1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && inet_port_requires_bind_service(net, snum) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if (sctp_get_port_local(sk, addr)) 418 return -EADDRINUSE; 419 420 /* Refresh ephemeral port. */ 421 if (!bp->port) 422 bp->port = inet_sk(sk)->inet_num; 423 424 /* Add the address to the bind address list. 425 * Use GFP_ATOMIC since BHs will be disabled. 426 */ 427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 428 SCTP_ADDR_SRC, GFP_ATOMIC); 429 430 if (ret) { 431 sctp_put_port(sk); 432 return ret; 433 } 434 /* Copy back into socket for getsockname() use. */ 435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 436 sp->pf->to_sk_saddr(addr, sk); 437 438 return ret; 439 } 440 441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 442 * 443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 444 * at any one time. If a sender, after sending an ASCONF chunk, decides 445 * it needs to transfer another ASCONF Chunk, it MUST wait until the 446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 447 * subsequent ASCONF. Note this restriction binds each side, so at any 448 * time two ASCONF may be in-transit on any given association (one sent 449 * from each endpoint). 450 */ 451 static int sctp_send_asconf(struct sctp_association *asoc, 452 struct sctp_chunk *chunk) 453 { 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct sctp_sock *sp; 543 struct sctp_endpoint *ep; 544 struct sctp_association *asoc; 545 struct sctp_bind_addr *bp; 546 struct sctp_chunk *chunk; 547 struct sctp_sockaddr_entry *laddr; 548 union sctp_addr *addr; 549 union sctp_addr saveaddr; 550 void *addr_buf; 551 struct sctp_af *af; 552 struct list_head *p; 553 int i; 554 int retval = 0; 555 556 sp = sctp_sk(sk); 557 ep = sp->ep; 558 559 if (!ep->asconf_enable) 560 return retval; 561 562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 563 __func__, sk, addrs, addrcnt); 564 565 list_for_each_entry(asoc, &ep->asocs, asocs) { 566 if (!asoc->peer.asconf_capable) 567 continue; 568 569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 570 continue; 571 572 if (!sctp_state(asoc, ESTABLISHED)) 573 continue; 574 575 /* Check if any address in the packed array of addresses is 576 * in the bind address list of the association. If so, 577 * do not send the asconf chunk to its peer, but continue with 578 * other associations. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 if (!af) { 585 retval = -EINVAL; 586 goto out; 587 } 588 589 if (sctp_assoc_lookup_laddr(asoc, addr)) 590 break; 591 592 addr_buf += af->sockaddr_len; 593 } 594 if (i < addrcnt) 595 continue; 596 597 /* Use the first valid address in bind addr list of 598 * association as Address Parameter of ASCONF CHUNK. 599 */ 600 bp = &asoc->base.bind_addr; 601 p = bp->address_list.next; 602 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 604 addrcnt, SCTP_PARAM_ADD_IP); 605 if (!chunk) { 606 retval = -ENOMEM; 607 goto out; 608 } 609 610 /* Add the new addresses to the bind address list with 611 * use_as_src set to 0. 612 */ 613 addr_buf = addrs; 614 for (i = 0; i < addrcnt; i++) { 615 addr = addr_buf; 616 af = sctp_get_af_specific(addr->v4.sin_family); 617 memcpy(&saveaddr, addr, af->sockaddr_len); 618 retval = sctp_add_bind_addr(bp, &saveaddr, 619 sizeof(saveaddr), 620 SCTP_ADDR_NEW, GFP_ATOMIC); 621 addr_buf += af->sockaddr_len; 622 } 623 if (asoc->src_out_of_asoc_ok) { 624 struct sctp_transport *trans; 625 626 list_for_each_entry(trans, 627 &asoc->peer.transport_addr_list, transports) { 628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 629 2*asoc->pathmtu, 4380)); 630 trans->ssthresh = asoc->peer.i.a_rwnd; 631 trans->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, trans); 633 trans->rtt = trans->srtt = trans->rttvar = 0; 634 /* Clear the source and route cache */ 635 sctp_transport_route(trans, NULL, 636 sctp_sk(asoc->base.sk)); 637 } 638 } 639 retval = sctp_send_asconf(asoc, chunk); 640 } 641 642 out: 643 return retval; 644 } 645 646 /* Remove a list of addresses from bind addresses list. Do not remove the 647 * last address. 648 * 649 * Basically run through each address specified in the addrs/addrcnt 650 * array/length pair, determine if it is IPv6 or IPv4 and call 651 * sctp_del_bind() on it. 652 * 653 * If any of them fails, then the operation will be reversed and the 654 * ones that were removed will be added back. 655 * 656 * At least one address has to be left; if only one address is 657 * available, the operation will return -EBUSY. 658 * 659 * Only sctp_setsockopt_bindx() is supposed to call this function. 660 */ 661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 662 { 663 struct sctp_sock *sp = sctp_sk(sk); 664 struct sctp_endpoint *ep = sp->ep; 665 int cnt; 666 struct sctp_bind_addr *bp = &ep->base.bind_addr; 667 int retval = 0; 668 void *addr_buf; 669 union sctp_addr *sa_addr; 670 struct sctp_af *af; 671 672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 673 __func__, sk, addrs, addrcnt); 674 675 addr_buf = addrs; 676 for (cnt = 0; cnt < addrcnt; cnt++) { 677 /* If the bind address list is empty or if there is only one 678 * bind address, there is nothing more to be removed (we need 679 * at least one address here). 680 */ 681 if (list_empty(&bp->address_list) || 682 (sctp_list_single_entry(&bp->address_list))) { 683 retval = -EBUSY; 684 goto err_bindx_rem; 685 } 686 687 sa_addr = addr_buf; 688 af = sctp_get_af_specific(sa_addr->sa.sa_family); 689 if (!af) { 690 retval = -EINVAL; 691 goto err_bindx_rem; 692 } 693 694 if (!af->addr_valid(sa_addr, sp, NULL)) { 695 retval = -EADDRNOTAVAIL; 696 goto err_bindx_rem; 697 } 698 699 if (sa_addr->v4.sin_port && 700 sa_addr->v4.sin_port != htons(bp->port)) { 701 retval = -EINVAL; 702 goto err_bindx_rem; 703 } 704 705 if (!sa_addr->v4.sin_port) 706 sa_addr->v4.sin_port = htons(bp->port); 707 708 /* FIXME - There is probably a need to check if sk->sk_saddr and 709 * sk->sk_rcv_addr are currently set to one of the addresses to 710 * be removed. This is something which needs to be looked into 711 * when we are fixing the outstanding issues with multi-homing 712 * socket routing and failover schemes. Refer to comments in 713 * sctp_do_bind(). -daisy 714 */ 715 retval = sctp_del_bind_addr(bp, sa_addr); 716 717 addr_buf += af->sockaddr_len; 718 err_bindx_rem: 719 if (retval < 0) { 720 /* Failed. Add the ones that has been removed back */ 721 if (cnt > 0) 722 sctp_bindx_add(sk, addrs, cnt); 723 return retval; 724 } 725 } 726 727 return retval; 728 } 729 730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 731 * the associations that are part of the endpoint indicating that a list of 732 * local addresses are removed from the endpoint. 733 * 734 * If any of the addresses is already in the bind address list of the 735 * association, we do not send the chunk for that association. But it will not 736 * affect other associations. 737 * 738 * Only sctp_setsockopt_bindx() is supposed to call this function. 739 */ 740 static int sctp_send_asconf_del_ip(struct sock *sk, 741 struct sockaddr *addrs, 742 int addrcnt) 743 { 744 struct sctp_sock *sp; 745 struct sctp_endpoint *ep; 746 struct sctp_association *asoc; 747 struct sctp_transport *transport; 748 struct sctp_bind_addr *bp; 749 struct sctp_chunk *chunk; 750 union sctp_addr *laddr; 751 void *addr_buf; 752 struct sctp_af *af; 753 struct sctp_sockaddr_entry *saddr; 754 int i; 755 int retval = 0; 756 int stored = 0; 757 758 chunk = NULL; 759 sp = sctp_sk(sk); 760 ep = sp->ep; 761 762 if (!ep->asconf_enable) 763 return retval; 764 765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 766 __func__, sk, addrs, addrcnt); 767 768 list_for_each_entry(asoc, &ep->asocs, asocs) { 769 770 if (!asoc->peer.asconf_capable) 771 continue; 772 773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 774 continue; 775 776 if (!sctp_state(asoc, ESTABLISHED)) 777 continue; 778 779 /* Check if any address in the packed array of addresses is 780 * not present in the bind address list of the association. 781 * If so, do not send the asconf chunk to its peer, but 782 * continue with other associations. 783 */ 784 addr_buf = addrs; 785 for (i = 0; i < addrcnt; i++) { 786 laddr = addr_buf; 787 af = sctp_get_af_specific(laddr->v4.sin_family); 788 if (!af) { 789 retval = -EINVAL; 790 goto out; 791 } 792 793 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 794 break; 795 796 addr_buf += af->sockaddr_len; 797 } 798 if (i < addrcnt) 799 continue; 800 801 /* Find one address in the association's bind address list 802 * that is not in the packed array of addresses. This is to 803 * make sure that we do not delete all the addresses in the 804 * association. 805 */ 806 bp = &asoc->base.bind_addr; 807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 808 addrcnt, sp); 809 if ((laddr == NULL) && (addrcnt == 1)) { 810 if (asoc->asconf_addr_del_pending) 811 continue; 812 asoc->asconf_addr_del_pending = 813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 814 if (asoc->asconf_addr_del_pending == NULL) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 asoc->asconf_addr_del_pending->sa.sa_family = 819 addrs->sa_family; 820 asoc->asconf_addr_del_pending->v4.sin_port = 821 htons(bp->port); 822 if (addrs->sa_family == AF_INET) { 823 struct sockaddr_in *sin; 824 825 sin = (struct sockaddr_in *)addrs; 826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 827 } else if (addrs->sa_family == AF_INET6) { 828 struct sockaddr_in6 *sin6; 829 830 sin6 = (struct sockaddr_in6 *)addrs; 831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 832 } 833 834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 835 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 836 asoc->asconf_addr_del_pending); 837 838 asoc->src_out_of_asoc_ok = 1; 839 stored = 1; 840 goto skip_mkasconf; 841 } 842 843 if (laddr == NULL) 844 return -EINVAL; 845 846 /* We do not need RCU protection throughout this loop 847 * because this is done under a socket lock from the 848 * setsockopt call. 849 */ 850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 851 SCTP_PARAM_DEL_IP); 852 if (!chunk) { 853 retval = -ENOMEM; 854 goto out; 855 } 856 857 skip_mkasconf: 858 /* Reset use_as_src flag for the addresses in the bind address 859 * list that are to be deleted. 860 */ 861 addr_buf = addrs; 862 for (i = 0; i < addrcnt; i++) { 863 laddr = addr_buf; 864 af = sctp_get_af_specific(laddr->v4.sin_family); 865 list_for_each_entry(saddr, &bp->address_list, list) { 866 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 867 saddr->state = SCTP_ADDR_DEL; 868 } 869 addr_buf += af->sockaddr_len; 870 } 871 872 /* Update the route and saddr entries for all the transports 873 * as some of the addresses in the bind address list are 874 * about to be deleted and cannot be used as source addresses. 875 */ 876 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 877 transports) { 878 sctp_transport_route(transport, NULL, 879 sctp_sk(asoc->base.sk)); 880 } 881 882 if (stored) 883 /* We don't need to transmit ASCONF */ 884 continue; 885 retval = sctp_send_asconf(asoc, chunk); 886 } 887 out: 888 return retval; 889 } 890 891 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 893 { 894 struct sock *sk = sctp_opt2sk(sp); 895 union sctp_addr *addr; 896 struct sctp_af *af; 897 898 /* It is safe to write port space in caller. */ 899 addr = &addrw->a; 900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 901 af = sctp_get_af_specific(addr->sa.sa_family); 902 if (!af) 903 return -EINVAL; 904 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 905 return -EINVAL; 906 907 if (addrw->state == SCTP_ADDR_NEW) 908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 909 else 910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 911 } 912 913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 914 * 915 * API 8.1 916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 917 * int flags); 918 * 919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 921 * or IPv6 addresses. 922 * 923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 924 * Section 3.1.2 for this usage. 925 * 926 * addrs is a pointer to an array of one or more socket addresses. Each 927 * address is contained in its appropriate structure (i.e. struct 928 * sockaddr_in or struct sockaddr_in6) the family of the address type 929 * must be used to distinguish the address length (note that this 930 * representation is termed a "packed array" of addresses). The caller 931 * specifies the number of addresses in the array with addrcnt. 932 * 933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 934 * -1, and sets errno to the appropriate error code. 935 * 936 * For SCTP, the port given in each socket address must be the same, or 937 * sctp_bindx() will fail, setting errno to EINVAL. 938 * 939 * The flags parameter is formed from the bitwise OR of zero or more of 940 * the following currently defined flags: 941 * 942 * SCTP_BINDX_ADD_ADDR 943 * 944 * SCTP_BINDX_REM_ADDR 945 * 946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 948 * addresses from the association. The two flags are mutually exclusive; 949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 950 * not remove all addresses from an association; sctp_bindx() will 951 * reject such an attempt with EINVAL. 952 * 953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 954 * additional addresses with an endpoint after calling bind(). Or use 955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 956 * socket is associated with so that no new association accepted will be 957 * associated with those addresses. If the endpoint supports dynamic 958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 959 * endpoint to send the appropriate message to the peer to change the 960 * peers address lists. 961 * 962 * Adding and removing addresses from a connected association is 963 * optional functionality. Implementations that do not support this 964 * functionality should return EOPNOTSUPP. 965 * 966 * Basically do nothing but copying the addresses from user to kernel 967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 969 * from userspace. 970 * 971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 972 * it. 973 * 974 * sk The sk of the socket 975 * addrs The pointer to the addresses 976 * addrssize Size of the addrs buffer 977 * op Operation to perform (add or remove, see the flags of 978 * sctp_bindx) 979 * 980 * Returns 0 if ok, <0 errno code on error. 981 */ 982 static int sctp_setsockopt_bindx_kernel(struct sock *sk, 983 struct sockaddr *addrs, int addrs_size, 984 int op) 985 { 986 int err; 987 int addrcnt = 0; 988 int walk_size = 0; 989 struct sockaddr *sa_addr; 990 void *addr_buf = addrs; 991 struct sctp_af *af; 992 993 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 994 __func__, sk, addrs, addrs_size, op); 995 996 if (unlikely(addrs_size <= 0)) 997 return -EINVAL; 998 999 /* Walk through the addrs buffer and count the number of addresses. */ 1000 while (walk_size < addrs_size) { 1001 if (walk_size + sizeof(sa_family_t) > addrs_size) 1002 return -EINVAL; 1003 1004 sa_addr = addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa_family); 1006 1007 /* If the address family is not supported or if this address 1008 * causes the address buffer to overflow return EINVAL. 1009 */ 1010 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1011 return -EINVAL; 1012 addrcnt++; 1013 addr_buf += af->sockaddr_len; 1014 walk_size += af->sockaddr_len; 1015 } 1016 1017 /* Do the work. */ 1018 switch (op) { 1019 case SCTP_BINDX_ADD_ADDR: 1020 /* Allow security module to validate bindx addresses. */ 1021 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1022 addrs, addrs_size); 1023 if (err) 1024 return err; 1025 err = sctp_bindx_add(sk, addrs, addrcnt); 1026 if (err) 1027 return err; 1028 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1029 case SCTP_BINDX_REM_ADDR: 1030 err = sctp_bindx_rem(sk, addrs, addrcnt); 1031 if (err) 1032 return err; 1033 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1034 1035 default: 1036 return -EINVAL; 1037 } 1038 } 1039 1040 static int sctp_setsockopt_bindx(struct sock *sk, 1041 struct sockaddr __user *addrs, 1042 int addrs_size, int op) 1043 { 1044 struct sockaddr *kaddrs; 1045 int err; 1046 1047 kaddrs = memdup_user(addrs, addrs_size); 1048 if (IS_ERR(kaddrs)) 1049 return PTR_ERR(kaddrs); 1050 err = sctp_setsockopt_bindx_kernel(sk, kaddrs, addrs_size, op); 1051 kfree(kaddrs); 1052 return err; 1053 } 1054 1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1056 int addrlen) 1057 { 1058 int err; 1059 1060 lock_sock(sk); 1061 err = sctp_setsockopt_bindx_kernel(sk, addrs, addrlen, 1062 SCTP_BINDX_ADD_ADDR); 1063 release_sock(sk); 1064 return err; 1065 } 1066 1067 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1068 const union sctp_addr *daddr, 1069 const struct sctp_initmsg *init, 1070 struct sctp_transport **tp) 1071 { 1072 struct sctp_association *asoc; 1073 struct sock *sk = ep->base.sk; 1074 struct net *net = sock_net(sk); 1075 enum sctp_scope scope; 1076 int err; 1077 1078 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1079 return -EADDRNOTAVAIL; 1080 1081 if (!ep->base.bind_addr.port) { 1082 if (sctp_autobind(sk)) 1083 return -EAGAIN; 1084 } else { 1085 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1086 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1087 return -EACCES; 1088 } 1089 1090 scope = sctp_scope(daddr); 1091 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1092 if (!asoc) 1093 return -ENOMEM; 1094 1095 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1096 if (err < 0) 1097 goto free; 1098 1099 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1100 if (!*tp) { 1101 err = -ENOMEM; 1102 goto free; 1103 } 1104 1105 if (!init) 1106 return 0; 1107 1108 if (init->sinit_num_ostreams) { 1109 __u16 outcnt = init->sinit_num_ostreams; 1110 1111 asoc->c.sinit_num_ostreams = outcnt; 1112 /* outcnt has been changed, need to re-init stream */ 1113 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1114 if (err) 1115 goto free; 1116 } 1117 1118 if (init->sinit_max_instreams) 1119 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1120 1121 if (init->sinit_max_attempts) 1122 asoc->max_init_attempts = init->sinit_max_attempts; 1123 1124 if (init->sinit_max_init_timeo) 1125 asoc->max_init_timeo = 1126 msecs_to_jiffies(init->sinit_max_init_timeo); 1127 1128 return 0; 1129 free: 1130 sctp_association_free(asoc); 1131 return err; 1132 } 1133 1134 static int sctp_connect_add_peer(struct sctp_association *asoc, 1135 union sctp_addr *daddr, int addr_len) 1136 { 1137 struct sctp_endpoint *ep = asoc->ep; 1138 struct sctp_association *old; 1139 struct sctp_transport *t; 1140 int err; 1141 1142 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1143 if (err) 1144 return err; 1145 1146 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1147 if (old && old != asoc) 1148 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1149 : -EALREADY; 1150 1151 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1152 return -EADDRNOTAVAIL; 1153 1154 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1155 if (!t) 1156 return -ENOMEM; 1157 1158 return 0; 1159 } 1160 1161 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1162 * 1163 * Common routine for handling connect() and sctp_connectx(). 1164 * Connect will come in with just a single address. 1165 */ 1166 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1167 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1168 { 1169 struct sctp_sock *sp = sctp_sk(sk); 1170 struct sctp_endpoint *ep = sp->ep; 1171 struct sctp_transport *transport; 1172 struct sctp_association *asoc; 1173 void *addr_buf = kaddrs; 1174 union sctp_addr *daddr; 1175 struct sctp_af *af; 1176 int walk_size, err; 1177 long timeo; 1178 1179 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1180 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1181 return -EISCONN; 1182 1183 daddr = addr_buf; 1184 af = sctp_get_af_specific(daddr->sa.sa_family); 1185 if (!af || af->sockaddr_len > addrs_size) 1186 return -EINVAL; 1187 1188 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1189 if (err) 1190 return err; 1191 1192 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1193 if (asoc) 1194 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1195 : -EALREADY; 1196 1197 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1198 if (err) 1199 return err; 1200 asoc = transport->asoc; 1201 1202 addr_buf += af->sockaddr_len; 1203 walk_size = af->sockaddr_len; 1204 while (walk_size < addrs_size) { 1205 err = -EINVAL; 1206 if (walk_size + sizeof(sa_family_t) > addrs_size) 1207 goto out_free; 1208 1209 daddr = addr_buf; 1210 af = sctp_get_af_specific(daddr->sa.sa_family); 1211 if (!af || af->sockaddr_len + walk_size > addrs_size) 1212 goto out_free; 1213 1214 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1215 goto out_free; 1216 1217 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1218 if (err) 1219 goto out_free; 1220 1221 addr_buf += af->sockaddr_len; 1222 walk_size += af->sockaddr_len; 1223 } 1224 1225 /* In case the user of sctp_connectx() wants an association 1226 * id back, assign one now. 1227 */ 1228 if (assoc_id) { 1229 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1230 if (err < 0) 1231 goto out_free; 1232 } 1233 1234 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1235 if (err < 0) 1236 goto out_free; 1237 1238 /* Initialize sk's dport and daddr for getpeername() */ 1239 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1240 sp->pf->to_sk_daddr(daddr, sk); 1241 sk->sk_err = 0; 1242 1243 if (assoc_id) 1244 *assoc_id = asoc->assoc_id; 1245 1246 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1247 return sctp_wait_for_connect(asoc, &timeo); 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 sctp_association_free(asoc); 1253 return err; 1254 } 1255 1256 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1257 * 1258 * API 8.9 1259 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1260 * sctp_assoc_t *asoc); 1261 * 1262 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1263 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1264 * or IPv6 addresses. 1265 * 1266 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1267 * Section 3.1.2 for this usage. 1268 * 1269 * addrs is a pointer to an array of one or more socket addresses. Each 1270 * address is contained in its appropriate structure (i.e. struct 1271 * sockaddr_in or struct sockaddr_in6) the family of the address type 1272 * must be used to distengish the address length (note that this 1273 * representation is termed a "packed array" of addresses). The caller 1274 * specifies the number of addresses in the array with addrcnt. 1275 * 1276 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1277 * the association id of the new association. On failure, sctp_connectx() 1278 * returns -1, and sets errno to the appropriate error code. The assoc_id 1279 * is not touched by the kernel. 1280 * 1281 * For SCTP, the port given in each socket address must be the same, or 1282 * sctp_connectx() will fail, setting errno to EINVAL. 1283 * 1284 * An application can use sctp_connectx to initiate an association with 1285 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1286 * allows a caller to specify multiple addresses at which a peer can be 1287 * reached. The way the SCTP stack uses the list of addresses to set up 1288 * the association is implementation dependent. This function only 1289 * specifies that the stack will try to make use of all the addresses in 1290 * the list when needed. 1291 * 1292 * Note that the list of addresses passed in is only used for setting up 1293 * the association. It does not necessarily equal the set of addresses 1294 * the peer uses for the resulting association. If the caller wants to 1295 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1296 * retrieve them after the association has been set up. 1297 * 1298 * Basically do nothing but copying the addresses from user to kernel 1299 * land and invoking either sctp_connectx(). This is used for tunneling 1300 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1301 * 1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1303 * it. 1304 * 1305 * sk The sk of the socket 1306 * addrs The pointer to the addresses in user land 1307 * addrssize Size of the addrs buffer 1308 * 1309 * Returns >=0 if ok, <0 errno code on error. 1310 */ 1311 static int __sctp_setsockopt_connectx(struct sock *sk, 1312 struct sockaddr __user *addrs, 1313 int addrs_size, 1314 sctp_assoc_t *assoc_id) 1315 { 1316 struct sockaddr *kaddrs; 1317 int err = 0, flags = 0; 1318 1319 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1320 __func__, sk, addrs, addrs_size); 1321 1322 /* make sure the 1st addr's sa_family is accessible later */ 1323 if (unlikely(addrs_size < sizeof(sa_family_t))) 1324 return -EINVAL; 1325 1326 kaddrs = memdup_user(addrs, addrs_size); 1327 if (IS_ERR(kaddrs)) 1328 return PTR_ERR(kaddrs); 1329 1330 /* Allow security module to validate connectx addresses. */ 1331 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1332 (struct sockaddr *)kaddrs, 1333 addrs_size); 1334 if (err) 1335 goto out_free; 1336 1337 /* in-kernel sockets don't generally have a file allocated to them 1338 * if all they do is call sock_create_kern(). 1339 */ 1340 if (sk->sk_socket->file) 1341 flags = sk->sk_socket->file->f_flags; 1342 1343 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1344 1345 out_free: 1346 kfree(kaddrs); 1347 1348 return err; 1349 } 1350 1351 /* 1352 * This is an older interface. It's kept for backward compatibility 1353 * to the option that doesn't provide association id. 1354 */ 1355 static int sctp_setsockopt_connectx_old(struct sock *sk, 1356 struct sockaddr __user *addrs, 1357 int addrs_size) 1358 { 1359 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1360 } 1361 1362 /* 1363 * New interface for the API. The since the API is done with a socket 1364 * option, to make it simple we feed back the association id is as a return 1365 * indication to the call. Error is always negative and association id is 1366 * always positive. 1367 */ 1368 static int sctp_setsockopt_connectx(struct sock *sk, 1369 struct sockaddr __user *addrs, 1370 int addrs_size) 1371 { 1372 sctp_assoc_t assoc_id = 0; 1373 int err = 0; 1374 1375 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1376 1377 if (err) 1378 return err; 1379 else 1380 return assoc_id; 1381 } 1382 1383 /* 1384 * New (hopefully final) interface for the API. 1385 * We use the sctp_getaddrs_old structure so that use-space library 1386 * can avoid any unnecessary allocations. The only different part 1387 * is that we store the actual length of the address buffer into the 1388 * addrs_num structure member. That way we can re-use the existing 1389 * code. 1390 */ 1391 #ifdef CONFIG_COMPAT 1392 struct compat_sctp_getaddrs_old { 1393 sctp_assoc_t assoc_id; 1394 s32 addr_num; 1395 compat_uptr_t addrs; /* struct sockaddr * */ 1396 }; 1397 #endif 1398 1399 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1400 char __user *optval, 1401 int __user *optlen) 1402 { 1403 struct sctp_getaddrs_old param; 1404 sctp_assoc_t assoc_id = 0; 1405 int err = 0; 1406 1407 #ifdef CONFIG_COMPAT 1408 if (in_compat_syscall()) { 1409 struct compat_sctp_getaddrs_old param32; 1410 1411 if (len < sizeof(param32)) 1412 return -EINVAL; 1413 if (copy_from_user(¶m32, optval, sizeof(param32))) 1414 return -EFAULT; 1415 1416 param.assoc_id = param32.assoc_id; 1417 param.addr_num = param32.addr_num; 1418 param.addrs = compat_ptr(param32.addrs); 1419 } else 1420 #endif 1421 { 1422 if (len < sizeof(param)) 1423 return -EINVAL; 1424 if (copy_from_user(¶m, optval, sizeof(param))) 1425 return -EFAULT; 1426 } 1427 1428 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1429 param.addrs, param.addr_num, 1430 &assoc_id); 1431 if (err == 0 || err == -EINPROGRESS) { 1432 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1433 return -EFAULT; 1434 if (put_user(sizeof(assoc_id), optlen)) 1435 return -EFAULT; 1436 } 1437 1438 return err; 1439 } 1440 1441 /* API 3.1.4 close() - UDP Style Syntax 1442 * Applications use close() to perform graceful shutdown (as described in 1443 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1444 * by a UDP-style socket. 1445 * 1446 * The syntax is 1447 * 1448 * ret = close(int sd); 1449 * 1450 * sd - the socket descriptor of the associations to be closed. 1451 * 1452 * To gracefully shutdown a specific association represented by the 1453 * UDP-style socket, an application should use the sendmsg() call, 1454 * passing no user data, but including the appropriate flag in the 1455 * ancillary data (see Section xxxx). 1456 * 1457 * If sd in the close() call is a branched-off socket representing only 1458 * one association, the shutdown is performed on that association only. 1459 * 1460 * 4.1.6 close() - TCP Style Syntax 1461 * 1462 * Applications use close() to gracefully close down an association. 1463 * 1464 * The syntax is: 1465 * 1466 * int close(int sd); 1467 * 1468 * sd - the socket descriptor of the association to be closed. 1469 * 1470 * After an application calls close() on a socket descriptor, no further 1471 * socket operations will succeed on that descriptor. 1472 * 1473 * API 7.1.4 SO_LINGER 1474 * 1475 * An application using the TCP-style socket can use this option to 1476 * perform the SCTP ABORT primitive. The linger option structure is: 1477 * 1478 * struct linger { 1479 * int l_onoff; // option on/off 1480 * int l_linger; // linger time 1481 * }; 1482 * 1483 * To enable the option, set l_onoff to 1. If the l_linger value is set 1484 * to 0, calling close() is the same as the ABORT primitive. If the 1485 * value is set to a negative value, the setsockopt() call will return 1486 * an error. If the value is set to a positive value linger_time, the 1487 * close() can be blocked for at most linger_time ms. If the graceful 1488 * shutdown phase does not finish during this period, close() will 1489 * return but the graceful shutdown phase continues in the system. 1490 */ 1491 static void sctp_close(struct sock *sk, long timeout) 1492 { 1493 struct net *net = sock_net(sk); 1494 struct sctp_endpoint *ep; 1495 struct sctp_association *asoc; 1496 struct list_head *pos, *temp; 1497 unsigned int data_was_unread; 1498 1499 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1500 1501 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1502 sk->sk_shutdown = SHUTDOWN_MASK; 1503 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1504 1505 ep = sctp_sk(sk)->ep; 1506 1507 /* Clean up any skbs sitting on the receive queue. */ 1508 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1509 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1510 1511 /* Walk all associations on an endpoint. */ 1512 list_for_each_safe(pos, temp, &ep->asocs) { 1513 asoc = list_entry(pos, struct sctp_association, asocs); 1514 1515 if (sctp_style(sk, TCP)) { 1516 /* A closed association can still be in the list if 1517 * it belongs to a TCP-style listening socket that is 1518 * not yet accepted. If so, free it. If not, send an 1519 * ABORT or SHUTDOWN based on the linger options. 1520 */ 1521 if (sctp_state(asoc, CLOSED)) { 1522 sctp_association_free(asoc); 1523 continue; 1524 } 1525 } 1526 1527 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1528 !skb_queue_empty(&asoc->ulpq.reasm) || 1529 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1530 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1531 struct sctp_chunk *chunk; 1532 1533 chunk = sctp_make_abort_user(asoc, NULL, 0); 1534 sctp_primitive_ABORT(net, asoc, chunk); 1535 } else 1536 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1537 } 1538 1539 /* On a TCP-style socket, block for at most linger_time if set. */ 1540 if (sctp_style(sk, TCP) && timeout) 1541 sctp_wait_for_close(sk, timeout); 1542 1543 /* This will run the backlog queue. */ 1544 release_sock(sk); 1545 1546 /* Supposedly, no process has access to the socket, but 1547 * the net layers still may. 1548 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1549 * held and that should be grabbed before socket lock. 1550 */ 1551 spin_lock_bh(&net->sctp.addr_wq_lock); 1552 bh_lock_sock_nested(sk); 1553 1554 /* Hold the sock, since sk_common_release() will put sock_put() 1555 * and we have just a little more cleanup. 1556 */ 1557 sock_hold(sk); 1558 sk_common_release(sk); 1559 1560 bh_unlock_sock(sk); 1561 spin_unlock_bh(&net->sctp.addr_wq_lock); 1562 1563 sock_put(sk); 1564 1565 SCTP_DBG_OBJCNT_DEC(sock); 1566 } 1567 1568 /* Handle EPIPE error. */ 1569 static int sctp_error(struct sock *sk, int flags, int err) 1570 { 1571 if (err == -EPIPE) 1572 err = sock_error(sk) ? : -EPIPE; 1573 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1574 send_sig(SIGPIPE, current, 0); 1575 return err; 1576 } 1577 1578 /* API 3.1.3 sendmsg() - UDP Style Syntax 1579 * 1580 * An application uses sendmsg() and recvmsg() calls to transmit data to 1581 * and receive data from its peer. 1582 * 1583 * ssize_t sendmsg(int socket, const struct msghdr *message, 1584 * int flags); 1585 * 1586 * socket - the socket descriptor of the endpoint. 1587 * message - pointer to the msghdr structure which contains a single 1588 * user message and possibly some ancillary data. 1589 * 1590 * See Section 5 for complete description of the data 1591 * structures. 1592 * 1593 * flags - flags sent or received with the user message, see Section 1594 * 5 for complete description of the flags. 1595 * 1596 * Note: This function could use a rewrite especially when explicit 1597 * connect support comes in. 1598 */ 1599 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1600 1601 static int sctp_msghdr_parse(const struct msghdr *msg, 1602 struct sctp_cmsgs *cmsgs); 1603 1604 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1605 struct sctp_sndrcvinfo *srinfo, 1606 const struct msghdr *msg, size_t msg_len) 1607 { 1608 __u16 sflags; 1609 int err; 1610 1611 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1612 return -EPIPE; 1613 1614 if (msg_len > sk->sk_sndbuf) 1615 return -EMSGSIZE; 1616 1617 memset(cmsgs, 0, sizeof(*cmsgs)); 1618 err = sctp_msghdr_parse(msg, cmsgs); 1619 if (err) { 1620 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1621 return err; 1622 } 1623 1624 memset(srinfo, 0, sizeof(*srinfo)); 1625 if (cmsgs->srinfo) { 1626 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1627 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1628 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1629 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1630 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1631 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1632 } 1633 1634 if (cmsgs->sinfo) { 1635 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1636 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1637 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1638 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1639 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1640 } 1641 1642 if (cmsgs->prinfo) { 1643 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1644 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1645 cmsgs->prinfo->pr_policy); 1646 } 1647 1648 sflags = srinfo->sinfo_flags; 1649 if (!sflags && msg_len) 1650 return 0; 1651 1652 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1653 return -EINVAL; 1654 1655 if (((sflags & SCTP_EOF) && msg_len > 0) || 1656 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1657 return -EINVAL; 1658 1659 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1660 return -EINVAL; 1661 1662 return 0; 1663 } 1664 1665 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1666 struct sctp_cmsgs *cmsgs, 1667 union sctp_addr *daddr, 1668 struct sctp_transport **tp) 1669 { 1670 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1671 struct sctp_association *asoc; 1672 struct cmsghdr *cmsg; 1673 __be32 flowinfo = 0; 1674 struct sctp_af *af; 1675 int err; 1676 1677 *tp = NULL; 1678 1679 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1680 return -EINVAL; 1681 1682 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1683 sctp_sstate(sk, CLOSING))) 1684 return -EADDRNOTAVAIL; 1685 1686 /* Label connection socket for first association 1-to-many 1687 * style for client sequence socket()->sendmsg(). This 1688 * needs to be done before sctp_assoc_add_peer() as that will 1689 * set up the initial packet that needs to account for any 1690 * security ip options (CIPSO/CALIPSO) added to the packet. 1691 */ 1692 af = sctp_get_af_specific(daddr->sa.sa_family); 1693 if (!af) 1694 return -EINVAL; 1695 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1696 (struct sockaddr *)daddr, 1697 af->sockaddr_len); 1698 if (err < 0) 1699 return err; 1700 1701 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1702 if (err) 1703 return err; 1704 asoc = (*tp)->asoc; 1705 1706 if (!cmsgs->addrs_msg) 1707 return 0; 1708 1709 if (daddr->sa.sa_family == AF_INET6) 1710 flowinfo = daddr->v6.sin6_flowinfo; 1711 1712 /* sendv addr list parse */ 1713 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1714 union sctp_addr _daddr; 1715 int dlen; 1716 1717 if (cmsg->cmsg_level != IPPROTO_SCTP || 1718 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1719 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1720 continue; 1721 1722 daddr = &_daddr; 1723 memset(daddr, 0, sizeof(*daddr)); 1724 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1725 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1726 if (dlen < sizeof(struct in_addr)) { 1727 err = -EINVAL; 1728 goto free; 1729 } 1730 1731 dlen = sizeof(struct in_addr); 1732 daddr->v4.sin_family = AF_INET; 1733 daddr->v4.sin_port = htons(asoc->peer.port); 1734 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1735 } else { 1736 if (dlen < sizeof(struct in6_addr)) { 1737 err = -EINVAL; 1738 goto free; 1739 } 1740 1741 dlen = sizeof(struct in6_addr); 1742 daddr->v6.sin6_flowinfo = flowinfo; 1743 daddr->v6.sin6_family = AF_INET6; 1744 daddr->v6.sin6_port = htons(asoc->peer.port); 1745 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1746 } 1747 1748 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1749 if (err) 1750 goto free; 1751 } 1752 1753 return 0; 1754 1755 free: 1756 sctp_association_free(asoc); 1757 return err; 1758 } 1759 1760 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1761 __u16 sflags, struct msghdr *msg, 1762 size_t msg_len) 1763 { 1764 struct sock *sk = asoc->base.sk; 1765 struct net *net = sock_net(sk); 1766 1767 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1768 return -EPIPE; 1769 1770 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1771 !sctp_state(asoc, ESTABLISHED)) 1772 return 0; 1773 1774 if (sflags & SCTP_EOF) { 1775 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1776 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1777 1778 return 0; 1779 } 1780 1781 if (sflags & SCTP_ABORT) { 1782 struct sctp_chunk *chunk; 1783 1784 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1785 if (!chunk) 1786 return -ENOMEM; 1787 1788 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1789 sctp_primitive_ABORT(net, asoc, chunk); 1790 iov_iter_revert(&msg->msg_iter, msg_len); 1791 1792 return 0; 1793 } 1794 1795 return 1; 1796 } 1797 1798 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1799 struct msghdr *msg, size_t msg_len, 1800 struct sctp_transport *transport, 1801 struct sctp_sndrcvinfo *sinfo) 1802 { 1803 struct sock *sk = asoc->base.sk; 1804 struct sctp_sock *sp = sctp_sk(sk); 1805 struct net *net = sock_net(sk); 1806 struct sctp_datamsg *datamsg; 1807 bool wait_connect = false; 1808 struct sctp_chunk *chunk; 1809 long timeo; 1810 int err; 1811 1812 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1813 err = -EINVAL; 1814 goto err; 1815 } 1816 1817 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1818 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1819 if (err) 1820 goto err; 1821 } 1822 1823 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1824 err = -EMSGSIZE; 1825 goto err; 1826 } 1827 1828 if (asoc->pmtu_pending) { 1829 if (sp->param_flags & SPP_PMTUD_ENABLE) 1830 sctp_assoc_sync_pmtu(asoc); 1831 asoc->pmtu_pending = 0; 1832 } 1833 1834 if (sctp_wspace(asoc) < (int)msg_len) 1835 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1836 1837 if (sk_under_memory_pressure(sk)) 1838 sk_mem_reclaim(sk); 1839 1840 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1841 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1842 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1843 if (err) 1844 goto err; 1845 } 1846 1847 if (sctp_state(asoc, CLOSED)) { 1848 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1849 if (err) 1850 goto err; 1851 1852 if (asoc->ep->intl_enable) { 1853 timeo = sock_sndtimeo(sk, 0); 1854 err = sctp_wait_for_connect(asoc, &timeo); 1855 if (err) { 1856 err = -ESRCH; 1857 goto err; 1858 } 1859 } else { 1860 wait_connect = true; 1861 } 1862 1863 pr_debug("%s: we associated primitively\n", __func__); 1864 } 1865 1866 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1867 if (IS_ERR(datamsg)) { 1868 err = PTR_ERR(datamsg); 1869 goto err; 1870 } 1871 1872 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1873 1874 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1875 sctp_chunk_hold(chunk); 1876 sctp_set_owner_w(chunk); 1877 chunk->transport = transport; 1878 } 1879 1880 err = sctp_primitive_SEND(net, asoc, datamsg); 1881 if (err) { 1882 sctp_datamsg_free(datamsg); 1883 goto err; 1884 } 1885 1886 pr_debug("%s: we sent primitively\n", __func__); 1887 1888 sctp_datamsg_put(datamsg); 1889 1890 if (unlikely(wait_connect)) { 1891 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1892 sctp_wait_for_connect(asoc, &timeo); 1893 } 1894 1895 err = msg_len; 1896 1897 err: 1898 return err; 1899 } 1900 1901 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1902 const struct msghdr *msg, 1903 struct sctp_cmsgs *cmsgs) 1904 { 1905 union sctp_addr *daddr = NULL; 1906 int err; 1907 1908 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1909 int len = msg->msg_namelen; 1910 1911 if (len > sizeof(*daddr)) 1912 len = sizeof(*daddr); 1913 1914 daddr = (union sctp_addr *)msg->msg_name; 1915 1916 err = sctp_verify_addr(sk, daddr, len); 1917 if (err) 1918 return ERR_PTR(err); 1919 } 1920 1921 return daddr; 1922 } 1923 1924 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1925 struct sctp_sndrcvinfo *sinfo, 1926 struct sctp_cmsgs *cmsgs) 1927 { 1928 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1929 sinfo->sinfo_stream = asoc->default_stream; 1930 sinfo->sinfo_ppid = asoc->default_ppid; 1931 sinfo->sinfo_context = asoc->default_context; 1932 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1933 1934 if (!cmsgs->prinfo) 1935 sinfo->sinfo_flags = asoc->default_flags; 1936 } 1937 1938 if (!cmsgs->srinfo && !cmsgs->prinfo) 1939 sinfo->sinfo_timetolive = asoc->default_timetolive; 1940 1941 if (cmsgs->authinfo) { 1942 /* Reuse sinfo_tsn to indicate that authinfo was set and 1943 * sinfo_ssn to save the keyid on tx path. 1944 */ 1945 sinfo->sinfo_tsn = 1; 1946 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1947 } 1948 } 1949 1950 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1951 { 1952 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1953 struct sctp_transport *transport = NULL; 1954 struct sctp_sndrcvinfo _sinfo, *sinfo; 1955 struct sctp_association *asoc, *tmp; 1956 struct sctp_cmsgs cmsgs; 1957 union sctp_addr *daddr; 1958 bool new = false; 1959 __u16 sflags; 1960 int err; 1961 1962 /* Parse and get snd_info */ 1963 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1964 if (err) 1965 goto out; 1966 1967 sinfo = &_sinfo; 1968 sflags = sinfo->sinfo_flags; 1969 1970 /* Get daddr from msg */ 1971 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1972 if (IS_ERR(daddr)) { 1973 err = PTR_ERR(daddr); 1974 goto out; 1975 } 1976 1977 lock_sock(sk); 1978 1979 /* SCTP_SENDALL process */ 1980 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1981 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1982 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1983 msg_len); 1984 if (err == 0) 1985 continue; 1986 if (err < 0) 1987 goto out_unlock; 1988 1989 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1990 1991 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1992 NULL, sinfo); 1993 if (err < 0) 1994 goto out_unlock; 1995 1996 iov_iter_revert(&msg->msg_iter, err); 1997 } 1998 1999 goto out_unlock; 2000 } 2001 2002 /* Get and check or create asoc */ 2003 if (daddr) { 2004 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2005 if (asoc) { 2006 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2007 msg_len); 2008 if (err <= 0) 2009 goto out_unlock; 2010 } else { 2011 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2012 &transport); 2013 if (err) 2014 goto out_unlock; 2015 2016 asoc = transport->asoc; 2017 new = true; 2018 } 2019 2020 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2021 transport = NULL; 2022 } else { 2023 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2024 if (!asoc) { 2025 err = -EPIPE; 2026 goto out_unlock; 2027 } 2028 2029 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2030 if (err <= 0) 2031 goto out_unlock; 2032 } 2033 2034 /* Update snd_info with the asoc */ 2035 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2036 2037 /* Send msg to the asoc */ 2038 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2039 if (err < 0 && err != -ESRCH && new) 2040 sctp_association_free(asoc); 2041 2042 out_unlock: 2043 release_sock(sk); 2044 out: 2045 return sctp_error(sk, msg->msg_flags, err); 2046 } 2047 2048 /* This is an extended version of skb_pull() that removes the data from the 2049 * start of a skb even when data is spread across the list of skb's in the 2050 * frag_list. len specifies the total amount of data that needs to be removed. 2051 * when 'len' bytes could be removed from the skb, it returns 0. 2052 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2053 * could not be removed. 2054 */ 2055 static int sctp_skb_pull(struct sk_buff *skb, int len) 2056 { 2057 struct sk_buff *list; 2058 int skb_len = skb_headlen(skb); 2059 int rlen; 2060 2061 if (len <= skb_len) { 2062 __skb_pull(skb, len); 2063 return 0; 2064 } 2065 len -= skb_len; 2066 __skb_pull(skb, skb_len); 2067 2068 skb_walk_frags(skb, list) { 2069 rlen = sctp_skb_pull(list, len); 2070 skb->len -= (len-rlen); 2071 skb->data_len -= (len-rlen); 2072 2073 if (!rlen) 2074 return 0; 2075 2076 len = rlen; 2077 } 2078 2079 return len; 2080 } 2081 2082 /* API 3.1.3 recvmsg() - UDP Style Syntax 2083 * 2084 * ssize_t recvmsg(int socket, struct msghdr *message, 2085 * int flags); 2086 * 2087 * socket - the socket descriptor of the endpoint. 2088 * message - pointer to the msghdr structure which contains a single 2089 * user message and possibly some ancillary data. 2090 * 2091 * See Section 5 for complete description of the data 2092 * structures. 2093 * 2094 * flags - flags sent or received with the user message, see Section 2095 * 5 for complete description of the flags. 2096 */ 2097 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2098 int noblock, int flags, int *addr_len) 2099 { 2100 struct sctp_ulpevent *event = NULL; 2101 struct sctp_sock *sp = sctp_sk(sk); 2102 struct sk_buff *skb, *head_skb; 2103 int copied; 2104 int err = 0; 2105 int skb_len; 2106 2107 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2108 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2109 addr_len); 2110 2111 lock_sock(sk); 2112 2113 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2114 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2115 err = -ENOTCONN; 2116 goto out; 2117 } 2118 2119 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2120 if (!skb) 2121 goto out; 2122 2123 /* Get the total length of the skb including any skb's in the 2124 * frag_list. 2125 */ 2126 skb_len = skb->len; 2127 2128 copied = skb_len; 2129 if (copied > len) 2130 copied = len; 2131 2132 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2133 2134 event = sctp_skb2event(skb); 2135 2136 if (err) 2137 goto out_free; 2138 2139 if (event->chunk && event->chunk->head_skb) 2140 head_skb = event->chunk->head_skb; 2141 else 2142 head_skb = skb; 2143 sock_recv_ts_and_drops(msg, sk, head_skb); 2144 if (sctp_ulpevent_is_notification(event)) { 2145 msg->msg_flags |= MSG_NOTIFICATION; 2146 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2147 } else { 2148 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2149 } 2150 2151 /* Check if we allow SCTP_NXTINFO. */ 2152 if (sp->recvnxtinfo) 2153 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2154 /* Check if we allow SCTP_RCVINFO. */ 2155 if (sp->recvrcvinfo) 2156 sctp_ulpevent_read_rcvinfo(event, msg); 2157 /* Check if we allow SCTP_SNDRCVINFO. */ 2158 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2159 sctp_ulpevent_read_sndrcvinfo(event, msg); 2160 2161 err = copied; 2162 2163 /* If skb's length exceeds the user's buffer, update the skb and 2164 * push it back to the receive_queue so that the next call to 2165 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2166 */ 2167 if (skb_len > copied) { 2168 msg->msg_flags &= ~MSG_EOR; 2169 if (flags & MSG_PEEK) 2170 goto out_free; 2171 sctp_skb_pull(skb, copied); 2172 skb_queue_head(&sk->sk_receive_queue, skb); 2173 2174 /* When only partial message is copied to the user, increase 2175 * rwnd by that amount. If all the data in the skb is read, 2176 * rwnd is updated when the event is freed. 2177 */ 2178 if (!sctp_ulpevent_is_notification(event)) 2179 sctp_assoc_rwnd_increase(event->asoc, copied); 2180 goto out; 2181 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2182 (event->msg_flags & MSG_EOR)) 2183 msg->msg_flags |= MSG_EOR; 2184 else 2185 msg->msg_flags &= ~MSG_EOR; 2186 2187 out_free: 2188 if (flags & MSG_PEEK) { 2189 /* Release the skb reference acquired after peeking the skb in 2190 * sctp_skb_recv_datagram(). 2191 */ 2192 kfree_skb(skb); 2193 } else { 2194 /* Free the event which includes releasing the reference to 2195 * the owner of the skb, freeing the skb and updating the 2196 * rwnd. 2197 */ 2198 sctp_ulpevent_free(event); 2199 } 2200 out: 2201 release_sock(sk); 2202 return err; 2203 } 2204 2205 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2206 * 2207 * This option is a on/off flag. If enabled no SCTP message 2208 * fragmentation will be performed. Instead if a message being sent 2209 * exceeds the current PMTU size, the message will NOT be sent and 2210 * instead a error will be indicated to the user. 2211 */ 2212 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2213 char __user *optval, 2214 unsigned int optlen) 2215 { 2216 int val; 2217 2218 if (optlen < sizeof(int)) 2219 return -EINVAL; 2220 2221 if (get_user(val, (int __user *)optval)) 2222 return -EFAULT; 2223 2224 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2225 2226 return 0; 2227 } 2228 2229 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2230 unsigned int optlen) 2231 { 2232 struct sctp_event_subscribe subscribe; 2233 __u8 *sn_type = (__u8 *)&subscribe; 2234 struct sctp_sock *sp = sctp_sk(sk); 2235 struct sctp_association *asoc; 2236 int i; 2237 2238 if (optlen > sizeof(struct sctp_event_subscribe)) 2239 return -EINVAL; 2240 2241 if (copy_from_user(&subscribe, optval, optlen)) 2242 return -EFAULT; 2243 2244 for (i = 0; i < optlen; i++) 2245 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2246 sn_type[i]); 2247 2248 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2249 asoc->subscribe = sctp_sk(sk)->subscribe; 2250 2251 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2252 * if there is no data to be sent or retransmit, the stack will 2253 * immediately send up this notification. 2254 */ 2255 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2256 struct sctp_ulpevent *event; 2257 2258 asoc = sctp_id2assoc(sk, 0); 2259 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2260 event = sctp_ulpevent_make_sender_dry_event(asoc, 2261 GFP_USER | __GFP_NOWARN); 2262 if (!event) 2263 return -ENOMEM; 2264 2265 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2266 } 2267 } 2268 2269 return 0; 2270 } 2271 2272 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2273 * 2274 * This socket option is applicable to the UDP-style socket only. When 2275 * set it will cause associations that are idle for more than the 2276 * specified number of seconds to automatically close. An association 2277 * being idle is defined an association that has NOT sent or received 2278 * user data. The special value of '0' indicates that no automatic 2279 * close of any associations should be performed. The option expects an 2280 * integer defining the number of seconds of idle time before an 2281 * association is closed. 2282 */ 2283 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2284 unsigned int optlen) 2285 { 2286 struct sctp_sock *sp = sctp_sk(sk); 2287 struct net *net = sock_net(sk); 2288 2289 /* Applicable to UDP-style socket only */ 2290 if (sctp_style(sk, TCP)) 2291 return -EOPNOTSUPP; 2292 if (optlen != sizeof(int)) 2293 return -EINVAL; 2294 if (copy_from_user(&sp->autoclose, optval, optlen)) 2295 return -EFAULT; 2296 2297 if (sp->autoclose > net->sctp.max_autoclose) 2298 sp->autoclose = net->sctp.max_autoclose; 2299 2300 return 0; 2301 } 2302 2303 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2304 * 2305 * Applications can enable or disable heartbeats for any peer address of 2306 * an association, modify an address's heartbeat interval, force a 2307 * heartbeat to be sent immediately, and adjust the address's maximum 2308 * number of retransmissions sent before an address is considered 2309 * unreachable. The following structure is used to access and modify an 2310 * address's parameters: 2311 * 2312 * struct sctp_paddrparams { 2313 * sctp_assoc_t spp_assoc_id; 2314 * struct sockaddr_storage spp_address; 2315 * uint32_t spp_hbinterval; 2316 * uint16_t spp_pathmaxrxt; 2317 * uint32_t spp_pathmtu; 2318 * uint32_t spp_sackdelay; 2319 * uint32_t spp_flags; 2320 * uint32_t spp_ipv6_flowlabel; 2321 * uint8_t spp_dscp; 2322 * }; 2323 * 2324 * spp_assoc_id - (one-to-many style socket) This is filled in the 2325 * application, and identifies the association for 2326 * this query. 2327 * spp_address - This specifies which address is of interest. 2328 * spp_hbinterval - This contains the value of the heartbeat interval, 2329 * in milliseconds. If a value of zero 2330 * is present in this field then no changes are to 2331 * be made to this parameter. 2332 * spp_pathmaxrxt - This contains the maximum number of 2333 * retransmissions before this address shall be 2334 * considered unreachable. If a value of zero 2335 * is present in this field then no changes are to 2336 * be made to this parameter. 2337 * spp_pathmtu - When Path MTU discovery is disabled the value 2338 * specified here will be the "fixed" path mtu. 2339 * Note that if the spp_address field is empty 2340 * then all associations on this address will 2341 * have this fixed path mtu set upon them. 2342 * 2343 * spp_sackdelay - When delayed sack is enabled, this value specifies 2344 * the number of milliseconds that sacks will be delayed 2345 * for. This value will apply to all addresses of an 2346 * association if the spp_address field is empty. Note 2347 * also, that if delayed sack is enabled and this 2348 * value is set to 0, no change is made to the last 2349 * recorded delayed sack timer value. 2350 * 2351 * spp_flags - These flags are used to control various features 2352 * on an association. The flag field may contain 2353 * zero or more of the following options. 2354 * 2355 * SPP_HB_ENABLE - Enable heartbeats on the 2356 * specified address. Note that if the address 2357 * field is empty all addresses for the association 2358 * have heartbeats enabled upon them. 2359 * 2360 * SPP_HB_DISABLE - Disable heartbeats on the 2361 * speicifed address. Note that if the address 2362 * field is empty all addresses for the association 2363 * will have their heartbeats disabled. Note also 2364 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2365 * mutually exclusive, only one of these two should 2366 * be specified. Enabling both fields will have 2367 * undetermined results. 2368 * 2369 * SPP_HB_DEMAND - Request a user initiated heartbeat 2370 * to be made immediately. 2371 * 2372 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2373 * heartbeat delayis to be set to the value of 0 2374 * milliseconds. 2375 * 2376 * SPP_PMTUD_ENABLE - This field will enable PMTU 2377 * discovery upon the specified address. Note that 2378 * if the address feild is empty then all addresses 2379 * on the association are effected. 2380 * 2381 * SPP_PMTUD_DISABLE - This field will disable PMTU 2382 * discovery upon the specified address. Note that 2383 * if the address feild is empty then all addresses 2384 * on the association are effected. Not also that 2385 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2386 * exclusive. Enabling both will have undetermined 2387 * results. 2388 * 2389 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2390 * on delayed sack. The time specified in spp_sackdelay 2391 * is used to specify the sack delay for this address. Note 2392 * that if spp_address is empty then all addresses will 2393 * enable delayed sack and take on the sack delay 2394 * value specified in spp_sackdelay. 2395 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2396 * off delayed sack. If the spp_address field is blank then 2397 * delayed sack is disabled for the entire association. Note 2398 * also that this field is mutually exclusive to 2399 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2400 * results. 2401 * 2402 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2403 * setting of the IPV6 flow label value. The value is 2404 * contained in the spp_ipv6_flowlabel field. 2405 * Upon retrieval, this flag will be set to indicate that 2406 * the spp_ipv6_flowlabel field has a valid value returned. 2407 * If a specific destination address is set (in the 2408 * spp_address field), then the value returned is that of 2409 * the address. If just an association is specified (and 2410 * no address), then the association's default flow label 2411 * is returned. If neither an association nor a destination 2412 * is specified, then the socket's default flow label is 2413 * returned. For non-IPv6 sockets, this flag will be left 2414 * cleared. 2415 * 2416 * SPP_DSCP: Setting this flag enables the setting of the 2417 * Differentiated Services Code Point (DSCP) value 2418 * associated with either the association or a specific 2419 * address. The value is obtained in the spp_dscp field. 2420 * Upon retrieval, this flag will be set to indicate that 2421 * the spp_dscp field has a valid value returned. If a 2422 * specific destination address is set when called (in the 2423 * spp_address field), then that specific destination 2424 * address's DSCP value is returned. If just an association 2425 * is specified, then the association's default DSCP is 2426 * returned. If neither an association nor a destination is 2427 * specified, then the socket's default DSCP is returned. 2428 * 2429 * spp_ipv6_flowlabel 2430 * - This field is used in conjunction with the 2431 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2432 * The 20 least significant bits are used for the flow 2433 * label. This setting has precedence over any IPv6-layer 2434 * setting. 2435 * 2436 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2437 * and contains the DSCP. The 6 most significant bits are 2438 * used for the DSCP. This setting has precedence over any 2439 * IPv4- or IPv6- layer setting. 2440 */ 2441 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2442 struct sctp_transport *trans, 2443 struct sctp_association *asoc, 2444 struct sctp_sock *sp, 2445 int hb_change, 2446 int pmtud_change, 2447 int sackdelay_change) 2448 { 2449 int error; 2450 2451 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2452 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2453 trans->asoc, trans); 2454 if (error) 2455 return error; 2456 } 2457 2458 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2459 * this field is ignored. Note also that a value of zero indicates 2460 * the current setting should be left unchanged. 2461 */ 2462 if (params->spp_flags & SPP_HB_ENABLE) { 2463 2464 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2465 * set. This lets us use 0 value when this flag 2466 * is set. 2467 */ 2468 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2469 params->spp_hbinterval = 0; 2470 2471 if (params->spp_hbinterval || 2472 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2473 if (trans) { 2474 trans->hbinterval = 2475 msecs_to_jiffies(params->spp_hbinterval); 2476 } else if (asoc) { 2477 asoc->hbinterval = 2478 msecs_to_jiffies(params->spp_hbinterval); 2479 } else { 2480 sp->hbinterval = params->spp_hbinterval; 2481 } 2482 } 2483 } 2484 2485 if (hb_change) { 2486 if (trans) { 2487 trans->param_flags = 2488 (trans->param_flags & ~SPP_HB) | hb_change; 2489 } else if (asoc) { 2490 asoc->param_flags = 2491 (asoc->param_flags & ~SPP_HB) | hb_change; 2492 } else { 2493 sp->param_flags = 2494 (sp->param_flags & ~SPP_HB) | hb_change; 2495 } 2496 } 2497 2498 /* When Path MTU discovery is disabled the value specified here will 2499 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2500 * include the flag SPP_PMTUD_DISABLE for this field to have any 2501 * effect). 2502 */ 2503 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2504 if (trans) { 2505 trans->pathmtu = params->spp_pathmtu; 2506 sctp_assoc_sync_pmtu(asoc); 2507 } else if (asoc) { 2508 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2509 } else { 2510 sp->pathmtu = params->spp_pathmtu; 2511 } 2512 } 2513 2514 if (pmtud_change) { 2515 if (trans) { 2516 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2517 (params->spp_flags & SPP_PMTUD_ENABLE); 2518 trans->param_flags = 2519 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2520 if (update) { 2521 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2522 sctp_assoc_sync_pmtu(asoc); 2523 } 2524 } else if (asoc) { 2525 asoc->param_flags = 2526 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2527 } else { 2528 sp->param_flags = 2529 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2530 } 2531 } 2532 2533 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2534 * value of this field is ignored. Note also that a value of zero 2535 * indicates the current setting should be left unchanged. 2536 */ 2537 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2538 if (trans) { 2539 trans->sackdelay = 2540 msecs_to_jiffies(params->spp_sackdelay); 2541 } else if (asoc) { 2542 asoc->sackdelay = 2543 msecs_to_jiffies(params->spp_sackdelay); 2544 } else { 2545 sp->sackdelay = params->spp_sackdelay; 2546 } 2547 } 2548 2549 if (sackdelay_change) { 2550 if (trans) { 2551 trans->param_flags = 2552 (trans->param_flags & ~SPP_SACKDELAY) | 2553 sackdelay_change; 2554 } else if (asoc) { 2555 asoc->param_flags = 2556 (asoc->param_flags & ~SPP_SACKDELAY) | 2557 sackdelay_change; 2558 } else { 2559 sp->param_flags = 2560 (sp->param_flags & ~SPP_SACKDELAY) | 2561 sackdelay_change; 2562 } 2563 } 2564 2565 /* Note that a value of zero indicates the current setting should be 2566 left unchanged. 2567 */ 2568 if (params->spp_pathmaxrxt) { 2569 if (trans) { 2570 trans->pathmaxrxt = params->spp_pathmaxrxt; 2571 } else if (asoc) { 2572 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2573 } else { 2574 sp->pathmaxrxt = params->spp_pathmaxrxt; 2575 } 2576 } 2577 2578 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2579 if (trans) { 2580 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2581 trans->flowlabel = params->spp_ipv6_flowlabel & 2582 SCTP_FLOWLABEL_VAL_MASK; 2583 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2584 } 2585 } else if (asoc) { 2586 struct sctp_transport *t; 2587 2588 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2589 transports) { 2590 if (t->ipaddr.sa.sa_family != AF_INET6) 2591 continue; 2592 t->flowlabel = params->spp_ipv6_flowlabel & 2593 SCTP_FLOWLABEL_VAL_MASK; 2594 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2595 } 2596 asoc->flowlabel = params->spp_ipv6_flowlabel & 2597 SCTP_FLOWLABEL_VAL_MASK; 2598 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2599 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2600 sp->flowlabel = params->spp_ipv6_flowlabel & 2601 SCTP_FLOWLABEL_VAL_MASK; 2602 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2603 } 2604 } 2605 2606 if (params->spp_flags & SPP_DSCP) { 2607 if (trans) { 2608 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2609 trans->dscp |= SCTP_DSCP_SET_MASK; 2610 } else if (asoc) { 2611 struct sctp_transport *t; 2612 2613 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2614 transports) { 2615 t->dscp = params->spp_dscp & 2616 SCTP_DSCP_VAL_MASK; 2617 t->dscp |= SCTP_DSCP_SET_MASK; 2618 } 2619 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2620 asoc->dscp |= SCTP_DSCP_SET_MASK; 2621 } else { 2622 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2623 sp->dscp |= SCTP_DSCP_SET_MASK; 2624 } 2625 } 2626 2627 return 0; 2628 } 2629 2630 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2631 char __user *optval, 2632 unsigned int optlen) 2633 { 2634 struct sctp_paddrparams params; 2635 struct sctp_transport *trans = NULL; 2636 struct sctp_association *asoc = NULL; 2637 struct sctp_sock *sp = sctp_sk(sk); 2638 int error; 2639 int hb_change, pmtud_change, sackdelay_change; 2640 2641 if (optlen == sizeof(params)) { 2642 if (copy_from_user(¶ms, optval, optlen)) 2643 return -EFAULT; 2644 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2645 spp_ipv6_flowlabel), 4)) { 2646 if (copy_from_user(¶ms, optval, optlen)) 2647 return -EFAULT; 2648 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2649 return -EINVAL; 2650 } else { 2651 return -EINVAL; 2652 } 2653 2654 /* Validate flags and value parameters. */ 2655 hb_change = params.spp_flags & SPP_HB; 2656 pmtud_change = params.spp_flags & SPP_PMTUD; 2657 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2658 2659 if (hb_change == SPP_HB || 2660 pmtud_change == SPP_PMTUD || 2661 sackdelay_change == SPP_SACKDELAY || 2662 params.spp_sackdelay > 500 || 2663 (params.spp_pathmtu && 2664 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2665 return -EINVAL; 2666 2667 /* If an address other than INADDR_ANY is specified, and 2668 * no transport is found, then the request is invalid. 2669 */ 2670 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2671 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2672 params.spp_assoc_id); 2673 if (!trans) 2674 return -EINVAL; 2675 } 2676 2677 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2678 * socket is a one to many style socket, and an association 2679 * was not found, then the id was invalid. 2680 */ 2681 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2682 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2683 sctp_style(sk, UDP)) 2684 return -EINVAL; 2685 2686 /* Heartbeat demand can only be sent on a transport or 2687 * association, but not a socket. 2688 */ 2689 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2690 return -EINVAL; 2691 2692 /* Process parameters. */ 2693 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2694 hb_change, pmtud_change, 2695 sackdelay_change); 2696 2697 if (error) 2698 return error; 2699 2700 /* If changes are for association, also apply parameters to each 2701 * transport. 2702 */ 2703 if (!trans && asoc) { 2704 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2705 transports) { 2706 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2707 hb_change, pmtud_change, 2708 sackdelay_change); 2709 } 2710 } 2711 2712 return 0; 2713 } 2714 2715 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2716 { 2717 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2718 } 2719 2720 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2721 { 2722 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2723 } 2724 2725 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2726 struct sctp_association *asoc) 2727 { 2728 struct sctp_transport *trans; 2729 2730 if (params->sack_delay) { 2731 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2732 asoc->param_flags = 2733 sctp_spp_sackdelay_enable(asoc->param_flags); 2734 } 2735 if (params->sack_freq == 1) { 2736 asoc->param_flags = 2737 sctp_spp_sackdelay_disable(asoc->param_flags); 2738 } else if (params->sack_freq > 1) { 2739 asoc->sackfreq = params->sack_freq; 2740 asoc->param_flags = 2741 sctp_spp_sackdelay_enable(asoc->param_flags); 2742 } 2743 2744 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2745 transports) { 2746 if (params->sack_delay) { 2747 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2748 trans->param_flags = 2749 sctp_spp_sackdelay_enable(trans->param_flags); 2750 } 2751 if (params->sack_freq == 1) { 2752 trans->param_flags = 2753 sctp_spp_sackdelay_disable(trans->param_flags); 2754 } else if (params->sack_freq > 1) { 2755 trans->sackfreq = params->sack_freq; 2756 trans->param_flags = 2757 sctp_spp_sackdelay_enable(trans->param_flags); 2758 } 2759 } 2760 } 2761 2762 /* 2763 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2764 * 2765 * This option will effect the way delayed acks are performed. This 2766 * option allows you to get or set the delayed ack time, in 2767 * milliseconds. It also allows changing the delayed ack frequency. 2768 * Changing the frequency to 1 disables the delayed sack algorithm. If 2769 * the assoc_id is 0, then this sets or gets the endpoints default 2770 * values. If the assoc_id field is non-zero, then the set or get 2771 * effects the specified association for the one to many model (the 2772 * assoc_id field is ignored by the one to one model). Note that if 2773 * sack_delay or sack_freq are 0 when setting this option, then the 2774 * current values will remain unchanged. 2775 * 2776 * struct sctp_sack_info { 2777 * sctp_assoc_t sack_assoc_id; 2778 * uint32_t sack_delay; 2779 * uint32_t sack_freq; 2780 * }; 2781 * 2782 * sack_assoc_id - This parameter, indicates which association the user 2783 * is performing an action upon. Note that if this field's value is 2784 * zero then the endpoints default value is changed (effecting future 2785 * associations only). 2786 * 2787 * sack_delay - This parameter contains the number of milliseconds that 2788 * the user is requesting the delayed ACK timer be set to. Note that 2789 * this value is defined in the standard to be between 200 and 500 2790 * milliseconds. 2791 * 2792 * sack_freq - This parameter contains the number of packets that must 2793 * be received before a sack is sent without waiting for the delay 2794 * timer to expire. The default value for this is 2, setting this 2795 * value to 1 will disable the delayed sack algorithm. 2796 */ 2797 2798 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2799 char __user *optval, unsigned int optlen) 2800 { 2801 struct sctp_sock *sp = sctp_sk(sk); 2802 struct sctp_association *asoc; 2803 struct sctp_sack_info params; 2804 2805 if (optlen == sizeof(struct sctp_sack_info)) { 2806 if (copy_from_user(¶ms, optval, optlen)) 2807 return -EFAULT; 2808 2809 if (params.sack_delay == 0 && params.sack_freq == 0) 2810 return 0; 2811 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2812 pr_warn_ratelimited(DEPRECATED 2813 "%s (pid %d) " 2814 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2815 "Use struct sctp_sack_info instead\n", 2816 current->comm, task_pid_nr(current)); 2817 if (copy_from_user(¶ms, optval, optlen)) 2818 return -EFAULT; 2819 2820 if (params.sack_delay == 0) 2821 params.sack_freq = 1; 2822 else 2823 params.sack_freq = 0; 2824 } else 2825 return -EINVAL; 2826 2827 /* Validate value parameter. */ 2828 if (params.sack_delay > 500) 2829 return -EINVAL; 2830 2831 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2832 * socket is a one to many style socket, and an association 2833 * was not found, then the id was invalid. 2834 */ 2835 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2836 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2837 sctp_style(sk, UDP)) 2838 return -EINVAL; 2839 2840 if (asoc) { 2841 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2842 2843 return 0; 2844 } 2845 2846 if (sctp_style(sk, TCP)) 2847 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2848 2849 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2850 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2851 if (params.sack_delay) { 2852 sp->sackdelay = params.sack_delay; 2853 sp->param_flags = 2854 sctp_spp_sackdelay_enable(sp->param_flags); 2855 } 2856 if (params.sack_freq == 1) { 2857 sp->param_flags = 2858 sctp_spp_sackdelay_disable(sp->param_flags); 2859 } else if (params.sack_freq > 1) { 2860 sp->sackfreq = params.sack_freq; 2861 sp->param_flags = 2862 sctp_spp_sackdelay_enable(sp->param_flags); 2863 } 2864 } 2865 2866 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2867 params.sack_assoc_id == SCTP_ALL_ASSOC) 2868 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2869 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2870 2871 return 0; 2872 } 2873 2874 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2875 * 2876 * Applications can specify protocol parameters for the default association 2877 * initialization. The option name argument to setsockopt() and getsockopt() 2878 * is SCTP_INITMSG. 2879 * 2880 * Setting initialization parameters is effective only on an unconnected 2881 * socket (for UDP-style sockets only future associations are effected 2882 * by the change). With TCP-style sockets, this option is inherited by 2883 * sockets derived from a listener socket. 2884 */ 2885 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2886 { 2887 struct sctp_initmsg sinit; 2888 struct sctp_sock *sp = sctp_sk(sk); 2889 2890 if (optlen != sizeof(struct sctp_initmsg)) 2891 return -EINVAL; 2892 if (copy_from_user(&sinit, optval, optlen)) 2893 return -EFAULT; 2894 2895 if (sinit.sinit_num_ostreams) 2896 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2897 if (sinit.sinit_max_instreams) 2898 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2899 if (sinit.sinit_max_attempts) 2900 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2901 if (sinit.sinit_max_init_timeo) 2902 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2903 2904 return 0; 2905 } 2906 2907 /* 2908 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2909 * 2910 * Applications that wish to use the sendto() system call may wish to 2911 * specify a default set of parameters that would normally be supplied 2912 * through the inclusion of ancillary data. This socket option allows 2913 * such an application to set the default sctp_sndrcvinfo structure. 2914 * The application that wishes to use this socket option simply passes 2915 * in to this call the sctp_sndrcvinfo structure defined in Section 2916 * 5.2.2) The input parameters accepted by this call include 2917 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2918 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2919 * to this call if the caller is using the UDP model. 2920 */ 2921 static int sctp_setsockopt_default_send_param(struct sock *sk, 2922 char __user *optval, 2923 unsigned int optlen) 2924 { 2925 struct sctp_sock *sp = sctp_sk(sk); 2926 struct sctp_association *asoc; 2927 struct sctp_sndrcvinfo info; 2928 2929 if (optlen != sizeof(info)) 2930 return -EINVAL; 2931 if (copy_from_user(&info, optval, optlen)) 2932 return -EFAULT; 2933 if (info.sinfo_flags & 2934 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2935 SCTP_ABORT | SCTP_EOF)) 2936 return -EINVAL; 2937 2938 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2939 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 2940 sctp_style(sk, UDP)) 2941 return -EINVAL; 2942 2943 if (asoc) { 2944 asoc->default_stream = info.sinfo_stream; 2945 asoc->default_flags = info.sinfo_flags; 2946 asoc->default_ppid = info.sinfo_ppid; 2947 asoc->default_context = info.sinfo_context; 2948 asoc->default_timetolive = info.sinfo_timetolive; 2949 2950 return 0; 2951 } 2952 2953 if (sctp_style(sk, TCP)) 2954 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2955 2956 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2957 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2958 sp->default_stream = info.sinfo_stream; 2959 sp->default_flags = info.sinfo_flags; 2960 sp->default_ppid = info.sinfo_ppid; 2961 sp->default_context = info.sinfo_context; 2962 sp->default_timetolive = info.sinfo_timetolive; 2963 } 2964 2965 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2966 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2967 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2968 asoc->default_stream = info.sinfo_stream; 2969 asoc->default_flags = info.sinfo_flags; 2970 asoc->default_ppid = info.sinfo_ppid; 2971 asoc->default_context = info.sinfo_context; 2972 asoc->default_timetolive = info.sinfo_timetolive; 2973 } 2974 } 2975 2976 return 0; 2977 } 2978 2979 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2980 * (SCTP_DEFAULT_SNDINFO) 2981 */ 2982 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2983 char __user *optval, 2984 unsigned int optlen) 2985 { 2986 struct sctp_sock *sp = sctp_sk(sk); 2987 struct sctp_association *asoc; 2988 struct sctp_sndinfo info; 2989 2990 if (optlen != sizeof(info)) 2991 return -EINVAL; 2992 if (copy_from_user(&info, optval, optlen)) 2993 return -EFAULT; 2994 if (info.snd_flags & 2995 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2996 SCTP_ABORT | SCTP_EOF)) 2997 return -EINVAL; 2998 2999 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3000 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3001 sctp_style(sk, UDP)) 3002 return -EINVAL; 3003 3004 if (asoc) { 3005 asoc->default_stream = info.snd_sid; 3006 asoc->default_flags = info.snd_flags; 3007 asoc->default_ppid = info.snd_ppid; 3008 asoc->default_context = info.snd_context; 3009 3010 return 0; 3011 } 3012 3013 if (sctp_style(sk, TCP)) 3014 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3015 3016 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3017 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3018 sp->default_stream = info.snd_sid; 3019 sp->default_flags = info.snd_flags; 3020 sp->default_ppid = info.snd_ppid; 3021 sp->default_context = info.snd_context; 3022 } 3023 3024 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3025 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3026 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3027 asoc->default_stream = info.snd_sid; 3028 asoc->default_flags = info.snd_flags; 3029 asoc->default_ppid = info.snd_ppid; 3030 asoc->default_context = info.snd_context; 3031 } 3032 } 3033 3034 return 0; 3035 } 3036 3037 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3038 * 3039 * Requests that the local SCTP stack use the enclosed peer address as 3040 * the association primary. The enclosed address must be one of the 3041 * association peer's addresses. 3042 */ 3043 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3044 unsigned int optlen) 3045 { 3046 struct sctp_prim prim; 3047 struct sctp_transport *trans; 3048 struct sctp_af *af; 3049 int err; 3050 3051 if (optlen != sizeof(struct sctp_prim)) 3052 return -EINVAL; 3053 3054 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3055 return -EFAULT; 3056 3057 /* Allow security module to validate address but need address len. */ 3058 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3059 if (!af) 3060 return -EINVAL; 3061 3062 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3063 (struct sockaddr *)&prim.ssp_addr, 3064 af->sockaddr_len); 3065 if (err) 3066 return err; 3067 3068 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3069 if (!trans) 3070 return -EINVAL; 3071 3072 sctp_assoc_set_primary(trans->asoc, trans); 3073 3074 return 0; 3075 } 3076 3077 /* 3078 * 7.1.5 SCTP_NODELAY 3079 * 3080 * Turn on/off any Nagle-like algorithm. This means that packets are 3081 * generally sent as soon as possible and no unnecessary delays are 3082 * introduced, at the cost of more packets in the network. Expects an 3083 * integer boolean flag. 3084 */ 3085 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3086 unsigned int optlen) 3087 { 3088 int val; 3089 3090 if (optlen < sizeof(int)) 3091 return -EINVAL; 3092 if (get_user(val, (int __user *)optval)) 3093 return -EFAULT; 3094 3095 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3096 return 0; 3097 } 3098 3099 /* 3100 * 3101 * 7.1.1 SCTP_RTOINFO 3102 * 3103 * The protocol parameters used to initialize and bound retransmission 3104 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3105 * and modify these parameters. 3106 * All parameters are time values, in milliseconds. A value of 0, when 3107 * modifying the parameters, indicates that the current value should not 3108 * be changed. 3109 * 3110 */ 3111 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3112 { 3113 struct sctp_rtoinfo rtoinfo; 3114 struct sctp_association *asoc; 3115 unsigned long rto_min, rto_max; 3116 struct sctp_sock *sp = sctp_sk(sk); 3117 3118 if (optlen != sizeof (struct sctp_rtoinfo)) 3119 return -EINVAL; 3120 3121 if (copy_from_user(&rtoinfo, optval, optlen)) 3122 return -EFAULT; 3123 3124 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3125 3126 /* Set the values to the specific association */ 3127 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3128 sctp_style(sk, UDP)) 3129 return -EINVAL; 3130 3131 rto_max = rtoinfo.srto_max; 3132 rto_min = rtoinfo.srto_min; 3133 3134 if (rto_max) 3135 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3136 else 3137 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3138 3139 if (rto_min) 3140 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3141 else 3142 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3143 3144 if (rto_min > rto_max) 3145 return -EINVAL; 3146 3147 if (asoc) { 3148 if (rtoinfo.srto_initial != 0) 3149 asoc->rto_initial = 3150 msecs_to_jiffies(rtoinfo.srto_initial); 3151 asoc->rto_max = rto_max; 3152 asoc->rto_min = rto_min; 3153 } else { 3154 /* If there is no association or the association-id = 0 3155 * set the values to the endpoint. 3156 */ 3157 if (rtoinfo.srto_initial != 0) 3158 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3159 sp->rtoinfo.srto_max = rto_max; 3160 sp->rtoinfo.srto_min = rto_min; 3161 } 3162 3163 return 0; 3164 } 3165 3166 /* 3167 * 3168 * 7.1.2 SCTP_ASSOCINFO 3169 * 3170 * This option is used to tune the maximum retransmission attempts 3171 * of the association. 3172 * Returns an error if the new association retransmission value is 3173 * greater than the sum of the retransmission value of the peer. 3174 * See [SCTP] for more information. 3175 * 3176 */ 3177 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3178 { 3179 3180 struct sctp_assocparams assocparams; 3181 struct sctp_association *asoc; 3182 3183 if (optlen != sizeof(struct sctp_assocparams)) 3184 return -EINVAL; 3185 if (copy_from_user(&assocparams, optval, optlen)) 3186 return -EFAULT; 3187 3188 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3189 3190 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3191 sctp_style(sk, UDP)) 3192 return -EINVAL; 3193 3194 /* Set the values to the specific association */ 3195 if (asoc) { 3196 if (assocparams.sasoc_asocmaxrxt != 0) { 3197 __u32 path_sum = 0; 3198 int paths = 0; 3199 struct sctp_transport *peer_addr; 3200 3201 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3202 transports) { 3203 path_sum += peer_addr->pathmaxrxt; 3204 paths++; 3205 } 3206 3207 /* Only validate asocmaxrxt if we have more than 3208 * one path/transport. We do this because path 3209 * retransmissions are only counted when we have more 3210 * then one path. 3211 */ 3212 if (paths > 1 && 3213 assocparams.sasoc_asocmaxrxt > path_sum) 3214 return -EINVAL; 3215 3216 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3217 } 3218 3219 if (assocparams.sasoc_cookie_life != 0) 3220 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3221 } else { 3222 /* Set the values to the endpoint */ 3223 struct sctp_sock *sp = sctp_sk(sk); 3224 3225 if (assocparams.sasoc_asocmaxrxt != 0) 3226 sp->assocparams.sasoc_asocmaxrxt = 3227 assocparams.sasoc_asocmaxrxt; 3228 if (assocparams.sasoc_cookie_life != 0) 3229 sp->assocparams.sasoc_cookie_life = 3230 assocparams.sasoc_cookie_life; 3231 } 3232 return 0; 3233 } 3234 3235 /* 3236 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3237 * 3238 * This socket option is a boolean flag which turns on or off mapped V4 3239 * addresses. If this option is turned on and the socket is type 3240 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3241 * If this option is turned off, then no mapping will be done of V4 3242 * addresses and a user will receive both PF_INET6 and PF_INET type 3243 * addresses on the socket. 3244 */ 3245 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3246 { 3247 int val; 3248 struct sctp_sock *sp = sctp_sk(sk); 3249 3250 if (optlen < sizeof(int)) 3251 return -EINVAL; 3252 if (get_user(val, (int __user *)optval)) 3253 return -EFAULT; 3254 if (val) 3255 sp->v4mapped = 1; 3256 else 3257 sp->v4mapped = 0; 3258 3259 return 0; 3260 } 3261 3262 /* 3263 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3264 * This option will get or set the maximum size to put in any outgoing 3265 * SCTP DATA chunk. If a message is larger than this size it will be 3266 * fragmented by SCTP into the specified size. Note that the underlying 3267 * SCTP implementation may fragment into smaller sized chunks when the 3268 * PMTU of the underlying association is smaller than the value set by 3269 * the user. The default value for this option is '0' which indicates 3270 * the user is NOT limiting fragmentation and only the PMTU will effect 3271 * SCTP's choice of DATA chunk size. Note also that values set larger 3272 * than the maximum size of an IP datagram will effectively let SCTP 3273 * control fragmentation (i.e. the same as setting this option to 0). 3274 * 3275 * The following structure is used to access and modify this parameter: 3276 * 3277 * struct sctp_assoc_value { 3278 * sctp_assoc_t assoc_id; 3279 * uint32_t assoc_value; 3280 * }; 3281 * 3282 * assoc_id: This parameter is ignored for one-to-one style sockets. 3283 * For one-to-many style sockets this parameter indicates which 3284 * association the user is performing an action upon. Note that if 3285 * this field's value is zero then the endpoints default value is 3286 * changed (effecting future associations only). 3287 * assoc_value: This parameter specifies the maximum size in bytes. 3288 */ 3289 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3290 { 3291 struct sctp_sock *sp = sctp_sk(sk); 3292 struct sctp_assoc_value params; 3293 struct sctp_association *asoc; 3294 int val; 3295 3296 if (optlen == sizeof(int)) { 3297 pr_warn_ratelimited(DEPRECATED 3298 "%s (pid %d) " 3299 "Use of int in maxseg socket option.\n" 3300 "Use struct sctp_assoc_value instead\n", 3301 current->comm, task_pid_nr(current)); 3302 if (copy_from_user(&val, optval, optlen)) 3303 return -EFAULT; 3304 params.assoc_id = SCTP_FUTURE_ASSOC; 3305 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3306 if (copy_from_user(¶ms, optval, optlen)) 3307 return -EFAULT; 3308 val = params.assoc_value; 3309 } else { 3310 return -EINVAL; 3311 } 3312 3313 asoc = sctp_id2assoc(sk, params.assoc_id); 3314 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3315 sctp_style(sk, UDP)) 3316 return -EINVAL; 3317 3318 if (val) { 3319 int min_len, max_len; 3320 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3321 sizeof(struct sctp_data_chunk); 3322 3323 min_len = sctp_min_frag_point(sp, datasize); 3324 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3325 3326 if (val < min_len || val > max_len) 3327 return -EINVAL; 3328 } 3329 3330 if (asoc) { 3331 asoc->user_frag = val; 3332 sctp_assoc_update_frag_point(asoc); 3333 } else { 3334 sp->user_frag = val; 3335 } 3336 3337 return 0; 3338 } 3339 3340 3341 /* 3342 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3343 * 3344 * Requests that the peer mark the enclosed address as the association 3345 * primary. The enclosed address must be one of the association's 3346 * locally bound addresses. The following structure is used to make a 3347 * set primary request: 3348 */ 3349 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3350 unsigned int optlen) 3351 { 3352 struct sctp_sock *sp; 3353 struct sctp_association *asoc = NULL; 3354 struct sctp_setpeerprim prim; 3355 struct sctp_chunk *chunk; 3356 struct sctp_af *af; 3357 int err; 3358 3359 sp = sctp_sk(sk); 3360 3361 if (!sp->ep->asconf_enable) 3362 return -EPERM; 3363 3364 if (optlen != sizeof(struct sctp_setpeerprim)) 3365 return -EINVAL; 3366 3367 if (copy_from_user(&prim, optval, optlen)) 3368 return -EFAULT; 3369 3370 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3371 if (!asoc) 3372 return -EINVAL; 3373 3374 if (!asoc->peer.asconf_capable) 3375 return -EPERM; 3376 3377 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3378 return -EPERM; 3379 3380 if (!sctp_state(asoc, ESTABLISHED)) 3381 return -ENOTCONN; 3382 3383 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3384 if (!af) 3385 return -EINVAL; 3386 3387 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3388 return -EADDRNOTAVAIL; 3389 3390 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3391 return -EADDRNOTAVAIL; 3392 3393 /* Allow security module to validate address. */ 3394 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3395 (struct sockaddr *)&prim.sspp_addr, 3396 af->sockaddr_len); 3397 if (err) 3398 return err; 3399 3400 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3401 chunk = sctp_make_asconf_set_prim(asoc, 3402 (union sctp_addr *)&prim.sspp_addr); 3403 if (!chunk) 3404 return -ENOMEM; 3405 3406 err = sctp_send_asconf(asoc, chunk); 3407 3408 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3409 3410 return err; 3411 } 3412 3413 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3414 unsigned int optlen) 3415 { 3416 struct sctp_setadaptation adaptation; 3417 3418 if (optlen != sizeof(struct sctp_setadaptation)) 3419 return -EINVAL; 3420 if (copy_from_user(&adaptation, optval, optlen)) 3421 return -EFAULT; 3422 3423 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3424 3425 return 0; 3426 } 3427 3428 /* 3429 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3430 * 3431 * The context field in the sctp_sndrcvinfo structure is normally only 3432 * used when a failed message is retrieved holding the value that was 3433 * sent down on the actual send call. This option allows the setting of 3434 * a default context on an association basis that will be received on 3435 * reading messages from the peer. This is especially helpful in the 3436 * one-2-many model for an application to keep some reference to an 3437 * internal state machine that is processing messages on the 3438 * association. Note that the setting of this value only effects 3439 * received messages from the peer and does not effect the value that is 3440 * saved with outbound messages. 3441 */ 3442 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3443 unsigned int optlen) 3444 { 3445 struct sctp_sock *sp = sctp_sk(sk); 3446 struct sctp_assoc_value params; 3447 struct sctp_association *asoc; 3448 3449 if (optlen != sizeof(struct sctp_assoc_value)) 3450 return -EINVAL; 3451 if (copy_from_user(¶ms, optval, optlen)) 3452 return -EFAULT; 3453 3454 asoc = sctp_id2assoc(sk, params.assoc_id); 3455 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3456 sctp_style(sk, UDP)) 3457 return -EINVAL; 3458 3459 if (asoc) { 3460 asoc->default_rcv_context = params.assoc_value; 3461 3462 return 0; 3463 } 3464 3465 if (sctp_style(sk, TCP)) 3466 params.assoc_id = SCTP_FUTURE_ASSOC; 3467 3468 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3469 params.assoc_id == SCTP_ALL_ASSOC) 3470 sp->default_rcv_context = params.assoc_value; 3471 3472 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3473 params.assoc_id == SCTP_ALL_ASSOC) 3474 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3475 asoc->default_rcv_context = params.assoc_value; 3476 3477 return 0; 3478 } 3479 3480 /* 3481 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3482 * 3483 * This options will at a minimum specify if the implementation is doing 3484 * fragmented interleave. Fragmented interleave, for a one to many 3485 * socket, is when subsequent calls to receive a message may return 3486 * parts of messages from different associations. Some implementations 3487 * may allow you to turn this value on or off. If so, when turned off, 3488 * no fragment interleave will occur (which will cause a head of line 3489 * blocking amongst multiple associations sharing the same one to many 3490 * socket). When this option is turned on, then each receive call may 3491 * come from a different association (thus the user must receive data 3492 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3493 * association each receive belongs to. 3494 * 3495 * This option takes a boolean value. A non-zero value indicates that 3496 * fragmented interleave is on. A value of zero indicates that 3497 * fragmented interleave is off. 3498 * 3499 * Note that it is important that an implementation that allows this 3500 * option to be turned on, have it off by default. Otherwise an unaware 3501 * application using the one to many model may become confused and act 3502 * incorrectly. 3503 */ 3504 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3505 char __user *optval, 3506 unsigned int optlen) 3507 { 3508 int val; 3509 3510 if (optlen != sizeof(int)) 3511 return -EINVAL; 3512 if (get_user(val, (int __user *)optval)) 3513 return -EFAULT; 3514 3515 sctp_sk(sk)->frag_interleave = !!val; 3516 3517 if (!sctp_sk(sk)->frag_interleave) 3518 sctp_sk(sk)->ep->intl_enable = 0; 3519 3520 return 0; 3521 } 3522 3523 /* 3524 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3525 * (SCTP_PARTIAL_DELIVERY_POINT) 3526 * 3527 * This option will set or get the SCTP partial delivery point. This 3528 * point is the size of a message where the partial delivery API will be 3529 * invoked to help free up rwnd space for the peer. Setting this to a 3530 * lower value will cause partial deliveries to happen more often. The 3531 * calls argument is an integer that sets or gets the partial delivery 3532 * point. Note also that the call will fail if the user attempts to set 3533 * this value larger than the socket receive buffer size. 3534 * 3535 * Note that any single message having a length smaller than or equal to 3536 * the SCTP partial delivery point will be delivered in one single read 3537 * call as long as the user provided buffer is large enough to hold the 3538 * message. 3539 */ 3540 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3541 char __user *optval, 3542 unsigned int optlen) 3543 { 3544 u32 val; 3545 3546 if (optlen != sizeof(u32)) 3547 return -EINVAL; 3548 if (get_user(val, (int __user *)optval)) 3549 return -EFAULT; 3550 3551 /* Note: We double the receive buffer from what the user sets 3552 * it to be, also initial rwnd is based on rcvbuf/2. 3553 */ 3554 if (val > (sk->sk_rcvbuf >> 1)) 3555 return -EINVAL; 3556 3557 sctp_sk(sk)->pd_point = val; 3558 3559 return 0; /* is this the right error code? */ 3560 } 3561 3562 /* 3563 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3564 * 3565 * This option will allow a user to change the maximum burst of packets 3566 * that can be emitted by this association. Note that the default value 3567 * is 4, and some implementations may restrict this setting so that it 3568 * can only be lowered. 3569 * 3570 * NOTE: This text doesn't seem right. Do this on a socket basis with 3571 * future associations inheriting the socket value. 3572 */ 3573 static int sctp_setsockopt_maxburst(struct sock *sk, 3574 char __user *optval, 3575 unsigned int optlen) 3576 { 3577 struct sctp_sock *sp = sctp_sk(sk); 3578 struct sctp_assoc_value params; 3579 struct sctp_association *asoc; 3580 3581 if (optlen == sizeof(int)) { 3582 pr_warn_ratelimited(DEPRECATED 3583 "%s (pid %d) " 3584 "Use of int in max_burst socket option deprecated.\n" 3585 "Use struct sctp_assoc_value instead\n", 3586 current->comm, task_pid_nr(current)); 3587 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3588 return -EFAULT; 3589 params.assoc_id = SCTP_FUTURE_ASSOC; 3590 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3591 if (copy_from_user(¶ms, optval, optlen)) 3592 return -EFAULT; 3593 } else 3594 return -EINVAL; 3595 3596 asoc = sctp_id2assoc(sk, params.assoc_id); 3597 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3598 sctp_style(sk, UDP)) 3599 return -EINVAL; 3600 3601 if (asoc) { 3602 asoc->max_burst = params.assoc_value; 3603 3604 return 0; 3605 } 3606 3607 if (sctp_style(sk, TCP)) 3608 params.assoc_id = SCTP_FUTURE_ASSOC; 3609 3610 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3611 params.assoc_id == SCTP_ALL_ASSOC) 3612 sp->max_burst = params.assoc_value; 3613 3614 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3615 params.assoc_id == SCTP_ALL_ASSOC) 3616 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3617 asoc->max_burst = params.assoc_value; 3618 3619 return 0; 3620 } 3621 3622 /* 3623 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3624 * 3625 * This set option adds a chunk type that the user is requesting to be 3626 * received only in an authenticated way. Changes to the list of chunks 3627 * will only effect future associations on the socket. 3628 */ 3629 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3630 char __user *optval, 3631 unsigned int optlen) 3632 { 3633 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3634 struct sctp_authchunk val; 3635 3636 if (!ep->auth_enable) 3637 return -EACCES; 3638 3639 if (optlen != sizeof(struct sctp_authchunk)) 3640 return -EINVAL; 3641 if (copy_from_user(&val, optval, optlen)) 3642 return -EFAULT; 3643 3644 switch (val.sauth_chunk) { 3645 case SCTP_CID_INIT: 3646 case SCTP_CID_INIT_ACK: 3647 case SCTP_CID_SHUTDOWN_COMPLETE: 3648 case SCTP_CID_AUTH: 3649 return -EINVAL; 3650 } 3651 3652 /* add this chunk id to the endpoint */ 3653 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3654 } 3655 3656 /* 3657 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3658 * 3659 * This option gets or sets the list of HMAC algorithms that the local 3660 * endpoint requires the peer to use. 3661 */ 3662 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3663 char __user *optval, 3664 unsigned int optlen) 3665 { 3666 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3667 struct sctp_hmacalgo *hmacs; 3668 u32 idents; 3669 int err; 3670 3671 if (!ep->auth_enable) 3672 return -EACCES; 3673 3674 if (optlen < sizeof(struct sctp_hmacalgo)) 3675 return -EINVAL; 3676 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3677 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3678 3679 hmacs = memdup_user(optval, optlen); 3680 if (IS_ERR(hmacs)) 3681 return PTR_ERR(hmacs); 3682 3683 idents = hmacs->shmac_num_idents; 3684 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3685 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3686 err = -EINVAL; 3687 goto out; 3688 } 3689 3690 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3691 out: 3692 kfree(hmacs); 3693 return err; 3694 } 3695 3696 /* 3697 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3698 * 3699 * This option will set a shared secret key which is used to build an 3700 * association shared key. 3701 */ 3702 static int sctp_setsockopt_auth_key(struct sock *sk, 3703 char __user *optval, 3704 unsigned int optlen) 3705 { 3706 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3707 struct sctp_authkey *authkey; 3708 struct sctp_association *asoc; 3709 int ret = -EINVAL; 3710 3711 if (optlen <= sizeof(struct sctp_authkey)) 3712 return -EINVAL; 3713 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3714 * this. 3715 */ 3716 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3717 3718 authkey = memdup_user(optval, optlen); 3719 if (IS_ERR(authkey)) 3720 return PTR_ERR(authkey); 3721 3722 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3723 goto out; 3724 3725 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3726 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3727 sctp_style(sk, UDP)) 3728 goto out; 3729 3730 if (asoc) { 3731 ret = sctp_auth_set_key(ep, asoc, authkey); 3732 goto out; 3733 } 3734 3735 if (sctp_style(sk, TCP)) 3736 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3737 3738 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3739 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3740 ret = sctp_auth_set_key(ep, asoc, authkey); 3741 if (ret) 3742 goto out; 3743 } 3744 3745 ret = 0; 3746 3747 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3748 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3749 list_for_each_entry(asoc, &ep->asocs, asocs) { 3750 int res = sctp_auth_set_key(ep, asoc, authkey); 3751 3752 if (res && !ret) 3753 ret = res; 3754 } 3755 } 3756 3757 out: 3758 kzfree(authkey); 3759 return ret; 3760 } 3761 3762 /* 3763 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3764 * 3765 * This option will get or set the active shared key to be used to build 3766 * the association shared key. 3767 */ 3768 static int sctp_setsockopt_active_key(struct sock *sk, 3769 char __user *optval, 3770 unsigned int optlen) 3771 { 3772 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3773 struct sctp_association *asoc; 3774 struct sctp_authkeyid val; 3775 int ret = 0; 3776 3777 if (optlen != sizeof(struct sctp_authkeyid)) 3778 return -EINVAL; 3779 if (copy_from_user(&val, optval, optlen)) 3780 return -EFAULT; 3781 3782 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3783 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3784 sctp_style(sk, UDP)) 3785 return -EINVAL; 3786 3787 if (asoc) 3788 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3789 3790 if (sctp_style(sk, TCP)) 3791 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3792 3793 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3794 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3795 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3796 if (ret) 3797 return ret; 3798 } 3799 3800 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3801 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3802 list_for_each_entry(asoc, &ep->asocs, asocs) { 3803 int res = sctp_auth_set_active_key(ep, asoc, 3804 val.scact_keynumber); 3805 3806 if (res && !ret) 3807 ret = res; 3808 } 3809 } 3810 3811 return ret; 3812 } 3813 3814 /* 3815 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3816 * 3817 * This set option will delete a shared secret key from use. 3818 */ 3819 static int sctp_setsockopt_del_key(struct sock *sk, 3820 char __user *optval, 3821 unsigned int optlen) 3822 { 3823 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3824 struct sctp_association *asoc; 3825 struct sctp_authkeyid val; 3826 int ret = 0; 3827 3828 if (optlen != sizeof(struct sctp_authkeyid)) 3829 return -EINVAL; 3830 if (copy_from_user(&val, optval, optlen)) 3831 return -EFAULT; 3832 3833 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3834 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3835 sctp_style(sk, UDP)) 3836 return -EINVAL; 3837 3838 if (asoc) 3839 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3840 3841 if (sctp_style(sk, TCP)) 3842 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3843 3844 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3845 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3846 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3847 if (ret) 3848 return ret; 3849 } 3850 3851 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3852 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3853 list_for_each_entry(asoc, &ep->asocs, asocs) { 3854 int res = sctp_auth_del_key_id(ep, asoc, 3855 val.scact_keynumber); 3856 3857 if (res && !ret) 3858 ret = res; 3859 } 3860 } 3861 3862 return ret; 3863 } 3864 3865 /* 3866 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3867 * 3868 * This set option will deactivate a shared secret key. 3869 */ 3870 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3871 unsigned int optlen) 3872 { 3873 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3874 struct sctp_association *asoc; 3875 struct sctp_authkeyid val; 3876 int ret = 0; 3877 3878 if (optlen != sizeof(struct sctp_authkeyid)) 3879 return -EINVAL; 3880 if (copy_from_user(&val, optval, optlen)) 3881 return -EFAULT; 3882 3883 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3884 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3885 sctp_style(sk, UDP)) 3886 return -EINVAL; 3887 3888 if (asoc) 3889 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3890 3891 if (sctp_style(sk, TCP)) 3892 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3893 3894 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3895 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3896 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3897 if (ret) 3898 return ret; 3899 } 3900 3901 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3902 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3903 list_for_each_entry(asoc, &ep->asocs, asocs) { 3904 int res = sctp_auth_deact_key_id(ep, asoc, 3905 val.scact_keynumber); 3906 3907 if (res && !ret) 3908 ret = res; 3909 } 3910 } 3911 3912 return ret; 3913 } 3914 3915 /* 3916 * 8.1.23 SCTP_AUTO_ASCONF 3917 * 3918 * This option will enable or disable the use of the automatic generation of 3919 * ASCONF chunks to add and delete addresses to an existing association. Note 3920 * that this option has two caveats namely: a) it only affects sockets that 3921 * are bound to all addresses available to the SCTP stack, and b) the system 3922 * administrator may have an overriding control that turns the ASCONF feature 3923 * off no matter what setting the socket option may have. 3924 * This option expects an integer boolean flag, where a non-zero value turns on 3925 * the option, and a zero value turns off the option. 3926 * Note. In this implementation, socket operation overrides default parameter 3927 * being set by sysctl as well as FreeBSD implementation 3928 */ 3929 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3930 unsigned int optlen) 3931 { 3932 int val; 3933 struct sctp_sock *sp = sctp_sk(sk); 3934 3935 if (optlen < sizeof(int)) 3936 return -EINVAL; 3937 if (get_user(val, (int __user *)optval)) 3938 return -EFAULT; 3939 if (!sctp_is_ep_boundall(sk) && val) 3940 return -EINVAL; 3941 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3942 return 0; 3943 3944 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3945 if (val == 0 && sp->do_auto_asconf) { 3946 list_del(&sp->auto_asconf_list); 3947 sp->do_auto_asconf = 0; 3948 } else if (val && !sp->do_auto_asconf) { 3949 list_add_tail(&sp->auto_asconf_list, 3950 &sock_net(sk)->sctp.auto_asconf_splist); 3951 sp->do_auto_asconf = 1; 3952 } 3953 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3954 return 0; 3955 } 3956 3957 /* 3958 * SCTP_PEER_ADDR_THLDS 3959 * 3960 * This option allows us to alter the partially failed threshold for one or all 3961 * transports in an association. See Section 6.1 of: 3962 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3963 */ 3964 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3965 char __user *optval, 3966 unsigned int optlen, bool v2) 3967 { 3968 struct sctp_paddrthlds_v2 val; 3969 struct sctp_transport *trans; 3970 struct sctp_association *asoc; 3971 int len; 3972 3973 len = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 3974 if (optlen < len) 3975 return -EINVAL; 3976 if (copy_from_user(&val, optval, len)) 3977 return -EFAULT; 3978 3979 if (v2 && val.spt_pathpfthld > val.spt_pathcpthld) 3980 return -EINVAL; 3981 3982 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3983 trans = sctp_addr_id2transport(sk, &val.spt_address, 3984 val.spt_assoc_id); 3985 if (!trans) 3986 return -ENOENT; 3987 3988 if (val.spt_pathmaxrxt) 3989 trans->pathmaxrxt = val.spt_pathmaxrxt; 3990 if (v2) 3991 trans->ps_retrans = val.spt_pathcpthld; 3992 trans->pf_retrans = val.spt_pathpfthld; 3993 3994 return 0; 3995 } 3996 3997 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3998 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 3999 sctp_style(sk, UDP)) 4000 return -EINVAL; 4001 4002 if (asoc) { 4003 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4004 transports) { 4005 if (val.spt_pathmaxrxt) 4006 trans->pathmaxrxt = val.spt_pathmaxrxt; 4007 if (v2) 4008 trans->ps_retrans = val.spt_pathcpthld; 4009 trans->pf_retrans = val.spt_pathpfthld; 4010 } 4011 4012 if (val.spt_pathmaxrxt) 4013 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4014 if (v2) 4015 asoc->ps_retrans = val.spt_pathcpthld; 4016 asoc->pf_retrans = val.spt_pathpfthld; 4017 } else { 4018 struct sctp_sock *sp = sctp_sk(sk); 4019 4020 if (val.spt_pathmaxrxt) 4021 sp->pathmaxrxt = val.spt_pathmaxrxt; 4022 if (v2) 4023 sp->ps_retrans = val.spt_pathcpthld; 4024 sp->pf_retrans = val.spt_pathpfthld; 4025 } 4026 4027 return 0; 4028 } 4029 4030 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4031 char __user *optval, 4032 unsigned int optlen) 4033 { 4034 int val; 4035 4036 if (optlen < sizeof(int)) 4037 return -EINVAL; 4038 if (get_user(val, (int __user *) optval)) 4039 return -EFAULT; 4040 4041 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4042 4043 return 0; 4044 } 4045 4046 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4047 char __user *optval, 4048 unsigned int optlen) 4049 { 4050 int val; 4051 4052 if (optlen < sizeof(int)) 4053 return -EINVAL; 4054 if (get_user(val, (int __user *) optval)) 4055 return -EFAULT; 4056 4057 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4058 4059 return 0; 4060 } 4061 4062 static int sctp_setsockopt_pr_supported(struct sock *sk, 4063 char __user *optval, 4064 unsigned int optlen) 4065 { 4066 struct sctp_assoc_value params; 4067 struct sctp_association *asoc; 4068 4069 if (optlen != sizeof(params)) 4070 return -EINVAL; 4071 4072 if (copy_from_user(¶ms, optval, optlen)) 4073 return -EFAULT; 4074 4075 asoc = sctp_id2assoc(sk, params.assoc_id); 4076 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4077 sctp_style(sk, UDP)) 4078 return -EINVAL; 4079 4080 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4081 4082 return 0; 4083 } 4084 4085 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4086 char __user *optval, 4087 unsigned int optlen) 4088 { 4089 struct sctp_sock *sp = sctp_sk(sk); 4090 struct sctp_default_prinfo info; 4091 struct sctp_association *asoc; 4092 int retval = -EINVAL; 4093 4094 if (optlen != sizeof(info)) 4095 goto out; 4096 4097 if (copy_from_user(&info, optval, sizeof(info))) { 4098 retval = -EFAULT; 4099 goto out; 4100 } 4101 4102 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4103 goto out; 4104 4105 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4106 info.pr_value = 0; 4107 4108 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4109 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4110 sctp_style(sk, UDP)) 4111 goto out; 4112 4113 retval = 0; 4114 4115 if (asoc) { 4116 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4117 asoc->default_timetolive = info.pr_value; 4118 goto out; 4119 } 4120 4121 if (sctp_style(sk, TCP)) 4122 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4123 4124 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4125 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4126 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4127 sp->default_timetolive = info.pr_value; 4128 } 4129 4130 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4131 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4132 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4133 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4134 asoc->default_timetolive = info.pr_value; 4135 } 4136 } 4137 4138 out: 4139 return retval; 4140 } 4141 4142 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4143 char __user *optval, 4144 unsigned int optlen) 4145 { 4146 struct sctp_assoc_value params; 4147 struct sctp_association *asoc; 4148 int retval = -EINVAL; 4149 4150 if (optlen != sizeof(params)) 4151 goto out; 4152 4153 if (copy_from_user(¶ms, optval, optlen)) { 4154 retval = -EFAULT; 4155 goto out; 4156 } 4157 4158 asoc = sctp_id2assoc(sk, params.assoc_id); 4159 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4160 sctp_style(sk, UDP)) 4161 goto out; 4162 4163 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4164 4165 retval = 0; 4166 4167 out: 4168 return retval; 4169 } 4170 4171 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4172 char __user *optval, 4173 unsigned int optlen) 4174 { 4175 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4176 struct sctp_assoc_value params; 4177 struct sctp_association *asoc; 4178 int retval = -EINVAL; 4179 4180 if (optlen != sizeof(params)) 4181 goto out; 4182 4183 if (copy_from_user(¶ms, optval, optlen)) { 4184 retval = -EFAULT; 4185 goto out; 4186 } 4187 4188 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4189 goto out; 4190 4191 asoc = sctp_id2assoc(sk, params.assoc_id); 4192 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4193 sctp_style(sk, UDP)) 4194 goto out; 4195 4196 retval = 0; 4197 4198 if (asoc) { 4199 asoc->strreset_enable = params.assoc_value; 4200 goto out; 4201 } 4202 4203 if (sctp_style(sk, TCP)) 4204 params.assoc_id = SCTP_FUTURE_ASSOC; 4205 4206 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4207 params.assoc_id == SCTP_ALL_ASSOC) 4208 ep->strreset_enable = params.assoc_value; 4209 4210 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4211 params.assoc_id == SCTP_ALL_ASSOC) 4212 list_for_each_entry(asoc, &ep->asocs, asocs) 4213 asoc->strreset_enable = params.assoc_value; 4214 4215 out: 4216 return retval; 4217 } 4218 4219 static int sctp_setsockopt_reset_streams(struct sock *sk, 4220 char __user *optval, 4221 unsigned int optlen) 4222 { 4223 struct sctp_reset_streams *params; 4224 struct sctp_association *asoc; 4225 int retval = -EINVAL; 4226 4227 if (optlen < sizeof(*params)) 4228 return -EINVAL; 4229 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4230 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4231 sizeof(__u16) * sizeof(*params)); 4232 4233 params = memdup_user(optval, optlen); 4234 if (IS_ERR(params)) 4235 return PTR_ERR(params); 4236 4237 if (params->srs_number_streams * sizeof(__u16) > 4238 optlen - sizeof(*params)) 4239 goto out; 4240 4241 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4242 if (!asoc) 4243 goto out; 4244 4245 retval = sctp_send_reset_streams(asoc, params); 4246 4247 out: 4248 kfree(params); 4249 return retval; 4250 } 4251 4252 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4253 char __user *optval, 4254 unsigned int optlen) 4255 { 4256 struct sctp_association *asoc; 4257 sctp_assoc_t associd; 4258 int retval = -EINVAL; 4259 4260 if (optlen != sizeof(associd)) 4261 goto out; 4262 4263 if (copy_from_user(&associd, optval, optlen)) { 4264 retval = -EFAULT; 4265 goto out; 4266 } 4267 4268 asoc = sctp_id2assoc(sk, associd); 4269 if (!asoc) 4270 goto out; 4271 4272 retval = sctp_send_reset_assoc(asoc); 4273 4274 out: 4275 return retval; 4276 } 4277 4278 static int sctp_setsockopt_add_streams(struct sock *sk, 4279 char __user *optval, 4280 unsigned int optlen) 4281 { 4282 struct sctp_association *asoc; 4283 struct sctp_add_streams params; 4284 int retval = -EINVAL; 4285 4286 if (optlen != sizeof(params)) 4287 goto out; 4288 4289 if (copy_from_user(¶ms, optval, optlen)) { 4290 retval = -EFAULT; 4291 goto out; 4292 } 4293 4294 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4295 if (!asoc) 4296 goto out; 4297 4298 retval = sctp_send_add_streams(asoc, ¶ms); 4299 4300 out: 4301 return retval; 4302 } 4303 4304 static int sctp_setsockopt_scheduler(struct sock *sk, 4305 char __user *optval, 4306 unsigned int optlen) 4307 { 4308 struct sctp_sock *sp = sctp_sk(sk); 4309 struct sctp_association *asoc; 4310 struct sctp_assoc_value params; 4311 int retval = 0; 4312 4313 if (optlen < sizeof(params)) 4314 return -EINVAL; 4315 4316 optlen = sizeof(params); 4317 if (copy_from_user(¶ms, optval, optlen)) 4318 return -EFAULT; 4319 4320 if (params.assoc_value > SCTP_SS_MAX) 4321 return -EINVAL; 4322 4323 asoc = sctp_id2assoc(sk, params.assoc_id); 4324 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4325 sctp_style(sk, UDP)) 4326 return -EINVAL; 4327 4328 if (asoc) 4329 return sctp_sched_set_sched(asoc, params.assoc_value); 4330 4331 if (sctp_style(sk, TCP)) 4332 params.assoc_id = SCTP_FUTURE_ASSOC; 4333 4334 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4335 params.assoc_id == SCTP_ALL_ASSOC) 4336 sp->default_ss = params.assoc_value; 4337 4338 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4339 params.assoc_id == SCTP_ALL_ASSOC) { 4340 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4341 int ret = sctp_sched_set_sched(asoc, 4342 params.assoc_value); 4343 4344 if (ret && !retval) 4345 retval = ret; 4346 } 4347 } 4348 4349 return retval; 4350 } 4351 4352 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4353 char __user *optval, 4354 unsigned int optlen) 4355 { 4356 struct sctp_stream_value params; 4357 struct sctp_association *asoc; 4358 int retval = -EINVAL; 4359 4360 if (optlen < sizeof(params)) 4361 goto out; 4362 4363 optlen = sizeof(params); 4364 if (copy_from_user(¶ms, optval, optlen)) { 4365 retval = -EFAULT; 4366 goto out; 4367 } 4368 4369 asoc = sctp_id2assoc(sk, params.assoc_id); 4370 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4371 sctp_style(sk, UDP)) 4372 goto out; 4373 4374 if (asoc) { 4375 retval = sctp_sched_set_value(asoc, params.stream_id, 4376 params.stream_value, GFP_KERNEL); 4377 goto out; 4378 } 4379 4380 retval = 0; 4381 4382 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4383 int ret = sctp_sched_set_value(asoc, params.stream_id, 4384 params.stream_value, GFP_KERNEL); 4385 if (ret && !retval) /* try to return the 1st error. */ 4386 retval = ret; 4387 } 4388 4389 out: 4390 return retval; 4391 } 4392 4393 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4394 char __user *optval, 4395 unsigned int optlen) 4396 { 4397 struct sctp_sock *sp = sctp_sk(sk); 4398 struct sctp_assoc_value params; 4399 struct sctp_association *asoc; 4400 int retval = -EINVAL; 4401 4402 if (optlen < sizeof(params)) 4403 goto out; 4404 4405 optlen = sizeof(params); 4406 if (copy_from_user(¶ms, optval, optlen)) { 4407 retval = -EFAULT; 4408 goto out; 4409 } 4410 4411 asoc = sctp_id2assoc(sk, params.assoc_id); 4412 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4413 sctp_style(sk, UDP)) 4414 goto out; 4415 4416 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4417 retval = -EPERM; 4418 goto out; 4419 } 4420 4421 sp->ep->intl_enable = !!params.assoc_value; 4422 4423 retval = 0; 4424 4425 out: 4426 return retval; 4427 } 4428 4429 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4430 unsigned int optlen) 4431 { 4432 int val; 4433 4434 if (!sctp_style(sk, TCP)) 4435 return -EOPNOTSUPP; 4436 4437 if (sctp_sk(sk)->ep->base.bind_addr.port) 4438 return -EFAULT; 4439 4440 if (optlen < sizeof(int)) 4441 return -EINVAL; 4442 4443 if (get_user(val, (int __user *)optval)) 4444 return -EFAULT; 4445 4446 sctp_sk(sk)->reuse = !!val; 4447 4448 return 0; 4449 } 4450 4451 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4452 struct sctp_association *asoc) 4453 { 4454 struct sctp_ulpevent *event; 4455 4456 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4457 4458 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4459 if (sctp_outq_is_empty(&asoc->outqueue)) { 4460 event = sctp_ulpevent_make_sender_dry_event(asoc, 4461 GFP_USER | __GFP_NOWARN); 4462 if (!event) 4463 return -ENOMEM; 4464 4465 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4466 } 4467 } 4468 4469 return 0; 4470 } 4471 4472 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4473 unsigned int optlen) 4474 { 4475 struct sctp_sock *sp = sctp_sk(sk); 4476 struct sctp_association *asoc; 4477 struct sctp_event param; 4478 int retval = 0; 4479 4480 if (optlen < sizeof(param)) 4481 return -EINVAL; 4482 4483 optlen = sizeof(param); 4484 if (copy_from_user(¶m, optval, optlen)) 4485 return -EFAULT; 4486 4487 if (param.se_type < SCTP_SN_TYPE_BASE || 4488 param.se_type > SCTP_SN_TYPE_MAX) 4489 return -EINVAL; 4490 4491 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4492 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4493 sctp_style(sk, UDP)) 4494 return -EINVAL; 4495 4496 if (asoc) 4497 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4498 4499 if (sctp_style(sk, TCP)) 4500 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4501 4502 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4503 param.se_assoc_id == SCTP_ALL_ASSOC) 4504 sctp_ulpevent_type_set(&sp->subscribe, 4505 param.se_type, param.se_on); 4506 4507 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4508 param.se_assoc_id == SCTP_ALL_ASSOC) { 4509 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4510 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4511 4512 if (ret && !retval) 4513 retval = ret; 4514 } 4515 } 4516 4517 return retval; 4518 } 4519 4520 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4521 char __user *optval, 4522 unsigned int optlen) 4523 { 4524 struct sctp_assoc_value params; 4525 struct sctp_association *asoc; 4526 struct sctp_endpoint *ep; 4527 int retval = -EINVAL; 4528 4529 if (optlen != sizeof(params)) 4530 goto out; 4531 4532 if (copy_from_user(¶ms, optval, optlen)) { 4533 retval = -EFAULT; 4534 goto out; 4535 } 4536 4537 asoc = sctp_id2assoc(sk, params.assoc_id); 4538 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4539 sctp_style(sk, UDP)) 4540 goto out; 4541 4542 ep = sctp_sk(sk)->ep; 4543 ep->asconf_enable = !!params.assoc_value; 4544 4545 if (ep->asconf_enable && ep->auth_enable) { 4546 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4547 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4548 } 4549 4550 retval = 0; 4551 4552 out: 4553 return retval; 4554 } 4555 4556 static int sctp_setsockopt_auth_supported(struct sock *sk, 4557 char __user *optval, 4558 unsigned int optlen) 4559 { 4560 struct sctp_assoc_value params; 4561 struct sctp_association *asoc; 4562 struct sctp_endpoint *ep; 4563 int retval = -EINVAL; 4564 4565 if (optlen != sizeof(params)) 4566 goto out; 4567 4568 if (copy_from_user(¶ms, optval, optlen)) { 4569 retval = -EFAULT; 4570 goto out; 4571 } 4572 4573 asoc = sctp_id2assoc(sk, params.assoc_id); 4574 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4575 sctp_style(sk, UDP)) 4576 goto out; 4577 4578 ep = sctp_sk(sk)->ep; 4579 if (params.assoc_value) { 4580 retval = sctp_auth_init(ep, GFP_KERNEL); 4581 if (retval) 4582 goto out; 4583 if (ep->asconf_enable) { 4584 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4585 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4586 } 4587 } 4588 4589 ep->auth_enable = !!params.assoc_value; 4590 retval = 0; 4591 4592 out: 4593 return retval; 4594 } 4595 4596 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4597 char __user *optval, 4598 unsigned int optlen) 4599 { 4600 struct sctp_assoc_value params; 4601 struct sctp_association *asoc; 4602 int retval = -EINVAL; 4603 4604 if (optlen != sizeof(params)) 4605 goto out; 4606 4607 if (copy_from_user(¶ms, optval, optlen)) { 4608 retval = -EFAULT; 4609 goto out; 4610 } 4611 4612 asoc = sctp_id2assoc(sk, params.assoc_id); 4613 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4614 sctp_style(sk, UDP)) 4615 goto out; 4616 4617 sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value; 4618 retval = 0; 4619 4620 out: 4621 return retval; 4622 } 4623 4624 static int sctp_setsockopt_pf_expose(struct sock *sk, 4625 char __user *optval, 4626 unsigned int optlen) 4627 { 4628 struct sctp_assoc_value params; 4629 struct sctp_association *asoc; 4630 int retval = -EINVAL; 4631 4632 if (optlen != sizeof(params)) 4633 goto out; 4634 4635 if (copy_from_user(¶ms, optval, optlen)) { 4636 retval = -EFAULT; 4637 goto out; 4638 } 4639 4640 if (params.assoc_value > SCTP_PF_EXPOSE_MAX) 4641 goto out; 4642 4643 asoc = sctp_id2assoc(sk, params.assoc_id); 4644 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4645 sctp_style(sk, UDP)) 4646 goto out; 4647 4648 if (asoc) 4649 asoc->pf_expose = params.assoc_value; 4650 else 4651 sctp_sk(sk)->pf_expose = params.assoc_value; 4652 retval = 0; 4653 4654 out: 4655 return retval; 4656 } 4657 4658 /* API 6.2 setsockopt(), getsockopt() 4659 * 4660 * Applications use setsockopt() and getsockopt() to set or retrieve 4661 * socket options. Socket options are used to change the default 4662 * behavior of sockets calls. They are described in Section 7. 4663 * 4664 * The syntax is: 4665 * 4666 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4667 * int __user *optlen); 4668 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4669 * int optlen); 4670 * 4671 * sd - the socket descript. 4672 * level - set to IPPROTO_SCTP for all SCTP options. 4673 * optname - the option name. 4674 * optval - the buffer to store the value of the option. 4675 * optlen - the size of the buffer. 4676 */ 4677 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4678 char __user *optval, unsigned int optlen) 4679 { 4680 int retval = 0; 4681 4682 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4683 4684 /* I can hardly begin to describe how wrong this is. This is 4685 * so broken as to be worse than useless. The API draft 4686 * REALLY is NOT helpful here... I am not convinced that the 4687 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4688 * are at all well-founded. 4689 */ 4690 if (level != SOL_SCTP) { 4691 struct sctp_af *af = sctp_sk(sk)->pf->af; 4692 retval = af->setsockopt(sk, level, optname, optval, optlen); 4693 goto out_nounlock; 4694 } 4695 4696 lock_sock(sk); 4697 4698 switch (optname) { 4699 case SCTP_SOCKOPT_BINDX_ADD: 4700 /* 'optlen' is the size of the addresses buffer. */ 4701 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4702 optlen, SCTP_BINDX_ADD_ADDR); 4703 break; 4704 4705 case SCTP_SOCKOPT_BINDX_REM: 4706 /* 'optlen' is the size of the addresses buffer. */ 4707 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4708 optlen, SCTP_BINDX_REM_ADDR); 4709 break; 4710 4711 case SCTP_SOCKOPT_CONNECTX_OLD: 4712 /* 'optlen' is the size of the addresses buffer. */ 4713 retval = sctp_setsockopt_connectx_old(sk, 4714 (struct sockaddr __user *)optval, 4715 optlen); 4716 break; 4717 4718 case SCTP_SOCKOPT_CONNECTX: 4719 /* 'optlen' is the size of the addresses buffer. */ 4720 retval = sctp_setsockopt_connectx(sk, 4721 (struct sockaddr __user *)optval, 4722 optlen); 4723 break; 4724 4725 case SCTP_DISABLE_FRAGMENTS: 4726 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4727 break; 4728 4729 case SCTP_EVENTS: 4730 retval = sctp_setsockopt_events(sk, optval, optlen); 4731 break; 4732 4733 case SCTP_AUTOCLOSE: 4734 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4735 break; 4736 4737 case SCTP_PEER_ADDR_PARAMS: 4738 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4739 break; 4740 4741 case SCTP_DELAYED_SACK: 4742 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4743 break; 4744 case SCTP_PARTIAL_DELIVERY_POINT: 4745 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4746 break; 4747 4748 case SCTP_INITMSG: 4749 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4750 break; 4751 case SCTP_DEFAULT_SEND_PARAM: 4752 retval = sctp_setsockopt_default_send_param(sk, optval, 4753 optlen); 4754 break; 4755 case SCTP_DEFAULT_SNDINFO: 4756 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4757 break; 4758 case SCTP_PRIMARY_ADDR: 4759 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4760 break; 4761 case SCTP_SET_PEER_PRIMARY_ADDR: 4762 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4763 break; 4764 case SCTP_NODELAY: 4765 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4766 break; 4767 case SCTP_RTOINFO: 4768 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4769 break; 4770 case SCTP_ASSOCINFO: 4771 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4772 break; 4773 case SCTP_I_WANT_MAPPED_V4_ADDR: 4774 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4775 break; 4776 case SCTP_MAXSEG: 4777 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4778 break; 4779 case SCTP_ADAPTATION_LAYER: 4780 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4781 break; 4782 case SCTP_CONTEXT: 4783 retval = sctp_setsockopt_context(sk, optval, optlen); 4784 break; 4785 case SCTP_FRAGMENT_INTERLEAVE: 4786 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4787 break; 4788 case SCTP_MAX_BURST: 4789 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4790 break; 4791 case SCTP_AUTH_CHUNK: 4792 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4793 break; 4794 case SCTP_HMAC_IDENT: 4795 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4796 break; 4797 case SCTP_AUTH_KEY: 4798 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4799 break; 4800 case SCTP_AUTH_ACTIVE_KEY: 4801 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4802 break; 4803 case SCTP_AUTH_DELETE_KEY: 4804 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4805 break; 4806 case SCTP_AUTH_DEACTIVATE_KEY: 4807 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4808 break; 4809 case SCTP_AUTO_ASCONF: 4810 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4811 break; 4812 case SCTP_PEER_ADDR_THLDS: 4813 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4814 false); 4815 break; 4816 case SCTP_PEER_ADDR_THLDS_V2: 4817 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen, 4818 true); 4819 break; 4820 case SCTP_RECVRCVINFO: 4821 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4822 break; 4823 case SCTP_RECVNXTINFO: 4824 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4825 break; 4826 case SCTP_PR_SUPPORTED: 4827 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4828 break; 4829 case SCTP_DEFAULT_PRINFO: 4830 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4831 break; 4832 case SCTP_RECONFIG_SUPPORTED: 4833 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4834 break; 4835 case SCTP_ENABLE_STREAM_RESET: 4836 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4837 break; 4838 case SCTP_RESET_STREAMS: 4839 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4840 break; 4841 case SCTP_RESET_ASSOC: 4842 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4843 break; 4844 case SCTP_ADD_STREAMS: 4845 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4846 break; 4847 case SCTP_STREAM_SCHEDULER: 4848 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4849 break; 4850 case SCTP_STREAM_SCHEDULER_VALUE: 4851 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4852 break; 4853 case SCTP_INTERLEAVING_SUPPORTED: 4854 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4855 optlen); 4856 break; 4857 case SCTP_REUSE_PORT: 4858 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4859 break; 4860 case SCTP_EVENT: 4861 retval = sctp_setsockopt_event(sk, optval, optlen); 4862 break; 4863 case SCTP_ASCONF_SUPPORTED: 4864 retval = sctp_setsockopt_asconf_supported(sk, optval, optlen); 4865 break; 4866 case SCTP_AUTH_SUPPORTED: 4867 retval = sctp_setsockopt_auth_supported(sk, optval, optlen); 4868 break; 4869 case SCTP_ECN_SUPPORTED: 4870 retval = sctp_setsockopt_ecn_supported(sk, optval, optlen); 4871 break; 4872 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4873 retval = sctp_setsockopt_pf_expose(sk, optval, optlen); 4874 break; 4875 default: 4876 retval = -ENOPROTOOPT; 4877 break; 4878 } 4879 4880 release_sock(sk); 4881 4882 out_nounlock: 4883 return retval; 4884 } 4885 4886 /* API 3.1.6 connect() - UDP Style Syntax 4887 * 4888 * An application may use the connect() call in the UDP model to initiate an 4889 * association without sending data. 4890 * 4891 * The syntax is: 4892 * 4893 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4894 * 4895 * sd: the socket descriptor to have a new association added to. 4896 * 4897 * nam: the address structure (either struct sockaddr_in or struct 4898 * sockaddr_in6 defined in RFC2553 [7]). 4899 * 4900 * len: the size of the address. 4901 */ 4902 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4903 int addr_len, int flags) 4904 { 4905 struct sctp_af *af; 4906 int err = -EINVAL; 4907 4908 lock_sock(sk); 4909 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4910 addr, addr_len); 4911 4912 /* Validate addr_len before calling common connect/connectx routine. */ 4913 af = sctp_get_af_specific(addr->sa_family); 4914 if (af && addr_len >= af->sockaddr_len) 4915 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4916 4917 release_sock(sk); 4918 return err; 4919 } 4920 4921 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4922 int addr_len, int flags) 4923 { 4924 if (addr_len < sizeof(uaddr->sa_family)) 4925 return -EINVAL; 4926 4927 if (uaddr->sa_family == AF_UNSPEC) 4928 return -EOPNOTSUPP; 4929 4930 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4931 } 4932 4933 /* FIXME: Write comments. */ 4934 static int sctp_disconnect(struct sock *sk, int flags) 4935 { 4936 return -EOPNOTSUPP; /* STUB */ 4937 } 4938 4939 /* 4.1.4 accept() - TCP Style Syntax 4940 * 4941 * Applications use accept() call to remove an established SCTP 4942 * association from the accept queue of the endpoint. A new socket 4943 * descriptor will be returned from accept() to represent the newly 4944 * formed association. 4945 */ 4946 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4947 { 4948 struct sctp_sock *sp; 4949 struct sctp_endpoint *ep; 4950 struct sock *newsk = NULL; 4951 struct sctp_association *asoc; 4952 long timeo; 4953 int error = 0; 4954 4955 lock_sock(sk); 4956 4957 sp = sctp_sk(sk); 4958 ep = sp->ep; 4959 4960 if (!sctp_style(sk, TCP)) { 4961 error = -EOPNOTSUPP; 4962 goto out; 4963 } 4964 4965 if (!sctp_sstate(sk, LISTENING)) { 4966 error = -EINVAL; 4967 goto out; 4968 } 4969 4970 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4971 4972 error = sctp_wait_for_accept(sk, timeo); 4973 if (error) 4974 goto out; 4975 4976 /* We treat the list of associations on the endpoint as the accept 4977 * queue and pick the first association on the list. 4978 */ 4979 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4980 4981 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4982 if (!newsk) { 4983 error = -ENOMEM; 4984 goto out; 4985 } 4986 4987 /* Populate the fields of the newsk from the oldsk and migrate the 4988 * asoc to the newsk. 4989 */ 4990 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4991 if (error) { 4992 sk_common_release(newsk); 4993 newsk = NULL; 4994 } 4995 4996 out: 4997 release_sock(sk); 4998 *err = error; 4999 return newsk; 5000 } 5001 5002 /* The SCTP ioctl handler. */ 5003 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 5004 { 5005 int rc = -ENOTCONN; 5006 5007 lock_sock(sk); 5008 5009 /* 5010 * SEQPACKET-style sockets in LISTENING state are valid, for 5011 * SCTP, so only discard TCP-style sockets in LISTENING state. 5012 */ 5013 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5014 goto out; 5015 5016 switch (cmd) { 5017 case SIOCINQ: { 5018 struct sk_buff *skb; 5019 unsigned int amount = 0; 5020 5021 skb = skb_peek(&sk->sk_receive_queue); 5022 if (skb != NULL) { 5023 /* 5024 * We will only return the amount of this packet since 5025 * that is all that will be read. 5026 */ 5027 amount = skb->len; 5028 } 5029 rc = put_user(amount, (int __user *)arg); 5030 break; 5031 } 5032 default: 5033 rc = -ENOIOCTLCMD; 5034 break; 5035 } 5036 out: 5037 release_sock(sk); 5038 return rc; 5039 } 5040 5041 /* This is the function which gets called during socket creation to 5042 * initialized the SCTP-specific portion of the sock. 5043 * The sock structure should already be zero-filled memory. 5044 */ 5045 static int sctp_init_sock(struct sock *sk) 5046 { 5047 struct net *net = sock_net(sk); 5048 struct sctp_sock *sp; 5049 5050 pr_debug("%s: sk:%p\n", __func__, sk); 5051 5052 sp = sctp_sk(sk); 5053 5054 /* Initialize the SCTP per socket area. */ 5055 switch (sk->sk_type) { 5056 case SOCK_SEQPACKET: 5057 sp->type = SCTP_SOCKET_UDP; 5058 break; 5059 case SOCK_STREAM: 5060 sp->type = SCTP_SOCKET_TCP; 5061 break; 5062 default: 5063 return -ESOCKTNOSUPPORT; 5064 } 5065 5066 sk->sk_gso_type = SKB_GSO_SCTP; 5067 5068 /* Initialize default send parameters. These parameters can be 5069 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5070 */ 5071 sp->default_stream = 0; 5072 sp->default_ppid = 0; 5073 sp->default_flags = 0; 5074 sp->default_context = 0; 5075 sp->default_timetolive = 0; 5076 5077 sp->default_rcv_context = 0; 5078 sp->max_burst = net->sctp.max_burst; 5079 5080 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5081 5082 /* Initialize default setup parameters. These parameters 5083 * can be modified with the SCTP_INITMSG socket option or 5084 * overridden by the SCTP_INIT CMSG. 5085 */ 5086 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5087 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5088 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5089 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5090 5091 /* Initialize default RTO related parameters. These parameters can 5092 * be modified for with the SCTP_RTOINFO socket option. 5093 */ 5094 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5095 sp->rtoinfo.srto_max = net->sctp.rto_max; 5096 sp->rtoinfo.srto_min = net->sctp.rto_min; 5097 5098 /* Initialize default association related parameters. These parameters 5099 * can be modified with the SCTP_ASSOCINFO socket option. 5100 */ 5101 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5102 sp->assocparams.sasoc_number_peer_destinations = 0; 5103 sp->assocparams.sasoc_peer_rwnd = 0; 5104 sp->assocparams.sasoc_local_rwnd = 0; 5105 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5106 5107 /* Initialize default event subscriptions. By default, all the 5108 * options are off. 5109 */ 5110 sp->subscribe = 0; 5111 5112 /* Default Peer Address Parameters. These defaults can 5113 * be modified via SCTP_PEER_ADDR_PARAMS 5114 */ 5115 sp->hbinterval = net->sctp.hb_interval; 5116 sp->pathmaxrxt = net->sctp.max_retrans_path; 5117 sp->pf_retrans = net->sctp.pf_retrans; 5118 sp->ps_retrans = net->sctp.ps_retrans; 5119 sp->pf_expose = net->sctp.pf_expose; 5120 sp->pathmtu = 0; /* allow default discovery */ 5121 sp->sackdelay = net->sctp.sack_timeout; 5122 sp->sackfreq = 2; 5123 sp->param_flags = SPP_HB_ENABLE | 5124 SPP_PMTUD_ENABLE | 5125 SPP_SACKDELAY_ENABLE; 5126 sp->default_ss = SCTP_SS_DEFAULT; 5127 5128 /* If enabled no SCTP message fragmentation will be performed. 5129 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5130 */ 5131 sp->disable_fragments = 0; 5132 5133 /* Enable Nagle algorithm by default. */ 5134 sp->nodelay = 0; 5135 5136 sp->recvrcvinfo = 0; 5137 sp->recvnxtinfo = 0; 5138 5139 /* Enable by default. */ 5140 sp->v4mapped = 1; 5141 5142 /* Auto-close idle associations after the configured 5143 * number of seconds. A value of 0 disables this 5144 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5145 * for UDP-style sockets only. 5146 */ 5147 sp->autoclose = 0; 5148 5149 /* User specified fragmentation limit. */ 5150 sp->user_frag = 0; 5151 5152 sp->adaptation_ind = 0; 5153 5154 sp->pf = sctp_get_pf_specific(sk->sk_family); 5155 5156 /* Control variables for partial data delivery. */ 5157 atomic_set(&sp->pd_mode, 0); 5158 skb_queue_head_init(&sp->pd_lobby); 5159 sp->frag_interleave = 0; 5160 5161 /* Create a per socket endpoint structure. Even if we 5162 * change the data structure relationships, this may still 5163 * be useful for storing pre-connect address information. 5164 */ 5165 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5166 if (!sp->ep) 5167 return -ENOMEM; 5168 5169 sp->hmac = NULL; 5170 5171 sk->sk_destruct = sctp_destruct_sock; 5172 5173 SCTP_DBG_OBJCNT_INC(sock); 5174 5175 local_bh_disable(); 5176 sk_sockets_allocated_inc(sk); 5177 sock_prot_inuse_add(net, sk->sk_prot, 1); 5178 5179 /* Nothing can fail after this block, otherwise 5180 * sctp_destroy_sock() will be called without addr_wq_lock held 5181 */ 5182 if (net->sctp.default_auto_asconf) { 5183 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5184 list_add_tail(&sp->auto_asconf_list, 5185 &net->sctp.auto_asconf_splist); 5186 sp->do_auto_asconf = 1; 5187 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5188 } else { 5189 sp->do_auto_asconf = 0; 5190 } 5191 5192 local_bh_enable(); 5193 5194 return 0; 5195 } 5196 5197 /* Cleanup any SCTP per socket resources. Must be called with 5198 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5199 */ 5200 static void sctp_destroy_sock(struct sock *sk) 5201 { 5202 struct sctp_sock *sp; 5203 5204 pr_debug("%s: sk:%p\n", __func__, sk); 5205 5206 /* Release our hold on the endpoint. */ 5207 sp = sctp_sk(sk); 5208 /* This could happen during socket init, thus we bail out 5209 * early, since the rest of the below is not setup either. 5210 */ 5211 if (sp->ep == NULL) 5212 return; 5213 5214 if (sp->do_auto_asconf) { 5215 sp->do_auto_asconf = 0; 5216 list_del(&sp->auto_asconf_list); 5217 } 5218 sctp_endpoint_free(sp->ep); 5219 local_bh_disable(); 5220 sk_sockets_allocated_dec(sk); 5221 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5222 local_bh_enable(); 5223 } 5224 5225 /* Triggered when there are no references on the socket anymore */ 5226 static void sctp_destruct_sock(struct sock *sk) 5227 { 5228 struct sctp_sock *sp = sctp_sk(sk); 5229 5230 /* Free up the HMAC transform. */ 5231 crypto_free_shash(sp->hmac); 5232 5233 inet_sock_destruct(sk); 5234 } 5235 5236 /* API 4.1.7 shutdown() - TCP Style Syntax 5237 * int shutdown(int socket, int how); 5238 * 5239 * sd - the socket descriptor of the association to be closed. 5240 * how - Specifies the type of shutdown. The values are 5241 * as follows: 5242 * SHUT_RD 5243 * Disables further receive operations. No SCTP 5244 * protocol action is taken. 5245 * SHUT_WR 5246 * Disables further send operations, and initiates 5247 * the SCTP shutdown sequence. 5248 * SHUT_RDWR 5249 * Disables further send and receive operations 5250 * and initiates the SCTP shutdown sequence. 5251 */ 5252 static void sctp_shutdown(struct sock *sk, int how) 5253 { 5254 struct net *net = sock_net(sk); 5255 struct sctp_endpoint *ep; 5256 5257 if (!sctp_style(sk, TCP)) 5258 return; 5259 5260 ep = sctp_sk(sk)->ep; 5261 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5262 struct sctp_association *asoc; 5263 5264 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5265 asoc = list_entry(ep->asocs.next, 5266 struct sctp_association, asocs); 5267 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5268 } 5269 } 5270 5271 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5272 struct sctp_info *info) 5273 { 5274 struct sctp_transport *prim; 5275 struct list_head *pos; 5276 int mask; 5277 5278 memset(info, 0, sizeof(*info)); 5279 if (!asoc) { 5280 struct sctp_sock *sp = sctp_sk(sk); 5281 5282 info->sctpi_s_autoclose = sp->autoclose; 5283 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5284 info->sctpi_s_pd_point = sp->pd_point; 5285 info->sctpi_s_nodelay = sp->nodelay; 5286 info->sctpi_s_disable_fragments = sp->disable_fragments; 5287 info->sctpi_s_v4mapped = sp->v4mapped; 5288 info->sctpi_s_frag_interleave = sp->frag_interleave; 5289 info->sctpi_s_type = sp->type; 5290 5291 return 0; 5292 } 5293 5294 info->sctpi_tag = asoc->c.my_vtag; 5295 info->sctpi_state = asoc->state; 5296 info->sctpi_rwnd = asoc->a_rwnd; 5297 info->sctpi_unackdata = asoc->unack_data; 5298 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5299 info->sctpi_instrms = asoc->stream.incnt; 5300 info->sctpi_outstrms = asoc->stream.outcnt; 5301 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5302 info->sctpi_inqueue++; 5303 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5304 info->sctpi_outqueue++; 5305 info->sctpi_overall_error = asoc->overall_error_count; 5306 info->sctpi_max_burst = asoc->max_burst; 5307 info->sctpi_maxseg = asoc->frag_point; 5308 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5309 info->sctpi_peer_tag = asoc->c.peer_vtag; 5310 5311 mask = asoc->peer.ecn_capable << 1; 5312 mask = (mask | asoc->peer.ipv4_address) << 1; 5313 mask = (mask | asoc->peer.ipv6_address) << 1; 5314 mask = (mask | asoc->peer.hostname_address) << 1; 5315 mask = (mask | asoc->peer.asconf_capable) << 1; 5316 mask = (mask | asoc->peer.prsctp_capable) << 1; 5317 mask = (mask | asoc->peer.auth_capable); 5318 info->sctpi_peer_capable = mask; 5319 mask = asoc->peer.sack_needed << 1; 5320 mask = (mask | asoc->peer.sack_generation) << 1; 5321 mask = (mask | asoc->peer.zero_window_announced); 5322 info->sctpi_peer_sack = mask; 5323 5324 info->sctpi_isacks = asoc->stats.isacks; 5325 info->sctpi_osacks = asoc->stats.osacks; 5326 info->sctpi_opackets = asoc->stats.opackets; 5327 info->sctpi_ipackets = asoc->stats.ipackets; 5328 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5329 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5330 info->sctpi_idupchunks = asoc->stats.idupchunks; 5331 info->sctpi_gapcnt = asoc->stats.gapcnt; 5332 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5333 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5334 info->sctpi_oodchunks = asoc->stats.oodchunks; 5335 info->sctpi_iodchunks = asoc->stats.iodchunks; 5336 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5337 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5338 5339 prim = asoc->peer.primary_path; 5340 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5341 info->sctpi_p_state = prim->state; 5342 info->sctpi_p_cwnd = prim->cwnd; 5343 info->sctpi_p_srtt = prim->srtt; 5344 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5345 info->sctpi_p_hbinterval = prim->hbinterval; 5346 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5347 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5348 info->sctpi_p_ssthresh = prim->ssthresh; 5349 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5350 info->sctpi_p_flight_size = prim->flight_size; 5351 info->sctpi_p_error = prim->error_count; 5352 5353 return 0; 5354 } 5355 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5356 5357 /* use callback to avoid exporting the core structure */ 5358 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5359 { 5360 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5361 5362 rhashtable_walk_start(iter); 5363 } 5364 5365 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5366 { 5367 rhashtable_walk_stop(iter); 5368 rhashtable_walk_exit(iter); 5369 } 5370 5371 struct sctp_transport *sctp_transport_get_next(struct net *net, 5372 struct rhashtable_iter *iter) 5373 { 5374 struct sctp_transport *t; 5375 5376 t = rhashtable_walk_next(iter); 5377 for (; t; t = rhashtable_walk_next(iter)) { 5378 if (IS_ERR(t)) { 5379 if (PTR_ERR(t) == -EAGAIN) 5380 continue; 5381 break; 5382 } 5383 5384 if (!sctp_transport_hold(t)) 5385 continue; 5386 5387 if (net_eq(t->asoc->base.net, net) && 5388 t->asoc->peer.primary_path == t) 5389 break; 5390 5391 sctp_transport_put(t); 5392 } 5393 5394 return t; 5395 } 5396 5397 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5398 struct rhashtable_iter *iter, 5399 int pos) 5400 { 5401 struct sctp_transport *t; 5402 5403 if (!pos) 5404 return SEQ_START_TOKEN; 5405 5406 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5407 if (!--pos) 5408 break; 5409 sctp_transport_put(t); 5410 } 5411 5412 return t; 5413 } 5414 5415 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5416 void *p) { 5417 int err = 0; 5418 int hash = 0; 5419 struct sctp_ep_common *epb; 5420 struct sctp_hashbucket *head; 5421 5422 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5423 hash++, head++) { 5424 read_lock_bh(&head->lock); 5425 sctp_for_each_hentry(epb, &head->chain) { 5426 err = cb(sctp_ep(epb), p); 5427 if (err) 5428 break; 5429 } 5430 read_unlock_bh(&head->lock); 5431 } 5432 5433 return err; 5434 } 5435 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5436 5437 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5438 struct net *net, 5439 const union sctp_addr *laddr, 5440 const union sctp_addr *paddr, void *p) 5441 { 5442 struct sctp_transport *transport; 5443 int err; 5444 5445 rcu_read_lock(); 5446 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5447 rcu_read_unlock(); 5448 if (!transport) 5449 return -ENOENT; 5450 5451 err = cb(transport, p); 5452 sctp_transport_put(transport); 5453 5454 return err; 5455 } 5456 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5457 5458 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5459 int (*cb_done)(struct sctp_transport *, void *), 5460 struct net *net, int *pos, void *p) { 5461 struct rhashtable_iter hti; 5462 struct sctp_transport *tsp; 5463 int ret; 5464 5465 again: 5466 ret = 0; 5467 sctp_transport_walk_start(&hti); 5468 5469 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5470 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5471 ret = cb(tsp, p); 5472 if (ret) 5473 break; 5474 (*pos)++; 5475 sctp_transport_put(tsp); 5476 } 5477 sctp_transport_walk_stop(&hti); 5478 5479 if (ret) { 5480 if (cb_done && !cb_done(tsp, p)) { 5481 (*pos)++; 5482 sctp_transport_put(tsp); 5483 goto again; 5484 } 5485 sctp_transport_put(tsp); 5486 } 5487 5488 return ret; 5489 } 5490 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5491 5492 /* 7.2.1 Association Status (SCTP_STATUS) 5493 5494 * Applications can retrieve current status information about an 5495 * association, including association state, peer receiver window size, 5496 * number of unacked data chunks, and number of data chunks pending 5497 * receipt. This information is read-only. 5498 */ 5499 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5500 char __user *optval, 5501 int __user *optlen) 5502 { 5503 struct sctp_status status; 5504 struct sctp_association *asoc = NULL; 5505 struct sctp_transport *transport; 5506 sctp_assoc_t associd; 5507 int retval = 0; 5508 5509 if (len < sizeof(status)) { 5510 retval = -EINVAL; 5511 goto out; 5512 } 5513 5514 len = sizeof(status); 5515 if (copy_from_user(&status, optval, len)) { 5516 retval = -EFAULT; 5517 goto out; 5518 } 5519 5520 associd = status.sstat_assoc_id; 5521 asoc = sctp_id2assoc(sk, associd); 5522 if (!asoc) { 5523 retval = -EINVAL; 5524 goto out; 5525 } 5526 5527 transport = asoc->peer.primary_path; 5528 5529 status.sstat_assoc_id = sctp_assoc2id(asoc); 5530 status.sstat_state = sctp_assoc_to_state(asoc); 5531 status.sstat_rwnd = asoc->peer.rwnd; 5532 status.sstat_unackdata = asoc->unack_data; 5533 5534 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5535 status.sstat_instrms = asoc->stream.incnt; 5536 status.sstat_outstrms = asoc->stream.outcnt; 5537 status.sstat_fragmentation_point = asoc->frag_point; 5538 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5539 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5540 transport->af_specific->sockaddr_len); 5541 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5542 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5543 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5544 status.sstat_primary.spinfo_state = transport->state; 5545 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5546 status.sstat_primary.spinfo_srtt = transport->srtt; 5547 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5548 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5549 5550 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5551 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5552 5553 if (put_user(len, optlen)) { 5554 retval = -EFAULT; 5555 goto out; 5556 } 5557 5558 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5559 __func__, len, status.sstat_state, status.sstat_rwnd, 5560 status.sstat_assoc_id); 5561 5562 if (copy_to_user(optval, &status, len)) { 5563 retval = -EFAULT; 5564 goto out; 5565 } 5566 5567 out: 5568 return retval; 5569 } 5570 5571 5572 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5573 * 5574 * Applications can retrieve information about a specific peer address 5575 * of an association, including its reachability state, congestion 5576 * window, and retransmission timer values. This information is 5577 * read-only. 5578 */ 5579 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5580 char __user *optval, 5581 int __user *optlen) 5582 { 5583 struct sctp_paddrinfo pinfo; 5584 struct sctp_transport *transport; 5585 int retval = 0; 5586 5587 if (len < sizeof(pinfo)) { 5588 retval = -EINVAL; 5589 goto out; 5590 } 5591 5592 len = sizeof(pinfo); 5593 if (copy_from_user(&pinfo, optval, len)) { 5594 retval = -EFAULT; 5595 goto out; 5596 } 5597 5598 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5599 pinfo.spinfo_assoc_id); 5600 if (!transport) { 5601 retval = -EINVAL; 5602 goto out; 5603 } 5604 5605 if (transport->state == SCTP_PF && 5606 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5607 retval = -EACCES; 5608 goto out; 5609 } 5610 5611 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5612 pinfo.spinfo_state = transport->state; 5613 pinfo.spinfo_cwnd = transport->cwnd; 5614 pinfo.spinfo_srtt = transport->srtt; 5615 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5616 pinfo.spinfo_mtu = transport->pathmtu; 5617 5618 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5619 pinfo.spinfo_state = SCTP_ACTIVE; 5620 5621 if (put_user(len, optlen)) { 5622 retval = -EFAULT; 5623 goto out; 5624 } 5625 5626 if (copy_to_user(optval, &pinfo, len)) { 5627 retval = -EFAULT; 5628 goto out; 5629 } 5630 5631 out: 5632 return retval; 5633 } 5634 5635 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5636 * 5637 * This option is a on/off flag. If enabled no SCTP message 5638 * fragmentation will be performed. Instead if a message being sent 5639 * exceeds the current PMTU size, the message will NOT be sent and 5640 * instead a error will be indicated to the user. 5641 */ 5642 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5643 char __user *optval, int __user *optlen) 5644 { 5645 int val; 5646 5647 if (len < sizeof(int)) 5648 return -EINVAL; 5649 5650 len = sizeof(int); 5651 val = (sctp_sk(sk)->disable_fragments == 1); 5652 if (put_user(len, optlen)) 5653 return -EFAULT; 5654 if (copy_to_user(optval, &val, len)) 5655 return -EFAULT; 5656 return 0; 5657 } 5658 5659 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5660 * 5661 * This socket option is used to specify various notifications and 5662 * ancillary data the user wishes to receive. 5663 */ 5664 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5665 int __user *optlen) 5666 { 5667 struct sctp_event_subscribe subscribe; 5668 __u8 *sn_type = (__u8 *)&subscribe; 5669 int i; 5670 5671 if (len == 0) 5672 return -EINVAL; 5673 if (len > sizeof(struct sctp_event_subscribe)) 5674 len = sizeof(struct sctp_event_subscribe); 5675 if (put_user(len, optlen)) 5676 return -EFAULT; 5677 5678 for (i = 0; i < len; i++) 5679 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5680 SCTP_SN_TYPE_BASE + i); 5681 5682 if (copy_to_user(optval, &subscribe, len)) 5683 return -EFAULT; 5684 5685 return 0; 5686 } 5687 5688 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5689 * 5690 * This socket option is applicable to the UDP-style socket only. When 5691 * set it will cause associations that are idle for more than the 5692 * specified number of seconds to automatically close. An association 5693 * being idle is defined an association that has NOT sent or received 5694 * user data. The special value of '0' indicates that no automatic 5695 * close of any associations should be performed. The option expects an 5696 * integer defining the number of seconds of idle time before an 5697 * association is closed. 5698 */ 5699 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5700 { 5701 /* Applicable to UDP-style socket only */ 5702 if (sctp_style(sk, TCP)) 5703 return -EOPNOTSUPP; 5704 if (len < sizeof(int)) 5705 return -EINVAL; 5706 len = sizeof(int); 5707 if (put_user(len, optlen)) 5708 return -EFAULT; 5709 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5710 return -EFAULT; 5711 return 0; 5712 } 5713 5714 /* Helper routine to branch off an association to a new socket. */ 5715 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5716 { 5717 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5718 struct sctp_sock *sp = sctp_sk(sk); 5719 struct socket *sock; 5720 int err = 0; 5721 5722 /* Do not peel off from one netns to another one. */ 5723 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5724 return -EINVAL; 5725 5726 if (!asoc) 5727 return -EINVAL; 5728 5729 /* An association cannot be branched off from an already peeled-off 5730 * socket, nor is this supported for tcp style sockets. 5731 */ 5732 if (!sctp_style(sk, UDP)) 5733 return -EINVAL; 5734 5735 /* Create a new socket. */ 5736 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5737 if (err < 0) 5738 return err; 5739 5740 sctp_copy_sock(sock->sk, sk, asoc); 5741 5742 /* Make peeled-off sockets more like 1-1 accepted sockets. 5743 * Set the daddr and initialize id to something more random and also 5744 * copy over any ip options. 5745 */ 5746 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5747 sp->pf->copy_ip_options(sk, sock->sk); 5748 5749 /* Populate the fields of the newsk from the oldsk and migrate the 5750 * asoc to the newsk. 5751 */ 5752 err = sctp_sock_migrate(sk, sock->sk, asoc, 5753 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5754 if (err) { 5755 sock_release(sock); 5756 sock = NULL; 5757 } 5758 5759 *sockp = sock; 5760 5761 return err; 5762 } 5763 EXPORT_SYMBOL(sctp_do_peeloff); 5764 5765 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5766 struct file **newfile, unsigned flags) 5767 { 5768 struct socket *newsock; 5769 int retval; 5770 5771 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5772 if (retval < 0) 5773 goto out; 5774 5775 /* Map the socket to an unused fd that can be returned to the user. */ 5776 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5777 if (retval < 0) { 5778 sock_release(newsock); 5779 goto out; 5780 } 5781 5782 *newfile = sock_alloc_file(newsock, 0, NULL); 5783 if (IS_ERR(*newfile)) { 5784 put_unused_fd(retval); 5785 retval = PTR_ERR(*newfile); 5786 *newfile = NULL; 5787 return retval; 5788 } 5789 5790 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5791 retval); 5792 5793 peeloff->sd = retval; 5794 5795 if (flags & SOCK_NONBLOCK) 5796 (*newfile)->f_flags |= O_NONBLOCK; 5797 out: 5798 return retval; 5799 } 5800 5801 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5802 { 5803 sctp_peeloff_arg_t peeloff; 5804 struct file *newfile = NULL; 5805 int retval = 0; 5806 5807 if (len < sizeof(sctp_peeloff_arg_t)) 5808 return -EINVAL; 5809 len = sizeof(sctp_peeloff_arg_t); 5810 if (copy_from_user(&peeloff, optval, len)) 5811 return -EFAULT; 5812 5813 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5814 if (retval < 0) 5815 goto out; 5816 5817 /* Return the fd mapped to the new socket. */ 5818 if (put_user(len, optlen)) { 5819 fput(newfile); 5820 put_unused_fd(retval); 5821 return -EFAULT; 5822 } 5823 5824 if (copy_to_user(optval, &peeloff, len)) { 5825 fput(newfile); 5826 put_unused_fd(retval); 5827 return -EFAULT; 5828 } 5829 fd_install(retval, newfile); 5830 out: 5831 return retval; 5832 } 5833 5834 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5835 char __user *optval, int __user *optlen) 5836 { 5837 sctp_peeloff_flags_arg_t peeloff; 5838 struct file *newfile = NULL; 5839 int retval = 0; 5840 5841 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5842 return -EINVAL; 5843 len = sizeof(sctp_peeloff_flags_arg_t); 5844 if (copy_from_user(&peeloff, optval, len)) 5845 return -EFAULT; 5846 5847 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5848 &newfile, peeloff.flags); 5849 if (retval < 0) 5850 goto out; 5851 5852 /* Return the fd mapped to the new socket. */ 5853 if (put_user(len, optlen)) { 5854 fput(newfile); 5855 put_unused_fd(retval); 5856 return -EFAULT; 5857 } 5858 5859 if (copy_to_user(optval, &peeloff, len)) { 5860 fput(newfile); 5861 put_unused_fd(retval); 5862 return -EFAULT; 5863 } 5864 fd_install(retval, newfile); 5865 out: 5866 return retval; 5867 } 5868 5869 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5870 * 5871 * Applications can enable or disable heartbeats for any peer address of 5872 * an association, modify an address's heartbeat interval, force a 5873 * heartbeat to be sent immediately, and adjust the address's maximum 5874 * number of retransmissions sent before an address is considered 5875 * unreachable. The following structure is used to access and modify an 5876 * address's parameters: 5877 * 5878 * struct sctp_paddrparams { 5879 * sctp_assoc_t spp_assoc_id; 5880 * struct sockaddr_storage spp_address; 5881 * uint32_t spp_hbinterval; 5882 * uint16_t spp_pathmaxrxt; 5883 * uint32_t spp_pathmtu; 5884 * uint32_t spp_sackdelay; 5885 * uint32_t spp_flags; 5886 * }; 5887 * 5888 * spp_assoc_id - (one-to-many style socket) This is filled in the 5889 * application, and identifies the association for 5890 * this query. 5891 * spp_address - This specifies which address is of interest. 5892 * spp_hbinterval - This contains the value of the heartbeat interval, 5893 * in milliseconds. If a value of zero 5894 * is present in this field then no changes are to 5895 * be made to this parameter. 5896 * spp_pathmaxrxt - This contains the maximum number of 5897 * retransmissions before this address shall be 5898 * considered unreachable. If a value of zero 5899 * is present in this field then no changes are to 5900 * be made to this parameter. 5901 * spp_pathmtu - When Path MTU discovery is disabled the value 5902 * specified here will be the "fixed" path mtu. 5903 * Note that if the spp_address field is empty 5904 * then all associations on this address will 5905 * have this fixed path mtu set upon them. 5906 * 5907 * spp_sackdelay - When delayed sack is enabled, this value specifies 5908 * the number of milliseconds that sacks will be delayed 5909 * for. This value will apply to all addresses of an 5910 * association if the spp_address field is empty. Note 5911 * also, that if delayed sack is enabled and this 5912 * value is set to 0, no change is made to the last 5913 * recorded delayed sack timer value. 5914 * 5915 * spp_flags - These flags are used to control various features 5916 * on an association. The flag field may contain 5917 * zero or more of the following options. 5918 * 5919 * SPP_HB_ENABLE - Enable heartbeats on the 5920 * specified address. Note that if the address 5921 * field is empty all addresses for the association 5922 * have heartbeats enabled upon them. 5923 * 5924 * SPP_HB_DISABLE - Disable heartbeats on the 5925 * speicifed address. Note that if the address 5926 * field is empty all addresses for the association 5927 * will have their heartbeats disabled. Note also 5928 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5929 * mutually exclusive, only one of these two should 5930 * be specified. Enabling both fields will have 5931 * undetermined results. 5932 * 5933 * SPP_HB_DEMAND - Request a user initiated heartbeat 5934 * to be made immediately. 5935 * 5936 * SPP_PMTUD_ENABLE - This field will enable PMTU 5937 * discovery upon the specified address. Note that 5938 * if the address feild is empty then all addresses 5939 * on the association are effected. 5940 * 5941 * SPP_PMTUD_DISABLE - This field will disable PMTU 5942 * discovery upon the specified address. Note that 5943 * if the address feild is empty then all addresses 5944 * on the association are effected. Not also that 5945 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5946 * exclusive. Enabling both will have undetermined 5947 * results. 5948 * 5949 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5950 * on delayed sack. The time specified in spp_sackdelay 5951 * is used to specify the sack delay for this address. Note 5952 * that if spp_address is empty then all addresses will 5953 * enable delayed sack and take on the sack delay 5954 * value specified in spp_sackdelay. 5955 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5956 * off delayed sack. If the spp_address field is blank then 5957 * delayed sack is disabled for the entire association. Note 5958 * also that this field is mutually exclusive to 5959 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5960 * results. 5961 * 5962 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5963 * setting of the IPV6 flow label value. The value is 5964 * contained in the spp_ipv6_flowlabel field. 5965 * Upon retrieval, this flag will be set to indicate that 5966 * the spp_ipv6_flowlabel field has a valid value returned. 5967 * If a specific destination address is set (in the 5968 * spp_address field), then the value returned is that of 5969 * the address. If just an association is specified (and 5970 * no address), then the association's default flow label 5971 * is returned. If neither an association nor a destination 5972 * is specified, then the socket's default flow label is 5973 * returned. For non-IPv6 sockets, this flag will be left 5974 * cleared. 5975 * 5976 * SPP_DSCP: Setting this flag enables the setting of the 5977 * Differentiated Services Code Point (DSCP) value 5978 * associated with either the association or a specific 5979 * address. The value is obtained in the spp_dscp field. 5980 * Upon retrieval, this flag will be set to indicate that 5981 * the spp_dscp field has a valid value returned. If a 5982 * specific destination address is set when called (in the 5983 * spp_address field), then that specific destination 5984 * address's DSCP value is returned. If just an association 5985 * is specified, then the association's default DSCP is 5986 * returned. If neither an association nor a destination is 5987 * specified, then the socket's default DSCP is returned. 5988 * 5989 * spp_ipv6_flowlabel 5990 * - This field is used in conjunction with the 5991 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5992 * The 20 least significant bits are used for the flow 5993 * label. This setting has precedence over any IPv6-layer 5994 * setting. 5995 * 5996 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5997 * and contains the DSCP. The 6 most significant bits are 5998 * used for the DSCP. This setting has precedence over any 5999 * IPv4- or IPv6- layer setting. 6000 */ 6001 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 6002 char __user *optval, int __user *optlen) 6003 { 6004 struct sctp_paddrparams params; 6005 struct sctp_transport *trans = NULL; 6006 struct sctp_association *asoc = NULL; 6007 struct sctp_sock *sp = sctp_sk(sk); 6008 6009 if (len >= sizeof(params)) 6010 len = sizeof(params); 6011 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 6012 spp_ipv6_flowlabel), 4)) 6013 len = ALIGN(offsetof(struct sctp_paddrparams, 6014 spp_ipv6_flowlabel), 4); 6015 else 6016 return -EINVAL; 6017 6018 if (copy_from_user(¶ms, optval, len)) 6019 return -EFAULT; 6020 6021 /* If an address other than INADDR_ANY is specified, and 6022 * no transport is found, then the request is invalid. 6023 */ 6024 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 6025 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 6026 params.spp_assoc_id); 6027 if (!trans) { 6028 pr_debug("%s: failed no transport\n", __func__); 6029 return -EINVAL; 6030 } 6031 } 6032 6033 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 6034 * socket is a one to many style socket, and an association 6035 * was not found, then the id was invalid. 6036 */ 6037 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 6038 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 6039 sctp_style(sk, UDP)) { 6040 pr_debug("%s: failed no association\n", __func__); 6041 return -EINVAL; 6042 } 6043 6044 if (trans) { 6045 /* Fetch transport values. */ 6046 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 6047 params.spp_pathmtu = trans->pathmtu; 6048 params.spp_pathmaxrxt = trans->pathmaxrxt; 6049 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 6050 6051 /*draft-11 doesn't say what to return in spp_flags*/ 6052 params.spp_flags = trans->param_flags; 6053 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6054 params.spp_ipv6_flowlabel = trans->flowlabel & 6055 SCTP_FLOWLABEL_VAL_MASK; 6056 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6057 } 6058 if (trans->dscp & SCTP_DSCP_SET_MASK) { 6059 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 6060 params.spp_flags |= SPP_DSCP; 6061 } 6062 } else if (asoc) { 6063 /* Fetch association values. */ 6064 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6065 params.spp_pathmtu = asoc->pathmtu; 6066 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6067 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6068 6069 /*draft-11 doesn't say what to return in spp_flags*/ 6070 params.spp_flags = asoc->param_flags; 6071 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6072 params.spp_ipv6_flowlabel = asoc->flowlabel & 6073 SCTP_FLOWLABEL_VAL_MASK; 6074 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6075 } 6076 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6077 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6078 params.spp_flags |= SPP_DSCP; 6079 } 6080 } else { 6081 /* Fetch socket values. */ 6082 params.spp_hbinterval = sp->hbinterval; 6083 params.spp_pathmtu = sp->pathmtu; 6084 params.spp_sackdelay = sp->sackdelay; 6085 params.spp_pathmaxrxt = sp->pathmaxrxt; 6086 6087 /*draft-11 doesn't say what to return in spp_flags*/ 6088 params.spp_flags = sp->param_flags; 6089 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6090 params.spp_ipv6_flowlabel = sp->flowlabel & 6091 SCTP_FLOWLABEL_VAL_MASK; 6092 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6093 } 6094 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6095 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6096 params.spp_flags |= SPP_DSCP; 6097 } 6098 } 6099 6100 if (copy_to_user(optval, ¶ms, len)) 6101 return -EFAULT; 6102 6103 if (put_user(len, optlen)) 6104 return -EFAULT; 6105 6106 return 0; 6107 } 6108 6109 /* 6110 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6111 * 6112 * This option will effect the way delayed acks are performed. This 6113 * option allows you to get or set the delayed ack time, in 6114 * milliseconds. It also allows changing the delayed ack frequency. 6115 * Changing the frequency to 1 disables the delayed sack algorithm. If 6116 * the assoc_id is 0, then this sets or gets the endpoints default 6117 * values. If the assoc_id field is non-zero, then the set or get 6118 * effects the specified association for the one to many model (the 6119 * assoc_id field is ignored by the one to one model). Note that if 6120 * sack_delay or sack_freq are 0 when setting this option, then the 6121 * current values will remain unchanged. 6122 * 6123 * struct sctp_sack_info { 6124 * sctp_assoc_t sack_assoc_id; 6125 * uint32_t sack_delay; 6126 * uint32_t sack_freq; 6127 * }; 6128 * 6129 * sack_assoc_id - This parameter, indicates which association the user 6130 * is performing an action upon. Note that if this field's value is 6131 * zero then the endpoints default value is changed (effecting future 6132 * associations only). 6133 * 6134 * sack_delay - This parameter contains the number of milliseconds that 6135 * the user is requesting the delayed ACK timer be set to. Note that 6136 * this value is defined in the standard to be between 200 and 500 6137 * milliseconds. 6138 * 6139 * sack_freq - This parameter contains the number of packets that must 6140 * be received before a sack is sent without waiting for the delay 6141 * timer to expire. The default value for this is 2, setting this 6142 * value to 1 will disable the delayed sack algorithm. 6143 */ 6144 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6145 char __user *optval, 6146 int __user *optlen) 6147 { 6148 struct sctp_sack_info params; 6149 struct sctp_association *asoc = NULL; 6150 struct sctp_sock *sp = sctp_sk(sk); 6151 6152 if (len >= sizeof(struct sctp_sack_info)) { 6153 len = sizeof(struct sctp_sack_info); 6154 6155 if (copy_from_user(¶ms, optval, len)) 6156 return -EFAULT; 6157 } else if (len == sizeof(struct sctp_assoc_value)) { 6158 pr_warn_ratelimited(DEPRECATED 6159 "%s (pid %d) " 6160 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6161 "Use struct sctp_sack_info instead\n", 6162 current->comm, task_pid_nr(current)); 6163 if (copy_from_user(¶ms, optval, len)) 6164 return -EFAULT; 6165 } else 6166 return -EINVAL; 6167 6168 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6169 * socket is a one to many style socket, and an association 6170 * was not found, then the id was invalid. 6171 */ 6172 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6173 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6174 sctp_style(sk, UDP)) 6175 return -EINVAL; 6176 6177 if (asoc) { 6178 /* Fetch association values. */ 6179 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6180 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6181 params.sack_freq = asoc->sackfreq; 6182 6183 } else { 6184 params.sack_delay = 0; 6185 params.sack_freq = 1; 6186 } 6187 } else { 6188 /* Fetch socket values. */ 6189 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6190 params.sack_delay = sp->sackdelay; 6191 params.sack_freq = sp->sackfreq; 6192 } else { 6193 params.sack_delay = 0; 6194 params.sack_freq = 1; 6195 } 6196 } 6197 6198 if (copy_to_user(optval, ¶ms, len)) 6199 return -EFAULT; 6200 6201 if (put_user(len, optlen)) 6202 return -EFAULT; 6203 6204 return 0; 6205 } 6206 6207 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6208 * 6209 * Applications can specify protocol parameters for the default association 6210 * initialization. The option name argument to setsockopt() and getsockopt() 6211 * is SCTP_INITMSG. 6212 * 6213 * Setting initialization parameters is effective only on an unconnected 6214 * socket (for UDP-style sockets only future associations are effected 6215 * by the change). With TCP-style sockets, this option is inherited by 6216 * sockets derived from a listener socket. 6217 */ 6218 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6219 { 6220 if (len < sizeof(struct sctp_initmsg)) 6221 return -EINVAL; 6222 len = sizeof(struct sctp_initmsg); 6223 if (put_user(len, optlen)) 6224 return -EFAULT; 6225 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6226 return -EFAULT; 6227 return 0; 6228 } 6229 6230 6231 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6232 char __user *optval, int __user *optlen) 6233 { 6234 struct sctp_association *asoc; 6235 int cnt = 0; 6236 struct sctp_getaddrs getaddrs; 6237 struct sctp_transport *from; 6238 void __user *to; 6239 union sctp_addr temp; 6240 struct sctp_sock *sp = sctp_sk(sk); 6241 int addrlen; 6242 size_t space_left; 6243 int bytes_copied; 6244 6245 if (len < sizeof(struct sctp_getaddrs)) 6246 return -EINVAL; 6247 6248 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6249 return -EFAULT; 6250 6251 /* For UDP-style sockets, id specifies the association to query. */ 6252 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6253 if (!asoc) 6254 return -EINVAL; 6255 6256 to = optval + offsetof(struct sctp_getaddrs, addrs); 6257 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6258 6259 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6260 transports) { 6261 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6262 addrlen = sctp_get_pf_specific(sk->sk_family) 6263 ->addr_to_user(sp, &temp); 6264 if (space_left < addrlen) 6265 return -ENOMEM; 6266 if (copy_to_user(to, &temp, addrlen)) 6267 return -EFAULT; 6268 to += addrlen; 6269 cnt++; 6270 space_left -= addrlen; 6271 } 6272 6273 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6274 return -EFAULT; 6275 bytes_copied = ((char __user *)to) - optval; 6276 if (put_user(bytes_copied, optlen)) 6277 return -EFAULT; 6278 6279 return 0; 6280 } 6281 6282 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6283 size_t space_left, int *bytes_copied) 6284 { 6285 struct sctp_sockaddr_entry *addr; 6286 union sctp_addr temp; 6287 int cnt = 0; 6288 int addrlen; 6289 struct net *net = sock_net(sk); 6290 6291 rcu_read_lock(); 6292 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6293 if (!addr->valid) 6294 continue; 6295 6296 if ((PF_INET == sk->sk_family) && 6297 (AF_INET6 == addr->a.sa.sa_family)) 6298 continue; 6299 if ((PF_INET6 == sk->sk_family) && 6300 inet_v6_ipv6only(sk) && 6301 (AF_INET == addr->a.sa.sa_family)) 6302 continue; 6303 memcpy(&temp, &addr->a, sizeof(temp)); 6304 if (!temp.v4.sin_port) 6305 temp.v4.sin_port = htons(port); 6306 6307 addrlen = sctp_get_pf_specific(sk->sk_family) 6308 ->addr_to_user(sctp_sk(sk), &temp); 6309 6310 if (space_left < addrlen) { 6311 cnt = -ENOMEM; 6312 break; 6313 } 6314 memcpy(to, &temp, addrlen); 6315 6316 to += addrlen; 6317 cnt++; 6318 space_left -= addrlen; 6319 *bytes_copied += addrlen; 6320 } 6321 rcu_read_unlock(); 6322 6323 return cnt; 6324 } 6325 6326 6327 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6328 char __user *optval, int __user *optlen) 6329 { 6330 struct sctp_bind_addr *bp; 6331 struct sctp_association *asoc; 6332 int cnt = 0; 6333 struct sctp_getaddrs getaddrs; 6334 struct sctp_sockaddr_entry *addr; 6335 void __user *to; 6336 union sctp_addr temp; 6337 struct sctp_sock *sp = sctp_sk(sk); 6338 int addrlen; 6339 int err = 0; 6340 size_t space_left; 6341 int bytes_copied = 0; 6342 void *addrs; 6343 void *buf; 6344 6345 if (len < sizeof(struct sctp_getaddrs)) 6346 return -EINVAL; 6347 6348 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6349 return -EFAULT; 6350 6351 /* 6352 * For UDP-style sockets, id specifies the association to query. 6353 * If the id field is set to the value '0' then the locally bound 6354 * addresses are returned without regard to any particular 6355 * association. 6356 */ 6357 if (0 == getaddrs.assoc_id) { 6358 bp = &sctp_sk(sk)->ep->base.bind_addr; 6359 } else { 6360 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6361 if (!asoc) 6362 return -EINVAL; 6363 bp = &asoc->base.bind_addr; 6364 } 6365 6366 to = optval + offsetof(struct sctp_getaddrs, addrs); 6367 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6368 6369 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6370 if (!addrs) 6371 return -ENOMEM; 6372 6373 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6374 * addresses from the global local address list. 6375 */ 6376 if (sctp_list_single_entry(&bp->address_list)) { 6377 addr = list_entry(bp->address_list.next, 6378 struct sctp_sockaddr_entry, list); 6379 if (sctp_is_any(sk, &addr->a)) { 6380 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6381 space_left, &bytes_copied); 6382 if (cnt < 0) { 6383 err = cnt; 6384 goto out; 6385 } 6386 goto copy_getaddrs; 6387 } 6388 } 6389 6390 buf = addrs; 6391 /* Protection on the bound address list is not needed since 6392 * in the socket option context we hold a socket lock and 6393 * thus the bound address list can't change. 6394 */ 6395 list_for_each_entry(addr, &bp->address_list, list) { 6396 memcpy(&temp, &addr->a, sizeof(temp)); 6397 addrlen = sctp_get_pf_specific(sk->sk_family) 6398 ->addr_to_user(sp, &temp); 6399 if (space_left < addrlen) { 6400 err = -ENOMEM; /*fixme: right error?*/ 6401 goto out; 6402 } 6403 memcpy(buf, &temp, addrlen); 6404 buf += addrlen; 6405 bytes_copied += addrlen; 6406 cnt++; 6407 space_left -= addrlen; 6408 } 6409 6410 copy_getaddrs: 6411 if (copy_to_user(to, addrs, bytes_copied)) { 6412 err = -EFAULT; 6413 goto out; 6414 } 6415 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6416 err = -EFAULT; 6417 goto out; 6418 } 6419 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6420 * but we can't change it anymore. 6421 */ 6422 if (put_user(bytes_copied, optlen)) 6423 err = -EFAULT; 6424 out: 6425 kfree(addrs); 6426 return err; 6427 } 6428 6429 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6430 * 6431 * Requests that the local SCTP stack use the enclosed peer address as 6432 * the association primary. The enclosed address must be one of the 6433 * association peer's addresses. 6434 */ 6435 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6436 char __user *optval, int __user *optlen) 6437 { 6438 struct sctp_prim prim; 6439 struct sctp_association *asoc; 6440 struct sctp_sock *sp = sctp_sk(sk); 6441 6442 if (len < sizeof(struct sctp_prim)) 6443 return -EINVAL; 6444 6445 len = sizeof(struct sctp_prim); 6446 6447 if (copy_from_user(&prim, optval, len)) 6448 return -EFAULT; 6449 6450 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6451 if (!asoc) 6452 return -EINVAL; 6453 6454 if (!asoc->peer.primary_path) 6455 return -ENOTCONN; 6456 6457 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6458 asoc->peer.primary_path->af_specific->sockaddr_len); 6459 6460 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6461 (union sctp_addr *)&prim.ssp_addr); 6462 6463 if (put_user(len, optlen)) 6464 return -EFAULT; 6465 if (copy_to_user(optval, &prim, len)) 6466 return -EFAULT; 6467 6468 return 0; 6469 } 6470 6471 /* 6472 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6473 * 6474 * Requests that the local endpoint set the specified Adaptation Layer 6475 * Indication parameter for all future INIT and INIT-ACK exchanges. 6476 */ 6477 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6478 char __user *optval, int __user *optlen) 6479 { 6480 struct sctp_setadaptation adaptation; 6481 6482 if (len < sizeof(struct sctp_setadaptation)) 6483 return -EINVAL; 6484 6485 len = sizeof(struct sctp_setadaptation); 6486 6487 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6488 6489 if (put_user(len, optlen)) 6490 return -EFAULT; 6491 if (copy_to_user(optval, &adaptation, len)) 6492 return -EFAULT; 6493 6494 return 0; 6495 } 6496 6497 /* 6498 * 6499 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6500 * 6501 * Applications that wish to use the sendto() system call may wish to 6502 * specify a default set of parameters that would normally be supplied 6503 * through the inclusion of ancillary data. This socket option allows 6504 * such an application to set the default sctp_sndrcvinfo structure. 6505 6506 6507 * The application that wishes to use this socket option simply passes 6508 * in to this call the sctp_sndrcvinfo structure defined in Section 6509 * 5.2.2) The input parameters accepted by this call include 6510 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6511 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6512 * to this call if the caller is using the UDP model. 6513 * 6514 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6515 */ 6516 static int sctp_getsockopt_default_send_param(struct sock *sk, 6517 int len, char __user *optval, 6518 int __user *optlen) 6519 { 6520 struct sctp_sock *sp = sctp_sk(sk); 6521 struct sctp_association *asoc; 6522 struct sctp_sndrcvinfo info; 6523 6524 if (len < sizeof(info)) 6525 return -EINVAL; 6526 6527 len = sizeof(info); 6528 6529 if (copy_from_user(&info, optval, len)) 6530 return -EFAULT; 6531 6532 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6533 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6534 sctp_style(sk, UDP)) 6535 return -EINVAL; 6536 6537 if (asoc) { 6538 info.sinfo_stream = asoc->default_stream; 6539 info.sinfo_flags = asoc->default_flags; 6540 info.sinfo_ppid = asoc->default_ppid; 6541 info.sinfo_context = asoc->default_context; 6542 info.sinfo_timetolive = asoc->default_timetolive; 6543 } else { 6544 info.sinfo_stream = sp->default_stream; 6545 info.sinfo_flags = sp->default_flags; 6546 info.sinfo_ppid = sp->default_ppid; 6547 info.sinfo_context = sp->default_context; 6548 info.sinfo_timetolive = sp->default_timetolive; 6549 } 6550 6551 if (put_user(len, optlen)) 6552 return -EFAULT; 6553 if (copy_to_user(optval, &info, len)) 6554 return -EFAULT; 6555 6556 return 0; 6557 } 6558 6559 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6560 * (SCTP_DEFAULT_SNDINFO) 6561 */ 6562 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6563 char __user *optval, 6564 int __user *optlen) 6565 { 6566 struct sctp_sock *sp = sctp_sk(sk); 6567 struct sctp_association *asoc; 6568 struct sctp_sndinfo info; 6569 6570 if (len < sizeof(info)) 6571 return -EINVAL; 6572 6573 len = sizeof(info); 6574 6575 if (copy_from_user(&info, optval, len)) 6576 return -EFAULT; 6577 6578 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6579 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6580 sctp_style(sk, UDP)) 6581 return -EINVAL; 6582 6583 if (asoc) { 6584 info.snd_sid = asoc->default_stream; 6585 info.snd_flags = asoc->default_flags; 6586 info.snd_ppid = asoc->default_ppid; 6587 info.snd_context = asoc->default_context; 6588 } else { 6589 info.snd_sid = sp->default_stream; 6590 info.snd_flags = sp->default_flags; 6591 info.snd_ppid = sp->default_ppid; 6592 info.snd_context = sp->default_context; 6593 } 6594 6595 if (put_user(len, optlen)) 6596 return -EFAULT; 6597 if (copy_to_user(optval, &info, len)) 6598 return -EFAULT; 6599 6600 return 0; 6601 } 6602 6603 /* 6604 * 6605 * 7.1.5 SCTP_NODELAY 6606 * 6607 * Turn on/off any Nagle-like algorithm. This means that packets are 6608 * generally sent as soon as possible and no unnecessary delays are 6609 * introduced, at the cost of more packets in the network. Expects an 6610 * integer boolean flag. 6611 */ 6612 6613 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6614 char __user *optval, int __user *optlen) 6615 { 6616 int val; 6617 6618 if (len < sizeof(int)) 6619 return -EINVAL; 6620 6621 len = sizeof(int); 6622 val = (sctp_sk(sk)->nodelay == 1); 6623 if (put_user(len, optlen)) 6624 return -EFAULT; 6625 if (copy_to_user(optval, &val, len)) 6626 return -EFAULT; 6627 return 0; 6628 } 6629 6630 /* 6631 * 6632 * 7.1.1 SCTP_RTOINFO 6633 * 6634 * The protocol parameters used to initialize and bound retransmission 6635 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6636 * and modify these parameters. 6637 * All parameters are time values, in milliseconds. A value of 0, when 6638 * modifying the parameters, indicates that the current value should not 6639 * be changed. 6640 * 6641 */ 6642 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6643 char __user *optval, 6644 int __user *optlen) { 6645 struct sctp_rtoinfo rtoinfo; 6646 struct sctp_association *asoc; 6647 6648 if (len < sizeof (struct sctp_rtoinfo)) 6649 return -EINVAL; 6650 6651 len = sizeof(struct sctp_rtoinfo); 6652 6653 if (copy_from_user(&rtoinfo, optval, len)) 6654 return -EFAULT; 6655 6656 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6657 6658 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6659 sctp_style(sk, UDP)) 6660 return -EINVAL; 6661 6662 /* Values corresponding to the specific association. */ 6663 if (asoc) { 6664 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6665 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6666 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6667 } else { 6668 /* Values corresponding to the endpoint. */ 6669 struct sctp_sock *sp = sctp_sk(sk); 6670 6671 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6672 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6673 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6674 } 6675 6676 if (put_user(len, optlen)) 6677 return -EFAULT; 6678 6679 if (copy_to_user(optval, &rtoinfo, len)) 6680 return -EFAULT; 6681 6682 return 0; 6683 } 6684 6685 /* 6686 * 6687 * 7.1.2 SCTP_ASSOCINFO 6688 * 6689 * This option is used to tune the maximum retransmission attempts 6690 * of the association. 6691 * Returns an error if the new association retransmission value is 6692 * greater than the sum of the retransmission value of the peer. 6693 * See [SCTP] for more information. 6694 * 6695 */ 6696 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6697 char __user *optval, 6698 int __user *optlen) 6699 { 6700 6701 struct sctp_assocparams assocparams; 6702 struct sctp_association *asoc; 6703 struct list_head *pos; 6704 int cnt = 0; 6705 6706 if (len < sizeof (struct sctp_assocparams)) 6707 return -EINVAL; 6708 6709 len = sizeof(struct sctp_assocparams); 6710 6711 if (copy_from_user(&assocparams, optval, len)) 6712 return -EFAULT; 6713 6714 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6715 6716 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6717 sctp_style(sk, UDP)) 6718 return -EINVAL; 6719 6720 /* Values correspoinding to the specific association */ 6721 if (asoc) { 6722 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6723 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6724 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6725 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6726 6727 list_for_each(pos, &asoc->peer.transport_addr_list) { 6728 cnt++; 6729 } 6730 6731 assocparams.sasoc_number_peer_destinations = cnt; 6732 } else { 6733 /* Values corresponding to the endpoint */ 6734 struct sctp_sock *sp = sctp_sk(sk); 6735 6736 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6737 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6738 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6739 assocparams.sasoc_cookie_life = 6740 sp->assocparams.sasoc_cookie_life; 6741 assocparams.sasoc_number_peer_destinations = 6742 sp->assocparams. 6743 sasoc_number_peer_destinations; 6744 } 6745 6746 if (put_user(len, optlen)) 6747 return -EFAULT; 6748 6749 if (copy_to_user(optval, &assocparams, len)) 6750 return -EFAULT; 6751 6752 return 0; 6753 } 6754 6755 /* 6756 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6757 * 6758 * This socket option is a boolean flag which turns on or off mapped V4 6759 * addresses. If this option is turned on and the socket is type 6760 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6761 * If this option is turned off, then no mapping will be done of V4 6762 * addresses and a user will receive both PF_INET6 and PF_INET type 6763 * addresses on the socket. 6764 */ 6765 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6766 char __user *optval, int __user *optlen) 6767 { 6768 int val; 6769 struct sctp_sock *sp = sctp_sk(sk); 6770 6771 if (len < sizeof(int)) 6772 return -EINVAL; 6773 6774 len = sizeof(int); 6775 val = sp->v4mapped; 6776 if (put_user(len, optlen)) 6777 return -EFAULT; 6778 if (copy_to_user(optval, &val, len)) 6779 return -EFAULT; 6780 6781 return 0; 6782 } 6783 6784 /* 6785 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6786 * (chapter and verse is quoted at sctp_setsockopt_context()) 6787 */ 6788 static int sctp_getsockopt_context(struct sock *sk, int len, 6789 char __user *optval, int __user *optlen) 6790 { 6791 struct sctp_assoc_value params; 6792 struct sctp_association *asoc; 6793 6794 if (len < sizeof(struct sctp_assoc_value)) 6795 return -EINVAL; 6796 6797 len = sizeof(struct sctp_assoc_value); 6798 6799 if (copy_from_user(¶ms, optval, len)) 6800 return -EFAULT; 6801 6802 asoc = sctp_id2assoc(sk, params.assoc_id); 6803 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6804 sctp_style(sk, UDP)) 6805 return -EINVAL; 6806 6807 params.assoc_value = asoc ? asoc->default_rcv_context 6808 : sctp_sk(sk)->default_rcv_context; 6809 6810 if (put_user(len, optlen)) 6811 return -EFAULT; 6812 if (copy_to_user(optval, ¶ms, len)) 6813 return -EFAULT; 6814 6815 return 0; 6816 } 6817 6818 /* 6819 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6820 * This option will get or set the maximum size to put in any outgoing 6821 * SCTP DATA chunk. If a message is larger than this size it will be 6822 * fragmented by SCTP into the specified size. Note that the underlying 6823 * SCTP implementation may fragment into smaller sized chunks when the 6824 * PMTU of the underlying association is smaller than the value set by 6825 * the user. The default value for this option is '0' which indicates 6826 * the user is NOT limiting fragmentation and only the PMTU will effect 6827 * SCTP's choice of DATA chunk size. Note also that values set larger 6828 * than the maximum size of an IP datagram will effectively let SCTP 6829 * control fragmentation (i.e. the same as setting this option to 0). 6830 * 6831 * The following structure is used to access and modify this parameter: 6832 * 6833 * struct sctp_assoc_value { 6834 * sctp_assoc_t assoc_id; 6835 * uint32_t assoc_value; 6836 * }; 6837 * 6838 * assoc_id: This parameter is ignored for one-to-one style sockets. 6839 * For one-to-many style sockets this parameter indicates which 6840 * association the user is performing an action upon. Note that if 6841 * this field's value is zero then the endpoints default value is 6842 * changed (effecting future associations only). 6843 * assoc_value: This parameter specifies the maximum size in bytes. 6844 */ 6845 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6846 char __user *optval, int __user *optlen) 6847 { 6848 struct sctp_assoc_value params; 6849 struct sctp_association *asoc; 6850 6851 if (len == sizeof(int)) { 6852 pr_warn_ratelimited(DEPRECATED 6853 "%s (pid %d) " 6854 "Use of int in maxseg socket option.\n" 6855 "Use struct sctp_assoc_value instead\n", 6856 current->comm, task_pid_nr(current)); 6857 params.assoc_id = SCTP_FUTURE_ASSOC; 6858 } else if (len >= sizeof(struct sctp_assoc_value)) { 6859 len = sizeof(struct sctp_assoc_value); 6860 if (copy_from_user(¶ms, optval, len)) 6861 return -EFAULT; 6862 } else 6863 return -EINVAL; 6864 6865 asoc = sctp_id2assoc(sk, params.assoc_id); 6866 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6867 sctp_style(sk, UDP)) 6868 return -EINVAL; 6869 6870 if (asoc) 6871 params.assoc_value = asoc->frag_point; 6872 else 6873 params.assoc_value = sctp_sk(sk)->user_frag; 6874 6875 if (put_user(len, optlen)) 6876 return -EFAULT; 6877 if (len == sizeof(int)) { 6878 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6879 return -EFAULT; 6880 } else { 6881 if (copy_to_user(optval, ¶ms, len)) 6882 return -EFAULT; 6883 } 6884 6885 return 0; 6886 } 6887 6888 /* 6889 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6890 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6891 */ 6892 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6893 char __user *optval, int __user *optlen) 6894 { 6895 int val; 6896 6897 if (len < sizeof(int)) 6898 return -EINVAL; 6899 6900 len = sizeof(int); 6901 6902 val = sctp_sk(sk)->frag_interleave; 6903 if (put_user(len, optlen)) 6904 return -EFAULT; 6905 if (copy_to_user(optval, &val, len)) 6906 return -EFAULT; 6907 6908 return 0; 6909 } 6910 6911 /* 6912 * 7.1.25. Set or Get the sctp partial delivery point 6913 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6914 */ 6915 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6916 char __user *optval, 6917 int __user *optlen) 6918 { 6919 u32 val; 6920 6921 if (len < sizeof(u32)) 6922 return -EINVAL; 6923 6924 len = sizeof(u32); 6925 6926 val = sctp_sk(sk)->pd_point; 6927 if (put_user(len, optlen)) 6928 return -EFAULT; 6929 if (copy_to_user(optval, &val, len)) 6930 return -EFAULT; 6931 6932 return 0; 6933 } 6934 6935 /* 6936 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6937 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6938 */ 6939 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6940 char __user *optval, 6941 int __user *optlen) 6942 { 6943 struct sctp_assoc_value params; 6944 struct sctp_association *asoc; 6945 6946 if (len == sizeof(int)) { 6947 pr_warn_ratelimited(DEPRECATED 6948 "%s (pid %d) " 6949 "Use of int in max_burst socket option.\n" 6950 "Use struct sctp_assoc_value instead\n", 6951 current->comm, task_pid_nr(current)); 6952 params.assoc_id = SCTP_FUTURE_ASSOC; 6953 } else if (len >= sizeof(struct sctp_assoc_value)) { 6954 len = sizeof(struct sctp_assoc_value); 6955 if (copy_from_user(¶ms, optval, len)) 6956 return -EFAULT; 6957 } else 6958 return -EINVAL; 6959 6960 asoc = sctp_id2assoc(sk, params.assoc_id); 6961 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6962 sctp_style(sk, UDP)) 6963 return -EINVAL; 6964 6965 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6966 6967 if (len == sizeof(int)) { 6968 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6969 return -EFAULT; 6970 } else { 6971 if (copy_to_user(optval, ¶ms, len)) 6972 return -EFAULT; 6973 } 6974 6975 return 0; 6976 6977 } 6978 6979 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6980 char __user *optval, int __user *optlen) 6981 { 6982 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6983 struct sctp_hmacalgo __user *p = (void __user *)optval; 6984 struct sctp_hmac_algo_param *hmacs; 6985 __u16 data_len = 0; 6986 u32 num_idents; 6987 int i; 6988 6989 if (!ep->auth_enable) 6990 return -EACCES; 6991 6992 hmacs = ep->auth_hmacs_list; 6993 data_len = ntohs(hmacs->param_hdr.length) - 6994 sizeof(struct sctp_paramhdr); 6995 6996 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6997 return -EINVAL; 6998 6999 len = sizeof(struct sctp_hmacalgo) + data_len; 7000 num_idents = data_len / sizeof(u16); 7001 7002 if (put_user(len, optlen)) 7003 return -EFAULT; 7004 if (put_user(num_idents, &p->shmac_num_idents)) 7005 return -EFAULT; 7006 for (i = 0; i < num_idents; i++) { 7007 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 7008 7009 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 7010 return -EFAULT; 7011 } 7012 return 0; 7013 } 7014 7015 static int sctp_getsockopt_active_key(struct sock *sk, int len, 7016 char __user *optval, int __user *optlen) 7017 { 7018 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7019 struct sctp_authkeyid val; 7020 struct sctp_association *asoc; 7021 7022 if (len < sizeof(struct sctp_authkeyid)) 7023 return -EINVAL; 7024 7025 len = sizeof(struct sctp_authkeyid); 7026 if (copy_from_user(&val, optval, len)) 7027 return -EFAULT; 7028 7029 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 7030 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 7031 return -EINVAL; 7032 7033 if (asoc) { 7034 if (!asoc->peer.auth_capable) 7035 return -EACCES; 7036 val.scact_keynumber = asoc->active_key_id; 7037 } else { 7038 if (!ep->auth_enable) 7039 return -EACCES; 7040 val.scact_keynumber = ep->active_key_id; 7041 } 7042 7043 if (put_user(len, optlen)) 7044 return -EFAULT; 7045 if (copy_to_user(optval, &val, len)) 7046 return -EFAULT; 7047 7048 return 0; 7049 } 7050 7051 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 7052 char __user *optval, int __user *optlen) 7053 { 7054 struct sctp_authchunks __user *p = (void __user *)optval; 7055 struct sctp_authchunks val; 7056 struct sctp_association *asoc; 7057 struct sctp_chunks_param *ch; 7058 u32 num_chunks = 0; 7059 char __user *to; 7060 7061 if (len < sizeof(struct sctp_authchunks)) 7062 return -EINVAL; 7063 7064 if (copy_from_user(&val, optval, sizeof(val))) 7065 return -EFAULT; 7066 7067 to = p->gauth_chunks; 7068 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7069 if (!asoc) 7070 return -EINVAL; 7071 7072 if (!asoc->peer.auth_capable) 7073 return -EACCES; 7074 7075 ch = asoc->peer.peer_chunks; 7076 if (!ch) 7077 goto num; 7078 7079 /* See if the user provided enough room for all the data */ 7080 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7081 if (len < num_chunks) 7082 return -EINVAL; 7083 7084 if (copy_to_user(to, ch->chunks, num_chunks)) 7085 return -EFAULT; 7086 num: 7087 len = sizeof(struct sctp_authchunks) + num_chunks; 7088 if (put_user(len, optlen)) 7089 return -EFAULT; 7090 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7091 return -EFAULT; 7092 return 0; 7093 } 7094 7095 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7096 char __user *optval, int __user *optlen) 7097 { 7098 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7099 struct sctp_authchunks __user *p = (void __user *)optval; 7100 struct sctp_authchunks val; 7101 struct sctp_association *asoc; 7102 struct sctp_chunks_param *ch; 7103 u32 num_chunks = 0; 7104 char __user *to; 7105 7106 if (len < sizeof(struct sctp_authchunks)) 7107 return -EINVAL; 7108 7109 if (copy_from_user(&val, optval, sizeof(val))) 7110 return -EFAULT; 7111 7112 to = p->gauth_chunks; 7113 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7114 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7115 sctp_style(sk, UDP)) 7116 return -EINVAL; 7117 7118 if (asoc) { 7119 if (!asoc->peer.auth_capable) 7120 return -EACCES; 7121 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7122 } else { 7123 if (!ep->auth_enable) 7124 return -EACCES; 7125 ch = ep->auth_chunk_list; 7126 } 7127 if (!ch) 7128 goto num; 7129 7130 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7131 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7132 return -EINVAL; 7133 7134 if (copy_to_user(to, ch->chunks, num_chunks)) 7135 return -EFAULT; 7136 num: 7137 len = sizeof(struct sctp_authchunks) + num_chunks; 7138 if (put_user(len, optlen)) 7139 return -EFAULT; 7140 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7141 return -EFAULT; 7142 7143 return 0; 7144 } 7145 7146 /* 7147 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7148 * This option gets the current number of associations that are attached 7149 * to a one-to-many style socket. The option value is an uint32_t. 7150 */ 7151 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7152 char __user *optval, int __user *optlen) 7153 { 7154 struct sctp_sock *sp = sctp_sk(sk); 7155 struct sctp_association *asoc; 7156 u32 val = 0; 7157 7158 if (sctp_style(sk, TCP)) 7159 return -EOPNOTSUPP; 7160 7161 if (len < sizeof(u32)) 7162 return -EINVAL; 7163 7164 len = sizeof(u32); 7165 7166 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7167 val++; 7168 } 7169 7170 if (put_user(len, optlen)) 7171 return -EFAULT; 7172 if (copy_to_user(optval, &val, len)) 7173 return -EFAULT; 7174 7175 return 0; 7176 } 7177 7178 /* 7179 * 8.1.23 SCTP_AUTO_ASCONF 7180 * See the corresponding setsockopt entry as description 7181 */ 7182 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7183 char __user *optval, int __user *optlen) 7184 { 7185 int val = 0; 7186 7187 if (len < sizeof(int)) 7188 return -EINVAL; 7189 7190 len = sizeof(int); 7191 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7192 val = 1; 7193 if (put_user(len, optlen)) 7194 return -EFAULT; 7195 if (copy_to_user(optval, &val, len)) 7196 return -EFAULT; 7197 return 0; 7198 } 7199 7200 /* 7201 * 8.2.6. Get the Current Identifiers of Associations 7202 * (SCTP_GET_ASSOC_ID_LIST) 7203 * 7204 * This option gets the current list of SCTP association identifiers of 7205 * the SCTP associations handled by a one-to-many style socket. 7206 */ 7207 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7208 char __user *optval, int __user *optlen) 7209 { 7210 struct sctp_sock *sp = sctp_sk(sk); 7211 struct sctp_association *asoc; 7212 struct sctp_assoc_ids *ids; 7213 u32 num = 0; 7214 7215 if (sctp_style(sk, TCP)) 7216 return -EOPNOTSUPP; 7217 7218 if (len < sizeof(struct sctp_assoc_ids)) 7219 return -EINVAL; 7220 7221 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7222 num++; 7223 } 7224 7225 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7226 return -EINVAL; 7227 7228 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7229 7230 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7231 if (unlikely(!ids)) 7232 return -ENOMEM; 7233 7234 ids->gaids_number_of_ids = num; 7235 num = 0; 7236 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7237 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7238 } 7239 7240 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7241 kfree(ids); 7242 return -EFAULT; 7243 } 7244 7245 kfree(ids); 7246 return 0; 7247 } 7248 7249 /* 7250 * SCTP_PEER_ADDR_THLDS 7251 * 7252 * This option allows us to fetch the partially failed threshold for one or all 7253 * transports in an association. See Section 6.1 of: 7254 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7255 */ 7256 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7257 char __user *optval, int len, 7258 int __user *optlen, bool v2) 7259 { 7260 struct sctp_paddrthlds_v2 val; 7261 struct sctp_transport *trans; 7262 struct sctp_association *asoc; 7263 int min; 7264 7265 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7266 if (len < min) 7267 return -EINVAL; 7268 len = min; 7269 if (copy_from_user(&val, optval, len)) 7270 return -EFAULT; 7271 7272 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7273 trans = sctp_addr_id2transport(sk, &val.spt_address, 7274 val.spt_assoc_id); 7275 if (!trans) 7276 return -ENOENT; 7277 7278 val.spt_pathmaxrxt = trans->pathmaxrxt; 7279 val.spt_pathpfthld = trans->pf_retrans; 7280 val.spt_pathcpthld = trans->ps_retrans; 7281 7282 goto out; 7283 } 7284 7285 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7286 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7287 sctp_style(sk, UDP)) 7288 return -EINVAL; 7289 7290 if (asoc) { 7291 val.spt_pathpfthld = asoc->pf_retrans; 7292 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7293 val.spt_pathcpthld = asoc->ps_retrans; 7294 } else { 7295 struct sctp_sock *sp = sctp_sk(sk); 7296 7297 val.spt_pathpfthld = sp->pf_retrans; 7298 val.spt_pathmaxrxt = sp->pathmaxrxt; 7299 val.spt_pathcpthld = sp->ps_retrans; 7300 } 7301 7302 out: 7303 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7304 return -EFAULT; 7305 7306 return 0; 7307 } 7308 7309 /* 7310 * SCTP_GET_ASSOC_STATS 7311 * 7312 * This option retrieves local per endpoint statistics. It is modeled 7313 * after OpenSolaris' implementation 7314 */ 7315 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7316 char __user *optval, 7317 int __user *optlen) 7318 { 7319 struct sctp_assoc_stats sas; 7320 struct sctp_association *asoc = NULL; 7321 7322 /* User must provide at least the assoc id */ 7323 if (len < sizeof(sctp_assoc_t)) 7324 return -EINVAL; 7325 7326 /* Allow the struct to grow and fill in as much as possible */ 7327 len = min_t(size_t, len, sizeof(sas)); 7328 7329 if (copy_from_user(&sas, optval, len)) 7330 return -EFAULT; 7331 7332 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7333 if (!asoc) 7334 return -EINVAL; 7335 7336 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7337 sas.sas_gapcnt = asoc->stats.gapcnt; 7338 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7339 sas.sas_osacks = asoc->stats.osacks; 7340 sas.sas_isacks = asoc->stats.isacks; 7341 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7342 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7343 sas.sas_oodchunks = asoc->stats.oodchunks; 7344 sas.sas_iodchunks = asoc->stats.iodchunks; 7345 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7346 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7347 sas.sas_idupchunks = asoc->stats.idupchunks; 7348 sas.sas_opackets = asoc->stats.opackets; 7349 sas.sas_ipackets = asoc->stats.ipackets; 7350 7351 /* New high max rto observed, will return 0 if not a single 7352 * RTO update took place. obs_rto_ipaddr will be bogus 7353 * in such a case 7354 */ 7355 sas.sas_maxrto = asoc->stats.max_obs_rto; 7356 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7357 sizeof(struct sockaddr_storage)); 7358 7359 /* Mark beginning of a new observation period */ 7360 asoc->stats.max_obs_rto = asoc->rto_min; 7361 7362 if (put_user(len, optlen)) 7363 return -EFAULT; 7364 7365 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7366 7367 if (copy_to_user(optval, &sas, len)) 7368 return -EFAULT; 7369 7370 return 0; 7371 } 7372 7373 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7374 char __user *optval, 7375 int __user *optlen) 7376 { 7377 int val = 0; 7378 7379 if (len < sizeof(int)) 7380 return -EINVAL; 7381 7382 len = sizeof(int); 7383 if (sctp_sk(sk)->recvrcvinfo) 7384 val = 1; 7385 if (put_user(len, optlen)) 7386 return -EFAULT; 7387 if (copy_to_user(optval, &val, len)) 7388 return -EFAULT; 7389 7390 return 0; 7391 } 7392 7393 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7394 char __user *optval, 7395 int __user *optlen) 7396 { 7397 int val = 0; 7398 7399 if (len < sizeof(int)) 7400 return -EINVAL; 7401 7402 len = sizeof(int); 7403 if (sctp_sk(sk)->recvnxtinfo) 7404 val = 1; 7405 if (put_user(len, optlen)) 7406 return -EFAULT; 7407 if (copy_to_user(optval, &val, len)) 7408 return -EFAULT; 7409 7410 return 0; 7411 } 7412 7413 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7414 char __user *optval, 7415 int __user *optlen) 7416 { 7417 struct sctp_assoc_value params; 7418 struct sctp_association *asoc; 7419 int retval = -EFAULT; 7420 7421 if (len < sizeof(params)) { 7422 retval = -EINVAL; 7423 goto out; 7424 } 7425 7426 len = sizeof(params); 7427 if (copy_from_user(¶ms, optval, len)) 7428 goto out; 7429 7430 asoc = sctp_id2assoc(sk, params.assoc_id); 7431 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7432 sctp_style(sk, UDP)) { 7433 retval = -EINVAL; 7434 goto out; 7435 } 7436 7437 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7438 : sctp_sk(sk)->ep->prsctp_enable; 7439 7440 if (put_user(len, optlen)) 7441 goto out; 7442 7443 if (copy_to_user(optval, ¶ms, len)) 7444 goto out; 7445 7446 retval = 0; 7447 7448 out: 7449 return retval; 7450 } 7451 7452 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7453 char __user *optval, 7454 int __user *optlen) 7455 { 7456 struct sctp_default_prinfo info; 7457 struct sctp_association *asoc; 7458 int retval = -EFAULT; 7459 7460 if (len < sizeof(info)) { 7461 retval = -EINVAL; 7462 goto out; 7463 } 7464 7465 len = sizeof(info); 7466 if (copy_from_user(&info, optval, len)) 7467 goto out; 7468 7469 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7470 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7471 sctp_style(sk, UDP)) { 7472 retval = -EINVAL; 7473 goto out; 7474 } 7475 7476 if (asoc) { 7477 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7478 info.pr_value = asoc->default_timetolive; 7479 } else { 7480 struct sctp_sock *sp = sctp_sk(sk); 7481 7482 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7483 info.pr_value = sp->default_timetolive; 7484 } 7485 7486 if (put_user(len, optlen)) 7487 goto out; 7488 7489 if (copy_to_user(optval, &info, len)) 7490 goto out; 7491 7492 retval = 0; 7493 7494 out: 7495 return retval; 7496 } 7497 7498 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7499 char __user *optval, 7500 int __user *optlen) 7501 { 7502 struct sctp_prstatus params; 7503 struct sctp_association *asoc; 7504 int policy; 7505 int retval = -EINVAL; 7506 7507 if (len < sizeof(params)) 7508 goto out; 7509 7510 len = sizeof(params); 7511 if (copy_from_user(¶ms, optval, len)) { 7512 retval = -EFAULT; 7513 goto out; 7514 } 7515 7516 policy = params.sprstat_policy; 7517 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7518 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7519 goto out; 7520 7521 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7522 if (!asoc) 7523 goto out; 7524 7525 if (policy == SCTP_PR_SCTP_ALL) { 7526 params.sprstat_abandoned_unsent = 0; 7527 params.sprstat_abandoned_sent = 0; 7528 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7529 params.sprstat_abandoned_unsent += 7530 asoc->abandoned_unsent[policy]; 7531 params.sprstat_abandoned_sent += 7532 asoc->abandoned_sent[policy]; 7533 } 7534 } else { 7535 params.sprstat_abandoned_unsent = 7536 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7537 params.sprstat_abandoned_sent = 7538 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7539 } 7540 7541 if (put_user(len, optlen)) { 7542 retval = -EFAULT; 7543 goto out; 7544 } 7545 7546 if (copy_to_user(optval, ¶ms, len)) { 7547 retval = -EFAULT; 7548 goto out; 7549 } 7550 7551 retval = 0; 7552 7553 out: 7554 return retval; 7555 } 7556 7557 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7558 char __user *optval, 7559 int __user *optlen) 7560 { 7561 struct sctp_stream_out_ext *streamoute; 7562 struct sctp_association *asoc; 7563 struct sctp_prstatus params; 7564 int retval = -EINVAL; 7565 int policy; 7566 7567 if (len < sizeof(params)) 7568 goto out; 7569 7570 len = sizeof(params); 7571 if (copy_from_user(¶ms, optval, len)) { 7572 retval = -EFAULT; 7573 goto out; 7574 } 7575 7576 policy = params.sprstat_policy; 7577 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7578 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7579 goto out; 7580 7581 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7582 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7583 goto out; 7584 7585 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7586 if (!streamoute) { 7587 /* Not allocated yet, means all stats are 0 */ 7588 params.sprstat_abandoned_unsent = 0; 7589 params.sprstat_abandoned_sent = 0; 7590 retval = 0; 7591 goto out; 7592 } 7593 7594 if (policy == SCTP_PR_SCTP_ALL) { 7595 params.sprstat_abandoned_unsent = 0; 7596 params.sprstat_abandoned_sent = 0; 7597 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7598 params.sprstat_abandoned_unsent += 7599 streamoute->abandoned_unsent[policy]; 7600 params.sprstat_abandoned_sent += 7601 streamoute->abandoned_sent[policy]; 7602 } 7603 } else { 7604 params.sprstat_abandoned_unsent = 7605 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7606 params.sprstat_abandoned_sent = 7607 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7608 } 7609 7610 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7611 retval = -EFAULT; 7612 goto out; 7613 } 7614 7615 retval = 0; 7616 7617 out: 7618 return retval; 7619 } 7620 7621 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7622 char __user *optval, 7623 int __user *optlen) 7624 { 7625 struct sctp_assoc_value params; 7626 struct sctp_association *asoc; 7627 int retval = -EFAULT; 7628 7629 if (len < sizeof(params)) { 7630 retval = -EINVAL; 7631 goto out; 7632 } 7633 7634 len = sizeof(params); 7635 if (copy_from_user(¶ms, optval, len)) 7636 goto out; 7637 7638 asoc = sctp_id2assoc(sk, params.assoc_id); 7639 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7640 sctp_style(sk, UDP)) { 7641 retval = -EINVAL; 7642 goto out; 7643 } 7644 7645 params.assoc_value = asoc ? asoc->peer.reconf_capable 7646 : sctp_sk(sk)->ep->reconf_enable; 7647 7648 if (put_user(len, optlen)) 7649 goto out; 7650 7651 if (copy_to_user(optval, ¶ms, len)) 7652 goto out; 7653 7654 retval = 0; 7655 7656 out: 7657 return retval; 7658 } 7659 7660 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7661 char __user *optval, 7662 int __user *optlen) 7663 { 7664 struct sctp_assoc_value params; 7665 struct sctp_association *asoc; 7666 int retval = -EFAULT; 7667 7668 if (len < sizeof(params)) { 7669 retval = -EINVAL; 7670 goto out; 7671 } 7672 7673 len = sizeof(params); 7674 if (copy_from_user(¶ms, optval, len)) 7675 goto out; 7676 7677 asoc = sctp_id2assoc(sk, params.assoc_id); 7678 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7679 sctp_style(sk, UDP)) { 7680 retval = -EINVAL; 7681 goto out; 7682 } 7683 7684 params.assoc_value = asoc ? asoc->strreset_enable 7685 : sctp_sk(sk)->ep->strreset_enable; 7686 7687 if (put_user(len, optlen)) 7688 goto out; 7689 7690 if (copy_to_user(optval, ¶ms, len)) 7691 goto out; 7692 7693 retval = 0; 7694 7695 out: 7696 return retval; 7697 } 7698 7699 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7700 char __user *optval, 7701 int __user *optlen) 7702 { 7703 struct sctp_assoc_value params; 7704 struct sctp_association *asoc; 7705 int retval = -EFAULT; 7706 7707 if (len < sizeof(params)) { 7708 retval = -EINVAL; 7709 goto out; 7710 } 7711 7712 len = sizeof(params); 7713 if (copy_from_user(¶ms, optval, len)) 7714 goto out; 7715 7716 asoc = sctp_id2assoc(sk, params.assoc_id); 7717 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7718 sctp_style(sk, UDP)) { 7719 retval = -EINVAL; 7720 goto out; 7721 } 7722 7723 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7724 : sctp_sk(sk)->default_ss; 7725 7726 if (put_user(len, optlen)) 7727 goto out; 7728 7729 if (copy_to_user(optval, ¶ms, len)) 7730 goto out; 7731 7732 retval = 0; 7733 7734 out: 7735 return retval; 7736 } 7737 7738 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7739 char __user *optval, 7740 int __user *optlen) 7741 { 7742 struct sctp_stream_value params; 7743 struct sctp_association *asoc; 7744 int retval = -EFAULT; 7745 7746 if (len < sizeof(params)) { 7747 retval = -EINVAL; 7748 goto out; 7749 } 7750 7751 len = sizeof(params); 7752 if (copy_from_user(¶ms, optval, len)) 7753 goto out; 7754 7755 asoc = sctp_id2assoc(sk, params.assoc_id); 7756 if (!asoc) { 7757 retval = -EINVAL; 7758 goto out; 7759 } 7760 7761 retval = sctp_sched_get_value(asoc, params.stream_id, 7762 ¶ms.stream_value); 7763 if (retval) 7764 goto out; 7765 7766 if (put_user(len, optlen)) { 7767 retval = -EFAULT; 7768 goto out; 7769 } 7770 7771 if (copy_to_user(optval, ¶ms, len)) { 7772 retval = -EFAULT; 7773 goto out; 7774 } 7775 7776 out: 7777 return retval; 7778 } 7779 7780 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7781 char __user *optval, 7782 int __user *optlen) 7783 { 7784 struct sctp_assoc_value params; 7785 struct sctp_association *asoc; 7786 int retval = -EFAULT; 7787 7788 if (len < sizeof(params)) { 7789 retval = -EINVAL; 7790 goto out; 7791 } 7792 7793 len = sizeof(params); 7794 if (copy_from_user(¶ms, optval, len)) 7795 goto out; 7796 7797 asoc = sctp_id2assoc(sk, params.assoc_id); 7798 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7799 sctp_style(sk, UDP)) { 7800 retval = -EINVAL; 7801 goto out; 7802 } 7803 7804 params.assoc_value = asoc ? asoc->peer.intl_capable 7805 : sctp_sk(sk)->ep->intl_enable; 7806 7807 if (put_user(len, optlen)) 7808 goto out; 7809 7810 if (copy_to_user(optval, ¶ms, len)) 7811 goto out; 7812 7813 retval = 0; 7814 7815 out: 7816 return retval; 7817 } 7818 7819 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7820 char __user *optval, 7821 int __user *optlen) 7822 { 7823 int val; 7824 7825 if (len < sizeof(int)) 7826 return -EINVAL; 7827 7828 len = sizeof(int); 7829 val = sctp_sk(sk)->reuse; 7830 if (put_user(len, optlen)) 7831 return -EFAULT; 7832 7833 if (copy_to_user(optval, &val, len)) 7834 return -EFAULT; 7835 7836 return 0; 7837 } 7838 7839 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7840 int __user *optlen) 7841 { 7842 struct sctp_association *asoc; 7843 struct sctp_event param; 7844 __u16 subscribe; 7845 7846 if (len < sizeof(param)) 7847 return -EINVAL; 7848 7849 len = sizeof(param); 7850 if (copy_from_user(¶m, optval, len)) 7851 return -EFAULT; 7852 7853 if (param.se_type < SCTP_SN_TYPE_BASE || 7854 param.se_type > SCTP_SN_TYPE_MAX) 7855 return -EINVAL; 7856 7857 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7858 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7859 sctp_style(sk, UDP)) 7860 return -EINVAL; 7861 7862 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7863 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7864 7865 if (put_user(len, optlen)) 7866 return -EFAULT; 7867 7868 if (copy_to_user(optval, ¶m, len)) 7869 return -EFAULT; 7870 7871 return 0; 7872 } 7873 7874 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7875 char __user *optval, 7876 int __user *optlen) 7877 { 7878 struct sctp_assoc_value params; 7879 struct sctp_association *asoc; 7880 int retval = -EFAULT; 7881 7882 if (len < sizeof(params)) { 7883 retval = -EINVAL; 7884 goto out; 7885 } 7886 7887 len = sizeof(params); 7888 if (copy_from_user(¶ms, optval, len)) 7889 goto out; 7890 7891 asoc = sctp_id2assoc(sk, params.assoc_id); 7892 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7893 sctp_style(sk, UDP)) { 7894 retval = -EINVAL; 7895 goto out; 7896 } 7897 7898 params.assoc_value = asoc ? asoc->peer.asconf_capable 7899 : sctp_sk(sk)->ep->asconf_enable; 7900 7901 if (put_user(len, optlen)) 7902 goto out; 7903 7904 if (copy_to_user(optval, ¶ms, len)) 7905 goto out; 7906 7907 retval = 0; 7908 7909 out: 7910 return retval; 7911 } 7912 7913 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7914 char __user *optval, 7915 int __user *optlen) 7916 { 7917 struct sctp_assoc_value params; 7918 struct sctp_association *asoc; 7919 int retval = -EFAULT; 7920 7921 if (len < sizeof(params)) { 7922 retval = -EINVAL; 7923 goto out; 7924 } 7925 7926 len = sizeof(params); 7927 if (copy_from_user(¶ms, optval, len)) 7928 goto out; 7929 7930 asoc = sctp_id2assoc(sk, params.assoc_id); 7931 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7932 sctp_style(sk, UDP)) { 7933 retval = -EINVAL; 7934 goto out; 7935 } 7936 7937 params.assoc_value = asoc ? asoc->peer.auth_capable 7938 : sctp_sk(sk)->ep->auth_enable; 7939 7940 if (put_user(len, optlen)) 7941 goto out; 7942 7943 if (copy_to_user(optval, ¶ms, len)) 7944 goto out; 7945 7946 retval = 0; 7947 7948 out: 7949 return retval; 7950 } 7951 7952 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7953 char __user *optval, 7954 int __user *optlen) 7955 { 7956 struct sctp_assoc_value params; 7957 struct sctp_association *asoc; 7958 int retval = -EFAULT; 7959 7960 if (len < sizeof(params)) { 7961 retval = -EINVAL; 7962 goto out; 7963 } 7964 7965 len = sizeof(params); 7966 if (copy_from_user(¶ms, optval, len)) 7967 goto out; 7968 7969 asoc = sctp_id2assoc(sk, params.assoc_id); 7970 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7971 sctp_style(sk, UDP)) { 7972 retval = -EINVAL; 7973 goto out; 7974 } 7975 7976 params.assoc_value = asoc ? asoc->peer.ecn_capable 7977 : sctp_sk(sk)->ep->ecn_enable; 7978 7979 if (put_user(len, optlen)) 7980 goto out; 7981 7982 if (copy_to_user(optval, ¶ms, len)) 7983 goto out; 7984 7985 retval = 0; 7986 7987 out: 7988 return retval; 7989 } 7990 7991 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7992 char __user *optval, 7993 int __user *optlen) 7994 { 7995 struct sctp_assoc_value params; 7996 struct sctp_association *asoc; 7997 int retval = -EFAULT; 7998 7999 if (len < sizeof(params)) { 8000 retval = -EINVAL; 8001 goto out; 8002 } 8003 8004 len = sizeof(params); 8005 if (copy_from_user(¶ms, optval, len)) 8006 goto out; 8007 8008 asoc = sctp_id2assoc(sk, params.assoc_id); 8009 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 8010 sctp_style(sk, UDP)) { 8011 retval = -EINVAL; 8012 goto out; 8013 } 8014 8015 params.assoc_value = asoc ? asoc->pf_expose 8016 : sctp_sk(sk)->pf_expose; 8017 8018 if (put_user(len, optlen)) 8019 goto out; 8020 8021 if (copy_to_user(optval, ¶ms, len)) 8022 goto out; 8023 8024 retval = 0; 8025 8026 out: 8027 return retval; 8028 } 8029 8030 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8031 char __user *optval, int __user *optlen) 8032 { 8033 int retval = 0; 8034 int len; 8035 8036 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8037 8038 /* I can hardly begin to describe how wrong this is. This is 8039 * so broken as to be worse than useless. The API draft 8040 * REALLY is NOT helpful here... I am not convinced that the 8041 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8042 * are at all well-founded. 8043 */ 8044 if (level != SOL_SCTP) { 8045 struct sctp_af *af = sctp_sk(sk)->pf->af; 8046 8047 retval = af->getsockopt(sk, level, optname, optval, optlen); 8048 return retval; 8049 } 8050 8051 if (get_user(len, optlen)) 8052 return -EFAULT; 8053 8054 if (len < 0) 8055 return -EINVAL; 8056 8057 lock_sock(sk); 8058 8059 switch (optname) { 8060 case SCTP_STATUS: 8061 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8062 break; 8063 case SCTP_DISABLE_FRAGMENTS: 8064 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8065 optlen); 8066 break; 8067 case SCTP_EVENTS: 8068 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8069 break; 8070 case SCTP_AUTOCLOSE: 8071 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8072 break; 8073 case SCTP_SOCKOPT_PEELOFF: 8074 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8075 break; 8076 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8077 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8078 break; 8079 case SCTP_PEER_ADDR_PARAMS: 8080 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8081 optlen); 8082 break; 8083 case SCTP_DELAYED_SACK: 8084 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8085 optlen); 8086 break; 8087 case SCTP_INITMSG: 8088 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8089 break; 8090 case SCTP_GET_PEER_ADDRS: 8091 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8092 optlen); 8093 break; 8094 case SCTP_GET_LOCAL_ADDRS: 8095 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8096 optlen); 8097 break; 8098 case SCTP_SOCKOPT_CONNECTX3: 8099 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8100 break; 8101 case SCTP_DEFAULT_SEND_PARAM: 8102 retval = sctp_getsockopt_default_send_param(sk, len, 8103 optval, optlen); 8104 break; 8105 case SCTP_DEFAULT_SNDINFO: 8106 retval = sctp_getsockopt_default_sndinfo(sk, len, 8107 optval, optlen); 8108 break; 8109 case SCTP_PRIMARY_ADDR: 8110 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8111 break; 8112 case SCTP_NODELAY: 8113 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8114 break; 8115 case SCTP_RTOINFO: 8116 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8117 break; 8118 case SCTP_ASSOCINFO: 8119 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8120 break; 8121 case SCTP_I_WANT_MAPPED_V4_ADDR: 8122 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8123 break; 8124 case SCTP_MAXSEG: 8125 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8126 break; 8127 case SCTP_GET_PEER_ADDR_INFO: 8128 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8129 optlen); 8130 break; 8131 case SCTP_ADAPTATION_LAYER: 8132 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8133 optlen); 8134 break; 8135 case SCTP_CONTEXT: 8136 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8137 break; 8138 case SCTP_FRAGMENT_INTERLEAVE: 8139 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8140 optlen); 8141 break; 8142 case SCTP_PARTIAL_DELIVERY_POINT: 8143 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8144 optlen); 8145 break; 8146 case SCTP_MAX_BURST: 8147 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8148 break; 8149 case SCTP_AUTH_KEY: 8150 case SCTP_AUTH_CHUNK: 8151 case SCTP_AUTH_DELETE_KEY: 8152 case SCTP_AUTH_DEACTIVATE_KEY: 8153 retval = -EOPNOTSUPP; 8154 break; 8155 case SCTP_HMAC_IDENT: 8156 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8157 break; 8158 case SCTP_AUTH_ACTIVE_KEY: 8159 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8160 break; 8161 case SCTP_PEER_AUTH_CHUNKS: 8162 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8163 optlen); 8164 break; 8165 case SCTP_LOCAL_AUTH_CHUNKS: 8166 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8167 optlen); 8168 break; 8169 case SCTP_GET_ASSOC_NUMBER: 8170 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8171 break; 8172 case SCTP_GET_ASSOC_ID_LIST: 8173 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8174 break; 8175 case SCTP_AUTO_ASCONF: 8176 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8177 break; 8178 case SCTP_PEER_ADDR_THLDS: 8179 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8180 optlen, false); 8181 break; 8182 case SCTP_PEER_ADDR_THLDS_V2: 8183 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8184 optlen, true); 8185 break; 8186 case SCTP_GET_ASSOC_STATS: 8187 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8188 break; 8189 case SCTP_RECVRCVINFO: 8190 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8191 break; 8192 case SCTP_RECVNXTINFO: 8193 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8194 break; 8195 case SCTP_PR_SUPPORTED: 8196 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8197 break; 8198 case SCTP_DEFAULT_PRINFO: 8199 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8200 optlen); 8201 break; 8202 case SCTP_PR_ASSOC_STATUS: 8203 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8204 optlen); 8205 break; 8206 case SCTP_PR_STREAM_STATUS: 8207 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8208 optlen); 8209 break; 8210 case SCTP_RECONFIG_SUPPORTED: 8211 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8212 optlen); 8213 break; 8214 case SCTP_ENABLE_STREAM_RESET: 8215 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8216 optlen); 8217 break; 8218 case SCTP_STREAM_SCHEDULER: 8219 retval = sctp_getsockopt_scheduler(sk, len, optval, 8220 optlen); 8221 break; 8222 case SCTP_STREAM_SCHEDULER_VALUE: 8223 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8224 optlen); 8225 break; 8226 case SCTP_INTERLEAVING_SUPPORTED: 8227 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8228 optlen); 8229 break; 8230 case SCTP_REUSE_PORT: 8231 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8232 break; 8233 case SCTP_EVENT: 8234 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8235 break; 8236 case SCTP_ASCONF_SUPPORTED: 8237 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8238 optlen); 8239 break; 8240 case SCTP_AUTH_SUPPORTED: 8241 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8242 optlen); 8243 break; 8244 case SCTP_ECN_SUPPORTED: 8245 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8246 break; 8247 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8248 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8249 break; 8250 default: 8251 retval = -ENOPROTOOPT; 8252 break; 8253 } 8254 8255 release_sock(sk); 8256 return retval; 8257 } 8258 8259 static int sctp_hash(struct sock *sk) 8260 { 8261 /* STUB */ 8262 return 0; 8263 } 8264 8265 static void sctp_unhash(struct sock *sk) 8266 { 8267 /* STUB */ 8268 } 8269 8270 /* Check if port is acceptable. Possibly find first available port. 8271 * 8272 * The port hash table (contained in the 'global' SCTP protocol storage 8273 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8274 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8275 * list (the list number is the port number hashed out, so as you 8276 * would expect from a hash function, all the ports in a given list have 8277 * such a number that hashes out to the same list number; you were 8278 * expecting that, right?); so each list has a set of ports, with a 8279 * link to the socket (struct sock) that uses it, the port number and 8280 * a fastreuse flag (FIXME: NPI ipg). 8281 */ 8282 static struct sctp_bind_bucket *sctp_bucket_create( 8283 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8284 8285 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8286 { 8287 struct sctp_sock *sp = sctp_sk(sk); 8288 bool reuse = (sk->sk_reuse || sp->reuse); 8289 struct sctp_bind_hashbucket *head; /* hash list */ 8290 struct net *net = sock_net(sk); 8291 kuid_t uid = sock_i_uid(sk); 8292 struct sctp_bind_bucket *pp; 8293 unsigned short snum; 8294 int ret; 8295 8296 snum = ntohs(addr->v4.sin_port); 8297 8298 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8299 8300 local_bh_disable(); 8301 8302 if (snum == 0) { 8303 /* Search for an available port. */ 8304 int low, high, remaining, index; 8305 unsigned int rover; 8306 8307 inet_get_local_port_range(net, &low, &high); 8308 remaining = (high - low) + 1; 8309 rover = prandom_u32() % remaining + low; 8310 8311 do { 8312 rover++; 8313 if ((rover < low) || (rover > high)) 8314 rover = low; 8315 if (inet_is_local_reserved_port(net, rover)) 8316 continue; 8317 index = sctp_phashfn(net, rover); 8318 head = &sctp_port_hashtable[index]; 8319 spin_lock(&head->lock); 8320 sctp_for_each_hentry(pp, &head->chain) 8321 if ((pp->port == rover) && 8322 net_eq(net, pp->net)) 8323 goto next; 8324 break; 8325 next: 8326 spin_unlock(&head->lock); 8327 } while (--remaining > 0); 8328 8329 /* Exhausted local port range during search? */ 8330 ret = 1; 8331 if (remaining <= 0) 8332 goto fail; 8333 8334 /* OK, here is the one we will use. HEAD (the port 8335 * hash table list entry) is non-NULL and we hold it's 8336 * mutex. 8337 */ 8338 snum = rover; 8339 } else { 8340 /* We are given an specific port number; we verify 8341 * that it is not being used. If it is used, we will 8342 * exahust the search in the hash list corresponding 8343 * to the port number (snum) - we detect that with the 8344 * port iterator, pp being NULL. 8345 */ 8346 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8347 spin_lock(&head->lock); 8348 sctp_for_each_hentry(pp, &head->chain) { 8349 if ((pp->port == snum) && net_eq(pp->net, net)) 8350 goto pp_found; 8351 } 8352 } 8353 pp = NULL; 8354 goto pp_not_found; 8355 pp_found: 8356 if (!hlist_empty(&pp->owner)) { 8357 /* We had a port hash table hit - there is an 8358 * available port (pp != NULL) and it is being 8359 * used by other socket (pp->owner not empty); that other 8360 * socket is going to be sk2. 8361 */ 8362 struct sock *sk2; 8363 8364 pr_debug("%s: found a possible match\n", __func__); 8365 8366 if ((pp->fastreuse && reuse && 8367 sk->sk_state != SCTP_SS_LISTENING) || 8368 (pp->fastreuseport && sk->sk_reuseport && 8369 uid_eq(pp->fastuid, uid))) 8370 goto success; 8371 8372 /* Run through the list of sockets bound to the port 8373 * (pp->port) [via the pointers bind_next and 8374 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8375 * we get the endpoint they describe and run through 8376 * the endpoint's list of IP (v4 or v6) addresses, 8377 * comparing each of the addresses with the address of 8378 * the socket sk. If we find a match, then that means 8379 * that this port/socket (sk) combination are already 8380 * in an endpoint. 8381 */ 8382 sk_for_each_bound(sk2, &pp->owner) { 8383 struct sctp_sock *sp2 = sctp_sk(sk2); 8384 struct sctp_endpoint *ep2 = sp2->ep; 8385 8386 if (sk == sk2 || 8387 (reuse && (sk2->sk_reuse || sp2->reuse) && 8388 sk2->sk_state != SCTP_SS_LISTENING) || 8389 (sk->sk_reuseport && sk2->sk_reuseport && 8390 uid_eq(uid, sock_i_uid(sk2)))) 8391 continue; 8392 8393 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8394 addr, sp2, sp)) { 8395 ret = 1; 8396 goto fail_unlock; 8397 } 8398 } 8399 8400 pr_debug("%s: found a match\n", __func__); 8401 } 8402 pp_not_found: 8403 /* If there was a hash table miss, create a new port. */ 8404 ret = 1; 8405 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8406 goto fail_unlock; 8407 8408 /* In either case (hit or miss), make sure fastreuse is 1 only 8409 * if sk->sk_reuse is too (that is, if the caller requested 8410 * SO_REUSEADDR on this socket -sk-). 8411 */ 8412 if (hlist_empty(&pp->owner)) { 8413 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8414 pp->fastreuse = 1; 8415 else 8416 pp->fastreuse = 0; 8417 8418 if (sk->sk_reuseport) { 8419 pp->fastreuseport = 1; 8420 pp->fastuid = uid; 8421 } else { 8422 pp->fastreuseport = 0; 8423 } 8424 } else { 8425 if (pp->fastreuse && 8426 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8427 pp->fastreuse = 0; 8428 8429 if (pp->fastreuseport && 8430 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8431 pp->fastreuseport = 0; 8432 } 8433 8434 /* We are set, so fill up all the data in the hash table 8435 * entry, tie the socket list information with the rest of the 8436 * sockets FIXME: Blurry, NPI (ipg). 8437 */ 8438 success: 8439 if (!sp->bind_hash) { 8440 inet_sk(sk)->inet_num = snum; 8441 sk_add_bind_node(sk, &pp->owner); 8442 sp->bind_hash = pp; 8443 } 8444 ret = 0; 8445 8446 fail_unlock: 8447 spin_unlock(&head->lock); 8448 8449 fail: 8450 local_bh_enable(); 8451 return ret; 8452 } 8453 8454 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8455 * port is requested. 8456 */ 8457 static int sctp_get_port(struct sock *sk, unsigned short snum) 8458 { 8459 union sctp_addr addr; 8460 struct sctp_af *af = sctp_sk(sk)->pf->af; 8461 8462 /* Set up a dummy address struct from the sk. */ 8463 af->from_sk(&addr, sk); 8464 addr.v4.sin_port = htons(snum); 8465 8466 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8467 return sctp_get_port_local(sk, &addr); 8468 } 8469 8470 /* 8471 * Move a socket to LISTENING state. 8472 */ 8473 static int sctp_listen_start(struct sock *sk, int backlog) 8474 { 8475 struct sctp_sock *sp = sctp_sk(sk); 8476 struct sctp_endpoint *ep = sp->ep; 8477 struct crypto_shash *tfm = NULL; 8478 char alg[32]; 8479 8480 /* Allocate HMAC for generating cookie. */ 8481 if (!sp->hmac && sp->sctp_hmac_alg) { 8482 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8483 tfm = crypto_alloc_shash(alg, 0, 0); 8484 if (IS_ERR(tfm)) { 8485 net_info_ratelimited("failed to load transform for %s: %ld\n", 8486 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8487 return -ENOSYS; 8488 } 8489 sctp_sk(sk)->hmac = tfm; 8490 } 8491 8492 /* 8493 * If a bind() or sctp_bindx() is not called prior to a listen() 8494 * call that allows new associations to be accepted, the system 8495 * picks an ephemeral port and will choose an address set equivalent 8496 * to binding with a wildcard address. 8497 * 8498 * This is not currently spelled out in the SCTP sockets 8499 * extensions draft, but follows the practice as seen in TCP 8500 * sockets. 8501 * 8502 */ 8503 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8504 if (!ep->base.bind_addr.port) { 8505 if (sctp_autobind(sk)) 8506 return -EAGAIN; 8507 } else { 8508 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8509 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8510 return -EADDRINUSE; 8511 } 8512 } 8513 8514 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8515 return sctp_hash_endpoint(ep); 8516 } 8517 8518 /* 8519 * 4.1.3 / 5.1.3 listen() 8520 * 8521 * By default, new associations are not accepted for UDP style sockets. 8522 * An application uses listen() to mark a socket as being able to 8523 * accept new associations. 8524 * 8525 * On TCP style sockets, applications use listen() to ready the SCTP 8526 * endpoint for accepting inbound associations. 8527 * 8528 * On both types of endpoints a backlog of '0' disables listening. 8529 * 8530 * Move a socket to LISTENING state. 8531 */ 8532 int sctp_inet_listen(struct socket *sock, int backlog) 8533 { 8534 struct sock *sk = sock->sk; 8535 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8536 int err = -EINVAL; 8537 8538 if (unlikely(backlog < 0)) 8539 return err; 8540 8541 lock_sock(sk); 8542 8543 /* Peeled-off sockets are not allowed to listen(). */ 8544 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8545 goto out; 8546 8547 if (sock->state != SS_UNCONNECTED) 8548 goto out; 8549 8550 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8551 goto out; 8552 8553 /* If backlog is zero, disable listening. */ 8554 if (!backlog) { 8555 if (sctp_sstate(sk, CLOSED)) 8556 goto out; 8557 8558 err = 0; 8559 sctp_unhash_endpoint(ep); 8560 sk->sk_state = SCTP_SS_CLOSED; 8561 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8562 sctp_sk(sk)->bind_hash->fastreuse = 1; 8563 goto out; 8564 } 8565 8566 /* If we are already listening, just update the backlog */ 8567 if (sctp_sstate(sk, LISTENING)) 8568 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8569 else { 8570 err = sctp_listen_start(sk, backlog); 8571 if (err) 8572 goto out; 8573 } 8574 8575 err = 0; 8576 out: 8577 release_sock(sk); 8578 return err; 8579 } 8580 8581 /* 8582 * This function is done by modeling the current datagram_poll() and the 8583 * tcp_poll(). Note that, based on these implementations, we don't 8584 * lock the socket in this function, even though it seems that, 8585 * ideally, locking or some other mechanisms can be used to ensure 8586 * the integrity of the counters (sndbuf and wmem_alloc) used 8587 * in this place. We assume that we don't need locks either until proven 8588 * otherwise. 8589 * 8590 * Another thing to note is that we include the Async I/O support 8591 * here, again, by modeling the current TCP/UDP code. We don't have 8592 * a good way to test with it yet. 8593 */ 8594 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8595 { 8596 struct sock *sk = sock->sk; 8597 struct sctp_sock *sp = sctp_sk(sk); 8598 __poll_t mask; 8599 8600 poll_wait(file, sk_sleep(sk), wait); 8601 8602 sock_rps_record_flow(sk); 8603 8604 /* A TCP-style listening socket becomes readable when the accept queue 8605 * is not empty. 8606 */ 8607 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8608 return (!list_empty(&sp->ep->asocs)) ? 8609 (EPOLLIN | EPOLLRDNORM) : 0; 8610 8611 mask = 0; 8612 8613 /* Is there any exceptional events? */ 8614 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8615 mask |= EPOLLERR | 8616 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8617 if (sk->sk_shutdown & RCV_SHUTDOWN) 8618 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8619 if (sk->sk_shutdown == SHUTDOWN_MASK) 8620 mask |= EPOLLHUP; 8621 8622 /* Is it readable? Reconsider this code with TCP-style support. */ 8623 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8624 mask |= EPOLLIN | EPOLLRDNORM; 8625 8626 /* The association is either gone or not ready. */ 8627 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8628 return mask; 8629 8630 /* Is it writable? */ 8631 if (sctp_writeable(sk)) { 8632 mask |= EPOLLOUT | EPOLLWRNORM; 8633 } else { 8634 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8635 /* 8636 * Since the socket is not locked, the buffer 8637 * might be made available after the writeable check and 8638 * before the bit is set. This could cause a lost I/O 8639 * signal. tcp_poll() has a race breaker for this race 8640 * condition. Based on their implementation, we put 8641 * in the following code to cover it as well. 8642 */ 8643 if (sctp_writeable(sk)) 8644 mask |= EPOLLOUT | EPOLLWRNORM; 8645 } 8646 return mask; 8647 } 8648 8649 /******************************************************************** 8650 * 2nd Level Abstractions 8651 ********************************************************************/ 8652 8653 static struct sctp_bind_bucket *sctp_bucket_create( 8654 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8655 { 8656 struct sctp_bind_bucket *pp; 8657 8658 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8659 if (pp) { 8660 SCTP_DBG_OBJCNT_INC(bind_bucket); 8661 pp->port = snum; 8662 pp->fastreuse = 0; 8663 INIT_HLIST_HEAD(&pp->owner); 8664 pp->net = net; 8665 hlist_add_head(&pp->node, &head->chain); 8666 } 8667 return pp; 8668 } 8669 8670 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8671 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8672 { 8673 if (pp && hlist_empty(&pp->owner)) { 8674 __hlist_del(&pp->node); 8675 kmem_cache_free(sctp_bucket_cachep, pp); 8676 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8677 } 8678 } 8679 8680 /* Release this socket's reference to a local port. */ 8681 static inline void __sctp_put_port(struct sock *sk) 8682 { 8683 struct sctp_bind_hashbucket *head = 8684 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8685 inet_sk(sk)->inet_num)]; 8686 struct sctp_bind_bucket *pp; 8687 8688 spin_lock(&head->lock); 8689 pp = sctp_sk(sk)->bind_hash; 8690 __sk_del_bind_node(sk); 8691 sctp_sk(sk)->bind_hash = NULL; 8692 inet_sk(sk)->inet_num = 0; 8693 sctp_bucket_destroy(pp); 8694 spin_unlock(&head->lock); 8695 } 8696 8697 void sctp_put_port(struct sock *sk) 8698 { 8699 local_bh_disable(); 8700 __sctp_put_port(sk); 8701 local_bh_enable(); 8702 } 8703 8704 /* 8705 * The system picks an ephemeral port and choose an address set equivalent 8706 * to binding with a wildcard address. 8707 * One of those addresses will be the primary address for the association. 8708 * This automatically enables the multihoming capability of SCTP. 8709 */ 8710 static int sctp_autobind(struct sock *sk) 8711 { 8712 union sctp_addr autoaddr; 8713 struct sctp_af *af; 8714 __be16 port; 8715 8716 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8717 af = sctp_sk(sk)->pf->af; 8718 8719 port = htons(inet_sk(sk)->inet_num); 8720 af->inaddr_any(&autoaddr, port); 8721 8722 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8723 } 8724 8725 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8726 * 8727 * From RFC 2292 8728 * 4.2 The cmsghdr Structure * 8729 * 8730 * When ancillary data is sent or received, any number of ancillary data 8731 * objects can be specified by the msg_control and msg_controllen members of 8732 * the msghdr structure, because each object is preceded by 8733 * a cmsghdr structure defining the object's length (the cmsg_len member). 8734 * Historically Berkeley-derived implementations have passed only one object 8735 * at a time, but this API allows multiple objects to be 8736 * passed in a single call to sendmsg() or recvmsg(). The following example 8737 * shows two ancillary data objects in a control buffer. 8738 * 8739 * |<--------------------------- msg_controllen -------------------------->| 8740 * | | 8741 * 8742 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8743 * 8744 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8745 * | | | 8746 * 8747 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8748 * 8749 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8750 * | | | | | 8751 * 8752 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8753 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8754 * 8755 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8756 * 8757 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8758 * ^ 8759 * | 8760 * 8761 * msg_control 8762 * points here 8763 */ 8764 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8765 { 8766 struct msghdr *my_msg = (struct msghdr *)msg; 8767 struct cmsghdr *cmsg; 8768 8769 for_each_cmsghdr(cmsg, my_msg) { 8770 if (!CMSG_OK(my_msg, cmsg)) 8771 return -EINVAL; 8772 8773 /* Should we parse this header or ignore? */ 8774 if (cmsg->cmsg_level != IPPROTO_SCTP) 8775 continue; 8776 8777 /* Strictly check lengths following example in SCM code. */ 8778 switch (cmsg->cmsg_type) { 8779 case SCTP_INIT: 8780 /* SCTP Socket API Extension 8781 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8782 * 8783 * This cmsghdr structure provides information for 8784 * initializing new SCTP associations with sendmsg(). 8785 * The SCTP_INITMSG socket option uses this same data 8786 * structure. This structure is not used for 8787 * recvmsg(). 8788 * 8789 * cmsg_level cmsg_type cmsg_data[] 8790 * ------------ ------------ ---------------------- 8791 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8792 */ 8793 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8794 return -EINVAL; 8795 8796 cmsgs->init = CMSG_DATA(cmsg); 8797 break; 8798 8799 case SCTP_SNDRCV: 8800 /* SCTP Socket API Extension 8801 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8802 * 8803 * This cmsghdr structure specifies SCTP options for 8804 * sendmsg() and describes SCTP header information 8805 * about a received message through recvmsg(). 8806 * 8807 * cmsg_level cmsg_type cmsg_data[] 8808 * ------------ ------------ ---------------------- 8809 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8810 */ 8811 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8812 return -EINVAL; 8813 8814 cmsgs->srinfo = CMSG_DATA(cmsg); 8815 8816 if (cmsgs->srinfo->sinfo_flags & 8817 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8818 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8819 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8820 return -EINVAL; 8821 break; 8822 8823 case SCTP_SNDINFO: 8824 /* SCTP Socket API Extension 8825 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8826 * 8827 * This cmsghdr structure specifies SCTP options for 8828 * sendmsg(). This structure and SCTP_RCVINFO replaces 8829 * SCTP_SNDRCV which has been deprecated. 8830 * 8831 * cmsg_level cmsg_type cmsg_data[] 8832 * ------------ ------------ --------------------- 8833 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8834 */ 8835 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8836 return -EINVAL; 8837 8838 cmsgs->sinfo = CMSG_DATA(cmsg); 8839 8840 if (cmsgs->sinfo->snd_flags & 8841 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8842 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8843 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8844 return -EINVAL; 8845 break; 8846 case SCTP_PRINFO: 8847 /* SCTP Socket API Extension 8848 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8849 * 8850 * This cmsghdr structure specifies SCTP options for sendmsg(). 8851 * 8852 * cmsg_level cmsg_type cmsg_data[] 8853 * ------------ ------------ --------------------- 8854 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8855 */ 8856 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8857 return -EINVAL; 8858 8859 cmsgs->prinfo = CMSG_DATA(cmsg); 8860 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8861 return -EINVAL; 8862 8863 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8864 cmsgs->prinfo->pr_value = 0; 8865 break; 8866 case SCTP_AUTHINFO: 8867 /* SCTP Socket API Extension 8868 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8869 * 8870 * This cmsghdr structure specifies SCTP options for sendmsg(). 8871 * 8872 * cmsg_level cmsg_type cmsg_data[] 8873 * ------------ ------------ --------------------- 8874 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8875 */ 8876 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8877 return -EINVAL; 8878 8879 cmsgs->authinfo = CMSG_DATA(cmsg); 8880 break; 8881 case SCTP_DSTADDRV4: 8882 case SCTP_DSTADDRV6: 8883 /* SCTP Socket API Extension 8884 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8885 * 8886 * This cmsghdr structure specifies SCTP options for sendmsg(). 8887 * 8888 * cmsg_level cmsg_type cmsg_data[] 8889 * ------------ ------------ --------------------- 8890 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8891 * ------------ ------------ --------------------- 8892 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8893 */ 8894 cmsgs->addrs_msg = my_msg; 8895 break; 8896 default: 8897 return -EINVAL; 8898 } 8899 } 8900 8901 return 0; 8902 } 8903 8904 /* 8905 * Wait for a packet.. 8906 * Note: This function is the same function as in core/datagram.c 8907 * with a few modifications to make lksctp work. 8908 */ 8909 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8910 { 8911 int error; 8912 DEFINE_WAIT(wait); 8913 8914 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8915 8916 /* Socket errors? */ 8917 error = sock_error(sk); 8918 if (error) 8919 goto out; 8920 8921 if (!skb_queue_empty(&sk->sk_receive_queue)) 8922 goto ready; 8923 8924 /* Socket shut down? */ 8925 if (sk->sk_shutdown & RCV_SHUTDOWN) 8926 goto out; 8927 8928 /* Sequenced packets can come disconnected. If so we report the 8929 * problem. 8930 */ 8931 error = -ENOTCONN; 8932 8933 /* Is there a good reason to think that we may receive some data? */ 8934 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8935 goto out; 8936 8937 /* Handle signals. */ 8938 if (signal_pending(current)) 8939 goto interrupted; 8940 8941 /* Let another process have a go. Since we are going to sleep 8942 * anyway. Note: This may cause odd behaviors if the message 8943 * does not fit in the user's buffer, but this seems to be the 8944 * only way to honor MSG_DONTWAIT realistically. 8945 */ 8946 release_sock(sk); 8947 *timeo_p = schedule_timeout(*timeo_p); 8948 lock_sock(sk); 8949 8950 ready: 8951 finish_wait(sk_sleep(sk), &wait); 8952 return 0; 8953 8954 interrupted: 8955 error = sock_intr_errno(*timeo_p); 8956 8957 out: 8958 finish_wait(sk_sleep(sk), &wait); 8959 *err = error; 8960 return error; 8961 } 8962 8963 /* Receive a datagram. 8964 * Note: This is pretty much the same routine as in core/datagram.c 8965 * with a few changes to make lksctp work. 8966 */ 8967 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8968 int noblock, int *err) 8969 { 8970 int error; 8971 struct sk_buff *skb; 8972 long timeo; 8973 8974 timeo = sock_rcvtimeo(sk, noblock); 8975 8976 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8977 MAX_SCHEDULE_TIMEOUT); 8978 8979 do { 8980 /* Again only user level code calls this function, 8981 * so nothing interrupt level 8982 * will suddenly eat the receive_queue. 8983 * 8984 * Look at current nfs client by the way... 8985 * However, this function was correct in any case. 8) 8986 */ 8987 if (flags & MSG_PEEK) { 8988 skb = skb_peek(&sk->sk_receive_queue); 8989 if (skb) 8990 refcount_inc(&skb->users); 8991 } else { 8992 skb = __skb_dequeue(&sk->sk_receive_queue); 8993 } 8994 8995 if (skb) 8996 return skb; 8997 8998 /* Caller is allowed not to check sk->sk_err before calling. */ 8999 error = sock_error(sk); 9000 if (error) 9001 goto no_packet; 9002 9003 if (sk->sk_shutdown & RCV_SHUTDOWN) 9004 break; 9005 9006 if (sk_can_busy_loop(sk)) { 9007 sk_busy_loop(sk, noblock); 9008 9009 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9010 continue; 9011 } 9012 9013 /* User doesn't want to wait. */ 9014 error = -EAGAIN; 9015 if (!timeo) 9016 goto no_packet; 9017 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9018 9019 return NULL; 9020 9021 no_packet: 9022 *err = error; 9023 return NULL; 9024 } 9025 9026 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9027 static void __sctp_write_space(struct sctp_association *asoc) 9028 { 9029 struct sock *sk = asoc->base.sk; 9030 9031 if (sctp_wspace(asoc) <= 0) 9032 return; 9033 9034 if (waitqueue_active(&asoc->wait)) 9035 wake_up_interruptible(&asoc->wait); 9036 9037 if (sctp_writeable(sk)) { 9038 struct socket_wq *wq; 9039 9040 rcu_read_lock(); 9041 wq = rcu_dereference(sk->sk_wq); 9042 if (wq) { 9043 if (waitqueue_active(&wq->wait)) 9044 wake_up_interruptible(&wq->wait); 9045 9046 /* Note that we try to include the Async I/O support 9047 * here by modeling from the current TCP/UDP code. 9048 * We have not tested with it yet. 9049 */ 9050 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9051 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9052 } 9053 rcu_read_unlock(); 9054 } 9055 } 9056 9057 static void sctp_wake_up_waiters(struct sock *sk, 9058 struct sctp_association *asoc) 9059 { 9060 struct sctp_association *tmp = asoc; 9061 9062 /* We do accounting for the sndbuf space per association, 9063 * so we only need to wake our own association. 9064 */ 9065 if (asoc->ep->sndbuf_policy) 9066 return __sctp_write_space(asoc); 9067 9068 /* If association goes down and is just flushing its 9069 * outq, then just normally notify others. 9070 */ 9071 if (asoc->base.dead) 9072 return sctp_write_space(sk); 9073 9074 /* Accounting for the sndbuf space is per socket, so we 9075 * need to wake up others, try to be fair and in case of 9076 * other associations, let them have a go first instead 9077 * of just doing a sctp_write_space() call. 9078 * 9079 * Note that we reach sctp_wake_up_waiters() only when 9080 * associations free up queued chunks, thus we are under 9081 * lock and the list of associations on a socket is 9082 * guaranteed not to change. 9083 */ 9084 for (tmp = list_next_entry(tmp, asocs); 1; 9085 tmp = list_next_entry(tmp, asocs)) { 9086 /* Manually skip the head element. */ 9087 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9088 continue; 9089 /* Wake up association. */ 9090 __sctp_write_space(tmp); 9091 /* We've reached the end. */ 9092 if (tmp == asoc) 9093 break; 9094 } 9095 } 9096 9097 /* Do accounting for the sndbuf space. 9098 * Decrement the used sndbuf space of the corresponding association by the 9099 * data size which was just transmitted(freed). 9100 */ 9101 static void sctp_wfree(struct sk_buff *skb) 9102 { 9103 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9104 struct sctp_association *asoc = chunk->asoc; 9105 struct sock *sk = asoc->base.sk; 9106 9107 sk_mem_uncharge(sk, skb->truesize); 9108 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9109 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9110 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9111 &sk->sk_wmem_alloc)); 9112 9113 if (chunk->shkey) { 9114 struct sctp_shared_key *shkey = chunk->shkey; 9115 9116 /* refcnt == 2 and !list_empty mean after this release, it's 9117 * not being used anywhere, and it's time to notify userland 9118 * that this shkey can be freed if it's been deactivated. 9119 */ 9120 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9121 refcount_read(&shkey->refcnt) == 2) { 9122 struct sctp_ulpevent *ev; 9123 9124 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9125 SCTP_AUTH_FREE_KEY, 9126 GFP_KERNEL); 9127 if (ev) 9128 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9129 } 9130 sctp_auth_shkey_release(chunk->shkey); 9131 } 9132 9133 sock_wfree(skb); 9134 sctp_wake_up_waiters(sk, asoc); 9135 9136 sctp_association_put(asoc); 9137 } 9138 9139 /* Do accounting for the receive space on the socket. 9140 * Accounting for the association is done in ulpevent.c 9141 * We set this as a destructor for the cloned data skbs so that 9142 * accounting is done at the correct time. 9143 */ 9144 void sctp_sock_rfree(struct sk_buff *skb) 9145 { 9146 struct sock *sk = skb->sk; 9147 struct sctp_ulpevent *event = sctp_skb2event(skb); 9148 9149 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9150 9151 /* 9152 * Mimic the behavior of sock_rfree 9153 */ 9154 sk_mem_uncharge(sk, event->rmem_len); 9155 } 9156 9157 9158 /* Helper function to wait for space in the sndbuf. */ 9159 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9160 size_t msg_len) 9161 { 9162 struct sock *sk = asoc->base.sk; 9163 long current_timeo = *timeo_p; 9164 DEFINE_WAIT(wait); 9165 int err = 0; 9166 9167 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9168 *timeo_p, msg_len); 9169 9170 /* Increment the association's refcnt. */ 9171 sctp_association_hold(asoc); 9172 9173 /* Wait on the association specific sndbuf space. */ 9174 for (;;) { 9175 prepare_to_wait_exclusive(&asoc->wait, &wait, 9176 TASK_INTERRUPTIBLE); 9177 if (asoc->base.dead) 9178 goto do_dead; 9179 if (!*timeo_p) 9180 goto do_nonblock; 9181 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9182 goto do_error; 9183 if (signal_pending(current)) 9184 goto do_interrupted; 9185 if (sk_under_memory_pressure(sk)) 9186 sk_mem_reclaim(sk); 9187 if ((int)msg_len <= sctp_wspace(asoc) && 9188 sk_wmem_schedule(sk, msg_len)) 9189 break; 9190 9191 /* Let another process have a go. Since we are going 9192 * to sleep anyway. 9193 */ 9194 release_sock(sk); 9195 current_timeo = schedule_timeout(current_timeo); 9196 lock_sock(sk); 9197 if (sk != asoc->base.sk) 9198 goto do_error; 9199 9200 *timeo_p = current_timeo; 9201 } 9202 9203 out: 9204 finish_wait(&asoc->wait, &wait); 9205 9206 /* Release the association's refcnt. */ 9207 sctp_association_put(asoc); 9208 9209 return err; 9210 9211 do_dead: 9212 err = -ESRCH; 9213 goto out; 9214 9215 do_error: 9216 err = -EPIPE; 9217 goto out; 9218 9219 do_interrupted: 9220 err = sock_intr_errno(*timeo_p); 9221 goto out; 9222 9223 do_nonblock: 9224 err = -EAGAIN; 9225 goto out; 9226 } 9227 9228 void sctp_data_ready(struct sock *sk) 9229 { 9230 struct socket_wq *wq; 9231 9232 rcu_read_lock(); 9233 wq = rcu_dereference(sk->sk_wq); 9234 if (skwq_has_sleeper(wq)) 9235 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9236 EPOLLRDNORM | EPOLLRDBAND); 9237 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9238 rcu_read_unlock(); 9239 } 9240 9241 /* If socket sndbuf has changed, wake up all per association waiters. */ 9242 void sctp_write_space(struct sock *sk) 9243 { 9244 struct sctp_association *asoc; 9245 9246 /* Wake up the tasks in each wait queue. */ 9247 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9248 __sctp_write_space(asoc); 9249 } 9250 } 9251 9252 /* Is there any sndbuf space available on the socket? 9253 * 9254 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9255 * associations on the same socket. For a UDP-style socket with 9256 * multiple associations, it is possible for it to be "unwriteable" 9257 * prematurely. I assume that this is acceptable because 9258 * a premature "unwriteable" is better than an accidental "writeable" which 9259 * would cause an unwanted block under certain circumstances. For the 1-1 9260 * UDP-style sockets or TCP-style sockets, this code should work. 9261 * - Daisy 9262 */ 9263 static bool sctp_writeable(struct sock *sk) 9264 { 9265 return sk->sk_sndbuf > sk->sk_wmem_queued; 9266 } 9267 9268 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9269 * returns immediately with EINPROGRESS. 9270 */ 9271 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9272 { 9273 struct sock *sk = asoc->base.sk; 9274 int err = 0; 9275 long current_timeo = *timeo_p; 9276 DEFINE_WAIT(wait); 9277 9278 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9279 9280 /* Increment the association's refcnt. */ 9281 sctp_association_hold(asoc); 9282 9283 for (;;) { 9284 prepare_to_wait_exclusive(&asoc->wait, &wait, 9285 TASK_INTERRUPTIBLE); 9286 if (!*timeo_p) 9287 goto do_nonblock; 9288 if (sk->sk_shutdown & RCV_SHUTDOWN) 9289 break; 9290 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9291 asoc->base.dead) 9292 goto do_error; 9293 if (signal_pending(current)) 9294 goto do_interrupted; 9295 9296 if (sctp_state(asoc, ESTABLISHED)) 9297 break; 9298 9299 /* Let another process have a go. Since we are going 9300 * to sleep anyway. 9301 */ 9302 release_sock(sk); 9303 current_timeo = schedule_timeout(current_timeo); 9304 lock_sock(sk); 9305 9306 *timeo_p = current_timeo; 9307 } 9308 9309 out: 9310 finish_wait(&asoc->wait, &wait); 9311 9312 /* Release the association's refcnt. */ 9313 sctp_association_put(asoc); 9314 9315 return err; 9316 9317 do_error: 9318 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9319 err = -ETIMEDOUT; 9320 else 9321 err = -ECONNREFUSED; 9322 goto out; 9323 9324 do_interrupted: 9325 err = sock_intr_errno(*timeo_p); 9326 goto out; 9327 9328 do_nonblock: 9329 err = -EINPROGRESS; 9330 goto out; 9331 } 9332 9333 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9334 { 9335 struct sctp_endpoint *ep; 9336 int err = 0; 9337 DEFINE_WAIT(wait); 9338 9339 ep = sctp_sk(sk)->ep; 9340 9341 9342 for (;;) { 9343 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9344 TASK_INTERRUPTIBLE); 9345 9346 if (list_empty(&ep->asocs)) { 9347 release_sock(sk); 9348 timeo = schedule_timeout(timeo); 9349 lock_sock(sk); 9350 } 9351 9352 err = -EINVAL; 9353 if (!sctp_sstate(sk, LISTENING)) 9354 break; 9355 9356 err = 0; 9357 if (!list_empty(&ep->asocs)) 9358 break; 9359 9360 err = sock_intr_errno(timeo); 9361 if (signal_pending(current)) 9362 break; 9363 9364 err = -EAGAIN; 9365 if (!timeo) 9366 break; 9367 } 9368 9369 finish_wait(sk_sleep(sk), &wait); 9370 9371 return err; 9372 } 9373 9374 static void sctp_wait_for_close(struct sock *sk, long timeout) 9375 { 9376 DEFINE_WAIT(wait); 9377 9378 do { 9379 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9380 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9381 break; 9382 release_sock(sk); 9383 timeout = schedule_timeout(timeout); 9384 lock_sock(sk); 9385 } while (!signal_pending(current) && timeout); 9386 9387 finish_wait(sk_sleep(sk), &wait); 9388 } 9389 9390 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9391 { 9392 struct sk_buff *frag; 9393 9394 if (!skb->data_len) 9395 goto done; 9396 9397 /* Don't forget the fragments. */ 9398 skb_walk_frags(skb, frag) 9399 sctp_skb_set_owner_r_frag(frag, sk); 9400 9401 done: 9402 sctp_skb_set_owner_r(skb, sk); 9403 } 9404 9405 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9406 struct sctp_association *asoc) 9407 { 9408 struct inet_sock *inet = inet_sk(sk); 9409 struct inet_sock *newinet; 9410 struct sctp_sock *sp = sctp_sk(sk); 9411 struct sctp_endpoint *ep = sp->ep; 9412 9413 newsk->sk_type = sk->sk_type; 9414 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9415 newsk->sk_flags = sk->sk_flags; 9416 newsk->sk_tsflags = sk->sk_tsflags; 9417 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9418 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9419 newsk->sk_reuse = sk->sk_reuse; 9420 sctp_sk(newsk)->reuse = sp->reuse; 9421 9422 newsk->sk_shutdown = sk->sk_shutdown; 9423 newsk->sk_destruct = sctp_destruct_sock; 9424 newsk->sk_family = sk->sk_family; 9425 newsk->sk_protocol = IPPROTO_SCTP; 9426 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9427 newsk->sk_sndbuf = sk->sk_sndbuf; 9428 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9429 newsk->sk_lingertime = sk->sk_lingertime; 9430 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9431 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9432 newsk->sk_rxhash = sk->sk_rxhash; 9433 9434 newinet = inet_sk(newsk); 9435 9436 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9437 * getsockname() and getpeername() 9438 */ 9439 newinet->inet_sport = inet->inet_sport; 9440 newinet->inet_saddr = inet->inet_saddr; 9441 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9442 newinet->inet_dport = htons(asoc->peer.port); 9443 newinet->pmtudisc = inet->pmtudisc; 9444 newinet->inet_id = prandom_u32(); 9445 9446 newinet->uc_ttl = inet->uc_ttl; 9447 newinet->mc_loop = 1; 9448 newinet->mc_ttl = 1; 9449 newinet->mc_index = 0; 9450 newinet->mc_list = NULL; 9451 9452 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9453 net_enable_timestamp(); 9454 9455 /* Set newsk security attributes from orginal sk and connection 9456 * security attribute from ep. 9457 */ 9458 security_sctp_sk_clone(ep, sk, newsk); 9459 } 9460 9461 static inline void sctp_copy_descendant(struct sock *sk_to, 9462 const struct sock *sk_from) 9463 { 9464 int ancestor_size = sizeof(struct inet_sock) + 9465 sizeof(struct sctp_sock) - 9466 offsetof(struct sctp_sock, pd_lobby); 9467 9468 if (sk_from->sk_family == PF_INET6) 9469 ancestor_size += sizeof(struct ipv6_pinfo); 9470 9471 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9472 } 9473 9474 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9475 * and its messages to the newsk. 9476 */ 9477 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9478 struct sctp_association *assoc, 9479 enum sctp_socket_type type) 9480 { 9481 struct sctp_sock *oldsp = sctp_sk(oldsk); 9482 struct sctp_sock *newsp = sctp_sk(newsk); 9483 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9484 struct sctp_endpoint *newep = newsp->ep; 9485 struct sk_buff *skb, *tmp; 9486 struct sctp_ulpevent *event; 9487 struct sctp_bind_hashbucket *head; 9488 int err; 9489 9490 /* Migrate socket buffer sizes and all the socket level options to the 9491 * new socket. 9492 */ 9493 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9494 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9495 /* Brute force copy old sctp opt. */ 9496 sctp_copy_descendant(newsk, oldsk); 9497 9498 /* Restore the ep value that was overwritten with the above structure 9499 * copy. 9500 */ 9501 newsp->ep = newep; 9502 newsp->hmac = NULL; 9503 9504 /* Hook this new socket in to the bind_hash list. */ 9505 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9506 inet_sk(oldsk)->inet_num)]; 9507 spin_lock_bh(&head->lock); 9508 pp = sctp_sk(oldsk)->bind_hash; 9509 sk_add_bind_node(newsk, &pp->owner); 9510 sctp_sk(newsk)->bind_hash = pp; 9511 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9512 spin_unlock_bh(&head->lock); 9513 9514 /* Copy the bind_addr list from the original endpoint to the new 9515 * endpoint so that we can handle restarts properly 9516 */ 9517 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9518 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9519 if (err) 9520 return err; 9521 9522 /* New ep's auth_hmacs should be set if old ep's is set, in case 9523 * that net->sctp.auth_enable has been changed to 0 by users and 9524 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9525 */ 9526 if (oldsp->ep->auth_hmacs) { 9527 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9528 if (err) 9529 return err; 9530 } 9531 9532 /* Move any messages in the old socket's receive queue that are for the 9533 * peeled off association to the new socket's receive queue. 9534 */ 9535 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9536 event = sctp_skb2event(skb); 9537 if (event->asoc == assoc) { 9538 __skb_unlink(skb, &oldsk->sk_receive_queue); 9539 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9540 sctp_skb_set_owner_r_frag(skb, newsk); 9541 } 9542 } 9543 9544 /* Clean up any messages pending delivery due to partial 9545 * delivery. Three cases: 9546 * 1) No partial deliver; no work. 9547 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9548 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9549 */ 9550 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9551 9552 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9553 struct sk_buff_head *queue; 9554 9555 /* Decide which queue to move pd_lobby skbs to. */ 9556 if (assoc->ulpq.pd_mode) { 9557 queue = &newsp->pd_lobby; 9558 } else 9559 queue = &newsk->sk_receive_queue; 9560 9561 /* Walk through the pd_lobby, looking for skbs that 9562 * need moved to the new socket. 9563 */ 9564 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9565 event = sctp_skb2event(skb); 9566 if (event->asoc == assoc) { 9567 __skb_unlink(skb, &oldsp->pd_lobby); 9568 __skb_queue_tail(queue, skb); 9569 sctp_skb_set_owner_r_frag(skb, newsk); 9570 } 9571 } 9572 9573 /* Clear up any skbs waiting for the partial 9574 * delivery to finish. 9575 */ 9576 if (assoc->ulpq.pd_mode) 9577 sctp_clear_pd(oldsk, NULL); 9578 9579 } 9580 9581 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9582 9583 /* Set the type of socket to indicate that it is peeled off from the 9584 * original UDP-style socket or created with the accept() call on a 9585 * TCP-style socket.. 9586 */ 9587 newsp->type = type; 9588 9589 /* Mark the new socket "in-use" by the user so that any packets 9590 * that may arrive on the association after we've moved it are 9591 * queued to the backlog. This prevents a potential race between 9592 * backlog processing on the old socket and new-packet processing 9593 * on the new socket. 9594 * 9595 * The caller has just allocated newsk so we can guarantee that other 9596 * paths won't try to lock it and then oldsk. 9597 */ 9598 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9599 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9600 sctp_assoc_migrate(assoc, newsk); 9601 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9602 9603 /* If the association on the newsk is already closed before accept() 9604 * is called, set RCV_SHUTDOWN flag. 9605 */ 9606 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9607 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9608 newsk->sk_shutdown |= RCV_SHUTDOWN; 9609 } else { 9610 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9611 } 9612 9613 release_sock(newsk); 9614 9615 return 0; 9616 } 9617 9618 9619 /* This proto struct describes the ULP interface for SCTP. */ 9620 struct proto sctp_prot = { 9621 .name = "SCTP", 9622 .owner = THIS_MODULE, 9623 .close = sctp_close, 9624 .disconnect = sctp_disconnect, 9625 .accept = sctp_accept, 9626 .ioctl = sctp_ioctl, 9627 .init = sctp_init_sock, 9628 .destroy = sctp_destroy_sock, 9629 .shutdown = sctp_shutdown, 9630 .setsockopt = sctp_setsockopt, 9631 .getsockopt = sctp_getsockopt, 9632 .sendmsg = sctp_sendmsg, 9633 .recvmsg = sctp_recvmsg, 9634 .bind = sctp_bind, 9635 .bind_add = sctp_bind_add, 9636 .backlog_rcv = sctp_backlog_rcv, 9637 .hash = sctp_hash, 9638 .unhash = sctp_unhash, 9639 .no_autobind = true, 9640 .obj_size = sizeof(struct sctp_sock), 9641 .useroffset = offsetof(struct sctp_sock, subscribe), 9642 .usersize = offsetof(struct sctp_sock, initmsg) - 9643 offsetof(struct sctp_sock, subscribe) + 9644 sizeof_field(struct sctp_sock, initmsg), 9645 .sysctl_mem = sysctl_sctp_mem, 9646 .sysctl_rmem = sysctl_sctp_rmem, 9647 .sysctl_wmem = sysctl_sctp_wmem, 9648 .memory_pressure = &sctp_memory_pressure, 9649 .enter_memory_pressure = sctp_enter_memory_pressure, 9650 .memory_allocated = &sctp_memory_allocated, 9651 .sockets_allocated = &sctp_sockets_allocated, 9652 }; 9653 9654 #if IS_ENABLED(CONFIG_IPV6) 9655 9656 #include <net/transp_v6.h> 9657 static void sctp_v6_destroy_sock(struct sock *sk) 9658 { 9659 sctp_destroy_sock(sk); 9660 inet6_destroy_sock(sk); 9661 } 9662 9663 struct proto sctpv6_prot = { 9664 .name = "SCTPv6", 9665 .owner = THIS_MODULE, 9666 .close = sctp_close, 9667 .disconnect = sctp_disconnect, 9668 .accept = sctp_accept, 9669 .ioctl = sctp_ioctl, 9670 .init = sctp_init_sock, 9671 .destroy = sctp_v6_destroy_sock, 9672 .shutdown = sctp_shutdown, 9673 .setsockopt = sctp_setsockopt, 9674 .getsockopt = sctp_getsockopt, 9675 .sendmsg = sctp_sendmsg, 9676 .recvmsg = sctp_recvmsg, 9677 .bind = sctp_bind, 9678 .bind_add = sctp_bind_add, 9679 .backlog_rcv = sctp_backlog_rcv, 9680 .hash = sctp_hash, 9681 .unhash = sctp_unhash, 9682 .no_autobind = true, 9683 .obj_size = sizeof(struct sctp6_sock), 9684 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9685 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9686 offsetof(struct sctp6_sock, sctp.subscribe) + 9687 sizeof_field(struct sctp6_sock, sctp.initmsg), 9688 .sysctl_mem = sysctl_sctp_mem, 9689 .sysctl_rmem = sysctl_sctp_rmem, 9690 .sysctl_wmem = sysctl_sctp_wmem, 9691 .memory_pressure = &sctp_memory_pressure, 9692 .enter_memory_pressure = sctp_enter_memory_pressure, 9693 .memory_allocated = &sctp_memory_allocated, 9694 .sockets_allocated = &sctp_sockets_allocated, 9695 }; 9696 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9697