1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/ip.h> 61 #include <linux/capability.h> 62 #include <linux/fcntl.h> 63 #include <linux/poll.h> 64 #include <linux/init.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 #include <net/busy_poll.h> 75 76 #include <linux/socket.h> /* for sa_family_t */ 77 #include <linux/export.h> 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* Forward declarations for internal helper functions. */ 83 static int sctp_writeable(struct sock *sk); 84 static void sctp_wfree(struct sk_buff *skb); 85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89 static int sctp_wait_for_accept(struct sock *sk, long timeo); 90 static void sctp_wait_for_close(struct sock *sk, long timeo); 91 static void sctp_destruct_sock(struct sock *sk); 92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101 static int sctp_autobind(struct sock *sk); 102 static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105 static int sctp_memory_pressure; 106 static atomic_long_t sctp_memory_allocated; 107 struct percpu_counter sctp_sockets_allocated; 108 109 static void sctp_enter_memory_pressure(struct sock *sk) 110 { 111 sctp_memory_pressure = 1; 112 } 113 114 115 /* Get the sndbuf space available at the time on the association. */ 116 static inline int sctp_wspace(struct sctp_association *asoc) 117 { 118 int amt; 119 120 if (asoc->ep->sndbuf_policy) 121 amt = asoc->sndbuf_used; 122 else 123 amt = sk_wmem_alloc_get(asoc->base.sk); 124 125 if (amt >= asoc->base.sk->sk_sndbuf) { 126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 127 amt = 0; 128 else { 129 amt = sk_stream_wspace(asoc->base.sk); 130 if (amt < 0) 131 amt = 0; 132 } 133 } else { 134 amt = asoc->base.sk->sk_sndbuf - amt; 135 } 136 return amt; 137 } 138 139 /* Increment the used sndbuf space count of the corresponding association by 140 * the size of the outgoing data chunk. 141 * Also, set the skb destructor for sndbuf accounting later. 142 * 143 * Since it is always 1-1 between chunk and skb, and also a new skb is always 144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 145 * destructor in the data chunk skb for the purpose of the sndbuf space 146 * tracking. 147 */ 148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 149 { 150 struct sctp_association *asoc = chunk->asoc; 151 struct sock *sk = asoc->base.sk; 152 153 /* The sndbuf space is tracked per association. */ 154 sctp_association_hold(asoc); 155 156 skb_set_owner_w(chunk->skb, sk); 157 158 chunk->skb->destructor = sctp_wfree; 159 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 160 skb_shinfo(chunk->skb)->destructor_arg = chunk; 161 162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 163 sizeof(struct sk_buff) + 164 sizeof(struct sctp_chunk); 165 166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 167 sk->sk_wmem_queued += chunk->skb->truesize; 168 sk_mem_charge(sk, chunk->skb->truesize); 169 } 170 171 /* Verify that this is a valid address. */ 172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 173 int len) 174 { 175 struct sctp_af *af; 176 177 /* Verify basic sockaddr. */ 178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 179 if (!af) 180 return -EINVAL; 181 182 /* Is this a valid SCTP address? */ 183 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 184 return -EINVAL; 185 186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /* Look up the association by its id. If this is not a UDP-style 193 * socket, the ID field is always ignored. 194 */ 195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 196 { 197 struct sctp_association *asoc = NULL; 198 199 /* If this is not a UDP-style socket, assoc id should be ignored. */ 200 if (!sctp_style(sk, UDP)) { 201 /* Return NULL if the socket state is not ESTABLISHED. It 202 * could be a TCP-style listening socket or a socket which 203 * hasn't yet called connect() to establish an association. 204 */ 205 if (!sctp_sstate(sk, ESTABLISHED)) 206 return NULL; 207 208 /* Get the first and the only association from the list. */ 209 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 211 struct sctp_association, asocs); 212 return asoc; 213 } 214 215 /* Otherwise this is a UDP-style socket. */ 216 if (!id || (id == (sctp_assoc_t)-1)) 217 return NULL; 218 219 spin_lock_bh(&sctp_assocs_id_lock); 220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 221 spin_unlock_bh(&sctp_assocs_id_lock); 222 223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 224 return NULL; 225 226 return asoc; 227 } 228 229 /* Look up the transport from an address and an assoc id. If both address and 230 * id are specified, the associations matching the address and the id should be 231 * the same. 232 */ 233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 234 struct sockaddr_storage *addr, 235 sctp_assoc_t id) 236 { 237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 238 struct sctp_transport *transport; 239 union sctp_addr *laddr = (union sctp_addr *)addr; 240 241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 242 laddr, 243 &transport); 244 245 if (!addr_asoc) 246 return NULL; 247 248 id_asoc = sctp_id2assoc(sk, id); 249 if (id_asoc && (id_asoc != addr_asoc)) 250 return NULL; 251 252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 253 (union sctp_addr *)addr); 254 255 return transport; 256 } 257 258 /* API 3.1.2 bind() - UDP Style Syntax 259 * The syntax of bind() is, 260 * 261 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 262 * 263 * sd - the socket descriptor returned by socket(). 264 * addr - the address structure (struct sockaddr_in or struct 265 * sockaddr_in6 [RFC 2553]), 266 * addr_len - the size of the address structure. 267 */ 268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 269 { 270 int retval = 0; 271 272 lock_sock(sk); 273 274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 275 addr, addr_len); 276 277 /* Disallow binding twice. */ 278 if (!sctp_sk(sk)->ep->base.bind_addr.port) 279 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 280 addr_len); 281 else 282 retval = -EINVAL; 283 284 release_sock(sk); 285 286 return retval; 287 } 288 289 static long sctp_get_port_local(struct sock *, union sctp_addr *); 290 291 /* Verify this is a valid sockaddr. */ 292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 293 union sctp_addr *addr, int len) 294 { 295 struct sctp_af *af; 296 297 /* Check minimum size. */ 298 if (len < sizeof (struct sockaddr)) 299 return NULL; 300 301 /* V4 mapped address are really of AF_INET family */ 302 if (addr->sa.sa_family == AF_INET6 && 303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 304 if (!opt->pf->af_supported(AF_INET, opt)) 305 return NULL; 306 } else { 307 /* Does this PF support this AF? */ 308 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 309 return NULL; 310 } 311 312 /* If we get this far, af is valid. */ 313 af = sctp_get_af_specific(addr->sa.sa_family); 314 315 if (len < af->sockaddr_len) 316 return NULL; 317 318 return af; 319 } 320 321 /* Bind a local address either to an endpoint or to an association. */ 322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 323 { 324 struct net *net = sock_net(sk); 325 struct sctp_sock *sp = sctp_sk(sk); 326 struct sctp_endpoint *ep = sp->ep; 327 struct sctp_bind_addr *bp = &ep->base.bind_addr; 328 struct sctp_af *af; 329 unsigned short snum; 330 int ret = 0; 331 332 /* Common sockaddr verification. */ 333 af = sctp_sockaddr_af(sp, addr, len); 334 if (!af) { 335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 336 __func__, sk, addr, len); 337 return -EINVAL; 338 } 339 340 snum = ntohs(addr->v4.sin_port); 341 342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 343 __func__, sk, &addr->sa, bp->port, snum, len); 344 345 /* PF specific bind() address verification. */ 346 if (!sp->pf->bind_verify(sp, addr)) 347 return -EADDRNOTAVAIL; 348 349 /* We must either be unbound, or bind to the same port. 350 * It's OK to allow 0 ports if we are already bound. 351 * We'll just inhert an already bound port in this case 352 */ 353 if (bp->port) { 354 if (!snum) 355 snum = bp->port; 356 else if (snum != bp->port) { 357 pr_debug("%s: new port %d doesn't match existing port " 358 "%d\n", __func__, snum, bp->port); 359 return -EINVAL; 360 } 361 } 362 363 if (snum && snum < PROT_SOCK && 364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 365 return -EACCES; 366 367 /* See if the address matches any of the addresses we may have 368 * already bound before checking against other endpoints. 369 */ 370 if (sctp_bind_addr_match(bp, addr, sp)) 371 return -EINVAL; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 return -EADDRINUSE; 380 } 381 382 /* Refresh ephemeral port. */ 383 if (!bp->port) 384 bp->port = inet_sk(sk)->inet_num; 385 386 /* Add the address to the bind address list. 387 * Use GFP_ATOMIC since BHs will be disabled. 388 */ 389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 390 SCTP_ADDR_SRC, GFP_ATOMIC); 391 392 /* Copy back into socket for getsockname() use. */ 393 if (!ret) { 394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 395 sp->pf->to_sk_saddr(addr, sk); 396 } 397 398 return ret; 399 } 400 401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 402 * 403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 404 * at any one time. If a sender, after sending an ASCONF chunk, decides 405 * it needs to transfer another ASCONF Chunk, it MUST wait until the 406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 407 * subsequent ASCONF. Note this restriction binds each side, so at any 408 * time two ASCONF may be in-transit on any given association (one sent 409 * from each endpoint). 410 */ 411 static int sctp_send_asconf(struct sctp_association *asoc, 412 struct sctp_chunk *chunk) 413 { 414 struct net *net = sock_net(asoc->base.sk); 415 int retval = 0; 416 417 /* If there is an outstanding ASCONF chunk, queue it for later 418 * transmission. 419 */ 420 if (asoc->addip_last_asconf) { 421 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 422 goto out; 423 } 424 425 /* Hold the chunk until an ASCONF_ACK is received. */ 426 sctp_chunk_hold(chunk); 427 retval = sctp_primitive_ASCONF(net, asoc, chunk); 428 if (retval) 429 sctp_chunk_free(chunk); 430 else 431 asoc->addip_last_asconf = chunk; 432 433 out: 434 return retval; 435 } 436 437 /* Add a list of addresses as bind addresses to local endpoint or 438 * association. 439 * 440 * Basically run through each address specified in the addrs/addrcnt 441 * array/length pair, determine if it is IPv6 or IPv4 and call 442 * sctp_do_bind() on it. 443 * 444 * If any of them fails, then the operation will be reversed and the 445 * ones that were added will be removed. 446 * 447 * Only sctp_setsockopt_bindx() is supposed to call this function. 448 */ 449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 450 { 451 int cnt; 452 int retval = 0; 453 void *addr_buf; 454 struct sockaddr *sa_addr; 455 struct sctp_af *af; 456 457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 458 addrs, addrcnt); 459 460 addr_buf = addrs; 461 for (cnt = 0; cnt < addrcnt; cnt++) { 462 /* The list may contain either IPv4 or IPv6 address; 463 * determine the address length for walking thru the list. 464 */ 465 sa_addr = addr_buf; 466 af = sctp_get_af_specific(sa_addr->sa_family); 467 if (!af) { 468 retval = -EINVAL; 469 goto err_bindx_add; 470 } 471 472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 473 af->sockaddr_len); 474 475 addr_buf += af->sockaddr_len; 476 477 err_bindx_add: 478 if (retval < 0) { 479 /* Failed. Cleanup the ones that have been added */ 480 if (cnt > 0) 481 sctp_bindx_rem(sk, addrs, cnt); 482 return retval; 483 } 484 } 485 486 return retval; 487 } 488 489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 490 * associations that are part of the endpoint indicating that a list of local 491 * addresses are added to the endpoint. 492 * 493 * If any of the addresses is already in the bind address list of the 494 * association, we do not send the chunk for that association. But it will not 495 * affect other associations. 496 * 497 * Only sctp_setsockopt_bindx() is supposed to call this function. 498 */ 499 static int sctp_send_asconf_add_ip(struct sock *sk, 500 struct sockaddr *addrs, 501 int addrcnt) 502 { 503 struct net *net = sock_net(sk); 504 struct sctp_sock *sp; 505 struct sctp_endpoint *ep; 506 struct sctp_association *asoc; 507 struct sctp_bind_addr *bp; 508 struct sctp_chunk *chunk; 509 struct sctp_sockaddr_entry *laddr; 510 union sctp_addr *addr; 511 union sctp_addr saveaddr; 512 void *addr_buf; 513 struct sctp_af *af; 514 struct list_head *p; 515 int i; 516 int retval = 0; 517 518 if (!net->sctp.addip_enable) 519 return retval; 520 521 sp = sctp_sk(sk); 522 ep = sp->ep; 523 524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 525 __func__, sk, addrs, addrcnt); 526 527 list_for_each_entry(asoc, &ep->asocs, asocs) { 528 if (!asoc->peer.asconf_capable) 529 continue; 530 531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 532 continue; 533 534 if (!sctp_state(asoc, ESTABLISHED)) 535 continue; 536 537 /* Check if any address in the packed array of addresses is 538 * in the bind address list of the association. If so, 539 * do not send the asconf chunk to its peer, but continue with 540 * other associations. 541 */ 542 addr_buf = addrs; 543 for (i = 0; i < addrcnt; i++) { 544 addr = addr_buf; 545 af = sctp_get_af_specific(addr->v4.sin_family); 546 if (!af) { 547 retval = -EINVAL; 548 goto out; 549 } 550 551 if (sctp_assoc_lookup_laddr(asoc, addr)) 552 break; 553 554 addr_buf += af->sockaddr_len; 555 } 556 if (i < addrcnt) 557 continue; 558 559 /* Use the first valid address in bind addr list of 560 * association as Address Parameter of ASCONF CHUNK. 561 */ 562 bp = &asoc->base.bind_addr; 563 p = bp->address_list.next; 564 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 566 addrcnt, SCTP_PARAM_ADD_IP); 567 if (!chunk) { 568 retval = -ENOMEM; 569 goto out; 570 } 571 572 /* Add the new addresses to the bind address list with 573 * use_as_src set to 0. 574 */ 575 addr_buf = addrs; 576 for (i = 0; i < addrcnt; i++) { 577 addr = addr_buf; 578 af = sctp_get_af_specific(addr->v4.sin_family); 579 memcpy(&saveaddr, addr, af->sockaddr_len); 580 retval = sctp_add_bind_addr(bp, &saveaddr, 581 sizeof(saveaddr), 582 SCTP_ADDR_NEW, GFP_ATOMIC); 583 addr_buf += af->sockaddr_len; 584 } 585 if (asoc->src_out_of_asoc_ok) { 586 struct sctp_transport *trans; 587 588 list_for_each_entry(trans, 589 &asoc->peer.transport_addr_list, transports) { 590 /* Clear the source and route cache */ 591 dst_release(trans->dst); 592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 593 2*asoc->pathmtu, 4380)); 594 trans->ssthresh = asoc->peer.i.a_rwnd; 595 trans->rto = asoc->rto_initial; 596 sctp_max_rto(asoc, trans); 597 trans->rtt = trans->srtt = trans->rttvar = 0; 598 sctp_transport_route(trans, NULL, 599 sctp_sk(asoc->base.sk)); 600 } 601 } 602 retval = sctp_send_asconf(asoc, chunk); 603 } 604 605 out: 606 return retval; 607 } 608 609 /* Remove a list of addresses from bind addresses list. Do not remove the 610 * last address. 611 * 612 * Basically run through each address specified in the addrs/addrcnt 613 * array/length pair, determine if it is IPv6 or IPv4 and call 614 * sctp_del_bind() on it. 615 * 616 * If any of them fails, then the operation will be reversed and the 617 * ones that were removed will be added back. 618 * 619 * At least one address has to be left; if only one address is 620 * available, the operation will return -EBUSY. 621 * 622 * Only sctp_setsockopt_bindx() is supposed to call this function. 623 */ 624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 625 { 626 struct sctp_sock *sp = sctp_sk(sk); 627 struct sctp_endpoint *ep = sp->ep; 628 int cnt; 629 struct sctp_bind_addr *bp = &ep->base.bind_addr; 630 int retval = 0; 631 void *addr_buf; 632 union sctp_addr *sa_addr; 633 struct sctp_af *af; 634 635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 636 __func__, sk, addrs, addrcnt); 637 638 addr_buf = addrs; 639 for (cnt = 0; cnt < addrcnt; cnt++) { 640 /* If the bind address list is empty or if there is only one 641 * bind address, there is nothing more to be removed (we need 642 * at least one address here). 643 */ 644 if (list_empty(&bp->address_list) || 645 (sctp_list_single_entry(&bp->address_list))) { 646 retval = -EBUSY; 647 goto err_bindx_rem; 648 } 649 650 sa_addr = addr_buf; 651 af = sctp_get_af_specific(sa_addr->sa.sa_family); 652 if (!af) { 653 retval = -EINVAL; 654 goto err_bindx_rem; 655 } 656 657 if (!af->addr_valid(sa_addr, sp, NULL)) { 658 retval = -EADDRNOTAVAIL; 659 goto err_bindx_rem; 660 } 661 662 if (sa_addr->v4.sin_port && 663 sa_addr->v4.sin_port != htons(bp->port)) { 664 retval = -EINVAL; 665 goto err_bindx_rem; 666 } 667 668 if (!sa_addr->v4.sin_port) 669 sa_addr->v4.sin_port = htons(bp->port); 670 671 /* FIXME - There is probably a need to check if sk->sk_saddr and 672 * sk->sk_rcv_addr are currently set to one of the addresses to 673 * be removed. This is something which needs to be looked into 674 * when we are fixing the outstanding issues with multi-homing 675 * socket routing and failover schemes. Refer to comments in 676 * sctp_do_bind(). -daisy 677 */ 678 retval = sctp_del_bind_addr(bp, sa_addr); 679 680 addr_buf += af->sockaddr_len; 681 err_bindx_rem: 682 if (retval < 0) { 683 /* Failed. Add the ones that has been removed back */ 684 if (cnt > 0) 685 sctp_bindx_add(sk, addrs, cnt); 686 return retval; 687 } 688 } 689 690 return retval; 691 } 692 693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 694 * the associations that are part of the endpoint indicating that a list of 695 * local addresses are removed from the endpoint. 696 * 697 * If any of the addresses is already in the bind address list of the 698 * association, we do not send the chunk for that association. But it will not 699 * affect other associations. 700 * 701 * Only sctp_setsockopt_bindx() is supposed to call this function. 702 */ 703 static int sctp_send_asconf_del_ip(struct sock *sk, 704 struct sockaddr *addrs, 705 int addrcnt) 706 { 707 struct net *net = sock_net(sk); 708 struct sctp_sock *sp; 709 struct sctp_endpoint *ep; 710 struct sctp_association *asoc; 711 struct sctp_transport *transport; 712 struct sctp_bind_addr *bp; 713 struct sctp_chunk *chunk; 714 union sctp_addr *laddr; 715 void *addr_buf; 716 struct sctp_af *af; 717 struct sctp_sockaddr_entry *saddr; 718 int i; 719 int retval = 0; 720 int stored = 0; 721 722 chunk = NULL; 723 if (!net->sctp.addip_enable) 724 return retval; 725 726 sp = sctp_sk(sk); 727 ep = sp->ep; 728 729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 730 __func__, sk, addrs, addrcnt); 731 732 list_for_each_entry(asoc, &ep->asocs, asocs) { 733 734 if (!asoc->peer.asconf_capable) 735 continue; 736 737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 738 continue; 739 740 if (!sctp_state(asoc, ESTABLISHED)) 741 continue; 742 743 /* Check if any address in the packed array of addresses is 744 * not present in the bind address list of the association. 745 * If so, do not send the asconf chunk to its peer, but 746 * continue with other associations. 747 */ 748 addr_buf = addrs; 749 for (i = 0; i < addrcnt; i++) { 750 laddr = addr_buf; 751 af = sctp_get_af_specific(laddr->v4.sin_family); 752 if (!af) { 753 retval = -EINVAL; 754 goto out; 755 } 756 757 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 758 break; 759 760 addr_buf += af->sockaddr_len; 761 } 762 if (i < addrcnt) 763 continue; 764 765 /* Find one address in the association's bind address list 766 * that is not in the packed array of addresses. This is to 767 * make sure that we do not delete all the addresses in the 768 * association. 769 */ 770 bp = &asoc->base.bind_addr; 771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 772 addrcnt, sp); 773 if ((laddr == NULL) && (addrcnt == 1)) { 774 if (asoc->asconf_addr_del_pending) 775 continue; 776 asoc->asconf_addr_del_pending = 777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 778 if (asoc->asconf_addr_del_pending == NULL) { 779 retval = -ENOMEM; 780 goto out; 781 } 782 asoc->asconf_addr_del_pending->sa.sa_family = 783 addrs->sa_family; 784 asoc->asconf_addr_del_pending->v4.sin_port = 785 htons(bp->port); 786 if (addrs->sa_family == AF_INET) { 787 struct sockaddr_in *sin; 788 789 sin = (struct sockaddr_in *)addrs; 790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 791 } else if (addrs->sa_family == AF_INET6) { 792 struct sockaddr_in6 *sin6; 793 794 sin6 = (struct sockaddr_in6 *)addrs; 795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 796 } 797 798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 799 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 800 asoc->asconf_addr_del_pending); 801 802 asoc->src_out_of_asoc_ok = 1; 803 stored = 1; 804 goto skip_mkasconf; 805 } 806 807 if (laddr == NULL) 808 return -EINVAL; 809 810 /* We do not need RCU protection throughout this loop 811 * because this is done under a socket lock from the 812 * setsockopt call. 813 */ 814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 815 SCTP_PARAM_DEL_IP); 816 if (!chunk) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 821 skip_mkasconf: 822 /* Reset use_as_src flag for the addresses in the bind address 823 * list that are to be deleted. 824 */ 825 addr_buf = addrs; 826 for (i = 0; i < addrcnt; i++) { 827 laddr = addr_buf; 828 af = sctp_get_af_specific(laddr->v4.sin_family); 829 list_for_each_entry(saddr, &bp->address_list, list) { 830 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 831 saddr->state = SCTP_ADDR_DEL; 832 } 833 addr_buf += af->sockaddr_len; 834 } 835 836 /* Update the route and saddr entries for all the transports 837 * as some of the addresses in the bind address list are 838 * about to be deleted and cannot be used as source addresses. 839 */ 840 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 841 transports) { 842 dst_release(transport->dst); 843 sctp_transport_route(transport, NULL, 844 sctp_sk(asoc->base.sk)); 845 } 846 847 if (stored) 848 /* We don't need to transmit ASCONF */ 849 continue; 850 retval = sctp_send_asconf(asoc, chunk); 851 } 852 out: 853 return retval; 854 } 855 856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 858 { 859 struct sock *sk = sctp_opt2sk(sp); 860 union sctp_addr *addr; 861 struct sctp_af *af; 862 863 /* It is safe to write port space in caller. */ 864 addr = &addrw->a; 865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 866 af = sctp_get_af_specific(addr->sa.sa_family); 867 if (!af) 868 return -EINVAL; 869 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 870 return -EINVAL; 871 872 if (addrw->state == SCTP_ADDR_NEW) 873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 874 else 875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 876 } 877 878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 879 * 880 * API 8.1 881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 882 * int flags); 883 * 884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 886 * or IPv6 addresses. 887 * 888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 889 * Section 3.1.2 for this usage. 890 * 891 * addrs is a pointer to an array of one or more socket addresses. Each 892 * address is contained in its appropriate structure (i.e. struct 893 * sockaddr_in or struct sockaddr_in6) the family of the address type 894 * must be used to distinguish the address length (note that this 895 * representation is termed a "packed array" of addresses). The caller 896 * specifies the number of addresses in the array with addrcnt. 897 * 898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 899 * -1, and sets errno to the appropriate error code. 900 * 901 * For SCTP, the port given in each socket address must be the same, or 902 * sctp_bindx() will fail, setting errno to EINVAL. 903 * 904 * The flags parameter is formed from the bitwise OR of zero or more of 905 * the following currently defined flags: 906 * 907 * SCTP_BINDX_ADD_ADDR 908 * 909 * SCTP_BINDX_REM_ADDR 910 * 911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 913 * addresses from the association. The two flags are mutually exclusive; 914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 915 * not remove all addresses from an association; sctp_bindx() will 916 * reject such an attempt with EINVAL. 917 * 918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 919 * additional addresses with an endpoint after calling bind(). Or use 920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 921 * socket is associated with so that no new association accepted will be 922 * associated with those addresses. If the endpoint supports dynamic 923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 924 * endpoint to send the appropriate message to the peer to change the 925 * peers address lists. 926 * 927 * Adding and removing addresses from a connected association is 928 * optional functionality. Implementations that do not support this 929 * functionality should return EOPNOTSUPP. 930 * 931 * Basically do nothing but copying the addresses from user to kernel 932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 934 * from userspace. 935 * 936 * We don't use copy_from_user() for optimization: we first do the 937 * sanity checks (buffer size -fast- and access check-healthy 938 * pointer); if all of those succeed, then we can alloc the memory 939 * (expensive operation) needed to copy the data to kernel. Then we do 940 * the copying without checking the user space area 941 * (__copy_from_user()). 942 * 943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 944 * it. 945 * 946 * sk The sk of the socket 947 * addrs The pointer to the addresses in user land 948 * addrssize Size of the addrs buffer 949 * op Operation to perform (add or remove, see the flags of 950 * sctp_bindx) 951 * 952 * Returns 0 if ok, <0 errno code on error. 953 */ 954 static int sctp_setsockopt_bindx(struct sock *sk, 955 struct sockaddr __user *addrs, 956 int addrs_size, int op) 957 { 958 struct sockaddr *kaddrs; 959 int err; 960 int addrcnt = 0; 961 int walk_size = 0; 962 struct sockaddr *sa_addr; 963 void *addr_buf; 964 struct sctp_af *af; 965 966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 967 __func__, sk, addrs, addrs_size, op); 968 969 if (unlikely(addrs_size <= 0)) 970 return -EINVAL; 971 972 /* Check the user passed a healthy pointer. */ 973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 974 return -EFAULT; 975 976 /* Alloc space for the address array in kernel memory. */ 977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 978 if (unlikely(!kaddrs)) 979 return -ENOMEM; 980 981 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 982 kfree(kaddrs); 983 return -EFAULT; 984 } 985 986 /* Walk through the addrs buffer and count the number of addresses. */ 987 addr_buf = kaddrs; 988 while (walk_size < addrs_size) { 989 if (walk_size + sizeof(sa_family_t) > addrs_size) { 990 kfree(kaddrs); 991 return -EINVAL; 992 } 993 994 sa_addr = addr_buf; 995 af = sctp_get_af_specific(sa_addr->sa_family); 996 997 /* If the address family is not supported or if this address 998 * causes the address buffer to overflow return EINVAL. 999 */ 1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1001 kfree(kaddrs); 1002 return -EINVAL; 1003 } 1004 addrcnt++; 1005 addr_buf += af->sockaddr_len; 1006 walk_size += af->sockaddr_len; 1007 } 1008 1009 /* Do the work. */ 1010 switch (op) { 1011 case SCTP_BINDX_ADD_ADDR: 1012 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1013 if (err) 1014 goto out; 1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1016 break; 1017 1018 case SCTP_BINDX_REM_ADDR: 1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1020 if (err) 1021 goto out; 1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1023 break; 1024 1025 default: 1026 err = -EINVAL; 1027 break; 1028 } 1029 1030 out: 1031 kfree(kaddrs); 1032 1033 return err; 1034 } 1035 1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1037 * 1038 * Common routine for handling connect() and sctp_connectx(). 1039 * Connect will come in with just a single address. 1040 */ 1041 static int __sctp_connect(struct sock *sk, 1042 struct sockaddr *kaddrs, 1043 int addrs_size, 1044 sctp_assoc_t *assoc_id) 1045 { 1046 struct net *net = sock_net(sk); 1047 struct sctp_sock *sp; 1048 struct sctp_endpoint *ep; 1049 struct sctp_association *asoc = NULL; 1050 struct sctp_association *asoc2; 1051 struct sctp_transport *transport; 1052 union sctp_addr to; 1053 sctp_scope_t scope; 1054 long timeo; 1055 int err = 0; 1056 int addrcnt = 0; 1057 int walk_size = 0; 1058 union sctp_addr *sa_addr = NULL; 1059 void *addr_buf; 1060 unsigned short port; 1061 unsigned int f_flags = 0; 1062 1063 sp = sctp_sk(sk); 1064 ep = sp->ep; 1065 1066 /* connect() cannot be done on a socket that is already in ESTABLISHED 1067 * state - UDP-style peeled off socket or a TCP-style socket that 1068 * is already connected. 1069 * It cannot be done even on a TCP-style listening socket. 1070 */ 1071 if (sctp_sstate(sk, ESTABLISHED) || 1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1073 err = -EISCONN; 1074 goto out_free; 1075 } 1076 1077 /* Walk through the addrs buffer and count the number of addresses. */ 1078 addr_buf = kaddrs; 1079 while (walk_size < addrs_size) { 1080 struct sctp_af *af; 1081 1082 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1083 err = -EINVAL; 1084 goto out_free; 1085 } 1086 1087 sa_addr = addr_buf; 1088 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1089 1090 /* If the address family is not supported or if this address 1091 * causes the address buffer to overflow return EINVAL. 1092 */ 1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1094 err = -EINVAL; 1095 goto out_free; 1096 } 1097 1098 port = ntohs(sa_addr->v4.sin_port); 1099 1100 /* Save current address so we can work with it */ 1101 memcpy(&to, sa_addr, af->sockaddr_len); 1102 1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1104 if (err) 1105 goto out_free; 1106 1107 /* Make sure the destination port is correctly set 1108 * in all addresses. 1109 */ 1110 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1111 err = -EINVAL; 1112 goto out_free; 1113 } 1114 1115 /* Check if there already is a matching association on the 1116 * endpoint (other than the one created here). 1117 */ 1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1119 if (asoc2 && asoc2 != asoc) { 1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1121 err = -EISCONN; 1122 else 1123 err = -EALREADY; 1124 goto out_free; 1125 } 1126 1127 /* If we could not find a matching association on the endpoint, 1128 * make sure that there is no peeled-off association matching 1129 * the peer address even on another socket. 1130 */ 1131 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1132 err = -EADDRNOTAVAIL; 1133 goto out_free; 1134 } 1135 1136 if (!asoc) { 1137 /* If a bind() or sctp_bindx() is not called prior to 1138 * an sctp_connectx() call, the system picks an 1139 * ephemeral port and will choose an address set 1140 * equivalent to binding with a wildcard address. 1141 */ 1142 if (!ep->base.bind_addr.port) { 1143 if (sctp_autobind(sk)) { 1144 err = -EAGAIN; 1145 goto out_free; 1146 } 1147 } else { 1148 /* 1149 * If an unprivileged user inherits a 1-many 1150 * style socket with open associations on a 1151 * privileged port, it MAY be permitted to 1152 * accept new associations, but it SHOULD NOT 1153 * be permitted to open new associations. 1154 */ 1155 if (ep->base.bind_addr.port < PROT_SOCK && 1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1157 err = -EACCES; 1158 goto out_free; 1159 } 1160 } 1161 1162 scope = sctp_scope(&to); 1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1164 if (!asoc) { 1165 err = -ENOMEM; 1166 goto out_free; 1167 } 1168 1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1170 GFP_KERNEL); 1171 if (err < 0) { 1172 goto out_free; 1173 } 1174 1175 } 1176 1177 /* Prime the peer's transport structures. */ 1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1179 SCTP_UNKNOWN); 1180 if (!transport) { 1181 err = -ENOMEM; 1182 goto out_free; 1183 } 1184 1185 addrcnt++; 1186 addr_buf += af->sockaddr_len; 1187 walk_size += af->sockaddr_len; 1188 } 1189 1190 /* In case the user of sctp_connectx() wants an association 1191 * id back, assign one now. 1192 */ 1193 if (assoc_id) { 1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1195 if (err < 0) 1196 goto out_free; 1197 } 1198 1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1200 if (err < 0) { 1201 goto out_free; 1202 } 1203 1204 /* Initialize sk's dport and daddr for getpeername() */ 1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1206 sp->pf->to_sk_daddr(sa_addr, sk); 1207 sk->sk_err = 0; 1208 1209 /* in-kernel sockets don't generally have a file allocated to them 1210 * if all they do is call sock_create_kern(). 1211 */ 1212 if (sk->sk_socket->file) 1213 f_flags = sk->sk_socket->file->f_flags; 1214 1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1216 1217 err = sctp_wait_for_connect(asoc, &timeo); 1218 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1219 *assoc_id = asoc->assoc_id; 1220 1221 /* Don't free association on exit. */ 1222 asoc = NULL; 1223 1224 out_free: 1225 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1226 __func__, asoc, kaddrs, err); 1227 1228 if (asoc) { 1229 /* sctp_primitive_ASSOCIATE may have added this association 1230 * To the hash table, try to unhash it, just in case, its a noop 1231 * if it wasn't hashed so we're safe 1232 */ 1233 sctp_association_free(asoc); 1234 } 1235 return err; 1236 } 1237 1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1239 * 1240 * API 8.9 1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1242 * sctp_assoc_t *asoc); 1243 * 1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1246 * or IPv6 addresses. 1247 * 1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1249 * Section 3.1.2 for this usage. 1250 * 1251 * addrs is a pointer to an array of one or more socket addresses. Each 1252 * address is contained in its appropriate structure (i.e. struct 1253 * sockaddr_in or struct sockaddr_in6) the family of the address type 1254 * must be used to distengish the address length (note that this 1255 * representation is termed a "packed array" of addresses). The caller 1256 * specifies the number of addresses in the array with addrcnt. 1257 * 1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1259 * the association id of the new association. On failure, sctp_connectx() 1260 * returns -1, and sets errno to the appropriate error code. The assoc_id 1261 * is not touched by the kernel. 1262 * 1263 * For SCTP, the port given in each socket address must be the same, or 1264 * sctp_connectx() will fail, setting errno to EINVAL. 1265 * 1266 * An application can use sctp_connectx to initiate an association with 1267 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1268 * allows a caller to specify multiple addresses at which a peer can be 1269 * reached. The way the SCTP stack uses the list of addresses to set up 1270 * the association is implementation dependent. This function only 1271 * specifies that the stack will try to make use of all the addresses in 1272 * the list when needed. 1273 * 1274 * Note that the list of addresses passed in is only used for setting up 1275 * the association. It does not necessarily equal the set of addresses 1276 * the peer uses for the resulting association. If the caller wants to 1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1278 * retrieve them after the association has been set up. 1279 * 1280 * Basically do nothing but copying the addresses from user to kernel 1281 * land and invoking either sctp_connectx(). This is used for tunneling 1282 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1283 * 1284 * We don't use copy_from_user() for optimization: we first do the 1285 * sanity checks (buffer size -fast- and access check-healthy 1286 * pointer); if all of those succeed, then we can alloc the memory 1287 * (expensive operation) needed to copy the data to kernel. Then we do 1288 * the copying without checking the user space area 1289 * (__copy_from_user()). 1290 * 1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1292 * it. 1293 * 1294 * sk The sk of the socket 1295 * addrs The pointer to the addresses in user land 1296 * addrssize Size of the addrs buffer 1297 * 1298 * Returns >=0 if ok, <0 errno code on error. 1299 */ 1300 static int __sctp_setsockopt_connectx(struct sock *sk, 1301 struct sockaddr __user *addrs, 1302 int addrs_size, 1303 sctp_assoc_t *assoc_id) 1304 { 1305 struct sockaddr *kaddrs; 1306 gfp_t gfp = GFP_KERNEL; 1307 int err = 0; 1308 1309 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1310 __func__, sk, addrs, addrs_size); 1311 1312 if (unlikely(addrs_size <= 0)) 1313 return -EINVAL; 1314 1315 /* Check the user passed a healthy pointer. */ 1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1317 return -EFAULT; 1318 1319 /* Alloc space for the address array in kernel memory. */ 1320 if (sk->sk_socket->file) 1321 gfp = GFP_USER | __GFP_NOWARN; 1322 kaddrs = kmalloc(addrs_size, gfp); 1323 if (unlikely(!kaddrs)) 1324 return -ENOMEM; 1325 1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1327 err = -EFAULT; 1328 } else { 1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1330 } 1331 1332 kfree(kaddrs); 1333 1334 return err; 1335 } 1336 1337 /* 1338 * This is an older interface. It's kept for backward compatibility 1339 * to the option that doesn't provide association id. 1340 */ 1341 static int sctp_setsockopt_connectx_old(struct sock *sk, 1342 struct sockaddr __user *addrs, 1343 int addrs_size) 1344 { 1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1346 } 1347 1348 /* 1349 * New interface for the API. The since the API is done with a socket 1350 * option, to make it simple we feed back the association id is as a return 1351 * indication to the call. Error is always negative and association id is 1352 * always positive. 1353 */ 1354 static int sctp_setsockopt_connectx(struct sock *sk, 1355 struct sockaddr __user *addrs, 1356 int addrs_size) 1357 { 1358 sctp_assoc_t assoc_id = 0; 1359 int err = 0; 1360 1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1362 1363 if (err) 1364 return err; 1365 else 1366 return assoc_id; 1367 } 1368 1369 /* 1370 * New (hopefully final) interface for the API. 1371 * We use the sctp_getaddrs_old structure so that use-space library 1372 * can avoid any unnecessary allocations. The only different part 1373 * is that we store the actual length of the address buffer into the 1374 * addrs_num structure member. That way we can re-use the existing 1375 * code. 1376 */ 1377 #ifdef CONFIG_COMPAT 1378 struct compat_sctp_getaddrs_old { 1379 sctp_assoc_t assoc_id; 1380 s32 addr_num; 1381 compat_uptr_t addrs; /* struct sockaddr * */ 1382 }; 1383 #endif 1384 1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1386 char __user *optval, 1387 int __user *optlen) 1388 { 1389 struct sctp_getaddrs_old param; 1390 sctp_assoc_t assoc_id = 0; 1391 int err = 0; 1392 1393 #ifdef CONFIG_COMPAT 1394 if (in_compat_syscall()) { 1395 struct compat_sctp_getaddrs_old param32; 1396 1397 if (len < sizeof(param32)) 1398 return -EINVAL; 1399 if (copy_from_user(¶m32, optval, sizeof(param32))) 1400 return -EFAULT; 1401 1402 param.assoc_id = param32.assoc_id; 1403 param.addr_num = param32.addr_num; 1404 param.addrs = compat_ptr(param32.addrs); 1405 } else 1406 #endif 1407 { 1408 if (len < sizeof(param)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m, optval, sizeof(param))) 1411 return -EFAULT; 1412 } 1413 1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1415 param.addrs, param.addr_num, 1416 &assoc_id); 1417 if (err == 0 || err == -EINPROGRESS) { 1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1419 return -EFAULT; 1420 if (put_user(sizeof(assoc_id), optlen)) 1421 return -EFAULT; 1422 } 1423 1424 return err; 1425 } 1426 1427 /* API 3.1.4 close() - UDP Style Syntax 1428 * Applications use close() to perform graceful shutdown (as described in 1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1430 * by a UDP-style socket. 1431 * 1432 * The syntax is 1433 * 1434 * ret = close(int sd); 1435 * 1436 * sd - the socket descriptor of the associations to be closed. 1437 * 1438 * To gracefully shutdown a specific association represented by the 1439 * UDP-style socket, an application should use the sendmsg() call, 1440 * passing no user data, but including the appropriate flag in the 1441 * ancillary data (see Section xxxx). 1442 * 1443 * If sd in the close() call is a branched-off socket representing only 1444 * one association, the shutdown is performed on that association only. 1445 * 1446 * 4.1.6 close() - TCP Style Syntax 1447 * 1448 * Applications use close() to gracefully close down an association. 1449 * 1450 * The syntax is: 1451 * 1452 * int close(int sd); 1453 * 1454 * sd - the socket descriptor of the association to be closed. 1455 * 1456 * After an application calls close() on a socket descriptor, no further 1457 * socket operations will succeed on that descriptor. 1458 * 1459 * API 7.1.4 SO_LINGER 1460 * 1461 * An application using the TCP-style socket can use this option to 1462 * perform the SCTP ABORT primitive. The linger option structure is: 1463 * 1464 * struct linger { 1465 * int l_onoff; // option on/off 1466 * int l_linger; // linger time 1467 * }; 1468 * 1469 * To enable the option, set l_onoff to 1. If the l_linger value is set 1470 * to 0, calling close() is the same as the ABORT primitive. If the 1471 * value is set to a negative value, the setsockopt() call will return 1472 * an error. If the value is set to a positive value linger_time, the 1473 * close() can be blocked for at most linger_time ms. If the graceful 1474 * shutdown phase does not finish during this period, close() will 1475 * return but the graceful shutdown phase continues in the system. 1476 */ 1477 static void sctp_close(struct sock *sk, long timeout) 1478 { 1479 struct net *net = sock_net(sk); 1480 struct sctp_endpoint *ep; 1481 struct sctp_association *asoc; 1482 struct list_head *pos, *temp; 1483 unsigned int data_was_unread; 1484 1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1486 1487 lock_sock(sk); 1488 sk->sk_shutdown = SHUTDOWN_MASK; 1489 sk->sk_state = SCTP_SS_CLOSING; 1490 1491 ep = sctp_sk(sk)->ep; 1492 1493 /* Clean up any skbs sitting on the receive queue. */ 1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1496 1497 /* Walk all associations on an endpoint. */ 1498 list_for_each_safe(pos, temp, &ep->asocs) { 1499 asoc = list_entry(pos, struct sctp_association, asocs); 1500 1501 if (sctp_style(sk, TCP)) { 1502 /* A closed association can still be in the list if 1503 * it belongs to a TCP-style listening socket that is 1504 * not yet accepted. If so, free it. If not, send an 1505 * ABORT or SHUTDOWN based on the linger options. 1506 */ 1507 if (sctp_state(asoc, CLOSED)) { 1508 sctp_association_free(asoc); 1509 continue; 1510 } 1511 } 1512 1513 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1514 !skb_queue_empty(&asoc->ulpq.reasm) || 1515 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1516 struct sctp_chunk *chunk; 1517 1518 chunk = sctp_make_abort_user(asoc, NULL, 0); 1519 sctp_primitive_ABORT(net, asoc, chunk); 1520 } else 1521 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1522 } 1523 1524 /* On a TCP-style socket, block for at most linger_time if set. */ 1525 if (sctp_style(sk, TCP) && timeout) 1526 sctp_wait_for_close(sk, timeout); 1527 1528 /* This will run the backlog queue. */ 1529 release_sock(sk); 1530 1531 /* Supposedly, no process has access to the socket, but 1532 * the net layers still may. 1533 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1534 * held and that should be grabbed before socket lock. 1535 */ 1536 spin_lock_bh(&net->sctp.addr_wq_lock); 1537 bh_lock_sock(sk); 1538 1539 /* Hold the sock, since sk_common_release() will put sock_put() 1540 * and we have just a little more cleanup. 1541 */ 1542 sock_hold(sk); 1543 sk_common_release(sk); 1544 1545 bh_unlock_sock(sk); 1546 spin_unlock_bh(&net->sctp.addr_wq_lock); 1547 1548 sock_put(sk); 1549 1550 SCTP_DBG_OBJCNT_DEC(sock); 1551 } 1552 1553 /* Handle EPIPE error. */ 1554 static int sctp_error(struct sock *sk, int flags, int err) 1555 { 1556 if (err == -EPIPE) 1557 err = sock_error(sk) ? : -EPIPE; 1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1559 send_sig(SIGPIPE, current, 0); 1560 return err; 1561 } 1562 1563 /* API 3.1.3 sendmsg() - UDP Style Syntax 1564 * 1565 * An application uses sendmsg() and recvmsg() calls to transmit data to 1566 * and receive data from its peer. 1567 * 1568 * ssize_t sendmsg(int socket, const struct msghdr *message, 1569 * int flags); 1570 * 1571 * socket - the socket descriptor of the endpoint. 1572 * message - pointer to the msghdr structure which contains a single 1573 * user message and possibly some ancillary data. 1574 * 1575 * See Section 5 for complete description of the data 1576 * structures. 1577 * 1578 * flags - flags sent or received with the user message, see Section 1579 * 5 for complete description of the flags. 1580 * 1581 * Note: This function could use a rewrite especially when explicit 1582 * connect support comes in. 1583 */ 1584 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1585 1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1587 1588 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1589 { 1590 struct net *net = sock_net(sk); 1591 struct sctp_sock *sp; 1592 struct sctp_endpoint *ep; 1593 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1594 struct sctp_transport *transport, *chunk_tp; 1595 struct sctp_chunk *chunk; 1596 union sctp_addr to; 1597 struct sockaddr *msg_name = NULL; 1598 struct sctp_sndrcvinfo default_sinfo; 1599 struct sctp_sndrcvinfo *sinfo; 1600 struct sctp_initmsg *sinit; 1601 sctp_assoc_t associd = 0; 1602 sctp_cmsgs_t cmsgs = { NULL }; 1603 sctp_scope_t scope; 1604 bool fill_sinfo_ttl = false, wait_connect = false; 1605 struct sctp_datamsg *datamsg; 1606 int msg_flags = msg->msg_flags; 1607 __u16 sinfo_flags = 0; 1608 long timeo; 1609 int err; 1610 1611 err = 0; 1612 sp = sctp_sk(sk); 1613 ep = sp->ep; 1614 1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1616 msg, msg_len, ep); 1617 1618 /* We cannot send a message over a TCP-style listening socket. */ 1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1620 err = -EPIPE; 1621 goto out_nounlock; 1622 } 1623 1624 /* Parse out the SCTP CMSGs. */ 1625 err = sctp_msghdr_parse(msg, &cmsgs); 1626 if (err) { 1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1628 goto out_nounlock; 1629 } 1630 1631 /* Fetch the destination address for this packet. This 1632 * address only selects the association--it is not necessarily 1633 * the address we will send to. 1634 * For a peeled-off socket, msg_name is ignored. 1635 */ 1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1637 int msg_namelen = msg->msg_namelen; 1638 1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1640 msg_namelen); 1641 if (err) 1642 return err; 1643 1644 if (msg_namelen > sizeof(to)) 1645 msg_namelen = sizeof(to); 1646 memcpy(&to, msg->msg_name, msg_namelen); 1647 msg_name = msg->msg_name; 1648 } 1649 1650 sinit = cmsgs.init; 1651 if (cmsgs.sinfo != NULL) { 1652 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1653 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1654 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1655 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1656 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1657 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1658 1659 sinfo = &default_sinfo; 1660 fill_sinfo_ttl = true; 1661 } else { 1662 sinfo = cmsgs.srinfo; 1663 } 1664 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1665 if (sinfo) { 1666 sinfo_flags = sinfo->sinfo_flags; 1667 associd = sinfo->sinfo_assoc_id; 1668 } 1669 1670 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1671 msg_len, sinfo_flags); 1672 1673 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1674 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1675 err = -EINVAL; 1676 goto out_nounlock; 1677 } 1678 1679 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1680 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1681 * If SCTP_ABORT is set, the message length could be non zero with 1682 * the msg_iov set to the user abort reason. 1683 */ 1684 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1685 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1686 err = -EINVAL; 1687 goto out_nounlock; 1688 } 1689 1690 /* If SCTP_ADDR_OVER is set, there must be an address 1691 * specified in msg_name. 1692 */ 1693 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1694 err = -EINVAL; 1695 goto out_nounlock; 1696 } 1697 1698 transport = NULL; 1699 1700 pr_debug("%s: about to look up association\n", __func__); 1701 1702 lock_sock(sk); 1703 1704 /* If a msg_name has been specified, assume this is to be used. */ 1705 if (msg_name) { 1706 /* Look for a matching association on the endpoint. */ 1707 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1708 if (!asoc) { 1709 /* If we could not find a matching association on the 1710 * endpoint, make sure that it is not a TCP-style 1711 * socket that already has an association or there is 1712 * no peeled-off association on another socket. 1713 */ 1714 if ((sctp_style(sk, TCP) && 1715 sctp_sstate(sk, ESTABLISHED)) || 1716 sctp_endpoint_is_peeled_off(ep, &to)) { 1717 err = -EADDRNOTAVAIL; 1718 goto out_unlock; 1719 } 1720 } 1721 } else { 1722 asoc = sctp_id2assoc(sk, associd); 1723 if (!asoc) { 1724 err = -EPIPE; 1725 goto out_unlock; 1726 } 1727 } 1728 1729 if (asoc) { 1730 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1731 1732 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1733 * socket that has an association in CLOSED state. This can 1734 * happen when an accepted socket has an association that is 1735 * already CLOSED. 1736 */ 1737 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1738 err = -EPIPE; 1739 goto out_unlock; 1740 } 1741 1742 if (sinfo_flags & SCTP_EOF) { 1743 pr_debug("%s: shutting down association:%p\n", 1744 __func__, asoc); 1745 1746 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1747 err = 0; 1748 goto out_unlock; 1749 } 1750 if (sinfo_flags & SCTP_ABORT) { 1751 1752 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1753 if (!chunk) { 1754 err = -ENOMEM; 1755 goto out_unlock; 1756 } 1757 1758 pr_debug("%s: aborting association:%p\n", 1759 __func__, asoc); 1760 1761 sctp_primitive_ABORT(net, asoc, chunk); 1762 err = 0; 1763 goto out_unlock; 1764 } 1765 } 1766 1767 /* Do we need to create the association? */ 1768 if (!asoc) { 1769 pr_debug("%s: there is no association yet\n", __func__); 1770 1771 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1772 err = -EINVAL; 1773 goto out_unlock; 1774 } 1775 1776 /* Check for invalid stream against the stream counts, 1777 * either the default or the user specified stream counts. 1778 */ 1779 if (sinfo) { 1780 if (!sinit || !sinit->sinit_num_ostreams) { 1781 /* Check against the defaults. */ 1782 if (sinfo->sinfo_stream >= 1783 sp->initmsg.sinit_num_ostreams) { 1784 err = -EINVAL; 1785 goto out_unlock; 1786 } 1787 } else { 1788 /* Check against the requested. */ 1789 if (sinfo->sinfo_stream >= 1790 sinit->sinit_num_ostreams) { 1791 err = -EINVAL; 1792 goto out_unlock; 1793 } 1794 } 1795 } 1796 1797 /* 1798 * API 3.1.2 bind() - UDP Style Syntax 1799 * If a bind() or sctp_bindx() is not called prior to a 1800 * sendmsg() call that initiates a new association, the 1801 * system picks an ephemeral port and will choose an address 1802 * set equivalent to binding with a wildcard address. 1803 */ 1804 if (!ep->base.bind_addr.port) { 1805 if (sctp_autobind(sk)) { 1806 err = -EAGAIN; 1807 goto out_unlock; 1808 } 1809 } else { 1810 /* 1811 * If an unprivileged user inherits a one-to-many 1812 * style socket with open associations on a privileged 1813 * port, it MAY be permitted to accept new associations, 1814 * but it SHOULD NOT be permitted to open new 1815 * associations. 1816 */ 1817 if (ep->base.bind_addr.port < PROT_SOCK && 1818 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1819 err = -EACCES; 1820 goto out_unlock; 1821 } 1822 } 1823 1824 scope = sctp_scope(&to); 1825 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1826 if (!new_asoc) { 1827 err = -ENOMEM; 1828 goto out_unlock; 1829 } 1830 asoc = new_asoc; 1831 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1832 if (err < 0) { 1833 err = -ENOMEM; 1834 goto out_free; 1835 } 1836 1837 /* If the SCTP_INIT ancillary data is specified, set all 1838 * the association init values accordingly. 1839 */ 1840 if (sinit) { 1841 if (sinit->sinit_num_ostreams) { 1842 asoc->c.sinit_num_ostreams = 1843 sinit->sinit_num_ostreams; 1844 } 1845 if (sinit->sinit_max_instreams) { 1846 asoc->c.sinit_max_instreams = 1847 sinit->sinit_max_instreams; 1848 } 1849 if (sinit->sinit_max_attempts) { 1850 asoc->max_init_attempts 1851 = sinit->sinit_max_attempts; 1852 } 1853 if (sinit->sinit_max_init_timeo) { 1854 asoc->max_init_timeo = 1855 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1856 } 1857 } 1858 1859 /* Prime the peer's transport structures. */ 1860 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1861 if (!transport) { 1862 err = -ENOMEM; 1863 goto out_free; 1864 } 1865 } 1866 1867 /* ASSERT: we have a valid association at this point. */ 1868 pr_debug("%s: we have a valid association\n", __func__); 1869 1870 if (!sinfo) { 1871 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1872 * one with some defaults. 1873 */ 1874 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1875 default_sinfo.sinfo_stream = asoc->default_stream; 1876 default_sinfo.sinfo_flags = asoc->default_flags; 1877 default_sinfo.sinfo_ppid = asoc->default_ppid; 1878 default_sinfo.sinfo_context = asoc->default_context; 1879 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1880 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1881 1882 sinfo = &default_sinfo; 1883 } else if (fill_sinfo_ttl) { 1884 /* In case SNDINFO was specified, we still need to fill 1885 * it with a default ttl from the assoc here. 1886 */ 1887 sinfo->sinfo_timetolive = asoc->default_timetolive; 1888 } 1889 1890 /* API 7.1.7, the sndbuf size per association bounds the 1891 * maximum size of data that can be sent in a single send call. 1892 */ 1893 if (msg_len > sk->sk_sndbuf) { 1894 err = -EMSGSIZE; 1895 goto out_free; 1896 } 1897 1898 if (asoc->pmtu_pending) 1899 sctp_assoc_pending_pmtu(sk, asoc); 1900 1901 /* If fragmentation is disabled and the message length exceeds the 1902 * association fragmentation point, return EMSGSIZE. The I-D 1903 * does not specify what this error is, but this looks like 1904 * a great fit. 1905 */ 1906 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1907 err = -EMSGSIZE; 1908 goto out_free; 1909 } 1910 1911 /* Check for invalid stream. */ 1912 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1913 err = -EINVAL; 1914 goto out_free; 1915 } 1916 1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1918 if (!sctp_wspace(asoc)) { 1919 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1920 if (err) 1921 goto out_free; 1922 } 1923 1924 /* If an address is passed with the sendto/sendmsg call, it is used 1925 * to override the primary destination address in the TCP model, or 1926 * when SCTP_ADDR_OVER flag is set in the UDP model. 1927 */ 1928 if ((sctp_style(sk, TCP) && msg_name) || 1929 (sinfo_flags & SCTP_ADDR_OVER)) { 1930 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1931 if (!chunk_tp) { 1932 err = -EINVAL; 1933 goto out_free; 1934 } 1935 } else 1936 chunk_tp = NULL; 1937 1938 /* Auto-connect, if we aren't connected already. */ 1939 if (sctp_state(asoc, CLOSED)) { 1940 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1941 if (err < 0) 1942 goto out_free; 1943 1944 wait_connect = true; 1945 pr_debug("%s: we associated primitively\n", __func__); 1946 } 1947 1948 /* Break the message into multiple chunks of maximum size. */ 1949 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1950 if (IS_ERR(datamsg)) { 1951 err = PTR_ERR(datamsg); 1952 goto out_free; 1953 } 1954 1955 /* Now send the (possibly) fragmented message. */ 1956 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1957 /* Do accounting for the write space. */ 1958 sctp_set_owner_w(chunk); 1959 1960 chunk->transport = chunk_tp; 1961 } 1962 1963 /* Send it to the lower layers. Note: all chunks 1964 * must either fail or succeed. The lower layer 1965 * works that way today. Keep it that way or this 1966 * breaks. 1967 */ 1968 err = sctp_primitive_SEND(net, asoc, datamsg); 1969 sctp_datamsg_put(datamsg); 1970 /* Did the lower layer accept the chunk? */ 1971 if (err) 1972 goto out_free; 1973 1974 pr_debug("%s: we sent primitively\n", __func__); 1975 1976 err = msg_len; 1977 1978 if (unlikely(wait_connect)) { 1979 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1980 sctp_wait_for_connect(asoc, &timeo); 1981 } 1982 1983 /* If we are already past ASSOCIATE, the lower 1984 * layers are responsible for association cleanup. 1985 */ 1986 goto out_unlock; 1987 1988 out_free: 1989 if (new_asoc) 1990 sctp_association_free(asoc); 1991 out_unlock: 1992 release_sock(sk); 1993 1994 out_nounlock: 1995 return sctp_error(sk, msg_flags, err); 1996 1997 #if 0 1998 do_sock_err: 1999 if (msg_len) 2000 err = msg_len; 2001 else 2002 err = sock_error(sk); 2003 goto out; 2004 2005 do_interrupted: 2006 if (msg_len) 2007 err = msg_len; 2008 goto out; 2009 #endif /* 0 */ 2010 } 2011 2012 /* This is an extended version of skb_pull() that removes the data from the 2013 * start of a skb even when data is spread across the list of skb's in the 2014 * frag_list. len specifies the total amount of data that needs to be removed. 2015 * when 'len' bytes could be removed from the skb, it returns 0. 2016 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2017 * could not be removed. 2018 */ 2019 static int sctp_skb_pull(struct sk_buff *skb, int len) 2020 { 2021 struct sk_buff *list; 2022 int skb_len = skb_headlen(skb); 2023 int rlen; 2024 2025 if (len <= skb_len) { 2026 __skb_pull(skb, len); 2027 return 0; 2028 } 2029 len -= skb_len; 2030 __skb_pull(skb, skb_len); 2031 2032 skb_walk_frags(skb, list) { 2033 rlen = sctp_skb_pull(list, len); 2034 skb->len -= (len-rlen); 2035 skb->data_len -= (len-rlen); 2036 2037 if (!rlen) 2038 return 0; 2039 2040 len = rlen; 2041 } 2042 2043 return len; 2044 } 2045 2046 /* API 3.1.3 recvmsg() - UDP Style Syntax 2047 * 2048 * ssize_t recvmsg(int socket, struct msghdr *message, 2049 * int flags); 2050 * 2051 * socket - the socket descriptor of the endpoint. 2052 * message - pointer to the msghdr structure which contains a single 2053 * user message and possibly some ancillary data. 2054 * 2055 * See Section 5 for complete description of the data 2056 * structures. 2057 * 2058 * flags - flags sent or received with the user message, see Section 2059 * 5 for complete description of the flags. 2060 */ 2061 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2062 int noblock, int flags, int *addr_len) 2063 { 2064 struct sctp_ulpevent *event = NULL; 2065 struct sctp_sock *sp = sctp_sk(sk); 2066 struct sk_buff *skb; 2067 int copied; 2068 int err = 0; 2069 int skb_len; 2070 2071 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2072 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2073 addr_len); 2074 2075 lock_sock(sk); 2076 2077 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2078 err = -ENOTCONN; 2079 goto out; 2080 } 2081 2082 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2083 if (!skb) 2084 goto out; 2085 2086 /* Get the total length of the skb including any skb's in the 2087 * frag_list. 2088 */ 2089 skb_len = skb->len; 2090 2091 copied = skb_len; 2092 if (copied > len) 2093 copied = len; 2094 2095 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2096 2097 event = sctp_skb2event(skb); 2098 2099 if (err) 2100 goto out_free; 2101 2102 sock_recv_ts_and_drops(msg, sk, skb); 2103 if (sctp_ulpevent_is_notification(event)) { 2104 msg->msg_flags |= MSG_NOTIFICATION; 2105 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2106 } else { 2107 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2108 } 2109 2110 /* Check if we allow SCTP_NXTINFO. */ 2111 if (sp->recvnxtinfo) 2112 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2113 /* Check if we allow SCTP_RCVINFO. */ 2114 if (sp->recvrcvinfo) 2115 sctp_ulpevent_read_rcvinfo(event, msg); 2116 /* Check if we allow SCTP_SNDRCVINFO. */ 2117 if (sp->subscribe.sctp_data_io_event) 2118 sctp_ulpevent_read_sndrcvinfo(event, msg); 2119 2120 err = copied; 2121 2122 /* If skb's length exceeds the user's buffer, update the skb and 2123 * push it back to the receive_queue so that the next call to 2124 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2125 */ 2126 if (skb_len > copied) { 2127 msg->msg_flags &= ~MSG_EOR; 2128 if (flags & MSG_PEEK) 2129 goto out_free; 2130 sctp_skb_pull(skb, copied); 2131 skb_queue_head(&sk->sk_receive_queue, skb); 2132 2133 /* When only partial message is copied to the user, increase 2134 * rwnd by that amount. If all the data in the skb is read, 2135 * rwnd is updated when the event is freed. 2136 */ 2137 if (!sctp_ulpevent_is_notification(event)) 2138 sctp_assoc_rwnd_increase(event->asoc, copied); 2139 goto out; 2140 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2141 (event->msg_flags & MSG_EOR)) 2142 msg->msg_flags |= MSG_EOR; 2143 else 2144 msg->msg_flags &= ~MSG_EOR; 2145 2146 out_free: 2147 if (flags & MSG_PEEK) { 2148 /* Release the skb reference acquired after peeking the skb in 2149 * sctp_skb_recv_datagram(). 2150 */ 2151 kfree_skb(skb); 2152 } else { 2153 /* Free the event which includes releasing the reference to 2154 * the owner of the skb, freeing the skb and updating the 2155 * rwnd. 2156 */ 2157 sctp_ulpevent_free(event); 2158 } 2159 out: 2160 release_sock(sk); 2161 return err; 2162 } 2163 2164 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2165 * 2166 * This option is a on/off flag. If enabled no SCTP message 2167 * fragmentation will be performed. Instead if a message being sent 2168 * exceeds the current PMTU size, the message will NOT be sent and 2169 * instead a error will be indicated to the user. 2170 */ 2171 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2172 char __user *optval, 2173 unsigned int optlen) 2174 { 2175 int val; 2176 2177 if (optlen < sizeof(int)) 2178 return -EINVAL; 2179 2180 if (get_user(val, (int __user *)optval)) 2181 return -EFAULT; 2182 2183 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2184 2185 return 0; 2186 } 2187 2188 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2189 unsigned int optlen) 2190 { 2191 struct sctp_association *asoc; 2192 struct sctp_ulpevent *event; 2193 2194 if (optlen > sizeof(struct sctp_event_subscribe)) 2195 return -EINVAL; 2196 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2197 return -EFAULT; 2198 2199 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2200 * if there is no data to be sent or retransmit, the stack will 2201 * immediately send up this notification. 2202 */ 2203 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2204 &sctp_sk(sk)->subscribe)) { 2205 asoc = sctp_id2assoc(sk, 0); 2206 2207 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2208 event = sctp_ulpevent_make_sender_dry_event(asoc, 2209 GFP_ATOMIC); 2210 if (!event) 2211 return -ENOMEM; 2212 2213 sctp_ulpq_tail_event(&asoc->ulpq, event); 2214 } 2215 } 2216 2217 return 0; 2218 } 2219 2220 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2221 * 2222 * This socket option is applicable to the UDP-style socket only. When 2223 * set it will cause associations that are idle for more than the 2224 * specified number of seconds to automatically close. An association 2225 * being idle is defined an association that has NOT sent or received 2226 * user data. The special value of '0' indicates that no automatic 2227 * close of any associations should be performed. The option expects an 2228 * integer defining the number of seconds of idle time before an 2229 * association is closed. 2230 */ 2231 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2232 unsigned int optlen) 2233 { 2234 struct sctp_sock *sp = sctp_sk(sk); 2235 struct net *net = sock_net(sk); 2236 2237 /* Applicable to UDP-style socket only */ 2238 if (sctp_style(sk, TCP)) 2239 return -EOPNOTSUPP; 2240 if (optlen != sizeof(int)) 2241 return -EINVAL; 2242 if (copy_from_user(&sp->autoclose, optval, optlen)) 2243 return -EFAULT; 2244 2245 if (sp->autoclose > net->sctp.max_autoclose) 2246 sp->autoclose = net->sctp.max_autoclose; 2247 2248 return 0; 2249 } 2250 2251 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2252 * 2253 * Applications can enable or disable heartbeats for any peer address of 2254 * an association, modify an address's heartbeat interval, force a 2255 * heartbeat to be sent immediately, and adjust the address's maximum 2256 * number of retransmissions sent before an address is considered 2257 * unreachable. The following structure is used to access and modify an 2258 * address's parameters: 2259 * 2260 * struct sctp_paddrparams { 2261 * sctp_assoc_t spp_assoc_id; 2262 * struct sockaddr_storage spp_address; 2263 * uint32_t spp_hbinterval; 2264 * uint16_t spp_pathmaxrxt; 2265 * uint32_t spp_pathmtu; 2266 * uint32_t spp_sackdelay; 2267 * uint32_t spp_flags; 2268 * }; 2269 * 2270 * spp_assoc_id - (one-to-many style socket) This is filled in the 2271 * application, and identifies the association for 2272 * this query. 2273 * spp_address - This specifies which address is of interest. 2274 * spp_hbinterval - This contains the value of the heartbeat interval, 2275 * in milliseconds. If a value of zero 2276 * is present in this field then no changes are to 2277 * be made to this parameter. 2278 * spp_pathmaxrxt - This contains the maximum number of 2279 * retransmissions before this address shall be 2280 * considered unreachable. If a value of zero 2281 * is present in this field then no changes are to 2282 * be made to this parameter. 2283 * spp_pathmtu - When Path MTU discovery is disabled the value 2284 * specified here will be the "fixed" path mtu. 2285 * Note that if the spp_address field is empty 2286 * then all associations on this address will 2287 * have this fixed path mtu set upon them. 2288 * 2289 * spp_sackdelay - When delayed sack is enabled, this value specifies 2290 * the number of milliseconds that sacks will be delayed 2291 * for. This value will apply to all addresses of an 2292 * association if the spp_address field is empty. Note 2293 * also, that if delayed sack is enabled and this 2294 * value is set to 0, no change is made to the last 2295 * recorded delayed sack timer value. 2296 * 2297 * spp_flags - These flags are used to control various features 2298 * on an association. The flag field may contain 2299 * zero or more of the following options. 2300 * 2301 * SPP_HB_ENABLE - Enable heartbeats on the 2302 * specified address. Note that if the address 2303 * field is empty all addresses for the association 2304 * have heartbeats enabled upon them. 2305 * 2306 * SPP_HB_DISABLE - Disable heartbeats on the 2307 * speicifed address. Note that if the address 2308 * field is empty all addresses for the association 2309 * will have their heartbeats disabled. Note also 2310 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2311 * mutually exclusive, only one of these two should 2312 * be specified. Enabling both fields will have 2313 * undetermined results. 2314 * 2315 * SPP_HB_DEMAND - Request a user initiated heartbeat 2316 * to be made immediately. 2317 * 2318 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2319 * heartbeat delayis to be set to the value of 0 2320 * milliseconds. 2321 * 2322 * SPP_PMTUD_ENABLE - This field will enable PMTU 2323 * discovery upon the specified address. Note that 2324 * if the address feild is empty then all addresses 2325 * on the association are effected. 2326 * 2327 * SPP_PMTUD_DISABLE - This field will disable PMTU 2328 * discovery upon the specified address. Note that 2329 * if the address feild is empty then all addresses 2330 * on the association are effected. Not also that 2331 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2332 * exclusive. Enabling both will have undetermined 2333 * results. 2334 * 2335 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2336 * on delayed sack. The time specified in spp_sackdelay 2337 * is used to specify the sack delay for this address. Note 2338 * that if spp_address is empty then all addresses will 2339 * enable delayed sack and take on the sack delay 2340 * value specified in spp_sackdelay. 2341 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2342 * off delayed sack. If the spp_address field is blank then 2343 * delayed sack is disabled for the entire association. Note 2344 * also that this field is mutually exclusive to 2345 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2346 * results. 2347 */ 2348 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2349 struct sctp_transport *trans, 2350 struct sctp_association *asoc, 2351 struct sctp_sock *sp, 2352 int hb_change, 2353 int pmtud_change, 2354 int sackdelay_change) 2355 { 2356 int error; 2357 2358 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2359 struct net *net = sock_net(trans->asoc->base.sk); 2360 2361 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2362 if (error) 2363 return error; 2364 } 2365 2366 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2367 * this field is ignored. Note also that a value of zero indicates 2368 * the current setting should be left unchanged. 2369 */ 2370 if (params->spp_flags & SPP_HB_ENABLE) { 2371 2372 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2373 * set. This lets us use 0 value when this flag 2374 * is set. 2375 */ 2376 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2377 params->spp_hbinterval = 0; 2378 2379 if (params->spp_hbinterval || 2380 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2381 if (trans) { 2382 trans->hbinterval = 2383 msecs_to_jiffies(params->spp_hbinterval); 2384 } else if (asoc) { 2385 asoc->hbinterval = 2386 msecs_to_jiffies(params->spp_hbinterval); 2387 } else { 2388 sp->hbinterval = params->spp_hbinterval; 2389 } 2390 } 2391 } 2392 2393 if (hb_change) { 2394 if (trans) { 2395 trans->param_flags = 2396 (trans->param_flags & ~SPP_HB) | hb_change; 2397 } else if (asoc) { 2398 asoc->param_flags = 2399 (asoc->param_flags & ~SPP_HB) | hb_change; 2400 } else { 2401 sp->param_flags = 2402 (sp->param_flags & ~SPP_HB) | hb_change; 2403 } 2404 } 2405 2406 /* When Path MTU discovery is disabled the value specified here will 2407 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2408 * include the flag SPP_PMTUD_DISABLE for this field to have any 2409 * effect). 2410 */ 2411 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2412 if (trans) { 2413 trans->pathmtu = params->spp_pathmtu; 2414 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2415 } else if (asoc) { 2416 asoc->pathmtu = params->spp_pathmtu; 2417 sctp_frag_point(asoc, params->spp_pathmtu); 2418 } else { 2419 sp->pathmtu = params->spp_pathmtu; 2420 } 2421 } 2422 2423 if (pmtud_change) { 2424 if (trans) { 2425 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2426 (params->spp_flags & SPP_PMTUD_ENABLE); 2427 trans->param_flags = 2428 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2429 if (update) { 2430 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2431 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2432 } 2433 } else if (asoc) { 2434 asoc->param_flags = 2435 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2436 } else { 2437 sp->param_flags = 2438 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2439 } 2440 } 2441 2442 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2443 * value of this field is ignored. Note also that a value of zero 2444 * indicates the current setting should be left unchanged. 2445 */ 2446 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2447 if (trans) { 2448 trans->sackdelay = 2449 msecs_to_jiffies(params->spp_sackdelay); 2450 } else if (asoc) { 2451 asoc->sackdelay = 2452 msecs_to_jiffies(params->spp_sackdelay); 2453 } else { 2454 sp->sackdelay = params->spp_sackdelay; 2455 } 2456 } 2457 2458 if (sackdelay_change) { 2459 if (trans) { 2460 trans->param_flags = 2461 (trans->param_flags & ~SPP_SACKDELAY) | 2462 sackdelay_change; 2463 } else if (asoc) { 2464 asoc->param_flags = 2465 (asoc->param_flags & ~SPP_SACKDELAY) | 2466 sackdelay_change; 2467 } else { 2468 sp->param_flags = 2469 (sp->param_flags & ~SPP_SACKDELAY) | 2470 sackdelay_change; 2471 } 2472 } 2473 2474 /* Note that a value of zero indicates the current setting should be 2475 left unchanged. 2476 */ 2477 if (params->spp_pathmaxrxt) { 2478 if (trans) { 2479 trans->pathmaxrxt = params->spp_pathmaxrxt; 2480 } else if (asoc) { 2481 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2482 } else { 2483 sp->pathmaxrxt = params->spp_pathmaxrxt; 2484 } 2485 } 2486 2487 return 0; 2488 } 2489 2490 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2491 char __user *optval, 2492 unsigned int optlen) 2493 { 2494 struct sctp_paddrparams params; 2495 struct sctp_transport *trans = NULL; 2496 struct sctp_association *asoc = NULL; 2497 struct sctp_sock *sp = sctp_sk(sk); 2498 int error; 2499 int hb_change, pmtud_change, sackdelay_change; 2500 2501 if (optlen != sizeof(struct sctp_paddrparams)) 2502 return -EINVAL; 2503 2504 if (copy_from_user(¶ms, optval, optlen)) 2505 return -EFAULT; 2506 2507 /* Validate flags and value parameters. */ 2508 hb_change = params.spp_flags & SPP_HB; 2509 pmtud_change = params.spp_flags & SPP_PMTUD; 2510 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2511 2512 if (hb_change == SPP_HB || 2513 pmtud_change == SPP_PMTUD || 2514 sackdelay_change == SPP_SACKDELAY || 2515 params.spp_sackdelay > 500 || 2516 (params.spp_pathmtu && 2517 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2518 return -EINVAL; 2519 2520 /* If an address other than INADDR_ANY is specified, and 2521 * no transport is found, then the request is invalid. 2522 */ 2523 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2524 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2525 params.spp_assoc_id); 2526 if (!trans) 2527 return -EINVAL; 2528 } 2529 2530 /* Get association, if assoc_id != 0 and the socket is a one 2531 * to many style socket, and an association was not found, then 2532 * the id was invalid. 2533 */ 2534 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2535 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2536 return -EINVAL; 2537 2538 /* Heartbeat demand can only be sent on a transport or 2539 * association, but not a socket. 2540 */ 2541 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2542 return -EINVAL; 2543 2544 /* Process parameters. */ 2545 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2546 hb_change, pmtud_change, 2547 sackdelay_change); 2548 2549 if (error) 2550 return error; 2551 2552 /* If changes are for association, also apply parameters to each 2553 * transport. 2554 */ 2555 if (!trans && asoc) { 2556 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2557 transports) { 2558 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2559 hb_change, pmtud_change, 2560 sackdelay_change); 2561 } 2562 } 2563 2564 return 0; 2565 } 2566 2567 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2568 { 2569 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2570 } 2571 2572 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2573 { 2574 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2575 } 2576 2577 /* 2578 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2579 * 2580 * This option will effect the way delayed acks are performed. This 2581 * option allows you to get or set the delayed ack time, in 2582 * milliseconds. It also allows changing the delayed ack frequency. 2583 * Changing the frequency to 1 disables the delayed sack algorithm. If 2584 * the assoc_id is 0, then this sets or gets the endpoints default 2585 * values. If the assoc_id field is non-zero, then the set or get 2586 * effects the specified association for the one to many model (the 2587 * assoc_id field is ignored by the one to one model). Note that if 2588 * sack_delay or sack_freq are 0 when setting this option, then the 2589 * current values will remain unchanged. 2590 * 2591 * struct sctp_sack_info { 2592 * sctp_assoc_t sack_assoc_id; 2593 * uint32_t sack_delay; 2594 * uint32_t sack_freq; 2595 * }; 2596 * 2597 * sack_assoc_id - This parameter, indicates which association the user 2598 * is performing an action upon. Note that if this field's value is 2599 * zero then the endpoints default value is changed (effecting future 2600 * associations only). 2601 * 2602 * sack_delay - This parameter contains the number of milliseconds that 2603 * the user is requesting the delayed ACK timer be set to. Note that 2604 * this value is defined in the standard to be between 200 and 500 2605 * milliseconds. 2606 * 2607 * sack_freq - This parameter contains the number of packets that must 2608 * be received before a sack is sent without waiting for the delay 2609 * timer to expire. The default value for this is 2, setting this 2610 * value to 1 will disable the delayed sack algorithm. 2611 */ 2612 2613 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2614 char __user *optval, unsigned int optlen) 2615 { 2616 struct sctp_sack_info params; 2617 struct sctp_transport *trans = NULL; 2618 struct sctp_association *asoc = NULL; 2619 struct sctp_sock *sp = sctp_sk(sk); 2620 2621 if (optlen == sizeof(struct sctp_sack_info)) { 2622 if (copy_from_user(¶ms, optval, optlen)) 2623 return -EFAULT; 2624 2625 if (params.sack_delay == 0 && params.sack_freq == 0) 2626 return 0; 2627 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2628 pr_warn_ratelimited(DEPRECATED 2629 "%s (pid %d) " 2630 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2631 "Use struct sctp_sack_info instead\n", 2632 current->comm, task_pid_nr(current)); 2633 if (copy_from_user(¶ms, optval, optlen)) 2634 return -EFAULT; 2635 2636 if (params.sack_delay == 0) 2637 params.sack_freq = 1; 2638 else 2639 params.sack_freq = 0; 2640 } else 2641 return -EINVAL; 2642 2643 /* Validate value parameter. */ 2644 if (params.sack_delay > 500) 2645 return -EINVAL; 2646 2647 /* Get association, if sack_assoc_id != 0 and the socket is a one 2648 * to many style socket, and an association was not found, then 2649 * the id was invalid. 2650 */ 2651 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2652 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2653 return -EINVAL; 2654 2655 if (params.sack_delay) { 2656 if (asoc) { 2657 asoc->sackdelay = 2658 msecs_to_jiffies(params.sack_delay); 2659 asoc->param_flags = 2660 sctp_spp_sackdelay_enable(asoc->param_flags); 2661 } else { 2662 sp->sackdelay = params.sack_delay; 2663 sp->param_flags = 2664 sctp_spp_sackdelay_enable(sp->param_flags); 2665 } 2666 } 2667 2668 if (params.sack_freq == 1) { 2669 if (asoc) { 2670 asoc->param_flags = 2671 sctp_spp_sackdelay_disable(asoc->param_flags); 2672 } else { 2673 sp->param_flags = 2674 sctp_spp_sackdelay_disable(sp->param_flags); 2675 } 2676 } else if (params.sack_freq > 1) { 2677 if (asoc) { 2678 asoc->sackfreq = params.sack_freq; 2679 asoc->param_flags = 2680 sctp_spp_sackdelay_enable(asoc->param_flags); 2681 } else { 2682 sp->sackfreq = params.sack_freq; 2683 sp->param_flags = 2684 sctp_spp_sackdelay_enable(sp->param_flags); 2685 } 2686 } 2687 2688 /* If change is for association, also apply to each transport. */ 2689 if (asoc) { 2690 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2691 transports) { 2692 if (params.sack_delay) { 2693 trans->sackdelay = 2694 msecs_to_jiffies(params.sack_delay); 2695 trans->param_flags = 2696 sctp_spp_sackdelay_enable(trans->param_flags); 2697 } 2698 if (params.sack_freq == 1) { 2699 trans->param_flags = 2700 sctp_spp_sackdelay_disable(trans->param_flags); 2701 } else if (params.sack_freq > 1) { 2702 trans->sackfreq = params.sack_freq; 2703 trans->param_flags = 2704 sctp_spp_sackdelay_enable(trans->param_flags); 2705 } 2706 } 2707 } 2708 2709 return 0; 2710 } 2711 2712 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2713 * 2714 * Applications can specify protocol parameters for the default association 2715 * initialization. The option name argument to setsockopt() and getsockopt() 2716 * is SCTP_INITMSG. 2717 * 2718 * Setting initialization parameters is effective only on an unconnected 2719 * socket (for UDP-style sockets only future associations are effected 2720 * by the change). With TCP-style sockets, this option is inherited by 2721 * sockets derived from a listener socket. 2722 */ 2723 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2724 { 2725 struct sctp_initmsg sinit; 2726 struct sctp_sock *sp = sctp_sk(sk); 2727 2728 if (optlen != sizeof(struct sctp_initmsg)) 2729 return -EINVAL; 2730 if (copy_from_user(&sinit, optval, optlen)) 2731 return -EFAULT; 2732 2733 if (sinit.sinit_num_ostreams) 2734 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2735 if (sinit.sinit_max_instreams) 2736 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2737 if (sinit.sinit_max_attempts) 2738 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2739 if (sinit.sinit_max_init_timeo) 2740 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2741 2742 return 0; 2743 } 2744 2745 /* 2746 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2747 * 2748 * Applications that wish to use the sendto() system call may wish to 2749 * specify a default set of parameters that would normally be supplied 2750 * through the inclusion of ancillary data. This socket option allows 2751 * such an application to set the default sctp_sndrcvinfo structure. 2752 * The application that wishes to use this socket option simply passes 2753 * in to this call the sctp_sndrcvinfo structure defined in Section 2754 * 5.2.2) The input parameters accepted by this call include 2755 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2756 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2757 * to this call if the caller is using the UDP model. 2758 */ 2759 static int sctp_setsockopt_default_send_param(struct sock *sk, 2760 char __user *optval, 2761 unsigned int optlen) 2762 { 2763 struct sctp_sock *sp = sctp_sk(sk); 2764 struct sctp_association *asoc; 2765 struct sctp_sndrcvinfo info; 2766 2767 if (optlen != sizeof(info)) 2768 return -EINVAL; 2769 if (copy_from_user(&info, optval, optlen)) 2770 return -EFAULT; 2771 if (info.sinfo_flags & 2772 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2773 SCTP_ABORT | SCTP_EOF)) 2774 return -EINVAL; 2775 2776 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2777 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2778 return -EINVAL; 2779 if (asoc) { 2780 asoc->default_stream = info.sinfo_stream; 2781 asoc->default_flags = info.sinfo_flags; 2782 asoc->default_ppid = info.sinfo_ppid; 2783 asoc->default_context = info.sinfo_context; 2784 asoc->default_timetolive = info.sinfo_timetolive; 2785 } else { 2786 sp->default_stream = info.sinfo_stream; 2787 sp->default_flags = info.sinfo_flags; 2788 sp->default_ppid = info.sinfo_ppid; 2789 sp->default_context = info.sinfo_context; 2790 sp->default_timetolive = info.sinfo_timetolive; 2791 } 2792 2793 return 0; 2794 } 2795 2796 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2797 * (SCTP_DEFAULT_SNDINFO) 2798 */ 2799 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2800 char __user *optval, 2801 unsigned int optlen) 2802 { 2803 struct sctp_sock *sp = sctp_sk(sk); 2804 struct sctp_association *asoc; 2805 struct sctp_sndinfo info; 2806 2807 if (optlen != sizeof(info)) 2808 return -EINVAL; 2809 if (copy_from_user(&info, optval, optlen)) 2810 return -EFAULT; 2811 if (info.snd_flags & 2812 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2813 SCTP_ABORT | SCTP_EOF)) 2814 return -EINVAL; 2815 2816 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2817 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2818 return -EINVAL; 2819 if (asoc) { 2820 asoc->default_stream = info.snd_sid; 2821 asoc->default_flags = info.snd_flags; 2822 asoc->default_ppid = info.snd_ppid; 2823 asoc->default_context = info.snd_context; 2824 } else { 2825 sp->default_stream = info.snd_sid; 2826 sp->default_flags = info.snd_flags; 2827 sp->default_ppid = info.snd_ppid; 2828 sp->default_context = info.snd_context; 2829 } 2830 2831 return 0; 2832 } 2833 2834 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2835 * 2836 * Requests that the local SCTP stack use the enclosed peer address as 2837 * the association primary. The enclosed address must be one of the 2838 * association peer's addresses. 2839 */ 2840 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2841 unsigned int optlen) 2842 { 2843 struct sctp_prim prim; 2844 struct sctp_transport *trans; 2845 2846 if (optlen != sizeof(struct sctp_prim)) 2847 return -EINVAL; 2848 2849 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2850 return -EFAULT; 2851 2852 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2853 if (!trans) 2854 return -EINVAL; 2855 2856 sctp_assoc_set_primary(trans->asoc, trans); 2857 2858 return 0; 2859 } 2860 2861 /* 2862 * 7.1.5 SCTP_NODELAY 2863 * 2864 * Turn on/off any Nagle-like algorithm. This means that packets are 2865 * generally sent as soon as possible and no unnecessary delays are 2866 * introduced, at the cost of more packets in the network. Expects an 2867 * integer boolean flag. 2868 */ 2869 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2870 unsigned int optlen) 2871 { 2872 int val; 2873 2874 if (optlen < sizeof(int)) 2875 return -EINVAL; 2876 if (get_user(val, (int __user *)optval)) 2877 return -EFAULT; 2878 2879 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2880 return 0; 2881 } 2882 2883 /* 2884 * 2885 * 7.1.1 SCTP_RTOINFO 2886 * 2887 * The protocol parameters used to initialize and bound retransmission 2888 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2889 * and modify these parameters. 2890 * All parameters are time values, in milliseconds. A value of 0, when 2891 * modifying the parameters, indicates that the current value should not 2892 * be changed. 2893 * 2894 */ 2895 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2896 { 2897 struct sctp_rtoinfo rtoinfo; 2898 struct sctp_association *asoc; 2899 unsigned long rto_min, rto_max; 2900 struct sctp_sock *sp = sctp_sk(sk); 2901 2902 if (optlen != sizeof (struct sctp_rtoinfo)) 2903 return -EINVAL; 2904 2905 if (copy_from_user(&rtoinfo, optval, optlen)) 2906 return -EFAULT; 2907 2908 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2909 2910 /* Set the values to the specific association */ 2911 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2912 return -EINVAL; 2913 2914 rto_max = rtoinfo.srto_max; 2915 rto_min = rtoinfo.srto_min; 2916 2917 if (rto_max) 2918 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2919 else 2920 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2921 2922 if (rto_min) 2923 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2924 else 2925 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2926 2927 if (rto_min > rto_max) 2928 return -EINVAL; 2929 2930 if (asoc) { 2931 if (rtoinfo.srto_initial != 0) 2932 asoc->rto_initial = 2933 msecs_to_jiffies(rtoinfo.srto_initial); 2934 asoc->rto_max = rto_max; 2935 asoc->rto_min = rto_min; 2936 } else { 2937 /* If there is no association or the association-id = 0 2938 * set the values to the endpoint. 2939 */ 2940 if (rtoinfo.srto_initial != 0) 2941 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2942 sp->rtoinfo.srto_max = rto_max; 2943 sp->rtoinfo.srto_min = rto_min; 2944 } 2945 2946 return 0; 2947 } 2948 2949 /* 2950 * 2951 * 7.1.2 SCTP_ASSOCINFO 2952 * 2953 * This option is used to tune the maximum retransmission attempts 2954 * of the association. 2955 * Returns an error if the new association retransmission value is 2956 * greater than the sum of the retransmission value of the peer. 2957 * See [SCTP] for more information. 2958 * 2959 */ 2960 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2961 { 2962 2963 struct sctp_assocparams assocparams; 2964 struct sctp_association *asoc; 2965 2966 if (optlen != sizeof(struct sctp_assocparams)) 2967 return -EINVAL; 2968 if (copy_from_user(&assocparams, optval, optlen)) 2969 return -EFAULT; 2970 2971 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2972 2973 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2974 return -EINVAL; 2975 2976 /* Set the values to the specific association */ 2977 if (asoc) { 2978 if (assocparams.sasoc_asocmaxrxt != 0) { 2979 __u32 path_sum = 0; 2980 int paths = 0; 2981 struct sctp_transport *peer_addr; 2982 2983 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2984 transports) { 2985 path_sum += peer_addr->pathmaxrxt; 2986 paths++; 2987 } 2988 2989 /* Only validate asocmaxrxt if we have more than 2990 * one path/transport. We do this because path 2991 * retransmissions are only counted when we have more 2992 * then one path. 2993 */ 2994 if (paths > 1 && 2995 assocparams.sasoc_asocmaxrxt > path_sum) 2996 return -EINVAL; 2997 2998 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2999 } 3000 3001 if (assocparams.sasoc_cookie_life != 0) 3002 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3003 } else { 3004 /* Set the values to the endpoint */ 3005 struct sctp_sock *sp = sctp_sk(sk); 3006 3007 if (assocparams.sasoc_asocmaxrxt != 0) 3008 sp->assocparams.sasoc_asocmaxrxt = 3009 assocparams.sasoc_asocmaxrxt; 3010 if (assocparams.sasoc_cookie_life != 0) 3011 sp->assocparams.sasoc_cookie_life = 3012 assocparams.sasoc_cookie_life; 3013 } 3014 return 0; 3015 } 3016 3017 /* 3018 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3019 * 3020 * This socket option is a boolean flag which turns on or off mapped V4 3021 * addresses. If this option is turned on and the socket is type 3022 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3023 * If this option is turned off, then no mapping will be done of V4 3024 * addresses and a user will receive both PF_INET6 and PF_INET type 3025 * addresses on the socket. 3026 */ 3027 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3028 { 3029 int val; 3030 struct sctp_sock *sp = sctp_sk(sk); 3031 3032 if (optlen < sizeof(int)) 3033 return -EINVAL; 3034 if (get_user(val, (int __user *)optval)) 3035 return -EFAULT; 3036 if (val) 3037 sp->v4mapped = 1; 3038 else 3039 sp->v4mapped = 0; 3040 3041 return 0; 3042 } 3043 3044 /* 3045 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3046 * This option will get or set the maximum size to put in any outgoing 3047 * SCTP DATA chunk. If a message is larger than this size it will be 3048 * fragmented by SCTP into the specified size. Note that the underlying 3049 * SCTP implementation may fragment into smaller sized chunks when the 3050 * PMTU of the underlying association is smaller than the value set by 3051 * the user. The default value for this option is '0' which indicates 3052 * the user is NOT limiting fragmentation and only the PMTU will effect 3053 * SCTP's choice of DATA chunk size. Note also that values set larger 3054 * than the maximum size of an IP datagram will effectively let SCTP 3055 * control fragmentation (i.e. the same as setting this option to 0). 3056 * 3057 * The following structure is used to access and modify this parameter: 3058 * 3059 * struct sctp_assoc_value { 3060 * sctp_assoc_t assoc_id; 3061 * uint32_t assoc_value; 3062 * }; 3063 * 3064 * assoc_id: This parameter is ignored for one-to-one style sockets. 3065 * For one-to-many style sockets this parameter indicates which 3066 * association the user is performing an action upon. Note that if 3067 * this field's value is zero then the endpoints default value is 3068 * changed (effecting future associations only). 3069 * assoc_value: This parameter specifies the maximum size in bytes. 3070 */ 3071 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3072 { 3073 struct sctp_assoc_value params; 3074 struct sctp_association *asoc; 3075 struct sctp_sock *sp = sctp_sk(sk); 3076 int val; 3077 3078 if (optlen == sizeof(int)) { 3079 pr_warn_ratelimited(DEPRECATED 3080 "%s (pid %d) " 3081 "Use of int in maxseg socket option.\n" 3082 "Use struct sctp_assoc_value instead\n", 3083 current->comm, task_pid_nr(current)); 3084 if (copy_from_user(&val, optval, optlen)) 3085 return -EFAULT; 3086 params.assoc_id = 0; 3087 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3088 if (copy_from_user(¶ms, optval, optlen)) 3089 return -EFAULT; 3090 val = params.assoc_value; 3091 } else 3092 return -EINVAL; 3093 3094 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3095 return -EINVAL; 3096 3097 asoc = sctp_id2assoc(sk, params.assoc_id); 3098 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3099 return -EINVAL; 3100 3101 if (asoc) { 3102 if (val == 0) { 3103 val = asoc->pathmtu; 3104 val -= sp->pf->af->net_header_len; 3105 val -= sizeof(struct sctphdr) + 3106 sizeof(struct sctp_data_chunk); 3107 } 3108 asoc->user_frag = val; 3109 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3110 } else { 3111 sp->user_frag = val; 3112 } 3113 3114 return 0; 3115 } 3116 3117 3118 /* 3119 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3120 * 3121 * Requests that the peer mark the enclosed address as the association 3122 * primary. The enclosed address must be one of the association's 3123 * locally bound addresses. The following structure is used to make a 3124 * set primary request: 3125 */ 3126 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3127 unsigned int optlen) 3128 { 3129 struct net *net = sock_net(sk); 3130 struct sctp_sock *sp; 3131 struct sctp_association *asoc = NULL; 3132 struct sctp_setpeerprim prim; 3133 struct sctp_chunk *chunk; 3134 struct sctp_af *af; 3135 int err; 3136 3137 sp = sctp_sk(sk); 3138 3139 if (!net->sctp.addip_enable) 3140 return -EPERM; 3141 3142 if (optlen != sizeof(struct sctp_setpeerprim)) 3143 return -EINVAL; 3144 3145 if (copy_from_user(&prim, optval, optlen)) 3146 return -EFAULT; 3147 3148 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3149 if (!asoc) 3150 return -EINVAL; 3151 3152 if (!asoc->peer.asconf_capable) 3153 return -EPERM; 3154 3155 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3156 return -EPERM; 3157 3158 if (!sctp_state(asoc, ESTABLISHED)) 3159 return -ENOTCONN; 3160 3161 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3162 if (!af) 3163 return -EINVAL; 3164 3165 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3166 return -EADDRNOTAVAIL; 3167 3168 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3169 return -EADDRNOTAVAIL; 3170 3171 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3172 chunk = sctp_make_asconf_set_prim(asoc, 3173 (union sctp_addr *)&prim.sspp_addr); 3174 if (!chunk) 3175 return -ENOMEM; 3176 3177 err = sctp_send_asconf(asoc, chunk); 3178 3179 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3180 3181 return err; 3182 } 3183 3184 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3185 unsigned int optlen) 3186 { 3187 struct sctp_setadaptation adaptation; 3188 3189 if (optlen != sizeof(struct sctp_setadaptation)) 3190 return -EINVAL; 3191 if (copy_from_user(&adaptation, optval, optlen)) 3192 return -EFAULT; 3193 3194 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3195 3196 return 0; 3197 } 3198 3199 /* 3200 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3201 * 3202 * The context field in the sctp_sndrcvinfo structure is normally only 3203 * used when a failed message is retrieved holding the value that was 3204 * sent down on the actual send call. This option allows the setting of 3205 * a default context on an association basis that will be received on 3206 * reading messages from the peer. This is especially helpful in the 3207 * one-2-many model for an application to keep some reference to an 3208 * internal state machine that is processing messages on the 3209 * association. Note that the setting of this value only effects 3210 * received messages from the peer and does not effect the value that is 3211 * saved with outbound messages. 3212 */ 3213 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3214 unsigned int optlen) 3215 { 3216 struct sctp_assoc_value params; 3217 struct sctp_sock *sp; 3218 struct sctp_association *asoc; 3219 3220 if (optlen != sizeof(struct sctp_assoc_value)) 3221 return -EINVAL; 3222 if (copy_from_user(¶ms, optval, optlen)) 3223 return -EFAULT; 3224 3225 sp = sctp_sk(sk); 3226 3227 if (params.assoc_id != 0) { 3228 asoc = sctp_id2assoc(sk, params.assoc_id); 3229 if (!asoc) 3230 return -EINVAL; 3231 asoc->default_rcv_context = params.assoc_value; 3232 } else { 3233 sp->default_rcv_context = params.assoc_value; 3234 } 3235 3236 return 0; 3237 } 3238 3239 /* 3240 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3241 * 3242 * This options will at a minimum specify if the implementation is doing 3243 * fragmented interleave. Fragmented interleave, for a one to many 3244 * socket, is when subsequent calls to receive a message may return 3245 * parts of messages from different associations. Some implementations 3246 * may allow you to turn this value on or off. If so, when turned off, 3247 * no fragment interleave will occur (which will cause a head of line 3248 * blocking amongst multiple associations sharing the same one to many 3249 * socket). When this option is turned on, then each receive call may 3250 * come from a different association (thus the user must receive data 3251 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3252 * association each receive belongs to. 3253 * 3254 * This option takes a boolean value. A non-zero value indicates that 3255 * fragmented interleave is on. A value of zero indicates that 3256 * fragmented interleave is off. 3257 * 3258 * Note that it is important that an implementation that allows this 3259 * option to be turned on, have it off by default. Otherwise an unaware 3260 * application using the one to many model may become confused and act 3261 * incorrectly. 3262 */ 3263 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3264 char __user *optval, 3265 unsigned int optlen) 3266 { 3267 int val; 3268 3269 if (optlen != sizeof(int)) 3270 return -EINVAL; 3271 if (get_user(val, (int __user *)optval)) 3272 return -EFAULT; 3273 3274 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3275 3276 return 0; 3277 } 3278 3279 /* 3280 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3281 * (SCTP_PARTIAL_DELIVERY_POINT) 3282 * 3283 * This option will set or get the SCTP partial delivery point. This 3284 * point is the size of a message where the partial delivery API will be 3285 * invoked to help free up rwnd space for the peer. Setting this to a 3286 * lower value will cause partial deliveries to happen more often. The 3287 * calls argument is an integer that sets or gets the partial delivery 3288 * point. Note also that the call will fail if the user attempts to set 3289 * this value larger than the socket receive buffer size. 3290 * 3291 * Note that any single message having a length smaller than or equal to 3292 * the SCTP partial delivery point will be delivered in one single read 3293 * call as long as the user provided buffer is large enough to hold the 3294 * message. 3295 */ 3296 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3297 char __user *optval, 3298 unsigned int optlen) 3299 { 3300 u32 val; 3301 3302 if (optlen != sizeof(u32)) 3303 return -EINVAL; 3304 if (get_user(val, (int __user *)optval)) 3305 return -EFAULT; 3306 3307 /* Note: We double the receive buffer from what the user sets 3308 * it to be, also initial rwnd is based on rcvbuf/2. 3309 */ 3310 if (val > (sk->sk_rcvbuf >> 1)) 3311 return -EINVAL; 3312 3313 sctp_sk(sk)->pd_point = val; 3314 3315 return 0; /* is this the right error code? */ 3316 } 3317 3318 /* 3319 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3320 * 3321 * This option will allow a user to change the maximum burst of packets 3322 * that can be emitted by this association. Note that the default value 3323 * is 4, and some implementations may restrict this setting so that it 3324 * can only be lowered. 3325 * 3326 * NOTE: This text doesn't seem right. Do this on a socket basis with 3327 * future associations inheriting the socket value. 3328 */ 3329 static int sctp_setsockopt_maxburst(struct sock *sk, 3330 char __user *optval, 3331 unsigned int optlen) 3332 { 3333 struct sctp_assoc_value params; 3334 struct sctp_sock *sp; 3335 struct sctp_association *asoc; 3336 int val; 3337 int assoc_id = 0; 3338 3339 if (optlen == sizeof(int)) { 3340 pr_warn_ratelimited(DEPRECATED 3341 "%s (pid %d) " 3342 "Use of int in max_burst socket option deprecated.\n" 3343 "Use struct sctp_assoc_value instead\n", 3344 current->comm, task_pid_nr(current)); 3345 if (copy_from_user(&val, optval, optlen)) 3346 return -EFAULT; 3347 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3348 if (copy_from_user(¶ms, optval, optlen)) 3349 return -EFAULT; 3350 val = params.assoc_value; 3351 assoc_id = params.assoc_id; 3352 } else 3353 return -EINVAL; 3354 3355 sp = sctp_sk(sk); 3356 3357 if (assoc_id != 0) { 3358 asoc = sctp_id2assoc(sk, assoc_id); 3359 if (!asoc) 3360 return -EINVAL; 3361 asoc->max_burst = val; 3362 } else 3363 sp->max_burst = val; 3364 3365 return 0; 3366 } 3367 3368 /* 3369 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3370 * 3371 * This set option adds a chunk type that the user is requesting to be 3372 * received only in an authenticated way. Changes to the list of chunks 3373 * will only effect future associations on the socket. 3374 */ 3375 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3376 char __user *optval, 3377 unsigned int optlen) 3378 { 3379 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3380 struct sctp_authchunk val; 3381 3382 if (!ep->auth_enable) 3383 return -EACCES; 3384 3385 if (optlen != sizeof(struct sctp_authchunk)) 3386 return -EINVAL; 3387 if (copy_from_user(&val, optval, optlen)) 3388 return -EFAULT; 3389 3390 switch (val.sauth_chunk) { 3391 case SCTP_CID_INIT: 3392 case SCTP_CID_INIT_ACK: 3393 case SCTP_CID_SHUTDOWN_COMPLETE: 3394 case SCTP_CID_AUTH: 3395 return -EINVAL; 3396 } 3397 3398 /* add this chunk id to the endpoint */ 3399 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3400 } 3401 3402 /* 3403 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3404 * 3405 * This option gets or sets the list of HMAC algorithms that the local 3406 * endpoint requires the peer to use. 3407 */ 3408 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3409 char __user *optval, 3410 unsigned int optlen) 3411 { 3412 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3413 struct sctp_hmacalgo *hmacs; 3414 u32 idents; 3415 int err; 3416 3417 if (!ep->auth_enable) 3418 return -EACCES; 3419 3420 if (optlen < sizeof(struct sctp_hmacalgo)) 3421 return -EINVAL; 3422 3423 hmacs = memdup_user(optval, optlen); 3424 if (IS_ERR(hmacs)) 3425 return PTR_ERR(hmacs); 3426 3427 idents = hmacs->shmac_num_idents; 3428 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3429 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3430 err = -EINVAL; 3431 goto out; 3432 } 3433 3434 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3435 out: 3436 kfree(hmacs); 3437 return err; 3438 } 3439 3440 /* 3441 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3442 * 3443 * This option will set a shared secret key which is used to build an 3444 * association shared key. 3445 */ 3446 static int sctp_setsockopt_auth_key(struct sock *sk, 3447 char __user *optval, 3448 unsigned int optlen) 3449 { 3450 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3451 struct sctp_authkey *authkey; 3452 struct sctp_association *asoc; 3453 int ret; 3454 3455 if (!ep->auth_enable) 3456 return -EACCES; 3457 3458 if (optlen <= sizeof(struct sctp_authkey)) 3459 return -EINVAL; 3460 3461 authkey = memdup_user(optval, optlen); 3462 if (IS_ERR(authkey)) 3463 return PTR_ERR(authkey); 3464 3465 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3466 ret = -EINVAL; 3467 goto out; 3468 } 3469 3470 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3471 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3472 ret = -EINVAL; 3473 goto out; 3474 } 3475 3476 ret = sctp_auth_set_key(ep, asoc, authkey); 3477 out: 3478 kzfree(authkey); 3479 return ret; 3480 } 3481 3482 /* 3483 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3484 * 3485 * This option will get or set the active shared key to be used to build 3486 * the association shared key. 3487 */ 3488 static int sctp_setsockopt_active_key(struct sock *sk, 3489 char __user *optval, 3490 unsigned int optlen) 3491 { 3492 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3493 struct sctp_authkeyid val; 3494 struct sctp_association *asoc; 3495 3496 if (!ep->auth_enable) 3497 return -EACCES; 3498 3499 if (optlen != sizeof(struct sctp_authkeyid)) 3500 return -EINVAL; 3501 if (copy_from_user(&val, optval, optlen)) 3502 return -EFAULT; 3503 3504 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3505 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3506 return -EINVAL; 3507 3508 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3509 } 3510 3511 /* 3512 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3513 * 3514 * This set option will delete a shared secret key from use. 3515 */ 3516 static int sctp_setsockopt_del_key(struct sock *sk, 3517 char __user *optval, 3518 unsigned int optlen) 3519 { 3520 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3521 struct sctp_authkeyid val; 3522 struct sctp_association *asoc; 3523 3524 if (!ep->auth_enable) 3525 return -EACCES; 3526 3527 if (optlen != sizeof(struct sctp_authkeyid)) 3528 return -EINVAL; 3529 if (copy_from_user(&val, optval, optlen)) 3530 return -EFAULT; 3531 3532 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3533 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3534 return -EINVAL; 3535 3536 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3537 3538 } 3539 3540 /* 3541 * 8.1.23 SCTP_AUTO_ASCONF 3542 * 3543 * This option will enable or disable the use of the automatic generation of 3544 * ASCONF chunks to add and delete addresses to an existing association. Note 3545 * that this option has two caveats namely: a) it only affects sockets that 3546 * are bound to all addresses available to the SCTP stack, and b) the system 3547 * administrator may have an overriding control that turns the ASCONF feature 3548 * off no matter what setting the socket option may have. 3549 * This option expects an integer boolean flag, where a non-zero value turns on 3550 * the option, and a zero value turns off the option. 3551 * Note. In this implementation, socket operation overrides default parameter 3552 * being set by sysctl as well as FreeBSD implementation 3553 */ 3554 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3555 unsigned int optlen) 3556 { 3557 int val; 3558 struct sctp_sock *sp = sctp_sk(sk); 3559 3560 if (optlen < sizeof(int)) 3561 return -EINVAL; 3562 if (get_user(val, (int __user *)optval)) 3563 return -EFAULT; 3564 if (!sctp_is_ep_boundall(sk) && val) 3565 return -EINVAL; 3566 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3567 return 0; 3568 3569 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3570 if (val == 0 && sp->do_auto_asconf) { 3571 list_del(&sp->auto_asconf_list); 3572 sp->do_auto_asconf = 0; 3573 } else if (val && !sp->do_auto_asconf) { 3574 list_add_tail(&sp->auto_asconf_list, 3575 &sock_net(sk)->sctp.auto_asconf_splist); 3576 sp->do_auto_asconf = 1; 3577 } 3578 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3579 return 0; 3580 } 3581 3582 /* 3583 * SCTP_PEER_ADDR_THLDS 3584 * 3585 * This option allows us to alter the partially failed threshold for one or all 3586 * transports in an association. See Section 6.1 of: 3587 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3588 */ 3589 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3590 char __user *optval, 3591 unsigned int optlen) 3592 { 3593 struct sctp_paddrthlds val; 3594 struct sctp_transport *trans; 3595 struct sctp_association *asoc; 3596 3597 if (optlen < sizeof(struct sctp_paddrthlds)) 3598 return -EINVAL; 3599 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3600 sizeof(struct sctp_paddrthlds))) 3601 return -EFAULT; 3602 3603 3604 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3605 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3606 if (!asoc) 3607 return -ENOENT; 3608 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3609 transports) { 3610 if (val.spt_pathmaxrxt) 3611 trans->pathmaxrxt = val.spt_pathmaxrxt; 3612 trans->pf_retrans = val.spt_pathpfthld; 3613 } 3614 3615 if (val.spt_pathmaxrxt) 3616 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3617 asoc->pf_retrans = val.spt_pathpfthld; 3618 } else { 3619 trans = sctp_addr_id2transport(sk, &val.spt_address, 3620 val.spt_assoc_id); 3621 if (!trans) 3622 return -ENOENT; 3623 3624 if (val.spt_pathmaxrxt) 3625 trans->pathmaxrxt = val.spt_pathmaxrxt; 3626 trans->pf_retrans = val.spt_pathpfthld; 3627 } 3628 3629 return 0; 3630 } 3631 3632 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3633 char __user *optval, 3634 unsigned int optlen) 3635 { 3636 int val; 3637 3638 if (optlen < sizeof(int)) 3639 return -EINVAL; 3640 if (get_user(val, (int __user *) optval)) 3641 return -EFAULT; 3642 3643 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3644 3645 return 0; 3646 } 3647 3648 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3649 char __user *optval, 3650 unsigned int optlen) 3651 { 3652 int val; 3653 3654 if (optlen < sizeof(int)) 3655 return -EINVAL; 3656 if (get_user(val, (int __user *) optval)) 3657 return -EFAULT; 3658 3659 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3660 3661 return 0; 3662 } 3663 3664 /* API 6.2 setsockopt(), getsockopt() 3665 * 3666 * Applications use setsockopt() and getsockopt() to set or retrieve 3667 * socket options. Socket options are used to change the default 3668 * behavior of sockets calls. They are described in Section 7. 3669 * 3670 * The syntax is: 3671 * 3672 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3673 * int __user *optlen); 3674 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3675 * int optlen); 3676 * 3677 * sd - the socket descript. 3678 * level - set to IPPROTO_SCTP for all SCTP options. 3679 * optname - the option name. 3680 * optval - the buffer to store the value of the option. 3681 * optlen - the size of the buffer. 3682 */ 3683 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3684 char __user *optval, unsigned int optlen) 3685 { 3686 int retval = 0; 3687 3688 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3689 3690 /* I can hardly begin to describe how wrong this is. This is 3691 * so broken as to be worse than useless. The API draft 3692 * REALLY is NOT helpful here... I am not convinced that the 3693 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3694 * are at all well-founded. 3695 */ 3696 if (level != SOL_SCTP) { 3697 struct sctp_af *af = sctp_sk(sk)->pf->af; 3698 retval = af->setsockopt(sk, level, optname, optval, optlen); 3699 goto out_nounlock; 3700 } 3701 3702 lock_sock(sk); 3703 3704 switch (optname) { 3705 case SCTP_SOCKOPT_BINDX_ADD: 3706 /* 'optlen' is the size of the addresses buffer. */ 3707 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3708 optlen, SCTP_BINDX_ADD_ADDR); 3709 break; 3710 3711 case SCTP_SOCKOPT_BINDX_REM: 3712 /* 'optlen' is the size of the addresses buffer. */ 3713 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3714 optlen, SCTP_BINDX_REM_ADDR); 3715 break; 3716 3717 case SCTP_SOCKOPT_CONNECTX_OLD: 3718 /* 'optlen' is the size of the addresses buffer. */ 3719 retval = sctp_setsockopt_connectx_old(sk, 3720 (struct sockaddr __user *)optval, 3721 optlen); 3722 break; 3723 3724 case SCTP_SOCKOPT_CONNECTX: 3725 /* 'optlen' is the size of the addresses buffer. */ 3726 retval = sctp_setsockopt_connectx(sk, 3727 (struct sockaddr __user *)optval, 3728 optlen); 3729 break; 3730 3731 case SCTP_DISABLE_FRAGMENTS: 3732 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3733 break; 3734 3735 case SCTP_EVENTS: 3736 retval = sctp_setsockopt_events(sk, optval, optlen); 3737 break; 3738 3739 case SCTP_AUTOCLOSE: 3740 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3741 break; 3742 3743 case SCTP_PEER_ADDR_PARAMS: 3744 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3745 break; 3746 3747 case SCTP_DELAYED_SACK: 3748 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3749 break; 3750 case SCTP_PARTIAL_DELIVERY_POINT: 3751 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3752 break; 3753 3754 case SCTP_INITMSG: 3755 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3756 break; 3757 case SCTP_DEFAULT_SEND_PARAM: 3758 retval = sctp_setsockopt_default_send_param(sk, optval, 3759 optlen); 3760 break; 3761 case SCTP_DEFAULT_SNDINFO: 3762 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3763 break; 3764 case SCTP_PRIMARY_ADDR: 3765 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3766 break; 3767 case SCTP_SET_PEER_PRIMARY_ADDR: 3768 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3769 break; 3770 case SCTP_NODELAY: 3771 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3772 break; 3773 case SCTP_RTOINFO: 3774 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3775 break; 3776 case SCTP_ASSOCINFO: 3777 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3778 break; 3779 case SCTP_I_WANT_MAPPED_V4_ADDR: 3780 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3781 break; 3782 case SCTP_MAXSEG: 3783 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3784 break; 3785 case SCTP_ADAPTATION_LAYER: 3786 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3787 break; 3788 case SCTP_CONTEXT: 3789 retval = sctp_setsockopt_context(sk, optval, optlen); 3790 break; 3791 case SCTP_FRAGMENT_INTERLEAVE: 3792 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3793 break; 3794 case SCTP_MAX_BURST: 3795 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3796 break; 3797 case SCTP_AUTH_CHUNK: 3798 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3799 break; 3800 case SCTP_HMAC_IDENT: 3801 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3802 break; 3803 case SCTP_AUTH_KEY: 3804 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3805 break; 3806 case SCTP_AUTH_ACTIVE_KEY: 3807 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3808 break; 3809 case SCTP_AUTH_DELETE_KEY: 3810 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3811 break; 3812 case SCTP_AUTO_ASCONF: 3813 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3814 break; 3815 case SCTP_PEER_ADDR_THLDS: 3816 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3817 break; 3818 case SCTP_RECVRCVINFO: 3819 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 3820 break; 3821 case SCTP_RECVNXTINFO: 3822 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 3823 break; 3824 default: 3825 retval = -ENOPROTOOPT; 3826 break; 3827 } 3828 3829 release_sock(sk); 3830 3831 out_nounlock: 3832 return retval; 3833 } 3834 3835 /* API 3.1.6 connect() - UDP Style Syntax 3836 * 3837 * An application may use the connect() call in the UDP model to initiate an 3838 * association without sending data. 3839 * 3840 * The syntax is: 3841 * 3842 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3843 * 3844 * sd: the socket descriptor to have a new association added to. 3845 * 3846 * nam: the address structure (either struct sockaddr_in or struct 3847 * sockaddr_in6 defined in RFC2553 [7]). 3848 * 3849 * len: the size of the address. 3850 */ 3851 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3852 int addr_len) 3853 { 3854 int err = 0; 3855 struct sctp_af *af; 3856 3857 lock_sock(sk); 3858 3859 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3860 addr, addr_len); 3861 3862 /* Validate addr_len before calling common connect/connectx routine. */ 3863 af = sctp_get_af_specific(addr->sa_family); 3864 if (!af || addr_len < af->sockaddr_len) { 3865 err = -EINVAL; 3866 } else { 3867 /* Pass correct addr len to common routine (so it knows there 3868 * is only one address being passed. 3869 */ 3870 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3871 } 3872 3873 release_sock(sk); 3874 return err; 3875 } 3876 3877 /* FIXME: Write comments. */ 3878 static int sctp_disconnect(struct sock *sk, int flags) 3879 { 3880 return -EOPNOTSUPP; /* STUB */ 3881 } 3882 3883 /* 4.1.4 accept() - TCP Style Syntax 3884 * 3885 * Applications use accept() call to remove an established SCTP 3886 * association from the accept queue of the endpoint. A new socket 3887 * descriptor will be returned from accept() to represent the newly 3888 * formed association. 3889 */ 3890 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3891 { 3892 struct sctp_sock *sp; 3893 struct sctp_endpoint *ep; 3894 struct sock *newsk = NULL; 3895 struct sctp_association *asoc; 3896 long timeo; 3897 int error = 0; 3898 3899 lock_sock(sk); 3900 3901 sp = sctp_sk(sk); 3902 ep = sp->ep; 3903 3904 if (!sctp_style(sk, TCP)) { 3905 error = -EOPNOTSUPP; 3906 goto out; 3907 } 3908 3909 if (!sctp_sstate(sk, LISTENING)) { 3910 error = -EINVAL; 3911 goto out; 3912 } 3913 3914 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3915 3916 error = sctp_wait_for_accept(sk, timeo); 3917 if (error) 3918 goto out; 3919 3920 /* We treat the list of associations on the endpoint as the accept 3921 * queue and pick the first association on the list. 3922 */ 3923 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3924 3925 newsk = sp->pf->create_accept_sk(sk, asoc); 3926 if (!newsk) { 3927 error = -ENOMEM; 3928 goto out; 3929 } 3930 3931 /* Populate the fields of the newsk from the oldsk and migrate the 3932 * asoc to the newsk. 3933 */ 3934 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3935 3936 out: 3937 release_sock(sk); 3938 *err = error; 3939 return newsk; 3940 } 3941 3942 /* The SCTP ioctl handler. */ 3943 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3944 { 3945 int rc = -ENOTCONN; 3946 3947 lock_sock(sk); 3948 3949 /* 3950 * SEQPACKET-style sockets in LISTENING state are valid, for 3951 * SCTP, so only discard TCP-style sockets in LISTENING state. 3952 */ 3953 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3954 goto out; 3955 3956 switch (cmd) { 3957 case SIOCINQ: { 3958 struct sk_buff *skb; 3959 unsigned int amount = 0; 3960 3961 skb = skb_peek(&sk->sk_receive_queue); 3962 if (skb != NULL) { 3963 /* 3964 * We will only return the amount of this packet since 3965 * that is all that will be read. 3966 */ 3967 amount = skb->len; 3968 } 3969 rc = put_user(amount, (int __user *)arg); 3970 break; 3971 } 3972 default: 3973 rc = -ENOIOCTLCMD; 3974 break; 3975 } 3976 out: 3977 release_sock(sk); 3978 return rc; 3979 } 3980 3981 /* This is the function which gets called during socket creation to 3982 * initialized the SCTP-specific portion of the sock. 3983 * The sock structure should already be zero-filled memory. 3984 */ 3985 static int sctp_init_sock(struct sock *sk) 3986 { 3987 struct net *net = sock_net(sk); 3988 struct sctp_sock *sp; 3989 3990 pr_debug("%s: sk:%p\n", __func__, sk); 3991 3992 sp = sctp_sk(sk); 3993 3994 /* Initialize the SCTP per socket area. */ 3995 switch (sk->sk_type) { 3996 case SOCK_SEQPACKET: 3997 sp->type = SCTP_SOCKET_UDP; 3998 break; 3999 case SOCK_STREAM: 4000 sp->type = SCTP_SOCKET_TCP; 4001 break; 4002 default: 4003 return -ESOCKTNOSUPPORT; 4004 } 4005 4006 /* Initialize default send parameters. These parameters can be 4007 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4008 */ 4009 sp->default_stream = 0; 4010 sp->default_ppid = 0; 4011 sp->default_flags = 0; 4012 sp->default_context = 0; 4013 sp->default_timetolive = 0; 4014 4015 sp->default_rcv_context = 0; 4016 sp->max_burst = net->sctp.max_burst; 4017 4018 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4019 4020 /* Initialize default setup parameters. These parameters 4021 * can be modified with the SCTP_INITMSG socket option or 4022 * overridden by the SCTP_INIT CMSG. 4023 */ 4024 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4025 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4026 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4027 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4028 4029 /* Initialize default RTO related parameters. These parameters can 4030 * be modified for with the SCTP_RTOINFO socket option. 4031 */ 4032 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4033 sp->rtoinfo.srto_max = net->sctp.rto_max; 4034 sp->rtoinfo.srto_min = net->sctp.rto_min; 4035 4036 /* Initialize default association related parameters. These parameters 4037 * can be modified with the SCTP_ASSOCINFO socket option. 4038 */ 4039 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4040 sp->assocparams.sasoc_number_peer_destinations = 0; 4041 sp->assocparams.sasoc_peer_rwnd = 0; 4042 sp->assocparams.sasoc_local_rwnd = 0; 4043 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4044 4045 /* Initialize default event subscriptions. By default, all the 4046 * options are off. 4047 */ 4048 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4049 4050 /* Default Peer Address Parameters. These defaults can 4051 * be modified via SCTP_PEER_ADDR_PARAMS 4052 */ 4053 sp->hbinterval = net->sctp.hb_interval; 4054 sp->pathmaxrxt = net->sctp.max_retrans_path; 4055 sp->pathmtu = 0; /* allow default discovery */ 4056 sp->sackdelay = net->sctp.sack_timeout; 4057 sp->sackfreq = 2; 4058 sp->param_flags = SPP_HB_ENABLE | 4059 SPP_PMTUD_ENABLE | 4060 SPP_SACKDELAY_ENABLE; 4061 4062 /* If enabled no SCTP message fragmentation will be performed. 4063 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4064 */ 4065 sp->disable_fragments = 0; 4066 4067 /* Enable Nagle algorithm by default. */ 4068 sp->nodelay = 0; 4069 4070 sp->recvrcvinfo = 0; 4071 sp->recvnxtinfo = 0; 4072 4073 /* Enable by default. */ 4074 sp->v4mapped = 1; 4075 4076 /* Auto-close idle associations after the configured 4077 * number of seconds. A value of 0 disables this 4078 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4079 * for UDP-style sockets only. 4080 */ 4081 sp->autoclose = 0; 4082 4083 /* User specified fragmentation limit. */ 4084 sp->user_frag = 0; 4085 4086 sp->adaptation_ind = 0; 4087 4088 sp->pf = sctp_get_pf_specific(sk->sk_family); 4089 4090 /* Control variables for partial data delivery. */ 4091 atomic_set(&sp->pd_mode, 0); 4092 skb_queue_head_init(&sp->pd_lobby); 4093 sp->frag_interleave = 0; 4094 4095 /* Create a per socket endpoint structure. Even if we 4096 * change the data structure relationships, this may still 4097 * be useful for storing pre-connect address information. 4098 */ 4099 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4100 if (!sp->ep) 4101 return -ENOMEM; 4102 4103 sp->hmac = NULL; 4104 4105 sk->sk_destruct = sctp_destruct_sock; 4106 4107 SCTP_DBG_OBJCNT_INC(sock); 4108 4109 local_bh_disable(); 4110 percpu_counter_inc(&sctp_sockets_allocated); 4111 sock_prot_inuse_add(net, sk->sk_prot, 1); 4112 4113 /* Nothing can fail after this block, otherwise 4114 * sctp_destroy_sock() will be called without addr_wq_lock held 4115 */ 4116 if (net->sctp.default_auto_asconf) { 4117 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4118 list_add_tail(&sp->auto_asconf_list, 4119 &net->sctp.auto_asconf_splist); 4120 sp->do_auto_asconf = 1; 4121 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4122 } else { 4123 sp->do_auto_asconf = 0; 4124 } 4125 4126 local_bh_enable(); 4127 4128 return 0; 4129 } 4130 4131 /* Cleanup any SCTP per socket resources. Must be called with 4132 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4133 */ 4134 static void sctp_destroy_sock(struct sock *sk) 4135 { 4136 struct sctp_sock *sp; 4137 4138 pr_debug("%s: sk:%p\n", __func__, sk); 4139 4140 /* Release our hold on the endpoint. */ 4141 sp = sctp_sk(sk); 4142 /* This could happen during socket init, thus we bail out 4143 * early, since the rest of the below is not setup either. 4144 */ 4145 if (sp->ep == NULL) 4146 return; 4147 4148 if (sp->do_auto_asconf) { 4149 sp->do_auto_asconf = 0; 4150 list_del(&sp->auto_asconf_list); 4151 } 4152 sctp_endpoint_free(sp->ep); 4153 local_bh_disable(); 4154 percpu_counter_dec(&sctp_sockets_allocated); 4155 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4156 local_bh_enable(); 4157 } 4158 4159 /* Triggered when there are no references on the socket anymore */ 4160 static void sctp_destruct_sock(struct sock *sk) 4161 { 4162 struct sctp_sock *sp = sctp_sk(sk); 4163 4164 /* Free up the HMAC transform. */ 4165 crypto_free_shash(sp->hmac); 4166 4167 inet_sock_destruct(sk); 4168 } 4169 4170 /* API 4.1.7 shutdown() - TCP Style Syntax 4171 * int shutdown(int socket, int how); 4172 * 4173 * sd - the socket descriptor of the association to be closed. 4174 * how - Specifies the type of shutdown. The values are 4175 * as follows: 4176 * SHUT_RD 4177 * Disables further receive operations. No SCTP 4178 * protocol action is taken. 4179 * SHUT_WR 4180 * Disables further send operations, and initiates 4181 * the SCTP shutdown sequence. 4182 * SHUT_RDWR 4183 * Disables further send and receive operations 4184 * and initiates the SCTP shutdown sequence. 4185 */ 4186 static void sctp_shutdown(struct sock *sk, int how) 4187 { 4188 struct net *net = sock_net(sk); 4189 struct sctp_endpoint *ep; 4190 struct sctp_association *asoc; 4191 4192 if (!sctp_style(sk, TCP)) 4193 return; 4194 4195 if (how & SEND_SHUTDOWN) { 4196 ep = sctp_sk(sk)->ep; 4197 if (!list_empty(&ep->asocs)) { 4198 asoc = list_entry(ep->asocs.next, 4199 struct sctp_association, asocs); 4200 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4201 } 4202 } 4203 } 4204 4205 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4206 struct sctp_info *info) 4207 { 4208 struct sctp_transport *prim; 4209 struct list_head *pos; 4210 int mask; 4211 4212 memset(info, 0, sizeof(*info)); 4213 if (!asoc) { 4214 struct sctp_sock *sp = sctp_sk(sk); 4215 4216 info->sctpi_s_autoclose = sp->autoclose; 4217 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4218 info->sctpi_s_pd_point = sp->pd_point; 4219 info->sctpi_s_nodelay = sp->nodelay; 4220 info->sctpi_s_disable_fragments = sp->disable_fragments; 4221 info->sctpi_s_v4mapped = sp->v4mapped; 4222 info->sctpi_s_frag_interleave = sp->frag_interleave; 4223 info->sctpi_s_type = sp->type; 4224 4225 return 0; 4226 } 4227 4228 info->sctpi_tag = asoc->c.my_vtag; 4229 info->sctpi_state = asoc->state; 4230 info->sctpi_rwnd = asoc->a_rwnd; 4231 info->sctpi_unackdata = asoc->unack_data; 4232 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4233 info->sctpi_instrms = asoc->c.sinit_max_instreams; 4234 info->sctpi_outstrms = asoc->c.sinit_num_ostreams; 4235 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4236 info->sctpi_inqueue++; 4237 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4238 info->sctpi_outqueue++; 4239 info->sctpi_overall_error = asoc->overall_error_count; 4240 info->sctpi_max_burst = asoc->max_burst; 4241 info->sctpi_maxseg = asoc->frag_point; 4242 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4243 info->sctpi_peer_tag = asoc->c.peer_vtag; 4244 4245 mask = asoc->peer.ecn_capable << 1; 4246 mask = (mask | asoc->peer.ipv4_address) << 1; 4247 mask = (mask | asoc->peer.ipv6_address) << 1; 4248 mask = (mask | asoc->peer.hostname_address) << 1; 4249 mask = (mask | asoc->peer.asconf_capable) << 1; 4250 mask = (mask | asoc->peer.prsctp_capable) << 1; 4251 mask = (mask | asoc->peer.auth_capable); 4252 info->sctpi_peer_capable = mask; 4253 mask = asoc->peer.sack_needed << 1; 4254 mask = (mask | asoc->peer.sack_generation) << 1; 4255 mask = (mask | asoc->peer.zero_window_announced); 4256 info->sctpi_peer_sack = mask; 4257 4258 info->sctpi_isacks = asoc->stats.isacks; 4259 info->sctpi_osacks = asoc->stats.osacks; 4260 info->sctpi_opackets = asoc->stats.opackets; 4261 info->sctpi_ipackets = asoc->stats.ipackets; 4262 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4263 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4264 info->sctpi_idupchunks = asoc->stats.idupchunks; 4265 info->sctpi_gapcnt = asoc->stats.gapcnt; 4266 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4267 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4268 info->sctpi_oodchunks = asoc->stats.oodchunks; 4269 info->sctpi_iodchunks = asoc->stats.iodchunks; 4270 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4271 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4272 4273 prim = asoc->peer.primary_path; 4274 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4275 sizeof(struct sockaddr_storage)); 4276 info->sctpi_p_state = prim->state; 4277 info->sctpi_p_cwnd = prim->cwnd; 4278 info->sctpi_p_srtt = prim->srtt; 4279 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4280 info->sctpi_p_hbinterval = prim->hbinterval; 4281 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4282 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4283 info->sctpi_p_ssthresh = prim->ssthresh; 4284 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4285 info->sctpi_p_flight_size = prim->flight_size; 4286 info->sctpi_p_error = prim->error_count; 4287 4288 return 0; 4289 } 4290 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4291 4292 /* use callback to avoid exporting the core structure */ 4293 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4294 { 4295 int err; 4296 4297 err = rhashtable_walk_init(&sctp_transport_hashtable, iter, 4298 GFP_KERNEL); 4299 if (err) 4300 return err; 4301 4302 err = rhashtable_walk_start(iter); 4303 if (err && err != -EAGAIN) { 4304 rhashtable_walk_exit(iter); 4305 return err; 4306 } 4307 4308 return 0; 4309 } 4310 4311 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4312 { 4313 rhashtable_walk_stop(iter); 4314 rhashtable_walk_exit(iter); 4315 } 4316 4317 struct sctp_transport *sctp_transport_get_next(struct net *net, 4318 struct rhashtable_iter *iter) 4319 { 4320 struct sctp_transport *t; 4321 4322 t = rhashtable_walk_next(iter); 4323 for (; t; t = rhashtable_walk_next(iter)) { 4324 if (IS_ERR(t)) { 4325 if (PTR_ERR(t) == -EAGAIN) 4326 continue; 4327 break; 4328 } 4329 4330 if (net_eq(sock_net(t->asoc->base.sk), net) && 4331 t->asoc->peer.primary_path == t) 4332 break; 4333 } 4334 4335 return t; 4336 } 4337 4338 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4339 struct rhashtable_iter *iter, 4340 int pos) 4341 { 4342 void *obj = SEQ_START_TOKEN; 4343 4344 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4345 !IS_ERR(obj)) 4346 pos--; 4347 4348 return obj; 4349 } 4350 4351 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4352 void *p) { 4353 int err = 0; 4354 int hash = 0; 4355 struct sctp_ep_common *epb; 4356 struct sctp_hashbucket *head; 4357 4358 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4359 hash++, head++) { 4360 read_lock(&head->lock); 4361 sctp_for_each_hentry(epb, &head->chain) { 4362 err = cb(sctp_ep(epb), p); 4363 if (err) 4364 break; 4365 } 4366 read_unlock(&head->lock); 4367 } 4368 4369 return err; 4370 } 4371 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4372 4373 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4374 struct net *net, 4375 const union sctp_addr *laddr, 4376 const union sctp_addr *paddr, void *p) 4377 { 4378 struct sctp_transport *transport; 4379 int err = 0; 4380 4381 rcu_read_lock(); 4382 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4383 if (!transport || !sctp_transport_hold(transport)) 4384 goto out; 4385 err = cb(transport, p); 4386 sctp_transport_put(transport); 4387 4388 out: 4389 rcu_read_unlock(); 4390 return err; 4391 } 4392 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4393 4394 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4395 struct net *net, int pos, void *p) { 4396 struct rhashtable_iter hti; 4397 void *obj; 4398 int err; 4399 4400 err = sctp_transport_walk_start(&hti); 4401 if (err) 4402 return err; 4403 4404 sctp_transport_get_idx(net, &hti, pos); 4405 obj = sctp_transport_get_next(net, &hti); 4406 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) { 4407 struct sctp_transport *transport = obj; 4408 4409 if (!sctp_transport_hold(transport)) 4410 continue; 4411 err = cb(transport, p); 4412 sctp_transport_put(transport); 4413 if (err) 4414 break; 4415 } 4416 sctp_transport_walk_stop(&hti); 4417 4418 return err; 4419 } 4420 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4421 4422 /* 7.2.1 Association Status (SCTP_STATUS) 4423 4424 * Applications can retrieve current status information about an 4425 * association, including association state, peer receiver window size, 4426 * number of unacked data chunks, and number of data chunks pending 4427 * receipt. This information is read-only. 4428 */ 4429 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4430 char __user *optval, 4431 int __user *optlen) 4432 { 4433 struct sctp_status status; 4434 struct sctp_association *asoc = NULL; 4435 struct sctp_transport *transport; 4436 sctp_assoc_t associd; 4437 int retval = 0; 4438 4439 if (len < sizeof(status)) { 4440 retval = -EINVAL; 4441 goto out; 4442 } 4443 4444 len = sizeof(status); 4445 if (copy_from_user(&status, optval, len)) { 4446 retval = -EFAULT; 4447 goto out; 4448 } 4449 4450 associd = status.sstat_assoc_id; 4451 asoc = sctp_id2assoc(sk, associd); 4452 if (!asoc) { 4453 retval = -EINVAL; 4454 goto out; 4455 } 4456 4457 transport = asoc->peer.primary_path; 4458 4459 status.sstat_assoc_id = sctp_assoc2id(asoc); 4460 status.sstat_state = sctp_assoc_to_state(asoc); 4461 status.sstat_rwnd = asoc->peer.rwnd; 4462 status.sstat_unackdata = asoc->unack_data; 4463 4464 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4465 status.sstat_instrms = asoc->c.sinit_max_instreams; 4466 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4467 status.sstat_fragmentation_point = asoc->frag_point; 4468 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4469 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4470 transport->af_specific->sockaddr_len); 4471 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4472 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4473 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4474 status.sstat_primary.spinfo_state = transport->state; 4475 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4476 status.sstat_primary.spinfo_srtt = transport->srtt; 4477 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4478 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4479 4480 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4481 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4482 4483 if (put_user(len, optlen)) { 4484 retval = -EFAULT; 4485 goto out; 4486 } 4487 4488 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4489 __func__, len, status.sstat_state, status.sstat_rwnd, 4490 status.sstat_assoc_id); 4491 4492 if (copy_to_user(optval, &status, len)) { 4493 retval = -EFAULT; 4494 goto out; 4495 } 4496 4497 out: 4498 return retval; 4499 } 4500 4501 4502 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4503 * 4504 * Applications can retrieve information about a specific peer address 4505 * of an association, including its reachability state, congestion 4506 * window, and retransmission timer values. This information is 4507 * read-only. 4508 */ 4509 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4510 char __user *optval, 4511 int __user *optlen) 4512 { 4513 struct sctp_paddrinfo pinfo; 4514 struct sctp_transport *transport; 4515 int retval = 0; 4516 4517 if (len < sizeof(pinfo)) { 4518 retval = -EINVAL; 4519 goto out; 4520 } 4521 4522 len = sizeof(pinfo); 4523 if (copy_from_user(&pinfo, optval, len)) { 4524 retval = -EFAULT; 4525 goto out; 4526 } 4527 4528 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4529 pinfo.spinfo_assoc_id); 4530 if (!transport) 4531 return -EINVAL; 4532 4533 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4534 pinfo.spinfo_state = transport->state; 4535 pinfo.spinfo_cwnd = transport->cwnd; 4536 pinfo.spinfo_srtt = transport->srtt; 4537 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4538 pinfo.spinfo_mtu = transport->pathmtu; 4539 4540 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4541 pinfo.spinfo_state = SCTP_ACTIVE; 4542 4543 if (put_user(len, optlen)) { 4544 retval = -EFAULT; 4545 goto out; 4546 } 4547 4548 if (copy_to_user(optval, &pinfo, len)) { 4549 retval = -EFAULT; 4550 goto out; 4551 } 4552 4553 out: 4554 return retval; 4555 } 4556 4557 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4558 * 4559 * This option is a on/off flag. If enabled no SCTP message 4560 * fragmentation will be performed. Instead if a message being sent 4561 * exceeds the current PMTU size, the message will NOT be sent and 4562 * instead a error will be indicated to the user. 4563 */ 4564 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4565 char __user *optval, int __user *optlen) 4566 { 4567 int val; 4568 4569 if (len < sizeof(int)) 4570 return -EINVAL; 4571 4572 len = sizeof(int); 4573 val = (sctp_sk(sk)->disable_fragments == 1); 4574 if (put_user(len, optlen)) 4575 return -EFAULT; 4576 if (copy_to_user(optval, &val, len)) 4577 return -EFAULT; 4578 return 0; 4579 } 4580 4581 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4582 * 4583 * This socket option is used to specify various notifications and 4584 * ancillary data the user wishes to receive. 4585 */ 4586 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4587 int __user *optlen) 4588 { 4589 if (len <= 0) 4590 return -EINVAL; 4591 if (len > sizeof(struct sctp_event_subscribe)) 4592 len = sizeof(struct sctp_event_subscribe); 4593 if (put_user(len, optlen)) 4594 return -EFAULT; 4595 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4596 return -EFAULT; 4597 return 0; 4598 } 4599 4600 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4601 * 4602 * This socket option is applicable to the UDP-style socket only. When 4603 * set it will cause associations that are idle for more than the 4604 * specified number of seconds to automatically close. An association 4605 * being idle is defined an association that has NOT sent or received 4606 * user data. The special value of '0' indicates that no automatic 4607 * close of any associations should be performed. The option expects an 4608 * integer defining the number of seconds of idle time before an 4609 * association is closed. 4610 */ 4611 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4612 { 4613 /* Applicable to UDP-style socket only */ 4614 if (sctp_style(sk, TCP)) 4615 return -EOPNOTSUPP; 4616 if (len < sizeof(int)) 4617 return -EINVAL; 4618 len = sizeof(int); 4619 if (put_user(len, optlen)) 4620 return -EFAULT; 4621 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4622 return -EFAULT; 4623 return 0; 4624 } 4625 4626 /* Helper routine to branch off an association to a new socket. */ 4627 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4628 { 4629 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4630 struct sctp_sock *sp = sctp_sk(sk); 4631 struct socket *sock; 4632 int err = 0; 4633 4634 if (!asoc) 4635 return -EINVAL; 4636 4637 /* An association cannot be branched off from an already peeled-off 4638 * socket, nor is this supported for tcp style sockets. 4639 */ 4640 if (!sctp_style(sk, UDP)) 4641 return -EINVAL; 4642 4643 /* Create a new socket. */ 4644 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4645 if (err < 0) 4646 return err; 4647 4648 sctp_copy_sock(sock->sk, sk, asoc); 4649 4650 /* Make peeled-off sockets more like 1-1 accepted sockets. 4651 * Set the daddr and initialize id to something more random 4652 */ 4653 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4654 4655 /* Populate the fields of the newsk from the oldsk and migrate the 4656 * asoc to the newsk. 4657 */ 4658 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4659 4660 *sockp = sock; 4661 4662 return err; 4663 } 4664 EXPORT_SYMBOL(sctp_do_peeloff); 4665 4666 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4667 { 4668 sctp_peeloff_arg_t peeloff; 4669 struct socket *newsock; 4670 struct file *newfile; 4671 int retval = 0; 4672 4673 if (len < sizeof(sctp_peeloff_arg_t)) 4674 return -EINVAL; 4675 len = sizeof(sctp_peeloff_arg_t); 4676 if (copy_from_user(&peeloff, optval, len)) 4677 return -EFAULT; 4678 4679 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4680 if (retval < 0) 4681 goto out; 4682 4683 /* Map the socket to an unused fd that can be returned to the user. */ 4684 retval = get_unused_fd_flags(0); 4685 if (retval < 0) { 4686 sock_release(newsock); 4687 goto out; 4688 } 4689 4690 newfile = sock_alloc_file(newsock, 0, NULL); 4691 if (IS_ERR(newfile)) { 4692 put_unused_fd(retval); 4693 sock_release(newsock); 4694 return PTR_ERR(newfile); 4695 } 4696 4697 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4698 retval); 4699 4700 /* Return the fd mapped to the new socket. */ 4701 if (put_user(len, optlen)) { 4702 fput(newfile); 4703 put_unused_fd(retval); 4704 return -EFAULT; 4705 } 4706 peeloff.sd = retval; 4707 if (copy_to_user(optval, &peeloff, len)) { 4708 fput(newfile); 4709 put_unused_fd(retval); 4710 return -EFAULT; 4711 } 4712 fd_install(retval, newfile); 4713 out: 4714 return retval; 4715 } 4716 4717 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4718 * 4719 * Applications can enable or disable heartbeats for any peer address of 4720 * an association, modify an address's heartbeat interval, force a 4721 * heartbeat to be sent immediately, and adjust the address's maximum 4722 * number of retransmissions sent before an address is considered 4723 * unreachable. The following structure is used to access and modify an 4724 * address's parameters: 4725 * 4726 * struct sctp_paddrparams { 4727 * sctp_assoc_t spp_assoc_id; 4728 * struct sockaddr_storage spp_address; 4729 * uint32_t spp_hbinterval; 4730 * uint16_t spp_pathmaxrxt; 4731 * uint32_t spp_pathmtu; 4732 * uint32_t spp_sackdelay; 4733 * uint32_t spp_flags; 4734 * }; 4735 * 4736 * spp_assoc_id - (one-to-many style socket) This is filled in the 4737 * application, and identifies the association for 4738 * this query. 4739 * spp_address - This specifies which address is of interest. 4740 * spp_hbinterval - This contains the value of the heartbeat interval, 4741 * in milliseconds. If a value of zero 4742 * is present in this field then no changes are to 4743 * be made to this parameter. 4744 * spp_pathmaxrxt - This contains the maximum number of 4745 * retransmissions before this address shall be 4746 * considered unreachable. If a value of zero 4747 * is present in this field then no changes are to 4748 * be made to this parameter. 4749 * spp_pathmtu - When Path MTU discovery is disabled the value 4750 * specified here will be the "fixed" path mtu. 4751 * Note that if the spp_address field is empty 4752 * then all associations on this address will 4753 * have this fixed path mtu set upon them. 4754 * 4755 * spp_sackdelay - When delayed sack is enabled, this value specifies 4756 * the number of milliseconds that sacks will be delayed 4757 * for. This value will apply to all addresses of an 4758 * association if the spp_address field is empty. Note 4759 * also, that if delayed sack is enabled and this 4760 * value is set to 0, no change is made to the last 4761 * recorded delayed sack timer value. 4762 * 4763 * spp_flags - These flags are used to control various features 4764 * on an association. The flag field may contain 4765 * zero or more of the following options. 4766 * 4767 * SPP_HB_ENABLE - Enable heartbeats on the 4768 * specified address. Note that if the address 4769 * field is empty all addresses for the association 4770 * have heartbeats enabled upon them. 4771 * 4772 * SPP_HB_DISABLE - Disable heartbeats on the 4773 * speicifed address. Note that if the address 4774 * field is empty all addresses for the association 4775 * will have their heartbeats disabled. Note also 4776 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4777 * mutually exclusive, only one of these two should 4778 * be specified. Enabling both fields will have 4779 * undetermined results. 4780 * 4781 * SPP_HB_DEMAND - Request a user initiated heartbeat 4782 * to be made immediately. 4783 * 4784 * SPP_PMTUD_ENABLE - This field will enable PMTU 4785 * discovery upon the specified address. Note that 4786 * if the address feild is empty then all addresses 4787 * on the association are effected. 4788 * 4789 * SPP_PMTUD_DISABLE - This field will disable PMTU 4790 * discovery upon the specified address. Note that 4791 * if the address feild is empty then all addresses 4792 * on the association are effected. Not also that 4793 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4794 * exclusive. Enabling both will have undetermined 4795 * results. 4796 * 4797 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4798 * on delayed sack. The time specified in spp_sackdelay 4799 * is used to specify the sack delay for this address. Note 4800 * that if spp_address is empty then all addresses will 4801 * enable delayed sack and take on the sack delay 4802 * value specified in spp_sackdelay. 4803 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4804 * off delayed sack. If the spp_address field is blank then 4805 * delayed sack is disabled for the entire association. Note 4806 * also that this field is mutually exclusive to 4807 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4808 * results. 4809 */ 4810 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4811 char __user *optval, int __user *optlen) 4812 { 4813 struct sctp_paddrparams params; 4814 struct sctp_transport *trans = NULL; 4815 struct sctp_association *asoc = NULL; 4816 struct sctp_sock *sp = sctp_sk(sk); 4817 4818 if (len < sizeof(struct sctp_paddrparams)) 4819 return -EINVAL; 4820 len = sizeof(struct sctp_paddrparams); 4821 if (copy_from_user(¶ms, optval, len)) 4822 return -EFAULT; 4823 4824 /* If an address other than INADDR_ANY is specified, and 4825 * no transport is found, then the request is invalid. 4826 */ 4827 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4828 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4829 params.spp_assoc_id); 4830 if (!trans) { 4831 pr_debug("%s: failed no transport\n", __func__); 4832 return -EINVAL; 4833 } 4834 } 4835 4836 /* Get association, if assoc_id != 0 and the socket is a one 4837 * to many style socket, and an association was not found, then 4838 * the id was invalid. 4839 */ 4840 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4841 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4842 pr_debug("%s: failed no association\n", __func__); 4843 return -EINVAL; 4844 } 4845 4846 if (trans) { 4847 /* Fetch transport values. */ 4848 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4849 params.spp_pathmtu = trans->pathmtu; 4850 params.spp_pathmaxrxt = trans->pathmaxrxt; 4851 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4852 4853 /*draft-11 doesn't say what to return in spp_flags*/ 4854 params.spp_flags = trans->param_flags; 4855 } else if (asoc) { 4856 /* Fetch association values. */ 4857 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4858 params.spp_pathmtu = asoc->pathmtu; 4859 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4860 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4861 4862 /*draft-11 doesn't say what to return in spp_flags*/ 4863 params.spp_flags = asoc->param_flags; 4864 } else { 4865 /* Fetch socket values. */ 4866 params.spp_hbinterval = sp->hbinterval; 4867 params.spp_pathmtu = sp->pathmtu; 4868 params.spp_sackdelay = sp->sackdelay; 4869 params.spp_pathmaxrxt = sp->pathmaxrxt; 4870 4871 /*draft-11 doesn't say what to return in spp_flags*/ 4872 params.spp_flags = sp->param_flags; 4873 } 4874 4875 if (copy_to_user(optval, ¶ms, len)) 4876 return -EFAULT; 4877 4878 if (put_user(len, optlen)) 4879 return -EFAULT; 4880 4881 return 0; 4882 } 4883 4884 /* 4885 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4886 * 4887 * This option will effect the way delayed acks are performed. This 4888 * option allows you to get or set the delayed ack time, in 4889 * milliseconds. It also allows changing the delayed ack frequency. 4890 * Changing the frequency to 1 disables the delayed sack algorithm. If 4891 * the assoc_id is 0, then this sets or gets the endpoints default 4892 * values. If the assoc_id field is non-zero, then the set or get 4893 * effects the specified association for the one to many model (the 4894 * assoc_id field is ignored by the one to one model). Note that if 4895 * sack_delay or sack_freq are 0 when setting this option, then the 4896 * current values will remain unchanged. 4897 * 4898 * struct sctp_sack_info { 4899 * sctp_assoc_t sack_assoc_id; 4900 * uint32_t sack_delay; 4901 * uint32_t sack_freq; 4902 * }; 4903 * 4904 * sack_assoc_id - This parameter, indicates which association the user 4905 * is performing an action upon. Note that if this field's value is 4906 * zero then the endpoints default value is changed (effecting future 4907 * associations only). 4908 * 4909 * sack_delay - This parameter contains the number of milliseconds that 4910 * the user is requesting the delayed ACK timer be set to. Note that 4911 * this value is defined in the standard to be between 200 and 500 4912 * milliseconds. 4913 * 4914 * sack_freq - This parameter contains the number of packets that must 4915 * be received before a sack is sent without waiting for the delay 4916 * timer to expire. The default value for this is 2, setting this 4917 * value to 1 will disable the delayed sack algorithm. 4918 */ 4919 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4920 char __user *optval, 4921 int __user *optlen) 4922 { 4923 struct sctp_sack_info params; 4924 struct sctp_association *asoc = NULL; 4925 struct sctp_sock *sp = sctp_sk(sk); 4926 4927 if (len >= sizeof(struct sctp_sack_info)) { 4928 len = sizeof(struct sctp_sack_info); 4929 4930 if (copy_from_user(¶ms, optval, len)) 4931 return -EFAULT; 4932 } else if (len == sizeof(struct sctp_assoc_value)) { 4933 pr_warn_ratelimited(DEPRECATED 4934 "%s (pid %d) " 4935 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 4936 "Use struct sctp_sack_info instead\n", 4937 current->comm, task_pid_nr(current)); 4938 if (copy_from_user(¶ms, optval, len)) 4939 return -EFAULT; 4940 } else 4941 return -EINVAL; 4942 4943 /* Get association, if sack_assoc_id != 0 and the socket is a one 4944 * to many style socket, and an association was not found, then 4945 * the id was invalid. 4946 */ 4947 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4948 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4949 return -EINVAL; 4950 4951 if (asoc) { 4952 /* Fetch association values. */ 4953 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4954 params.sack_delay = jiffies_to_msecs( 4955 asoc->sackdelay); 4956 params.sack_freq = asoc->sackfreq; 4957 4958 } else { 4959 params.sack_delay = 0; 4960 params.sack_freq = 1; 4961 } 4962 } else { 4963 /* Fetch socket values. */ 4964 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4965 params.sack_delay = sp->sackdelay; 4966 params.sack_freq = sp->sackfreq; 4967 } else { 4968 params.sack_delay = 0; 4969 params.sack_freq = 1; 4970 } 4971 } 4972 4973 if (copy_to_user(optval, ¶ms, len)) 4974 return -EFAULT; 4975 4976 if (put_user(len, optlen)) 4977 return -EFAULT; 4978 4979 return 0; 4980 } 4981 4982 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4983 * 4984 * Applications can specify protocol parameters for the default association 4985 * initialization. The option name argument to setsockopt() and getsockopt() 4986 * is SCTP_INITMSG. 4987 * 4988 * Setting initialization parameters is effective only on an unconnected 4989 * socket (for UDP-style sockets only future associations are effected 4990 * by the change). With TCP-style sockets, this option is inherited by 4991 * sockets derived from a listener socket. 4992 */ 4993 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4994 { 4995 if (len < sizeof(struct sctp_initmsg)) 4996 return -EINVAL; 4997 len = sizeof(struct sctp_initmsg); 4998 if (put_user(len, optlen)) 4999 return -EFAULT; 5000 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5001 return -EFAULT; 5002 return 0; 5003 } 5004 5005 5006 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5007 char __user *optval, int __user *optlen) 5008 { 5009 struct sctp_association *asoc; 5010 int cnt = 0; 5011 struct sctp_getaddrs getaddrs; 5012 struct sctp_transport *from; 5013 void __user *to; 5014 union sctp_addr temp; 5015 struct sctp_sock *sp = sctp_sk(sk); 5016 int addrlen; 5017 size_t space_left; 5018 int bytes_copied; 5019 5020 if (len < sizeof(struct sctp_getaddrs)) 5021 return -EINVAL; 5022 5023 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5024 return -EFAULT; 5025 5026 /* For UDP-style sockets, id specifies the association to query. */ 5027 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5028 if (!asoc) 5029 return -EINVAL; 5030 5031 to = optval + offsetof(struct sctp_getaddrs, addrs); 5032 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5033 5034 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5035 transports) { 5036 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5037 addrlen = sctp_get_pf_specific(sk->sk_family) 5038 ->addr_to_user(sp, &temp); 5039 if (space_left < addrlen) 5040 return -ENOMEM; 5041 if (copy_to_user(to, &temp, addrlen)) 5042 return -EFAULT; 5043 to += addrlen; 5044 cnt++; 5045 space_left -= addrlen; 5046 } 5047 5048 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5049 return -EFAULT; 5050 bytes_copied = ((char __user *)to) - optval; 5051 if (put_user(bytes_copied, optlen)) 5052 return -EFAULT; 5053 5054 return 0; 5055 } 5056 5057 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5058 size_t space_left, int *bytes_copied) 5059 { 5060 struct sctp_sockaddr_entry *addr; 5061 union sctp_addr temp; 5062 int cnt = 0; 5063 int addrlen; 5064 struct net *net = sock_net(sk); 5065 5066 rcu_read_lock(); 5067 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5068 if (!addr->valid) 5069 continue; 5070 5071 if ((PF_INET == sk->sk_family) && 5072 (AF_INET6 == addr->a.sa.sa_family)) 5073 continue; 5074 if ((PF_INET6 == sk->sk_family) && 5075 inet_v6_ipv6only(sk) && 5076 (AF_INET == addr->a.sa.sa_family)) 5077 continue; 5078 memcpy(&temp, &addr->a, sizeof(temp)); 5079 if (!temp.v4.sin_port) 5080 temp.v4.sin_port = htons(port); 5081 5082 addrlen = sctp_get_pf_specific(sk->sk_family) 5083 ->addr_to_user(sctp_sk(sk), &temp); 5084 5085 if (space_left < addrlen) { 5086 cnt = -ENOMEM; 5087 break; 5088 } 5089 memcpy(to, &temp, addrlen); 5090 5091 to += addrlen; 5092 cnt++; 5093 space_left -= addrlen; 5094 *bytes_copied += addrlen; 5095 } 5096 rcu_read_unlock(); 5097 5098 return cnt; 5099 } 5100 5101 5102 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5103 char __user *optval, int __user *optlen) 5104 { 5105 struct sctp_bind_addr *bp; 5106 struct sctp_association *asoc; 5107 int cnt = 0; 5108 struct sctp_getaddrs getaddrs; 5109 struct sctp_sockaddr_entry *addr; 5110 void __user *to; 5111 union sctp_addr temp; 5112 struct sctp_sock *sp = sctp_sk(sk); 5113 int addrlen; 5114 int err = 0; 5115 size_t space_left; 5116 int bytes_copied = 0; 5117 void *addrs; 5118 void *buf; 5119 5120 if (len < sizeof(struct sctp_getaddrs)) 5121 return -EINVAL; 5122 5123 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5124 return -EFAULT; 5125 5126 /* 5127 * For UDP-style sockets, id specifies the association to query. 5128 * If the id field is set to the value '0' then the locally bound 5129 * addresses are returned without regard to any particular 5130 * association. 5131 */ 5132 if (0 == getaddrs.assoc_id) { 5133 bp = &sctp_sk(sk)->ep->base.bind_addr; 5134 } else { 5135 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5136 if (!asoc) 5137 return -EINVAL; 5138 bp = &asoc->base.bind_addr; 5139 } 5140 5141 to = optval + offsetof(struct sctp_getaddrs, addrs); 5142 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5143 5144 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5145 if (!addrs) 5146 return -ENOMEM; 5147 5148 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5149 * addresses from the global local address list. 5150 */ 5151 if (sctp_list_single_entry(&bp->address_list)) { 5152 addr = list_entry(bp->address_list.next, 5153 struct sctp_sockaddr_entry, list); 5154 if (sctp_is_any(sk, &addr->a)) { 5155 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5156 space_left, &bytes_copied); 5157 if (cnt < 0) { 5158 err = cnt; 5159 goto out; 5160 } 5161 goto copy_getaddrs; 5162 } 5163 } 5164 5165 buf = addrs; 5166 /* Protection on the bound address list is not needed since 5167 * in the socket option context we hold a socket lock and 5168 * thus the bound address list can't change. 5169 */ 5170 list_for_each_entry(addr, &bp->address_list, list) { 5171 memcpy(&temp, &addr->a, sizeof(temp)); 5172 addrlen = sctp_get_pf_specific(sk->sk_family) 5173 ->addr_to_user(sp, &temp); 5174 if (space_left < addrlen) { 5175 err = -ENOMEM; /*fixme: right error?*/ 5176 goto out; 5177 } 5178 memcpy(buf, &temp, addrlen); 5179 buf += addrlen; 5180 bytes_copied += addrlen; 5181 cnt++; 5182 space_left -= addrlen; 5183 } 5184 5185 copy_getaddrs: 5186 if (copy_to_user(to, addrs, bytes_copied)) { 5187 err = -EFAULT; 5188 goto out; 5189 } 5190 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5191 err = -EFAULT; 5192 goto out; 5193 } 5194 if (put_user(bytes_copied, optlen)) 5195 err = -EFAULT; 5196 out: 5197 kfree(addrs); 5198 return err; 5199 } 5200 5201 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5202 * 5203 * Requests that the local SCTP stack use the enclosed peer address as 5204 * the association primary. The enclosed address must be one of the 5205 * association peer's addresses. 5206 */ 5207 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5208 char __user *optval, int __user *optlen) 5209 { 5210 struct sctp_prim prim; 5211 struct sctp_association *asoc; 5212 struct sctp_sock *sp = sctp_sk(sk); 5213 5214 if (len < sizeof(struct sctp_prim)) 5215 return -EINVAL; 5216 5217 len = sizeof(struct sctp_prim); 5218 5219 if (copy_from_user(&prim, optval, len)) 5220 return -EFAULT; 5221 5222 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5223 if (!asoc) 5224 return -EINVAL; 5225 5226 if (!asoc->peer.primary_path) 5227 return -ENOTCONN; 5228 5229 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5230 asoc->peer.primary_path->af_specific->sockaddr_len); 5231 5232 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5233 (union sctp_addr *)&prim.ssp_addr); 5234 5235 if (put_user(len, optlen)) 5236 return -EFAULT; 5237 if (copy_to_user(optval, &prim, len)) 5238 return -EFAULT; 5239 5240 return 0; 5241 } 5242 5243 /* 5244 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5245 * 5246 * Requests that the local endpoint set the specified Adaptation Layer 5247 * Indication parameter for all future INIT and INIT-ACK exchanges. 5248 */ 5249 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5250 char __user *optval, int __user *optlen) 5251 { 5252 struct sctp_setadaptation adaptation; 5253 5254 if (len < sizeof(struct sctp_setadaptation)) 5255 return -EINVAL; 5256 5257 len = sizeof(struct sctp_setadaptation); 5258 5259 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5260 5261 if (put_user(len, optlen)) 5262 return -EFAULT; 5263 if (copy_to_user(optval, &adaptation, len)) 5264 return -EFAULT; 5265 5266 return 0; 5267 } 5268 5269 /* 5270 * 5271 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5272 * 5273 * Applications that wish to use the sendto() system call may wish to 5274 * specify a default set of parameters that would normally be supplied 5275 * through the inclusion of ancillary data. This socket option allows 5276 * such an application to set the default sctp_sndrcvinfo structure. 5277 5278 5279 * The application that wishes to use this socket option simply passes 5280 * in to this call the sctp_sndrcvinfo structure defined in Section 5281 * 5.2.2) The input parameters accepted by this call include 5282 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5283 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5284 * to this call if the caller is using the UDP model. 5285 * 5286 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5287 */ 5288 static int sctp_getsockopt_default_send_param(struct sock *sk, 5289 int len, char __user *optval, 5290 int __user *optlen) 5291 { 5292 struct sctp_sock *sp = sctp_sk(sk); 5293 struct sctp_association *asoc; 5294 struct sctp_sndrcvinfo info; 5295 5296 if (len < sizeof(info)) 5297 return -EINVAL; 5298 5299 len = sizeof(info); 5300 5301 if (copy_from_user(&info, optval, len)) 5302 return -EFAULT; 5303 5304 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5305 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5306 return -EINVAL; 5307 if (asoc) { 5308 info.sinfo_stream = asoc->default_stream; 5309 info.sinfo_flags = asoc->default_flags; 5310 info.sinfo_ppid = asoc->default_ppid; 5311 info.sinfo_context = asoc->default_context; 5312 info.sinfo_timetolive = asoc->default_timetolive; 5313 } else { 5314 info.sinfo_stream = sp->default_stream; 5315 info.sinfo_flags = sp->default_flags; 5316 info.sinfo_ppid = sp->default_ppid; 5317 info.sinfo_context = sp->default_context; 5318 info.sinfo_timetolive = sp->default_timetolive; 5319 } 5320 5321 if (put_user(len, optlen)) 5322 return -EFAULT; 5323 if (copy_to_user(optval, &info, len)) 5324 return -EFAULT; 5325 5326 return 0; 5327 } 5328 5329 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5330 * (SCTP_DEFAULT_SNDINFO) 5331 */ 5332 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5333 char __user *optval, 5334 int __user *optlen) 5335 { 5336 struct sctp_sock *sp = sctp_sk(sk); 5337 struct sctp_association *asoc; 5338 struct sctp_sndinfo info; 5339 5340 if (len < sizeof(info)) 5341 return -EINVAL; 5342 5343 len = sizeof(info); 5344 5345 if (copy_from_user(&info, optval, len)) 5346 return -EFAULT; 5347 5348 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5349 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5350 return -EINVAL; 5351 if (asoc) { 5352 info.snd_sid = asoc->default_stream; 5353 info.snd_flags = asoc->default_flags; 5354 info.snd_ppid = asoc->default_ppid; 5355 info.snd_context = asoc->default_context; 5356 } else { 5357 info.snd_sid = sp->default_stream; 5358 info.snd_flags = sp->default_flags; 5359 info.snd_ppid = sp->default_ppid; 5360 info.snd_context = sp->default_context; 5361 } 5362 5363 if (put_user(len, optlen)) 5364 return -EFAULT; 5365 if (copy_to_user(optval, &info, len)) 5366 return -EFAULT; 5367 5368 return 0; 5369 } 5370 5371 /* 5372 * 5373 * 7.1.5 SCTP_NODELAY 5374 * 5375 * Turn on/off any Nagle-like algorithm. This means that packets are 5376 * generally sent as soon as possible and no unnecessary delays are 5377 * introduced, at the cost of more packets in the network. Expects an 5378 * integer boolean flag. 5379 */ 5380 5381 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5382 char __user *optval, int __user *optlen) 5383 { 5384 int val; 5385 5386 if (len < sizeof(int)) 5387 return -EINVAL; 5388 5389 len = sizeof(int); 5390 val = (sctp_sk(sk)->nodelay == 1); 5391 if (put_user(len, optlen)) 5392 return -EFAULT; 5393 if (copy_to_user(optval, &val, len)) 5394 return -EFAULT; 5395 return 0; 5396 } 5397 5398 /* 5399 * 5400 * 7.1.1 SCTP_RTOINFO 5401 * 5402 * The protocol parameters used to initialize and bound retransmission 5403 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5404 * and modify these parameters. 5405 * All parameters are time values, in milliseconds. A value of 0, when 5406 * modifying the parameters, indicates that the current value should not 5407 * be changed. 5408 * 5409 */ 5410 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5411 char __user *optval, 5412 int __user *optlen) { 5413 struct sctp_rtoinfo rtoinfo; 5414 struct sctp_association *asoc; 5415 5416 if (len < sizeof (struct sctp_rtoinfo)) 5417 return -EINVAL; 5418 5419 len = sizeof(struct sctp_rtoinfo); 5420 5421 if (copy_from_user(&rtoinfo, optval, len)) 5422 return -EFAULT; 5423 5424 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5425 5426 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5427 return -EINVAL; 5428 5429 /* Values corresponding to the specific association. */ 5430 if (asoc) { 5431 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5432 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5433 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5434 } else { 5435 /* Values corresponding to the endpoint. */ 5436 struct sctp_sock *sp = sctp_sk(sk); 5437 5438 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5439 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5440 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5441 } 5442 5443 if (put_user(len, optlen)) 5444 return -EFAULT; 5445 5446 if (copy_to_user(optval, &rtoinfo, len)) 5447 return -EFAULT; 5448 5449 return 0; 5450 } 5451 5452 /* 5453 * 5454 * 7.1.2 SCTP_ASSOCINFO 5455 * 5456 * This option is used to tune the maximum retransmission attempts 5457 * of the association. 5458 * Returns an error if the new association retransmission value is 5459 * greater than the sum of the retransmission value of the peer. 5460 * See [SCTP] for more information. 5461 * 5462 */ 5463 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5464 char __user *optval, 5465 int __user *optlen) 5466 { 5467 5468 struct sctp_assocparams assocparams; 5469 struct sctp_association *asoc; 5470 struct list_head *pos; 5471 int cnt = 0; 5472 5473 if (len < sizeof (struct sctp_assocparams)) 5474 return -EINVAL; 5475 5476 len = sizeof(struct sctp_assocparams); 5477 5478 if (copy_from_user(&assocparams, optval, len)) 5479 return -EFAULT; 5480 5481 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5482 5483 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5484 return -EINVAL; 5485 5486 /* Values correspoinding to the specific association */ 5487 if (asoc) { 5488 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5489 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5490 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5491 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5492 5493 list_for_each(pos, &asoc->peer.transport_addr_list) { 5494 cnt++; 5495 } 5496 5497 assocparams.sasoc_number_peer_destinations = cnt; 5498 } else { 5499 /* Values corresponding to the endpoint */ 5500 struct sctp_sock *sp = sctp_sk(sk); 5501 5502 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5503 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5504 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5505 assocparams.sasoc_cookie_life = 5506 sp->assocparams.sasoc_cookie_life; 5507 assocparams.sasoc_number_peer_destinations = 5508 sp->assocparams. 5509 sasoc_number_peer_destinations; 5510 } 5511 5512 if (put_user(len, optlen)) 5513 return -EFAULT; 5514 5515 if (copy_to_user(optval, &assocparams, len)) 5516 return -EFAULT; 5517 5518 return 0; 5519 } 5520 5521 /* 5522 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5523 * 5524 * This socket option is a boolean flag which turns on or off mapped V4 5525 * addresses. If this option is turned on and the socket is type 5526 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5527 * If this option is turned off, then no mapping will be done of V4 5528 * addresses and a user will receive both PF_INET6 and PF_INET type 5529 * addresses on the socket. 5530 */ 5531 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5532 char __user *optval, int __user *optlen) 5533 { 5534 int val; 5535 struct sctp_sock *sp = sctp_sk(sk); 5536 5537 if (len < sizeof(int)) 5538 return -EINVAL; 5539 5540 len = sizeof(int); 5541 val = sp->v4mapped; 5542 if (put_user(len, optlen)) 5543 return -EFAULT; 5544 if (copy_to_user(optval, &val, len)) 5545 return -EFAULT; 5546 5547 return 0; 5548 } 5549 5550 /* 5551 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5552 * (chapter and verse is quoted at sctp_setsockopt_context()) 5553 */ 5554 static int sctp_getsockopt_context(struct sock *sk, int len, 5555 char __user *optval, int __user *optlen) 5556 { 5557 struct sctp_assoc_value params; 5558 struct sctp_sock *sp; 5559 struct sctp_association *asoc; 5560 5561 if (len < sizeof(struct sctp_assoc_value)) 5562 return -EINVAL; 5563 5564 len = sizeof(struct sctp_assoc_value); 5565 5566 if (copy_from_user(¶ms, optval, len)) 5567 return -EFAULT; 5568 5569 sp = sctp_sk(sk); 5570 5571 if (params.assoc_id != 0) { 5572 asoc = sctp_id2assoc(sk, params.assoc_id); 5573 if (!asoc) 5574 return -EINVAL; 5575 params.assoc_value = asoc->default_rcv_context; 5576 } else { 5577 params.assoc_value = sp->default_rcv_context; 5578 } 5579 5580 if (put_user(len, optlen)) 5581 return -EFAULT; 5582 if (copy_to_user(optval, ¶ms, len)) 5583 return -EFAULT; 5584 5585 return 0; 5586 } 5587 5588 /* 5589 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5590 * This option will get or set the maximum size to put in any outgoing 5591 * SCTP DATA chunk. If a message is larger than this size it will be 5592 * fragmented by SCTP into the specified size. Note that the underlying 5593 * SCTP implementation may fragment into smaller sized chunks when the 5594 * PMTU of the underlying association is smaller than the value set by 5595 * the user. The default value for this option is '0' which indicates 5596 * the user is NOT limiting fragmentation and only the PMTU will effect 5597 * SCTP's choice of DATA chunk size. Note also that values set larger 5598 * than the maximum size of an IP datagram will effectively let SCTP 5599 * control fragmentation (i.e. the same as setting this option to 0). 5600 * 5601 * The following structure is used to access and modify this parameter: 5602 * 5603 * struct sctp_assoc_value { 5604 * sctp_assoc_t assoc_id; 5605 * uint32_t assoc_value; 5606 * }; 5607 * 5608 * assoc_id: This parameter is ignored for one-to-one style sockets. 5609 * For one-to-many style sockets this parameter indicates which 5610 * association the user is performing an action upon. Note that if 5611 * this field's value is zero then the endpoints default value is 5612 * changed (effecting future associations only). 5613 * assoc_value: This parameter specifies the maximum size in bytes. 5614 */ 5615 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5616 char __user *optval, int __user *optlen) 5617 { 5618 struct sctp_assoc_value params; 5619 struct sctp_association *asoc; 5620 5621 if (len == sizeof(int)) { 5622 pr_warn_ratelimited(DEPRECATED 5623 "%s (pid %d) " 5624 "Use of int in maxseg socket option.\n" 5625 "Use struct sctp_assoc_value instead\n", 5626 current->comm, task_pid_nr(current)); 5627 params.assoc_id = 0; 5628 } else if (len >= sizeof(struct sctp_assoc_value)) { 5629 len = sizeof(struct sctp_assoc_value); 5630 if (copy_from_user(¶ms, optval, sizeof(params))) 5631 return -EFAULT; 5632 } else 5633 return -EINVAL; 5634 5635 asoc = sctp_id2assoc(sk, params.assoc_id); 5636 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5637 return -EINVAL; 5638 5639 if (asoc) 5640 params.assoc_value = asoc->frag_point; 5641 else 5642 params.assoc_value = sctp_sk(sk)->user_frag; 5643 5644 if (put_user(len, optlen)) 5645 return -EFAULT; 5646 if (len == sizeof(int)) { 5647 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5648 return -EFAULT; 5649 } else { 5650 if (copy_to_user(optval, ¶ms, len)) 5651 return -EFAULT; 5652 } 5653 5654 return 0; 5655 } 5656 5657 /* 5658 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5659 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5660 */ 5661 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5662 char __user *optval, int __user *optlen) 5663 { 5664 int val; 5665 5666 if (len < sizeof(int)) 5667 return -EINVAL; 5668 5669 len = sizeof(int); 5670 5671 val = sctp_sk(sk)->frag_interleave; 5672 if (put_user(len, optlen)) 5673 return -EFAULT; 5674 if (copy_to_user(optval, &val, len)) 5675 return -EFAULT; 5676 5677 return 0; 5678 } 5679 5680 /* 5681 * 7.1.25. Set or Get the sctp partial delivery point 5682 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5683 */ 5684 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5685 char __user *optval, 5686 int __user *optlen) 5687 { 5688 u32 val; 5689 5690 if (len < sizeof(u32)) 5691 return -EINVAL; 5692 5693 len = sizeof(u32); 5694 5695 val = sctp_sk(sk)->pd_point; 5696 if (put_user(len, optlen)) 5697 return -EFAULT; 5698 if (copy_to_user(optval, &val, len)) 5699 return -EFAULT; 5700 5701 return 0; 5702 } 5703 5704 /* 5705 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5706 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5707 */ 5708 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5709 char __user *optval, 5710 int __user *optlen) 5711 { 5712 struct sctp_assoc_value params; 5713 struct sctp_sock *sp; 5714 struct sctp_association *asoc; 5715 5716 if (len == sizeof(int)) { 5717 pr_warn_ratelimited(DEPRECATED 5718 "%s (pid %d) " 5719 "Use of int in max_burst socket option.\n" 5720 "Use struct sctp_assoc_value instead\n", 5721 current->comm, task_pid_nr(current)); 5722 params.assoc_id = 0; 5723 } else if (len >= sizeof(struct sctp_assoc_value)) { 5724 len = sizeof(struct sctp_assoc_value); 5725 if (copy_from_user(¶ms, optval, len)) 5726 return -EFAULT; 5727 } else 5728 return -EINVAL; 5729 5730 sp = sctp_sk(sk); 5731 5732 if (params.assoc_id != 0) { 5733 asoc = sctp_id2assoc(sk, params.assoc_id); 5734 if (!asoc) 5735 return -EINVAL; 5736 params.assoc_value = asoc->max_burst; 5737 } else 5738 params.assoc_value = sp->max_burst; 5739 5740 if (len == sizeof(int)) { 5741 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5742 return -EFAULT; 5743 } else { 5744 if (copy_to_user(optval, ¶ms, len)) 5745 return -EFAULT; 5746 } 5747 5748 return 0; 5749 5750 } 5751 5752 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5753 char __user *optval, int __user *optlen) 5754 { 5755 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5756 struct sctp_hmacalgo __user *p = (void __user *)optval; 5757 struct sctp_hmac_algo_param *hmacs; 5758 __u16 data_len = 0; 5759 u32 num_idents; 5760 int i; 5761 5762 if (!ep->auth_enable) 5763 return -EACCES; 5764 5765 hmacs = ep->auth_hmacs_list; 5766 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5767 5768 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5769 return -EINVAL; 5770 5771 len = sizeof(struct sctp_hmacalgo) + data_len; 5772 num_idents = data_len / sizeof(u16); 5773 5774 if (put_user(len, optlen)) 5775 return -EFAULT; 5776 if (put_user(num_idents, &p->shmac_num_idents)) 5777 return -EFAULT; 5778 for (i = 0; i < num_idents; i++) { 5779 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 5780 5781 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 5782 return -EFAULT; 5783 } 5784 return 0; 5785 } 5786 5787 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5788 char __user *optval, int __user *optlen) 5789 { 5790 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5791 struct sctp_authkeyid val; 5792 struct sctp_association *asoc; 5793 5794 if (!ep->auth_enable) 5795 return -EACCES; 5796 5797 if (len < sizeof(struct sctp_authkeyid)) 5798 return -EINVAL; 5799 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5800 return -EFAULT; 5801 5802 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5803 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5804 return -EINVAL; 5805 5806 if (asoc) 5807 val.scact_keynumber = asoc->active_key_id; 5808 else 5809 val.scact_keynumber = ep->active_key_id; 5810 5811 len = sizeof(struct sctp_authkeyid); 5812 if (put_user(len, optlen)) 5813 return -EFAULT; 5814 if (copy_to_user(optval, &val, len)) 5815 return -EFAULT; 5816 5817 return 0; 5818 } 5819 5820 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5821 char __user *optval, int __user *optlen) 5822 { 5823 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5824 struct sctp_authchunks __user *p = (void __user *)optval; 5825 struct sctp_authchunks val; 5826 struct sctp_association *asoc; 5827 struct sctp_chunks_param *ch; 5828 u32 num_chunks = 0; 5829 char __user *to; 5830 5831 if (!ep->auth_enable) 5832 return -EACCES; 5833 5834 if (len < sizeof(struct sctp_authchunks)) 5835 return -EINVAL; 5836 5837 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5838 return -EFAULT; 5839 5840 to = p->gauth_chunks; 5841 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5842 if (!asoc) 5843 return -EINVAL; 5844 5845 ch = asoc->peer.peer_chunks; 5846 if (!ch) 5847 goto num; 5848 5849 /* See if the user provided enough room for all the data */ 5850 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5851 if (len < num_chunks) 5852 return -EINVAL; 5853 5854 if (copy_to_user(to, ch->chunks, num_chunks)) 5855 return -EFAULT; 5856 num: 5857 len = sizeof(struct sctp_authchunks) + num_chunks; 5858 if (put_user(len, optlen)) 5859 return -EFAULT; 5860 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5861 return -EFAULT; 5862 return 0; 5863 } 5864 5865 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5866 char __user *optval, int __user *optlen) 5867 { 5868 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5869 struct sctp_authchunks __user *p = (void __user *)optval; 5870 struct sctp_authchunks val; 5871 struct sctp_association *asoc; 5872 struct sctp_chunks_param *ch; 5873 u32 num_chunks = 0; 5874 char __user *to; 5875 5876 if (!ep->auth_enable) 5877 return -EACCES; 5878 5879 if (len < sizeof(struct sctp_authchunks)) 5880 return -EINVAL; 5881 5882 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5883 return -EFAULT; 5884 5885 to = p->gauth_chunks; 5886 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5887 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5888 return -EINVAL; 5889 5890 if (asoc) 5891 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5892 else 5893 ch = ep->auth_chunk_list; 5894 5895 if (!ch) 5896 goto num; 5897 5898 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5899 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5900 return -EINVAL; 5901 5902 if (copy_to_user(to, ch->chunks, num_chunks)) 5903 return -EFAULT; 5904 num: 5905 len = sizeof(struct sctp_authchunks) + num_chunks; 5906 if (put_user(len, optlen)) 5907 return -EFAULT; 5908 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5909 return -EFAULT; 5910 5911 return 0; 5912 } 5913 5914 /* 5915 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5916 * This option gets the current number of associations that are attached 5917 * to a one-to-many style socket. The option value is an uint32_t. 5918 */ 5919 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5920 char __user *optval, int __user *optlen) 5921 { 5922 struct sctp_sock *sp = sctp_sk(sk); 5923 struct sctp_association *asoc; 5924 u32 val = 0; 5925 5926 if (sctp_style(sk, TCP)) 5927 return -EOPNOTSUPP; 5928 5929 if (len < sizeof(u32)) 5930 return -EINVAL; 5931 5932 len = sizeof(u32); 5933 5934 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5935 val++; 5936 } 5937 5938 if (put_user(len, optlen)) 5939 return -EFAULT; 5940 if (copy_to_user(optval, &val, len)) 5941 return -EFAULT; 5942 5943 return 0; 5944 } 5945 5946 /* 5947 * 8.1.23 SCTP_AUTO_ASCONF 5948 * See the corresponding setsockopt entry as description 5949 */ 5950 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5951 char __user *optval, int __user *optlen) 5952 { 5953 int val = 0; 5954 5955 if (len < sizeof(int)) 5956 return -EINVAL; 5957 5958 len = sizeof(int); 5959 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5960 val = 1; 5961 if (put_user(len, optlen)) 5962 return -EFAULT; 5963 if (copy_to_user(optval, &val, len)) 5964 return -EFAULT; 5965 return 0; 5966 } 5967 5968 /* 5969 * 8.2.6. Get the Current Identifiers of Associations 5970 * (SCTP_GET_ASSOC_ID_LIST) 5971 * 5972 * This option gets the current list of SCTP association identifiers of 5973 * the SCTP associations handled by a one-to-many style socket. 5974 */ 5975 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5976 char __user *optval, int __user *optlen) 5977 { 5978 struct sctp_sock *sp = sctp_sk(sk); 5979 struct sctp_association *asoc; 5980 struct sctp_assoc_ids *ids; 5981 u32 num = 0; 5982 5983 if (sctp_style(sk, TCP)) 5984 return -EOPNOTSUPP; 5985 5986 if (len < sizeof(struct sctp_assoc_ids)) 5987 return -EINVAL; 5988 5989 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5990 num++; 5991 } 5992 5993 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5994 return -EINVAL; 5995 5996 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5997 5998 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 5999 if (unlikely(!ids)) 6000 return -ENOMEM; 6001 6002 ids->gaids_number_of_ids = num; 6003 num = 0; 6004 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6005 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6006 } 6007 6008 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6009 kfree(ids); 6010 return -EFAULT; 6011 } 6012 6013 kfree(ids); 6014 return 0; 6015 } 6016 6017 /* 6018 * SCTP_PEER_ADDR_THLDS 6019 * 6020 * This option allows us to fetch the partially failed threshold for one or all 6021 * transports in an association. See Section 6.1 of: 6022 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6023 */ 6024 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6025 char __user *optval, 6026 int len, 6027 int __user *optlen) 6028 { 6029 struct sctp_paddrthlds val; 6030 struct sctp_transport *trans; 6031 struct sctp_association *asoc; 6032 6033 if (len < sizeof(struct sctp_paddrthlds)) 6034 return -EINVAL; 6035 len = sizeof(struct sctp_paddrthlds); 6036 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6037 return -EFAULT; 6038 6039 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6040 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6041 if (!asoc) 6042 return -ENOENT; 6043 6044 val.spt_pathpfthld = asoc->pf_retrans; 6045 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6046 } else { 6047 trans = sctp_addr_id2transport(sk, &val.spt_address, 6048 val.spt_assoc_id); 6049 if (!trans) 6050 return -ENOENT; 6051 6052 val.spt_pathmaxrxt = trans->pathmaxrxt; 6053 val.spt_pathpfthld = trans->pf_retrans; 6054 } 6055 6056 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6057 return -EFAULT; 6058 6059 return 0; 6060 } 6061 6062 /* 6063 * SCTP_GET_ASSOC_STATS 6064 * 6065 * This option retrieves local per endpoint statistics. It is modeled 6066 * after OpenSolaris' implementation 6067 */ 6068 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6069 char __user *optval, 6070 int __user *optlen) 6071 { 6072 struct sctp_assoc_stats sas; 6073 struct sctp_association *asoc = NULL; 6074 6075 /* User must provide at least the assoc id */ 6076 if (len < sizeof(sctp_assoc_t)) 6077 return -EINVAL; 6078 6079 /* Allow the struct to grow and fill in as much as possible */ 6080 len = min_t(size_t, len, sizeof(sas)); 6081 6082 if (copy_from_user(&sas, optval, len)) 6083 return -EFAULT; 6084 6085 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6086 if (!asoc) 6087 return -EINVAL; 6088 6089 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6090 sas.sas_gapcnt = asoc->stats.gapcnt; 6091 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6092 sas.sas_osacks = asoc->stats.osacks; 6093 sas.sas_isacks = asoc->stats.isacks; 6094 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6095 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6096 sas.sas_oodchunks = asoc->stats.oodchunks; 6097 sas.sas_iodchunks = asoc->stats.iodchunks; 6098 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6099 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6100 sas.sas_idupchunks = asoc->stats.idupchunks; 6101 sas.sas_opackets = asoc->stats.opackets; 6102 sas.sas_ipackets = asoc->stats.ipackets; 6103 6104 /* New high max rto observed, will return 0 if not a single 6105 * RTO update took place. obs_rto_ipaddr will be bogus 6106 * in such a case 6107 */ 6108 sas.sas_maxrto = asoc->stats.max_obs_rto; 6109 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6110 sizeof(struct sockaddr_storage)); 6111 6112 /* Mark beginning of a new observation period */ 6113 asoc->stats.max_obs_rto = asoc->rto_min; 6114 6115 if (put_user(len, optlen)) 6116 return -EFAULT; 6117 6118 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6119 6120 if (copy_to_user(optval, &sas, len)) 6121 return -EFAULT; 6122 6123 return 0; 6124 } 6125 6126 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6127 char __user *optval, 6128 int __user *optlen) 6129 { 6130 int val = 0; 6131 6132 if (len < sizeof(int)) 6133 return -EINVAL; 6134 6135 len = sizeof(int); 6136 if (sctp_sk(sk)->recvrcvinfo) 6137 val = 1; 6138 if (put_user(len, optlen)) 6139 return -EFAULT; 6140 if (copy_to_user(optval, &val, len)) 6141 return -EFAULT; 6142 6143 return 0; 6144 } 6145 6146 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6147 char __user *optval, 6148 int __user *optlen) 6149 { 6150 int val = 0; 6151 6152 if (len < sizeof(int)) 6153 return -EINVAL; 6154 6155 len = sizeof(int); 6156 if (sctp_sk(sk)->recvnxtinfo) 6157 val = 1; 6158 if (put_user(len, optlen)) 6159 return -EFAULT; 6160 if (copy_to_user(optval, &val, len)) 6161 return -EFAULT; 6162 6163 return 0; 6164 } 6165 6166 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6167 char __user *optval, int __user *optlen) 6168 { 6169 int retval = 0; 6170 int len; 6171 6172 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6173 6174 /* I can hardly begin to describe how wrong this is. This is 6175 * so broken as to be worse than useless. The API draft 6176 * REALLY is NOT helpful here... I am not convinced that the 6177 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6178 * are at all well-founded. 6179 */ 6180 if (level != SOL_SCTP) { 6181 struct sctp_af *af = sctp_sk(sk)->pf->af; 6182 6183 retval = af->getsockopt(sk, level, optname, optval, optlen); 6184 return retval; 6185 } 6186 6187 if (get_user(len, optlen)) 6188 return -EFAULT; 6189 6190 lock_sock(sk); 6191 6192 switch (optname) { 6193 case SCTP_STATUS: 6194 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6195 break; 6196 case SCTP_DISABLE_FRAGMENTS: 6197 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6198 optlen); 6199 break; 6200 case SCTP_EVENTS: 6201 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6202 break; 6203 case SCTP_AUTOCLOSE: 6204 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6205 break; 6206 case SCTP_SOCKOPT_PEELOFF: 6207 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6208 break; 6209 case SCTP_PEER_ADDR_PARAMS: 6210 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6211 optlen); 6212 break; 6213 case SCTP_DELAYED_SACK: 6214 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6215 optlen); 6216 break; 6217 case SCTP_INITMSG: 6218 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6219 break; 6220 case SCTP_GET_PEER_ADDRS: 6221 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6222 optlen); 6223 break; 6224 case SCTP_GET_LOCAL_ADDRS: 6225 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6226 optlen); 6227 break; 6228 case SCTP_SOCKOPT_CONNECTX3: 6229 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6230 break; 6231 case SCTP_DEFAULT_SEND_PARAM: 6232 retval = sctp_getsockopt_default_send_param(sk, len, 6233 optval, optlen); 6234 break; 6235 case SCTP_DEFAULT_SNDINFO: 6236 retval = sctp_getsockopt_default_sndinfo(sk, len, 6237 optval, optlen); 6238 break; 6239 case SCTP_PRIMARY_ADDR: 6240 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6241 break; 6242 case SCTP_NODELAY: 6243 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6244 break; 6245 case SCTP_RTOINFO: 6246 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6247 break; 6248 case SCTP_ASSOCINFO: 6249 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6250 break; 6251 case SCTP_I_WANT_MAPPED_V4_ADDR: 6252 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6253 break; 6254 case SCTP_MAXSEG: 6255 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6256 break; 6257 case SCTP_GET_PEER_ADDR_INFO: 6258 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6259 optlen); 6260 break; 6261 case SCTP_ADAPTATION_LAYER: 6262 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6263 optlen); 6264 break; 6265 case SCTP_CONTEXT: 6266 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6267 break; 6268 case SCTP_FRAGMENT_INTERLEAVE: 6269 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6270 optlen); 6271 break; 6272 case SCTP_PARTIAL_DELIVERY_POINT: 6273 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6274 optlen); 6275 break; 6276 case SCTP_MAX_BURST: 6277 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6278 break; 6279 case SCTP_AUTH_KEY: 6280 case SCTP_AUTH_CHUNK: 6281 case SCTP_AUTH_DELETE_KEY: 6282 retval = -EOPNOTSUPP; 6283 break; 6284 case SCTP_HMAC_IDENT: 6285 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6286 break; 6287 case SCTP_AUTH_ACTIVE_KEY: 6288 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6289 break; 6290 case SCTP_PEER_AUTH_CHUNKS: 6291 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6292 optlen); 6293 break; 6294 case SCTP_LOCAL_AUTH_CHUNKS: 6295 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6296 optlen); 6297 break; 6298 case SCTP_GET_ASSOC_NUMBER: 6299 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6300 break; 6301 case SCTP_GET_ASSOC_ID_LIST: 6302 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6303 break; 6304 case SCTP_AUTO_ASCONF: 6305 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6306 break; 6307 case SCTP_PEER_ADDR_THLDS: 6308 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6309 break; 6310 case SCTP_GET_ASSOC_STATS: 6311 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6312 break; 6313 case SCTP_RECVRCVINFO: 6314 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6315 break; 6316 case SCTP_RECVNXTINFO: 6317 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6318 break; 6319 default: 6320 retval = -ENOPROTOOPT; 6321 break; 6322 } 6323 6324 release_sock(sk); 6325 return retval; 6326 } 6327 6328 static int sctp_hash(struct sock *sk) 6329 { 6330 /* STUB */ 6331 return 0; 6332 } 6333 6334 static void sctp_unhash(struct sock *sk) 6335 { 6336 /* STUB */ 6337 } 6338 6339 /* Check if port is acceptable. Possibly find first available port. 6340 * 6341 * The port hash table (contained in the 'global' SCTP protocol storage 6342 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6343 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6344 * list (the list number is the port number hashed out, so as you 6345 * would expect from a hash function, all the ports in a given list have 6346 * such a number that hashes out to the same list number; you were 6347 * expecting that, right?); so each list has a set of ports, with a 6348 * link to the socket (struct sock) that uses it, the port number and 6349 * a fastreuse flag (FIXME: NPI ipg). 6350 */ 6351 static struct sctp_bind_bucket *sctp_bucket_create( 6352 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6353 6354 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6355 { 6356 struct sctp_bind_hashbucket *head; /* hash list */ 6357 struct sctp_bind_bucket *pp; 6358 unsigned short snum; 6359 int ret; 6360 6361 snum = ntohs(addr->v4.sin_port); 6362 6363 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6364 6365 local_bh_disable(); 6366 6367 if (snum == 0) { 6368 /* Search for an available port. */ 6369 int low, high, remaining, index; 6370 unsigned int rover; 6371 struct net *net = sock_net(sk); 6372 6373 inet_get_local_port_range(net, &low, &high); 6374 remaining = (high - low) + 1; 6375 rover = prandom_u32() % remaining + low; 6376 6377 do { 6378 rover++; 6379 if ((rover < low) || (rover > high)) 6380 rover = low; 6381 if (inet_is_local_reserved_port(net, rover)) 6382 continue; 6383 index = sctp_phashfn(sock_net(sk), rover); 6384 head = &sctp_port_hashtable[index]; 6385 spin_lock(&head->lock); 6386 sctp_for_each_hentry(pp, &head->chain) 6387 if ((pp->port == rover) && 6388 net_eq(sock_net(sk), pp->net)) 6389 goto next; 6390 break; 6391 next: 6392 spin_unlock(&head->lock); 6393 } while (--remaining > 0); 6394 6395 /* Exhausted local port range during search? */ 6396 ret = 1; 6397 if (remaining <= 0) 6398 goto fail; 6399 6400 /* OK, here is the one we will use. HEAD (the port 6401 * hash table list entry) is non-NULL and we hold it's 6402 * mutex. 6403 */ 6404 snum = rover; 6405 } else { 6406 /* We are given an specific port number; we verify 6407 * that it is not being used. If it is used, we will 6408 * exahust the search in the hash list corresponding 6409 * to the port number (snum) - we detect that with the 6410 * port iterator, pp being NULL. 6411 */ 6412 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6413 spin_lock(&head->lock); 6414 sctp_for_each_hentry(pp, &head->chain) { 6415 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6416 goto pp_found; 6417 } 6418 } 6419 pp = NULL; 6420 goto pp_not_found; 6421 pp_found: 6422 if (!hlist_empty(&pp->owner)) { 6423 /* We had a port hash table hit - there is an 6424 * available port (pp != NULL) and it is being 6425 * used by other socket (pp->owner not empty); that other 6426 * socket is going to be sk2. 6427 */ 6428 int reuse = sk->sk_reuse; 6429 struct sock *sk2; 6430 6431 pr_debug("%s: found a possible match\n", __func__); 6432 6433 if (pp->fastreuse && sk->sk_reuse && 6434 sk->sk_state != SCTP_SS_LISTENING) 6435 goto success; 6436 6437 /* Run through the list of sockets bound to the port 6438 * (pp->port) [via the pointers bind_next and 6439 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6440 * we get the endpoint they describe and run through 6441 * the endpoint's list of IP (v4 or v6) addresses, 6442 * comparing each of the addresses with the address of 6443 * the socket sk. If we find a match, then that means 6444 * that this port/socket (sk) combination are already 6445 * in an endpoint. 6446 */ 6447 sk_for_each_bound(sk2, &pp->owner) { 6448 struct sctp_endpoint *ep2; 6449 ep2 = sctp_sk(sk2)->ep; 6450 6451 if (sk == sk2 || 6452 (reuse && sk2->sk_reuse && 6453 sk2->sk_state != SCTP_SS_LISTENING)) 6454 continue; 6455 6456 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6457 sctp_sk(sk2), sctp_sk(sk))) { 6458 ret = (long)sk2; 6459 goto fail_unlock; 6460 } 6461 } 6462 6463 pr_debug("%s: found a match\n", __func__); 6464 } 6465 pp_not_found: 6466 /* If there was a hash table miss, create a new port. */ 6467 ret = 1; 6468 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6469 goto fail_unlock; 6470 6471 /* In either case (hit or miss), make sure fastreuse is 1 only 6472 * if sk->sk_reuse is too (that is, if the caller requested 6473 * SO_REUSEADDR on this socket -sk-). 6474 */ 6475 if (hlist_empty(&pp->owner)) { 6476 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6477 pp->fastreuse = 1; 6478 else 6479 pp->fastreuse = 0; 6480 } else if (pp->fastreuse && 6481 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6482 pp->fastreuse = 0; 6483 6484 /* We are set, so fill up all the data in the hash table 6485 * entry, tie the socket list information with the rest of the 6486 * sockets FIXME: Blurry, NPI (ipg). 6487 */ 6488 success: 6489 if (!sctp_sk(sk)->bind_hash) { 6490 inet_sk(sk)->inet_num = snum; 6491 sk_add_bind_node(sk, &pp->owner); 6492 sctp_sk(sk)->bind_hash = pp; 6493 } 6494 ret = 0; 6495 6496 fail_unlock: 6497 spin_unlock(&head->lock); 6498 6499 fail: 6500 local_bh_enable(); 6501 return ret; 6502 } 6503 6504 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6505 * port is requested. 6506 */ 6507 static int sctp_get_port(struct sock *sk, unsigned short snum) 6508 { 6509 union sctp_addr addr; 6510 struct sctp_af *af = sctp_sk(sk)->pf->af; 6511 6512 /* Set up a dummy address struct from the sk. */ 6513 af->from_sk(&addr, sk); 6514 addr.v4.sin_port = htons(snum); 6515 6516 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6517 return !!sctp_get_port_local(sk, &addr); 6518 } 6519 6520 /* 6521 * Move a socket to LISTENING state. 6522 */ 6523 static int sctp_listen_start(struct sock *sk, int backlog) 6524 { 6525 struct sctp_sock *sp = sctp_sk(sk); 6526 struct sctp_endpoint *ep = sp->ep; 6527 struct crypto_shash *tfm = NULL; 6528 char alg[32]; 6529 6530 /* Allocate HMAC for generating cookie. */ 6531 if (!sp->hmac && sp->sctp_hmac_alg) { 6532 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6533 tfm = crypto_alloc_shash(alg, 0, 0); 6534 if (IS_ERR(tfm)) { 6535 net_info_ratelimited("failed to load transform for %s: %ld\n", 6536 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6537 return -ENOSYS; 6538 } 6539 sctp_sk(sk)->hmac = tfm; 6540 } 6541 6542 /* 6543 * If a bind() or sctp_bindx() is not called prior to a listen() 6544 * call that allows new associations to be accepted, the system 6545 * picks an ephemeral port and will choose an address set equivalent 6546 * to binding with a wildcard address. 6547 * 6548 * This is not currently spelled out in the SCTP sockets 6549 * extensions draft, but follows the practice as seen in TCP 6550 * sockets. 6551 * 6552 */ 6553 sk->sk_state = SCTP_SS_LISTENING; 6554 if (!ep->base.bind_addr.port) { 6555 if (sctp_autobind(sk)) 6556 return -EAGAIN; 6557 } else { 6558 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6559 sk->sk_state = SCTP_SS_CLOSED; 6560 return -EADDRINUSE; 6561 } 6562 } 6563 6564 sk->sk_max_ack_backlog = backlog; 6565 sctp_hash_endpoint(ep); 6566 return 0; 6567 } 6568 6569 /* 6570 * 4.1.3 / 5.1.3 listen() 6571 * 6572 * By default, new associations are not accepted for UDP style sockets. 6573 * An application uses listen() to mark a socket as being able to 6574 * accept new associations. 6575 * 6576 * On TCP style sockets, applications use listen() to ready the SCTP 6577 * endpoint for accepting inbound associations. 6578 * 6579 * On both types of endpoints a backlog of '0' disables listening. 6580 * 6581 * Move a socket to LISTENING state. 6582 */ 6583 int sctp_inet_listen(struct socket *sock, int backlog) 6584 { 6585 struct sock *sk = sock->sk; 6586 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6587 int err = -EINVAL; 6588 6589 if (unlikely(backlog < 0)) 6590 return err; 6591 6592 lock_sock(sk); 6593 6594 /* Peeled-off sockets are not allowed to listen(). */ 6595 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6596 goto out; 6597 6598 if (sock->state != SS_UNCONNECTED) 6599 goto out; 6600 6601 /* If backlog is zero, disable listening. */ 6602 if (!backlog) { 6603 if (sctp_sstate(sk, CLOSED)) 6604 goto out; 6605 6606 err = 0; 6607 sctp_unhash_endpoint(ep); 6608 sk->sk_state = SCTP_SS_CLOSED; 6609 if (sk->sk_reuse) 6610 sctp_sk(sk)->bind_hash->fastreuse = 1; 6611 goto out; 6612 } 6613 6614 /* If we are already listening, just update the backlog */ 6615 if (sctp_sstate(sk, LISTENING)) 6616 sk->sk_max_ack_backlog = backlog; 6617 else { 6618 err = sctp_listen_start(sk, backlog); 6619 if (err) 6620 goto out; 6621 } 6622 6623 err = 0; 6624 out: 6625 release_sock(sk); 6626 return err; 6627 } 6628 6629 /* 6630 * This function is done by modeling the current datagram_poll() and the 6631 * tcp_poll(). Note that, based on these implementations, we don't 6632 * lock the socket in this function, even though it seems that, 6633 * ideally, locking or some other mechanisms can be used to ensure 6634 * the integrity of the counters (sndbuf and wmem_alloc) used 6635 * in this place. We assume that we don't need locks either until proven 6636 * otherwise. 6637 * 6638 * Another thing to note is that we include the Async I/O support 6639 * here, again, by modeling the current TCP/UDP code. We don't have 6640 * a good way to test with it yet. 6641 */ 6642 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6643 { 6644 struct sock *sk = sock->sk; 6645 struct sctp_sock *sp = sctp_sk(sk); 6646 unsigned int mask; 6647 6648 poll_wait(file, sk_sleep(sk), wait); 6649 6650 sock_rps_record_flow(sk); 6651 6652 /* A TCP-style listening socket becomes readable when the accept queue 6653 * is not empty. 6654 */ 6655 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6656 return (!list_empty(&sp->ep->asocs)) ? 6657 (POLLIN | POLLRDNORM) : 0; 6658 6659 mask = 0; 6660 6661 /* Is there any exceptional events? */ 6662 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6663 mask |= POLLERR | 6664 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6665 if (sk->sk_shutdown & RCV_SHUTDOWN) 6666 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6667 if (sk->sk_shutdown == SHUTDOWN_MASK) 6668 mask |= POLLHUP; 6669 6670 /* Is it readable? Reconsider this code with TCP-style support. */ 6671 if (!skb_queue_empty(&sk->sk_receive_queue)) 6672 mask |= POLLIN | POLLRDNORM; 6673 6674 /* The association is either gone or not ready. */ 6675 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6676 return mask; 6677 6678 /* Is it writable? */ 6679 if (sctp_writeable(sk)) { 6680 mask |= POLLOUT | POLLWRNORM; 6681 } else { 6682 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 6683 /* 6684 * Since the socket is not locked, the buffer 6685 * might be made available after the writeable check and 6686 * before the bit is set. This could cause a lost I/O 6687 * signal. tcp_poll() has a race breaker for this race 6688 * condition. Based on their implementation, we put 6689 * in the following code to cover it as well. 6690 */ 6691 if (sctp_writeable(sk)) 6692 mask |= POLLOUT | POLLWRNORM; 6693 } 6694 return mask; 6695 } 6696 6697 /******************************************************************** 6698 * 2nd Level Abstractions 6699 ********************************************************************/ 6700 6701 static struct sctp_bind_bucket *sctp_bucket_create( 6702 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6703 { 6704 struct sctp_bind_bucket *pp; 6705 6706 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6707 if (pp) { 6708 SCTP_DBG_OBJCNT_INC(bind_bucket); 6709 pp->port = snum; 6710 pp->fastreuse = 0; 6711 INIT_HLIST_HEAD(&pp->owner); 6712 pp->net = net; 6713 hlist_add_head(&pp->node, &head->chain); 6714 } 6715 return pp; 6716 } 6717 6718 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6719 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6720 { 6721 if (pp && hlist_empty(&pp->owner)) { 6722 __hlist_del(&pp->node); 6723 kmem_cache_free(sctp_bucket_cachep, pp); 6724 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6725 } 6726 } 6727 6728 /* Release this socket's reference to a local port. */ 6729 static inline void __sctp_put_port(struct sock *sk) 6730 { 6731 struct sctp_bind_hashbucket *head = 6732 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6733 inet_sk(sk)->inet_num)]; 6734 struct sctp_bind_bucket *pp; 6735 6736 spin_lock(&head->lock); 6737 pp = sctp_sk(sk)->bind_hash; 6738 __sk_del_bind_node(sk); 6739 sctp_sk(sk)->bind_hash = NULL; 6740 inet_sk(sk)->inet_num = 0; 6741 sctp_bucket_destroy(pp); 6742 spin_unlock(&head->lock); 6743 } 6744 6745 void sctp_put_port(struct sock *sk) 6746 { 6747 local_bh_disable(); 6748 __sctp_put_port(sk); 6749 local_bh_enable(); 6750 } 6751 6752 /* 6753 * The system picks an ephemeral port and choose an address set equivalent 6754 * to binding with a wildcard address. 6755 * One of those addresses will be the primary address for the association. 6756 * This automatically enables the multihoming capability of SCTP. 6757 */ 6758 static int sctp_autobind(struct sock *sk) 6759 { 6760 union sctp_addr autoaddr; 6761 struct sctp_af *af; 6762 __be16 port; 6763 6764 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6765 af = sctp_sk(sk)->pf->af; 6766 6767 port = htons(inet_sk(sk)->inet_num); 6768 af->inaddr_any(&autoaddr, port); 6769 6770 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6771 } 6772 6773 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6774 * 6775 * From RFC 2292 6776 * 4.2 The cmsghdr Structure * 6777 * 6778 * When ancillary data is sent or received, any number of ancillary data 6779 * objects can be specified by the msg_control and msg_controllen members of 6780 * the msghdr structure, because each object is preceded by 6781 * a cmsghdr structure defining the object's length (the cmsg_len member). 6782 * Historically Berkeley-derived implementations have passed only one object 6783 * at a time, but this API allows multiple objects to be 6784 * passed in a single call to sendmsg() or recvmsg(). The following example 6785 * shows two ancillary data objects in a control buffer. 6786 * 6787 * |<--------------------------- msg_controllen -------------------------->| 6788 * | | 6789 * 6790 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6791 * 6792 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6793 * | | | 6794 * 6795 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6796 * 6797 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6798 * | | | | | 6799 * 6800 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6801 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6802 * 6803 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6804 * 6805 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6806 * ^ 6807 * | 6808 * 6809 * msg_control 6810 * points here 6811 */ 6812 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6813 { 6814 struct cmsghdr *cmsg; 6815 struct msghdr *my_msg = (struct msghdr *)msg; 6816 6817 for_each_cmsghdr(cmsg, my_msg) { 6818 if (!CMSG_OK(my_msg, cmsg)) 6819 return -EINVAL; 6820 6821 /* Should we parse this header or ignore? */ 6822 if (cmsg->cmsg_level != IPPROTO_SCTP) 6823 continue; 6824 6825 /* Strictly check lengths following example in SCM code. */ 6826 switch (cmsg->cmsg_type) { 6827 case SCTP_INIT: 6828 /* SCTP Socket API Extension 6829 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 6830 * 6831 * This cmsghdr structure provides information for 6832 * initializing new SCTP associations with sendmsg(). 6833 * The SCTP_INITMSG socket option uses this same data 6834 * structure. This structure is not used for 6835 * recvmsg(). 6836 * 6837 * cmsg_level cmsg_type cmsg_data[] 6838 * ------------ ------------ ---------------------- 6839 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6840 */ 6841 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 6842 return -EINVAL; 6843 6844 cmsgs->init = CMSG_DATA(cmsg); 6845 break; 6846 6847 case SCTP_SNDRCV: 6848 /* SCTP Socket API Extension 6849 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 6850 * 6851 * This cmsghdr structure specifies SCTP options for 6852 * sendmsg() and describes SCTP header information 6853 * about a received message through recvmsg(). 6854 * 6855 * cmsg_level cmsg_type cmsg_data[] 6856 * ------------ ------------ ---------------------- 6857 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6858 */ 6859 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6860 return -EINVAL; 6861 6862 cmsgs->srinfo = CMSG_DATA(cmsg); 6863 6864 if (cmsgs->srinfo->sinfo_flags & 6865 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6866 SCTP_SACK_IMMEDIATELY | 6867 SCTP_ABORT | SCTP_EOF)) 6868 return -EINVAL; 6869 break; 6870 6871 case SCTP_SNDINFO: 6872 /* SCTP Socket API Extension 6873 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 6874 * 6875 * This cmsghdr structure specifies SCTP options for 6876 * sendmsg(). This structure and SCTP_RCVINFO replaces 6877 * SCTP_SNDRCV which has been deprecated. 6878 * 6879 * cmsg_level cmsg_type cmsg_data[] 6880 * ------------ ------------ --------------------- 6881 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 6882 */ 6883 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 6884 return -EINVAL; 6885 6886 cmsgs->sinfo = CMSG_DATA(cmsg); 6887 6888 if (cmsgs->sinfo->snd_flags & 6889 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6890 SCTP_SACK_IMMEDIATELY | 6891 SCTP_ABORT | SCTP_EOF)) 6892 return -EINVAL; 6893 break; 6894 default: 6895 return -EINVAL; 6896 } 6897 } 6898 6899 return 0; 6900 } 6901 6902 /* 6903 * Wait for a packet.. 6904 * Note: This function is the same function as in core/datagram.c 6905 * with a few modifications to make lksctp work. 6906 */ 6907 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 6908 { 6909 int error; 6910 DEFINE_WAIT(wait); 6911 6912 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6913 6914 /* Socket errors? */ 6915 error = sock_error(sk); 6916 if (error) 6917 goto out; 6918 6919 if (!skb_queue_empty(&sk->sk_receive_queue)) 6920 goto ready; 6921 6922 /* Socket shut down? */ 6923 if (sk->sk_shutdown & RCV_SHUTDOWN) 6924 goto out; 6925 6926 /* Sequenced packets can come disconnected. If so we report the 6927 * problem. 6928 */ 6929 error = -ENOTCONN; 6930 6931 /* Is there a good reason to think that we may receive some data? */ 6932 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6933 goto out; 6934 6935 /* Handle signals. */ 6936 if (signal_pending(current)) 6937 goto interrupted; 6938 6939 /* Let another process have a go. Since we are going to sleep 6940 * anyway. Note: This may cause odd behaviors if the message 6941 * does not fit in the user's buffer, but this seems to be the 6942 * only way to honor MSG_DONTWAIT realistically. 6943 */ 6944 release_sock(sk); 6945 *timeo_p = schedule_timeout(*timeo_p); 6946 lock_sock(sk); 6947 6948 ready: 6949 finish_wait(sk_sleep(sk), &wait); 6950 return 0; 6951 6952 interrupted: 6953 error = sock_intr_errno(*timeo_p); 6954 6955 out: 6956 finish_wait(sk_sleep(sk), &wait); 6957 *err = error; 6958 return error; 6959 } 6960 6961 /* Receive a datagram. 6962 * Note: This is pretty much the same routine as in core/datagram.c 6963 * with a few changes to make lksctp work. 6964 */ 6965 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6966 int noblock, int *err) 6967 { 6968 int error; 6969 struct sk_buff *skb; 6970 long timeo; 6971 6972 timeo = sock_rcvtimeo(sk, noblock); 6973 6974 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6975 MAX_SCHEDULE_TIMEOUT); 6976 6977 do { 6978 /* Again only user level code calls this function, 6979 * so nothing interrupt level 6980 * will suddenly eat the receive_queue. 6981 * 6982 * Look at current nfs client by the way... 6983 * However, this function was correct in any case. 8) 6984 */ 6985 if (flags & MSG_PEEK) { 6986 skb = skb_peek(&sk->sk_receive_queue); 6987 if (skb) 6988 atomic_inc(&skb->users); 6989 } else { 6990 skb = __skb_dequeue(&sk->sk_receive_queue); 6991 } 6992 6993 if (skb) 6994 return skb; 6995 6996 /* Caller is allowed not to check sk->sk_err before calling. */ 6997 error = sock_error(sk); 6998 if (error) 6999 goto no_packet; 7000 7001 if (sk->sk_shutdown & RCV_SHUTDOWN) 7002 break; 7003 7004 if (sk_can_busy_loop(sk) && 7005 sk_busy_loop(sk, noblock)) 7006 continue; 7007 7008 /* User doesn't want to wait. */ 7009 error = -EAGAIN; 7010 if (!timeo) 7011 goto no_packet; 7012 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7013 7014 return NULL; 7015 7016 no_packet: 7017 *err = error; 7018 return NULL; 7019 } 7020 7021 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7022 static void __sctp_write_space(struct sctp_association *asoc) 7023 { 7024 struct sock *sk = asoc->base.sk; 7025 7026 if (sctp_wspace(asoc) <= 0) 7027 return; 7028 7029 if (waitqueue_active(&asoc->wait)) 7030 wake_up_interruptible(&asoc->wait); 7031 7032 if (sctp_writeable(sk)) { 7033 struct socket_wq *wq; 7034 7035 rcu_read_lock(); 7036 wq = rcu_dereference(sk->sk_wq); 7037 if (wq) { 7038 if (waitqueue_active(&wq->wait)) 7039 wake_up_interruptible(&wq->wait); 7040 7041 /* Note that we try to include the Async I/O support 7042 * here by modeling from the current TCP/UDP code. 7043 * We have not tested with it yet. 7044 */ 7045 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7046 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7047 } 7048 rcu_read_unlock(); 7049 } 7050 } 7051 7052 static void sctp_wake_up_waiters(struct sock *sk, 7053 struct sctp_association *asoc) 7054 { 7055 struct sctp_association *tmp = asoc; 7056 7057 /* We do accounting for the sndbuf space per association, 7058 * so we only need to wake our own association. 7059 */ 7060 if (asoc->ep->sndbuf_policy) 7061 return __sctp_write_space(asoc); 7062 7063 /* If association goes down and is just flushing its 7064 * outq, then just normally notify others. 7065 */ 7066 if (asoc->base.dead) 7067 return sctp_write_space(sk); 7068 7069 /* Accounting for the sndbuf space is per socket, so we 7070 * need to wake up others, try to be fair and in case of 7071 * other associations, let them have a go first instead 7072 * of just doing a sctp_write_space() call. 7073 * 7074 * Note that we reach sctp_wake_up_waiters() only when 7075 * associations free up queued chunks, thus we are under 7076 * lock and the list of associations on a socket is 7077 * guaranteed not to change. 7078 */ 7079 for (tmp = list_next_entry(tmp, asocs); 1; 7080 tmp = list_next_entry(tmp, asocs)) { 7081 /* Manually skip the head element. */ 7082 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7083 continue; 7084 /* Wake up association. */ 7085 __sctp_write_space(tmp); 7086 /* We've reached the end. */ 7087 if (tmp == asoc) 7088 break; 7089 } 7090 } 7091 7092 /* Do accounting for the sndbuf space. 7093 * Decrement the used sndbuf space of the corresponding association by the 7094 * data size which was just transmitted(freed). 7095 */ 7096 static void sctp_wfree(struct sk_buff *skb) 7097 { 7098 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7099 struct sctp_association *asoc = chunk->asoc; 7100 struct sock *sk = asoc->base.sk; 7101 7102 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7103 sizeof(struct sk_buff) + 7104 sizeof(struct sctp_chunk); 7105 7106 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 7107 7108 /* 7109 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7110 */ 7111 sk->sk_wmem_queued -= skb->truesize; 7112 sk_mem_uncharge(sk, skb->truesize); 7113 7114 sock_wfree(skb); 7115 sctp_wake_up_waiters(sk, asoc); 7116 7117 sctp_association_put(asoc); 7118 } 7119 7120 /* Do accounting for the receive space on the socket. 7121 * Accounting for the association is done in ulpevent.c 7122 * We set this as a destructor for the cloned data skbs so that 7123 * accounting is done at the correct time. 7124 */ 7125 void sctp_sock_rfree(struct sk_buff *skb) 7126 { 7127 struct sock *sk = skb->sk; 7128 struct sctp_ulpevent *event = sctp_skb2event(skb); 7129 7130 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7131 7132 /* 7133 * Mimic the behavior of sock_rfree 7134 */ 7135 sk_mem_uncharge(sk, event->rmem_len); 7136 } 7137 7138 7139 /* Helper function to wait for space in the sndbuf. */ 7140 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7141 size_t msg_len) 7142 { 7143 struct sock *sk = asoc->base.sk; 7144 int err = 0; 7145 long current_timeo = *timeo_p; 7146 DEFINE_WAIT(wait); 7147 7148 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7149 *timeo_p, msg_len); 7150 7151 /* Increment the association's refcnt. */ 7152 sctp_association_hold(asoc); 7153 7154 /* Wait on the association specific sndbuf space. */ 7155 for (;;) { 7156 prepare_to_wait_exclusive(&asoc->wait, &wait, 7157 TASK_INTERRUPTIBLE); 7158 if (!*timeo_p) 7159 goto do_nonblock; 7160 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7161 asoc->base.dead) 7162 goto do_error; 7163 if (signal_pending(current)) 7164 goto do_interrupted; 7165 if (msg_len <= sctp_wspace(asoc)) 7166 break; 7167 7168 /* Let another process have a go. Since we are going 7169 * to sleep anyway. 7170 */ 7171 release_sock(sk); 7172 current_timeo = schedule_timeout(current_timeo); 7173 BUG_ON(sk != asoc->base.sk); 7174 lock_sock(sk); 7175 7176 *timeo_p = current_timeo; 7177 } 7178 7179 out: 7180 finish_wait(&asoc->wait, &wait); 7181 7182 /* Release the association's refcnt. */ 7183 sctp_association_put(asoc); 7184 7185 return err; 7186 7187 do_error: 7188 err = -EPIPE; 7189 goto out; 7190 7191 do_interrupted: 7192 err = sock_intr_errno(*timeo_p); 7193 goto out; 7194 7195 do_nonblock: 7196 err = -EAGAIN; 7197 goto out; 7198 } 7199 7200 void sctp_data_ready(struct sock *sk) 7201 { 7202 struct socket_wq *wq; 7203 7204 rcu_read_lock(); 7205 wq = rcu_dereference(sk->sk_wq); 7206 if (skwq_has_sleeper(wq)) 7207 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7208 POLLRDNORM | POLLRDBAND); 7209 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7210 rcu_read_unlock(); 7211 } 7212 7213 /* If socket sndbuf has changed, wake up all per association waiters. */ 7214 void sctp_write_space(struct sock *sk) 7215 { 7216 struct sctp_association *asoc; 7217 7218 /* Wake up the tasks in each wait queue. */ 7219 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7220 __sctp_write_space(asoc); 7221 } 7222 } 7223 7224 /* Is there any sndbuf space available on the socket? 7225 * 7226 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7227 * associations on the same socket. For a UDP-style socket with 7228 * multiple associations, it is possible for it to be "unwriteable" 7229 * prematurely. I assume that this is acceptable because 7230 * a premature "unwriteable" is better than an accidental "writeable" which 7231 * would cause an unwanted block under certain circumstances. For the 1-1 7232 * UDP-style sockets or TCP-style sockets, this code should work. 7233 * - Daisy 7234 */ 7235 static int sctp_writeable(struct sock *sk) 7236 { 7237 int amt = 0; 7238 7239 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7240 if (amt < 0) 7241 amt = 0; 7242 return amt; 7243 } 7244 7245 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7246 * returns immediately with EINPROGRESS. 7247 */ 7248 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7249 { 7250 struct sock *sk = asoc->base.sk; 7251 int err = 0; 7252 long current_timeo = *timeo_p; 7253 DEFINE_WAIT(wait); 7254 7255 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7256 7257 /* Increment the association's refcnt. */ 7258 sctp_association_hold(asoc); 7259 7260 for (;;) { 7261 prepare_to_wait_exclusive(&asoc->wait, &wait, 7262 TASK_INTERRUPTIBLE); 7263 if (!*timeo_p) 7264 goto do_nonblock; 7265 if (sk->sk_shutdown & RCV_SHUTDOWN) 7266 break; 7267 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7268 asoc->base.dead) 7269 goto do_error; 7270 if (signal_pending(current)) 7271 goto do_interrupted; 7272 7273 if (sctp_state(asoc, ESTABLISHED)) 7274 break; 7275 7276 /* Let another process have a go. Since we are going 7277 * to sleep anyway. 7278 */ 7279 release_sock(sk); 7280 current_timeo = schedule_timeout(current_timeo); 7281 lock_sock(sk); 7282 7283 *timeo_p = current_timeo; 7284 } 7285 7286 out: 7287 finish_wait(&asoc->wait, &wait); 7288 7289 /* Release the association's refcnt. */ 7290 sctp_association_put(asoc); 7291 7292 return err; 7293 7294 do_error: 7295 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7296 err = -ETIMEDOUT; 7297 else 7298 err = -ECONNREFUSED; 7299 goto out; 7300 7301 do_interrupted: 7302 err = sock_intr_errno(*timeo_p); 7303 goto out; 7304 7305 do_nonblock: 7306 err = -EINPROGRESS; 7307 goto out; 7308 } 7309 7310 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7311 { 7312 struct sctp_endpoint *ep; 7313 int err = 0; 7314 DEFINE_WAIT(wait); 7315 7316 ep = sctp_sk(sk)->ep; 7317 7318 7319 for (;;) { 7320 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7321 TASK_INTERRUPTIBLE); 7322 7323 if (list_empty(&ep->asocs)) { 7324 release_sock(sk); 7325 timeo = schedule_timeout(timeo); 7326 lock_sock(sk); 7327 } 7328 7329 err = -EINVAL; 7330 if (!sctp_sstate(sk, LISTENING)) 7331 break; 7332 7333 err = 0; 7334 if (!list_empty(&ep->asocs)) 7335 break; 7336 7337 err = sock_intr_errno(timeo); 7338 if (signal_pending(current)) 7339 break; 7340 7341 err = -EAGAIN; 7342 if (!timeo) 7343 break; 7344 } 7345 7346 finish_wait(sk_sleep(sk), &wait); 7347 7348 return err; 7349 } 7350 7351 static void sctp_wait_for_close(struct sock *sk, long timeout) 7352 { 7353 DEFINE_WAIT(wait); 7354 7355 do { 7356 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7357 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7358 break; 7359 release_sock(sk); 7360 timeout = schedule_timeout(timeout); 7361 lock_sock(sk); 7362 } while (!signal_pending(current) && timeout); 7363 7364 finish_wait(sk_sleep(sk), &wait); 7365 } 7366 7367 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7368 { 7369 struct sk_buff *frag; 7370 7371 if (!skb->data_len) 7372 goto done; 7373 7374 /* Don't forget the fragments. */ 7375 skb_walk_frags(skb, frag) 7376 sctp_skb_set_owner_r_frag(frag, sk); 7377 7378 done: 7379 sctp_skb_set_owner_r(skb, sk); 7380 } 7381 7382 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7383 struct sctp_association *asoc) 7384 { 7385 struct inet_sock *inet = inet_sk(sk); 7386 struct inet_sock *newinet; 7387 7388 newsk->sk_type = sk->sk_type; 7389 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7390 newsk->sk_flags = sk->sk_flags; 7391 newsk->sk_tsflags = sk->sk_tsflags; 7392 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7393 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7394 newsk->sk_reuse = sk->sk_reuse; 7395 7396 newsk->sk_shutdown = sk->sk_shutdown; 7397 newsk->sk_destruct = sctp_destruct_sock; 7398 newsk->sk_family = sk->sk_family; 7399 newsk->sk_protocol = IPPROTO_SCTP; 7400 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7401 newsk->sk_sndbuf = sk->sk_sndbuf; 7402 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7403 newsk->sk_lingertime = sk->sk_lingertime; 7404 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7405 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7406 newsk->sk_rxhash = sk->sk_rxhash; 7407 7408 newinet = inet_sk(newsk); 7409 7410 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7411 * getsockname() and getpeername() 7412 */ 7413 newinet->inet_sport = inet->inet_sport; 7414 newinet->inet_saddr = inet->inet_saddr; 7415 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7416 newinet->inet_dport = htons(asoc->peer.port); 7417 newinet->pmtudisc = inet->pmtudisc; 7418 newinet->inet_id = asoc->next_tsn ^ jiffies; 7419 7420 newinet->uc_ttl = inet->uc_ttl; 7421 newinet->mc_loop = 1; 7422 newinet->mc_ttl = 1; 7423 newinet->mc_index = 0; 7424 newinet->mc_list = NULL; 7425 7426 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 7427 net_enable_timestamp(); 7428 7429 security_sk_clone(sk, newsk); 7430 } 7431 7432 static inline void sctp_copy_descendant(struct sock *sk_to, 7433 const struct sock *sk_from) 7434 { 7435 int ancestor_size = sizeof(struct inet_sock) + 7436 sizeof(struct sctp_sock) - 7437 offsetof(struct sctp_sock, auto_asconf_list); 7438 7439 if (sk_from->sk_family == PF_INET6) 7440 ancestor_size += sizeof(struct ipv6_pinfo); 7441 7442 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7443 } 7444 7445 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7446 * and its messages to the newsk. 7447 */ 7448 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7449 struct sctp_association *assoc, 7450 sctp_socket_type_t type) 7451 { 7452 struct sctp_sock *oldsp = sctp_sk(oldsk); 7453 struct sctp_sock *newsp = sctp_sk(newsk); 7454 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7455 struct sctp_endpoint *newep = newsp->ep; 7456 struct sk_buff *skb, *tmp; 7457 struct sctp_ulpevent *event; 7458 struct sctp_bind_hashbucket *head; 7459 7460 /* Migrate socket buffer sizes and all the socket level options to the 7461 * new socket. 7462 */ 7463 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7464 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7465 /* Brute force copy old sctp opt. */ 7466 sctp_copy_descendant(newsk, oldsk); 7467 7468 /* Restore the ep value that was overwritten with the above structure 7469 * copy. 7470 */ 7471 newsp->ep = newep; 7472 newsp->hmac = NULL; 7473 7474 /* Hook this new socket in to the bind_hash list. */ 7475 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7476 inet_sk(oldsk)->inet_num)]; 7477 spin_lock_bh(&head->lock); 7478 pp = sctp_sk(oldsk)->bind_hash; 7479 sk_add_bind_node(newsk, &pp->owner); 7480 sctp_sk(newsk)->bind_hash = pp; 7481 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7482 spin_unlock_bh(&head->lock); 7483 7484 /* Copy the bind_addr list from the original endpoint to the new 7485 * endpoint so that we can handle restarts properly 7486 */ 7487 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7488 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7489 7490 /* Move any messages in the old socket's receive queue that are for the 7491 * peeled off association to the new socket's receive queue. 7492 */ 7493 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7494 event = sctp_skb2event(skb); 7495 if (event->asoc == assoc) { 7496 __skb_unlink(skb, &oldsk->sk_receive_queue); 7497 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7498 sctp_skb_set_owner_r_frag(skb, newsk); 7499 } 7500 } 7501 7502 /* Clean up any messages pending delivery due to partial 7503 * delivery. Three cases: 7504 * 1) No partial deliver; no work. 7505 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7506 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7507 */ 7508 skb_queue_head_init(&newsp->pd_lobby); 7509 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7510 7511 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7512 struct sk_buff_head *queue; 7513 7514 /* Decide which queue to move pd_lobby skbs to. */ 7515 if (assoc->ulpq.pd_mode) { 7516 queue = &newsp->pd_lobby; 7517 } else 7518 queue = &newsk->sk_receive_queue; 7519 7520 /* Walk through the pd_lobby, looking for skbs that 7521 * need moved to the new socket. 7522 */ 7523 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7524 event = sctp_skb2event(skb); 7525 if (event->asoc == assoc) { 7526 __skb_unlink(skb, &oldsp->pd_lobby); 7527 __skb_queue_tail(queue, skb); 7528 sctp_skb_set_owner_r_frag(skb, newsk); 7529 } 7530 } 7531 7532 /* Clear up any skbs waiting for the partial 7533 * delivery to finish. 7534 */ 7535 if (assoc->ulpq.pd_mode) 7536 sctp_clear_pd(oldsk, NULL); 7537 7538 } 7539 7540 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7541 sctp_skb_set_owner_r_frag(skb, newsk); 7542 7543 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7544 sctp_skb_set_owner_r_frag(skb, newsk); 7545 7546 /* Set the type of socket to indicate that it is peeled off from the 7547 * original UDP-style socket or created with the accept() call on a 7548 * TCP-style socket.. 7549 */ 7550 newsp->type = type; 7551 7552 /* Mark the new socket "in-use" by the user so that any packets 7553 * that may arrive on the association after we've moved it are 7554 * queued to the backlog. This prevents a potential race between 7555 * backlog processing on the old socket and new-packet processing 7556 * on the new socket. 7557 * 7558 * The caller has just allocated newsk so we can guarantee that other 7559 * paths won't try to lock it and then oldsk. 7560 */ 7561 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7562 sctp_assoc_migrate(assoc, newsk); 7563 7564 /* If the association on the newsk is already closed before accept() 7565 * is called, set RCV_SHUTDOWN flag. 7566 */ 7567 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7568 newsk->sk_shutdown |= RCV_SHUTDOWN; 7569 7570 newsk->sk_state = SCTP_SS_ESTABLISHED; 7571 release_sock(newsk); 7572 } 7573 7574 7575 /* This proto struct describes the ULP interface for SCTP. */ 7576 struct proto sctp_prot = { 7577 .name = "SCTP", 7578 .owner = THIS_MODULE, 7579 .close = sctp_close, 7580 .connect = sctp_connect, 7581 .disconnect = sctp_disconnect, 7582 .accept = sctp_accept, 7583 .ioctl = sctp_ioctl, 7584 .init = sctp_init_sock, 7585 .destroy = sctp_destroy_sock, 7586 .shutdown = sctp_shutdown, 7587 .setsockopt = sctp_setsockopt, 7588 .getsockopt = sctp_getsockopt, 7589 .sendmsg = sctp_sendmsg, 7590 .recvmsg = sctp_recvmsg, 7591 .bind = sctp_bind, 7592 .backlog_rcv = sctp_backlog_rcv, 7593 .hash = sctp_hash, 7594 .unhash = sctp_unhash, 7595 .get_port = sctp_get_port, 7596 .obj_size = sizeof(struct sctp_sock), 7597 .sysctl_mem = sysctl_sctp_mem, 7598 .sysctl_rmem = sysctl_sctp_rmem, 7599 .sysctl_wmem = sysctl_sctp_wmem, 7600 .memory_pressure = &sctp_memory_pressure, 7601 .enter_memory_pressure = sctp_enter_memory_pressure, 7602 .memory_allocated = &sctp_memory_allocated, 7603 .sockets_allocated = &sctp_sockets_allocated, 7604 }; 7605 7606 #if IS_ENABLED(CONFIG_IPV6) 7607 7608 #include <net/transp_v6.h> 7609 static void sctp_v6_destroy_sock(struct sock *sk) 7610 { 7611 sctp_destroy_sock(sk); 7612 inet6_destroy_sock(sk); 7613 } 7614 7615 struct proto sctpv6_prot = { 7616 .name = "SCTPv6", 7617 .owner = THIS_MODULE, 7618 .close = sctp_close, 7619 .connect = sctp_connect, 7620 .disconnect = sctp_disconnect, 7621 .accept = sctp_accept, 7622 .ioctl = sctp_ioctl, 7623 .init = sctp_init_sock, 7624 .destroy = sctp_v6_destroy_sock, 7625 .shutdown = sctp_shutdown, 7626 .setsockopt = sctp_setsockopt, 7627 .getsockopt = sctp_getsockopt, 7628 .sendmsg = sctp_sendmsg, 7629 .recvmsg = sctp_recvmsg, 7630 .bind = sctp_bind, 7631 .backlog_rcv = sctp_backlog_rcv, 7632 .hash = sctp_hash, 7633 .unhash = sctp_unhash, 7634 .get_port = sctp_get_port, 7635 .obj_size = sizeof(struct sctp6_sock), 7636 .sysctl_mem = sysctl_sctp_mem, 7637 .sysctl_rmem = sysctl_sctp_rmem, 7638 .sysctl_wmem = sysctl_sctp_wmem, 7639 .memory_pressure = &sctp_memory_pressure, 7640 .enter_memory_pressure = sctp_enter_memory_pressure, 7641 .memory_allocated = &sctp_memory_allocated, 7642 .sockets_allocated = &sctp_sockets_allocated, 7643 }; 7644 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7645