1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (!id || (id == (sctp_assoc_t)-1)) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = vmemdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kvfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kvfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kvfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = vmemdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kvfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 1870 return 0; 1871 } 1872 1873 return 1; 1874 } 1875 1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1877 struct msghdr *msg, size_t msg_len, 1878 struct sctp_transport *transport, 1879 struct sctp_sndrcvinfo *sinfo) 1880 { 1881 struct sock *sk = asoc->base.sk; 1882 struct sctp_sock *sp = sctp_sk(sk); 1883 struct net *net = sock_net(sk); 1884 struct sctp_datamsg *datamsg; 1885 bool wait_connect = false; 1886 struct sctp_chunk *chunk; 1887 long timeo; 1888 int err; 1889 1890 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1891 err = -EINVAL; 1892 goto err; 1893 } 1894 1895 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1896 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1897 if (err) 1898 goto err; 1899 } 1900 1901 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1902 err = -EMSGSIZE; 1903 goto err; 1904 } 1905 1906 if (asoc->pmtu_pending) { 1907 if (sp->param_flags & SPP_PMTUD_ENABLE) 1908 sctp_assoc_sync_pmtu(asoc); 1909 asoc->pmtu_pending = 0; 1910 } 1911 1912 if (sctp_wspace(asoc) < (int)msg_len) 1913 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1914 1915 if (sctp_wspace(asoc) <= 0) { 1916 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1918 if (err) 1919 goto err; 1920 } 1921 1922 if (sctp_state(asoc, CLOSED)) { 1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1924 if (err) 1925 goto err; 1926 1927 if (sp->strm_interleave) { 1928 timeo = sock_sndtimeo(sk, 0); 1929 err = sctp_wait_for_connect(asoc, &timeo); 1930 if (err) { 1931 err = -ESRCH; 1932 goto err; 1933 } 1934 } else { 1935 wait_connect = true; 1936 } 1937 1938 pr_debug("%s: we associated primitively\n", __func__); 1939 } 1940 1941 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1942 if (IS_ERR(datamsg)) { 1943 err = PTR_ERR(datamsg); 1944 goto err; 1945 } 1946 1947 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1948 1949 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1950 sctp_chunk_hold(chunk); 1951 sctp_set_owner_w(chunk); 1952 chunk->transport = transport; 1953 } 1954 1955 err = sctp_primitive_SEND(net, asoc, datamsg); 1956 if (err) { 1957 sctp_datamsg_free(datamsg); 1958 goto err; 1959 } 1960 1961 pr_debug("%s: we sent primitively\n", __func__); 1962 1963 sctp_datamsg_put(datamsg); 1964 1965 if (unlikely(wait_connect)) { 1966 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1967 sctp_wait_for_connect(asoc, &timeo); 1968 } 1969 1970 err = msg_len; 1971 1972 err: 1973 return err; 1974 } 1975 1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1977 const struct msghdr *msg, 1978 struct sctp_cmsgs *cmsgs) 1979 { 1980 union sctp_addr *daddr = NULL; 1981 int err; 1982 1983 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1984 int len = msg->msg_namelen; 1985 1986 if (len > sizeof(*daddr)) 1987 len = sizeof(*daddr); 1988 1989 daddr = (union sctp_addr *)msg->msg_name; 1990 1991 err = sctp_verify_addr(sk, daddr, len); 1992 if (err) 1993 return ERR_PTR(err); 1994 } 1995 1996 return daddr; 1997 } 1998 1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2000 struct sctp_sndrcvinfo *sinfo, 2001 struct sctp_cmsgs *cmsgs) 2002 { 2003 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2004 sinfo->sinfo_stream = asoc->default_stream; 2005 sinfo->sinfo_ppid = asoc->default_ppid; 2006 sinfo->sinfo_context = asoc->default_context; 2007 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2008 2009 if (!cmsgs->prinfo) 2010 sinfo->sinfo_flags = asoc->default_flags; 2011 } 2012 2013 if (!cmsgs->srinfo && !cmsgs->prinfo) 2014 sinfo->sinfo_timetolive = asoc->default_timetolive; 2015 2016 if (cmsgs->authinfo) { 2017 /* Reuse sinfo_tsn to indicate that authinfo was set and 2018 * sinfo_ssn to save the keyid on tx path. 2019 */ 2020 sinfo->sinfo_tsn = 1; 2021 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2022 } 2023 } 2024 2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2026 { 2027 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2028 struct sctp_transport *transport = NULL; 2029 struct sctp_sndrcvinfo _sinfo, *sinfo; 2030 struct sctp_association *asoc; 2031 struct sctp_cmsgs cmsgs; 2032 union sctp_addr *daddr; 2033 bool new = false; 2034 __u16 sflags; 2035 int err; 2036 2037 /* Parse and get snd_info */ 2038 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2039 if (err) 2040 goto out; 2041 2042 sinfo = &_sinfo; 2043 sflags = sinfo->sinfo_flags; 2044 2045 /* Get daddr from msg */ 2046 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2047 if (IS_ERR(daddr)) { 2048 err = PTR_ERR(daddr); 2049 goto out; 2050 } 2051 2052 lock_sock(sk); 2053 2054 /* SCTP_SENDALL process */ 2055 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2056 list_for_each_entry(asoc, &ep->asocs, asocs) { 2057 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2058 msg_len); 2059 if (err == 0) 2060 continue; 2061 if (err < 0) 2062 goto out_unlock; 2063 2064 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2065 2066 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2067 NULL, sinfo); 2068 if (err < 0) 2069 goto out_unlock; 2070 2071 iov_iter_revert(&msg->msg_iter, err); 2072 } 2073 2074 goto out_unlock; 2075 } 2076 2077 /* Get and check or create asoc */ 2078 if (daddr) { 2079 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2080 if (asoc) { 2081 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2082 msg_len); 2083 if (err <= 0) 2084 goto out_unlock; 2085 } else { 2086 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2087 &transport); 2088 if (err) 2089 goto out_unlock; 2090 2091 asoc = transport->asoc; 2092 new = true; 2093 } 2094 2095 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2096 transport = NULL; 2097 } else { 2098 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2099 if (!asoc) { 2100 err = -EPIPE; 2101 goto out_unlock; 2102 } 2103 2104 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2105 if (err <= 0) 2106 goto out_unlock; 2107 } 2108 2109 /* Update snd_info with the asoc */ 2110 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2111 2112 /* Send msg to the asoc */ 2113 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2114 if (err < 0 && err != -ESRCH && new) 2115 sctp_association_free(asoc); 2116 2117 out_unlock: 2118 release_sock(sk); 2119 out: 2120 return sctp_error(sk, msg->msg_flags, err); 2121 } 2122 2123 /* This is an extended version of skb_pull() that removes the data from the 2124 * start of a skb even when data is spread across the list of skb's in the 2125 * frag_list. len specifies the total amount of data that needs to be removed. 2126 * when 'len' bytes could be removed from the skb, it returns 0. 2127 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2128 * could not be removed. 2129 */ 2130 static int sctp_skb_pull(struct sk_buff *skb, int len) 2131 { 2132 struct sk_buff *list; 2133 int skb_len = skb_headlen(skb); 2134 int rlen; 2135 2136 if (len <= skb_len) { 2137 __skb_pull(skb, len); 2138 return 0; 2139 } 2140 len -= skb_len; 2141 __skb_pull(skb, skb_len); 2142 2143 skb_walk_frags(skb, list) { 2144 rlen = sctp_skb_pull(list, len); 2145 skb->len -= (len-rlen); 2146 skb->data_len -= (len-rlen); 2147 2148 if (!rlen) 2149 return 0; 2150 2151 len = rlen; 2152 } 2153 2154 return len; 2155 } 2156 2157 /* API 3.1.3 recvmsg() - UDP Style Syntax 2158 * 2159 * ssize_t recvmsg(int socket, struct msghdr *message, 2160 * int flags); 2161 * 2162 * socket - the socket descriptor of the endpoint. 2163 * message - pointer to the msghdr structure which contains a single 2164 * user message and possibly some ancillary data. 2165 * 2166 * See Section 5 for complete description of the data 2167 * structures. 2168 * 2169 * flags - flags sent or received with the user message, see Section 2170 * 5 for complete description of the flags. 2171 */ 2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2173 int noblock, int flags, int *addr_len) 2174 { 2175 struct sctp_ulpevent *event = NULL; 2176 struct sctp_sock *sp = sctp_sk(sk); 2177 struct sk_buff *skb, *head_skb; 2178 int copied; 2179 int err = 0; 2180 int skb_len; 2181 2182 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2183 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2184 addr_len); 2185 2186 lock_sock(sk); 2187 2188 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2189 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2190 err = -ENOTCONN; 2191 goto out; 2192 } 2193 2194 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2195 if (!skb) 2196 goto out; 2197 2198 /* Get the total length of the skb including any skb's in the 2199 * frag_list. 2200 */ 2201 skb_len = skb->len; 2202 2203 copied = skb_len; 2204 if (copied > len) 2205 copied = len; 2206 2207 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2208 2209 event = sctp_skb2event(skb); 2210 2211 if (err) 2212 goto out_free; 2213 2214 if (event->chunk && event->chunk->head_skb) 2215 head_skb = event->chunk->head_skb; 2216 else 2217 head_skb = skb; 2218 sock_recv_ts_and_drops(msg, sk, head_skb); 2219 if (sctp_ulpevent_is_notification(event)) { 2220 msg->msg_flags |= MSG_NOTIFICATION; 2221 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2222 } else { 2223 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2224 } 2225 2226 /* Check if we allow SCTP_NXTINFO. */ 2227 if (sp->recvnxtinfo) 2228 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2229 /* Check if we allow SCTP_RCVINFO. */ 2230 if (sp->recvrcvinfo) 2231 sctp_ulpevent_read_rcvinfo(event, msg); 2232 /* Check if we allow SCTP_SNDRCVINFO. */ 2233 if (sp->subscribe.sctp_data_io_event) 2234 sctp_ulpevent_read_sndrcvinfo(event, msg); 2235 2236 err = copied; 2237 2238 /* If skb's length exceeds the user's buffer, update the skb and 2239 * push it back to the receive_queue so that the next call to 2240 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2241 */ 2242 if (skb_len > copied) { 2243 msg->msg_flags &= ~MSG_EOR; 2244 if (flags & MSG_PEEK) 2245 goto out_free; 2246 sctp_skb_pull(skb, copied); 2247 skb_queue_head(&sk->sk_receive_queue, skb); 2248 2249 /* When only partial message is copied to the user, increase 2250 * rwnd by that amount. If all the data in the skb is read, 2251 * rwnd is updated when the event is freed. 2252 */ 2253 if (!sctp_ulpevent_is_notification(event)) 2254 sctp_assoc_rwnd_increase(event->asoc, copied); 2255 goto out; 2256 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2257 (event->msg_flags & MSG_EOR)) 2258 msg->msg_flags |= MSG_EOR; 2259 else 2260 msg->msg_flags &= ~MSG_EOR; 2261 2262 out_free: 2263 if (flags & MSG_PEEK) { 2264 /* Release the skb reference acquired after peeking the skb in 2265 * sctp_skb_recv_datagram(). 2266 */ 2267 kfree_skb(skb); 2268 } else { 2269 /* Free the event which includes releasing the reference to 2270 * the owner of the skb, freeing the skb and updating the 2271 * rwnd. 2272 */ 2273 sctp_ulpevent_free(event); 2274 } 2275 out: 2276 release_sock(sk); 2277 return err; 2278 } 2279 2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2281 * 2282 * This option is a on/off flag. If enabled no SCTP message 2283 * fragmentation will be performed. Instead if a message being sent 2284 * exceeds the current PMTU size, the message will NOT be sent and 2285 * instead a error will be indicated to the user. 2286 */ 2287 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2288 char __user *optval, 2289 unsigned int optlen) 2290 { 2291 int val; 2292 2293 if (optlen < sizeof(int)) 2294 return -EINVAL; 2295 2296 if (get_user(val, (int __user *)optval)) 2297 return -EFAULT; 2298 2299 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2300 2301 return 0; 2302 } 2303 2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2305 unsigned int optlen) 2306 { 2307 struct sctp_association *asoc; 2308 struct sctp_ulpevent *event; 2309 2310 if (optlen > sizeof(struct sctp_event_subscribe)) 2311 return -EINVAL; 2312 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2313 return -EFAULT; 2314 2315 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2316 * if there is no data to be sent or retransmit, the stack will 2317 * immediately send up this notification. 2318 */ 2319 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2320 &sctp_sk(sk)->subscribe)) { 2321 asoc = sctp_id2assoc(sk, 0); 2322 2323 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2324 event = sctp_ulpevent_make_sender_dry_event(asoc, 2325 GFP_USER | __GFP_NOWARN); 2326 if (!event) 2327 return -ENOMEM; 2328 2329 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2330 } 2331 } 2332 2333 return 0; 2334 } 2335 2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2337 * 2338 * This socket option is applicable to the UDP-style socket only. When 2339 * set it will cause associations that are idle for more than the 2340 * specified number of seconds to automatically close. An association 2341 * being idle is defined an association that has NOT sent or received 2342 * user data. The special value of '0' indicates that no automatic 2343 * close of any associations should be performed. The option expects an 2344 * integer defining the number of seconds of idle time before an 2345 * association is closed. 2346 */ 2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2348 unsigned int optlen) 2349 { 2350 struct sctp_sock *sp = sctp_sk(sk); 2351 struct net *net = sock_net(sk); 2352 2353 /* Applicable to UDP-style socket only */ 2354 if (sctp_style(sk, TCP)) 2355 return -EOPNOTSUPP; 2356 if (optlen != sizeof(int)) 2357 return -EINVAL; 2358 if (copy_from_user(&sp->autoclose, optval, optlen)) 2359 return -EFAULT; 2360 2361 if (sp->autoclose > net->sctp.max_autoclose) 2362 sp->autoclose = net->sctp.max_autoclose; 2363 2364 return 0; 2365 } 2366 2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2368 * 2369 * Applications can enable or disable heartbeats for any peer address of 2370 * an association, modify an address's heartbeat interval, force a 2371 * heartbeat to be sent immediately, and adjust the address's maximum 2372 * number of retransmissions sent before an address is considered 2373 * unreachable. The following structure is used to access and modify an 2374 * address's parameters: 2375 * 2376 * struct sctp_paddrparams { 2377 * sctp_assoc_t spp_assoc_id; 2378 * struct sockaddr_storage spp_address; 2379 * uint32_t spp_hbinterval; 2380 * uint16_t spp_pathmaxrxt; 2381 * uint32_t spp_pathmtu; 2382 * uint32_t spp_sackdelay; 2383 * uint32_t spp_flags; 2384 * uint32_t spp_ipv6_flowlabel; 2385 * uint8_t spp_dscp; 2386 * }; 2387 * 2388 * spp_assoc_id - (one-to-many style socket) This is filled in the 2389 * application, and identifies the association for 2390 * this query. 2391 * spp_address - This specifies which address is of interest. 2392 * spp_hbinterval - This contains the value of the heartbeat interval, 2393 * in milliseconds. If a value of zero 2394 * is present in this field then no changes are to 2395 * be made to this parameter. 2396 * spp_pathmaxrxt - This contains the maximum number of 2397 * retransmissions before this address shall be 2398 * considered unreachable. If a value of zero 2399 * is present in this field then no changes are to 2400 * be made to this parameter. 2401 * spp_pathmtu - When Path MTU discovery is disabled the value 2402 * specified here will be the "fixed" path mtu. 2403 * Note that if the spp_address field is empty 2404 * then all associations on this address will 2405 * have this fixed path mtu set upon them. 2406 * 2407 * spp_sackdelay - When delayed sack is enabled, this value specifies 2408 * the number of milliseconds that sacks will be delayed 2409 * for. This value will apply to all addresses of an 2410 * association if the spp_address field is empty. Note 2411 * also, that if delayed sack is enabled and this 2412 * value is set to 0, no change is made to the last 2413 * recorded delayed sack timer value. 2414 * 2415 * spp_flags - These flags are used to control various features 2416 * on an association. The flag field may contain 2417 * zero or more of the following options. 2418 * 2419 * SPP_HB_ENABLE - Enable heartbeats on the 2420 * specified address. Note that if the address 2421 * field is empty all addresses for the association 2422 * have heartbeats enabled upon them. 2423 * 2424 * SPP_HB_DISABLE - Disable heartbeats on the 2425 * speicifed address. Note that if the address 2426 * field is empty all addresses for the association 2427 * will have their heartbeats disabled. Note also 2428 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2429 * mutually exclusive, only one of these two should 2430 * be specified. Enabling both fields will have 2431 * undetermined results. 2432 * 2433 * SPP_HB_DEMAND - Request a user initiated heartbeat 2434 * to be made immediately. 2435 * 2436 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2437 * heartbeat delayis to be set to the value of 0 2438 * milliseconds. 2439 * 2440 * SPP_PMTUD_ENABLE - This field will enable PMTU 2441 * discovery upon the specified address. Note that 2442 * if the address feild is empty then all addresses 2443 * on the association are effected. 2444 * 2445 * SPP_PMTUD_DISABLE - This field will disable PMTU 2446 * discovery upon the specified address. Note that 2447 * if the address feild is empty then all addresses 2448 * on the association are effected. Not also that 2449 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2450 * exclusive. Enabling both will have undetermined 2451 * results. 2452 * 2453 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2454 * on delayed sack. The time specified in spp_sackdelay 2455 * is used to specify the sack delay for this address. Note 2456 * that if spp_address is empty then all addresses will 2457 * enable delayed sack and take on the sack delay 2458 * value specified in spp_sackdelay. 2459 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2460 * off delayed sack. If the spp_address field is blank then 2461 * delayed sack is disabled for the entire association. Note 2462 * also that this field is mutually exclusive to 2463 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2464 * results. 2465 * 2466 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2467 * setting of the IPV6 flow label value. The value is 2468 * contained in the spp_ipv6_flowlabel field. 2469 * Upon retrieval, this flag will be set to indicate that 2470 * the spp_ipv6_flowlabel field has a valid value returned. 2471 * If a specific destination address is set (in the 2472 * spp_address field), then the value returned is that of 2473 * the address. If just an association is specified (and 2474 * no address), then the association's default flow label 2475 * is returned. If neither an association nor a destination 2476 * is specified, then the socket's default flow label is 2477 * returned. For non-IPv6 sockets, this flag will be left 2478 * cleared. 2479 * 2480 * SPP_DSCP: Setting this flag enables the setting of the 2481 * Differentiated Services Code Point (DSCP) value 2482 * associated with either the association or a specific 2483 * address. The value is obtained in the spp_dscp field. 2484 * Upon retrieval, this flag will be set to indicate that 2485 * the spp_dscp field has a valid value returned. If a 2486 * specific destination address is set when called (in the 2487 * spp_address field), then that specific destination 2488 * address's DSCP value is returned. If just an association 2489 * is specified, then the association's default DSCP is 2490 * returned. If neither an association nor a destination is 2491 * specified, then the socket's default DSCP is returned. 2492 * 2493 * spp_ipv6_flowlabel 2494 * - This field is used in conjunction with the 2495 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2496 * The 20 least significant bits are used for the flow 2497 * label. This setting has precedence over any IPv6-layer 2498 * setting. 2499 * 2500 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2501 * and contains the DSCP. The 6 most significant bits are 2502 * used for the DSCP. This setting has precedence over any 2503 * IPv4- or IPv6- layer setting. 2504 */ 2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2506 struct sctp_transport *trans, 2507 struct sctp_association *asoc, 2508 struct sctp_sock *sp, 2509 int hb_change, 2510 int pmtud_change, 2511 int sackdelay_change) 2512 { 2513 int error; 2514 2515 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2516 struct net *net = sock_net(trans->asoc->base.sk); 2517 2518 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2519 if (error) 2520 return error; 2521 } 2522 2523 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2524 * this field is ignored. Note also that a value of zero indicates 2525 * the current setting should be left unchanged. 2526 */ 2527 if (params->spp_flags & SPP_HB_ENABLE) { 2528 2529 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2530 * set. This lets us use 0 value when this flag 2531 * is set. 2532 */ 2533 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2534 params->spp_hbinterval = 0; 2535 2536 if (params->spp_hbinterval || 2537 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2538 if (trans) { 2539 trans->hbinterval = 2540 msecs_to_jiffies(params->spp_hbinterval); 2541 } else if (asoc) { 2542 asoc->hbinterval = 2543 msecs_to_jiffies(params->spp_hbinterval); 2544 } else { 2545 sp->hbinterval = params->spp_hbinterval; 2546 } 2547 } 2548 } 2549 2550 if (hb_change) { 2551 if (trans) { 2552 trans->param_flags = 2553 (trans->param_flags & ~SPP_HB) | hb_change; 2554 } else if (asoc) { 2555 asoc->param_flags = 2556 (asoc->param_flags & ~SPP_HB) | hb_change; 2557 } else { 2558 sp->param_flags = 2559 (sp->param_flags & ~SPP_HB) | hb_change; 2560 } 2561 } 2562 2563 /* When Path MTU discovery is disabled the value specified here will 2564 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2565 * include the flag SPP_PMTUD_DISABLE for this field to have any 2566 * effect). 2567 */ 2568 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2569 if (trans) { 2570 trans->pathmtu = params->spp_pathmtu; 2571 sctp_assoc_sync_pmtu(asoc); 2572 } else if (asoc) { 2573 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2574 } else { 2575 sp->pathmtu = params->spp_pathmtu; 2576 } 2577 } 2578 2579 if (pmtud_change) { 2580 if (trans) { 2581 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2582 (params->spp_flags & SPP_PMTUD_ENABLE); 2583 trans->param_flags = 2584 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2585 if (update) { 2586 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2587 sctp_assoc_sync_pmtu(asoc); 2588 } 2589 } else if (asoc) { 2590 asoc->param_flags = 2591 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2592 } else { 2593 sp->param_flags = 2594 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2595 } 2596 } 2597 2598 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2599 * value of this field is ignored. Note also that a value of zero 2600 * indicates the current setting should be left unchanged. 2601 */ 2602 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2603 if (trans) { 2604 trans->sackdelay = 2605 msecs_to_jiffies(params->spp_sackdelay); 2606 } else if (asoc) { 2607 asoc->sackdelay = 2608 msecs_to_jiffies(params->spp_sackdelay); 2609 } else { 2610 sp->sackdelay = params->spp_sackdelay; 2611 } 2612 } 2613 2614 if (sackdelay_change) { 2615 if (trans) { 2616 trans->param_flags = 2617 (trans->param_flags & ~SPP_SACKDELAY) | 2618 sackdelay_change; 2619 } else if (asoc) { 2620 asoc->param_flags = 2621 (asoc->param_flags & ~SPP_SACKDELAY) | 2622 sackdelay_change; 2623 } else { 2624 sp->param_flags = 2625 (sp->param_flags & ~SPP_SACKDELAY) | 2626 sackdelay_change; 2627 } 2628 } 2629 2630 /* Note that a value of zero indicates the current setting should be 2631 left unchanged. 2632 */ 2633 if (params->spp_pathmaxrxt) { 2634 if (trans) { 2635 trans->pathmaxrxt = params->spp_pathmaxrxt; 2636 } else if (asoc) { 2637 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2638 } else { 2639 sp->pathmaxrxt = params->spp_pathmaxrxt; 2640 } 2641 } 2642 2643 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2644 if (trans) { 2645 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2646 trans->flowlabel = params->spp_ipv6_flowlabel & 2647 SCTP_FLOWLABEL_VAL_MASK; 2648 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2649 } 2650 } else if (asoc) { 2651 struct sctp_transport *t; 2652 2653 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2654 transports) { 2655 if (t->ipaddr.sa.sa_family != AF_INET6) 2656 continue; 2657 t->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 asoc->flowlabel = params->spp_ipv6_flowlabel & 2662 SCTP_FLOWLABEL_VAL_MASK; 2663 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2664 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2665 sp->flowlabel = params->spp_ipv6_flowlabel & 2666 SCTP_FLOWLABEL_VAL_MASK; 2667 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2668 } 2669 } 2670 2671 if (params->spp_flags & SPP_DSCP) { 2672 if (trans) { 2673 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2674 trans->dscp |= SCTP_DSCP_SET_MASK; 2675 } else if (asoc) { 2676 struct sctp_transport *t; 2677 2678 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2679 transports) { 2680 t->dscp = params->spp_dscp & 2681 SCTP_DSCP_VAL_MASK; 2682 t->dscp |= SCTP_DSCP_SET_MASK; 2683 } 2684 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 asoc->dscp |= SCTP_DSCP_SET_MASK; 2686 } else { 2687 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2688 sp->dscp |= SCTP_DSCP_SET_MASK; 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2696 char __user *optval, 2697 unsigned int optlen) 2698 { 2699 struct sctp_paddrparams params; 2700 struct sctp_transport *trans = NULL; 2701 struct sctp_association *asoc = NULL; 2702 struct sctp_sock *sp = sctp_sk(sk); 2703 int error; 2704 int hb_change, pmtud_change, sackdelay_change; 2705 2706 if (optlen == sizeof(params)) { 2707 if (copy_from_user(¶ms, optval, optlen)) 2708 return -EFAULT; 2709 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2710 spp_ipv6_flowlabel), 4)) { 2711 if (copy_from_user(¶ms, optval, optlen)) 2712 return -EFAULT; 2713 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2714 return -EINVAL; 2715 } else { 2716 return -EINVAL; 2717 } 2718 2719 /* Validate flags and value parameters. */ 2720 hb_change = params.spp_flags & SPP_HB; 2721 pmtud_change = params.spp_flags & SPP_PMTUD; 2722 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2723 2724 if (hb_change == SPP_HB || 2725 pmtud_change == SPP_PMTUD || 2726 sackdelay_change == SPP_SACKDELAY || 2727 params.spp_sackdelay > 500 || 2728 (params.spp_pathmtu && 2729 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2730 return -EINVAL; 2731 2732 /* If an address other than INADDR_ANY is specified, and 2733 * no transport is found, then the request is invalid. 2734 */ 2735 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2736 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2737 params.spp_assoc_id); 2738 if (!trans) 2739 return -EINVAL; 2740 } 2741 2742 /* Get association, if assoc_id != 0 and the socket is a one 2743 * to many style socket, and an association was not found, then 2744 * the id was invalid. 2745 */ 2746 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2747 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2748 return -EINVAL; 2749 2750 /* Heartbeat demand can only be sent on a transport or 2751 * association, but not a socket. 2752 */ 2753 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2754 return -EINVAL; 2755 2756 /* Process parameters. */ 2757 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2758 hb_change, pmtud_change, 2759 sackdelay_change); 2760 2761 if (error) 2762 return error; 2763 2764 /* If changes are for association, also apply parameters to each 2765 * transport. 2766 */ 2767 if (!trans && asoc) { 2768 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2769 transports) { 2770 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2771 hb_change, pmtud_change, 2772 sackdelay_change); 2773 } 2774 } 2775 2776 return 0; 2777 } 2778 2779 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2780 { 2781 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2782 } 2783 2784 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2785 { 2786 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2787 } 2788 2789 /* 2790 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2791 * 2792 * This option will effect the way delayed acks are performed. This 2793 * option allows you to get or set the delayed ack time, in 2794 * milliseconds. It also allows changing the delayed ack frequency. 2795 * Changing the frequency to 1 disables the delayed sack algorithm. If 2796 * the assoc_id is 0, then this sets or gets the endpoints default 2797 * values. If the assoc_id field is non-zero, then the set or get 2798 * effects the specified association for the one to many model (the 2799 * assoc_id field is ignored by the one to one model). Note that if 2800 * sack_delay or sack_freq are 0 when setting this option, then the 2801 * current values will remain unchanged. 2802 * 2803 * struct sctp_sack_info { 2804 * sctp_assoc_t sack_assoc_id; 2805 * uint32_t sack_delay; 2806 * uint32_t sack_freq; 2807 * }; 2808 * 2809 * sack_assoc_id - This parameter, indicates which association the user 2810 * is performing an action upon. Note that if this field's value is 2811 * zero then the endpoints default value is changed (effecting future 2812 * associations only). 2813 * 2814 * sack_delay - This parameter contains the number of milliseconds that 2815 * the user is requesting the delayed ACK timer be set to. Note that 2816 * this value is defined in the standard to be between 200 and 500 2817 * milliseconds. 2818 * 2819 * sack_freq - This parameter contains the number of packets that must 2820 * be received before a sack is sent without waiting for the delay 2821 * timer to expire. The default value for this is 2, setting this 2822 * value to 1 will disable the delayed sack algorithm. 2823 */ 2824 2825 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2826 char __user *optval, unsigned int optlen) 2827 { 2828 struct sctp_sack_info params; 2829 struct sctp_transport *trans = NULL; 2830 struct sctp_association *asoc = NULL; 2831 struct sctp_sock *sp = sctp_sk(sk); 2832 2833 if (optlen == sizeof(struct sctp_sack_info)) { 2834 if (copy_from_user(¶ms, optval, optlen)) 2835 return -EFAULT; 2836 2837 if (params.sack_delay == 0 && params.sack_freq == 0) 2838 return 0; 2839 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2840 pr_warn_ratelimited(DEPRECATED 2841 "%s (pid %d) " 2842 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2843 "Use struct sctp_sack_info instead\n", 2844 current->comm, task_pid_nr(current)); 2845 if (copy_from_user(¶ms, optval, optlen)) 2846 return -EFAULT; 2847 2848 if (params.sack_delay == 0) 2849 params.sack_freq = 1; 2850 else 2851 params.sack_freq = 0; 2852 } else 2853 return -EINVAL; 2854 2855 /* Validate value parameter. */ 2856 if (params.sack_delay > 500) 2857 return -EINVAL; 2858 2859 /* Get association, if sack_assoc_id != 0 and the socket is a one 2860 * to many style socket, and an association was not found, then 2861 * the id was invalid. 2862 */ 2863 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2864 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2865 return -EINVAL; 2866 2867 if (params.sack_delay) { 2868 if (asoc) { 2869 asoc->sackdelay = 2870 msecs_to_jiffies(params.sack_delay); 2871 asoc->param_flags = 2872 sctp_spp_sackdelay_enable(asoc->param_flags); 2873 } else { 2874 sp->sackdelay = params.sack_delay; 2875 sp->param_flags = 2876 sctp_spp_sackdelay_enable(sp->param_flags); 2877 } 2878 } 2879 2880 if (params.sack_freq == 1) { 2881 if (asoc) { 2882 asoc->param_flags = 2883 sctp_spp_sackdelay_disable(asoc->param_flags); 2884 } else { 2885 sp->param_flags = 2886 sctp_spp_sackdelay_disable(sp->param_flags); 2887 } 2888 } else if (params.sack_freq > 1) { 2889 if (asoc) { 2890 asoc->sackfreq = params.sack_freq; 2891 asoc->param_flags = 2892 sctp_spp_sackdelay_enable(asoc->param_flags); 2893 } else { 2894 sp->sackfreq = params.sack_freq; 2895 sp->param_flags = 2896 sctp_spp_sackdelay_enable(sp->param_flags); 2897 } 2898 } 2899 2900 /* If change is for association, also apply to each transport. */ 2901 if (asoc) { 2902 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2903 transports) { 2904 if (params.sack_delay) { 2905 trans->sackdelay = 2906 msecs_to_jiffies(params.sack_delay); 2907 trans->param_flags = 2908 sctp_spp_sackdelay_enable(trans->param_flags); 2909 } 2910 if (params.sack_freq == 1) { 2911 trans->param_flags = 2912 sctp_spp_sackdelay_disable(trans->param_flags); 2913 } else if (params.sack_freq > 1) { 2914 trans->sackfreq = params.sack_freq; 2915 trans->param_flags = 2916 sctp_spp_sackdelay_enable(trans->param_flags); 2917 } 2918 } 2919 } 2920 2921 return 0; 2922 } 2923 2924 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2925 * 2926 * Applications can specify protocol parameters for the default association 2927 * initialization. The option name argument to setsockopt() and getsockopt() 2928 * is SCTP_INITMSG. 2929 * 2930 * Setting initialization parameters is effective only on an unconnected 2931 * socket (for UDP-style sockets only future associations are effected 2932 * by the change). With TCP-style sockets, this option is inherited by 2933 * sockets derived from a listener socket. 2934 */ 2935 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2936 { 2937 struct sctp_initmsg sinit; 2938 struct sctp_sock *sp = sctp_sk(sk); 2939 2940 if (optlen != sizeof(struct sctp_initmsg)) 2941 return -EINVAL; 2942 if (copy_from_user(&sinit, optval, optlen)) 2943 return -EFAULT; 2944 2945 if (sinit.sinit_num_ostreams) 2946 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2947 if (sinit.sinit_max_instreams) 2948 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2949 if (sinit.sinit_max_attempts) 2950 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2951 if (sinit.sinit_max_init_timeo) 2952 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2953 2954 return 0; 2955 } 2956 2957 /* 2958 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2959 * 2960 * Applications that wish to use the sendto() system call may wish to 2961 * specify a default set of parameters that would normally be supplied 2962 * through the inclusion of ancillary data. This socket option allows 2963 * such an application to set the default sctp_sndrcvinfo structure. 2964 * The application that wishes to use this socket option simply passes 2965 * in to this call the sctp_sndrcvinfo structure defined in Section 2966 * 5.2.2) The input parameters accepted by this call include 2967 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2968 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2969 * to this call if the caller is using the UDP model. 2970 */ 2971 static int sctp_setsockopt_default_send_param(struct sock *sk, 2972 char __user *optval, 2973 unsigned int optlen) 2974 { 2975 struct sctp_sock *sp = sctp_sk(sk); 2976 struct sctp_association *asoc; 2977 struct sctp_sndrcvinfo info; 2978 2979 if (optlen != sizeof(info)) 2980 return -EINVAL; 2981 if (copy_from_user(&info, optval, optlen)) 2982 return -EFAULT; 2983 if (info.sinfo_flags & 2984 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2985 SCTP_ABORT | SCTP_EOF)) 2986 return -EINVAL; 2987 2988 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2989 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2990 return -EINVAL; 2991 if (asoc) { 2992 asoc->default_stream = info.sinfo_stream; 2993 asoc->default_flags = info.sinfo_flags; 2994 asoc->default_ppid = info.sinfo_ppid; 2995 asoc->default_context = info.sinfo_context; 2996 asoc->default_timetolive = info.sinfo_timetolive; 2997 } else { 2998 sp->default_stream = info.sinfo_stream; 2999 sp->default_flags = info.sinfo_flags; 3000 sp->default_ppid = info.sinfo_ppid; 3001 sp->default_context = info.sinfo_context; 3002 sp->default_timetolive = info.sinfo_timetolive; 3003 } 3004 3005 return 0; 3006 } 3007 3008 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3009 * (SCTP_DEFAULT_SNDINFO) 3010 */ 3011 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3012 char __user *optval, 3013 unsigned int optlen) 3014 { 3015 struct sctp_sock *sp = sctp_sk(sk); 3016 struct sctp_association *asoc; 3017 struct sctp_sndinfo info; 3018 3019 if (optlen != sizeof(info)) 3020 return -EINVAL; 3021 if (copy_from_user(&info, optval, optlen)) 3022 return -EFAULT; 3023 if (info.snd_flags & 3024 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3025 SCTP_ABORT | SCTP_EOF)) 3026 return -EINVAL; 3027 3028 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3029 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 3030 return -EINVAL; 3031 if (asoc) { 3032 asoc->default_stream = info.snd_sid; 3033 asoc->default_flags = info.snd_flags; 3034 asoc->default_ppid = info.snd_ppid; 3035 asoc->default_context = info.snd_context; 3036 } else { 3037 sp->default_stream = info.snd_sid; 3038 sp->default_flags = info.snd_flags; 3039 sp->default_ppid = info.snd_ppid; 3040 sp->default_context = info.snd_context; 3041 } 3042 3043 return 0; 3044 } 3045 3046 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3047 * 3048 * Requests that the local SCTP stack use the enclosed peer address as 3049 * the association primary. The enclosed address must be one of the 3050 * association peer's addresses. 3051 */ 3052 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3053 unsigned int optlen) 3054 { 3055 struct sctp_prim prim; 3056 struct sctp_transport *trans; 3057 struct sctp_af *af; 3058 int err; 3059 3060 if (optlen != sizeof(struct sctp_prim)) 3061 return -EINVAL; 3062 3063 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3064 return -EFAULT; 3065 3066 /* Allow security module to validate address but need address len. */ 3067 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3068 if (!af) 3069 return -EINVAL; 3070 3071 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3072 (struct sockaddr *)&prim.ssp_addr, 3073 af->sockaddr_len); 3074 if (err) 3075 return err; 3076 3077 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3078 if (!trans) 3079 return -EINVAL; 3080 3081 sctp_assoc_set_primary(trans->asoc, trans); 3082 3083 return 0; 3084 } 3085 3086 /* 3087 * 7.1.5 SCTP_NODELAY 3088 * 3089 * Turn on/off any Nagle-like algorithm. This means that packets are 3090 * generally sent as soon as possible and no unnecessary delays are 3091 * introduced, at the cost of more packets in the network. Expects an 3092 * integer boolean flag. 3093 */ 3094 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3095 unsigned int optlen) 3096 { 3097 int val; 3098 3099 if (optlen < sizeof(int)) 3100 return -EINVAL; 3101 if (get_user(val, (int __user *)optval)) 3102 return -EFAULT; 3103 3104 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3105 return 0; 3106 } 3107 3108 /* 3109 * 3110 * 7.1.1 SCTP_RTOINFO 3111 * 3112 * The protocol parameters used to initialize and bound retransmission 3113 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3114 * and modify these parameters. 3115 * All parameters are time values, in milliseconds. A value of 0, when 3116 * modifying the parameters, indicates that the current value should not 3117 * be changed. 3118 * 3119 */ 3120 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3121 { 3122 struct sctp_rtoinfo rtoinfo; 3123 struct sctp_association *asoc; 3124 unsigned long rto_min, rto_max; 3125 struct sctp_sock *sp = sctp_sk(sk); 3126 3127 if (optlen != sizeof (struct sctp_rtoinfo)) 3128 return -EINVAL; 3129 3130 if (copy_from_user(&rtoinfo, optval, optlen)) 3131 return -EFAULT; 3132 3133 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3134 3135 /* Set the values to the specific association */ 3136 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3137 return -EINVAL; 3138 3139 rto_max = rtoinfo.srto_max; 3140 rto_min = rtoinfo.srto_min; 3141 3142 if (rto_max) 3143 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3144 else 3145 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3146 3147 if (rto_min) 3148 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3149 else 3150 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3151 3152 if (rto_min > rto_max) 3153 return -EINVAL; 3154 3155 if (asoc) { 3156 if (rtoinfo.srto_initial != 0) 3157 asoc->rto_initial = 3158 msecs_to_jiffies(rtoinfo.srto_initial); 3159 asoc->rto_max = rto_max; 3160 asoc->rto_min = rto_min; 3161 } else { 3162 /* If there is no association or the association-id = 0 3163 * set the values to the endpoint. 3164 */ 3165 if (rtoinfo.srto_initial != 0) 3166 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3167 sp->rtoinfo.srto_max = rto_max; 3168 sp->rtoinfo.srto_min = rto_min; 3169 } 3170 3171 return 0; 3172 } 3173 3174 /* 3175 * 3176 * 7.1.2 SCTP_ASSOCINFO 3177 * 3178 * This option is used to tune the maximum retransmission attempts 3179 * of the association. 3180 * Returns an error if the new association retransmission value is 3181 * greater than the sum of the retransmission value of the peer. 3182 * See [SCTP] for more information. 3183 * 3184 */ 3185 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3186 { 3187 3188 struct sctp_assocparams assocparams; 3189 struct sctp_association *asoc; 3190 3191 if (optlen != sizeof(struct sctp_assocparams)) 3192 return -EINVAL; 3193 if (copy_from_user(&assocparams, optval, optlen)) 3194 return -EFAULT; 3195 3196 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3197 3198 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3199 return -EINVAL; 3200 3201 /* Set the values to the specific association */ 3202 if (asoc) { 3203 if (assocparams.sasoc_asocmaxrxt != 0) { 3204 __u32 path_sum = 0; 3205 int paths = 0; 3206 struct sctp_transport *peer_addr; 3207 3208 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3209 transports) { 3210 path_sum += peer_addr->pathmaxrxt; 3211 paths++; 3212 } 3213 3214 /* Only validate asocmaxrxt if we have more than 3215 * one path/transport. We do this because path 3216 * retransmissions are only counted when we have more 3217 * then one path. 3218 */ 3219 if (paths > 1 && 3220 assocparams.sasoc_asocmaxrxt > path_sum) 3221 return -EINVAL; 3222 3223 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3224 } 3225 3226 if (assocparams.sasoc_cookie_life != 0) 3227 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3228 } else { 3229 /* Set the values to the endpoint */ 3230 struct sctp_sock *sp = sctp_sk(sk); 3231 3232 if (assocparams.sasoc_asocmaxrxt != 0) 3233 sp->assocparams.sasoc_asocmaxrxt = 3234 assocparams.sasoc_asocmaxrxt; 3235 if (assocparams.sasoc_cookie_life != 0) 3236 sp->assocparams.sasoc_cookie_life = 3237 assocparams.sasoc_cookie_life; 3238 } 3239 return 0; 3240 } 3241 3242 /* 3243 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3244 * 3245 * This socket option is a boolean flag which turns on or off mapped V4 3246 * addresses. If this option is turned on and the socket is type 3247 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3248 * If this option is turned off, then no mapping will be done of V4 3249 * addresses and a user will receive both PF_INET6 and PF_INET type 3250 * addresses on the socket. 3251 */ 3252 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3253 { 3254 int val; 3255 struct sctp_sock *sp = sctp_sk(sk); 3256 3257 if (optlen < sizeof(int)) 3258 return -EINVAL; 3259 if (get_user(val, (int __user *)optval)) 3260 return -EFAULT; 3261 if (val) 3262 sp->v4mapped = 1; 3263 else 3264 sp->v4mapped = 0; 3265 3266 return 0; 3267 } 3268 3269 /* 3270 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3271 * This option will get or set the maximum size to put in any outgoing 3272 * SCTP DATA chunk. If a message is larger than this size it will be 3273 * fragmented by SCTP into the specified size. Note that the underlying 3274 * SCTP implementation may fragment into smaller sized chunks when the 3275 * PMTU of the underlying association is smaller than the value set by 3276 * the user. The default value for this option is '0' which indicates 3277 * the user is NOT limiting fragmentation and only the PMTU will effect 3278 * SCTP's choice of DATA chunk size. Note also that values set larger 3279 * than the maximum size of an IP datagram will effectively let SCTP 3280 * control fragmentation (i.e. the same as setting this option to 0). 3281 * 3282 * The following structure is used to access and modify this parameter: 3283 * 3284 * struct sctp_assoc_value { 3285 * sctp_assoc_t assoc_id; 3286 * uint32_t assoc_value; 3287 * }; 3288 * 3289 * assoc_id: This parameter is ignored for one-to-one style sockets. 3290 * For one-to-many style sockets this parameter indicates which 3291 * association the user is performing an action upon. Note that if 3292 * this field's value is zero then the endpoints default value is 3293 * changed (effecting future associations only). 3294 * assoc_value: This parameter specifies the maximum size in bytes. 3295 */ 3296 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3297 { 3298 struct sctp_sock *sp = sctp_sk(sk); 3299 struct sctp_assoc_value params; 3300 struct sctp_association *asoc; 3301 int val; 3302 3303 if (optlen == sizeof(int)) { 3304 pr_warn_ratelimited(DEPRECATED 3305 "%s (pid %d) " 3306 "Use of int in maxseg socket option.\n" 3307 "Use struct sctp_assoc_value instead\n", 3308 current->comm, task_pid_nr(current)); 3309 if (copy_from_user(&val, optval, optlen)) 3310 return -EFAULT; 3311 params.assoc_id = 0; 3312 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3313 if (copy_from_user(¶ms, optval, optlen)) 3314 return -EFAULT; 3315 val = params.assoc_value; 3316 } else { 3317 return -EINVAL; 3318 } 3319 3320 asoc = sctp_id2assoc(sk, params.assoc_id); 3321 3322 if (val) { 3323 int min_len, max_len; 3324 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3325 sizeof(struct sctp_data_chunk); 3326 3327 min_len = sctp_min_frag_point(sp, datasize); 3328 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3329 3330 if (val < min_len || val > max_len) 3331 return -EINVAL; 3332 } 3333 3334 if (asoc) { 3335 asoc->user_frag = val; 3336 sctp_assoc_update_frag_point(asoc); 3337 } else { 3338 if (params.assoc_id && sctp_style(sk, UDP)) 3339 return -EINVAL; 3340 sp->user_frag = val; 3341 } 3342 3343 return 0; 3344 } 3345 3346 3347 /* 3348 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3349 * 3350 * Requests that the peer mark the enclosed address as the association 3351 * primary. The enclosed address must be one of the association's 3352 * locally bound addresses. The following structure is used to make a 3353 * set primary request: 3354 */ 3355 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3356 unsigned int optlen) 3357 { 3358 struct net *net = sock_net(sk); 3359 struct sctp_sock *sp; 3360 struct sctp_association *asoc = NULL; 3361 struct sctp_setpeerprim prim; 3362 struct sctp_chunk *chunk; 3363 struct sctp_af *af; 3364 int err; 3365 3366 sp = sctp_sk(sk); 3367 3368 if (!net->sctp.addip_enable) 3369 return -EPERM; 3370 3371 if (optlen != sizeof(struct sctp_setpeerprim)) 3372 return -EINVAL; 3373 3374 if (copy_from_user(&prim, optval, optlen)) 3375 return -EFAULT; 3376 3377 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3378 if (!asoc) 3379 return -EINVAL; 3380 3381 if (!asoc->peer.asconf_capable) 3382 return -EPERM; 3383 3384 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3385 return -EPERM; 3386 3387 if (!sctp_state(asoc, ESTABLISHED)) 3388 return -ENOTCONN; 3389 3390 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3391 if (!af) 3392 return -EINVAL; 3393 3394 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3395 return -EADDRNOTAVAIL; 3396 3397 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3398 return -EADDRNOTAVAIL; 3399 3400 /* Allow security module to validate address. */ 3401 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3402 (struct sockaddr *)&prim.sspp_addr, 3403 af->sockaddr_len); 3404 if (err) 3405 return err; 3406 3407 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3408 chunk = sctp_make_asconf_set_prim(asoc, 3409 (union sctp_addr *)&prim.sspp_addr); 3410 if (!chunk) 3411 return -ENOMEM; 3412 3413 err = sctp_send_asconf(asoc, chunk); 3414 3415 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3416 3417 return err; 3418 } 3419 3420 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3421 unsigned int optlen) 3422 { 3423 struct sctp_setadaptation adaptation; 3424 3425 if (optlen != sizeof(struct sctp_setadaptation)) 3426 return -EINVAL; 3427 if (copy_from_user(&adaptation, optval, optlen)) 3428 return -EFAULT; 3429 3430 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3431 3432 return 0; 3433 } 3434 3435 /* 3436 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3437 * 3438 * The context field in the sctp_sndrcvinfo structure is normally only 3439 * used when a failed message is retrieved holding the value that was 3440 * sent down on the actual send call. This option allows the setting of 3441 * a default context on an association basis that will be received on 3442 * reading messages from the peer. This is especially helpful in the 3443 * one-2-many model for an application to keep some reference to an 3444 * internal state machine that is processing messages on the 3445 * association. Note that the setting of this value only effects 3446 * received messages from the peer and does not effect the value that is 3447 * saved with outbound messages. 3448 */ 3449 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3450 unsigned int optlen) 3451 { 3452 struct sctp_assoc_value params; 3453 struct sctp_sock *sp; 3454 struct sctp_association *asoc; 3455 3456 if (optlen != sizeof(struct sctp_assoc_value)) 3457 return -EINVAL; 3458 if (copy_from_user(¶ms, optval, optlen)) 3459 return -EFAULT; 3460 3461 sp = sctp_sk(sk); 3462 3463 if (params.assoc_id != 0) { 3464 asoc = sctp_id2assoc(sk, params.assoc_id); 3465 if (!asoc) 3466 return -EINVAL; 3467 asoc->default_rcv_context = params.assoc_value; 3468 } else { 3469 sp->default_rcv_context = params.assoc_value; 3470 } 3471 3472 return 0; 3473 } 3474 3475 /* 3476 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3477 * 3478 * This options will at a minimum specify if the implementation is doing 3479 * fragmented interleave. Fragmented interleave, for a one to many 3480 * socket, is when subsequent calls to receive a message may return 3481 * parts of messages from different associations. Some implementations 3482 * may allow you to turn this value on or off. If so, when turned off, 3483 * no fragment interleave will occur (which will cause a head of line 3484 * blocking amongst multiple associations sharing the same one to many 3485 * socket). When this option is turned on, then each receive call may 3486 * come from a different association (thus the user must receive data 3487 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3488 * association each receive belongs to. 3489 * 3490 * This option takes a boolean value. A non-zero value indicates that 3491 * fragmented interleave is on. A value of zero indicates that 3492 * fragmented interleave is off. 3493 * 3494 * Note that it is important that an implementation that allows this 3495 * option to be turned on, have it off by default. Otherwise an unaware 3496 * application using the one to many model may become confused and act 3497 * incorrectly. 3498 */ 3499 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3500 char __user *optval, 3501 unsigned int optlen) 3502 { 3503 int val; 3504 3505 if (optlen != sizeof(int)) 3506 return -EINVAL; 3507 if (get_user(val, (int __user *)optval)) 3508 return -EFAULT; 3509 3510 sctp_sk(sk)->frag_interleave = !!val; 3511 3512 if (!sctp_sk(sk)->frag_interleave) 3513 sctp_sk(sk)->strm_interleave = 0; 3514 3515 return 0; 3516 } 3517 3518 /* 3519 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3520 * (SCTP_PARTIAL_DELIVERY_POINT) 3521 * 3522 * This option will set or get the SCTP partial delivery point. This 3523 * point is the size of a message where the partial delivery API will be 3524 * invoked to help free up rwnd space for the peer. Setting this to a 3525 * lower value will cause partial deliveries to happen more often. The 3526 * calls argument is an integer that sets or gets the partial delivery 3527 * point. Note also that the call will fail if the user attempts to set 3528 * this value larger than the socket receive buffer size. 3529 * 3530 * Note that any single message having a length smaller than or equal to 3531 * the SCTP partial delivery point will be delivered in one single read 3532 * call as long as the user provided buffer is large enough to hold the 3533 * message. 3534 */ 3535 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3536 char __user *optval, 3537 unsigned int optlen) 3538 { 3539 u32 val; 3540 3541 if (optlen != sizeof(u32)) 3542 return -EINVAL; 3543 if (get_user(val, (int __user *)optval)) 3544 return -EFAULT; 3545 3546 /* Note: We double the receive buffer from what the user sets 3547 * it to be, also initial rwnd is based on rcvbuf/2. 3548 */ 3549 if (val > (sk->sk_rcvbuf >> 1)) 3550 return -EINVAL; 3551 3552 sctp_sk(sk)->pd_point = val; 3553 3554 return 0; /* is this the right error code? */ 3555 } 3556 3557 /* 3558 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3559 * 3560 * This option will allow a user to change the maximum burst of packets 3561 * that can be emitted by this association. Note that the default value 3562 * is 4, and some implementations may restrict this setting so that it 3563 * can only be lowered. 3564 * 3565 * NOTE: This text doesn't seem right. Do this on a socket basis with 3566 * future associations inheriting the socket value. 3567 */ 3568 static int sctp_setsockopt_maxburst(struct sock *sk, 3569 char __user *optval, 3570 unsigned int optlen) 3571 { 3572 struct sctp_assoc_value params; 3573 struct sctp_sock *sp; 3574 struct sctp_association *asoc; 3575 int val; 3576 int assoc_id = 0; 3577 3578 if (optlen == sizeof(int)) { 3579 pr_warn_ratelimited(DEPRECATED 3580 "%s (pid %d) " 3581 "Use of int in max_burst socket option deprecated.\n" 3582 "Use struct sctp_assoc_value instead\n", 3583 current->comm, task_pid_nr(current)); 3584 if (copy_from_user(&val, optval, optlen)) 3585 return -EFAULT; 3586 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3587 if (copy_from_user(¶ms, optval, optlen)) 3588 return -EFAULT; 3589 val = params.assoc_value; 3590 assoc_id = params.assoc_id; 3591 } else 3592 return -EINVAL; 3593 3594 sp = sctp_sk(sk); 3595 3596 if (assoc_id != 0) { 3597 asoc = sctp_id2assoc(sk, assoc_id); 3598 if (!asoc) 3599 return -EINVAL; 3600 asoc->max_burst = val; 3601 } else 3602 sp->max_burst = val; 3603 3604 return 0; 3605 } 3606 3607 /* 3608 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3609 * 3610 * This set option adds a chunk type that the user is requesting to be 3611 * received only in an authenticated way. Changes to the list of chunks 3612 * will only effect future associations on the socket. 3613 */ 3614 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3615 char __user *optval, 3616 unsigned int optlen) 3617 { 3618 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3619 struct sctp_authchunk val; 3620 3621 if (!ep->auth_enable) 3622 return -EACCES; 3623 3624 if (optlen != sizeof(struct sctp_authchunk)) 3625 return -EINVAL; 3626 if (copy_from_user(&val, optval, optlen)) 3627 return -EFAULT; 3628 3629 switch (val.sauth_chunk) { 3630 case SCTP_CID_INIT: 3631 case SCTP_CID_INIT_ACK: 3632 case SCTP_CID_SHUTDOWN_COMPLETE: 3633 case SCTP_CID_AUTH: 3634 return -EINVAL; 3635 } 3636 3637 /* add this chunk id to the endpoint */ 3638 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3639 } 3640 3641 /* 3642 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3643 * 3644 * This option gets or sets the list of HMAC algorithms that the local 3645 * endpoint requires the peer to use. 3646 */ 3647 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3648 char __user *optval, 3649 unsigned int optlen) 3650 { 3651 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3652 struct sctp_hmacalgo *hmacs; 3653 u32 idents; 3654 int err; 3655 3656 if (!ep->auth_enable) 3657 return -EACCES; 3658 3659 if (optlen < sizeof(struct sctp_hmacalgo)) 3660 return -EINVAL; 3661 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3662 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3663 3664 hmacs = memdup_user(optval, optlen); 3665 if (IS_ERR(hmacs)) 3666 return PTR_ERR(hmacs); 3667 3668 idents = hmacs->shmac_num_idents; 3669 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3670 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3671 err = -EINVAL; 3672 goto out; 3673 } 3674 3675 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3676 out: 3677 kfree(hmacs); 3678 return err; 3679 } 3680 3681 /* 3682 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3683 * 3684 * This option will set a shared secret key which is used to build an 3685 * association shared key. 3686 */ 3687 static int sctp_setsockopt_auth_key(struct sock *sk, 3688 char __user *optval, 3689 unsigned int optlen) 3690 { 3691 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3692 struct sctp_authkey *authkey; 3693 struct sctp_association *asoc; 3694 int ret; 3695 3696 if (!ep->auth_enable) 3697 return -EACCES; 3698 3699 if (optlen <= sizeof(struct sctp_authkey)) 3700 return -EINVAL; 3701 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3702 * this. 3703 */ 3704 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3705 sizeof(struct sctp_authkey)); 3706 3707 authkey = memdup_user(optval, optlen); 3708 if (IS_ERR(authkey)) 3709 return PTR_ERR(authkey); 3710 3711 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3712 ret = -EINVAL; 3713 goto out; 3714 } 3715 3716 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3717 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3718 ret = -EINVAL; 3719 goto out; 3720 } 3721 3722 ret = sctp_auth_set_key(ep, asoc, authkey); 3723 out: 3724 kzfree(authkey); 3725 return ret; 3726 } 3727 3728 /* 3729 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3730 * 3731 * This option will get or set the active shared key to be used to build 3732 * the association shared key. 3733 */ 3734 static int sctp_setsockopt_active_key(struct sock *sk, 3735 char __user *optval, 3736 unsigned int optlen) 3737 { 3738 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3739 struct sctp_authkeyid val; 3740 struct sctp_association *asoc; 3741 3742 if (!ep->auth_enable) 3743 return -EACCES; 3744 3745 if (optlen != sizeof(struct sctp_authkeyid)) 3746 return -EINVAL; 3747 if (copy_from_user(&val, optval, optlen)) 3748 return -EFAULT; 3749 3750 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3751 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3752 return -EINVAL; 3753 3754 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3755 } 3756 3757 /* 3758 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3759 * 3760 * This set option will delete a shared secret key from use. 3761 */ 3762 static int sctp_setsockopt_del_key(struct sock *sk, 3763 char __user *optval, 3764 unsigned int optlen) 3765 { 3766 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3767 struct sctp_authkeyid val; 3768 struct sctp_association *asoc; 3769 3770 if (!ep->auth_enable) 3771 return -EACCES; 3772 3773 if (optlen != sizeof(struct sctp_authkeyid)) 3774 return -EINVAL; 3775 if (copy_from_user(&val, optval, optlen)) 3776 return -EFAULT; 3777 3778 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3779 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3780 return -EINVAL; 3781 3782 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3783 3784 } 3785 3786 /* 3787 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3788 * 3789 * This set option will deactivate a shared secret key. 3790 */ 3791 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3792 unsigned int optlen) 3793 { 3794 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3795 struct sctp_authkeyid val; 3796 struct sctp_association *asoc; 3797 3798 if (!ep->auth_enable) 3799 return -EACCES; 3800 3801 if (optlen != sizeof(struct sctp_authkeyid)) 3802 return -EINVAL; 3803 if (copy_from_user(&val, optval, optlen)) 3804 return -EFAULT; 3805 3806 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3807 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3808 return -EINVAL; 3809 3810 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3811 } 3812 3813 /* 3814 * 8.1.23 SCTP_AUTO_ASCONF 3815 * 3816 * This option will enable or disable the use of the automatic generation of 3817 * ASCONF chunks to add and delete addresses to an existing association. Note 3818 * that this option has two caveats namely: a) it only affects sockets that 3819 * are bound to all addresses available to the SCTP stack, and b) the system 3820 * administrator may have an overriding control that turns the ASCONF feature 3821 * off no matter what setting the socket option may have. 3822 * This option expects an integer boolean flag, where a non-zero value turns on 3823 * the option, and a zero value turns off the option. 3824 * Note. In this implementation, socket operation overrides default parameter 3825 * being set by sysctl as well as FreeBSD implementation 3826 */ 3827 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3828 unsigned int optlen) 3829 { 3830 int val; 3831 struct sctp_sock *sp = sctp_sk(sk); 3832 3833 if (optlen < sizeof(int)) 3834 return -EINVAL; 3835 if (get_user(val, (int __user *)optval)) 3836 return -EFAULT; 3837 if (!sctp_is_ep_boundall(sk) && val) 3838 return -EINVAL; 3839 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3840 return 0; 3841 3842 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3843 if (val == 0 && sp->do_auto_asconf) { 3844 list_del(&sp->auto_asconf_list); 3845 sp->do_auto_asconf = 0; 3846 } else if (val && !sp->do_auto_asconf) { 3847 list_add_tail(&sp->auto_asconf_list, 3848 &sock_net(sk)->sctp.auto_asconf_splist); 3849 sp->do_auto_asconf = 1; 3850 } 3851 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3852 return 0; 3853 } 3854 3855 /* 3856 * SCTP_PEER_ADDR_THLDS 3857 * 3858 * This option allows us to alter the partially failed threshold for one or all 3859 * transports in an association. See Section 6.1 of: 3860 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3861 */ 3862 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3863 char __user *optval, 3864 unsigned int optlen) 3865 { 3866 struct sctp_paddrthlds val; 3867 struct sctp_transport *trans; 3868 struct sctp_association *asoc; 3869 3870 if (optlen < sizeof(struct sctp_paddrthlds)) 3871 return -EINVAL; 3872 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3873 sizeof(struct sctp_paddrthlds))) 3874 return -EFAULT; 3875 3876 3877 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3878 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3879 if (!asoc) 3880 return -ENOENT; 3881 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3882 transports) { 3883 if (val.spt_pathmaxrxt) 3884 trans->pathmaxrxt = val.spt_pathmaxrxt; 3885 trans->pf_retrans = val.spt_pathpfthld; 3886 } 3887 3888 if (val.spt_pathmaxrxt) 3889 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3890 asoc->pf_retrans = val.spt_pathpfthld; 3891 } else { 3892 trans = sctp_addr_id2transport(sk, &val.spt_address, 3893 val.spt_assoc_id); 3894 if (!trans) 3895 return -ENOENT; 3896 3897 if (val.spt_pathmaxrxt) 3898 trans->pathmaxrxt = val.spt_pathmaxrxt; 3899 trans->pf_retrans = val.spt_pathpfthld; 3900 } 3901 3902 return 0; 3903 } 3904 3905 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3906 char __user *optval, 3907 unsigned int optlen) 3908 { 3909 int val; 3910 3911 if (optlen < sizeof(int)) 3912 return -EINVAL; 3913 if (get_user(val, (int __user *) optval)) 3914 return -EFAULT; 3915 3916 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3917 3918 return 0; 3919 } 3920 3921 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3922 char __user *optval, 3923 unsigned int optlen) 3924 { 3925 int val; 3926 3927 if (optlen < sizeof(int)) 3928 return -EINVAL; 3929 if (get_user(val, (int __user *) optval)) 3930 return -EFAULT; 3931 3932 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3933 3934 return 0; 3935 } 3936 3937 static int sctp_setsockopt_pr_supported(struct sock *sk, 3938 char __user *optval, 3939 unsigned int optlen) 3940 { 3941 struct sctp_assoc_value params; 3942 3943 if (optlen != sizeof(params)) 3944 return -EINVAL; 3945 3946 if (copy_from_user(¶ms, optval, optlen)) 3947 return -EFAULT; 3948 3949 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 3950 3951 return 0; 3952 } 3953 3954 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3955 char __user *optval, 3956 unsigned int optlen) 3957 { 3958 struct sctp_default_prinfo info; 3959 struct sctp_association *asoc; 3960 int retval = -EINVAL; 3961 3962 if (optlen != sizeof(info)) 3963 goto out; 3964 3965 if (copy_from_user(&info, optval, sizeof(info))) { 3966 retval = -EFAULT; 3967 goto out; 3968 } 3969 3970 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3971 goto out; 3972 3973 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3974 info.pr_value = 0; 3975 3976 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3977 if (asoc) { 3978 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3979 asoc->default_timetolive = info.pr_value; 3980 } else if (!info.pr_assoc_id) { 3981 struct sctp_sock *sp = sctp_sk(sk); 3982 3983 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3984 sp->default_timetolive = info.pr_value; 3985 } else { 3986 goto out; 3987 } 3988 3989 retval = 0; 3990 3991 out: 3992 return retval; 3993 } 3994 3995 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3996 char __user *optval, 3997 unsigned int optlen) 3998 { 3999 struct sctp_assoc_value params; 4000 struct sctp_association *asoc; 4001 int retval = -EINVAL; 4002 4003 if (optlen != sizeof(params)) 4004 goto out; 4005 4006 if (copy_from_user(¶ms, optval, optlen)) { 4007 retval = -EFAULT; 4008 goto out; 4009 } 4010 4011 asoc = sctp_id2assoc(sk, params.assoc_id); 4012 if (asoc) { 4013 asoc->reconf_enable = !!params.assoc_value; 4014 } else if (!params.assoc_id) { 4015 struct sctp_sock *sp = sctp_sk(sk); 4016 4017 sp->ep->reconf_enable = !!params.assoc_value; 4018 } else { 4019 goto out; 4020 } 4021 4022 retval = 0; 4023 4024 out: 4025 return retval; 4026 } 4027 4028 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4029 char __user *optval, 4030 unsigned int optlen) 4031 { 4032 struct sctp_assoc_value params; 4033 struct sctp_association *asoc; 4034 int retval = -EINVAL; 4035 4036 if (optlen != sizeof(params)) 4037 goto out; 4038 4039 if (copy_from_user(¶ms, optval, optlen)) { 4040 retval = -EFAULT; 4041 goto out; 4042 } 4043 4044 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4045 goto out; 4046 4047 asoc = sctp_id2assoc(sk, params.assoc_id); 4048 if (asoc) { 4049 asoc->strreset_enable = params.assoc_value; 4050 } else if (!params.assoc_id) { 4051 struct sctp_sock *sp = sctp_sk(sk); 4052 4053 sp->ep->strreset_enable = params.assoc_value; 4054 } else { 4055 goto out; 4056 } 4057 4058 retval = 0; 4059 4060 out: 4061 return retval; 4062 } 4063 4064 static int sctp_setsockopt_reset_streams(struct sock *sk, 4065 char __user *optval, 4066 unsigned int optlen) 4067 { 4068 struct sctp_reset_streams *params; 4069 struct sctp_association *asoc; 4070 int retval = -EINVAL; 4071 4072 if (optlen < sizeof(*params)) 4073 return -EINVAL; 4074 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4075 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4076 sizeof(__u16) * sizeof(*params)); 4077 4078 params = memdup_user(optval, optlen); 4079 if (IS_ERR(params)) 4080 return PTR_ERR(params); 4081 4082 if (params->srs_number_streams * sizeof(__u16) > 4083 optlen - sizeof(*params)) 4084 goto out; 4085 4086 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4087 if (!asoc) 4088 goto out; 4089 4090 retval = sctp_send_reset_streams(asoc, params); 4091 4092 out: 4093 kfree(params); 4094 return retval; 4095 } 4096 4097 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4098 char __user *optval, 4099 unsigned int optlen) 4100 { 4101 struct sctp_association *asoc; 4102 sctp_assoc_t associd; 4103 int retval = -EINVAL; 4104 4105 if (optlen != sizeof(associd)) 4106 goto out; 4107 4108 if (copy_from_user(&associd, optval, optlen)) { 4109 retval = -EFAULT; 4110 goto out; 4111 } 4112 4113 asoc = sctp_id2assoc(sk, associd); 4114 if (!asoc) 4115 goto out; 4116 4117 retval = sctp_send_reset_assoc(asoc); 4118 4119 out: 4120 return retval; 4121 } 4122 4123 static int sctp_setsockopt_add_streams(struct sock *sk, 4124 char __user *optval, 4125 unsigned int optlen) 4126 { 4127 struct sctp_association *asoc; 4128 struct sctp_add_streams params; 4129 int retval = -EINVAL; 4130 4131 if (optlen != sizeof(params)) 4132 goto out; 4133 4134 if (copy_from_user(¶ms, optval, optlen)) { 4135 retval = -EFAULT; 4136 goto out; 4137 } 4138 4139 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4140 if (!asoc) 4141 goto out; 4142 4143 retval = sctp_send_add_streams(asoc, ¶ms); 4144 4145 out: 4146 return retval; 4147 } 4148 4149 static int sctp_setsockopt_scheduler(struct sock *sk, 4150 char __user *optval, 4151 unsigned int optlen) 4152 { 4153 struct sctp_association *asoc; 4154 struct sctp_assoc_value params; 4155 int retval = -EINVAL; 4156 4157 if (optlen < sizeof(params)) 4158 goto out; 4159 4160 optlen = sizeof(params); 4161 if (copy_from_user(¶ms, optval, optlen)) { 4162 retval = -EFAULT; 4163 goto out; 4164 } 4165 4166 if (params.assoc_value > SCTP_SS_MAX) 4167 goto out; 4168 4169 asoc = sctp_id2assoc(sk, params.assoc_id); 4170 if (!asoc) 4171 goto out; 4172 4173 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4174 4175 out: 4176 return retval; 4177 } 4178 4179 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4180 char __user *optval, 4181 unsigned int optlen) 4182 { 4183 struct sctp_association *asoc; 4184 struct sctp_stream_value params; 4185 int retval = -EINVAL; 4186 4187 if (optlen < sizeof(params)) 4188 goto out; 4189 4190 optlen = sizeof(params); 4191 if (copy_from_user(¶ms, optval, optlen)) { 4192 retval = -EFAULT; 4193 goto out; 4194 } 4195 4196 asoc = sctp_id2assoc(sk, params.assoc_id); 4197 if (!asoc) 4198 goto out; 4199 4200 retval = sctp_sched_set_value(asoc, params.stream_id, 4201 params.stream_value, GFP_KERNEL); 4202 4203 out: 4204 return retval; 4205 } 4206 4207 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4208 char __user *optval, 4209 unsigned int optlen) 4210 { 4211 struct sctp_sock *sp = sctp_sk(sk); 4212 struct net *net = sock_net(sk); 4213 struct sctp_assoc_value params; 4214 int retval = -EINVAL; 4215 4216 if (optlen < sizeof(params)) 4217 goto out; 4218 4219 optlen = sizeof(params); 4220 if (copy_from_user(¶ms, optval, optlen)) { 4221 retval = -EFAULT; 4222 goto out; 4223 } 4224 4225 if (params.assoc_id) 4226 goto out; 4227 4228 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4229 retval = -EPERM; 4230 goto out; 4231 } 4232 4233 sp->strm_interleave = !!params.assoc_value; 4234 4235 retval = 0; 4236 4237 out: 4238 return retval; 4239 } 4240 4241 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4242 unsigned int optlen) 4243 { 4244 int val; 4245 4246 if (!sctp_style(sk, TCP)) 4247 return -EOPNOTSUPP; 4248 4249 if (sctp_sk(sk)->ep->base.bind_addr.port) 4250 return -EFAULT; 4251 4252 if (optlen < sizeof(int)) 4253 return -EINVAL; 4254 4255 if (get_user(val, (int __user *)optval)) 4256 return -EFAULT; 4257 4258 sctp_sk(sk)->reuse = !!val; 4259 4260 return 0; 4261 } 4262 4263 /* API 6.2 setsockopt(), getsockopt() 4264 * 4265 * Applications use setsockopt() and getsockopt() to set or retrieve 4266 * socket options. Socket options are used to change the default 4267 * behavior of sockets calls. They are described in Section 7. 4268 * 4269 * The syntax is: 4270 * 4271 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4272 * int __user *optlen); 4273 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4274 * int optlen); 4275 * 4276 * sd - the socket descript. 4277 * level - set to IPPROTO_SCTP for all SCTP options. 4278 * optname - the option name. 4279 * optval - the buffer to store the value of the option. 4280 * optlen - the size of the buffer. 4281 */ 4282 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4283 char __user *optval, unsigned int optlen) 4284 { 4285 int retval = 0; 4286 4287 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4288 4289 /* I can hardly begin to describe how wrong this is. This is 4290 * so broken as to be worse than useless. The API draft 4291 * REALLY is NOT helpful here... I am not convinced that the 4292 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4293 * are at all well-founded. 4294 */ 4295 if (level != SOL_SCTP) { 4296 struct sctp_af *af = sctp_sk(sk)->pf->af; 4297 retval = af->setsockopt(sk, level, optname, optval, optlen); 4298 goto out_nounlock; 4299 } 4300 4301 lock_sock(sk); 4302 4303 switch (optname) { 4304 case SCTP_SOCKOPT_BINDX_ADD: 4305 /* 'optlen' is the size of the addresses buffer. */ 4306 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4307 optlen, SCTP_BINDX_ADD_ADDR); 4308 break; 4309 4310 case SCTP_SOCKOPT_BINDX_REM: 4311 /* 'optlen' is the size of the addresses buffer. */ 4312 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4313 optlen, SCTP_BINDX_REM_ADDR); 4314 break; 4315 4316 case SCTP_SOCKOPT_CONNECTX_OLD: 4317 /* 'optlen' is the size of the addresses buffer. */ 4318 retval = sctp_setsockopt_connectx_old(sk, 4319 (struct sockaddr __user *)optval, 4320 optlen); 4321 break; 4322 4323 case SCTP_SOCKOPT_CONNECTX: 4324 /* 'optlen' is the size of the addresses buffer. */ 4325 retval = sctp_setsockopt_connectx(sk, 4326 (struct sockaddr __user *)optval, 4327 optlen); 4328 break; 4329 4330 case SCTP_DISABLE_FRAGMENTS: 4331 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4332 break; 4333 4334 case SCTP_EVENTS: 4335 retval = sctp_setsockopt_events(sk, optval, optlen); 4336 break; 4337 4338 case SCTP_AUTOCLOSE: 4339 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4340 break; 4341 4342 case SCTP_PEER_ADDR_PARAMS: 4343 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4344 break; 4345 4346 case SCTP_DELAYED_SACK: 4347 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4348 break; 4349 case SCTP_PARTIAL_DELIVERY_POINT: 4350 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4351 break; 4352 4353 case SCTP_INITMSG: 4354 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4355 break; 4356 case SCTP_DEFAULT_SEND_PARAM: 4357 retval = sctp_setsockopt_default_send_param(sk, optval, 4358 optlen); 4359 break; 4360 case SCTP_DEFAULT_SNDINFO: 4361 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4362 break; 4363 case SCTP_PRIMARY_ADDR: 4364 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4365 break; 4366 case SCTP_SET_PEER_PRIMARY_ADDR: 4367 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4368 break; 4369 case SCTP_NODELAY: 4370 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4371 break; 4372 case SCTP_RTOINFO: 4373 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4374 break; 4375 case SCTP_ASSOCINFO: 4376 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4377 break; 4378 case SCTP_I_WANT_MAPPED_V4_ADDR: 4379 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4380 break; 4381 case SCTP_MAXSEG: 4382 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4383 break; 4384 case SCTP_ADAPTATION_LAYER: 4385 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4386 break; 4387 case SCTP_CONTEXT: 4388 retval = sctp_setsockopt_context(sk, optval, optlen); 4389 break; 4390 case SCTP_FRAGMENT_INTERLEAVE: 4391 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4392 break; 4393 case SCTP_MAX_BURST: 4394 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4395 break; 4396 case SCTP_AUTH_CHUNK: 4397 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4398 break; 4399 case SCTP_HMAC_IDENT: 4400 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4401 break; 4402 case SCTP_AUTH_KEY: 4403 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4404 break; 4405 case SCTP_AUTH_ACTIVE_KEY: 4406 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4407 break; 4408 case SCTP_AUTH_DELETE_KEY: 4409 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4410 break; 4411 case SCTP_AUTH_DEACTIVATE_KEY: 4412 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4413 break; 4414 case SCTP_AUTO_ASCONF: 4415 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4416 break; 4417 case SCTP_PEER_ADDR_THLDS: 4418 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4419 break; 4420 case SCTP_RECVRCVINFO: 4421 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4422 break; 4423 case SCTP_RECVNXTINFO: 4424 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4425 break; 4426 case SCTP_PR_SUPPORTED: 4427 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4428 break; 4429 case SCTP_DEFAULT_PRINFO: 4430 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4431 break; 4432 case SCTP_RECONFIG_SUPPORTED: 4433 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4434 break; 4435 case SCTP_ENABLE_STREAM_RESET: 4436 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4437 break; 4438 case SCTP_RESET_STREAMS: 4439 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4440 break; 4441 case SCTP_RESET_ASSOC: 4442 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4443 break; 4444 case SCTP_ADD_STREAMS: 4445 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4446 break; 4447 case SCTP_STREAM_SCHEDULER: 4448 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4449 break; 4450 case SCTP_STREAM_SCHEDULER_VALUE: 4451 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4452 break; 4453 case SCTP_INTERLEAVING_SUPPORTED: 4454 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4455 optlen); 4456 break; 4457 case SCTP_REUSE_PORT: 4458 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4459 break; 4460 default: 4461 retval = -ENOPROTOOPT; 4462 break; 4463 } 4464 4465 release_sock(sk); 4466 4467 out_nounlock: 4468 return retval; 4469 } 4470 4471 /* API 3.1.6 connect() - UDP Style Syntax 4472 * 4473 * An application may use the connect() call in the UDP model to initiate an 4474 * association without sending data. 4475 * 4476 * The syntax is: 4477 * 4478 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4479 * 4480 * sd: the socket descriptor to have a new association added to. 4481 * 4482 * nam: the address structure (either struct sockaddr_in or struct 4483 * sockaddr_in6 defined in RFC2553 [7]). 4484 * 4485 * len: the size of the address. 4486 */ 4487 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4488 int addr_len, int flags) 4489 { 4490 struct inet_sock *inet = inet_sk(sk); 4491 struct sctp_af *af; 4492 int err = 0; 4493 4494 lock_sock(sk); 4495 4496 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4497 addr, addr_len); 4498 4499 /* We may need to bind the socket. */ 4500 if (!inet->inet_num) { 4501 if (sk->sk_prot->get_port(sk, 0)) { 4502 release_sock(sk); 4503 return -EAGAIN; 4504 } 4505 inet->inet_sport = htons(inet->inet_num); 4506 } 4507 4508 /* Validate addr_len before calling common connect/connectx routine. */ 4509 af = sctp_get_af_specific(addr->sa_family); 4510 if (!af || addr_len < af->sockaddr_len) { 4511 err = -EINVAL; 4512 } else { 4513 /* Pass correct addr len to common routine (so it knows there 4514 * is only one address being passed. 4515 */ 4516 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4517 } 4518 4519 release_sock(sk); 4520 return err; 4521 } 4522 4523 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4524 int addr_len, int flags) 4525 { 4526 if (addr_len < sizeof(uaddr->sa_family)) 4527 return -EINVAL; 4528 4529 if (uaddr->sa_family == AF_UNSPEC) 4530 return -EOPNOTSUPP; 4531 4532 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4533 } 4534 4535 /* FIXME: Write comments. */ 4536 static int sctp_disconnect(struct sock *sk, int flags) 4537 { 4538 return -EOPNOTSUPP; /* STUB */ 4539 } 4540 4541 /* 4.1.4 accept() - TCP Style Syntax 4542 * 4543 * Applications use accept() call to remove an established SCTP 4544 * association from the accept queue of the endpoint. A new socket 4545 * descriptor will be returned from accept() to represent the newly 4546 * formed association. 4547 */ 4548 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4549 { 4550 struct sctp_sock *sp; 4551 struct sctp_endpoint *ep; 4552 struct sock *newsk = NULL; 4553 struct sctp_association *asoc; 4554 long timeo; 4555 int error = 0; 4556 4557 lock_sock(sk); 4558 4559 sp = sctp_sk(sk); 4560 ep = sp->ep; 4561 4562 if (!sctp_style(sk, TCP)) { 4563 error = -EOPNOTSUPP; 4564 goto out; 4565 } 4566 4567 if (!sctp_sstate(sk, LISTENING)) { 4568 error = -EINVAL; 4569 goto out; 4570 } 4571 4572 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4573 4574 error = sctp_wait_for_accept(sk, timeo); 4575 if (error) 4576 goto out; 4577 4578 /* We treat the list of associations on the endpoint as the accept 4579 * queue and pick the first association on the list. 4580 */ 4581 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4582 4583 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4584 if (!newsk) { 4585 error = -ENOMEM; 4586 goto out; 4587 } 4588 4589 /* Populate the fields of the newsk from the oldsk and migrate the 4590 * asoc to the newsk. 4591 */ 4592 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4593 4594 out: 4595 release_sock(sk); 4596 *err = error; 4597 return newsk; 4598 } 4599 4600 /* The SCTP ioctl handler. */ 4601 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4602 { 4603 int rc = -ENOTCONN; 4604 4605 lock_sock(sk); 4606 4607 /* 4608 * SEQPACKET-style sockets in LISTENING state are valid, for 4609 * SCTP, so only discard TCP-style sockets in LISTENING state. 4610 */ 4611 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4612 goto out; 4613 4614 switch (cmd) { 4615 case SIOCINQ: { 4616 struct sk_buff *skb; 4617 unsigned int amount = 0; 4618 4619 skb = skb_peek(&sk->sk_receive_queue); 4620 if (skb != NULL) { 4621 /* 4622 * We will only return the amount of this packet since 4623 * that is all that will be read. 4624 */ 4625 amount = skb->len; 4626 } 4627 rc = put_user(amount, (int __user *)arg); 4628 break; 4629 } 4630 default: 4631 rc = -ENOIOCTLCMD; 4632 break; 4633 } 4634 out: 4635 release_sock(sk); 4636 return rc; 4637 } 4638 4639 /* This is the function which gets called during socket creation to 4640 * initialized the SCTP-specific portion of the sock. 4641 * The sock structure should already be zero-filled memory. 4642 */ 4643 static int sctp_init_sock(struct sock *sk) 4644 { 4645 struct net *net = sock_net(sk); 4646 struct sctp_sock *sp; 4647 4648 pr_debug("%s: sk:%p\n", __func__, sk); 4649 4650 sp = sctp_sk(sk); 4651 4652 /* Initialize the SCTP per socket area. */ 4653 switch (sk->sk_type) { 4654 case SOCK_SEQPACKET: 4655 sp->type = SCTP_SOCKET_UDP; 4656 break; 4657 case SOCK_STREAM: 4658 sp->type = SCTP_SOCKET_TCP; 4659 break; 4660 default: 4661 return -ESOCKTNOSUPPORT; 4662 } 4663 4664 sk->sk_gso_type = SKB_GSO_SCTP; 4665 4666 /* Initialize default send parameters. These parameters can be 4667 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4668 */ 4669 sp->default_stream = 0; 4670 sp->default_ppid = 0; 4671 sp->default_flags = 0; 4672 sp->default_context = 0; 4673 sp->default_timetolive = 0; 4674 4675 sp->default_rcv_context = 0; 4676 sp->max_burst = net->sctp.max_burst; 4677 4678 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4679 4680 /* Initialize default setup parameters. These parameters 4681 * can be modified with the SCTP_INITMSG socket option or 4682 * overridden by the SCTP_INIT CMSG. 4683 */ 4684 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4685 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4686 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4687 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4688 4689 /* Initialize default RTO related parameters. These parameters can 4690 * be modified for with the SCTP_RTOINFO socket option. 4691 */ 4692 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4693 sp->rtoinfo.srto_max = net->sctp.rto_max; 4694 sp->rtoinfo.srto_min = net->sctp.rto_min; 4695 4696 /* Initialize default association related parameters. These parameters 4697 * can be modified with the SCTP_ASSOCINFO socket option. 4698 */ 4699 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4700 sp->assocparams.sasoc_number_peer_destinations = 0; 4701 sp->assocparams.sasoc_peer_rwnd = 0; 4702 sp->assocparams.sasoc_local_rwnd = 0; 4703 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4704 4705 /* Initialize default event subscriptions. By default, all the 4706 * options are off. 4707 */ 4708 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4709 4710 /* Default Peer Address Parameters. These defaults can 4711 * be modified via SCTP_PEER_ADDR_PARAMS 4712 */ 4713 sp->hbinterval = net->sctp.hb_interval; 4714 sp->pathmaxrxt = net->sctp.max_retrans_path; 4715 sp->pathmtu = 0; /* allow default discovery */ 4716 sp->sackdelay = net->sctp.sack_timeout; 4717 sp->sackfreq = 2; 4718 sp->param_flags = SPP_HB_ENABLE | 4719 SPP_PMTUD_ENABLE | 4720 SPP_SACKDELAY_ENABLE; 4721 4722 /* If enabled no SCTP message fragmentation will be performed. 4723 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4724 */ 4725 sp->disable_fragments = 0; 4726 4727 /* Enable Nagle algorithm by default. */ 4728 sp->nodelay = 0; 4729 4730 sp->recvrcvinfo = 0; 4731 sp->recvnxtinfo = 0; 4732 4733 /* Enable by default. */ 4734 sp->v4mapped = 1; 4735 4736 /* Auto-close idle associations after the configured 4737 * number of seconds. A value of 0 disables this 4738 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4739 * for UDP-style sockets only. 4740 */ 4741 sp->autoclose = 0; 4742 4743 /* User specified fragmentation limit. */ 4744 sp->user_frag = 0; 4745 4746 sp->adaptation_ind = 0; 4747 4748 sp->pf = sctp_get_pf_specific(sk->sk_family); 4749 4750 /* Control variables for partial data delivery. */ 4751 atomic_set(&sp->pd_mode, 0); 4752 skb_queue_head_init(&sp->pd_lobby); 4753 sp->frag_interleave = 0; 4754 4755 /* Create a per socket endpoint structure. Even if we 4756 * change the data structure relationships, this may still 4757 * be useful for storing pre-connect address information. 4758 */ 4759 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4760 if (!sp->ep) 4761 return -ENOMEM; 4762 4763 sp->hmac = NULL; 4764 4765 sk->sk_destruct = sctp_destruct_sock; 4766 4767 SCTP_DBG_OBJCNT_INC(sock); 4768 4769 local_bh_disable(); 4770 sk_sockets_allocated_inc(sk); 4771 sock_prot_inuse_add(net, sk->sk_prot, 1); 4772 4773 /* Nothing can fail after this block, otherwise 4774 * sctp_destroy_sock() will be called without addr_wq_lock held 4775 */ 4776 if (net->sctp.default_auto_asconf) { 4777 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4778 list_add_tail(&sp->auto_asconf_list, 4779 &net->sctp.auto_asconf_splist); 4780 sp->do_auto_asconf = 1; 4781 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4782 } else { 4783 sp->do_auto_asconf = 0; 4784 } 4785 4786 local_bh_enable(); 4787 4788 return 0; 4789 } 4790 4791 /* Cleanup any SCTP per socket resources. Must be called with 4792 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4793 */ 4794 static void sctp_destroy_sock(struct sock *sk) 4795 { 4796 struct sctp_sock *sp; 4797 4798 pr_debug("%s: sk:%p\n", __func__, sk); 4799 4800 /* Release our hold on the endpoint. */ 4801 sp = sctp_sk(sk); 4802 /* This could happen during socket init, thus we bail out 4803 * early, since the rest of the below is not setup either. 4804 */ 4805 if (sp->ep == NULL) 4806 return; 4807 4808 if (sp->do_auto_asconf) { 4809 sp->do_auto_asconf = 0; 4810 list_del(&sp->auto_asconf_list); 4811 } 4812 sctp_endpoint_free(sp->ep); 4813 local_bh_disable(); 4814 sk_sockets_allocated_dec(sk); 4815 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4816 local_bh_enable(); 4817 } 4818 4819 /* Triggered when there are no references on the socket anymore */ 4820 static void sctp_destruct_sock(struct sock *sk) 4821 { 4822 struct sctp_sock *sp = sctp_sk(sk); 4823 4824 /* Free up the HMAC transform. */ 4825 crypto_free_shash(sp->hmac); 4826 4827 inet_sock_destruct(sk); 4828 } 4829 4830 /* API 4.1.7 shutdown() - TCP Style Syntax 4831 * int shutdown(int socket, int how); 4832 * 4833 * sd - the socket descriptor of the association to be closed. 4834 * how - Specifies the type of shutdown. The values are 4835 * as follows: 4836 * SHUT_RD 4837 * Disables further receive operations. No SCTP 4838 * protocol action is taken. 4839 * SHUT_WR 4840 * Disables further send operations, and initiates 4841 * the SCTP shutdown sequence. 4842 * SHUT_RDWR 4843 * Disables further send and receive operations 4844 * and initiates the SCTP shutdown sequence. 4845 */ 4846 static void sctp_shutdown(struct sock *sk, int how) 4847 { 4848 struct net *net = sock_net(sk); 4849 struct sctp_endpoint *ep; 4850 4851 if (!sctp_style(sk, TCP)) 4852 return; 4853 4854 ep = sctp_sk(sk)->ep; 4855 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4856 struct sctp_association *asoc; 4857 4858 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4859 asoc = list_entry(ep->asocs.next, 4860 struct sctp_association, asocs); 4861 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4862 } 4863 } 4864 4865 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4866 struct sctp_info *info) 4867 { 4868 struct sctp_transport *prim; 4869 struct list_head *pos; 4870 int mask; 4871 4872 memset(info, 0, sizeof(*info)); 4873 if (!asoc) { 4874 struct sctp_sock *sp = sctp_sk(sk); 4875 4876 info->sctpi_s_autoclose = sp->autoclose; 4877 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4878 info->sctpi_s_pd_point = sp->pd_point; 4879 info->sctpi_s_nodelay = sp->nodelay; 4880 info->sctpi_s_disable_fragments = sp->disable_fragments; 4881 info->sctpi_s_v4mapped = sp->v4mapped; 4882 info->sctpi_s_frag_interleave = sp->frag_interleave; 4883 info->sctpi_s_type = sp->type; 4884 4885 return 0; 4886 } 4887 4888 info->sctpi_tag = asoc->c.my_vtag; 4889 info->sctpi_state = asoc->state; 4890 info->sctpi_rwnd = asoc->a_rwnd; 4891 info->sctpi_unackdata = asoc->unack_data; 4892 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4893 info->sctpi_instrms = asoc->stream.incnt; 4894 info->sctpi_outstrms = asoc->stream.outcnt; 4895 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4896 info->sctpi_inqueue++; 4897 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4898 info->sctpi_outqueue++; 4899 info->sctpi_overall_error = asoc->overall_error_count; 4900 info->sctpi_max_burst = asoc->max_burst; 4901 info->sctpi_maxseg = asoc->frag_point; 4902 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4903 info->sctpi_peer_tag = asoc->c.peer_vtag; 4904 4905 mask = asoc->peer.ecn_capable << 1; 4906 mask = (mask | asoc->peer.ipv4_address) << 1; 4907 mask = (mask | asoc->peer.ipv6_address) << 1; 4908 mask = (mask | asoc->peer.hostname_address) << 1; 4909 mask = (mask | asoc->peer.asconf_capable) << 1; 4910 mask = (mask | asoc->peer.prsctp_capable) << 1; 4911 mask = (mask | asoc->peer.auth_capable); 4912 info->sctpi_peer_capable = mask; 4913 mask = asoc->peer.sack_needed << 1; 4914 mask = (mask | asoc->peer.sack_generation) << 1; 4915 mask = (mask | asoc->peer.zero_window_announced); 4916 info->sctpi_peer_sack = mask; 4917 4918 info->sctpi_isacks = asoc->stats.isacks; 4919 info->sctpi_osacks = asoc->stats.osacks; 4920 info->sctpi_opackets = asoc->stats.opackets; 4921 info->sctpi_ipackets = asoc->stats.ipackets; 4922 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4923 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4924 info->sctpi_idupchunks = asoc->stats.idupchunks; 4925 info->sctpi_gapcnt = asoc->stats.gapcnt; 4926 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4927 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4928 info->sctpi_oodchunks = asoc->stats.oodchunks; 4929 info->sctpi_iodchunks = asoc->stats.iodchunks; 4930 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4931 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4932 4933 prim = asoc->peer.primary_path; 4934 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4935 info->sctpi_p_state = prim->state; 4936 info->sctpi_p_cwnd = prim->cwnd; 4937 info->sctpi_p_srtt = prim->srtt; 4938 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4939 info->sctpi_p_hbinterval = prim->hbinterval; 4940 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4941 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4942 info->sctpi_p_ssthresh = prim->ssthresh; 4943 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4944 info->sctpi_p_flight_size = prim->flight_size; 4945 info->sctpi_p_error = prim->error_count; 4946 4947 return 0; 4948 } 4949 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4950 4951 /* use callback to avoid exporting the core structure */ 4952 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4953 { 4954 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4955 4956 rhashtable_walk_start(iter); 4957 } 4958 4959 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4960 { 4961 rhashtable_walk_stop(iter); 4962 rhashtable_walk_exit(iter); 4963 } 4964 4965 struct sctp_transport *sctp_transport_get_next(struct net *net, 4966 struct rhashtable_iter *iter) 4967 { 4968 struct sctp_transport *t; 4969 4970 t = rhashtable_walk_next(iter); 4971 for (; t; t = rhashtable_walk_next(iter)) { 4972 if (IS_ERR(t)) { 4973 if (PTR_ERR(t) == -EAGAIN) 4974 continue; 4975 break; 4976 } 4977 4978 if (!sctp_transport_hold(t)) 4979 continue; 4980 4981 if (net_eq(sock_net(t->asoc->base.sk), net) && 4982 t->asoc->peer.primary_path == t) 4983 break; 4984 4985 sctp_transport_put(t); 4986 } 4987 4988 return t; 4989 } 4990 4991 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4992 struct rhashtable_iter *iter, 4993 int pos) 4994 { 4995 struct sctp_transport *t; 4996 4997 if (!pos) 4998 return SEQ_START_TOKEN; 4999 5000 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5001 if (!--pos) 5002 break; 5003 sctp_transport_put(t); 5004 } 5005 5006 return t; 5007 } 5008 5009 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5010 void *p) { 5011 int err = 0; 5012 int hash = 0; 5013 struct sctp_ep_common *epb; 5014 struct sctp_hashbucket *head; 5015 5016 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5017 hash++, head++) { 5018 read_lock_bh(&head->lock); 5019 sctp_for_each_hentry(epb, &head->chain) { 5020 err = cb(sctp_ep(epb), p); 5021 if (err) 5022 break; 5023 } 5024 read_unlock_bh(&head->lock); 5025 } 5026 5027 return err; 5028 } 5029 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5030 5031 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5032 struct net *net, 5033 const union sctp_addr *laddr, 5034 const union sctp_addr *paddr, void *p) 5035 { 5036 struct sctp_transport *transport; 5037 int err; 5038 5039 rcu_read_lock(); 5040 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5041 rcu_read_unlock(); 5042 if (!transport) 5043 return -ENOENT; 5044 5045 err = cb(transport, p); 5046 sctp_transport_put(transport); 5047 5048 return err; 5049 } 5050 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5051 5052 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5053 int (*cb_done)(struct sctp_transport *, void *), 5054 struct net *net, int *pos, void *p) { 5055 struct rhashtable_iter hti; 5056 struct sctp_transport *tsp; 5057 int ret; 5058 5059 again: 5060 ret = 0; 5061 sctp_transport_walk_start(&hti); 5062 5063 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5064 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5065 ret = cb(tsp, p); 5066 if (ret) 5067 break; 5068 (*pos)++; 5069 sctp_transport_put(tsp); 5070 } 5071 sctp_transport_walk_stop(&hti); 5072 5073 if (ret) { 5074 if (cb_done && !cb_done(tsp, p)) { 5075 (*pos)++; 5076 sctp_transport_put(tsp); 5077 goto again; 5078 } 5079 sctp_transport_put(tsp); 5080 } 5081 5082 return ret; 5083 } 5084 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5085 5086 /* 7.2.1 Association Status (SCTP_STATUS) 5087 5088 * Applications can retrieve current status information about an 5089 * association, including association state, peer receiver window size, 5090 * number of unacked data chunks, and number of data chunks pending 5091 * receipt. This information is read-only. 5092 */ 5093 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5094 char __user *optval, 5095 int __user *optlen) 5096 { 5097 struct sctp_status status; 5098 struct sctp_association *asoc = NULL; 5099 struct sctp_transport *transport; 5100 sctp_assoc_t associd; 5101 int retval = 0; 5102 5103 if (len < sizeof(status)) { 5104 retval = -EINVAL; 5105 goto out; 5106 } 5107 5108 len = sizeof(status); 5109 if (copy_from_user(&status, optval, len)) { 5110 retval = -EFAULT; 5111 goto out; 5112 } 5113 5114 associd = status.sstat_assoc_id; 5115 asoc = sctp_id2assoc(sk, associd); 5116 if (!asoc) { 5117 retval = -EINVAL; 5118 goto out; 5119 } 5120 5121 transport = asoc->peer.primary_path; 5122 5123 status.sstat_assoc_id = sctp_assoc2id(asoc); 5124 status.sstat_state = sctp_assoc_to_state(asoc); 5125 status.sstat_rwnd = asoc->peer.rwnd; 5126 status.sstat_unackdata = asoc->unack_data; 5127 5128 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5129 status.sstat_instrms = asoc->stream.incnt; 5130 status.sstat_outstrms = asoc->stream.outcnt; 5131 status.sstat_fragmentation_point = asoc->frag_point; 5132 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5133 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5134 transport->af_specific->sockaddr_len); 5135 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5136 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5137 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5138 status.sstat_primary.spinfo_state = transport->state; 5139 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5140 status.sstat_primary.spinfo_srtt = transport->srtt; 5141 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5142 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5143 5144 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5145 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5146 5147 if (put_user(len, optlen)) { 5148 retval = -EFAULT; 5149 goto out; 5150 } 5151 5152 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5153 __func__, len, status.sstat_state, status.sstat_rwnd, 5154 status.sstat_assoc_id); 5155 5156 if (copy_to_user(optval, &status, len)) { 5157 retval = -EFAULT; 5158 goto out; 5159 } 5160 5161 out: 5162 return retval; 5163 } 5164 5165 5166 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5167 * 5168 * Applications can retrieve information about a specific peer address 5169 * of an association, including its reachability state, congestion 5170 * window, and retransmission timer values. This information is 5171 * read-only. 5172 */ 5173 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5174 char __user *optval, 5175 int __user *optlen) 5176 { 5177 struct sctp_paddrinfo pinfo; 5178 struct sctp_transport *transport; 5179 int retval = 0; 5180 5181 if (len < sizeof(pinfo)) { 5182 retval = -EINVAL; 5183 goto out; 5184 } 5185 5186 len = sizeof(pinfo); 5187 if (copy_from_user(&pinfo, optval, len)) { 5188 retval = -EFAULT; 5189 goto out; 5190 } 5191 5192 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5193 pinfo.spinfo_assoc_id); 5194 if (!transport) 5195 return -EINVAL; 5196 5197 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5198 pinfo.spinfo_state = transport->state; 5199 pinfo.spinfo_cwnd = transport->cwnd; 5200 pinfo.spinfo_srtt = transport->srtt; 5201 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5202 pinfo.spinfo_mtu = transport->pathmtu; 5203 5204 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5205 pinfo.spinfo_state = SCTP_ACTIVE; 5206 5207 if (put_user(len, optlen)) { 5208 retval = -EFAULT; 5209 goto out; 5210 } 5211 5212 if (copy_to_user(optval, &pinfo, len)) { 5213 retval = -EFAULT; 5214 goto out; 5215 } 5216 5217 out: 5218 return retval; 5219 } 5220 5221 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5222 * 5223 * This option is a on/off flag. If enabled no SCTP message 5224 * fragmentation will be performed. Instead if a message being sent 5225 * exceeds the current PMTU size, the message will NOT be sent and 5226 * instead a error will be indicated to the user. 5227 */ 5228 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5229 char __user *optval, int __user *optlen) 5230 { 5231 int val; 5232 5233 if (len < sizeof(int)) 5234 return -EINVAL; 5235 5236 len = sizeof(int); 5237 val = (sctp_sk(sk)->disable_fragments == 1); 5238 if (put_user(len, optlen)) 5239 return -EFAULT; 5240 if (copy_to_user(optval, &val, len)) 5241 return -EFAULT; 5242 return 0; 5243 } 5244 5245 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5246 * 5247 * This socket option is used to specify various notifications and 5248 * ancillary data the user wishes to receive. 5249 */ 5250 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5251 int __user *optlen) 5252 { 5253 if (len == 0) 5254 return -EINVAL; 5255 if (len > sizeof(struct sctp_event_subscribe)) 5256 len = sizeof(struct sctp_event_subscribe); 5257 if (put_user(len, optlen)) 5258 return -EFAULT; 5259 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5260 return -EFAULT; 5261 return 0; 5262 } 5263 5264 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5265 * 5266 * This socket option is applicable to the UDP-style socket only. When 5267 * set it will cause associations that are idle for more than the 5268 * specified number of seconds to automatically close. An association 5269 * being idle is defined an association that has NOT sent or received 5270 * user data. The special value of '0' indicates that no automatic 5271 * close of any associations should be performed. The option expects an 5272 * integer defining the number of seconds of idle time before an 5273 * association is closed. 5274 */ 5275 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5276 { 5277 /* Applicable to UDP-style socket only */ 5278 if (sctp_style(sk, TCP)) 5279 return -EOPNOTSUPP; 5280 if (len < sizeof(int)) 5281 return -EINVAL; 5282 len = sizeof(int); 5283 if (put_user(len, optlen)) 5284 return -EFAULT; 5285 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5286 return -EFAULT; 5287 return 0; 5288 } 5289 5290 /* Helper routine to branch off an association to a new socket. */ 5291 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5292 { 5293 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5294 struct sctp_sock *sp = sctp_sk(sk); 5295 struct socket *sock; 5296 int err = 0; 5297 5298 /* Do not peel off from one netns to another one. */ 5299 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5300 return -EINVAL; 5301 5302 if (!asoc) 5303 return -EINVAL; 5304 5305 /* An association cannot be branched off from an already peeled-off 5306 * socket, nor is this supported for tcp style sockets. 5307 */ 5308 if (!sctp_style(sk, UDP)) 5309 return -EINVAL; 5310 5311 /* Create a new socket. */ 5312 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5313 if (err < 0) 5314 return err; 5315 5316 sctp_copy_sock(sock->sk, sk, asoc); 5317 5318 /* Make peeled-off sockets more like 1-1 accepted sockets. 5319 * Set the daddr and initialize id to something more random and also 5320 * copy over any ip options. 5321 */ 5322 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5323 sp->pf->copy_ip_options(sk, sock->sk); 5324 5325 /* Populate the fields of the newsk from the oldsk and migrate the 5326 * asoc to the newsk. 5327 */ 5328 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5329 5330 *sockp = sock; 5331 5332 return err; 5333 } 5334 EXPORT_SYMBOL(sctp_do_peeloff); 5335 5336 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5337 struct file **newfile, unsigned flags) 5338 { 5339 struct socket *newsock; 5340 int retval; 5341 5342 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5343 if (retval < 0) 5344 goto out; 5345 5346 /* Map the socket to an unused fd that can be returned to the user. */ 5347 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5348 if (retval < 0) { 5349 sock_release(newsock); 5350 goto out; 5351 } 5352 5353 *newfile = sock_alloc_file(newsock, 0, NULL); 5354 if (IS_ERR(*newfile)) { 5355 put_unused_fd(retval); 5356 retval = PTR_ERR(*newfile); 5357 *newfile = NULL; 5358 return retval; 5359 } 5360 5361 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5362 retval); 5363 5364 peeloff->sd = retval; 5365 5366 if (flags & SOCK_NONBLOCK) 5367 (*newfile)->f_flags |= O_NONBLOCK; 5368 out: 5369 return retval; 5370 } 5371 5372 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5373 { 5374 sctp_peeloff_arg_t peeloff; 5375 struct file *newfile = NULL; 5376 int retval = 0; 5377 5378 if (len < sizeof(sctp_peeloff_arg_t)) 5379 return -EINVAL; 5380 len = sizeof(sctp_peeloff_arg_t); 5381 if (copy_from_user(&peeloff, optval, len)) 5382 return -EFAULT; 5383 5384 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5385 if (retval < 0) 5386 goto out; 5387 5388 /* Return the fd mapped to the new socket. */ 5389 if (put_user(len, optlen)) { 5390 fput(newfile); 5391 put_unused_fd(retval); 5392 return -EFAULT; 5393 } 5394 5395 if (copy_to_user(optval, &peeloff, len)) { 5396 fput(newfile); 5397 put_unused_fd(retval); 5398 return -EFAULT; 5399 } 5400 fd_install(retval, newfile); 5401 out: 5402 return retval; 5403 } 5404 5405 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5406 char __user *optval, int __user *optlen) 5407 { 5408 sctp_peeloff_flags_arg_t peeloff; 5409 struct file *newfile = NULL; 5410 int retval = 0; 5411 5412 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5413 return -EINVAL; 5414 len = sizeof(sctp_peeloff_flags_arg_t); 5415 if (copy_from_user(&peeloff, optval, len)) 5416 return -EFAULT; 5417 5418 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5419 &newfile, peeloff.flags); 5420 if (retval < 0) 5421 goto out; 5422 5423 /* Return the fd mapped to the new socket. */ 5424 if (put_user(len, optlen)) { 5425 fput(newfile); 5426 put_unused_fd(retval); 5427 return -EFAULT; 5428 } 5429 5430 if (copy_to_user(optval, &peeloff, len)) { 5431 fput(newfile); 5432 put_unused_fd(retval); 5433 return -EFAULT; 5434 } 5435 fd_install(retval, newfile); 5436 out: 5437 return retval; 5438 } 5439 5440 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5441 * 5442 * Applications can enable or disable heartbeats for any peer address of 5443 * an association, modify an address's heartbeat interval, force a 5444 * heartbeat to be sent immediately, and adjust the address's maximum 5445 * number of retransmissions sent before an address is considered 5446 * unreachable. The following structure is used to access and modify an 5447 * address's parameters: 5448 * 5449 * struct sctp_paddrparams { 5450 * sctp_assoc_t spp_assoc_id; 5451 * struct sockaddr_storage spp_address; 5452 * uint32_t spp_hbinterval; 5453 * uint16_t spp_pathmaxrxt; 5454 * uint32_t spp_pathmtu; 5455 * uint32_t spp_sackdelay; 5456 * uint32_t spp_flags; 5457 * }; 5458 * 5459 * spp_assoc_id - (one-to-many style socket) This is filled in the 5460 * application, and identifies the association for 5461 * this query. 5462 * spp_address - This specifies which address is of interest. 5463 * spp_hbinterval - This contains the value of the heartbeat interval, 5464 * in milliseconds. If a value of zero 5465 * is present in this field then no changes are to 5466 * be made to this parameter. 5467 * spp_pathmaxrxt - This contains the maximum number of 5468 * retransmissions before this address shall be 5469 * considered unreachable. If a value of zero 5470 * is present in this field then no changes are to 5471 * be made to this parameter. 5472 * spp_pathmtu - When Path MTU discovery is disabled the value 5473 * specified here will be the "fixed" path mtu. 5474 * Note that if the spp_address field is empty 5475 * then all associations on this address will 5476 * have this fixed path mtu set upon them. 5477 * 5478 * spp_sackdelay - When delayed sack is enabled, this value specifies 5479 * the number of milliseconds that sacks will be delayed 5480 * for. This value will apply to all addresses of an 5481 * association if the spp_address field is empty. Note 5482 * also, that if delayed sack is enabled and this 5483 * value is set to 0, no change is made to the last 5484 * recorded delayed sack timer value. 5485 * 5486 * spp_flags - These flags are used to control various features 5487 * on an association. The flag field may contain 5488 * zero or more of the following options. 5489 * 5490 * SPP_HB_ENABLE - Enable heartbeats on the 5491 * specified address. Note that if the address 5492 * field is empty all addresses for the association 5493 * have heartbeats enabled upon them. 5494 * 5495 * SPP_HB_DISABLE - Disable heartbeats on the 5496 * speicifed address. Note that if the address 5497 * field is empty all addresses for the association 5498 * will have their heartbeats disabled. Note also 5499 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5500 * mutually exclusive, only one of these two should 5501 * be specified. Enabling both fields will have 5502 * undetermined results. 5503 * 5504 * SPP_HB_DEMAND - Request a user initiated heartbeat 5505 * to be made immediately. 5506 * 5507 * SPP_PMTUD_ENABLE - This field will enable PMTU 5508 * discovery upon the specified address. Note that 5509 * if the address feild is empty then all addresses 5510 * on the association are effected. 5511 * 5512 * SPP_PMTUD_DISABLE - This field will disable PMTU 5513 * discovery upon the specified address. Note that 5514 * if the address feild is empty then all addresses 5515 * on the association are effected. Not also that 5516 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5517 * exclusive. Enabling both will have undetermined 5518 * results. 5519 * 5520 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5521 * on delayed sack. The time specified in spp_sackdelay 5522 * is used to specify the sack delay for this address. Note 5523 * that if spp_address is empty then all addresses will 5524 * enable delayed sack and take on the sack delay 5525 * value specified in spp_sackdelay. 5526 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5527 * off delayed sack. If the spp_address field is blank then 5528 * delayed sack is disabled for the entire association. Note 5529 * also that this field is mutually exclusive to 5530 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5531 * results. 5532 * 5533 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5534 * setting of the IPV6 flow label value. The value is 5535 * contained in the spp_ipv6_flowlabel field. 5536 * Upon retrieval, this flag will be set to indicate that 5537 * the spp_ipv6_flowlabel field has a valid value returned. 5538 * If a specific destination address is set (in the 5539 * spp_address field), then the value returned is that of 5540 * the address. If just an association is specified (and 5541 * no address), then the association's default flow label 5542 * is returned. If neither an association nor a destination 5543 * is specified, then the socket's default flow label is 5544 * returned. For non-IPv6 sockets, this flag will be left 5545 * cleared. 5546 * 5547 * SPP_DSCP: Setting this flag enables the setting of the 5548 * Differentiated Services Code Point (DSCP) value 5549 * associated with either the association or a specific 5550 * address. The value is obtained in the spp_dscp field. 5551 * Upon retrieval, this flag will be set to indicate that 5552 * the spp_dscp field has a valid value returned. If a 5553 * specific destination address is set when called (in the 5554 * spp_address field), then that specific destination 5555 * address's DSCP value is returned. If just an association 5556 * is specified, then the association's default DSCP is 5557 * returned. If neither an association nor a destination is 5558 * specified, then the socket's default DSCP is returned. 5559 * 5560 * spp_ipv6_flowlabel 5561 * - This field is used in conjunction with the 5562 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5563 * The 20 least significant bits are used for the flow 5564 * label. This setting has precedence over any IPv6-layer 5565 * setting. 5566 * 5567 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5568 * and contains the DSCP. The 6 most significant bits are 5569 * used for the DSCP. This setting has precedence over any 5570 * IPv4- or IPv6- layer setting. 5571 */ 5572 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5573 char __user *optval, int __user *optlen) 5574 { 5575 struct sctp_paddrparams params; 5576 struct sctp_transport *trans = NULL; 5577 struct sctp_association *asoc = NULL; 5578 struct sctp_sock *sp = sctp_sk(sk); 5579 5580 if (len >= sizeof(params)) 5581 len = sizeof(params); 5582 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5583 spp_ipv6_flowlabel), 4)) 5584 len = ALIGN(offsetof(struct sctp_paddrparams, 5585 spp_ipv6_flowlabel), 4); 5586 else 5587 return -EINVAL; 5588 5589 if (copy_from_user(¶ms, optval, len)) 5590 return -EFAULT; 5591 5592 /* If an address other than INADDR_ANY is specified, and 5593 * no transport is found, then the request is invalid. 5594 */ 5595 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5596 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5597 params.spp_assoc_id); 5598 if (!trans) { 5599 pr_debug("%s: failed no transport\n", __func__); 5600 return -EINVAL; 5601 } 5602 } 5603 5604 /* Get association, if assoc_id != 0 and the socket is a one 5605 * to many style socket, and an association was not found, then 5606 * the id was invalid. 5607 */ 5608 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5609 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5610 pr_debug("%s: failed no association\n", __func__); 5611 return -EINVAL; 5612 } 5613 5614 if (trans) { 5615 /* Fetch transport values. */ 5616 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5617 params.spp_pathmtu = trans->pathmtu; 5618 params.spp_pathmaxrxt = trans->pathmaxrxt; 5619 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5620 5621 /*draft-11 doesn't say what to return in spp_flags*/ 5622 params.spp_flags = trans->param_flags; 5623 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5624 params.spp_ipv6_flowlabel = trans->flowlabel & 5625 SCTP_FLOWLABEL_VAL_MASK; 5626 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5627 } 5628 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5629 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5630 params.spp_flags |= SPP_DSCP; 5631 } 5632 } else if (asoc) { 5633 /* Fetch association values. */ 5634 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5635 params.spp_pathmtu = asoc->pathmtu; 5636 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5637 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5638 5639 /*draft-11 doesn't say what to return in spp_flags*/ 5640 params.spp_flags = asoc->param_flags; 5641 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5642 params.spp_ipv6_flowlabel = asoc->flowlabel & 5643 SCTP_FLOWLABEL_VAL_MASK; 5644 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5645 } 5646 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5647 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5648 params.spp_flags |= SPP_DSCP; 5649 } 5650 } else { 5651 /* Fetch socket values. */ 5652 params.spp_hbinterval = sp->hbinterval; 5653 params.spp_pathmtu = sp->pathmtu; 5654 params.spp_sackdelay = sp->sackdelay; 5655 params.spp_pathmaxrxt = sp->pathmaxrxt; 5656 5657 /*draft-11 doesn't say what to return in spp_flags*/ 5658 params.spp_flags = sp->param_flags; 5659 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5660 params.spp_ipv6_flowlabel = sp->flowlabel & 5661 SCTP_FLOWLABEL_VAL_MASK; 5662 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5663 } 5664 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5665 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5666 params.spp_flags |= SPP_DSCP; 5667 } 5668 } 5669 5670 if (copy_to_user(optval, ¶ms, len)) 5671 return -EFAULT; 5672 5673 if (put_user(len, optlen)) 5674 return -EFAULT; 5675 5676 return 0; 5677 } 5678 5679 /* 5680 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5681 * 5682 * This option will effect the way delayed acks are performed. This 5683 * option allows you to get or set the delayed ack time, in 5684 * milliseconds. It also allows changing the delayed ack frequency. 5685 * Changing the frequency to 1 disables the delayed sack algorithm. If 5686 * the assoc_id is 0, then this sets or gets the endpoints default 5687 * values. If the assoc_id field is non-zero, then the set or get 5688 * effects the specified association for the one to many model (the 5689 * assoc_id field is ignored by the one to one model). Note that if 5690 * sack_delay or sack_freq are 0 when setting this option, then the 5691 * current values will remain unchanged. 5692 * 5693 * struct sctp_sack_info { 5694 * sctp_assoc_t sack_assoc_id; 5695 * uint32_t sack_delay; 5696 * uint32_t sack_freq; 5697 * }; 5698 * 5699 * sack_assoc_id - This parameter, indicates which association the user 5700 * is performing an action upon. Note that if this field's value is 5701 * zero then the endpoints default value is changed (effecting future 5702 * associations only). 5703 * 5704 * sack_delay - This parameter contains the number of milliseconds that 5705 * the user is requesting the delayed ACK timer be set to. Note that 5706 * this value is defined in the standard to be between 200 and 500 5707 * milliseconds. 5708 * 5709 * sack_freq - This parameter contains the number of packets that must 5710 * be received before a sack is sent without waiting for the delay 5711 * timer to expire. The default value for this is 2, setting this 5712 * value to 1 will disable the delayed sack algorithm. 5713 */ 5714 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5715 char __user *optval, 5716 int __user *optlen) 5717 { 5718 struct sctp_sack_info params; 5719 struct sctp_association *asoc = NULL; 5720 struct sctp_sock *sp = sctp_sk(sk); 5721 5722 if (len >= sizeof(struct sctp_sack_info)) { 5723 len = sizeof(struct sctp_sack_info); 5724 5725 if (copy_from_user(¶ms, optval, len)) 5726 return -EFAULT; 5727 } else if (len == sizeof(struct sctp_assoc_value)) { 5728 pr_warn_ratelimited(DEPRECATED 5729 "%s (pid %d) " 5730 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5731 "Use struct sctp_sack_info instead\n", 5732 current->comm, task_pid_nr(current)); 5733 if (copy_from_user(¶ms, optval, len)) 5734 return -EFAULT; 5735 } else 5736 return -EINVAL; 5737 5738 /* Get association, if sack_assoc_id != 0 and the socket is a one 5739 * to many style socket, and an association was not found, then 5740 * the id was invalid. 5741 */ 5742 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5743 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5744 return -EINVAL; 5745 5746 if (asoc) { 5747 /* Fetch association values. */ 5748 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5749 params.sack_delay = jiffies_to_msecs( 5750 asoc->sackdelay); 5751 params.sack_freq = asoc->sackfreq; 5752 5753 } else { 5754 params.sack_delay = 0; 5755 params.sack_freq = 1; 5756 } 5757 } else { 5758 /* Fetch socket values. */ 5759 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5760 params.sack_delay = sp->sackdelay; 5761 params.sack_freq = sp->sackfreq; 5762 } else { 5763 params.sack_delay = 0; 5764 params.sack_freq = 1; 5765 } 5766 } 5767 5768 if (copy_to_user(optval, ¶ms, len)) 5769 return -EFAULT; 5770 5771 if (put_user(len, optlen)) 5772 return -EFAULT; 5773 5774 return 0; 5775 } 5776 5777 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5778 * 5779 * Applications can specify protocol parameters for the default association 5780 * initialization. The option name argument to setsockopt() and getsockopt() 5781 * is SCTP_INITMSG. 5782 * 5783 * Setting initialization parameters is effective only on an unconnected 5784 * socket (for UDP-style sockets only future associations are effected 5785 * by the change). With TCP-style sockets, this option is inherited by 5786 * sockets derived from a listener socket. 5787 */ 5788 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5789 { 5790 if (len < sizeof(struct sctp_initmsg)) 5791 return -EINVAL; 5792 len = sizeof(struct sctp_initmsg); 5793 if (put_user(len, optlen)) 5794 return -EFAULT; 5795 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5796 return -EFAULT; 5797 return 0; 5798 } 5799 5800 5801 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5802 char __user *optval, int __user *optlen) 5803 { 5804 struct sctp_association *asoc; 5805 int cnt = 0; 5806 struct sctp_getaddrs getaddrs; 5807 struct sctp_transport *from; 5808 void __user *to; 5809 union sctp_addr temp; 5810 struct sctp_sock *sp = sctp_sk(sk); 5811 int addrlen; 5812 size_t space_left; 5813 int bytes_copied; 5814 5815 if (len < sizeof(struct sctp_getaddrs)) 5816 return -EINVAL; 5817 5818 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5819 return -EFAULT; 5820 5821 /* For UDP-style sockets, id specifies the association to query. */ 5822 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5823 if (!asoc) 5824 return -EINVAL; 5825 5826 to = optval + offsetof(struct sctp_getaddrs, addrs); 5827 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5828 5829 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5830 transports) { 5831 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5832 addrlen = sctp_get_pf_specific(sk->sk_family) 5833 ->addr_to_user(sp, &temp); 5834 if (space_left < addrlen) 5835 return -ENOMEM; 5836 if (copy_to_user(to, &temp, addrlen)) 5837 return -EFAULT; 5838 to += addrlen; 5839 cnt++; 5840 space_left -= addrlen; 5841 } 5842 5843 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5844 return -EFAULT; 5845 bytes_copied = ((char __user *)to) - optval; 5846 if (put_user(bytes_copied, optlen)) 5847 return -EFAULT; 5848 5849 return 0; 5850 } 5851 5852 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5853 size_t space_left, int *bytes_copied) 5854 { 5855 struct sctp_sockaddr_entry *addr; 5856 union sctp_addr temp; 5857 int cnt = 0; 5858 int addrlen; 5859 struct net *net = sock_net(sk); 5860 5861 rcu_read_lock(); 5862 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5863 if (!addr->valid) 5864 continue; 5865 5866 if ((PF_INET == sk->sk_family) && 5867 (AF_INET6 == addr->a.sa.sa_family)) 5868 continue; 5869 if ((PF_INET6 == sk->sk_family) && 5870 inet_v6_ipv6only(sk) && 5871 (AF_INET == addr->a.sa.sa_family)) 5872 continue; 5873 memcpy(&temp, &addr->a, sizeof(temp)); 5874 if (!temp.v4.sin_port) 5875 temp.v4.sin_port = htons(port); 5876 5877 addrlen = sctp_get_pf_specific(sk->sk_family) 5878 ->addr_to_user(sctp_sk(sk), &temp); 5879 5880 if (space_left < addrlen) { 5881 cnt = -ENOMEM; 5882 break; 5883 } 5884 memcpy(to, &temp, addrlen); 5885 5886 to += addrlen; 5887 cnt++; 5888 space_left -= addrlen; 5889 *bytes_copied += addrlen; 5890 } 5891 rcu_read_unlock(); 5892 5893 return cnt; 5894 } 5895 5896 5897 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5898 char __user *optval, int __user *optlen) 5899 { 5900 struct sctp_bind_addr *bp; 5901 struct sctp_association *asoc; 5902 int cnt = 0; 5903 struct sctp_getaddrs getaddrs; 5904 struct sctp_sockaddr_entry *addr; 5905 void __user *to; 5906 union sctp_addr temp; 5907 struct sctp_sock *sp = sctp_sk(sk); 5908 int addrlen; 5909 int err = 0; 5910 size_t space_left; 5911 int bytes_copied = 0; 5912 void *addrs; 5913 void *buf; 5914 5915 if (len < sizeof(struct sctp_getaddrs)) 5916 return -EINVAL; 5917 5918 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5919 return -EFAULT; 5920 5921 /* 5922 * For UDP-style sockets, id specifies the association to query. 5923 * If the id field is set to the value '0' then the locally bound 5924 * addresses are returned without regard to any particular 5925 * association. 5926 */ 5927 if (0 == getaddrs.assoc_id) { 5928 bp = &sctp_sk(sk)->ep->base.bind_addr; 5929 } else { 5930 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5931 if (!asoc) 5932 return -EINVAL; 5933 bp = &asoc->base.bind_addr; 5934 } 5935 5936 to = optval + offsetof(struct sctp_getaddrs, addrs); 5937 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5938 5939 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5940 if (!addrs) 5941 return -ENOMEM; 5942 5943 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5944 * addresses from the global local address list. 5945 */ 5946 if (sctp_list_single_entry(&bp->address_list)) { 5947 addr = list_entry(bp->address_list.next, 5948 struct sctp_sockaddr_entry, list); 5949 if (sctp_is_any(sk, &addr->a)) { 5950 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5951 space_left, &bytes_copied); 5952 if (cnt < 0) { 5953 err = cnt; 5954 goto out; 5955 } 5956 goto copy_getaddrs; 5957 } 5958 } 5959 5960 buf = addrs; 5961 /* Protection on the bound address list is not needed since 5962 * in the socket option context we hold a socket lock and 5963 * thus the bound address list can't change. 5964 */ 5965 list_for_each_entry(addr, &bp->address_list, list) { 5966 memcpy(&temp, &addr->a, sizeof(temp)); 5967 addrlen = sctp_get_pf_specific(sk->sk_family) 5968 ->addr_to_user(sp, &temp); 5969 if (space_left < addrlen) { 5970 err = -ENOMEM; /*fixme: right error?*/ 5971 goto out; 5972 } 5973 memcpy(buf, &temp, addrlen); 5974 buf += addrlen; 5975 bytes_copied += addrlen; 5976 cnt++; 5977 space_left -= addrlen; 5978 } 5979 5980 copy_getaddrs: 5981 if (copy_to_user(to, addrs, bytes_copied)) { 5982 err = -EFAULT; 5983 goto out; 5984 } 5985 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5986 err = -EFAULT; 5987 goto out; 5988 } 5989 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5990 * but we can't change it anymore. 5991 */ 5992 if (put_user(bytes_copied, optlen)) 5993 err = -EFAULT; 5994 out: 5995 kfree(addrs); 5996 return err; 5997 } 5998 5999 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6000 * 6001 * Requests that the local SCTP stack use the enclosed peer address as 6002 * the association primary. The enclosed address must be one of the 6003 * association peer's addresses. 6004 */ 6005 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6006 char __user *optval, int __user *optlen) 6007 { 6008 struct sctp_prim prim; 6009 struct sctp_association *asoc; 6010 struct sctp_sock *sp = sctp_sk(sk); 6011 6012 if (len < sizeof(struct sctp_prim)) 6013 return -EINVAL; 6014 6015 len = sizeof(struct sctp_prim); 6016 6017 if (copy_from_user(&prim, optval, len)) 6018 return -EFAULT; 6019 6020 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6021 if (!asoc) 6022 return -EINVAL; 6023 6024 if (!asoc->peer.primary_path) 6025 return -ENOTCONN; 6026 6027 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6028 asoc->peer.primary_path->af_specific->sockaddr_len); 6029 6030 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6031 (union sctp_addr *)&prim.ssp_addr); 6032 6033 if (put_user(len, optlen)) 6034 return -EFAULT; 6035 if (copy_to_user(optval, &prim, len)) 6036 return -EFAULT; 6037 6038 return 0; 6039 } 6040 6041 /* 6042 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6043 * 6044 * Requests that the local endpoint set the specified Adaptation Layer 6045 * Indication parameter for all future INIT and INIT-ACK exchanges. 6046 */ 6047 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6048 char __user *optval, int __user *optlen) 6049 { 6050 struct sctp_setadaptation adaptation; 6051 6052 if (len < sizeof(struct sctp_setadaptation)) 6053 return -EINVAL; 6054 6055 len = sizeof(struct sctp_setadaptation); 6056 6057 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6058 6059 if (put_user(len, optlen)) 6060 return -EFAULT; 6061 if (copy_to_user(optval, &adaptation, len)) 6062 return -EFAULT; 6063 6064 return 0; 6065 } 6066 6067 /* 6068 * 6069 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6070 * 6071 * Applications that wish to use the sendto() system call may wish to 6072 * specify a default set of parameters that would normally be supplied 6073 * through the inclusion of ancillary data. This socket option allows 6074 * such an application to set the default sctp_sndrcvinfo structure. 6075 6076 6077 * The application that wishes to use this socket option simply passes 6078 * in to this call the sctp_sndrcvinfo structure defined in Section 6079 * 5.2.2) The input parameters accepted by this call include 6080 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6081 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6082 * to this call if the caller is using the UDP model. 6083 * 6084 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6085 */ 6086 static int sctp_getsockopt_default_send_param(struct sock *sk, 6087 int len, char __user *optval, 6088 int __user *optlen) 6089 { 6090 struct sctp_sock *sp = sctp_sk(sk); 6091 struct sctp_association *asoc; 6092 struct sctp_sndrcvinfo info; 6093 6094 if (len < sizeof(info)) 6095 return -EINVAL; 6096 6097 len = sizeof(info); 6098 6099 if (copy_from_user(&info, optval, len)) 6100 return -EFAULT; 6101 6102 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6103 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 6104 return -EINVAL; 6105 if (asoc) { 6106 info.sinfo_stream = asoc->default_stream; 6107 info.sinfo_flags = asoc->default_flags; 6108 info.sinfo_ppid = asoc->default_ppid; 6109 info.sinfo_context = asoc->default_context; 6110 info.sinfo_timetolive = asoc->default_timetolive; 6111 } else { 6112 info.sinfo_stream = sp->default_stream; 6113 info.sinfo_flags = sp->default_flags; 6114 info.sinfo_ppid = sp->default_ppid; 6115 info.sinfo_context = sp->default_context; 6116 info.sinfo_timetolive = sp->default_timetolive; 6117 } 6118 6119 if (put_user(len, optlen)) 6120 return -EFAULT; 6121 if (copy_to_user(optval, &info, len)) 6122 return -EFAULT; 6123 6124 return 0; 6125 } 6126 6127 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6128 * (SCTP_DEFAULT_SNDINFO) 6129 */ 6130 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6131 char __user *optval, 6132 int __user *optlen) 6133 { 6134 struct sctp_sock *sp = sctp_sk(sk); 6135 struct sctp_association *asoc; 6136 struct sctp_sndinfo info; 6137 6138 if (len < sizeof(info)) 6139 return -EINVAL; 6140 6141 len = sizeof(info); 6142 6143 if (copy_from_user(&info, optval, len)) 6144 return -EFAULT; 6145 6146 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6147 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 6148 return -EINVAL; 6149 if (asoc) { 6150 info.snd_sid = asoc->default_stream; 6151 info.snd_flags = asoc->default_flags; 6152 info.snd_ppid = asoc->default_ppid; 6153 info.snd_context = asoc->default_context; 6154 } else { 6155 info.snd_sid = sp->default_stream; 6156 info.snd_flags = sp->default_flags; 6157 info.snd_ppid = sp->default_ppid; 6158 info.snd_context = sp->default_context; 6159 } 6160 6161 if (put_user(len, optlen)) 6162 return -EFAULT; 6163 if (copy_to_user(optval, &info, len)) 6164 return -EFAULT; 6165 6166 return 0; 6167 } 6168 6169 /* 6170 * 6171 * 7.1.5 SCTP_NODELAY 6172 * 6173 * Turn on/off any Nagle-like algorithm. This means that packets are 6174 * generally sent as soon as possible and no unnecessary delays are 6175 * introduced, at the cost of more packets in the network. Expects an 6176 * integer boolean flag. 6177 */ 6178 6179 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6180 char __user *optval, int __user *optlen) 6181 { 6182 int val; 6183 6184 if (len < sizeof(int)) 6185 return -EINVAL; 6186 6187 len = sizeof(int); 6188 val = (sctp_sk(sk)->nodelay == 1); 6189 if (put_user(len, optlen)) 6190 return -EFAULT; 6191 if (copy_to_user(optval, &val, len)) 6192 return -EFAULT; 6193 return 0; 6194 } 6195 6196 /* 6197 * 6198 * 7.1.1 SCTP_RTOINFO 6199 * 6200 * The protocol parameters used to initialize and bound retransmission 6201 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6202 * and modify these parameters. 6203 * All parameters are time values, in milliseconds. A value of 0, when 6204 * modifying the parameters, indicates that the current value should not 6205 * be changed. 6206 * 6207 */ 6208 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6209 char __user *optval, 6210 int __user *optlen) { 6211 struct sctp_rtoinfo rtoinfo; 6212 struct sctp_association *asoc; 6213 6214 if (len < sizeof (struct sctp_rtoinfo)) 6215 return -EINVAL; 6216 6217 len = sizeof(struct sctp_rtoinfo); 6218 6219 if (copy_from_user(&rtoinfo, optval, len)) 6220 return -EFAULT; 6221 6222 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6223 6224 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6225 return -EINVAL; 6226 6227 /* Values corresponding to the specific association. */ 6228 if (asoc) { 6229 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6230 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6231 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6232 } else { 6233 /* Values corresponding to the endpoint. */ 6234 struct sctp_sock *sp = sctp_sk(sk); 6235 6236 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6237 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6238 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6239 } 6240 6241 if (put_user(len, optlen)) 6242 return -EFAULT; 6243 6244 if (copy_to_user(optval, &rtoinfo, len)) 6245 return -EFAULT; 6246 6247 return 0; 6248 } 6249 6250 /* 6251 * 6252 * 7.1.2 SCTP_ASSOCINFO 6253 * 6254 * This option is used to tune the maximum retransmission attempts 6255 * of the association. 6256 * Returns an error if the new association retransmission value is 6257 * greater than the sum of the retransmission value of the peer. 6258 * See [SCTP] for more information. 6259 * 6260 */ 6261 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6262 char __user *optval, 6263 int __user *optlen) 6264 { 6265 6266 struct sctp_assocparams assocparams; 6267 struct sctp_association *asoc; 6268 struct list_head *pos; 6269 int cnt = 0; 6270 6271 if (len < sizeof (struct sctp_assocparams)) 6272 return -EINVAL; 6273 6274 len = sizeof(struct sctp_assocparams); 6275 6276 if (copy_from_user(&assocparams, optval, len)) 6277 return -EFAULT; 6278 6279 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6280 6281 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6282 return -EINVAL; 6283 6284 /* Values correspoinding to the specific association */ 6285 if (asoc) { 6286 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6287 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6288 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6289 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6290 6291 list_for_each(pos, &asoc->peer.transport_addr_list) { 6292 cnt++; 6293 } 6294 6295 assocparams.sasoc_number_peer_destinations = cnt; 6296 } else { 6297 /* Values corresponding to the endpoint */ 6298 struct sctp_sock *sp = sctp_sk(sk); 6299 6300 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6301 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6302 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6303 assocparams.sasoc_cookie_life = 6304 sp->assocparams.sasoc_cookie_life; 6305 assocparams.sasoc_number_peer_destinations = 6306 sp->assocparams. 6307 sasoc_number_peer_destinations; 6308 } 6309 6310 if (put_user(len, optlen)) 6311 return -EFAULT; 6312 6313 if (copy_to_user(optval, &assocparams, len)) 6314 return -EFAULT; 6315 6316 return 0; 6317 } 6318 6319 /* 6320 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6321 * 6322 * This socket option is a boolean flag which turns on or off mapped V4 6323 * addresses. If this option is turned on and the socket is type 6324 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6325 * If this option is turned off, then no mapping will be done of V4 6326 * addresses and a user will receive both PF_INET6 and PF_INET type 6327 * addresses on the socket. 6328 */ 6329 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6330 char __user *optval, int __user *optlen) 6331 { 6332 int val; 6333 struct sctp_sock *sp = sctp_sk(sk); 6334 6335 if (len < sizeof(int)) 6336 return -EINVAL; 6337 6338 len = sizeof(int); 6339 val = sp->v4mapped; 6340 if (put_user(len, optlen)) 6341 return -EFAULT; 6342 if (copy_to_user(optval, &val, len)) 6343 return -EFAULT; 6344 6345 return 0; 6346 } 6347 6348 /* 6349 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6350 * (chapter and verse is quoted at sctp_setsockopt_context()) 6351 */ 6352 static int sctp_getsockopt_context(struct sock *sk, int len, 6353 char __user *optval, int __user *optlen) 6354 { 6355 struct sctp_assoc_value params; 6356 struct sctp_sock *sp; 6357 struct sctp_association *asoc; 6358 6359 if (len < sizeof(struct sctp_assoc_value)) 6360 return -EINVAL; 6361 6362 len = sizeof(struct sctp_assoc_value); 6363 6364 if (copy_from_user(¶ms, optval, len)) 6365 return -EFAULT; 6366 6367 sp = sctp_sk(sk); 6368 6369 if (params.assoc_id != 0) { 6370 asoc = sctp_id2assoc(sk, params.assoc_id); 6371 if (!asoc) 6372 return -EINVAL; 6373 params.assoc_value = asoc->default_rcv_context; 6374 } else { 6375 params.assoc_value = sp->default_rcv_context; 6376 } 6377 6378 if (put_user(len, optlen)) 6379 return -EFAULT; 6380 if (copy_to_user(optval, ¶ms, len)) 6381 return -EFAULT; 6382 6383 return 0; 6384 } 6385 6386 /* 6387 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6388 * This option will get or set the maximum size to put in any outgoing 6389 * SCTP DATA chunk. If a message is larger than this size it will be 6390 * fragmented by SCTP into the specified size. Note that the underlying 6391 * SCTP implementation may fragment into smaller sized chunks when the 6392 * PMTU of the underlying association is smaller than the value set by 6393 * the user. The default value for this option is '0' which indicates 6394 * the user is NOT limiting fragmentation and only the PMTU will effect 6395 * SCTP's choice of DATA chunk size. Note also that values set larger 6396 * than the maximum size of an IP datagram will effectively let SCTP 6397 * control fragmentation (i.e. the same as setting this option to 0). 6398 * 6399 * The following structure is used to access and modify this parameter: 6400 * 6401 * struct sctp_assoc_value { 6402 * sctp_assoc_t assoc_id; 6403 * uint32_t assoc_value; 6404 * }; 6405 * 6406 * assoc_id: This parameter is ignored for one-to-one style sockets. 6407 * For one-to-many style sockets this parameter indicates which 6408 * association the user is performing an action upon. Note that if 6409 * this field's value is zero then the endpoints default value is 6410 * changed (effecting future associations only). 6411 * assoc_value: This parameter specifies the maximum size in bytes. 6412 */ 6413 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6414 char __user *optval, int __user *optlen) 6415 { 6416 struct sctp_assoc_value params; 6417 struct sctp_association *asoc; 6418 6419 if (len == sizeof(int)) { 6420 pr_warn_ratelimited(DEPRECATED 6421 "%s (pid %d) " 6422 "Use of int in maxseg socket option.\n" 6423 "Use struct sctp_assoc_value instead\n", 6424 current->comm, task_pid_nr(current)); 6425 params.assoc_id = 0; 6426 } else if (len >= sizeof(struct sctp_assoc_value)) { 6427 len = sizeof(struct sctp_assoc_value); 6428 if (copy_from_user(¶ms, optval, len)) 6429 return -EFAULT; 6430 } else 6431 return -EINVAL; 6432 6433 asoc = sctp_id2assoc(sk, params.assoc_id); 6434 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6435 return -EINVAL; 6436 6437 if (asoc) 6438 params.assoc_value = asoc->frag_point; 6439 else 6440 params.assoc_value = sctp_sk(sk)->user_frag; 6441 6442 if (put_user(len, optlen)) 6443 return -EFAULT; 6444 if (len == sizeof(int)) { 6445 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6446 return -EFAULT; 6447 } else { 6448 if (copy_to_user(optval, ¶ms, len)) 6449 return -EFAULT; 6450 } 6451 6452 return 0; 6453 } 6454 6455 /* 6456 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6457 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6458 */ 6459 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6460 char __user *optval, int __user *optlen) 6461 { 6462 int val; 6463 6464 if (len < sizeof(int)) 6465 return -EINVAL; 6466 6467 len = sizeof(int); 6468 6469 val = sctp_sk(sk)->frag_interleave; 6470 if (put_user(len, optlen)) 6471 return -EFAULT; 6472 if (copy_to_user(optval, &val, len)) 6473 return -EFAULT; 6474 6475 return 0; 6476 } 6477 6478 /* 6479 * 7.1.25. Set or Get the sctp partial delivery point 6480 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6481 */ 6482 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6483 char __user *optval, 6484 int __user *optlen) 6485 { 6486 u32 val; 6487 6488 if (len < sizeof(u32)) 6489 return -EINVAL; 6490 6491 len = sizeof(u32); 6492 6493 val = sctp_sk(sk)->pd_point; 6494 if (put_user(len, optlen)) 6495 return -EFAULT; 6496 if (copy_to_user(optval, &val, len)) 6497 return -EFAULT; 6498 6499 return 0; 6500 } 6501 6502 /* 6503 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6504 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6505 */ 6506 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6507 char __user *optval, 6508 int __user *optlen) 6509 { 6510 struct sctp_assoc_value params; 6511 struct sctp_sock *sp; 6512 struct sctp_association *asoc; 6513 6514 if (len == sizeof(int)) { 6515 pr_warn_ratelimited(DEPRECATED 6516 "%s (pid %d) " 6517 "Use of int in max_burst socket option.\n" 6518 "Use struct sctp_assoc_value instead\n", 6519 current->comm, task_pid_nr(current)); 6520 params.assoc_id = 0; 6521 } else if (len >= sizeof(struct sctp_assoc_value)) { 6522 len = sizeof(struct sctp_assoc_value); 6523 if (copy_from_user(¶ms, optval, len)) 6524 return -EFAULT; 6525 } else 6526 return -EINVAL; 6527 6528 sp = sctp_sk(sk); 6529 6530 if (params.assoc_id != 0) { 6531 asoc = sctp_id2assoc(sk, params.assoc_id); 6532 if (!asoc) 6533 return -EINVAL; 6534 params.assoc_value = asoc->max_burst; 6535 } else 6536 params.assoc_value = sp->max_burst; 6537 6538 if (len == sizeof(int)) { 6539 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6540 return -EFAULT; 6541 } else { 6542 if (copy_to_user(optval, ¶ms, len)) 6543 return -EFAULT; 6544 } 6545 6546 return 0; 6547 6548 } 6549 6550 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6551 char __user *optval, int __user *optlen) 6552 { 6553 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6554 struct sctp_hmacalgo __user *p = (void __user *)optval; 6555 struct sctp_hmac_algo_param *hmacs; 6556 __u16 data_len = 0; 6557 u32 num_idents; 6558 int i; 6559 6560 if (!ep->auth_enable) 6561 return -EACCES; 6562 6563 hmacs = ep->auth_hmacs_list; 6564 data_len = ntohs(hmacs->param_hdr.length) - 6565 sizeof(struct sctp_paramhdr); 6566 6567 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6568 return -EINVAL; 6569 6570 len = sizeof(struct sctp_hmacalgo) + data_len; 6571 num_idents = data_len / sizeof(u16); 6572 6573 if (put_user(len, optlen)) 6574 return -EFAULT; 6575 if (put_user(num_idents, &p->shmac_num_idents)) 6576 return -EFAULT; 6577 for (i = 0; i < num_idents; i++) { 6578 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6579 6580 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6581 return -EFAULT; 6582 } 6583 return 0; 6584 } 6585 6586 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6587 char __user *optval, int __user *optlen) 6588 { 6589 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6590 struct sctp_authkeyid val; 6591 struct sctp_association *asoc; 6592 6593 if (!ep->auth_enable) 6594 return -EACCES; 6595 6596 if (len < sizeof(struct sctp_authkeyid)) 6597 return -EINVAL; 6598 6599 len = sizeof(struct sctp_authkeyid); 6600 if (copy_from_user(&val, optval, len)) 6601 return -EFAULT; 6602 6603 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6604 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6605 return -EINVAL; 6606 6607 if (asoc) 6608 val.scact_keynumber = asoc->active_key_id; 6609 else 6610 val.scact_keynumber = ep->active_key_id; 6611 6612 if (put_user(len, optlen)) 6613 return -EFAULT; 6614 if (copy_to_user(optval, &val, len)) 6615 return -EFAULT; 6616 6617 return 0; 6618 } 6619 6620 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6621 char __user *optval, int __user *optlen) 6622 { 6623 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6624 struct sctp_authchunks __user *p = (void __user *)optval; 6625 struct sctp_authchunks val; 6626 struct sctp_association *asoc; 6627 struct sctp_chunks_param *ch; 6628 u32 num_chunks = 0; 6629 char __user *to; 6630 6631 if (!ep->auth_enable) 6632 return -EACCES; 6633 6634 if (len < sizeof(struct sctp_authchunks)) 6635 return -EINVAL; 6636 6637 if (copy_from_user(&val, optval, sizeof(val))) 6638 return -EFAULT; 6639 6640 to = p->gauth_chunks; 6641 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6642 if (!asoc) 6643 return -EINVAL; 6644 6645 ch = asoc->peer.peer_chunks; 6646 if (!ch) 6647 goto num; 6648 6649 /* See if the user provided enough room for all the data */ 6650 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6651 if (len < num_chunks) 6652 return -EINVAL; 6653 6654 if (copy_to_user(to, ch->chunks, num_chunks)) 6655 return -EFAULT; 6656 num: 6657 len = sizeof(struct sctp_authchunks) + num_chunks; 6658 if (put_user(len, optlen)) 6659 return -EFAULT; 6660 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6661 return -EFAULT; 6662 return 0; 6663 } 6664 6665 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6666 char __user *optval, int __user *optlen) 6667 { 6668 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6669 struct sctp_authchunks __user *p = (void __user *)optval; 6670 struct sctp_authchunks val; 6671 struct sctp_association *asoc; 6672 struct sctp_chunks_param *ch; 6673 u32 num_chunks = 0; 6674 char __user *to; 6675 6676 if (!ep->auth_enable) 6677 return -EACCES; 6678 6679 if (len < sizeof(struct sctp_authchunks)) 6680 return -EINVAL; 6681 6682 if (copy_from_user(&val, optval, sizeof(val))) 6683 return -EFAULT; 6684 6685 to = p->gauth_chunks; 6686 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6687 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6688 return -EINVAL; 6689 6690 if (asoc) 6691 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6692 else 6693 ch = ep->auth_chunk_list; 6694 6695 if (!ch) 6696 goto num; 6697 6698 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6699 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6700 return -EINVAL; 6701 6702 if (copy_to_user(to, ch->chunks, num_chunks)) 6703 return -EFAULT; 6704 num: 6705 len = sizeof(struct sctp_authchunks) + num_chunks; 6706 if (put_user(len, optlen)) 6707 return -EFAULT; 6708 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6709 return -EFAULT; 6710 6711 return 0; 6712 } 6713 6714 /* 6715 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6716 * This option gets the current number of associations that are attached 6717 * to a one-to-many style socket. The option value is an uint32_t. 6718 */ 6719 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6720 char __user *optval, int __user *optlen) 6721 { 6722 struct sctp_sock *sp = sctp_sk(sk); 6723 struct sctp_association *asoc; 6724 u32 val = 0; 6725 6726 if (sctp_style(sk, TCP)) 6727 return -EOPNOTSUPP; 6728 6729 if (len < sizeof(u32)) 6730 return -EINVAL; 6731 6732 len = sizeof(u32); 6733 6734 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6735 val++; 6736 } 6737 6738 if (put_user(len, optlen)) 6739 return -EFAULT; 6740 if (copy_to_user(optval, &val, len)) 6741 return -EFAULT; 6742 6743 return 0; 6744 } 6745 6746 /* 6747 * 8.1.23 SCTP_AUTO_ASCONF 6748 * See the corresponding setsockopt entry as description 6749 */ 6750 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6751 char __user *optval, int __user *optlen) 6752 { 6753 int val = 0; 6754 6755 if (len < sizeof(int)) 6756 return -EINVAL; 6757 6758 len = sizeof(int); 6759 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6760 val = 1; 6761 if (put_user(len, optlen)) 6762 return -EFAULT; 6763 if (copy_to_user(optval, &val, len)) 6764 return -EFAULT; 6765 return 0; 6766 } 6767 6768 /* 6769 * 8.2.6. Get the Current Identifiers of Associations 6770 * (SCTP_GET_ASSOC_ID_LIST) 6771 * 6772 * This option gets the current list of SCTP association identifiers of 6773 * the SCTP associations handled by a one-to-many style socket. 6774 */ 6775 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6776 char __user *optval, int __user *optlen) 6777 { 6778 struct sctp_sock *sp = sctp_sk(sk); 6779 struct sctp_association *asoc; 6780 struct sctp_assoc_ids *ids; 6781 u32 num = 0; 6782 6783 if (sctp_style(sk, TCP)) 6784 return -EOPNOTSUPP; 6785 6786 if (len < sizeof(struct sctp_assoc_ids)) 6787 return -EINVAL; 6788 6789 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6790 num++; 6791 } 6792 6793 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6794 return -EINVAL; 6795 6796 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6797 6798 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6799 if (unlikely(!ids)) 6800 return -ENOMEM; 6801 6802 ids->gaids_number_of_ids = num; 6803 num = 0; 6804 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6805 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6806 } 6807 6808 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6809 kfree(ids); 6810 return -EFAULT; 6811 } 6812 6813 kfree(ids); 6814 return 0; 6815 } 6816 6817 /* 6818 * SCTP_PEER_ADDR_THLDS 6819 * 6820 * This option allows us to fetch the partially failed threshold for one or all 6821 * transports in an association. See Section 6.1 of: 6822 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6823 */ 6824 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6825 char __user *optval, 6826 int len, 6827 int __user *optlen) 6828 { 6829 struct sctp_paddrthlds val; 6830 struct sctp_transport *trans; 6831 struct sctp_association *asoc; 6832 6833 if (len < sizeof(struct sctp_paddrthlds)) 6834 return -EINVAL; 6835 len = sizeof(struct sctp_paddrthlds); 6836 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6837 return -EFAULT; 6838 6839 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6840 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6841 if (!asoc) 6842 return -ENOENT; 6843 6844 val.spt_pathpfthld = asoc->pf_retrans; 6845 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6846 } else { 6847 trans = sctp_addr_id2transport(sk, &val.spt_address, 6848 val.spt_assoc_id); 6849 if (!trans) 6850 return -ENOENT; 6851 6852 val.spt_pathmaxrxt = trans->pathmaxrxt; 6853 val.spt_pathpfthld = trans->pf_retrans; 6854 } 6855 6856 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6857 return -EFAULT; 6858 6859 return 0; 6860 } 6861 6862 /* 6863 * SCTP_GET_ASSOC_STATS 6864 * 6865 * This option retrieves local per endpoint statistics. It is modeled 6866 * after OpenSolaris' implementation 6867 */ 6868 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6869 char __user *optval, 6870 int __user *optlen) 6871 { 6872 struct sctp_assoc_stats sas; 6873 struct sctp_association *asoc = NULL; 6874 6875 /* User must provide at least the assoc id */ 6876 if (len < sizeof(sctp_assoc_t)) 6877 return -EINVAL; 6878 6879 /* Allow the struct to grow and fill in as much as possible */ 6880 len = min_t(size_t, len, sizeof(sas)); 6881 6882 if (copy_from_user(&sas, optval, len)) 6883 return -EFAULT; 6884 6885 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6886 if (!asoc) 6887 return -EINVAL; 6888 6889 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6890 sas.sas_gapcnt = asoc->stats.gapcnt; 6891 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6892 sas.sas_osacks = asoc->stats.osacks; 6893 sas.sas_isacks = asoc->stats.isacks; 6894 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6895 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6896 sas.sas_oodchunks = asoc->stats.oodchunks; 6897 sas.sas_iodchunks = asoc->stats.iodchunks; 6898 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6899 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6900 sas.sas_idupchunks = asoc->stats.idupchunks; 6901 sas.sas_opackets = asoc->stats.opackets; 6902 sas.sas_ipackets = asoc->stats.ipackets; 6903 6904 /* New high max rto observed, will return 0 if not a single 6905 * RTO update took place. obs_rto_ipaddr will be bogus 6906 * in such a case 6907 */ 6908 sas.sas_maxrto = asoc->stats.max_obs_rto; 6909 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6910 sizeof(struct sockaddr_storage)); 6911 6912 /* Mark beginning of a new observation period */ 6913 asoc->stats.max_obs_rto = asoc->rto_min; 6914 6915 if (put_user(len, optlen)) 6916 return -EFAULT; 6917 6918 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6919 6920 if (copy_to_user(optval, &sas, len)) 6921 return -EFAULT; 6922 6923 return 0; 6924 } 6925 6926 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6927 char __user *optval, 6928 int __user *optlen) 6929 { 6930 int val = 0; 6931 6932 if (len < sizeof(int)) 6933 return -EINVAL; 6934 6935 len = sizeof(int); 6936 if (sctp_sk(sk)->recvrcvinfo) 6937 val = 1; 6938 if (put_user(len, optlen)) 6939 return -EFAULT; 6940 if (copy_to_user(optval, &val, len)) 6941 return -EFAULT; 6942 6943 return 0; 6944 } 6945 6946 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6947 char __user *optval, 6948 int __user *optlen) 6949 { 6950 int val = 0; 6951 6952 if (len < sizeof(int)) 6953 return -EINVAL; 6954 6955 len = sizeof(int); 6956 if (sctp_sk(sk)->recvnxtinfo) 6957 val = 1; 6958 if (put_user(len, optlen)) 6959 return -EFAULT; 6960 if (copy_to_user(optval, &val, len)) 6961 return -EFAULT; 6962 6963 return 0; 6964 } 6965 6966 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6967 char __user *optval, 6968 int __user *optlen) 6969 { 6970 struct sctp_assoc_value params; 6971 struct sctp_association *asoc; 6972 int retval = -EFAULT; 6973 6974 if (len < sizeof(params)) { 6975 retval = -EINVAL; 6976 goto out; 6977 } 6978 6979 len = sizeof(params); 6980 if (copy_from_user(¶ms, optval, len)) 6981 goto out; 6982 6983 asoc = sctp_id2assoc(sk, params.assoc_id); 6984 if (asoc) { 6985 params.assoc_value = asoc->prsctp_enable; 6986 } else if (!params.assoc_id) { 6987 struct sctp_sock *sp = sctp_sk(sk); 6988 6989 params.assoc_value = sp->ep->prsctp_enable; 6990 } else { 6991 retval = -EINVAL; 6992 goto out; 6993 } 6994 6995 if (put_user(len, optlen)) 6996 goto out; 6997 6998 if (copy_to_user(optval, ¶ms, len)) 6999 goto out; 7000 7001 retval = 0; 7002 7003 out: 7004 return retval; 7005 } 7006 7007 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7008 char __user *optval, 7009 int __user *optlen) 7010 { 7011 struct sctp_default_prinfo info; 7012 struct sctp_association *asoc; 7013 int retval = -EFAULT; 7014 7015 if (len < sizeof(info)) { 7016 retval = -EINVAL; 7017 goto out; 7018 } 7019 7020 len = sizeof(info); 7021 if (copy_from_user(&info, optval, len)) 7022 goto out; 7023 7024 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7025 if (asoc) { 7026 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7027 info.pr_value = asoc->default_timetolive; 7028 } else if (!info.pr_assoc_id) { 7029 struct sctp_sock *sp = sctp_sk(sk); 7030 7031 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7032 info.pr_value = sp->default_timetolive; 7033 } else { 7034 retval = -EINVAL; 7035 goto out; 7036 } 7037 7038 if (put_user(len, optlen)) 7039 goto out; 7040 7041 if (copy_to_user(optval, &info, len)) 7042 goto out; 7043 7044 retval = 0; 7045 7046 out: 7047 return retval; 7048 } 7049 7050 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7051 char __user *optval, 7052 int __user *optlen) 7053 { 7054 struct sctp_prstatus params; 7055 struct sctp_association *asoc; 7056 int policy; 7057 int retval = -EINVAL; 7058 7059 if (len < sizeof(params)) 7060 goto out; 7061 7062 len = sizeof(params); 7063 if (copy_from_user(¶ms, optval, len)) { 7064 retval = -EFAULT; 7065 goto out; 7066 } 7067 7068 policy = params.sprstat_policy; 7069 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7070 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7071 goto out; 7072 7073 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7074 if (!asoc) 7075 goto out; 7076 7077 if (policy == SCTP_PR_SCTP_ALL) { 7078 params.sprstat_abandoned_unsent = 0; 7079 params.sprstat_abandoned_sent = 0; 7080 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7081 params.sprstat_abandoned_unsent += 7082 asoc->abandoned_unsent[policy]; 7083 params.sprstat_abandoned_sent += 7084 asoc->abandoned_sent[policy]; 7085 } 7086 } else { 7087 params.sprstat_abandoned_unsent = 7088 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7089 params.sprstat_abandoned_sent = 7090 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7091 } 7092 7093 if (put_user(len, optlen)) { 7094 retval = -EFAULT; 7095 goto out; 7096 } 7097 7098 if (copy_to_user(optval, ¶ms, len)) { 7099 retval = -EFAULT; 7100 goto out; 7101 } 7102 7103 retval = 0; 7104 7105 out: 7106 return retval; 7107 } 7108 7109 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7110 char __user *optval, 7111 int __user *optlen) 7112 { 7113 struct sctp_stream_out_ext *streamoute; 7114 struct sctp_association *asoc; 7115 struct sctp_prstatus params; 7116 int retval = -EINVAL; 7117 int policy; 7118 7119 if (len < sizeof(params)) 7120 goto out; 7121 7122 len = sizeof(params); 7123 if (copy_from_user(¶ms, optval, len)) { 7124 retval = -EFAULT; 7125 goto out; 7126 } 7127 7128 policy = params.sprstat_policy; 7129 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7130 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7131 goto out; 7132 7133 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7134 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7135 goto out; 7136 7137 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7138 if (!streamoute) { 7139 /* Not allocated yet, means all stats are 0 */ 7140 params.sprstat_abandoned_unsent = 0; 7141 params.sprstat_abandoned_sent = 0; 7142 retval = 0; 7143 goto out; 7144 } 7145 7146 if (policy == SCTP_PR_SCTP_ALL) { 7147 params.sprstat_abandoned_unsent = 0; 7148 params.sprstat_abandoned_sent = 0; 7149 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7150 params.sprstat_abandoned_unsent += 7151 streamoute->abandoned_unsent[policy]; 7152 params.sprstat_abandoned_sent += 7153 streamoute->abandoned_sent[policy]; 7154 } 7155 } else { 7156 params.sprstat_abandoned_unsent = 7157 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7158 params.sprstat_abandoned_sent = 7159 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7160 } 7161 7162 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7163 retval = -EFAULT; 7164 goto out; 7165 } 7166 7167 retval = 0; 7168 7169 out: 7170 return retval; 7171 } 7172 7173 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7174 char __user *optval, 7175 int __user *optlen) 7176 { 7177 struct sctp_assoc_value params; 7178 struct sctp_association *asoc; 7179 int retval = -EFAULT; 7180 7181 if (len < sizeof(params)) { 7182 retval = -EINVAL; 7183 goto out; 7184 } 7185 7186 len = sizeof(params); 7187 if (copy_from_user(¶ms, optval, len)) 7188 goto out; 7189 7190 asoc = sctp_id2assoc(sk, params.assoc_id); 7191 if (asoc) { 7192 params.assoc_value = asoc->reconf_enable; 7193 } else if (!params.assoc_id) { 7194 struct sctp_sock *sp = sctp_sk(sk); 7195 7196 params.assoc_value = sp->ep->reconf_enable; 7197 } else { 7198 retval = -EINVAL; 7199 goto out; 7200 } 7201 7202 if (put_user(len, optlen)) 7203 goto out; 7204 7205 if (copy_to_user(optval, ¶ms, len)) 7206 goto out; 7207 7208 retval = 0; 7209 7210 out: 7211 return retval; 7212 } 7213 7214 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7215 char __user *optval, 7216 int __user *optlen) 7217 { 7218 struct sctp_assoc_value params; 7219 struct sctp_association *asoc; 7220 int retval = -EFAULT; 7221 7222 if (len < sizeof(params)) { 7223 retval = -EINVAL; 7224 goto out; 7225 } 7226 7227 len = sizeof(params); 7228 if (copy_from_user(¶ms, optval, len)) 7229 goto out; 7230 7231 asoc = sctp_id2assoc(sk, params.assoc_id); 7232 if (asoc) { 7233 params.assoc_value = asoc->strreset_enable; 7234 } else if (!params.assoc_id) { 7235 struct sctp_sock *sp = sctp_sk(sk); 7236 7237 params.assoc_value = sp->ep->strreset_enable; 7238 } else { 7239 retval = -EINVAL; 7240 goto out; 7241 } 7242 7243 if (put_user(len, optlen)) 7244 goto out; 7245 7246 if (copy_to_user(optval, ¶ms, len)) 7247 goto out; 7248 7249 retval = 0; 7250 7251 out: 7252 return retval; 7253 } 7254 7255 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7256 char __user *optval, 7257 int __user *optlen) 7258 { 7259 struct sctp_assoc_value params; 7260 struct sctp_association *asoc; 7261 int retval = -EFAULT; 7262 7263 if (len < sizeof(params)) { 7264 retval = -EINVAL; 7265 goto out; 7266 } 7267 7268 len = sizeof(params); 7269 if (copy_from_user(¶ms, optval, len)) 7270 goto out; 7271 7272 asoc = sctp_id2assoc(sk, params.assoc_id); 7273 if (!asoc) { 7274 retval = -EINVAL; 7275 goto out; 7276 } 7277 7278 params.assoc_value = sctp_sched_get_sched(asoc); 7279 7280 if (put_user(len, optlen)) 7281 goto out; 7282 7283 if (copy_to_user(optval, ¶ms, len)) 7284 goto out; 7285 7286 retval = 0; 7287 7288 out: 7289 return retval; 7290 } 7291 7292 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7293 char __user *optval, 7294 int __user *optlen) 7295 { 7296 struct sctp_stream_value params; 7297 struct sctp_association *asoc; 7298 int retval = -EFAULT; 7299 7300 if (len < sizeof(params)) { 7301 retval = -EINVAL; 7302 goto out; 7303 } 7304 7305 len = sizeof(params); 7306 if (copy_from_user(¶ms, optval, len)) 7307 goto out; 7308 7309 asoc = sctp_id2assoc(sk, params.assoc_id); 7310 if (!asoc) { 7311 retval = -EINVAL; 7312 goto out; 7313 } 7314 7315 retval = sctp_sched_get_value(asoc, params.stream_id, 7316 ¶ms.stream_value); 7317 if (retval) 7318 goto out; 7319 7320 if (put_user(len, optlen)) { 7321 retval = -EFAULT; 7322 goto out; 7323 } 7324 7325 if (copy_to_user(optval, ¶ms, len)) { 7326 retval = -EFAULT; 7327 goto out; 7328 } 7329 7330 out: 7331 return retval; 7332 } 7333 7334 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7335 char __user *optval, 7336 int __user *optlen) 7337 { 7338 struct sctp_assoc_value params; 7339 struct sctp_association *asoc; 7340 int retval = -EFAULT; 7341 7342 if (len < sizeof(params)) { 7343 retval = -EINVAL; 7344 goto out; 7345 } 7346 7347 len = sizeof(params); 7348 if (copy_from_user(¶ms, optval, len)) 7349 goto out; 7350 7351 asoc = sctp_id2assoc(sk, params.assoc_id); 7352 if (asoc) { 7353 params.assoc_value = asoc->intl_enable; 7354 } else if (!params.assoc_id) { 7355 struct sctp_sock *sp = sctp_sk(sk); 7356 7357 params.assoc_value = sp->strm_interleave; 7358 } else { 7359 retval = -EINVAL; 7360 goto out; 7361 } 7362 7363 if (put_user(len, optlen)) 7364 goto out; 7365 7366 if (copy_to_user(optval, ¶ms, len)) 7367 goto out; 7368 7369 retval = 0; 7370 7371 out: 7372 return retval; 7373 } 7374 7375 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7376 char __user *optval, 7377 int __user *optlen) 7378 { 7379 int val; 7380 7381 if (len < sizeof(int)) 7382 return -EINVAL; 7383 7384 len = sizeof(int); 7385 val = sctp_sk(sk)->reuse; 7386 if (put_user(len, optlen)) 7387 return -EFAULT; 7388 7389 if (copy_to_user(optval, &val, len)) 7390 return -EFAULT; 7391 7392 return 0; 7393 } 7394 7395 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7396 char __user *optval, int __user *optlen) 7397 { 7398 int retval = 0; 7399 int len; 7400 7401 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7402 7403 /* I can hardly begin to describe how wrong this is. This is 7404 * so broken as to be worse than useless. The API draft 7405 * REALLY is NOT helpful here... I am not convinced that the 7406 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7407 * are at all well-founded. 7408 */ 7409 if (level != SOL_SCTP) { 7410 struct sctp_af *af = sctp_sk(sk)->pf->af; 7411 7412 retval = af->getsockopt(sk, level, optname, optval, optlen); 7413 return retval; 7414 } 7415 7416 if (get_user(len, optlen)) 7417 return -EFAULT; 7418 7419 if (len < 0) 7420 return -EINVAL; 7421 7422 lock_sock(sk); 7423 7424 switch (optname) { 7425 case SCTP_STATUS: 7426 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7427 break; 7428 case SCTP_DISABLE_FRAGMENTS: 7429 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7430 optlen); 7431 break; 7432 case SCTP_EVENTS: 7433 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7434 break; 7435 case SCTP_AUTOCLOSE: 7436 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7437 break; 7438 case SCTP_SOCKOPT_PEELOFF: 7439 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7440 break; 7441 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7442 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7443 break; 7444 case SCTP_PEER_ADDR_PARAMS: 7445 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7446 optlen); 7447 break; 7448 case SCTP_DELAYED_SACK: 7449 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7450 optlen); 7451 break; 7452 case SCTP_INITMSG: 7453 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7454 break; 7455 case SCTP_GET_PEER_ADDRS: 7456 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7457 optlen); 7458 break; 7459 case SCTP_GET_LOCAL_ADDRS: 7460 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7461 optlen); 7462 break; 7463 case SCTP_SOCKOPT_CONNECTX3: 7464 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7465 break; 7466 case SCTP_DEFAULT_SEND_PARAM: 7467 retval = sctp_getsockopt_default_send_param(sk, len, 7468 optval, optlen); 7469 break; 7470 case SCTP_DEFAULT_SNDINFO: 7471 retval = sctp_getsockopt_default_sndinfo(sk, len, 7472 optval, optlen); 7473 break; 7474 case SCTP_PRIMARY_ADDR: 7475 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7476 break; 7477 case SCTP_NODELAY: 7478 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7479 break; 7480 case SCTP_RTOINFO: 7481 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7482 break; 7483 case SCTP_ASSOCINFO: 7484 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7485 break; 7486 case SCTP_I_WANT_MAPPED_V4_ADDR: 7487 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7488 break; 7489 case SCTP_MAXSEG: 7490 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7491 break; 7492 case SCTP_GET_PEER_ADDR_INFO: 7493 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7494 optlen); 7495 break; 7496 case SCTP_ADAPTATION_LAYER: 7497 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7498 optlen); 7499 break; 7500 case SCTP_CONTEXT: 7501 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7502 break; 7503 case SCTP_FRAGMENT_INTERLEAVE: 7504 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7505 optlen); 7506 break; 7507 case SCTP_PARTIAL_DELIVERY_POINT: 7508 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7509 optlen); 7510 break; 7511 case SCTP_MAX_BURST: 7512 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7513 break; 7514 case SCTP_AUTH_KEY: 7515 case SCTP_AUTH_CHUNK: 7516 case SCTP_AUTH_DELETE_KEY: 7517 case SCTP_AUTH_DEACTIVATE_KEY: 7518 retval = -EOPNOTSUPP; 7519 break; 7520 case SCTP_HMAC_IDENT: 7521 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7522 break; 7523 case SCTP_AUTH_ACTIVE_KEY: 7524 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7525 break; 7526 case SCTP_PEER_AUTH_CHUNKS: 7527 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7528 optlen); 7529 break; 7530 case SCTP_LOCAL_AUTH_CHUNKS: 7531 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7532 optlen); 7533 break; 7534 case SCTP_GET_ASSOC_NUMBER: 7535 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7536 break; 7537 case SCTP_GET_ASSOC_ID_LIST: 7538 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7539 break; 7540 case SCTP_AUTO_ASCONF: 7541 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7542 break; 7543 case SCTP_PEER_ADDR_THLDS: 7544 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7545 break; 7546 case SCTP_GET_ASSOC_STATS: 7547 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7548 break; 7549 case SCTP_RECVRCVINFO: 7550 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7551 break; 7552 case SCTP_RECVNXTINFO: 7553 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7554 break; 7555 case SCTP_PR_SUPPORTED: 7556 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7557 break; 7558 case SCTP_DEFAULT_PRINFO: 7559 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7560 optlen); 7561 break; 7562 case SCTP_PR_ASSOC_STATUS: 7563 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7564 optlen); 7565 break; 7566 case SCTP_PR_STREAM_STATUS: 7567 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7568 optlen); 7569 break; 7570 case SCTP_RECONFIG_SUPPORTED: 7571 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7572 optlen); 7573 break; 7574 case SCTP_ENABLE_STREAM_RESET: 7575 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7576 optlen); 7577 break; 7578 case SCTP_STREAM_SCHEDULER: 7579 retval = sctp_getsockopt_scheduler(sk, len, optval, 7580 optlen); 7581 break; 7582 case SCTP_STREAM_SCHEDULER_VALUE: 7583 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7584 optlen); 7585 break; 7586 case SCTP_INTERLEAVING_SUPPORTED: 7587 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7588 optlen); 7589 break; 7590 case SCTP_REUSE_PORT: 7591 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7592 break; 7593 default: 7594 retval = -ENOPROTOOPT; 7595 break; 7596 } 7597 7598 release_sock(sk); 7599 return retval; 7600 } 7601 7602 static int sctp_hash(struct sock *sk) 7603 { 7604 /* STUB */ 7605 return 0; 7606 } 7607 7608 static void sctp_unhash(struct sock *sk) 7609 { 7610 /* STUB */ 7611 } 7612 7613 /* Check if port is acceptable. Possibly find first available port. 7614 * 7615 * The port hash table (contained in the 'global' SCTP protocol storage 7616 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7617 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7618 * list (the list number is the port number hashed out, so as you 7619 * would expect from a hash function, all the ports in a given list have 7620 * such a number that hashes out to the same list number; you were 7621 * expecting that, right?); so each list has a set of ports, with a 7622 * link to the socket (struct sock) that uses it, the port number and 7623 * a fastreuse flag (FIXME: NPI ipg). 7624 */ 7625 static struct sctp_bind_bucket *sctp_bucket_create( 7626 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7627 7628 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7629 { 7630 bool reuse = (sk->sk_reuse || sctp_sk(sk)->reuse); 7631 struct sctp_bind_hashbucket *head; /* hash list */ 7632 struct sctp_bind_bucket *pp; 7633 unsigned short snum; 7634 int ret; 7635 7636 snum = ntohs(addr->v4.sin_port); 7637 7638 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7639 7640 local_bh_disable(); 7641 7642 if (snum == 0) { 7643 /* Search for an available port. */ 7644 int low, high, remaining, index; 7645 unsigned int rover; 7646 struct net *net = sock_net(sk); 7647 7648 inet_get_local_port_range(net, &low, &high); 7649 remaining = (high - low) + 1; 7650 rover = prandom_u32() % remaining + low; 7651 7652 do { 7653 rover++; 7654 if ((rover < low) || (rover > high)) 7655 rover = low; 7656 if (inet_is_local_reserved_port(net, rover)) 7657 continue; 7658 index = sctp_phashfn(sock_net(sk), rover); 7659 head = &sctp_port_hashtable[index]; 7660 spin_lock(&head->lock); 7661 sctp_for_each_hentry(pp, &head->chain) 7662 if ((pp->port == rover) && 7663 net_eq(sock_net(sk), pp->net)) 7664 goto next; 7665 break; 7666 next: 7667 spin_unlock(&head->lock); 7668 } while (--remaining > 0); 7669 7670 /* Exhausted local port range during search? */ 7671 ret = 1; 7672 if (remaining <= 0) 7673 goto fail; 7674 7675 /* OK, here is the one we will use. HEAD (the port 7676 * hash table list entry) is non-NULL and we hold it's 7677 * mutex. 7678 */ 7679 snum = rover; 7680 } else { 7681 /* We are given an specific port number; we verify 7682 * that it is not being used. If it is used, we will 7683 * exahust the search in the hash list corresponding 7684 * to the port number (snum) - we detect that with the 7685 * port iterator, pp being NULL. 7686 */ 7687 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7688 spin_lock(&head->lock); 7689 sctp_for_each_hentry(pp, &head->chain) { 7690 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7691 goto pp_found; 7692 } 7693 } 7694 pp = NULL; 7695 goto pp_not_found; 7696 pp_found: 7697 if (!hlist_empty(&pp->owner)) { 7698 /* We had a port hash table hit - there is an 7699 * available port (pp != NULL) and it is being 7700 * used by other socket (pp->owner not empty); that other 7701 * socket is going to be sk2. 7702 */ 7703 struct sock *sk2; 7704 7705 pr_debug("%s: found a possible match\n", __func__); 7706 7707 if (pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING) 7708 goto success; 7709 7710 /* Run through the list of sockets bound to the port 7711 * (pp->port) [via the pointers bind_next and 7712 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7713 * we get the endpoint they describe and run through 7714 * the endpoint's list of IP (v4 or v6) addresses, 7715 * comparing each of the addresses with the address of 7716 * the socket sk. If we find a match, then that means 7717 * that this port/socket (sk) combination are already 7718 * in an endpoint. 7719 */ 7720 sk_for_each_bound(sk2, &pp->owner) { 7721 struct sctp_endpoint *ep2; 7722 ep2 = sctp_sk(sk2)->ep; 7723 7724 if (sk == sk2 || 7725 (reuse && (sk2->sk_reuse || sctp_sk(sk2)->reuse) && 7726 sk2->sk_state != SCTP_SS_LISTENING)) 7727 continue; 7728 7729 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7730 sctp_sk(sk2), sctp_sk(sk))) { 7731 ret = (long)sk2; 7732 goto fail_unlock; 7733 } 7734 } 7735 7736 pr_debug("%s: found a match\n", __func__); 7737 } 7738 pp_not_found: 7739 /* If there was a hash table miss, create a new port. */ 7740 ret = 1; 7741 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7742 goto fail_unlock; 7743 7744 /* In either case (hit or miss), make sure fastreuse is 1 only 7745 * if sk->sk_reuse is too (that is, if the caller requested 7746 * SO_REUSEADDR on this socket -sk-). 7747 */ 7748 if (hlist_empty(&pp->owner)) { 7749 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 7750 pp->fastreuse = 1; 7751 else 7752 pp->fastreuse = 0; 7753 } else if (pp->fastreuse && 7754 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 7755 pp->fastreuse = 0; 7756 7757 /* We are set, so fill up all the data in the hash table 7758 * entry, tie the socket list information with the rest of the 7759 * sockets FIXME: Blurry, NPI (ipg). 7760 */ 7761 success: 7762 if (!sctp_sk(sk)->bind_hash) { 7763 inet_sk(sk)->inet_num = snum; 7764 sk_add_bind_node(sk, &pp->owner); 7765 sctp_sk(sk)->bind_hash = pp; 7766 } 7767 ret = 0; 7768 7769 fail_unlock: 7770 spin_unlock(&head->lock); 7771 7772 fail: 7773 local_bh_enable(); 7774 return ret; 7775 } 7776 7777 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7778 * port is requested. 7779 */ 7780 static int sctp_get_port(struct sock *sk, unsigned short snum) 7781 { 7782 union sctp_addr addr; 7783 struct sctp_af *af = sctp_sk(sk)->pf->af; 7784 7785 /* Set up a dummy address struct from the sk. */ 7786 af->from_sk(&addr, sk); 7787 addr.v4.sin_port = htons(snum); 7788 7789 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7790 return !!sctp_get_port_local(sk, &addr); 7791 } 7792 7793 /* 7794 * Move a socket to LISTENING state. 7795 */ 7796 static int sctp_listen_start(struct sock *sk, int backlog) 7797 { 7798 struct sctp_sock *sp = sctp_sk(sk); 7799 struct sctp_endpoint *ep = sp->ep; 7800 struct crypto_shash *tfm = NULL; 7801 char alg[32]; 7802 7803 /* Allocate HMAC for generating cookie. */ 7804 if (!sp->hmac && sp->sctp_hmac_alg) { 7805 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7806 tfm = crypto_alloc_shash(alg, 0, 0); 7807 if (IS_ERR(tfm)) { 7808 net_info_ratelimited("failed to load transform for %s: %ld\n", 7809 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7810 return -ENOSYS; 7811 } 7812 sctp_sk(sk)->hmac = tfm; 7813 } 7814 7815 /* 7816 * If a bind() or sctp_bindx() is not called prior to a listen() 7817 * call that allows new associations to be accepted, the system 7818 * picks an ephemeral port and will choose an address set equivalent 7819 * to binding with a wildcard address. 7820 * 7821 * This is not currently spelled out in the SCTP sockets 7822 * extensions draft, but follows the practice as seen in TCP 7823 * sockets. 7824 * 7825 */ 7826 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7827 if (!ep->base.bind_addr.port) { 7828 if (sctp_autobind(sk)) 7829 return -EAGAIN; 7830 } else { 7831 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7832 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7833 return -EADDRINUSE; 7834 } 7835 } 7836 7837 sk->sk_max_ack_backlog = backlog; 7838 sctp_hash_endpoint(ep); 7839 return 0; 7840 } 7841 7842 /* 7843 * 4.1.3 / 5.1.3 listen() 7844 * 7845 * By default, new associations are not accepted for UDP style sockets. 7846 * An application uses listen() to mark a socket as being able to 7847 * accept new associations. 7848 * 7849 * On TCP style sockets, applications use listen() to ready the SCTP 7850 * endpoint for accepting inbound associations. 7851 * 7852 * On both types of endpoints a backlog of '0' disables listening. 7853 * 7854 * Move a socket to LISTENING state. 7855 */ 7856 int sctp_inet_listen(struct socket *sock, int backlog) 7857 { 7858 struct sock *sk = sock->sk; 7859 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7860 int err = -EINVAL; 7861 7862 if (unlikely(backlog < 0)) 7863 return err; 7864 7865 lock_sock(sk); 7866 7867 /* Peeled-off sockets are not allowed to listen(). */ 7868 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7869 goto out; 7870 7871 if (sock->state != SS_UNCONNECTED) 7872 goto out; 7873 7874 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7875 goto out; 7876 7877 /* If backlog is zero, disable listening. */ 7878 if (!backlog) { 7879 if (sctp_sstate(sk, CLOSED)) 7880 goto out; 7881 7882 err = 0; 7883 sctp_unhash_endpoint(ep); 7884 sk->sk_state = SCTP_SS_CLOSED; 7885 if (sk->sk_reuse || sctp_sk(sk)->reuse) 7886 sctp_sk(sk)->bind_hash->fastreuse = 1; 7887 goto out; 7888 } 7889 7890 /* If we are already listening, just update the backlog */ 7891 if (sctp_sstate(sk, LISTENING)) 7892 sk->sk_max_ack_backlog = backlog; 7893 else { 7894 err = sctp_listen_start(sk, backlog); 7895 if (err) 7896 goto out; 7897 } 7898 7899 err = 0; 7900 out: 7901 release_sock(sk); 7902 return err; 7903 } 7904 7905 /* 7906 * This function is done by modeling the current datagram_poll() and the 7907 * tcp_poll(). Note that, based on these implementations, we don't 7908 * lock the socket in this function, even though it seems that, 7909 * ideally, locking or some other mechanisms can be used to ensure 7910 * the integrity of the counters (sndbuf and wmem_alloc) used 7911 * in this place. We assume that we don't need locks either until proven 7912 * otherwise. 7913 * 7914 * Another thing to note is that we include the Async I/O support 7915 * here, again, by modeling the current TCP/UDP code. We don't have 7916 * a good way to test with it yet. 7917 */ 7918 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7919 { 7920 struct sock *sk = sock->sk; 7921 struct sctp_sock *sp = sctp_sk(sk); 7922 __poll_t mask; 7923 7924 poll_wait(file, sk_sleep(sk), wait); 7925 7926 sock_rps_record_flow(sk); 7927 7928 /* A TCP-style listening socket becomes readable when the accept queue 7929 * is not empty. 7930 */ 7931 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7932 return (!list_empty(&sp->ep->asocs)) ? 7933 (EPOLLIN | EPOLLRDNORM) : 0; 7934 7935 mask = 0; 7936 7937 /* Is there any exceptional events? */ 7938 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7939 mask |= EPOLLERR | 7940 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7941 if (sk->sk_shutdown & RCV_SHUTDOWN) 7942 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7943 if (sk->sk_shutdown == SHUTDOWN_MASK) 7944 mask |= EPOLLHUP; 7945 7946 /* Is it readable? Reconsider this code with TCP-style support. */ 7947 if (!skb_queue_empty(&sk->sk_receive_queue)) 7948 mask |= EPOLLIN | EPOLLRDNORM; 7949 7950 /* The association is either gone or not ready. */ 7951 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7952 return mask; 7953 7954 /* Is it writable? */ 7955 if (sctp_writeable(sk)) { 7956 mask |= EPOLLOUT | EPOLLWRNORM; 7957 } else { 7958 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7959 /* 7960 * Since the socket is not locked, the buffer 7961 * might be made available after the writeable check and 7962 * before the bit is set. This could cause a lost I/O 7963 * signal. tcp_poll() has a race breaker for this race 7964 * condition. Based on their implementation, we put 7965 * in the following code to cover it as well. 7966 */ 7967 if (sctp_writeable(sk)) 7968 mask |= EPOLLOUT | EPOLLWRNORM; 7969 } 7970 return mask; 7971 } 7972 7973 /******************************************************************** 7974 * 2nd Level Abstractions 7975 ********************************************************************/ 7976 7977 static struct sctp_bind_bucket *sctp_bucket_create( 7978 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7979 { 7980 struct sctp_bind_bucket *pp; 7981 7982 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7983 if (pp) { 7984 SCTP_DBG_OBJCNT_INC(bind_bucket); 7985 pp->port = snum; 7986 pp->fastreuse = 0; 7987 INIT_HLIST_HEAD(&pp->owner); 7988 pp->net = net; 7989 hlist_add_head(&pp->node, &head->chain); 7990 } 7991 return pp; 7992 } 7993 7994 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7995 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7996 { 7997 if (pp && hlist_empty(&pp->owner)) { 7998 __hlist_del(&pp->node); 7999 kmem_cache_free(sctp_bucket_cachep, pp); 8000 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8001 } 8002 } 8003 8004 /* Release this socket's reference to a local port. */ 8005 static inline void __sctp_put_port(struct sock *sk) 8006 { 8007 struct sctp_bind_hashbucket *head = 8008 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8009 inet_sk(sk)->inet_num)]; 8010 struct sctp_bind_bucket *pp; 8011 8012 spin_lock(&head->lock); 8013 pp = sctp_sk(sk)->bind_hash; 8014 __sk_del_bind_node(sk); 8015 sctp_sk(sk)->bind_hash = NULL; 8016 inet_sk(sk)->inet_num = 0; 8017 sctp_bucket_destroy(pp); 8018 spin_unlock(&head->lock); 8019 } 8020 8021 void sctp_put_port(struct sock *sk) 8022 { 8023 local_bh_disable(); 8024 __sctp_put_port(sk); 8025 local_bh_enable(); 8026 } 8027 8028 /* 8029 * The system picks an ephemeral port and choose an address set equivalent 8030 * to binding with a wildcard address. 8031 * One of those addresses will be the primary address for the association. 8032 * This automatically enables the multihoming capability of SCTP. 8033 */ 8034 static int sctp_autobind(struct sock *sk) 8035 { 8036 union sctp_addr autoaddr; 8037 struct sctp_af *af; 8038 __be16 port; 8039 8040 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8041 af = sctp_sk(sk)->pf->af; 8042 8043 port = htons(inet_sk(sk)->inet_num); 8044 af->inaddr_any(&autoaddr, port); 8045 8046 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8047 } 8048 8049 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8050 * 8051 * From RFC 2292 8052 * 4.2 The cmsghdr Structure * 8053 * 8054 * When ancillary data is sent or received, any number of ancillary data 8055 * objects can be specified by the msg_control and msg_controllen members of 8056 * the msghdr structure, because each object is preceded by 8057 * a cmsghdr structure defining the object's length (the cmsg_len member). 8058 * Historically Berkeley-derived implementations have passed only one object 8059 * at a time, but this API allows multiple objects to be 8060 * passed in a single call to sendmsg() or recvmsg(). The following example 8061 * shows two ancillary data objects in a control buffer. 8062 * 8063 * |<--------------------------- msg_controllen -------------------------->| 8064 * | | 8065 * 8066 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8067 * 8068 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8069 * | | | 8070 * 8071 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8072 * 8073 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8074 * | | | | | 8075 * 8076 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8077 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8078 * 8079 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8080 * 8081 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8082 * ^ 8083 * | 8084 * 8085 * msg_control 8086 * points here 8087 */ 8088 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8089 { 8090 struct msghdr *my_msg = (struct msghdr *)msg; 8091 struct cmsghdr *cmsg; 8092 8093 for_each_cmsghdr(cmsg, my_msg) { 8094 if (!CMSG_OK(my_msg, cmsg)) 8095 return -EINVAL; 8096 8097 /* Should we parse this header or ignore? */ 8098 if (cmsg->cmsg_level != IPPROTO_SCTP) 8099 continue; 8100 8101 /* Strictly check lengths following example in SCM code. */ 8102 switch (cmsg->cmsg_type) { 8103 case SCTP_INIT: 8104 /* SCTP Socket API Extension 8105 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8106 * 8107 * This cmsghdr structure provides information for 8108 * initializing new SCTP associations with sendmsg(). 8109 * The SCTP_INITMSG socket option uses this same data 8110 * structure. This structure is not used for 8111 * recvmsg(). 8112 * 8113 * cmsg_level cmsg_type cmsg_data[] 8114 * ------------ ------------ ---------------------- 8115 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8116 */ 8117 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8118 return -EINVAL; 8119 8120 cmsgs->init = CMSG_DATA(cmsg); 8121 break; 8122 8123 case SCTP_SNDRCV: 8124 /* SCTP Socket API Extension 8125 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8126 * 8127 * This cmsghdr structure specifies SCTP options for 8128 * sendmsg() and describes SCTP header information 8129 * about a received message through recvmsg(). 8130 * 8131 * cmsg_level cmsg_type cmsg_data[] 8132 * ------------ ------------ ---------------------- 8133 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8134 */ 8135 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8136 return -EINVAL; 8137 8138 cmsgs->srinfo = CMSG_DATA(cmsg); 8139 8140 if (cmsgs->srinfo->sinfo_flags & 8141 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8142 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8143 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8144 return -EINVAL; 8145 break; 8146 8147 case SCTP_SNDINFO: 8148 /* SCTP Socket API Extension 8149 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8150 * 8151 * This cmsghdr structure specifies SCTP options for 8152 * sendmsg(). This structure and SCTP_RCVINFO replaces 8153 * SCTP_SNDRCV which has been deprecated. 8154 * 8155 * cmsg_level cmsg_type cmsg_data[] 8156 * ------------ ------------ --------------------- 8157 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8158 */ 8159 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8160 return -EINVAL; 8161 8162 cmsgs->sinfo = CMSG_DATA(cmsg); 8163 8164 if (cmsgs->sinfo->snd_flags & 8165 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8166 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8167 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8168 return -EINVAL; 8169 break; 8170 case SCTP_PRINFO: 8171 /* SCTP Socket API Extension 8172 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8173 * 8174 * This cmsghdr structure specifies SCTP options for sendmsg(). 8175 * 8176 * cmsg_level cmsg_type cmsg_data[] 8177 * ------------ ------------ --------------------- 8178 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8179 */ 8180 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8181 return -EINVAL; 8182 8183 cmsgs->prinfo = CMSG_DATA(cmsg); 8184 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8185 return -EINVAL; 8186 8187 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8188 cmsgs->prinfo->pr_value = 0; 8189 break; 8190 case SCTP_AUTHINFO: 8191 /* SCTP Socket API Extension 8192 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8193 * 8194 * This cmsghdr structure specifies SCTP options for sendmsg(). 8195 * 8196 * cmsg_level cmsg_type cmsg_data[] 8197 * ------------ ------------ --------------------- 8198 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8199 */ 8200 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8201 return -EINVAL; 8202 8203 cmsgs->authinfo = CMSG_DATA(cmsg); 8204 break; 8205 case SCTP_DSTADDRV4: 8206 case SCTP_DSTADDRV6: 8207 /* SCTP Socket API Extension 8208 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8209 * 8210 * This cmsghdr structure specifies SCTP options for sendmsg(). 8211 * 8212 * cmsg_level cmsg_type cmsg_data[] 8213 * ------------ ------------ --------------------- 8214 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8215 * ------------ ------------ --------------------- 8216 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8217 */ 8218 cmsgs->addrs_msg = my_msg; 8219 break; 8220 default: 8221 return -EINVAL; 8222 } 8223 } 8224 8225 return 0; 8226 } 8227 8228 /* 8229 * Wait for a packet.. 8230 * Note: This function is the same function as in core/datagram.c 8231 * with a few modifications to make lksctp work. 8232 */ 8233 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8234 { 8235 int error; 8236 DEFINE_WAIT(wait); 8237 8238 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8239 8240 /* Socket errors? */ 8241 error = sock_error(sk); 8242 if (error) 8243 goto out; 8244 8245 if (!skb_queue_empty(&sk->sk_receive_queue)) 8246 goto ready; 8247 8248 /* Socket shut down? */ 8249 if (sk->sk_shutdown & RCV_SHUTDOWN) 8250 goto out; 8251 8252 /* Sequenced packets can come disconnected. If so we report the 8253 * problem. 8254 */ 8255 error = -ENOTCONN; 8256 8257 /* Is there a good reason to think that we may receive some data? */ 8258 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8259 goto out; 8260 8261 /* Handle signals. */ 8262 if (signal_pending(current)) 8263 goto interrupted; 8264 8265 /* Let another process have a go. Since we are going to sleep 8266 * anyway. Note: This may cause odd behaviors if the message 8267 * does not fit in the user's buffer, but this seems to be the 8268 * only way to honor MSG_DONTWAIT realistically. 8269 */ 8270 release_sock(sk); 8271 *timeo_p = schedule_timeout(*timeo_p); 8272 lock_sock(sk); 8273 8274 ready: 8275 finish_wait(sk_sleep(sk), &wait); 8276 return 0; 8277 8278 interrupted: 8279 error = sock_intr_errno(*timeo_p); 8280 8281 out: 8282 finish_wait(sk_sleep(sk), &wait); 8283 *err = error; 8284 return error; 8285 } 8286 8287 /* Receive a datagram. 8288 * Note: This is pretty much the same routine as in core/datagram.c 8289 * with a few changes to make lksctp work. 8290 */ 8291 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8292 int noblock, int *err) 8293 { 8294 int error; 8295 struct sk_buff *skb; 8296 long timeo; 8297 8298 timeo = sock_rcvtimeo(sk, noblock); 8299 8300 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8301 MAX_SCHEDULE_TIMEOUT); 8302 8303 do { 8304 /* Again only user level code calls this function, 8305 * so nothing interrupt level 8306 * will suddenly eat the receive_queue. 8307 * 8308 * Look at current nfs client by the way... 8309 * However, this function was correct in any case. 8) 8310 */ 8311 if (flags & MSG_PEEK) { 8312 skb = skb_peek(&sk->sk_receive_queue); 8313 if (skb) 8314 refcount_inc(&skb->users); 8315 } else { 8316 skb = __skb_dequeue(&sk->sk_receive_queue); 8317 } 8318 8319 if (skb) 8320 return skb; 8321 8322 /* Caller is allowed not to check sk->sk_err before calling. */ 8323 error = sock_error(sk); 8324 if (error) 8325 goto no_packet; 8326 8327 if (sk->sk_shutdown & RCV_SHUTDOWN) 8328 break; 8329 8330 if (sk_can_busy_loop(sk)) { 8331 sk_busy_loop(sk, noblock); 8332 8333 if (!skb_queue_empty(&sk->sk_receive_queue)) 8334 continue; 8335 } 8336 8337 /* User doesn't want to wait. */ 8338 error = -EAGAIN; 8339 if (!timeo) 8340 goto no_packet; 8341 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8342 8343 return NULL; 8344 8345 no_packet: 8346 *err = error; 8347 return NULL; 8348 } 8349 8350 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8351 static void __sctp_write_space(struct sctp_association *asoc) 8352 { 8353 struct sock *sk = asoc->base.sk; 8354 8355 if (sctp_wspace(asoc) <= 0) 8356 return; 8357 8358 if (waitqueue_active(&asoc->wait)) 8359 wake_up_interruptible(&asoc->wait); 8360 8361 if (sctp_writeable(sk)) { 8362 struct socket_wq *wq; 8363 8364 rcu_read_lock(); 8365 wq = rcu_dereference(sk->sk_wq); 8366 if (wq) { 8367 if (waitqueue_active(&wq->wait)) 8368 wake_up_interruptible(&wq->wait); 8369 8370 /* Note that we try to include the Async I/O support 8371 * here by modeling from the current TCP/UDP code. 8372 * We have not tested with it yet. 8373 */ 8374 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8375 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8376 } 8377 rcu_read_unlock(); 8378 } 8379 } 8380 8381 static void sctp_wake_up_waiters(struct sock *sk, 8382 struct sctp_association *asoc) 8383 { 8384 struct sctp_association *tmp = asoc; 8385 8386 /* We do accounting for the sndbuf space per association, 8387 * so we only need to wake our own association. 8388 */ 8389 if (asoc->ep->sndbuf_policy) 8390 return __sctp_write_space(asoc); 8391 8392 /* If association goes down and is just flushing its 8393 * outq, then just normally notify others. 8394 */ 8395 if (asoc->base.dead) 8396 return sctp_write_space(sk); 8397 8398 /* Accounting for the sndbuf space is per socket, so we 8399 * need to wake up others, try to be fair and in case of 8400 * other associations, let them have a go first instead 8401 * of just doing a sctp_write_space() call. 8402 * 8403 * Note that we reach sctp_wake_up_waiters() only when 8404 * associations free up queued chunks, thus we are under 8405 * lock and the list of associations on a socket is 8406 * guaranteed not to change. 8407 */ 8408 for (tmp = list_next_entry(tmp, asocs); 1; 8409 tmp = list_next_entry(tmp, asocs)) { 8410 /* Manually skip the head element. */ 8411 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8412 continue; 8413 /* Wake up association. */ 8414 __sctp_write_space(tmp); 8415 /* We've reached the end. */ 8416 if (tmp == asoc) 8417 break; 8418 } 8419 } 8420 8421 /* Do accounting for the sndbuf space. 8422 * Decrement the used sndbuf space of the corresponding association by the 8423 * data size which was just transmitted(freed). 8424 */ 8425 static void sctp_wfree(struct sk_buff *skb) 8426 { 8427 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8428 struct sctp_association *asoc = chunk->asoc; 8429 struct sock *sk = asoc->base.sk; 8430 8431 sk_mem_uncharge(sk, skb->truesize); 8432 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8433 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8434 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8435 &sk->sk_wmem_alloc)); 8436 8437 if (chunk->shkey) { 8438 struct sctp_shared_key *shkey = chunk->shkey; 8439 8440 /* refcnt == 2 and !list_empty mean after this release, it's 8441 * not being used anywhere, and it's time to notify userland 8442 * that this shkey can be freed if it's been deactivated. 8443 */ 8444 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8445 refcount_read(&shkey->refcnt) == 2) { 8446 struct sctp_ulpevent *ev; 8447 8448 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8449 SCTP_AUTH_FREE_KEY, 8450 GFP_KERNEL); 8451 if (ev) 8452 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8453 } 8454 sctp_auth_shkey_release(chunk->shkey); 8455 } 8456 8457 sock_wfree(skb); 8458 sctp_wake_up_waiters(sk, asoc); 8459 8460 sctp_association_put(asoc); 8461 } 8462 8463 /* Do accounting for the receive space on the socket. 8464 * Accounting for the association is done in ulpevent.c 8465 * We set this as a destructor for the cloned data skbs so that 8466 * accounting is done at the correct time. 8467 */ 8468 void sctp_sock_rfree(struct sk_buff *skb) 8469 { 8470 struct sock *sk = skb->sk; 8471 struct sctp_ulpevent *event = sctp_skb2event(skb); 8472 8473 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8474 8475 /* 8476 * Mimic the behavior of sock_rfree 8477 */ 8478 sk_mem_uncharge(sk, event->rmem_len); 8479 } 8480 8481 8482 /* Helper function to wait for space in the sndbuf. */ 8483 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8484 size_t msg_len) 8485 { 8486 struct sock *sk = asoc->base.sk; 8487 long current_timeo = *timeo_p; 8488 DEFINE_WAIT(wait); 8489 int err = 0; 8490 8491 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8492 *timeo_p, msg_len); 8493 8494 /* Increment the association's refcnt. */ 8495 sctp_association_hold(asoc); 8496 8497 /* Wait on the association specific sndbuf space. */ 8498 for (;;) { 8499 prepare_to_wait_exclusive(&asoc->wait, &wait, 8500 TASK_INTERRUPTIBLE); 8501 if (asoc->base.dead) 8502 goto do_dead; 8503 if (!*timeo_p) 8504 goto do_nonblock; 8505 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8506 goto do_error; 8507 if (signal_pending(current)) 8508 goto do_interrupted; 8509 if ((int)msg_len <= sctp_wspace(asoc)) 8510 break; 8511 8512 /* Let another process have a go. Since we are going 8513 * to sleep anyway. 8514 */ 8515 release_sock(sk); 8516 current_timeo = schedule_timeout(current_timeo); 8517 lock_sock(sk); 8518 if (sk != asoc->base.sk) 8519 goto do_error; 8520 8521 *timeo_p = current_timeo; 8522 } 8523 8524 out: 8525 finish_wait(&asoc->wait, &wait); 8526 8527 /* Release the association's refcnt. */ 8528 sctp_association_put(asoc); 8529 8530 return err; 8531 8532 do_dead: 8533 err = -ESRCH; 8534 goto out; 8535 8536 do_error: 8537 err = -EPIPE; 8538 goto out; 8539 8540 do_interrupted: 8541 err = sock_intr_errno(*timeo_p); 8542 goto out; 8543 8544 do_nonblock: 8545 err = -EAGAIN; 8546 goto out; 8547 } 8548 8549 void sctp_data_ready(struct sock *sk) 8550 { 8551 struct socket_wq *wq; 8552 8553 rcu_read_lock(); 8554 wq = rcu_dereference(sk->sk_wq); 8555 if (skwq_has_sleeper(wq)) 8556 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8557 EPOLLRDNORM | EPOLLRDBAND); 8558 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8559 rcu_read_unlock(); 8560 } 8561 8562 /* If socket sndbuf has changed, wake up all per association waiters. */ 8563 void sctp_write_space(struct sock *sk) 8564 { 8565 struct sctp_association *asoc; 8566 8567 /* Wake up the tasks in each wait queue. */ 8568 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8569 __sctp_write_space(asoc); 8570 } 8571 } 8572 8573 /* Is there any sndbuf space available on the socket? 8574 * 8575 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8576 * associations on the same socket. For a UDP-style socket with 8577 * multiple associations, it is possible for it to be "unwriteable" 8578 * prematurely. I assume that this is acceptable because 8579 * a premature "unwriteable" is better than an accidental "writeable" which 8580 * would cause an unwanted block under certain circumstances. For the 1-1 8581 * UDP-style sockets or TCP-style sockets, this code should work. 8582 * - Daisy 8583 */ 8584 static bool sctp_writeable(struct sock *sk) 8585 { 8586 return sk->sk_sndbuf > sk->sk_wmem_queued; 8587 } 8588 8589 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8590 * returns immediately with EINPROGRESS. 8591 */ 8592 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8593 { 8594 struct sock *sk = asoc->base.sk; 8595 int err = 0; 8596 long current_timeo = *timeo_p; 8597 DEFINE_WAIT(wait); 8598 8599 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8600 8601 /* Increment the association's refcnt. */ 8602 sctp_association_hold(asoc); 8603 8604 for (;;) { 8605 prepare_to_wait_exclusive(&asoc->wait, &wait, 8606 TASK_INTERRUPTIBLE); 8607 if (!*timeo_p) 8608 goto do_nonblock; 8609 if (sk->sk_shutdown & RCV_SHUTDOWN) 8610 break; 8611 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8612 asoc->base.dead) 8613 goto do_error; 8614 if (signal_pending(current)) 8615 goto do_interrupted; 8616 8617 if (sctp_state(asoc, ESTABLISHED)) 8618 break; 8619 8620 /* Let another process have a go. Since we are going 8621 * to sleep anyway. 8622 */ 8623 release_sock(sk); 8624 current_timeo = schedule_timeout(current_timeo); 8625 lock_sock(sk); 8626 8627 *timeo_p = current_timeo; 8628 } 8629 8630 out: 8631 finish_wait(&asoc->wait, &wait); 8632 8633 /* Release the association's refcnt. */ 8634 sctp_association_put(asoc); 8635 8636 return err; 8637 8638 do_error: 8639 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8640 err = -ETIMEDOUT; 8641 else 8642 err = -ECONNREFUSED; 8643 goto out; 8644 8645 do_interrupted: 8646 err = sock_intr_errno(*timeo_p); 8647 goto out; 8648 8649 do_nonblock: 8650 err = -EINPROGRESS; 8651 goto out; 8652 } 8653 8654 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8655 { 8656 struct sctp_endpoint *ep; 8657 int err = 0; 8658 DEFINE_WAIT(wait); 8659 8660 ep = sctp_sk(sk)->ep; 8661 8662 8663 for (;;) { 8664 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8665 TASK_INTERRUPTIBLE); 8666 8667 if (list_empty(&ep->asocs)) { 8668 release_sock(sk); 8669 timeo = schedule_timeout(timeo); 8670 lock_sock(sk); 8671 } 8672 8673 err = -EINVAL; 8674 if (!sctp_sstate(sk, LISTENING)) 8675 break; 8676 8677 err = 0; 8678 if (!list_empty(&ep->asocs)) 8679 break; 8680 8681 err = sock_intr_errno(timeo); 8682 if (signal_pending(current)) 8683 break; 8684 8685 err = -EAGAIN; 8686 if (!timeo) 8687 break; 8688 } 8689 8690 finish_wait(sk_sleep(sk), &wait); 8691 8692 return err; 8693 } 8694 8695 static void sctp_wait_for_close(struct sock *sk, long timeout) 8696 { 8697 DEFINE_WAIT(wait); 8698 8699 do { 8700 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8701 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8702 break; 8703 release_sock(sk); 8704 timeout = schedule_timeout(timeout); 8705 lock_sock(sk); 8706 } while (!signal_pending(current) && timeout); 8707 8708 finish_wait(sk_sleep(sk), &wait); 8709 } 8710 8711 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8712 { 8713 struct sk_buff *frag; 8714 8715 if (!skb->data_len) 8716 goto done; 8717 8718 /* Don't forget the fragments. */ 8719 skb_walk_frags(skb, frag) 8720 sctp_skb_set_owner_r_frag(frag, sk); 8721 8722 done: 8723 sctp_skb_set_owner_r(skb, sk); 8724 } 8725 8726 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8727 struct sctp_association *asoc) 8728 { 8729 struct inet_sock *inet = inet_sk(sk); 8730 struct inet_sock *newinet; 8731 struct sctp_sock *sp = sctp_sk(sk); 8732 struct sctp_endpoint *ep = sp->ep; 8733 8734 newsk->sk_type = sk->sk_type; 8735 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8736 newsk->sk_flags = sk->sk_flags; 8737 newsk->sk_tsflags = sk->sk_tsflags; 8738 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8739 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8740 newsk->sk_reuse = sk->sk_reuse; 8741 sctp_sk(newsk)->reuse = sp->reuse; 8742 8743 newsk->sk_shutdown = sk->sk_shutdown; 8744 newsk->sk_destruct = sctp_destruct_sock; 8745 newsk->sk_family = sk->sk_family; 8746 newsk->sk_protocol = IPPROTO_SCTP; 8747 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8748 newsk->sk_sndbuf = sk->sk_sndbuf; 8749 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8750 newsk->sk_lingertime = sk->sk_lingertime; 8751 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8752 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8753 newsk->sk_rxhash = sk->sk_rxhash; 8754 8755 newinet = inet_sk(newsk); 8756 8757 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8758 * getsockname() and getpeername() 8759 */ 8760 newinet->inet_sport = inet->inet_sport; 8761 newinet->inet_saddr = inet->inet_saddr; 8762 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8763 newinet->inet_dport = htons(asoc->peer.port); 8764 newinet->pmtudisc = inet->pmtudisc; 8765 newinet->inet_id = asoc->next_tsn ^ jiffies; 8766 8767 newinet->uc_ttl = inet->uc_ttl; 8768 newinet->mc_loop = 1; 8769 newinet->mc_ttl = 1; 8770 newinet->mc_index = 0; 8771 newinet->mc_list = NULL; 8772 8773 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8774 net_enable_timestamp(); 8775 8776 /* Set newsk security attributes from orginal sk and connection 8777 * security attribute from ep. 8778 */ 8779 security_sctp_sk_clone(ep, sk, newsk); 8780 } 8781 8782 static inline void sctp_copy_descendant(struct sock *sk_to, 8783 const struct sock *sk_from) 8784 { 8785 int ancestor_size = sizeof(struct inet_sock) + 8786 sizeof(struct sctp_sock) - 8787 offsetof(struct sctp_sock, auto_asconf_list); 8788 8789 if (sk_from->sk_family == PF_INET6) 8790 ancestor_size += sizeof(struct ipv6_pinfo); 8791 8792 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8793 } 8794 8795 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8796 * and its messages to the newsk. 8797 */ 8798 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8799 struct sctp_association *assoc, 8800 enum sctp_socket_type type) 8801 { 8802 struct sctp_sock *oldsp = sctp_sk(oldsk); 8803 struct sctp_sock *newsp = sctp_sk(newsk); 8804 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8805 struct sctp_endpoint *newep = newsp->ep; 8806 struct sk_buff *skb, *tmp; 8807 struct sctp_ulpevent *event; 8808 struct sctp_bind_hashbucket *head; 8809 8810 /* Migrate socket buffer sizes and all the socket level options to the 8811 * new socket. 8812 */ 8813 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8814 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8815 /* Brute force copy old sctp opt. */ 8816 sctp_copy_descendant(newsk, oldsk); 8817 8818 /* Restore the ep value that was overwritten with the above structure 8819 * copy. 8820 */ 8821 newsp->ep = newep; 8822 newsp->hmac = NULL; 8823 8824 /* Hook this new socket in to the bind_hash list. */ 8825 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8826 inet_sk(oldsk)->inet_num)]; 8827 spin_lock_bh(&head->lock); 8828 pp = sctp_sk(oldsk)->bind_hash; 8829 sk_add_bind_node(newsk, &pp->owner); 8830 sctp_sk(newsk)->bind_hash = pp; 8831 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8832 spin_unlock_bh(&head->lock); 8833 8834 /* Copy the bind_addr list from the original endpoint to the new 8835 * endpoint so that we can handle restarts properly 8836 */ 8837 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8838 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8839 8840 /* Move any messages in the old socket's receive queue that are for the 8841 * peeled off association to the new socket's receive queue. 8842 */ 8843 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8844 event = sctp_skb2event(skb); 8845 if (event->asoc == assoc) { 8846 __skb_unlink(skb, &oldsk->sk_receive_queue); 8847 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8848 sctp_skb_set_owner_r_frag(skb, newsk); 8849 } 8850 } 8851 8852 /* Clean up any messages pending delivery due to partial 8853 * delivery. Three cases: 8854 * 1) No partial deliver; no work. 8855 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8856 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8857 */ 8858 skb_queue_head_init(&newsp->pd_lobby); 8859 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8860 8861 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8862 struct sk_buff_head *queue; 8863 8864 /* Decide which queue to move pd_lobby skbs to. */ 8865 if (assoc->ulpq.pd_mode) { 8866 queue = &newsp->pd_lobby; 8867 } else 8868 queue = &newsk->sk_receive_queue; 8869 8870 /* Walk through the pd_lobby, looking for skbs that 8871 * need moved to the new socket. 8872 */ 8873 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8874 event = sctp_skb2event(skb); 8875 if (event->asoc == assoc) { 8876 __skb_unlink(skb, &oldsp->pd_lobby); 8877 __skb_queue_tail(queue, skb); 8878 sctp_skb_set_owner_r_frag(skb, newsk); 8879 } 8880 } 8881 8882 /* Clear up any skbs waiting for the partial 8883 * delivery to finish. 8884 */ 8885 if (assoc->ulpq.pd_mode) 8886 sctp_clear_pd(oldsk, NULL); 8887 8888 } 8889 8890 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8891 8892 /* Set the type of socket to indicate that it is peeled off from the 8893 * original UDP-style socket or created with the accept() call on a 8894 * TCP-style socket.. 8895 */ 8896 newsp->type = type; 8897 8898 /* Mark the new socket "in-use" by the user so that any packets 8899 * that may arrive on the association after we've moved it are 8900 * queued to the backlog. This prevents a potential race between 8901 * backlog processing on the old socket and new-packet processing 8902 * on the new socket. 8903 * 8904 * The caller has just allocated newsk so we can guarantee that other 8905 * paths won't try to lock it and then oldsk. 8906 */ 8907 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8908 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8909 sctp_assoc_migrate(assoc, newsk); 8910 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8911 8912 /* If the association on the newsk is already closed before accept() 8913 * is called, set RCV_SHUTDOWN flag. 8914 */ 8915 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8916 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8917 newsk->sk_shutdown |= RCV_SHUTDOWN; 8918 } else { 8919 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8920 } 8921 8922 release_sock(newsk); 8923 } 8924 8925 8926 /* This proto struct describes the ULP interface for SCTP. */ 8927 struct proto sctp_prot = { 8928 .name = "SCTP", 8929 .owner = THIS_MODULE, 8930 .close = sctp_close, 8931 .disconnect = sctp_disconnect, 8932 .accept = sctp_accept, 8933 .ioctl = sctp_ioctl, 8934 .init = sctp_init_sock, 8935 .destroy = sctp_destroy_sock, 8936 .shutdown = sctp_shutdown, 8937 .setsockopt = sctp_setsockopt, 8938 .getsockopt = sctp_getsockopt, 8939 .sendmsg = sctp_sendmsg, 8940 .recvmsg = sctp_recvmsg, 8941 .bind = sctp_bind, 8942 .backlog_rcv = sctp_backlog_rcv, 8943 .hash = sctp_hash, 8944 .unhash = sctp_unhash, 8945 .get_port = sctp_get_port, 8946 .obj_size = sizeof(struct sctp_sock), 8947 .useroffset = offsetof(struct sctp_sock, subscribe), 8948 .usersize = offsetof(struct sctp_sock, initmsg) - 8949 offsetof(struct sctp_sock, subscribe) + 8950 sizeof_field(struct sctp_sock, initmsg), 8951 .sysctl_mem = sysctl_sctp_mem, 8952 .sysctl_rmem = sysctl_sctp_rmem, 8953 .sysctl_wmem = sysctl_sctp_wmem, 8954 .memory_pressure = &sctp_memory_pressure, 8955 .enter_memory_pressure = sctp_enter_memory_pressure, 8956 .memory_allocated = &sctp_memory_allocated, 8957 .sockets_allocated = &sctp_sockets_allocated, 8958 }; 8959 8960 #if IS_ENABLED(CONFIG_IPV6) 8961 8962 #include <net/transp_v6.h> 8963 static void sctp_v6_destroy_sock(struct sock *sk) 8964 { 8965 sctp_destroy_sock(sk); 8966 inet6_destroy_sock(sk); 8967 } 8968 8969 struct proto sctpv6_prot = { 8970 .name = "SCTPv6", 8971 .owner = THIS_MODULE, 8972 .close = sctp_close, 8973 .disconnect = sctp_disconnect, 8974 .accept = sctp_accept, 8975 .ioctl = sctp_ioctl, 8976 .init = sctp_init_sock, 8977 .destroy = sctp_v6_destroy_sock, 8978 .shutdown = sctp_shutdown, 8979 .setsockopt = sctp_setsockopt, 8980 .getsockopt = sctp_getsockopt, 8981 .sendmsg = sctp_sendmsg, 8982 .recvmsg = sctp_recvmsg, 8983 .bind = sctp_bind, 8984 .backlog_rcv = sctp_backlog_rcv, 8985 .hash = sctp_hash, 8986 .unhash = sctp_unhash, 8987 .get_port = sctp_get_port, 8988 .obj_size = sizeof(struct sctp6_sock), 8989 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8990 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8991 offsetof(struct sctp6_sock, sctp.subscribe) + 8992 sizeof_field(struct sctp6_sock, sctp.initmsg), 8993 .sysctl_mem = sysctl_sctp_mem, 8994 .sysctl_rmem = sysctl_sctp_rmem, 8995 .sysctl_wmem = sysctl_sctp_wmem, 8996 .memory_pressure = &sctp_memory_pressure, 8997 .enter_memory_pressure = sctp_enter_memory_pressure, 8998 .memory_allocated = &sctp_memory_allocated, 8999 .sockets_allocated = &sctp_sockets_allocated, 9000 }; 9001 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9002