xref: /openbmc/linux/net/sctp/socket.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			      struct sctp_association *assoc,
107 			      enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (!id || (id == (sctp_assoc_t)-1))
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = vmemdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kvfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kvfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kvfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = vmemdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kvfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 
1870 		return 0;
1871 	}
1872 
1873 	return 1;
1874 }
1875 
1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1877 				struct msghdr *msg, size_t msg_len,
1878 				struct sctp_transport *transport,
1879 				struct sctp_sndrcvinfo *sinfo)
1880 {
1881 	struct sock *sk = asoc->base.sk;
1882 	struct sctp_sock *sp = sctp_sk(sk);
1883 	struct net *net = sock_net(sk);
1884 	struct sctp_datamsg *datamsg;
1885 	bool wait_connect = false;
1886 	struct sctp_chunk *chunk;
1887 	long timeo;
1888 	int err;
1889 
1890 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1891 		err = -EINVAL;
1892 		goto err;
1893 	}
1894 
1895 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1896 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1897 		if (err)
1898 			goto err;
1899 	}
1900 
1901 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1902 		err = -EMSGSIZE;
1903 		goto err;
1904 	}
1905 
1906 	if (asoc->pmtu_pending) {
1907 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1908 			sctp_assoc_sync_pmtu(asoc);
1909 		asoc->pmtu_pending = 0;
1910 	}
1911 
1912 	if (sctp_wspace(asoc) < (int)msg_len)
1913 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1914 
1915 	if (sctp_wspace(asoc) <= 0) {
1916 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto err;
1920 	}
1921 
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err)
1925 			goto err;
1926 
1927 		if (sp->strm_interleave) {
1928 			timeo = sock_sndtimeo(sk, 0);
1929 			err = sctp_wait_for_connect(asoc, &timeo);
1930 			if (err) {
1931 				err = -ESRCH;
1932 				goto err;
1933 			}
1934 		} else {
1935 			wait_connect = true;
1936 		}
1937 
1938 		pr_debug("%s: we associated primitively\n", __func__);
1939 	}
1940 
1941 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1942 	if (IS_ERR(datamsg)) {
1943 		err = PTR_ERR(datamsg);
1944 		goto err;
1945 	}
1946 
1947 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1948 
1949 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1950 		sctp_chunk_hold(chunk);
1951 		sctp_set_owner_w(chunk);
1952 		chunk->transport = transport;
1953 	}
1954 
1955 	err = sctp_primitive_SEND(net, asoc, datamsg);
1956 	if (err) {
1957 		sctp_datamsg_free(datamsg);
1958 		goto err;
1959 	}
1960 
1961 	pr_debug("%s: we sent primitively\n", __func__);
1962 
1963 	sctp_datamsg_put(datamsg);
1964 
1965 	if (unlikely(wait_connect)) {
1966 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1967 		sctp_wait_for_connect(asoc, &timeo);
1968 	}
1969 
1970 	err = msg_len;
1971 
1972 err:
1973 	return err;
1974 }
1975 
1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1977 					       const struct msghdr *msg,
1978 					       struct sctp_cmsgs *cmsgs)
1979 {
1980 	union sctp_addr *daddr = NULL;
1981 	int err;
1982 
1983 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1984 		int len = msg->msg_namelen;
1985 
1986 		if (len > sizeof(*daddr))
1987 			len = sizeof(*daddr);
1988 
1989 		daddr = (union sctp_addr *)msg->msg_name;
1990 
1991 		err = sctp_verify_addr(sk, daddr, len);
1992 		if (err)
1993 			return ERR_PTR(err);
1994 	}
1995 
1996 	return daddr;
1997 }
1998 
1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2000 				      struct sctp_sndrcvinfo *sinfo,
2001 				      struct sctp_cmsgs *cmsgs)
2002 {
2003 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2004 		sinfo->sinfo_stream = asoc->default_stream;
2005 		sinfo->sinfo_ppid = asoc->default_ppid;
2006 		sinfo->sinfo_context = asoc->default_context;
2007 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2008 
2009 		if (!cmsgs->prinfo)
2010 			sinfo->sinfo_flags = asoc->default_flags;
2011 	}
2012 
2013 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2014 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2015 
2016 	if (cmsgs->authinfo) {
2017 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2018 		 * sinfo_ssn to save the keyid on tx path.
2019 		 */
2020 		sinfo->sinfo_tsn = 1;
2021 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2022 	}
2023 }
2024 
2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2026 {
2027 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2028 	struct sctp_transport *transport = NULL;
2029 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2030 	struct sctp_association *asoc;
2031 	struct sctp_cmsgs cmsgs;
2032 	union sctp_addr *daddr;
2033 	bool new = false;
2034 	__u16 sflags;
2035 	int err;
2036 
2037 	/* Parse and get snd_info */
2038 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2039 	if (err)
2040 		goto out;
2041 
2042 	sinfo  = &_sinfo;
2043 	sflags = sinfo->sinfo_flags;
2044 
2045 	/* Get daddr from msg */
2046 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2047 	if (IS_ERR(daddr)) {
2048 		err = PTR_ERR(daddr);
2049 		goto out;
2050 	}
2051 
2052 	lock_sock(sk);
2053 
2054 	/* SCTP_SENDALL process */
2055 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2056 		list_for_each_entry(asoc, &ep->asocs, asocs) {
2057 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2058 							msg_len);
2059 			if (err == 0)
2060 				continue;
2061 			if (err < 0)
2062 				goto out_unlock;
2063 
2064 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2065 
2066 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2067 						   NULL, sinfo);
2068 			if (err < 0)
2069 				goto out_unlock;
2070 
2071 			iov_iter_revert(&msg->msg_iter, err);
2072 		}
2073 
2074 		goto out_unlock;
2075 	}
2076 
2077 	/* Get and check or create asoc */
2078 	if (daddr) {
2079 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2080 		if (asoc) {
2081 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2082 							msg_len);
2083 			if (err <= 0)
2084 				goto out_unlock;
2085 		} else {
2086 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2087 						    &transport);
2088 			if (err)
2089 				goto out_unlock;
2090 
2091 			asoc = transport->asoc;
2092 			new = true;
2093 		}
2094 
2095 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2096 			transport = NULL;
2097 	} else {
2098 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2099 		if (!asoc) {
2100 			err = -EPIPE;
2101 			goto out_unlock;
2102 		}
2103 
2104 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2105 		if (err <= 0)
2106 			goto out_unlock;
2107 	}
2108 
2109 	/* Update snd_info with the asoc */
2110 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2111 
2112 	/* Send msg to the asoc */
2113 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2114 	if (err < 0 && err != -ESRCH && new)
2115 		sctp_association_free(asoc);
2116 
2117 out_unlock:
2118 	release_sock(sk);
2119 out:
2120 	return sctp_error(sk, msg->msg_flags, err);
2121 }
2122 
2123 /* This is an extended version of skb_pull() that removes the data from the
2124  * start of a skb even when data is spread across the list of skb's in the
2125  * frag_list. len specifies the total amount of data that needs to be removed.
2126  * when 'len' bytes could be removed from the skb, it returns 0.
2127  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2128  * could not be removed.
2129  */
2130 static int sctp_skb_pull(struct sk_buff *skb, int len)
2131 {
2132 	struct sk_buff *list;
2133 	int skb_len = skb_headlen(skb);
2134 	int rlen;
2135 
2136 	if (len <= skb_len) {
2137 		__skb_pull(skb, len);
2138 		return 0;
2139 	}
2140 	len -= skb_len;
2141 	__skb_pull(skb, skb_len);
2142 
2143 	skb_walk_frags(skb, list) {
2144 		rlen = sctp_skb_pull(list, len);
2145 		skb->len -= (len-rlen);
2146 		skb->data_len -= (len-rlen);
2147 
2148 		if (!rlen)
2149 			return 0;
2150 
2151 		len = rlen;
2152 	}
2153 
2154 	return len;
2155 }
2156 
2157 /* API 3.1.3  recvmsg() - UDP Style Syntax
2158  *
2159  *  ssize_t recvmsg(int socket, struct msghdr *message,
2160  *                    int flags);
2161  *
2162  *  socket  - the socket descriptor of the endpoint.
2163  *  message - pointer to the msghdr structure which contains a single
2164  *            user message and possibly some ancillary data.
2165  *
2166  *            See Section 5 for complete description of the data
2167  *            structures.
2168  *
2169  *  flags   - flags sent or received with the user message, see Section
2170  *            5 for complete description of the flags.
2171  */
2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2173 			int noblock, int flags, int *addr_len)
2174 {
2175 	struct sctp_ulpevent *event = NULL;
2176 	struct sctp_sock *sp = sctp_sk(sk);
2177 	struct sk_buff *skb, *head_skb;
2178 	int copied;
2179 	int err = 0;
2180 	int skb_len;
2181 
2182 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2183 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2184 		 addr_len);
2185 
2186 	lock_sock(sk);
2187 
2188 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2189 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2190 		err = -ENOTCONN;
2191 		goto out;
2192 	}
2193 
2194 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2195 	if (!skb)
2196 		goto out;
2197 
2198 	/* Get the total length of the skb including any skb's in the
2199 	 * frag_list.
2200 	 */
2201 	skb_len = skb->len;
2202 
2203 	copied = skb_len;
2204 	if (copied > len)
2205 		copied = len;
2206 
2207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2208 
2209 	event = sctp_skb2event(skb);
2210 
2211 	if (err)
2212 		goto out_free;
2213 
2214 	if (event->chunk && event->chunk->head_skb)
2215 		head_skb = event->chunk->head_skb;
2216 	else
2217 		head_skb = skb;
2218 	sock_recv_ts_and_drops(msg, sk, head_skb);
2219 	if (sctp_ulpevent_is_notification(event)) {
2220 		msg->msg_flags |= MSG_NOTIFICATION;
2221 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2222 	} else {
2223 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2224 	}
2225 
2226 	/* Check if we allow SCTP_NXTINFO. */
2227 	if (sp->recvnxtinfo)
2228 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2229 	/* Check if we allow SCTP_RCVINFO. */
2230 	if (sp->recvrcvinfo)
2231 		sctp_ulpevent_read_rcvinfo(event, msg);
2232 	/* Check if we allow SCTP_SNDRCVINFO. */
2233 	if (sp->subscribe.sctp_data_io_event)
2234 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2235 
2236 	err = copied;
2237 
2238 	/* If skb's length exceeds the user's buffer, update the skb and
2239 	 * push it back to the receive_queue so that the next call to
2240 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2241 	 */
2242 	if (skb_len > copied) {
2243 		msg->msg_flags &= ~MSG_EOR;
2244 		if (flags & MSG_PEEK)
2245 			goto out_free;
2246 		sctp_skb_pull(skb, copied);
2247 		skb_queue_head(&sk->sk_receive_queue, skb);
2248 
2249 		/* When only partial message is copied to the user, increase
2250 		 * rwnd by that amount. If all the data in the skb is read,
2251 		 * rwnd is updated when the event is freed.
2252 		 */
2253 		if (!sctp_ulpevent_is_notification(event))
2254 			sctp_assoc_rwnd_increase(event->asoc, copied);
2255 		goto out;
2256 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2257 		   (event->msg_flags & MSG_EOR))
2258 		msg->msg_flags |= MSG_EOR;
2259 	else
2260 		msg->msg_flags &= ~MSG_EOR;
2261 
2262 out_free:
2263 	if (flags & MSG_PEEK) {
2264 		/* Release the skb reference acquired after peeking the skb in
2265 		 * sctp_skb_recv_datagram().
2266 		 */
2267 		kfree_skb(skb);
2268 	} else {
2269 		/* Free the event which includes releasing the reference to
2270 		 * the owner of the skb, freeing the skb and updating the
2271 		 * rwnd.
2272 		 */
2273 		sctp_ulpevent_free(event);
2274 	}
2275 out:
2276 	release_sock(sk);
2277 	return err;
2278 }
2279 
2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2281  *
2282  * This option is a on/off flag.  If enabled no SCTP message
2283  * fragmentation will be performed.  Instead if a message being sent
2284  * exceeds the current PMTU size, the message will NOT be sent and
2285  * instead a error will be indicated to the user.
2286  */
2287 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2288 					     char __user *optval,
2289 					     unsigned int optlen)
2290 {
2291 	int val;
2292 
2293 	if (optlen < sizeof(int))
2294 		return -EINVAL;
2295 
2296 	if (get_user(val, (int __user *)optval))
2297 		return -EFAULT;
2298 
2299 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2300 
2301 	return 0;
2302 }
2303 
2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2305 				  unsigned int optlen)
2306 {
2307 	struct sctp_association *asoc;
2308 	struct sctp_ulpevent *event;
2309 
2310 	if (optlen > sizeof(struct sctp_event_subscribe))
2311 		return -EINVAL;
2312 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2313 		return -EFAULT;
2314 
2315 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2316 	 * if there is no data to be sent or retransmit, the stack will
2317 	 * immediately send up this notification.
2318 	 */
2319 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2320 				       &sctp_sk(sk)->subscribe)) {
2321 		asoc = sctp_id2assoc(sk, 0);
2322 
2323 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2324 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2325 					GFP_USER | __GFP_NOWARN);
2326 			if (!event)
2327 				return -ENOMEM;
2328 
2329 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2337  *
2338  * This socket option is applicable to the UDP-style socket only.  When
2339  * set it will cause associations that are idle for more than the
2340  * specified number of seconds to automatically close.  An association
2341  * being idle is defined an association that has NOT sent or received
2342  * user data.  The special value of '0' indicates that no automatic
2343  * close of any associations should be performed.  The option expects an
2344  * integer defining the number of seconds of idle time before an
2345  * association is closed.
2346  */
2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2348 				     unsigned int optlen)
2349 {
2350 	struct sctp_sock *sp = sctp_sk(sk);
2351 	struct net *net = sock_net(sk);
2352 
2353 	/* Applicable to UDP-style socket only */
2354 	if (sctp_style(sk, TCP))
2355 		return -EOPNOTSUPP;
2356 	if (optlen != sizeof(int))
2357 		return -EINVAL;
2358 	if (copy_from_user(&sp->autoclose, optval, optlen))
2359 		return -EFAULT;
2360 
2361 	if (sp->autoclose > net->sctp.max_autoclose)
2362 		sp->autoclose = net->sctp.max_autoclose;
2363 
2364 	return 0;
2365 }
2366 
2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2368  *
2369  * Applications can enable or disable heartbeats for any peer address of
2370  * an association, modify an address's heartbeat interval, force a
2371  * heartbeat to be sent immediately, and adjust the address's maximum
2372  * number of retransmissions sent before an address is considered
2373  * unreachable.  The following structure is used to access and modify an
2374  * address's parameters:
2375  *
2376  *  struct sctp_paddrparams {
2377  *     sctp_assoc_t            spp_assoc_id;
2378  *     struct sockaddr_storage spp_address;
2379  *     uint32_t                spp_hbinterval;
2380  *     uint16_t                spp_pathmaxrxt;
2381  *     uint32_t                spp_pathmtu;
2382  *     uint32_t                spp_sackdelay;
2383  *     uint32_t                spp_flags;
2384  *     uint32_t                spp_ipv6_flowlabel;
2385  *     uint8_t                 spp_dscp;
2386  * };
2387  *
2388  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2389  *                     application, and identifies the association for
2390  *                     this query.
2391  *   spp_address     - This specifies which address is of interest.
2392  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2393  *                     in milliseconds.  If a  value of zero
2394  *                     is present in this field then no changes are to
2395  *                     be made to this parameter.
2396  *   spp_pathmaxrxt  - This contains the maximum number of
2397  *                     retransmissions before this address shall be
2398  *                     considered unreachable. If a  value of zero
2399  *                     is present in this field then no changes are to
2400  *                     be made to this parameter.
2401  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2402  *                     specified here will be the "fixed" path mtu.
2403  *                     Note that if the spp_address field is empty
2404  *                     then all associations on this address will
2405  *                     have this fixed path mtu set upon them.
2406  *
2407  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2408  *                     the number of milliseconds that sacks will be delayed
2409  *                     for. This value will apply to all addresses of an
2410  *                     association if the spp_address field is empty. Note
2411  *                     also, that if delayed sack is enabled and this
2412  *                     value is set to 0, no change is made to the last
2413  *                     recorded delayed sack timer value.
2414  *
2415  *   spp_flags       - These flags are used to control various features
2416  *                     on an association. The flag field may contain
2417  *                     zero or more of the following options.
2418  *
2419  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2420  *                     specified address. Note that if the address
2421  *                     field is empty all addresses for the association
2422  *                     have heartbeats enabled upon them.
2423  *
2424  *                     SPP_HB_DISABLE - Disable heartbeats on the
2425  *                     speicifed address. Note that if the address
2426  *                     field is empty all addresses for the association
2427  *                     will have their heartbeats disabled. Note also
2428  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2429  *                     mutually exclusive, only one of these two should
2430  *                     be specified. Enabling both fields will have
2431  *                     undetermined results.
2432  *
2433  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2434  *                     to be made immediately.
2435  *
2436  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2437  *                     heartbeat delayis to be set to the value of 0
2438  *                     milliseconds.
2439  *
2440  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2441  *                     discovery upon the specified address. Note that
2442  *                     if the address feild is empty then all addresses
2443  *                     on the association are effected.
2444  *
2445  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2446  *                     discovery upon the specified address. Note that
2447  *                     if the address feild is empty then all addresses
2448  *                     on the association are effected. Not also that
2449  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2450  *                     exclusive. Enabling both will have undetermined
2451  *                     results.
2452  *
2453  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2454  *                     on delayed sack. The time specified in spp_sackdelay
2455  *                     is used to specify the sack delay for this address. Note
2456  *                     that if spp_address is empty then all addresses will
2457  *                     enable delayed sack and take on the sack delay
2458  *                     value specified in spp_sackdelay.
2459  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2460  *                     off delayed sack. If the spp_address field is blank then
2461  *                     delayed sack is disabled for the entire association. Note
2462  *                     also that this field is mutually exclusive to
2463  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2464  *                     results.
2465  *
2466  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2467  *                     setting of the IPV6 flow label value.  The value is
2468  *                     contained in the spp_ipv6_flowlabel field.
2469  *                     Upon retrieval, this flag will be set to indicate that
2470  *                     the spp_ipv6_flowlabel field has a valid value returned.
2471  *                     If a specific destination address is set (in the
2472  *                     spp_address field), then the value returned is that of
2473  *                     the address.  If just an association is specified (and
2474  *                     no address), then the association's default flow label
2475  *                     is returned.  If neither an association nor a destination
2476  *                     is specified, then the socket's default flow label is
2477  *                     returned.  For non-IPv6 sockets, this flag will be left
2478  *                     cleared.
2479  *
2480  *                     SPP_DSCP:  Setting this flag enables the setting of the
2481  *                     Differentiated Services Code Point (DSCP) value
2482  *                     associated with either the association or a specific
2483  *                     address.  The value is obtained in the spp_dscp field.
2484  *                     Upon retrieval, this flag will be set to indicate that
2485  *                     the spp_dscp field has a valid value returned.  If a
2486  *                     specific destination address is set when called (in the
2487  *                     spp_address field), then that specific destination
2488  *                     address's DSCP value is returned.  If just an association
2489  *                     is specified, then the association's default DSCP is
2490  *                     returned.  If neither an association nor a destination is
2491  *                     specified, then the socket's default DSCP is returned.
2492  *
2493  *   spp_ipv6_flowlabel
2494  *                   - This field is used in conjunction with the
2495  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2496  *                     The 20 least significant bits are used for the flow
2497  *                     label.  This setting has precedence over any IPv6-layer
2498  *                     setting.
2499  *
2500  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2501  *                     and contains the DSCP.  The 6 most significant bits are
2502  *                     used for the DSCP.  This setting has precedence over any
2503  *                     IPv4- or IPv6- layer setting.
2504  */
2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2506 				       struct sctp_transport   *trans,
2507 				       struct sctp_association *asoc,
2508 				       struct sctp_sock        *sp,
2509 				       int                      hb_change,
2510 				       int                      pmtud_change,
2511 				       int                      sackdelay_change)
2512 {
2513 	int error;
2514 
2515 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2516 		struct net *net = sock_net(trans->asoc->base.sk);
2517 
2518 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2519 		if (error)
2520 			return error;
2521 	}
2522 
2523 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2524 	 * this field is ignored.  Note also that a value of zero indicates
2525 	 * the current setting should be left unchanged.
2526 	 */
2527 	if (params->spp_flags & SPP_HB_ENABLE) {
2528 
2529 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2530 		 * set.  This lets us use 0 value when this flag
2531 		 * is set.
2532 		 */
2533 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2534 			params->spp_hbinterval = 0;
2535 
2536 		if (params->spp_hbinterval ||
2537 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2538 			if (trans) {
2539 				trans->hbinterval =
2540 				    msecs_to_jiffies(params->spp_hbinterval);
2541 			} else if (asoc) {
2542 				asoc->hbinterval =
2543 				    msecs_to_jiffies(params->spp_hbinterval);
2544 			} else {
2545 				sp->hbinterval = params->spp_hbinterval;
2546 			}
2547 		}
2548 	}
2549 
2550 	if (hb_change) {
2551 		if (trans) {
2552 			trans->param_flags =
2553 				(trans->param_flags & ~SPP_HB) | hb_change;
2554 		} else if (asoc) {
2555 			asoc->param_flags =
2556 				(asoc->param_flags & ~SPP_HB) | hb_change;
2557 		} else {
2558 			sp->param_flags =
2559 				(sp->param_flags & ~SPP_HB) | hb_change;
2560 		}
2561 	}
2562 
2563 	/* When Path MTU discovery is disabled the value specified here will
2564 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2565 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2566 	 * effect).
2567 	 */
2568 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2569 		if (trans) {
2570 			trans->pathmtu = params->spp_pathmtu;
2571 			sctp_assoc_sync_pmtu(asoc);
2572 		} else if (asoc) {
2573 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2574 		} else {
2575 			sp->pathmtu = params->spp_pathmtu;
2576 		}
2577 	}
2578 
2579 	if (pmtud_change) {
2580 		if (trans) {
2581 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2582 				(params->spp_flags & SPP_PMTUD_ENABLE);
2583 			trans->param_flags =
2584 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2585 			if (update) {
2586 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2587 				sctp_assoc_sync_pmtu(asoc);
2588 			}
2589 		} else if (asoc) {
2590 			asoc->param_flags =
2591 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2592 		} else {
2593 			sp->param_flags =
2594 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2595 		}
2596 	}
2597 
2598 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2599 	 * value of this field is ignored.  Note also that a value of zero
2600 	 * indicates the current setting should be left unchanged.
2601 	 */
2602 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2603 		if (trans) {
2604 			trans->sackdelay =
2605 				msecs_to_jiffies(params->spp_sackdelay);
2606 		} else if (asoc) {
2607 			asoc->sackdelay =
2608 				msecs_to_jiffies(params->spp_sackdelay);
2609 		} else {
2610 			sp->sackdelay = params->spp_sackdelay;
2611 		}
2612 	}
2613 
2614 	if (sackdelay_change) {
2615 		if (trans) {
2616 			trans->param_flags =
2617 				(trans->param_flags & ~SPP_SACKDELAY) |
2618 				sackdelay_change;
2619 		} else if (asoc) {
2620 			asoc->param_flags =
2621 				(asoc->param_flags & ~SPP_SACKDELAY) |
2622 				sackdelay_change;
2623 		} else {
2624 			sp->param_flags =
2625 				(sp->param_flags & ~SPP_SACKDELAY) |
2626 				sackdelay_change;
2627 		}
2628 	}
2629 
2630 	/* Note that a value of zero indicates the current setting should be
2631 	   left unchanged.
2632 	 */
2633 	if (params->spp_pathmaxrxt) {
2634 		if (trans) {
2635 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2636 		} else if (asoc) {
2637 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2638 		} else {
2639 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2640 		}
2641 	}
2642 
2643 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2644 		if (trans) {
2645 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2646 				trans->flowlabel = params->spp_ipv6_flowlabel &
2647 						   SCTP_FLOWLABEL_VAL_MASK;
2648 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2649 			}
2650 		} else if (asoc) {
2651 			struct sctp_transport *t;
2652 
2653 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2654 					    transports) {
2655 				if (t->ipaddr.sa.sa_family != AF_INET6)
2656 					continue;
2657 				t->flowlabel = params->spp_ipv6_flowlabel &
2658 					       SCTP_FLOWLABEL_VAL_MASK;
2659 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 			}
2661 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2662 					  SCTP_FLOWLABEL_VAL_MASK;
2663 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2664 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2665 			sp->flowlabel = params->spp_ipv6_flowlabel &
2666 					SCTP_FLOWLABEL_VAL_MASK;
2667 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2668 		}
2669 	}
2670 
2671 	if (params->spp_flags & SPP_DSCP) {
2672 		if (trans) {
2673 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2674 			trans->dscp |= SCTP_DSCP_SET_MASK;
2675 		} else if (asoc) {
2676 			struct sctp_transport *t;
2677 
2678 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2679 					    transports) {
2680 				t->dscp = params->spp_dscp &
2681 					  SCTP_DSCP_VAL_MASK;
2682 				t->dscp |= SCTP_DSCP_SET_MASK;
2683 			}
2684 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2686 		} else {
2687 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2688 			sp->dscp |= SCTP_DSCP_SET_MASK;
2689 		}
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2696 					    char __user *optval,
2697 					    unsigned int optlen)
2698 {
2699 	struct sctp_paddrparams  params;
2700 	struct sctp_transport   *trans = NULL;
2701 	struct sctp_association *asoc = NULL;
2702 	struct sctp_sock        *sp = sctp_sk(sk);
2703 	int error;
2704 	int hb_change, pmtud_change, sackdelay_change;
2705 
2706 	if (optlen == sizeof(params)) {
2707 		if (copy_from_user(&params, optval, optlen))
2708 			return -EFAULT;
2709 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2710 					    spp_ipv6_flowlabel), 4)) {
2711 		if (copy_from_user(&params, optval, optlen))
2712 			return -EFAULT;
2713 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2714 			return -EINVAL;
2715 	} else {
2716 		return -EINVAL;
2717 	}
2718 
2719 	/* Validate flags and value parameters. */
2720 	hb_change        = params.spp_flags & SPP_HB;
2721 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2722 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2723 
2724 	if (hb_change        == SPP_HB ||
2725 	    pmtud_change     == SPP_PMTUD ||
2726 	    sackdelay_change == SPP_SACKDELAY ||
2727 	    params.spp_sackdelay > 500 ||
2728 	    (params.spp_pathmtu &&
2729 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2730 		return -EINVAL;
2731 
2732 	/* If an address other than INADDR_ANY is specified, and
2733 	 * no transport is found, then the request is invalid.
2734 	 */
2735 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2736 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2737 					       params.spp_assoc_id);
2738 		if (!trans)
2739 			return -EINVAL;
2740 	}
2741 
2742 	/* Get association, if assoc_id != 0 and the socket is a one
2743 	 * to many style socket, and an association was not found, then
2744 	 * the id was invalid.
2745 	 */
2746 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2747 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2748 		return -EINVAL;
2749 
2750 	/* Heartbeat demand can only be sent on a transport or
2751 	 * association, but not a socket.
2752 	 */
2753 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2754 		return -EINVAL;
2755 
2756 	/* Process parameters. */
2757 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2758 					    hb_change, pmtud_change,
2759 					    sackdelay_change);
2760 
2761 	if (error)
2762 		return error;
2763 
2764 	/* If changes are for association, also apply parameters to each
2765 	 * transport.
2766 	 */
2767 	if (!trans && asoc) {
2768 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2769 				transports) {
2770 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2771 						    hb_change, pmtud_change,
2772 						    sackdelay_change);
2773 		}
2774 	}
2775 
2776 	return 0;
2777 }
2778 
2779 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2780 {
2781 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2782 }
2783 
2784 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2785 {
2786 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2787 }
2788 
2789 /*
2790  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2791  *
2792  * This option will effect the way delayed acks are performed.  This
2793  * option allows you to get or set the delayed ack time, in
2794  * milliseconds.  It also allows changing the delayed ack frequency.
2795  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2796  * the assoc_id is 0, then this sets or gets the endpoints default
2797  * values.  If the assoc_id field is non-zero, then the set or get
2798  * effects the specified association for the one to many model (the
2799  * assoc_id field is ignored by the one to one model).  Note that if
2800  * sack_delay or sack_freq are 0 when setting this option, then the
2801  * current values will remain unchanged.
2802  *
2803  * struct sctp_sack_info {
2804  *     sctp_assoc_t            sack_assoc_id;
2805  *     uint32_t                sack_delay;
2806  *     uint32_t                sack_freq;
2807  * };
2808  *
2809  * sack_assoc_id -  This parameter, indicates which association the user
2810  *    is performing an action upon.  Note that if this field's value is
2811  *    zero then the endpoints default value is changed (effecting future
2812  *    associations only).
2813  *
2814  * sack_delay -  This parameter contains the number of milliseconds that
2815  *    the user is requesting the delayed ACK timer be set to.  Note that
2816  *    this value is defined in the standard to be between 200 and 500
2817  *    milliseconds.
2818  *
2819  * sack_freq -  This parameter contains the number of packets that must
2820  *    be received before a sack is sent without waiting for the delay
2821  *    timer to expire.  The default value for this is 2, setting this
2822  *    value to 1 will disable the delayed sack algorithm.
2823  */
2824 
2825 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2826 				       char __user *optval, unsigned int optlen)
2827 {
2828 	struct sctp_sack_info    params;
2829 	struct sctp_transport   *trans = NULL;
2830 	struct sctp_association *asoc = NULL;
2831 	struct sctp_sock        *sp = sctp_sk(sk);
2832 
2833 	if (optlen == sizeof(struct sctp_sack_info)) {
2834 		if (copy_from_user(&params, optval, optlen))
2835 			return -EFAULT;
2836 
2837 		if (params.sack_delay == 0 && params.sack_freq == 0)
2838 			return 0;
2839 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2840 		pr_warn_ratelimited(DEPRECATED
2841 				    "%s (pid %d) "
2842 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2843 				    "Use struct sctp_sack_info instead\n",
2844 				    current->comm, task_pid_nr(current));
2845 		if (copy_from_user(&params, optval, optlen))
2846 			return -EFAULT;
2847 
2848 		if (params.sack_delay == 0)
2849 			params.sack_freq = 1;
2850 		else
2851 			params.sack_freq = 0;
2852 	} else
2853 		return -EINVAL;
2854 
2855 	/* Validate value parameter. */
2856 	if (params.sack_delay > 500)
2857 		return -EINVAL;
2858 
2859 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2860 	 * to many style socket, and an association was not found, then
2861 	 * the id was invalid.
2862 	 */
2863 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2864 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2865 		return -EINVAL;
2866 
2867 	if (params.sack_delay) {
2868 		if (asoc) {
2869 			asoc->sackdelay =
2870 				msecs_to_jiffies(params.sack_delay);
2871 			asoc->param_flags =
2872 				sctp_spp_sackdelay_enable(asoc->param_flags);
2873 		} else {
2874 			sp->sackdelay = params.sack_delay;
2875 			sp->param_flags =
2876 				sctp_spp_sackdelay_enable(sp->param_flags);
2877 		}
2878 	}
2879 
2880 	if (params.sack_freq == 1) {
2881 		if (asoc) {
2882 			asoc->param_flags =
2883 				sctp_spp_sackdelay_disable(asoc->param_flags);
2884 		} else {
2885 			sp->param_flags =
2886 				sctp_spp_sackdelay_disable(sp->param_flags);
2887 		}
2888 	} else if (params.sack_freq > 1) {
2889 		if (asoc) {
2890 			asoc->sackfreq = params.sack_freq;
2891 			asoc->param_flags =
2892 				sctp_spp_sackdelay_enable(asoc->param_flags);
2893 		} else {
2894 			sp->sackfreq = params.sack_freq;
2895 			sp->param_flags =
2896 				sctp_spp_sackdelay_enable(sp->param_flags);
2897 		}
2898 	}
2899 
2900 	/* If change is for association, also apply to each transport. */
2901 	if (asoc) {
2902 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2903 				transports) {
2904 			if (params.sack_delay) {
2905 				trans->sackdelay =
2906 					msecs_to_jiffies(params.sack_delay);
2907 				trans->param_flags =
2908 					sctp_spp_sackdelay_enable(trans->param_flags);
2909 			}
2910 			if (params.sack_freq == 1) {
2911 				trans->param_flags =
2912 					sctp_spp_sackdelay_disable(trans->param_flags);
2913 			} else if (params.sack_freq > 1) {
2914 				trans->sackfreq = params.sack_freq;
2915 				trans->param_flags =
2916 					sctp_spp_sackdelay_enable(trans->param_flags);
2917 			}
2918 		}
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2925  *
2926  * Applications can specify protocol parameters for the default association
2927  * initialization.  The option name argument to setsockopt() and getsockopt()
2928  * is SCTP_INITMSG.
2929  *
2930  * Setting initialization parameters is effective only on an unconnected
2931  * socket (for UDP-style sockets only future associations are effected
2932  * by the change).  With TCP-style sockets, this option is inherited by
2933  * sockets derived from a listener socket.
2934  */
2935 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2936 {
2937 	struct sctp_initmsg sinit;
2938 	struct sctp_sock *sp = sctp_sk(sk);
2939 
2940 	if (optlen != sizeof(struct sctp_initmsg))
2941 		return -EINVAL;
2942 	if (copy_from_user(&sinit, optval, optlen))
2943 		return -EFAULT;
2944 
2945 	if (sinit.sinit_num_ostreams)
2946 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2947 	if (sinit.sinit_max_instreams)
2948 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2949 	if (sinit.sinit_max_attempts)
2950 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2951 	if (sinit.sinit_max_init_timeo)
2952 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2953 
2954 	return 0;
2955 }
2956 
2957 /*
2958  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2959  *
2960  *   Applications that wish to use the sendto() system call may wish to
2961  *   specify a default set of parameters that would normally be supplied
2962  *   through the inclusion of ancillary data.  This socket option allows
2963  *   such an application to set the default sctp_sndrcvinfo structure.
2964  *   The application that wishes to use this socket option simply passes
2965  *   in to this call the sctp_sndrcvinfo structure defined in Section
2966  *   5.2.2) The input parameters accepted by this call include
2967  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2968  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2969  *   to this call if the caller is using the UDP model.
2970  */
2971 static int sctp_setsockopt_default_send_param(struct sock *sk,
2972 					      char __user *optval,
2973 					      unsigned int optlen)
2974 {
2975 	struct sctp_sock *sp = sctp_sk(sk);
2976 	struct sctp_association *asoc;
2977 	struct sctp_sndrcvinfo info;
2978 
2979 	if (optlen != sizeof(info))
2980 		return -EINVAL;
2981 	if (copy_from_user(&info, optval, optlen))
2982 		return -EFAULT;
2983 	if (info.sinfo_flags &
2984 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2985 	      SCTP_ABORT | SCTP_EOF))
2986 		return -EINVAL;
2987 
2988 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2989 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2990 		return -EINVAL;
2991 	if (asoc) {
2992 		asoc->default_stream = info.sinfo_stream;
2993 		asoc->default_flags = info.sinfo_flags;
2994 		asoc->default_ppid = info.sinfo_ppid;
2995 		asoc->default_context = info.sinfo_context;
2996 		asoc->default_timetolive = info.sinfo_timetolive;
2997 	} else {
2998 		sp->default_stream = info.sinfo_stream;
2999 		sp->default_flags = info.sinfo_flags;
3000 		sp->default_ppid = info.sinfo_ppid;
3001 		sp->default_context = info.sinfo_context;
3002 		sp->default_timetolive = info.sinfo_timetolive;
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3009  * (SCTP_DEFAULT_SNDINFO)
3010  */
3011 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3012 					   char __user *optval,
3013 					   unsigned int optlen)
3014 {
3015 	struct sctp_sock *sp = sctp_sk(sk);
3016 	struct sctp_association *asoc;
3017 	struct sctp_sndinfo info;
3018 
3019 	if (optlen != sizeof(info))
3020 		return -EINVAL;
3021 	if (copy_from_user(&info, optval, optlen))
3022 		return -EFAULT;
3023 	if (info.snd_flags &
3024 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3025 	      SCTP_ABORT | SCTP_EOF))
3026 		return -EINVAL;
3027 
3028 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3029 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
3030 		return -EINVAL;
3031 	if (asoc) {
3032 		asoc->default_stream = info.snd_sid;
3033 		asoc->default_flags = info.snd_flags;
3034 		asoc->default_ppid = info.snd_ppid;
3035 		asoc->default_context = info.snd_context;
3036 	} else {
3037 		sp->default_stream = info.snd_sid;
3038 		sp->default_flags = info.snd_flags;
3039 		sp->default_ppid = info.snd_ppid;
3040 		sp->default_context = info.snd_context;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3047  *
3048  * Requests that the local SCTP stack use the enclosed peer address as
3049  * the association primary.  The enclosed address must be one of the
3050  * association peer's addresses.
3051  */
3052 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3053 					unsigned int optlen)
3054 {
3055 	struct sctp_prim prim;
3056 	struct sctp_transport *trans;
3057 	struct sctp_af *af;
3058 	int err;
3059 
3060 	if (optlen != sizeof(struct sctp_prim))
3061 		return -EINVAL;
3062 
3063 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3064 		return -EFAULT;
3065 
3066 	/* Allow security module to validate address but need address len. */
3067 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3068 	if (!af)
3069 		return -EINVAL;
3070 
3071 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3072 					 (struct sockaddr *)&prim.ssp_addr,
3073 					 af->sockaddr_len);
3074 	if (err)
3075 		return err;
3076 
3077 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3078 	if (!trans)
3079 		return -EINVAL;
3080 
3081 	sctp_assoc_set_primary(trans->asoc, trans);
3082 
3083 	return 0;
3084 }
3085 
3086 /*
3087  * 7.1.5 SCTP_NODELAY
3088  *
3089  * Turn on/off any Nagle-like algorithm.  This means that packets are
3090  * generally sent as soon as possible and no unnecessary delays are
3091  * introduced, at the cost of more packets in the network.  Expects an
3092  *  integer boolean flag.
3093  */
3094 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3095 				   unsigned int optlen)
3096 {
3097 	int val;
3098 
3099 	if (optlen < sizeof(int))
3100 		return -EINVAL;
3101 	if (get_user(val, (int __user *)optval))
3102 		return -EFAULT;
3103 
3104 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3105 	return 0;
3106 }
3107 
3108 /*
3109  *
3110  * 7.1.1 SCTP_RTOINFO
3111  *
3112  * The protocol parameters used to initialize and bound retransmission
3113  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3114  * and modify these parameters.
3115  * All parameters are time values, in milliseconds.  A value of 0, when
3116  * modifying the parameters, indicates that the current value should not
3117  * be changed.
3118  *
3119  */
3120 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3121 {
3122 	struct sctp_rtoinfo rtoinfo;
3123 	struct sctp_association *asoc;
3124 	unsigned long rto_min, rto_max;
3125 	struct sctp_sock *sp = sctp_sk(sk);
3126 
3127 	if (optlen != sizeof (struct sctp_rtoinfo))
3128 		return -EINVAL;
3129 
3130 	if (copy_from_user(&rtoinfo, optval, optlen))
3131 		return -EFAULT;
3132 
3133 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3134 
3135 	/* Set the values to the specific association */
3136 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3137 		return -EINVAL;
3138 
3139 	rto_max = rtoinfo.srto_max;
3140 	rto_min = rtoinfo.srto_min;
3141 
3142 	if (rto_max)
3143 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3144 	else
3145 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3146 
3147 	if (rto_min)
3148 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3149 	else
3150 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3151 
3152 	if (rto_min > rto_max)
3153 		return -EINVAL;
3154 
3155 	if (asoc) {
3156 		if (rtoinfo.srto_initial != 0)
3157 			asoc->rto_initial =
3158 				msecs_to_jiffies(rtoinfo.srto_initial);
3159 		asoc->rto_max = rto_max;
3160 		asoc->rto_min = rto_min;
3161 	} else {
3162 		/* If there is no association or the association-id = 0
3163 		 * set the values to the endpoint.
3164 		 */
3165 		if (rtoinfo.srto_initial != 0)
3166 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3167 		sp->rtoinfo.srto_max = rto_max;
3168 		sp->rtoinfo.srto_min = rto_min;
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 /*
3175  *
3176  * 7.1.2 SCTP_ASSOCINFO
3177  *
3178  * This option is used to tune the maximum retransmission attempts
3179  * of the association.
3180  * Returns an error if the new association retransmission value is
3181  * greater than the sum of the retransmission value  of the peer.
3182  * See [SCTP] for more information.
3183  *
3184  */
3185 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3186 {
3187 
3188 	struct sctp_assocparams assocparams;
3189 	struct sctp_association *asoc;
3190 
3191 	if (optlen != sizeof(struct sctp_assocparams))
3192 		return -EINVAL;
3193 	if (copy_from_user(&assocparams, optval, optlen))
3194 		return -EFAULT;
3195 
3196 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3197 
3198 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3199 		return -EINVAL;
3200 
3201 	/* Set the values to the specific association */
3202 	if (asoc) {
3203 		if (assocparams.sasoc_asocmaxrxt != 0) {
3204 			__u32 path_sum = 0;
3205 			int   paths = 0;
3206 			struct sctp_transport *peer_addr;
3207 
3208 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3209 					transports) {
3210 				path_sum += peer_addr->pathmaxrxt;
3211 				paths++;
3212 			}
3213 
3214 			/* Only validate asocmaxrxt if we have more than
3215 			 * one path/transport.  We do this because path
3216 			 * retransmissions are only counted when we have more
3217 			 * then one path.
3218 			 */
3219 			if (paths > 1 &&
3220 			    assocparams.sasoc_asocmaxrxt > path_sum)
3221 				return -EINVAL;
3222 
3223 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3224 		}
3225 
3226 		if (assocparams.sasoc_cookie_life != 0)
3227 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3228 	} else {
3229 		/* Set the values to the endpoint */
3230 		struct sctp_sock *sp = sctp_sk(sk);
3231 
3232 		if (assocparams.sasoc_asocmaxrxt != 0)
3233 			sp->assocparams.sasoc_asocmaxrxt =
3234 						assocparams.sasoc_asocmaxrxt;
3235 		if (assocparams.sasoc_cookie_life != 0)
3236 			sp->assocparams.sasoc_cookie_life =
3237 						assocparams.sasoc_cookie_life;
3238 	}
3239 	return 0;
3240 }
3241 
3242 /*
3243  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3244  *
3245  * This socket option is a boolean flag which turns on or off mapped V4
3246  * addresses.  If this option is turned on and the socket is type
3247  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3248  * If this option is turned off, then no mapping will be done of V4
3249  * addresses and a user will receive both PF_INET6 and PF_INET type
3250  * addresses on the socket.
3251  */
3252 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3253 {
3254 	int val;
3255 	struct sctp_sock *sp = sctp_sk(sk);
3256 
3257 	if (optlen < sizeof(int))
3258 		return -EINVAL;
3259 	if (get_user(val, (int __user *)optval))
3260 		return -EFAULT;
3261 	if (val)
3262 		sp->v4mapped = 1;
3263 	else
3264 		sp->v4mapped = 0;
3265 
3266 	return 0;
3267 }
3268 
3269 /*
3270  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3271  * This option will get or set the maximum size to put in any outgoing
3272  * SCTP DATA chunk.  If a message is larger than this size it will be
3273  * fragmented by SCTP into the specified size.  Note that the underlying
3274  * SCTP implementation may fragment into smaller sized chunks when the
3275  * PMTU of the underlying association is smaller than the value set by
3276  * the user.  The default value for this option is '0' which indicates
3277  * the user is NOT limiting fragmentation and only the PMTU will effect
3278  * SCTP's choice of DATA chunk size.  Note also that values set larger
3279  * than the maximum size of an IP datagram will effectively let SCTP
3280  * control fragmentation (i.e. the same as setting this option to 0).
3281  *
3282  * The following structure is used to access and modify this parameter:
3283  *
3284  * struct sctp_assoc_value {
3285  *   sctp_assoc_t assoc_id;
3286  *   uint32_t assoc_value;
3287  * };
3288  *
3289  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3290  *    For one-to-many style sockets this parameter indicates which
3291  *    association the user is performing an action upon.  Note that if
3292  *    this field's value is zero then the endpoints default value is
3293  *    changed (effecting future associations only).
3294  * assoc_value:  This parameter specifies the maximum size in bytes.
3295  */
3296 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3297 {
3298 	struct sctp_sock *sp = sctp_sk(sk);
3299 	struct sctp_assoc_value params;
3300 	struct sctp_association *asoc;
3301 	int val;
3302 
3303 	if (optlen == sizeof(int)) {
3304 		pr_warn_ratelimited(DEPRECATED
3305 				    "%s (pid %d) "
3306 				    "Use of int in maxseg socket option.\n"
3307 				    "Use struct sctp_assoc_value instead\n",
3308 				    current->comm, task_pid_nr(current));
3309 		if (copy_from_user(&val, optval, optlen))
3310 			return -EFAULT;
3311 		params.assoc_id = 0;
3312 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3313 		if (copy_from_user(&params, optval, optlen))
3314 			return -EFAULT;
3315 		val = params.assoc_value;
3316 	} else {
3317 		return -EINVAL;
3318 	}
3319 
3320 	asoc = sctp_id2assoc(sk, params.assoc_id);
3321 
3322 	if (val) {
3323 		int min_len, max_len;
3324 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3325 				 sizeof(struct sctp_data_chunk);
3326 
3327 		min_len = sctp_min_frag_point(sp, datasize);
3328 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3329 
3330 		if (val < min_len || val > max_len)
3331 			return -EINVAL;
3332 	}
3333 
3334 	if (asoc) {
3335 		asoc->user_frag = val;
3336 		sctp_assoc_update_frag_point(asoc);
3337 	} else {
3338 		if (params.assoc_id && sctp_style(sk, UDP))
3339 			return -EINVAL;
3340 		sp->user_frag = val;
3341 	}
3342 
3343 	return 0;
3344 }
3345 
3346 
3347 /*
3348  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3349  *
3350  *   Requests that the peer mark the enclosed address as the association
3351  *   primary. The enclosed address must be one of the association's
3352  *   locally bound addresses. The following structure is used to make a
3353  *   set primary request:
3354  */
3355 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3356 					     unsigned int optlen)
3357 {
3358 	struct net *net = sock_net(sk);
3359 	struct sctp_sock	*sp;
3360 	struct sctp_association	*asoc = NULL;
3361 	struct sctp_setpeerprim	prim;
3362 	struct sctp_chunk	*chunk;
3363 	struct sctp_af		*af;
3364 	int 			err;
3365 
3366 	sp = sctp_sk(sk);
3367 
3368 	if (!net->sctp.addip_enable)
3369 		return -EPERM;
3370 
3371 	if (optlen != sizeof(struct sctp_setpeerprim))
3372 		return -EINVAL;
3373 
3374 	if (copy_from_user(&prim, optval, optlen))
3375 		return -EFAULT;
3376 
3377 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3378 	if (!asoc)
3379 		return -EINVAL;
3380 
3381 	if (!asoc->peer.asconf_capable)
3382 		return -EPERM;
3383 
3384 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3385 		return -EPERM;
3386 
3387 	if (!sctp_state(asoc, ESTABLISHED))
3388 		return -ENOTCONN;
3389 
3390 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3391 	if (!af)
3392 		return -EINVAL;
3393 
3394 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3395 		return -EADDRNOTAVAIL;
3396 
3397 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3398 		return -EADDRNOTAVAIL;
3399 
3400 	/* Allow security module to validate address. */
3401 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3402 					 (struct sockaddr *)&prim.sspp_addr,
3403 					 af->sockaddr_len);
3404 	if (err)
3405 		return err;
3406 
3407 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3408 	chunk = sctp_make_asconf_set_prim(asoc,
3409 					  (union sctp_addr *)&prim.sspp_addr);
3410 	if (!chunk)
3411 		return -ENOMEM;
3412 
3413 	err = sctp_send_asconf(asoc, chunk);
3414 
3415 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3416 
3417 	return err;
3418 }
3419 
3420 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3421 					    unsigned int optlen)
3422 {
3423 	struct sctp_setadaptation adaptation;
3424 
3425 	if (optlen != sizeof(struct sctp_setadaptation))
3426 		return -EINVAL;
3427 	if (copy_from_user(&adaptation, optval, optlen))
3428 		return -EFAULT;
3429 
3430 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3431 
3432 	return 0;
3433 }
3434 
3435 /*
3436  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3437  *
3438  * The context field in the sctp_sndrcvinfo structure is normally only
3439  * used when a failed message is retrieved holding the value that was
3440  * sent down on the actual send call.  This option allows the setting of
3441  * a default context on an association basis that will be received on
3442  * reading messages from the peer.  This is especially helpful in the
3443  * one-2-many model for an application to keep some reference to an
3444  * internal state machine that is processing messages on the
3445  * association.  Note that the setting of this value only effects
3446  * received messages from the peer and does not effect the value that is
3447  * saved with outbound messages.
3448  */
3449 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3450 				   unsigned int optlen)
3451 {
3452 	struct sctp_assoc_value params;
3453 	struct sctp_sock *sp;
3454 	struct sctp_association *asoc;
3455 
3456 	if (optlen != sizeof(struct sctp_assoc_value))
3457 		return -EINVAL;
3458 	if (copy_from_user(&params, optval, optlen))
3459 		return -EFAULT;
3460 
3461 	sp = sctp_sk(sk);
3462 
3463 	if (params.assoc_id != 0) {
3464 		asoc = sctp_id2assoc(sk, params.assoc_id);
3465 		if (!asoc)
3466 			return -EINVAL;
3467 		asoc->default_rcv_context = params.assoc_value;
3468 	} else {
3469 		sp->default_rcv_context = params.assoc_value;
3470 	}
3471 
3472 	return 0;
3473 }
3474 
3475 /*
3476  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3477  *
3478  * This options will at a minimum specify if the implementation is doing
3479  * fragmented interleave.  Fragmented interleave, for a one to many
3480  * socket, is when subsequent calls to receive a message may return
3481  * parts of messages from different associations.  Some implementations
3482  * may allow you to turn this value on or off.  If so, when turned off,
3483  * no fragment interleave will occur (which will cause a head of line
3484  * blocking amongst multiple associations sharing the same one to many
3485  * socket).  When this option is turned on, then each receive call may
3486  * come from a different association (thus the user must receive data
3487  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3488  * association each receive belongs to.
3489  *
3490  * This option takes a boolean value.  A non-zero value indicates that
3491  * fragmented interleave is on.  A value of zero indicates that
3492  * fragmented interleave is off.
3493  *
3494  * Note that it is important that an implementation that allows this
3495  * option to be turned on, have it off by default.  Otherwise an unaware
3496  * application using the one to many model may become confused and act
3497  * incorrectly.
3498  */
3499 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3500 					       char __user *optval,
3501 					       unsigned int optlen)
3502 {
3503 	int val;
3504 
3505 	if (optlen != sizeof(int))
3506 		return -EINVAL;
3507 	if (get_user(val, (int __user *)optval))
3508 		return -EFAULT;
3509 
3510 	sctp_sk(sk)->frag_interleave = !!val;
3511 
3512 	if (!sctp_sk(sk)->frag_interleave)
3513 		sctp_sk(sk)->strm_interleave = 0;
3514 
3515 	return 0;
3516 }
3517 
3518 /*
3519  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3520  *       (SCTP_PARTIAL_DELIVERY_POINT)
3521  *
3522  * This option will set or get the SCTP partial delivery point.  This
3523  * point is the size of a message where the partial delivery API will be
3524  * invoked to help free up rwnd space for the peer.  Setting this to a
3525  * lower value will cause partial deliveries to happen more often.  The
3526  * calls argument is an integer that sets or gets the partial delivery
3527  * point.  Note also that the call will fail if the user attempts to set
3528  * this value larger than the socket receive buffer size.
3529  *
3530  * Note that any single message having a length smaller than or equal to
3531  * the SCTP partial delivery point will be delivered in one single read
3532  * call as long as the user provided buffer is large enough to hold the
3533  * message.
3534  */
3535 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3536 						  char __user *optval,
3537 						  unsigned int optlen)
3538 {
3539 	u32 val;
3540 
3541 	if (optlen != sizeof(u32))
3542 		return -EINVAL;
3543 	if (get_user(val, (int __user *)optval))
3544 		return -EFAULT;
3545 
3546 	/* Note: We double the receive buffer from what the user sets
3547 	 * it to be, also initial rwnd is based on rcvbuf/2.
3548 	 */
3549 	if (val > (sk->sk_rcvbuf >> 1))
3550 		return -EINVAL;
3551 
3552 	sctp_sk(sk)->pd_point = val;
3553 
3554 	return 0; /* is this the right error code? */
3555 }
3556 
3557 /*
3558  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3559  *
3560  * This option will allow a user to change the maximum burst of packets
3561  * that can be emitted by this association.  Note that the default value
3562  * is 4, and some implementations may restrict this setting so that it
3563  * can only be lowered.
3564  *
3565  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3566  * future associations inheriting the socket value.
3567  */
3568 static int sctp_setsockopt_maxburst(struct sock *sk,
3569 				    char __user *optval,
3570 				    unsigned int optlen)
3571 {
3572 	struct sctp_assoc_value params;
3573 	struct sctp_sock *sp;
3574 	struct sctp_association *asoc;
3575 	int val;
3576 	int assoc_id = 0;
3577 
3578 	if (optlen == sizeof(int)) {
3579 		pr_warn_ratelimited(DEPRECATED
3580 				    "%s (pid %d) "
3581 				    "Use of int in max_burst socket option deprecated.\n"
3582 				    "Use struct sctp_assoc_value instead\n",
3583 				    current->comm, task_pid_nr(current));
3584 		if (copy_from_user(&val, optval, optlen))
3585 			return -EFAULT;
3586 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3587 		if (copy_from_user(&params, optval, optlen))
3588 			return -EFAULT;
3589 		val = params.assoc_value;
3590 		assoc_id = params.assoc_id;
3591 	} else
3592 		return -EINVAL;
3593 
3594 	sp = sctp_sk(sk);
3595 
3596 	if (assoc_id != 0) {
3597 		asoc = sctp_id2assoc(sk, assoc_id);
3598 		if (!asoc)
3599 			return -EINVAL;
3600 		asoc->max_burst = val;
3601 	} else
3602 		sp->max_burst = val;
3603 
3604 	return 0;
3605 }
3606 
3607 /*
3608  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3609  *
3610  * This set option adds a chunk type that the user is requesting to be
3611  * received only in an authenticated way.  Changes to the list of chunks
3612  * will only effect future associations on the socket.
3613  */
3614 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3615 				      char __user *optval,
3616 				      unsigned int optlen)
3617 {
3618 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3619 	struct sctp_authchunk val;
3620 
3621 	if (!ep->auth_enable)
3622 		return -EACCES;
3623 
3624 	if (optlen != sizeof(struct sctp_authchunk))
3625 		return -EINVAL;
3626 	if (copy_from_user(&val, optval, optlen))
3627 		return -EFAULT;
3628 
3629 	switch (val.sauth_chunk) {
3630 	case SCTP_CID_INIT:
3631 	case SCTP_CID_INIT_ACK:
3632 	case SCTP_CID_SHUTDOWN_COMPLETE:
3633 	case SCTP_CID_AUTH:
3634 		return -EINVAL;
3635 	}
3636 
3637 	/* add this chunk id to the endpoint */
3638 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3639 }
3640 
3641 /*
3642  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3643  *
3644  * This option gets or sets the list of HMAC algorithms that the local
3645  * endpoint requires the peer to use.
3646  */
3647 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3648 				      char __user *optval,
3649 				      unsigned int optlen)
3650 {
3651 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3652 	struct sctp_hmacalgo *hmacs;
3653 	u32 idents;
3654 	int err;
3655 
3656 	if (!ep->auth_enable)
3657 		return -EACCES;
3658 
3659 	if (optlen < sizeof(struct sctp_hmacalgo))
3660 		return -EINVAL;
3661 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3662 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3663 
3664 	hmacs = memdup_user(optval, optlen);
3665 	if (IS_ERR(hmacs))
3666 		return PTR_ERR(hmacs);
3667 
3668 	idents = hmacs->shmac_num_idents;
3669 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3670 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3671 		err = -EINVAL;
3672 		goto out;
3673 	}
3674 
3675 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3676 out:
3677 	kfree(hmacs);
3678 	return err;
3679 }
3680 
3681 /*
3682  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3683  *
3684  * This option will set a shared secret key which is used to build an
3685  * association shared key.
3686  */
3687 static int sctp_setsockopt_auth_key(struct sock *sk,
3688 				    char __user *optval,
3689 				    unsigned int optlen)
3690 {
3691 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3692 	struct sctp_authkey *authkey;
3693 	struct sctp_association *asoc;
3694 	int ret;
3695 
3696 	if (!ep->auth_enable)
3697 		return -EACCES;
3698 
3699 	if (optlen <= sizeof(struct sctp_authkey))
3700 		return -EINVAL;
3701 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3702 	 * this.
3703 	 */
3704 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
3705 					     sizeof(struct sctp_authkey));
3706 
3707 	authkey = memdup_user(optval, optlen);
3708 	if (IS_ERR(authkey))
3709 		return PTR_ERR(authkey);
3710 
3711 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3712 		ret = -EINVAL;
3713 		goto out;
3714 	}
3715 
3716 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3717 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3718 		ret = -EINVAL;
3719 		goto out;
3720 	}
3721 
3722 	ret = sctp_auth_set_key(ep, asoc, authkey);
3723 out:
3724 	kzfree(authkey);
3725 	return ret;
3726 }
3727 
3728 /*
3729  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3730  *
3731  * This option will get or set the active shared key to be used to build
3732  * the association shared key.
3733  */
3734 static int sctp_setsockopt_active_key(struct sock *sk,
3735 				      char __user *optval,
3736 				      unsigned int optlen)
3737 {
3738 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3739 	struct sctp_authkeyid val;
3740 	struct sctp_association *asoc;
3741 
3742 	if (!ep->auth_enable)
3743 		return -EACCES;
3744 
3745 	if (optlen != sizeof(struct sctp_authkeyid))
3746 		return -EINVAL;
3747 	if (copy_from_user(&val, optval, optlen))
3748 		return -EFAULT;
3749 
3750 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3751 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3752 		return -EINVAL;
3753 
3754 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3755 }
3756 
3757 /*
3758  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3759  *
3760  * This set option will delete a shared secret key from use.
3761  */
3762 static int sctp_setsockopt_del_key(struct sock *sk,
3763 				   char __user *optval,
3764 				   unsigned int optlen)
3765 {
3766 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3767 	struct sctp_authkeyid val;
3768 	struct sctp_association *asoc;
3769 
3770 	if (!ep->auth_enable)
3771 		return -EACCES;
3772 
3773 	if (optlen != sizeof(struct sctp_authkeyid))
3774 		return -EINVAL;
3775 	if (copy_from_user(&val, optval, optlen))
3776 		return -EFAULT;
3777 
3778 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3779 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3780 		return -EINVAL;
3781 
3782 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3783 
3784 }
3785 
3786 /*
3787  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3788  *
3789  * This set option will deactivate a shared secret key.
3790  */
3791 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3792 					  unsigned int optlen)
3793 {
3794 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3795 	struct sctp_authkeyid val;
3796 	struct sctp_association *asoc;
3797 
3798 	if (!ep->auth_enable)
3799 		return -EACCES;
3800 
3801 	if (optlen != sizeof(struct sctp_authkeyid))
3802 		return -EINVAL;
3803 	if (copy_from_user(&val, optval, optlen))
3804 		return -EFAULT;
3805 
3806 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3807 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3808 		return -EINVAL;
3809 
3810 	return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3811 }
3812 
3813 /*
3814  * 8.1.23 SCTP_AUTO_ASCONF
3815  *
3816  * This option will enable or disable the use of the automatic generation of
3817  * ASCONF chunks to add and delete addresses to an existing association.  Note
3818  * that this option has two caveats namely: a) it only affects sockets that
3819  * are bound to all addresses available to the SCTP stack, and b) the system
3820  * administrator may have an overriding control that turns the ASCONF feature
3821  * off no matter what setting the socket option may have.
3822  * This option expects an integer boolean flag, where a non-zero value turns on
3823  * the option, and a zero value turns off the option.
3824  * Note. In this implementation, socket operation overrides default parameter
3825  * being set by sysctl as well as FreeBSD implementation
3826  */
3827 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3828 					unsigned int optlen)
3829 {
3830 	int val;
3831 	struct sctp_sock *sp = sctp_sk(sk);
3832 
3833 	if (optlen < sizeof(int))
3834 		return -EINVAL;
3835 	if (get_user(val, (int __user *)optval))
3836 		return -EFAULT;
3837 	if (!sctp_is_ep_boundall(sk) && val)
3838 		return -EINVAL;
3839 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3840 		return 0;
3841 
3842 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3843 	if (val == 0 && sp->do_auto_asconf) {
3844 		list_del(&sp->auto_asconf_list);
3845 		sp->do_auto_asconf = 0;
3846 	} else if (val && !sp->do_auto_asconf) {
3847 		list_add_tail(&sp->auto_asconf_list,
3848 		    &sock_net(sk)->sctp.auto_asconf_splist);
3849 		sp->do_auto_asconf = 1;
3850 	}
3851 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3852 	return 0;
3853 }
3854 
3855 /*
3856  * SCTP_PEER_ADDR_THLDS
3857  *
3858  * This option allows us to alter the partially failed threshold for one or all
3859  * transports in an association.  See Section 6.1 of:
3860  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3861  */
3862 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3863 					    char __user *optval,
3864 					    unsigned int optlen)
3865 {
3866 	struct sctp_paddrthlds val;
3867 	struct sctp_transport *trans;
3868 	struct sctp_association *asoc;
3869 
3870 	if (optlen < sizeof(struct sctp_paddrthlds))
3871 		return -EINVAL;
3872 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3873 			   sizeof(struct sctp_paddrthlds)))
3874 		return -EFAULT;
3875 
3876 
3877 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3878 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3879 		if (!asoc)
3880 			return -ENOENT;
3881 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3882 				    transports) {
3883 			if (val.spt_pathmaxrxt)
3884 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3885 			trans->pf_retrans = val.spt_pathpfthld;
3886 		}
3887 
3888 		if (val.spt_pathmaxrxt)
3889 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3890 		asoc->pf_retrans = val.spt_pathpfthld;
3891 	} else {
3892 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3893 					       val.spt_assoc_id);
3894 		if (!trans)
3895 			return -ENOENT;
3896 
3897 		if (val.spt_pathmaxrxt)
3898 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3899 		trans->pf_retrans = val.spt_pathpfthld;
3900 	}
3901 
3902 	return 0;
3903 }
3904 
3905 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3906 				       char __user *optval,
3907 				       unsigned int optlen)
3908 {
3909 	int val;
3910 
3911 	if (optlen < sizeof(int))
3912 		return -EINVAL;
3913 	if (get_user(val, (int __user *) optval))
3914 		return -EFAULT;
3915 
3916 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3917 
3918 	return 0;
3919 }
3920 
3921 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3922 				       char __user *optval,
3923 				       unsigned int optlen)
3924 {
3925 	int val;
3926 
3927 	if (optlen < sizeof(int))
3928 		return -EINVAL;
3929 	if (get_user(val, (int __user *) optval))
3930 		return -EFAULT;
3931 
3932 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3933 
3934 	return 0;
3935 }
3936 
3937 static int sctp_setsockopt_pr_supported(struct sock *sk,
3938 					char __user *optval,
3939 					unsigned int optlen)
3940 {
3941 	struct sctp_assoc_value params;
3942 
3943 	if (optlen != sizeof(params))
3944 		return -EINVAL;
3945 
3946 	if (copy_from_user(&params, optval, optlen))
3947 		return -EFAULT;
3948 
3949 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
3950 
3951 	return 0;
3952 }
3953 
3954 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3955 					  char __user *optval,
3956 					  unsigned int optlen)
3957 {
3958 	struct sctp_default_prinfo info;
3959 	struct sctp_association *asoc;
3960 	int retval = -EINVAL;
3961 
3962 	if (optlen != sizeof(info))
3963 		goto out;
3964 
3965 	if (copy_from_user(&info, optval, sizeof(info))) {
3966 		retval = -EFAULT;
3967 		goto out;
3968 	}
3969 
3970 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3971 		goto out;
3972 
3973 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3974 		info.pr_value = 0;
3975 
3976 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3977 	if (asoc) {
3978 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3979 		asoc->default_timetolive = info.pr_value;
3980 	} else if (!info.pr_assoc_id) {
3981 		struct sctp_sock *sp = sctp_sk(sk);
3982 
3983 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3984 		sp->default_timetolive = info.pr_value;
3985 	} else {
3986 		goto out;
3987 	}
3988 
3989 	retval = 0;
3990 
3991 out:
3992 	return retval;
3993 }
3994 
3995 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3996 					      char __user *optval,
3997 					      unsigned int optlen)
3998 {
3999 	struct sctp_assoc_value params;
4000 	struct sctp_association *asoc;
4001 	int retval = -EINVAL;
4002 
4003 	if (optlen != sizeof(params))
4004 		goto out;
4005 
4006 	if (copy_from_user(&params, optval, optlen)) {
4007 		retval = -EFAULT;
4008 		goto out;
4009 	}
4010 
4011 	asoc = sctp_id2assoc(sk, params.assoc_id);
4012 	if (asoc) {
4013 		asoc->reconf_enable = !!params.assoc_value;
4014 	} else if (!params.assoc_id) {
4015 		struct sctp_sock *sp = sctp_sk(sk);
4016 
4017 		sp->ep->reconf_enable = !!params.assoc_value;
4018 	} else {
4019 		goto out;
4020 	}
4021 
4022 	retval = 0;
4023 
4024 out:
4025 	return retval;
4026 }
4027 
4028 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4029 					   char __user *optval,
4030 					   unsigned int optlen)
4031 {
4032 	struct sctp_assoc_value params;
4033 	struct sctp_association *asoc;
4034 	int retval = -EINVAL;
4035 
4036 	if (optlen != sizeof(params))
4037 		goto out;
4038 
4039 	if (copy_from_user(&params, optval, optlen)) {
4040 		retval = -EFAULT;
4041 		goto out;
4042 	}
4043 
4044 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4045 		goto out;
4046 
4047 	asoc = sctp_id2assoc(sk, params.assoc_id);
4048 	if (asoc) {
4049 		asoc->strreset_enable = params.assoc_value;
4050 	} else if (!params.assoc_id) {
4051 		struct sctp_sock *sp = sctp_sk(sk);
4052 
4053 		sp->ep->strreset_enable = params.assoc_value;
4054 	} else {
4055 		goto out;
4056 	}
4057 
4058 	retval = 0;
4059 
4060 out:
4061 	return retval;
4062 }
4063 
4064 static int sctp_setsockopt_reset_streams(struct sock *sk,
4065 					 char __user *optval,
4066 					 unsigned int optlen)
4067 {
4068 	struct sctp_reset_streams *params;
4069 	struct sctp_association *asoc;
4070 	int retval = -EINVAL;
4071 
4072 	if (optlen < sizeof(*params))
4073 		return -EINVAL;
4074 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4075 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4076 					     sizeof(__u16) * sizeof(*params));
4077 
4078 	params = memdup_user(optval, optlen);
4079 	if (IS_ERR(params))
4080 		return PTR_ERR(params);
4081 
4082 	if (params->srs_number_streams * sizeof(__u16) >
4083 	    optlen - sizeof(*params))
4084 		goto out;
4085 
4086 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4087 	if (!asoc)
4088 		goto out;
4089 
4090 	retval = sctp_send_reset_streams(asoc, params);
4091 
4092 out:
4093 	kfree(params);
4094 	return retval;
4095 }
4096 
4097 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4098 				       char __user *optval,
4099 				       unsigned int optlen)
4100 {
4101 	struct sctp_association *asoc;
4102 	sctp_assoc_t associd;
4103 	int retval = -EINVAL;
4104 
4105 	if (optlen != sizeof(associd))
4106 		goto out;
4107 
4108 	if (copy_from_user(&associd, optval, optlen)) {
4109 		retval = -EFAULT;
4110 		goto out;
4111 	}
4112 
4113 	asoc = sctp_id2assoc(sk, associd);
4114 	if (!asoc)
4115 		goto out;
4116 
4117 	retval = sctp_send_reset_assoc(asoc);
4118 
4119 out:
4120 	return retval;
4121 }
4122 
4123 static int sctp_setsockopt_add_streams(struct sock *sk,
4124 				       char __user *optval,
4125 				       unsigned int optlen)
4126 {
4127 	struct sctp_association *asoc;
4128 	struct sctp_add_streams params;
4129 	int retval = -EINVAL;
4130 
4131 	if (optlen != sizeof(params))
4132 		goto out;
4133 
4134 	if (copy_from_user(&params, optval, optlen)) {
4135 		retval = -EFAULT;
4136 		goto out;
4137 	}
4138 
4139 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4140 	if (!asoc)
4141 		goto out;
4142 
4143 	retval = sctp_send_add_streams(asoc, &params);
4144 
4145 out:
4146 	return retval;
4147 }
4148 
4149 static int sctp_setsockopt_scheduler(struct sock *sk,
4150 				     char __user *optval,
4151 				     unsigned int optlen)
4152 {
4153 	struct sctp_association *asoc;
4154 	struct sctp_assoc_value params;
4155 	int retval = -EINVAL;
4156 
4157 	if (optlen < sizeof(params))
4158 		goto out;
4159 
4160 	optlen = sizeof(params);
4161 	if (copy_from_user(&params, optval, optlen)) {
4162 		retval = -EFAULT;
4163 		goto out;
4164 	}
4165 
4166 	if (params.assoc_value > SCTP_SS_MAX)
4167 		goto out;
4168 
4169 	asoc = sctp_id2assoc(sk, params.assoc_id);
4170 	if (!asoc)
4171 		goto out;
4172 
4173 	retval = sctp_sched_set_sched(asoc, params.assoc_value);
4174 
4175 out:
4176 	return retval;
4177 }
4178 
4179 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4180 					   char __user *optval,
4181 					   unsigned int optlen)
4182 {
4183 	struct sctp_association *asoc;
4184 	struct sctp_stream_value params;
4185 	int retval = -EINVAL;
4186 
4187 	if (optlen < sizeof(params))
4188 		goto out;
4189 
4190 	optlen = sizeof(params);
4191 	if (copy_from_user(&params, optval, optlen)) {
4192 		retval = -EFAULT;
4193 		goto out;
4194 	}
4195 
4196 	asoc = sctp_id2assoc(sk, params.assoc_id);
4197 	if (!asoc)
4198 		goto out;
4199 
4200 	retval = sctp_sched_set_value(asoc, params.stream_id,
4201 				      params.stream_value, GFP_KERNEL);
4202 
4203 out:
4204 	return retval;
4205 }
4206 
4207 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4208 						  char __user *optval,
4209 						  unsigned int optlen)
4210 {
4211 	struct sctp_sock *sp = sctp_sk(sk);
4212 	struct net *net = sock_net(sk);
4213 	struct sctp_assoc_value params;
4214 	int retval = -EINVAL;
4215 
4216 	if (optlen < sizeof(params))
4217 		goto out;
4218 
4219 	optlen = sizeof(params);
4220 	if (copy_from_user(&params, optval, optlen)) {
4221 		retval = -EFAULT;
4222 		goto out;
4223 	}
4224 
4225 	if (params.assoc_id)
4226 		goto out;
4227 
4228 	if (!net->sctp.intl_enable || !sp->frag_interleave) {
4229 		retval = -EPERM;
4230 		goto out;
4231 	}
4232 
4233 	sp->strm_interleave = !!params.assoc_value;
4234 
4235 	retval = 0;
4236 
4237 out:
4238 	return retval;
4239 }
4240 
4241 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4242 				      unsigned int optlen)
4243 {
4244 	int val;
4245 
4246 	if (!sctp_style(sk, TCP))
4247 		return -EOPNOTSUPP;
4248 
4249 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4250 		return -EFAULT;
4251 
4252 	if (optlen < sizeof(int))
4253 		return -EINVAL;
4254 
4255 	if (get_user(val, (int __user *)optval))
4256 		return -EFAULT;
4257 
4258 	sctp_sk(sk)->reuse = !!val;
4259 
4260 	return 0;
4261 }
4262 
4263 /* API 6.2 setsockopt(), getsockopt()
4264  *
4265  * Applications use setsockopt() and getsockopt() to set or retrieve
4266  * socket options.  Socket options are used to change the default
4267  * behavior of sockets calls.  They are described in Section 7.
4268  *
4269  * The syntax is:
4270  *
4271  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4272  *                    int __user *optlen);
4273  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4274  *                    int optlen);
4275  *
4276  *   sd      - the socket descript.
4277  *   level   - set to IPPROTO_SCTP for all SCTP options.
4278  *   optname - the option name.
4279  *   optval  - the buffer to store the value of the option.
4280  *   optlen  - the size of the buffer.
4281  */
4282 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4283 			   char __user *optval, unsigned int optlen)
4284 {
4285 	int retval = 0;
4286 
4287 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4288 
4289 	/* I can hardly begin to describe how wrong this is.  This is
4290 	 * so broken as to be worse than useless.  The API draft
4291 	 * REALLY is NOT helpful here...  I am not convinced that the
4292 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4293 	 * are at all well-founded.
4294 	 */
4295 	if (level != SOL_SCTP) {
4296 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4297 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4298 		goto out_nounlock;
4299 	}
4300 
4301 	lock_sock(sk);
4302 
4303 	switch (optname) {
4304 	case SCTP_SOCKOPT_BINDX_ADD:
4305 		/* 'optlen' is the size of the addresses buffer. */
4306 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4307 					       optlen, SCTP_BINDX_ADD_ADDR);
4308 		break;
4309 
4310 	case SCTP_SOCKOPT_BINDX_REM:
4311 		/* 'optlen' is the size of the addresses buffer. */
4312 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4313 					       optlen, SCTP_BINDX_REM_ADDR);
4314 		break;
4315 
4316 	case SCTP_SOCKOPT_CONNECTX_OLD:
4317 		/* 'optlen' is the size of the addresses buffer. */
4318 		retval = sctp_setsockopt_connectx_old(sk,
4319 					    (struct sockaddr __user *)optval,
4320 					    optlen);
4321 		break;
4322 
4323 	case SCTP_SOCKOPT_CONNECTX:
4324 		/* 'optlen' is the size of the addresses buffer. */
4325 		retval = sctp_setsockopt_connectx(sk,
4326 					    (struct sockaddr __user *)optval,
4327 					    optlen);
4328 		break;
4329 
4330 	case SCTP_DISABLE_FRAGMENTS:
4331 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4332 		break;
4333 
4334 	case SCTP_EVENTS:
4335 		retval = sctp_setsockopt_events(sk, optval, optlen);
4336 		break;
4337 
4338 	case SCTP_AUTOCLOSE:
4339 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4340 		break;
4341 
4342 	case SCTP_PEER_ADDR_PARAMS:
4343 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4344 		break;
4345 
4346 	case SCTP_DELAYED_SACK:
4347 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4348 		break;
4349 	case SCTP_PARTIAL_DELIVERY_POINT:
4350 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4351 		break;
4352 
4353 	case SCTP_INITMSG:
4354 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4355 		break;
4356 	case SCTP_DEFAULT_SEND_PARAM:
4357 		retval = sctp_setsockopt_default_send_param(sk, optval,
4358 							    optlen);
4359 		break;
4360 	case SCTP_DEFAULT_SNDINFO:
4361 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4362 		break;
4363 	case SCTP_PRIMARY_ADDR:
4364 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4365 		break;
4366 	case SCTP_SET_PEER_PRIMARY_ADDR:
4367 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4368 		break;
4369 	case SCTP_NODELAY:
4370 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4371 		break;
4372 	case SCTP_RTOINFO:
4373 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4374 		break;
4375 	case SCTP_ASSOCINFO:
4376 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4377 		break;
4378 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4379 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4380 		break;
4381 	case SCTP_MAXSEG:
4382 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4383 		break;
4384 	case SCTP_ADAPTATION_LAYER:
4385 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4386 		break;
4387 	case SCTP_CONTEXT:
4388 		retval = sctp_setsockopt_context(sk, optval, optlen);
4389 		break;
4390 	case SCTP_FRAGMENT_INTERLEAVE:
4391 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4392 		break;
4393 	case SCTP_MAX_BURST:
4394 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4395 		break;
4396 	case SCTP_AUTH_CHUNK:
4397 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4398 		break;
4399 	case SCTP_HMAC_IDENT:
4400 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4401 		break;
4402 	case SCTP_AUTH_KEY:
4403 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4404 		break;
4405 	case SCTP_AUTH_ACTIVE_KEY:
4406 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4407 		break;
4408 	case SCTP_AUTH_DELETE_KEY:
4409 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4410 		break;
4411 	case SCTP_AUTH_DEACTIVATE_KEY:
4412 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4413 		break;
4414 	case SCTP_AUTO_ASCONF:
4415 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4416 		break;
4417 	case SCTP_PEER_ADDR_THLDS:
4418 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4419 		break;
4420 	case SCTP_RECVRCVINFO:
4421 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4422 		break;
4423 	case SCTP_RECVNXTINFO:
4424 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4425 		break;
4426 	case SCTP_PR_SUPPORTED:
4427 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4428 		break;
4429 	case SCTP_DEFAULT_PRINFO:
4430 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4431 		break;
4432 	case SCTP_RECONFIG_SUPPORTED:
4433 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4434 		break;
4435 	case SCTP_ENABLE_STREAM_RESET:
4436 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4437 		break;
4438 	case SCTP_RESET_STREAMS:
4439 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4440 		break;
4441 	case SCTP_RESET_ASSOC:
4442 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4443 		break;
4444 	case SCTP_ADD_STREAMS:
4445 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4446 		break;
4447 	case SCTP_STREAM_SCHEDULER:
4448 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4449 		break;
4450 	case SCTP_STREAM_SCHEDULER_VALUE:
4451 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4452 		break;
4453 	case SCTP_INTERLEAVING_SUPPORTED:
4454 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4455 								optlen);
4456 		break;
4457 	case SCTP_REUSE_PORT:
4458 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4459 		break;
4460 	default:
4461 		retval = -ENOPROTOOPT;
4462 		break;
4463 	}
4464 
4465 	release_sock(sk);
4466 
4467 out_nounlock:
4468 	return retval;
4469 }
4470 
4471 /* API 3.1.6 connect() - UDP Style Syntax
4472  *
4473  * An application may use the connect() call in the UDP model to initiate an
4474  * association without sending data.
4475  *
4476  * The syntax is:
4477  *
4478  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4479  *
4480  * sd: the socket descriptor to have a new association added to.
4481  *
4482  * nam: the address structure (either struct sockaddr_in or struct
4483  *    sockaddr_in6 defined in RFC2553 [7]).
4484  *
4485  * len: the size of the address.
4486  */
4487 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4488 			int addr_len, int flags)
4489 {
4490 	struct inet_sock *inet = inet_sk(sk);
4491 	struct sctp_af *af;
4492 	int err = 0;
4493 
4494 	lock_sock(sk);
4495 
4496 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4497 		 addr, addr_len);
4498 
4499 	/* We may need to bind the socket. */
4500 	if (!inet->inet_num) {
4501 		if (sk->sk_prot->get_port(sk, 0)) {
4502 			release_sock(sk);
4503 			return -EAGAIN;
4504 		}
4505 		inet->inet_sport = htons(inet->inet_num);
4506 	}
4507 
4508 	/* Validate addr_len before calling common connect/connectx routine. */
4509 	af = sctp_get_af_specific(addr->sa_family);
4510 	if (!af || addr_len < af->sockaddr_len) {
4511 		err = -EINVAL;
4512 	} else {
4513 		/* Pass correct addr len to common routine (so it knows there
4514 		 * is only one address being passed.
4515 		 */
4516 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4517 	}
4518 
4519 	release_sock(sk);
4520 	return err;
4521 }
4522 
4523 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4524 		      int addr_len, int flags)
4525 {
4526 	if (addr_len < sizeof(uaddr->sa_family))
4527 		return -EINVAL;
4528 
4529 	if (uaddr->sa_family == AF_UNSPEC)
4530 		return -EOPNOTSUPP;
4531 
4532 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4533 }
4534 
4535 /* FIXME: Write comments. */
4536 static int sctp_disconnect(struct sock *sk, int flags)
4537 {
4538 	return -EOPNOTSUPP; /* STUB */
4539 }
4540 
4541 /* 4.1.4 accept() - TCP Style Syntax
4542  *
4543  * Applications use accept() call to remove an established SCTP
4544  * association from the accept queue of the endpoint.  A new socket
4545  * descriptor will be returned from accept() to represent the newly
4546  * formed association.
4547  */
4548 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4549 {
4550 	struct sctp_sock *sp;
4551 	struct sctp_endpoint *ep;
4552 	struct sock *newsk = NULL;
4553 	struct sctp_association *asoc;
4554 	long timeo;
4555 	int error = 0;
4556 
4557 	lock_sock(sk);
4558 
4559 	sp = sctp_sk(sk);
4560 	ep = sp->ep;
4561 
4562 	if (!sctp_style(sk, TCP)) {
4563 		error = -EOPNOTSUPP;
4564 		goto out;
4565 	}
4566 
4567 	if (!sctp_sstate(sk, LISTENING)) {
4568 		error = -EINVAL;
4569 		goto out;
4570 	}
4571 
4572 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4573 
4574 	error = sctp_wait_for_accept(sk, timeo);
4575 	if (error)
4576 		goto out;
4577 
4578 	/* We treat the list of associations on the endpoint as the accept
4579 	 * queue and pick the first association on the list.
4580 	 */
4581 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4582 
4583 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4584 	if (!newsk) {
4585 		error = -ENOMEM;
4586 		goto out;
4587 	}
4588 
4589 	/* Populate the fields of the newsk from the oldsk and migrate the
4590 	 * asoc to the newsk.
4591 	 */
4592 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4593 
4594 out:
4595 	release_sock(sk);
4596 	*err = error;
4597 	return newsk;
4598 }
4599 
4600 /* The SCTP ioctl handler. */
4601 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4602 {
4603 	int rc = -ENOTCONN;
4604 
4605 	lock_sock(sk);
4606 
4607 	/*
4608 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4609 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4610 	 */
4611 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4612 		goto out;
4613 
4614 	switch (cmd) {
4615 	case SIOCINQ: {
4616 		struct sk_buff *skb;
4617 		unsigned int amount = 0;
4618 
4619 		skb = skb_peek(&sk->sk_receive_queue);
4620 		if (skb != NULL) {
4621 			/*
4622 			 * We will only return the amount of this packet since
4623 			 * that is all that will be read.
4624 			 */
4625 			amount = skb->len;
4626 		}
4627 		rc = put_user(amount, (int __user *)arg);
4628 		break;
4629 	}
4630 	default:
4631 		rc = -ENOIOCTLCMD;
4632 		break;
4633 	}
4634 out:
4635 	release_sock(sk);
4636 	return rc;
4637 }
4638 
4639 /* This is the function which gets called during socket creation to
4640  * initialized the SCTP-specific portion of the sock.
4641  * The sock structure should already be zero-filled memory.
4642  */
4643 static int sctp_init_sock(struct sock *sk)
4644 {
4645 	struct net *net = sock_net(sk);
4646 	struct sctp_sock *sp;
4647 
4648 	pr_debug("%s: sk:%p\n", __func__, sk);
4649 
4650 	sp = sctp_sk(sk);
4651 
4652 	/* Initialize the SCTP per socket area.  */
4653 	switch (sk->sk_type) {
4654 	case SOCK_SEQPACKET:
4655 		sp->type = SCTP_SOCKET_UDP;
4656 		break;
4657 	case SOCK_STREAM:
4658 		sp->type = SCTP_SOCKET_TCP;
4659 		break;
4660 	default:
4661 		return -ESOCKTNOSUPPORT;
4662 	}
4663 
4664 	sk->sk_gso_type = SKB_GSO_SCTP;
4665 
4666 	/* Initialize default send parameters. These parameters can be
4667 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4668 	 */
4669 	sp->default_stream = 0;
4670 	sp->default_ppid = 0;
4671 	sp->default_flags = 0;
4672 	sp->default_context = 0;
4673 	sp->default_timetolive = 0;
4674 
4675 	sp->default_rcv_context = 0;
4676 	sp->max_burst = net->sctp.max_burst;
4677 
4678 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4679 
4680 	/* Initialize default setup parameters. These parameters
4681 	 * can be modified with the SCTP_INITMSG socket option or
4682 	 * overridden by the SCTP_INIT CMSG.
4683 	 */
4684 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4685 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4686 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4687 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4688 
4689 	/* Initialize default RTO related parameters.  These parameters can
4690 	 * be modified for with the SCTP_RTOINFO socket option.
4691 	 */
4692 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4693 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4694 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4695 
4696 	/* Initialize default association related parameters. These parameters
4697 	 * can be modified with the SCTP_ASSOCINFO socket option.
4698 	 */
4699 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4700 	sp->assocparams.sasoc_number_peer_destinations = 0;
4701 	sp->assocparams.sasoc_peer_rwnd = 0;
4702 	sp->assocparams.sasoc_local_rwnd = 0;
4703 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4704 
4705 	/* Initialize default event subscriptions. By default, all the
4706 	 * options are off.
4707 	 */
4708 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4709 
4710 	/* Default Peer Address Parameters.  These defaults can
4711 	 * be modified via SCTP_PEER_ADDR_PARAMS
4712 	 */
4713 	sp->hbinterval  = net->sctp.hb_interval;
4714 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4715 	sp->pathmtu     = 0; /* allow default discovery */
4716 	sp->sackdelay   = net->sctp.sack_timeout;
4717 	sp->sackfreq	= 2;
4718 	sp->param_flags = SPP_HB_ENABLE |
4719 			  SPP_PMTUD_ENABLE |
4720 			  SPP_SACKDELAY_ENABLE;
4721 
4722 	/* If enabled no SCTP message fragmentation will be performed.
4723 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4724 	 */
4725 	sp->disable_fragments = 0;
4726 
4727 	/* Enable Nagle algorithm by default.  */
4728 	sp->nodelay           = 0;
4729 
4730 	sp->recvrcvinfo = 0;
4731 	sp->recvnxtinfo = 0;
4732 
4733 	/* Enable by default. */
4734 	sp->v4mapped          = 1;
4735 
4736 	/* Auto-close idle associations after the configured
4737 	 * number of seconds.  A value of 0 disables this
4738 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4739 	 * for UDP-style sockets only.
4740 	 */
4741 	sp->autoclose         = 0;
4742 
4743 	/* User specified fragmentation limit. */
4744 	sp->user_frag         = 0;
4745 
4746 	sp->adaptation_ind = 0;
4747 
4748 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4749 
4750 	/* Control variables for partial data delivery. */
4751 	atomic_set(&sp->pd_mode, 0);
4752 	skb_queue_head_init(&sp->pd_lobby);
4753 	sp->frag_interleave = 0;
4754 
4755 	/* Create a per socket endpoint structure.  Even if we
4756 	 * change the data structure relationships, this may still
4757 	 * be useful for storing pre-connect address information.
4758 	 */
4759 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4760 	if (!sp->ep)
4761 		return -ENOMEM;
4762 
4763 	sp->hmac = NULL;
4764 
4765 	sk->sk_destruct = sctp_destruct_sock;
4766 
4767 	SCTP_DBG_OBJCNT_INC(sock);
4768 
4769 	local_bh_disable();
4770 	sk_sockets_allocated_inc(sk);
4771 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4772 
4773 	/* Nothing can fail after this block, otherwise
4774 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4775 	 */
4776 	if (net->sctp.default_auto_asconf) {
4777 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4778 		list_add_tail(&sp->auto_asconf_list,
4779 		    &net->sctp.auto_asconf_splist);
4780 		sp->do_auto_asconf = 1;
4781 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4782 	} else {
4783 		sp->do_auto_asconf = 0;
4784 	}
4785 
4786 	local_bh_enable();
4787 
4788 	return 0;
4789 }
4790 
4791 /* Cleanup any SCTP per socket resources. Must be called with
4792  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4793  */
4794 static void sctp_destroy_sock(struct sock *sk)
4795 {
4796 	struct sctp_sock *sp;
4797 
4798 	pr_debug("%s: sk:%p\n", __func__, sk);
4799 
4800 	/* Release our hold on the endpoint. */
4801 	sp = sctp_sk(sk);
4802 	/* This could happen during socket init, thus we bail out
4803 	 * early, since the rest of the below is not setup either.
4804 	 */
4805 	if (sp->ep == NULL)
4806 		return;
4807 
4808 	if (sp->do_auto_asconf) {
4809 		sp->do_auto_asconf = 0;
4810 		list_del(&sp->auto_asconf_list);
4811 	}
4812 	sctp_endpoint_free(sp->ep);
4813 	local_bh_disable();
4814 	sk_sockets_allocated_dec(sk);
4815 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4816 	local_bh_enable();
4817 }
4818 
4819 /* Triggered when there are no references on the socket anymore */
4820 static void sctp_destruct_sock(struct sock *sk)
4821 {
4822 	struct sctp_sock *sp = sctp_sk(sk);
4823 
4824 	/* Free up the HMAC transform. */
4825 	crypto_free_shash(sp->hmac);
4826 
4827 	inet_sock_destruct(sk);
4828 }
4829 
4830 /* API 4.1.7 shutdown() - TCP Style Syntax
4831  *     int shutdown(int socket, int how);
4832  *
4833  *     sd      - the socket descriptor of the association to be closed.
4834  *     how     - Specifies the type of shutdown.  The  values  are
4835  *               as follows:
4836  *               SHUT_RD
4837  *                     Disables further receive operations. No SCTP
4838  *                     protocol action is taken.
4839  *               SHUT_WR
4840  *                     Disables further send operations, and initiates
4841  *                     the SCTP shutdown sequence.
4842  *               SHUT_RDWR
4843  *                     Disables further send  and  receive  operations
4844  *                     and initiates the SCTP shutdown sequence.
4845  */
4846 static void sctp_shutdown(struct sock *sk, int how)
4847 {
4848 	struct net *net = sock_net(sk);
4849 	struct sctp_endpoint *ep;
4850 
4851 	if (!sctp_style(sk, TCP))
4852 		return;
4853 
4854 	ep = sctp_sk(sk)->ep;
4855 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4856 		struct sctp_association *asoc;
4857 
4858 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
4859 		asoc = list_entry(ep->asocs.next,
4860 				  struct sctp_association, asocs);
4861 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4862 	}
4863 }
4864 
4865 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4866 		       struct sctp_info *info)
4867 {
4868 	struct sctp_transport *prim;
4869 	struct list_head *pos;
4870 	int mask;
4871 
4872 	memset(info, 0, sizeof(*info));
4873 	if (!asoc) {
4874 		struct sctp_sock *sp = sctp_sk(sk);
4875 
4876 		info->sctpi_s_autoclose = sp->autoclose;
4877 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4878 		info->sctpi_s_pd_point = sp->pd_point;
4879 		info->sctpi_s_nodelay = sp->nodelay;
4880 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4881 		info->sctpi_s_v4mapped = sp->v4mapped;
4882 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4883 		info->sctpi_s_type = sp->type;
4884 
4885 		return 0;
4886 	}
4887 
4888 	info->sctpi_tag = asoc->c.my_vtag;
4889 	info->sctpi_state = asoc->state;
4890 	info->sctpi_rwnd = asoc->a_rwnd;
4891 	info->sctpi_unackdata = asoc->unack_data;
4892 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4893 	info->sctpi_instrms = asoc->stream.incnt;
4894 	info->sctpi_outstrms = asoc->stream.outcnt;
4895 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4896 		info->sctpi_inqueue++;
4897 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4898 		info->sctpi_outqueue++;
4899 	info->sctpi_overall_error = asoc->overall_error_count;
4900 	info->sctpi_max_burst = asoc->max_burst;
4901 	info->sctpi_maxseg = asoc->frag_point;
4902 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4903 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4904 
4905 	mask = asoc->peer.ecn_capable << 1;
4906 	mask = (mask | asoc->peer.ipv4_address) << 1;
4907 	mask = (mask | asoc->peer.ipv6_address) << 1;
4908 	mask = (mask | asoc->peer.hostname_address) << 1;
4909 	mask = (mask | asoc->peer.asconf_capable) << 1;
4910 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4911 	mask = (mask | asoc->peer.auth_capable);
4912 	info->sctpi_peer_capable = mask;
4913 	mask = asoc->peer.sack_needed << 1;
4914 	mask = (mask | asoc->peer.sack_generation) << 1;
4915 	mask = (mask | asoc->peer.zero_window_announced);
4916 	info->sctpi_peer_sack = mask;
4917 
4918 	info->sctpi_isacks = asoc->stats.isacks;
4919 	info->sctpi_osacks = asoc->stats.osacks;
4920 	info->sctpi_opackets = asoc->stats.opackets;
4921 	info->sctpi_ipackets = asoc->stats.ipackets;
4922 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4923 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4924 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4925 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4926 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4927 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4928 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4929 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4930 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4931 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4932 
4933 	prim = asoc->peer.primary_path;
4934 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4935 	info->sctpi_p_state = prim->state;
4936 	info->sctpi_p_cwnd = prim->cwnd;
4937 	info->sctpi_p_srtt = prim->srtt;
4938 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4939 	info->sctpi_p_hbinterval = prim->hbinterval;
4940 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4941 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4942 	info->sctpi_p_ssthresh = prim->ssthresh;
4943 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4944 	info->sctpi_p_flight_size = prim->flight_size;
4945 	info->sctpi_p_error = prim->error_count;
4946 
4947 	return 0;
4948 }
4949 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4950 
4951 /* use callback to avoid exporting the core structure */
4952 void sctp_transport_walk_start(struct rhashtable_iter *iter)
4953 {
4954 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
4955 
4956 	rhashtable_walk_start(iter);
4957 }
4958 
4959 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4960 {
4961 	rhashtable_walk_stop(iter);
4962 	rhashtable_walk_exit(iter);
4963 }
4964 
4965 struct sctp_transport *sctp_transport_get_next(struct net *net,
4966 					       struct rhashtable_iter *iter)
4967 {
4968 	struct sctp_transport *t;
4969 
4970 	t = rhashtable_walk_next(iter);
4971 	for (; t; t = rhashtable_walk_next(iter)) {
4972 		if (IS_ERR(t)) {
4973 			if (PTR_ERR(t) == -EAGAIN)
4974 				continue;
4975 			break;
4976 		}
4977 
4978 		if (!sctp_transport_hold(t))
4979 			continue;
4980 
4981 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
4982 		    t->asoc->peer.primary_path == t)
4983 			break;
4984 
4985 		sctp_transport_put(t);
4986 	}
4987 
4988 	return t;
4989 }
4990 
4991 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4992 					      struct rhashtable_iter *iter,
4993 					      int pos)
4994 {
4995 	struct sctp_transport *t;
4996 
4997 	if (!pos)
4998 		return SEQ_START_TOKEN;
4999 
5000 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5001 		if (!--pos)
5002 			break;
5003 		sctp_transport_put(t);
5004 	}
5005 
5006 	return t;
5007 }
5008 
5009 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5010 			   void *p) {
5011 	int err = 0;
5012 	int hash = 0;
5013 	struct sctp_ep_common *epb;
5014 	struct sctp_hashbucket *head;
5015 
5016 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5017 	     hash++, head++) {
5018 		read_lock_bh(&head->lock);
5019 		sctp_for_each_hentry(epb, &head->chain) {
5020 			err = cb(sctp_ep(epb), p);
5021 			if (err)
5022 				break;
5023 		}
5024 		read_unlock_bh(&head->lock);
5025 	}
5026 
5027 	return err;
5028 }
5029 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5030 
5031 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5032 				  struct net *net,
5033 				  const union sctp_addr *laddr,
5034 				  const union sctp_addr *paddr, void *p)
5035 {
5036 	struct sctp_transport *transport;
5037 	int err;
5038 
5039 	rcu_read_lock();
5040 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5041 	rcu_read_unlock();
5042 	if (!transport)
5043 		return -ENOENT;
5044 
5045 	err = cb(transport, p);
5046 	sctp_transport_put(transport);
5047 
5048 	return err;
5049 }
5050 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5051 
5052 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5053 			    int (*cb_done)(struct sctp_transport *, void *),
5054 			    struct net *net, int *pos, void *p) {
5055 	struct rhashtable_iter hti;
5056 	struct sctp_transport *tsp;
5057 	int ret;
5058 
5059 again:
5060 	ret = 0;
5061 	sctp_transport_walk_start(&hti);
5062 
5063 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5064 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5065 		ret = cb(tsp, p);
5066 		if (ret)
5067 			break;
5068 		(*pos)++;
5069 		sctp_transport_put(tsp);
5070 	}
5071 	sctp_transport_walk_stop(&hti);
5072 
5073 	if (ret) {
5074 		if (cb_done && !cb_done(tsp, p)) {
5075 			(*pos)++;
5076 			sctp_transport_put(tsp);
5077 			goto again;
5078 		}
5079 		sctp_transport_put(tsp);
5080 	}
5081 
5082 	return ret;
5083 }
5084 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5085 
5086 /* 7.2.1 Association Status (SCTP_STATUS)
5087 
5088  * Applications can retrieve current status information about an
5089  * association, including association state, peer receiver window size,
5090  * number of unacked data chunks, and number of data chunks pending
5091  * receipt.  This information is read-only.
5092  */
5093 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5094 				       char __user *optval,
5095 				       int __user *optlen)
5096 {
5097 	struct sctp_status status;
5098 	struct sctp_association *asoc = NULL;
5099 	struct sctp_transport *transport;
5100 	sctp_assoc_t associd;
5101 	int retval = 0;
5102 
5103 	if (len < sizeof(status)) {
5104 		retval = -EINVAL;
5105 		goto out;
5106 	}
5107 
5108 	len = sizeof(status);
5109 	if (copy_from_user(&status, optval, len)) {
5110 		retval = -EFAULT;
5111 		goto out;
5112 	}
5113 
5114 	associd = status.sstat_assoc_id;
5115 	asoc = sctp_id2assoc(sk, associd);
5116 	if (!asoc) {
5117 		retval = -EINVAL;
5118 		goto out;
5119 	}
5120 
5121 	transport = asoc->peer.primary_path;
5122 
5123 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5124 	status.sstat_state = sctp_assoc_to_state(asoc);
5125 	status.sstat_rwnd =  asoc->peer.rwnd;
5126 	status.sstat_unackdata = asoc->unack_data;
5127 
5128 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5129 	status.sstat_instrms = asoc->stream.incnt;
5130 	status.sstat_outstrms = asoc->stream.outcnt;
5131 	status.sstat_fragmentation_point = asoc->frag_point;
5132 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5133 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5134 			transport->af_specific->sockaddr_len);
5135 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5136 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5137 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5138 	status.sstat_primary.spinfo_state = transport->state;
5139 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5140 	status.sstat_primary.spinfo_srtt = transport->srtt;
5141 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5142 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5143 
5144 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5145 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5146 
5147 	if (put_user(len, optlen)) {
5148 		retval = -EFAULT;
5149 		goto out;
5150 	}
5151 
5152 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5153 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5154 		 status.sstat_assoc_id);
5155 
5156 	if (copy_to_user(optval, &status, len)) {
5157 		retval = -EFAULT;
5158 		goto out;
5159 	}
5160 
5161 out:
5162 	return retval;
5163 }
5164 
5165 
5166 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5167  *
5168  * Applications can retrieve information about a specific peer address
5169  * of an association, including its reachability state, congestion
5170  * window, and retransmission timer values.  This information is
5171  * read-only.
5172  */
5173 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5174 					  char __user *optval,
5175 					  int __user *optlen)
5176 {
5177 	struct sctp_paddrinfo pinfo;
5178 	struct sctp_transport *transport;
5179 	int retval = 0;
5180 
5181 	if (len < sizeof(pinfo)) {
5182 		retval = -EINVAL;
5183 		goto out;
5184 	}
5185 
5186 	len = sizeof(pinfo);
5187 	if (copy_from_user(&pinfo, optval, len)) {
5188 		retval = -EFAULT;
5189 		goto out;
5190 	}
5191 
5192 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5193 					   pinfo.spinfo_assoc_id);
5194 	if (!transport)
5195 		return -EINVAL;
5196 
5197 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5198 	pinfo.spinfo_state = transport->state;
5199 	pinfo.spinfo_cwnd = transport->cwnd;
5200 	pinfo.spinfo_srtt = transport->srtt;
5201 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5202 	pinfo.spinfo_mtu = transport->pathmtu;
5203 
5204 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5205 		pinfo.spinfo_state = SCTP_ACTIVE;
5206 
5207 	if (put_user(len, optlen)) {
5208 		retval = -EFAULT;
5209 		goto out;
5210 	}
5211 
5212 	if (copy_to_user(optval, &pinfo, len)) {
5213 		retval = -EFAULT;
5214 		goto out;
5215 	}
5216 
5217 out:
5218 	return retval;
5219 }
5220 
5221 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5222  *
5223  * This option is a on/off flag.  If enabled no SCTP message
5224  * fragmentation will be performed.  Instead if a message being sent
5225  * exceeds the current PMTU size, the message will NOT be sent and
5226  * instead a error will be indicated to the user.
5227  */
5228 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5229 					char __user *optval, int __user *optlen)
5230 {
5231 	int val;
5232 
5233 	if (len < sizeof(int))
5234 		return -EINVAL;
5235 
5236 	len = sizeof(int);
5237 	val = (sctp_sk(sk)->disable_fragments == 1);
5238 	if (put_user(len, optlen))
5239 		return -EFAULT;
5240 	if (copy_to_user(optval, &val, len))
5241 		return -EFAULT;
5242 	return 0;
5243 }
5244 
5245 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5246  *
5247  * This socket option is used to specify various notifications and
5248  * ancillary data the user wishes to receive.
5249  */
5250 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5251 				  int __user *optlen)
5252 {
5253 	if (len == 0)
5254 		return -EINVAL;
5255 	if (len > sizeof(struct sctp_event_subscribe))
5256 		len = sizeof(struct sctp_event_subscribe);
5257 	if (put_user(len, optlen))
5258 		return -EFAULT;
5259 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
5260 		return -EFAULT;
5261 	return 0;
5262 }
5263 
5264 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5265  *
5266  * This socket option is applicable to the UDP-style socket only.  When
5267  * set it will cause associations that are idle for more than the
5268  * specified number of seconds to automatically close.  An association
5269  * being idle is defined an association that has NOT sent or received
5270  * user data.  The special value of '0' indicates that no automatic
5271  * close of any associations should be performed.  The option expects an
5272  * integer defining the number of seconds of idle time before an
5273  * association is closed.
5274  */
5275 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5276 {
5277 	/* Applicable to UDP-style socket only */
5278 	if (sctp_style(sk, TCP))
5279 		return -EOPNOTSUPP;
5280 	if (len < sizeof(int))
5281 		return -EINVAL;
5282 	len = sizeof(int);
5283 	if (put_user(len, optlen))
5284 		return -EFAULT;
5285 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5286 		return -EFAULT;
5287 	return 0;
5288 }
5289 
5290 /* Helper routine to branch off an association to a new socket.  */
5291 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5292 {
5293 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5294 	struct sctp_sock *sp = sctp_sk(sk);
5295 	struct socket *sock;
5296 	int err = 0;
5297 
5298 	/* Do not peel off from one netns to another one. */
5299 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5300 		return -EINVAL;
5301 
5302 	if (!asoc)
5303 		return -EINVAL;
5304 
5305 	/* An association cannot be branched off from an already peeled-off
5306 	 * socket, nor is this supported for tcp style sockets.
5307 	 */
5308 	if (!sctp_style(sk, UDP))
5309 		return -EINVAL;
5310 
5311 	/* Create a new socket.  */
5312 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5313 	if (err < 0)
5314 		return err;
5315 
5316 	sctp_copy_sock(sock->sk, sk, asoc);
5317 
5318 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5319 	 * Set the daddr and initialize id to something more random and also
5320 	 * copy over any ip options.
5321 	 */
5322 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5323 	sp->pf->copy_ip_options(sk, sock->sk);
5324 
5325 	/* Populate the fields of the newsk from the oldsk and migrate the
5326 	 * asoc to the newsk.
5327 	 */
5328 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5329 
5330 	*sockp = sock;
5331 
5332 	return err;
5333 }
5334 EXPORT_SYMBOL(sctp_do_peeloff);
5335 
5336 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5337 					  struct file **newfile, unsigned flags)
5338 {
5339 	struct socket *newsock;
5340 	int retval;
5341 
5342 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5343 	if (retval < 0)
5344 		goto out;
5345 
5346 	/* Map the socket to an unused fd that can be returned to the user.  */
5347 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5348 	if (retval < 0) {
5349 		sock_release(newsock);
5350 		goto out;
5351 	}
5352 
5353 	*newfile = sock_alloc_file(newsock, 0, NULL);
5354 	if (IS_ERR(*newfile)) {
5355 		put_unused_fd(retval);
5356 		retval = PTR_ERR(*newfile);
5357 		*newfile = NULL;
5358 		return retval;
5359 	}
5360 
5361 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5362 		 retval);
5363 
5364 	peeloff->sd = retval;
5365 
5366 	if (flags & SOCK_NONBLOCK)
5367 		(*newfile)->f_flags |= O_NONBLOCK;
5368 out:
5369 	return retval;
5370 }
5371 
5372 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5373 {
5374 	sctp_peeloff_arg_t peeloff;
5375 	struct file *newfile = NULL;
5376 	int retval = 0;
5377 
5378 	if (len < sizeof(sctp_peeloff_arg_t))
5379 		return -EINVAL;
5380 	len = sizeof(sctp_peeloff_arg_t);
5381 	if (copy_from_user(&peeloff, optval, len))
5382 		return -EFAULT;
5383 
5384 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5385 	if (retval < 0)
5386 		goto out;
5387 
5388 	/* Return the fd mapped to the new socket.  */
5389 	if (put_user(len, optlen)) {
5390 		fput(newfile);
5391 		put_unused_fd(retval);
5392 		return -EFAULT;
5393 	}
5394 
5395 	if (copy_to_user(optval, &peeloff, len)) {
5396 		fput(newfile);
5397 		put_unused_fd(retval);
5398 		return -EFAULT;
5399 	}
5400 	fd_install(retval, newfile);
5401 out:
5402 	return retval;
5403 }
5404 
5405 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5406 					 char __user *optval, int __user *optlen)
5407 {
5408 	sctp_peeloff_flags_arg_t peeloff;
5409 	struct file *newfile = NULL;
5410 	int retval = 0;
5411 
5412 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5413 		return -EINVAL;
5414 	len = sizeof(sctp_peeloff_flags_arg_t);
5415 	if (copy_from_user(&peeloff, optval, len))
5416 		return -EFAULT;
5417 
5418 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5419 						&newfile, peeloff.flags);
5420 	if (retval < 0)
5421 		goto out;
5422 
5423 	/* Return the fd mapped to the new socket.  */
5424 	if (put_user(len, optlen)) {
5425 		fput(newfile);
5426 		put_unused_fd(retval);
5427 		return -EFAULT;
5428 	}
5429 
5430 	if (copy_to_user(optval, &peeloff, len)) {
5431 		fput(newfile);
5432 		put_unused_fd(retval);
5433 		return -EFAULT;
5434 	}
5435 	fd_install(retval, newfile);
5436 out:
5437 	return retval;
5438 }
5439 
5440 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5441  *
5442  * Applications can enable or disable heartbeats for any peer address of
5443  * an association, modify an address's heartbeat interval, force a
5444  * heartbeat to be sent immediately, and adjust the address's maximum
5445  * number of retransmissions sent before an address is considered
5446  * unreachable.  The following structure is used to access and modify an
5447  * address's parameters:
5448  *
5449  *  struct sctp_paddrparams {
5450  *     sctp_assoc_t            spp_assoc_id;
5451  *     struct sockaddr_storage spp_address;
5452  *     uint32_t                spp_hbinterval;
5453  *     uint16_t                spp_pathmaxrxt;
5454  *     uint32_t                spp_pathmtu;
5455  *     uint32_t                spp_sackdelay;
5456  *     uint32_t                spp_flags;
5457  * };
5458  *
5459  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5460  *                     application, and identifies the association for
5461  *                     this query.
5462  *   spp_address     - This specifies which address is of interest.
5463  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5464  *                     in milliseconds.  If a  value of zero
5465  *                     is present in this field then no changes are to
5466  *                     be made to this parameter.
5467  *   spp_pathmaxrxt  - This contains the maximum number of
5468  *                     retransmissions before this address shall be
5469  *                     considered unreachable. If a  value of zero
5470  *                     is present in this field then no changes are to
5471  *                     be made to this parameter.
5472  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5473  *                     specified here will be the "fixed" path mtu.
5474  *                     Note that if the spp_address field is empty
5475  *                     then all associations on this address will
5476  *                     have this fixed path mtu set upon them.
5477  *
5478  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5479  *                     the number of milliseconds that sacks will be delayed
5480  *                     for. This value will apply to all addresses of an
5481  *                     association if the spp_address field is empty. Note
5482  *                     also, that if delayed sack is enabled and this
5483  *                     value is set to 0, no change is made to the last
5484  *                     recorded delayed sack timer value.
5485  *
5486  *   spp_flags       - These flags are used to control various features
5487  *                     on an association. The flag field may contain
5488  *                     zero or more of the following options.
5489  *
5490  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5491  *                     specified address. Note that if the address
5492  *                     field is empty all addresses for the association
5493  *                     have heartbeats enabled upon them.
5494  *
5495  *                     SPP_HB_DISABLE - Disable heartbeats on the
5496  *                     speicifed address. Note that if the address
5497  *                     field is empty all addresses for the association
5498  *                     will have their heartbeats disabled. Note also
5499  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5500  *                     mutually exclusive, only one of these two should
5501  *                     be specified. Enabling both fields will have
5502  *                     undetermined results.
5503  *
5504  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5505  *                     to be made immediately.
5506  *
5507  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5508  *                     discovery upon the specified address. Note that
5509  *                     if the address feild is empty then all addresses
5510  *                     on the association are effected.
5511  *
5512  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5513  *                     discovery upon the specified address. Note that
5514  *                     if the address feild is empty then all addresses
5515  *                     on the association are effected. Not also that
5516  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5517  *                     exclusive. Enabling both will have undetermined
5518  *                     results.
5519  *
5520  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5521  *                     on delayed sack. The time specified in spp_sackdelay
5522  *                     is used to specify the sack delay for this address. Note
5523  *                     that if spp_address is empty then all addresses will
5524  *                     enable delayed sack and take on the sack delay
5525  *                     value specified in spp_sackdelay.
5526  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5527  *                     off delayed sack. If the spp_address field is blank then
5528  *                     delayed sack is disabled for the entire association. Note
5529  *                     also that this field is mutually exclusive to
5530  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5531  *                     results.
5532  *
5533  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5534  *                     setting of the IPV6 flow label value.  The value is
5535  *                     contained in the spp_ipv6_flowlabel field.
5536  *                     Upon retrieval, this flag will be set to indicate that
5537  *                     the spp_ipv6_flowlabel field has a valid value returned.
5538  *                     If a specific destination address is set (in the
5539  *                     spp_address field), then the value returned is that of
5540  *                     the address.  If just an association is specified (and
5541  *                     no address), then the association's default flow label
5542  *                     is returned.  If neither an association nor a destination
5543  *                     is specified, then the socket's default flow label is
5544  *                     returned.  For non-IPv6 sockets, this flag will be left
5545  *                     cleared.
5546  *
5547  *                     SPP_DSCP:  Setting this flag enables the setting of the
5548  *                     Differentiated Services Code Point (DSCP) value
5549  *                     associated with either the association or a specific
5550  *                     address.  The value is obtained in the spp_dscp field.
5551  *                     Upon retrieval, this flag will be set to indicate that
5552  *                     the spp_dscp field has a valid value returned.  If a
5553  *                     specific destination address is set when called (in the
5554  *                     spp_address field), then that specific destination
5555  *                     address's DSCP value is returned.  If just an association
5556  *                     is specified, then the association's default DSCP is
5557  *                     returned.  If neither an association nor a destination is
5558  *                     specified, then the socket's default DSCP is returned.
5559  *
5560  *   spp_ipv6_flowlabel
5561  *                   - This field is used in conjunction with the
5562  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5563  *                     The 20 least significant bits are used for the flow
5564  *                     label.  This setting has precedence over any IPv6-layer
5565  *                     setting.
5566  *
5567  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5568  *                     and contains the DSCP.  The 6 most significant bits are
5569  *                     used for the DSCP.  This setting has precedence over any
5570  *                     IPv4- or IPv6- layer setting.
5571  */
5572 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5573 					    char __user *optval, int __user *optlen)
5574 {
5575 	struct sctp_paddrparams  params;
5576 	struct sctp_transport   *trans = NULL;
5577 	struct sctp_association *asoc = NULL;
5578 	struct sctp_sock        *sp = sctp_sk(sk);
5579 
5580 	if (len >= sizeof(params))
5581 		len = sizeof(params);
5582 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5583 				       spp_ipv6_flowlabel), 4))
5584 		len = ALIGN(offsetof(struct sctp_paddrparams,
5585 				     spp_ipv6_flowlabel), 4);
5586 	else
5587 		return -EINVAL;
5588 
5589 	if (copy_from_user(&params, optval, len))
5590 		return -EFAULT;
5591 
5592 	/* If an address other than INADDR_ANY is specified, and
5593 	 * no transport is found, then the request is invalid.
5594 	 */
5595 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5596 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5597 					       params.spp_assoc_id);
5598 		if (!trans) {
5599 			pr_debug("%s: failed no transport\n", __func__);
5600 			return -EINVAL;
5601 		}
5602 	}
5603 
5604 	/* Get association, if assoc_id != 0 and the socket is a one
5605 	 * to many style socket, and an association was not found, then
5606 	 * the id was invalid.
5607 	 */
5608 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5609 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5610 		pr_debug("%s: failed no association\n", __func__);
5611 		return -EINVAL;
5612 	}
5613 
5614 	if (trans) {
5615 		/* Fetch transport values. */
5616 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5617 		params.spp_pathmtu    = trans->pathmtu;
5618 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5619 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5620 
5621 		/*draft-11 doesn't say what to return in spp_flags*/
5622 		params.spp_flags      = trans->param_flags;
5623 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5624 			params.spp_ipv6_flowlabel = trans->flowlabel &
5625 						    SCTP_FLOWLABEL_VAL_MASK;
5626 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5627 		}
5628 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5629 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5630 			params.spp_flags |= SPP_DSCP;
5631 		}
5632 	} else if (asoc) {
5633 		/* Fetch association values. */
5634 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5635 		params.spp_pathmtu    = asoc->pathmtu;
5636 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5637 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5638 
5639 		/*draft-11 doesn't say what to return in spp_flags*/
5640 		params.spp_flags      = asoc->param_flags;
5641 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5642 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5643 						    SCTP_FLOWLABEL_VAL_MASK;
5644 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5645 		}
5646 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5647 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5648 			params.spp_flags |= SPP_DSCP;
5649 		}
5650 	} else {
5651 		/* Fetch socket values. */
5652 		params.spp_hbinterval = sp->hbinterval;
5653 		params.spp_pathmtu    = sp->pathmtu;
5654 		params.spp_sackdelay  = sp->sackdelay;
5655 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5656 
5657 		/*draft-11 doesn't say what to return in spp_flags*/
5658 		params.spp_flags      = sp->param_flags;
5659 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5660 			params.spp_ipv6_flowlabel = sp->flowlabel &
5661 						    SCTP_FLOWLABEL_VAL_MASK;
5662 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5663 		}
5664 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5665 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5666 			params.spp_flags |= SPP_DSCP;
5667 		}
5668 	}
5669 
5670 	if (copy_to_user(optval, &params, len))
5671 		return -EFAULT;
5672 
5673 	if (put_user(len, optlen))
5674 		return -EFAULT;
5675 
5676 	return 0;
5677 }
5678 
5679 /*
5680  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5681  *
5682  * This option will effect the way delayed acks are performed.  This
5683  * option allows you to get or set the delayed ack time, in
5684  * milliseconds.  It also allows changing the delayed ack frequency.
5685  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5686  * the assoc_id is 0, then this sets or gets the endpoints default
5687  * values.  If the assoc_id field is non-zero, then the set or get
5688  * effects the specified association for the one to many model (the
5689  * assoc_id field is ignored by the one to one model).  Note that if
5690  * sack_delay or sack_freq are 0 when setting this option, then the
5691  * current values will remain unchanged.
5692  *
5693  * struct sctp_sack_info {
5694  *     sctp_assoc_t            sack_assoc_id;
5695  *     uint32_t                sack_delay;
5696  *     uint32_t                sack_freq;
5697  * };
5698  *
5699  * sack_assoc_id -  This parameter, indicates which association the user
5700  *    is performing an action upon.  Note that if this field's value is
5701  *    zero then the endpoints default value is changed (effecting future
5702  *    associations only).
5703  *
5704  * sack_delay -  This parameter contains the number of milliseconds that
5705  *    the user is requesting the delayed ACK timer be set to.  Note that
5706  *    this value is defined in the standard to be between 200 and 500
5707  *    milliseconds.
5708  *
5709  * sack_freq -  This parameter contains the number of packets that must
5710  *    be received before a sack is sent without waiting for the delay
5711  *    timer to expire.  The default value for this is 2, setting this
5712  *    value to 1 will disable the delayed sack algorithm.
5713  */
5714 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5715 					    char __user *optval,
5716 					    int __user *optlen)
5717 {
5718 	struct sctp_sack_info    params;
5719 	struct sctp_association *asoc = NULL;
5720 	struct sctp_sock        *sp = sctp_sk(sk);
5721 
5722 	if (len >= sizeof(struct sctp_sack_info)) {
5723 		len = sizeof(struct sctp_sack_info);
5724 
5725 		if (copy_from_user(&params, optval, len))
5726 			return -EFAULT;
5727 	} else if (len == sizeof(struct sctp_assoc_value)) {
5728 		pr_warn_ratelimited(DEPRECATED
5729 				    "%s (pid %d) "
5730 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5731 				    "Use struct sctp_sack_info instead\n",
5732 				    current->comm, task_pid_nr(current));
5733 		if (copy_from_user(&params, optval, len))
5734 			return -EFAULT;
5735 	} else
5736 		return -EINVAL;
5737 
5738 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5739 	 * to many style socket, and an association was not found, then
5740 	 * the id was invalid.
5741 	 */
5742 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5743 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5744 		return -EINVAL;
5745 
5746 	if (asoc) {
5747 		/* Fetch association values. */
5748 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5749 			params.sack_delay = jiffies_to_msecs(
5750 				asoc->sackdelay);
5751 			params.sack_freq = asoc->sackfreq;
5752 
5753 		} else {
5754 			params.sack_delay = 0;
5755 			params.sack_freq = 1;
5756 		}
5757 	} else {
5758 		/* Fetch socket values. */
5759 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5760 			params.sack_delay  = sp->sackdelay;
5761 			params.sack_freq = sp->sackfreq;
5762 		} else {
5763 			params.sack_delay  = 0;
5764 			params.sack_freq = 1;
5765 		}
5766 	}
5767 
5768 	if (copy_to_user(optval, &params, len))
5769 		return -EFAULT;
5770 
5771 	if (put_user(len, optlen))
5772 		return -EFAULT;
5773 
5774 	return 0;
5775 }
5776 
5777 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5778  *
5779  * Applications can specify protocol parameters for the default association
5780  * initialization.  The option name argument to setsockopt() and getsockopt()
5781  * is SCTP_INITMSG.
5782  *
5783  * Setting initialization parameters is effective only on an unconnected
5784  * socket (for UDP-style sockets only future associations are effected
5785  * by the change).  With TCP-style sockets, this option is inherited by
5786  * sockets derived from a listener socket.
5787  */
5788 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5789 {
5790 	if (len < sizeof(struct sctp_initmsg))
5791 		return -EINVAL;
5792 	len = sizeof(struct sctp_initmsg);
5793 	if (put_user(len, optlen))
5794 		return -EFAULT;
5795 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5796 		return -EFAULT;
5797 	return 0;
5798 }
5799 
5800 
5801 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5802 				      char __user *optval, int __user *optlen)
5803 {
5804 	struct sctp_association *asoc;
5805 	int cnt = 0;
5806 	struct sctp_getaddrs getaddrs;
5807 	struct sctp_transport *from;
5808 	void __user *to;
5809 	union sctp_addr temp;
5810 	struct sctp_sock *sp = sctp_sk(sk);
5811 	int addrlen;
5812 	size_t space_left;
5813 	int bytes_copied;
5814 
5815 	if (len < sizeof(struct sctp_getaddrs))
5816 		return -EINVAL;
5817 
5818 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5819 		return -EFAULT;
5820 
5821 	/* For UDP-style sockets, id specifies the association to query.  */
5822 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5823 	if (!asoc)
5824 		return -EINVAL;
5825 
5826 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5827 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5828 
5829 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5830 				transports) {
5831 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5832 		addrlen = sctp_get_pf_specific(sk->sk_family)
5833 			      ->addr_to_user(sp, &temp);
5834 		if (space_left < addrlen)
5835 			return -ENOMEM;
5836 		if (copy_to_user(to, &temp, addrlen))
5837 			return -EFAULT;
5838 		to += addrlen;
5839 		cnt++;
5840 		space_left -= addrlen;
5841 	}
5842 
5843 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5844 		return -EFAULT;
5845 	bytes_copied = ((char __user *)to) - optval;
5846 	if (put_user(bytes_copied, optlen))
5847 		return -EFAULT;
5848 
5849 	return 0;
5850 }
5851 
5852 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5853 			    size_t space_left, int *bytes_copied)
5854 {
5855 	struct sctp_sockaddr_entry *addr;
5856 	union sctp_addr temp;
5857 	int cnt = 0;
5858 	int addrlen;
5859 	struct net *net = sock_net(sk);
5860 
5861 	rcu_read_lock();
5862 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5863 		if (!addr->valid)
5864 			continue;
5865 
5866 		if ((PF_INET == sk->sk_family) &&
5867 		    (AF_INET6 == addr->a.sa.sa_family))
5868 			continue;
5869 		if ((PF_INET6 == sk->sk_family) &&
5870 		    inet_v6_ipv6only(sk) &&
5871 		    (AF_INET == addr->a.sa.sa_family))
5872 			continue;
5873 		memcpy(&temp, &addr->a, sizeof(temp));
5874 		if (!temp.v4.sin_port)
5875 			temp.v4.sin_port = htons(port);
5876 
5877 		addrlen = sctp_get_pf_specific(sk->sk_family)
5878 			      ->addr_to_user(sctp_sk(sk), &temp);
5879 
5880 		if (space_left < addrlen) {
5881 			cnt =  -ENOMEM;
5882 			break;
5883 		}
5884 		memcpy(to, &temp, addrlen);
5885 
5886 		to += addrlen;
5887 		cnt++;
5888 		space_left -= addrlen;
5889 		*bytes_copied += addrlen;
5890 	}
5891 	rcu_read_unlock();
5892 
5893 	return cnt;
5894 }
5895 
5896 
5897 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5898 				       char __user *optval, int __user *optlen)
5899 {
5900 	struct sctp_bind_addr *bp;
5901 	struct sctp_association *asoc;
5902 	int cnt = 0;
5903 	struct sctp_getaddrs getaddrs;
5904 	struct sctp_sockaddr_entry *addr;
5905 	void __user *to;
5906 	union sctp_addr temp;
5907 	struct sctp_sock *sp = sctp_sk(sk);
5908 	int addrlen;
5909 	int err = 0;
5910 	size_t space_left;
5911 	int bytes_copied = 0;
5912 	void *addrs;
5913 	void *buf;
5914 
5915 	if (len < sizeof(struct sctp_getaddrs))
5916 		return -EINVAL;
5917 
5918 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5919 		return -EFAULT;
5920 
5921 	/*
5922 	 *  For UDP-style sockets, id specifies the association to query.
5923 	 *  If the id field is set to the value '0' then the locally bound
5924 	 *  addresses are returned without regard to any particular
5925 	 *  association.
5926 	 */
5927 	if (0 == getaddrs.assoc_id) {
5928 		bp = &sctp_sk(sk)->ep->base.bind_addr;
5929 	} else {
5930 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5931 		if (!asoc)
5932 			return -EINVAL;
5933 		bp = &asoc->base.bind_addr;
5934 	}
5935 
5936 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5937 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5938 
5939 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5940 	if (!addrs)
5941 		return -ENOMEM;
5942 
5943 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5944 	 * addresses from the global local address list.
5945 	 */
5946 	if (sctp_list_single_entry(&bp->address_list)) {
5947 		addr = list_entry(bp->address_list.next,
5948 				  struct sctp_sockaddr_entry, list);
5949 		if (sctp_is_any(sk, &addr->a)) {
5950 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5951 						space_left, &bytes_copied);
5952 			if (cnt < 0) {
5953 				err = cnt;
5954 				goto out;
5955 			}
5956 			goto copy_getaddrs;
5957 		}
5958 	}
5959 
5960 	buf = addrs;
5961 	/* Protection on the bound address list is not needed since
5962 	 * in the socket option context we hold a socket lock and
5963 	 * thus the bound address list can't change.
5964 	 */
5965 	list_for_each_entry(addr, &bp->address_list, list) {
5966 		memcpy(&temp, &addr->a, sizeof(temp));
5967 		addrlen = sctp_get_pf_specific(sk->sk_family)
5968 			      ->addr_to_user(sp, &temp);
5969 		if (space_left < addrlen) {
5970 			err =  -ENOMEM; /*fixme: right error?*/
5971 			goto out;
5972 		}
5973 		memcpy(buf, &temp, addrlen);
5974 		buf += addrlen;
5975 		bytes_copied += addrlen;
5976 		cnt++;
5977 		space_left -= addrlen;
5978 	}
5979 
5980 copy_getaddrs:
5981 	if (copy_to_user(to, addrs, bytes_copied)) {
5982 		err = -EFAULT;
5983 		goto out;
5984 	}
5985 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5986 		err = -EFAULT;
5987 		goto out;
5988 	}
5989 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
5990 	 * but we can't change it anymore.
5991 	 */
5992 	if (put_user(bytes_copied, optlen))
5993 		err = -EFAULT;
5994 out:
5995 	kfree(addrs);
5996 	return err;
5997 }
5998 
5999 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6000  *
6001  * Requests that the local SCTP stack use the enclosed peer address as
6002  * the association primary.  The enclosed address must be one of the
6003  * association peer's addresses.
6004  */
6005 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6006 					char __user *optval, int __user *optlen)
6007 {
6008 	struct sctp_prim prim;
6009 	struct sctp_association *asoc;
6010 	struct sctp_sock *sp = sctp_sk(sk);
6011 
6012 	if (len < sizeof(struct sctp_prim))
6013 		return -EINVAL;
6014 
6015 	len = sizeof(struct sctp_prim);
6016 
6017 	if (copy_from_user(&prim, optval, len))
6018 		return -EFAULT;
6019 
6020 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6021 	if (!asoc)
6022 		return -EINVAL;
6023 
6024 	if (!asoc->peer.primary_path)
6025 		return -ENOTCONN;
6026 
6027 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6028 		asoc->peer.primary_path->af_specific->sockaddr_len);
6029 
6030 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6031 			(union sctp_addr *)&prim.ssp_addr);
6032 
6033 	if (put_user(len, optlen))
6034 		return -EFAULT;
6035 	if (copy_to_user(optval, &prim, len))
6036 		return -EFAULT;
6037 
6038 	return 0;
6039 }
6040 
6041 /*
6042  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6043  *
6044  * Requests that the local endpoint set the specified Adaptation Layer
6045  * Indication parameter for all future INIT and INIT-ACK exchanges.
6046  */
6047 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6048 				  char __user *optval, int __user *optlen)
6049 {
6050 	struct sctp_setadaptation adaptation;
6051 
6052 	if (len < sizeof(struct sctp_setadaptation))
6053 		return -EINVAL;
6054 
6055 	len = sizeof(struct sctp_setadaptation);
6056 
6057 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6058 
6059 	if (put_user(len, optlen))
6060 		return -EFAULT;
6061 	if (copy_to_user(optval, &adaptation, len))
6062 		return -EFAULT;
6063 
6064 	return 0;
6065 }
6066 
6067 /*
6068  *
6069  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6070  *
6071  *   Applications that wish to use the sendto() system call may wish to
6072  *   specify a default set of parameters that would normally be supplied
6073  *   through the inclusion of ancillary data.  This socket option allows
6074  *   such an application to set the default sctp_sndrcvinfo structure.
6075 
6076 
6077  *   The application that wishes to use this socket option simply passes
6078  *   in to this call the sctp_sndrcvinfo structure defined in Section
6079  *   5.2.2) The input parameters accepted by this call include
6080  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6081  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6082  *   to this call if the caller is using the UDP model.
6083  *
6084  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6085  */
6086 static int sctp_getsockopt_default_send_param(struct sock *sk,
6087 					int len, char __user *optval,
6088 					int __user *optlen)
6089 {
6090 	struct sctp_sock *sp = sctp_sk(sk);
6091 	struct sctp_association *asoc;
6092 	struct sctp_sndrcvinfo info;
6093 
6094 	if (len < sizeof(info))
6095 		return -EINVAL;
6096 
6097 	len = sizeof(info);
6098 
6099 	if (copy_from_user(&info, optval, len))
6100 		return -EFAULT;
6101 
6102 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6103 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
6104 		return -EINVAL;
6105 	if (asoc) {
6106 		info.sinfo_stream = asoc->default_stream;
6107 		info.sinfo_flags = asoc->default_flags;
6108 		info.sinfo_ppid = asoc->default_ppid;
6109 		info.sinfo_context = asoc->default_context;
6110 		info.sinfo_timetolive = asoc->default_timetolive;
6111 	} else {
6112 		info.sinfo_stream = sp->default_stream;
6113 		info.sinfo_flags = sp->default_flags;
6114 		info.sinfo_ppid = sp->default_ppid;
6115 		info.sinfo_context = sp->default_context;
6116 		info.sinfo_timetolive = sp->default_timetolive;
6117 	}
6118 
6119 	if (put_user(len, optlen))
6120 		return -EFAULT;
6121 	if (copy_to_user(optval, &info, len))
6122 		return -EFAULT;
6123 
6124 	return 0;
6125 }
6126 
6127 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6128  * (SCTP_DEFAULT_SNDINFO)
6129  */
6130 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6131 					   char __user *optval,
6132 					   int __user *optlen)
6133 {
6134 	struct sctp_sock *sp = sctp_sk(sk);
6135 	struct sctp_association *asoc;
6136 	struct sctp_sndinfo info;
6137 
6138 	if (len < sizeof(info))
6139 		return -EINVAL;
6140 
6141 	len = sizeof(info);
6142 
6143 	if (copy_from_user(&info, optval, len))
6144 		return -EFAULT;
6145 
6146 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6147 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
6148 		return -EINVAL;
6149 	if (asoc) {
6150 		info.snd_sid = asoc->default_stream;
6151 		info.snd_flags = asoc->default_flags;
6152 		info.snd_ppid = asoc->default_ppid;
6153 		info.snd_context = asoc->default_context;
6154 	} else {
6155 		info.snd_sid = sp->default_stream;
6156 		info.snd_flags = sp->default_flags;
6157 		info.snd_ppid = sp->default_ppid;
6158 		info.snd_context = sp->default_context;
6159 	}
6160 
6161 	if (put_user(len, optlen))
6162 		return -EFAULT;
6163 	if (copy_to_user(optval, &info, len))
6164 		return -EFAULT;
6165 
6166 	return 0;
6167 }
6168 
6169 /*
6170  *
6171  * 7.1.5 SCTP_NODELAY
6172  *
6173  * Turn on/off any Nagle-like algorithm.  This means that packets are
6174  * generally sent as soon as possible and no unnecessary delays are
6175  * introduced, at the cost of more packets in the network.  Expects an
6176  * integer boolean flag.
6177  */
6178 
6179 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6180 				   char __user *optval, int __user *optlen)
6181 {
6182 	int val;
6183 
6184 	if (len < sizeof(int))
6185 		return -EINVAL;
6186 
6187 	len = sizeof(int);
6188 	val = (sctp_sk(sk)->nodelay == 1);
6189 	if (put_user(len, optlen))
6190 		return -EFAULT;
6191 	if (copy_to_user(optval, &val, len))
6192 		return -EFAULT;
6193 	return 0;
6194 }
6195 
6196 /*
6197  *
6198  * 7.1.1 SCTP_RTOINFO
6199  *
6200  * The protocol parameters used to initialize and bound retransmission
6201  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6202  * and modify these parameters.
6203  * All parameters are time values, in milliseconds.  A value of 0, when
6204  * modifying the parameters, indicates that the current value should not
6205  * be changed.
6206  *
6207  */
6208 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6209 				char __user *optval,
6210 				int __user *optlen) {
6211 	struct sctp_rtoinfo rtoinfo;
6212 	struct sctp_association *asoc;
6213 
6214 	if (len < sizeof (struct sctp_rtoinfo))
6215 		return -EINVAL;
6216 
6217 	len = sizeof(struct sctp_rtoinfo);
6218 
6219 	if (copy_from_user(&rtoinfo, optval, len))
6220 		return -EFAULT;
6221 
6222 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6223 
6224 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
6225 		return -EINVAL;
6226 
6227 	/* Values corresponding to the specific association. */
6228 	if (asoc) {
6229 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6230 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6231 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6232 	} else {
6233 		/* Values corresponding to the endpoint. */
6234 		struct sctp_sock *sp = sctp_sk(sk);
6235 
6236 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6237 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6238 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6239 	}
6240 
6241 	if (put_user(len, optlen))
6242 		return -EFAULT;
6243 
6244 	if (copy_to_user(optval, &rtoinfo, len))
6245 		return -EFAULT;
6246 
6247 	return 0;
6248 }
6249 
6250 /*
6251  *
6252  * 7.1.2 SCTP_ASSOCINFO
6253  *
6254  * This option is used to tune the maximum retransmission attempts
6255  * of the association.
6256  * Returns an error if the new association retransmission value is
6257  * greater than the sum of the retransmission value  of the peer.
6258  * See [SCTP] for more information.
6259  *
6260  */
6261 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6262 				     char __user *optval,
6263 				     int __user *optlen)
6264 {
6265 
6266 	struct sctp_assocparams assocparams;
6267 	struct sctp_association *asoc;
6268 	struct list_head *pos;
6269 	int cnt = 0;
6270 
6271 	if (len < sizeof (struct sctp_assocparams))
6272 		return -EINVAL;
6273 
6274 	len = sizeof(struct sctp_assocparams);
6275 
6276 	if (copy_from_user(&assocparams, optval, len))
6277 		return -EFAULT;
6278 
6279 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6280 
6281 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
6282 		return -EINVAL;
6283 
6284 	/* Values correspoinding to the specific association */
6285 	if (asoc) {
6286 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6287 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6288 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6289 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6290 
6291 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6292 			cnt++;
6293 		}
6294 
6295 		assocparams.sasoc_number_peer_destinations = cnt;
6296 	} else {
6297 		/* Values corresponding to the endpoint */
6298 		struct sctp_sock *sp = sctp_sk(sk);
6299 
6300 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6301 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6302 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6303 		assocparams.sasoc_cookie_life =
6304 					sp->assocparams.sasoc_cookie_life;
6305 		assocparams.sasoc_number_peer_destinations =
6306 					sp->assocparams.
6307 					sasoc_number_peer_destinations;
6308 	}
6309 
6310 	if (put_user(len, optlen))
6311 		return -EFAULT;
6312 
6313 	if (copy_to_user(optval, &assocparams, len))
6314 		return -EFAULT;
6315 
6316 	return 0;
6317 }
6318 
6319 /*
6320  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6321  *
6322  * This socket option is a boolean flag which turns on or off mapped V4
6323  * addresses.  If this option is turned on and the socket is type
6324  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6325  * If this option is turned off, then no mapping will be done of V4
6326  * addresses and a user will receive both PF_INET6 and PF_INET type
6327  * addresses on the socket.
6328  */
6329 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6330 				    char __user *optval, int __user *optlen)
6331 {
6332 	int val;
6333 	struct sctp_sock *sp = sctp_sk(sk);
6334 
6335 	if (len < sizeof(int))
6336 		return -EINVAL;
6337 
6338 	len = sizeof(int);
6339 	val = sp->v4mapped;
6340 	if (put_user(len, optlen))
6341 		return -EFAULT;
6342 	if (copy_to_user(optval, &val, len))
6343 		return -EFAULT;
6344 
6345 	return 0;
6346 }
6347 
6348 /*
6349  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6350  * (chapter and verse is quoted at sctp_setsockopt_context())
6351  */
6352 static int sctp_getsockopt_context(struct sock *sk, int len,
6353 				   char __user *optval, int __user *optlen)
6354 {
6355 	struct sctp_assoc_value params;
6356 	struct sctp_sock *sp;
6357 	struct sctp_association *asoc;
6358 
6359 	if (len < sizeof(struct sctp_assoc_value))
6360 		return -EINVAL;
6361 
6362 	len = sizeof(struct sctp_assoc_value);
6363 
6364 	if (copy_from_user(&params, optval, len))
6365 		return -EFAULT;
6366 
6367 	sp = sctp_sk(sk);
6368 
6369 	if (params.assoc_id != 0) {
6370 		asoc = sctp_id2assoc(sk, params.assoc_id);
6371 		if (!asoc)
6372 			return -EINVAL;
6373 		params.assoc_value = asoc->default_rcv_context;
6374 	} else {
6375 		params.assoc_value = sp->default_rcv_context;
6376 	}
6377 
6378 	if (put_user(len, optlen))
6379 		return -EFAULT;
6380 	if (copy_to_user(optval, &params, len))
6381 		return -EFAULT;
6382 
6383 	return 0;
6384 }
6385 
6386 /*
6387  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6388  * This option will get or set the maximum size to put in any outgoing
6389  * SCTP DATA chunk.  If a message is larger than this size it will be
6390  * fragmented by SCTP into the specified size.  Note that the underlying
6391  * SCTP implementation may fragment into smaller sized chunks when the
6392  * PMTU of the underlying association is smaller than the value set by
6393  * the user.  The default value for this option is '0' which indicates
6394  * the user is NOT limiting fragmentation and only the PMTU will effect
6395  * SCTP's choice of DATA chunk size.  Note also that values set larger
6396  * than the maximum size of an IP datagram will effectively let SCTP
6397  * control fragmentation (i.e. the same as setting this option to 0).
6398  *
6399  * The following structure is used to access and modify this parameter:
6400  *
6401  * struct sctp_assoc_value {
6402  *   sctp_assoc_t assoc_id;
6403  *   uint32_t assoc_value;
6404  * };
6405  *
6406  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6407  *    For one-to-many style sockets this parameter indicates which
6408  *    association the user is performing an action upon.  Note that if
6409  *    this field's value is zero then the endpoints default value is
6410  *    changed (effecting future associations only).
6411  * assoc_value:  This parameter specifies the maximum size in bytes.
6412  */
6413 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6414 				  char __user *optval, int __user *optlen)
6415 {
6416 	struct sctp_assoc_value params;
6417 	struct sctp_association *asoc;
6418 
6419 	if (len == sizeof(int)) {
6420 		pr_warn_ratelimited(DEPRECATED
6421 				    "%s (pid %d) "
6422 				    "Use of int in maxseg socket option.\n"
6423 				    "Use struct sctp_assoc_value instead\n",
6424 				    current->comm, task_pid_nr(current));
6425 		params.assoc_id = 0;
6426 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6427 		len = sizeof(struct sctp_assoc_value);
6428 		if (copy_from_user(&params, optval, len))
6429 			return -EFAULT;
6430 	} else
6431 		return -EINVAL;
6432 
6433 	asoc = sctp_id2assoc(sk, params.assoc_id);
6434 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6435 		return -EINVAL;
6436 
6437 	if (asoc)
6438 		params.assoc_value = asoc->frag_point;
6439 	else
6440 		params.assoc_value = sctp_sk(sk)->user_frag;
6441 
6442 	if (put_user(len, optlen))
6443 		return -EFAULT;
6444 	if (len == sizeof(int)) {
6445 		if (copy_to_user(optval, &params.assoc_value, len))
6446 			return -EFAULT;
6447 	} else {
6448 		if (copy_to_user(optval, &params, len))
6449 			return -EFAULT;
6450 	}
6451 
6452 	return 0;
6453 }
6454 
6455 /*
6456  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6457  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6458  */
6459 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6460 					       char __user *optval, int __user *optlen)
6461 {
6462 	int val;
6463 
6464 	if (len < sizeof(int))
6465 		return -EINVAL;
6466 
6467 	len = sizeof(int);
6468 
6469 	val = sctp_sk(sk)->frag_interleave;
6470 	if (put_user(len, optlen))
6471 		return -EFAULT;
6472 	if (copy_to_user(optval, &val, len))
6473 		return -EFAULT;
6474 
6475 	return 0;
6476 }
6477 
6478 /*
6479  * 7.1.25.  Set or Get the sctp partial delivery point
6480  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6481  */
6482 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6483 						  char __user *optval,
6484 						  int __user *optlen)
6485 {
6486 	u32 val;
6487 
6488 	if (len < sizeof(u32))
6489 		return -EINVAL;
6490 
6491 	len = sizeof(u32);
6492 
6493 	val = sctp_sk(sk)->pd_point;
6494 	if (put_user(len, optlen))
6495 		return -EFAULT;
6496 	if (copy_to_user(optval, &val, len))
6497 		return -EFAULT;
6498 
6499 	return 0;
6500 }
6501 
6502 /*
6503  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6504  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6505  */
6506 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6507 				    char __user *optval,
6508 				    int __user *optlen)
6509 {
6510 	struct sctp_assoc_value params;
6511 	struct sctp_sock *sp;
6512 	struct sctp_association *asoc;
6513 
6514 	if (len == sizeof(int)) {
6515 		pr_warn_ratelimited(DEPRECATED
6516 				    "%s (pid %d) "
6517 				    "Use of int in max_burst socket option.\n"
6518 				    "Use struct sctp_assoc_value instead\n",
6519 				    current->comm, task_pid_nr(current));
6520 		params.assoc_id = 0;
6521 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6522 		len = sizeof(struct sctp_assoc_value);
6523 		if (copy_from_user(&params, optval, len))
6524 			return -EFAULT;
6525 	} else
6526 		return -EINVAL;
6527 
6528 	sp = sctp_sk(sk);
6529 
6530 	if (params.assoc_id != 0) {
6531 		asoc = sctp_id2assoc(sk, params.assoc_id);
6532 		if (!asoc)
6533 			return -EINVAL;
6534 		params.assoc_value = asoc->max_burst;
6535 	} else
6536 		params.assoc_value = sp->max_burst;
6537 
6538 	if (len == sizeof(int)) {
6539 		if (copy_to_user(optval, &params.assoc_value, len))
6540 			return -EFAULT;
6541 	} else {
6542 		if (copy_to_user(optval, &params, len))
6543 			return -EFAULT;
6544 	}
6545 
6546 	return 0;
6547 
6548 }
6549 
6550 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6551 				    char __user *optval, int __user *optlen)
6552 {
6553 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6554 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6555 	struct sctp_hmac_algo_param *hmacs;
6556 	__u16 data_len = 0;
6557 	u32 num_idents;
6558 	int i;
6559 
6560 	if (!ep->auth_enable)
6561 		return -EACCES;
6562 
6563 	hmacs = ep->auth_hmacs_list;
6564 	data_len = ntohs(hmacs->param_hdr.length) -
6565 		   sizeof(struct sctp_paramhdr);
6566 
6567 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6568 		return -EINVAL;
6569 
6570 	len = sizeof(struct sctp_hmacalgo) + data_len;
6571 	num_idents = data_len / sizeof(u16);
6572 
6573 	if (put_user(len, optlen))
6574 		return -EFAULT;
6575 	if (put_user(num_idents, &p->shmac_num_idents))
6576 		return -EFAULT;
6577 	for (i = 0; i < num_idents; i++) {
6578 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6579 
6580 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6581 			return -EFAULT;
6582 	}
6583 	return 0;
6584 }
6585 
6586 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6587 				    char __user *optval, int __user *optlen)
6588 {
6589 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6590 	struct sctp_authkeyid val;
6591 	struct sctp_association *asoc;
6592 
6593 	if (!ep->auth_enable)
6594 		return -EACCES;
6595 
6596 	if (len < sizeof(struct sctp_authkeyid))
6597 		return -EINVAL;
6598 
6599 	len = sizeof(struct sctp_authkeyid);
6600 	if (copy_from_user(&val, optval, len))
6601 		return -EFAULT;
6602 
6603 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6604 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6605 		return -EINVAL;
6606 
6607 	if (asoc)
6608 		val.scact_keynumber = asoc->active_key_id;
6609 	else
6610 		val.scact_keynumber = ep->active_key_id;
6611 
6612 	if (put_user(len, optlen))
6613 		return -EFAULT;
6614 	if (copy_to_user(optval, &val, len))
6615 		return -EFAULT;
6616 
6617 	return 0;
6618 }
6619 
6620 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6621 				    char __user *optval, int __user *optlen)
6622 {
6623 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6624 	struct sctp_authchunks __user *p = (void __user *)optval;
6625 	struct sctp_authchunks val;
6626 	struct sctp_association *asoc;
6627 	struct sctp_chunks_param *ch;
6628 	u32    num_chunks = 0;
6629 	char __user *to;
6630 
6631 	if (!ep->auth_enable)
6632 		return -EACCES;
6633 
6634 	if (len < sizeof(struct sctp_authchunks))
6635 		return -EINVAL;
6636 
6637 	if (copy_from_user(&val, optval, sizeof(val)))
6638 		return -EFAULT;
6639 
6640 	to = p->gauth_chunks;
6641 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6642 	if (!asoc)
6643 		return -EINVAL;
6644 
6645 	ch = asoc->peer.peer_chunks;
6646 	if (!ch)
6647 		goto num;
6648 
6649 	/* See if the user provided enough room for all the data */
6650 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6651 	if (len < num_chunks)
6652 		return -EINVAL;
6653 
6654 	if (copy_to_user(to, ch->chunks, num_chunks))
6655 		return -EFAULT;
6656 num:
6657 	len = sizeof(struct sctp_authchunks) + num_chunks;
6658 	if (put_user(len, optlen))
6659 		return -EFAULT;
6660 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6661 		return -EFAULT;
6662 	return 0;
6663 }
6664 
6665 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6666 				    char __user *optval, int __user *optlen)
6667 {
6668 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6669 	struct sctp_authchunks __user *p = (void __user *)optval;
6670 	struct sctp_authchunks val;
6671 	struct sctp_association *asoc;
6672 	struct sctp_chunks_param *ch;
6673 	u32    num_chunks = 0;
6674 	char __user *to;
6675 
6676 	if (!ep->auth_enable)
6677 		return -EACCES;
6678 
6679 	if (len < sizeof(struct sctp_authchunks))
6680 		return -EINVAL;
6681 
6682 	if (copy_from_user(&val, optval, sizeof(val)))
6683 		return -EFAULT;
6684 
6685 	to = p->gauth_chunks;
6686 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6687 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6688 		return -EINVAL;
6689 
6690 	if (asoc)
6691 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6692 	else
6693 		ch = ep->auth_chunk_list;
6694 
6695 	if (!ch)
6696 		goto num;
6697 
6698 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6699 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6700 		return -EINVAL;
6701 
6702 	if (copy_to_user(to, ch->chunks, num_chunks))
6703 		return -EFAULT;
6704 num:
6705 	len = sizeof(struct sctp_authchunks) + num_chunks;
6706 	if (put_user(len, optlen))
6707 		return -EFAULT;
6708 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6709 		return -EFAULT;
6710 
6711 	return 0;
6712 }
6713 
6714 /*
6715  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6716  * This option gets the current number of associations that are attached
6717  * to a one-to-many style socket.  The option value is an uint32_t.
6718  */
6719 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6720 				    char __user *optval, int __user *optlen)
6721 {
6722 	struct sctp_sock *sp = sctp_sk(sk);
6723 	struct sctp_association *asoc;
6724 	u32 val = 0;
6725 
6726 	if (sctp_style(sk, TCP))
6727 		return -EOPNOTSUPP;
6728 
6729 	if (len < sizeof(u32))
6730 		return -EINVAL;
6731 
6732 	len = sizeof(u32);
6733 
6734 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6735 		val++;
6736 	}
6737 
6738 	if (put_user(len, optlen))
6739 		return -EFAULT;
6740 	if (copy_to_user(optval, &val, len))
6741 		return -EFAULT;
6742 
6743 	return 0;
6744 }
6745 
6746 /*
6747  * 8.1.23 SCTP_AUTO_ASCONF
6748  * See the corresponding setsockopt entry as description
6749  */
6750 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6751 				   char __user *optval, int __user *optlen)
6752 {
6753 	int val = 0;
6754 
6755 	if (len < sizeof(int))
6756 		return -EINVAL;
6757 
6758 	len = sizeof(int);
6759 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6760 		val = 1;
6761 	if (put_user(len, optlen))
6762 		return -EFAULT;
6763 	if (copy_to_user(optval, &val, len))
6764 		return -EFAULT;
6765 	return 0;
6766 }
6767 
6768 /*
6769  * 8.2.6. Get the Current Identifiers of Associations
6770  *        (SCTP_GET_ASSOC_ID_LIST)
6771  *
6772  * This option gets the current list of SCTP association identifiers of
6773  * the SCTP associations handled by a one-to-many style socket.
6774  */
6775 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6776 				    char __user *optval, int __user *optlen)
6777 {
6778 	struct sctp_sock *sp = sctp_sk(sk);
6779 	struct sctp_association *asoc;
6780 	struct sctp_assoc_ids *ids;
6781 	u32 num = 0;
6782 
6783 	if (sctp_style(sk, TCP))
6784 		return -EOPNOTSUPP;
6785 
6786 	if (len < sizeof(struct sctp_assoc_ids))
6787 		return -EINVAL;
6788 
6789 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6790 		num++;
6791 	}
6792 
6793 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6794 		return -EINVAL;
6795 
6796 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6797 
6798 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6799 	if (unlikely(!ids))
6800 		return -ENOMEM;
6801 
6802 	ids->gaids_number_of_ids = num;
6803 	num = 0;
6804 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6805 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6806 	}
6807 
6808 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6809 		kfree(ids);
6810 		return -EFAULT;
6811 	}
6812 
6813 	kfree(ids);
6814 	return 0;
6815 }
6816 
6817 /*
6818  * SCTP_PEER_ADDR_THLDS
6819  *
6820  * This option allows us to fetch the partially failed threshold for one or all
6821  * transports in an association.  See Section 6.1 of:
6822  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6823  */
6824 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6825 					    char __user *optval,
6826 					    int len,
6827 					    int __user *optlen)
6828 {
6829 	struct sctp_paddrthlds val;
6830 	struct sctp_transport *trans;
6831 	struct sctp_association *asoc;
6832 
6833 	if (len < sizeof(struct sctp_paddrthlds))
6834 		return -EINVAL;
6835 	len = sizeof(struct sctp_paddrthlds);
6836 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6837 		return -EFAULT;
6838 
6839 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6840 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6841 		if (!asoc)
6842 			return -ENOENT;
6843 
6844 		val.spt_pathpfthld = asoc->pf_retrans;
6845 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6846 	} else {
6847 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6848 					       val.spt_assoc_id);
6849 		if (!trans)
6850 			return -ENOENT;
6851 
6852 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6853 		val.spt_pathpfthld = trans->pf_retrans;
6854 	}
6855 
6856 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6857 		return -EFAULT;
6858 
6859 	return 0;
6860 }
6861 
6862 /*
6863  * SCTP_GET_ASSOC_STATS
6864  *
6865  * This option retrieves local per endpoint statistics. It is modeled
6866  * after OpenSolaris' implementation
6867  */
6868 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6869 				       char __user *optval,
6870 				       int __user *optlen)
6871 {
6872 	struct sctp_assoc_stats sas;
6873 	struct sctp_association *asoc = NULL;
6874 
6875 	/* User must provide at least the assoc id */
6876 	if (len < sizeof(sctp_assoc_t))
6877 		return -EINVAL;
6878 
6879 	/* Allow the struct to grow and fill in as much as possible */
6880 	len = min_t(size_t, len, sizeof(sas));
6881 
6882 	if (copy_from_user(&sas, optval, len))
6883 		return -EFAULT;
6884 
6885 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6886 	if (!asoc)
6887 		return -EINVAL;
6888 
6889 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6890 	sas.sas_gapcnt = asoc->stats.gapcnt;
6891 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6892 	sas.sas_osacks = asoc->stats.osacks;
6893 	sas.sas_isacks = asoc->stats.isacks;
6894 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6895 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6896 	sas.sas_oodchunks = asoc->stats.oodchunks;
6897 	sas.sas_iodchunks = asoc->stats.iodchunks;
6898 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6899 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6900 	sas.sas_idupchunks = asoc->stats.idupchunks;
6901 	sas.sas_opackets = asoc->stats.opackets;
6902 	sas.sas_ipackets = asoc->stats.ipackets;
6903 
6904 	/* New high max rto observed, will return 0 if not a single
6905 	 * RTO update took place. obs_rto_ipaddr will be bogus
6906 	 * in such a case
6907 	 */
6908 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6909 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6910 		sizeof(struct sockaddr_storage));
6911 
6912 	/* Mark beginning of a new observation period */
6913 	asoc->stats.max_obs_rto = asoc->rto_min;
6914 
6915 	if (put_user(len, optlen))
6916 		return -EFAULT;
6917 
6918 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6919 
6920 	if (copy_to_user(optval, &sas, len))
6921 		return -EFAULT;
6922 
6923 	return 0;
6924 }
6925 
6926 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
6927 				       char __user *optval,
6928 				       int __user *optlen)
6929 {
6930 	int val = 0;
6931 
6932 	if (len < sizeof(int))
6933 		return -EINVAL;
6934 
6935 	len = sizeof(int);
6936 	if (sctp_sk(sk)->recvrcvinfo)
6937 		val = 1;
6938 	if (put_user(len, optlen))
6939 		return -EFAULT;
6940 	if (copy_to_user(optval, &val, len))
6941 		return -EFAULT;
6942 
6943 	return 0;
6944 }
6945 
6946 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
6947 				       char __user *optval,
6948 				       int __user *optlen)
6949 {
6950 	int val = 0;
6951 
6952 	if (len < sizeof(int))
6953 		return -EINVAL;
6954 
6955 	len = sizeof(int);
6956 	if (sctp_sk(sk)->recvnxtinfo)
6957 		val = 1;
6958 	if (put_user(len, optlen))
6959 		return -EFAULT;
6960 	if (copy_to_user(optval, &val, len))
6961 		return -EFAULT;
6962 
6963 	return 0;
6964 }
6965 
6966 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6967 					char __user *optval,
6968 					int __user *optlen)
6969 {
6970 	struct sctp_assoc_value params;
6971 	struct sctp_association *asoc;
6972 	int retval = -EFAULT;
6973 
6974 	if (len < sizeof(params)) {
6975 		retval = -EINVAL;
6976 		goto out;
6977 	}
6978 
6979 	len = sizeof(params);
6980 	if (copy_from_user(&params, optval, len))
6981 		goto out;
6982 
6983 	asoc = sctp_id2assoc(sk, params.assoc_id);
6984 	if (asoc) {
6985 		params.assoc_value = asoc->prsctp_enable;
6986 	} else if (!params.assoc_id) {
6987 		struct sctp_sock *sp = sctp_sk(sk);
6988 
6989 		params.assoc_value = sp->ep->prsctp_enable;
6990 	} else {
6991 		retval = -EINVAL;
6992 		goto out;
6993 	}
6994 
6995 	if (put_user(len, optlen))
6996 		goto out;
6997 
6998 	if (copy_to_user(optval, &params, len))
6999 		goto out;
7000 
7001 	retval = 0;
7002 
7003 out:
7004 	return retval;
7005 }
7006 
7007 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7008 					  char __user *optval,
7009 					  int __user *optlen)
7010 {
7011 	struct sctp_default_prinfo info;
7012 	struct sctp_association *asoc;
7013 	int retval = -EFAULT;
7014 
7015 	if (len < sizeof(info)) {
7016 		retval = -EINVAL;
7017 		goto out;
7018 	}
7019 
7020 	len = sizeof(info);
7021 	if (copy_from_user(&info, optval, len))
7022 		goto out;
7023 
7024 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7025 	if (asoc) {
7026 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7027 		info.pr_value = asoc->default_timetolive;
7028 	} else if (!info.pr_assoc_id) {
7029 		struct sctp_sock *sp = sctp_sk(sk);
7030 
7031 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7032 		info.pr_value = sp->default_timetolive;
7033 	} else {
7034 		retval = -EINVAL;
7035 		goto out;
7036 	}
7037 
7038 	if (put_user(len, optlen))
7039 		goto out;
7040 
7041 	if (copy_to_user(optval, &info, len))
7042 		goto out;
7043 
7044 	retval = 0;
7045 
7046 out:
7047 	return retval;
7048 }
7049 
7050 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7051 					  char __user *optval,
7052 					  int __user *optlen)
7053 {
7054 	struct sctp_prstatus params;
7055 	struct sctp_association *asoc;
7056 	int policy;
7057 	int retval = -EINVAL;
7058 
7059 	if (len < sizeof(params))
7060 		goto out;
7061 
7062 	len = sizeof(params);
7063 	if (copy_from_user(&params, optval, len)) {
7064 		retval = -EFAULT;
7065 		goto out;
7066 	}
7067 
7068 	policy = params.sprstat_policy;
7069 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7070 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7071 		goto out;
7072 
7073 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7074 	if (!asoc)
7075 		goto out;
7076 
7077 	if (policy == SCTP_PR_SCTP_ALL) {
7078 		params.sprstat_abandoned_unsent = 0;
7079 		params.sprstat_abandoned_sent = 0;
7080 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7081 			params.sprstat_abandoned_unsent +=
7082 				asoc->abandoned_unsent[policy];
7083 			params.sprstat_abandoned_sent +=
7084 				asoc->abandoned_sent[policy];
7085 		}
7086 	} else {
7087 		params.sprstat_abandoned_unsent =
7088 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7089 		params.sprstat_abandoned_sent =
7090 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7091 	}
7092 
7093 	if (put_user(len, optlen)) {
7094 		retval = -EFAULT;
7095 		goto out;
7096 	}
7097 
7098 	if (copy_to_user(optval, &params, len)) {
7099 		retval = -EFAULT;
7100 		goto out;
7101 	}
7102 
7103 	retval = 0;
7104 
7105 out:
7106 	return retval;
7107 }
7108 
7109 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7110 					   char __user *optval,
7111 					   int __user *optlen)
7112 {
7113 	struct sctp_stream_out_ext *streamoute;
7114 	struct sctp_association *asoc;
7115 	struct sctp_prstatus params;
7116 	int retval = -EINVAL;
7117 	int policy;
7118 
7119 	if (len < sizeof(params))
7120 		goto out;
7121 
7122 	len = sizeof(params);
7123 	if (copy_from_user(&params, optval, len)) {
7124 		retval = -EFAULT;
7125 		goto out;
7126 	}
7127 
7128 	policy = params.sprstat_policy;
7129 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7130 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7131 		goto out;
7132 
7133 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7134 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7135 		goto out;
7136 
7137 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7138 	if (!streamoute) {
7139 		/* Not allocated yet, means all stats are 0 */
7140 		params.sprstat_abandoned_unsent = 0;
7141 		params.sprstat_abandoned_sent = 0;
7142 		retval = 0;
7143 		goto out;
7144 	}
7145 
7146 	if (policy == SCTP_PR_SCTP_ALL) {
7147 		params.sprstat_abandoned_unsent = 0;
7148 		params.sprstat_abandoned_sent = 0;
7149 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7150 			params.sprstat_abandoned_unsent +=
7151 				streamoute->abandoned_unsent[policy];
7152 			params.sprstat_abandoned_sent +=
7153 				streamoute->abandoned_sent[policy];
7154 		}
7155 	} else {
7156 		params.sprstat_abandoned_unsent =
7157 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7158 		params.sprstat_abandoned_sent =
7159 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7160 	}
7161 
7162 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7163 		retval = -EFAULT;
7164 		goto out;
7165 	}
7166 
7167 	retval = 0;
7168 
7169 out:
7170 	return retval;
7171 }
7172 
7173 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7174 					      char __user *optval,
7175 					      int __user *optlen)
7176 {
7177 	struct sctp_assoc_value params;
7178 	struct sctp_association *asoc;
7179 	int retval = -EFAULT;
7180 
7181 	if (len < sizeof(params)) {
7182 		retval = -EINVAL;
7183 		goto out;
7184 	}
7185 
7186 	len = sizeof(params);
7187 	if (copy_from_user(&params, optval, len))
7188 		goto out;
7189 
7190 	asoc = sctp_id2assoc(sk, params.assoc_id);
7191 	if (asoc) {
7192 		params.assoc_value = asoc->reconf_enable;
7193 	} else if (!params.assoc_id) {
7194 		struct sctp_sock *sp = sctp_sk(sk);
7195 
7196 		params.assoc_value = sp->ep->reconf_enable;
7197 	} else {
7198 		retval = -EINVAL;
7199 		goto out;
7200 	}
7201 
7202 	if (put_user(len, optlen))
7203 		goto out;
7204 
7205 	if (copy_to_user(optval, &params, len))
7206 		goto out;
7207 
7208 	retval = 0;
7209 
7210 out:
7211 	return retval;
7212 }
7213 
7214 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7215 					   char __user *optval,
7216 					   int __user *optlen)
7217 {
7218 	struct sctp_assoc_value params;
7219 	struct sctp_association *asoc;
7220 	int retval = -EFAULT;
7221 
7222 	if (len < sizeof(params)) {
7223 		retval = -EINVAL;
7224 		goto out;
7225 	}
7226 
7227 	len = sizeof(params);
7228 	if (copy_from_user(&params, optval, len))
7229 		goto out;
7230 
7231 	asoc = sctp_id2assoc(sk, params.assoc_id);
7232 	if (asoc) {
7233 		params.assoc_value = asoc->strreset_enable;
7234 	} else if (!params.assoc_id) {
7235 		struct sctp_sock *sp = sctp_sk(sk);
7236 
7237 		params.assoc_value = sp->ep->strreset_enable;
7238 	} else {
7239 		retval = -EINVAL;
7240 		goto out;
7241 	}
7242 
7243 	if (put_user(len, optlen))
7244 		goto out;
7245 
7246 	if (copy_to_user(optval, &params, len))
7247 		goto out;
7248 
7249 	retval = 0;
7250 
7251 out:
7252 	return retval;
7253 }
7254 
7255 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7256 				     char __user *optval,
7257 				     int __user *optlen)
7258 {
7259 	struct sctp_assoc_value params;
7260 	struct sctp_association *asoc;
7261 	int retval = -EFAULT;
7262 
7263 	if (len < sizeof(params)) {
7264 		retval = -EINVAL;
7265 		goto out;
7266 	}
7267 
7268 	len = sizeof(params);
7269 	if (copy_from_user(&params, optval, len))
7270 		goto out;
7271 
7272 	asoc = sctp_id2assoc(sk, params.assoc_id);
7273 	if (!asoc) {
7274 		retval = -EINVAL;
7275 		goto out;
7276 	}
7277 
7278 	params.assoc_value = sctp_sched_get_sched(asoc);
7279 
7280 	if (put_user(len, optlen))
7281 		goto out;
7282 
7283 	if (copy_to_user(optval, &params, len))
7284 		goto out;
7285 
7286 	retval = 0;
7287 
7288 out:
7289 	return retval;
7290 }
7291 
7292 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7293 					   char __user *optval,
7294 					   int __user *optlen)
7295 {
7296 	struct sctp_stream_value params;
7297 	struct sctp_association *asoc;
7298 	int retval = -EFAULT;
7299 
7300 	if (len < sizeof(params)) {
7301 		retval = -EINVAL;
7302 		goto out;
7303 	}
7304 
7305 	len = sizeof(params);
7306 	if (copy_from_user(&params, optval, len))
7307 		goto out;
7308 
7309 	asoc = sctp_id2assoc(sk, params.assoc_id);
7310 	if (!asoc) {
7311 		retval = -EINVAL;
7312 		goto out;
7313 	}
7314 
7315 	retval = sctp_sched_get_value(asoc, params.stream_id,
7316 				      &params.stream_value);
7317 	if (retval)
7318 		goto out;
7319 
7320 	if (put_user(len, optlen)) {
7321 		retval = -EFAULT;
7322 		goto out;
7323 	}
7324 
7325 	if (copy_to_user(optval, &params, len)) {
7326 		retval = -EFAULT;
7327 		goto out;
7328 	}
7329 
7330 out:
7331 	return retval;
7332 }
7333 
7334 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7335 						  char __user *optval,
7336 						  int __user *optlen)
7337 {
7338 	struct sctp_assoc_value params;
7339 	struct sctp_association *asoc;
7340 	int retval = -EFAULT;
7341 
7342 	if (len < sizeof(params)) {
7343 		retval = -EINVAL;
7344 		goto out;
7345 	}
7346 
7347 	len = sizeof(params);
7348 	if (copy_from_user(&params, optval, len))
7349 		goto out;
7350 
7351 	asoc = sctp_id2assoc(sk, params.assoc_id);
7352 	if (asoc) {
7353 		params.assoc_value = asoc->intl_enable;
7354 	} else if (!params.assoc_id) {
7355 		struct sctp_sock *sp = sctp_sk(sk);
7356 
7357 		params.assoc_value = sp->strm_interleave;
7358 	} else {
7359 		retval = -EINVAL;
7360 		goto out;
7361 	}
7362 
7363 	if (put_user(len, optlen))
7364 		goto out;
7365 
7366 	if (copy_to_user(optval, &params, len))
7367 		goto out;
7368 
7369 	retval = 0;
7370 
7371 out:
7372 	return retval;
7373 }
7374 
7375 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7376 				      char __user *optval,
7377 				      int __user *optlen)
7378 {
7379 	int val;
7380 
7381 	if (len < sizeof(int))
7382 		return -EINVAL;
7383 
7384 	len = sizeof(int);
7385 	val = sctp_sk(sk)->reuse;
7386 	if (put_user(len, optlen))
7387 		return -EFAULT;
7388 
7389 	if (copy_to_user(optval, &val, len))
7390 		return -EFAULT;
7391 
7392 	return 0;
7393 }
7394 
7395 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7396 			   char __user *optval, int __user *optlen)
7397 {
7398 	int retval = 0;
7399 	int len;
7400 
7401 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7402 
7403 	/* I can hardly begin to describe how wrong this is.  This is
7404 	 * so broken as to be worse than useless.  The API draft
7405 	 * REALLY is NOT helpful here...  I am not convinced that the
7406 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7407 	 * are at all well-founded.
7408 	 */
7409 	if (level != SOL_SCTP) {
7410 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7411 
7412 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7413 		return retval;
7414 	}
7415 
7416 	if (get_user(len, optlen))
7417 		return -EFAULT;
7418 
7419 	if (len < 0)
7420 		return -EINVAL;
7421 
7422 	lock_sock(sk);
7423 
7424 	switch (optname) {
7425 	case SCTP_STATUS:
7426 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7427 		break;
7428 	case SCTP_DISABLE_FRAGMENTS:
7429 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7430 							   optlen);
7431 		break;
7432 	case SCTP_EVENTS:
7433 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7434 		break;
7435 	case SCTP_AUTOCLOSE:
7436 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7437 		break;
7438 	case SCTP_SOCKOPT_PEELOFF:
7439 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7440 		break;
7441 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7442 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7443 		break;
7444 	case SCTP_PEER_ADDR_PARAMS:
7445 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7446 							  optlen);
7447 		break;
7448 	case SCTP_DELAYED_SACK:
7449 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7450 							  optlen);
7451 		break;
7452 	case SCTP_INITMSG:
7453 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7454 		break;
7455 	case SCTP_GET_PEER_ADDRS:
7456 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7457 						    optlen);
7458 		break;
7459 	case SCTP_GET_LOCAL_ADDRS:
7460 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7461 						     optlen);
7462 		break;
7463 	case SCTP_SOCKOPT_CONNECTX3:
7464 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7465 		break;
7466 	case SCTP_DEFAULT_SEND_PARAM:
7467 		retval = sctp_getsockopt_default_send_param(sk, len,
7468 							    optval, optlen);
7469 		break;
7470 	case SCTP_DEFAULT_SNDINFO:
7471 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7472 							 optval, optlen);
7473 		break;
7474 	case SCTP_PRIMARY_ADDR:
7475 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7476 		break;
7477 	case SCTP_NODELAY:
7478 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7479 		break;
7480 	case SCTP_RTOINFO:
7481 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7482 		break;
7483 	case SCTP_ASSOCINFO:
7484 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7485 		break;
7486 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7487 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7488 		break;
7489 	case SCTP_MAXSEG:
7490 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7491 		break;
7492 	case SCTP_GET_PEER_ADDR_INFO:
7493 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7494 							optlen);
7495 		break;
7496 	case SCTP_ADAPTATION_LAYER:
7497 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7498 							optlen);
7499 		break;
7500 	case SCTP_CONTEXT:
7501 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7502 		break;
7503 	case SCTP_FRAGMENT_INTERLEAVE:
7504 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7505 							     optlen);
7506 		break;
7507 	case SCTP_PARTIAL_DELIVERY_POINT:
7508 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7509 								optlen);
7510 		break;
7511 	case SCTP_MAX_BURST:
7512 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7513 		break;
7514 	case SCTP_AUTH_KEY:
7515 	case SCTP_AUTH_CHUNK:
7516 	case SCTP_AUTH_DELETE_KEY:
7517 	case SCTP_AUTH_DEACTIVATE_KEY:
7518 		retval = -EOPNOTSUPP;
7519 		break;
7520 	case SCTP_HMAC_IDENT:
7521 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7522 		break;
7523 	case SCTP_AUTH_ACTIVE_KEY:
7524 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7525 		break;
7526 	case SCTP_PEER_AUTH_CHUNKS:
7527 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7528 							optlen);
7529 		break;
7530 	case SCTP_LOCAL_AUTH_CHUNKS:
7531 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7532 							optlen);
7533 		break;
7534 	case SCTP_GET_ASSOC_NUMBER:
7535 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7536 		break;
7537 	case SCTP_GET_ASSOC_ID_LIST:
7538 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7539 		break;
7540 	case SCTP_AUTO_ASCONF:
7541 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7542 		break;
7543 	case SCTP_PEER_ADDR_THLDS:
7544 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7545 		break;
7546 	case SCTP_GET_ASSOC_STATS:
7547 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7548 		break;
7549 	case SCTP_RECVRCVINFO:
7550 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7551 		break;
7552 	case SCTP_RECVNXTINFO:
7553 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7554 		break;
7555 	case SCTP_PR_SUPPORTED:
7556 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7557 		break;
7558 	case SCTP_DEFAULT_PRINFO:
7559 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7560 							optlen);
7561 		break;
7562 	case SCTP_PR_ASSOC_STATUS:
7563 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7564 							optlen);
7565 		break;
7566 	case SCTP_PR_STREAM_STATUS:
7567 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7568 							 optlen);
7569 		break;
7570 	case SCTP_RECONFIG_SUPPORTED:
7571 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7572 							    optlen);
7573 		break;
7574 	case SCTP_ENABLE_STREAM_RESET:
7575 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7576 							 optlen);
7577 		break;
7578 	case SCTP_STREAM_SCHEDULER:
7579 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7580 						   optlen);
7581 		break;
7582 	case SCTP_STREAM_SCHEDULER_VALUE:
7583 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7584 							 optlen);
7585 		break;
7586 	case SCTP_INTERLEAVING_SUPPORTED:
7587 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7588 								optlen);
7589 		break;
7590 	case SCTP_REUSE_PORT:
7591 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7592 		break;
7593 	default:
7594 		retval = -ENOPROTOOPT;
7595 		break;
7596 	}
7597 
7598 	release_sock(sk);
7599 	return retval;
7600 }
7601 
7602 static int sctp_hash(struct sock *sk)
7603 {
7604 	/* STUB */
7605 	return 0;
7606 }
7607 
7608 static void sctp_unhash(struct sock *sk)
7609 {
7610 	/* STUB */
7611 }
7612 
7613 /* Check if port is acceptable.  Possibly find first available port.
7614  *
7615  * The port hash table (contained in the 'global' SCTP protocol storage
7616  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7617  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7618  * list (the list number is the port number hashed out, so as you
7619  * would expect from a hash function, all the ports in a given list have
7620  * such a number that hashes out to the same list number; you were
7621  * expecting that, right?); so each list has a set of ports, with a
7622  * link to the socket (struct sock) that uses it, the port number and
7623  * a fastreuse flag (FIXME: NPI ipg).
7624  */
7625 static struct sctp_bind_bucket *sctp_bucket_create(
7626 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7627 
7628 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7629 {
7630 	bool reuse = (sk->sk_reuse || sctp_sk(sk)->reuse);
7631 	struct sctp_bind_hashbucket *head; /* hash list */
7632 	struct sctp_bind_bucket *pp;
7633 	unsigned short snum;
7634 	int ret;
7635 
7636 	snum = ntohs(addr->v4.sin_port);
7637 
7638 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7639 
7640 	local_bh_disable();
7641 
7642 	if (snum == 0) {
7643 		/* Search for an available port. */
7644 		int low, high, remaining, index;
7645 		unsigned int rover;
7646 		struct net *net = sock_net(sk);
7647 
7648 		inet_get_local_port_range(net, &low, &high);
7649 		remaining = (high - low) + 1;
7650 		rover = prandom_u32() % remaining + low;
7651 
7652 		do {
7653 			rover++;
7654 			if ((rover < low) || (rover > high))
7655 				rover = low;
7656 			if (inet_is_local_reserved_port(net, rover))
7657 				continue;
7658 			index = sctp_phashfn(sock_net(sk), rover);
7659 			head = &sctp_port_hashtable[index];
7660 			spin_lock(&head->lock);
7661 			sctp_for_each_hentry(pp, &head->chain)
7662 				if ((pp->port == rover) &&
7663 				    net_eq(sock_net(sk), pp->net))
7664 					goto next;
7665 			break;
7666 		next:
7667 			spin_unlock(&head->lock);
7668 		} while (--remaining > 0);
7669 
7670 		/* Exhausted local port range during search? */
7671 		ret = 1;
7672 		if (remaining <= 0)
7673 			goto fail;
7674 
7675 		/* OK, here is the one we will use.  HEAD (the port
7676 		 * hash table list entry) is non-NULL and we hold it's
7677 		 * mutex.
7678 		 */
7679 		snum = rover;
7680 	} else {
7681 		/* We are given an specific port number; we verify
7682 		 * that it is not being used. If it is used, we will
7683 		 * exahust the search in the hash list corresponding
7684 		 * to the port number (snum) - we detect that with the
7685 		 * port iterator, pp being NULL.
7686 		 */
7687 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7688 		spin_lock(&head->lock);
7689 		sctp_for_each_hentry(pp, &head->chain) {
7690 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7691 				goto pp_found;
7692 		}
7693 	}
7694 	pp = NULL;
7695 	goto pp_not_found;
7696 pp_found:
7697 	if (!hlist_empty(&pp->owner)) {
7698 		/* We had a port hash table hit - there is an
7699 		 * available port (pp != NULL) and it is being
7700 		 * used by other socket (pp->owner not empty); that other
7701 		 * socket is going to be sk2.
7702 		 */
7703 		struct sock *sk2;
7704 
7705 		pr_debug("%s: found a possible match\n", __func__);
7706 
7707 		if (pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING)
7708 			goto success;
7709 
7710 		/* Run through the list of sockets bound to the port
7711 		 * (pp->port) [via the pointers bind_next and
7712 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7713 		 * we get the endpoint they describe and run through
7714 		 * the endpoint's list of IP (v4 or v6) addresses,
7715 		 * comparing each of the addresses with the address of
7716 		 * the socket sk. If we find a match, then that means
7717 		 * that this port/socket (sk) combination are already
7718 		 * in an endpoint.
7719 		 */
7720 		sk_for_each_bound(sk2, &pp->owner) {
7721 			struct sctp_endpoint *ep2;
7722 			ep2 = sctp_sk(sk2)->ep;
7723 
7724 			if (sk == sk2 ||
7725 			    (reuse && (sk2->sk_reuse || sctp_sk(sk2)->reuse) &&
7726 			     sk2->sk_state != SCTP_SS_LISTENING))
7727 				continue;
7728 
7729 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7730 						 sctp_sk(sk2), sctp_sk(sk))) {
7731 				ret = (long)sk2;
7732 				goto fail_unlock;
7733 			}
7734 		}
7735 
7736 		pr_debug("%s: found a match\n", __func__);
7737 	}
7738 pp_not_found:
7739 	/* If there was a hash table miss, create a new port.  */
7740 	ret = 1;
7741 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7742 		goto fail_unlock;
7743 
7744 	/* In either case (hit or miss), make sure fastreuse is 1 only
7745 	 * if sk->sk_reuse is too (that is, if the caller requested
7746 	 * SO_REUSEADDR on this socket -sk-).
7747 	 */
7748 	if (hlist_empty(&pp->owner)) {
7749 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
7750 			pp->fastreuse = 1;
7751 		else
7752 			pp->fastreuse = 0;
7753 	} else if (pp->fastreuse &&
7754 		   (!reuse || sk->sk_state == SCTP_SS_LISTENING))
7755 		pp->fastreuse = 0;
7756 
7757 	/* We are set, so fill up all the data in the hash table
7758 	 * entry, tie the socket list information with the rest of the
7759 	 * sockets FIXME: Blurry, NPI (ipg).
7760 	 */
7761 success:
7762 	if (!sctp_sk(sk)->bind_hash) {
7763 		inet_sk(sk)->inet_num = snum;
7764 		sk_add_bind_node(sk, &pp->owner);
7765 		sctp_sk(sk)->bind_hash = pp;
7766 	}
7767 	ret = 0;
7768 
7769 fail_unlock:
7770 	spin_unlock(&head->lock);
7771 
7772 fail:
7773 	local_bh_enable();
7774 	return ret;
7775 }
7776 
7777 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
7778  * port is requested.
7779  */
7780 static int sctp_get_port(struct sock *sk, unsigned short snum)
7781 {
7782 	union sctp_addr addr;
7783 	struct sctp_af *af = sctp_sk(sk)->pf->af;
7784 
7785 	/* Set up a dummy address struct from the sk. */
7786 	af->from_sk(&addr, sk);
7787 	addr.v4.sin_port = htons(snum);
7788 
7789 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
7790 	return !!sctp_get_port_local(sk, &addr);
7791 }
7792 
7793 /*
7794  *  Move a socket to LISTENING state.
7795  */
7796 static int sctp_listen_start(struct sock *sk, int backlog)
7797 {
7798 	struct sctp_sock *sp = sctp_sk(sk);
7799 	struct sctp_endpoint *ep = sp->ep;
7800 	struct crypto_shash *tfm = NULL;
7801 	char alg[32];
7802 
7803 	/* Allocate HMAC for generating cookie. */
7804 	if (!sp->hmac && sp->sctp_hmac_alg) {
7805 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7806 		tfm = crypto_alloc_shash(alg, 0, 0);
7807 		if (IS_ERR(tfm)) {
7808 			net_info_ratelimited("failed to load transform for %s: %ld\n",
7809 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
7810 			return -ENOSYS;
7811 		}
7812 		sctp_sk(sk)->hmac = tfm;
7813 	}
7814 
7815 	/*
7816 	 * If a bind() or sctp_bindx() is not called prior to a listen()
7817 	 * call that allows new associations to be accepted, the system
7818 	 * picks an ephemeral port and will choose an address set equivalent
7819 	 * to binding with a wildcard address.
7820 	 *
7821 	 * This is not currently spelled out in the SCTP sockets
7822 	 * extensions draft, but follows the practice as seen in TCP
7823 	 * sockets.
7824 	 *
7825 	 */
7826 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
7827 	if (!ep->base.bind_addr.port) {
7828 		if (sctp_autobind(sk))
7829 			return -EAGAIN;
7830 	} else {
7831 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7832 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
7833 			return -EADDRINUSE;
7834 		}
7835 	}
7836 
7837 	sk->sk_max_ack_backlog = backlog;
7838 	sctp_hash_endpoint(ep);
7839 	return 0;
7840 }
7841 
7842 /*
7843  * 4.1.3 / 5.1.3 listen()
7844  *
7845  *   By default, new associations are not accepted for UDP style sockets.
7846  *   An application uses listen() to mark a socket as being able to
7847  *   accept new associations.
7848  *
7849  *   On TCP style sockets, applications use listen() to ready the SCTP
7850  *   endpoint for accepting inbound associations.
7851  *
7852  *   On both types of endpoints a backlog of '0' disables listening.
7853  *
7854  *  Move a socket to LISTENING state.
7855  */
7856 int sctp_inet_listen(struct socket *sock, int backlog)
7857 {
7858 	struct sock *sk = sock->sk;
7859 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7860 	int err = -EINVAL;
7861 
7862 	if (unlikely(backlog < 0))
7863 		return err;
7864 
7865 	lock_sock(sk);
7866 
7867 	/* Peeled-off sockets are not allowed to listen().  */
7868 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7869 		goto out;
7870 
7871 	if (sock->state != SS_UNCONNECTED)
7872 		goto out;
7873 
7874 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7875 		goto out;
7876 
7877 	/* If backlog is zero, disable listening. */
7878 	if (!backlog) {
7879 		if (sctp_sstate(sk, CLOSED))
7880 			goto out;
7881 
7882 		err = 0;
7883 		sctp_unhash_endpoint(ep);
7884 		sk->sk_state = SCTP_SS_CLOSED;
7885 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
7886 			sctp_sk(sk)->bind_hash->fastreuse = 1;
7887 		goto out;
7888 	}
7889 
7890 	/* If we are already listening, just update the backlog */
7891 	if (sctp_sstate(sk, LISTENING))
7892 		sk->sk_max_ack_backlog = backlog;
7893 	else {
7894 		err = sctp_listen_start(sk, backlog);
7895 		if (err)
7896 			goto out;
7897 	}
7898 
7899 	err = 0;
7900 out:
7901 	release_sock(sk);
7902 	return err;
7903 }
7904 
7905 /*
7906  * This function is done by modeling the current datagram_poll() and the
7907  * tcp_poll().  Note that, based on these implementations, we don't
7908  * lock the socket in this function, even though it seems that,
7909  * ideally, locking or some other mechanisms can be used to ensure
7910  * the integrity of the counters (sndbuf and wmem_alloc) used
7911  * in this place.  We assume that we don't need locks either until proven
7912  * otherwise.
7913  *
7914  * Another thing to note is that we include the Async I/O support
7915  * here, again, by modeling the current TCP/UDP code.  We don't have
7916  * a good way to test with it yet.
7917  */
7918 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7919 {
7920 	struct sock *sk = sock->sk;
7921 	struct sctp_sock *sp = sctp_sk(sk);
7922 	__poll_t mask;
7923 
7924 	poll_wait(file, sk_sleep(sk), wait);
7925 
7926 	sock_rps_record_flow(sk);
7927 
7928 	/* A TCP-style listening socket becomes readable when the accept queue
7929 	 * is not empty.
7930 	 */
7931 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7932 		return (!list_empty(&sp->ep->asocs)) ?
7933 			(EPOLLIN | EPOLLRDNORM) : 0;
7934 
7935 	mask = 0;
7936 
7937 	/* Is there any exceptional events?  */
7938 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7939 		mask |= EPOLLERR |
7940 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
7941 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7942 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
7943 	if (sk->sk_shutdown == SHUTDOWN_MASK)
7944 		mask |= EPOLLHUP;
7945 
7946 	/* Is it readable?  Reconsider this code with TCP-style support.  */
7947 	if (!skb_queue_empty(&sk->sk_receive_queue))
7948 		mask |= EPOLLIN | EPOLLRDNORM;
7949 
7950 	/* The association is either gone or not ready.  */
7951 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7952 		return mask;
7953 
7954 	/* Is it writable?  */
7955 	if (sctp_writeable(sk)) {
7956 		mask |= EPOLLOUT | EPOLLWRNORM;
7957 	} else {
7958 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7959 		/*
7960 		 * Since the socket is not locked, the buffer
7961 		 * might be made available after the writeable check and
7962 		 * before the bit is set.  This could cause a lost I/O
7963 		 * signal.  tcp_poll() has a race breaker for this race
7964 		 * condition.  Based on their implementation, we put
7965 		 * in the following code to cover it as well.
7966 		 */
7967 		if (sctp_writeable(sk))
7968 			mask |= EPOLLOUT | EPOLLWRNORM;
7969 	}
7970 	return mask;
7971 }
7972 
7973 /********************************************************************
7974  * 2nd Level Abstractions
7975  ********************************************************************/
7976 
7977 static struct sctp_bind_bucket *sctp_bucket_create(
7978 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7979 {
7980 	struct sctp_bind_bucket *pp;
7981 
7982 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7983 	if (pp) {
7984 		SCTP_DBG_OBJCNT_INC(bind_bucket);
7985 		pp->port = snum;
7986 		pp->fastreuse = 0;
7987 		INIT_HLIST_HEAD(&pp->owner);
7988 		pp->net = net;
7989 		hlist_add_head(&pp->node, &head->chain);
7990 	}
7991 	return pp;
7992 }
7993 
7994 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7995 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7996 {
7997 	if (pp && hlist_empty(&pp->owner)) {
7998 		__hlist_del(&pp->node);
7999 		kmem_cache_free(sctp_bucket_cachep, pp);
8000 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8001 	}
8002 }
8003 
8004 /* Release this socket's reference to a local port.  */
8005 static inline void __sctp_put_port(struct sock *sk)
8006 {
8007 	struct sctp_bind_hashbucket *head =
8008 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8009 						  inet_sk(sk)->inet_num)];
8010 	struct sctp_bind_bucket *pp;
8011 
8012 	spin_lock(&head->lock);
8013 	pp = sctp_sk(sk)->bind_hash;
8014 	__sk_del_bind_node(sk);
8015 	sctp_sk(sk)->bind_hash = NULL;
8016 	inet_sk(sk)->inet_num = 0;
8017 	sctp_bucket_destroy(pp);
8018 	spin_unlock(&head->lock);
8019 }
8020 
8021 void sctp_put_port(struct sock *sk)
8022 {
8023 	local_bh_disable();
8024 	__sctp_put_port(sk);
8025 	local_bh_enable();
8026 }
8027 
8028 /*
8029  * The system picks an ephemeral port and choose an address set equivalent
8030  * to binding with a wildcard address.
8031  * One of those addresses will be the primary address for the association.
8032  * This automatically enables the multihoming capability of SCTP.
8033  */
8034 static int sctp_autobind(struct sock *sk)
8035 {
8036 	union sctp_addr autoaddr;
8037 	struct sctp_af *af;
8038 	__be16 port;
8039 
8040 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8041 	af = sctp_sk(sk)->pf->af;
8042 
8043 	port = htons(inet_sk(sk)->inet_num);
8044 	af->inaddr_any(&autoaddr, port);
8045 
8046 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8047 }
8048 
8049 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8050  *
8051  * From RFC 2292
8052  * 4.2 The cmsghdr Structure *
8053  *
8054  * When ancillary data is sent or received, any number of ancillary data
8055  * objects can be specified by the msg_control and msg_controllen members of
8056  * the msghdr structure, because each object is preceded by
8057  * a cmsghdr structure defining the object's length (the cmsg_len member).
8058  * Historically Berkeley-derived implementations have passed only one object
8059  * at a time, but this API allows multiple objects to be
8060  * passed in a single call to sendmsg() or recvmsg(). The following example
8061  * shows two ancillary data objects in a control buffer.
8062  *
8063  *   |<--------------------------- msg_controllen -------------------------->|
8064  *   |                                                                       |
8065  *
8066  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8067  *
8068  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8069  *   |                                   |                                   |
8070  *
8071  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8072  *
8073  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8074  *   |                                |  |                                |  |
8075  *
8076  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8077  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8078  *
8079  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8080  *
8081  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8082  *    ^
8083  *    |
8084  *
8085  * msg_control
8086  * points here
8087  */
8088 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8089 {
8090 	struct msghdr *my_msg = (struct msghdr *)msg;
8091 	struct cmsghdr *cmsg;
8092 
8093 	for_each_cmsghdr(cmsg, my_msg) {
8094 		if (!CMSG_OK(my_msg, cmsg))
8095 			return -EINVAL;
8096 
8097 		/* Should we parse this header or ignore?  */
8098 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8099 			continue;
8100 
8101 		/* Strictly check lengths following example in SCM code.  */
8102 		switch (cmsg->cmsg_type) {
8103 		case SCTP_INIT:
8104 			/* SCTP Socket API Extension
8105 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8106 			 *
8107 			 * This cmsghdr structure provides information for
8108 			 * initializing new SCTP associations with sendmsg().
8109 			 * The SCTP_INITMSG socket option uses this same data
8110 			 * structure.  This structure is not used for
8111 			 * recvmsg().
8112 			 *
8113 			 * cmsg_level    cmsg_type      cmsg_data[]
8114 			 * ------------  ------------   ----------------------
8115 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8116 			 */
8117 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8118 				return -EINVAL;
8119 
8120 			cmsgs->init = CMSG_DATA(cmsg);
8121 			break;
8122 
8123 		case SCTP_SNDRCV:
8124 			/* SCTP Socket API Extension
8125 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8126 			 *
8127 			 * This cmsghdr structure specifies SCTP options for
8128 			 * sendmsg() and describes SCTP header information
8129 			 * about a received message through recvmsg().
8130 			 *
8131 			 * cmsg_level    cmsg_type      cmsg_data[]
8132 			 * ------------  ------------   ----------------------
8133 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8134 			 */
8135 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8136 				return -EINVAL;
8137 
8138 			cmsgs->srinfo = CMSG_DATA(cmsg);
8139 
8140 			if (cmsgs->srinfo->sinfo_flags &
8141 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8142 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8143 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8144 				return -EINVAL;
8145 			break;
8146 
8147 		case SCTP_SNDINFO:
8148 			/* SCTP Socket API Extension
8149 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8150 			 *
8151 			 * This cmsghdr structure specifies SCTP options for
8152 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8153 			 * SCTP_SNDRCV which has been deprecated.
8154 			 *
8155 			 * cmsg_level    cmsg_type      cmsg_data[]
8156 			 * ------------  ------------   ---------------------
8157 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8158 			 */
8159 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8160 				return -EINVAL;
8161 
8162 			cmsgs->sinfo = CMSG_DATA(cmsg);
8163 
8164 			if (cmsgs->sinfo->snd_flags &
8165 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8166 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8167 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8168 				return -EINVAL;
8169 			break;
8170 		case SCTP_PRINFO:
8171 			/* SCTP Socket API Extension
8172 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8173 			 *
8174 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8175 			 *
8176 			 * cmsg_level    cmsg_type      cmsg_data[]
8177 			 * ------------  ------------   ---------------------
8178 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8179 			 */
8180 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8181 				return -EINVAL;
8182 
8183 			cmsgs->prinfo = CMSG_DATA(cmsg);
8184 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8185 				return -EINVAL;
8186 
8187 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8188 				cmsgs->prinfo->pr_value = 0;
8189 			break;
8190 		case SCTP_AUTHINFO:
8191 			/* SCTP Socket API Extension
8192 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8193 			 *
8194 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8195 			 *
8196 			 * cmsg_level    cmsg_type      cmsg_data[]
8197 			 * ------------  ------------   ---------------------
8198 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8199 			 */
8200 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8201 				return -EINVAL;
8202 
8203 			cmsgs->authinfo = CMSG_DATA(cmsg);
8204 			break;
8205 		case SCTP_DSTADDRV4:
8206 		case SCTP_DSTADDRV6:
8207 			/* SCTP Socket API Extension
8208 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8209 			 *
8210 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8211 			 *
8212 			 * cmsg_level    cmsg_type         cmsg_data[]
8213 			 * ------------  ------------   ---------------------
8214 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8215 			 * ------------  ------------   ---------------------
8216 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8217 			 */
8218 			cmsgs->addrs_msg = my_msg;
8219 			break;
8220 		default:
8221 			return -EINVAL;
8222 		}
8223 	}
8224 
8225 	return 0;
8226 }
8227 
8228 /*
8229  * Wait for a packet..
8230  * Note: This function is the same function as in core/datagram.c
8231  * with a few modifications to make lksctp work.
8232  */
8233 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8234 {
8235 	int error;
8236 	DEFINE_WAIT(wait);
8237 
8238 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8239 
8240 	/* Socket errors? */
8241 	error = sock_error(sk);
8242 	if (error)
8243 		goto out;
8244 
8245 	if (!skb_queue_empty(&sk->sk_receive_queue))
8246 		goto ready;
8247 
8248 	/* Socket shut down?  */
8249 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8250 		goto out;
8251 
8252 	/* Sequenced packets can come disconnected.  If so we report the
8253 	 * problem.
8254 	 */
8255 	error = -ENOTCONN;
8256 
8257 	/* Is there a good reason to think that we may receive some data?  */
8258 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8259 		goto out;
8260 
8261 	/* Handle signals.  */
8262 	if (signal_pending(current))
8263 		goto interrupted;
8264 
8265 	/* Let another process have a go.  Since we are going to sleep
8266 	 * anyway.  Note: This may cause odd behaviors if the message
8267 	 * does not fit in the user's buffer, but this seems to be the
8268 	 * only way to honor MSG_DONTWAIT realistically.
8269 	 */
8270 	release_sock(sk);
8271 	*timeo_p = schedule_timeout(*timeo_p);
8272 	lock_sock(sk);
8273 
8274 ready:
8275 	finish_wait(sk_sleep(sk), &wait);
8276 	return 0;
8277 
8278 interrupted:
8279 	error = sock_intr_errno(*timeo_p);
8280 
8281 out:
8282 	finish_wait(sk_sleep(sk), &wait);
8283 	*err = error;
8284 	return error;
8285 }
8286 
8287 /* Receive a datagram.
8288  * Note: This is pretty much the same routine as in core/datagram.c
8289  * with a few changes to make lksctp work.
8290  */
8291 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8292 				       int noblock, int *err)
8293 {
8294 	int error;
8295 	struct sk_buff *skb;
8296 	long timeo;
8297 
8298 	timeo = sock_rcvtimeo(sk, noblock);
8299 
8300 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8301 		 MAX_SCHEDULE_TIMEOUT);
8302 
8303 	do {
8304 		/* Again only user level code calls this function,
8305 		 * so nothing interrupt level
8306 		 * will suddenly eat the receive_queue.
8307 		 *
8308 		 *  Look at current nfs client by the way...
8309 		 *  However, this function was correct in any case. 8)
8310 		 */
8311 		if (flags & MSG_PEEK) {
8312 			skb = skb_peek(&sk->sk_receive_queue);
8313 			if (skb)
8314 				refcount_inc(&skb->users);
8315 		} else {
8316 			skb = __skb_dequeue(&sk->sk_receive_queue);
8317 		}
8318 
8319 		if (skb)
8320 			return skb;
8321 
8322 		/* Caller is allowed not to check sk->sk_err before calling. */
8323 		error = sock_error(sk);
8324 		if (error)
8325 			goto no_packet;
8326 
8327 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8328 			break;
8329 
8330 		if (sk_can_busy_loop(sk)) {
8331 			sk_busy_loop(sk, noblock);
8332 
8333 			if (!skb_queue_empty(&sk->sk_receive_queue))
8334 				continue;
8335 		}
8336 
8337 		/* User doesn't want to wait.  */
8338 		error = -EAGAIN;
8339 		if (!timeo)
8340 			goto no_packet;
8341 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8342 
8343 	return NULL;
8344 
8345 no_packet:
8346 	*err = error;
8347 	return NULL;
8348 }
8349 
8350 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8351 static void __sctp_write_space(struct sctp_association *asoc)
8352 {
8353 	struct sock *sk = asoc->base.sk;
8354 
8355 	if (sctp_wspace(asoc) <= 0)
8356 		return;
8357 
8358 	if (waitqueue_active(&asoc->wait))
8359 		wake_up_interruptible(&asoc->wait);
8360 
8361 	if (sctp_writeable(sk)) {
8362 		struct socket_wq *wq;
8363 
8364 		rcu_read_lock();
8365 		wq = rcu_dereference(sk->sk_wq);
8366 		if (wq) {
8367 			if (waitqueue_active(&wq->wait))
8368 				wake_up_interruptible(&wq->wait);
8369 
8370 			/* Note that we try to include the Async I/O support
8371 			 * here by modeling from the current TCP/UDP code.
8372 			 * We have not tested with it yet.
8373 			 */
8374 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8375 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8376 		}
8377 		rcu_read_unlock();
8378 	}
8379 }
8380 
8381 static void sctp_wake_up_waiters(struct sock *sk,
8382 				 struct sctp_association *asoc)
8383 {
8384 	struct sctp_association *tmp = asoc;
8385 
8386 	/* We do accounting for the sndbuf space per association,
8387 	 * so we only need to wake our own association.
8388 	 */
8389 	if (asoc->ep->sndbuf_policy)
8390 		return __sctp_write_space(asoc);
8391 
8392 	/* If association goes down and is just flushing its
8393 	 * outq, then just normally notify others.
8394 	 */
8395 	if (asoc->base.dead)
8396 		return sctp_write_space(sk);
8397 
8398 	/* Accounting for the sndbuf space is per socket, so we
8399 	 * need to wake up others, try to be fair and in case of
8400 	 * other associations, let them have a go first instead
8401 	 * of just doing a sctp_write_space() call.
8402 	 *
8403 	 * Note that we reach sctp_wake_up_waiters() only when
8404 	 * associations free up queued chunks, thus we are under
8405 	 * lock and the list of associations on a socket is
8406 	 * guaranteed not to change.
8407 	 */
8408 	for (tmp = list_next_entry(tmp, asocs); 1;
8409 	     tmp = list_next_entry(tmp, asocs)) {
8410 		/* Manually skip the head element. */
8411 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8412 			continue;
8413 		/* Wake up association. */
8414 		__sctp_write_space(tmp);
8415 		/* We've reached the end. */
8416 		if (tmp == asoc)
8417 			break;
8418 	}
8419 }
8420 
8421 /* Do accounting for the sndbuf space.
8422  * Decrement the used sndbuf space of the corresponding association by the
8423  * data size which was just transmitted(freed).
8424  */
8425 static void sctp_wfree(struct sk_buff *skb)
8426 {
8427 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8428 	struct sctp_association *asoc = chunk->asoc;
8429 	struct sock *sk = asoc->base.sk;
8430 
8431 	sk_mem_uncharge(sk, skb->truesize);
8432 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8433 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8434 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8435 				      &sk->sk_wmem_alloc));
8436 
8437 	if (chunk->shkey) {
8438 		struct sctp_shared_key *shkey = chunk->shkey;
8439 
8440 		/* refcnt == 2 and !list_empty mean after this release, it's
8441 		 * not being used anywhere, and it's time to notify userland
8442 		 * that this shkey can be freed if it's been deactivated.
8443 		 */
8444 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8445 		    refcount_read(&shkey->refcnt) == 2) {
8446 			struct sctp_ulpevent *ev;
8447 
8448 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8449 							SCTP_AUTH_FREE_KEY,
8450 							GFP_KERNEL);
8451 			if (ev)
8452 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8453 		}
8454 		sctp_auth_shkey_release(chunk->shkey);
8455 	}
8456 
8457 	sock_wfree(skb);
8458 	sctp_wake_up_waiters(sk, asoc);
8459 
8460 	sctp_association_put(asoc);
8461 }
8462 
8463 /* Do accounting for the receive space on the socket.
8464  * Accounting for the association is done in ulpevent.c
8465  * We set this as a destructor for the cloned data skbs so that
8466  * accounting is done at the correct time.
8467  */
8468 void sctp_sock_rfree(struct sk_buff *skb)
8469 {
8470 	struct sock *sk = skb->sk;
8471 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8472 
8473 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8474 
8475 	/*
8476 	 * Mimic the behavior of sock_rfree
8477 	 */
8478 	sk_mem_uncharge(sk, event->rmem_len);
8479 }
8480 
8481 
8482 /* Helper function to wait for space in the sndbuf.  */
8483 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8484 				size_t msg_len)
8485 {
8486 	struct sock *sk = asoc->base.sk;
8487 	long current_timeo = *timeo_p;
8488 	DEFINE_WAIT(wait);
8489 	int err = 0;
8490 
8491 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8492 		 *timeo_p, msg_len);
8493 
8494 	/* Increment the association's refcnt.  */
8495 	sctp_association_hold(asoc);
8496 
8497 	/* Wait on the association specific sndbuf space. */
8498 	for (;;) {
8499 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8500 					  TASK_INTERRUPTIBLE);
8501 		if (asoc->base.dead)
8502 			goto do_dead;
8503 		if (!*timeo_p)
8504 			goto do_nonblock;
8505 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8506 			goto do_error;
8507 		if (signal_pending(current))
8508 			goto do_interrupted;
8509 		if ((int)msg_len <= sctp_wspace(asoc))
8510 			break;
8511 
8512 		/* Let another process have a go.  Since we are going
8513 		 * to sleep anyway.
8514 		 */
8515 		release_sock(sk);
8516 		current_timeo = schedule_timeout(current_timeo);
8517 		lock_sock(sk);
8518 		if (sk != asoc->base.sk)
8519 			goto do_error;
8520 
8521 		*timeo_p = current_timeo;
8522 	}
8523 
8524 out:
8525 	finish_wait(&asoc->wait, &wait);
8526 
8527 	/* Release the association's refcnt.  */
8528 	sctp_association_put(asoc);
8529 
8530 	return err;
8531 
8532 do_dead:
8533 	err = -ESRCH;
8534 	goto out;
8535 
8536 do_error:
8537 	err = -EPIPE;
8538 	goto out;
8539 
8540 do_interrupted:
8541 	err = sock_intr_errno(*timeo_p);
8542 	goto out;
8543 
8544 do_nonblock:
8545 	err = -EAGAIN;
8546 	goto out;
8547 }
8548 
8549 void sctp_data_ready(struct sock *sk)
8550 {
8551 	struct socket_wq *wq;
8552 
8553 	rcu_read_lock();
8554 	wq = rcu_dereference(sk->sk_wq);
8555 	if (skwq_has_sleeper(wq))
8556 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8557 						EPOLLRDNORM | EPOLLRDBAND);
8558 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8559 	rcu_read_unlock();
8560 }
8561 
8562 /* If socket sndbuf has changed, wake up all per association waiters.  */
8563 void sctp_write_space(struct sock *sk)
8564 {
8565 	struct sctp_association *asoc;
8566 
8567 	/* Wake up the tasks in each wait queue.  */
8568 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8569 		__sctp_write_space(asoc);
8570 	}
8571 }
8572 
8573 /* Is there any sndbuf space available on the socket?
8574  *
8575  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8576  * associations on the same socket.  For a UDP-style socket with
8577  * multiple associations, it is possible for it to be "unwriteable"
8578  * prematurely.  I assume that this is acceptable because
8579  * a premature "unwriteable" is better than an accidental "writeable" which
8580  * would cause an unwanted block under certain circumstances.  For the 1-1
8581  * UDP-style sockets or TCP-style sockets, this code should work.
8582  *  - Daisy
8583  */
8584 static bool sctp_writeable(struct sock *sk)
8585 {
8586 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8587 }
8588 
8589 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8590  * returns immediately with EINPROGRESS.
8591  */
8592 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8593 {
8594 	struct sock *sk = asoc->base.sk;
8595 	int err = 0;
8596 	long current_timeo = *timeo_p;
8597 	DEFINE_WAIT(wait);
8598 
8599 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8600 
8601 	/* Increment the association's refcnt.  */
8602 	sctp_association_hold(asoc);
8603 
8604 	for (;;) {
8605 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8606 					  TASK_INTERRUPTIBLE);
8607 		if (!*timeo_p)
8608 			goto do_nonblock;
8609 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8610 			break;
8611 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8612 		    asoc->base.dead)
8613 			goto do_error;
8614 		if (signal_pending(current))
8615 			goto do_interrupted;
8616 
8617 		if (sctp_state(asoc, ESTABLISHED))
8618 			break;
8619 
8620 		/* Let another process have a go.  Since we are going
8621 		 * to sleep anyway.
8622 		 */
8623 		release_sock(sk);
8624 		current_timeo = schedule_timeout(current_timeo);
8625 		lock_sock(sk);
8626 
8627 		*timeo_p = current_timeo;
8628 	}
8629 
8630 out:
8631 	finish_wait(&asoc->wait, &wait);
8632 
8633 	/* Release the association's refcnt.  */
8634 	sctp_association_put(asoc);
8635 
8636 	return err;
8637 
8638 do_error:
8639 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8640 		err = -ETIMEDOUT;
8641 	else
8642 		err = -ECONNREFUSED;
8643 	goto out;
8644 
8645 do_interrupted:
8646 	err = sock_intr_errno(*timeo_p);
8647 	goto out;
8648 
8649 do_nonblock:
8650 	err = -EINPROGRESS;
8651 	goto out;
8652 }
8653 
8654 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8655 {
8656 	struct sctp_endpoint *ep;
8657 	int err = 0;
8658 	DEFINE_WAIT(wait);
8659 
8660 	ep = sctp_sk(sk)->ep;
8661 
8662 
8663 	for (;;) {
8664 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8665 					  TASK_INTERRUPTIBLE);
8666 
8667 		if (list_empty(&ep->asocs)) {
8668 			release_sock(sk);
8669 			timeo = schedule_timeout(timeo);
8670 			lock_sock(sk);
8671 		}
8672 
8673 		err = -EINVAL;
8674 		if (!sctp_sstate(sk, LISTENING))
8675 			break;
8676 
8677 		err = 0;
8678 		if (!list_empty(&ep->asocs))
8679 			break;
8680 
8681 		err = sock_intr_errno(timeo);
8682 		if (signal_pending(current))
8683 			break;
8684 
8685 		err = -EAGAIN;
8686 		if (!timeo)
8687 			break;
8688 	}
8689 
8690 	finish_wait(sk_sleep(sk), &wait);
8691 
8692 	return err;
8693 }
8694 
8695 static void sctp_wait_for_close(struct sock *sk, long timeout)
8696 {
8697 	DEFINE_WAIT(wait);
8698 
8699 	do {
8700 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8701 		if (list_empty(&sctp_sk(sk)->ep->asocs))
8702 			break;
8703 		release_sock(sk);
8704 		timeout = schedule_timeout(timeout);
8705 		lock_sock(sk);
8706 	} while (!signal_pending(current) && timeout);
8707 
8708 	finish_wait(sk_sleep(sk), &wait);
8709 }
8710 
8711 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8712 {
8713 	struct sk_buff *frag;
8714 
8715 	if (!skb->data_len)
8716 		goto done;
8717 
8718 	/* Don't forget the fragments. */
8719 	skb_walk_frags(skb, frag)
8720 		sctp_skb_set_owner_r_frag(frag, sk);
8721 
8722 done:
8723 	sctp_skb_set_owner_r(skb, sk);
8724 }
8725 
8726 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8727 		    struct sctp_association *asoc)
8728 {
8729 	struct inet_sock *inet = inet_sk(sk);
8730 	struct inet_sock *newinet;
8731 	struct sctp_sock *sp = sctp_sk(sk);
8732 	struct sctp_endpoint *ep = sp->ep;
8733 
8734 	newsk->sk_type = sk->sk_type;
8735 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8736 	newsk->sk_flags = sk->sk_flags;
8737 	newsk->sk_tsflags = sk->sk_tsflags;
8738 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
8739 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
8740 	newsk->sk_reuse = sk->sk_reuse;
8741 	sctp_sk(newsk)->reuse = sp->reuse;
8742 
8743 	newsk->sk_shutdown = sk->sk_shutdown;
8744 	newsk->sk_destruct = sctp_destruct_sock;
8745 	newsk->sk_family = sk->sk_family;
8746 	newsk->sk_protocol = IPPROTO_SCTP;
8747 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8748 	newsk->sk_sndbuf = sk->sk_sndbuf;
8749 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
8750 	newsk->sk_lingertime = sk->sk_lingertime;
8751 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8752 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
8753 	newsk->sk_rxhash = sk->sk_rxhash;
8754 
8755 	newinet = inet_sk(newsk);
8756 
8757 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
8758 	 * getsockname() and getpeername()
8759 	 */
8760 	newinet->inet_sport = inet->inet_sport;
8761 	newinet->inet_saddr = inet->inet_saddr;
8762 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8763 	newinet->inet_dport = htons(asoc->peer.port);
8764 	newinet->pmtudisc = inet->pmtudisc;
8765 	newinet->inet_id = asoc->next_tsn ^ jiffies;
8766 
8767 	newinet->uc_ttl = inet->uc_ttl;
8768 	newinet->mc_loop = 1;
8769 	newinet->mc_ttl = 1;
8770 	newinet->mc_index = 0;
8771 	newinet->mc_list = NULL;
8772 
8773 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8774 		net_enable_timestamp();
8775 
8776 	/* Set newsk security attributes from orginal sk and connection
8777 	 * security attribute from ep.
8778 	 */
8779 	security_sctp_sk_clone(ep, sk, newsk);
8780 }
8781 
8782 static inline void sctp_copy_descendant(struct sock *sk_to,
8783 					const struct sock *sk_from)
8784 {
8785 	int ancestor_size = sizeof(struct inet_sock) +
8786 			    sizeof(struct sctp_sock) -
8787 			    offsetof(struct sctp_sock, auto_asconf_list);
8788 
8789 	if (sk_from->sk_family == PF_INET6)
8790 		ancestor_size += sizeof(struct ipv6_pinfo);
8791 
8792 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8793 }
8794 
8795 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8796  * and its messages to the newsk.
8797  */
8798 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8799 			      struct sctp_association *assoc,
8800 			      enum sctp_socket_type type)
8801 {
8802 	struct sctp_sock *oldsp = sctp_sk(oldsk);
8803 	struct sctp_sock *newsp = sctp_sk(newsk);
8804 	struct sctp_bind_bucket *pp; /* hash list port iterator */
8805 	struct sctp_endpoint *newep = newsp->ep;
8806 	struct sk_buff *skb, *tmp;
8807 	struct sctp_ulpevent *event;
8808 	struct sctp_bind_hashbucket *head;
8809 
8810 	/* Migrate socket buffer sizes and all the socket level options to the
8811 	 * new socket.
8812 	 */
8813 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
8814 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8815 	/* Brute force copy old sctp opt. */
8816 	sctp_copy_descendant(newsk, oldsk);
8817 
8818 	/* Restore the ep value that was overwritten with the above structure
8819 	 * copy.
8820 	 */
8821 	newsp->ep = newep;
8822 	newsp->hmac = NULL;
8823 
8824 	/* Hook this new socket in to the bind_hash list. */
8825 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8826 						 inet_sk(oldsk)->inet_num)];
8827 	spin_lock_bh(&head->lock);
8828 	pp = sctp_sk(oldsk)->bind_hash;
8829 	sk_add_bind_node(newsk, &pp->owner);
8830 	sctp_sk(newsk)->bind_hash = pp;
8831 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8832 	spin_unlock_bh(&head->lock);
8833 
8834 	/* Copy the bind_addr list from the original endpoint to the new
8835 	 * endpoint so that we can handle restarts properly
8836 	 */
8837 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8838 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
8839 
8840 	/* Move any messages in the old socket's receive queue that are for the
8841 	 * peeled off association to the new socket's receive queue.
8842 	 */
8843 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8844 		event = sctp_skb2event(skb);
8845 		if (event->asoc == assoc) {
8846 			__skb_unlink(skb, &oldsk->sk_receive_queue);
8847 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
8848 			sctp_skb_set_owner_r_frag(skb, newsk);
8849 		}
8850 	}
8851 
8852 	/* Clean up any messages pending delivery due to partial
8853 	 * delivery.   Three cases:
8854 	 * 1) No partial deliver;  no work.
8855 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8856 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8857 	 */
8858 	skb_queue_head_init(&newsp->pd_lobby);
8859 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8860 
8861 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8862 		struct sk_buff_head *queue;
8863 
8864 		/* Decide which queue to move pd_lobby skbs to. */
8865 		if (assoc->ulpq.pd_mode) {
8866 			queue = &newsp->pd_lobby;
8867 		} else
8868 			queue = &newsk->sk_receive_queue;
8869 
8870 		/* Walk through the pd_lobby, looking for skbs that
8871 		 * need moved to the new socket.
8872 		 */
8873 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8874 			event = sctp_skb2event(skb);
8875 			if (event->asoc == assoc) {
8876 				__skb_unlink(skb, &oldsp->pd_lobby);
8877 				__skb_queue_tail(queue, skb);
8878 				sctp_skb_set_owner_r_frag(skb, newsk);
8879 			}
8880 		}
8881 
8882 		/* Clear up any skbs waiting for the partial
8883 		 * delivery to finish.
8884 		 */
8885 		if (assoc->ulpq.pd_mode)
8886 			sctp_clear_pd(oldsk, NULL);
8887 
8888 	}
8889 
8890 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
8891 
8892 	/* Set the type of socket to indicate that it is peeled off from the
8893 	 * original UDP-style socket or created with the accept() call on a
8894 	 * TCP-style socket..
8895 	 */
8896 	newsp->type = type;
8897 
8898 	/* Mark the new socket "in-use" by the user so that any packets
8899 	 * that may arrive on the association after we've moved it are
8900 	 * queued to the backlog.  This prevents a potential race between
8901 	 * backlog processing on the old socket and new-packet processing
8902 	 * on the new socket.
8903 	 *
8904 	 * The caller has just allocated newsk so we can guarantee that other
8905 	 * paths won't try to lock it and then oldsk.
8906 	 */
8907 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8908 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8909 	sctp_assoc_migrate(assoc, newsk);
8910 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8911 
8912 	/* If the association on the newsk is already closed before accept()
8913 	 * is called, set RCV_SHUTDOWN flag.
8914 	 */
8915 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8916 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
8917 		newsk->sk_shutdown |= RCV_SHUTDOWN;
8918 	} else {
8919 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
8920 	}
8921 
8922 	release_sock(newsk);
8923 }
8924 
8925 
8926 /* This proto struct describes the ULP interface for SCTP.  */
8927 struct proto sctp_prot = {
8928 	.name        =	"SCTP",
8929 	.owner       =	THIS_MODULE,
8930 	.close       =	sctp_close,
8931 	.disconnect  =	sctp_disconnect,
8932 	.accept      =	sctp_accept,
8933 	.ioctl       =	sctp_ioctl,
8934 	.init        =	sctp_init_sock,
8935 	.destroy     =	sctp_destroy_sock,
8936 	.shutdown    =	sctp_shutdown,
8937 	.setsockopt  =	sctp_setsockopt,
8938 	.getsockopt  =	sctp_getsockopt,
8939 	.sendmsg     =	sctp_sendmsg,
8940 	.recvmsg     =	sctp_recvmsg,
8941 	.bind        =	sctp_bind,
8942 	.backlog_rcv =	sctp_backlog_rcv,
8943 	.hash        =	sctp_hash,
8944 	.unhash      =	sctp_unhash,
8945 	.get_port    =	sctp_get_port,
8946 	.obj_size    =  sizeof(struct sctp_sock),
8947 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
8948 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
8949 				offsetof(struct sctp_sock, subscribe) +
8950 				sizeof_field(struct sctp_sock, initmsg),
8951 	.sysctl_mem  =  sysctl_sctp_mem,
8952 	.sysctl_rmem =  sysctl_sctp_rmem,
8953 	.sysctl_wmem =  sysctl_sctp_wmem,
8954 	.memory_pressure = &sctp_memory_pressure,
8955 	.enter_memory_pressure = sctp_enter_memory_pressure,
8956 	.memory_allocated = &sctp_memory_allocated,
8957 	.sockets_allocated = &sctp_sockets_allocated,
8958 };
8959 
8960 #if IS_ENABLED(CONFIG_IPV6)
8961 
8962 #include <net/transp_v6.h>
8963 static void sctp_v6_destroy_sock(struct sock *sk)
8964 {
8965 	sctp_destroy_sock(sk);
8966 	inet6_destroy_sock(sk);
8967 }
8968 
8969 struct proto sctpv6_prot = {
8970 	.name		= "SCTPv6",
8971 	.owner		= THIS_MODULE,
8972 	.close		= sctp_close,
8973 	.disconnect	= sctp_disconnect,
8974 	.accept		= sctp_accept,
8975 	.ioctl		= sctp_ioctl,
8976 	.init		= sctp_init_sock,
8977 	.destroy	= sctp_v6_destroy_sock,
8978 	.shutdown	= sctp_shutdown,
8979 	.setsockopt	= sctp_setsockopt,
8980 	.getsockopt	= sctp_getsockopt,
8981 	.sendmsg	= sctp_sendmsg,
8982 	.recvmsg	= sctp_recvmsg,
8983 	.bind		= sctp_bind,
8984 	.backlog_rcv	= sctp_backlog_rcv,
8985 	.hash		= sctp_hash,
8986 	.unhash		= sctp_unhash,
8987 	.get_port	= sctp_get_port,
8988 	.obj_size	= sizeof(struct sctp6_sock),
8989 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
8990 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
8991 				offsetof(struct sctp6_sock, sctp.subscribe) +
8992 				sizeof_field(struct sctp6_sock, sctp.initmsg),
8993 	.sysctl_mem	= sysctl_sctp_mem,
8994 	.sysctl_rmem	= sysctl_sctp_rmem,
8995 	.sysctl_wmem	= sysctl_sctp_wmem,
8996 	.memory_pressure = &sctp_memory_pressure,
8997 	.enter_memory_pressure = sctp_enter_memory_pressure,
8998 	.memory_allocated = &sctp_memory_allocated,
8999 	.sockets_allocated = &sctp_sockets_allocated,
9000 };
9001 #endif /* IS_ENABLED(CONFIG_IPV6) */
9002