1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 151 void (*cb)(struct sctp_chunk *)) 152 153 { 154 struct sctp_outq *q = &asoc->outqueue; 155 struct sctp_transport *t; 156 struct sctp_chunk *chunk; 157 158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 159 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 160 cb(chunk); 161 162 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 163 cb(chunk); 164 165 list_for_each_entry(chunk, &q->sacked, transmitted_list) 166 cb(chunk); 167 168 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 169 cb(chunk); 170 171 list_for_each_entry(chunk, &q->out_chunk_list, list) 172 cb(chunk); 173 } 174 175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 176 void (*cb)(struct sk_buff *, struct sock *)) 177 178 { 179 struct sk_buff *skb, *tmp; 180 181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 182 cb(skb, sk); 183 184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 185 cb(skb, sk); 186 187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 188 cb(skb, sk); 189 } 190 191 /* Verify that this is a valid address. */ 192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 193 int len) 194 { 195 struct sctp_af *af; 196 197 /* Verify basic sockaddr. */ 198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 199 if (!af) 200 return -EINVAL; 201 202 /* Is this a valid SCTP address? */ 203 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 204 return -EINVAL; 205 206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* Look up the association by its id. If this is not a UDP-style 213 * socket, the ID field is always ignored. 214 */ 215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 216 { 217 struct sctp_association *asoc = NULL; 218 219 /* If this is not a UDP-style socket, assoc id should be ignored. */ 220 if (!sctp_style(sk, UDP)) { 221 /* Return NULL if the socket state is not ESTABLISHED. It 222 * could be a TCP-style listening socket or a socket which 223 * hasn't yet called connect() to establish an association. 224 */ 225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 226 return NULL; 227 228 /* Get the first and the only association from the list. */ 229 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 231 struct sctp_association, asocs); 232 return asoc; 233 } 234 235 /* Otherwise this is a UDP-style socket. */ 236 if (id <= SCTP_ALL_ASSOC) 237 return NULL; 238 239 spin_lock_bh(&sctp_assocs_id_lock); 240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 241 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 242 asoc = NULL; 243 spin_unlock_bh(&sctp_assocs_id_lock); 244 245 return asoc; 246 } 247 248 /* Look up the transport from an address and an assoc id. If both address and 249 * id are specified, the associations matching the address and the id should be 250 * the same. 251 */ 252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 253 struct sockaddr_storage *addr, 254 sctp_assoc_t id) 255 { 256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 258 union sctp_addr *laddr = (union sctp_addr *)addr; 259 struct sctp_transport *transport; 260 261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 262 return NULL; 263 264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 265 laddr, 266 &transport); 267 268 if (!addr_asoc) 269 return NULL; 270 271 id_asoc = sctp_id2assoc(sk, id); 272 if (id_asoc && (id_asoc != addr_asoc)) 273 return NULL; 274 275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 276 (union sctp_addr *)addr); 277 278 return transport; 279 } 280 281 /* API 3.1.2 bind() - UDP Style Syntax 282 * The syntax of bind() is, 283 * 284 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 285 * 286 * sd - the socket descriptor returned by socket(). 287 * addr - the address structure (struct sockaddr_in or struct 288 * sockaddr_in6 [RFC 2553]), 289 * addr_len - the size of the address structure. 290 */ 291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 292 { 293 int retval = 0; 294 295 lock_sock(sk); 296 297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 298 addr, addr_len); 299 300 /* Disallow binding twice. */ 301 if (!sctp_sk(sk)->ep->base.bind_addr.port) 302 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 303 addr_len); 304 else 305 retval = -EINVAL; 306 307 release_sock(sk); 308 309 return retval; 310 } 311 312 static int sctp_get_port_local(struct sock *, union sctp_addr *); 313 314 /* Verify this is a valid sockaddr. */ 315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 316 union sctp_addr *addr, int len) 317 { 318 struct sctp_af *af; 319 320 /* Check minimum size. */ 321 if (len < sizeof (struct sockaddr)) 322 return NULL; 323 324 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 325 return NULL; 326 327 if (addr->sa.sa_family == AF_INET6) { 328 if (len < SIN6_LEN_RFC2133) 329 return NULL; 330 /* V4 mapped address are really of AF_INET family */ 331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 332 !opt->pf->af_supported(AF_INET, opt)) 333 return NULL; 334 } 335 336 /* If we get this far, af is valid. */ 337 af = sctp_get_af_specific(addr->sa.sa_family); 338 339 if (len < af->sockaddr_len) 340 return NULL; 341 342 return af; 343 } 344 345 /* Bind a local address either to an endpoint or to an association. */ 346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 347 { 348 struct net *net = sock_net(sk); 349 struct sctp_sock *sp = sctp_sk(sk); 350 struct sctp_endpoint *ep = sp->ep; 351 struct sctp_bind_addr *bp = &ep->base.bind_addr; 352 struct sctp_af *af; 353 unsigned short snum; 354 int ret = 0; 355 356 /* Common sockaddr verification. */ 357 af = sctp_sockaddr_af(sp, addr, len); 358 if (!af) { 359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 360 __func__, sk, addr, len); 361 return -EINVAL; 362 } 363 364 snum = ntohs(addr->v4.sin_port); 365 366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 367 __func__, sk, &addr->sa, bp->port, snum, len); 368 369 /* PF specific bind() address verification. */ 370 if (!sp->pf->bind_verify(sp, addr)) 371 return -EADDRNOTAVAIL; 372 373 /* We must either be unbound, or bind to the same port. 374 * It's OK to allow 0 ports if we are already bound. 375 * We'll just inhert an already bound port in this case 376 */ 377 if (bp->port) { 378 if (!snum) 379 snum = bp->port; 380 else if (snum != bp->port) { 381 pr_debug("%s: new port %d doesn't match existing port " 382 "%d\n", __func__, snum, bp->port); 383 return -EINVAL; 384 } 385 } 386 387 if (snum && snum < inet_prot_sock(net) && 388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 389 return -EACCES; 390 391 /* See if the address matches any of the addresses we may have 392 * already bound before checking against other endpoints. 393 */ 394 if (sctp_bind_addr_match(bp, addr, sp)) 395 return -EINVAL; 396 397 /* Make sure we are allowed to bind here. 398 * The function sctp_get_port_local() does duplicate address 399 * detection. 400 */ 401 addr->v4.sin_port = htons(snum); 402 if (sctp_get_port_local(sk, addr)) 403 return -EADDRINUSE; 404 405 /* Refresh ephemeral port. */ 406 if (!bp->port) 407 bp->port = inet_sk(sk)->inet_num; 408 409 /* Add the address to the bind address list. 410 * Use GFP_ATOMIC since BHs will be disabled. 411 */ 412 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 413 SCTP_ADDR_SRC, GFP_ATOMIC); 414 415 if (ret) { 416 sctp_put_port(sk); 417 return ret; 418 } 419 /* Copy back into socket for getsockname() use. */ 420 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 421 sp->pf->to_sk_saddr(addr, sk); 422 423 return ret; 424 } 425 426 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 427 * 428 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 429 * at any one time. If a sender, after sending an ASCONF chunk, decides 430 * it needs to transfer another ASCONF Chunk, it MUST wait until the 431 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 432 * subsequent ASCONF. Note this restriction binds each side, so at any 433 * time two ASCONF may be in-transit on any given association (one sent 434 * from each endpoint). 435 */ 436 static int sctp_send_asconf(struct sctp_association *asoc, 437 struct sctp_chunk *chunk) 438 { 439 struct net *net = sock_net(asoc->base.sk); 440 int retval = 0; 441 442 /* If there is an outstanding ASCONF chunk, queue it for later 443 * transmission. 444 */ 445 if (asoc->addip_last_asconf) { 446 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 447 goto out; 448 } 449 450 /* Hold the chunk until an ASCONF_ACK is received. */ 451 sctp_chunk_hold(chunk); 452 retval = sctp_primitive_ASCONF(net, asoc, chunk); 453 if (retval) 454 sctp_chunk_free(chunk); 455 else 456 asoc->addip_last_asconf = chunk; 457 458 out: 459 return retval; 460 } 461 462 /* Add a list of addresses as bind addresses to local endpoint or 463 * association. 464 * 465 * Basically run through each address specified in the addrs/addrcnt 466 * array/length pair, determine if it is IPv6 or IPv4 and call 467 * sctp_do_bind() on it. 468 * 469 * If any of them fails, then the operation will be reversed and the 470 * ones that were added will be removed. 471 * 472 * Only sctp_setsockopt_bindx() is supposed to call this function. 473 */ 474 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 475 { 476 int cnt; 477 int retval = 0; 478 void *addr_buf; 479 struct sockaddr *sa_addr; 480 struct sctp_af *af; 481 482 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 483 addrs, addrcnt); 484 485 addr_buf = addrs; 486 for (cnt = 0; cnt < addrcnt; cnt++) { 487 /* The list may contain either IPv4 or IPv6 address; 488 * determine the address length for walking thru the list. 489 */ 490 sa_addr = addr_buf; 491 af = sctp_get_af_specific(sa_addr->sa_family); 492 if (!af) { 493 retval = -EINVAL; 494 goto err_bindx_add; 495 } 496 497 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 498 af->sockaddr_len); 499 500 addr_buf += af->sockaddr_len; 501 502 err_bindx_add: 503 if (retval < 0) { 504 /* Failed. Cleanup the ones that have been added */ 505 if (cnt > 0) 506 sctp_bindx_rem(sk, addrs, cnt); 507 return retval; 508 } 509 } 510 511 return retval; 512 } 513 514 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 515 * associations that are part of the endpoint indicating that a list of local 516 * addresses are added to the endpoint. 517 * 518 * If any of the addresses is already in the bind address list of the 519 * association, we do not send the chunk for that association. But it will not 520 * affect other associations. 521 * 522 * Only sctp_setsockopt_bindx() is supposed to call this function. 523 */ 524 static int sctp_send_asconf_add_ip(struct sock *sk, 525 struct sockaddr *addrs, 526 int addrcnt) 527 { 528 struct sctp_sock *sp; 529 struct sctp_endpoint *ep; 530 struct sctp_association *asoc; 531 struct sctp_bind_addr *bp; 532 struct sctp_chunk *chunk; 533 struct sctp_sockaddr_entry *laddr; 534 union sctp_addr *addr; 535 union sctp_addr saveaddr; 536 void *addr_buf; 537 struct sctp_af *af; 538 struct list_head *p; 539 int i; 540 int retval = 0; 541 542 sp = sctp_sk(sk); 543 ep = sp->ep; 544 545 if (!ep->asconf_enable) 546 return retval; 547 548 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 549 __func__, sk, addrs, addrcnt); 550 551 list_for_each_entry(asoc, &ep->asocs, asocs) { 552 if (!asoc->peer.asconf_capable) 553 continue; 554 555 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 556 continue; 557 558 if (!sctp_state(asoc, ESTABLISHED)) 559 continue; 560 561 /* Check if any address in the packed array of addresses is 562 * in the bind address list of the association. If so, 563 * do not send the asconf chunk to its peer, but continue with 564 * other associations. 565 */ 566 addr_buf = addrs; 567 for (i = 0; i < addrcnt; i++) { 568 addr = addr_buf; 569 af = sctp_get_af_specific(addr->v4.sin_family); 570 if (!af) { 571 retval = -EINVAL; 572 goto out; 573 } 574 575 if (sctp_assoc_lookup_laddr(asoc, addr)) 576 break; 577 578 addr_buf += af->sockaddr_len; 579 } 580 if (i < addrcnt) 581 continue; 582 583 /* Use the first valid address in bind addr list of 584 * association as Address Parameter of ASCONF CHUNK. 585 */ 586 bp = &asoc->base.bind_addr; 587 p = bp->address_list.next; 588 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 589 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 590 addrcnt, SCTP_PARAM_ADD_IP); 591 if (!chunk) { 592 retval = -ENOMEM; 593 goto out; 594 } 595 596 /* Add the new addresses to the bind address list with 597 * use_as_src set to 0. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 memcpy(&saveaddr, addr, af->sockaddr_len); 604 retval = sctp_add_bind_addr(bp, &saveaddr, 605 sizeof(saveaddr), 606 SCTP_ADDR_NEW, GFP_ATOMIC); 607 addr_buf += af->sockaddr_len; 608 } 609 if (asoc->src_out_of_asoc_ok) { 610 struct sctp_transport *trans; 611 612 list_for_each_entry(trans, 613 &asoc->peer.transport_addr_list, transports) { 614 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 615 2*asoc->pathmtu, 4380)); 616 trans->ssthresh = asoc->peer.i.a_rwnd; 617 trans->rto = asoc->rto_initial; 618 sctp_max_rto(asoc, trans); 619 trans->rtt = trans->srtt = trans->rttvar = 0; 620 /* Clear the source and route cache */ 621 sctp_transport_route(trans, NULL, 622 sctp_sk(asoc->base.sk)); 623 } 624 } 625 retval = sctp_send_asconf(asoc, chunk); 626 } 627 628 out: 629 return retval; 630 } 631 632 /* Remove a list of addresses from bind addresses list. Do not remove the 633 * last address. 634 * 635 * Basically run through each address specified in the addrs/addrcnt 636 * array/length pair, determine if it is IPv6 or IPv4 and call 637 * sctp_del_bind() on it. 638 * 639 * If any of them fails, then the operation will be reversed and the 640 * ones that were removed will be added back. 641 * 642 * At least one address has to be left; if only one address is 643 * available, the operation will return -EBUSY. 644 * 645 * Only sctp_setsockopt_bindx() is supposed to call this function. 646 */ 647 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 648 { 649 struct sctp_sock *sp = sctp_sk(sk); 650 struct sctp_endpoint *ep = sp->ep; 651 int cnt; 652 struct sctp_bind_addr *bp = &ep->base.bind_addr; 653 int retval = 0; 654 void *addr_buf; 655 union sctp_addr *sa_addr; 656 struct sctp_af *af; 657 658 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 659 __func__, sk, addrs, addrcnt); 660 661 addr_buf = addrs; 662 for (cnt = 0; cnt < addrcnt; cnt++) { 663 /* If the bind address list is empty or if there is only one 664 * bind address, there is nothing more to be removed (we need 665 * at least one address here). 666 */ 667 if (list_empty(&bp->address_list) || 668 (sctp_list_single_entry(&bp->address_list))) { 669 retval = -EBUSY; 670 goto err_bindx_rem; 671 } 672 673 sa_addr = addr_buf; 674 af = sctp_get_af_specific(sa_addr->sa.sa_family); 675 if (!af) { 676 retval = -EINVAL; 677 goto err_bindx_rem; 678 } 679 680 if (!af->addr_valid(sa_addr, sp, NULL)) { 681 retval = -EADDRNOTAVAIL; 682 goto err_bindx_rem; 683 } 684 685 if (sa_addr->v4.sin_port && 686 sa_addr->v4.sin_port != htons(bp->port)) { 687 retval = -EINVAL; 688 goto err_bindx_rem; 689 } 690 691 if (!sa_addr->v4.sin_port) 692 sa_addr->v4.sin_port = htons(bp->port); 693 694 /* FIXME - There is probably a need to check if sk->sk_saddr and 695 * sk->sk_rcv_addr are currently set to one of the addresses to 696 * be removed. This is something which needs to be looked into 697 * when we are fixing the outstanding issues with multi-homing 698 * socket routing and failover schemes. Refer to comments in 699 * sctp_do_bind(). -daisy 700 */ 701 retval = sctp_del_bind_addr(bp, sa_addr); 702 703 addr_buf += af->sockaddr_len; 704 err_bindx_rem: 705 if (retval < 0) { 706 /* Failed. Add the ones that has been removed back */ 707 if (cnt > 0) 708 sctp_bindx_add(sk, addrs, cnt); 709 return retval; 710 } 711 } 712 713 return retval; 714 } 715 716 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 717 * the associations that are part of the endpoint indicating that a list of 718 * local addresses are removed from the endpoint. 719 * 720 * If any of the addresses is already in the bind address list of the 721 * association, we do not send the chunk for that association. But it will not 722 * affect other associations. 723 * 724 * Only sctp_setsockopt_bindx() is supposed to call this function. 725 */ 726 static int sctp_send_asconf_del_ip(struct sock *sk, 727 struct sockaddr *addrs, 728 int addrcnt) 729 { 730 struct sctp_sock *sp; 731 struct sctp_endpoint *ep; 732 struct sctp_association *asoc; 733 struct sctp_transport *transport; 734 struct sctp_bind_addr *bp; 735 struct sctp_chunk *chunk; 736 union sctp_addr *laddr; 737 void *addr_buf; 738 struct sctp_af *af; 739 struct sctp_sockaddr_entry *saddr; 740 int i; 741 int retval = 0; 742 int stored = 0; 743 744 chunk = NULL; 745 sp = sctp_sk(sk); 746 ep = sp->ep; 747 748 if (!ep->asconf_enable) 749 return retval; 750 751 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 752 __func__, sk, addrs, addrcnt); 753 754 list_for_each_entry(asoc, &ep->asocs, asocs) { 755 756 if (!asoc->peer.asconf_capable) 757 continue; 758 759 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 760 continue; 761 762 if (!sctp_state(asoc, ESTABLISHED)) 763 continue; 764 765 /* Check if any address in the packed array of addresses is 766 * not present in the bind address list of the association. 767 * If so, do not send the asconf chunk to its peer, but 768 * continue with other associations. 769 */ 770 addr_buf = addrs; 771 for (i = 0; i < addrcnt; i++) { 772 laddr = addr_buf; 773 af = sctp_get_af_specific(laddr->v4.sin_family); 774 if (!af) { 775 retval = -EINVAL; 776 goto out; 777 } 778 779 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 780 break; 781 782 addr_buf += af->sockaddr_len; 783 } 784 if (i < addrcnt) 785 continue; 786 787 /* Find one address in the association's bind address list 788 * that is not in the packed array of addresses. This is to 789 * make sure that we do not delete all the addresses in the 790 * association. 791 */ 792 bp = &asoc->base.bind_addr; 793 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 794 addrcnt, sp); 795 if ((laddr == NULL) && (addrcnt == 1)) { 796 if (asoc->asconf_addr_del_pending) 797 continue; 798 asoc->asconf_addr_del_pending = 799 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 800 if (asoc->asconf_addr_del_pending == NULL) { 801 retval = -ENOMEM; 802 goto out; 803 } 804 asoc->asconf_addr_del_pending->sa.sa_family = 805 addrs->sa_family; 806 asoc->asconf_addr_del_pending->v4.sin_port = 807 htons(bp->port); 808 if (addrs->sa_family == AF_INET) { 809 struct sockaddr_in *sin; 810 811 sin = (struct sockaddr_in *)addrs; 812 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 813 } else if (addrs->sa_family == AF_INET6) { 814 struct sockaddr_in6 *sin6; 815 816 sin6 = (struct sockaddr_in6 *)addrs; 817 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 818 } 819 820 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 821 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 822 asoc->asconf_addr_del_pending); 823 824 asoc->src_out_of_asoc_ok = 1; 825 stored = 1; 826 goto skip_mkasconf; 827 } 828 829 if (laddr == NULL) 830 return -EINVAL; 831 832 /* We do not need RCU protection throughout this loop 833 * because this is done under a socket lock from the 834 * setsockopt call. 835 */ 836 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 837 SCTP_PARAM_DEL_IP); 838 if (!chunk) { 839 retval = -ENOMEM; 840 goto out; 841 } 842 843 skip_mkasconf: 844 /* Reset use_as_src flag for the addresses in the bind address 845 * list that are to be deleted. 846 */ 847 addr_buf = addrs; 848 for (i = 0; i < addrcnt; i++) { 849 laddr = addr_buf; 850 af = sctp_get_af_specific(laddr->v4.sin_family); 851 list_for_each_entry(saddr, &bp->address_list, list) { 852 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 853 saddr->state = SCTP_ADDR_DEL; 854 } 855 addr_buf += af->sockaddr_len; 856 } 857 858 /* Update the route and saddr entries for all the transports 859 * as some of the addresses in the bind address list are 860 * about to be deleted and cannot be used as source addresses. 861 */ 862 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 863 transports) { 864 sctp_transport_route(transport, NULL, 865 sctp_sk(asoc->base.sk)); 866 } 867 868 if (stored) 869 /* We don't need to transmit ASCONF */ 870 continue; 871 retval = sctp_send_asconf(asoc, chunk); 872 } 873 out: 874 return retval; 875 } 876 877 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 878 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 879 { 880 struct sock *sk = sctp_opt2sk(sp); 881 union sctp_addr *addr; 882 struct sctp_af *af; 883 884 /* It is safe to write port space in caller. */ 885 addr = &addrw->a; 886 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 887 af = sctp_get_af_specific(addr->sa.sa_family); 888 if (!af) 889 return -EINVAL; 890 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 891 return -EINVAL; 892 893 if (addrw->state == SCTP_ADDR_NEW) 894 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 895 else 896 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 897 } 898 899 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 900 * 901 * API 8.1 902 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 903 * int flags); 904 * 905 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 906 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 907 * or IPv6 addresses. 908 * 909 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 910 * Section 3.1.2 for this usage. 911 * 912 * addrs is a pointer to an array of one or more socket addresses. Each 913 * address is contained in its appropriate structure (i.e. struct 914 * sockaddr_in or struct sockaddr_in6) the family of the address type 915 * must be used to distinguish the address length (note that this 916 * representation is termed a "packed array" of addresses). The caller 917 * specifies the number of addresses in the array with addrcnt. 918 * 919 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 920 * -1, and sets errno to the appropriate error code. 921 * 922 * For SCTP, the port given in each socket address must be the same, or 923 * sctp_bindx() will fail, setting errno to EINVAL. 924 * 925 * The flags parameter is formed from the bitwise OR of zero or more of 926 * the following currently defined flags: 927 * 928 * SCTP_BINDX_ADD_ADDR 929 * 930 * SCTP_BINDX_REM_ADDR 931 * 932 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 933 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 934 * addresses from the association. The two flags are mutually exclusive; 935 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 936 * not remove all addresses from an association; sctp_bindx() will 937 * reject such an attempt with EINVAL. 938 * 939 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 940 * additional addresses with an endpoint after calling bind(). Or use 941 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 942 * socket is associated with so that no new association accepted will be 943 * associated with those addresses. If the endpoint supports dynamic 944 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 945 * endpoint to send the appropriate message to the peer to change the 946 * peers address lists. 947 * 948 * Adding and removing addresses from a connected association is 949 * optional functionality. Implementations that do not support this 950 * functionality should return EOPNOTSUPP. 951 * 952 * Basically do nothing but copying the addresses from user to kernel 953 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 954 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 955 * from userspace. 956 * 957 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 958 * it. 959 * 960 * sk The sk of the socket 961 * addrs The pointer to the addresses in user land 962 * addrssize Size of the addrs buffer 963 * op Operation to perform (add or remove, see the flags of 964 * sctp_bindx) 965 * 966 * Returns 0 if ok, <0 errno code on error. 967 */ 968 static int sctp_setsockopt_bindx(struct sock *sk, 969 struct sockaddr __user *addrs, 970 int addrs_size, int op) 971 { 972 struct sockaddr *kaddrs; 973 int err; 974 int addrcnt = 0; 975 int walk_size = 0; 976 struct sockaddr *sa_addr; 977 void *addr_buf; 978 struct sctp_af *af; 979 980 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 981 __func__, sk, addrs, addrs_size, op); 982 983 if (unlikely(addrs_size <= 0)) 984 return -EINVAL; 985 986 kaddrs = memdup_user(addrs, addrs_size); 987 if (IS_ERR(kaddrs)) 988 return PTR_ERR(kaddrs); 989 990 /* Walk through the addrs buffer and count the number of addresses. */ 991 addr_buf = kaddrs; 992 while (walk_size < addrs_size) { 993 if (walk_size + sizeof(sa_family_t) > addrs_size) { 994 kfree(kaddrs); 995 return -EINVAL; 996 } 997 998 sa_addr = addr_buf; 999 af = sctp_get_af_specific(sa_addr->sa_family); 1000 1001 /* If the address family is not supported or if this address 1002 * causes the address buffer to overflow return EINVAL. 1003 */ 1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1005 kfree(kaddrs); 1006 return -EINVAL; 1007 } 1008 addrcnt++; 1009 addr_buf += af->sockaddr_len; 1010 walk_size += af->sockaddr_len; 1011 } 1012 1013 /* Do the work. */ 1014 switch (op) { 1015 case SCTP_BINDX_ADD_ADDR: 1016 /* Allow security module to validate bindx addresses. */ 1017 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1018 (struct sockaddr *)kaddrs, 1019 addrs_size); 1020 if (err) 1021 goto out; 1022 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1023 if (err) 1024 goto out; 1025 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1026 break; 1027 1028 case SCTP_BINDX_REM_ADDR: 1029 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1030 if (err) 1031 goto out; 1032 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1033 break; 1034 1035 default: 1036 err = -EINVAL; 1037 break; 1038 } 1039 1040 out: 1041 kfree(kaddrs); 1042 1043 return err; 1044 } 1045 1046 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1047 const union sctp_addr *daddr, 1048 const struct sctp_initmsg *init, 1049 struct sctp_transport **tp) 1050 { 1051 struct sctp_association *asoc; 1052 struct sock *sk = ep->base.sk; 1053 struct net *net = sock_net(sk); 1054 enum sctp_scope scope; 1055 int err; 1056 1057 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1058 return -EADDRNOTAVAIL; 1059 1060 if (!ep->base.bind_addr.port) { 1061 if (sctp_autobind(sk)) 1062 return -EAGAIN; 1063 } else { 1064 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1065 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1066 return -EACCES; 1067 } 1068 1069 scope = sctp_scope(daddr); 1070 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1071 if (!asoc) 1072 return -ENOMEM; 1073 1074 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1075 if (err < 0) 1076 goto free; 1077 1078 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1079 if (!*tp) { 1080 err = -ENOMEM; 1081 goto free; 1082 } 1083 1084 if (!init) 1085 return 0; 1086 1087 if (init->sinit_num_ostreams) { 1088 __u16 outcnt = init->sinit_num_ostreams; 1089 1090 asoc->c.sinit_num_ostreams = outcnt; 1091 /* outcnt has been changed, need to re-init stream */ 1092 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1093 if (err) 1094 goto free; 1095 } 1096 1097 if (init->sinit_max_instreams) 1098 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1099 1100 if (init->sinit_max_attempts) 1101 asoc->max_init_attempts = init->sinit_max_attempts; 1102 1103 if (init->sinit_max_init_timeo) 1104 asoc->max_init_timeo = 1105 msecs_to_jiffies(init->sinit_max_init_timeo); 1106 1107 return 0; 1108 free: 1109 sctp_association_free(asoc); 1110 return err; 1111 } 1112 1113 static int sctp_connect_add_peer(struct sctp_association *asoc, 1114 union sctp_addr *daddr, int addr_len) 1115 { 1116 struct sctp_endpoint *ep = asoc->ep; 1117 struct sctp_association *old; 1118 struct sctp_transport *t; 1119 int err; 1120 1121 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1122 if (err) 1123 return err; 1124 1125 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1126 if (old && old != asoc) 1127 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1128 : -EALREADY; 1129 1130 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1131 return -EADDRNOTAVAIL; 1132 1133 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1134 if (!t) 1135 return -ENOMEM; 1136 1137 return 0; 1138 } 1139 1140 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1141 * 1142 * Common routine for handling connect() and sctp_connectx(). 1143 * Connect will come in with just a single address. 1144 */ 1145 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1146 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1147 { 1148 struct sctp_sock *sp = sctp_sk(sk); 1149 struct sctp_endpoint *ep = sp->ep; 1150 struct sctp_transport *transport; 1151 struct sctp_association *asoc; 1152 void *addr_buf = kaddrs; 1153 union sctp_addr *daddr; 1154 struct sctp_af *af; 1155 int walk_size, err; 1156 long timeo; 1157 1158 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1159 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1160 return -EISCONN; 1161 1162 daddr = addr_buf; 1163 af = sctp_get_af_specific(daddr->sa.sa_family); 1164 if (!af || af->sockaddr_len > addrs_size) 1165 return -EINVAL; 1166 1167 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1168 if (err) 1169 return err; 1170 1171 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1172 if (asoc) 1173 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1174 : -EALREADY; 1175 1176 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1177 if (err) 1178 return err; 1179 asoc = transport->asoc; 1180 1181 addr_buf += af->sockaddr_len; 1182 walk_size = af->sockaddr_len; 1183 while (walk_size < addrs_size) { 1184 err = -EINVAL; 1185 if (walk_size + sizeof(sa_family_t) > addrs_size) 1186 goto out_free; 1187 1188 daddr = addr_buf; 1189 af = sctp_get_af_specific(daddr->sa.sa_family); 1190 if (!af || af->sockaddr_len + walk_size > addrs_size) 1191 goto out_free; 1192 1193 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1194 goto out_free; 1195 1196 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1197 if (err) 1198 goto out_free; 1199 1200 addr_buf += af->sockaddr_len; 1201 walk_size += af->sockaddr_len; 1202 } 1203 1204 /* In case the user of sctp_connectx() wants an association 1205 * id back, assign one now. 1206 */ 1207 if (assoc_id) { 1208 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1209 if (err < 0) 1210 goto out_free; 1211 } 1212 1213 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1214 if (err < 0) 1215 goto out_free; 1216 1217 /* Initialize sk's dport and daddr for getpeername() */ 1218 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1219 sp->pf->to_sk_daddr(daddr, sk); 1220 sk->sk_err = 0; 1221 1222 if (assoc_id) 1223 *assoc_id = asoc->assoc_id; 1224 1225 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1226 return sctp_wait_for_connect(asoc, &timeo); 1227 1228 out_free: 1229 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1230 __func__, asoc, kaddrs, err); 1231 sctp_association_free(asoc); 1232 return err; 1233 } 1234 1235 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1236 * 1237 * API 8.9 1238 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1239 * sctp_assoc_t *asoc); 1240 * 1241 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1242 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1243 * or IPv6 addresses. 1244 * 1245 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1246 * Section 3.1.2 for this usage. 1247 * 1248 * addrs is a pointer to an array of one or more socket addresses. Each 1249 * address is contained in its appropriate structure (i.e. struct 1250 * sockaddr_in or struct sockaddr_in6) the family of the address type 1251 * must be used to distengish the address length (note that this 1252 * representation is termed a "packed array" of addresses). The caller 1253 * specifies the number of addresses in the array with addrcnt. 1254 * 1255 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1256 * the association id of the new association. On failure, sctp_connectx() 1257 * returns -1, and sets errno to the appropriate error code. The assoc_id 1258 * is not touched by the kernel. 1259 * 1260 * For SCTP, the port given in each socket address must be the same, or 1261 * sctp_connectx() will fail, setting errno to EINVAL. 1262 * 1263 * An application can use sctp_connectx to initiate an association with 1264 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1265 * allows a caller to specify multiple addresses at which a peer can be 1266 * reached. The way the SCTP stack uses the list of addresses to set up 1267 * the association is implementation dependent. This function only 1268 * specifies that the stack will try to make use of all the addresses in 1269 * the list when needed. 1270 * 1271 * Note that the list of addresses passed in is only used for setting up 1272 * the association. It does not necessarily equal the set of addresses 1273 * the peer uses for the resulting association. If the caller wants to 1274 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1275 * retrieve them after the association has been set up. 1276 * 1277 * Basically do nothing but copying the addresses from user to kernel 1278 * land and invoking either sctp_connectx(). This is used for tunneling 1279 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1280 * 1281 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1282 * it. 1283 * 1284 * sk The sk of the socket 1285 * addrs The pointer to the addresses in user land 1286 * addrssize Size of the addrs buffer 1287 * 1288 * Returns >=0 if ok, <0 errno code on error. 1289 */ 1290 static int __sctp_setsockopt_connectx(struct sock *sk, 1291 struct sockaddr __user *addrs, 1292 int addrs_size, 1293 sctp_assoc_t *assoc_id) 1294 { 1295 struct sockaddr *kaddrs; 1296 int err = 0, flags = 0; 1297 1298 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1299 __func__, sk, addrs, addrs_size); 1300 1301 /* make sure the 1st addr's sa_family is accessible later */ 1302 if (unlikely(addrs_size < sizeof(sa_family_t))) 1303 return -EINVAL; 1304 1305 kaddrs = memdup_user(addrs, addrs_size); 1306 if (IS_ERR(kaddrs)) 1307 return PTR_ERR(kaddrs); 1308 1309 /* Allow security module to validate connectx addresses. */ 1310 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1311 (struct sockaddr *)kaddrs, 1312 addrs_size); 1313 if (err) 1314 goto out_free; 1315 1316 /* in-kernel sockets don't generally have a file allocated to them 1317 * if all they do is call sock_create_kern(). 1318 */ 1319 if (sk->sk_socket->file) 1320 flags = sk->sk_socket->file->f_flags; 1321 1322 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1323 1324 out_free: 1325 kfree(kaddrs); 1326 1327 return err; 1328 } 1329 1330 /* 1331 * This is an older interface. It's kept for backward compatibility 1332 * to the option that doesn't provide association id. 1333 */ 1334 static int sctp_setsockopt_connectx_old(struct sock *sk, 1335 struct sockaddr __user *addrs, 1336 int addrs_size) 1337 { 1338 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1339 } 1340 1341 /* 1342 * New interface for the API. The since the API is done with a socket 1343 * option, to make it simple we feed back the association id is as a return 1344 * indication to the call. Error is always negative and association id is 1345 * always positive. 1346 */ 1347 static int sctp_setsockopt_connectx(struct sock *sk, 1348 struct sockaddr __user *addrs, 1349 int addrs_size) 1350 { 1351 sctp_assoc_t assoc_id = 0; 1352 int err = 0; 1353 1354 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1355 1356 if (err) 1357 return err; 1358 else 1359 return assoc_id; 1360 } 1361 1362 /* 1363 * New (hopefully final) interface for the API. 1364 * We use the sctp_getaddrs_old structure so that use-space library 1365 * can avoid any unnecessary allocations. The only different part 1366 * is that we store the actual length of the address buffer into the 1367 * addrs_num structure member. That way we can re-use the existing 1368 * code. 1369 */ 1370 #ifdef CONFIG_COMPAT 1371 struct compat_sctp_getaddrs_old { 1372 sctp_assoc_t assoc_id; 1373 s32 addr_num; 1374 compat_uptr_t addrs; /* struct sockaddr * */ 1375 }; 1376 #endif 1377 1378 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1379 char __user *optval, 1380 int __user *optlen) 1381 { 1382 struct sctp_getaddrs_old param; 1383 sctp_assoc_t assoc_id = 0; 1384 int err = 0; 1385 1386 #ifdef CONFIG_COMPAT 1387 if (in_compat_syscall()) { 1388 struct compat_sctp_getaddrs_old param32; 1389 1390 if (len < sizeof(param32)) 1391 return -EINVAL; 1392 if (copy_from_user(¶m32, optval, sizeof(param32))) 1393 return -EFAULT; 1394 1395 param.assoc_id = param32.assoc_id; 1396 param.addr_num = param32.addr_num; 1397 param.addrs = compat_ptr(param32.addrs); 1398 } else 1399 #endif 1400 { 1401 if (len < sizeof(param)) 1402 return -EINVAL; 1403 if (copy_from_user(¶m, optval, sizeof(param))) 1404 return -EFAULT; 1405 } 1406 1407 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1408 param.addrs, param.addr_num, 1409 &assoc_id); 1410 if (err == 0 || err == -EINPROGRESS) { 1411 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1412 return -EFAULT; 1413 if (put_user(sizeof(assoc_id), optlen)) 1414 return -EFAULT; 1415 } 1416 1417 return err; 1418 } 1419 1420 /* API 3.1.4 close() - UDP Style Syntax 1421 * Applications use close() to perform graceful shutdown (as described in 1422 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1423 * by a UDP-style socket. 1424 * 1425 * The syntax is 1426 * 1427 * ret = close(int sd); 1428 * 1429 * sd - the socket descriptor of the associations to be closed. 1430 * 1431 * To gracefully shutdown a specific association represented by the 1432 * UDP-style socket, an application should use the sendmsg() call, 1433 * passing no user data, but including the appropriate flag in the 1434 * ancillary data (see Section xxxx). 1435 * 1436 * If sd in the close() call is a branched-off socket representing only 1437 * one association, the shutdown is performed on that association only. 1438 * 1439 * 4.1.6 close() - TCP Style Syntax 1440 * 1441 * Applications use close() to gracefully close down an association. 1442 * 1443 * The syntax is: 1444 * 1445 * int close(int sd); 1446 * 1447 * sd - the socket descriptor of the association to be closed. 1448 * 1449 * After an application calls close() on a socket descriptor, no further 1450 * socket operations will succeed on that descriptor. 1451 * 1452 * API 7.1.4 SO_LINGER 1453 * 1454 * An application using the TCP-style socket can use this option to 1455 * perform the SCTP ABORT primitive. The linger option structure is: 1456 * 1457 * struct linger { 1458 * int l_onoff; // option on/off 1459 * int l_linger; // linger time 1460 * }; 1461 * 1462 * To enable the option, set l_onoff to 1. If the l_linger value is set 1463 * to 0, calling close() is the same as the ABORT primitive. If the 1464 * value is set to a negative value, the setsockopt() call will return 1465 * an error. If the value is set to a positive value linger_time, the 1466 * close() can be blocked for at most linger_time ms. If the graceful 1467 * shutdown phase does not finish during this period, close() will 1468 * return but the graceful shutdown phase continues in the system. 1469 */ 1470 static void sctp_close(struct sock *sk, long timeout) 1471 { 1472 struct net *net = sock_net(sk); 1473 struct sctp_endpoint *ep; 1474 struct sctp_association *asoc; 1475 struct list_head *pos, *temp; 1476 unsigned int data_was_unread; 1477 1478 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1479 1480 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1481 sk->sk_shutdown = SHUTDOWN_MASK; 1482 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1483 1484 ep = sctp_sk(sk)->ep; 1485 1486 /* Clean up any skbs sitting on the receive queue. */ 1487 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1488 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1489 1490 /* Walk all associations on an endpoint. */ 1491 list_for_each_safe(pos, temp, &ep->asocs) { 1492 asoc = list_entry(pos, struct sctp_association, asocs); 1493 1494 if (sctp_style(sk, TCP)) { 1495 /* A closed association can still be in the list if 1496 * it belongs to a TCP-style listening socket that is 1497 * not yet accepted. If so, free it. If not, send an 1498 * ABORT or SHUTDOWN based on the linger options. 1499 */ 1500 if (sctp_state(asoc, CLOSED)) { 1501 sctp_association_free(asoc); 1502 continue; 1503 } 1504 } 1505 1506 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1507 !skb_queue_empty(&asoc->ulpq.reasm) || 1508 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1509 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1510 struct sctp_chunk *chunk; 1511 1512 chunk = sctp_make_abort_user(asoc, NULL, 0); 1513 sctp_primitive_ABORT(net, asoc, chunk); 1514 } else 1515 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1516 } 1517 1518 /* On a TCP-style socket, block for at most linger_time if set. */ 1519 if (sctp_style(sk, TCP) && timeout) 1520 sctp_wait_for_close(sk, timeout); 1521 1522 /* This will run the backlog queue. */ 1523 release_sock(sk); 1524 1525 /* Supposedly, no process has access to the socket, but 1526 * the net layers still may. 1527 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1528 * held and that should be grabbed before socket lock. 1529 */ 1530 spin_lock_bh(&net->sctp.addr_wq_lock); 1531 bh_lock_sock_nested(sk); 1532 1533 /* Hold the sock, since sk_common_release() will put sock_put() 1534 * and we have just a little more cleanup. 1535 */ 1536 sock_hold(sk); 1537 sk_common_release(sk); 1538 1539 bh_unlock_sock(sk); 1540 spin_unlock_bh(&net->sctp.addr_wq_lock); 1541 1542 sock_put(sk); 1543 1544 SCTP_DBG_OBJCNT_DEC(sock); 1545 } 1546 1547 /* Handle EPIPE error. */ 1548 static int sctp_error(struct sock *sk, int flags, int err) 1549 { 1550 if (err == -EPIPE) 1551 err = sock_error(sk) ? : -EPIPE; 1552 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1553 send_sig(SIGPIPE, current, 0); 1554 return err; 1555 } 1556 1557 /* API 3.1.3 sendmsg() - UDP Style Syntax 1558 * 1559 * An application uses sendmsg() and recvmsg() calls to transmit data to 1560 * and receive data from its peer. 1561 * 1562 * ssize_t sendmsg(int socket, const struct msghdr *message, 1563 * int flags); 1564 * 1565 * socket - the socket descriptor of the endpoint. 1566 * message - pointer to the msghdr structure which contains a single 1567 * user message and possibly some ancillary data. 1568 * 1569 * See Section 5 for complete description of the data 1570 * structures. 1571 * 1572 * flags - flags sent or received with the user message, see Section 1573 * 5 for complete description of the flags. 1574 * 1575 * Note: This function could use a rewrite especially when explicit 1576 * connect support comes in. 1577 */ 1578 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1579 1580 static int sctp_msghdr_parse(const struct msghdr *msg, 1581 struct sctp_cmsgs *cmsgs); 1582 1583 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1584 struct sctp_sndrcvinfo *srinfo, 1585 const struct msghdr *msg, size_t msg_len) 1586 { 1587 __u16 sflags; 1588 int err; 1589 1590 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1591 return -EPIPE; 1592 1593 if (msg_len > sk->sk_sndbuf) 1594 return -EMSGSIZE; 1595 1596 memset(cmsgs, 0, sizeof(*cmsgs)); 1597 err = sctp_msghdr_parse(msg, cmsgs); 1598 if (err) { 1599 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1600 return err; 1601 } 1602 1603 memset(srinfo, 0, sizeof(*srinfo)); 1604 if (cmsgs->srinfo) { 1605 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1606 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1607 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1608 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1609 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1610 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1611 } 1612 1613 if (cmsgs->sinfo) { 1614 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1615 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1616 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1617 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1618 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1619 } 1620 1621 if (cmsgs->prinfo) { 1622 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1623 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1624 cmsgs->prinfo->pr_policy); 1625 } 1626 1627 sflags = srinfo->sinfo_flags; 1628 if (!sflags && msg_len) 1629 return 0; 1630 1631 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1632 return -EINVAL; 1633 1634 if (((sflags & SCTP_EOF) && msg_len > 0) || 1635 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1636 return -EINVAL; 1637 1638 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1639 return -EINVAL; 1640 1641 return 0; 1642 } 1643 1644 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1645 struct sctp_cmsgs *cmsgs, 1646 union sctp_addr *daddr, 1647 struct sctp_transport **tp) 1648 { 1649 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1650 struct sctp_association *asoc; 1651 struct cmsghdr *cmsg; 1652 __be32 flowinfo = 0; 1653 struct sctp_af *af; 1654 int err; 1655 1656 *tp = NULL; 1657 1658 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1659 return -EINVAL; 1660 1661 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1662 sctp_sstate(sk, CLOSING))) 1663 return -EADDRNOTAVAIL; 1664 1665 /* Label connection socket for first association 1-to-many 1666 * style for client sequence socket()->sendmsg(). This 1667 * needs to be done before sctp_assoc_add_peer() as that will 1668 * set up the initial packet that needs to account for any 1669 * security ip options (CIPSO/CALIPSO) added to the packet. 1670 */ 1671 af = sctp_get_af_specific(daddr->sa.sa_family); 1672 if (!af) 1673 return -EINVAL; 1674 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1675 (struct sockaddr *)daddr, 1676 af->sockaddr_len); 1677 if (err < 0) 1678 return err; 1679 1680 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1681 if (err) 1682 return err; 1683 asoc = (*tp)->asoc; 1684 1685 if (!cmsgs->addrs_msg) 1686 return 0; 1687 1688 if (daddr->sa.sa_family == AF_INET6) 1689 flowinfo = daddr->v6.sin6_flowinfo; 1690 1691 /* sendv addr list parse */ 1692 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1693 union sctp_addr _daddr; 1694 int dlen; 1695 1696 if (cmsg->cmsg_level != IPPROTO_SCTP || 1697 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1698 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1699 continue; 1700 1701 daddr = &_daddr; 1702 memset(daddr, 0, sizeof(*daddr)); 1703 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1704 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1705 if (dlen < sizeof(struct in_addr)) { 1706 err = -EINVAL; 1707 goto free; 1708 } 1709 1710 dlen = sizeof(struct in_addr); 1711 daddr->v4.sin_family = AF_INET; 1712 daddr->v4.sin_port = htons(asoc->peer.port); 1713 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1714 } else { 1715 if (dlen < sizeof(struct in6_addr)) { 1716 err = -EINVAL; 1717 goto free; 1718 } 1719 1720 dlen = sizeof(struct in6_addr); 1721 daddr->v6.sin6_flowinfo = flowinfo; 1722 daddr->v6.sin6_family = AF_INET6; 1723 daddr->v6.sin6_port = htons(asoc->peer.port); 1724 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1725 } 1726 1727 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1728 if (err) 1729 goto free; 1730 } 1731 1732 return 0; 1733 1734 free: 1735 sctp_association_free(asoc); 1736 return err; 1737 } 1738 1739 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1740 __u16 sflags, struct msghdr *msg, 1741 size_t msg_len) 1742 { 1743 struct sock *sk = asoc->base.sk; 1744 struct net *net = sock_net(sk); 1745 1746 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1747 return -EPIPE; 1748 1749 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1750 !sctp_state(asoc, ESTABLISHED)) 1751 return 0; 1752 1753 if (sflags & SCTP_EOF) { 1754 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1755 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1756 1757 return 0; 1758 } 1759 1760 if (sflags & SCTP_ABORT) { 1761 struct sctp_chunk *chunk; 1762 1763 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1764 if (!chunk) 1765 return -ENOMEM; 1766 1767 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1768 sctp_primitive_ABORT(net, asoc, chunk); 1769 iov_iter_revert(&msg->msg_iter, msg_len); 1770 1771 return 0; 1772 } 1773 1774 return 1; 1775 } 1776 1777 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1778 struct msghdr *msg, size_t msg_len, 1779 struct sctp_transport *transport, 1780 struct sctp_sndrcvinfo *sinfo) 1781 { 1782 struct sock *sk = asoc->base.sk; 1783 struct sctp_sock *sp = sctp_sk(sk); 1784 struct net *net = sock_net(sk); 1785 struct sctp_datamsg *datamsg; 1786 bool wait_connect = false; 1787 struct sctp_chunk *chunk; 1788 long timeo; 1789 int err; 1790 1791 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1792 err = -EINVAL; 1793 goto err; 1794 } 1795 1796 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1797 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1798 if (err) 1799 goto err; 1800 } 1801 1802 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1803 err = -EMSGSIZE; 1804 goto err; 1805 } 1806 1807 if (asoc->pmtu_pending) { 1808 if (sp->param_flags & SPP_PMTUD_ENABLE) 1809 sctp_assoc_sync_pmtu(asoc); 1810 asoc->pmtu_pending = 0; 1811 } 1812 1813 if (sctp_wspace(asoc) < (int)msg_len) 1814 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1815 1816 if (sk_under_memory_pressure(sk)) 1817 sk_mem_reclaim(sk); 1818 1819 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1820 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1821 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1822 if (err) 1823 goto err; 1824 } 1825 1826 if (sctp_state(asoc, CLOSED)) { 1827 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1828 if (err) 1829 goto err; 1830 1831 if (asoc->ep->intl_enable) { 1832 timeo = sock_sndtimeo(sk, 0); 1833 err = sctp_wait_for_connect(asoc, &timeo); 1834 if (err) { 1835 err = -ESRCH; 1836 goto err; 1837 } 1838 } else { 1839 wait_connect = true; 1840 } 1841 1842 pr_debug("%s: we associated primitively\n", __func__); 1843 } 1844 1845 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1846 if (IS_ERR(datamsg)) { 1847 err = PTR_ERR(datamsg); 1848 goto err; 1849 } 1850 1851 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1852 1853 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1854 sctp_chunk_hold(chunk); 1855 sctp_set_owner_w(chunk); 1856 chunk->transport = transport; 1857 } 1858 1859 err = sctp_primitive_SEND(net, asoc, datamsg); 1860 if (err) { 1861 sctp_datamsg_free(datamsg); 1862 goto err; 1863 } 1864 1865 pr_debug("%s: we sent primitively\n", __func__); 1866 1867 sctp_datamsg_put(datamsg); 1868 1869 if (unlikely(wait_connect)) { 1870 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1871 sctp_wait_for_connect(asoc, &timeo); 1872 } 1873 1874 err = msg_len; 1875 1876 err: 1877 return err; 1878 } 1879 1880 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1881 const struct msghdr *msg, 1882 struct sctp_cmsgs *cmsgs) 1883 { 1884 union sctp_addr *daddr = NULL; 1885 int err; 1886 1887 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1888 int len = msg->msg_namelen; 1889 1890 if (len > sizeof(*daddr)) 1891 len = sizeof(*daddr); 1892 1893 daddr = (union sctp_addr *)msg->msg_name; 1894 1895 err = sctp_verify_addr(sk, daddr, len); 1896 if (err) 1897 return ERR_PTR(err); 1898 } 1899 1900 return daddr; 1901 } 1902 1903 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1904 struct sctp_sndrcvinfo *sinfo, 1905 struct sctp_cmsgs *cmsgs) 1906 { 1907 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1908 sinfo->sinfo_stream = asoc->default_stream; 1909 sinfo->sinfo_ppid = asoc->default_ppid; 1910 sinfo->sinfo_context = asoc->default_context; 1911 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1912 1913 if (!cmsgs->prinfo) 1914 sinfo->sinfo_flags = asoc->default_flags; 1915 } 1916 1917 if (!cmsgs->srinfo && !cmsgs->prinfo) 1918 sinfo->sinfo_timetolive = asoc->default_timetolive; 1919 1920 if (cmsgs->authinfo) { 1921 /* Reuse sinfo_tsn to indicate that authinfo was set and 1922 * sinfo_ssn to save the keyid on tx path. 1923 */ 1924 sinfo->sinfo_tsn = 1; 1925 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1926 } 1927 } 1928 1929 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1930 { 1931 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1932 struct sctp_transport *transport = NULL; 1933 struct sctp_sndrcvinfo _sinfo, *sinfo; 1934 struct sctp_association *asoc, *tmp; 1935 struct sctp_cmsgs cmsgs; 1936 union sctp_addr *daddr; 1937 bool new = false; 1938 __u16 sflags; 1939 int err; 1940 1941 /* Parse and get snd_info */ 1942 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1943 if (err) 1944 goto out; 1945 1946 sinfo = &_sinfo; 1947 sflags = sinfo->sinfo_flags; 1948 1949 /* Get daddr from msg */ 1950 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1951 if (IS_ERR(daddr)) { 1952 err = PTR_ERR(daddr); 1953 goto out; 1954 } 1955 1956 lock_sock(sk); 1957 1958 /* SCTP_SENDALL process */ 1959 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1960 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1961 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1962 msg_len); 1963 if (err == 0) 1964 continue; 1965 if (err < 0) 1966 goto out_unlock; 1967 1968 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1969 1970 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1971 NULL, sinfo); 1972 if (err < 0) 1973 goto out_unlock; 1974 1975 iov_iter_revert(&msg->msg_iter, err); 1976 } 1977 1978 goto out_unlock; 1979 } 1980 1981 /* Get and check or create asoc */ 1982 if (daddr) { 1983 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1984 if (asoc) { 1985 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1986 msg_len); 1987 if (err <= 0) 1988 goto out_unlock; 1989 } else { 1990 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 1991 &transport); 1992 if (err) 1993 goto out_unlock; 1994 1995 asoc = transport->asoc; 1996 new = true; 1997 } 1998 1999 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2000 transport = NULL; 2001 } else { 2002 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2003 if (!asoc) { 2004 err = -EPIPE; 2005 goto out_unlock; 2006 } 2007 2008 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2009 if (err <= 0) 2010 goto out_unlock; 2011 } 2012 2013 /* Update snd_info with the asoc */ 2014 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2015 2016 /* Send msg to the asoc */ 2017 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2018 if (err < 0 && err != -ESRCH && new) 2019 sctp_association_free(asoc); 2020 2021 out_unlock: 2022 release_sock(sk); 2023 out: 2024 return sctp_error(sk, msg->msg_flags, err); 2025 } 2026 2027 /* This is an extended version of skb_pull() that removes the data from the 2028 * start of a skb even when data is spread across the list of skb's in the 2029 * frag_list. len specifies the total amount of data that needs to be removed. 2030 * when 'len' bytes could be removed from the skb, it returns 0. 2031 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2032 * could not be removed. 2033 */ 2034 static int sctp_skb_pull(struct sk_buff *skb, int len) 2035 { 2036 struct sk_buff *list; 2037 int skb_len = skb_headlen(skb); 2038 int rlen; 2039 2040 if (len <= skb_len) { 2041 __skb_pull(skb, len); 2042 return 0; 2043 } 2044 len -= skb_len; 2045 __skb_pull(skb, skb_len); 2046 2047 skb_walk_frags(skb, list) { 2048 rlen = sctp_skb_pull(list, len); 2049 skb->len -= (len-rlen); 2050 skb->data_len -= (len-rlen); 2051 2052 if (!rlen) 2053 return 0; 2054 2055 len = rlen; 2056 } 2057 2058 return len; 2059 } 2060 2061 /* API 3.1.3 recvmsg() - UDP Style Syntax 2062 * 2063 * ssize_t recvmsg(int socket, struct msghdr *message, 2064 * int flags); 2065 * 2066 * socket - the socket descriptor of the endpoint. 2067 * message - pointer to the msghdr structure which contains a single 2068 * user message and possibly some ancillary data. 2069 * 2070 * See Section 5 for complete description of the data 2071 * structures. 2072 * 2073 * flags - flags sent or received with the user message, see Section 2074 * 5 for complete description of the flags. 2075 */ 2076 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2077 int noblock, int flags, int *addr_len) 2078 { 2079 struct sctp_ulpevent *event = NULL; 2080 struct sctp_sock *sp = sctp_sk(sk); 2081 struct sk_buff *skb, *head_skb; 2082 int copied; 2083 int err = 0; 2084 int skb_len; 2085 2086 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2087 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2088 addr_len); 2089 2090 lock_sock(sk); 2091 2092 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2093 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2094 err = -ENOTCONN; 2095 goto out; 2096 } 2097 2098 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2099 if (!skb) 2100 goto out; 2101 2102 /* Get the total length of the skb including any skb's in the 2103 * frag_list. 2104 */ 2105 skb_len = skb->len; 2106 2107 copied = skb_len; 2108 if (copied > len) 2109 copied = len; 2110 2111 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2112 2113 event = sctp_skb2event(skb); 2114 2115 if (err) 2116 goto out_free; 2117 2118 if (event->chunk && event->chunk->head_skb) 2119 head_skb = event->chunk->head_skb; 2120 else 2121 head_skb = skb; 2122 sock_recv_ts_and_drops(msg, sk, head_skb); 2123 if (sctp_ulpevent_is_notification(event)) { 2124 msg->msg_flags |= MSG_NOTIFICATION; 2125 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2126 } else { 2127 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2128 } 2129 2130 /* Check if we allow SCTP_NXTINFO. */ 2131 if (sp->recvnxtinfo) 2132 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2133 /* Check if we allow SCTP_RCVINFO. */ 2134 if (sp->recvrcvinfo) 2135 sctp_ulpevent_read_rcvinfo(event, msg); 2136 /* Check if we allow SCTP_SNDRCVINFO. */ 2137 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2138 sctp_ulpevent_read_sndrcvinfo(event, msg); 2139 2140 err = copied; 2141 2142 /* If skb's length exceeds the user's buffer, update the skb and 2143 * push it back to the receive_queue so that the next call to 2144 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2145 */ 2146 if (skb_len > copied) { 2147 msg->msg_flags &= ~MSG_EOR; 2148 if (flags & MSG_PEEK) 2149 goto out_free; 2150 sctp_skb_pull(skb, copied); 2151 skb_queue_head(&sk->sk_receive_queue, skb); 2152 2153 /* When only partial message is copied to the user, increase 2154 * rwnd by that amount. If all the data in the skb is read, 2155 * rwnd is updated when the event is freed. 2156 */ 2157 if (!sctp_ulpevent_is_notification(event)) 2158 sctp_assoc_rwnd_increase(event->asoc, copied); 2159 goto out; 2160 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2161 (event->msg_flags & MSG_EOR)) 2162 msg->msg_flags |= MSG_EOR; 2163 else 2164 msg->msg_flags &= ~MSG_EOR; 2165 2166 out_free: 2167 if (flags & MSG_PEEK) { 2168 /* Release the skb reference acquired after peeking the skb in 2169 * sctp_skb_recv_datagram(). 2170 */ 2171 kfree_skb(skb); 2172 } else { 2173 /* Free the event which includes releasing the reference to 2174 * the owner of the skb, freeing the skb and updating the 2175 * rwnd. 2176 */ 2177 sctp_ulpevent_free(event); 2178 } 2179 out: 2180 release_sock(sk); 2181 return err; 2182 } 2183 2184 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2185 * 2186 * This option is a on/off flag. If enabled no SCTP message 2187 * fragmentation will be performed. Instead if a message being sent 2188 * exceeds the current PMTU size, the message will NOT be sent and 2189 * instead a error will be indicated to the user. 2190 */ 2191 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2192 char __user *optval, 2193 unsigned int optlen) 2194 { 2195 int val; 2196 2197 if (optlen < sizeof(int)) 2198 return -EINVAL; 2199 2200 if (get_user(val, (int __user *)optval)) 2201 return -EFAULT; 2202 2203 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2204 2205 return 0; 2206 } 2207 2208 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2209 unsigned int optlen) 2210 { 2211 struct sctp_event_subscribe subscribe; 2212 __u8 *sn_type = (__u8 *)&subscribe; 2213 struct sctp_sock *sp = sctp_sk(sk); 2214 struct sctp_association *asoc; 2215 int i; 2216 2217 if (optlen > sizeof(struct sctp_event_subscribe)) 2218 return -EINVAL; 2219 2220 if (copy_from_user(&subscribe, optval, optlen)) 2221 return -EFAULT; 2222 2223 for (i = 0; i < optlen; i++) 2224 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2225 sn_type[i]); 2226 2227 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2228 asoc->subscribe = sctp_sk(sk)->subscribe; 2229 2230 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2231 * if there is no data to be sent or retransmit, the stack will 2232 * immediately send up this notification. 2233 */ 2234 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2235 struct sctp_ulpevent *event; 2236 2237 asoc = sctp_id2assoc(sk, 0); 2238 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2239 event = sctp_ulpevent_make_sender_dry_event(asoc, 2240 GFP_USER | __GFP_NOWARN); 2241 if (!event) 2242 return -ENOMEM; 2243 2244 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2245 } 2246 } 2247 2248 return 0; 2249 } 2250 2251 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2252 * 2253 * This socket option is applicable to the UDP-style socket only. When 2254 * set it will cause associations that are idle for more than the 2255 * specified number of seconds to automatically close. An association 2256 * being idle is defined an association that has NOT sent or received 2257 * user data. The special value of '0' indicates that no automatic 2258 * close of any associations should be performed. The option expects an 2259 * integer defining the number of seconds of idle time before an 2260 * association is closed. 2261 */ 2262 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2263 unsigned int optlen) 2264 { 2265 struct sctp_sock *sp = sctp_sk(sk); 2266 struct net *net = sock_net(sk); 2267 2268 /* Applicable to UDP-style socket only */ 2269 if (sctp_style(sk, TCP)) 2270 return -EOPNOTSUPP; 2271 if (optlen != sizeof(int)) 2272 return -EINVAL; 2273 if (copy_from_user(&sp->autoclose, optval, optlen)) 2274 return -EFAULT; 2275 2276 if (sp->autoclose > net->sctp.max_autoclose) 2277 sp->autoclose = net->sctp.max_autoclose; 2278 2279 return 0; 2280 } 2281 2282 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2283 * 2284 * Applications can enable or disable heartbeats for any peer address of 2285 * an association, modify an address's heartbeat interval, force a 2286 * heartbeat to be sent immediately, and adjust the address's maximum 2287 * number of retransmissions sent before an address is considered 2288 * unreachable. The following structure is used to access and modify an 2289 * address's parameters: 2290 * 2291 * struct sctp_paddrparams { 2292 * sctp_assoc_t spp_assoc_id; 2293 * struct sockaddr_storage spp_address; 2294 * uint32_t spp_hbinterval; 2295 * uint16_t spp_pathmaxrxt; 2296 * uint32_t spp_pathmtu; 2297 * uint32_t spp_sackdelay; 2298 * uint32_t spp_flags; 2299 * uint32_t spp_ipv6_flowlabel; 2300 * uint8_t spp_dscp; 2301 * }; 2302 * 2303 * spp_assoc_id - (one-to-many style socket) This is filled in the 2304 * application, and identifies the association for 2305 * this query. 2306 * spp_address - This specifies which address is of interest. 2307 * spp_hbinterval - This contains the value of the heartbeat interval, 2308 * in milliseconds. If a value of zero 2309 * is present in this field then no changes are to 2310 * be made to this parameter. 2311 * spp_pathmaxrxt - This contains the maximum number of 2312 * retransmissions before this address shall be 2313 * considered unreachable. If a value of zero 2314 * is present in this field then no changes are to 2315 * be made to this parameter. 2316 * spp_pathmtu - When Path MTU discovery is disabled the value 2317 * specified here will be the "fixed" path mtu. 2318 * Note that if the spp_address field is empty 2319 * then all associations on this address will 2320 * have this fixed path mtu set upon them. 2321 * 2322 * spp_sackdelay - When delayed sack is enabled, this value specifies 2323 * the number of milliseconds that sacks will be delayed 2324 * for. This value will apply to all addresses of an 2325 * association if the spp_address field is empty. Note 2326 * also, that if delayed sack is enabled and this 2327 * value is set to 0, no change is made to the last 2328 * recorded delayed sack timer value. 2329 * 2330 * spp_flags - These flags are used to control various features 2331 * on an association. The flag field may contain 2332 * zero or more of the following options. 2333 * 2334 * SPP_HB_ENABLE - Enable heartbeats on the 2335 * specified address. Note that if the address 2336 * field is empty all addresses for the association 2337 * have heartbeats enabled upon them. 2338 * 2339 * SPP_HB_DISABLE - Disable heartbeats on the 2340 * speicifed address. Note that if the address 2341 * field is empty all addresses for the association 2342 * will have their heartbeats disabled. Note also 2343 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2344 * mutually exclusive, only one of these two should 2345 * be specified. Enabling both fields will have 2346 * undetermined results. 2347 * 2348 * SPP_HB_DEMAND - Request a user initiated heartbeat 2349 * to be made immediately. 2350 * 2351 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2352 * heartbeat delayis to be set to the value of 0 2353 * milliseconds. 2354 * 2355 * SPP_PMTUD_ENABLE - This field will enable PMTU 2356 * discovery upon the specified address. Note that 2357 * if the address feild is empty then all addresses 2358 * on the association are effected. 2359 * 2360 * SPP_PMTUD_DISABLE - This field will disable PMTU 2361 * discovery upon the specified address. Note that 2362 * if the address feild is empty then all addresses 2363 * on the association are effected. Not also that 2364 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2365 * exclusive. Enabling both will have undetermined 2366 * results. 2367 * 2368 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2369 * on delayed sack. The time specified in spp_sackdelay 2370 * is used to specify the sack delay for this address. Note 2371 * that if spp_address is empty then all addresses will 2372 * enable delayed sack and take on the sack delay 2373 * value specified in spp_sackdelay. 2374 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2375 * off delayed sack. If the spp_address field is blank then 2376 * delayed sack is disabled for the entire association. Note 2377 * also that this field is mutually exclusive to 2378 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2379 * results. 2380 * 2381 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2382 * setting of the IPV6 flow label value. The value is 2383 * contained in the spp_ipv6_flowlabel field. 2384 * Upon retrieval, this flag will be set to indicate that 2385 * the spp_ipv6_flowlabel field has a valid value returned. 2386 * If a specific destination address is set (in the 2387 * spp_address field), then the value returned is that of 2388 * the address. If just an association is specified (and 2389 * no address), then the association's default flow label 2390 * is returned. If neither an association nor a destination 2391 * is specified, then the socket's default flow label is 2392 * returned. For non-IPv6 sockets, this flag will be left 2393 * cleared. 2394 * 2395 * SPP_DSCP: Setting this flag enables the setting of the 2396 * Differentiated Services Code Point (DSCP) value 2397 * associated with either the association or a specific 2398 * address. The value is obtained in the spp_dscp field. 2399 * Upon retrieval, this flag will be set to indicate that 2400 * the spp_dscp field has a valid value returned. If a 2401 * specific destination address is set when called (in the 2402 * spp_address field), then that specific destination 2403 * address's DSCP value is returned. If just an association 2404 * is specified, then the association's default DSCP is 2405 * returned. If neither an association nor a destination is 2406 * specified, then the socket's default DSCP is returned. 2407 * 2408 * spp_ipv6_flowlabel 2409 * - This field is used in conjunction with the 2410 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2411 * The 20 least significant bits are used for the flow 2412 * label. This setting has precedence over any IPv6-layer 2413 * setting. 2414 * 2415 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2416 * and contains the DSCP. The 6 most significant bits are 2417 * used for the DSCP. This setting has precedence over any 2418 * IPv4- or IPv6- layer setting. 2419 */ 2420 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2421 struct sctp_transport *trans, 2422 struct sctp_association *asoc, 2423 struct sctp_sock *sp, 2424 int hb_change, 2425 int pmtud_change, 2426 int sackdelay_change) 2427 { 2428 int error; 2429 2430 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2431 struct net *net = sock_net(trans->asoc->base.sk); 2432 2433 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2434 if (error) 2435 return error; 2436 } 2437 2438 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2439 * this field is ignored. Note also that a value of zero indicates 2440 * the current setting should be left unchanged. 2441 */ 2442 if (params->spp_flags & SPP_HB_ENABLE) { 2443 2444 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2445 * set. This lets us use 0 value when this flag 2446 * is set. 2447 */ 2448 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2449 params->spp_hbinterval = 0; 2450 2451 if (params->spp_hbinterval || 2452 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2453 if (trans) { 2454 trans->hbinterval = 2455 msecs_to_jiffies(params->spp_hbinterval); 2456 } else if (asoc) { 2457 asoc->hbinterval = 2458 msecs_to_jiffies(params->spp_hbinterval); 2459 } else { 2460 sp->hbinterval = params->spp_hbinterval; 2461 } 2462 } 2463 } 2464 2465 if (hb_change) { 2466 if (trans) { 2467 trans->param_flags = 2468 (trans->param_flags & ~SPP_HB) | hb_change; 2469 } else if (asoc) { 2470 asoc->param_flags = 2471 (asoc->param_flags & ~SPP_HB) | hb_change; 2472 } else { 2473 sp->param_flags = 2474 (sp->param_flags & ~SPP_HB) | hb_change; 2475 } 2476 } 2477 2478 /* When Path MTU discovery is disabled the value specified here will 2479 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2480 * include the flag SPP_PMTUD_DISABLE for this field to have any 2481 * effect). 2482 */ 2483 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2484 if (trans) { 2485 trans->pathmtu = params->spp_pathmtu; 2486 sctp_assoc_sync_pmtu(asoc); 2487 } else if (asoc) { 2488 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2489 } else { 2490 sp->pathmtu = params->spp_pathmtu; 2491 } 2492 } 2493 2494 if (pmtud_change) { 2495 if (trans) { 2496 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2497 (params->spp_flags & SPP_PMTUD_ENABLE); 2498 trans->param_flags = 2499 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2500 if (update) { 2501 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2502 sctp_assoc_sync_pmtu(asoc); 2503 } 2504 } else if (asoc) { 2505 asoc->param_flags = 2506 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2507 } else { 2508 sp->param_flags = 2509 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2510 } 2511 } 2512 2513 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2514 * value of this field is ignored. Note also that a value of zero 2515 * indicates the current setting should be left unchanged. 2516 */ 2517 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2518 if (trans) { 2519 trans->sackdelay = 2520 msecs_to_jiffies(params->spp_sackdelay); 2521 } else if (asoc) { 2522 asoc->sackdelay = 2523 msecs_to_jiffies(params->spp_sackdelay); 2524 } else { 2525 sp->sackdelay = params->spp_sackdelay; 2526 } 2527 } 2528 2529 if (sackdelay_change) { 2530 if (trans) { 2531 trans->param_flags = 2532 (trans->param_flags & ~SPP_SACKDELAY) | 2533 sackdelay_change; 2534 } else if (asoc) { 2535 asoc->param_flags = 2536 (asoc->param_flags & ~SPP_SACKDELAY) | 2537 sackdelay_change; 2538 } else { 2539 sp->param_flags = 2540 (sp->param_flags & ~SPP_SACKDELAY) | 2541 sackdelay_change; 2542 } 2543 } 2544 2545 /* Note that a value of zero indicates the current setting should be 2546 left unchanged. 2547 */ 2548 if (params->spp_pathmaxrxt) { 2549 if (trans) { 2550 trans->pathmaxrxt = params->spp_pathmaxrxt; 2551 } else if (asoc) { 2552 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2553 } else { 2554 sp->pathmaxrxt = params->spp_pathmaxrxt; 2555 } 2556 } 2557 2558 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2559 if (trans) { 2560 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2561 trans->flowlabel = params->spp_ipv6_flowlabel & 2562 SCTP_FLOWLABEL_VAL_MASK; 2563 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2564 } 2565 } else if (asoc) { 2566 struct sctp_transport *t; 2567 2568 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2569 transports) { 2570 if (t->ipaddr.sa.sa_family != AF_INET6) 2571 continue; 2572 t->flowlabel = params->spp_ipv6_flowlabel & 2573 SCTP_FLOWLABEL_VAL_MASK; 2574 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2575 } 2576 asoc->flowlabel = params->spp_ipv6_flowlabel & 2577 SCTP_FLOWLABEL_VAL_MASK; 2578 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2579 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2580 sp->flowlabel = params->spp_ipv6_flowlabel & 2581 SCTP_FLOWLABEL_VAL_MASK; 2582 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2583 } 2584 } 2585 2586 if (params->spp_flags & SPP_DSCP) { 2587 if (trans) { 2588 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2589 trans->dscp |= SCTP_DSCP_SET_MASK; 2590 } else if (asoc) { 2591 struct sctp_transport *t; 2592 2593 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2594 transports) { 2595 t->dscp = params->spp_dscp & 2596 SCTP_DSCP_VAL_MASK; 2597 t->dscp |= SCTP_DSCP_SET_MASK; 2598 } 2599 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2600 asoc->dscp |= SCTP_DSCP_SET_MASK; 2601 } else { 2602 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2603 sp->dscp |= SCTP_DSCP_SET_MASK; 2604 } 2605 } 2606 2607 return 0; 2608 } 2609 2610 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2611 char __user *optval, 2612 unsigned int optlen) 2613 { 2614 struct sctp_paddrparams params; 2615 struct sctp_transport *trans = NULL; 2616 struct sctp_association *asoc = NULL; 2617 struct sctp_sock *sp = sctp_sk(sk); 2618 int error; 2619 int hb_change, pmtud_change, sackdelay_change; 2620 2621 if (optlen == sizeof(params)) { 2622 if (copy_from_user(¶ms, optval, optlen)) 2623 return -EFAULT; 2624 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2625 spp_ipv6_flowlabel), 4)) { 2626 if (copy_from_user(¶ms, optval, optlen)) 2627 return -EFAULT; 2628 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2629 return -EINVAL; 2630 } else { 2631 return -EINVAL; 2632 } 2633 2634 /* Validate flags and value parameters. */ 2635 hb_change = params.spp_flags & SPP_HB; 2636 pmtud_change = params.spp_flags & SPP_PMTUD; 2637 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2638 2639 if (hb_change == SPP_HB || 2640 pmtud_change == SPP_PMTUD || 2641 sackdelay_change == SPP_SACKDELAY || 2642 params.spp_sackdelay > 500 || 2643 (params.spp_pathmtu && 2644 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2645 return -EINVAL; 2646 2647 /* If an address other than INADDR_ANY is specified, and 2648 * no transport is found, then the request is invalid. 2649 */ 2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2651 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2652 params.spp_assoc_id); 2653 if (!trans) 2654 return -EINVAL; 2655 } 2656 2657 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2658 * socket is a one to many style socket, and an association 2659 * was not found, then the id was invalid. 2660 */ 2661 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2662 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2663 sctp_style(sk, UDP)) 2664 return -EINVAL; 2665 2666 /* Heartbeat demand can only be sent on a transport or 2667 * association, but not a socket. 2668 */ 2669 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2670 return -EINVAL; 2671 2672 /* Process parameters. */ 2673 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2674 hb_change, pmtud_change, 2675 sackdelay_change); 2676 2677 if (error) 2678 return error; 2679 2680 /* If changes are for association, also apply parameters to each 2681 * transport. 2682 */ 2683 if (!trans && asoc) { 2684 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2685 transports) { 2686 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2687 hb_change, pmtud_change, 2688 sackdelay_change); 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2696 { 2697 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2698 } 2699 2700 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2701 { 2702 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2703 } 2704 2705 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2706 struct sctp_association *asoc) 2707 { 2708 struct sctp_transport *trans; 2709 2710 if (params->sack_delay) { 2711 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2712 asoc->param_flags = 2713 sctp_spp_sackdelay_enable(asoc->param_flags); 2714 } 2715 if (params->sack_freq == 1) { 2716 asoc->param_flags = 2717 sctp_spp_sackdelay_disable(asoc->param_flags); 2718 } else if (params->sack_freq > 1) { 2719 asoc->sackfreq = params->sack_freq; 2720 asoc->param_flags = 2721 sctp_spp_sackdelay_enable(asoc->param_flags); 2722 } 2723 2724 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2725 transports) { 2726 if (params->sack_delay) { 2727 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 if (params->sack_freq == 1) { 2732 trans->param_flags = 2733 sctp_spp_sackdelay_disable(trans->param_flags); 2734 } else if (params->sack_freq > 1) { 2735 trans->sackfreq = params->sack_freq; 2736 trans->param_flags = 2737 sctp_spp_sackdelay_enable(trans->param_flags); 2738 } 2739 } 2740 } 2741 2742 /* 2743 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2744 * 2745 * This option will effect the way delayed acks are performed. This 2746 * option allows you to get or set the delayed ack time, in 2747 * milliseconds. It also allows changing the delayed ack frequency. 2748 * Changing the frequency to 1 disables the delayed sack algorithm. If 2749 * the assoc_id is 0, then this sets or gets the endpoints default 2750 * values. If the assoc_id field is non-zero, then the set or get 2751 * effects the specified association for the one to many model (the 2752 * assoc_id field is ignored by the one to one model). Note that if 2753 * sack_delay or sack_freq are 0 when setting this option, then the 2754 * current values will remain unchanged. 2755 * 2756 * struct sctp_sack_info { 2757 * sctp_assoc_t sack_assoc_id; 2758 * uint32_t sack_delay; 2759 * uint32_t sack_freq; 2760 * }; 2761 * 2762 * sack_assoc_id - This parameter, indicates which association the user 2763 * is performing an action upon. Note that if this field's value is 2764 * zero then the endpoints default value is changed (effecting future 2765 * associations only). 2766 * 2767 * sack_delay - This parameter contains the number of milliseconds that 2768 * the user is requesting the delayed ACK timer be set to. Note that 2769 * this value is defined in the standard to be between 200 and 500 2770 * milliseconds. 2771 * 2772 * sack_freq - This parameter contains the number of packets that must 2773 * be received before a sack is sent without waiting for the delay 2774 * timer to expire. The default value for this is 2, setting this 2775 * value to 1 will disable the delayed sack algorithm. 2776 */ 2777 2778 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2779 char __user *optval, unsigned int optlen) 2780 { 2781 struct sctp_sock *sp = sctp_sk(sk); 2782 struct sctp_association *asoc; 2783 struct sctp_sack_info params; 2784 2785 if (optlen == sizeof(struct sctp_sack_info)) { 2786 if (copy_from_user(¶ms, optval, optlen)) 2787 return -EFAULT; 2788 2789 if (params.sack_delay == 0 && params.sack_freq == 0) 2790 return 0; 2791 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2792 pr_warn_ratelimited(DEPRECATED 2793 "%s (pid %d) " 2794 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2795 "Use struct sctp_sack_info instead\n", 2796 current->comm, task_pid_nr(current)); 2797 if (copy_from_user(¶ms, optval, optlen)) 2798 return -EFAULT; 2799 2800 if (params.sack_delay == 0) 2801 params.sack_freq = 1; 2802 else 2803 params.sack_freq = 0; 2804 } else 2805 return -EINVAL; 2806 2807 /* Validate value parameter. */ 2808 if (params.sack_delay > 500) 2809 return -EINVAL; 2810 2811 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2812 * socket is a one to many style socket, and an association 2813 * was not found, then the id was invalid. 2814 */ 2815 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2816 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2817 sctp_style(sk, UDP)) 2818 return -EINVAL; 2819 2820 if (asoc) { 2821 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2822 2823 return 0; 2824 } 2825 2826 if (sctp_style(sk, TCP)) 2827 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2828 2829 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2830 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2831 if (params.sack_delay) { 2832 sp->sackdelay = params.sack_delay; 2833 sp->param_flags = 2834 sctp_spp_sackdelay_enable(sp->param_flags); 2835 } 2836 if (params.sack_freq == 1) { 2837 sp->param_flags = 2838 sctp_spp_sackdelay_disable(sp->param_flags); 2839 } else if (params.sack_freq > 1) { 2840 sp->sackfreq = params.sack_freq; 2841 sp->param_flags = 2842 sctp_spp_sackdelay_enable(sp->param_flags); 2843 } 2844 } 2845 2846 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2847 params.sack_assoc_id == SCTP_ALL_ASSOC) 2848 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2849 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2850 2851 return 0; 2852 } 2853 2854 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2855 * 2856 * Applications can specify protocol parameters for the default association 2857 * initialization. The option name argument to setsockopt() and getsockopt() 2858 * is SCTP_INITMSG. 2859 * 2860 * Setting initialization parameters is effective only on an unconnected 2861 * socket (for UDP-style sockets only future associations are effected 2862 * by the change). With TCP-style sockets, this option is inherited by 2863 * sockets derived from a listener socket. 2864 */ 2865 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2866 { 2867 struct sctp_initmsg sinit; 2868 struct sctp_sock *sp = sctp_sk(sk); 2869 2870 if (optlen != sizeof(struct sctp_initmsg)) 2871 return -EINVAL; 2872 if (copy_from_user(&sinit, optval, optlen)) 2873 return -EFAULT; 2874 2875 if (sinit.sinit_num_ostreams) 2876 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2877 if (sinit.sinit_max_instreams) 2878 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2879 if (sinit.sinit_max_attempts) 2880 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2881 if (sinit.sinit_max_init_timeo) 2882 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2883 2884 return 0; 2885 } 2886 2887 /* 2888 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2889 * 2890 * Applications that wish to use the sendto() system call may wish to 2891 * specify a default set of parameters that would normally be supplied 2892 * through the inclusion of ancillary data. This socket option allows 2893 * such an application to set the default sctp_sndrcvinfo structure. 2894 * The application that wishes to use this socket option simply passes 2895 * in to this call the sctp_sndrcvinfo structure defined in Section 2896 * 5.2.2) The input parameters accepted by this call include 2897 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2898 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2899 * to this call if the caller is using the UDP model. 2900 */ 2901 static int sctp_setsockopt_default_send_param(struct sock *sk, 2902 char __user *optval, 2903 unsigned int optlen) 2904 { 2905 struct sctp_sock *sp = sctp_sk(sk); 2906 struct sctp_association *asoc; 2907 struct sctp_sndrcvinfo info; 2908 2909 if (optlen != sizeof(info)) 2910 return -EINVAL; 2911 if (copy_from_user(&info, optval, optlen)) 2912 return -EFAULT; 2913 if (info.sinfo_flags & 2914 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2915 SCTP_ABORT | SCTP_EOF)) 2916 return -EINVAL; 2917 2918 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2919 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 2920 sctp_style(sk, UDP)) 2921 return -EINVAL; 2922 2923 if (asoc) { 2924 asoc->default_stream = info.sinfo_stream; 2925 asoc->default_flags = info.sinfo_flags; 2926 asoc->default_ppid = info.sinfo_ppid; 2927 asoc->default_context = info.sinfo_context; 2928 asoc->default_timetolive = info.sinfo_timetolive; 2929 2930 return 0; 2931 } 2932 2933 if (sctp_style(sk, TCP)) 2934 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2935 2936 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2937 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2938 sp->default_stream = info.sinfo_stream; 2939 sp->default_flags = info.sinfo_flags; 2940 sp->default_ppid = info.sinfo_ppid; 2941 sp->default_context = info.sinfo_context; 2942 sp->default_timetolive = info.sinfo_timetolive; 2943 } 2944 2945 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2946 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 2947 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2948 asoc->default_stream = info.sinfo_stream; 2949 asoc->default_flags = info.sinfo_flags; 2950 asoc->default_ppid = info.sinfo_ppid; 2951 asoc->default_context = info.sinfo_context; 2952 asoc->default_timetolive = info.sinfo_timetolive; 2953 } 2954 } 2955 2956 return 0; 2957 } 2958 2959 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2960 * (SCTP_DEFAULT_SNDINFO) 2961 */ 2962 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2963 char __user *optval, 2964 unsigned int optlen) 2965 { 2966 struct sctp_sock *sp = sctp_sk(sk); 2967 struct sctp_association *asoc; 2968 struct sctp_sndinfo info; 2969 2970 if (optlen != sizeof(info)) 2971 return -EINVAL; 2972 if (copy_from_user(&info, optval, optlen)) 2973 return -EFAULT; 2974 if (info.snd_flags & 2975 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2976 SCTP_ABORT | SCTP_EOF)) 2977 return -EINVAL; 2978 2979 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2980 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 2981 sctp_style(sk, UDP)) 2982 return -EINVAL; 2983 2984 if (asoc) { 2985 asoc->default_stream = info.snd_sid; 2986 asoc->default_flags = info.snd_flags; 2987 asoc->default_ppid = info.snd_ppid; 2988 asoc->default_context = info.snd_context; 2989 2990 return 0; 2991 } 2992 2993 if (sctp_style(sk, TCP)) 2994 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 2995 2996 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 2997 info.snd_assoc_id == SCTP_ALL_ASSOC) { 2998 sp->default_stream = info.snd_sid; 2999 sp->default_flags = info.snd_flags; 3000 sp->default_ppid = info.snd_ppid; 3001 sp->default_context = info.snd_context; 3002 } 3003 3004 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3005 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3006 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3007 asoc->default_stream = info.snd_sid; 3008 asoc->default_flags = info.snd_flags; 3009 asoc->default_ppid = info.snd_ppid; 3010 asoc->default_context = info.snd_context; 3011 } 3012 } 3013 3014 return 0; 3015 } 3016 3017 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3018 * 3019 * Requests that the local SCTP stack use the enclosed peer address as 3020 * the association primary. The enclosed address must be one of the 3021 * association peer's addresses. 3022 */ 3023 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3024 unsigned int optlen) 3025 { 3026 struct sctp_prim prim; 3027 struct sctp_transport *trans; 3028 struct sctp_af *af; 3029 int err; 3030 3031 if (optlen != sizeof(struct sctp_prim)) 3032 return -EINVAL; 3033 3034 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3035 return -EFAULT; 3036 3037 /* Allow security module to validate address but need address len. */ 3038 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3039 if (!af) 3040 return -EINVAL; 3041 3042 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3043 (struct sockaddr *)&prim.ssp_addr, 3044 af->sockaddr_len); 3045 if (err) 3046 return err; 3047 3048 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3049 if (!trans) 3050 return -EINVAL; 3051 3052 sctp_assoc_set_primary(trans->asoc, trans); 3053 3054 return 0; 3055 } 3056 3057 /* 3058 * 7.1.5 SCTP_NODELAY 3059 * 3060 * Turn on/off any Nagle-like algorithm. This means that packets are 3061 * generally sent as soon as possible and no unnecessary delays are 3062 * introduced, at the cost of more packets in the network. Expects an 3063 * integer boolean flag. 3064 */ 3065 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3066 unsigned int optlen) 3067 { 3068 int val; 3069 3070 if (optlen < sizeof(int)) 3071 return -EINVAL; 3072 if (get_user(val, (int __user *)optval)) 3073 return -EFAULT; 3074 3075 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3076 return 0; 3077 } 3078 3079 /* 3080 * 3081 * 7.1.1 SCTP_RTOINFO 3082 * 3083 * The protocol parameters used to initialize and bound retransmission 3084 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3085 * and modify these parameters. 3086 * All parameters are time values, in milliseconds. A value of 0, when 3087 * modifying the parameters, indicates that the current value should not 3088 * be changed. 3089 * 3090 */ 3091 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3092 { 3093 struct sctp_rtoinfo rtoinfo; 3094 struct sctp_association *asoc; 3095 unsigned long rto_min, rto_max; 3096 struct sctp_sock *sp = sctp_sk(sk); 3097 3098 if (optlen != sizeof (struct sctp_rtoinfo)) 3099 return -EINVAL; 3100 3101 if (copy_from_user(&rtoinfo, optval, optlen)) 3102 return -EFAULT; 3103 3104 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3105 3106 /* Set the values to the specific association */ 3107 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3108 sctp_style(sk, UDP)) 3109 return -EINVAL; 3110 3111 rto_max = rtoinfo.srto_max; 3112 rto_min = rtoinfo.srto_min; 3113 3114 if (rto_max) 3115 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3116 else 3117 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3118 3119 if (rto_min) 3120 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3121 else 3122 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3123 3124 if (rto_min > rto_max) 3125 return -EINVAL; 3126 3127 if (asoc) { 3128 if (rtoinfo.srto_initial != 0) 3129 asoc->rto_initial = 3130 msecs_to_jiffies(rtoinfo.srto_initial); 3131 asoc->rto_max = rto_max; 3132 asoc->rto_min = rto_min; 3133 } else { 3134 /* If there is no association or the association-id = 0 3135 * set the values to the endpoint. 3136 */ 3137 if (rtoinfo.srto_initial != 0) 3138 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3139 sp->rtoinfo.srto_max = rto_max; 3140 sp->rtoinfo.srto_min = rto_min; 3141 } 3142 3143 return 0; 3144 } 3145 3146 /* 3147 * 3148 * 7.1.2 SCTP_ASSOCINFO 3149 * 3150 * This option is used to tune the maximum retransmission attempts 3151 * of the association. 3152 * Returns an error if the new association retransmission value is 3153 * greater than the sum of the retransmission value of the peer. 3154 * See [SCTP] for more information. 3155 * 3156 */ 3157 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3158 { 3159 3160 struct sctp_assocparams assocparams; 3161 struct sctp_association *asoc; 3162 3163 if (optlen != sizeof(struct sctp_assocparams)) 3164 return -EINVAL; 3165 if (copy_from_user(&assocparams, optval, optlen)) 3166 return -EFAULT; 3167 3168 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3169 3170 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3171 sctp_style(sk, UDP)) 3172 return -EINVAL; 3173 3174 /* Set the values to the specific association */ 3175 if (asoc) { 3176 if (assocparams.sasoc_asocmaxrxt != 0) { 3177 __u32 path_sum = 0; 3178 int paths = 0; 3179 struct sctp_transport *peer_addr; 3180 3181 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3182 transports) { 3183 path_sum += peer_addr->pathmaxrxt; 3184 paths++; 3185 } 3186 3187 /* Only validate asocmaxrxt if we have more than 3188 * one path/transport. We do this because path 3189 * retransmissions are only counted when we have more 3190 * then one path. 3191 */ 3192 if (paths > 1 && 3193 assocparams.sasoc_asocmaxrxt > path_sum) 3194 return -EINVAL; 3195 3196 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3197 } 3198 3199 if (assocparams.sasoc_cookie_life != 0) 3200 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3201 } else { 3202 /* Set the values to the endpoint */ 3203 struct sctp_sock *sp = sctp_sk(sk); 3204 3205 if (assocparams.sasoc_asocmaxrxt != 0) 3206 sp->assocparams.sasoc_asocmaxrxt = 3207 assocparams.sasoc_asocmaxrxt; 3208 if (assocparams.sasoc_cookie_life != 0) 3209 sp->assocparams.sasoc_cookie_life = 3210 assocparams.sasoc_cookie_life; 3211 } 3212 return 0; 3213 } 3214 3215 /* 3216 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3217 * 3218 * This socket option is a boolean flag which turns on or off mapped V4 3219 * addresses. If this option is turned on and the socket is type 3220 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3221 * If this option is turned off, then no mapping will be done of V4 3222 * addresses and a user will receive both PF_INET6 and PF_INET type 3223 * addresses on the socket. 3224 */ 3225 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3226 { 3227 int val; 3228 struct sctp_sock *sp = sctp_sk(sk); 3229 3230 if (optlen < sizeof(int)) 3231 return -EINVAL; 3232 if (get_user(val, (int __user *)optval)) 3233 return -EFAULT; 3234 if (val) 3235 sp->v4mapped = 1; 3236 else 3237 sp->v4mapped = 0; 3238 3239 return 0; 3240 } 3241 3242 /* 3243 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3244 * This option will get or set the maximum size to put in any outgoing 3245 * SCTP DATA chunk. If a message is larger than this size it will be 3246 * fragmented by SCTP into the specified size. Note that the underlying 3247 * SCTP implementation may fragment into smaller sized chunks when the 3248 * PMTU of the underlying association is smaller than the value set by 3249 * the user. The default value for this option is '0' which indicates 3250 * the user is NOT limiting fragmentation and only the PMTU will effect 3251 * SCTP's choice of DATA chunk size. Note also that values set larger 3252 * than the maximum size of an IP datagram will effectively let SCTP 3253 * control fragmentation (i.e. the same as setting this option to 0). 3254 * 3255 * The following structure is used to access and modify this parameter: 3256 * 3257 * struct sctp_assoc_value { 3258 * sctp_assoc_t assoc_id; 3259 * uint32_t assoc_value; 3260 * }; 3261 * 3262 * assoc_id: This parameter is ignored for one-to-one style sockets. 3263 * For one-to-many style sockets this parameter indicates which 3264 * association the user is performing an action upon. Note that if 3265 * this field's value is zero then the endpoints default value is 3266 * changed (effecting future associations only). 3267 * assoc_value: This parameter specifies the maximum size in bytes. 3268 */ 3269 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3270 { 3271 struct sctp_sock *sp = sctp_sk(sk); 3272 struct sctp_assoc_value params; 3273 struct sctp_association *asoc; 3274 int val; 3275 3276 if (optlen == sizeof(int)) { 3277 pr_warn_ratelimited(DEPRECATED 3278 "%s (pid %d) " 3279 "Use of int in maxseg socket option.\n" 3280 "Use struct sctp_assoc_value instead\n", 3281 current->comm, task_pid_nr(current)); 3282 if (copy_from_user(&val, optval, optlen)) 3283 return -EFAULT; 3284 params.assoc_id = SCTP_FUTURE_ASSOC; 3285 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3286 if (copy_from_user(¶ms, optval, optlen)) 3287 return -EFAULT; 3288 val = params.assoc_value; 3289 } else { 3290 return -EINVAL; 3291 } 3292 3293 asoc = sctp_id2assoc(sk, params.assoc_id); 3294 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3295 sctp_style(sk, UDP)) 3296 return -EINVAL; 3297 3298 if (val) { 3299 int min_len, max_len; 3300 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3301 sizeof(struct sctp_data_chunk); 3302 3303 min_len = sctp_min_frag_point(sp, datasize); 3304 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3305 3306 if (val < min_len || val > max_len) 3307 return -EINVAL; 3308 } 3309 3310 if (asoc) { 3311 asoc->user_frag = val; 3312 sctp_assoc_update_frag_point(asoc); 3313 } else { 3314 sp->user_frag = val; 3315 } 3316 3317 return 0; 3318 } 3319 3320 3321 /* 3322 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3323 * 3324 * Requests that the peer mark the enclosed address as the association 3325 * primary. The enclosed address must be one of the association's 3326 * locally bound addresses. The following structure is used to make a 3327 * set primary request: 3328 */ 3329 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3330 unsigned int optlen) 3331 { 3332 struct sctp_sock *sp; 3333 struct sctp_association *asoc = NULL; 3334 struct sctp_setpeerprim prim; 3335 struct sctp_chunk *chunk; 3336 struct sctp_af *af; 3337 int err; 3338 3339 sp = sctp_sk(sk); 3340 3341 if (!sp->ep->asconf_enable) 3342 return -EPERM; 3343 3344 if (optlen != sizeof(struct sctp_setpeerprim)) 3345 return -EINVAL; 3346 3347 if (copy_from_user(&prim, optval, optlen)) 3348 return -EFAULT; 3349 3350 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3351 if (!asoc) 3352 return -EINVAL; 3353 3354 if (!asoc->peer.asconf_capable) 3355 return -EPERM; 3356 3357 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3358 return -EPERM; 3359 3360 if (!sctp_state(asoc, ESTABLISHED)) 3361 return -ENOTCONN; 3362 3363 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3364 if (!af) 3365 return -EINVAL; 3366 3367 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3368 return -EADDRNOTAVAIL; 3369 3370 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3371 return -EADDRNOTAVAIL; 3372 3373 /* Allow security module to validate address. */ 3374 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3375 (struct sockaddr *)&prim.sspp_addr, 3376 af->sockaddr_len); 3377 if (err) 3378 return err; 3379 3380 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3381 chunk = sctp_make_asconf_set_prim(asoc, 3382 (union sctp_addr *)&prim.sspp_addr); 3383 if (!chunk) 3384 return -ENOMEM; 3385 3386 err = sctp_send_asconf(asoc, chunk); 3387 3388 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3389 3390 return err; 3391 } 3392 3393 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3394 unsigned int optlen) 3395 { 3396 struct sctp_setadaptation adaptation; 3397 3398 if (optlen != sizeof(struct sctp_setadaptation)) 3399 return -EINVAL; 3400 if (copy_from_user(&adaptation, optval, optlen)) 3401 return -EFAULT; 3402 3403 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3404 3405 return 0; 3406 } 3407 3408 /* 3409 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3410 * 3411 * The context field in the sctp_sndrcvinfo structure is normally only 3412 * used when a failed message is retrieved holding the value that was 3413 * sent down on the actual send call. This option allows the setting of 3414 * a default context on an association basis that will be received on 3415 * reading messages from the peer. This is especially helpful in the 3416 * one-2-many model for an application to keep some reference to an 3417 * internal state machine that is processing messages on the 3418 * association. Note that the setting of this value only effects 3419 * received messages from the peer and does not effect the value that is 3420 * saved with outbound messages. 3421 */ 3422 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3423 unsigned int optlen) 3424 { 3425 struct sctp_sock *sp = sctp_sk(sk); 3426 struct sctp_assoc_value params; 3427 struct sctp_association *asoc; 3428 3429 if (optlen != sizeof(struct sctp_assoc_value)) 3430 return -EINVAL; 3431 if (copy_from_user(¶ms, optval, optlen)) 3432 return -EFAULT; 3433 3434 asoc = sctp_id2assoc(sk, params.assoc_id); 3435 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3436 sctp_style(sk, UDP)) 3437 return -EINVAL; 3438 3439 if (asoc) { 3440 asoc->default_rcv_context = params.assoc_value; 3441 3442 return 0; 3443 } 3444 3445 if (sctp_style(sk, TCP)) 3446 params.assoc_id = SCTP_FUTURE_ASSOC; 3447 3448 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3449 params.assoc_id == SCTP_ALL_ASSOC) 3450 sp->default_rcv_context = params.assoc_value; 3451 3452 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3453 params.assoc_id == SCTP_ALL_ASSOC) 3454 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3455 asoc->default_rcv_context = params.assoc_value; 3456 3457 return 0; 3458 } 3459 3460 /* 3461 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3462 * 3463 * This options will at a minimum specify if the implementation is doing 3464 * fragmented interleave. Fragmented interleave, for a one to many 3465 * socket, is when subsequent calls to receive a message may return 3466 * parts of messages from different associations. Some implementations 3467 * may allow you to turn this value on or off. If so, when turned off, 3468 * no fragment interleave will occur (which will cause a head of line 3469 * blocking amongst multiple associations sharing the same one to many 3470 * socket). When this option is turned on, then each receive call may 3471 * come from a different association (thus the user must receive data 3472 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3473 * association each receive belongs to. 3474 * 3475 * This option takes a boolean value. A non-zero value indicates that 3476 * fragmented interleave is on. A value of zero indicates that 3477 * fragmented interleave is off. 3478 * 3479 * Note that it is important that an implementation that allows this 3480 * option to be turned on, have it off by default. Otherwise an unaware 3481 * application using the one to many model may become confused and act 3482 * incorrectly. 3483 */ 3484 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3485 char __user *optval, 3486 unsigned int optlen) 3487 { 3488 int val; 3489 3490 if (optlen != sizeof(int)) 3491 return -EINVAL; 3492 if (get_user(val, (int __user *)optval)) 3493 return -EFAULT; 3494 3495 sctp_sk(sk)->frag_interleave = !!val; 3496 3497 if (!sctp_sk(sk)->frag_interleave) 3498 sctp_sk(sk)->ep->intl_enable = 0; 3499 3500 return 0; 3501 } 3502 3503 /* 3504 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3505 * (SCTP_PARTIAL_DELIVERY_POINT) 3506 * 3507 * This option will set or get the SCTP partial delivery point. This 3508 * point is the size of a message where the partial delivery API will be 3509 * invoked to help free up rwnd space for the peer. Setting this to a 3510 * lower value will cause partial deliveries to happen more often. The 3511 * calls argument is an integer that sets or gets the partial delivery 3512 * point. Note also that the call will fail if the user attempts to set 3513 * this value larger than the socket receive buffer size. 3514 * 3515 * Note that any single message having a length smaller than or equal to 3516 * the SCTP partial delivery point will be delivered in one single read 3517 * call as long as the user provided buffer is large enough to hold the 3518 * message. 3519 */ 3520 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3521 char __user *optval, 3522 unsigned int optlen) 3523 { 3524 u32 val; 3525 3526 if (optlen != sizeof(u32)) 3527 return -EINVAL; 3528 if (get_user(val, (int __user *)optval)) 3529 return -EFAULT; 3530 3531 /* Note: We double the receive buffer from what the user sets 3532 * it to be, also initial rwnd is based on rcvbuf/2. 3533 */ 3534 if (val > (sk->sk_rcvbuf >> 1)) 3535 return -EINVAL; 3536 3537 sctp_sk(sk)->pd_point = val; 3538 3539 return 0; /* is this the right error code? */ 3540 } 3541 3542 /* 3543 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3544 * 3545 * This option will allow a user to change the maximum burst of packets 3546 * that can be emitted by this association. Note that the default value 3547 * is 4, and some implementations may restrict this setting so that it 3548 * can only be lowered. 3549 * 3550 * NOTE: This text doesn't seem right. Do this on a socket basis with 3551 * future associations inheriting the socket value. 3552 */ 3553 static int sctp_setsockopt_maxburst(struct sock *sk, 3554 char __user *optval, 3555 unsigned int optlen) 3556 { 3557 struct sctp_sock *sp = sctp_sk(sk); 3558 struct sctp_assoc_value params; 3559 struct sctp_association *asoc; 3560 3561 if (optlen == sizeof(int)) { 3562 pr_warn_ratelimited(DEPRECATED 3563 "%s (pid %d) " 3564 "Use of int in max_burst socket option deprecated.\n" 3565 "Use struct sctp_assoc_value instead\n", 3566 current->comm, task_pid_nr(current)); 3567 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3568 return -EFAULT; 3569 params.assoc_id = SCTP_FUTURE_ASSOC; 3570 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3571 if (copy_from_user(¶ms, optval, optlen)) 3572 return -EFAULT; 3573 } else 3574 return -EINVAL; 3575 3576 asoc = sctp_id2assoc(sk, params.assoc_id); 3577 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3578 sctp_style(sk, UDP)) 3579 return -EINVAL; 3580 3581 if (asoc) { 3582 asoc->max_burst = params.assoc_value; 3583 3584 return 0; 3585 } 3586 3587 if (sctp_style(sk, TCP)) 3588 params.assoc_id = SCTP_FUTURE_ASSOC; 3589 3590 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3591 params.assoc_id == SCTP_ALL_ASSOC) 3592 sp->max_burst = params.assoc_value; 3593 3594 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3595 params.assoc_id == SCTP_ALL_ASSOC) 3596 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3597 asoc->max_burst = params.assoc_value; 3598 3599 return 0; 3600 } 3601 3602 /* 3603 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3604 * 3605 * This set option adds a chunk type that the user is requesting to be 3606 * received only in an authenticated way. Changes to the list of chunks 3607 * will only effect future associations on the socket. 3608 */ 3609 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3610 char __user *optval, 3611 unsigned int optlen) 3612 { 3613 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3614 struct sctp_authchunk val; 3615 3616 if (!ep->auth_enable) 3617 return -EACCES; 3618 3619 if (optlen != sizeof(struct sctp_authchunk)) 3620 return -EINVAL; 3621 if (copy_from_user(&val, optval, optlen)) 3622 return -EFAULT; 3623 3624 switch (val.sauth_chunk) { 3625 case SCTP_CID_INIT: 3626 case SCTP_CID_INIT_ACK: 3627 case SCTP_CID_SHUTDOWN_COMPLETE: 3628 case SCTP_CID_AUTH: 3629 return -EINVAL; 3630 } 3631 3632 /* add this chunk id to the endpoint */ 3633 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3634 } 3635 3636 /* 3637 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3638 * 3639 * This option gets or sets the list of HMAC algorithms that the local 3640 * endpoint requires the peer to use. 3641 */ 3642 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3643 char __user *optval, 3644 unsigned int optlen) 3645 { 3646 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3647 struct sctp_hmacalgo *hmacs; 3648 u32 idents; 3649 int err; 3650 3651 if (!ep->auth_enable) 3652 return -EACCES; 3653 3654 if (optlen < sizeof(struct sctp_hmacalgo)) 3655 return -EINVAL; 3656 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3657 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3658 3659 hmacs = memdup_user(optval, optlen); 3660 if (IS_ERR(hmacs)) 3661 return PTR_ERR(hmacs); 3662 3663 idents = hmacs->shmac_num_idents; 3664 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3665 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3666 err = -EINVAL; 3667 goto out; 3668 } 3669 3670 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3671 out: 3672 kfree(hmacs); 3673 return err; 3674 } 3675 3676 /* 3677 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3678 * 3679 * This option will set a shared secret key which is used to build an 3680 * association shared key. 3681 */ 3682 static int sctp_setsockopt_auth_key(struct sock *sk, 3683 char __user *optval, 3684 unsigned int optlen) 3685 { 3686 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3687 struct sctp_authkey *authkey; 3688 struct sctp_association *asoc; 3689 int ret = -EINVAL; 3690 3691 if (optlen <= sizeof(struct sctp_authkey)) 3692 return -EINVAL; 3693 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3694 * this. 3695 */ 3696 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3697 3698 authkey = memdup_user(optval, optlen); 3699 if (IS_ERR(authkey)) 3700 return PTR_ERR(authkey); 3701 3702 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3703 goto out; 3704 3705 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3706 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3707 sctp_style(sk, UDP)) 3708 goto out; 3709 3710 if (asoc) { 3711 ret = sctp_auth_set_key(ep, asoc, authkey); 3712 goto out; 3713 } 3714 3715 if (sctp_style(sk, TCP)) 3716 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3717 3718 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3719 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3720 ret = sctp_auth_set_key(ep, asoc, authkey); 3721 if (ret) 3722 goto out; 3723 } 3724 3725 ret = 0; 3726 3727 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3728 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3729 list_for_each_entry(asoc, &ep->asocs, asocs) { 3730 int res = sctp_auth_set_key(ep, asoc, authkey); 3731 3732 if (res && !ret) 3733 ret = res; 3734 } 3735 } 3736 3737 out: 3738 kzfree(authkey); 3739 return ret; 3740 } 3741 3742 /* 3743 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3744 * 3745 * This option will get or set the active shared key to be used to build 3746 * the association shared key. 3747 */ 3748 static int sctp_setsockopt_active_key(struct sock *sk, 3749 char __user *optval, 3750 unsigned int optlen) 3751 { 3752 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3753 struct sctp_association *asoc; 3754 struct sctp_authkeyid val; 3755 int ret = 0; 3756 3757 if (optlen != sizeof(struct sctp_authkeyid)) 3758 return -EINVAL; 3759 if (copy_from_user(&val, optval, optlen)) 3760 return -EFAULT; 3761 3762 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3763 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3764 sctp_style(sk, UDP)) 3765 return -EINVAL; 3766 3767 if (asoc) 3768 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3769 3770 if (sctp_style(sk, TCP)) 3771 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3772 3773 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3774 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3775 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3776 if (ret) 3777 return ret; 3778 } 3779 3780 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3781 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3782 list_for_each_entry(asoc, &ep->asocs, asocs) { 3783 int res = sctp_auth_set_active_key(ep, asoc, 3784 val.scact_keynumber); 3785 3786 if (res && !ret) 3787 ret = res; 3788 } 3789 } 3790 3791 return ret; 3792 } 3793 3794 /* 3795 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3796 * 3797 * This set option will delete a shared secret key from use. 3798 */ 3799 static int sctp_setsockopt_del_key(struct sock *sk, 3800 char __user *optval, 3801 unsigned int optlen) 3802 { 3803 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3804 struct sctp_association *asoc; 3805 struct sctp_authkeyid val; 3806 int ret = 0; 3807 3808 if (optlen != sizeof(struct sctp_authkeyid)) 3809 return -EINVAL; 3810 if (copy_from_user(&val, optval, optlen)) 3811 return -EFAULT; 3812 3813 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3814 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3815 sctp_style(sk, UDP)) 3816 return -EINVAL; 3817 3818 if (asoc) 3819 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3820 3821 if (sctp_style(sk, TCP)) 3822 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3823 3824 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3825 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3826 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3827 if (ret) 3828 return ret; 3829 } 3830 3831 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3832 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3833 list_for_each_entry(asoc, &ep->asocs, asocs) { 3834 int res = sctp_auth_del_key_id(ep, asoc, 3835 val.scact_keynumber); 3836 3837 if (res && !ret) 3838 ret = res; 3839 } 3840 } 3841 3842 return ret; 3843 } 3844 3845 /* 3846 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3847 * 3848 * This set option will deactivate a shared secret key. 3849 */ 3850 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3851 unsigned int optlen) 3852 { 3853 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3854 struct sctp_association *asoc; 3855 struct sctp_authkeyid val; 3856 int ret = 0; 3857 3858 if (optlen != sizeof(struct sctp_authkeyid)) 3859 return -EINVAL; 3860 if (copy_from_user(&val, optval, optlen)) 3861 return -EFAULT; 3862 3863 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3864 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3865 sctp_style(sk, UDP)) 3866 return -EINVAL; 3867 3868 if (asoc) 3869 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3870 3871 if (sctp_style(sk, TCP)) 3872 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3873 3874 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3875 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3876 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3877 if (ret) 3878 return ret; 3879 } 3880 3881 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3882 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3883 list_for_each_entry(asoc, &ep->asocs, asocs) { 3884 int res = sctp_auth_deact_key_id(ep, asoc, 3885 val.scact_keynumber); 3886 3887 if (res && !ret) 3888 ret = res; 3889 } 3890 } 3891 3892 return ret; 3893 } 3894 3895 /* 3896 * 8.1.23 SCTP_AUTO_ASCONF 3897 * 3898 * This option will enable or disable the use of the automatic generation of 3899 * ASCONF chunks to add and delete addresses to an existing association. Note 3900 * that this option has two caveats namely: a) it only affects sockets that 3901 * are bound to all addresses available to the SCTP stack, and b) the system 3902 * administrator may have an overriding control that turns the ASCONF feature 3903 * off no matter what setting the socket option may have. 3904 * This option expects an integer boolean flag, where a non-zero value turns on 3905 * the option, and a zero value turns off the option. 3906 * Note. In this implementation, socket operation overrides default parameter 3907 * being set by sysctl as well as FreeBSD implementation 3908 */ 3909 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3910 unsigned int optlen) 3911 { 3912 int val; 3913 struct sctp_sock *sp = sctp_sk(sk); 3914 3915 if (optlen < sizeof(int)) 3916 return -EINVAL; 3917 if (get_user(val, (int __user *)optval)) 3918 return -EFAULT; 3919 if (!sctp_is_ep_boundall(sk) && val) 3920 return -EINVAL; 3921 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3922 return 0; 3923 3924 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3925 if (val == 0 && sp->do_auto_asconf) { 3926 list_del(&sp->auto_asconf_list); 3927 sp->do_auto_asconf = 0; 3928 } else if (val && !sp->do_auto_asconf) { 3929 list_add_tail(&sp->auto_asconf_list, 3930 &sock_net(sk)->sctp.auto_asconf_splist); 3931 sp->do_auto_asconf = 1; 3932 } 3933 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3934 return 0; 3935 } 3936 3937 /* 3938 * SCTP_PEER_ADDR_THLDS 3939 * 3940 * This option allows us to alter the partially failed threshold for one or all 3941 * transports in an association. See Section 6.1 of: 3942 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3943 */ 3944 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3945 char __user *optval, 3946 unsigned int optlen) 3947 { 3948 struct sctp_paddrthlds val; 3949 struct sctp_transport *trans; 3950 struct sctp_association *asoc; 3951 3952 if (optlen < sizeof(struct sctp_paddrthlds)) 3953 return -EINVAL; 3954 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3955 sizeof(struct sctp_paddrthlds))) 3956 return -EFAULT; 3957 3958 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3959 trans = sctp_addr_id2transport(sk, &val.spt_address, 3960 val.spt_assoc_id); 3961 if (!trans) 3962 return -ENOENT; 3963 3964 if (val.spt_pathmaxrxt) 3965 trans->pathmaxrxt = val.spt_pathmaxrxt; 3966 trans->pf_retrans = val.spt_pathpfthld; 3967 3968 return 0; 3969 } 3970 3971 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3972 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 3973 sctp_style(sk, UDP)) 3974 return -EINVAL; 3975 3976 if (asoc) { 3977 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3978 transports) { 3979 if (val.spt_pathmaxrxt) 3980 trans->pathmaxrxt = val.spt_pathmaxrxt; 3981 trans->pf_retrans = val.spt_pathpfthld; 3982 } 3983 3984 if (val.spt_pathmaxrxt) 3985 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3986 asoc->pf_retrans = val.spt_pathpfthld; 3987 } else { 3988 struct sctp_sock *sp = sctp_sk(sk); 3989 3990 if (val.spt_pathmaxrxt) 3991 sp->pathmaxrxt = val.spt_pathmaxrxt; 3992 sp->pf_retrans = val.spt_pathpfthld; 3993 } 3994 3995 return 0; 3996 } 3997 3998 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3999 char __user *optval, 4000 unsigned int optlen) 4001 { 4002 int val; 4003 4004 if (optlen < sizeof(int)) 4005 return -EINVAL; 4006 if (get_user(val, (int __user *) optval)) 4007 return -EFAULT; 4008 4009 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4010 4011 return 0; 4012 } 4013 4014 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4015 char __user *optval, 4016 unsigned int optlen) 4017 { 4018 int val; 4019 4020 if (optlen < sizeof(int)) 4021 return -EINVAL; 4022 if (get_user(val, (int __user *) optval)) 4023 return -EFAULT; 4024 4025 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4026 4027 return 0; 4028 } 4029 4030 static int sctp_setsockopt_pr_supported(struct sock *sk, 4031 char __user *optval, 4032 unsigned int optlen) 4033 { 4034 struct sctp_assoc_value params; 4035 struct sctp_association *asoc; 4036 4037 if (optlen != sizeof(params)) 4038 return -EINVAL; 4039 4040 if (copy_from_user(¶ms, optval, optlen)) 4041 return -EFAULT; 4042 4043 asoc = sctp_id2assoc(sk, params.assoc_id); 4044 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4045 sctp_style(sk, UDP)) 4046 return -EINVAL; 4047 4048 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4049 4050 return 0; 4051 } 4052 4053 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4054 char __user *optval, 4055 unsigned int optlen) 4056 { 4057 struct sctp_sock *sp = sctp_sk(sk); 4058 struct sctp_default_prinfo info; 4059 struct sctp_association *asoc; 4060 int retval = -EINVAL; 4061 4062 if (optlen != sizeof(info)) 4063 goto out; 4064 4065 if (copy_from_user(&info, optval, sizeof(info))) { 4066 retval = -EFAULT; 4067 goto out; 4068 } 4069 4070 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4071 goto out; 4072 4073 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4074 info.pr_value = 0; 4075 4076 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4077 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4078 sctp_style(sk, UDP)) 4079 goto out; 4080 4081 retval = 0; 4082 4083 if (asoc) { 4084 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4085 asoc->default_timetolive = info.pr_value; 4086 goto out; 4087 } 4088 4089 if (sctp_style(sk, TCP)) 4090 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4091 4092 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4093 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4094 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4095 sp->default_timetolive = info.pr_value; 4096 } 4097 4098 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4099 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4100 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4101 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4102 asoc->default_timetolive = info.pr_value; 4103 } 4104 } 4105 4106 out: 4107 return retval; 4108 } 4109 4110 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4111 char __user *optval, 4112 unsigned int optlen) 4113 { 4114 struct sctp_assoc_value params; 4115 struct sctp_association *asoc; 4116 int retval = -EINVAL; 4117 4118 if (optlen != sizeof(params)) 4119 goto out; 4120 4121 if (copy_from_user(¶ms, optval, optlen)) { 4122 retval = -EFAULT; 4123 goto out; 4124 } 4125 4126 asoc = sctp_id2assoc(sk, params.assoc_id); 4127 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4128 sctp_style(sk, UDP)) 4129 goto out; 4130 4131 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4132 4133 retval = 0; 4134 4135 out: 4136 return retval; 4137 } 4138 4139 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4140 char __user *optval, 4141 unsigned int optlen) 4142 { 4143 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4144 struct sctp_assoc_value params; 4145 struct sctp_association *asoc; 4146 int retval = -EINVAL; 4147 4148 if (optlen != sizeof(params)) 4149 goto out; 4150 4151 if (copy_from_user(¶ms, optval, optlen)) { 4152 retval = -EFAULT; 4153 goto out; 4154 } 4155 4156 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4157 goto out; 4158 4159 asoc = sctp_id2assoc(sk, params.assoc_id); 4160 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4161 sctp_style(sk, UDP)) 4162 goto out; 4163 4164 retval = 0; 4165 4166 if (asoc) { 4167 asoc->strreset_enable = params.assoc_value; 4168 goto out; 4169 } 4170 4171 if (sctp_style(sk, TCP)) 4172 params.assoc_id = SCTP_FUTURE_ASSOC; 4173 4174 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4175 params.assoc_id == SCTP_ALL_ASSOC) 4176 ep->strreset_enable = params.assoc_value; 4177 4178 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4179 params.assoc_id == SCTP_ALL_ASSOC) 4180 list_for_each_entry(asoc, &ep->asocs, asocs) 4181 asoc->strreset_enable = params.assoc_value; 4182 4183 out: 4184 return retval; 4185 } 4186 4187 static int sctp_setsockopt_reset_streams(struct sock *sk, 4188 char __user *optval, 4189 unsigned int optlen) 4190 { 4191 struct sctp_reset_streams *params; 4192 struct sctp_association *asoc; 4193 int retval = -EINVAL; 4194 4195 if (optlen < sizeof(*params)) 4196 return -EINVAL; 4197 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4198 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4199 sizeof(__u16) * sizeof(*params)); 4200 4201 params = memdup_user(optval, optlen); 4202 if (IS_ERR(params)) 4203 return PTR_ERR(params); 4204 4205 if (params->srs_number_streams * sizeof(__u16) > 4206 optlen - sizeof(*params)) 4207 goto out; 4208 4209 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4210 if (!asoc) 4211 goto out; 4212 4213 retval = sctp_send_reset_streams(asoc, params); 4214 4215 out: 4216 kfree(params); 4217 return retval; 4218 } 4219 4220 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4221 char __user *optval, 4222 unsigned int optlen) 4223 { 4224 struct sctp_association *asoc; 4225 sctp_assoc_t associd; 4226 int retval = -EINVAL; 4227 4228 if (optlen != sizeof(associd)) 4229 goto out; 4230 4231 if (copy_from_user(&associd, optval, optlen)) { 4232 retval = -EFAULT; 4233 goto out; 4234 } 4235 4236 asoc = sctp_id2assoc(sk, associd); 4237 if (!asoc) 4238 goto out; 4239 4240 retval = sctp_send_reset_assoc(asoc); 4241 4242 out: 4243 return retval; 4244 } 4245 4246 static int sctp_setsockopt_add_streams(struct sock *sk, 4247 char __user *optval, 4248 unsigned int optlen) 4249 { 4250 struct sctp_association *asoc; 4251 struct sctp_add_streams params; 4252 int retval = -EINVAL; 4253 4254 if (optlen != sizeof(params)) 4255 goto out; 4256 4257 if (copy_from_user(¶ms, optval, optlen)) { 4258 retval = -EFAULT; 4259 goto out; 4260 } 4261 4262 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4263 if (!asoc) 4264 goto out; 4265 4266 retval = sctp_send_add_streams(asoc, ¶ms); 4267 4268 out: 4269 return retval; 4270 } 4271 4272 static int sctp_setsockopt_scheduler(struct sock *sk, 4273 char __user *optval, 4274 unsigned int optlen) 4275 { 4276 struct sctp_sock *sp = sctp_sk(sk); 4277 struct sctp_association *asoc; 4278 struct sctp_assoc_value params; 4279 int retval = 0; 4280 4281 if (optlen < sizeof(params)) 4282 return -EINVAL; 4283 4284 optlen = sizeof(params); 4285 if (copy_from_user(¶ms, optval, optlen)) 4286 return -EFAULT; 4287 4288 if (params.assoc_value > SCTP_SS_MAX) 4289 return -EINVAL; 4290 4291 asoc = sctp_id2assoc(sk, params.assoc_id); 4292 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4293 sctp_style(sk, UDP)) 4294 return -EINVAL; 4295 4296 if (asoc) 4297 return sctp_sched_set_sched(asoc, params.assoc_value); 4298 4299 if (sctp_style(sk, TCP)) 4300 params.assoc_id = SCTP_FUTURE_ASSOC; 4301 4302 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4303 params.assoc_id == SCTP_ALL_ASSOC) 4304 sp->default_ss = params.assoc_value; 4305 4306 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4307 params.assoc_id == SCTP_ALL_ASSOC) { 4308 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4309 int ret = sctp_sched_set_sched(asoc, 4310 params.assoc_value); 4311 4312 if (ret && !retval) 4313 retval = ret; 4314 } 4315 } 4316 4317 return retval; 4318 } 4319 4320 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4321 char __user *optval, 4322 unsigned int optlen) 4323 { 4324 struct sctp_stream_value params; 4325 struct sctp_association *asoc; 4326 int retval = -EINVAL; 4327 4328 if (optlen < sizeof(params)) 4329 goto out; 4330 4331 optlen = sizeof(params); 4332 if (copy_from_user(¶ms, optval, optlen)) { 4333 retval = -EFAULT; 4334 goto out; 4335 } 4336 4337 asoc = sctp_id2assoc(sk, params.assoc_id); 4338 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4339 sctp_style(sk, UDP)) 4340 goto out; 4341 4342 if (asoc) { 4343 retval = sctp_sched_set_value(asoc, params.stream_id, 4344 params.stream_value, GFP_KERNEL); 4345 goto out; 4346 } 4347 4348 retval = 0; 4349 4350 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4351 int ret = sctp_sched_set_value(asoc, params.stream_id, 4352 params.stream_value, GFP_KERNEL); 4353 if (ret && !retval) /* try to return the 1st error. */ 4354 retval = ret; 4355 } 4356 4357 out: 4358 return retval; 4359 } 4360 4361 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4362 char __user *optval, 4363 unsigned int optlen) 4364 { 4365 struct sctp_sock *sp = sctp_sk(sk); 4366 struct sctp_assoc_value params; 4367 struct sctp_association *asoc; 4368 int retval = -EINVAL; 4369 4370 if (optlen < sizeof(params)) 4371 goto out; 4372 4373 optlen = sizeof(params); 4374 if (copy_from_user(¶ms, optval, optlen)) { 4375 retval = -EFAULT; 4376 goto out; 4377 } 4378 4379 asoc = sctp_id2assoc(sk, params.assoc_id); 4380 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4381 sctp_style(sk, UDP)) 4382 goto out; 4383 4384 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4385 retval = -EPERM; 4386 goto out; 4387 } 4388 4389 sp->ep->intl_enable = !!params.assoc_value; 4390 4391 retval = 0; 4392 4393 out: 4394 return retval; 4395 } 4396 4397 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4398 unsigned int optlen) 4399 { 4400 int val; 4401 4402 if (!sctp_style(sk, TCP)) 4403 return -EOPNOTSUPP; 4404 4405 if (sctp_sk(sk)->ep->base.bind_addr.port) 4406 return -EFAULT; 4407 4408 if (optlen < sizeof(int)) 4409 return -EINVAL; 4410 4411 if (get_user(val, (int __user *)optval)) 4412 return -EFAULT; 4413 4414 sctp_sk(sk)->reuse = !!val; 4415 4416 return 0; 4417 } 4418 4419 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4420 struct sctp_association *asoc) 4421 { 4422 struct sctp_ulpevent *event; 4423 4424 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4425 4426 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4427 if (sctp_outq_is_empty(&asoc->outqueue)) { 4428 event = sctp_ulpevent_make_sender_dry_event(asoc, 4429 GFP_USER | __GFP_NOWARN); 4430 if (!event) 4431 return -ENOMEM; 4432 4433 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4434 } 4435 } 4436 4437 return 0; 4438 } 4439 4440 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4441 unsigned int optlen) 4442 { 4443 struct sctp_sock *sp = sctp_sk(sk); 4444 struct sctp_association *asoc; 4445 struct sctp_event param; 4446 int retval = 0; 4447 4448 if (optlen < sizeof(param)) 4449 return -EINVAL; 4450 4451 optlen = sizeof(param); 4452 if (copy_from_user(¶m, optval, optlen)) 4453 return -EFAULT; 4454 4455 if (param.se_type < SCTP_SN_TYPE_BASE || 4456 param.se_type > SCTP_SN_TYPE_MAX) 4457 return -EINVAL; 4458 4459 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4460 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4461 sctp_style(sk, UDP)) 4462 return -EINVAL; 4463 4464 if (asoc) 4465 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4466 4467 if (sctp_style(sk, TCP)) 4468 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4469 4470 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4471 param.se_assoc_id == SCTP_ALL_ASSOC) 4472 sctp_ulpevent_type_set(&sp->subscribe, 4473 param.se_type, param.se_on); 4474 4475 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4476 param.se_assoc_id == SCTP_ALL_ASSOC) { 4477 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4478 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4479 4480 if (ret && !retval) 4481 retval = ret; 4482 } 4483 } 4484 4485 return retval; 4486 } 4487 4488 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4489 char __user *optval, 4490 unsigned int optlen) 4491 { 4492 struct sctp_assoc_value params; 4493 struct sctp_association *asoc; 4494 struct sctp_endpoint *ep; 4495 int retval = -EINVAL; 4496 4497 if (optlen != sizeof(params)) 4498 goto out; 4499 4500 if (copy_from_user(¶ms, optval, optlen)) { 4501 retval = -EFAULT; 4502 goto out; 4503 } 4504 4505 asoc = sctp_id2assoc(sk, params.assoc_id); 4506 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4507 sctp_style(sk, UDP)) 4508 goto out; 4509 4510 ep = sctp_sk(sk)->ep; 4511 ep->asconf_enable = !!params.assoc_value; 4512 4513 if (ep->asconf_enable && ep->auth_enable) { 4514 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4515 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4516 } 4517 4518 retval = 0; 4519 4520 out: 4521 return retval; 4522 } 4523 4524 static int sctp_setsockopt_auth_supported(struct sock *sk, 4525 char __user *optval, 4526 unsigned int optlen) 4527 { 4528 struct sctp_assoc_value params; 4529 struct sctp_association *asoc; 4530 struct sctp_endpoint *ep; 4531 int retval = -EINVAL; 4532 4533 if (optlen != sizeof(params)) 4534 goto out; 4535 4536 if (copy_from_user(¶ms, optval, optlen)) { 4537 retval = -EFAULT; 4538 goto out; 4539 } 4540 4541 asoc = sctp_id2assoc(sk, params.assoc_id); 4542 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4543 sctp_style(sk, UDP)) 4544 goto out; 4545 4546 ep = sctp_sk(sk)->ep; 4547 if (params.assoc_value) { 4548 retval = sctp_auth_init(ep, GFP_KERNEL); 4549 if (retval) 4550 goto out; 4551 if (ep->asconf_enable) { 4552 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4553 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4554 } 4555 } 4556 4557 ep->auth_enable = !!params.assoc_value; 4558 retval = 0; 4559 4560 out: 4561 return retval; 4562 } 4563 4564 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4565 char __user *optval, 4566 unsigned int optlen) 4567 { 4568 struct sctp_assoc_value params; 4569 struct sctp_association *asoc; 4570 int retval = -EINVAL; 4571 4572 if (optlen != sizeof(params)) 4573 goto out; 4574 4575 if (copy_from_user(¶ms, optval, optlen)) { 4576 retval = -EFAULT; 4577 goto out; 4578 } 4579 4580 asoc = sctp_id2assoc(sk, params.assoc_id); 4581 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4582 sctp_style(sk, UDP)) 4583 goto out; 4584 4585 sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value; 4586 retval = 0; 4587 4588 out: 4589 return retval; 4590 } 4591 4592 /* API 6.2 setsockopt(), getsockopt() 4593 * 4594 * Applications use setsockopt() and getsockopt() to set or retrieve 4595 * socket options. Socket options are used to change the default 4596 * behavior of sockets calls. They are described in Section 7. 4597 * 4598 * The syntax is: 4599 * 4600 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4601 * int __user *optlen); 4602 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4603 * int optlen); 4604 * 4605 * sd - the socket descript. 4606 * level - set to IPPROTO_SCTP for all SCTP options. 4607 * optname - the option name. 4608 * optval - the buffer to store the value of the option. 4609 * optlen - the size of the buffer. 4610 */ 4611 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4612 char __user *optval, unsigned int optlen) 4613 { 4614 int retval = 0; 4615 4616 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4617 4618 /* I can hardly begin to describe how wrong this is. This is 4619 * so broken as to be worse than useless. The API draft 4620 * REALLY is NOT helpful here... I am not convinced that the 4621 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4622 * are at all well-founded. 4623 */ 4624 if (level != SOL_SCTP) { 4625 struct sctp_af *af = sctp_sk(sk)->pf->af; 4626 retval = af->setsockopt(sk, level, optname, optval, optlen); 4627 goto out_nounlock; 4628 } 4629 4630 lock_sock(sk); 4631 4632 switch (optname) { 4633 case SCTP_SOCKOPT_BINDX_ADD: 4634 /* 'optlen' is the size of the addresses buffer. */ 4635 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4636 optlen, SCTP_BINDX_ADD_ADDR); 4637 break; 4638 4639 case SCTP_SOCKOPT_BINDX_REM: 4640 /* 'optlen' is the size of the addresses buffer. */ 4641 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4642 optlen, SCTP_BINDX_REM_ADDR); 4643 break; 4644 4645 case SCTP_SOCKOPT_CONNECTX_OLD: 4646 /* 'optlen' is the size of the addresses buffer. */ 4647 retval = sctp_setsockopt_connectx_old(sk, 4648 (struct sockaddr __user *)optval, 4649 optlen); 4650 break; 4651 4652 case SCTP_SOCKOPT_CONNECTX: 4653 /* 'optlen' is the size of the addresses buffer. */ 4654 retval = sctp_setsockopt_connectx(sk, 4655 (struct sockaddr __user *)optval, 4656 optlen); 4657 break; 4658 4659 case SCTP_DISABLE_FRAGMENTS: 4660 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4661 break; 4662 4663 case SCTP_EVENTS: 4664 retval = sctp_setsockopt_events(sk, optval, optlen); 4665 break; 4666 4667 case SCTP_AUTOCLOSE: 4668 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4669 break; 4670 4671 case SCTP_PEER_ADDR_PARAMS: 4672 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4673 break; 4674 4675 case SCTP_DELAYED_SACK: 4676 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4677 break; 4678 case SCTP_PARTIAL_DELIVERY_POINT: 4679 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4680 break; 4681 4682 case SCTP_INITMSG: 4683 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4684 break; 4685 case SCTP_DEFAULT_SEND_PARAM: 4686 retval = sctp_setsockopt_default_send_param(sk, optval, 4687 optlen); 4688 break; 4689 case SCTP_DEFAULT_SNDINFO: 4690 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4691 break; 4692 case SCTP_PRIMARY_ADDR: 4693 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4694 break; 4695 case SCTP_SET_PEER_PRIMARY_ADDR: 4696 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4697 break; 4698 case SCTP_NODELAY: 4699 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4700 break; 4701 case SCTP_RTOINFO: 4702 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4703 break; 4704 case SCTP_ASSOCINFO: 4705 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4706 break; 4707 case SCTP_I_WANT_MAPPED_V4_ADDR: 4708 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4709 break; 4710 case SCTP_MAXSEG: 4711 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4712 break; 4713 case SCTP_ADAPTATION_LAYER: 4714 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4715 break; 4716 case SCTP_CONTEXT: 4717 retval = sctp_setsockopt_context(sk, optval, optlen); 4718 break; 4719 case SCTP_FRAGMENT_INTERLEAVE: 4720 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4721 break; 4722 case SCTP_MAX_BURST: 4723 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4724 break; 4725 case SCTP_AUTH_CHUNK: 4726 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4727 break; 4728 case SCTP_HMAC_IDENT: 4729 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4730 break; 4731 case SCTP_AUTH_KEY: 4732 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4733 break; 4734 case SCTP_AUTH_ACTIVE_KEY: 4735 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4736 break; 4737 case SCTP_AUTH_DELETE_KEY: 4738 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4739 break; 4740 case SCTP_AUTH_DEACTIVATE_KEY: 4741 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4742 break; 4743 case SCTP_AUTO_ASCONF: 4744 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4745 break; 4746 case SCTP_PEER_ADDR_THLDS: 4747 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4748 break; 4749 case SCTP_RECVRCVINFO: 4750 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4751 break; 4752 case SCTP_RECVNXTINFO: 4753 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4754 break; 4755 case SCTP_PR_SUPPORTED: 4756 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4757 break; 4758 case SCTP_DEFAULT_PRINFO: 4759 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4760 break; 4761 case SCTP_RECONFIG_SUPPORTED: 4762 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4763 break; 4764 case SCTP_ENABLE_STREAM_RESET: 4765 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4766 break; 4767 case SCTP_RESET_STREAMS: 4768 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4769 break; 4770 case SCTP_RESET_ASSOC: 4771 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4772 break; 4773 case SCTP_ADD_STREAMS: 4774 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4775 break; 4776 case SCTP_STREAM_SCHEDULER: 4777 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4778 break; 4779 case SCTP_STREAM_SCHEDULER_VALUE: 4780 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4781 break; 4782 case SCTP_INTERLEAVING_SUPPORTED: 4783 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4784 optlen); 4785 break; 4786 case SCTP_REUSE_PORT: 4787 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4788 break; 4789 case SCTP_EVENT: 4790 retval = sctp_setsockopt_event(sk, optval, optlen); 4791 break; 4792 case SCTP_ASCONF_SUPPORTED: 4793 retval = sctp_setsockopt_asconf_supported(sk, optval, optlen); 4794 break; 4795 case SCTP_AUTH_SUPPORTED: 4796 retval = sctp_setsockopt_auth_supported(sk, optval, optlen); 4797 break; 4798 case SCTP_ECN_SUPPORTED: 4799 retval = sctp_setsockopt_ecn_supported(sk, optval, optlen); 4800 break; 4801 default: 4802 retval = -ENOPROTOOPT; 4803 break; 4804 } 4805 4806 release_sock(sk); 4807 4808 out_nounlock: 4809 return retval; 4810 } 4811 4812 /* API 3.1.6 connect() - UDP Style Syntax 4813 * 4814 * An application may use the connect() call in the UDP model to initiate an 4815 * association without sending data. 4816 * 4817 * The syntax is: 4818 * 4819 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4820 * 4821 * sd: the socket descriptor to have a new association added to. 4822 * 4823 * nam: the address structure (either struct sockaddr_in or struct 4824 * sockaddr_in6 defined in RFC2553 [7]). 4825 * 4826 * len: the size of the address. 4827 */ 4828 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4829 int addr_len, int flags) 4830 { 4831 struct sctp_af *af; 4832 int err = -EINVAL; 4833 4834 lock_sock(sk); 4835 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4836 addr, addr_len); 4837 4838 /* Validate addr_len before calling common connect/connectx routine. */ 4839 af = sctp_get_af_specific(addr->sa_family); 4840 if (af && addr_len >= af->sockaddr_len) 4841 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4842 4843 release_sock(sk); 4844 return err; 4845 } 4846 4847 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4848 int addr_len, int flags) 4849 { 4850 if (addr_len < sizeof(uaddr->sa_family)) 4851 return -EINVAL; 4852 4853 if (uaddr->sa_family == AF_UNSPEC) 4854 return -EOPNOTSUPP; 4855 4856 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4857 } 4858 4859 /* FIXME: Write comments. */ 4860 static int sctp_disconnect(struct sock *sk, int flags) 4861 { 4862 return -EOPNOTSUPP; /* STUB */ 4863 } 4864 4865 /* 4.1.4 accept() - TCP Style Syntax 4866 * 4867 * Applications use accept() call to remove an established SCTP 4868 * association from the accept queue of the endpoint. A new socket 4869 * descriptor will be returned from accept() to represent the newly 4870 * formed association. 4871 */ 4872 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4873 { 4874 struct sctp_sock *sp; 4875 struct sctp_endpoint *ep; 4876 struct sock *newsk = NULL; 4877 struct sctp_association *asoc; 4878 long timeo; 4879 int error = 0; 4880 4881 lock_sock(sk); 4882 4883 sp = sctp_sk(sk); 4884 ep = sp->ep; 4885 4886 if (!sctp_style(sk, TCP)) { 4887 error = -EOPNOTSUPP; 4888 goto out; 4889 } 4890 4891 if (!sctp_sstate(sk, LISTENING)) { 4892 error = -EINVAL; 4893 goto out; 4894 } 4895 4896 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4897 4898 error = sctp_wait_for_accept(sk, timeo); 4899 if (error) 4900 goto out; 4901 4902 /* We treat the list of associations on the endpoint as the accept 4903 * queue and pick the first association on the list. 4904 */ 4905 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4906 4907 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4908 if (!newsk) { 4909 error = -ENOMEM; 4910 goto out; 4911 } 4912 4913 /* Populate the fields of the newsk from the oldsk and migrate the 4914 * asoc to the newsk. 4915 */ 4916 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4917 if (error) { 4918 sk_common_release(newsk); 4919 newsk = NULL; 4920 } 4921 4922 out: 4923 release_sock(sk); 4924 *err = error; 4925 return newsk; 4926 } 4927 4928 /* The SCTP ioctl handler. */ 4929 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4930 { 4931 int rc = -ENOTCONN; 4932 4933 lock_sock(sk); 4934 4935 /* 4936 * SEQPACKET-style sockets in LISTENING state are valid, for 4937 * SCTP, so only discard TCP-style sockets in LISTENING state. 4938 */ 4939 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4940 goto out; 4941 4942 switch (cmd) { 4943 case SIOCINQ: { 4944 struct sk_buff *skb; 4945 unsigned int amount = 0; 4946 4947 skb = skb_peek(&sk->sk_receive_queue); 4948 if (skb != NULL) { 4949 /* 4950 * We will only return the amount of this packet since 4951 * that is all that will be read. 4952 */ 4953 amount = skb->len; 4954 } 4955 rc = put_user(amount, (int __user *)arg); 4956 break; 4957 } 4958 default: 4959 rc = -ENOIOCTLCMD; 4960 break; 4961 } 4962 out: 4963 release_sock(sk); 4964 return rc; 4965 } 4966 4967 /* This is the function which gets called during socket creation to 4968 * initialized the SCTP-specific portion of the sock. 4969 * The sock structure should already be zero-filled memory. 4970 */ 4971 static int sctp_init_sock(struct sock *sk) 4972 { 4973 struct net *net = sock_net(sk); 4974 struct sctp_sock *sp; 4975 4976 pr_debug("%s: sk:%p\n", __func__, sk); 4977 4978 sp = sctp_sk(sk); 4979 4980 /* Initialize the SCTP per socket area. */ 4981 switch (sk->sk_type) { 4982 case SOCK_SEQPACKET: 4983 sp->type = SCTP_SOCKET_UDP; 4984 break; 4985 case SOCK_STREAM: 4986 sp->type = SCTP_SOCKET_TCP; 4987 break; 4988 default: 4989 return -ESOCKTNOSUPPORT; 4990 } 4991 4992 sk->sk_gso_type = SKB_GSO_SCTP; 4993 4994 /* Initialize default send parameters. These parameters can be 4995 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4996 */ 4997 sp->default_stream = 0; 4998 sp->default_ppid = 0; 4999 sp->default_flags = 0; 5000 sp->default_context = 0; 5001 sp->default_timetolive = 0; 5002 5003 sp->default_rcv_context = 0; 5004 sp->max_burst = net->sctp.max_burst; 5005 5006 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5007 5008 /* Initialize default setup parameters. These parameters 5009 * can be modified with the SCTP_INITMSG socket option or 5010 * overridden by the SCTP_INIT CMSG. 5011 */ 5012 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5013 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5014 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5015 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5016 5017 /* Initialize default RTO related parameters. These parameters can 5018 * be modified for with the SCTP_RTOINFO socket option. 5019 */ 5020 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5021 sp->rtoinfo.srto_max = net->sctp.rto_max; 5022 sp->rtoinfo.srto_min = net->sctp.rto_min; 5023 5024 /* Initialize default association related parameters. These parameters 5025 * can be modified with the SCTP_ASSOCINFO socket option. 5026 */ 5027 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5028 sp->assocparams.sasoc_number_peer_destinations = 0; 5029 sp->assocparams.sasoc_peer_rwnd = 0; 5030 sp->assocparams.sasoc_local_rwnd = 0; 5031 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5032 5033 /* Initialize default event subscriptions. By default, all the 5034 * options are off. 5035 */ 5036 sp->subscribe = 0; 5037 5038 /* Default Peer Address Parameters. These defaults can 5039 * be modified via SCTP_PEER_ADDR_PARAMS 5040 */ 5041 sp->hbinterval = net->sctp.hb_interval; 5042 sp->pathmaxrxt = net->sctp.max_retrans_path; 5043 sp->pf_retrans = net->sctp.pf_retrans; 5044 sp->pathmtu = 0; /* allow default discovery */ 5045 sp->sackdelay = net->sctp.sack_timeout; 5046 sp->sackfreq = 2; 5047 sp->param_flags = SPP_HB_ENABLE | 5048 SPP_PMTUD_ENABLE | 5049 SPP_SACKDELAY_ENABLE; 5050 sp->default_ss = SCTP_SS_DEFAULT; 5051 5052 /* If enabled no SCTP message fragmentation will be performed. 5053 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5054 */ 5055 sp->disable_fragments = 0; 5056 5057 /* Enable Nagle algorithm by default. */ 5058 sp->nodelay = 0; 5059 5060 sp->recvrcvinfo = 0; 5061 sp->recvnxtinfo = 0; 5062 5063 /* Enable by default. */ 5064 sp->v4mapped = 1; 5065 5066 /* Auto-close idle associations after the configured 5067 * number of seconds. A value of 0 disables this 5068 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5069 * for UDP-style sockets only. 5070 */ 5071 sp->autoclose = 0; 5072 5073 /* User specified fragmentation limit. */ 5074 sp->user_frag = 0; 5075 5076 sp->adaptation_ind = 0; 5077 5078 sp->pf = sctp_get_pf_specific(sk->sk_family); 5079 5080 /* Control variables for partial data delivery. */ 5081 atomic_set(&sp->pd_mode, 0); 5082 skb_queue_head_init(&sp->pd_lobby); 5083 sp->frag_interleave = 0; 5084 5085 /* Create a per socket endpoint structure. Even if we 5086 * change the data structure relationships, this may still 5087 * be useful for storing pre-connect address information. 5088 */ 5089 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5090 if (!sp->ep) 5091 return -ENOMEM; 5092 5093 sp->hmac = NULL; 5094 5095 sk->sk_destruct = sctp_destruct_sock; 5096 5097 SCTP_DBG_OBJCNT_INC(sock); 5098 5099 local_bh_disable(); 5100 sk_sockets_allocated_inc(sk); 5101 sock_prot_inuse_add(net, sk->sk_prot, 1); 5102 5103 /* Nothing can fail after this block, otherwise 5104 * sctp_destroy_sock() will be called without addr_wq_lock held 5105 */ 5106 if (net->sctp.default_auto_asconf) { 5107 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5108 list_add_tail(&sp->auto_asconf_list, 5109 &net->sctp.auto_asconf_splist); 5110 sp->do_auto_asconf = 1; 5111 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5112 } else { 5113 sp->do_auto_asconf = 0; 5114 } 5115 5116 local_bh_enable(); 5117 5118 return 0; 5119 } 5120 5121 /* Cleanup any SCTP per socket resources. Must be called with 5122 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5123 */ 5124 static void sctp_destroy_sock(struct sock *sk) 5125 { 5126 struct sctp_sock *sp; 5127 5128 pr_debug("%s: sk:%p\n", __func__, sk); 5129 5130 /* Release our hold on the endpoint. */ 5131 sp = sctp_sk(sk); 5132 /* This could happen during socket init, thus we bail out 5133 * early, since the rest of the below is not setup either. 5134 */ 5135 if (sp->ep == NULL) 5136 return; 5137 5138 if (sp->do_auto_asconf) { 5139 sp->do_auto_asconf = 0; 5140 list_del(&sp->auto_asconf_list); 5141 } 5142 sctp_endpoint_free(sp->ep); 5143 local_bh_disable(); 5144 sk_sockets_allocated_dec(sk); 5145 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5146 local_bh_enable(); 5147 } 5148 5149 /* Triggered when there are no references on the socket anymore */ 5150 static void sctp_destruct_sock(struct sock *sk) 5151 { 5152 struct sctp_sock *sp = sctp_sk(sk); 5153 5154 /* Free up the HMAC transform. */ 5155 crypto_free_shash(sp->hmac); 5156 5157 inet_sock_destruct(sk); 5158 } 5159 5160 /* API 4.1.7 shutdown() - TCP Style Syntax 5161 * int shutdown(int socket, int how); 5162 * 5163 * sd - the socket descriptor of the association to be closed. 5164 * how - Specifies the type of shutdown. The values are 5165 * as follows: 5166 * SHUT_RD 5167 * Disables further receive operations. No SCTP 5168 * protocol action is taken. 5169 * SHUT_WR 5170 * Disables further send operations, and initiates 5171 * the SCTP shutdown sequence. 5172 * SHUT_RDWR 5173 * Disables further send and receive operations 5174 * and initiates the SCTP shutdown sequence. 5175 */ 5176 static void sctp_shutdown(struct sock *sk, int how) 5177 { 5178 struct net *net = sock_net(sk); 5179 struct sctp_endpoint *ep; 5180 5181 if (!sctp_style(sk, TCP)) 5182 return; 5183 5184 ep = sctp_sk(sk)->ep; 5185 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5186 struct sctp_association *asoc; 5187 5188 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5189 asoc = list_entry(ep->asocs.next, 5190 struct sctp_association, asocs); 5191 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5192 } 5193 } 5194 5195 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5196 struct sctp_info *info) 5197 { 5198 struct sctp_transport *prim; 5199 struct list_head *pos; 5200 int mask; 5201 5202 memset(info, 0, sizeof(*info)); 5203 if (!asoc) { 5204 struct sctp_sock *sp = sctp_sk(sk); 5205 5206 info->sctpi_s_autoclose = sp->autoclose; 5207 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5208 info->sctpi_s_pd_point = sp->pd_point; 5209 info->sctpi_s_nodelay = sp->nodelay; 5210 info->sctpi_s_disable_fragments = sp->disable_fragments; 5211 info->sctpi_s_v4mapped = sp->v4mapped; 5212 info->sctpi_s_frag_interleave = sp->frag_interleave; 5213 info->sctpi_s_type = sp->type; 5214 5215 return 0; 5216 } 5217 5218 info->sctpi_tag = asoc->c.my_vtag; 5219 info->sctpi_state = asoc->state; 5220 info->sctpi_rwnd = asoc->a_rwnd; 5221 info->sctpi_unackdata = asoc->unack_data; 5222 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5223 info->sctpi_instrms = asoc->stream.incnt; 5224 info->sctpi_outstrms = asoc->stream.outcnt; 5225 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5226 info->sctpi_inqueue++; 5227 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5228 info->sctpi_outqueue++; 5229 info->sctpi_overall_error = asoc->overall_error_count; 5230 info->sctpi_max_burst = asoc->max_burst; 5231 info->sctpi_maxseg = asoc->frag_point; 5232 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5233 info->sctpi_peer_tag = asoc->c.peer_vtag; 5234 5235 mask = asoc->peer.ecn_capable << 1; 5236 mask = (mask | asoc->peer.ipv4_address) << 1; 5237 mask = (mask | asoc->peer.ipv6_address) << 1; 5238 mask = (mask | asoc->peer.hostname_address) << 1; 5239 mask = (mask | asoc->peer.asconf_capable) << 1; 5240 mask = (mask | asoc->peer.prsctp_capable) << 1; 5241 mask = (mask | asoc->peer.auth_capable); 5242 info->sctpi_peer_capable = mask; 5243 mask = asoc->peer.sack_needed << 1; 5244 mask = (mask | asoc->peer.sack_generation) << 1; 5245 mask = (mask | asoc->peer.zero_window_announced); 5246 info->sctpi_peer_sack = mask; 5247 5248 info->sctpi_isacks = asoc->stats.isacks; 5249 info->sctpi_osacks = asoc->stats.osacks; 5250 info->sctpi_opackets = asoc->stats.opackets; 5251 info->sctpi_ipackets = asoc->stats.ipackets; 5252 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5253 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5254 info->sctpi_idupchunks = asoc->stats.idupchunks; 5255 info->sctpi_gapcnt = asoc->stats.gapcnt; 5256 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5257 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5258 info->sctpi_oodchunks = asoc->stats.oodchunks; 5259 info->sctpi_iodchunks = asoc->stats.iodchunks; 5260 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5261 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5262 5263 prim = asoc->peer.primary_path; 5264 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5265 info->sctpi_p_state = prim->state; 5266 info->sctpi_p_cwnd = prim->cwnd; 5267 info->sctpi_p_srtt = prim->srtt; 5268 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5269 info->sctpi_p_hbinterval = prim->hbinterval; 5270 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5271 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5272 info->sctpi_p_ssthresh = prim->ssthresh; 5273 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5274 info->sctpi_p_flight_size = prim->flight_size; 5275 info->sctpi_p_error = prim->error_count; 5276 5277 return 0; 5278 } 5279 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5280 5281 /* use callback to avoid exporting the core structure */ 5282 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5283 { 5284 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5285 5286 rhashtable_walk_start(iter); 5287 } 5288 5289 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5290 { 5291 rhashtable_walk_stop(iter); 5292 rhashtable_walk_exit(iter); 5293 } 5294 5295 struct sctp_transport *sctp_transport_get_next(struct net *net, 5296 struct rhashtable_iter *iter) 5297 { 5298 struct sctp_transport *t; 5299 5300 t = rhashtable_walk_next(iter); 5301 for (; t; t = rhashtable_walk_next(iter)) { 5302 if (IS_ERR(t)) { 5303 if (PTR_ERR(t) == -EAGAIN) 5304 continue; 5305 break; 5306 } 5307 5308 if (!sctp_transport_hold(t)) 5309 continue; 5310 5311 if (net_eq(sock_net(t->asoc->base.sk), net) && 5312 t->asoc->peer.primary_path == t) 5313 break; 5314 5315 sctp_transport_put(t); 5316 } 5317 5318 return t; 5319 } 5320 5321 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5322 struct rhashtable_iter *iter, 5323 int pos) 5324 { 5325 struct sctp_transport *t; 5326 5327 if (!pos) 5328 return SEQ_START_TOKEN; 5329 5330 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5331 if (!--pos) 5332 break; 5333 sctp_transport_put(t); 5334 } 5335 5336 return t; 5337 } 5338 5339 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5340 void *p) { 5341 int err = 0; 5342 int hash = 0; 5343 struct sctp_ep_common *epb; 5344 struct sctp_hashbucket *head; 5345 5346 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5347 hash++, head++) { 5348 read_lock_bh(&head->lock); 5349 sctp_for_each_hentry(epb, &head->chain) { 5350 err = cb(sctp_ep(epb), p); 5351 if (err) 5352 break; 5353 } 5354 read_unlock_bh(&head->lock); 5355 } 5356 5357 return err; 5358 } 5359 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5360 5361 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5362 struct net *net, 5363 const union sctp_addr *laddr, 5364 const union sctp_addr *paddr, void *p) 5365 { 5366 struct sctp_transport *transport; 5367 int err; 5368 5369 rcu_read_lock(); 5370 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5371 rcu_read_unlock(); 5372 if (!transport) 5373 return -ENOENT; 5374 5375 err = cb(transport, p); 5376 sctp_transport_put(transport); 5377 5378 return err; 5379 } 5380 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5381 5382 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5383 int (*cb_done)(struct sctp_transport *, void *), 5384 struct net *net, int *pos, void *p) { 5385 struct rhashtable_iter hti; 5386 struct sctp_transport *tsp; 5387 int ret; 5388 5389 again: 5390 ret = 0; 5391 sctp_transport_walk_start(&hti); 5392 5393 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5394 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5395 ret = cb(tsp, p); 5396 if (ret) 5397 break; 5398 (*pos)++; 5399 sctp_transport_put(tsp); 5400 } 5401 sctp_transport_walk_stop(&hti); 5402 5403 if (ret) { 5404 if (cb_done && !cb_done(tsp, p)) { 5405 (*pos)++; 5406 sctp_transport_put(tsp); 5407 goto again; 5408 } 5409 sctp_transport_put(tsp); 5410 } 5411 5412 return ret; 5413 } 5414 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5415 5416 /* 7.2.1 Association Status (SCTP_STATUS) 5417 5418 * Applications can retrieve current status information about an 5419 * association, including association state, peer receiver window size, 5420 * number of unacked data chunks, and number of data chunks pending 5421 * receipt. This information is read-only. 5422 */ 5423 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5424 char __user *optval, 5425 int __user *optlen) 5426 { 5427 struct sctp_status status; 5428 struct sctp_association *asoc = NULL; 5429 struct sctp_transport *transport; 5430 sctp_assoc_t associd; 5431 int retval = 0; 5432 5433 if (len < sizeof(status)) { 5434 retval = -EINVAL; 5435 goto out; 5436 } 5437 5438 len = sizeof(status); 5439 if (copy_from_user(&status, optval, len)) { 5440 retval = -EFAULT; 5441 goto out; 5442 } 5443 5444 associd = status.sstat_assoc_id; 5445 asoc = sctp_id2assoc(sk, associd); 5446 if (!asoc) { 5447 retval = -EINVAL; 5448 goto out; 5449 } 5450 5451 transport = asoc->peer.primary_path; 5452 5453 status.sstat_assoc_id = sctp_assoc2id(asoc); 5454 status.sstat_state = sctp_assoc_to_state(asoc); 5455 status.sstat_rwnd = asoc->peer.rwnd; 5456 status.sstat_unackdata = asoc->unack_data; 5457 5458 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5459 status.sstat_instrms = asoc->stream.incnt; 5460 status.sstat_outstrms = asoc->stream.outcnt; 5461 status.sstat_fragmentation_point = asoc->frag_point; 5462 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5463 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5464 transport->af_specific->sockaddr_len); 5465 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5466 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5467 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5468 status.sstat_primary.spinfo_state = transport->state; 5469 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5470 status.sstat_primary.spinfo_srtt = transport->srtt; 5471 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5472 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5473 5474 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5475 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5476 5477 if (put_user(len, optlen)) { 5478 retval = -EFAULT; 5479 goto out; 5480 } 5481 5482 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5483 __func__, len, status.sstat_state, status.sstat_rwnd, 5484 status.sstat_assoc_id); 5485 5486 if (copy_to_user(optval, &status, len)) { 5487 retval = -EFAULT; 5488 goto out; 5489 } 5490 5491 out: 5492 return retval; 5493 } 5494 5495 5496 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5497 * 5498 * Applications can retrieve information about a specific peer address 5499 * of an association, including its reachability state, congestion 5500 * window, and retransmission timer values. This information is 5501 * read-only. 5502 */ 5503 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5504 char __user *optval, 5505 int __user *optlen) 5506 { 5507 struct sctp_paddrinfo pinfo; 5508 struct sctp_transport *transport; 5509 int retval = 0; 5510 5511 if (len < sizeof(pinfo)) { 5512 retval = -EINVAL; 5513 goto out; 5514 } 5515 5516 len = sizeof(pinfo); 5517 if (copy_from_user(&pinfo, optval, len)) { 5518 retval = -EFAULT; 5519 goto out; 5520 } 5521 5522 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5523 pinfo.spinfo_assoc_id); 5524 if (!transport) 5525 return -EINVAL; 5526 5527 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5528 pinfo.spinfo_state = transport->state; 5529 pinfo.spinfo_cwnd = transport->cwnd; 5530 pinfo.spinfo_srtt = transport->srtt; 5531 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5532 pinfo.spinfo_mtu = transport->pathmtu; 5533 5534 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5535 pinfo.spinfo_state = SCTP_ACTIVE; 5536 5537 if (put_user(len, optlen)) { 5538 retval = -EFAULT; 5539 goto out; 5540 } 5541 5542 if (copy_to_user(optval, &pinfo, len)) { 5543 retval = -EFAULT; 5544 goto out; 5545 } 5546 5547 out: 5548 return retval; 5549 } 5550 5551 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5552 * 5553 * This option is a on/off flag. If enabled no SCTP message 5554 * fragmentation will be performed. Instead if a message being sent 5555 * exceeds the current PMTU size, the message will NOT be sent and 5556 * instead a error will be indicated to the user. 5557 */ 5558 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5559 char __user *optval, int __user *optlen) 5560 { 5561 int val; 5562 5563 if (len < sizeof(int)) 5564 return -EINVAL; 5565 5566 len = sizeof(int); 5567 val = (sctp_sk(sk)->disable_fragments == 1); 5568 if (put_user(len, optlen)) 5569 return -EFAULT; 5570 if (copy_to_user(optval, &val, len)) 5571 return -EFAULT; 5572 return 0; 5573 } 5574 5575 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5576 * 5577 * This socket option is used to specify various notifications and 5578 * ancillary data the user wishes to receive. 5579 */ 5580 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5581 int __user *optlen) 5582 { 5583 struct sctp_event_subscribe subscribe; 5584 __u8 *sn_type = (__u8 *)&subscribe; 5585 int i; 5586 5587 if (len == 0) 5588 return -EINVAL; 5589 if (len > sizeof(struct sctp_event_subscribe)) 5590 len = sizeof(struct sctp_event_subscribe); 5591 if (put_user(len, optlen)) 5592 return -EFAULT; 5593 5594 for (i = 0; i < len; i++) 5595 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5596 SCTP_SN_TYPE_BASE + i); 5597 5598 if (copy_to_user(optval, &subscribe, len)) 5599 return -EFAULT; 5600 5601 return 0; 5602 } 5603 5604 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5605 * 5606 * This socket option is applicable to the UDP-style socket only. When 5607 * set it will cause associations that are idle for more than the 5608 * specified number of seconds to automatically close. An association 5609 * being idle is defined an association that has NOT sent or received 5610 * user data. The special value of '0' indicates that no automatic 5611 * close of any associations should be performed. The option expects an 5612 * integer defining the number of seconds of idle time before an 5613 * association is closed. 5614 */ 5615 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5616 { 5617 /* Applicable to UDP-style socket only */ 5618 if (sctp_style(sk, TCP)) 5619 return -EOPNOTSUPP; 5620 if (len < sizeof(int)) 5621 return -EINVAL; 5622 len = sizeof(int); 5623 if (put_user(len, optlen)) 5624 return -EFAULT; 5625 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5626 return -EFAULT; 5627 return 0; 5628 } 5629 5630 /* Helper routine to branch off an association to a new socket. */ 5631 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5632 { 5633 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5634 struct sctp_sock *sp = sctp_sk(sk); 5635 struct socket *sock; 5636 int err = 0; 5637 5638 /* Do not peel off from one netns to another one. */ 5639 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5640 return -EINVAL; 5641 5642 if (!asoc) 5643 return -EINVAL; 5644 5645 /* An association cannot be branched off from an already peeled-off 5646 * socket, nor is this supported for tcp style sockets. 5647 */ 5648 if (!sctp_style(sk, UDP)) 5649 return -EINVAL; 5650 5651 /* Create a new socket. */ 5652 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5653 if (err < 0) 5654 return err; 5655 5656 sctp_copy_sock(sock->sk, sk, asoc); 5657 5658 /* Make peeled-off sockets more like 1-1 accepted sockets. 5659 * Set the daddr and initialize id to something more random and also 5660 * copy over any ip options. 5661 */ 5662 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5663 sp->pf->copy_ip_options(sk, sock->sk); 5664 5665 /* Populate the fields of the newsk from the oldsk and migrate the 5666 * asoc to the newsk. 5667 */ 5668 err = sctp_sock_migrate(sk, sock->sk, asoc, 5669 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5670 if (err) { 5671 sock_release(sock); 5672 sock = NULL; 5673 } 5674 5675 *sockp = sock; 5676 5677 return err; 5678 } 5679 EXPORT_SYMBOL(sctp_do_peeloff); 5680 5681 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5682 struct file **newfile, unsigned flags) 5683 { 5684 struct socket *newsock; 5685 int retval; 5686 5687 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5688 if (retval < 0) 5689 goto out; 5690 5691 /* Map the socket to an unused fd that can be returned to the user. */ 5692 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5693 if (retval < 0) { 5694 sock_release(newsock); 5695 goto out; 5696 } 5697 5698 *newfile = sock_alloc_file(newsock, 0, NULL); 5699 if (IS_ERR(*newfile)) { 5700 put_unused_fd(retval); 5701 retval = PTR_ERR(*newfile); 5702 *newfile = NULL; 5703 return retval; 5704 } 5705 5706 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5707 retval); 5708 5709 peeloff->sd = retval; 5710 5711 if (flags & SOCK_NONBLOCK) 5712 (*newfile)->f_flags |= O_NONBLOCK; 5713 out: 5714 return retval; 5715 } 5716 5717 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5718 { 5719 sctp_peeloff_arg_t peeloff; 5720 struct file *newfile = NULL; 5721 int retval = 0; 5722 5723 if (len < sizeof(sctp_peeloff_arg_t)) 5724 return -EINVAL; 5725 len = sizeof(sctp_peeloff_arg_t); 5726 if (copy_from_user(&peeloff, optval, len)) 5727 return -EFAULT; 5728 5729 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5730 if (retval < 0) 5731 goto out; 5732 5733 /* Return the fd mapped to the new socket. */ 5734 if (put_user(len, optlen)) { 5735 fput(newfile); 5736 put_unused_fd(retval); 5737 return -EFAULT; 5738 } 5739 5740 if (copy_to_user(optval, &peeloff, len)) { 5741 fput(newfile); 5742 put_unused_fd(retval); 5743 return -EFAULT; 5744 } 5745 fd_install(retval, newfile); 5746 out: 5747 return retval; 5748 } 5749 5750 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5751 char __user *optval, int __user *optlen) 5752 { 5753 sctp_peeloff_flags_arg_t peeloff; 5754 struct file *newfile = NULL; 5755 int retval = 0; 5756 5757 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5758 return -EINVAL; 5759 len = sizeof(sctp_peeloff_flags_arg_t); 5760 if (copy_from_user(&peeloff, optval, len)) 5761 return -EFAULT; 5762 5763 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5764 &newfile, peeloff.flags); 5765 if (retval < 0) 5766 goto out; 5767 5768 /* Return the fd mapped to the new socket. */ 5769 if (put_user(len, optlen)) { 5770 fput(newfile); 5771 put_unused_fd(retval); 5772 return -EFAULT; 5773 } 5774 5775 if (copy_to_user(optval, &peeloff, len)) { 5776 fput(newfile); 5777 put_unused_fd(retval); 5778 return -EFAULT; 5779 } 5780 fd_install(retval, newfile); 5781 out: 5782 return retval; 5783 } 5784 5785 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5786 * 5787 * Applications can enable or disable heartbeats for any peer address of 5788 * an association, modify an address's heartbeat interval, force a 5789 * heartbeat to be sent immediately, and adjust the address's maximum 5790 * number of retransmissions sent before an address is considered 5791 * unreachable. The following structure is used to access and modify an 5792 * address's parameters: 5793 * 5794 * struct sctp_paddrparams { 5795 * sctp_assoc_t spp_assoc_id; 5796 * struct sockaddr_storage spp_address; 5797 * uint32_t spp_hbinterval; 5798 * uint16_t spp_pathmaxrxt; 5799 * uint32_t spp_pathmtu; 5800 * uint32_t spp_sackdelay; 5801 * uint32_t spp_flags; 5802 * }; 5803 * 5804 * spp_assoc_id - (one-to-many style socket) This is filled in the 5805 * application, and identifies the association for 5806 * this query. 5807 * spp_address - This specifies which address is of interest. 5808 * spp_hbinterval - This contains the value of the heartbeat interval, 5809 * in milliseconds. If a value of zero 5810 * is present in this field then no changes are to 5811 * be made to this parameter. 5812 * spp_pathmaxrxt - This contains the maximum number of 5813 * retransmissions before this address shall be 5814 * considered unreachable. If a value of zero 5815 * is present in this field then no changes are to 5816 * be made to this parameter. 5817 * spp_pathmtu - When Path MTU discovery is disabled the value 5818 * specified here will be the "fixed" path mtu. 5819 * Note that if the spp_address field is empty 5820 * then all associations on this address will 5821 * have this fixed path mtu set upon them. 5822 * 5823 * spp_sackdelay - When delayed sack is enabled, this value specifies 5824 * the number of milliseconds that sacks will be delayed 5825 * for. This value will apply to all addresses of an 5826 * association if the spp_address field is empty. Note 5827 * also, that if delayed sack is enabled and this 5828 * value is set to 0, no change is made to the last 5829 * recorded delayed sack timer value. 5830 * 5831 * spp_flags - These flags are used to control various features 5832 * on an association. The flag field may contain 5833 * zero or more of the following options. 5834 * 5835 * SPP_HB_ENABLE - Enable heartbeats on the 5836 * specified address. Note that if the address 5837 * field is empty all addresses for the association 5838 * have heartbeats enabled upon them. 5839 * 5840 * SPP_HB_DISABLE - Disable heartbeats on the 5841 * speicifed address. Note that if the address 5842 * field is empty all addresses for the association 5843 * will have their heartbeats disabled. Note also 5844 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5845 * mutually exclusive, only one of these two should 5846 * be specified. Enabling both fields will have 5847 * undetermined results. 5848 * 5849 * SPP_HB_DEMAND - Request a user initiated heartbeat 5850 * to be made immediately. 5851 * 5852 * SPP_PMTUD_ENABLE - This field will enable PMTU 5853 * discovery upon the specified address. Note that 5854 * if the address feild is empty then all addresses 5855 * on the association are effected. 5856 * 5857 * SPP_PMTUD_DISABLE - This field will disable PMTU 5858 * discovery upon the specified address. Note that 5859 * if the address feild is empty then all addresses 5860 * on the association are effected. Not also that 5861 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5862 * exclusive. Enabling both will have undetermined 5863 * results. 5864 * 5865 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5866 * on delayed sack. The time specified in spp_sackdelay 5867 * is used to specify the sack delay for this address. Note 5868 * that if spp_address is empty then all addresses will 5869 * enable delayed sack and take on the sack delay 5870 * value specified in spp_sackdelay. 5871 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5872 * off delayed sack. If the spp_address field is blank then 5873 * delayed sack is disabled for the entire association. Note 5874 * also that this field is mutually exclusive to 5875 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5876 * results. 5877 * 5878 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5879 * setting of the IPV6 flow label value. The value is 5880 * contained in the spp_ipv6_flowlabel field. 5881 * Upon retrieval, this flag will be set to indicate that 5882 * the spp_ipv6_flowlabel field has a valid value returned. 5883 * If a specific destination address is set (in the 5884 * spp_address field), then the value returned is that of 5885 * the address. If just an association is specified (and 5886 * no address), then the association's default flow label 5887 * is returned. If neither an association nor a destination 5888 * is specified, then the socket's default flow label is 5889 * returned. For non-IPv6 sockets, this flag will be left 5890 * cleared. 5891 * 5892 * SPP_DSCP: Setting this flag enables the setting of the 5893 * Differentiated Services Code Point (DSCP) value 5894 * associated with either the association or a specific 5895 * address. The value is obtained in the spp_dscp field. 5896 * Upon retrieval, this flag will be set to indicate that 5897 * the spp_dscp field has a valid value returned. If a 5898 * specific destination address is set when called (in the 5899 * spp_address field), then that specific destination 5900 * address's DSCP value is returned. If just an association 5901 * is specified, then the association's default DSCP is 5902 * returned. If neither an association nor a destination is 5903 * specified, then the socket's default DSCP is returned. 5904 * 5905 * spp_ipv6_flowlabel 5906 * - This field is used in conjunction with the 5907 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5908 * The 20 least significant bits are used for the flow 5909 * label. This setting has precedence over any IPv6-layer 5910 * setting. 5911 * 5912 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5913 * and contains the DSCP. The 6 most significant bits are 5914 * used for the DSCP. This setting has precedence over any 5915 * IPv4- or IPv6- layer setting. 5916 */ 5917 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5918 char __user *optval, int __user *optlen) 5919 { 5920 struct sctp_paddrparams params; 5921 struct sctp_transport *trans = NULL; 5922 struct sctp_association *asoc = NULL; 5923 struct sctp_sock *sp = sctp_sk(sk); 5924 5925 if (len >= sizeof(params)) 5926 len = sizeof(params); 5927 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5928 spp_ipv6_flowlabel), 4)) 5929 len = ALIGN(offsetof(struct sctp_paddrparams, 5930 spp_ipv6_flowlabel), 4); 5931 else 5932 return -EINVAL; 5933 5934 if (copy_from_user(¶ms, optval, len)) 5935 return -EFAULT; 5936 5937 /* If an address other than INADDR_ANY is specified, and 5938 * no transport is found, then the request is invalid. 5939 */ 5940 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5941 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5942 params.spp_assoc_id); 5943 if (!trans) { 5944 pr_debug("%s: failed no transport\n", __func__); 5945 return -EINVAL; 5946 } 5947 } 5948 5949 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5950 * socket is a one to many style socket, and an association 5951 * was not found, then the id was invalid. 5952 */ 5953 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5954 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5955 sctp_style(sk, UDP)) { 5956 pr_debug("%s: failed no association\n", __func__); 5957 return -EINVAL; 5958 } 5959 5960 if (trans) { 5961 /* Fetch transport values. */ 5962 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5963 params.spp_pathmtu = trans->pathmtu; 5964 params.spp_pathmaxrxt = trans->pathmaxrxt; 5965 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5966 5967 /*draft-11 doesn't say what to return in spp_flags*/ 5968 params.spp_flags = trans->param_flags; 5969 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5970 params.spp_ipv6_flowlabel = trans->flowlabel & 5971 SCTP_FLOWLABEL_VAL_MASK; 5972 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5973 } 5974 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5975 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5976 params.spp_flags |= SPP_DSCP; 5977 } 5978 } else if (asoc) { 5979 /* Fetch association values. */ 5980 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5981 params.spp_pathmtu = asoc->pathmtu; 5982 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5983 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5984 5985 /*draft-11 doesn't say what to return in spp_flags*/ 5986 params.spp_flags = asoc->param_flags; 5987 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5988 params.spp_ipv6_flowlabel = asoc->flowlabel & 5989 SCTP_FLOWLABEL_VAL_MASK; 5990 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5991 } 5992 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5993 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5994 params.spp_flags |= SPP_DSCP; 5995 } 5996 } else { 5997 /* Fetch socket values. */ 5998 params.spp_hbinterval = sp->hbinterval; 5999 params.spp_pathmtu = sp->pathmtu; 6000 params.spp_sackdelay = sp->sackdelay; 6001 params.spp_pathmaxrxt = sp->pathmaxrxt; 6002 6003 /*draft-11 doesn't say what to return in spp_flags*/ 6004 params.spp_flags = sp->param_flags; 6005 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6006 params.spp_ipv6_flowlabel = sp->flowlabel & 6007 SCTP_FLOWLABEL_VAL_MASK; 6008 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6009 } 6010 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6011 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6012 params.spp_flags |= SPP_DSCP; 6013 } 6014 } 6015 6016 if (copy_to_user(optval, ¶ms, len)) 6017 return -EFAULT; 6018 6019 if (put_user(len, optlen)) 6020 return -EFAULT; 6021 6022 return 0; 6023 } 6024 6025 /* 6026 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6027 * 6028 * This option will effect the way delayed acks are performed. This 6029 * option allows you to get or set the delayed ack time, in 6030 * milliseconds. It also allows changing the delayed ack frequency. 6031 * Changing the frequency to 1 disables the delayed sack algorithm. If 6032 * the assoc_id is 0, then this sets or gets the endpoints default 6033 * values. If the assoc_id field is non-zero, then the set or get 6034 * effects the specified association for the one to many model (the 6035 * assoc_id field is ignored by the one to one model). Note that if 6036 * sack_delay or sack_freq are 0 when setting this option, then the 6037 * current values will remain unchanged. 6038 * 6039 * struct sctp_sack_info { 6040 * sctp_assoc_t sack_assoc_id; 6041 * uint32_t sack_delay; 6042 * uint32_t sack_freq; 6043 * }; 6044 * 6045 * sack_assoc_id - This parameter, indicates which association the user 6046 * is performing an action upon. Note that if this field's value is 6047 * zero then the endpoints default value is changed (effecting future 6048 * associations only). 6049 * 6050 * sack_delay - This parameter contains the number of milliseconds that 6051 * the user is requesting the delayed ACK timer be set to. Note that 6052 * this value is defined in the standard to be between 200 and 500 6053 * milliseconds. 6054 * 6055 * sack_freq - This parameter contains the number of packets that must 6056 * be received before a sack is sent without waiting for the delay 6057 * timer to expire. The default value for this is 2, setting this 6058 * value to 1 will disable the delayed sack algorithm. 6059 */ 6060 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6061 char __user *optval, 6062 int __user *optlen) 6063 { 6064 struct sctp_sack_info params; 6065 struct sctp_association *asoc = NULL; 6066 struct sctp_sock *sp = sctp_sk(sk); 6067 6068 if (len >= sizeof(struct sctp_sack_info)) { 6069 len = sizeof(struct sctp_sack_info); 6070 6071 if (copy_from_user(¶ms, optval, len)) 6072 return -EFAULT; 6073 } else if (len == sizeof(struct sctp_assoc_value)) { 6074 pr_warn_ratelimited(DEPRECATED 6075 "%s (pid %d) " 6076 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6077 "Use struct sctp_sack_info instead\n", 6078 current->comm, task_pid_nr(current)); 6079 if (copy_from_user(¶ms, optval, len)) 6080 return -EFAULT; 6081 } else 6082 return -EINVAL; 6083 6084 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6085 * socket is a one to many style socket, and an association 6086 * was not found, then the id was invalid. 6087 */ 6088 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6089 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6090 sctp_style(sk, UDP)) 6091 return -EINVAL; 6092 6093 if (asoc) { 6094 /* Fetch association values. */ 6095 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6096 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6097 params.sack_freq = asoc->sackfreq; 6098 6099 } else { 6100 params.sack_delay = 0; 6101 params.sack_freq = 1; 6102 } 6103 } else { 6104 /* Fetch socket values. */ 6105 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6106 params.sack_delay = sp->sackdelay; 6107 params.sack_freq = sp->sackfreq; 6108 } else { 6109 params.sack_delay = 0; 6110 params.sack_freq = 1; 6111 } 6112 } 6113 6114 if (copy_to_user(optval, ¶ms, len)) 6115 return -EFAULT; 6116 6117 if (put_user(len, optlen)) 6118 return -EFAULT; 6119 6120 return 0; 6121 } 6122 6123 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6124 * 6125 * Applications can specify protocol parameters for the default association 6126 * initialization. The option name argument to setsockopt() and getsockopt() 6127 * is SCTP_INITMSG. 6128 * 6129 * Setting initialization parameters is effective only on an unconnected 6130 * socket (for UDP-style sockets only future associations are effected 6131 * by the change). With TCP-style sockets, this option is inherited by 6132 * sockets derived from a listener socket. 6133 */ 6134 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6135 { 6136 if (len < sizeof(struct sctp_initmsg)) 6137 return -EINVAL; 6138 len = sizeof(struct sctp_initmsg); 6139 if (put_user(len, optlen)) 6140 return -EFAULT; 6141 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6142 return -EFAULT; 6143 return 0; 6144 } 6145 6146 6147 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6148 char __user *optval, int __user *optlen) 6149 { 6150 struct sctp_association *asoc; 6151 int cnt = 0; 6152 struct sctp_getaddrs getaddrs; 6153 struct sctp_transport *from; 6154 void __user *to; 6155 union sctp_addr temp; 6156 struct sctp_sock *sp = sctp_sk(sk); 6157 int addrlen; 6158 size_t space_left; 6159 int bytes_copied; 6160 6161 if (len < sizeof(struct sctp_getaddrs)) 6162 return -EINVAL; 6163 6164 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6165 return -EFAULT; 6166 6167 /* For UDP-style sockets, id specifies the association to query. */ 6168 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6169 if (!asoc) 6170 return -EINVAL; 6171 6172 to = optval + offsetof(struct sctp_getaddrs, addrs); 6173 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6174 6175 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6176 transports) { 6177 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6178 addrlen = sctp_get_pf_specific(sk->sk_family) 6179 ->addr_to_user(sp, &temp); 6180 if (space_left < addrlen) 6181 return -ENOMEM; 6182 if (copy_to_user(to, &temp, addrlen)) 6183 return -EFAULT; 6184 to += addrlen; 6185 cnt++; 6186 space_left -= addrlen; 6187 } 6188 6189 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6190 return -EFAULT; 6191 bytes_copied = ((char __user *)to) - optval; 6192 if (put_user(bytes_copied, optlen)) 6193 return -EFAULT; 6194 6195 return 0; 6196 } 6197 6198 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6199 size_t space_left, int *bytes_copied) 6200 { 6201 struct sctp_sockaddr_entry *addr; 6202 union sctp_addr temp; 6203 int cnt = 0; 6204 int addrlen; 6205 struct net *net = sock_net(sk); 6206 6207 rcu_read_lock(); 6208 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6209 if (!addr->valid) 6210 continue; 6211 6212 if ((PF_INET == sk->sk_family) && 6213 (AF_INET6 == addr->a.sa.sa_family)) 6214 continue; 6215 if ((PF_INET6 == sk->sk_family) && 6216 inet_v6_ipv6only(sk) && 6217 (AF_INET == addr->a.sa.sa_family)) 6218 continue; 6219 memcpy(&temp, &addr->a, sizeof(temp)); 6220 if (!temp.v4.sin_port) 6221 temp.v4.sin_port = htons(port); 6222 6223 addrlen = sctp_get_pf_specific(sk->sk_family) 6224 ->addr_to_user(sctp_sk(sk), &temp); 6225 6226 if (space_left < addrlen) { 6227 cnt = -ENOMEM; 6228 break; 6229 } 6230 memcpy(to, &temp, addrlen); 6231 6232 to += addrlen; 6233 cnt++; 6234 space_left -= addrlen; 6235 *bytes_copied += addrlen; 6236 } 6237 rcu_read_unlock(); 6238 6239 return cnt; 6240 } 6241 6242 6243 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6244 char __user *optval, int __user *optlen) 6245 { 6246 struct sctp_bind_addr *bp; 6247 struct sctp_association *asoc; 6248 int cnt = 0; 6249 struct sctp_getaddrs getaddrs; 6250 struct sctp_sockaddr_entry *addr; 6251 void __user *to; 6252 union sctp_addr temp; 6253 struct sctp_sock *sp = sctp_sk(sk); 6254 int addrlen; 6255 int err = 0; 6256 size_t space_left; 6257 int bytes_copied = 0; 6258 void *addrs; 6259 void *buf; 6260 6261 if (len < sizeof(struct sctp_getaddrs)) 6262 return -EINVAL; 6263 6264 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6265 return -EFAULT; 6266 6267 /* 6268 * For UDP-style sockets, id specifies the association to query. 6269 * If the id field is set to the value '0' then the locally bound 6270 * addresses are returned without regard to any particular 6271 * association. 6272 */ 6273 if (0 == getaddrs.assoc_id) { 6274 bp = &sctp_sk(sk)->ep->base.bind_addr; 6275 } else { 6276 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6277 if (!asoc) 6278 return -EINVAL; 6279 bp = &asoc->base.bind_addr; 6280 } 6281 6282 to = optval + offsetof(struct sctp_getaddrs, addrs); 6283 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6284 6285 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6286 if (!addrs) 6287 return -ENOMEM; 6288 6289 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6290 * addresses from the global local address list. 6291 */ 6292 if (sctp_list_single_entry(&bp->address_list)) { 6293 addr = list_entry(bp->address_list.next, 6294 struct sctp_sockaddr_entry, list); 6295 if (sctp_is_any(sk, &addr->a)) { 6296 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6297 space_left, &bytes_copied); 6298 if (cnt < 0) { 6299 err = cnt; 6300 goto out; 6301 } 6302 goto copy_getaddrs; 6303 } 6304 } 6305 6306 buf = addrs; 6307 /* Protection on the bound address list is not needed since 6308 * in the socket option context we hold a socket lock and 6309 * thus the bound address list can't change. 6310 */ 6311 list_for_each_entry(addr, &bp->address_list, list) { 6312 memcpy(&temp, &addr->a, sizeof(temp)); 6313 addrlen = sctp_get_pf_specific(sk->sk_family) 6314 ->addr_to_user(sp, &temp); 6315 if (space_left < addrlen) { 6316 err = -ENOMEM; /*fixme: right error?*/ 6317 goto out; 6318 } 6319 memcpy(buf, &temp, addrlen); 6320 buf += addrlen; 6321 bytes_copied += addrlen; 6322 cnt++; 6323 space_left -= addrlen; 6324 } 6325 6326 copy_getaddrs: 6327 if (copy_to_user(to, addrs, bytes_copied)) { 6328 err = -EFAULT; 6329 goto out; 6330 } 6331 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6332 err = -EFAULT; 6333 goto out; 6334 } 6335 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6336 * but we can't change it anymore. 6337 */ 6338 if (put_user(bytes_copied, optlen)) 6339 err = -EFAULT; 6340 out: 6341 kfree(addrs); 6342 return err; 6343 } 6344 6345 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6346 * 6347 * Requests that the local SCTP stack use the enclosed peer address as 6348 * the association primary. The enclosed address must be one of the 6349 * association peer's addresses. 6350 */ 6351 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6352 char __user *optval, int __user *optlen) 6353 { 6354 struct sctp_prim prim; 6355 struct sctp_association *asoc; 6356 struct sctp_sock *sp = sctp_sk(sk); 6357 6358 if (len < sizeof(struct sctp_prim)) 6359 return -EINVAL; 6360 6361 len = sizeof(struct sctp_prim); 6362 6363 if (copy_from_user(&prim, optval, len)) 6364 return -EFAULT; 6365 6366 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6367 if (!asoc) 6368 return -EINVAL; 6369 6370 if (!asoc->peer.primary_path) 6371 return -ENOTCONN; 6372 6373 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6374 asoc->peer.primary_path->af_specific->sockaddr_len); 6375 6376 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6377 (union sctp_addr *)&prim.ssp_addr); 6378 6379 if (put_user(len, optlen)) 6380 return -EFAULT; 6381 if (copy_to_user(optval, &prim, len)) 6382 return -EFAULT; 6383 6384 return 0; 6385 } 6386 6387 /* 6388 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6389 * 6390 * Requests that the local endpoint set the specified Adaptation Layer 6391 * Indication parameter for all future INIT and INIT-ACK exchanges. 6392 */ 6393 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6394 char __user *optval, int __user *optlen) 6395 { 6396 struct sctp_setadaptation adaptation; 6397 6398 if (len < sizeof(struct sctp_setadaptation)) 6399 return -EINVAL; 6400 6401 len = sizeof(struct sctp_setadaptation); 6402 6403 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6404 6405 if (put_user(len, optlen)) 6406 return -EFAULT; 6407 if (copy_to_user(optval, &adaptation, len)) 6408 return -EFAULT; 6409 6410 return 0; 6411 } 6412 6413 /* 6414 * 6415 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6416 * 6417 * Applications that wish to use the sendto() system call may wish to 6418 * specify a default set of parameters that would normally be supplied 6419 * through the inclusion of ancillary data. This socket option allows 6420 * such an application to set the default sctp_sndrcvinfo structure. 6421 6422 6423 * The application that wishes to use this socket option simply passes 6424 * in to this call the sctp_sndrcvinfo structure defined in Section 6425 * 5.2.2) The input parameters accepted by this call include 6426 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6427 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6428 * to this call if the caller is using the UDP model. 6429 * 6430 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6431 */ 6432 static int sctp_getsockopt_default_send_param(struct sock *sk, 6433 int len, char __user *optval, 6434 int __user *optlen) 6435 { 6436 struct sctp_sock *sp = sctp_sk(sk); 6437 struct sctp_association *asoc; 6438 struct sctp_sndrcvinfo info; 6439 6440 if (len < sizeof(info)) 6441 return -EINVAL; 6442 6443 len = sizeof(info); 6444 6445 if (copy_from_user(&info, optval, len)) 6446 return -EFAULT; 6447 6448 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6449 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6450 sctp_style(sk, UDP)) 6451 return -EINVAL; 6452 6453 if (asoc) { 6454 info.sinfo_stream = asoc->default_stream; 6455 info.sinfo_flags = asoc->default_flags; 6456 info.sinfo_ppid = asoc->default_ppid; 6457 info.sinfo_context = asoc->default_context; 6458 info.sinfo_timetolive = asoc->default_timetolive; 6459 } else { 6460 info.sinfo_stream = sp->default_stream; 6461 info.sinfo_flags = sp->default_flags; 6462 info.sinfo_ppid = sp->default_ppid; 6463 info.sinfo_context = sp->default_context; 6464 info.sinfo_timetolive = sp->default_timetolive; 6465 } 6466 6467 if (put_user(len, optlen)) 6468 return -EFAULT; 6469 if (copy_to_user(optval, &info, len)) 6470 return -EFAULT; 6471 6472 return 0; 6473 } 6474 6475 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6476 * (SCTP_DEFAULT_SNDINFO) 6477 */ 6478 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6479 char __user *optval, 6480 int __user *optlen) 6481 { 6482 struct sctp_sock *sp = sctp_sk(sk); 6483 struct sctp_association *asoc; 6484 struct sctp_sndinfo info; 6485 6486 if (len < sizeof(info)) 6487 return -EINVAL; 6488 6489 len = sizeof(info); 6490 6491 if (copy_from_user(&info, optval, len)) 6492 return -EFAULT; 6493 6494 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6495 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6496 sctp_style(sk, UDP)) 6497 return -EINVAL; 6498 6499 if (asoc) { 6500 info.snd_sid = asoc->default_stream; 6501 info.snd_flags = asoc->default_flags; 6502 info.snd_ppid = asoc->default_ppid; 6503 info.snd_context = asoc->default_context; 6504 } else { 6505 info.snd_sid = sp->default_stream; 6506 info.snd_flags = sp->default_flags; 6507 info.snd_ppid = sp->default_ppid; 6508 info.snd_context = sp->default_context; 6509 } 6510 6511 if (put_user(len, optlen)) 6512 return -EFAULT; 6513 if (copy_to_user(optval, &info, len)) 6514 return -EFAULT; 6515 6516 return 0; 6517 } 6518 6519 /* 6520 * 6521 * 7.1.5 SCTP_NODELAY 6522 * 6523 * Turn on/off any Nagle-like algorithm. This means that packets are 6524 * generally sent as soon as possible and no unnecessary delays are 6525 * introduced, at the cost of more packets in the network. Expects an 6526 * integer boolean flag. 6527 */ 6528 6529 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6530 char __user *optval, int __user *optlen) 6531 { 6532 int val; 6533 6534 if (len < sizeof(int)) 6535 return -EINVAL; 6536 6537 len = sizeof(int); 6538 val = (sctp_sk(sk)->nodelay == 1); 6539 if (put_user(len, optlen)) 6540 return -EFAULT; 6541 if (copy_to_user(optval, &val, len)) 6542 return -EFAULT; 6543 return 0; 6544 } 6545 6546 /* 6547 * 6548 * 7.1.1 SCTP_RTOINFO 6549 * 6550 * The protocol parameters used to initialize and bound retransmission 6551 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6552 * and modify these parameters. 6553 * All parameters are time values, in milliseconds. A value of 0, when 6554 * modifying the parameters, indicates that the current value should not 6555 * be changed. 6556 * 6557 */ 6558 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6559 char __user *optval, 6560 int __user *optlen) { 6561 struct sctp_rtoinfo rtoinfo; 6562 struct sctp_association *asoc; 6563 6564 if (len < sizeof (struct sctp_rtoinfo)) 6565 return -EINVAL; 6566 6567 len = sizeof(struct sctp_rtoinfo); 6568 6569 if (copy_from_user(&rtoinfo, optval, len)) 6570 return -EFAULT; 6571 6572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6573 6574 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6575 sctp_style(sk, UDP)) 6576 return -EINVAL; 6577 6578 /* Values corresponding to the specific association. */ 6579 if (asoc) { 6580 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6581 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6582 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6583 } else { 6584 /* Values corresponding to the endpoint. */ 6585 struct sctp_sock *sp = sctp_sk(sk); 6586 6587 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6588 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6589 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6590 } 6591 6592 if (put_user(len, optlen)) 6593 return -EFAULT; 6594 6595 if (copy_to_user(optval, &rtoinfo, len)) 6596 return -EFAULT; 6597 6598 return 0; 6599 } 6600 6601 /* 6602 * 6603 * 7.1.2 SCTP_ASSOCINFO 6604 * 6605 * This option is used to tune the maximum retransmission attempts 6606 * of the association. 6607 * Returns an error if the new association retransmission value is 6608 * greater than the sum of the retransmission value of the peer. 6609 * See [SCTP] for more information. 6610 * 6611 */ 6612 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6613 char __user *optval, 6614 int __user *optlen) 6615 { 6616 6617 struct sctp_assocparams assocparams; 6618 struct sctp_association *asoc; 6619 struct list_head *pos; 6620 int cnt = 0; 6621 6622 if (len < sizeof (struct sctp_assocparams)) 6623 return -EINVAL; 6624 6625 len = sizeof(struct sctp_assocparams); 6626 6627 if (copy_from_user(&assocparams, optval, len)) 6628 return -EFAULT; 6629 6630 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6631 6632 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6633 sctp_style(sk, UDP)) 6634 return -EINVAL; 6635 6636 /* Values correspoinding to the specific association */ 6637 if (asoc) { 6638 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6639 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6640 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6641 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6642 6643 list_for_each(pos, &asoc->peer.transport_addr_list) { 6644 cnt++; 6645 } 6646 6647 assocparams.sasoc_number_peer_destinations = cnt; 6648 } else { 6649 /* Values corresponding to the endpoint */ 6650 struct sctp_sock *sp = sctp_sk(sk); 6651 6652 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6653 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6654 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6655 assocparams.sasoc_cookie_life = 6656 sp->assocparams.sasoc_cookie_life; 6657 assocparams.sasoc_number_peer_destinations = 6658 sp->assocparams. 6659 sasoc_number_peer_destinations; 6660 } 6661 6662 if (put_user(len, optlen)) 6663 return -EFAULT; 6664 6665 if (copy_to_user(optval, &assocparams, len)) 6666 return -EFAULT; 6667 6668 return 0; 6669 } 6670 6671 /* 6672 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6673 * 6674 * This socket option is a boolean flag which turns on or off mapped V4 6675 * addresses. If this option is turned on and the socket is type 6676 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6677 * If this option is turned off, then no mapping will be done of V4 6678 * addresses and a user will receive both PF_INET6 and PF_INET type 6679 * addresses on the socket. 6680 */ 6681 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6682 char __user *optval, int __user *optlen) 6683 { 6684 int val; 6685 struct sctp_sock *sp = sctp_sk(sk); 6686 6687 if (len < sizeof(int)) 6688 return -EINVAL; 6689 6690 len = sizeof(int); 6691 val = sp->v4mapped; 6692 if (put_user(len, optlen)) 6693 return -EFAULT; 6694 if (copy_to_user(optval, &val, len)) 6695 return -EFAULT; 6696 6697 return 0; 6698 } 6699 6700 /* 6701 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6702 * (chapter and verse is quoted at sctp_setsockopt_context()) 6703 */ 6704 static int sctp_getsockopt_context(struct sock *sk, int len, 6705 char __user *optval, int __user *optlen) 6706 { 6707 struct sctp_assoc_value params; 6708 struct sctp_association *asoc; 6709 6710 if (len < sizeof(struct sctp_assoc_value)) 6711 return -EINVAL; 6712 6713 len = sizeof(struct sctp_assoc_value); 6714 6715 if (copy_from_user(¶ms, optval, len)) 6716 return -EFAULT; 6717 6718 asoc = sctp_id2assoc(sk, params.assoc_id); 6719 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6720 sctp_style(sk, UDP)) 6721 return -EINVAL; 6722 6723 params.assoc_value = asoc ? asoc->default_rcv_context 6724 : sctp_sk(sk)->default_rcv_context; 6725 6726 if (put_user(len, optlen)) 6727 return -EFAULT; 6728 if (copy_to_user(optval, ¶ms, len)) 6729 return -EFAULT; 6730 6731 return 0; 6732 } 6733 6734 /* 6735 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6736 * This option will get or set the maximum size to put in any outgoing 6737 * SCTP DATA chunk. If a message is larger than this size it will be 6738 * fragmented by SCTP into the specified size. Note that the underlying 6739 * SCTP implementation may fragment into smaller sized chunks when the 6740 * PMTU of the underlying association is smaller than the value set by 6741 * the user. The default value for this option is '0' which indicates 6742 * the user is NOT limiting fragmentation and only the PMTU will effect 6743 * SCTP's choice of DATA chunk size. Note also that values set larger 6744 * than the maximum size of an IP datagram will effectively let SCTP 6745 * control fragmentation (i.e. the same as setting this option to 0). 6746 * 6747 * The following structure is used to access and modify this parameter: 6748 * 6749 * struct sctp_assoc_value { 6750 * sctp_assoc_t assoc_id; 6751 * uint32_t assoc_value; 6752 * }; 6753 * 6754 * assoc_id: This parameter is ignored for one-to-one style sockets. 6755 * For one-to-many style sockets this parameter indicates which 6756 * association the user is performing an action upon. Note that if 6757 * this field's value is zero then the endpoints default value is 6758 * changed (effecting future associations only). 6759 * assoc_value: This parameter specifies the maximum size in bytes. 6760 */ 6761 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6762 char __user *optval, int __user *optlen) 6763 { 6764 struct sctp_assoc_value params; 6765 struct sctp_association *asoc; 6766 6767 if (len == sizeof(int)) { 6768 pr_warn_ratelimited(DEPRECATED 6769 "%s (pid %d) " 6770 "Use of int in maxseg socket option.\n" 6771 "Use struct sctp_assoc_value instead\n", 6772 current->comm, task_pid_nr(current)); 6773 params.assoc_id = SCTP_FUTURE_ASSOC; 6774 } else if (len >= sizeof(struct sctp_assoc_value)) { 6775 len = sizeof(struct sctp_assoc_value); 6776 if (copy_from_user(¶ms, optval, len)) 6777 return -EFAULT; 6778 } else 6779 return -EINVAL; 6780 6781 asoc = sctp_id2assoc(sk, params.assoc_id); 6782 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6783 sctp_style(sk, UDP)) 6784 return -EINVAL; 6785 6786 if (asoc) 6787 params.assoc_value = asoc->frag_point; 6788 else 6789 params.assoc_value = sctp_sk(sk)->user_frag; 6790 6791 if (put_user(len, optlen)) 6792 return -EFAULT; 6793 if (len == sizeof(int)) { 6794 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6795 return -EFAULT; 6796 } else { 6797 if (copy_to_user(optval, ¶ms, len)) 6798 return -EFAULT; 6799 } 6800 6801 return 0; 6802 } 6803 6804 /* 6805 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6806 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6807 */ 6808 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6809 char __user *optval, int __user *optlen) 6810 { 6811 int val; 6812 6813 if (len < sizeof(int)) 6814 return -EINVAL; 6815 6816 len = sizeof(int); 6817 6818 val = sctp_sk(sk)->frag_interleave; 6819 if (put_user(len, optlen)) 6820 return -EFAULT; 6821 if (copy_to_user(optval, &val, len)) 6822 return -EFAULT; 6823 6824 return 0; 6825 } 6826 6827 /* 6828 * 7.1.25. Set or Get the sctp partial delivery point 6829 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6830 */ 6831 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6832 char __user *optval, 6833 int __user *optlen) 6834 { 6835 u32 val; 6836 6837 if (len < sizeof(u32)) 6838 return -EINVAL; 6839 6840 len = sizeof(u32); 6841 6842 val = sctp_sk(sk)->pd_point; 6843 if (put_user(len, optlen)) 6844 return -EFAULT; 6845 if (copy_to_user(optval, &val, len)) 6846 return -EFAULT; 6847 6848 return 0; 6849 } 6850 6851 /* 6852 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6853 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6854 */ 6855 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6856 char __user *optval, 6857 int __user *optlen) 6858 { 6859 struct sctp_assoc_value params; 6860 struct sctp_association *asoc; 6861 6862 if (len == sizeof(int)) { 6863 pr_warn_ratelimited(DEPRECATED 6864 "%s (pid %d) " 6865 "Use of int in max_burst socket option.\n" 6866 "Use struct sctp_assoc_value instead\n", 6867 current->comm, task_pid_nr(current)); 6868 params.assoc_id = SCTP_FUTURE_ASSOC; 6869 } else if (len >= sizeof(struct sctp_assoc_value)) { 6870 len = sizeof(struct sctp_assoc_value); 6871 if (copy_from_user(¶ms, optval, len)) 6872 return -EFAULT; 6873 } else 6874 return -EINVAL; 6875 6876 asoc = sctp_id2assoc(sk, params.assoc_id); 6877 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6878 sctp_style(sk, UDP)) 6879 return -EINVAL; 6880 6881 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6882 6883 if (len == sizeof(int)) { 6884 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6885 return -EFAULT; 6886 } else { 6887 if (copy_to_user(optval, ¶ms, len)) 6888 return -EFAULT; 6889 } 6890 6891 return 0; 6892 6893 } 6894 6895 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6896 char __user *optval, int __user *optlen) 6897 { 6898 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6899 struct sctp_hmacalgo __user *p = (void __user *)optval; 6900 struct sctp_hmac_algo_param *hmacs; 6901 __u16 data_len = 0; 6902 u32 num_idents; 6903 int i; 6904 6905 if (!ep->auth_enable) 6906 return -EACCES; 6907 6908 hmacs = ep->auth_hmacs_list; 6909 data_len = ntohs(hmacs->param_hdr.length) - 6910 sizeof(struct sctp_paramhdr); 6911 6912 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6913 return -EINVAL; 6914 6915 len = sizeof(struct sctp_hmacalgo) + data_len; 6916 num_idents = data_len / sizeof(u16); 6917 6918 if (put_user(len, optlen)) 6919 return -EFAULT; 6920 if (put_user(num_idents, &p->shmac_num_idents)) 6921 return -EFAULT; 6922 for (i = 0; i < num_idents; i++) { 6923 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6924 6925 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6926 return -EFAULT; 6927 } 6928 return 0; 6929 } 6930 6931 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6932 char __user *optval, int __user *optlen) 6933 { 6934 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6935 struct sctp_authkeyid val; 6936 struct sctp_association *asoc; 6937 6938 if (len < sizeof(struct sctp_authkeyid)) 6939 return -EINVAL; 6940 6941 len = sizeof(struct sctp_authkeyid); 6942 if (copy_from_user(&val, optval, len)) 6943 return -EFAULT; 6944 6945 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6946 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6947 return -EINVAL; 6948 6949 if (asoc) { 6950 if (!asoc->peer.auth_capable) 6951 return -EACCES; 6952 val.scact_keynumber = asoc->active_key_id; 6953 } else { 6954 if (!ep->auth_enable) 6955 return -EACCES; 6956 val.scact_keynumber = ep->active_key_id; 6957 } 6958 6959 if (put_user(len, optlen)) 6960 return -EFAULT; 6961 if (copy_to_user(optval, &val, len)) 6962 return -EFAULT; 6963 6964 return 0; 6965 } 6966 6967 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6968 char __user *optval, int __user *optlen) 6969 { 6970 struct sctp_authchunks __user *p = (void __user *)optval; 6971 struct sctp_authchunks val; 6972 struct sctp_association *asoc; 6973 struct sctp_chunks_param *ch; 6974 u32 num_chunks = 0; 6975 char __user *to; 6976 6977 if (len < sizeof(struct sctp_authchunks)) 6978 return -EINVAL; 6979 6980 if (copy_from_user(&val, optval, sizeof(val))) 6981 return -EFAULT; 6982 6983 to = p->gauth_chunks; 6984 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6985 if (!asoc) 6986 return -EINVAL; 6987 6988 if (!asoc->peer.auth_capable) 6989 return -EACCES; 6990 6991 ch = asoc->peer.peer_chunks; 6992 if (!ch) 6993 goto num; 6994 6995 /* See if the user provided enough room for all the data */ 6996 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6997 if (len < num_chunks) 6998 return -EINVAL; 6999 7000 if (copy_to_user(to, ch->chunks, num_chunks)) 7001 return -EFAULT; 7002 num: 7003 len = sizeof(struct sctp_authchunks) + num_chunks; 7004 if (put_user(len, optlen)) 7005 return -EFAULT; 7006 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7007 return -EFAULT; 7008 return 0; 7009 } 7010 7011 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7012 char __user *optval, int __user *optlen) 7013 { 7014 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7015 struct sctp_authchunks __user *p = (void __user *)optval; 7016 struct sctp_authchunks val; 7017 struct sctp_association *asoc; 7018 struct sctp_chunks_param *ch; 7019 u32 num_chunks = 0; 7020 char __user *to; 7021 7022 if (len < sizeof(struct sctp_authchunks)) 7023 return -EINVAL; 7024 7025 if (copy_from_user(&val, optval, sizeof(val))) 7026 return -EFAULT; 7027 7028 to = p->gauth_chunks; 7029 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7030 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7031 sctp_style(sk, UDP)) 7032 return -EINVAL; 7033 7034 if (asoc) { 7035 if (!asoc->peer.auth_capable) 7036 return -EACCES; 7037 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7038 } else { 7039 if (!ep->auth_enable) 7040 return -EACCES; 7041 ch = ep->auth_chunk_list; 7042 } 7043 if (!ch) 7044 goto num; 7045 7046 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7047 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7048 return -EINVAL; 7049 7050 if (copy_to_user(to, ch->chunks, num_chunks)) 7051 return -EFAULT; 7052 num: 7053 len = sizeof(struct sctp_authchunks) + num_chunks; 7054 if (put_user(len, optlen)) 7055 return -EFAULT; 7056 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7057 return -EFAULT; 7058 7059 return 0; 7060 } 7061 7062 /* 7063 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7064 * This option gets the current number of associations that are attached 7065 * to a one-to-many style socket. The option value is an uint32_t. 7066 */ 7067 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7068 char __user *optval, int __user *optlen) 7069 { 7070 struct sctp_sock *sp = sctp_sk(sk); 7071 struct sctp_association *asoc; 7072 u32 val = 0; 7073 7074 if (sctp_style(sk, TCP)) 7075 return -EOPNOTSUPP; 7076 7077 if (len < sizeof(u32)) 7078 return -EINVAL; 7079 7080 len = sizeof(u32); 7081 7082 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7083 val++; 7084 } 7085 7086 if (put_user(len, optlen)) 7087 return -EFAULT; 7088 if (copy_to_user(optval, &val, len)) 7089 return -EFAULT; 7090 7091 return 0; 7092 } 7093 7094 /* 7095 * 8.1.23 SCTP_AUTO_ASCONF 7096 * See the corresponding setsockopt entry as description 7097 */ 7098 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7099 char __user *optval, int __user *optlen) 7100 { 7101 int val = 0; 7102 7103 if (len < sizeof(int)) 7104 return -EINVAL; 7105 7106 len = sizeof(int); 7107 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7108 val = 1; 7109 if (put_user(len, optlen)) 7110 return -EFAULT; 7111 if (copy_to_user(optval, &val, len)) 7112 return -EFAULT; 7113 return 0; 7114 } 7115 7116 /* 7117 * 8.2.6. Get the Current Identifiers of Associations 7118 * (SCTP_GET_ASSOC_ID_LIST) 7119 * 7120 * This option gets the current list of SCTP association identifiers of 7121 * the SCTP associations handled by a one-to-many style socket. 7122 */ 7123 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7124 char __user *optval, int __user *optlen) 7125 { 7126 struct sctp_sock *sp = sctp_sk(sk); 7127 struct sctp_association *asoc; 7128 struct sctp_assoc_ids *ids; 7129 u32 num = 0; 7130 7131 if (sctp_style(sk, TCP)) 7132 return -EOPNOTSUPP; 7133 7134 if (len < sizeof(struct sctp_assoc_ids)) 7135 return -EINVAL; 7136 7137 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7138 num++; 7139 } 7140 7141 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7142 return -EINVAL; 7143 7144 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7145 7146 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7147 if (unlikely(!ids)) 7148 return -ENOMEM; 7149 7150 ids->gaids_number_of_ids = num; 7151 num = 0; 7152 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7153 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7154 } 7155 7156 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7157 kfree(ids); 7158 return -EFAULT; 7159 } 7160 7161 kfree(ids); 7162 return 0; 7163 } 7164 7165 /* 7166 * SCTP_PEER_ADDR_THLDS 7167 * 7168 * This option allows us to fetch the partially failed threshold for one or all 7169 * transports in an association. See Section 6.1 of: 7170 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7171 */ 7172 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7173 char __user *optval, 7174 int len, 7175 int __user *optlen) 7176 { 7177 struct sctp_paddrthlds val; 7178 struct sctp_transport *trans; 7179 struct sctp_association *asoc; 7180 7181 if (len < sizeof(struct sctp_paddrthlds)) 7182 return -EINVAL; 7183 len = sizeof(struct sctp_paddrthlds); 7184 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7185 return -EFAULT; 7186 7187 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7188 trans = sctp_addr_id2transport(sk, &val.spt_address, 7189 val.spt_assoc_id); 7190 if (!trans) 7191 return -ENOENT; 7192 7193 val.spt_pathmaxrxt = trans->pathmaxrxt; 7194 val.spt_pathpfthld = trans->pf_retrans; 7195 7196 goto out; 7197 } 7198 7199 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7200 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7201 sctp_style(sk, UDP)) 7202 return -EINVAL; 7203 7204 if (asoc) { 7205 val.spt_pathpfthld = asoc->pf_retrans; 7206 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7207 } else { 7208 struct sctp_sock *sp = sctp_sk(sk); 7209 7210 val.spt_pathpfthld = sp->pf_retrans; 7211 val.spt_pathmaxrxt = sp->pathmaxrxt; 7212 } 7213 7214 out: 7215 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7216 return -EFAULT; 7217 7218 return 0; 7219 } 7220 7221 /* 7222 * SCTP_GET_ASSOC_STATS 7223 * 7224 * This option retrieves local per endpoint statistics. It is modeled 7225 * after OpenSolaris' implementation 7226 */ 7227 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7228 char __user *optval, 7229 int __user *optlen) 7230 { 7231 struct sctp_assoc_stats sas; 7232 struct sctp_association *asoc = NULL; 7233 7234 /* User must provide at least the assoc id */ 7235 if (len < sizeof(sctp_assoc_t)) 7236 return -EINVAL; 7237 7238 /* Allow the struct to grow and fill in as much as possible */ 7239 len = min_t(size_t, len, sizeof(sas)); 7240 7241 if (copy_from_user(&sas, optval, len)) 7242 return -EFAULT; 7243 7244 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7245 if (!asoc) 7246 return -EINVAL; 7247 7248 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7249 sas.sas_gapcnt = asoc->stats.gapcnt; 7250 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7251 sas.sas_osacks = asoc->stats.osacks; 7252 sas.sas_isacks = asoc->stats.isacks; 7253 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7254 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7255 sas.sas_oodchunks = asoc->stats.oodchunks; 7256 sas.sas_iodchunks = asoc->stats.iodchunks; 7257 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7258 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7259 sas.sas_idupchunks = asoc->stats.idupchunks; 7260 sas.sas_opackets = asoc->stats.opackets; 7261 sas.sas_ipackets = asoc->stats.ipackets; 7262 7263 /* New high max rto observed, will return 0 if not a single 7264 * RTO update took place. obs_rto_ipaddr will be bogus 7265 * in such a case 7266 */ 7267 sas.sas_maxrto = asoc->stats.max_obs_rto; 7268 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7269 sizeof(struct sockaddr_storage)); 7270 7271 /* Mark beginning of a new observation period */ 7272 asoc->stats.max_obs_rto = asoc->rto_min; 7273 7274 if (put_user(len, optlen)) 7275 return -EFAULT; 7276 7277 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7278 7279 if (copy_to_user(optval, &sas, len)) 7280 return -EFAULT; 7281 7282 return 0; 7283 } 7284 7285 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7286 char __user *optval, 7287 int __user *optlen) 7288 { 7289 int val = 0; 7290 7291 if (len < sizeof(int)) 7292 return -EINVAL; 7293 7294 len = sizeof(int); 7295 if (sctp_sk(sk)->recvrcvinfo) 7296 val = 1; 7297 if (put_user(len, optlen)) 7298 return -EFAULT; 7299 if (copy_to_user(optval, &val, len)) 7300 return -EFAULT; 7301 7302 return 0; 7303 } 7304 7305 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7306 char __user *optval, 7307 int __user *optlen) 7308 { 7309 int val = 0; 7310 7311 if (len < sizeof(int)) 7312 return -EINVAL; 7313 7314 len = sizeof(int); 7315 if (sctp_sk(sk)->recvnxtinfo) 7316 val = 1; 7317 if (put_user(len, optlen)) 7318 return -EFAULT; 7319 if (copy_to_user(optval, &val, len)) 7320 return -EFAULT; 7321 7322 return 0; 7323 } 7324 7325 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7326 char __user *optval, 7327 int __user *optlen) 7328 { 7329 struct sctp_assoc_value params; 7330 struct sctp_association *asoc; 7331 int retval = -EFAULT; 7332 7333 if (len < sizeof(params)) { 7334 retval = -EINVAL; 7335 goto out; 7336 } 7337 7338 len = sizeof(params); 7339 if (copy_from_user(¶ms, optval, len)) 7340 goto out; 7341 7342 asoc = sctp_id2assoc(sk, params.assoc_id); 7343 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7344 sctp_style(sk, UDP)) { 7345 retval = -EINVAL; 7346 goto out; 7347 } 7348 7349 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7350 : sctp_sk(sk)->ep->prsctp_enable; 7351 7352 if (put_user(len, optlen)) 7353 goto out; 7354 7355 if (copy_to_user(optval, ¶ms, len)) 7356 goto out; 7357 7358 retval = 0; 7359 7360 out: 7361 return retval; 7362 } 7363 7364 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7365 char __user *optval, 7366 int __user *optlen) 7367 { 7368 struct sctp_default_prinfo info; 7369 struct sctp_association *asoc; 7370 int retval = -EFAULT; 7371 7372 if (len < sizeof(info)) { 7373 retval = -EINVAL; 7374 goto out; 7375 } 7376 7377 len = sizeof(info); 7378 if (copy_from_user(&info, optval, len)) 7379 goto out; 7380 7381 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7382 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7383 sctp_style(sk, UDP)) { 7384 retval = -EINVAL; 7385 goto out; 7386 } 7387 7388 if (asoc) { 7389 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7390 info.pr_value = asoc->default_timetolive; 7391 } else { 7392 struct sctp_sock *sp = sctp_sk(sk); 7393 7394 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7395 info.pr_value = sp->default_timetolive; 7396 } 7397 7398 if (put_user(len, optlen)) 7399 goto out; 7400 7401 if (copy_to_user(optval, &info, len)) 7402 goto out; 7403 7404 retval = 0; 7405 7406 out: 7407 return retval; 7408 } 7409 7410 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7411 char __user *optval, 7412 int __user *optlen) 7413 { 7414 struct sctp_prstatus params; 7415 struct sctp_association *asoc; 7416 int policy; 7417 int retval = -EINVAL; 7418 7419 if (len < sizeof(params)) 7420 goto out; 7421 7422 len = sizeof(params); 7423 if (copy_from_user(¶ms, optval, len)) { 7424 retval = -EFAULT; 7425 goto out; 7426 } 7427 7428 policy = params.sprstat_policy; 7429 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7430 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7431 goto out; 7432 7433 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7434 if (!asoc) 7435 goto out; 7436 7437 if (policy == SCTP_PR_SCTP_ALL) { 7438 params.sprstat_abandoned_unsent = 0; 7439 params.sprstat_abandoned_sent = 0; 7440 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7441 params.sprstat_abandoned_unsent += 7442 asoc->abandoned_unsent[policy]; 7443 params.sprstat_abandoned_sent += 7444 asoc->abandoned_sent[policy]; 7445 } 7446 } else { 7447 params.sprstat_abandoned_unsent = 7448 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7449 params.sprstat_abandoned_sent = 7450 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7451 } 7452 7453 if (put_user(len, optlen)) { 7454 retval = -EFAULT; 7455 goto out; 7456 } 7457 7458 if (copy_to_user(optval, ¶ms, len)) { 7459 retval = -EFAULT; 7460 goto out; 7461 } 7462 7463 retval = 0; 7464 7465 out: 7466 return retval; 7467 } 7468 7469 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7470 char __user *optval, 7471 int __user *optlen) 7472 { 7473 struct sctp_stream_out_ext *streamoute; 7474 struct sctp_association *asoc; 7475 struct sctp_prstatus params; 7476 int retval = -EINVAL; 7477 int policy; 7478 7479 if (len < sizeof(params)) 7480 goto out; 7481 7482 len = sizeof(params); 7483 if (copy_from_user(¶ms, optval, len)) { 7484 retval = -EFAULT; 7485 goto out; 7486 } 7487 7488 policy = params.sprstat_policy; 7489 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7490 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7491 goto out; 7492 7493 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7494 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7495 goto out; 7496 7497 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7498 if (!streamoute) { 7499 /* Not allocated yet, means all stats are 0 */ 7500 params.sprstat_abandoned_unsent = 0; 7501 params.sprstat_abandoned_sent = 0; 7502 retval = 0; 7503 goto out; 7504 } 7505 7506 if (policy == SCTP_PR_SCTP_ALL) { 7507 params.sprstat_abandoned_unsent = 0; 7508 params.sprstat_abandoned_sent = 0; 7509 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7510 params.sprstat_abandoned_unsent += 7511 streamoute->abandoned_unsent[policy]; 7512 params.sprstat_abandoned_sent += 7513 streamoute->abandoned_sent[policy]; 7514 } 7515 } else { 7516 params.sprstat_abandoned_unsent = 7517 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7518 params.sprstat_abandoned_sent = 7519 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7520 } 7521 7522 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7523 retval = -EFAULT; 7524 goto out; 7525 } 7526 7527 retval = 0; 7528 7529 out: 7530 return retval; 7531 } 7532 7533 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7534 char __user *optval, 7535 int __user *optlen) 7536 { 7537 struct sctp_assoc_value params; 7538 struct sctp_association *asoc; 7539 int retval = -EFAULT; 7540 7541 if (len < sizeof(params)) { 7542 retval = -EINVAL; 7543 goto out; 7544 } 7545 7546 len = sizeof(params); 7547 if (copy_from_user(¶ms, optval, len)) 7548 goto out; 7549 7550 asoc = sctp_id2assoc(sk, params.assoc_id); 7551 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7552 sctp_style(sk, UDP)) { 7553 retval = -EINVAL; 7554 goto out; 7555 } 7556 7557 params.assoc_value = asoc ? asoc->peer.reconf_capable 7558 : sctp_sk(sk)->ep->reconf_enable; 7559 7560 if (put_user(len, optlen)) 7561 goto out; 7562 7563 if (copy_to_user(optval, ¶ms, len)) 7564 goto out; 7565 7566 retval = 0; 7567 7568 out: 7569 return retval; 7570 } 7571 7572 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7573 char __user *optval, 7574 int __user *optlen) 7575 { 7576 struct sctp_assoc_value params; 7577 struct sctp_association *asoc; 7578 int retval = -EFAULT; 7579 7580 if (len < sizeof(params)) { 7581 retval = -EINVAL; 7582 goto out; 7583 } 7584 7585 len = sizeof(params); 7586 if (copy_from_user(¶ms, optval, len)) 7587 goto out; 7588 7589 asoc = sctp_id2assoc(sk, params.assoc_id); 7590 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7591 sctp_style(sk, UDP)) { 7592 retval = -EINVAL; 7593 goto out; 7594 } 7595 7596 params.assoc_value = asoc ? asoc->strreset_enable 7597 : sctp_sk(sk)->ep->strreset_enable; 7598 7599 if (put_user(len, optlen)) 7600 goto out; 7601 7602 if (copy_to_user(optval, ¶ms, len)) 7603 goto out; 7604 7605 retval = 0; 7606 7607 out: 7608 return retval; 7609 } 7610 7611 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7612 char __user *optval, 7613 int __user *optlen) 7614 { 7615 struct sctp_assoc_value params; 7616 struct sctp_association *asoc; 7617 int retval = -EFAULT; 7618 7619 if (len < sizeof(params)) { 7620 retval = -EINVAL; 7621 goto out; 7622 } 7623 7624 len = sizeof(params); 7625 if (copy_from_user(¶ms, optval, len)) 7626 goto out; 7627 7628 asoc = sctp_id2assoc(sk, params.assoc_id); 7629 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7630 sctp_style(sk, UDP)) { 7631 retval = -EINVAL; 7632 goto out; 7633 } 7634 7635 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7636 : sctp_sk(sk)->default_ss; 7637 7638 if (put_user(len, optlen)) 7639 goto out; 7640 7641 if (copy_to_user(optval, ¶ms, len)) 7642 goto out; 7643 7644 retval = 0; 7645 7646 out: 7647 return retval; 7648 } 7649 7650 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7651 char __user *optval, 7652 int __user *optlen) 7653 { 7654 struct sctp_stream_value params; 7655 struct sctp_association *asoc; 7656 int retval = -EFAULT; 7657 7658 if (len < sizeof(params)) { 7659 retval = -EINVAL; 7660 goto out; 7661 } 7662 7663 len = sizeof(params); 7664 if (copy_from_user(¶ms, optval, len)) 7665 goto out; 7666 7667 asoc = sctp_id2assoc(sk, params.assoc_id); 7668 if (!asoc) { 7669 retval = -EINVAL; 7670 goto out; 7671 } 7672 7673 retval = sctp_sched_get_value(asoc, params.stream_id, 7674 ¶ms.stream_value); 7675 if (retval) 7676 goto out; 7677 7678 if (put_user(len, optlen)) { 7679 retval = -EFAULT; 7680 goto out; 7681 } 7682 7683 if (copy_to_user(optval, ¶ms, len)) { 7684 retval = -EFAULT; 7685 goto out; 7686 } 7687 7688 out: 7689 return retval; 7690 } 7691 7692 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7693 char __user *optval, 7694 int __user *optlen) 7695 { 7696 struct sctp_assoc_value params; 7697 struct sctp_association *asoc; 7698 int retval = -EFAULT; 7699 7700 if (len < sizeof(params)) { 7701 retval = -EINVAL; 7702 goto out; 7703 } 7704 7705 len = sizeof(params); 7706 if (copy_from_user(¶ms, optval, len)) 7707 goto out; 7708 7709 asoc = sctp_id2assoc(sk, params.assoc_id); 7710 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7711 sctp_style(sk, UDP)) { 7712 retval = -EINVAL; 7713 goto out; 7714 } 7715 7716 params.assoc_value = asoc ? asoc->peer.intl_capable 7717 : sctp_sk(sk)->ep->intl_enable; 7718 7719 if (put_user(len, optlen)) 7720 goto out; 7721 7722 if (copy_to_user(optval, ¶ms, len)) 7723 goto out; 7724 7725 retval = 0; 7726 7727 out: 7728 return retval; 7729 } 7730 7731 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7732 char __user *optval, 7733 int __user *optlen) 7734 { 7735 int val; 7736 7737 if (len < sizeof(int)) 7738 return -EINVAL; 7739 7740 len = sizeof(int); 7741 val = sctp_sk(sk)->reuse; 7742 if (put_user(len, optlen)) 7743 return -EFAULT; 7744 7745 if (copy_to_user(optval, &val, len)) 7746 return -EFAULT; 7747 7748 return 0; 7749 } 7750 7751 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7752 int __user *optlen) 7753 { 7754 struct sctp_association *asoc; 7755 struct sctp_event param; 7756 __u16 subscribe; 7757 7758 if (len < sizeof(param)) 7759 return -EINVAL; 7760 7761 len = sizeof(param); 7762 if (copy_from_user(¶m, optval, len)) 7763 return -EFAULT; 7764 7765 if (param.se_type < SCTP_SN_TYPE_BASE || 7766 param.se_type > SCTP_SN_TYPE_MAX) 7767 return -EINVAL; 7768 7769 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7770 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7771 sctp_style(sk, UDP)) 7772 return -EINVAL; 7773 7774 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7775 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7776 7777 if (put_user(len, optlen)) 7778 return -EFAULT; 7779 7780 if (copy_to_user(optval, ¶m, len)) 7781 return -EFAULT; 7782 7783 return 0; 7784 } 7785 7786 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7787 char __user *optval, 7788 int __user *optlen) 7789 { 7790 struct sctp_assoc_value params; 7791 struct sctp_association *asoc; 7792 int retval = -EFAULT; 7793 7794 if (len < sizeof(params)) { 7795 retval = -EINVAL; 7796 goto out; 7797 } 7798 7799 len = sizeof(params); 7800 if (copy_from_user(¶ms, optval, len)) 7801 goto out; 7802 7803 asoc = sctp_id2assoc(sk, params.assoc_id); 7804 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7805 sctp_style(sk, UDP)) { 7806 retval = -EINVAL; 7807 goto out; 7808 } 7809 7810 params.assoc_value = asoc ? asoc->peer.asconf_capable 7811 : sctp_sk(sk)->ep->asconf_enable; 7812 7813 if (put_user(len, optlen)) 7814 goto out; 7815 7816 if (copy_to_user(optval, ¶ms, len)) 7817 goto out; 7818 7819 retval = 0; 7820 7821 out: 7822 return retval; 7823 } 7824 7825 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7826 char __user *optval, 7827 int __user *optlen) 7828 { 7829 struct sctp_assoc_value params; 7830 struct sctp_association *asoc; 7831 int retval = -EFAULT; 7832 7833 if (len < sizeof(params)) { 7834 retval = -EINVAL; 7835 goto out; 7836 } 7837 7838 len = sizeof(params); 7839 if (copy_from_user(¶ms, optval, len)) 7840 goto out; 7841 7842 asoc = sctp_id2assoc(sk, params.assoc_id); 7843 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7844 sctp_style(sk, UDP)) { 7845 retval = -EINVAL; 7846 goto out; 7847 } 7848 7849 params.assoc_value = asoc ? asoc->peer.auth_capable 7850 : sctp_sk(sk)->ep->auth_enable; 7851 7852 if (put_user(len, optlen)) 7853 goto out; 7854 7855 if (copy_to_user(optval, ¶ms, len)) 7856 goto out; 7857 7858 retval = 0; 7859 7860 out: 7861 return retval; 7862 } 7863 7864 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7865 char __user *optval, 7866 int __user *optlen) 7867 { 7868 struct sctp_assoc_value params; 7869 struct sctp_association *asoc; 7870 int retval = -EFAULT; 7871 7872 if (len < sizeof(params)) { 7873 retval = -EINVAL; 7874 goto out; 7875 } 7876 7877 len = sizeof(params); 7878 if (copy_from_user(¶ms, optval, len)) 7879 goto out; 7880 7881 asoc = sctp_id2assoc(sk, params.assoc_id); 7882 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7883 sctp_style(sk, UDP)) { 7884 retval = -EINVAL; 7885 goto out; 7886 } 7887 7888 params.assoc_value = asoc ? asoc->peer.ecn_capable 7889 : sctp_sk(sk)->ep->ecn_enable; 7890 7891 if (put_user(len, optlen)) 7892 goto out; 7893 7894 if (copy_to_user(optval, ¶ms, len)) 7895 goto out; 7896 7897 retval = 0; 7898 7899 out: 7900 return retval; 7901 } 7902 7903 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7904 char __user *optval, int __user *optlen) 7905 { 7906 int retval = 0; 7907 int len; 7908 7909 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7910 7911 /* I can hardly begin to describe how wrong this is. This is 7912 * so broken as to be worse than useless. The API draft 7913 * REALLY is NOT helpful here... I am not convinced that the 7914 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7915 * are at all well-founded. 7916 */ 7917 if (level != SOL_SCTP) { 7918 struct sctp_af *af = sctp_sk(sk)->pf->af; 7919 7920 retval = af->getsockopt(sk, level, optname, optval, optlen); 7921 return retval; 7922 } 7923 7924 if (get_user(len, optlen)) 7925 return -EFAULT; 7926 7927 if (len < 0) 7928 return -EINVAL; 7929 7930 lock_sock(sk); 7931 7932 switch (optname) { 7933 case SCTP_STATUS: 7934 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7935 break; 7936 case SCTP_DISABLE_FRAGMENTS: 7937 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7938 optlen); 7939 break; 7940 case SCTP_EVENTS: 7941 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7942 break; 7943 case SCTP_AUTOCLOSE: 7944 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7945 break; 7946 case SCTP_SOCKOPT_PEELOFF: 7947 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7948 break; 7949 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7950 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7951 break; 7952 case SCTP_PEER_ADDR_PARAMS: 7953 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7954 optlen); 7955 break; 7956 case SCTP_DELAYED_SACK: 7957 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7958 optlen); 7959 break; 7960 case SCTP_INITMSG: 7961 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7962 break; 7963 case SCTP_GET_PEER_ADDRS: 7964 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7965 optlen); 7966 break; 7967 case SCTP_GET_LOCAL_ADDRS: 7968 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7969 optlen); 7970 break; 7971 case SCTP_SOCKOPT_CONNECTX3: 7972 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7973 break; 7974 case SCTP_DEFAULT_SEND_PARAM: 7975 retval = sctp_getsockopt_default_send_param(sk, len, 7976 optval, optlen); 7977 break; 7978 case SCTP_DEFAULT_SNDINFO: 7979 retval = sctp_getsockopt_default_sndinfo(sk, len, 7980 optval, optlen); 7981 break; 7982 case SCTP_PRIMARY_ADDR: 7983 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7984 break; 7985 case SCTP_NODELAY: 7986 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7987 break; 7988 case SCTP_RTOINFO: 7989 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7990 break; 7991 case SCTP_ASSOCINFO: 7992 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7993 break; 7994 case SCTP_I_WANT_MAPPED_V4_ADDR: 7995 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7996 break; 7997 case SCTP_MAXSEG: 7998 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7999 break; 8000 case SCTP_GET_PEER_ADDR_INFO: 8001 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8002 optlen); 8003 break; 8004 case SCTP_ADAPTATION_LAYER: 8005 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8006 optlen); 8007 break; 8008 case SCTP_CONTEXT: 8009 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8010 break; 8011 case SCTP_FRAGMENT_INTERLEAVE: 8012 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8013 optlen); 8014 break; 8015 case SCTP_PARTIAL_DELIVERY_POINT: 8016 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8017 optlen); 8018 break; 8019 case SCTP_MAX_BURST: 8020 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8021 break; 8022 case SCTP_AUTH_KEY: 8023 case SCTP_AUTH_CHUNK: 8024 case SCTP_AUTH_DELETE_KEY: 8025 case SCTP_AUTH_DEACTIVATE_KEY: 8026 retval = -EOPNOTSUPP; 8027 break; 8028 case SCTP_HMAC_IDENT: 8029 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8030 break; 8031 case SCTP_AUTH_ACTIVE_KEY: 8032 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8033 break; 8034 case SCTP_PEER_AUTH_CHUNKS: 8035 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8036 optlen); 8037 break; 8038 case SCTP_LOCAL_AUTH_CHUNKS: 8039 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8040 optlen); 8041 break; 8042 case SCTP_GET_ASSOC_NUMBER: 8043 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8044 break; 8045 case SCTP_GET_ASSOC_ID_LIST: 8046 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8047 break; 8048 case SCTP_AUTO_ASCONF: 8049 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8050 break; 8051 case SCTP_PEER_ADDR_THLDS: 8052 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 8053 break; 8054 case SCTP_GET_ASSOC_STATS: 8055 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8056 break; 8057 case SCTP_RECVRCVINFO: 8058 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8059 break; 8060 case SCTP_RECVNXTINFO: 8061 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8062 break; 8063 case SCTP_PR_SUPPORTED: 8064 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8065 break; 8066 case SCTP_DEFAULT_PRINFO: 8067 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8068 optlen); 8069 break; 8070 case SCTP_PR_ASSOC_STATUS: 8071 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8072 optlen); 8073 break; 8074 case SCTP_PR_STREAM_STATUS: 8075 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8076 optlen); 8077 break; 8078 case SCTP_RECONFIG_SUPPORTED: 8079 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8080 optlen); 8081 break; 8082 case SCTP_ENABLE_STREAM_RESET: 8083 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8084 optlen); 8085 break; 8086 case SCTP_STREAM_SCHEDULER: 8087 retval = sctp_getsockopt_scheduler(sk, len, optval, 8088 optlen); 8089 break; 8090 case SCTP_STREAM_SCHEDULER_VALUE: 8091 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8092 optlen); 8093 break; 8094 case SCTP_INTERLEAVING_SUPPORTED: 8095 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8096 optlen); 8097 break; 8098 case SCTP_REUSE_PORT: 8099 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8100 break; 8101 case SCTP_EVENT: 8102 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8103 break; 8104 case SCTP_ASCONF_SUPPORTED: 8105 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8106 optlen); 8107 break; 8108 case SCTP_AUTH_SUPPORTED: 8109 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8110 optlen); 8111 break; 8112 case SCTP_ECN_SUPPORTED: 8113 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8114 break; 8115 default: 8116 retval = -ENOPROTOOPT; 8117 break; 8118 } 8119 8120 release_sock(sk); 8121 return retval; 8122 } 8123 8124 static int sctp_hash(struct sock *sk) 8125 { 8126 /* STUB */ 8127 return 0; 8128 } 8129 8130 static void sctp_unhash(struct sock *sk) 8131 { 8132 /* STUB */ 8133 } 8134 8135 /* Check if port is acceptable. Possibly find first available port. 8136 * 8137 * The port hash table (contained in the 'global' SCTP protocol storage 8138 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8139 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8140 * list (the list number is the port number hashed out, so as you 8141 * would expect from a hash function, all the ports in a given list have 8142 * such a number that hashes out to the same list number; you were 8143 * expecting that, right?); so each list has a set of ports, with a 8144 * link to the socket (struct sock) that uses it, the port number and 8145 * a fastreuse flag (FIXME: NPI ipg). 8146 */ 8147 static struct sctp_bind_bucket *sctp_bucket_create( 8148 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8149 8150 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8151 { 8152 struct sctp_sock *sp = sctp_sk(sk); 8153 bool reuse = (sk->sk_reuse || sp->reuse); 8154 struct sctp_bind_hashbucket *head; /* hash list */ 8155 kuid_t uid = sock_i_uid(sk); 8156 struct sctp_bind_bucket *pp; 8157 unsigned short snum; 8158 int ret; 8159 8160 snum = ntohs(addr->v4.sin_port); 8161 8162 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8163 8164 local_bh_disable(); 8165 8166 if (snum == 0) { 8167 /* Search for an available port. */ 8168 int low, high, remaining, index; 8169 unsigned int rover; 8170 struct net *net = sock_net(sk); 8171 8172 inet_get_local_port_range(net, &low, &high); 8173 remaining = (high - low) + 1; 8174 rover = prandom_u32() % remaining + low; 8175 8176 do { 8177 rover++; 8178 if ((rover < low) || (rover > high)) 8179 rover = low; 8180 if (inet_is_local_reserved_port(net, rover)) 8181 continue; 8182 index = sctp_phashfn(sock_net(sk), rover); 8183 head = &sctp_port_hashtable[index]; 8184 spin_lock(&head->lock); 8185 sctp_for_each_hentry(pp, &head->chain) 8186 if ((pp->port == rover) && 8187 net_eq(sock_net(sk), pp->net)) 8188 goto next; 8189 break; 8190 next: 8191 spin_unlock(&head->lock); 8192 } while (--remaining > 0); 8193 8194 /* Exhausted local port range during search? */ 8195 ret = 1; 8196 if (remaining <= 0) 8197 goto fail; 8198 8199 /* OK, here is the one we will use. HEAD (the port 8200 * hash table list entry) is non-NULL and we hold it's 8201 * mutex. 8202 */ 8203 snum = rover; 8204 } else { 8205 /* We are given an specific port number; we verify 8206 * that it is not being used. If it is used, we will 8207 * exahust the search in the hash list corresponding 8208 * to the port number (snum) - we detect that with the 8209 * port iterator, pp being NULL. 8210 */ 8211 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8212 spin_lock(&head->lock); 8213 sctp_for_each_hentry(pp, &head->chain) { 8214 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8215 goto pp_found; 8216 } 8217 } 8218 pp = NULL; 8219 goto pp_not_found; 8220 pp_found: 8221 if (!hlist_empty(&pp->owner)) { 8222 /* We had a port hash table hit - there is an 8223 * available port (pp != NULL) and it is being 8224 * used by other socket (pp->owner not empty); that other 8225 * socket is going to be sk2. 8226 */ 8227 struct sock *sk2; 8228 8229 pr_debug("%s: found a possible match\n", __func__); 8230 8231 if ((pp->fastreuse && reuse && 8232 sk->sk_state != SCTP_SS_LISTENING) || 8233 (pp->fastreuseport && sk->sk_reuseport && 8234 uid_eq(pp->fastuid, uid))) 8235 goto success; 8236 8237 /* Run through the list of sockets bound to the port 8238 * (pp->port) [via the pointers bind_next and 8239 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8240 * we get the endpoint they describe and run through 8241 * the endpoint's list of IP (v4 or v6) addresses, 8242 * comparing each of the addresses with the address of 8243 * the socket sk. If we find a match, then that means 8244 * that this port/socket (sk) combination are already 8245 * in an endpoint. 8246 */ 8247 sk_for_each_bound(sk2, &pp->owner) { 8248 struct sctp_sock *sp2 = sctp_sk(sk2); 8249 struct sctp_endpoint *ep2 = sp2->ep; 8250 8251 if (sk == sk2 || 8252 (reuse && (sk2->sk_reuse || sp2->reuse) && 8253 sk2->sk_state != SCTP_SS_LISTENING) || 8254 (sk->sk_reuseport && sk2->sk_reuseport && 8255 uid_eq(uid, sock_i_uid(sk2)))) 8256 continue; 8257 8258 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8259 addr, sp2, sp)) { 8260 ret = 1; 8261 goto fail_unlock; 8262 } 8263 } 8264 8265 pr_debug("%s: found a match\n", __func__); 8266 } 8267 pp_not_found: 8268 /* If there was a hash table miss, create a new port. */ 8269 ret = 1; 8270 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8271 goto fail_unlock; 8272 8273 /* In either case (hit or miss), make sure fastreuse is 1 only 8274 * if sk->sk_reuse is too (that is, if the caller requested 8275 * SO_REUSEADDR on this socket -sk-). 8276 */ 8277 if (hlist_empty(&pp->owner)) { 8278 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8279 pp->fastreuse = 1; 8280 else 8281 pp->fastreuse = 0; 8282 8283 if (sk->sk_reuseport) { 8284 pp->fastreuseport = 1; 8285 pp->fastuid = uid; 8286 } else { 8287 pp->fastreuseport = 0; 8288 } 8289 } else { 8290 if (pp->fastreuse && 8291 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8292 pp->fastreuse = 0; 8293 8294 if (pp->fastreuseport && 8295 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8296 pp->fastreuseport = 0; 8297 } 8298 8299 /* We are set, so fill up all the data in the hash table 8300 * entry, tie the socket list information with the rest of the 8301 * sockets FIXME: Blurry, NPI (ipg). 8302 */ 8303 success: 8304 if (!sp->bind_hash) { 8305 inet_sk(sk)->inet_num = snum; 8306 sk_add_bind_node(sk, &pp->owner); 8307 sp->bind_hash = pp; 8308 } 8309 ret = 0; 8310 8311 fail_unlock: 8312 spin_unlock(&head->lock); 8313 8314 fail: 8315 local_bh_enable(); 8316 return ret; 8317 } 8318 8319 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8320 * port is requested. 8321 */ 8322 static int sctp_get_port(struct sock *sk, unsigned short snum) 8323 { 8324 union sctp_addr addr; 8325 struct sctp_af *af = sctp_sk(sk)->pf->af; 8326 8327 /* Set up a dummy address struct from the sk. */ 8328 af->from_sk(&addr, sk); 8329 addr.v4.sin_port = htons(snum); 8330 8331 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8332 return sctp_get_port_local(sk, &addr); 8333 } 8334 8335 /* 8336 * Move a socket to LISTENING state. 8337 */ 8338 static int sctp_listen_start(struct sock *sk, int backlog) 8339 { 8340 struct sctp_sock *sp = sctp_sk(sk); 8341 struct sctp_endpoint *ep = sp->ep; 8342 struct crypto_shash *tfm = NULL; 8343 char alg[32]; 8344 8345 /* Allocate HMAC for generating cookie. */ 8346 if (!sp->hmac && sp->sctp_hmac_alg) { 8347 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8348 tfm = crypto_alloc_shash(alg, 0, 0); 8349 if (IS_ERR(tfm)) { 8350 net_info_ratelimited("failed to load transform for %s: %ld\n", 8351 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8352 return -ENOSYS; 8353 } 8354 sctp_sk(sk)->hmac = tfm; 8355 } 8356 8357 /* 8358 * If a bind() or sctp_bindx() is not called prior to a listen() 8359 * call that allows new associations to be accepted, the system 8360 * picks an ephemeral port and will choose an address set equivalent 8361 * to binding with a wildcard address. 8362 * 8363 * This is not currently spelled out in the SCTP sockets 8364 * extensions draft, but follows the practice as seen in TCP 8365 * sockets. 8366 * 8367 */ 8368 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8369 if (!ep->base.bind_addr.port) { 8370 if (sctp_autobind(sk)) 8371 return -EAGAIN; 8372 } else { 8373 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8374 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8375 return -EADDRINUSE; 8376 } 8377 } 8378 8379 sk->sk_max_ack_backlog = backlog; 8380 return sctp_hash_endpoint(ep); 8381 } 8382 8383 /* 8384 * 4.1.3 / 5.1.3 listen() 8385 * 8386 * By default, new associations are not accepted for UDP style sockets. 8387 * An application uses listen() to mark a socket as being able to 8388 * accept new associations. 8389 * 8390 * On TCP style sockets, applications use listen() to ready the SCTP 8391 * endpoint for accepting inbound associations. 8392 * 8393 * On both types of endpoints a backlog of '0' disables listening. 8394 * 8395 * Move a socket to LISTENING state. 8396 */ 8397 int sctp_inet_listen(struct socket *sock, int backlog) 8398 { 8399 struct sock *sk = sock->sk; 8400 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8401 int err = -EINVAL; 8402 8403 if (unlikely(backlog < 0)) 8404 return err; 8405 8406 lock_sock(sk); 8407 8408 /* Peeled-off sockets are not allowed to listen(). */ 8409 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8410 goto out; 8411 8412 if (sock->state != SS_UNCONNECTED) 8413 goto out; 8414 8415 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8416 goto out; 8417 8418 /* If backlog is zero, disable listening. */ 8419 if (!backlog) { 8420 if (sctp_sstate(sk, CLOSED)) 8421 goto out; 8422 8423 err = 0; 8424 sctp_unhash_endpoint(ep); 8425 sk->sk_state = SCTP_SS_CLOSED; 8426 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8427 sctp_sk(sk)->bind_hash->fastreuse = 1; 8428 goto out; 8429 } 8430 8431 /* If we are already listening, just update the backlog */ 8432 if (sctp_sstate(sk, LISTENING)) 8433 sk->sk_max_ack_backlog = backlog; 8434 else { 8435 err = sctp_listen_start(sk, backlog); 8436 if (err) 8437 goto out; 8438 } 8439 8440 err = 0; 8441 out: 8442 release_sock(sk); 8443 return err; 8444 } 8445 8446 /* 8447 * This function is done by modeling the current datagram_poll() and the 8448 * tcp_poll(). Note that, based on these implementations, we don't 8449 * lock the socket in this function, even though it seems that, 8450 * ideally, locking or some other mechanisms can be used to ensure 8451 * the integrity of the counters (sndbuf and wmem_alloc) used 8452 * in this place. We assume that we don't need locks either until proven 8453 * otherwise. 8454 * 8455 * Another thing to note is that we include the Async I/O support 8456 * here, again, by modeling the current TCP/UDP code. We don't have 8457 * a good way to test with it yet. 8458 */ 8459 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8460 { 8461 struct sock *sk = sock->sk; 8462 struct sctp_sock *sp = sctp_sk(sk); 8463 __poll_t mask; 8464 8465 poll_wait(file, sk_sleep(sk), wait); 8466 8467 sock_rps_record_flow(sk); 8468 8469 /* A TCP-style listening socket becomes readable when the accept queue 8470 * is not empty. 8471 */ 8472 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8473 return (!list_empty(&sp->ep->asocs)) ? 8474 (EPOLLIN | EPOLLRDNORM) : 0; 8475 8476 mask = 0; 8477 8478 /* Is there any exceptional events? */ 8479 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8480 mask |= EPOLLERR | 8481 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8482 if (sk->sk_shutdown & RCV_SHUTDOWN) 8483 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8484 if (sk->sk_shutdown == SHUTDOWN_MASK) 8485 mask |= EPOLLHUP; 8486 8487 /* Is it readable? Reconsider this code with TCP-style support. */ 8488 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8489 mask |= EPOLLIN | EPOLLRDNORM; 8490 8491 /* The association is either gone or not ready. */ 8492 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8493 return mask; 8494 8495 /* Is it writable? */ 8496 if (sctp_writeable(sk)) { 8497 mask |= EPOLLOUT | EPOLLWRNORM; 8498 } else { 8499 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8500 /* 8501 * Since the socket is not locked, the buffer 8502 * might be made available after the writeable check and 8503 * before the bit is set. This could cause a lost I/O 8504 * signal. tcp_poll() has a race breaker for this race 8505 * condition. Based on their implementation, we put 8506 * in the following code to cover it as well. 8507 */ 8508 if (sctp_writeable(sk)) 8509 mask |= EPOLLOUT | EPOLLWRNORM; 8510 } 8511 return mask; 8512 } 8513 8514 /******************************************************************** 8515 * 2nd Level Abstractions 8516 ********************************************************************/ 8517 8518 static struct sctp_bind_bucket *sctp_bucket_create( 8519 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8520 { 8521 struct sctp_bind_bucket *pp; 8522 8523 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8524 if (pp) { 8525 SCTP_DBG_OBJCNT_INC(bind_bucket); 8526 pp->port = snum; 8527 pp->fastreuse = 0; 8528 INIT_HLIST_HEAD(&pp->owner); 8529 pp->net = net; 8530 hlist_add_head(&pp->node, &head->chain); 8531 } 8532 return pp; 8533 } 8534 8535 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8536 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8537 { 8538 if (pp && hlist_empty(&pp->owner)) { 8539 __hlist_del(&pp->node); 8540 kmem_cache_free(sctp_bucket_cachep, pp); 8541 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8542 } 8543 } 8544 8545 /* Release this socket's reference to a local port. */ 8546 static inline void __sctp_put_port(struct sock *sk) 8547 { 8548 struct sctp_bind_hashbucket *head = 8549 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8550 inet_sk(sk)->inet_num)]; 8551 struct sctp_bind_bucket *pp; 8552 8553 spin_lock(&head->lock); 8554 pp = sctp_sk(sk)->bind_hash; 8555 __sk_del_bind_node(sk); 8556 sctp_sk(sk)->bind_hash = NULL; 8557 inet_sk(sk)->inet_num = 0; 8558 sctp_bucket_destroy(pp); 8559 spin_unlock(&head->lock); 8560 } 8561 8562 void sctp_put_port(struct sock *sk) 8563 { 8564 local_bh_disable(); 8565 __sctp_put_port(sk); 8566 local_bh_enable(); 8567 } 8568 8569 /* 8570 * The system picks an ephemeral port and choose an address set equivalent 8571 * to binding with a wildcard address. 8572 * One of those addresses will be the primary address for the association. 8573 * This automatically enables the multihoming capability of SCTP. 8574 */ 8575 static int sctp_autobind(struct sock *sk) 8576 { 8577 union sctp_addr autoaddr; 8578 struct sctp_af *af; 8579 __be16 port; 8580 8581 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8582 af = sctp_sk(sk)->pf->af; 8583 8584 port = htons(inet_sk(sk)->inet_num); 8585 af->inaddr_any(&autoaddr, port); 8586 8587 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8588 } 8589 8590 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8591 * 8592 * From RFC 2292 8593 * 4.2 The cmsghdr Structure * 8594 * 8595 * When ancillary data is sent or received, any number of ancillary data 8596 * objects can be specified by the msg_control and msg_controllen members of 8597 * the msghdr structure, because each object is preceded by 8598 * a cmsghdr structure defining the object's length (the cmsg_len member). 8599 * Historically Berkeley-derived implementations have passed only one object 8600 * at a time, but this API allows multiple objects to be 8601 * passed in a single call to sendmsg() or recvmsg(). The following example 8602 * shows two ancillary data objects in a control buffer. 8603 * 8604 * |<--------------------------- msg_controllen -------------------------->| 8605 * | | 8606 * 8607 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8608 * 8609 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8610 * | | | 8611 * 8612 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8613 * 8614 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8615 * | | | | | 8616 * 8617 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8618 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8619 * 8620 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8621 * 8622 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8623 * ^ 8624 * | 8625 * 8626 * msg_control 8627 * points here 8628 */ 8629 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8630 { 8631 struct msghdr *my_msg = (struct msghdr *)msg; 8632 struct cmsghdr *cmsg; 8633 8634 for_each_cmsghdr(cmsg, my_msg) { 8635 if (!CMSG_OK(my_msg, cmsg)) 8636 return -EINVAL; 8637 8638 /* Should we parse this header or ignore? */ 8639 if (cmsg->cmsg_level != IPPROTO_SCTP) 8640 continue; 8641 8642 /* Strictly check lengths following example in SCM code. */ 8643 switch (cmsg->cmsg_type) { 8644 case SCTP_INIT: 8645 /* SCTP Socket API Extension 8646 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8647 * 8648 * This cmsghdr structure provides information for 8649 * initializing new SCTP associations with sendmsg(). 8650 * The SCTP_INITMSG socket option uses this same data 8651 * structure. This structure is not used for 8652 * recvmsg(). 8653 * 8654 * cmsg_level cmsg_type cmsg_data[] 8655 * ------------ ------------ ---------------------- 8656 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8657 */ 8658 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8659 return -EINVAL; 8660 8661 cmsgs->init = CMSG_DATA(cmsg); 8662 break; 8663 8664 case SCTP_SNDRCV: 8665 /* SCTP Socket API Extension 8666 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8667 * 8668 * This cmsghdr structure specifies SCTP options for 8669 * sendmsg() and describes SCTP header information 8670 * about a received message through recvmsg(). 8671 * 8672 * cmsg_level cmsg_type cmsg_data[] 8673 * ------------ ------------ ---------------------- 8674 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8675 */ 8676 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8677 return -EINVAL; 8678 8679 cmsgs->srinfo = CMSG_DATA(cmsg); 8680 8681 if (cmsgs->srinfo->sinfo_flags & 8682 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8683 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8684 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8685 return -EINVAL; 8686 break; 8687 8688 case SCTP_SNDINFO: 8689 /* SCTP Socket API Extension 8690 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8691 * 8692 * This cmsghdr structure specifies SCTP options for 8693 * sendmsg(). This structure and SCTP_RCVINFO replaces 8694 * SCTP_SNDRCV which has been deprecated. 8695 * 8696 * cmsg_level cmsg_type cmsg_data[] 8697 * ------------ ------------ --------------------- 8698 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8699 */ 8700 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8701 return -EINVAL; 8702 8703 cmsgs->sinfo = CMSG_DATA(cmsg); 8704 8705 if (cmsgs->sinfo->snd_flags & 8706 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8707 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8708 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8709 return -EINVAL; 8710 break; 8711 case SCTP_PRINFO: 8712 /* SCTP Socket API Extension 8713 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8714 * 8715 * This cmsghdr structure specifies SCTP options for sendmsg(). 8716 * 8717 * cmsg_level cmsg_type cmsg_data[] 8718 * ------------ ------------ --------------------- 8719 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8720 */ 8721 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8722 return -EINVAL; 8723 8724 cmsgs->prinfo = CMSG_DATA(cmsg); 8725 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8726 return -EINVAL; 8727 8728 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8729 cmsgs->prinfo->pr_value = 0; 8730 break; 8731 case SCTP_AUTHINFO: 8732 /* SCTP Socket API Extension 8733 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8734 * 8735 * This cmsghdr structure specifies SCTP options for sendmsg(). 8736 * 8737 * cmsg_level cmsg_type cmsg_data[] 8738 * ------------ ------------ --------------------- 8739 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8740 */ 8741 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8742 return -EINVAL; 8743 8744 cmsgs->authinfo = CMSG_DATA(cmsg); 8745 break; 8746 case SCTP_DSTADDRV4: 8747 case SCTP_DSTADDRV6: 8748 /* SCTP Socket API Extension 8749 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8750 * 8751 * This cmsghdr structure specifies SCTP options for sendmsg(). 8752 * 8753 * cmsg_level cmsg_type cmsg_data[] 8754 * ------------ ------------ --------------------- 8755 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8756 * ------------ ------------ --------------------- 8757 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8758 */ 8759 cmsgs->addrs_msg = my_msg; 8760 break; 8761 default: 8762 return -EINVAL; 8763 } 8764 } 8765 8766 return 0; 8767 } 8768 8769 /* 8770 * Wait for a packet.. 8771 * Note: This function is the same function as in core/datagram.c 8772 * with a few modifications to make lksctp work. 8773 */ 8774 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8775 { 8776 int error; 8777 DEFINE_WAIT(wait); 8778 8779 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8780 8781 /* Socket errors? */ 8782 error = sock_error(sk); 8783 if (error) 8784 goto out; 8785 8786 if (!skb_queue_empty(&sk->sk_receive_queue)) 8787 goto ready; 8788 8789 /* Socket shut down? */ 8790 if (sk->sk_shutdown & RCV_SHUTDOWN) 8791 goto out; 8792 8793 /* Sequenced packets can come disconnected. If so we report the 8794 * problem. 8795 */ 8796 error = -ENOTCONN; 8797 8798 /* Is there a good reason to think that we may receive some data? */ 8799 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8800 goto out; 8801 8802 /* Handle signals. */ 8803 if (signal_pending(current)) 8804 goto interrupted; 8805 8806 /* Let another process have a go. Since we are going to sleep 8807 * anyway. Note: This may cause odd behaviors if the message 8808 * does not fit in the user's buffer, but this seems to be the 8809 * only way to honor MSG_DONTWAIT realistically. 8810 */ 8811 release_sock(sk); 8812 *timeo_p = schedule_timeout(*timeo_p); 8813 lock_sock(sk); 8814 8815 ready: 8816 finish_wait(sk_sleep(sk), &wait); 8817 return 0; 8818 8819 interrupted: 8820 error = sock_intr_errno(*timeo_p); 8821 8822 out: 8823 finish_wait(sk_sleep(sk), &wait); 8824 *err = error; 8825 return error; 8826 } 8827 8828 /* Receive a datagram. 8829 * Note: This is pretty much the same routine as in core/datagram.c 8830 * with a few changes to make lksctp work. 8831 */ 8832 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8833 int noblock, int *err) 8834 { 8835 int error; 8836 struct sk_buff *skb; 8837 long timeo; 8838 8839 timeo = sock_rcvtimeo(sk, noblock); 8840 8841 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8842 MAX_SCHEDULE_TIMEOUT); 8843 8844 do { 8845 /* Again only user level code calls this function, 8846 * so nothing interrupt level 8847 * will suddenly eat the receive_queue. 8848 * 8849 * Look at current nfs client by the way... 8850 * However, this function was correct in any case. 8) 8851 */ 8852 if (flags & MSG_PEEK) { 8853 skb = skb_peek(&sk->sk_receive_queue); 8854 if (skb) 8855 refcount_inc(&skb->users); 8856 } else { 8857 skb = __skb_dequeue(&sk->sk_receive_queue); 8858 } 8859 8860 if (skb) 8861 return skb; 8862 8863 /* Caller is allowed not to check sk->sk_err before calling. */ 8864 error = sock_error(sk); 8865 if (error) 8866 goto no_packet; 8867 8868 if (sk->sk_shutdown & RCV_SHUTDOWN) 8869 break; 8870 8871 if (sk_can_busy_loop(sk)) { 8872 sk_busy_loop(sk, noblock); 8873 8874 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8875 continue; 8876 } 8877 8878 /* User doesn't want to wait. */ 8879 error = -EAGAIN; 8880 if (!timeo) 8881 goto no_packet; 8882 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8883 8884 return NULL; 8885 8886 no_packet: 8887 *err = error; 8888 return NULL; 8889 } 8890 8891 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8892 static void __sctp_write_space(struct sctp_association *asoc) 8893 { 8894 struct sock *sk = asoc->base.sk; 8895 8896 if (sctp_wspace(asoc) <= 0) 8897 return; 8898 8899 if (waitqueue_active(&asoc->wait)) 8900 wake_up_interruptible(&asoc->wait); 8901 8902 if (sctp_writeable(sk)) { 8903 struct socket_wq *wq; 8904 8905 rcu_read_lock(); 8906 wq = rcu_dereference(sk->sk_wq); 8907 if (wq) { 8908 if (waitqueue_active(&wq->wait)) 8909 wake_up_interruptible(&wq->wait); 8910 8911 /* Note that we try to include the Async I/O support 8912 * here by modeling from the current TCP/UDP code. 8913 * We have not tested with it yet. 8914 */ 8915 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8916 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8917 } 8918 rcu_read_unlock(); 8919 } 8920 } 8921 8922 static void sctp_wake_up_waiters(struct sock *sk, 8923 struct sctp_association *asoc) 8924 { 8925 struct sctp_association *tmp = asoc; 8926 8927 /* We do accounting for the sndbuf space per association, 8928 * so we only need to wake our own association. 8929 */ 8930 if (asoc->ep->sndbuf_policy) 8931 return __sctp_write_space(asoc); 8932 8933 /* If association goes down and is just flushing its 8934 * outq, then just normally notify others. 8935 */ 8936 if (asoc->base.dead) 8937 return sctp_write_space(sk); 8938 8939 /* Accounting for the sndbuf space is per socket, so we 8940 * need to wake up others, try to be fair and in case of 8941 * other associations, let them have a go first instead 8942 * of just doing a sctp_write_space() call. 8943 * 8944 * Note that we reach sctp_wake_up_waiters() only when 8945 * associations free up queued chunks, thus we are under 8946 * lock and the list of associations on a socket is 8947 * guaranteed not to change. 8948 */ 8949 for (tmp = list_next_entry(tmp, asocs); 1; 8950 tmp = list_next_entry(tmp, asocs)) { 8951 /* Manually skip the head element. */ 8952 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8953 continue; 8954 /* Wake up association. */ 8955 __sctp_write_space(tmp); 8956 /* We've reached the end. */ 8957 if (tmp == asoc) 8958 break; 8959 } 8960 } 8961 8962 /* Do accounting for the sndbuf space. 8963 * Decrement the used sndbuf space of the corresponding association by the 8964 * data size which was just transmitted(freed). 8965 */ 8966 static void sctp_wfree(struct sk_buff *skb) 8967 { 8968 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8969 struct sctp_association *asoc = chunk->asoc; 8970 struct sock *sk = asoc->base.sk; 8971 8972 sk_mem_uncharge(sk, skb->truesize); 8973 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8974 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8975 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8976 &sk->sk_wmem_alloc)); 8977 8978 if (chunk->shkey) { 8979 struct sctp_shared_key *shkey = chunk->shkey; 8980 8981 /* refcnt == 2 and !list_empty mean after this release, it's 8982 * not being used anywhere, and it's time to notify userland 8983 * that this shkey can be freed if it's been deactivated. 8984 */ 8985 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8986 refcount_read(&shkey->refcnt) == 2) { 8987 struct sctp_ulpevent *ev; 8988 8989 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8990 SCTP_AUTH_FREE_KEY, 8991 GFP_KERNEL); 8992 if (ev) 8993 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8994 } 8995 sctp_auth_shkey_release(chunk->shkey); 8996 } 8997 8998 sock_wfree(skb); 8999 sctp_wake_up_waiters(sk, asoc); 9000 9001 sctp_association_put(asoc); 9002 } 9003 9004 /* Do accounting for the receive space on the socket. 9005 * Accounting for the association is done in ulpevent.c 9006 * We set this as a destructor for the cloned data skbs so that 9007 * accounting is done at the correct time. 9008 */ 9009 void sctp_sock_rfree(struct sk_buff *skb) 9010 { 9011 struct sock *sk = skb->sk; 9012 struct sctp_ulpevent *event = sctp_skb2event(skb); 9013 9014 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9015 9016 /* 9017 * Mimic the behavior of sock_rfree 9018 */ 9019 sk_mem_uncharge(sk, event->rmem_len); 9020 } 9021 9022 9023 /* Helper function to wait for space in the sndbuf. */ 9024 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9025 size_t msg_len) 9026 { 9027 struct sock *sk = asoc->base.sk; 9028 long current_timeo = *timeo_p; 9029 DEFINE_WAIT(wait); 9030 int err = 0; 9031 9032 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9033 *timeo_p, msg_len); 9034 9035 /* Increment the association's refcnt. */ 9036 sctp_association_hold(asoc); 9037 9038 /* Wait on the association specific sndbuf space. */ 9039 for (;;) { 9040 prepare_to_wait_exclusive(&asoc->wait, &wait, 9041 TASK_INTERRUPTIBLE); 9042 if (asoc->base.dead) 9043 goto do_dead; 9044 if (!*timeo_p) 9045 goto do_nonblock; 9046 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9047 goto do_error; 9048 if (signal_pending(current)) 9049 goto do_interrupted; 9050 if (sk_under_memory_pressure(sk)) 9051 sk_mem_reclaim(sk); 9052 if ((int)msg_len <= sctp_wspace(asoc) && 9053 sk_wmem_schedule(sk, msg_len)) 9054 break; 9055 9056 /* Let another process have a go. Since we are going 9057 * to sleep anyway. 9058 */ 9059 release_sock(sk); 9060 current_timeo = schedule_timeout(current_timeo); 9061 lock_sock(sk); 9062 if (sk != asoc->base.sk) 9063 goto do_error; 9064 9065 *timeo_p = current_timeo; 9066 } 9067 9068 out: 9069 finish_wait(&asoc->wait, &wait); 9070 9071 /* Release the association's refcnt. */ 9072 sctp_association_put(asoc); 9073 9074 return err; 9075 9076 do_dead: 9077 err = -ESRCH; 9078 goto out; 9079 9080 do_error: 9081 err = -EPIPE; 9082 goto out; 9083 9084 do_interrupted: 9085 err = sock_intr_errno(*timeo_p); 9086 goto out; 9087 9088 do_nonblock: 9089 err = -EAGAIN; 9090 goto out; 9091 } 9092 9093 void sctp_data_ready(struct sock *sk) 9094 { 9095 struct socket_wq *wq; 9096 9097 rcu_read_lock(); 9098 wq = rcu_dereference(sk->sk_wq); 9099 if (skwq_has_sleeper(wq)) 9100 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9101 EPOLLRDNORM | EPOLLRDBAND); 9102 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9103 rcu_read_unlock(); 9104 } 9105 9106 /* If socket sndbuf has changed, wake up all per association waiters. */ 9107 void sctp_write_space(struct sock *sk) 9108 { 9109 struct sctp_association *asoc; 9110 9111 /* Wake up the tasks in each wait queue. */ 9112 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9113 __sctp_write_space(asoc); 9114 } 9115 } 9116 9117 /* Is there any sndbuf space available on the socket? 9118 * 9119 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9120 * associations on the same socket. For a UDP-style socket with 9121 * multiple associations, it is possible for it to be "unwriteable" 9122 * prematurely. I assume that this is acceptable because 9123 * a premature "unwriteable" is better than an accidental "writeable" which 9124 * would cause an unwanted block under certain circumstances. For the 1-1 9125 * UDP-style sockets or TCP-style sockets, this code should work. 9126 * - Daisy 9127 */ 9128 static bool sctp_writeable(struct sock *sk) 9129 { 9130 return sk->sk_sndbuf > sk->sk_wmem_queued; 9131 } 9132 9133 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9134 * returns immediately with EINPROGRESS. 9135 */ 9136 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9137 { 9138 struct sock *sk = asoc->base.sk; 9139 int err = 0; 9140 long current_timeo = *timeo_p; 9141 DEFINE_WAIT(wait); 9142 9143 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9144 9145 /* Increment the association's refcnt. */ 9146 sctp_association_hold(asoc); 9147 9148 for (;;) { 9149 prepare_to_wait_exclusive(&asoc->wait, &wait, 9150 TASK_INTERRUPTIBLE); 9151 if (!*timeo_p) 9152 goto do_nonblock; 9153 if (sk->sk_shutdown & RCV_SHUTDOWN) 9154 break; 9155 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9156 asoc->base.dead) 9157 goto do_error; 9158 if (signal_pending(current)) 9159 goto do_interrupted; 9160 9161 if (sctp_state(asoc, ESTABLISHED)) 9162 break; 9163 9164 /* Let another process have a go. Since we are going 9165 * to sleep anyway. 9166 */ 9167 release_sock(sk); 9168 current_timeo = schedule_timeout(current_timeo); 9169 lock_sock(sk); 9170 9171 *timeo_p = current_timeo; 9172 } 9173 9174 out: 9175 finish_wait(&asoc->wait, &wait); 9176 9177 /* Release the association's refcnt. */ 9178 sctp_association_put(asoc); 9179 9180 return err; 9181 9182 do_error: 9183 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9184 err = -ETIMEDOUT; 9185 else 9186 err = -ECONNREFUSED; 9187 goto out; 9188 9189 do_interrupted: 9190 err = sock_intr_errno(*timeo_p); 9191 goto out; 9192 9193 do_nonblock: 9194 err = -EINPROGRESS; 9195 goto out; 9196 } 9197 9198 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9199 { 9200 struct sctp_endpoint *ep; 9201 int err = 0; 9202 DEFINE_WAIT(wait); 9203 9204 ep = sctp_sk(sk)->ep; 9205 9206 9207 for (;;) { 9208 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9209 TASK_INTERRUPTIBLE); 9210 9211 if (list_empty(&ep->asocs)) { 9212 release_sock(sk); 9213 timeo = schedule_timeout(timeo); 9214 lock_sock(sk); 9215 } 9216 9217 err = -EINVAL; 9218 if (!sctp_sstate(sk, LISTENING)) 9219 break; 9220 9221 err = 0; 9222 if (!list_empty(&ep->asocs)) 9223 break; 9224 9225 err = sock_intr_errno(timeo); 9226 if (signal_pending(current)) 9227 break; 9228 9229 err = -EAGAIN; 9230 if (!timeo) 9231 break; 9232 } 9233 9234 finish_wait(sk_sleep(sk), &wait); 9235 9236 return err; 9237 } 9238 9239 static void sctp_wait_for_close(struct sock *sk, long timeout) 9240 { 9241 DEFINE_WAIT(wait); 9242 9243 do { 9244 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9245 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9246 break; 9247 release_sock(sk); 9248 timeout = schedule_timeout(timeout); 9249 lock_sock(sk); 9250 } while (!signal_pending(current) && timeout); 9251 9252 finish_wait(sk_sleep(sk), &wait); 9253 } 9254 9255 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9256 { 9257 struct sk_buff *frag; 9258 9259 if (!skb->data_len) 9260 goto done; 9261 9262 /* Don't forget the fragments. */ 9263 skb_walk_frags(skb, frag) 9264 sctp_skb_set_owner_r_frag(frag, sk); 9265 9266 done: 9267 sctp_skb_set_owner_r(skb, sk); 9268 } 9269 9270 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9271 struct sctp_association *asoc) 9272 { 9273 struct inet_sock *inet = inet_sk(sk); 9274 struct inet_sock *newinet; 9275 struct sctp_sock *sp = sctp_sk(sk); 9276 struct sctp_endpoint *ep = sp->ep; 9277 9278 newsk->sk_type = sk->sk_type; 9279 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9280 newsk->sk_flags = sk->sk_flags; 9281 newsk->sk_tsflags = sk->sk_tsflags; 9282 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9283 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9284 newsk->sk_reuse = sk->sk_reuse; 9285 sctp_sk(newsk)->reuse = sp->reuse; 9286 9287 newsk->sk_shutdown = sk->sk_shutdown; 9288 newsk->sk_destruct = sctp_destruct_sock; 9289 newsk->sk_family = sk->sk_family; 9290 newsk->sk_protocol = IPPROTO_SCTP; 9291 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9292 newsk->sk_sndbuf = sk->sk_sndbuf; 9293 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9294 newsk->sk_lingertime = sk->sk_lingertime; 9295 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9296 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9297 newsk->sk_rxhash = sk->sk_rxhash; 9298 9299 newinet = inet_sk(newsk); 9300 9301 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9302 * getsockname() and getpeername() 9303 */ 9304 newinet->inet_sport = inet->inet_sport; 9305 newinet->inet_saddr = inet->inet_saddr; 9306 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9307 newinet->inet_dport = htons(asoc->peer.port); 9308 newinet->pmtudisc = inet->pmtudisc; 9309 newinet->inet_id = prandom_u32(); 9310 9311 newinet->uc_ttl = inet->uc_ttl; 9312 newinet->mc_loop = 1; 9313 newinet->mc_ttl = 1; 9314 newinet->mc_index = 0; 9315 newinet->mc_list = NULL; 9316 9317 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9318 net_enable_timestamp(); 9319 9320 /* Set newsk security attributes from orginal sk and connection 9321 * security attribute from ep. 9322 */ 9323 security_sctp_sk_clone(ep, sk, newsk); 9324 } 9325 9326 static inline void sctp_copy_descendant(struct sock *sk_to, 9327 const struct sock *sk_from) 9328 { 9329 int ancestor_size = sizeof(struct inet_sock) + 9330 sizeof(struct sctp_sock) - 9331 offsetof(struct sctp_sock, pd_lobby); 9332 9333 if (sk_from->sk_family == PF_INET6) 9334 ancestor_size += sizeof(struct ipv6_pinfo); 9335 9336 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9337 } 9338 9339 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9340 * and its messages to the newsk. 9341 */ 9342 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9343 struct sctp_association *assoc, 9344 enum sctp_socket_type type) 9345 { 9346 struct sctp_sock *oldsp = sctp_sk(oldsk); 9347 struct sctp_sock *newsp = sctp_sk(newsk); 9348 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9349 struct sctp_endpoint *newep = newsp->ep; 9350 struct sk_buff *skb, *tmp; 9351 struct sctp_ulpevent *event; 9352 struct sctp_bind_hashbucket *head; 9353 int err; 9354 9355 /* Migrate socket buffer sizes and all the socket level options to the 9356 * new socket. 9357 */ 9358 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9359 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9360 /* Brute force copy old sctp opt. */ 9361 sctp_copy_descendant(newsk, oldsk); 9362 9363 /* Restore the ep value that was overwritten with the above structure 9364 * copy. 9365 */ 9366 newsp->ep = newep; 9367 newsp->hmac = NULL; 9368 9369 /* Hook this new socket in to the bind_hash list. */ 9370 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9371 inet_sk(oldsk)->inet_num)]; 9372 spin_lock_bh(&head->lock); 9373 pp = sctp_sk(oldsk)->bind_hash; 9374 sk_add_bind_node(newsk, &pp->owner); 9375 sctp_sk(newsk)->bind_hash = pp; 9376 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9377 spin_unlock_bh(&head->lock); 9378 9379 /* Copy the bind_addr list from the original endpoint to the new 9380 * endpoint so that we can handle restarts properly 9381 */ 9382 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9383 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9384 if (err) 9385 return err; 9386 9387 /* New ep's auth_hmacs should be set if old ep's is set, in case 9388 * that net->sctp.auth_enable has been changed to 0 by users and 9389 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9390 */ 9391 if (oldsp->ep->auth_hmacs) { 9392 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9393 if (err) 9394 return err; 9395 } 9396 9397 /* Move any messages in the old socket's receive queue that are for the 9398 * peeled off association to the new socket's receive queue. 9399 */ 9400 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9401 event = sctp_skb2event(skb); 9402 if (event->asoc == assoc) { 9403 __skb_unlink(skb, &oldsk->sk_receive_queue); 9404 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9405 sctp_skb_set_owner_r_frag(skb, newsk); 9406 } 9407 } 9408 9409 /* Clean up any messages pending delivery due to partial 9410 * delivery. Three cases: 9411 * 1) No partial deliver; no work. 9412 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9413 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9414 */ 9415 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9416 9417 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9418 struct sk_buff_head *queue; 9419 9420 /* Decide which queue to move pd_lobby skbs to. */ 9421 if (assoc->ulpq.pd_mode) { 9422 queue = &newsp->pd_lobby; 9423 } else 9424 queue = &newsk->sk_receive_queue; 9425 9426 /* Walk through the pd_lobby, looking for skbs that 9427 * need moved to the new socket. 9428 */ 9429 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9430 event = sctp_skb2event(skb); 9431 if (event->asoc == assoc) { 9432 __skb_unlink(skb, &oldsp->pd_lobby); 9433 __skb_queue_tail(queue, skb); 9434 sctp_skb_set_owner_r_frag(skb, newsk); 9435 } 9436 } 9437 9438 /* Clear up any skbs waiting for the partial 9439 * delivery to finish. 9440 */ 9441 if (assoc->ulpq.pd_mode) 9442 sctp_clear_pd(oldsk, NULL); 9443 9444 } 9445 9446 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9447 9448 /* Set the type of socket to indicate that it is peeled off from the 9449 * original UDP-style socket or created with the accept() call on a 9450 * TCP-style socket.. 9451 */ 9452 newsp->type = type; 9453 9454 /* Mark the new socket "in-use" by the user so that any packets 9455 * that may arrive on the association after we've moved it are 9456 * queued to the backlog. This prevents a potential race between 9457 * backlog processing on the old socket and new-packet processing 9458 * on the new socket. 9459 * 9460 * The caller has just allocated newsk so we can guarantee that other 9461 * paths won't try to lock it and then oldsk. 9462 */ 9463 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9464 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9465 sctp_assoc_migrate(assoc, newsk); 9466 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9467 9468 /* If the association on the newsk is already closed before accept() 9469 * is called, set RCV_SHUTDOWN flag. 9470 */ 9471 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9472 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9473 newsk->sk_shutdown |= RCV_SHUTDOWN; 9474 } else { 9475 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9476 } 9477 9478 release_sock(newsk); 9479 9480 return 0; 9481 } 9482 9483 9484 /* This proto struct describes the ULP interface for SCTP. */ 9485 struct proto sctp_prot = { 9486 .name = "SCTP", 9487 .owner = THIS_MODULE, 9488 .close = sctp_close, 9489 .disconnect = sctp_disconnect, 9490 .accept = sctp_accept, 9491 .ioctl = sctp_ioctl, 9492 .init = sctp_init_sock, 9493 .destroy = sctp_destroy_sock, 9494 .shutdown = sctp_shutdown, 9495 .setsockopt = sctp_setsockopt, 9496 .getsockopt = sctp_getsockopt, 9497 .sendmsg = sctp_sendmsg, 9498 .recvmsg = sctp_recvmsg, 9499 .bind = sctp_bind, 9500 .backlog_rcv = sctp_backlog_rcv, 9501 .hash = sctp_hash, 9502 .unhash = sctp_unhash, 9503 .no_autobind = true, 9504 .obj_size = sizeof(struct sctp_sock), 9505 .useroffset = offsetof(struct sctp_sock, subscribe), 9506 .usersize = offsetof(struct sctp_sock, initmsg) - 9507 offsetof(struct sctp_sock, subscribe) + 9508 sizeof_field(struct sctp_sock, initmsg), 9509 .sysctl_mem = sysctl_sctp_mem, 9510 .sysctl_rmem = sysctl_sctp_rmem, 9511 .sysctl_wmem = sysctl_sctp_wmem, 9512 .memory_pressure = &sctp_memory_pressure, 9513 .enter_memory_pressure = sctp_enter_memory_pressure, 9514 .memory_allocated = &sctp_memory_allocated, 9515 .sockets_allocated = &sctp_sockets_allocated, 9516 }; 9517 9518 #if IS_ENABLED(CONFIG_IPV6) 9519 9520 #include <net/transp_v6.h> 9521 static void sctp_v6_destroy_sock(struct sock *sk) 9522 { 9523 sctp_destroy_sock(sk); 9524 inet6_destroy_sock(sk); 9525 } 9526 9527 struct proto sctpv6_prot = { 9528 .name = "SCTPv6", 9529 .owner = THIS_MODULE, 9530 .close = sctp_close, 9531 .disconnect = sctp_disconnect, 9532 .accept = sctp_accept, 9533 .ioctl = sctp_ioctl, 9534 .init = sctp_init_sock, 9535 .destroy = sctp_v6_destroy_sock, 9536 .shutdown = sctp_shutdown, 9537 .setsockopt = sctp_setsockopt, 9538 .getsockopt = sctp_getsockopt, 9539 .sendmsg = sctp_sendmsg, 9540 .recvmsg = sctp_recvmsg, 9541 .bind = sctp_bind, 9542 .backlog_rcv = sctp_backlog_rcv, 9543 .hash = sctp_hash, 9544 .unhash = sctp_unhash, 9545 .no_autobind = true, 9546 .obj_size = sizeof(struct sctp6_sock), 9547 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9548 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9549 offsetof(struct sctp6_sock, sctp.subscribe) + 9550 sizeof_field(struct sctp6_sock, sctp.initmsg), 9551 .sysctl_mem = sysctl_sctp_mem, 9552 .sysctl_rmem = sysctl_sctp_rmem, 9553 .sysctl_wmem = sysctl_sctp_wmem, 9554 .memory_pressure = &sctp_memory_pressure, 9555 .enter_memory_pressure = sctp_enter_memory_pressure, 9556 .memory_allocated = &sctp_memory_allocated, 9557 .sockets_allocated = &sctp_sockets_allocated, 9558 }; 9559 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9560