3277 }
3278 
3279 /*
3280  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3281  *       (SCTP_PARTIAL_DELIVERY_POINT)
3282  *
3283  * This option will set or get the SCTP partial delivery point.  This
3284  * point is the size of a message where the partial delivery API will be
3285  * invoked to help free up rwnd space for the peer.  Setting this to a
3286  * lower value will cause partial deliveries to happen more often.  The
3287  * calls argument is an integer that sets or gets the partial delivery
3288  * point.  Note also that the call will fail if the user attempts to set
3289  * this value larger than the socket receive buffer size.
3290  *
3291  * Note that any single message having a length smaller than or equal to
3292  * the SCTP partial delivery point will be delivered in one single read
3293  * call as long as the user provided buffer is large enough to hold the
3294  * message.
3295  */
3296 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3297 						  char __user *optval,
3298 						  unsigned int optlen)
3299 {
3300 	u32 val;
3301 
3302 	if (optlen != sizeof(u32))
3303 		return -EINVAL;
3304 	if (get_user(val, (int __user *)optval))
3305 		return -EFAULT;
3306 
3307 	/* Note: We double the receive buffer from what the user sets
3308 	 * it to be, also initial rwnd is based on rcvbuf/2.
3309 	 */
3310 	if (val > (sk->sk_rcvbuf >> 1))
3311 		return -EINVAL;
3312 
3313 	sctp_sk(sk)->pd_point = val;
3314 
3315 	return 0; /* is this the right error code? */
3316 }
3317 
3318 /*
3319  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3320  *
3321  * This option will allow a user to change the maximum burst of packets
3322  * that can be emitted by this association.  Note that the default value
3323  * is 4, and some implementations may restrict this setting so that it
3324  * can only be lowered.
3325  *
3326  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3327  * future associations inheriting the socket value.
3328  */
3329 static int sctp_setsockopt_maxburst(struct sock *sk,
3330 				    char __user *optval,
3331 				    unsigned int optlen)
3332 {
3333 	struct sctp_assoc_value params;
3334 	struct sctp_sock *sp;
3335 	struct sctp_association *asoc;
3336 	int val;
3337 	int assoc_id = 0;
3338 
3339 	if (optlen == sizeof(int)) {
3340 		pr_warn_ratelimited(DEPRECATED
3341 				    "%s (pid %d) "
3342 				    "Use of int in max_burst socket option deprecated.\n"
3343 				    "Use struct sctp_assoc_value instead\n",
3344 				    current->comm, task_pid_nr(current));
3345 		if (copy_from_user(&val, optval, optlen))
3346 			return -EFAULT;
3347 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3348 		if (copy_from_user(&params, optval, optlen))
3349 			return -EFAULT;
3350 		val = params.assoc_value;
3351 		assoc_id = params.assoc_id;
3352 	} else
3353 		return -EINVAL;
3354 
3355 	sp = sctp_sk(sk);
3356 
3357 	if (assoc_id != 0) {
3358 		asoc = sctp_id2assoc(sk, assoc_id);
3359 		if (!asoc)
3360 			return -EINVAL;
3361 		asoc->max_burst = val;
3362 	} else
3363 		sp->max_burst = val;
3364 
3365 	return 0;
3366 }
3367 
3368 /*
3369  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3370  *
3371  * This set option adds a chunk type that the user is requesting to be
3372  * received only in an authenticated way.  Changes to the list of chunks
3373  * will only effect future associations on the socket.
3374  */
3375 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3376 				      char __user *optval,
3377 				      unsigned int optlen)
3378 {
3379 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3380 	struct sctp_authchunk val;
3381 
3382 	if (!ep->auth_enable)
3383 		return -EACCES;
3384 
3385 	if (optlen != sizeof(struct sctp_authchunk))
3386 		return -EINVAL;
3387 	if (copy_from_user(&val, optval, optlen))
3388 		return -EFAULT;
3389 
3390 	switch (val.sauth_chunk) {
3391 	case SCTP_CID_INIT:
3392 	case SCTP_CID_INIT_ACK:
3393 	case SCTP_CID_SHUTDOWN_COMPLETE:
3394 	case SCTP_CID_AUTH:
3395 		return -EINVAL;
3396 	}
3397 
3398 	/* add this chunk id to the endpoint */
3399 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3400 }
3401 
3402 /*
3403  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3404  *
3405  * This option gets or sets the list of HMAC algorithms that the local
3406  * endpoint requires the peer to use.
3407  */
3408 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3409 				      char __user *optval,
3410 				      unsigned int optlen)
3411 {
3412 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3413 	struct sctp_hmacalgo *hmacs;
3414 	u32 idents;
3415 	int err;
3416 
3417 	if (!ep->auth_enable)
3418 		return -EACCES;
3419 
3420 	if (optlen < sizeof(struct sctp_hmacalgo))
3421 		return -EINVAL;
3422 
3423 	hmacs = memdup_user(optval, optlen);
3424 	if (IS_ERR(hmacs))
3425 		return PTR_ERR(hmacs);
3426 
3427 	idents = hmacs->shmac_num_idents;
3428 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3429 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3430 		err = -EINVAL;
3431 		goto out;
3432 	}
3433 
3434 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3435 out:
3436 	kfree(hmacs);
3437 	return err;
3438 }
3439 
3440 /*
3441  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3442  *
3443  * This option will set a shared secret key which is used to build an
3444  * association shared key.
3445  */
3446 static int sctp_setsockopt_auth_key(struct sock *sk,
3447 				    char __user *optval,
3448 				    unsigned int optlen)
3449 {
3450 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3451 	struct sctp_authkey *authkey;
3452 	struct sctp_association *asoc;
3453 	int ret;
3454 
3455 	if (!ep->auth_enable)
3456 		return -EACCES;
3457 
3458 	if (optlen <= sizeof(struct sctp_authkey))
3459 		return -EINVAL;
3460 
3461 	authkey = memdup_user(optval, optlen);
3462 	if (IS_ERR(authkey))
3463 		return PTR_ERR(authkey);
3464 
3465 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3466 		ret = -EINVAL;
3467 		goto out;
3468 	}
3469 
3470 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3471 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3472 		ret = -EINVAL;
3473 		goto out;
3474 	}
3475 
3476 	ret = sctp_auth_set_key(ep, asoc, authkey);
3477 out:
3478 	kzfree(authkey);
3479 	return ret;
3480 }
3481 
3482 /*
3483  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3484  *
3485  * This option will get or set the active shared key to be used to build
3486  * the association shared key.
3487  */
3488 static int sctp_setsockopt_active_key(struct sock *sk,
3489 				      char __user *optval,
3490 				      unsigned int optlen)
3491 {
3492 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3493 	struct sctp_authkeyid val;
3494 	struct sctp_association *asoc;
3495 
3496 	if (!ep->auth_enable)
3497 		return -EACCES;
3498 
3499 	if (optlen != sizeof(struct sctp_authkeyid))
3500 		return -EINVAL;
3501 	if (copy_from_user(&val, optval, optlen))
3502 		return -EFAULT;
3503 
3504 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3505 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3506 		return -EINVAL;
3507 
3508 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3509 }
3510 
3511 /*
3512  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3513  *
3514  * This set option will delete a shared secret key from use.
3515  */
3516 static int sctp_setsockopt_del_key(struct sock *sk,
3517 				   char __user *optval,
3518 				   unsigned int optlen)
3519 {
3520 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3521 	struct sctp_authkeyid val;
3522 	struct sctp_association *asoc;
3523 
3524 	if (!ep->auth_enable)
3525 		return -EACCES;
3526 
3527 	if (optlen != sizeof(struct sctp_authkeyid))
3528 		return -EINVAL;
3529 	if (copy_from_user(&val, optval, optlen))
3530 		return -EFAULT;
3531 
3532 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3533 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3534 		return -EINVAL;
3535 
3536 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3537 
3538 }
3539 
3540 /*
3541  * 8.1.23 SCTP_AUTO_ASCONF
3542  *
3543  * This option will enable or disable the use of the automatic generation of
3544  * ASCONF chunks to add and delete addresses to an existing association.  Note
3545  * that this option has two caveats namely: a) it only affects sockets that
3546  * are bound to all addresses available to the SCTP stack, and b) the system
3547  * administrator may have an overriding control that turns the ASCONF feature
3548  * off no matter what setting the socket option may have.
3549  * This option expects an integer boolean flag, where a non-zero value turns on
3550  * the option, and a zero value turns off the option.
3551  * Note. In this implementation, socket operation overrides default parameter
3552  * being set by sysctl as well as FreeBSD implementation
3553  */
3554 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3555 					unsigned int optlen)
3556 {
3557 	int val;
3558 	struct sctp_sock *sp = sctp_sk(sk);
3559 
3560 	if (optlen < sizeof(int))
3561 		return -EINVAL;
3562 	if (get_user(val, (int __user *)optval))
3563 		return -EFAULT;
3564 	if (!sctp_is_ep_boundall(sk) && val)
3565 		return -EINVAL;
3566 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3567 		return 0;
3568 
3569 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3570 	if (val == 0 && sp->do_auto_asconf) {
3571 		list_del(&sp->auto_asconf_list);
3572 		sp->do_auto_asconf = 0;
3573 	} else if (val && !sp->do_auto_asconf) {
3574 		list_add_tail(&sp->auto_asconf_list,
3575 		    &sock_net(sk)->sctp.auto_asconf_splist);
3576 		sp->do_auto_asconf = 1;
3577 	}
3578 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3579 	return 0;
3580 }
3581 
3582 /*
3583  * SCTP_PEER_ADDR_THLDS
3584  *
3585  * This option allows us to alter the partially failed threshold for one or all
3586  * transports in an association.  See Section 6.1 of:
3587  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3588  */
3589 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3590 					    char __user *optval,
3591 					    unsigned int optlen)
3592 {
3593 	struct sctp_paddrthlds val;
3594 	struct sctp_transport *trans;
3595 	struct sctp_association *asoc;
3596 
3597 	if (optlen < sizeof(struct sctp_paddrthlds))
3598 		return -EINVAL;
3599 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3600 			   sizeof(struct sctp_paddrthlds)))
3601 		return -EFAULT;
3602 
3603 
3604 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3605 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3606 		if (!asoc)
3607 			return -ENOENT;
3608 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3609 				    transports) {
3610 			if (val.spt_pathmaxrxt)
3611 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3612 			trans->pf_retrans = val.spt_pathpfthld;
3613 		}
3614 
3615 		if (val.spt_pathmaxrxt)
3616 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3617 		asoc->pf_retrans = val.spt_pathpfthld;
3618 	} else {
3619 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3620 					       val.spt_assoc_id);
3621 		if (!trans)
3622 			return -ENOENT;
3623 
3624 		if (val.spt_pathmaxrxt)
3625 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3626 		trans->pf_retrans = val.spt_pathpfthld;
3627 	}
3628 
3629 	return 0;
3630 }
3631 
3632 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3633 				       char __user *optval,
3634 				       unsigned int optlen)
3635 {
3636 	int val;
3637 
3638 	if (optlen < sizeof(int))
3639 		return -EINVAL;
3640 	if (get_user(val, (int __user *) optval))
3641 		return -EFAULT;
3642 
3643 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3644 
3645 	return 0;
3646 }
3647 
3648 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3649 				       char __user *optval,
3650 				       unsigned int optlen)
3651 {
3652 	int val;
3653 
3654 	if (optlen < sizeof(int))
3655 		return -EINVAL;
3656 	if (get_user(val, (int __user *) optval))
3657 		return -EFAULT;
3658 
3659 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3660 
3661 	return 0;
3662 }
3663 
3664 /* API 6.2 setsockopt(), getsockopt()
3665  *
3666  * Applications use setsockopt() and getsockopt() to set or retrieve
3667  * socket options.  Socket options are used to change the default
3668  * behavior of sockets calls.  They are described in Section 7.
3669  *
3670  * The syntax is:
3671  *
3672  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3673  *                    int __user *optlen);
3674  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3675  *                    int optlen);
3676  *
3677  *   sd      - the socket descript.
3678  *   level   - set to IPPROTO_SCTP for all SCTP options.
3679  *   optname - the option name.
3680  *   optval  - the buffer to store the value of the option.
3681  *   optlen  - the size of the buffer.
3682  */
3683 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3684 			   char __user *optval, unsigned int optlen)
3685 {
3686 	int retval = 0;
3687 
3688 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3689 
3690 	/* I can hardly begin to describe how wrong this is.  This is
3691 	 * so broken as to be worse than useless.  The API draft
3692 	 * REALLY is NOT helpful here...  I am not convinced that the
3693 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3694 	 * are at all well-founded.
3695 	 */
3696 	if (level != SOL_SCTP) {
3697 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3698 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3699 		goto out_nounlock;
3700 	}
3701 
3702 	lock_sock(sk);
3703 
3704 	switch (optname) {
3705 	case SCTP_SOCKOPT_BINDX_ADD:
3706 		/* 'optlen' is the size of the addresses buffer. */
3707 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3708 					       optlen, SCTP_BINDX_ADD_ADDR);
3709 		break;
3710 
3711 	case SCTP_SOCKOPT_BINDX_REM:
3712 		/* 'optlen' is the size of the addresses buffer. */
3713 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3714 					       optlen, SCTP_BINDX_REM_ADDR);
3715 		break;
3716 
3717 	case SCTP_SOCKOPT_CONNECTX_OLD:
3718 		/* 'optlen' is the size of the addresses buffer. */
3719 		retval = sctp_setsockopt_connectx_old(sk,
3720 					    (struct sockaddr __user *)optval,
3721 					    optlen);
3722 		break;
3723 
3724 	case SCTP_SOCKOPT_CONNECTX:
3725 		/* 'optlen' is the size of the addresses buffer. */
3726 		retval = sctp_setsockopt_connectx(sk,
3727 					    (struct sockaddr __user *)optval,
3728 					    optlen);
3729 		break;
3730 
3731 	case SCTP_DISABLE_FRAGMENTS:
3732 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3733 		break;
3734 
3735 	case SCTP_EVENTS:
3736 		retval = sctp_setsockopt_events(sk, optval, optlen);
3737 		break;
3738 
3739 	case SCTP_AUTOCLOSE:
3740 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3741 		break;
3742 
3743 	case SCTP_PEER_ADDR_PARAMS:
3744 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3745 		break;
3746 
3747 	case SCTP_DELAYED_SACK:
3748 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3749 		break;
3750 	case SCTP_PARTIAL_DELIVERY_POINT:
3751 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3752 		break;
3753 
3754 	case SCTP_INITMSG:
3755 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3756 		break;
3757 	case SCTP_DEFAULT_SEND_PARAM:
3758 		retval = sctp_setsockopt_default_send_param(sk, optval,
3759 							    optlen);
3760 		break;
3761 	case SCTP_DEFAULT_SNDINFO:
3762 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3763 		break;
3764 	case SCTP_PRIMARY_ADDR:
3765 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3766 		break;
3767 	case SCTP_SET_PEER_PRIMARY_ADDR:
3768 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3769 		break;
3770 	case SCTP_NODELAY:
3771 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3772 		break;
3773 	case SCTP_RTOINFO:
3774 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3775 		break;
3776 	case SCTP_ASSOCINFO:
3777 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3778 		break;
3779 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3780 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3781 		break;
3782 	case SCTP_MAXSEG:
3783 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3784 		break;
3785 	case SCTP_ADAPTATION_LAYER:
3786 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3787 		break;
3788 	case SCTP_CONTEXT:
3789 		retval = sctp_setsockopt_context(sk, optval, optlen);
3790 		break;
3791 	case SCTP_FRAGMENT_INTERLEAVE:
3792 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3793 		break;
3794 	case SCTP_MAX_BURST:
3795 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3796 		break;
3797 	case SCTP_AUTH_CHUNK:
3798 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3799 		break;
3800 	case SCTP_HMAC_IDENT:
3801 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3802 		break;
3803 	case SCTP_AUTH_KEY:
3804 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3805 		break;
3806 	case SCTP_AUTH_ACTIVE_KEY:
3807 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3808 		break;
3809 	case SCTP_AUTH_DELETE_KEY:
3810 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3811 		break;
3812 	case SCTP_AUTO_ASCONF:
3813 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3814 		break;
3815 	case SCTP_PEER_ADDR_THLDS:
3816 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3817 		break;
3818 	case SCTP_RECVRCVINFO:
3819 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3820 		break;
3821 	case SCTP_RECVNXTINFO:
3822 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3823 		break;
3824 	default:
3825 		retval = -ENOPROTOOPT;
3826 		break;
3827 	}
3828 
3829 	release_sock(sk);
3830 
3831 out_nounlock:
3832 	return retval;
3833 }
3834 
3835 /* API 3.1.6 connect() - UDP Style Syntax
3836  *
3837  * An application may use the connect() call in the UDP model to initiate an
3838  * association without sending data.
3839  *
3840  * The syntax is:
3841  *
3842  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3843  *
3844  * sd: the socket descriptor to have a new association added to.
3845  *
3846  * nam: the address structure (either struct sockaddr_in or struct
3847  *    sockaddr_in6 defined in RFC2553 [7]).
3848  *
3849  * len: the size of the address.
3850  */
3851 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3852 			int addr_len)
3853 {
3854 	int err = 0;
3855 	struct sctp_af *af;
3856 
3857 	lock_sock(sk);
3858 
3859 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3860 		 addr, addr_len);
3861 
3862 	/* Validate addr_len before calling common connect/connectx routine. */
3863 	af = sctp_get_af_specific(addr->sa_family);
3864 	if (!af || addr_len < af->sockaddr_len) {
3865 		err = -EINVAL;
3866 	} else {
3867 		/* Pass correct addr len to common routine (so it knows there
3868 		 * is only one address being passed.
3869 		 */
3870 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3871 	}
3872 
3873 	release_sock(sk);
3874 	return err;
3875 }
3876 
3877 /* FIXME: Write comments. */
3878 static int sctp_disconnect(struct sock *sk, int flags)
3879 {
3880 	return -EOPNOTSUPP; /* STUB */
3881 }
3882 
3883 /* 4.1.4 accept() - TCP Style Syntax
3884  *
3885  * Applications use accept() call to remove an established SCTP
3886  * association from the accept queue of the endpoint.  A new socket
3887  * descriptor will be returned from accept() to represent the newly
3888  * formed association.
3889  */
3890 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3891 {
3892 	struct sctp_sock *sp;
3893 	struct sctp_endpoint *ep;
3894 	struct sock *newsk = NULL;
3895 	struct sctp_association *asoc;
3896 	long timeo;
3897 	int error = 0;
3898 
3899 	lock_sock(sk);
3900 
3901 	sp = sctp_sk(sk);
3902 	ep = sp->ep;
3903 
3904 	if (!sctp_style(sk, TCP)) {
3905 		error = -EOPNOTSUPP;
3906 		goto out;
3907 	}
3908 
3909 	if (!sctp_sstate(sk, LISTENING)) {
3910 		error = -EINVAL;
3911 		goto out;
3912 	}
3913 
3914 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3915 
3916 	error = sctp_wait_for_accept(sk, timeo);
3917 	if (error)
3918 		goto out;
3919 
3920 	/* We treat the list of associations on the endpoint as the accept
3921 	 * queue and pick the first association on the list.
3922 	 */
3923 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3924 
3925 	newsk = sp->pf->create_accept_sk(sk, asoc);
3926 	if (!newsk) {
3927 		error = -ENOMEM;
3928 		goto out;
3929 	}
3930 
3931 	/* Populate the fields of the newsk from the oldsk and migrate the
3932 	 * asoc to the newsk.
3933 	 */
3934 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3935 
3936 out:
3937 	release_sock(sk);
3938 	*err = error;
3939 	return newsk;
3940 }
3941 
3942 /* The SCTP ioctl handler. */
3943 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3944 {
3945 	int rc = -ENOTCONN;
3946 
3947 	lock_sock(sk);
3948 
3949 	/*
3950 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3951 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3952 	 */
3953 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3954 		goto out;
3955 
3956 	switch (cmd) {
3957 	case SIOCINQ: {
3958 		struct sk_buff *skb;
3959 		unsigned int amount = 0;
3960 
3961 		skb = skb_peek(&sk->sk_receive_queue);
3962 		if (skb != NULL) {
3963 			/*
3964 			 * We will only return the amount of this packet since
3965 			 * that is all that will be read.
3966 			 */
3967 			amount = skb->len;
3968 		}
3969 		rc = put_user(amount, (int __user *)arg);
3970 		break;
3971 	}
3972 	default:
3973 		rc = -ENOIOCTLCMD;
3974 		break;
3975 	}
3976 out:
3977 	release_sock(sk);
3978 	return rc;
3979 }
3980 
3981 /* This is the function which gets called during socket creation to
3982  * initialized the SCTP-specific portion of the sock.
3983  * The sock structure should already be zero-filled memory.
3984  */
3985 static int sctp_init_sock(struct sock *sk)
3986 {
3987 	struct net *net = sock_net(sk);
3988 	struct sctp_sock *sp;
3989 
3990 	pr_debug("%s: sk:%p\n", __func__, sk);
3991 
3992 	sp = sctp_sk(sk);
3993 
3994 	/* Initialize the SCTP per socket area.  */
3995 	switch (sk->sk_type) {
3996 	case SOCK_SEQPACKET:
3997 		sp->type = SCTP_SOCKET_UDP;
3998 		break;
3999 	case SOCK_STREAM:
4000 		sp->type = SCTP_SOCKET_TCP;
4001 		break;
4002 	default:
4003 		return -ESOCKTNOSUPPORT;
4004 	}
4005 
4006 	/* Initialize default send parameters. These parameters can be
4007 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4008 	 */
4009 	sp->default_stream = 0;
4010 	sp->default_ppid = 0;
4011 	sp->default_flags = 0;
4012 	sp->default_context = 0;
4013 	sp->default_timetolive = 0;
4014 
4015 	sp->default_rcv_context = 0;
4016 	sp->max_burst = net->sctp.max_burst;
4017 
4018 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4019 
4020 	/* Initialize default setup parameters. These parameters
4021 	 * can be modified with the SCTP_INITMSG socket option or
4022 	 * overridden by the SCTP_INIT CMSG.
4023 	 */
4024 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4025 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4026 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4027 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4028 
4029 	/* Initialize default RTO related parameters.  These parameters can
4030 	 * be modified for with the SCTP_RTOINFO socket option.
4031 	 */
4032 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4033 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4034 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4035 
4036 	/* Initialize default association related parameters. These parameters
4037 	 * can be modified with the SCTP_ASSOCINFO socket option.
4038 	 */
4039 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4040 	sp->assocparams.sasoc_number_peer_destinations = 0;
4041 	sp->assocparams.sasoc_peer_rwnd = 0;
4042 	sp->assocparams.sasoc_local_rwnd = 0;
4043 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4044 
4045 	/* Initialize default event subscriptions. By default, all the
4046 	 * options are off.
4047 	 */
4048 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4049 
4050 	/* Default Peer Address Parameters.  These defaults can
4051 	 * be modified via SCTP_PEER_ADDR_PARAMS
4052 	 */
4053 	sp->hbinterval  = net->sctp.hb_interval;
4054 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4055 	sp->pathmtu     = 0; /* allow default discovery */
4056 	sp->sackdelay   = net->sctp.sack_timeout;
4057 	sp->sackfreq	= 2;
4058 	sp->param_flags = SPP_HB_ENABLE |
4059 			  SPP_PMTUD_ENABLE |
4060 			  SPP_SACKDELAY_ENABLE;
4061 
4062 	/* If enabled no SCTP message fragmentation will be performed.
4063 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4064 	 */
4065 	sp->disable_fragments = 0;
4066 
4067 	/* Enable Nagle algorithm by default.  */
4068 	sp->nodelay           = 0;
4069 
4070 	sp->recvrcvinfo = 0;
4071 	sp->recvnxtinfo = 0;
4072 
4073 	/* Enable by default. */
4074 	sp->v4mapped          = 1;
4075 
4076 	/* Auto-close idle associations after the configured
4077 	 * number of seconds.  A value of 0 disables this
4078 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4079 	 * for UDP-style sockets only.
4080 	 */
4081 	sp->autoclose         = 0;
4082 
4083 	/* User specified fragmentation limit. */
4084 	sp->user_frag         = 0;
4085 
4086 	sp->adaptation_ind = 0;
4087 
4088 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4089 
4090 	/* Control variables for partial data delivery. */
4091 	atomic_set(&sp->pd_mode, 0);
4092 	skb_queue_head_init(&sp->pd_lobby);
4093 	sp->frag_interleave = 0;
4094 
4095 	/* Create a per socket endpoint structure.  Even if we
4096 	 * change the data structure relationships, this may still
4097 	 * be useful for storing pre-connect address information.
4098 	 */
4099 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4100 	if (!sp->ep)
4101 		return -ENOMEM;
4102 
4103 	sp->hmac = NULL;
4104 
4105 	sk->sk_destruct = sctp_destruct_sock;
4106 
4107 	SCTP_DBG_OBJCNT_INC(sock);
4108 
4109 	local_bh_disable();
4110 	percpu_counter_inc(&sctp_sockets_allocated);
4111 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4112 
4113 	/* Nothing can fail after this block, otherwise
4114 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4115 	 */
4116 	if (net->sctp.default_auto_asconf) {
4117 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4118 		list_add_tail(&sp->auto_asconf_list,
4119 		    &net->sctp.auto_asconf_splist);
4120 		sp->do_auto_asconf = 1;
4121 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4122 	} else {
4123 		sp->do_auto_asconf = 0;
4124 	}
4125 
4126 	local_bh_enable();
4127 
4128 	return 0;
4129 }
4130 
4131 /* Cleanup any SCTP per socket resources. Must be called with
4132  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4133  */
4134 static void sctp_destroy_sock(struct sock *sk)
4135 {
4136 	struct sctp_sock *sp;
4137 
4138 	pr_debug("%s: sk:%p\n", __func__, sk);
4139 
4140 	/* Release our hold on the endpoint. */
4141 	sp = sctp_sk(sk);
4142 	/* This could happen during socket init, thus we bail out
4143 	 * early, since the rest of the below is not setup either.
4144 	 */
4145 	if (sp->ep == NULL)
4146 		return;
4147 
4148 	if (sp->do_auto_asconf) {
4149 		sp->do_auto_asconf = 0;
4150 		list_del(&sp->auto_asconf_list);
4151 	}
4152 	sctp_endpoint_free(sp->ep);
4153 	local_bh_disable();
4154 	percpu_counter_dec(&sctp_sockets_allocated);
4155 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4156 	local_bh_enable();
4157 }
4158 
4159 /* Triggered when there are no references on the socket anymore */
4160 static void sctp_destruct_sock(struct sock *sk)
4161 {
4162 	struct sctp_sock *sp = sctp_sk(sk);
4163 
4164 	/* Free up the HMAC transform. */
4165 	crypto_free_shash(sp->hmac);
4166 
4167 	inet_sock_destruct(sk);
4168 }
4169 
4170 /* API 4.1.7 shutdown() - TCP Style Syntax
4171  *     int shutdown(int socket, int how);
4172  *
4173  *     sd      - the socket descriptor of the association to be closed.
4174  *     how     - Specifies the type of shutdown.  The  values  are
4175  *               as follows:
4176  *               SHUT_RD
4177  *                     Disables further receive operations. No SCTP
4178  *                     protocol action is taken.
4179  *               SHUT_WR
4180  *                     Disables further send operations, and initiates
4181  *                     the SCTP shutdown sequence.
4182  *               SHUT_RDWR
4183  *                     Disables further send  and  receive  operations
4184  *                     and initiates the SCTP shutdown sequence.
4185  */
4186 static void sctp_shutdown(struct sock *sk, int how)
4187 {
4188 	struct net *net = sock_net(sk);
4189 	struct sctp_endpoint *ep;
4190 	struct sctp_association *asoc;
4191 
4192 	if (!sctp_style(sk, TCP))
4193 		return;
4194 
4195 	if (how & SEND_SHUTDOWN) {
4196 		ep = sctp_sk(sk)->ep;
4197 		if (!list_empty(&ep->asocs)) {
4198 			asoc = list_entry(ep->asocs.next,
4199 					  struct sctp_association, asocs);
4200 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4201 		}
4202 	}
4203 }
4204 
4205 /* 7.2.1 Association Status (SCTP_STATUS)
4206 
4207  * Applications can retrieve current status information about an
4208  * association, including association state, peer receiver window size,
4209  * number of unacked data chunks, and number of data chunks pending
4210  * receipt.  This information is read-only.
4211  */
4212 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4213 				       char __user *optval,
4214 				       int __user *optlen)
4215 {
4216 	struct sctp_status status;
4217 	struct sctp_association *asoc = NULL;
4218 	struct sctp_transport *transport;
4219 	sctp_assoc_t associd;
4220 	int retval = 0;
4221 
4222 	if (len < sizeof(status)) {
4223 		retval = -EINVAL;
4224 		goto out;
4225 	}
4226 
4227 	len = sizeof(status);
4228 	if (copy_from_user(&status, optval, len)) {
4229 		retval = -EFAULT;
4230 		goto out;
4231 	}
4232 
4233 	associd = status.sstat_assoc_id;
4234 	asoc = sctp_id2assoc(sk, associd);
4235 	if (!asoc) {
4236 		retval = -EINVAL;
4237 		goto out;
4238 	}
4239 
4240 	transport = asoc->peer.primary_path;
4241 
4242 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4243 	status.sstat_state = sctp_assoc_to_state(asoc);
4244 	status.sstat_rwnd =  asoc->peer.rwnd;
4245 	status.sstat_unackdata = asoc->unack_data;
4246 
4247 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4248 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4249 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4250 	status.sstat_fragmentation_point = asoc->frag_point;
4251 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4252 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4253 			transport->af_specific->sockaddr_len);
4254 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4255 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4256 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4257 	status.sstat_primary.spinfo_state = transport->state;
4258 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4259 	status.sstat_primary.spinfo_srtt = transport->srtt;
4260 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4261 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4262 
4263 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4264 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4265 
4266 	if (put_user(len, optlen)) {
4267 		retval = -EFAULT;
4268 		goto out;
4269 	}
4270 
4271 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4272 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4273 		 status.sstat_assoc_id);
4274 
4275 	if (copy_to_user(optval, &status, len)) {
4276 		retval = -EFAULT;
4277 		goto out;
4278 	}
4279 
4280 out:
4281 	return retval;
4282 }
4283 
4284 
4285 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4286  *
4287  * Applications can retrieve information about a specific peer address
4288  * of an association, including its reachability state, congestion
4289  * window, and retransmission timer values.  This information is
4290  * read-only.
4291  */
4292 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4293 					  char __user *optval,
4294 					  int __user *optlen)
4295 {
4296 	struct sctp_paddrinfo pinfo;
4297 	struct sctp_transport *transport;
4298 	int retval = 0;
4299 
4300 	if (len < sizeof(pinfo)) {
4301 		retval = -EINVAL;
4302 		goto out;
4303 	}
4304 
4305 	len = sizeof(pinfo);
4306 	if (copy_from_user(&pinfo, optval, len)) {
4307 		retval = -EFAULT;
4308 		goto out;
4309 	}
4310 
4311 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4312 					   pinfo.spinfo_assoc_id);
4313 	if (!transport)
4314 		return -EINVAL;
4315 
4316 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4317 	pinfo.spinfo_state = transport->state;
4318 	pinfo.spinfo_cwnd = transport->cwnd;
4319 	pinfo.spinfo_srtt = transport->srtt;
4320 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4321 	pinfo.spinfo_mtu = transport->pathmtu;
4322 
4323 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4324 		pinfo.spinfo_state = SCTP_ACTIVE;
4325 
4326 	if (put_user(len, optlen)) {
4327 		retval = -EFAULT;
4328 		goto out;
4329 	}
4330 
4331 	if (copy_to_user(optval, &pinfo, len)) {
4332 		retval = -EFAULT;
4333 		goto out;
4334 	}
4335 
4336 out:
4337 	return retval;
4338 }
4339 
4340 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4341  *
4342  * This option is a on/off flag.  If enabled no SCTP message
4343  * fragmentation will be performed.  Instead if a message being sent
4344  * exceeds the current PMTU size, the message will NOT be sent and
4345  * instead a error will be indicated to the user.
4346  */
4347 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4348 					char __user *optval, int __user *optlen)
4349 {
4350 	int val;
4351 
4352 	if (len < sizeof(int))
4353 		return -EINVAL;
4354 
4355 	len = sizeof(int);
4356 	val = (sctp_sk(sk)->disable_fragments == 1);
4357 	if (put_user(len, optlen))
4358 		return -EFAULT;
4359 	if (copy_to_user(optval, &val, len))
4360 		return -EFAULT;
4361 	return 0;
4362 }
4363 
4364 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4365  *
4366  * This socket option is used to specify various notifications and
4367  * ancillary data the user wishes to receive.
4368  */
4369 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4370 				  int __user *optlen)
4371 {
4372 	if (len <= 0)
4373 		return -EINVAL;
4374 	if (len > sizeof(struct sctp_event_subscribe))
4375 		len = sizeof(struct sctp_event_subscribe);
4376 	if (put_user(len, optlen))
4377 		return -EFAULT;
4378 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4379 		return -EFAULT;
4380 	return 0;
4381 }
4382 
4383 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4384  *
4385  * This socket option is applicable to the UDP-style socket only.  When
4386  * set it will cause associations that are idle for more than the
4387  * specified number of seconds to automatically close.  An association
4388  * being idle is defined an association that has NOT sent or received
4389  * user data.  The special value of '0' indicates that no automatic
4390  * close of any associations should be performed.  The option expects an
4391  * integer defining the number of seconds of idle time before an
4392  * association is closed.
4393  */
4394 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4395 {
4396 	/* Applicable to UDP-style socket only */
4397 	if (sctp_style(sk, TCP))
4398 		return -EOPNOTSUPP;
4399 	if (len < sizeof(int))
4400 		return -EINVAL;
4401 	len = sizeof(int);
4402 	if (put_user(len, optlen))
4403 		return -EFAULT;
4404 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4405 		return -EFAULT;
4406 	return 0;
4407 }
4408 
4409 /* Helper routine to branch off an association to a new socket.  */
4410 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4411 {
4412 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4413 	struct sctp_sock *sp = sctp_sk(sk);
4414 	struct socket *sock;
4415 	int err = 0;
4416 
4417 	if (!asoc)
4418 		return -EINVAL;
4419 
4420 	/* An association cannot be branched off from an already peeled-off
4421 	 * socket, nor is this supported for tcp style sockets.
4422 	 */
4423 	if (!sctp_style(sk, UDP))
4424 		return -EINVAL;
4425 
4426 	/* Create a new socket.  */
4427 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4428 	if (err < 0)
4429 		return err;
4430 
4431 	sctp_copy_sock(sock->sk, sk, asoc);
4432 
4433 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4434 	 * Set the daddr and initialize id to something more random
4435 	 */
4436 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4437 
4438 	/* Populate the fields of the newsk from the oldsk and migrate the
4439 	 * asoc to the newsk.
4440 	 */
4441 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4442 
4443 	*sockp = sock;
4444 
4445 	return err;
4446 }
4447 EXPORT_SYMBOL(sctp_do_peeloff);
4448 
4449 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4450 {
4451 	sctp_peeloff_arg_t peeloff;
4452 	struct socket *newsock;
4453 	struct file *newfile;
4454 	int retval = 0;
4455 
4456 	if (len < sizeof(sctp_peeloff_arg_t))
4457 		return -EINVAL;
4458 	len = sizeof(sctp_peeloff_arg_t);
4459 	if (copy_from_user(&peeloff, optval, len))
4460 		return -EFAULT;
4461 
4462 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4463 	if (retval < 0)
4464 		goto out;
4465 
4466 	/* Map the socket to an unused fd that can be returned to the user.  */
4467 	retval = get_unused_fd_flags(0);
4468 	if (retval < 0) {
4469 		sock_release(newsock);
4470 		goto out;
4471 	}
4472 
4473 	newfile = sock_alloc_file(newsock, 0, NULL);
4474 	if (IS_ERR(newfile)) {
4475 		put_unused_fd(retval);
4476 		sock_release(newsock);
4477 		return PTR_ERR(newfile);
4478 	}
4479 
4480 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4481 		 retval);
4482 
4483 	/* Return the fd mapped to the new socket.  */
4484 	if (put_user(len, optlen)) {
4485 		fput(newfile);
4486 		put_unused_fd(retval);
4487 		return -EFAULT;
4488 	}
4489 	peeloff.sd = retval;
4490 	if (copy_to_user(optval, &peeloff, len)) {
4491 		fput(newfile);
4492 		put_unused_fd(retval);
4493 		return -EFAULT;
4494 	}
4495 	fd_install(retval, newfile);
4496 out:
4497 	return retval;
4498 }
4499 
4500 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4501  *
4502  * Applications can enable or disable heartbeats for any peer address of
4503  * an association, modify an address's heartbeat interval, force a
4504  * heartbeat to be sent immediately, and adjust the address's maximum
4505  * number of retransmissions sent before an address is considered
4506  * unreachable.  The following structure is used to access and modify an
4507  * address's parameters:
4508  *
4509  *  struct sctp_paddrparams {
4510  *     sctp_assoc_t            spp_assoc_id;
4511  *     struct sockaddr_storage spp_address;
4512  *     uint32_t                spp_hbinterval;
4513  *     uint16_t                spp_pathmaxrxt;
4514  *     uint32_t                spp_pathmtu;
4515  *     uint32_t                spp_sackdelay;
4516  *     uint32_t                spp_flags;
4517  * };
4518  *
4519  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4520  *                     application, and identifies the association for
4521  *                     this query.
4522  *   spp_address     - This specifies which address is of interest.
4523  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4524  *                     in milliseconds.  If a  value of zero
4525  *                     is present in this field then no changes are to
4526  *                     be made to this parameter.
4527  *   spp_pathmaxrxt  - This contains the maximum number of
4528  *                     retransmissions before this address shall be
4529  *                     considered unreachable. If a  value of zero
4530  *                     is present in this field then no changes are to
4531  *                     be made to this parameter.
4532  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4533  *                     specified here will be the "fixed" path mtu.
4534  *                     Note that if the spp_address field is empty
4535  *                     then all associations on this address will
4536  *                     have this fixed path mtu set upon them.
4537  *
4538  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4539  *                     the number of milliseconds that sacks will be delayed
4540  *                     for. This value will apply to all addresses of an
4541  *                     association if the spp_address field is empty. Note
4542  *                     also, that if delayed sack is enabled and this
4543  *                     value is set to 0, no change is made to the last
4544  *                     recorded delayed sack timer value.
4545  *
4546  *   spp_flags       - These flags are used to control various features
4547  *                     on an association. The flag field may contain
4548  *                     zero or more of the following options.
4549  *
4550  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4551  *                     specified address. Note that if the address
4552  *                     field is empty all addresses for the association
4553  *                     have heartbeats enabled upon them.
4554  *
4555  *                     SPP_HB_DISABLE - Disable heartbeats on the
4556  *                     speicifed address. Note that if the address
4557  *                     field is empty all addresses for the association
4558  *                     will have their heartbeats disabled. Note also
4559  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4560  *                     mutually exclusive, only one of these two should
4561  *                     be specified. Enabling both fields will have
4562  *                     undetermined results.
4563  *
4564  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4565  *                     to be made immediately.
4566  *
4567  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4568  *                     discovery upon the specified address. Note that
4569  *                     if the address feild is empty then all addresses
4570  *                     on the association are effected.
4571  *
4572  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4573  *                     discovery upon the specified address. Note that
4574  *                     if the address feild is empty then all addresses
4575  *                     on the association are effected. Not also that
4576  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4577  *                     exclusive. Enabling both will have undetermined
4578  *                     results.
4579  *
4580  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4581  *                     on delayed sack. The time specified in spp_sackdelay
4582  *                     is used to specify the sack delay for this address. Note
4583  *                     that if spp_address is empty then all addresses will
4584  *                     enable delayed sack and take on the sack delay
4585  *                     value specified in spp_sackdelay.
4586  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4587  *                     off delayed sack. If the spp_address field is blank then
4588  *                     delayed sack is disabled for the entire association. Note
4589  *                     also that this field is mutually exclusive to
4590  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4591  *                     results.
4592  */
4593 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4594 					    char __user *optval, int __user *optlen)
4595 {
4596 	struct sctp_paddrparams  params;
4597 	struct sctp_transport   *trans = NULL;
4598 	struct sctp_association *asoc = NULL;
4599 	struct sctp_sock        *sp = sctp_sk(sk);
4600 
4601 	if (len < sizeof(struct sctp_paddrparams))
4602 		return -EINVAL;
4603 	len = sizeof(struct sctp_paddrparams);
4604 	if (copy_from_user(&params, optval, len))
4605 		return -EFAULT;
4606 
4607 	/* If an address other than INADDR_ANY is specified, and
4608 	 * no transport is found, then the request is invalid.
4609 	 */
4610 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4611 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4612 					       params.spp_assoc_id);
4613 		if (!trans) {
4614 			pr_debug("%s: failed no transport\n", __func__);
4615 			return -EINVAL;
4616 		}
4617 	}
4618 
4619 	/* Get association, if assoc_id != 0 and the socket is a one
4620 	 * to many style socket, and an association was not found, then
4621 	 * the id was invalid.
4622 	 */
4623 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4624 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4625 		pr_debug("%s: failed no association\n", __func__);
4626 		return -EINVAL;
4627 	}
4628 
4629 	if (trans) {
4630 		/* Fetch transport values. */
4631 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4632 		params.spp_pathmtu    = trans->pathmtu;
4633 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4634 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4635 
4636 		/*draft-11 doesn't say what to return in spp_flags*/
4637 		params.spp_flags      = trans->param_flags;
4638 	} else if (asoc) {
4639 		/* Fetch association values. */
4640 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4641 		params.spp_pathmtu    = asoc->pathmtu;
4642 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4643 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4644 
4645 		/*draft-11 doesn't say what to return in spp_flags*/
4646 		params.spp_flags      = asoc->param_flags;
4647 	} else {
4648 		/* Fetch socket values. */
4649 		params.spp_hbinterval = sp->hbinterval;
4650 		params.spp_pathmtu    = sp->pathmtu;
4651 		params.spp_sackdelay  = sp->sackdelay;
4652 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4653 
4654 		/*draft-11 doesn't say what to return in spp_flags*/
4655 		params.spp_flags      = sp->param_flags;
4656 	}
4657 
4658 	if (copy_to_user(optval, &params, len))
4659 		return -EFAULT;
4660 
4661 	if (put_user(len, optlen))
4662 		return -EFAULT;
4663 
4664 	return 0;
4665 }
4666 
4667 /*
4668  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4669  *
4670  * This option will effect the way delayed acks are performed.  This
4671  * option allows you to get or set the delayed ack time, in
4672  * milliseconds.  It also allows changing the delayed ack frequency.
4673  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4674  * the assoc_id is 0, then this sets or gets the endpoints default
4675  * values.  If the assoc_id field is non-zero, then the set or get
4676  * effects the specified association for the one to many model (the
4677  * assoc_id field is ignored by the one to one model).  Note that if
4678  * sack_delay or sack_freq are 0 when setting this option, then the
4679  * current values will remain unchanged.
4680  *
4681  * struct sctp_sack_info {
4682  *     sctp_assoc_t            sack_assoc_id;
4683  *     uint32_t                sack_delay;
4684  *     uint32_t                sack_freq;
4685  * };
4686  *
4687  * sack_assoc_id -  This parameter, indicates which association the user
4688  *    is performing an action upon.  Note that if this field's value is
4689  *    zero then the endpoints default value is changed (effecting future
4690  *    associations only).
4691  *
4692  * sack_delay -  This parameter contains the number of milliseconds that
4693  *    the user is requesting the delayed ACK timer be set to.  Note that
4694  *    this value is defined in the standard to be between 200 and 500
4695  *    milliseconds.
4696  *
4697  * sack_freq -  This parameter contains the number of packets that must
4698  *    be received before a sack is sent without waiting for the delay
4699  *    timer to expire.  The default value for this is 2, setting this
4700  *    value to 1 will disable the delayed sack algorithm.
4701  */
4702 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4703 					    char __user *optval,
4704 					    int __user *optlen)
4705 {
4706 	struct sctp_sack_info    params;
4707 	struct sctp_association *asoc = NULL;
4708 	struct sctp_sock        *sp = sctp_sk(sk);
4709 
4710 	if (len >= sizeof(struct sctp_sack_info)) {
4711 		len = sizeof(struct sctp_sack_info);
4712 
4713 		if (copy_from_user(&params, optval, len))
4714 			return -EFAULT;
4715 	} else if (len == sizeof(struct sctp_assoc_value)) {
4716 		pr_warn_ratelimited(DEPRECATED
4717 				    "%s (pid %d) "
4718 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4719 				    "Use struct sctp_sack_info instead\n",
4720 				    current->comm, task_pid_nr(current));
4721 		if (copy_from_user(&params, optval, len))
4722 			return -EFAULT;
4723 	} else
4724 		return -EINVAL;
4725 
4726 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4727 	 * to many style socket, and an association was not found, then
4728 	 * the id was invalid.
4729 	 */
4730 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4731 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4732 		return -EINVAL;
4733 
4734 	if (asoc) {
4735 		/* Fetch association values. */
4736 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4737 			params.sack_delay = jiffies_to_msecs(
4738 				asoc->sackdelay);
4739 			params.sack_freq = asoc->sackfreq;
4740 
4741 		} else {
4742 			params.sack_delay = 0;
4743 			params.sack_freq = 1;
4744 		}
4745 	} else {
4746 		/* Fetch socket values. */
4747 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4748 			params.sack_delay  = sp->sackdelay;
4749 			params.sack_freq = sp->sackfreq;
4750 		} else {
4751 			params.sack_delay  = 0;
4752 			params.sack_freq = 1;
4753 		}
4754 	}
4755 
4756 	if (copy_to_user(optval, &params, len))
4757 		return -EFAULT;
4758 
4759 	if (put_user(len, optlen))
4760 		return -EFAULT;
4761 
4762 	return 0;
4763 }
4764 
4765 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4766  *
4767  * Applications can specify protocol parameters for the default association
4768  * initialization.  The option name argument to setsockopt() and getsockopt()
4769  * is SCTP_INITMSG.
4770  *
4771  * Setting initialization parameters is effective only on an unconnected
4772  * socket (for UDP-style sockets only future associations are effected
4773  * by the change).  With TCP-style sockets, this option is inherited by
4774  * sockets derived from a listener socket.
4775  */
4776 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4777 {
4778 	if (len < sizeof(struct sctp_initmsg))
4779 		return -EINVAL;
4780 	len = sizeof(struct sctp_initmsg);
4781 	if (put_user(len, optlen))
4782 		return -EFAULT;
4783 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4784 		return -EFAULT;
4785 	return 0;
4786 }
4787 
4788 
4789 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4790 				      char __user *optval, int __user *optlen)
4791 {
4792 	struct sctp_association *asoc;
4793 	int cnt = 0;
4794 	struct sctp_getaddrs getaddrs;
4795 	struct sctp_transport *from;
4796 	void __user *to;
4797 	union sctp_addr temp;
4798 	struct sctp_sock *sp = sctp_sk(sk);
4799 	int addrlen;
4800 	size_t space_left;
4801 	int bytes_copied;
4802 
4803 	if (len < sizeof(struct sctp_getaddrs))
4804 		return -EINVAL;
4805 
4806 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4807 		return -EFAULT;
4808 
4809 	/* For UDP-style sockets, id specifies the association to query.  */
4810 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4811 	if (!asoc)
4812 		return -EINVAL;
4813 
4814 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4815 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4816 
4817 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4818 				transports) {
4819 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4820 		addrlen = sctp_get_pf_specific(sk->sk_family)
4821 			      ->addr_to_user(sp, &temp);
4822 		if (space_left < addrlen)
4823 			return -ENOMEM;
4824 		if (copy_to_user(to, &temp, addrlen))
4825 			return -EFAULT;
4826 		to += addrlen;
4827 		cnt++;
4828 		space_left -= addrlen;
4829 	}
4830 
4831 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4832 		return -EFAULT;
4833 	bytes_copied = ((char __user *)to) - optval;
4834 	if (put_user(bytes_copied, optlen))
4835 		return -EFAULT;
4836 
4837 	return 0;
4838 }
4839 
4840 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4841 			    size_t space_left, int *bytes_copied)
4842 {
4843 	struct sctp_sockaddr_entry *addr;
4844 	union sctp_addr temp;
4845 	int cnt = 0;
4846 	int addrlen;
4847 	struct net *net = sock_net(sk);
4848 
4849 	rcu_read_lock();
4850 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4851 		if (!addr->valid)
4852 			continue;
4853 
4854 		if ((PF_INET == sk->sk_family) &&
4855 		    (AF_INET6 == addr->a.sa.sa_family))
4856 			continue;
4857 		if ((PF_INET6 == sk->sk_family) &&
4858 		    inet_v6_ipv6only(sk) &&
4859 		    (AF_INET == addr->a.sa.sa_family))
4860 			continue;
4861 		memcpy(&temp, &addr->a, sizeof(temp));
4862 		if (!temp.v4.sin_port)
4863 			temp.v4.sin_port = htons(port);
4864 
4865 		addrlen = sctp_get_pf_specific(sk->sk_family)
4866 			      ->addr_to_user(sctp_sk(sk), &temp);
4867 
4868 		if (space_left < addrlen) {
4869 			cnt =  -ENOMEM;
4870 			break;
4871 		}
4872 		memcpy(to, &temp, addrlen);
4873 
4874 		to += addrlen;
4875 		cnt++;
4876 		space_left -= addrlen;
4877 		*bytes_copied += addrlen;
4878 	}
4879 	rcu_read_unlock();
4880 
4881 	return cnt;
4882 }
4883 
4884 
4885 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4886 				       char __user *optval, int __user *optlen)
4887 {
4888 	struct sctp_bind_addr *bp;
4889 	struct sctp_association *asoc;
4890 	int cnt = 0;
4891 	struct sctp_getaddrs getaddrs;
4892 	struct sctp_sockaddr_entry *addr;
4893 	void __user *to;
4894 	union sctp_addr temp;
4895 	struct sctp_sock *sp = sctp_sk(sk);
4896 	int addrlen;
4897 	int err = 0;
4898 	size_t space_left;
4899 	int bytes_copied = 0;
4900 	void *addrs;
4901 	void *buf;
4902 
4903 	if (len < sizeof(struct sctp_getaddrs))
4904 		return -EINVAL;
4905 
4906 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4907 		return -EFAULT;
4908 
4909 	/*
4910 	 *  For UDP-style sockets, id specifies the association to query.
4911 	 *  If the id field is set to the value '0' then the locally bound
4912 	 *  addresses are returned without regard to any particular
4913 	 *  association.
4914 	 */
4915 	if (0 == getaddrs.assoc_id) {
4916 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4917 	} else {
4918 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4919 		if (!asoc)
4920 			return -EINVAL;
4921 		bp = &asoc->base.bind_addr;
4922 	}
4923 
4924 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4925 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4926 
4927 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
4928 	if (!addrs)
4929 		return -ENOMEM;
4930 
4931 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4932 	 * addresses from the global local address list.
4933 	 */
4934 	if (sctp_list_single_entry(&bp->address_list)) {
4935 		addr = list_entry(bp->address_list.next,
4936 				  struct sctp_sockaddr_entry, list);
4937 		if (sctp_is_any(sk, &addr->a)) {
4938 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4939 						space_left, &bytes_copied);
4940 			if (cnt < 0) {
4941 				err = cnt;
4942 				goto out;
4943 			}
4944 			goto copy_getaddrs;
4945 		}
4946 	}
4947 
4948 	buf = addrs;
4949 	/* Protection on the bound address list is not needed since
4950 	 * in the socket option context we hold a socket lock and
4951 	 * thus the bound address list can't change.
4952 	 */
4953 	list_for_each_entry(addr, &bp->address_list, list) {
4954 		memcpy(&temp, &addr->a, sizeof(temp));
4955 		addrlen = sctp_get_pf_specific(sk->sk_family)
4956 			      ->addr_to_user(sp, &temp);
4957 		if (space_left < addrlen) {
4958 			err =  -ENOMEM; /*fixme: right error?*/
4959 			goto out;
4960 		}
4961 		memcpy(buf, &temp, addrlen);
4962 		buf += addrlen;
4963 		bytes_copied += addrlen;
4964 		cnt++;
4965 		space_left -= addrlen;
4966 	}
4967 
4968 copy_getaddrs:
4969 	if (copy_to_user(to, addrs, bytes_copied)) {
4970 		err = -EFAULT;
4971 		goto out;
4972 	}
4973 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4974 		err = -EFAULT;
4975 		goto out;
4976 	}
4977 	if (put_user(bytes_copied, optlen))
4978 		err = -EFAULT;
4979 out:
4980 	kfree(addrs);
4981 	return err;
4982 }
4983 
4984 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4985  *
4986  * Requests that the local SCTP stack use the enclosed peer address as
4987  * the association primary.  The enclosed address must be one of the
4988  * association peer's addresses.
4989  */
4990 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4991 					char __user *optval, int __user *optlen)
4992 {
4993 	struct sctp_prim prim;
4994 	struct sctp_association *asoc;
4995 	struct sctp_sock *sp = sctp_sk(sk);
4996 
4997 	if (len < sizeof(struct sctp_prim))
4998 		return -EINVAL;
4999 
5000 	len = sizeof(struct sctp_prim);
5001 
5002 	if (copy_from_user(&prim, optval, len))
5003 		return -EFAULT;
5004 
5005 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5006 	if (!asoc)
5007 		return -EINVAL;
5008 
5009 	if (!asoc->peer.primary_path)
5010 		return -ENOTCONN;
5011 
5012 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5013 		asoc->peer.primary_path->af_specific->sockaddr_len);
5014 
5015 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5016 			(union sctp_addr *)&prim.ssp_addr);
5017 
5018 	if (put_user(len, optlen))
5019 		return -EFAULT;
5020 	if (copy_to_user(optval, &prim, len))
5021 		return -EFAULT;
5022 
5023 	return 0;
5024 }
5025 
5026 /*
5027  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5028  *
5029  * Requests that the local endpoint set the specified Adaptation Layer
5030  * Indication parameter for all future INIT and INIT-ACK exchanges.
5031  */
5032 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5033 				  char __user *optval, int __user *optlen)
5034 {
5035 	struct sctp_setadaptation adaptation;
5036 
5037 	if (len < sizeof(struct sctp_setadaptation))
5038 		return -EINVAL;
5039 
5040 	len = sizeof(struct sctp_setadaptation);
5041 
5042 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5043 
5044 	if (put_user(len, optlen))
5045 		return -EFAULT;
5046 	if (copy_to_user(optval, &adaptation, len))
5047 		return -EFAULT;
5048 
5049 	return 0;
5050 }
5051 
5052 /*
5053  *
5054  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5055  *
5056  *   Applications that wish to use the sendto() system call may wish to
5057  *   specify a default set of parameters that would normally be supplied
5058  *   through the inclusion of ancillary data.  This socket option allows
5059  *   such an application to set the default sctp_sndrcvinfo structure.
5060 
5061 
5062  *   The application that wishes to use this socket option simply passes
5063  *   in to this call the sctp_sndrcvinfo structure defined in Section
5064  *   5.2.2) The input parameters accepted by this call include
5065  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5066  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5067  *   to this call if the caller is using the UDP model.
5068  *
5069  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5070  */
5071 static int sctp_getsockopt_default_send_param(struct sock *sk,
5072 					int len, char __user *optval,
5073 					int __user *optlen)
5074 {
5075 	struct sctp_sock *sp = sctp_sk(sk);
5076 	struct sctp_association *asoc;
5077 	struct sctp_sndrcvinfo info;
5078 
5079 	if (len < sizeof(info))
5080 		return -EINVAL;
5081 
5082 	len = sizeof(info);
5083 
5084 	if (copy_from_user(&info, optval, len))
5085 		return -EFAULT;
5086 
5087 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5088 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5089 		return -EINVAL;
5090 	if (asoc) {
5091 		info.sinfo_stream = asoc->default_stream;
5092 		info.sinfo_flags = asoc->default_flags;
5093 		info.sinfo_ppid = asoc->default_ppid;
5094 		info.sinfo_context = asoc->default_context;
5095 		info.sinfo_timetolive = asoc->default_timetolive;
5096 	} else {
5097 		info.sinfo_stream = sp->default_stream;
5098 		info.sinfo_flags = sp->default_flags;
5099 		info.sinfo_ppid = sp->default_ppid;
5100 		info.sinfo_context = sp->default_context;
5101 		info.sinfo_timetolive = sp->default_timetolive;
5102 	}
5103 
5104 	if (put_user(len, optlen))
5105 		return -EFAULT;
5106 	if (copy_to_user(optval, &info, len))
5107 		return -EFAULT;
5108 
5109 	return 0;
5110 }
5111 
5112 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5113  * (SCTP_DEFAULT_SNDINFO)
5114  */
5115 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5116 					   char __user *optval,
5117 					   int __user *optlen)
5118 {
5119 	struct sctp_sock *sp = sctp_sk(sk);
5120 	struct sctp_association *asoc;
5121 	struct sctp_sndinfo info;
5122 
5123 	if (len < sizeof(info))
5124 		return -EINVAL;
5125 
5126 	len = sizeof(info);
5127 
5128 	if (copy_from_user(&info, optval, len))
5129 		return -EFAULT;
5130 
5131 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5132 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5133 		return -EINVAL;
5134 	if (asoc) {
5135 		info.snd_sid = asoc->default_stream;
5136 		info.snd_flags = asoc->default_flags;
5137 		info.snd_ppid = asoc->default_ppid;
5138 		info.snd_context = asoc->default_context;
5139 	} else {
5140 		info.snd_sid = sp->default_stream;
5141 		info.snd_flags = sp->default_flags;
5142 		info.snd_ppid = sp->default_ppid;
5143 		info.snd_context = sp->default_context;
5144 	}
5145 
5146 	if (put_user(len, optlen))
5147 		return -EFAULT;
5148 	if (copy_to_user(optval, &info, len))
5149 		return -EFAULT;
5150 
5151 	return 0;
5152 }
5153 
5154 /*
5155  *
5156  * 7.1.5 SCTP_NODELAY
5157  *
5158  * Turn on/off any Nagle-like algorithm.  This means that packets are
5159  * generally sent as soon as possible and no unnecessary delays are
5160  * introduced, at the cost of more packets in the network.  Expects an
5161  * integer boolean flag.
5162  */
5163 
5164 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5165 				   char __user *optval, int __user *optlen)
5166 {
5167 	int val;
5168 
5169 	if (len < sizeof(int))
5170 		return -EINVAL;
5171 
5172 	len = sizeof(int);
5173 	val = (sctp_sk(sk)->nodelay == 1);
5174 	if (put_user(len, optlen))
5175 		return -EFAULT;
5176 	if (copy_to_user(optval, &val, len))
5177 		return -EFAULT;
5178 	return 0;
5179 }
5180 
5181 /*
5182  *
5183  * 7.1.1 SCTP_RTOINFO
5184  *
5185  * The protocol parameters used to initialize and bound retransmission
5186  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5187  * and modify these parameters.
5188  * All parameters are time values, in milliseconds.  A value of 0, when
5189  * modifying the parameters, indicates that the current value should not
5190  * be changed.
5191  *
5192  */
5193 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5194 				char __user *optval,
5195 				int __user *optlen) {
5196 	struct sctp_rtoinfo rtoinfo;
5197 	struct sctp_association *asoc;
5198 
5199 	if (len < sizeof (struct sctp_rtoinfo))
5200 		return -EINVAL;
5201 
5202 	len = sizeof(struct sctp_rtoinfo);
5203 
5204 	if (copy_from_user(&rtoinfo, optval, len))
5205 		return -EFAULT;
5206 
5207 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5208 
5209 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5210 		return -EINVAL;
5211 
5212 	/* Values corresponding to the specific association. */
5213 	if (asoc) {
5214 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5215 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5216 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5217 	} else {
5218 		/* Values corresponding to the endpoint. */
5219 		struct sctp_sock *sp = sctp_sk(sk);
5220 
5221 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5222 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5223 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5224 	}
5225 
5226 	if (put_user(len, optlen))
5227 		return -EFAULT;
5228 
5229 	if (copy_to_user(optval, &rtoinfo, len))
5230 		return -EFAULT;
5231 
5232 	return 0;
5233 }
5234 
5235 /*
5236  *
5237  * 7.1.2 SCTP_ASSOCINFO
5238  *
5239  * This option is used to tune the maximum retransmission attempts
5240  * of the association.
5241  * Returns an error if the new association retransmission value is
5242  * greater than the sum of the retransmission value  of the peer.
5243  * See [SCTP] for more information.
5244  *
5245  */
5246 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5247 				     char __user *optval,
5248 				     int __user *optlen)
5249 {
5250 
5251 	struct sctp_assocparams assocparams;
5252 	struct sctp_association *asoc;
5253 	struct list_head *pos;
5254 	int cnt = 0;
5255 
5256 	if (len < sizeof (struct sctp_assocparams))
5257 		return -EINVAL;
5258 
5259 	len = sizeof(struct sctp_assocparams);
5260 
5261 	if (copy_from_user(&assocparams, optval, len))
5262 		return -EFAULT;
5263 
5264 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5265 
5266 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5267 		return -EINVAL;
5268 
5269 	/* Values correspoinding to the specific association */
5270 	if (asoc) {
5271 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5272 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5273 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5274 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5275 
5276 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5277 			cnt++;
5278 		}
5279 
5280 		assocparams.sasoc_number_peer_destinations = cnt;
5281 	} else {
5282 		/* Values corresponding to the endpoint */
5283 		struct sctp_sock *sp = sctp_sk(sk);
5284 
5285 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5286 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5287 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5288 		assocparams.sasoc_cookie_life =
5289 					sp->assocparams.sasoc_cookie_life;
5290 		assocparams.sasoc_number_peer_destinations =
5291 					sp->assocparams.
5292 					sasoc_number_peer_destinations;
5293 	}
5294 
5295 	if (put_user(len, optlen))
5296 		return -EFAULT;
5297 
5298 	if (copy_to_user(optval, &assocparams, len))
5299 		return -EFAULT;
5300 
5301 	return 0;
5302 }
5303 
5304 /*
5305  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5306  *
5307  * This socket option is a boolean flag which turns on or off mapped V4
5308  * addresses.  If this option is turned on and the socket is type
5309  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5310  * If this option is turned off, then no mapping will be done of V4
5311  * addresses and a user will receive both PF_INET6 and PF_INET type
5312  * addresses on the socket.
5313  */
5314 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5315 				    char __user *optval, int __user *optlen)
5316 {
5317 	int val;
5318 	struct sctp_sock *sp = sctp_sk(sk);
5319 
5320 	if (len < sizeof(int))
5321 		return -EINVAL;
5322 
5323 	len = sizeof(int);
5324 	val = sp->v4mapped;
5325 	if (put_user(len, optlen))
5326 		return -EFAULT;
5327 	if (copy_to_user(optval, &val, len))
5328 		return -EFAULT;
5329 
5330 	return 0;
5331 }
5332 
5333 /*
5334  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5335  * (chapter and verse is quoted at sctp_setsockopt_context())
5336  */
5337 static int sctp_getsockopt_context(struct sock *sk, int len,
5338 				   char __user *optval, int __user *optlen)
5339 {
5340 	struct sctp_assoc_value params;
5341 	struct sctp_sock *sp;
5342 	struct sctp_association *asoc;
5343 
5344 	if (len < sizeof(struct sctp_assoc_value))
5345 		return -EINVAL;
5346 
5347 	len = sizeof(struct sctp_assoc_value);
5348 
5349 	if (copy_from_user(&params, optval, len))
5350 		return -EFAULT;
5351 
5352 	sp = sctp_sk(sk);
5353 
5354 	if (params.assoc_id != 0) {
5355 		asoc = sctp_id2assoc(sk, params.assoc_id);
5356 		if (!asoc)
5357 			return -EINVAL;
5358 		params.assoc_value = asoc->default_rcv_context;
5359 	} else {
5360 		params.assoc_value = sp->default_rcv_context;
5361 	}
5362 
5363 	if (put_user(len, optlen))
5364 		return -EFAULT;
5365 	if (copy_to_user(optval, &params, len))
5366 		return -EFAULT;
5367 
5368 	return 0;
5369 }
5370 
5371 /*
5372  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5373  * This option will get or set the maximum size to put in any outgoing
5374  * SCTP DATA chunk.  If a message is larger than this size it will be
5375  * fragmented by SCTP into the specified size.  Note that the underlying
5376  * SCTP implementation may fragment into smaller sized chunks when the
5377  * PMTU of the underlying association is smaller than the value set by
5378  * the user.  The default value for this option is '0' which indicates
5379  * the user is NOT limiting fragmentation and only the PMTU will effect
5380  * SCTP's choice of DATA chunk size.  Note also that values set larger
5381  * than the maximum size of an IP datagram will effectively let SCTP
5382  * control fragmentation (i.e. the same as setting this option to 0).
5383  *
5384  * The following structure is used to access and modify this parameter:
5385  *
5386  * struct sctp_assoc_value {
5387  *   sctp_assoc_t assoc_id;
5388  *   uint32_t assoc_value;
5389  * };
5390  *
5391  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5392  *    For one-to-many style sockets this parameter indicates which
5393  *    association the user is performing an action upon.  Note that if
5394  *    this field's value is zero then the endpoints default value is
5395  *    changed (effecting future associations only).
5396  * assoc_value:  This parameter specifies the maximum size in bytes.
5397  */
5398 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5399 				  char __user *optval, int __user *optlen)
5400 {
5401 	struct sctp_assoc_value params;
5402 	struct sctp_association *asoc;
5403 
5404 	if (len == sizeof(int)) {
5405 		pr_warn_ratelimited(DEPRECATED
5406 				    "%s (pid %d) "
5407 				    "Use of int in maxseg socket option.\n"
5408 				    "Use struct sctp_assoc_value instead\n",
5409 				    current->comm, task_pid_nr(current));
5410 		params.assoc_id = 0;
5411 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5412 		len = sizeof(struct sctp_assoc_value);
5413 		if (copy_from_user(&params, optval, sizeof(params)))
5414 			return -EFAULT;
5415 	} else
5416 		return -EINVAL;
5417 
5418 	asoc = sctp_id2assoc(sk, params.assoc_id);
5419 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5420 		return -EINVAL;
5421 
5422 	if (asoc)
5423 		params.assoc_value = asoc->frag_point;
5424 	else
5425 		params.assoc_value = sctp_sk(sk)->user_frag;
5426 
5427 	if (put_user(len, optlen))
5428 		return -EFAULT;
5429 	if (len == sizeof(int)) {
5430 		if (copy_to_user(optval, &params.assoc_value, len))
5431 			return -EFAULT;
5432 	} else {
5433 		if (copy_to_user(optval, &params, len))
5434 			return -EFAULT;
5435 	}
5436 
5437 	return 0;
5438 }
5439 
5440 /*
5441  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5442  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5443  */
5444 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5445 					       char __user *optval, int __user *optlen)
5446 {
5447 	int val;
5448 
5449 	if (len < sizeof(int))
5450 		return -EINVAL;
5451 
5452 	len = sizeof(int);
5453 
5454 	val = sctp_sk(sk)->frag_interleave;
5455 	if (put_user(len, optlen))
5456 		return -EFAULT;
5457 	if (copy_to_user(optval, &val, len))
5458 		return -EFAULT;
5459 
5460 	return 0;
5461 }
5462 
5463 /*
5464  * 7.1.25.  Set or Get the sctp partial delivery point
5465  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5466  */
5467 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5468 						  char __user *optval,
5469 						  int __user *optlen)
5470 {
5471 	u32 val;
5472 
5473 	if (len < sizeof(u32))
5474 		return -EINVAL;
5475 
5476 	len = sizeof(u32);
5477 
5478 	val = sctp_sk(sk)->pd_point;
5479 	if (put_user(len, optlen))
5480 		return -EFAULT;
5481 	if (copy_to_user(optval, &val, len))
5482 		return -EFAULT;
5483 
5484 	return 0;
5485 }
5486 
5487 /*
5488  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5489  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5490  */
5491 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5492 				    char __user *optval,
5493 				    int __user *optlen)
5494 {
5495 	struct sctp_assoc_value params;
5496 	struct sctp_sock *sp;
5497 	struct sctp_association *asoc;
5498 
5499 	if (len == sizeof(int)) {
5500 		pr_warn_ratelimited(DEPRECATED
5501 				    "%s (pid %d) "
5502 				    "Use of int in max_burst socket option.\n"
5503 				    "Use struct sctp_assoc_value instead\n",
5504 				    current->comm, task_pid_nr(current));
5505 		params.assoc_id = 0;
5506 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5507 		len = sizeof(struct sctp_assoc_value);
5508 		if (copy_from_user(&params, optval, len))
5509 			return -EFAULT;
5510 	} else
5511 		return -EINVAL;
5512 
5513 	sp = sctp_sk(sk);
5514 
5515 	if (params.assoc_id != 0) {
5516 		asoc = sctp_id2assoc(sk, params.assoc_id);
5517 		if (!asoc)
5518 			return -EINVAL;
5519 		params.assoc_value = asoc->max_burst;
5520 	} else
5521 		params.assoc_value = sp->max_burst;
5522 
5523 	if (len == sizeof(int)) {
5524 		if (copy_to_user(optval, &params.assoc_value, len))
5525 			return -EFAULT;
5526 	} else {
5527 		if (copy_to_user(optval, &params, len))
5528 			return -EFAULT;
5529 	}
5530 
5531 	return 0;
5532 
5533 }
5534 
5535 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5536 				    char __user *optval, int __user *optlen)
5537 {
5538 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5539 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5540 	struct sctp_hmac_algo_param *hmacs;
5541 	__u16 data_len = 0;
5542 	u32 num_idents;
5543 	int i;
5544 
5545 	if (!ep->auth_enable)
5546 		return -EACCES;
5547 
5548 	hmacs = ep->auth_hmacs_list;
5549 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5550 
5551 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5552 		return -EINVAL;
5553 
5554 	len = sizeof(struct sctp_hmacalgo) + data_len;
5555 	num_idents = data_len / sizeof(u16);
5556 
5557 	if (put_user(len, optlen))
5558 		return -EFAULT;
5559 	if (put_user(num_idents, &p->shmac_num_idents))
5560 		return -EFAULT;
5561 	for (i = 0; i < num_idents; i++) {
5562 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5563 
5564 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5565 			return -EFAULT;
5566 	}
5567 	return 0;
5568 }
5569 
5570 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5571 				    char __user *optval, int __user *optlen)
5572 {
5573 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5574 	struct sctp_authkeyid val;
5575 	struct sctp_association *asoc;
5576 
5577 	if (!ep->auth_enable)
5578 		return -EACCES;
5579 
5580 	if (len < sizeof(struct sctp_authkeyid))
5581 		return -EINVAL;
5582 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5583 		return -EFAULT;
5584 
5585 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5586 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5587 		return -EINVAL;
5588 
5589 	if (asoc)
5590 		val.scact_keynumber = asoc->active_key_id;
5591 	else
5592 		val.scact_keynumber = ep->active_key_id;
5593 
5594 	len = sizeof(struct sctp_authkeyid);
5595 	if (put_user(len, optlen))
5596 		return -EFAULT;
5597 	if (copy_to_user(optval, &val, len))
5598 		return -EFAULT;
5599 
5600 	return 0;
5601 }
5602 
5603 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5604 				    char __user *optval, int __user *optlen)
5605 {
5606 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5607 	struct sctp_authchunks __user *p = (void __user *)optval;
5608 	struct sctp_authchunks val;
5609 	struct sctp_association *asoc;
5610 	struct sctp_chunks_param *ch;
5611 	u32    num_chunks = 0;
5612 	char __user *to;
5613 
5614 	if (!ep->auth_enable)
5615 		return -EACCES;
5616 
5617 	if (len < sizeof(struct sctp_authchunks))
5618 		return -EINVAL;
5619 
5620 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5621 		return -EFAULT;
5622 
5623 	to = p->gauth_chunks;
5624 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5625 	if (!asoc)
5626 		return -EINVAL;
5627 
5628 	ch = asoc->peer.peer_chunks;
5629 	if (!ch)
5630 		goto num;
5631 
5632 	/* See if the user provided enough room for all the data */
5633 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5634 	if (len < num_chunks)
5635 		return -EINVAL;
5636 
5637 	if (copy_to_user(to, ch->chunks, num_chunks))
5638 		return -EFAULT;
5639 num:
5640 	len = sizeof(struct sctp_authchunks) + num_chunks;
5641 	if (put_user(len, optlen))
5642 		return -EFAULT;
5643 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5644 		return -EFAULT;
5645 	return 0;
5646 }
5647 
5648 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5649 				    char __user *optval, int __user *optlen)
5650 {
5651 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5652 	struct sctp_authchunks __user *p = (void __user *)optval;
5653 	struct sctp_authchunks val;
5654 	struct sctp_association *asoc;
5655 	struct sctp_chunks_param *ch;
5656 	u32    num_chunks = 0;
5657 	char __user *to;
5658 
5659 	if (!ep->auth_enable)
5660 		return -EACCES;
5661 
5662 	if (len < sizeof(struct sctp_authchunks))
5663 		return -EINVAL;
5664 
5665 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5666 		return -EFAULT;
5667 
5668 	to = p->gauth_chunks;
5669 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5670 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5671 		return -EINVAL;
5672 
5673 	if (asoc)
5674 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5675 	else
5676 		ch = ep->auth_chunk_list;
5677 
5678 	if (!ch)
5679 		goto num;
5680 
5681 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5682 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5683 		return -EINVAL;
5684 
5685 	if (copy_to_user(to, ch->chunks, num_chunks))
5686 		return -EFAULT;
5687 num:
5688 	len = sizeof(struct sctp_authchunks) + num_chunks;
5689 	if (put_user(len, optlen))
5690 		return -EFAULT;
5691 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5692 		return -EFAULT;
5693 
5694 	return 0;
5695 }
5696 
5697 /*
5698  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5699  * This option gets the current number of associations that are attached
5700  * to a one-to-many style socket.  The option value is an uint32_t.
5701  */
5702 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5703 				    char __user *optval, int __user *optlen)
5704 {
5705 	struct sctp_sock *sp = sctp_sk(sk);
5706 	struct sctp_association *asoc;
5707 	u32 val = 0;
5708 
5709 	if (sctp_style(sk, TCP))
5710 		return -EOPNOTSUPP;
5711 
5712 	if (len < sizeof(u32))
5713 		return -EINVAL;
5714 
5715 	len = sizeof(u32);
5716 
5717 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5718 		val++;
5719 	}
5720 
5721 	if (put_user(len, optlen))
5722 		return -EFAULT;
5723 	if (copy_to_user(optval, &val, len))
5724 		return -EFAULT;
5725 
5726 	return 0;
5727 }
5728 
5729 /*
5730  * 8.1.23 SCTP_AUTO_ASCONF
5731  * See the corresponding setsockopt entry as description
5732  */
5733 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5734 				   char __user *optval, int __user *optlen)
5735 {
5736 	int val = 0;
5737 
5738 	if (len < sizeof(int))
5739 		return -EINVAL;
5740 
5741 	len = sizeof(int);
5742 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5743 		val = 1;
5744 	if (put_user(len, optlen))
5745 		return -EFAULT;
5746 	if (copy_to_user(optval, &val, len))
5747 		return -EFAULT;
5748 	return 0;
5749 }
5750 
5751 /*
5752  * 8.2.6. Get the Current Identifiers of Associations
5753  *        (SCTP_GET_ASSOC_ID_LIST)
5754  *
5755  * This option gets the current list of SCTP association identifiers of
5756  * the SCTP associations handled by a one-to-many style socket.
5757  */
5758 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5759 				    char __user *optval, int __user *optlen)
5760 {
5761 	struct sctp_sock *sp = sctp_sk(sk);
5762 	struct sctp_association *asoc;
5763 	struct sctp_assoc_ids *ids;
5764 	u32 num = 0;
5765 
5766 	if (sctp_style(sk, TCP))
5767 		return -EOPNOTSUPP;
5768 
5769 	if (len < sizeof(struct sctp_assoc_ids))
5770 		return -EINVAL;
5771 
5772 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5773 		num++;
5774 	}
5775 
5776 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5777 		return -EINVAL;
5778 
5779 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5780 
5781 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
5782 	if (unlikely(!ids))
5783 		return -ENOMEM;
5784 
5785 	ids->gaids_number_of_ids = num;
5786 	num = 0;
5787 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5788 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5789 	}
5790 
5791 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5792 		kfree(ids);
5793 		return -EFAULT;
5794 	}
5795 
5796 	kfree(ids);
5797 	return 0;
5798 }
5799 
5800 /*
5801  * SCTP_PEER_ADDR_THLDS
5802  *
5803  * This option allows us to fetch the partially failed threshold for one or all
5804  * transports in an association.  See Section 6.1 of:
5805  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5806  */
5807 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5808 					    char __user *optval,
5809 					    int len,
5810 					    int __user *optlen)
5811 {
5812 	struct sctp_paddrthlds val;
5813 	struct sctp_transport *trans;
5814 	struct sctp_association *asoc;
5815 
5816 	if (len < sizeof(struct sctp_paddrthlds))
5817 		return -EINVAL;
5818 	len = sizeof(struct sctp_paddrthlds);
5819 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5820 		return -EFAULT;
5821 
5822 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5823 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5824 		if (!asoc)
5825 			return -ENOENT;
5826 
5827 		val.spt_pathpfthld = asoc->pf_retrans;
5828 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5829 	} else {
5830 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5831 					       val.spt_assoc_id);
5832 		if (!trans)
5833 			return -ENOENT;
5834 
5835 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5836 		val.spt_pathpfthld = trans->pf_retrans;
5837 	}
5838 
5839 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5840 		return -EFAULT;
5841 
5842 	return 0;
5843 }
5844 
5845 /*
5846  * SCTP_GET_ASSOC_STATS
5847  *
5848  * This option retrieves local per endpoint statistics. It is modeled
5849  * after OpenSolaris' implementation
5850  */
5851 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5852 				       char __user *optval,
5853 				       int __user *optlen)
5854 {
5855 	struct sctp_assoc_stats sas;
5856 	struct sctp_association *asoc = NULL;
5857 
5858 	/* User must provide at least the assoc id */
5859 	if (len < sizeof(sctp_assoc_t))
5860 		return -EINVAL;
5861 
5862 	/* Allow the struct to grow and fill in as much as possible */
5863 	len = min_t(size_t, len, sizeof(sas));
5864 
5865 	if (copy_from_user(&sas, optval, len))
5866 		return -EFAULT;
5867 
5868 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5869 	if (!asoc)
5870 		return -EINVAL;
5871 
5872 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5873 	sas.sas_gapcnt = asoc->stats.gapcnt;
5874 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5875 	sas.sas_osacks = asoc->stats.osacks;
5876 	sas.sas_isacks = asoc->stats.isacks;
5877 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5878 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5879 	sas.sas_oodchunks = asoc->stats.oodchunks;
5880 	sas.sas_iodchunks = asoc->stats.iodchunks;
5881 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5882 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5883 	sas.sas_idupchunks = asoc->stats.idupchunks;
5884 	sas.sas_opackets = asoc->stats.opackets;
5885 	sas.sas_ipackets = asoc->stats.ipackets;
5886 
5887 	/* New high max rto observed, will return 0 if not a single
5888 	 * RTO update took place. obs_rto_ipaddr will be bogus
5889 	 * in such a case
5890 	 */
5891 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5892 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5893 		sizeof(struct sockaddr_storage));
5894 
5895 	/* Mark beginning of a new observation period */
5896 	asoc->stats.max_obs_rto = asoc->rto_min;
5897 
5898 	if (put_user(len, optlen))
5899 		return -EFAULT;
5900 
5901 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5902 
5903 	if (copy_to_user(optval, &sas, len))
5904 		return -EFAULT;
5905 
5906 	return 0;
5907 }
5908 
5909 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5910 				       char __user *optval,
5911 				       int __user *optlen)
5912 {
5913 	int val = 0;
5914 
5915 	if (len < sizeof(int))
5916 		return -EINVAL;
5917 
5918 	len = sizeof(int);
5919 	if (sctp_sk(sk)->recvrcvinfo)
5920 		val = 1;
5921 	if (put_user(len, optlen))
5922 		return -EFAULT;
5923 	if (copy_to_user(optval, &val, len))
5924 		return -EFAULT;
5925 
5926 	return 0;
5927 }
5928 
5929 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5930 				       char __user *optval,
5931 				       int __user *optlen)
5932 {
5933 	int val = 0;
5934 
5935 	if (len < sizeof(int))
5936 		return -EINVAL;
5937 
5938 	len = sizeof(int);
5939 	if (sctp_sk(sk)->recvnxtinfo)
5940 		val = 1;
5941 	if (put_user(len, optlen))
5942 		return -EFAULT;
5943 	if (copy_to_user(optval, &val, len))
5944 		return -EFAULT;
5945 
5946 	return 0;
5947 }
5948 
5949 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5950 			   char __user *optval, int __user *optlen)
5951 {
5952 	int retval = 0;
5953 	int len;
5954 
5955 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5956 
5957 	/* I can hardly begin to describe how wrong this is.  This is
5958 	 * so broken as to be worse than useless.  The API draft
5959 	 * REALLY is NOT helpful here...  I am not convinced that the
5960 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5961 	 * are at all well-founded.
5962 	 */
5963 	if (level != SOL_SCTP) {
5964 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5965 
5966 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5967 		return retval;
5968 	}
5969 
5970 	if (get_user(len, optlen))
5971 		return -EFAULT;
5972 
5973 	lock_sock(sk);
5974 
5975 	switch (optname) {
5976 	case SCTP_STATUS:
5977 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5978 		break;
5979 	case SCTP_DISABLE_FRAGMENTS:
5980 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5981 							   optlen);
5982 		break;
5983 	case SCTP_EVENTS:
5984 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5985 		break;
5986 	case SCTP_AUTOCLOSE:
5987 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5988 		break;
5989 	case SCTP_SOCKOPT_PEELOFF:
5990 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5991 		break;
5992 	case SCTP_PEER_ADDR_PARAMS:
5993 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5994 							  optlen);
5995 		break;
5996 	case SCTP_DELAYED_SACK:
5997 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5998 							  optlen);
5999 		break;
6000 	case SCTP_INITMSG:
6001 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6002 		break;
6003 	case SCTP_GET_PEER_ADDRS:
6004 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6005 						    optlen);
6006 		break;
6007 	case SCTP_GET_LOCAL_ADDRS:
6008 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6009 						     optlen);
6010 		break;
6011 	case SCTP_SOCKOPT_CONNECTX3:
6012 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6013 		break;
6014 	case SCTP_DEFAULT_SEND_PARAM:
6015 		retval = sctp_getsockopt_default_send_param(sk, len,
6016 							    optval, optlen);
6017 		break;
6018 	case SCTP_DEFAULT_SNDINFO:
6019 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6020 							 optval, optlen);
6021 		break;
6022 	case SCTP_PRIMARY_ADDR:
6023 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6024 		break;
6025 	case SCTP_NODELAY:
6026 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6027 		break;
6028 	case SCTP_RTOINFO:
6029 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6030 		break;
6031 	case SCTP_ASSOCINFO:
6032 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6033 		break;
6034 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6035 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6036 		break;
6037 	case SCTP_MAXSEG:
6038 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6039 		break;
6040 	case SCTP_GET_PEER_ADDR_INFO:
6041 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6042 							optlen);
6043 		break;
6044 	case SCTP_ADAPTATION_LAYER:
6045 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6046 							optlen);
6047 		break;
6048 	case SCTP_CONTEXT:
6049 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6050 		break;
6051 	case SCTP_FRAGMENT_INTERLEAVE:
6052 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6053 							     optlen);
6054 		break;
6055 	case SCTP_PARTIAL_DELIVERY_POINT:
6056 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6057 								optlen);
6058 		break;
6059 	case SCTP_MAX_BURST:
6060 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6061 		break;
6062 	case SCTP_AUTH_KEY:
6063 	case SCTP_AUTH_CHUNK:
6064 	case SCTP_AUTH_DELETE_KEY:
6065 		retval = -EOPNOTSUPP;
6066 		break;
6067 	case SCTP_HMAC_IDENT:
6068 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6069 		break;
6070 	case SCTP_AUTH_ACTIVE_KEY:
6071 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6072 		break;
6073 	case SCTP_PEER_AUTH_CHUNKS:
6074 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6075 							optlen);
6076 		break;
6077 	case SCTP_LOCAL_AUTH_CHUNKS:
6078 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6079 							optlen);
6080 		break;
6081 	case SCTP_GET_ASSOC_NUMBER:
6082 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6083 		break;
6084 	case SCTP_GET_ASSOC_ID_LIST:
6085 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6086 		break;
6087 	case SCTP_AUTO_ASCONF:
6088 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6089 		break;
6090 	case SCTP_PEER_ADDR_THLDS:
6091 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6092 		break;
6093 	case SCTP_GET_ASSOC_STATS:
6094 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6095 		break;
6096 	case SCTP_RECVRCVINFO:
6097 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6098 		break;
6099 	case SCTP_RECVNXTINFO:
6100 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6101 		break;
6102 	default:
6103 		retval = -ENOPROTOOPT;
6104 		break;
6105 	}
6106 
6107 	release_sock(sk);
6108 	return retval;
6109 }
6110 
6111 static int sctp_hash(struct sock *sk)
6112 {
6113 	/* STUB */
6114 	return 0;
6115 }
6116 
6117 static void sctp_unhash(struct sock *sk)
6118 {
6119 	/* STUB */
6120 }
6121 
6122 /* Check if port is acceptable.  Possibly find first available port.
6123  *
6124  * The port hash table (contained in the 'global' SCTP protocol storage
6125  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6126  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6127  * list (the list number is the port number hashed out, so as you
6128  * would expect from a hash function, all the ports in a given list have
6129  * such a number that hashes out to the same list number; you were
6130  * expecting that, right?); so each list has a set of ports, with a
6131  * link to the socket (struct sock) that uses it, the port number and
6132  * a fastreuse flag (FIXME: NPI ipg).
6133  */
6134 static struct sctp_bind_bucket *sctp_bucket_create(
6135 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6136 
6137 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6138 {
6139 	struct sctp_bind_hashbucket *head; /* hash list */
6140 	struct sctp_bind_bucket *pp;
6141 	unsigned short snum;
6142 	int ret;
6143 
6144 	snum = ntohs(addr->v4.sin_port);
6145 
6146 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6147 
6148 	local_bh_disable();
6149 
6150 	if (snum == 0) {
6151 		/* Search for an available port. */
6152 		int low, high, remaining, index;
6153 		unsigned int rover;
6154 		struct net *net = sock_net(sk);
6155 
6156 		inet_get_local_port_range(net, &low, &high);
6157 		remaining = (high - low) + 1;
6158 		rover = prandom_u32() % remaining + low;
6159 
6160 		do {
6161 			rover++;
6162 			if ((rover < low) || (rover > high))
6163 				rover = low;
6164 			if (inet_is_local_reserved_port(net, rover))
6165 				continue;
6166 			index = sctp_phashfn(sock_net(sk), rover);
6167 			head = &sctp_port_hashtable[index];
6168 			spin_lock(&head->lock);
6169 			sctp_for_each_hentry(pp, &head->chain)
6170 				if ((pp->port == rover) &&
6171 				    net_eq(sock_net(sk), pp->net))
6172 					goto next;
6173 			break;
6174 		next:
6175 			spin_unlock(&head->lock);
6176 		} while (--remaining > 0);
6177 
6178 		/* Exhausted local port range during search? */
6179 		ret = 1;
6180 		if (remaining <= 0)
6181 			goto fail;
6182 
6183 		/* OK, here is the one we will use.  HEAD (the port
6184 		 * hash table list entry) is non-NULL and we hold it's
6185 		 * mutex.
6186 		 */
6187 		snum = rover;
6188 	} else {
6189 		/* We are given an specific port number; we verify
6190 		 * that it is not being used. If it is used, we will
6191 		 * exahust the search in the hash list corresponding
6192 		 * to the port number (snum) - we detect that with the
6193 		 * port iterator, pp being NULL.
6194 		 */
6195 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6196 		spin_lock(&head->lock);
6197 		sctp_for_each_hentry(pp, &head->chain) {
6198 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6199 				goto pp_found;
6200 		}
6201 	}
6202 	pp = NULL;
6203 	goto pp_not_found;
6204 pp_found:
6205 	if (!hlist_empty(&pp->owner)) {
6206 		/* We had a port hash table hit - there is an
6207 		 * available port (pp != NULL) and it is being
6208 		 * used by other socket (pp->owner not empty); that other
6209 		 * socket is going to be sk2.
6210 		 */
6211 		int reuse = sk->sk_reuse;
6212 		struct sock *sk2;
6213 
6214 		pr_debug("%s: found a possible match\n", __func__);
6215 
6216 		if (pp->fastreuse && sk->sk_reuse &&
6217 			sk->sk_state != SCTP_SS_LISTENING)
6218 			goto success;
6219 
6220 		/* Run through the list of sockets bound to the port
6221 		 * (pp->port) [via the pointers bind_next and
6222 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6223 		 * we get the endpoint they describe and run through
6224 		 * the endpoint's list of IP (v4 or v6) addresses,
6225 		 * comparing each of the addresses with the address of
6226 		 * the socket sk. If we find a match, then that means
6227 		 * that this port/socket (sk) combination are already
6228 		 * in an endpoint.
6229 		 */
6230 		sk_for_each_bound(sk2, &pp->owner) {
6231 			struct sctp_endpoint *ep2;
6232 			ep2 = sctp_sk(sk2)->ep;
6233 
6234 			if (sk == sk2 ||
6235 			    (reuse && sk2->sk_reuse &&
6236 			     sk2->sk_state != SCTP_SS_LISTENING))
6237 				continue;
6238 
6239 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6240 						 sctp_sk(sk2), sctp_sk(sk))) {
6241 				ret = (long)sk2;
6242 				goto fail_unlock;
6243 			}
6244 		}
6245 
6246 		pr_debug("%s: found a match\n", __func__);
6247 	}
6248 pp_not_found:
6249 	/* If there was a hash table miss, create a new port.  */
6250 	ret = 1;
6251 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6252 		goto fail_unlock;
6253 
6254 	/* In either case (hit or miss), make sure fastreuse is 1 only
6255 	 * if sk->sk_reuse is too (that is, if the caller requested
6256 	 * SO_REUSEADDR on this socket -sk-).
6257 	 */
6258 	if (hlist_empty(&pp->owner)) {
6259 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6260 			pp->fastreuse = 1;
6261 		else
6262 			pp->fastreuse = 0;
6263 	} else if (pp->fastreuse &&
6264 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6265 		pp->fastreuse = 0;
6266 
6267 	/* We are set, so fill up all the data in the hash table
6268 	 * entry, tie the socket list information with the rest of the
6269 	 * sockets FIXME: Blurry, NPI (ipg).
6270 	 */
6271 success:
6272 	if (!sctp_sk(sk)->bind_hash) {
6273 		inet_sk(sk)->inet_num = snum;
6274 		sk_add_bind_node(sk, &pp->owner);
6275 		sctp_sk(sk)->bind_hash = pp;
6276 	}
6277 	ret = 0;
6278 
6279 fail_unlock:
6280 	spin_unlock(&head->lock);
6281 
6282 fail:
6283 	local_bh_enable();
6284 	return ret;
6285 }
6286 
6287 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6288  * port is requested.
6289  */
6290 static int sctp_get_port(struct sock *sk, unsigned short snum)
6291 {
6292 	union sctp_addr addr;
6293 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6294 
6295 	/* Set up a dummy address struct from the sk. */
6296 	af->from_sk(&addr, sk);
6297 	addr.v4.sin_port = htons(snum);
6298 
6299 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6300 	return !!sctp_get_port_local(sk, &addr);
6301 }
6302 
6303 /*
6304  *  Move a socket to LISTENING state.
6305  */
6306 static int sctp_listen_start(struct sock *sk, int backlog)
6307 {
6308 	struct sctp_sock *sp = sctp_sk(sk);
6309 	struct sctp_endpoint *ep = sp->ep;
6310 	struct crypto_shash *tfm = NULL;
6311 	char alg[32];
6312 
6313 	/* Allocate HMAC for generating cookie. */
6314 	if (!sp->hmac && sp->sctp_hmac_alg) {
6315 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6316 		tfm = crypto_alloc_shash(alg, 0, 0);
6317 		if (IS_ERR(tfm)) {
6318 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6319 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6320 			return -ENOSYS;
6321 		}
6322 		sctp_sk(sk)->hmac = tfm;
6323 	}
6324 
6325 	/*
6326 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6327 	 * call that allows new associations to be accepted, the system
6328 	 * picks an ephemeral port and will choose an address set equivalent
6329 	 * to binding with a wildcard address.
6330 	 *
6331 	 * This is not currently spelled out in the SCTP sockets
6332 	 * extensions draft, but follows the practice as seen in TCP
6333 	 * sockets.
6334 	 *
6335 	 */
6336 	sk->sk_state = SCTP_SS_LISTENING;
6337 	if (!ep->base.bind_addr.port) {
6338 		if (sctp_autobind(sk))
6339 			return -EAGAIN;
6340 	} else {
6341 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6342 			sk->sk_state = SCTP_SS_CLOSED;
6343 			return -EADDRINUSE;
6344 		}
6345 	}
6346 
6347 	sk->sk_max_ack_backlog = backlog;
6348 	sctp_hash_endpoint(ep);
6349 	return 0;
6350 }
6351 
6352 /*
6353  * 4.1.3 / 5.1.3 listen()
6354  *
6355  *   By default, new associations are not accepted for UDP style sockets.
6356  *   An application uses listen() to mark a socket as being able to
6357  *   accept new associations.
6358  *
6359  *   On TCP style sockets, applications use listen() to ready the SCTP
6360  *   endpoint for accepting inbound associations.
6361  *
6362  *   On both types of endpoints a backlog of '0' disables listening.
6363  *
6364  *  Move a socket to LISTENING state.
6365  */
6366 int sctp_inet_listen(struct socket *sock, int backlog)
6367 {
6368 	struct sock *sk = sock->sk;
6369 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6370 	int err = -EINVAL;
6371 
6372 	if (unlikely(backlog < 0))
6373 		return err;
6374 
6375 	lock_sock(sk);
6376 
6377 	/* Peeled-off sockets are not allowed to listen().  */
6378 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6379 		goto out;
6380 
6381 	if (sock->state != SS_UNCONNECTED)
6382 		goto out;
6383 
6384 	/* If backlog is zero, disable listening. */
6385 	if (!backlog) {
6386 		if (sctp_sstate(sk, CLOSED))
6387 			goto out;
6388 
6389 		err = 0;
6390 		sctp_unhash_endpoint(ep);
6391 		sk->sk_state = SCTP_SS_CLOSED;
6392 		if (sk->sk_reuse)
6393 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6394 		goto out;
6395 	}
6396 
6397 	/* If we are already listening, just update the backlog */
6398 	if (sctp_sstate(sk, LISTENING))
6399 		sk->sk_max_ack_backlog = backlog;
6400 	else {
6401 		err = sctp_listen_start(sk, backlog);
6402 		if (err)
6403 			goto out;
6404 	}
6405 
6406 	err = 0;
6407 out:
6408 	release_sock(sk);
6409 	return err;
6410 }
6411 
6412 /*
6413  * This function is done by modeling the current datagram_poll() and the
6414  * tcp_poll().  Note that, based on these implementations, we don't
6415  * lock the socket in this function, even though it seems that,
6416  * ideally, locking or some other mechanisms can be used to ensure
6417  * the integrity of the counters (sndbuf and wmem_alloc) used
6418  * in this place.  We assume that we don't need locks either until proven
6419  * otherwise.
6420  *
6421  * Another thing to note is that we include the Async I/O support
6422  * here, again, by modeling the current TCP/UDP code.  We don't have
6423  * a good way to test with it yet.
6424  */
6425 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6426 {
6427 	struct sock *sk = sock->sk;
6428 	struct sctp_sock *sp = sctp_sk(sk);
6429 	unsigned int mask;
6430 
6431 	poll_wait(file, sk_sleep(sk), wait);
6432 
6433 	/* A TCP-style listening socket becomes readable when the accept queue
6434 	 * is not empty.
6435 	 */
6436 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6437 		return (!list_empty(&sp->ep->asocs)) ?
6438 			(POLLIN | POLLRDNORM) : 0;
6439 
6440 	mask = 0;
6441 
6442 	/* Is there any exceptional events?  */
6443 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6444 		mask |= POLLERR |
6445 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6446 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6447 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6448 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6449 		mask |= POLLHUP;
6450 
6451 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6452 	if (!skb_queue_empty(&sk->sk_receive_queue))
6453 		mask |= POLLIN | POLLRDNORM;
6454 
6455 	/* The association is either gone or not ready.  */
6456 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6457 		return mask;
6458 
6459 	/* Is it writable?  */
6460 	if (sctp_writeable(sk)) {
6461 		mask |= POLLOUT | POLLWRNORM;
6462 	} else {
6463 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6464 		/*
6465 		 * Since the socket is not locked, the buffer
6466 		 * might be made available after the writeable check and
6467 		 * before the bit is set.  This could cause a lost I/O
6468 		 * signal.  tcp_poll() has a race breaker for this race
6469 		 * condition.  Based on their implementation, we put
6470 		 * in the following code to cover it as well.
6471 		 */
6472 		if (sctp_writeable(sk))
6473 			mask |= POLLOUT | POLLWRNORM;
6474 	}
6475 	return mask;
6476 }
6477 
6478 /********************************************************************
6479  * 2nd Level Abstractions
6480  ********************************************************************/
6481 
6482 static struct sctp_bind_bucket *sctp_bucket_create(
6483 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6484 {
6485 	struct sctp_bind_bucket *pp;
6486 
6487 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6488 	if (pp) {
6489 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6490 		pp->port = snum;
6491 		pp->fastreuse = 0;
6492 		INIT_HLIST_HEAD(&pp->owner);
6493 		pp->net = net;
6494 		hlist_add_head(&pp->node, &head->chain);
6495 	}
6496 	return pp;
6497 }
6498 
6499 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6500 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6501 {
6502 	if (pp && hlist_empty(&pp->owner)) {
6503 		__hlist_del(&pp->node);
6504 		kmem_cache_free(sctp_bucket_cachep, pp);
6505 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6506 	}
6507 }
6508 
6509 /* Release this socket's reference to a local port.  */
6510 static inline void __sctp_put_port(struct sock *sk)
6511 {
6512 	struct sctp_bind_hashbucket *head =
6513 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6514 						  inet_sk(sk)->inet_num)];
6515 	struct sctp_bind_bucket *pp;
6516 
6517 	spin_lock(&head->lock);
6518 	pp = sctp_sk(sk)->bind_hash;
6519 	__sk_del_bind_node(sk);
6520 	sctp_sk(sk)->bind_hash = NULL;
6521 	inet_sk(sk)->inet_num = 0;
6522 	sctp_bucket_destroy(pp);
6523 	spin_unlock(&head->lock);
6524 }
6525 
6526 void sctp_put_port(struct sock *sk)
6527 {
6528 	local_bh_disable();
6529 	__sctp_put_port(sk);
6530 	local_bh_enable();
6531 }
6532 
6533 /*
6534  * The system picks an ephemeral port and choose an address set equivalent
6535  * to binding with a wildcard address.
6536  * One of those addresses will be the primary address for the association.
6537  * This automatically enables the multihoming capability of SCTP.
6538  */
6539 static int sctp_autobind(struct sock *sk)
6540 {
6541 	union sctp_addr autoaddr;
6542 	struct sctp_af *af;
6543 	__be16 port;
6544 
6545 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6546 	af = sctp_sk(sk)->pf->af;
6547 
6548 	port = htons(inet_sk(sk)->inet_num);
6549 	af->inaddr_any(&autoaddr, port);
6550 
6551 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6552 }
6553 
6554 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6555  *
6556  * From RFC 2292
6557  * 4.2 The cmsghdr Structure *
6558  *
6559  * When ancillary data is sent or received, any number of ancillary data
6560  * objects can be specified by the msg_control and msg_controllen members of
6561  * the msghdr structure, because each object is preceded by
6562  * a cmsghdr structure defining the object's length (the cmsg_len member).
6563  * Historically Berkeley-derived implementations have passed only one object
6564  * at a time, but this API allows multiple objects to be
6565  * passed in a single call to sendmsg() or recvmsg(). The following example
6566  * shows two ancillary data objects in a control buffer.
6567  *
6568  *   |<--------------------------- msg_controllen -------------------------->|
6569  *   |                                                                       |
6570  *
6571  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6572  *
6573  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6574  *   |                                   |                                   |
6575  *
6576  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6577  *
6578  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6579  *   |                                |  |                                |  |
6580  *
6581  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6582  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6583  *
6584  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6585  *
6586  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6587  *    ^
6588  *    |
6589  *
6590  * msg_control
6591  * points here
6592  */
6593 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6594 {
6595 	struct cmsghdr *cmsg;
6596 	struct msghdr *my_msg = (struct msghdr *)msg;
6597 
6598 	for_each_cmsghdr(cmsg, my_msg) {
6599 		if (!CMSG_OK(my_msg, cmsg))
6600 			return -EINVAL;
6601 
6602 		/* Should we parse this header or ignore?  */
6603 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6604 			continue;
6605 
6606 		/* Strictly check lengths following example in SCM code.  */
6607 		switch (cmsg->cmsg_type) {
6608 		case SCTP_INIT:
6609 			/* SCTP Socket API Extension
6610 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6611 			 *
6612 			 * This cmsghdr structure provides information for
6613 			 * initializing new SCTP associations with sendmsg().
6614 			 * The SCTP_INITMSG socket option uses this same data
6615 			 * structure.  This structure is not used for
6616 			 * recvmsg().
6617 			 *
6618 			 * cmsg_level    cmsg_type      cmsg_data[]
6619 			 * ------------  ------------   ----------------------
6620 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6621 			 */
6622 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6623 				return -EINVAL;
6624 
6625 			cmsgs->init = CMSG_DATA(cmsg);
6626 			break;
6627 
6628 		case SCTP_SNDRCV:
6629 			/* SCTP Socket API Extension
6630 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6631 			 *
6632 			 * This cmsghdr structure specifies SCTP options for
6633 			 * sendmsg() and describes SCTP header information
6634 			 * about a received message through recvmsg().
6635 			 *
6636 			 * cmsg_level    cmsg_type      cmsg_data[]
6637 			 * ------------  ------------   ----------------------
6638 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6639 			 */
6640 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6641 				return -EINVAL;
6642 
6643 			cmsgs->srinfo = CMSG_DATA(cmsg);
6644 
6645 			if (cmsgs->srinfo->sinfo_flags &
6646 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6647 			      SCTP_SACK_IMMEDIATELY |
6648 			      SCTP_ABORT | SCTP_EOF))
6649 				return -EINVAL;
6650 			break;
6651 
6652 		case SCTP_SNDINFO:
6653 			/* SCTP Socket API Extension
6654 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6655 			 *
6656 			 * This cmsghdr structure specifies SCTP options for
6657 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6658 			 * SCTP_SNDRCV which has been deprecated.
6659 			 *
6660 			 * cmsg_level    cmsg_type      cmsg_data[]
6661 			 * ------------  ------------   ---------------------
6662 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6663 			 */
6664 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6665 				return -EINVAL;
6666 
6667 			cmsgs->sinfo = CMSG_DATA(cmsg);
6668 
6669 			if (cmsgs->sinfo->snd_flags &
6670 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6671 			      SCTP_SACK_IMMEDIATELY |
6672 			      SCTP_ABORT | SCTP_EOF))
6673 				return -EINVAL;
6674 			break;
6675 		default:
6676 			return -EINVAL;
6677 		}
6678 	}
6679 
6680 	return 0;
6681 }
6682 
6683 /*
6684  * Wait for a packet..
6685  * Note: This function is the same function as in core/datagram.c
6686  * with a few modifications to make lksctp work.
6687  */
6688 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6689 {
6690 	int error;
6691 	DEFINE_WAIT(wait);
6692 
6693 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6694 
6695 	/* Socket errors? */
6696 	error = sock_error(sk);
6697 	if (error)
6698 		goto out;
6699 
6700 	if (!skb_queue_empty(&sk->sk_receive_queue))
6701 		goto ready;
6702 
6703 	/* Socket shut down?  */
6704 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6705 		goto out;
6706 
6707 	/* Sequenced packets can come disconnected.  If so we report the
6708 	 * problem.
6709 	 */
6710 	error = -ENOTCONN;
6711 
6712 	/* Is there a good reason to think that we may receive some data?  */
6713 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6714 		goto out;
6715 
6716 	/* Handle signals.  */
6717 	if (signal_pending(current))
6718 		goto interrupted;
6719 
6720 	/* Let another process have a go.  Since we are going to sleep
6721 	 * anyway.  Note: This may cause odd behaviors if the message
6722 	 * does not fit in the user's buffer, but this seems to be the
6723 	 * only way to honor MSG_DONTWAIT realistically.
6724 	 */
6725 	release_sock(sk);
6726 	*timeo_p = schedule_timeout(*timeo_p);
6727 	lock_sock(sk);
6728 
6729 ready:
6730 	finish_wait(sk_sleep(sk), &wait);
6731 	return 0;
6732 
6733 interrupted:
6734 	error = sock_intr_errno(*timeo_p);
6735 
6736 out:
6737 	finish_wait(sk_sleep(sk), &wait);
6738 	*err = error;
6739 	return error;
6740 }
6741 
6742 /* Receive a datagram.
6743  * Note: This is pretty much the same routine as in core/datagram.c
6744  * with a few changes to make lksctp work.
6745  */
6746 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6747 				       int noblock, int *err)
6748 {
6749 	int error;
6750 	struct sk_buff *skb;
6751 	long timeo;
6752 
6753 	timeo = sock_rcvtimeo(sk, noblock);
6754 
6755 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6756 		 MAX_SCHEDULE_TIMEOUT);
6757 
6758 	do {
6759 		/* Again only user level code calls this function,
6760 		 * so nothing interrupt level
6761 		 * will suddenly eat the receive_queue.
6762 		 *
6763 		 *  Look at current nfs client by the way...
6764 		 *  However, this function was correct in any case. 8)
6765 		 */
6766 		if (flags & MSG_PEEK) {
6767 			spin_lock_bh(&sk->sk_receive_queue.lock);
6768 			skb = skb_peek(&sk->sk_receive_queue);
6769 			if (skb)
6770 				atomic_inc(&skb->users);
6771 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6772 		} else {
6773 			skb = skb_dequeue(&sk->sk_receive_queue);
6774 		}
6775 
6776 		if (skb)
6777 			return skb;
6778 
6779 		/* Caller is allowed not to check sk->sk_err before calling. */
6780 		error = sock_error(sk);
6781 		if (error)
6782 			goto no_packet;
6783 
6784 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6785 			break;
6786 
6787 		if (sk_can_busy_loop(sk) &&
6788 		    sk_busy_loop(sk, noblock))
6789 			continue;
6790 
6791 		/* User doesn't want to wait.  */
6792 		error = -EAGAIN;
6793 		if (!timeo)
6794 			goto no_packet;
6795 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6796 
6797 	return NULL;
6798 
6799 no_packet:
6800 	*err = error;
6801 	return NULL;
6802 }
6803 
6804 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6805 static void __sctp_write_space(struct sctp_association *asoc)
6806 {
6807 	struct sock *sk = asoc->base.sk;
6808 
6809 	if (sctp_wspace(asoc) <= 0)
6810 		return;
6811 
6812 	if (waitqueue_active(&asoc->wait))
6813 		wake_up_interruptible(&asoc->wait);
6814 
6815 	if (sctp_writeable(sk)) {
6816 		struct socket_wq *wq;
6817 
6818 		rcu_read_lock();
6819 		wq = rcu_dereference(sk->sk_wq);
6820 		if (wq) {
6821 			if (waitqueue_active(&wq->wait))
6822 				wake_up_interruptible(&wq->wait);
6823 
6824 			/* Note that we try to include the Async I/O support
6825 			 * here by modeling from the current TCP/UDP code.
6826 			 * We have not tested with it yet.
6827 			 */
6828 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6829 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
6830 		}
6831 		rcu_read_unlock();
6832 	}
6833 }
6834 
6835 static void sctp_wake_up_waiters(struct sock *sk,
6836 				 struct sctp_association *asoc)
6837 {
6838 	struct sctp_association *tmp = asoc;
6839 
6840 	/* We do accounting for the sndbuf space per association,
6841 	 * so we only need to wake our own association.
6842 	 */
6843 	if (asoc->ep->sndbuf_policy)
6844 		return __sctp_write_space(asoc);
6845 
6846 	/* If association goes down and is just flushing its
6847 	 * outq, then just normally notify others.
6848 	 */
6849 	if (asoc->base.dead)
6850 		return sctp_write_space(sk);
6851 
6852 	/* Accounting for the sndbuf space is per socket, so we
6853 	 * need to wake up others, try to be fair and in case of
6854 	 * other associations, let them have a go first instead
6855 	 * of just doing a sctp_write_space() call.
6856 	 *
6857 	 * Note that we reach sctp_wake_up_waiters() only when
6858 	 * associations free up queued chunks, thus we are under
6859 	 * lock and the list of associations on a socket is
6860 	 * guaranteed not to change.
6861 	 */
6862 	for (tmp = list_next_entry(tmp, asocs); 1;
6863 	     tmp = list_next_entry(tmp, asocs)) {
6864 		/* Manually skip the head element. */
6865 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6866 			continue;
6867 		/* Wake up association. */
6868 		__sctp_write_space(tmp);
6869 		/* We've reached the end. */
6870 		if (tmp == asoc)
6871 			break;
6872 	}
6873 }
6874 
6875 /* Do accounting for the sndbuf space.
6876  * Decrement the used sndbuf space of the corresponding association by the
6877  * data size which was just transmitted(freed).
6878  */
6879 static void sctp_wfree(struct sk_buff *skb)
6880 {
6881 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6882 	struct sctp_association *asoc = chunk->asoc;
6883 	struct sock *sk = asoc->base.sk;
6884 
6885 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6886 				sizeof(struct sk_buff) +
6887 				sizeof(struct sctp_chunk);
6888 
6889 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6890 
6891 	/*
6892 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6893 	 */
6894 	sk->sk_wmem_queued   -= skb->truesize;
6895 	sk_mem_uncharge(sk, skb->truesize);
6896 
6897 	sock_wfree(skb);
6898 	sctp_wake_up_waiters(sk, asoc);
6899 
6900 	sctp_association_put(asoc);
6901 }
6902 
6903 /* Do accounting for the receive space on the socket.
6904  * Accounting for the association is done in ulpevent.c
6905  * We set this as a destructor for the cloned data skbs so that
6906  * accounting is done at the correct time.
6907  */
6908 void sctp_sock_rfree(struct sk_buff *skb)
6909 {
6910 	struct sock *sk = skb->sk;
6911 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6912 
6913 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6914 
6915 	/*
6916 	 * Mimic the behavior of sock_rfree
6917 	 */
6918 	sk_mem_uncharge(sk, event->rmem_len);
6919 }
6920 
6921 
6922 /* Helper function to wait for space in the sndbuf.  */
6923 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6924 				size_t msg_len)
6925 {
6926 	struct sock *sk = asoc->base.sk;
6927 	int err = 0;
6928 	long current_timeo = *timeo_p;
6929 	DEFINE_WAIT(wait);
6930 
6931 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6932 		 *timeo_p, msg_len);
6933 
6934 	/* Increment the association's refcnt.  */
6935 	sctp_association_hold(asoc);
6936 
6937 	/* Wait on the association specific sndbuf space. */
6938 	for (;;) {
6939 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6940 					  TASK_INTERRUPTIBLE);
6941 		if (!*timeo_p)
6942 			goto do_nonblock;
6943 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6944 		    asoc->base.dead)
6945 			goto do_error;
6946 		if (signal_pending(current))
6947 			goto do_interrupted;
6948 		if (msg_len <= sctp_wspace(asoc))
6949 			break;
6950 
6951 		/* Let another process have a go.  Since we are going
6952 		 * to sleep anyway.
6953 		 */
6954 		release_sock(sk);
6955 		current_timeo = schedule_timeout(current_timeo);
6956 		BUG_ON(sk != asoc->base.sk);
6957 		lock_sock(sk);
6958 
6959 		*timeo_p = current_timeo;
6960 	}
6961 
6962 out:
6963 	finish_wait(&asoc->wait, &wait);
6964 
6965 	/* Release the association's refcnt.  */
6966 	sctp_association_put(asoc);
6967 
6968 	return err;
6969 
6970 do_error:
6971 	err = -EPIPE;
6972 	goto out;
6973 
6974 do_interrupted:
6975 	err = sock_intr_errno(*timeo_p);
6976 	goto out;
6977 
6978 do_nonblock:
6979 	err = -EAGAIN;
6980 	goto out;
6981 }
6982 
6983 void sctp_data_ready(struct sock *sk)
6984 {
6985 	struct socket_wq *wq;
6986 
6987 	rcu_read_lock();
6988 	wq = rcu_dereference(sk->sk_wq);
6989 	if (skwq_has_sleeper(wq))
6990 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6991 						POLLRDNORM | POLLRDBAND);
6992 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6993 	rcu_read_unlock();
6994 }
6995 
6996 /* If socket sndbuf has changed, wake up all per association waiters.  */
6997 void sctp_write_space(struct sock *sk)
6998 {
6999 	struct sctp_association *asoc;
7000 
7001 	/* Wake up the tasks in each wait queue.  */
7002 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7003 		__sctp_write_space(asoc);
7004 	}
7005 }
7006 
7007 /* Is there any sndbuf space available on the socket?
7008  *
7009  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7010  * associations on the same socket.  For a UDP-style socket with
7011  * multiple associations, it is possible for it to be "unwriteable"
7012  * prematurely.  I assume that this is acceptable because
7013  * a premature "unwriteable" is better than an accidental "writeable" which
7014  * would cause an unwanted block under certain circumstances.  For the 1-1
7015  * UDP-style sockets or TCP-style sockets, this code should work.
7016  *  - Daisy
7017  */
7018 static int sctp_writeable(struct sock *sk)
7019 {
7020 	int amt = 0;
7021 
7022 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7023 	if (amt < 0)
7024 		amt = 0;
7025 	return amt;
7026 }
7027 
7028 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7029  * returns immediately with EINPROGRESS.
7030  */
7031 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7032 {
7033 	struct sock *sk = asoc->base.sk;
7034 	int err = 0;
7035 	long current_timeo = *timeo_p;
7036 	DEFINE_WAIT(wait);
7037 
7038 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7039 
7040 	/* Increment the association's refcnt.  */
7041 	sctp_association_hold(asoc);
7042 
7043 	for (;;) {
7044 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7045 					  TASK_INTERRUPTIBLE);
7046 		if (!*timeo_p)
7047 			goto do_nonblock;
7048 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7049 			break;
7050 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7051 		    asoc->base.dead)
7052 			goto do_error;
7053 		if (signal_pending(current))
7054 			goto do_interrupted;
7055 
7056 		if (sctp_state(asoc, ESTABLISHED))
7057 			break;
7058 
7059 		/* Let another process have a go.  Since we are going
7060 		 * to sleep anyway.
7061 		 */
7062 		release_sock(sk);
7063 		current_timeo = schedule_timeout(current_timeo);
7064 		lock_sock(sk);
7065 
7066 		*timeo_p = current_timeo;
7067 	}
7068 
7069 out:
7070 	finish_wait(&asoc->wait, &wait);
7071 
7072 	/* Release the association's refcnt.  */
7073 	sctp_association_put(asoc);
7074 
7075 	return err;
7076 
7077 do_error:
7078 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7079 		err = -ETIMEDOUT;
7080 	else
7081 		err = -ECONNREFUSED;
7082 	goto out;
7083 
7084 do_interrupted:
7085 	err = sock_intr_errno(*timeo_p);
7086 	goto out;
7087 
7088 do_nonblock:
7089 	err = -EINPROGRESS;
7090 	goto out;
7091 }
7092 
7093 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7094 {
7095 	struct sctp_endpoint *ep;
7096 	int err = 0;
7097 	DEFINE_WAIT(wait);
7098 
7099 	ep = sctp_sk(sk)->ep;
7100 
7101 
7102 	for (;;) {
7103 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7104 					  TASK_INTERRUPTIBLE);
7105 
7106 		if (list_empty(&ep->asocs)) {
7107 			release_sock(sk);
7108 			timeo = schedule_timeout(timeo);
7109 			lock_sock(sk);
7110 		}
7111 
7112 		err = -EINVAL;
7113 		if (!sctp_sstate(sk, LISTENING))
7114 			break;
7115 
7116 		err = 0;
7117 		if (!list_empty(&ep->asocs))
7118 			break;
7119 
7120 		err = sock_intr_errno(timeo);
7121 		if (signal_pending(current))
7122 			break;
7123 
7124 		err = -EAGAIN;
7125 		if (!timeo)
7126 			break;
7127 	}
7128 
7129 	finish_wait(sk_sleep(sk), &wait);
7130 
7131 	return err;
7132 }
7133 
7134 static void sctp_wait_for_close(struct sock *sk, long timeout)
7135 {
7136 	DEFINE_WAIT(wait);
7137 
7138 	do {
7139 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7140 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7141 			break;
7142 		release_sock(sk);
7143 		timeout = schedule_timeout(timeout);
7144 		lock_sock(sk);
7145 	} while (!signal_pending(current) && timeout);
7146 
7147 	finish_wait(sk_sleep(sk), &wait);
7148 }
7149 
7150 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7151 {
7152 	struct sk_buff *frag;
7153 
7154 	if (!skb->data_len)
7155 		goto done;
7156 
7157 	/* Don't forget the fragments. */
7158 	skb_walk_frags(skb, frag)
7159 		sctp_skb_set_owner_r_frag(frag, sk);
7160 
7161 done:
7162 	sctp_skb_set_owner_r(skb, sk);
7163 }
7164 
7165 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7166 		    struct sctp_association *asoc)
7167 {
7168 	struct inet_sock *inet = inet_sk(sk);
7169 	struct inet_sock *newinet;
7170 
7171 	newsk->sk_type = sk->sk_type;
7172 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7173 	newsk->sk_flags = sk->sk_flags;
7174 	newsk->sk_tsflags = sk->sk_tsflags;
7175 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7176 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7177 	newsk->sk_reuse = sk->sk_reuse;
7178 
7179 	newsk->sk_shutdown = sk->sk_shutdown;
7180 	newsk->sk_destruct = sctp_destruct_sock;
7181 	newsk->sk_family = sk->sk_family;
7182 	newsk->sk_protocol = IPPROTO_SCTP;
7183 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7184 	newsk->sk_sndbuf = sk->sk_sndbuf;
7185 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7186 	newsk->sk_lingertime = sk->sk_lingertime;
7187 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7188 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7189 
7190 	newinet = inet_sk(newsk);
7191 
7192 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7193 	 * getsockname() and getpeername()
7194 	 */
7195 	newinet->inet_sport = inet->inet_sport;
7196 	newinet->inet_saddr = inet->inet_saddr;
7197 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7198 	newinet->inet_dport = htons(asoc->peer.port);
7199 	newinet->pmtudisc = inet->pmtudisc;
7200 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7201 
7202 	newinet->uc_ttl = inet->uc_ttl;
7203 	newinet->mc_loop = 1;
7204 	newinet->mc_ttl = 1;
7205 	newinet->mc_index = 0;
7206 	newinet->mc_list = NULL;
7207 
7208 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7209 		net_enable_timestamp();
7210 
7211 	security_sk_clone(sk, newsk);
7212 }
7213 
7214 static inline void sctp_copy_descendant(struct sock *sk_to,
7215 					const struct sock *sk_from)
7216 {
7217 	int ancestor_size = sizeof(struct inet_sock) +
7218 			    sizeof(struct sctp_sock) -
7219 			    offsetof(struct sctp_sock, auto_asconf_list);
7220 
7221 	if (sk_from->sk_family == PF_INET6)
7222 		ancestor_size += sizeof(struct ipv6_pinfo);
7223 
7224 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7225 }
7226 
7227 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7228  * and its messages to the newsk.
7229  */
7230 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7231 			      struct sctp_association *assoc,
7232 			      sctp_socket_type_t type)
7233 {
7234 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7235 	struct sctp_sock *newsp = sctp_sk(newsk);
7236 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7237 	struct sctp_endpoint *newep = newsp->ep;
7238 	struct sk_buff *skb, *tmp;
7239 	struct sctp_ulpevent *event;
7240 	struct sctp_bind_hashbucket *head;
7241 
7242 	/* Migrate socket buffer sizes and all the socket level options to the
7243 	 * new socket.
7244 	 */
7245 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7246 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7247 	/* Brute force copy old sctp opt. */
7248 	sctp_copy_descendant(newsk, oldsk);
7249 
7250 	/* Restore the ep value that was overwritten with the above structure
7251 	 * copy.
7252 	 */
7253 	newsp->ep = newep;
7254 	newsp->hmac = NULL;
7255 
7256 	/* Hook this new socket in to the bind_hash list. */
7257 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7258 						 inet_sk(oldsk)->inet_num)];
7259 	spin_lock_bh(&head->lock);
7260 	pp = sctp_sk(oldsk)->bind_hash;
7261 	sk_add_bind_node(newsk, &pp->owner);
7262 	sctp_sk(newsk)->bind_hash = pp;
7263 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7264 	spin_unlock_bh(&head->lock);
7265 
7266 	/* Copy the bind_addr list from the original endpoint to the new
7267 	 * endpoint so that we can handle restarts properly
7268 	 */
7269 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7270 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7271 
7272 	/* Move any messages in the old socket's receive queue that are for the
7273 	 * peeled off association to the new socket's receive queue.
7274 	 */
7275 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7276 		event = sctp_skb2event(skb);
7277 		if (event->asoc == assoc) {
7278 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7279 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7280 			sctp_skb_set_owner_r_frag(skb, newsk);
7281 		}
7282 	}
7283 
7284 	/* Clean up any messages pending delivery due to partial
7285 	 * delivery.   Three cases:
7286 	 * 1) No partial deliver;  no work.
7287 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7288 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7289 	 */
7290 	skb_queue_head_init(&newsp->pd_lobby);
7291 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7292 
7293 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7294 		struct sk_buff_head *queue;
7295 
7296 		/* Decide which queue to move pd_lobby skbs to. */
7297 		if (assoc->ulpq.pd_mode) {
7298 			queue = &newsp->pd_lobby;
7299 		} else
7300 			queue = &newsk->sk_receive_queue;
7301 
7302 		/* Walk through the pd_lobby, looking for skbs that
7303 		 * need moved to the new socket.
7304 		 */
7305 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7306 			event = sctp_skb2event(skb);
7307 			if (event->asoc == assoc) {
7308 				__skb_unlink(skb, &oldsp->pd_lobby);
7309 				__skb_queue_tail(queue, skb);
7310 				sctp_skb_set_owner_r_frag(skb, newsk);
7311 			}
7312 		}
7313 
7314 		/* Clear up any skbs waiting for the partial
7315 		 * delivery to finish.
7316 		 */
7317 		if (assoc->ulpq.pd_mode)
7318 			sctp_clear_pd(oldsk, NULL);
7319 
7320 	}
7321 
7322 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7323 		sctp_skb_set_owner_r_frag(skb, newsk);
7324 
7325 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7326 		sctp_skb_set_owner_r_frag(skb, newsk);
7327 
7328 	/* Set the type of socket to indicate that it is peeled off from the
7329 	 * original UDP-style socket or created with the accept() call on a
7330 	 * TCP-style socket..
7331 	 */
7332 	newsp->type = type;
7333 
7334 	/* Mark the new socket "in-use" by the user so that any packets
7335 	 * that may arrive on the association after we've moved it are
7336 	 * queued to the backlog.  This prevents a potential race between
7337 	 * backlog processing on the old socket and new-packet processing
7338 	 * on the new socket.
7339 	 *
7340 	 * The caller has just allocated newsk so we can guarantee that other
7341 	 * paths won't try to lock it and then oldsk.
7342 	 */
7343 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7344 	sctp_assoc_migrate(assoc, newsk);
7345 
7346 	/* If the association on the newsk is already closed before accept()
7347 	 * is called, set RCV_SHUTDOWN flag.
7348 	 */
7349 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7350 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7351 
7352 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7353 	release_sock(newsk);
7354 }
7355 
7356 
7357 /* This proto struct describes the ULP interface for SCTP.  */
7358 struct proto sctp_prot = {
7359 	.name        =	"SCTP",
7360 	.owner       =	THIS_MODULE,
7361 	.close       =	sctp_close,
7362 	.connect     =	sctp_connect,
7363 	.disconnect  =	sctp_disconnect,
7364 	.accept      =	sctp_accept,
7365 	.ioctl       =	sctp_ioctl,
7366 	.init        =	sctp_init_sock,
7367 	.destroy     =	sctp_destroy_sock,
7368 	.shutdown    =	sctp_shutdown,
7369 	.setsockopt  =	sctp_setsockopt,
7370 	.getsockopt  =	sctp_getsockopt,
7371 	.sendmsg     =	sctp_sendmsg,
7372 	.recvmsg     =	sctp_recvmsg,
7373 	.bind        =	sctp_bind,
7374 	.backlog_rcv =	sctp_backlog_rcv,
7375 	.hash        =	sctp_hash,
7376 	.unhash      =	sctp_unhash,
7377 	.get_port    =	sctp_get_port,
7378 	.obj_size    =  sizeof(struct sctp_sock),
7379 	.sysctl_mem  =  sysctl_sctp_mem,
7380 	.sysctl_rmem =  sysctl_sctp_rmem,
7381 	.sysctl_wmem =  sysctl_sctp_wmem,
7382 	.memory_pressure = &sctp_memory_pressure,
7383 	.enter_memory_pressure = sctp_enter_memory_pressure,
7384 	.memory_allocated = &sctp_memory_allocated,
7385 	.sockets_allocated = &sctp_sockets_allocated,
7386 };
7387 
7388 #if IS_ENABLED(CONFIG_IPV6)
7389 
7390 #include <net/transp_v6.h>
7391 static void sctp_v6_destroy_sock(struct sock *sk)
7392 {
7393 	sctp_destroy_sock(sk);
7394 	inet6_destroy_sock(sk);
7395 }
7396 
7397 struct proto sctpv6_prot = {
7398 	.name		= "SCTPv6",
7399 	.owner		= THIS_MODULE,
7400 	.close		= sctp_close,
7401 	.connect	= sctp_connect,
7402 	.disconnect	= sctp_disconnect,
7403 	.accept		= sctp_accept,
7404 	.ioctl		= sctp_ioctl,
7405 	.init		= sctp_init_sock,
7406 	.destroy	= sctp_v6_destroy_sock,
7407 	.shutdown	= sctp_shutdown,
7408 	.setsockopt	= sctp_setsockopt,
7409 	.getsockopt	= sctp_getsockopt,
7410 	.sendmsg	= sctp_sendmsg,
7411 	.recvmsg	= sctp_recvmsg,
7412 	.bind		= sctp_bind,
7413 	.backlog_rcv	= sctp_backlog_rcv,
7414 	.hash		= sctp_hash,
7415 	.unhash		= sctp_unhash,
7416 	.get_port	= sctp_get_port,
7417 	.obj_size	= sizeof(struct sctp6_sock),
7418 	.sysctl_mem	= sysctl_sctp_mem,
7419 	.sysctl_rmem	= sysctl_sctp_rmem,
7420 	.sysctl_wmem	= sysctl_sctp_wmem,
7421 	.memory_pressure = &sctp_memory_pressure,
7422 	.enter_memory_pressure = sctp_enter_memory_pressure,
7423 	.memory_allocated = &sctp_memory_allocated,
7424 	.sockets_allocated = &sctp_sockets_allocated,
7425 };
7426 #endif /* IS_ENABLED(CONFIG_IPV6) */
7427