1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 #include <linux/file.h> 74 75 #include <net/ip.h> 76 #include <net/icmp.h> 77 #include <net/route.h> 78 #include <net/ipv6.h> 79 #include <net/inet_common.h> 80 81 #include <linux/socket.h> /* for sa_family_t */ 82 #include <linux/export.h> 83 #include <net/sock.h> 84 #include <net/sctp/sctp.h> 85 #include <net/sctp/sm.h> 86 87 /* WARNING: Please do not remove the SCTP_STATIC attribute to 88 * any of the functions below as they are used to export functions 89 * used by a project regression testsuite. 90 */ 91 92 /* Forward declarations for internal helper functions. */ 93 static int sctp_writeable(struct sock *sk); 94 static void sctp_wfree(struct sk_buff *skb); 95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 96 size_t msg_len); 97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 99 static int sctp_wait_for_accept(struct sock *sk, long timeo); 100 static void sctp_wait_for_close(struct sock *sk, long timeo); 101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 102 union sctp_addr *addr, int len); 103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 107 static int sctp_send_asconf(struct sctp_association *asoc, 108 struct sctp_chunk *chunk); 109 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 110 static int sctp_autobind(struct sock *sk); 111 static void sctp_sock_migrate(struct sock *, struct sock *, 112 struct sctp_association *, sctp_socket_type_t); 113 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 114 115 extern struct kmem_cache *sctp_bucket_cachep; 116 extern long sysctl_sctp_mem[3]; 117 extern int sysctl_sctp_rmem[3]; 118 extern int sysctl_sctp_wmem[3]; 119 120 static int sctp_memory_pressure; 121 static atomic_long_t sctp_memory_allocated; 122 struct percpu_counter sctp_sockets_allocated; 123 124 static void sctp_enter_memory_pressure(struct sock *sk) 125 { 126 sctp_memory_pressure = 1; 127 } 128 129 130 /* Get the sndbuf space available at the time on the association. */ 131 static inline int sctp_wspace(struct sctp_association *asoc) 132 { 133 int amt; 134 135 if (asoc->ep->sndbuf_policy) 136 amt = asoc->sndbuf_used; 137 else 138 amt = sk_wmem_alloc_get(asoc->base.sk); 139 140 if (amt >= asoc->base.sk->sk_sndbuf) { 141 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 142 amt = 0; 143 else { 144 amt = sk_stream_wspace(asoc->base.sk); 145 if (amt < 0) 146 amt = 0; 147 } 148 } else { 149 amt = asoc->base.sk->sk_sndbuf - amt; 150 } 151 return amt; 152 } 153 154 /* Increment the used sndbuf space count of the corresponding association by 155 * the size of the outgoing data chunk. 156 * Also, set the skb destructor for sndbuf accounting later. 157 * 158 * Since it is always 1-1 between chunk and skb, and also a new skb is always 159 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 160 * destructor in the data chunk skb for the purpose of the sndbuf space 161 * tracking. 162 */ 163 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 164 { 165 struct sctp_association *asoc = chunk->asoc; 166 struct sock *sk = asoc->base.sk; 167 168 /* The sndbuf space is tracked per association. */ 169 sctp_association_hold(asoc); 170 171 skb_set_owner_w(chunk->skb, sk); 172 173 chunk->skb->destructor = sctp_wfree; 174 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 175 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 176 177 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 178 sizeof(struct sk_buff) + 179 sizeof(struct sctp_chunk); 180 181 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 182 sk->sk_wmem_queued += chunk->skb->truesize; 183 sk_mem_charge(sk, chunk->skb->truesize); 184 } 185 186 /* Verify that this is a valid address. */ 187 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 188 int len) 189 { 190 struct sctp_af *af; 191 192 /* Verify basic sockaddr. */ 193 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 194 if (!af) 195 return -EINVAL; 196 197 /* Is this a valid SCTP address? */ 198 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 199 return -EINVAL; 200 201 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /* Look up the association by its id. If this is not a UDP-style 208 * socket, the ID field is always ignored. 209 */ 210 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 211 { 212 struct sctp_association *asoc = NULL; 213 214 /* If this is not a UDP-style socket, assoc id should be ignored. */ 215 if (!sctp_style(sk, UDP)) { 216 /* Return NULL if the socket state is not ESTABLISHED. It 217 * could be a TCP-style listening socket or a socket which 218 * hasn't yet called connect() to establish an association. 219 */ 220 if (!sctp_sstate(sk, ESTABLISHED)) 221 return NULL; 222 223 /* Get the first and the only association from the list. */ 224 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 225 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 226 struct sctp_association, asocs); 227 return asoc; 228 } 229 230 /* Otherwise this is a UDP-style socket. */ 231 if (!id || (id == (sctp_assoc_t)-1)) 232 return NULL; 233 234 spin_lock_bh(&sctp_assocs_id_lock); 235 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 236 spin_unlock_bh(&sctp_assocs_id_lock); 237 238 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 239 return NULL; 240 241 return asoc; 242 } 243 244 /* Look up the transport from an address and an assoc id. If both address and 245 * id are specified, the associations matching the address and the id should be 246 * the same. 247 */ 248 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 249 struct sockaddr_storage *addr, 250 sctp_assoc_t id) 251 { 252 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 253 struct sctp_transport *transport; 254 union sctp_addr *laddr = (union sctp_addr *)addr; 255 256 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 257 laddr, 258 &transport); 259 260 if (!addr_asoc) 261 return NULL; 262 263 id_asoc = sctp_id2assoc(sk, id); 264 if (id_asoc && (id_asoc != addr_asoc)) 265 return NULL; 266 267 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 268 (union sctp_addr *)addr); 269 270 return transport; 271 } 272 273 /* API 3.1.2 bind() - UDP Style Syntax 274 * The syntax of bind() is, 275 * 276 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 277 * 278 * sd - the socket descriptor returned by socket(). 279 * addr - the address structure (struct sockaddr_in or struct 280 * sockaddr_in6 [RFC 2553]), 281 * addr_len - the size of the address structure. 282 */ 283 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 284 { 285 int retval = 0; 286 287 sctp_lock_sock(sk); 288 289 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 290 sk, addr, addr_len); 291 292 /* Disallow binding twice. */ 293 if (!sctp_sk(sk)->ep->base.bind_addr.port) 294 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 295 addr_len); 296 else 297 retval = -EINVAL; 298 299 sctp_release_sock(sk); 300 301 return retval; 302 } 303 304 static long sctp_get_port_local(struct sock *, union sctp_addr *); 305 306 /* Verify this is a valid sockaddr. */ 307 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 308 union sctp_addr *addr, int len) 309 { 310 struct sctp_af *af; 311 312 /* Check minimum size. */ 313 if (len < sizeof (struct sockaddr)) 314 return NULL; 315 316 /* V4 mapped address are really of AF_INET family */ 317 if (addr->sa.sa_family == AF_INET6 && 318 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 319 if (!opt->pf->af_supported(AF_INET, opt)) 320 return NULL; 321 } else { 322 /* Does this PF support this AF? */ 323 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 324 return NULL; 325 } 326 327 /* If we get this far, af is valid. */ 328 af = sctp_get_af_specific(addr->sa.sa_family); 329 330 if (len < af->sockaddr_len) 331 return NULL; 332 333 return af; 334 } 335 336 /* Bind a local address either to an endpoint or to an association. */ 337 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 338 { 339 struct sctp_sock *sp = sctp_sk(sk); 340 struct sctp_endpoint *ep = sp->ep; 341 struct sctp_bind_addr *bp = &ep->base.bind_addr; 342 struct sctp_af *af; 343 unsigned short snum; 344 int ret = 0; 345 346 /* Common sockaddr verification. */ 347 af = sctp_sockaddr_af(sp, addr, len); 348 if (!af) { 349 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 350 sk, addr, len); 351 return -EINVAL; 352 } 353 354 snum = ntohs(addr->v4.sin_port); 355 356 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 357 ", port: %d, new port: %d, len: %d)\n", 358 sk, 359 addr, 360 bp->port, snum, 361 len); 362 363 /* PF specific bind() address verification. */ 364 if (!sp->pf->bind_verify(sp, addr)) 365 return -EADDRNOTAVAIL; 366 367 /* We must either be unbound, or bind to the same port. 368 * It's OK to allow 0 ports if we are already bound. 369 * We'll just inhert an already bound port in this case 370 */ 371 if (bp->port) { 372 if (!snum) 373 snum = bp->port; 374 else if (snum != bp->port) { 375 SCTP_DEBUG_PRINTK("sctp_do_bind:" 376 " New port %d does not match existing port " 377 "%d.\n", snum, bp->port); 378 return -EINVAL; 379 } 380 } 381 382 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 383 return -EACCES; 384 385 /* See if the address matches any of the addresses we may have 386 * already bound before checking against other endpoints. 387 */ 388 if (sctp_bind_addr_match(bp, addr, sp)) 389 return -EINVAL; 390 391 /* Make sure we are allowed to bind here. 392 * The function sctp_get_port_local() does duplicate address 393 * detection. 394 */ 395 addr->v4.sin_port = htons(snum); 396 if ((ret = sctp_get_port_local(sk, addr))) { 397 return -EADDRINUSE; 398 } 399 400 /* Refresh ephemeral port. */ 401 if (!bp->port) 402 bp->port = inet_sk(sk)->inet_num; 403 404 /* Add the address to the bind address list. 405 * Use GFP_ATOMIC since BHs will be disabled. 406 */ 407 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 408 409 /* Copy back into socket for getsockname() use. */ 410 if (!ret) { 411 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 412 af->to_sk_saddr(addr, sk); 413 } 414 415 return ret; 416 } 417 418 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 419 * 420 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 421 * at any one time. If a sender, after sending an ASCONF chunk, decides 422 * it needs to transfer another ASCONF Chunk, it MUST wait until the 423 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 424 * subsequent ASCONF. Note this restriction binds each side, so at any 425 * time two ASCONF may be in-transit on any given association (one sent 426 * from each endpoint). 427 */ 428 static int sctp_send_asconf(struct sctp_association *asoc, 429 struct sctp_chunk *chunk) 430 { 431 struct net *net = sock_net(asoc->base.sk); 432 int retval = 0; 433 434 /* If there is an outstanding ASCONF chunk, queue it for later 435 * transmission. 436 */ 437 if (asoc->addip_last_asconf) { 438 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 439 goto out; 440 } 441 442 /* Hold the chunk until an ASCONF_ACK is received. */ 443 sctp_chunk_hold(chunk); 444 retval = sctp_primitive_ASCONF(net, asoc, chunk); 445 if (retval) 446 sctp_chunk_free(chunk); 447 else 448 asoc->addip_last_asconf = chunk; 449 450 out: 451 return retval; 452 } 453 454 /* Add a list of addresses as bind addresses to local endpoint or 455 * association. 456 * 457 * Basically run through each address specified in the addrs/addrcnt 458 * array/length pair, determine if it is IPv6 or IPv4 and call 459 * sctp_do_bind() on it. 460 * 461 * If any of them fails, then the operation will be reversed and the 462 * ones that were added will be removed. 463 * 464 * Only sctp_setsockopt_bindx() is supposed to call this function. 465 */ 466 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 467 { 468 int cnt; 469 int retval = 0; 470 void *addr_buf; 471 struct sockaddr *sa_addr; 472 struct sctp_af *af; 473 474 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 475 sk, addrs, addrcnt); 476 477 addr_buf = addrs; 478 for (cnt = 0; cnt < addrcnt; cnt++) { 479 /* The list may contain either IPv4 or IPv6 address; 480 * determine the address length for walking thru the list. 481 */ 482 sa_addr = addr_buf; 483 af = sctp_get_af_specific(sa_addr->sa_family); 484 if (!af) { 485 retval = -EINVAL; 486 goto err_bindx_add; 487 } 488 489 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 490 af->sockaddr_len); 491 492 addr_buf += af->sockaddr_len; 493 494 err_bindx_add: 495 if (retval < 0) { 496 /* Failed. Cleanup the ones that have been added */ 497 if (cnt > 0) 498 sctp_bindx_rem(sk, addrs, cnt); 499 return retval; 500 } 501 } 502 503 return retval; 504 } 505 506 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 507 * associations that are part of the endpoint indicating that a list of local 508 * addresses are added to the endpoint. 509 * 510 * If any of the addresses is already in the bind address list of the 511 * association, we do not send the chunk for that association. But it will not 512 * affect other associations. 513 * 514 * Only sctp_setsockopt_bindx() is supposed to call this function. 515 */ 516 static int sctp_send_asconf_add_ip(struct sock *sk, 517 struct sockaddr *addrs, 518 int addrcnt) 519 { 520 struct net *net = sock_net(sk); 521 struct sctp_sock *sp; 522 struct sctp_endpoint *ep; 523 struct sctp_association *asoc; 524 struct sctp_bind_addr *bp; 525 struct sctp_chunk *chunk; 526 struct sctp_sockaddr_entry *laddr; 527 union sctp_addr *addr; 528 union sctp_addr saveaddr; 529 void *addr_buf; 530 struct sctp_af *af; 531 struct list_head *p; 532 int i; 533 int retval = 0; 534 535 if (!net->sctp.addip_enable) 536 return retval; 537 538 sp = sctp_sk(sk); 539 ep = sp->ep; 540 541 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 542 __func__, sk, addrs, addrcnt); 543 544 list_for_each_entry(asoc, &ep->asocs, asocs) { 545 546 if (!asoc->peer.asconf_capable) 547 continue; 548 549 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 550 continue; 551 552 if (!sctp_state(asoc, ESTABLISHED)) 553 continue; 554 555 /* Check if any address in the packed array of addresses is 556 * in the bind address list of the association. If so, 557 * do not send the asconf chunk to its peer, but continue with 558 * other associations. 559 */ 560 addr_buf = addrs; 561 for (i = 0; i < addrcnt; i++) { 562 addr = addr_buf; 563 af = sctp_get_af_specific(addr->v4.sin_family); 564 if (!af) { 565 retval = -EINVAL; 566 goto out; 567 } 568 569 if (sctp_assoc_lookup_laddr(asoc, addr)) 570 break; 571 572 addr_buf += af->sockaddr_len; 573 } 574 if (i < addrcnt) 575 continue; 576 577 /* Use the first valid address in bind addr list of 578 * association as Address Parameter of ASCONF CHUNK. 579 */ 580 bp = &asoc->base.bind_addr; 581 p = bp->address_list.next; 582 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 583 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 584 addrcnt, SCTP_PARAM_ADD_IP); 585 if (!chunk) { 586 retval = -ENOMEM; 587 goto out; 588 } 589 590 /* Add the new addresses to the bind address list with 591 * use_as_src set to 0. 592 */ 593 addr_buf = addrs; 594 for (i = 0; i < addrcnt; i++) { 595 addr = addr_buf; 596 af = sctp_get_af_specific(addr->v4.sin_family); 597 memcpy(&saveaddr, addr, af->sockaddr_len); 598 retval = sctp_add_bind_addr(bp, &saveaddr, 599 SCTP_ADDR_NEW, GFP_ATOMIC); 600 addr_buf += af->sockaddr_len; 601 } 602 if (asoc->src_out_of_asoc_ok) { 603 struct sctp_transport *trans; 604 605 list_for_each_entry(trans, 606 &asoc->peer.transport_addr_list, transports) { 607 /* Clear the source and route cache */ 608 dst_release(trans->dst); 609 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 610 2*asoc->pathmtu, 4380)); 611 trans->ssthresh = asoc->peer.i.a_rwnd; 612 trans->rto = asoc->rto_initial; 613 trans->rtt = trans->srtt = trans->rttvar = 0; 614 sctp_transport_route(trans, NULL, 615 sctp_sk(asoc->base.sk)); 616 } 617 } 618 retval = sctp_send_asconf(asoc, chunk); 619 } 620 621 out: 622 return retval; 623 } 624 625 /* Remove a list of addresses from bind addresses list. Do not remove the 626 * last address. 627 * 628 * Basically run through each address specified in the addrs/addrcnt 629 * array/length pair, determine if it is IPv6 or IPv4 and call 630 * sctp_del_bind() on it. 631 * 632 * If any of them fails, then the operation will be reversed and the 633 * ones that were removed will be added back. 634 * 635 * At least one address has to be left; if only one address is 636 * available, the operation will return -EBUSY. 637 * 638 * Only sctp_setsockopt_bindx() is supposed to call this function. 639 */ 640 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 641 { 642 struct sctp_sock *sp = sctp_sk(sk); 643 struct sctp_endpoint *ep = sp->ep; 644 int cnt; 645 struct sctp_bind_addr *bp = &ep->base.bind_addr; 646 int retval = 0; 647 void *addr_buf; 648 union sctp_addr *sa_addr; 649 struct sctp_af *af; 650 651 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 652 sk, addrs, addrcnt); 653 654 addr_buf = addrs; 655 for (cnt = 0; cnt < addrcnt; cnt++) { 656 /* If the bind address list is empty or if there is only one 657 * bind address, there is nothing more to be removed (we need 658 * at least one address here). 659 */ 660 if (list_empty(&bp->address_list) || 661 (sctp_list_single_entry(&bp->address_list))) { 662 retval = -EBUSY; 663 goto err_bindx_rem; 664 } 665 666 sa_addr = addr_buf; 667 af = sctp_get_af_specific(sa_addr->sa.sa_family); 668 if (!af) { 669 retval = -EINVAL; 670 goto err_bindx_rem; 671 } 672 673 if (!af->addr_valid(sa_addr, sp, NULL)) { 674 retval = -EADDRNOTAVAIL; 675 goto err_bindx_rem; 676 } 677 678 if (sa_addr->v4.sin_port && 679 sa_addr->v4.sin_port != htons(bp->port)) { 680 retval = -EINVAL; 681 goto err_bindx_rem; 682 } 683 684 if (!sa_addr->v4.sin_port) 685 sa_addr->v4.sin_port = htons(bp->port); 686 687 /* FIXME - There is probably a need to check if sk->sk_saddr and 688 * sk->sk_rcv_addr are currently set to one of the addresses to 689 * be removed. This is something which needs to be looked into 690 * when we are fixing the outstanding issues with multi-homing 691 * socket routing and failover schemes. Refer to comments in 692 * sctp_do_bind(). -daisy 693 */ 694 retval = sctp_del_bind_addr(bp, sa_addr); 695 696 addr_buf += af->sockaddr_len; 697 err_bindx_rem: 698 if (retval < 0) { 699 /* Failed. Add the ones that has been removed back */ 700 if (cnt > 0) 701 sctp_bindx_add(sk, addrs, cnt); 702 return retval; 703 } 704 } 705 706 return retval; 707 } 708 709 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 710 * the associations that are part of the endpoint indicating that a list of 711 * local addresses are removed from the endpoint. 712 * 713 * If any of the addresses is already in the bind address list of the 714 * association, we do not send the chunk for that association. But it will not 715 * affect other associations. 716 * 717 * Only sctp_setsockopt_bindx() is supposed to call this function. 718 */ 719 static int sctp_send_asconf_del_ip(struct sock *sk, 720 struct sockaddr *addrs, 721 int addrcnt) 722 { 723 struct net *net = sock_net(sk); 724 struct sctp_sock *sp; 725 struct sctp_endpoint *ep; 726 struct sctp_association *asoc; 727 struct sctp_transport *transport; 728 struct sctp_bind_addr *bp; 729 struct sctp_chunk *chunk; 730 union sctp_addr *laddr; 731 void *addr_buf; 732 struct sctp_af *af; 733 struct sctp_sockaddr_entry *saddr; 734 int i; 735 int retval = 0; 736 int stored = 0; 737 738 chunk = NULL; 739 if (!net->sctp.addip_enable) 740 return retval; 741 742 sp = sctp_sk(sk); 743 ep = sp->ep; 744 745 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 746 __func__, sk, addrs, addrcnt); 747 748 list_for_each_entry(asoc, &ep->asocs, asocs) { 749 750 if (!asoc->peer.asconf_capable) 751 continue; 752 753 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 754 continue; 755 756 if (!sctp_state(asoc, ESTABLISHED)) 757 continue; 758 759 /* Check if any address in the packed array of addresses is 760 * not present in the bind address list of the association. 761 * If so, do not send the asconf chunk to its peer, but 762 * continue with other associations. 763 */ 764 addr_buf = addrs; 765 for (i = 0; i < addrcnt; i++) { 766 laddr = addr_buf; 767 af = sctp_get_af_specific(laddr->v4.sin_family); 768 if (!af) { 769 retval = -EINVAL; 770 goto out; 771 } 772 773 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 774 break; 775 776 addr_buf += af->sockaddr_len; 777 } 778 if (i < addrcnt) 779 continue; 780 781 /* Find one address in the association's bind address list 782 * that is not in the packed array of addresses. This is to 783 * make sure that we do not delete all the addresses in the 784 * association. 785 */ 786 bp = &asoc->base.bind_addr; 787 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 788 addrcnt, sp); 789 if ((laddr == NULL) && (addrcnt == 1)) { 790 if (asoc->asconf_addr_del_pending) 791 continue; 792 asoc->asconf_addr_del_pending = 793 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 794 if (asoc->asconf_addr_del_pending == NULL) { 795 retval = -ENOMEM; 796 goto out; 797 } 798 asoc->asconf_addr_del_pending->sa.sa_family = 799 addrs->sa_family; 800 asoc->asconf_addr_del_pending->v4.sin_port = 801 htons(bp->port); 802 if (addrs->sa_family == AF_INET) { 803 struct sockaddr_in *sin; 804 805 sin = (struct sockaddr_in *)addrs; 806 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 807 } else if (addrs->sa_family == AF_INET6) { 808 struct sockaddr_in6 *sin6; 809 810 sin6 = (struct sockaddr_in6 *)addrs; 811 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 812 } 813 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 814 " at %p\n", asoc, asoc->asconf_addr_del_pending, 815 asoc->asconf_addr_del_pending); 816 asoc->src_out_of_asoc_ok = 1; 817 stored = 1; 818 goto skip_mkasconf; 819 } 820 821 /* We do not need RCU protection throughout this loop 822 * because this is done under a socket lock from the 823 * setsockopt call. 824 */ 825 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 826 SCTP_PARAM_DEL_IP); 827 if (!chunk) { 828 retval = -ENOMEM; 829 goto out; 830 } 831 832 skip_mkasconf: 833 /* Reset use_as_src flag for the addresses in the bind address 834 * list that are to be deleted. 835 */ 836 addr_buf = addrs; 837 for (i = 0; i < addrcnt; i++) { 838 laddr = addr_buf; 839 af = sctp_get_af_specific(laddr->v4.sin_family); 840 list_for_each_entry(saddr, &bp->address_list, list) { 841 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 842 saddr->state = SCTP_ADDR_DEL; 843 } 844 addr_buf += af->sockaddr_len; 845 } 846 847 /* Update the route and saddr entries for all the transports 848 * as some of the addresses in the bind address list are 849 * about to be deleted and cannot be used as source addresses. 850 */ 851 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 852 transports) { 853 dst_release(transport->dst); 854 sctp_transport_route(transport, NULL, 855 sctp_sk(asoc->base.sk)); 856 } 857 858 if (stored) 859 /* We don't need to transmit ASCONF */ 860 continue; 861 retval = sctp_send_asconf(asoc, chunk); 862 } 863 out: 864 return retval; 865 } 866 867 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 868 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 869 { 870 struct sock *sk = sctp_opt2sk(sp); 871 union sctp_addr *addr; 872 struct sctp_af *af; 873 874 /* It is safe to write port space in caller. */ 875 addr = &addrw->a; 876 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 877 af = sctp_get_af_specific(addr->sa.sa_family); 878 if (!af) 879 return -EINVAL; 880 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 881 return -EINVAL; 882 883 if (addrw->state == SCTP_ADDR_NEW) 884 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 885 else 886 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 887 } 888 889 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 890 * 891 * API 8.1 892 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 893 * int flags); 894 * 895 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 896 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 897 * or IPv6 addresses. 898 * 899 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 900 * Section 3.1.2 for this usage. 901 * 902 * addrs is a pointer to an array of one or more socket addresses. Each 903 * address is contained in its appropriate structure (i.e. struct 904 * sockaddr_in or struct sockaddr_in6) the family of the address type 905 * must be used to distinguish the address length (note that this 906 * representation is termed a "packed array" of addresses). The caller 907 * specifies the number of addresses in the array with addrcnt. 908 * 909 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 910 * -1, and sets errno to the appropriate error code. 911 * 912 * For SCTP, the port given in each socket address must be the same, or 913 * sctp_bindx() will fail, setting errno to EINVAL. 914 * 915 * The flags parameter is formed from the bitwise OR of zero or more of 916 * the following currently defined flags: 917 * 918 * SCTP_BINDX_ADD_ADDR 919 * 920 * SCTP_BINDX_REM_ADDR 921 * 922 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 923 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 924 * addresses from the association. The two flags are mutually exclusive; 925 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 926 * not remove all addresses from an association; sctp_bindx() will 927 * reject such an attempt with EINVAL. 928 * 929 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 930 * additional addresses with an endpoint after calling bind(). Or use 931 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 932 * socket is associated with so that no new association accepted will be 933 * associated with those addresses. If the endpoint supports dynamic 934 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 935 * endpoint to send the appropriate message to the peer to change the 936 * peers address lists. 937 * 938 * Adding and removing addresses from a connected association is 939 * optional functionality. Implementations that do not support this 940 * functionality should return EOPNOTSUPP. 941 * 942 * Basically do nothing but copying the addresses from user to kernel 943 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 944 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 945 * from userspace. 946 * 947 * We don't use copy_from_user() for optimization: we first do the 948 * sanity checks (buffer size -fast- and access check-healthy 949 * pointer); if all of those succeed, then we can alloc the memory 950 * (expensive operation) needed to copy the data to kernel. Then we do 951 * the copying without checking the user space area 952 * (__copy_from_user()). 953 * 954 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 955 * it. 956 * 957 * sk The sk of the socket 958 * addrs The pointer to the addresses in user land 959 * addrssize Size of the addrs buffer 960 * op Operation to perform (add or remove, see the flags of 961 * sctp_bindx) 962 * 963 * Returns 0 if ok, <0 errno code on error. 964 */ 965 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 966 struct sockaddr __user *addrs, 967 int addrs_size, int op) 968 { 969 struct sockaddr *kaddrs; 970 int err; 971 int addrcnt = 0; 972 int walk_size = 0; 973 struct sockaddr *sa_addr; 974 void *addr_buf; 975 struct sctp_af *af; 976 977 SCTP_DEBUG_PRINTK("sctp_setsockopt_bindx: sk %p addrs %p" 978 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 979 980 if (unlikely(addrs_size <= 0)) 981 return -EINVAL; 982 983 /* Check the user passed a healthy pointer. */ 984 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 985 return -EFAULT; 986 987 /* Alloc space for the address array in kernel memory. */ 988 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 989 if (unlikely(!kaddrs)) 990 return -ENOMEM; 991 992 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 993 kfree(kaddrs); 994 return -EFAULT; 995 } 996 997 /* Walk through the addrs buffer and count the number of addresses. */ 998 addr_buf = kaddrs; 999 while (walk_size < addrs_size) { 1000 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1001 kfree(kaddrs); 1002 return -EINVAL; 1003 } 1004 1005 sa_addr = addr_buf; 1006 af = sctp_get_af_specific(sa_addr->sa_family); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 kfree(kaddrs); 1013 return -EINVAL; 1014 } 1015 addrcnt++; 1016 addr_buf += af->sockaddr_len; 1017 walk_size += af->sockaddr_len; 1018 } 1019 1020 /* Do the work. */ 1021 switch (op) { 1022 case SCTP_BINDX_ADD_ADDR: 1023 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1024 if (err) 1025 goto out; 1026 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1027 break; 1028 1029 case SCTP_BINDX_REM_ADDR: 1030 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1031 if (err) 1032 goto out; 1033 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1034 break; 1035 1036 default: 1037 err = -EINVAL; 1038 break; 1039 } 1040 1041 out: 1042 kfree(kaddrs); 1043 1044 return err; 1045 } 1046 1047 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1048 * 1049 * Common routine for handling connect() and sctp_connectx(). 1050 * Connect will come in with just a single address. 1051 */ 1052 static int __sctp_connect(struct sock* sk, 1053 struct sockaddr *kaddrs, 1054 int addrs_size, 1055 sctp_assoc_t *assoc_id) 1056 { 1057 struct net *net = sock_net(sk); 1058 struct sctp_sock *sp; 1059 struct sctp_endpoint *ep; 1060 struct sctp_association *asoc = NULL; 1061 struct sctp_association *asoc2; 1062 struct sctp_transport *transport; 1063 union sctp_addr to; 1064 struct sctp_af *af; 1065 sctp_scope_t scope; 1066 long timeo; 1067 int err = 0; 1068 int addrcnt = 0; 1069 int walk_size = 0; 1070 union sctp_addr *sa_addr = NULL; 1071 void *addr_buf; 1072 unsigned short port; 1073 unsigned int f_flags = 0; 1074 1075 sp = sctp_sk(sk); 1076 ep = sp->ep; 1077 1078 /* connect() cannot be done on a socket that is already in ESTABLISHED 1079 * state - UDP-style peeled off socket or a TCP-style socket that 1080 * is already connected. 1081 * It cannot be done even on a TCP-style listening socket. 1082 */ 1083 if (sctp_sstate(sk, ESTABLISHED) || 1084 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1085 err = -EISCONN; 1086 goto out_free; 1087 } 1088 1089 /* Walk through the addrs buffer and count the number of addresses. */ 1090 addr_buf = kaddrs; 1091 while (walk_size < addrs_size) { 1092 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1093 err = -EINVAL; 1094 goto out_free; 1095 } 1096 1097 sa_addr = addr_buf; 1098 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1099 1100 /* If the address family is not supported or if this address 1101 * causes the address buffer to overflow return EINVAL. 1102 */ 1103 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1104 err = -EINVAL; 1105 goto out_free; 1106 } 1107 1108 port = ntohs(sa_addr->v4.sin_port); 1109 1110 /* Save current address so we can work with it */ 1111 memcpy(&to, sa_addr, af->sockaddr_len); 1112 1113 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1114 if (err) 1115 goto out_free; 1116 1117 /* Make sure the destination port is correctly set 1118 * in all addresses. 1119 */ 1120 if (asoc && asoc->peer.port && asoc->peer.port != port) 1121 goto out_free; 1122 1123 1124 /* Check if there already is a matching association on the 1125 * endpoint (other than the one created here). 1126 */ 1127 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1128 if (asoc2 && asoc2 != asoc) { 1129 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1130 err = -EISCONN; 1131 else 1132 err = -EALREADY; 1133 goto out_free; 1134 } 1135 1136 /* If we could not find a matching association on the endpoint, 1137 * make sure that there is no peeled-off association matching 1138 * the peer address even on another socket. 1139 */ 1140 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1141 err = -EADDRNOTAVAIL; 1142 goto out_free; 1143 } 1144 1145 if (!asoc) { 1146 /* If a bind() or sctp_bindx() is not called prior to 1147 * an sctp_connectx() call, the system picks an 1148 * ephemeral port and will choose an address set 1149 * equivalent to binding with a wildcard address. 1150 */ 1151 if (!ep->base.bind_addr.port) { 1152 if (sctp_autobind(sk)) { 1153 err = -EAGAIN; 1154 goto out_free; 1155 } 1156 } else { 1157 /* 1158 * If an unprivileged user inherits a 1-many 1159 * style socket with open associations on a 1160 * privileged port, it MAY be permitted to 1161 * accept new associations, but it SHOULD NOT 1162 * be permitted to open new associations. 1163 */ 1164 if (ep->base.bind_addr.port < PROT_SOCK && 1165 !capable(CAP_NET_BIND_SERVICE)) { 1166 err = -EACCES; 1167 goto out_free; 1168 } 1169 } 1170 1171 scope = sctp_scope(&to); 1172 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1173 if (!asoc) { 1174 err = -ENOMEM; 1175 goto out_free; 1176 } 1177 1178 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1179 GFP_KERNEL); 1180 if (err < 0) { 1181 goto out_free; 1182 } 1183 1184 } 1185 1186 /* Prime the peer's transport structures. */ 1187 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1188 SCTP_UNKNOWN); 1189 if (!transport) { 1190 err = -ENOMEM; 1191 goto out_free; 1192 } 1193 1194 addrcnt++; 1195 addr_buf += af->sockaddr_len; 1196 walk_size += af->sockaddr_len; 1197 } 1198 1199 /* In case the user of sctp_connectx() wants an association 1200 * id back, assign one now. 1201 */ 1202 if (assoc_id) { 1203 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1204 if (err < 0) 1205 goto out_free; 1206 } 1207 1208 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1209 if (err < 0) { 1210 goto out_free; 1211 } 1212 1213 /* Initialize sk's dport and daddr for getpeername() */ 1214 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1215 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1216 af->to_sk_daddr(sa_addr, sk); 1217 sk->sk_err = 0; 1218 1219 /* in-kernel sockets don't generally have a file allocated to them 1220 * if all they do is call sock_create_kern(). 1221 */ 1222 if (sk->sk_socket->file) 1223 f_flags = sk->sk_socket->file->f_flags; 1224 1225 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1226 1227 err = sctp_wait_for_connect(asoc, &timeo); 1228 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1229 *assoc_id = asoc->assoc_id; 1230 1231 /* Don't free association on exit. */ 1232 asoc = NULL; 1233 1234 out_free: 1235 1236 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1237 " kaddrs: %p err: %d\n", 1238 asoc, kaddrs, err); 1239 if (asoc) { 1240 /* sctp_primitive_ASSOCIATE may have added this association 1241 * To the hash table, try to unhash it, just in case, its a noop 1242 * if it wasn't hashed so we're safe 1243 */ 1244 sctp_unhash_established(asoc); 1245 sctp_association_free(asoc); 1246 } 1247 return err; 1248 } 1249 1250 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1251 * 1252 * API 8.9 1253 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1254 * sctp_assoc_t *asoc); 1255 * 1256 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1257 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1258 * or IPv6 addresses. 1259 * 1260 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1261 * Section 3.1.2 for this usage. 1262 * 1263 * addrs is a pointer to an array of one or more socket addresses. Each 1264 * address is contained in its appropriate structure (i.e. struct 1265 * sockaddr_in or struct sockaddr_in6) the family of the address type 1266 * must be used to distengish the address length (note that this 1267 * representation is termed a "packed array" of addresses). The caller 1268 * specifies the number of addresses in the array with addrcnt. 1269 * 1270 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1271 * the association id of the new association. On failure, sctp_connectx() 1272 * returns -1, and sets errno to the appropriate error code. The assoc_id 1273 * is not touched by the kernel. 1274 * 1275 * For SCTP, the port given in each socket address must be the same, or 1276 * sctp_connectx() will fail, setting errno to EINVAL. 1277 * 1278 * An application can use sctp_connectx to initiate an association with 1279 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1280 * allows a caller to specify multiple addresses at which a peer can be 1281 * reached. The way the SCTP stack uses the list of addresses to set up 1282 * the association is implementation dependent. This function only 1283 * specifies that the stack will try to make use of all the addresses in 1284 * the list when needed. 1285 * 1286 * Note that the list of addresses passed in is only used for setting up 1287 * the association. It does not necessarily equal the set of addresses 1288 * the peer uses for the resulting association. If the caller wants to 1289 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1290 * retrieve them after the association has been set up. 1291 * 1292 * Basically do nothing but copying the addresses from user to kernel 1293 * land and invoking either sctp_connectx(). This is used for tunneling 1294 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1295 * 1296 * We don't use copy_from_user() for optimization: we first do the 1297 * sanity checks (buffer size -fast- and access check-healthy 1298 * pointer); if all of those succeed, then we can alloc the memory 1299 * (expensive operation) needed to copy the data to kernel. Then we do 1300 * the copying without checking the user space area 1301 * (__copy_from_user()). 1302 * 1303 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1304 * it. 1305 * 1306 * sk The sk of the socket 1307 * addrs The pointer to the addresses in user land 1308 * addrssize Size of the addrs buffer 1309 * 1310 * Returns >=0 if ok, <0 errno code on error. 1311 */ 1312 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1313 struct sockaddr __user *addrs, 1314 int addrs_size, 1315 sctp_assoc_t *assoc_id) 1316 { 1317 int err = 0; 1318 struct sockaddr *kaddrs; 1319 1320 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1321 __func__, sk, addrs, addrs_size); 1322 1323 if (unlikely(addrs_size <= 0)) 1324 return -EINVAL; 1325 1326 /* Check the user passed a healthy pointer. */ 1327 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1328 return -EFAULT; 1329 1330 /* Alloc space for the address array in kernel memory. */ 1331 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1332 if (unlikely(!kaddrs)) 1333 return -ENOMEM; 1334 1335 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1336 err = -EFAULT; 1337 } else { 1338 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1339 } 1340 1341 kfree(kaddrs); 1342 1343 return err; 1344 } 1345 1346 /* 1347 * This is an older interface. It's kept for backward compatibility 1348 * to the option that doesn't provide association id. 1349 */ 1350 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1351 struct sockaddr __user *addrs, 1352 int addrs_size) 1353 { 1354 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1355 } 1356 1357 /* 1358 * New interface for the API. The since the API is done with a socket 1359 * option, to make it simple we feed back the association id is as a return 1360 * indication to the call. Error is always negative and association id is 1361 * always positive. 1362 */ 1363 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1364 struct sockaddr __user *addrs, 1365 int addrs_size) 1366 { 1367 sctp_assoc_t assoc_id = 0; 1368 int err = 0; 1369 1370 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1371 1372 if (err) 1373 return err; 1374 else 1375 return assoc_id; 1376 } 1377 1378 /* 1379 * New (hopefully final) interface for the API. 1380 * We use the sctp_getaddrs_old structure so that use-space library 1381 * can avoid any unnecessary allocations. The only defferent part 1382 * is that we store the actual length of the address buffer into the 1383 * addrs_num structure member. That way we can re-use the existing 1384 * code. 1385 */ 1386 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1387 char __user *optval, 1388 int __user *optlen) 1389 { 1390 struct sctp_getaddrs_old param; 1391 sctp_assoc_t assoc_id = 0; 1392 int err = 0; 1393 1394 if (len < sizeof(param)) 1395 return -EINVAL; 1396 1397 if (copy_from_user(¶m, optval, sizeof(param))) 1398 return -EFAULT; 1399 1400 err = __sctp_setsockopt_connectx(sk, 1401 (struct sockaddr __user *)param.addrs, 1402 param.addr_num, &assoc_id); 1403 1404 if (err == 0 || err == -EINPROGRESS) { 1405 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1406 return -EFAULT; 1407 if (put_user(sizeof(assoc_id), optlen)) 1408 return -EFAULT; 1409 } 1410 1411 return err; 1412 } 1413 1414 /* API 3.1.4 close() - UDP Style Syntax 1415 * Applications use close() to perform graceful shutdown (as described in 1416 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1417 * by a UDP-style socket. 1418 * 1419 * The syntax is 1420 * 1421 * ret = close(int sd); 1422 * 1423 * sd - the socket descriptor of the associations to be closed. 1424 * 1425 * To gracefully shutdown a specific association represented by the 1426 * UDP-style socket, an application should use the sendmsg() call, 1427 * passing no user data, but including the appropriate flag in the 1428 * ancillary data (see Section xxxx). 1429 * 1430 * If sd in the close() call is a branched-off socket representing only 1431 * one association, the shutdown is performed on that association only. 1432 * 1433 * 4.1.6 close() - TCP Style Syntax 1434 * 1435 * Applications use close() to gracefully close down an association. 1436 * 1437 * The syntax is: 1438 * 1439 * int close(int sd); 1440 * 1441 * sd - the socket descriptor of the association to be closed. 1442 * 1443 * After an application calls close() on a socket descriptor, no further 1444 * socket operations will succeed on that descriptor. 1445 * 1446 * API 7.1.4 SO_LINGER 1447 * 1448 * An application using the TCP-style socket can use this option to 1449 * perform the SCTP ABORT primitive. The linger option structure is: 1450 * 1451 * struct linger { 1452 * int l_onoff; // option on/off 1453 * int l_linger; // linger time 1454 * }; 1455 * 1456 * To enable the option, set l_onoff to 1. If the l_linger value is set 1457 * to 0, calling close() is the same as the ABORT primitive. If the 1458 * value is set to a negative value, the setsockopt() call will return 1459 * an error. If the value is set to a positive value linger_time, the 1460 * close() can be blocked for at most linger_time ms. If the graceful 1461 * shutdown phase does not finish during this period, close() will 1462 * return but the graceful shutdown phase continues in the system. 1463 */ 1464 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1465 { 1466 struct net *net = sock_net(sk); 1467 struct sctp_endpoint *ep; 1468 struct sctp_association *asoc; 1469 struct list_head *pos, *temp; 1470 unsigned int data_was_unread; 1471 1472 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1473 1474 sctp_lock_sock(sk); 1475 sk->sk_shutdown = SHUTDOWN_MASK; 1476 sk->sk_state = SCTP_SS_CLOSING; 1477 1478 ep = sctp_sk(sk)->ep; 1479 1480 /* Clean up any skbs sitting on the receive queue. */ 1481 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1482 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1483 1484 /* Walk all associations on an endpoint. */ 1485 list_for_each_safe(pos, temp, &ep->asocs) { 1486 asoc = list_entry(pos, struct sctp_association, asocs); 1487 1488 if (sctp_style(sk, TCP)) { 1489 /* A closed association can still be in the list if 1490 * it belongs to a TCP-style listening socket that is 1491 * not yet accepted. If so, free it. If not, send an 1492 * ABORT or SHUTDOWN based on the linger options. 1493 */ 1494 if (sctp_state(asoc, CLOSED)) { 1495 sctp_unhash_established(asoc); 1496 sctp_association_free(asoc); 1497 continue; 1498 } 1499 } 1500 1501 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1502 !skb_queue_empty(&asoc->ulpq.reasm) || 1503 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1504 struct sctp_chunk *chunk; 1505 1506 chunk = sctp_make_abort_user(asoc, NULL, 0); 1507 if (chunk) 1508 sctp_primitive_ABORT(net, asoc, chunk); 1509 } else 1510 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1511 } 1512 1513 /* On a TCP-style socket, block for at most linger_time if set. */ 1514 if (sctp_style(sk, TCP) && timeout) 1515 sctp_wait_for_close(sk, timeout); 1516 1517 /* This will run the backlog queue. */ 1518 sctp_release_sock(sk); 1519 1520 /* Supposedly, no process has access to the socket, but 1521 * the net layers still may. 1522 */ 1523 sctp_local_bh_disable(); 1524 sctp_bh_lock_sock(sk); 1525 1526 /* Hold the sock, since sk_common_release() will put sock_put() 1527 * and we have just a little more cleanup. 1528 */ 1529 sock_hold(sk); 1530 sk_common_release(sk); 1531 1532 sctp_bh_unlock_sock(sk); 1533 sctp_local_bh_enable(); 1534 1535 sock_put(sk); 1536 1537 SCTP_DBG_OBJCNT_DEC(sock); 1538 } 1539 1540 /* Handle EPIPE error. */ 1541 static int sctp_error(struct sock *sk, int flags, int err) 1542 { 1543 if (err == -EPIPE) 1544 err = sock_error(sk) ? : -EPIPE; 1545 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1546 send_sig(SIGPIPE, current, 0); 1547 return err; 1548 } 1549 1550 /* API 3.1.3 sendmsg() - UDP Style Syntax 1551 * 1552 * An application uses sendmsg() and recvmsg() calls to transmit data to 1553 * and receive data from its peer. 1554 * 1555 * ssize_t sendmsg(int socket, const struct msghdr *message, 1556 * int flags); 1557 * 1558 * socket - the socket descriptor of the endpoint. 1559 * message - pointer to the msghdr structure which contains a single 1560 * user message and possibly some ancillary data. 1561 * 1562 * See Section 5 for complete description of the data 1563 * structures. 1564 * 1565 * flags - flags sent or received with the user message, see Section 1566 * 5 for complete description of the flags. 1567 * 1568 * Note: This function could use a rewrite especially when explicit 1569 * connect support comes in. 1570 */ 1571 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1572 1573 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1574 1575 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1576 struct msghdr *msg, size_t msg_len) 1577 { 1578 struct net *net = sock_net(sk); 1579 struct sctp_sock *sp; 1580 struct sctp_endpoint *ep; 1581 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1582 struct sctp_transport *transport, *chunk_tp; 1583 struct sctp_chunk *chunk; 1584 union sctp_addr to; 1585 struct sockaddr *msg_name = NULL; 1586 struct sctp_sndrcvinfo default_sinfo; 1587 struct sctp_sndrcvinfo *sinfo; 1588 struct sctp_initmsg *sinit; 1589 sctp_assoc_t associd = 0; 1590 sctp_cmsgs_t cmsgs = { NULL }; 1591 int err; 1592 sctp_scope_t scope; 1593 long timeo; 1594 __u16 sinfo_flags = 0; 1595 struct sctp_datamsg *datamsg; 1596 int msg_flags = msg->msg_flags; 1597 1598 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1599 sk, msg, msg_len); 1600 1601 err = 0; 1602 sp = sctp_sk(sk); 1603 ep = sp->ep; 1604 1605 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1606 1607 /* We cannot send a message over a TCP-style listening socket. */ 1608 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1609 err = -EPIPE; 1610 goto out_nounlock; 1611 } 1612 1613 /* Parse out the SCTP CMSGs. */ 1614 err = sctp_msghdr_parse(msg, &cmsgs); 1615 1616 if (err) { 1617 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1618 goto out_nounlock; 1619 } 1620 1621 /* Fetch the destination address for this packet. This 1622 * address only selects the association--it is not necessarily 1623 * the address we will send to. 1624 * For a peeled-off socket, msg_name is ignored. 1625 */ 1626 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1627 int msg_namelen = msg->msg_namelen; 1628 1629 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1630 msg_namelen); 1631 if (err) 1632 return err; 1633 1634 if (msg_namelen > sizeof(to)) 1635 msg_namelen = sizeof(to); 1636 memcpy(&to, msg->msg_name, msg_namelen); 1637 msg_name = msg->msg_name; 1638 } 1639 1640 sinfo = cmsgs.info; 1641 sinit = cmsgs.init; 1642 1643 /* Did the user specify SNDRCVINFO? */ 1644 if (sinfo) { 1645 sinfo_flags = sinfo->sinfo_flags; 1646 associd = sinfo->sinfo_assoc_id; 1647 } 1648 1649 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1650 msg_len, sinfo_flags); 1651 1652 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1653 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1654 err = -EINVAL; 1655 goto out_nounlock; 1656 } 1657 1658 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1659 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1660 * If SCTP_ABORT is set, the message length could be non zero with 1661 * the msg_iov set to the user abort reason. 1662 */ 1663 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1664 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1665 err = -EINVAL; 1666 goto out_nounlock; 1667 } 1668 1669 /* If SCTP_ADDR_OVER is set, there must be an address 1670 * specified in msg_name. 1671 */ 1672 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1673 err = -EINVAL; 1674 goto out_nounlock; 1675 } 1676 1677 transport = NULL; 1678 1679 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1680 1681 sctp_lock_sock(sk); 1682 1683 /* If a msg_name has been specified, assume this is to be used. */ 1684 if (msg_name) { 1685 /* Look for a matching association on the endpoint. */ 1686 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1687 if (!asoc) { 1688 /* If we could not find a matching association on the 1689 * endpoint, make sure that it is not a TCP-style 1690 * socket that already has an association or there is 1691 * no peeled-off association on another socket. 1692 */ 1693 if ((sctp_style(sk, TCP) && 1694 sctp_sstate(sk, ESTABLISHED)) || 1695 sctp_endpoint_is_peeled_off(ep, &to)) { 1696 err = -EADDRNOTAVAIL; 1697 goto out_unlock; 1698 } 1699 } 1700 } else { 1701 asoc = sctp_id2assoc(sk, associd); 1702 if (!asoc) { 1703 err = -EPIPE; 1704 goto out_unlock; 1705 } 1706 } 1707 1708 if (asoc) { 1709 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1710 1711 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1712 * socket that has an association in CLOSED state. This can 1713 * happen when an accepted socket has an association that is 1714 * already CLOSED. 1715 */ 1716 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1717 err = -EPIPE; 1718 goto out_unlock; 1719 } 1720 1721 if (sinfo_flags & SCTP_EOF) { 1722 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1723 asoc); 1724 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1725 err = 0; 1726 goto out_unlock; 1727 } 1728 if (sinfo_flags & SCTP_ABORT) { 1729 1730 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1731 if (!chunk) { 1732 err = -ENOMEM; 1733 goto out_unlock; 1734 } 1735 1736 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1737 sctp_primitive_ABORT(net, asoc, chunk); 1738 err = 0; 1739 goto out_unlock; 1740 } 1741 } 1742 1743 /* Do we need to create the association? */ 1744 if (!asoc) { 1745 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1746 1747 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1748 err = -EINVAL; 1749 goto out_unlock; 1750 } 1751 1752 /* Check for invalid stream against the stream counts, 1753 * either the default or the user specified stream counts. 1754 */ 1755 if (sinfo) { 1756 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1757 /* Check against the defaults. */ 1758 if (sinfo->sinfo_stream >= 1759 sp->initmsg.sinit_num_ostreams) { 1760 err = -EINVAL; 1761 goto out_unlock; 1762 } 1763 } else { 1764 /* Check against the requested. */ 1765 if (sinfo->sinfo_stream >= 1766 sinit->sinit_num_ostreams) { 1767 err = -EINVAL; 1768 goto out_unlock; 1769 } 1770 } 1771 } 1772 1773 /* 1774 * API 3.1.2 bind() - UDP Style Syntax 1775 * If a bind() or sctp_bindx() is not called prior to a 1776 * sendmsg() call that initiates a new association, the 1777 * system picks an ephemeral port and will choose an address 1778 * set equivalent to binding with a wildcard address. 1779 */ 1780 if (!ep->base.bind_addr.port) { 1781 if (sctp_autobind(sk)) { 1782 err = -EAGAIN; 1783 goto out_unlock; 1784 } 1785 } else { 1786 /* 1787 * If an unprivileged user inherits a one-to-many 1788 * style socket with open associations on a privileged 1789 * port, it MAY be permitted to accept new associations, 1790 * but it SHOULD NOT be permitted to open new 1791 * associations. 1792 */ 1793 if (ep->base.bind_addr.port < PROT_SOCK && 1794 !capable(CAP_NET_BIND_SERVICE)) { 1795 err = -EACCES; 1796 goto out_unlock; 1797 } 1798 } 1799 1800 scope = sctp_scope(&to); 1801 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1802 if (!new_asoc) { 1803 err = -ENOMEM; 1804 goto out_unlock; 1805 } 1806 asoc = new_asoc; 1807 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1808 if (err < 0) { 1809 err = -ENOMEM; 1810 goto out_free; 1811 } 1812 1813 /* If the SCTP_INIT ancillary data is specified, set all 1814 * the association init values accordingly. 1815 */ 1816 if (sinit) { 1817 if (sinit->sinit_num_ostreams) { 1818 asoc->c.sinit_num_ostreams = 1819 sinit->sinit_num_ostreams; 1820 } 1821 if (sinit->sinit_max_instreams) { 1822 asoc->c.sinit_max_instreams = 1823 sinit->sinit_max_instreams; 1824 } 1825 if (sinit->sinit_max_attempts) { 1826 asoc->max_init_attempts 1827 = sinit->sinit_max_attempts; 1828 } 1829 if (sinit->sinit_max_init_timeo) { 1830 asoc->max_init_timeo = 1831 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1832 } 1833 } 1834 1835 /* Prime the peer's transport structures. */ 1836 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1837 if (!transport) { 1838 err = -ENOMEM; 1839 goto out_free; 1840 } 1841 } 1842 1843 /* ASSERT: we have a valid association at this point. */ 1844 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1845 1846 if (!sinfo) { 1847 /* If the user didn't specify SNDRCVINFO, make up one with 1848 * some defaults. 1849 */ 1850 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1851 default_sinfo.sinfo_stream = asoc->default_stream; 1852 default_sinfo.sinfo_flags = asoc->default_flags; 1853 default_sinfo.sinfo_ppid = asoc->default_ppid; 1854 default_sinfo.sinfo_context = asoc->default_context; 1855 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1856 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1857 sinfo = &default_sinfo; 1858 } 1859 1860 /* API 7.1.7, the sndbuf size per association bounds the 1861 * maximum size of data that can be sent in a single send call. 1862 */ 1863 if (msg_len > sk->sk_sndbuf) { 1864 err = -EMSGSIZE; 1865 goto out_free; 1866 } 1867 1868 if (asoc->pmtu_pending) 1869 sctp_assoc_pending_pmtu(sk, asoc); 1870 1871 /* If fragmentation is disabled and the message length exceeds the 1872 * association fragmentation point, return EMSGSIZE. The I-D 1873 * does not specify what this error is, but this looks like 1874 * a great fit. 1875 */ 1876 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1877 err = -EMSGSIZE; 1878 goto out_free; 1879 } 1880 1881 /* Check for invalid stream. */ 1882 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1883 err = -EINVAL; 1884 goto out_free; 1885 } 1886 1887 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1888 if (!sctp_wspace(asoc)) { 1889 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1890 if (err) 1891 goto out_free; 1892 } 1893 1894 /* If an address is passed with the sendto/sendmsg call, it is used 1895 * to override the primary destination address in the TCP model, or 1896 * when SCTP_ADDR_OVER flag is set in the UDP model. 1897 */ 1898 if ((sctp_style(sk, TCP) && msg_name) || 1899 (sinfo_flags & SCTP_ADDR_OVER)) { 1900 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1901 if (!chunk_tp) { 1902 err = -EINVAL; 1903 goto out_free; 1904 } 1905 } else 1906 chunk_tp = NULL; 1907 1908 /* Auto-connect, if we aren't connected already. */ 1909 if (sctp_state(asoc, CLOSED)) { 1910 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1911 if (err < 0) 1912 goto out_free; 1913 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1914 } 1915 1916 /* Break the message into multiple chunks of maximum size. */ 1917 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1918 if (!datamsg) { 1919 err = -ENOMEM; 1920 goto out_free; 1921 } 1922 1923 /* Now send the (possibly) fragmented message. */ 1924 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1925 sctp_chunk_hold(chunk); 1926 1927 /* Do accounting for the write space. */ 1928 sctp_set_owner_w(chunk); 1929 1930 chunk->transport = chunk_tp; 1931 } 1932 1933 /* Send it to the lower layers. Note: all chunks 1934 * must either fail or succeed. The lower layer 1935 * works that way today. Keep it that way or this 1936 * breaks. 1937 */ 1938 err = sctp_primitive_SEND(net, asoc, datamsg); 1939 /* Did the lower layer accept the chunk? */ 1940 if (err) 1941 sctp_datamsg_free(datamsg); 1942 else 1943 sctp_datamsg_put(datamsg); 1944 1945 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1946 1947 if (err) 1948 goto out_free; 1949 else 1950 err = msg_len; 1951 1952 /* If we are already past ASSOCIATE, the lower 1953 * layers are responsible for association cleanup. 1954 */ 1955 goto out_unlock; 1956 1957 out_free: 1958 if (new_asoc) { 1959 sctp_unhash_established(asoc); 1960 sctp_association_free(asoc); 1961 } 1962 out_unlock: 1963 sctp_release_sock(sk); 1964 1965 out_nounlock: 1966 return sctp_error(sk, msg_flags, err); 1967 1968 #if 0 1969 do_sock_err: 1970 if (msg_len) 1971 err = msg_len; 1972 else 1973 err = sock_error(sk); 1974 goto out; 1975 1976 do_interrupted: 1977 if (msg_len) 1978 err = msg_len; 1979 goto out; 1980 #endif /* 0 */ 1981 } 1982 1983 /* This is an extended version of skb_pull() that removes the data from the 1984 * start of a skb even when data is spread across the list of skb's in the 1985 * frag_list. len specifies the total amount of data that needs to be removed. 1986 * when 'len' bytes could be removed from the skb, it returns 0. 1987 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1988 * could not be removed. 1989 */ 1990 static int sctp_skb_pull(struct sk_buff *skb, int len) 1991 { 1992 struct sk_buff *list; 1993 int skb_len = skb_headlen(skb); 1994 int rlen; 1995 1996 if (len <= skb_len) { 1997 __skb_pull(skb, len); 1998 return 0; 1999 } 2000 len -= skb_len; 2001 __skb_pull(skb, skb_len); 2002 2003 skb_walk_frags(skb, list) { 2004 rlen = sctp_skb_pull(list, len); 2005 skb->len -= (len-rlen); 2006 skb->data_len -= (len-rlen); 2007 2008 if (!rlen) 2009 return 0; 2010 2011 len = rlen; 2012 } 2013 2014 return len; 2015 } 2016 2017 /* API 3.1.3 recvmsg() - UDP Style Syntax 2018 * 2019 * ssize_t recvmsg(int socket, struct msghdr *message, 2020 * int flags); 2021 * 2022 * socket - the socket descriptor of the endpoint. 2023 * message - pointer to the msghdr structure which contains a single 2024 * user message and possibly some ancillary data. 2025 * 2026 * See Section 5 for complete description of the data 2027 * structures. 2028 * 2029 * flags - flags sent or received with the user message, see Section 2030 * 5 for complete description of the flags. 2031 */ 2032 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2033 2034 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2035 struct msghdr *msg, size_t len, int noblock, 2036 int flags, int *addr_len) 2037 { 2038 struct sctp_ulpevent *event = NULL; 2039 struct sctp_sock *sp = sctp_sk(sk); 2040 struct sk_buff *skb; 2041 int copied; 2042 int err = 0; 2043 int skb_len; 2044 2045 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2046 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2047 "len", len, "knoblauch", noblock, 2048 "flags", flags, "addr_len", addr_len); 2049 2050 sctp_lock_sock(sk); 2051 2052 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2053 err = -ENOTCONN; 2054 goto out; 2055 } 2056 2057 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2058 if (!skb) 2059 goto out; 2060 2061 /* Get the total length of the skb including any skb's in the 2062 * frag_list. 2063 */ 2064 skb_len = skb->len; 2065 2066 copied = skb_len; 2067 if (copied > len) 2068 copied = len; 2069 2070 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2071 2072 event = sctp_skb2event(skb); 2073 2074 if (err) 2075 goto out_free; 2076 2077 sock_recv_ts_and_drops(msg, sk, skb); 2078 if (sctp_ulpevent_is_notification(event)) { 2079 msg->msg_flags |= MSG_NOTIFICATION; 2080 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2081 } else { 2082 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2083 } 2084 2085 /* Check if we allow SCTP_SNDRCVINFO. */ 2086 if (sp->subscribe.sctp_data_io_event) 2087 sctp_ulpevent_read_sndrcvinfo(event, msg); 2088 #if 0 2089 /* FIXME: we should be calling IP/IPv6 layers. */ 2090 if (sk->sk_protinfo.af_inet.cmsg_flags) 2091 ip_cmsg_recv(msg, skb); 2092 #endif 2093 2094 err = copied; 2095 2096 /* If skb's length exceeds the user's buffer, update the skb and 2097 * push it back to the receive_queue so that the next call to 2098 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2099 */ 2100 if (skb_len > copied) { 2101 msg->msg_flags &= ~MSG_EOR; 2102 if (flags & MSG_PEEK) 2103 goto out_free; 2104 sctp_skb_pull(skb, copied); 2105 skb_queue_head(&sk->sk_receive_queue, skb); 2106 2107 /* When only partial message is copied to the user, increase 2108 * rwnd by that amount. If all the data in the skb is read, 2109 * rwnd is updated when the event is freed. 2110 */ 2111 if (!sctp_ulpevent_is_notification(event)) 2112 sctp_assoc_rwnd_increase(event->asoc, copied); 2113 goto out; 2114 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2115 (event->msg_flags & MSG_EOR)) 2116 msg->msg_flags |= MSG_EOR; 2117 else 2118 msg->msg_flags &= ~MSG_EOR; 2119 2120 out_free: 2121 if (flags & MSG_PEEK) { 2122 /* Release the skb reference acquired after peeking the skb in 2123 * sctp_skb_recv_datagram(). 2124 */ 2125 kfree_skb(skb); 2126 } else { 2127 /* Free the event which includes releasing the reference to 2128 * the owner of the skb, freeing the skb and updating the 2129 * rwnd. 2130 */ 2131 sctp_ulpevent_free(event); 2132 } 2133 out: 2134 sctp_release_sock(sk); 2135 return err; 2136 } 2137 2138 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2139 * 2140 * This option is a on/off flag. If enabled no SCTP message 2141 * fragmentation will be performed. Instead if a message being sent 2142 * exceeds the current PMTU size, the message will NOT be sent and 2143 * instead a error will be indicated to the user. 2144 */ 2145 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2146 char __user *optval, 2147 unsigned int optlen) 2148 { 2149 int val; 2150 2151 if (optlen < sizeof(int)) 2152 return -EINVAL; 2153 2154 if (get_user(val, (int __user *)optval)) 2155 return -EFAULT; 2156 2157 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2158 2159 return 0; 2160 } 2161 2162 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2163 unsigned int optlen) 2164 { 2165 struct sctp_association *asoc; 2166 struct sctp_ulpevent *event; 2167 2168 if (optlen > sizeof(struct sctp_event_subscribe)) 2169 return -EINVAL; 2170 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2171 return -EFAULT; 2172 2173 /* 2174 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2175 * if there is no data to be sent or retransmit, the stack will 2176 * immediately send up this notification. 2177 */ 2178 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2179 &sctp_sk(sk)->subscribe)) { 2180 asoc = sctp_id2assoc(sk, 0); 2181 2182 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2183 event = sctp_ulpevent_make_sender_dry_event(asoc, 2184 GFP_ATOMIC); 2185 if (!event) 2186 return -ENOMEM; 2187 2188 sctp_ulpq_tail_event(&asoc->ulpq, event); 2189 } 2190 } 2191 2192 return 0; 2193 } 2194 2195 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2196 * 2197 * This socket option is applicable to the UDP-style socket only. When 2198 * set it will cause associations that are idle for more than the 2199 * specified number of seconds to automatically close. An association 2200 * being idle is defined an association that has NOT sent or received 2201 * user data. The special value of '0' indicates that no automatic 2202 * close of any associations should be performed. The option expects an 2203 * integer defining the number of seconds of idle time before an 2204 * association is closed. 2205 */ 2206 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2207 unsigned int optlen) 2208 { 2209 struct sctp_sock *sp = sctp_sk(sk); 2210 2211 /* Applicable to UDP-style socket only */ 2212 if (sctp_style(sk, TCP)) 2213 return -EOPNOTSUPP; 2214 if (optlen != sizeof(int)) 2215 return -EINVAL; 2216 if (copy_from_user(&sp->autoclose, optval, optlen)) 2217 return -EFAULT; 2218 2219 return 0; 2220 } 2221 2222 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2223 * 2224 * Applications can enable or disable heartbeats for any peer address of 2225 * an association, modify an address's heartbeat interval, force a 2226 * heartbeat to be sent immediately, and adjust the address's maximum 2227 * number of retransmissions sent before an address is considered 2228 * unreachable. The following structure is used to access and modify an 2229 * address's parameters: 2230 * 2231 * struct sctp_paddrparams { 2232 * sctp_assoc_t spp_assoc_id; 2233 * struct sockaddr_storage spp_address; 2234 * uint32_t spp_hbinterval; 2235 * uint16_t spp_pathmaxrxt; 2236 * uint32_t spp_pathmtu; 2237 * uint32_t spp_sackdelay; 2238 * uint32_t spp_flags; 2239 * }; 2240 * 2241 * spp_assoc_id - (one-to-many style socket) This is filled in the 2242 * application, and identifies the association for 2243 * this query. 2244 * spp_address - This specifies which address is of interest. 2245 * spp_hbinterval - This contains the value of the heartbeat interval, 2246 * in milliseconds. If a value of zero 2247 * is present in this field then no changes are to 2248 * be made to this parameter. 2249 * spp_pathmaxrxt - This contains the maximum number of 2250 * retransmissions before this address shall be 2251 * considered unreachable. If a value of zero 2252 * is present in this field then no changes are to 2253 * be made to this parameter. 2254 * spp_pathmtu - When Path MTU discovery is disabled the value 2255 * specified here will be the "fixed" path mtu. 2256 * Note that if the spp_address field is empty 2257 * then all associations on this address will 2258 * have this fixed path mtu set upon them. 2259 * 2260 * spp_sackdelay - When delayed sack is enabled, this value specifies 2261 * the number of milliseconds that sacks will be delayed 2262 * for. This value will apply to all addresses of an 2263 * association if the spp_address field is empty. Note 2264 * also, that if delayed sack is enabled and this 2265 * value is set to 0, no change is made to the last 2266 * recorded delayed sack timer value. 2267 * 2268 * spp_flags - These flags are used to control various features 2269 * on an association. The flag field may contain 2270 * zero or more of the following options. 2271 * 2272 * SPP_HB_ENABLE - Enable heartbeats on the 2273 * specified address. Note that if the address 2274 * field is empty all addresses for the association 2275 * have heartbeats enabled upon them. 2276 * 2277 * SPP_HB_DISABLE - Disable heartbeats on the 2278 * speicifed address. Note that if the address 2279 * field is empty all addresses for the association 2280 * will have their heartbeats disabled. Note also 2281 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2282 * mutually exclusive, only one of these two should 2283 * be specified. Enabling both fields will have 2284 * undetermined results. 2285 * 2286 * SPP_HB_DEMAND - Request a user initiated heartbeat 2287 * to be made immediately. 2288 * 2289 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2290 * heartbeat delayis to be set to the value of 0 2291 * milliseconds. 2292 * 2293 * SPP_PMTUD_ENABLE - This field will enable PMTU 2294 * discovery upon the specified address. Note that 2295 * if the address feild is empty then all addresses 2296 * on the association are effected. 2297 * 2298 * SPP_PMTUD_DISABLE - This field will disable PMTU 2299 * discovery upon the specified address. Note that 2300 * if the address feild is empty then all addresses 2301 * on the association are effected. Not also that 2302 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2303 * exclusive. Enabling both will have undetermined 2304 * results. 2305 * 2306 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2307 * on delayed sack. The time specified in spp_sackdelay 2308 * is used to specify the sack delay for this address. Note 2309 * that if spp_address is empty then all addresses will 2310 * enable delayed sack and take on the sack delay 2311 * value specified in spp_sackdelay. 2312 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2313 * off delayed sack. If the spp_address field is blank then 2314 * delayed sack is disabled for the entire association. Note 2315 * also that this field is mutually exclusive to 2316 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2317 * results. 2318 */ 2319 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2320 struct sctp_transport *trans, 2321 struct sctp_association *asoc, 2322 struct sctp_sock *sp, 2323 int hb_change, 2324 int pmtud_change, 2325 int sackdelay_change) 2326 { 2327 int error; 2328 2329 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2330 struct net *net = sock_net(trans->asoc->base.sk); 2331 2332 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2333 if (error) 2334 return error; 2335 } 2336 2337 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2338 * this field is ignored. Note also that a value of zero indicates 2339 * the current setting should be left unchanged. 2340 */ 2341 if (params->spp_flags & SPP_HB_ENABLE) { 2342 2343 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2344 * set. This lets us use 0 value when this flag 2345 * is set. 2346 */ 2347 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2348 params->spp_hbinterval = 0; 2349 2350 if (params->spp_hbinterval || 2351 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2352 if (trans) { 2353 trans->hbinterval = 2354 msecs_to_jiffies(params->spp_hbinterval); 2355 } else if (asoc) { 2356 asoc->hbinterval = 2357 msecs_to_jiffies(params->spp_hbinterval); 2358 } else { 2359 sp->hbinterval = params->spp_hbinterval; 2360 } 2361 } 2362 } 2363 2364 if (hb_change) { 2365 if (trans) { 2366 trans->param_flags = 2367 (trans->param_flags & ~SPP_HB) | hb_change; 2368 } else if (asoc) { 2369 asoc->param_flags = 2370 (asoc->param_flags & ~SPP_HB) | hb_change; 2371 } else { 2372 sp->param_flags = 2373 (sp->param_flags & ~SPP_HB) | hb_change; 2374 } 2375 } 2376 2377 /* When Path MTU discovery is disabled the value specified here will 2378 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2379 * include the flag SPP_PMTUD_DISABLE for this field to have any 2380 * effect). 2381 */ 2382 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2383 if (trans) { 2384 trans->pathmtu = params->spp_pathmtu; 2385 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2386 } else if (asoc) { 2387 asoc->pathmtu = params->spp_pathmtu; 2388 sctp_frag_point(asoc, params->spp_pathmtu); 2389 } else { 2390 sp->pathmtu = params->spp_pathmtu; 2391 } 2392 } 2393 2394 if (pmtud_change) { 2395 if (trans) { 2396 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2397 (params->spp_flags & SPP_PMTUD_ENABLE); 2398 trans->param_flags = 2399 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2400 if (update) { 2401 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2402 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2403 } 2404 } else if (asoc) { 2405 asoc->param_flags = 2406 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2407 } else { 2408 sp->param_flags = 2409 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2410 } 2411 } 2412 2413 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2414 * value of this field is ignored. Note also that a value of zero 2415 * indicates the current setting should be left unchanged. 2416 */ 2417 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2418 if (trans) { 2419 trans->sackdelay = 2420 msecs_to_jiffies(params->spp_sackdelay); 2421 } else if (asoc) { 2422 asoc->sackdelay = 2423 msecs_to_jiffies(params->spp_sackdelay); 2424 } else { 2425 sp->sackdelay = params->spp_sackdelay; 2426 } 2427 } 2428 2429 if (sackdelay_change) { 2430 if (trans) { 2431 trans->param_flags = 2432 (trans->param_flags & ~SPP_SACKDELAY) | 2433 sackdelay_change; 2434 } else if (asoc) { 2435 asoc->param_flags = 2436 (asoc->param_flags & ~SPP_SACKDELAY) | 2437 sackdelay_change; 2438 } else { 2439 sp->param_flags = 2440 (sp->param_flags & ~SPP_SACKDELAY) | 2441 sackdelay_change; 2442 } 2443 } 2444 2445 /* Note that a value of zero indicates the current setting should be 2446 left unchanged. 2447 */ 2448 if (params->spp_pathmaxrxt) { 2449 if (trans) { 2450 trans->pathmaxrxt = params->spp_pathmaxrxt; 2451 } else if (asoc) { 2452 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2453 } else { 2454 sp->pathmaxrxt = params->spp_pathmaxrxt; 2455 } 2456 } 2457 2458 return 0; 2459 } 2460 2461 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2462 char __user *optval, 2463 unsigned int optlen) 2464 { 2465 struct sctp_paddrparams params; 2466 struct sctp_transport *trans = NULL; 2467 struct sctp_association *asoc = NULL; 2468 struct sctp_sock *sp = sctp_sk(sk); 2469 int error; 2470 int hb_change, pmtud_change, sackdelay_change; 2471 2472 if (optlen != sizeof(struct sctp_paddrparams)) 2473 return - EINVAL; 2474 2475 if (copy_from_user(¶ms, optval, optlen)) 2476 return -EFAULT; 2477 2478 /* Validate flags and value parameters. */ 2479 hb_change = params.spp_flags & SPP_HB; 2480 pmtud_change = params.spp_flags & SPP_PMTUD; 2481 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2482 2483 if (hb_change == SPP_HB || 2484 pmtud_change == SPP_PMTUD || 2485 sackdelay_change == SPP_SACKDELAY || 2486 params.spp_sackdelay > 500 || 2487 (params.spp_pathmtu && 2488 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2489 return -EINVAL; 2490 2491 /* If an address other than INADDR_ANY is specified, and 2492 * no transport is found, then the request is invalid. 2493 */ 2494 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2495 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2496 params.spp_assoc_id); 2497 if (!trans) 2498 return -EINVAL; 2499 } 2500 2501 /* Get association, if assoc_id != 0 and the socket is a one 2502 * to many style socket, and an association was not found, then 2503 * the id was invalid. 2504 */ 2505 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2506 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2507 return -EINVAL; 2508 2509 /* Heartbeat demand can only be sent on a transport or 2510 * association, but not a socket. 2511 */ 2512 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2513 return -EINVAL; 2514 2515 /* Process parameters. */ 2516 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2517 hb_change, pmtud_change, 2518 sackdelay_change); 2519 2520 if (error) 2521 return error; 2522 2523 /* If changes are for association, also apply parameters to each 2524 * transport. 2525 */ 2526 if (!trans && asoc) { 2527 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2528 transports) { 2529 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2530 hb_change, pmtud_change, 2531 sackdelay_change); 2532 } 2533 } 2534 2535 return 0; 2536 } 2537 2538 /* 2539 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2540 * 2541 * This option will effect the way delayed acks are performed. This 2542 * option allows you to get or set the delayed ack time, in 2543 * milliseconds. It also allows changing the delayed ack frequency. 2544 * Changing the frequency to 1 disables the delayed sack algorithm. If 2545 * the assoc_id is 0, then this sets or gets the endpoints default 2546 * values. If the assoc_id field is non-zero, then the set or get 2547 * effects the specified association for the one to many model (the 2548 * assoc_id field is ignored by the one to one model). Note that if 2549 * sack_delay or sack_freq are 0 when setting this option, then the 2550 * current values will remain unchanged. 2551 * 2552 * struct sctp_sack_info { 2553 * sctp_assoc_t sack_assoc_id; 2554 * uint32_t sack_delay; 2555 * uint32_t sack_freq; 2556 * }; 2557 * 2558 * sack_assoc_id - This parameter, indicates which association the user 2559 * is performing an action upon. Note that if this field's value is 2560 * zero then the endpoints default value is changed (effecting future 2561 * associations only). 2562 * 2563 * sack_delay - This parameter contains the number of milliseconds that 2564 * the user is requesting the delayed ACK timer be set to. Note that 2565 * this value is defined in the standard to be between 200 and 500 2566 * milliseconds. 2567 * 2568 * sack_freq - This parameter contains the number of packets that must 2569 * be received before a sack is sent without waiting for the delay 2570 * timer to expire. The default value for this is 2, setting this 2571 * value to 1 will disable the delayed sack algorithm. 2572 */ 2573 2574 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2575 char __user *optval, unsigned int optlen) 2576 { 2577 struct sctp_sack_info params; 2578 struct sctp_transport *trans = NULL; 2579 struct sctp_association *asoc = NULL; 2580 struct sctp_sock *sp = sctp_sk(sk); 2581 2582 if (optlen == sizeof(struct sctp_sack_info)) { 2583 if (copy_from_user(¶ms, optval, optlen)) 2584 return -EFAULT; 2585 2586 if (params.sack_delay == 0 && params.sack_freq == 0) 2587 return 0; 2588 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2589 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2590 pr_warn("Use struct sctp_sack_info instead\n"); 2591 if (copy_from_user(¶ms, optval, optlen)) 2592 return -EFAULT; 2593 2594 if (params.sack_delay == 0) 2595 params.sack_freq = 1; 2596 else 2597 params.sack_freq = 0; 2598 } else 2599 return - EINVAL; 2600 2601 /* Validate value parameter. */ 2602 if (params.sack_delay > 500) 2603 return -EINVAL; 2604 2605 /* Get association, if sack_assoc_id != 0 and the socket is a one 2606 * to many style socket, and an association was not found, then 2607 * the id was invalid. 2608 */ 2609 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2610 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2611 return -EINVAL; 2612 2613 if (params.sack_delay) { 2614 if (asoc) { 2615 asoc->sackdelay = 2616 msecs_to_jiffies(params.sack_delay); 2617 asoc->param_flags = 2618 (asoc->param_flags & ~SPP_SACKDELAY) | 2619 SPP_SACKDELAY_ENABLE; 2620 } else { 2621 sp->sackdelay = params.sack_delay; 2622 sp->param_flags = 2623 (sp->param_flags & ~SPP_SACKDELAY) | 2624 SPP_SACKDELAY_ENABLE; 2625 } 2626 } 2627 2628 if (params.sack_freq == 1) { 2629 if (asoc) { 2630 asoc->param_flags = 2631 (asoc->param_flags & ~SPP_SACKDELAY) | 2632 SPP_SACKDELAY_DISABLE; 2633 } else { 2634 sp->param_flags = 2635 (sp->param_flags & ~SPP_SACKDELAY) | 2636 SPP_SACKDELAY_DISABLE; 2637 } 2638 } else if (params.sack_freq > 1) { 2639 if (asoc) { 2640 asoc->sackfreq = params.sack_freq; 2641 asoc->param_flags = 2642 (asoc->param_flags & ~SPP_SACKDELAY) | 2643 SPP_SACKDELAY_ENABLE; 2644 } else { 2645 sp->sackfreq = params.sack_freq; 2646 sp->param_flags = 2647 (sp->param_flags & ~SPP_SACKDELAY) | 2648 SPP_SACKDELAY_ENABLE; 2649 } 2650 } 2651 2652 /* If change is for association, also apply to each transport. */ 2653 if (asoc) { 2654 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2655 transports) { 2656 if (params.sack_delay) { 2657 trans->sackdelay = 2658 msecs_to_jiffies(params.sack_delay); 2659 trans->param_flags = 2660 (trans->param_flags & ~SPP_SACKDELAY) | 2661 SPP_SACKDELAY_ENABLE; 2662 } 2663 if (params.sack_freq == 1) { 2664 trans->param_flags = 2665 (trans->param_flags & ~SPP_SACKDELAY) | 2666 SPP_SACKDELAY_DISABLE; 2667 } else if (params.sack_freq > 1) { 2668 trans->sackfreq = params.sack_freq; 2669 trans->param_flags = 2670 (trans->param_flags & ~SPP_SACKDELAY) | 2671 SPP_SACKDELAY_ENABLE; 2672 } 2673 } 2674 } 2675 2676 return 0; 2677 } 2678 2679 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2680 * 2681 * Applications can specify protocol parameters for the default association 2682 * initialization. The option name argument to setsockopt() and getsockopt() 2683 * is SCTP_INITMSG. 2684 * 2685 * Setting initialization parameters is effective only on an unconnected 2686 * socket (for UDP-style sockets only future associations are effected 2687 * by the change). With TCP-style sockets, this option is inherited by 2688 * sockets derived from a listener socket. 2689 */ 2690 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2691 { 2692 struct sctp_initmsg sinit; 2693 struct sctp_sock *sp = sctp_sk(sk); 2694 2695 if (optlen != sizeof(struct sctp_initmsg)) 2696 return -EINVAL; 2697 if (copy_from_user(&sinit, optval, optlen)) 2698 return -EFAULT; 2699 2700 if (sinit.sinit_num_ostreams) 2701 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2702 if (sinit.sinit_max_instreams) 2703 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2704 if (sinit.sinit_max_attempts) 2705 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2706 if (sinit.sinit_max_init_timeo) 2707 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2708 2709 return 0; 2710 } 2711 2712 /* 2713 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2714 * 2715 * Applications that wish to use the sendto() system call may wish to 2716 * specify a default set of parameters that would normally be supplied 2717 * through the inclusion of ancillary data. This socket option allows 2718 * such an application to set the default sctp_sndrcvinfo structure. 2719 * The application that wishes to use this socket option simply passes 2720 * in to this call the sctp_sndrcvinfo structure defined in Section 2721 * 5.2.2) The input parameters accepted by this call include 2722 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2723 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2724 * to this call if the caller is using the UDP model. 2725 */ 2726 static int sctp_setsockopt_default_send_param(struct sock *sk, 2727 char __user *optval, 2728 unsigned int optlen) 2729 { 2730 struct sctp_sndrcvinfo info; 2731 struct sctp_association *asoc; 2732 struct sctp_sock *sp = sctp_sk(sk); 2733 2734 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2735 return -EINVAL; 2736 if (copy_from_user(&info, optval, optlen)) 2737 return -EFAULT; 2738 2739 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2740 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2741 return -EINVAL; 2742 2743 if (asoc) { 2744 asoc->default_stream = info.sinfo_stream; 2745 asoc->default_flags = info.sinfo_flags; 2746 asoc->default_ppid = info.sinfo_ppid; 2747 asoc->default_context = info.sinfo_context; 2748 asoc->default_timetolive = info.sinfo_timetolive; 2749 } else { 2750 sp->default_stream = info.sinfo_stream; 2751 sp->default_flags = info.sinfo_flags; 2752 sp->default_ppid = info.sinfo_ppid; 2753 sp->default_context = info.sinfo_context; 2754 sp->default_timetolive = info.sinfo_timetolive; 2755 } 2756 2757 return 0; 2758 } 2759 2760 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2761 * 2762 * Requests that the local SCTP stack use the enclosed peer address as 2763 * the association primary. The enclosed address must be one of the 2764 * association peer's addresses. 2765 */ 2766 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2767 unsigned int optlen) 2768 { 2769 struct sctp_prim prim; 2770 struct sctp_transport *trans; 2771 2772 if (optlen != sizeof(struct sctp_prim)) 2773 return -EINVAL; 2774 2775 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2776 return -EFAULT; 2777 2778 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2779 if (!trans) 2780 return -EINVAL; 2781 2782 sctp_assoc_set_primary(trans->asoc, trans); 2783 2784 return 0; 2785 } 2786 2787 /* 2788 * 7.1.5 SCTP_NODELAY 2789 * 2790 * Turn on/off any Nagle-like algorithm. This means that packets are 2791 * generally sent as soon as possible and no unnecessary delays are 2792 * introduced, at the cost of more packets in the network. Expects an 2793 * integer boolean flag. 2794 */ 2795 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2796 unsigned int optlen) 2797 { 2798 int val; 2799 2800 if (optlen < sizeof(int)) 2801 return -EINVAL; 2802 if (get_user(val, (int __user *)optval)) 2803 return -EFAULT; 2804 2805 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2806 return 0; 2807 } 2808 2809 /* 2810 * 2811 * 7.1.1 SCTP_RTOINFO 2812 * 2813 * The protocol parameters used to initialize and bound retransmission 2814 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2815 * and modify these parameters. 2816 * All parameters are time values, in milliseconds. A value of 0, when 2817 * modifying the parameters, indicates that the current value should not 2818 * be changed. 2819 * 2820 */ 2821 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2822 { 2823 struct sctp_rtoinfo rtoinfo; 2824 struct sctp_association *asoc; 2825 2826 if (optlen != sizeof (struct sctp_rtoinfo)) 2827 return -EINVAL; 2828 2829 if (copy_from_user(&rtoinfo, optval, optlen)) 2830 return -EFAULT; 2831 2832 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2833 2834 /* Set the values to the specific association */ 2835 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2836 return -EINVAL; 2837 2838 if (asoc) { 2839 if (rtoinfo.srto_initial != 0) 2840 asoc->rto_initial = 2841 msecs_to_jiffies(rtoinfo.srto_initial); 2842 if (rtoinfo.srto_max != 0) 2843 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2844 if (rtoinfo.srto_min != 0) 2845 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2846 } else { 2847 /* If there is no association or the association-id = 0 2848 * set the values to the endpoint. 2849 */ 2850 struct sctp_sock *sp = sctp_sk(sk); 2851 2852 if (rtoinfo.srto_initial != 0) 2853 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2854 if (rtoinfo.srto_max != 0) 2855 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2856 if (rtoinfo.srto_min != 0) 2857 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2858 } 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * 2865 * 7.1.2 SCTP_ASSOCINFO 2866 * 2867 * This option is used to tune the maximum retransmission attempts 2868 * of the association. 2869 * Returns an error if the new association retransmission value is 2870 * greater than the sum of the retransmission value of the peer. 2871 * See [SCTP] for more information. 2872 * 2873 */ 2874 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2875 { 2876 2877 struct sctp_assocparams assocparams; 2878 struct sctp_association *asoc; 2879 2880 if (optlen != sizeof(struct sctp_assocparams)) 2881 return -EINVAL; 2882 if (copy_from_user(&assocparams, optval, optlen)) 2883 return -EFAULT; 2884 2885 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2886 2887 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2888 return -EINVAL; 2889 2890 /* Set the values to the specific association */ 2891 if (asoc) { 2892 if (assocparams.sasoc_asocmaxrxt != 0) { 2893 __u32 path_sum = 0; 2894 int paths = 0; 2895 struct sctp_transport *peer_addr; 2896 2897 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2898 transports) { 2899 path_sum += peer_addr->pathmaxrxt; 2900 paths++; 2901 } 2902 2903 /* Only validate asocmaxrxt if we have more than 2904 * one path/transport. We do this because path 2905 * retransmissions are only counted when we have more 2906 * then one path. 2907 */ 2908 if (paths > 1 && 2909 assocparams.sasoc_asocmaxrxt > path_sum) 2910 return -EINVAL; 2911 2912 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2913 } 2914 2915 if (assocparams.sasoc_cookie_life != 0) { 2916 asoc->cookie_life.tv_sec = 2917 assocparams.sasoc_cookie_life / 1000; 2918 asoc->cookie_life.tv_usec = 2919 (assocparams.sasoc_cookie_life % 1000) 2920 * 1000; 2921 } 2922 } else { 2923 /* Set the values to the endpoint */ 2924 struct sctp_sock *sp = sctp_sk(sk); 2925 2926 if (assocparams.sasoc_asocmaxrxt != 0) 2927 sp->assocparams.sasoc_asocmaxrxt = 2928 assocparams.sasoc_asocmaxrxt; 2929 if (assocparams.sasoc_cookie_life != 0) 2930 sp->assocparams.sasoc_cookie_life = 2931 assocparams.sasoc_cookie_life; 2932 } 2933 return 0; 2934 } 2935 2936 /* 2937 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2938 * 2939 * This socket option is a boolean flag which turns on or off mapped V4 2940 * addresses. If this option is turned on and the socket is type 2941 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2942 * If this option is turned off, then no mapping will be done of V4 2943 * addresses and a user will receive both PF_INET6 and PF_INET type 2944 * addresses on the socket. 2945 */ 2946 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2947 { 2948 int val; 2949 struct sctp_sock *sp = sctp_sk(sk); 2950 2951 if (optlen < sizeof(int)) 2952 return -EINVAL; 2953 if (get_user(val, (int __user *)optval)) 2954 return -EFAULT; 2955 if (val) 2956 sp->v4mapped = 1; 2957 else 2958 sp->v4mapped = 0; 2959 2960 return 0; 2961 } 2962 2963 /* 2964 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2965 * This option will get or set the maximum size to put in any outgoing 2966 * SCTP DATA chunk. If a message is larger than this size it will be 2967 * fragmented by SCTP into the specified size. Note that the underlying 2968 * SCTP implementation may fragment into smaller sized chunks when the 2969 * PMTU of the underlying association is smaller than the value set by 2970 * the user. The default value for this option is '0' which indicates 2971 * the user is NOT limiting fragmentation and only the PMTU will effect 2972 * SCTP's choice of DATA chunk size. Note also that values set larger 2973 * than the maximum size of an IP datagram will effectively let SCTP 2974 * control fragmentation (i.e. the same as setting this option to 0). 2975 * 2976 * The following structure is used to access and modify this parameter: 2977 * 2978 * struct sctp_assoc_value { 2979 * sctp_assoc_t assoc_id; 2980 * uint32_t assoc_value; 2981 * }; 2982 * 2983 * assoc_id: This parameter is ignored for one-to-one style sockets. 2984 * For one-to-many style sockets this parameter indicates which 2985 * association the user is performing an action upon. Note that if 2986 * this field's value is zero then the endpoints default value is 2987 * changed (effecting future associations only). 2988 * assoc_value: This parameter specifies the maximum size in bytes. 2989 */ 2990 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2991 { 2992 struct sctp_assoc_value params; 2993 struct sctp_association *asoc; 2994 struct sctp_sock *sp = sctp_sk(sk); 2995 int val; 2996 2997 if (optlen == sizeof(int)) { 2998 pr_warn("Use of int in maxseg socket option deprecated\n"); 2999 pr_warn("Use struct sctp_assoc_value instead\n"); 3000 if (copy_from_user(&val, optval, optlen)) 3001 return -EFAULT; 3002 params.assoc_id = 0; 3003 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3004 if (copy_from_user(¶ms, optval, optlen)) 3005 return -EFAULT; 3006 val = params.assoc_value; 3007 } else 3008 return -EINVAL; 3009 3010 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3011 return -EINVAL; 3012 3013 asoc = sctp_id2assoc(sk, params.assoc_id); 3014 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3015 return -EINVAL; 3016 3017 if (asoc) { 3018 if (val == 0) { 3019 val = asoc->pathmtu; 3020 val -= sp->pf->af->net_header_len; 3021 val -= sizeof(struct sctphdr) + 3022 sizeof(struct sctp_data_chunk); 3023 } 3024 asoc->user_frag = val; 3025 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3026 } else { 3027 sp->user_frag = val; 3028 } 3029 3030 return 0; 3031 } 3032 3033 3034 /* 3035 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3036 * 3037 * Requests that the peer mark the enclosed address as the association 3038 * primary. The enclosed address must be one of the association's 3039 * locally bound addresses. The following structure is used to make a 3040 * set primary request: 3041 */ 3042 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3043 unsigned int optlen) 3044 { 3045 struct net *net = sock_net(sk); 3046 struct sctp_sock *sp; 3047 struct sctp_association *asoc = NULL; 3048 struct sctp_setpeerprim prim; 3049 struct sctp_chunk *chunk; 3050 struct sctp_af *af; 3051 int err; 3052 3053 sp = sctp_sk(sk); 3054 3055 if (!net->sctp.addip_enable) 3056 return -EPERM; 3057 3058 if (optlen != sizeof(struct sctp_setpeerprim)) 3059 return -EINVAL; 3060 3061 if (copy_from_user(&prim, optval, optlen)) 3062 return -EFAULT; 3063 3064 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3065 if (!asoc) 3066 return -EINVAL; 3067 3068 if (!asoc->peer.asconf_capable) 3069 return -EPERM; 3070 3071 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3072 return -EPERM; 3073 3074 if (!sctp_state(asoc, ESTABLISHED)) 3075 return -ENOTCONN; 3076 3077 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3078 if (!af) 3079 return -EINVAL; 3080 3081 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3082 return -EADDRNOTAVAIL; 3083 3084 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3085 return -EADDRNOTAVAIL; 3086 3087 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3088 chunk = sctp_make_asconf_set_prim(asoc, 3089 (union sctp_addr *)&prim.sspp_addr); 3090 if (!chunk) 3091 return -ENOMEM; 3092 3093 err = sctp_send_asconf(asoc, chunk); 3094 3095 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3096 3097 return err; 3098 } 3099 3100 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3101 unsigned int optlen) 3102 { 3103 struct sctp_setadaptation adaptation; 3104 3105 if (optlen != sizeof(struct sctp_setadaptation)) 3106 return -EINVAL; 3107 if (copy_from_user(&adaptation, optval, optlen)) 3108 return -EFAULT; 3109 3110 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3111 3112 return 0; 3113 } 3114 3115 /* 3116 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3117 * 3118 * The context field in the sctp_sndrcvinfo structure is normally only 3119 * used when a failed message is retrieved holding the value that was 3120 * sent down on the actual send call. This option allows the setting of 3121 * a default context on an association basis that will be received on 3122 * reading messages from the peer. This is especially helpful in the 3123 * one-2-many model for an application to keep some reference to an 3124 * internal state machine that is processing messages on the 3125 * association. Note that the setting of this value only effects 3126 * received messages from the peer and does not effect the value that is 3127 * saved with outbound messages. 3128 */ 3129 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3130 unsigned int optlen) 3131 { 3132 struct sctp_assoc_value params; 3133 struct sctp_sock *sp; 3134 struct sctp_association *asoc; 3135 3136 if (optlen != sizeof(struct sctp_assoc_value)) 3137 return -EINVAL; 3138 if (copy_from_user(¶ms, optval, optlen)) 3139 return -EFAULT; 3140 3141 sp = sctp_sk(sk); 3142 3143 if (params.assoc_id != 0) { 3144 asoc = sctp_id2assoc(sk, params.assoc_id); 3145 if (!asoc) 3146 return -EINVAL; 3147 asoc->default_rcv_context = params.assoc_value; 3148 } else { 3149 sp->default_rcv_context = params.assoc_value; 3150 } 3151 3152 return 0; 3153 } 3154 3155 /* 3156 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3157 * 3158 * This options will at a minimum specify if the implementation is doing 3159 * fragmented interleave. Fragmented interleave, for a one to many 3160 * socket, is when subsequent calls to receive a message may return 3161 * parts of messages from different associations. Some implementations 3162 * may allow you to turn this value on or off. If so, when turned off, 3163 * no fragment interleave will occur (which will cause a head of line 3164 * blocking amongst multiple associations sharing the same one to many 3165 * socket). When this option is turned on, then each receive call may 3166 * come from a different association (thus the user must receive data 3167 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3168 * association each receive belongs to. 3169 * 3170 * This option takes a boolean value. A non-zero value indicates that 3171 * fragmented interleave is on. A value of zero indicates that 3172 * fragmented interleave is off. 3173 * 3174 * Note that it is important that an implementation that allows this 3175 * option to be turned on, have it off by default. Otherwise an unaware 3176 * application using the one to many model may become confused and act 3177 * incorrectly. 3178 */ 3179 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3180 char __user *optval, 3181 unsigned int optlen) 3182 { 3183 int val; 3184 3185 if (optlen != sizeof(int)) 3186 return -EINVAL; 3187 if (get_user(val, (int __user *)optval)) 3188 return -EFAULT; 3189 3190 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3191 3192 return 0; 3193 } 3194 3195 /* 3196 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3197 * (SCTP_PARTIAL_DELIVERY_POINT) 3198 * 3199 * This option will set or get the SCTP partial delivery point. This 3200 * point is the size of a message where the partial delivery API will be 3201 * invoked to help free up rwnd space for the peer. Setting this to a 3202 * lower value will cause partial deliveries to happen more often. The 3203 * calls argument is an integer that sets or gets the partial delivery 3204 * point. Note also that the call will fail if the user attempts to set 3205 * this value larger than the socket receive buffer size. 3206 * 3207 * Note that any single message having a length smaller than or equal to 3208 * the SCTP partial delivery point will be delivered in one single read 3209 * call as long as the user provided buffer is large enough to hold the 3210 * message. 3211 */ 3212 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3213 char __user *optval, 3214 unsigned int optlen) 3215 { 3216 u32 val; 3217 3218 if (optlen != sizeof(u32)) 3219 return -EINVAL; 3220 if (get_user(val, (int __user *)optval)) 3221 return -EFAULT; 3222 3223 /* Note: We double the receive buffer from what the user sets 3224 * it to be, also initial rwnd is based on rcvbuf/2. 3225 */ 3226 if (val > (sk->sk_rcvbuf >> 1)) 3227 return -EINVAL; 3228 3229 sctp_sk(sk)->pd_point = val; 3230 3231 return 0; /* is this the right error code? */ 3232 } 3233 3234 /* 3235 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3236 * 3237 * This option will allow a user to change the maximum burst of packets 3238 * that can be emitted by this association. Note that the default value 3239 * is 4, and some implementations may restrict this setting so that it 3240 * can only be lowered. 3241 * 3242 * NOTE: This text doesn't seem right. Do this on a socket basis with 3243 * future associations inheriting the socket value. 3244 */ 3245 static int sctp_setsockopt_maxburst(struct sock *sk, 3246 char __user *optval, 3247 unsigned int optlen) 3248 { 3249 struct sctp_assoc_value params; 3250 struct sctp_sock *sp; 3251 struct sctp_association *asoc; 3252 int val; 3253 int assoc_id = 0; 3254 3255 if (optlen == sizeof(int)) { 3256 pr_warn("Use of int in max_burst socket option deprecated\n"); 3257 pr_warn("Use struct sctp_assoc_value instead\n"); 3258 if (copy_from_user(&val, optval, optlen)) 3259 return -EFAULT; 3260 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3261 if (copy_from_user(¶ms, optval, optlen)) 3262 return -EFAULT; 3263 val = params.assoc_value; 3264 assoc_id = params.assoc_id; 3265 } else 3266 return -EINVAL; 3267 3268 sp = sctp_sk(sk); 3269 3270 if (assoc_id != 0) { 3271 asoc = sctp_id2assoc(sk, assoc_id); 3272 if (!asoc) 3273 return -EINVAL; 3274 asoc->max_burst = val; 3275 } else 3276 sp->max_burst = val; 3277 3278 return 0; 3279 } 3280 3281 /* 3282 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3283 * 3284 * This set option adds a chunk type that the user is requesting to be 3285 * received only in an authenticated way. Changes to the list of chunks 3286 * will only effect future associations on the socket. 3287 */ 3288 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3289 char __user *optval, 3290 unsigned int optlen) 3291 { 3292 struct net *net = sock_net(sk); 3293 struct sctp_authchunk val; 3294 3295 if (!net->sctp.auth_enable) 3296 return -EACCES; 3297 3298 if (optlen != sizeof(struct sctp_authchunk)) 3299 return -EINVAL; 3300 if (copy_from_user(&val, optval, optlen)) 3301 return -EFAULT; 3302 3303 switch (val.sauth_chunk) { 3304 case SCTP_CID_INIT: 3305 case SCTP_CID_INIT_ACK: 3306 case SCTP_CID_SHUTDOWN_COMPLETE: 3307 case SCTP_CID_AUTH: 3308 return -EINVAL; 3309 } 3310 3311 /* add this chunk id to the endpoint */ 3312 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3313 } 3314 3315 /* 3316 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3317 * 3318 * This option gets or sets the list of HMAC algorithms that the local 3319 * endpoint requires the peer to use. 3320 */ 3321 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3322 char __user *optval, 3323 unsigned int optlen) 3324 { 3325 struct net *net = sock_net(sk); 3326 struct sctp_hmacalgo *hmacs; 3327 u32 idents; 3328 int err; 3329 3330 if (!net->sctp.auth_enable) 3331 return -EACCES; 3332 3333 if (optlen < sizeof(struct sctp_hmacalgo)) 3334 return -EINVAL; 3335 3336 hmacs= memdup_user(optval, optlen); 3337 if (IS_ERR(hmacs)) 3338 return PTR_ERR(hmacs); 3339 3340 idents = hmacs->shmac_num_idents; 3341 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3342 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3343 err = -EINVAL; 3344 goto out; 3345 } 3346 3347 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3348 out: 3349 kfree(hmacs); 3350 return err; 3351 } 3352 3353 /* 3354 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3355 * 3356 * This option will set a shared secret key which is used to build an 3357 * association shared key. 3358 */ 3359 static int sctp_setsockopt_auth_key(struct sock *sk, 3360 char __user *optval, 3361 unsigned int optlen) 3362 { 3363 struct net *net = sock_net(sk); 3364 struct sctp_authkey *authkey; 3365 struct sctp_association *asoc; 3366 int ret; 3367 3368 if (!net->sctp.auth_enable) 3369 return -EACCES; 3370 3371 if (optlen <= sizeof(struct sctp_authkey)) 3372 return -EINVAL; 3373 3374 authkey= memdup_user(optval, optlen); 3375 if (IS_ERR(authkey)) 3376 return PTR_ERR(authkey); 3377 3378 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3379 ret = -EINVAL; 3380 goto out; 3381 } 3382 3383 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3384 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3385 ret = -EINVAL; 3386 goto out; 3387 } 3388 3389 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3390 out: 3391 kfree(authkey); 3392 return ret; 3393 } 3394 3395 /* 3396 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3397 * 3398 * This option will get or set the active shared key to be used to build 3399 * the association shared key. 3400 */ 3401 static int sctp_setsockopt_active_key(struct sock *sk, 3402 char __user *optval, 3403 unsigned int optlen) 3404 { 3405 struct net *net = sock_net(sk); 3406 struct sctp_authkeyid val; 3407 struct sctp_association *asoc; 3408 3409 if (!net->sctp.auth_enable) 3410 return -EACCES; 3411 3412 if (optlen != sizeof(struct sctp_authkeyid)) 3413 return -EINVAL; 3414 if (copy_from_user(&val, optval, optlen)) 3415 return -EFAULT; 3416 3417 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3418 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3419 return -EINVAL; 3420 3421 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3422 val.scact_keynumber); 3423 } 3424 3425 /* 3426 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3427 * 3428 * This set option will delete a shared secret key from use. 3429 */ 3430 static int sctp_setsockopt_del_key(struct sock *sk, 3431 char __user *optval, 3432 unsigned int optlen) 3433 { 3434 struct net *net = sock_net(sk); 3435 struct sctp_authkeyid val; 3436 struct sctp_association *asoc; 3437 3438 if (!net->sctp.auth_enable) 3439 return -EACCES; 3440 3441 if (optlen != sizeof(struct sctp_authkeyid)) 3442 return -EINVAL; 3443 if (copy_from_user(&val, optval, optlen)) 3444 return -EFAULT; 3445 3446 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3447 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3448 return -EINVAL; 3449 3450 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3451 val.scact_keynumber); 3452 3453 } 3454 3455 /* 3456 * 8.1.23 SCTP_AUTO_ASCONF 3457 * 3458 * This option will enable or disable the use of the automatic generation of 3459 * ASCONF chunks to add and delete addresses to an existing association. Note 3460 * that this option has two caveats namely: a) it only affects sockets that 3461 * are bound to all addresses available to the SCTP stack, and b) the system 3462 * administrator may have an overriding control that turns the ASCONF feature 3463 * off no matter what setting the socket option may have. 3464 * This option expects an integer boolean flag, where a non-zero value turns on 3465 * the option, and a zero value turns off the option. 3466 * Note. In this implementation, socket operation overrides default parameter 3467 * being set by sysctl as well as FreeBSD implementation 3468 */ 3469 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3470 unsigned int optlen) 3471 { 3472 int val; 3473 struct sctp_sock *sp = sctp_sk(sk); 3474 3475 if (optlen < sizeof(int)) 3476 return -EINVAL; 3477 if (get_user(val, (int __user *)optval)) 3478 return -EFAULT; 3479 if (!sctp_is_ep_boundall(sk) && val) 3480 return -EINVAL; 3481 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3482 return 0; 3483 3484 if (val == 0 && sp->do_auto_asconf) { 3485 list_del(&sp->auto_asconf_list); 3486 sp->do_auto_asconf = 0; 3487 } else if (val && !sp->do_auto_asconf) { 3488 list_add_tail(&sp->auto_asconf_list, 3489 &sock_net(sk)->sctp.auto_asconf_splist); 3490 sp->do_auto_asconf = 1; 3491 } 3492 return 0; 3493 } 3494 3495 3496 /* 3497 * SCTP_PEER_ADDR_THLDS 3498 * 3499 * This option allows us to alter the partially failed threshold for one or all 3500 * transports in an association. See Section 6.1 of: 3501 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3502 */ 3503 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3504 char __user *optval, 3505 unsigned int optlen) 3506 { 3507 struct sctp_paddrthlds val; 3508 struct sctp_transport *trans; 3509 struct sctp_association *asoc; 3510 3511 if (optlen < sizeof(struct sctp_paddrthlds)) 3512 return -EINVAL; 3513 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3514 sizeof(struct sctp_paddrthlds))) 3515 return -EFAULT; 3516 3517 3518 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3519 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3520 if (!asoc) 3521 return -ENOENT; 3522 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3523 transports) { 3524 if (val.spt_pathmaxrxt) 3525 trans->pathmaxrxt = val.spt_pathmaxrxt; 3526 trans->pf_retrans = val.spt_pathpfthld; 3527 } 3528 3529 if (val.spt_pathmaxrxt) 3530 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3531 asoc->pf_retrans = val.spt_pathpfthld; 3532 } else { 3533 trans = sctp_addr_id2transport(sk, &val.spt_address, 3534 val.spt_assoc_id); 3535 if (!trans) 3536 return -ENOENT; 3537 3538 if (val.spt_pathmaxrxt) 3539 trans->pathmaxrxt = val.spt_pathmaxrxt; 3540 trans->pf_retrans = val.spt_pathpfthld; 3541 } 3542 3543 return 0; 3544 } 3545 3546 /* API 6.2 setsockopt(), getsockopt() 3547 * 3548 * Applications use setsockopt() and getsockopt() to set or retrieve 3549 * socket options. Socket options are used to change the default 3550 * behavior of sockets calls. They are described in Section 7. 3551 * 3552 * The syntax is: 3553 * 3554 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3555 * int __user *optlen); 3556 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3557 * int optlen); 3558 * 3559 * sd - the socket descript. 3560 * level - set to IPPROTO_SCTP for all SCTP options. 3561 * optname - the option name. 3562 * optval - the buffer to store the value of the option. 3563 * optlen - the size of the buffer. 3564 */ 3565 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3566 char __user *optval, unsigned int optlen) 3567 { 3568 int retval = 0; 3569 3570 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3571 sk, optname); 3572 3573 /* I can hardly begin to describe how wrong this is. This is 3574 * so broken as to be worse than useless. The API draft 3575 * REALLY is NOT helpful here... I am not convinced that the 3576 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3577 * are at all well-founded. 3578 */ 3579 if (level != SOL_SCTP) { 3580 struct sctp_af *af = sctp_sk(sk)->pf->af; 3581 retval = af->setsockopt(sk, level, optname, optval, optlen); 3582 goto out_nounlock; 3583 } 3584 3585 sctp_lock_sock(sk); 3586 3587 switch (optname) { 3588 case SCTP_SOCKOPT_BINDX_ADD: 3589 /* 'optlen' is the size of the addresses buffer. */ 3590 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3591 optlen, SCTP_BINDX_ADD_ADDR); 3592 break; 3593 3594 case SCTP_SOCKOPT_BINDX_REM: 3595 /* 'optlen' is the size of the addresses buffer. */ 3596 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3597 optlen, SCTP_BINDX_REM_ADDR); 3598 break; 3599 3600 case SCTP_SOCKOPT_CONNECTX_OLD: 3601 /* 'optlen' is the size of the addresses buffer. */ 3602 retval = sctp_setsockopt_connectx_old(sk, 3603 (struct sockaddr __user *)optval, 3604 optlen); 3605 break; 3606 3607 case SCTP_SOCKOPT_CONNECTX: 3608 /* 'optlen' is the size of the addresses buffer. */ 3609 retval = sctp_setsockopt_connectx(sk, 3610 (struct sockaddr __user *)optval, 3611 optlen); 3612 break; 3613 3614 case SCTP_DISABLE_FRAGMENTS: 3615 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3616 break; 3617 3618 case SCTP_EVENTS: 3619 retval = sctp_setsockopt_events(sk, optval, optlen); 3620 break; 3621 3622 case SCTP_AUTOCLOSE: 3623 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3624 break; 3625 3626 case SCTP_PEER_ADDR_PARAMS: 3627 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3628 break; 3629 3630 case SCTP_DELAYED_SACK: 3631 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3632 break; 3633 case SCTP_PARTIAL_DELIVERY_POINT: 3634 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3635 break; 3636 3637 case SCTP_INITMSG: 3638 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3639 break; 3640 case SCTP_DEFAULT_SEND_PARAM: 3641 retval = sctp_setsockopt_default_send_param(sk, optval, 3642 optlen); 3643 break; 3644 case SCTP_PRIMARY_ADDR: 3645 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3646 break; 3647 case SCTP_SET_PEER_PRIMARY_ADDR: 3648 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3649 break; 3650 case SCTP_NODELAY: 3651 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3652 break; 3653 case SCTP_RTOINFO: 3654 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3655 break; 3656 case SCTP_ASSOCINFO: 3657 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3658 break; 3659 case SCTP_I_WANT_MAPPED_V4_ADDR: 3660 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3661 break; 3662 case SCTP_MAXSEG: 3663 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3664 break; 3665 case SCTP_ADAPTATION_LAYER: 3666 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3667 break; 3668 case SCTP_CONTEXT: 3669 retval = sctp_setsockopt_context(sk, optval, optlen); 3670 break; 3671 case SCTP_FRAGMENT_INTERLEAVE: 3672 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3673 break; 3674 case SCTP_MAX_BURST: 3675 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3676 break; 3677 case SCTP_AUTH_CHUNK: 3678 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3679 break; 3680 case SCTP_HMAC_IDENT: 3681 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3682 break; 3683 case SCTP_AUTH_KEY: 3684 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3685 break; 3686 case SCTP_AUTH_ACTIVE_KEY: 3687 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3688 break; 3689 case SCTP_AUTH_DELETE_KEY: 3690 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3691 break; 3692 case SCTP_AUTO_ASCONF: 3693 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3694 break; 3695 case SCTP_PEER_ADDR_THLDS: 3696 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3697 break; 3698 default: 3699 retval = -ENOPROTOOPT; 3700 break; 3701 } 3702 3703 sctp_release_sock(sk); 3704 3705 out_nounlock: 3706 return retval; 3707 } 3708 3709 /* API 3.1.6 connect() - UDP Style Syntax 3710 * 3711 * An application may use the connect() call in the UDP model to initiate an 3712 * association without sending data. 3713 * 3714 * The syntax is: 3715 * 3716 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3717 * 3718 * sd: the socket descriptor to have a new association added to. 3719 * 3720 * nam: the address structure (either struct sockaddr_in or struct 3721 * sockaddr_in6 defined in RFC2553 [7]). 3722 * 3723 * len: the size of the address. 3724 */ 3725 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3726 int addr_len) 3727 { 3728 int err = 0; 3729 struct sctp_af *af; 3730 3731 sctp_lock_sock(sk); 3732 3733 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3734 __func__, sk, addr, addr_len); 3735 3736 /* Validate addr_len before calling common connect/connectx routine. */ 3737 af = sctp_get_af_specific(addr->sa_family); 3738 if (!af || addr_len < af->sockaddr_len) { 3739 err = -EINVAL; 3740 } else { 3741 /* Pass correct addr len to common routine (so it knows there 3742 * is only one address being passed. 3743 */ 3744 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3745 } 3746 3747 sctp_release_sock(sk); 3748 return err; 3749 } 3750 3751 /* FIXME: Write comments. */ 3752 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3753 { 3754 return -EOPNOTSUPP; /* STUB */ 3755 } 3756 3757 /* 4.1.4 accept() - TCP Style Syntax 3758 * 3759 * Applications use accept() call to remove an established SCTP 3760 * association from the accept queue of the endpoint. A new socket 3761 * descriptor will be returned from accept() to represent the newly 3762 * formed association. 3763 */ 3764 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3765 { 3766 struct sctp_sock *sp; 3767 struct sctp_endpoint *ep; 3768 struct sock *newsk = NULL; 3769 struct sctp_association *asoc; 3770 long timeo; 3771 int error = 0; 3772 3773 sctp_lock_sock(sk); 3774 3775 sp = sctp_sk(sk); 3776 ep = sp->ep; 3777 3778 if (!sctp_style(sk, TCP)) { 3779 error = -EOPNOTSUPP; 3780 goto out; 3781 } 3782 3783 if (!sctp_sstate(sk, LISTENING)) { 3784 error = -EINVAL; 3785 goto out; 3786 } 3787 3788 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3789 3790 error = sctp_wait_for_accept(sk, timeo); 3791 if (error) 3792 goto out; 3793 3794 /* We treat the list of associations on the endpoint as the accept 3795 * queue and pick the first association on the list. 3796 */ 3797 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3798 3799 newsk = sp->pf->create_accept_sk(sk, asoc); 3800 if (!newsk) { 3801 error = -ENOMEM; 3802 goto out; 3803 } 3804 3805 /* Populate the fields of the newsk from the oldsk and migrate the 3806 * asoc to the newsk. 3807 */ 3808 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3809 3810 out: 3811 sctp_release_sock(sk); 3812 *err = error; 3813 return newsk; 3814 } 3815 3816 /* The SCTP ioctl handler. */ 3817 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3818 { 3819 int rc = -ENOTCONN; 3820 3821 sctp_lock_sock(sk); 3822 3823 /* 3824 * SEQPACKET-style sockets in LISTENING state are valid, for 3825 * SCTP, so only discard TCP-style sockets in LISTENING state. 3826 */ 3827 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3828 goto out; 3829 3830 switch (cmd) { 3831 case SIOCINQ: { 3832 struct sk_buff *skb; 3833 unsigned int amount = 0; 3834 3835 skb = skb_peek(&sk->sk_receive_queue); 3836 if (skb != NULL) { 3837 /* 3838 * We will only return the amount of this packet since 3839 * that is all that will be read. 3840 */ 3841 amount = skb->len; 3842 } 3843 rc = put_user(amount, (int __user *)arg); 3844 break; 3845 } 3846 default: 3847 rc = -ENOIOCTLCMD; 3848 break; 3849 } 3850 out: 3851 sctp_release_sock(sk); 3852 return rc; 3853 } 3854 3855 /* This is the function which gets called during socket creation to 3856 * initialized the SCTP-specific portion of the sock. 3857 * The sock structure should already be zero-filled memory. 3858 */ 3859 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3860 { 3861 struct net *net = sock_net(sk); 3862 struct sctp_endpoint *ep; 3863 struct sctp_sock *sp; 3864 3865 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3866 3867 sp = sctp_sk(sk); 3868 3869 /* Initialize the SCTP per socket area. */ 3870 switch (sk->sk_type) { 3871 case SOCK_SEQPACKET: 3872 sp->type = SCTP_SOCKET_UDP; 3873 break; 3874 case SOCK_STREAM: 3875 sp->type = SCTP_SOCKET_TCP; 3876 break; 3877 default: 3878 return -ESOCKTNOSUPPORT; 3879 } 3880 3881 /* Initialize default send parameters. These parameters can be 3882 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3883 */ 3884 sp->default_stream = 0; 3885 sp->default_ppid = 0; 3886 sp->default_flags = 0; 3887 sp->default_context = 0; 3888 sp->default_timetolive = 0; 3889 3890 sp->default_rcv_context = 0; 3891 sp->max_burst = net->sctp.max_burst; 3892 3893 /* Initialize default setup parameters. These parameters 3894 * can be modified with the SCTP_INITMSG socket option or 3895 * overridden by the SCTP_INIT CMSG. 3896 */ 3897 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3898 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3899 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 3900 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 3901 3902 /* Initialize default RTO related parameters. These parameters can 3903 * be modified for with the SCTP_RTOINFO socket option. 3904 */ 3905 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 3906 sp->rtoinfo.srto_max = net->sctp.rto_max; 3907 sp->rtoinfo.srto_min = net->sctp.rto_min; 3908 3909 /* Initialize default association related parameters. These parameters 3910 * can be modified with the SCTP_ASSOCINFO socket option. 3911 */ 3912 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 3913 sp->assocparams.sasoc_number_peer_destinations = 0; 3914 sp->assocparams.sasoc_peer_rwnd = 0; 3915 sp->assocparams.sasoc_local_rwnd = 0; 3916 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 3917 3918 /* Initialize default event subscriptions. By default, all the 3919 * options are off. 3920 */ 3921 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3922 3923 /* Default Peer Address Parameters. These defaults can 3924 * be modified via SCTP_PEER_ADDR_PARAMS 3925 */ 3926 sp->hbinterval = net->sctp.hb_interval; 3927 sp->pathmaxrxt = net->sctp.max_retrans_path; 3928 sp->pathmtu = 0; // allow default discovery 3929 sp->sackdelay = net->sctp.sack_timeout; 3930 sp->sackfreq = 2; 3931 sp->param_flags = SPP_HB_ENABLE | 3932 SPP_PMTUD_ENABLE | 3933 SPP_SACKDELAY_ENABLE; 3934 3935 /* If enabled no SCTP message fragmentation will be performed. 3936 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3937 */ 3938 sp->disable_fragments = 0; 3939 3940 /* Enable Nagle algorithm by default. */ 3941 sp->nodelay = 0; 3942 3943 /* Enable by default. */ 3944 sp->v4mapped = 1; 3945 3946 /* Auto-close idle associations after the configured 3947 * number of seconds. A value of 0 disables this 3948 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3949 * for UDP-style sockets only. 3950 */ 3951 sp->autoclose = 0; 3952 3953 /* User specified fragmentation limit. */ 3954 sp->user_frag = 0; 3955 3956 sp->adaptation_ind = 0; 3957 3958 sp->pf = sctp_get_pf_specific(sk->sk_family); 3959 3960 /* Control variables for partial data delivery. */ 3961 atomic_set(&sp->pd_mode, 0); 3962 skb_queue_head_init(&sp->pd_lobby); 3963 sp->frag_interleave = 0; 3964 3965 /* Create a per socket endpoint structure. Even if we 3966 * change the data structure relationships, this may still 3967 * be useful for storing pre-connect address information. 3968 */ 3969 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3970 if (!ep) 3971 return -ENOMEM; 3972 3973 sp->ep = ep; 3974 sp->hmac = NULL; 3975 3976 SCTP_DBG_OBJCNT_INC(sock); 3977 3978 local_bh_disable(); 3979 percpu_counter_inc(&sctp_sockets_allocated); 3980 sock_prot_inuse_add(net, sk->sk_prot, 1); 3981 if (net->sctp.default_auto_asconf) { 3982 list_add_tail(&sp->auto_asconf_list, 3983 &net->sctp.auto_asconf_splist); 3984 sp->do_auto_asconf = 1; 3985 } else 3986 sp->do_auto_asconf = 0; 3987 local_bh_enable(); 3988 3989 return 0; 3990 } 3991 3992 /* Cleanup any SCTP per socket resources. */ 3993 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3994 { 3995 struct sctp_sock *sp; 3996 3997 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3998 3999 /* Release our hold on the endpoint. */ 4000 sp = sctp_sk(sk); 4001 if (sp->do_auto_asconf) { 4002 sp->do_auto_asconf = 0; 4003 list_del(&sp->auto_asconf_list); 4004 } 4005 sctp_endpoint_free(sp->ep); 4006 local_bh_disable(); 4007 percpu_counter_dec(&sctp_sockets_allocated); 4008 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4009 local_bh_enable(); 4010 } 4011 4012 /* API 4.1.7 shutdown() - TCP Style Syntax 4013 * int shutdown(int socket, int how); 4014 * 4015 * sd - the socket descriptor of the association to be closed. 4016 * how - Specifies the type of shutdown. The values are 4017 * as follows: 4018 * SHUT_RD 4019 * Disables further receive operations. No SCTP 4020 * protocol action is taken. 4021 * SHUT_WR 4022 * Disables further send operations, and initiates 4023 * the SCTP shutdown sequence. 4024 * SHUT_RDWR 4025 * Disables further send and receive operations 4026 * and initiates the SCTP shutdown sequence. 4027 */ 4028 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 4029 { 4030 struct net *net = sock_net(sk); 4031 struct sctp_endpoint *ep; 4032 struct sctp_association *asoc; 4033 4034 if (!sctp_style(sk, TCP)) 4035 return; 4036 4037 if (how & SEND_SHUTDOWN) { 4038 ep = sctp_sk(sk)->ep; 4039 if (!list_empty(&ep->asocs)) { 4040 asoc = list_entry(ep->asocs.next, 4041 struct sctp_association, asocs); 4042 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4043 } 4044 } 4045 } 4046 4047 /* 7.2.1 Association Status (SCTP_STATUS) 4048 4049 * Applications can retrieve current status information about an 4050 * association, including association state, peer receiver window size, 4051 * number of unacked data chunks, and number of data chunks pending 4052 * receipt. This information is read-only. 4053 */ 4054 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4055 char __user *optval, 4056 int __user *optlen) 4057 { 4058 struct sctp_status status; 4059 struct sctp_association *asoc = NULL; 4060 struct sctp_transport *transport; 4061 sctp_assoc_t associd; 4062 int retval = 0; 4063 4064 if (len < sizeof(status)) { 4065 retval = -EINVAL; 4066 goto out; 4067 } 4068 4069 len = sizeof(status); 4070 if (copy_from_user(&status, optval, len)) { 4071 retval = -EFAULT; 4072 goto out; 4073 } 4074 4075 associd = status.sstat_assoc_id; 4076 asoc = sctp_id2assoc(sk, associd); 4077 if (!asoc) { 4078 retval = -EINVAL; 4079 goto out; 4080 } 4081 4082 transport = asoc->peer.primary_path; 4083 4084 status.sstat_assoc_id = sctp_assoc2id(asoc); 4085 status.sstat_state = asoc->state; 4086 status.sstat_rwnd = asoc->peer.rwnd; 4087 status.sstat_unackdata = asoc->unack_data; 4088 4089 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4090 status.sstat_instrms = asoc->c.sinit_max_instreams; 4091 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4092 status.sstat_fragmentation_point = asoc->frag_point; 4093 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4094 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4095 transport->af_specific->sockaddr_len); 4096 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4097 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4098 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4099 status.sstat_primary.spinfo_state = transport->state; 4100 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4101 status.sstat_primary.spinfo_srtt = transport->srtt; 4102 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4103 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4104 4105 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4106 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4107 4108 if (put_user(len, optlen)) { 4109 retval = -EFAULT; 4110 goto out; 4111 } 4112 4113 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4114 len, status.sstat_state, status.sstat_rwnd, 4115 status.sstat_assoc_id); 4116 4117 if (copy_to_user(optval, &status, len)) { 4118 retval = -EFAULT; 4119 goto out; 4120 } 4121 4122 out: 4123 return retval; 4124 } 4125 4126 4127 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4128 * 4129 * Applications can retrieve information about a specific peer address 4130 * of an association, including its reachability state, congestion 4131 * window, and retransmission timer values. This information is 4132 * read-only. 4133 */ 4134 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4135 char __user *optval, 4136 int __user *optlen) 4137 { 4138 struct sctp_paddrinfo pinfo; 4139 struct sctp_transport *transport; 4140 int retval = 0; 4141 4142 if (len < sizeof(pinfo)) { 4143 retval = -EINVAL; 4144 goto out; 4145 } 4146 4147 len = sizeof(pinfo); 4148 if (copy_from_user(&pinfo, optval, len)) { 4149 retval = -EFAULT; 4150 goto out; 4151 } 4152 4153 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4154 pinfo.spinfo_assoc_id); 4155 if (!transport) 4156 return -EINVAL; 4157 4158 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4159 pinfo.spinfo_state = transport->state; 4160 pinfo.spinfo_cwnd = transport->cwnd; 4161 pinfo.spinfo_srtt = transport->srtt; 4162 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4163 pinfo.spinfo_mtu = transport->pathmtu; 4164 4165 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4166 pinfo.spinfo_state = SCTP_ACTIVE; 4167 4168 if (put_user(len, optlen)) { 4169 retval = -EFAULT; 4170 goto out; 4171 } 4172 4173 if (copy_to_user(optval, &pinfo, len)) { 4174 retval = -EFAULT; 4175 goto out; 4176 } 4177 4178 out: 4179 return retval; 4180 } 4181 4182 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4183 * 4184 * This option is a on/off flag. If enabled no SCTP message 4185 * fragmentation will be performed. Instead if a message being sent 4186 * exceeds the current PMTU size, the message will NOT be sent and 4187 * instead a error will be indicated to the user. 4188 */ 4189 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4190 char __user *optval, int __user *optlen) 4191 { 4192 int val; 4193 4194 if (len < sizeof(int)) 4195 return -EINVAL; 4196 4197 len = sizeof(int); 4198 val = (sctp_sk(sk)->disable_fragments == 1); 4199 if (put_user(len, optlen)) 4200 return -EFAULT; 4201 if (copy_to_user(optval, &val, len)) 4202 return -EFAULT; 4203 return 0; 4204 } 4205 4206 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4207 * 4208 * This socket option is used to specify various notifications and 4209 * ancillary data the user wishes to receive. 4210 */ 4211 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4212 int __user *optlen) 4213 { 4214 if (len <= 0) 4215 return -EINVAL; 4216 if (len > sizeof(struct sctp_event_subscribe)) 4217 len = sizeof(struct sctp_event_subscribe); 4218 if (put_user(len, optlen)) 4219 return -EFAULT; 4220 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4221 return -EFAULT; 4222 return 0; 4223 } 4224 4225 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4226 * 4227 * This socket option is applicable to the UDP-style socket only. When 4228 * set it will cause associations that are idle for more than the 4229 * specified number of seconds to automatically close. An association 4230 * being idle is defined an association that has NOT sent or received 4231 * user data. The special value of '0' indicates that no automatic 4232 * close of any associations should be performed. The option expects an 4233 * integer defining the number of seconds of idle time before an 4234 * association is closed. 4235 */ 4236 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4237 { 4238 /* Applicable to UDP-style socket only */ 4239 if (sctp_style(sk, TCP)) 4240 return -EOPNOTSUPP; 4241 if (len < sizeof(int)) 4242 return -EINVAL; 4243 len = sizeof(int); 4244 if (put_user(len, optlen)) 4245 return -EFAULT; 4246 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4247 return -EFAULT; 4248 return 0; 4249 } 4250 4251 /* Helper routine to branch off an association to a new socket. */ 4252 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4253 { 4254 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4255 struct socket *sock; 4256 struct sctp_af *af; 4257 int err = 0; 4258 4259 if (!asoc) 4260 return -EINVAL; 4261 4262 /* An association cannot be branched off from an already peeled-off 4263 * socket, nor is this supported for tcp style sockets. 4264 */ 4265 if (!sctp_style(sk, UDP)) 4266 return -EINVAL; 4267 4268 /* Create a new socket. */ 4269 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4270 if (err < 0) 4271 return err; 4272 4273 sctp_copy_sock(sock->sk, sk, asoc); 4274 4275 /* Make peeled-off sockets more like 1-1 accepted sockets. 4276 * Set the daddr and initialize id to something more random 4277 */ 4278 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4279 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4280 4281 /* Populate the fields of the newsk from the oldsk and migrate the 4282 * asoc to the newsk. 4283 */ 4284 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4285 4286 *sockp = sock; 4287 4288 return err; 4289 } 4290 EXPORT_SYMBOL(sctp_do_peeloff); 4291 4292 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4293 { 4294 sctp_peeloff_arg_t peeloff; 4295 struct socket *newsock; 4296 struct file *newfile; 4297 int retval = 0; 4298 4299 if (len < sizeof(sctp_peeloff_arg_t)) 4300 return -EINVAL; 4301 len = sizeof(sctp_peeloff_arg_t); 4302 if (copy_from_user(&peeloff, optval, len)) 4303 return -EFAULT; 4304 4305 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4306 if (retval < 0) 4307 goto out; 4308 4309 /* Map the socket to an unused fd that can be returned to the user. */ 4310 retval = get_unused_fd(); 4311 if (retval < 0) { 4312 sock_release(newsock); 4313 goto out; 4314 } 4315 4316 newfile = sock_alloc_file(newsock, 0, NULL); 4317 if (unlikely(IS_ERR(newfile))) { 4318 put_unused_fd(retval); 4319 sock_release(newsock); 4320 return PTR_ERR(newfile); 4321 } 4322 4323 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n", 4324 __func__, sk, newsock->sk, retval); 4325 4326 /* Return the fd mapped to the new socket. */ 4327 if (put_user(len, optlen)) { 4328 fput(newfile); 4329 put_unused_fd(retval); 4330 return -EFAULT; 4331 } 4332 peeloff.sd = retval; 4333 if (copy_to_user(optval, &peeloff, len)) { 4334 fput(newfile); 4335 put_unused_fd(retval); 4336 return -EFAULT; 4337 } 4338 fd_install(retval, newfile); 4339 out: 4340 return retval; 4341 } 4342 4343 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4344 * 4345 * Applications can enable or disable heartbeats for any peer address of 4346 * an association, modify an address's heartbeat interval, force a 4347 * heartbeat to be sent immediately, and adjust the address's maximum 4348 * number of retransmissions sent before an address is considered 4349 * unreachable. The following structure is used to access and modify an 4350 * address's parameters: 4351 * 4352 * struct sctp_paddrparams { 4353 * sctp_assoc_t spp_assoc_id; 4354 * struct sockaddr_storage spp_address; 4355 * uint32_t spp_hbinterval; 4356 * uint16_t spp_pathmaxrxt; 4357 * uint32_t spp_pathmtu; 4358 * uint32_t spp_sackdelay; 4359 * uint32_t spp_flags; 4360 * }; 4361 * 4362 * spp_assoc_id - (one-to-many style socket) This is filled in the 4363 * application, and identifies the association for 4364 * this query. 4365 * spp_address - This specifies which address is of interest. 4366 * spp_hbinterval - This contains the value of the heartbeat interval, 4367 * in milliseconds. If a value of zero 4368 * is present in this field then no changes are to 4369 * be made to this parameter. 4370 * spp_pathmaxrxt - This contains the maximum number of 4371 * retransmissions before this address shall be 4372 * considered unreachable. If a value of zero 4373 * is present in this field then no changes are to 4374 * be made to this parameter. 4375 * spp_pathmtu - When Path MTU discovery is disabled the value 4376 * specified here will be the "fixed" path mtu. 4377 * Note that if the spp_address field is empty 4378 * then all associations on this address will 4379 * have this fixed path mtu set upon them. 4380 * 4381 * spp_sackdelay - When delayed sack is enabled, this value specifies 4382 * the number of milliseconds that sacks will be delayed 4383 * for. This value will apply to all addresses of an 4384 * association if the spp_address field is empty. Note 4385 * also, that if delayed sack is enabled and this 4386 * value is set to 0, no change is made to the last 4387 * recorded delayed sack timer value. 4388 * 4389 * spp_flags - These flags are used to control various features 4390 * on an association. The flag field may contain 4391 * zero or more of the following options. 4392 * 4393 * SPP_HB_ENABLE - Enable heartbeats on the 4394 * specified address. Note that if the address 4395 * field is empty all addresses for the association 4396 * have heartbeats enabled upon them. 4397 * 4398 * SPP_HB_DISABLE - Disable heartbeats on the 4399 * speicifed address. Note that if the address 4400 * field is empty all addresses for the association 4401 * will have their heartbeats disabled. Note also 4402 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4403 * mutually exclusive, only one of these two should 4404 * be specified. Enabling both fields will have 4405 * undetermined results. 4406 * 4407 * SPP_HB_DEMAND - Request a user initiated heartbeat 4408 * to be made immediately. 4409 * 4410 * SPP_PMTUD_ENABLE - This field will enable PMTU 4411 * discovery upon the specified address. Note that 4412 * if the address feild is empty then all addresses 4413 * on the association are effected. 4414 * 4415 * SPP_PMTUD_DISABLE - This field will disable PMTU 4416 * discovery upon the specified address. Note that 4417 * if the address feild is empty then all addresses 4418 * on the association are effected. Not also that 4419 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4420 * exclusive. Enabling both will have undetermined 4421 * results. 4422 * 4423 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4424 * on delayed sack. The time specified in spp_sackdelay 4425 * is used to specify the sack delay for this address. Note 4426 * that if spp_address is empty then all addresses will 4427 * enable delayed sack and take on the sack delay 4428 * value specified in spp_sackdelay. 4429 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4430 * off delayed sack. If the spp_address field is blank then 4431 * delayed sack is disabled for the entire association. Note 4432 * also that this field is mutually exclusive to 4433 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4434 * results. 4435 */ 4436 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4437 char __user *optval, int __user *optlen) 4438 { 4439 struct sctp_paddrparams params; 4440 struct sctp_transport *trans = NULL; 4441 struct sctp_association *asoc = NULL; 4442 struct sctp_sock *sp = sctp_sk(sk); 4443 4444 if (len < sizeof(struct sctp_paddrparams)) 4445 return -EINVAL; 4446 len = sizeof(struct sctp_paddrparams); 4447 if (copy_from_user(¶ms, optval, len)) 4448 return -EFAULT; 4449 4450 /* If an address other than INADDR_ANY is specified, and 4451 * no transport is found, then the request is invalid. 4452 */ 4453 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4454 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4455 params.spp_assoc_id); 4456 if (!trans) { 4457 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4458 return -EINVAL; 4459 } 4460 } 4461 4462 /* Get association, if assoc_id != 0 and the socket is a one 4463 * to many style socket, and an association was not found, then 4464 * the id was invalid. 4465 */ 4466 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4467 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4468 SCTP_DEBUG_PRINTK("Failed no association\n"); 4469 return -EINVAL; 4470 } 4471 4472 if (trans) { 4473 /* Fetch transport values. */ 4474 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4475 params.spp_pathmtu = trans->pathmtu; 4476 params.spp_pathmaxrxt = trans->pathmaxrxt; 4477 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4478 4479 /*draft-11 doesn't say what to return in spp_flags*/ 4480 params.spp_flags = trans->param_flags; 4481 } else if (asoc) { 4482 /* Fetch association values. */ 4483 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4484 params.spp_pathmtu = asoc->pathmtu; 4485 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4486 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4487 4488 /*draft-11 doesn't say what to return in spp_flags*/ 4489 params.spp_flags = asoc->param_flags; 4490 } else { 4491 /* Fetch socket values. */ 4492 params.spp_hbinterval = sp->hbinterval; 4493 params.spp_pathmtu = sp->pathmtu; 4494 params.spp_sackdelay = sp->sackdelay; 4495 params.spp_pathmaxrxt = sp->pathmaxrxt; 4496 4497 /*draft-11 doesn't say what to return in spp_flags*/ 4498 params.spp_flags = sp->param_flags; 4499 } 4500 4501 if (copy_to_user(optval, ¶ms, len)) 4502 return -EFAULT; 4503 4504 if (put_user(len, optlen)) 4505 return -EFAULT; 4506 4507 return 0; 4508 } 4509 4510 /* 4511 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4512 * 4513 * This option will effect the way delayed acks are performed. This 4514 * option allows you to get or set the delayed ack time, in 4515 * milliseconds. It also allows changing the delayed ack frequency. 4516 * Changing the frequency to 1 disables the delayed sack algorithm. If 4517 * the assoc_id is 0, then this sets or gets the endpoints default 4518 * values. If the assoc_id field is non-zero, then the set or get 4519 * effects the specified association for the one to many model (the 4520 * assoc_id field is ignored by the one to one model). Note that if 4521 * sack_delay or sack_freq are 0 when setting this option, then the 4522 * current values will remain unchanged. 4523 * 4524 * struct sctp_sack_info { 4525 * sctp_assoc_t sack_assoc_id; 4526 * uint32_t sack_delay; 4527 * uint32_t sack_freq; 4528 * }; 4529 * 4530 * sack_assoc_id - This parameter, indicates which association the user 4531 * is performing an action upon. Note that if this field's value is 4532 * zero then the endpoints default value is changed (effecting future 4533 * associations only). 4534 * 4535 * sack_delay - This parameter contains the number of milliseconds that 4536 * the user is requesting the delayed ACK timer be set to. Note that 4537 * this value is defined in the standard to be between 200 and 500 4538 * milliseconds. 4539 * 4540 * sack_freq - This parameter contains the number of packets that must 4541 * be received before a sack is sent without waiting for the delay 4542 * timer to expire. The default value for this is 2, setting this 4543 * value to 1 will disable the delayed sack algorithm. 4544 */ 4545 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4546 char __user *optval, 4547 int __user *optlen) 4548 { 4549 struct sctp_sack_info params; 4550 struct sctp_association *asoc = NULL; 4551 struct sctp_sock *sp = sctp_sk(sk); 4552 4553 if (len >= sizeof(struct sctp_sack_info)) { 4554 len = sizeof(struct sctp_sack_info); 4555 4556 if (copy_from_user(¶ms, optval, len)) 4557 return -EFAULT; 4558 } else if (len == sizeof(struct sctp_assoc_value)) { 4559 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4560 pr_warn("Use struct sctp_sack_info instead\n"); 4561 if (copy_from_user(¶ms, optval, len)) 4562 return -EFAULT; 4563 } else 4564 return - EINVAL; 4565 4566 /* Get association, if sack_assoc_id != 0 and the socket is a one 4567 * to many style socket, and an association was not found, then 4568 * the id was invalid. 4569 */ 4570 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4571 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4572 return -EINVAL; 4573 4574 if (asoc) { 4575 /* Fetch association values. */ 4576 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4577 params.sack_delay = jiffies_to_msecs( 4578 asoc->sackdelay); 4579 params.sack_freq = asoc->sackfreq; 4580 4581 } else { 4582 params.sack_delay = 0; 4583 params.sack_freq = 1; 4584 } 4585 } else { 4586 /* Fetch socket values. */ 4587 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4588 params.sack_delay = sp->sackdelay; 4589 params.sack_freq = sp->sackfreq; 4590 } else { 4591 params.sack_delay = 0; 4592 params.sack_freq = 1; 4593 } 4594 } 4595 4596 if (copy_to_user(optval, ¶ms, len)) 4597 return -EFAULT; 4598 4599 if (put_user(len, optlen)) 4600 return -EFAULT; 4601 4602 return 0; 4603 } 4604 4605 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4606 * 4607 * Applications can specify protocol parameters for the default association 4608 * initialization. The option name argument to setsockopt() and getsockopt() 4609 * is SCTP_INITMSG. 4610 * 4611 * Setting initialization parameters is effective only on an unconnected 4612 * socket (for UDP-style sockets only future associations are effected 4613 * by the change). With TCP-style sockets, this option is inherited by 4614 * sockets derived from a listener socket. 4615 */ 4616 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4617 { 4618 if (len < sizeof(struct sctp_initmsg)) 4619 return -EINVAL; 4620 len = sizeof(struct sctp_initmsg); 4621 if (put_user(len, optlen)) 4622 return -EFAULT; 4623 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4624 return -EFAULT; 4625 return 0; 4626 } 4627 4628 4629 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4630 char __user *optval, int __user *optlen) 4631 { 4632 struct sctp_association *asoc; 4633 int cnt = 0; 4634 struct sctp_getaddrs getaddrs; 4635 struct sctp_transport *from; 4636 void __user *to; 4637 union sctp_addr temp; 4638 struct sctp_sock *sp = sctp_sk(sk); 4639 int addrlen; 4640 size_t space_left; 4641 int bytes_copied; 4642 4643 if (len < sizeof(struct sctp_getaddrs)) 4644 return -EINVAL; 4645 4646 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4647 return -EFAULT; 4648 4649 /* For UDP-style sockets, id specifies the association to query. */ 4650 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4651 if (!asoc) 4652 return -EINVAL; 4653 4654 to = optval + offsetof(struct sctp_getaddrs,addrs); 4655 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4656 4657 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4658 transports) { 4659 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4660 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4661 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4662 if (space_left < addrlen) 4663 return -ENOMEM; 4664 if (copy_to_user(to, &temp, addrlen)) 4665 return -EFAULT; 4666 to += addrlen; 4667 cnt++; 4668 space_left -= addrlen; 4669 } 4670 4671 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4672 return -EFAULT; 4673 bytes_copied = ((char __user *)to) - optval; 4674 if (put_user(bytes_copied, optlen)) 4675 return -EFAULT; 4676 4677 return 0; 4678 } 4679 4680 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4681 size_t space_left, int *bytes_copied) 4682 { 4683 struct sctp_sockaddr_entry *addr; 4684 union sctp_addr temp; 4685 int cnt = 0; 4686 int addrlen; 4687 struct net *net = sock_net(sk); 4688 4689 rcu_read_lock(); 4690 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4691 if (!addr->valid) 4692 continue; 4693 4694 if ((PF_INET == sk->sk_family) && 4695 (AF_INET6 == addr->a.sa.sa_family)) 4696 continue; 4697 if ((PF_INET6 == sk->sk_family) && 4698 inet_v6_ipv6only(sk) && 4699 (AF_INET == addr->a.sa.sa_family)) 4700 continue; 4701 memcpy(&temp, &addr->a, sizeof(temp)); 4702 if (!temp.v4.sin_port) 4703 temp.v4.sin_port = htons(port); 4704 4705 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4706 &temp); 4707 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4708 if (space_left < addrlen) { 4709 cnt = -ENOMEM; 4710 break; 4711 } 4712 memcpy(to, &temp, addrlen); 4713 4714 to += addrlen; 4715 cnt ++; 4716 space_left -= addrlen; 4717 *bytes_copied += addrlen; 4718 } 4719 rcu_read_unlock(); 4720 4721 return cnt; 4722 } 4723 4724 4725 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4726 char __user *optval, int __user *optlen) 4727 { 4728 struct sctp_bind_addr *bp; 4729 struct sctp_association *asoc; 4730 int cnt = 0; 4731 struct sctp_getaddrs getaddrs; 4732 struct sctp_sockaddr_entry *addr; 4733 void __user *to; 4734 union sctp_addr temp; 4735 struct sctp_sock *sp = sctp_sk(sk); 4736 int addrlen; 4737 int err = 0; 4738 size_t space_left; 4739 int bytes_copied = 0; 4740 void *addrs; 4741 void *buf; 4742 4743 if (len < sizeof(struct sctp_getaddrs)) 4744 return -EINVAL; 4745 4746 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4747 return -EFAULT; 4748 4749 /* 4750 * For UDP-style sockets, id specifies the association to query. 4751 * If the id field is set to the value '0' then the locally bound 4752 * addresses are returned without regard to any particular 4753 * association. 4754 */ 4755 if (0 == getaddrs.assoc_id) { 4756 bp = &sctp_sk(sk)->ep->base.bind_addr; 4757 } else { 4758 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4759 if (!asoc) 4760 return -EINVAL; 4761 bp = &asoc->base.bind_addr; 4762 } 4763 4764 to = optval + offsetof(struct sctp_getaddrs,addrs); 4765 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4766 4767 addrs = kmalloc(space_left, GFP_KERNEL); 4768 if (!addrs) 4769 return -ENOMEM; 4770 4771 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4772 * addresses from the global local address list. 4773 */ 4774 if (sctp_list_single_entry(&bp->address_list)) { 4775 addr = list_entry(bp->address_list.next, 4776 struct sctp_sockaddr_entry, list); 4777 if (sctp_is_any(sk, &addr->a)) { 4778 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4779 space_left, &bytes_copied); 4780 if (cnt < 0) { 4781 err = cnt; 4782 goto out; 4783 } 4784 goto copy_getaddrs; 4785 } 4786 } 4787 4788 buf = addrs; 4789 /* Protection on the bound address list is not needed since 4790 * in the socket option context we hold a socket lock and 4791 * thus the bound address list can't change. 4792 */ 4793 list_for_each_entry(addr, &bp->address_list, list) { 4794 memcpy(&temp, &addr->a, sizeof(temp)); 4795 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4796 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4797 if (space_left < addrlen) { 4798 err = -ENOMEM; /*fixme: right error?*/ 4799 goto out; 4800 } 4801 memcpy(buf, &temp, addrlen); 4802 buf += addrlen; 4803 bytes_copied += addrlen; 4804 cnt ++; 4805 space_left -= addrlen; 4806 } 4807 4808 copy_getaddrs: 4809 if (copy_to_user(to, addrs, bytes_copied)) { 4810 err = -EFAULT; 4811 goto out; 4812 } 4813 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4814 err = -EFAULT; 4815 goto out; 4816 } 4817 if (put_user(bytes_copied, optlen)) 4818 err = -EFAULT; 4819 out: 4820 kfree(addrs); 4821 return err; 4822 } 4823 4824 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4825 * 4826 * Requests that the local SCTP stack use the enclosed peer address as 4827 * the association primary. The enclosed address must be one of the 4828 * association peer's addresses. 4829 */ 4830 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4831 char __user *optval, int __user *optlen) 4832 { 4833 struct sctp_prim prim; 4834 struct sctp_association *asoc; 4835 struct sctp_sock *sp = sctp_sk(sk); 4836 4837 if (len < sizeof(struct sctp_prim)) 4838 return -EINVAL; 4839 4840 len = sizeof(struct sctp_prim); 4841 4842 if (copy_from_user(&prim, optval, len)) 4843 return -EFAULT; 4844 4845 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4846 if (!asoc) 4847 return -EINVAL; 4848 4849 if (!asoc->peer.primary_path) 4850 return -ENOTCONN; 4851 4852 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4853 asoc->peer.primary_path->af_specific->sockaddr_len); 4854 4855 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4856 (union sctp_addr *)&prim.ssp_addr); 4857 4858 if (put_user(len, optlen)) 4859 return -EFAULT; 4860 if (copy_to_user(optval, &prim, len)) 4861 return -EFAULT; 4862 4863 return 0; 4864 } 4865 4866 /* 4867 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4868 * 4869 * Requests that the local endpoint set the specified Adaptation Layer 4870 * Indication parameter for all future INIT and INIT-ACK exchanges. 4871 */ 4872 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4873 char __user *optval, int __user *optlen) 4874 { 4875 struct sctp_setadaptation adaptation; 4876 4877 if (len < sizeof(struct sctp_setadaptation)) 4878 return -EINVAL; 4879 4880 len = sizeof(struct sctp_setadaptation); 4881 4882 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4883 4884 if (put_user(len, optlen)) 4885 return -EFAULT; 4886 if (copy_to_user(optval, &adaptation, len)) 4887 return -EFAULT; 4888 4889 return 0; 4890 } 4891 4892 /* 4893 * 4894 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4895 * 4896 * Applications that wish to use the sendto() system call may wish to 4897 * specify a default set of parameters that would normally be supplied 4898 * through the inclusion of ancillary data. This socket option allows 4899 * such an application to set the default sctp_sndrcvinfo structure. 4900 4901 4902 * The application that wishes to use this socket option simply passes 4903 * in to this call the sctp_sndrcvinfo structure defined in Section 4904 * 5.2.2) The input parameters accepted by this call include 4905 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4906 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4907 * to this call if the caller is using the UDP model. 4908 * 4909 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4910 */ 4911 static int sctp_getsockopt_default_send_param(struct sock *sk, 4912 int len, char __user *optval, 4913 int __user *optlen) 4914 { 4915 struct sctp_sndrcvinfo info; 4916 struct sctp_association *asoc; 4917 struct sctp_sock *sp = sctp_sk(sk); 4918 4919 if (len < sizeof(struct sctp_sndrcvinfo)) 4920 return -EINVAL; 4921 4922 len = sizeof(struct sctp_sndrcvinfo); 4923 4924 if (copy_from_user(&info, optval, len)) 4925 return -EFAULT; 4926 4927 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4928 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4929 return -EINVAL; 4930 4931 if (asoc) { 4932 info.sinfo_stream = asoc->default_stream; 4933 info.sinfo_flags = asoc->default_flags; 4934 info.sinfo_ppid = asoc->default_ppid; 4935 info.sinfo_context = asoc->default_context; 4936 info.sinfo_timetolive = asoc->default_timetolive; 4937 } else { 4938 info.sinfo_stream = sp->default_stream; 4939 info.sinfo_flags = sp->default_flags; 4940 info.sinfo_ppid = sp->default_ppid; 4941 info.sinfo_context = sp->default_context; 4942 info.sinfo_timetolive = sp->default_timetolive; 4943 } 4944 4945 if (put_user(len, optlen)) 4946 return -EFAULT; 4947 if (copy_to_user(optval, &info, len)) 4948 return -EFAULT; 4949 4950 return 0; 4951 } 4952 4953 /* 4954 * 4955 * 7.1.5 SCTP_NODELAY 4956 * 4957 * Turn on/off any Nagle-like algorithm. This means that packets are 4958 * generally sent as soon as possible and no unnecessary delays are 4959 * introduced, at the cost of more packets in the network. Expects an 4960 * integer boolean flag. 4961 */ 4962 4963 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4964 char __user *optval, int __user *optlen) 4965 { 4966 int val; 4967 4968 if (len < sizeof(int)) 4969 return -EINVAL; 4970 4971 len = sizeof(int); 4972 val = (sctp_sk(sk)->nodelay == 1); 4973 if (put_user(len, optlen)) 4974 return -EFAULT; 4975 if (copy_to_user(optval, &val, len)) 4976 return -EFAULT; 4977 return 0; 4978 } 4979 4980 /* 4981 * 4982 * 7.1.1 SCTP_RTOINFO 4983 * 4984 * The protocol parameters used to initialize and bound retransmission 4985 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4986 * and modify these parameters. 4987 * All parameters are time values, in milliseconds. A value of 0, when 4988 * modifying the parameters, indicates that the current value should not 4989 * be changed. 4990 * 4991 */ 4992 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4993 char __user *optval, 4994 int __user *optlen) { 4995 struct sctp_rtoinfo rtoinfo; 4996 struct sctp_association *asoc; 4997 4998 if (len < sizeof (struct sctp_rtoinfo)) 4999 return -EINVAL; 5000 5001 len = sizeof(struct sctp_rtoinfo); 5002 5003 if (copy_from_user(&rtoinfo, optval, len)) 5004 return -EFAULT; 5005 5006 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5007 5008 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5009 return -EINVAL; 5010 5011 /* Values corresponding to the specific association. */ 5012 if (asoc) { 5013 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5014 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5015 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5016 } else { 5017 /* Values corresponding to the endpoint. */ 5018 struct sctp_sock *sp = sctp_sk(sk); 5019 5020 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5021 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5022 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5023 } 5024 5025 if (put_user(len, optlen)) 5026 return -EFAULT; 5027 5028 if (copy_to_user(optval, &rtoinfo, len)) 5029 return -EFAULT; 5030 5031 return 0; 5032 } 5033 5034 /* 5035 * 5036 * 7.1.2 SCTP_ASSOCINFO 5037 * 5038 * This option is used to tune the maximum retransmission attempts 5039 * of the association. 5040 * Returns an error if the new association retransmission value is 5041 * greater than the sum of the retransmission value of the peer. 5042 * See [SCTP] for more information. 5043 * 5044 */ 5045 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5046 char __user *optval, 5047 int __user *optlen) 5048 { 5049 5050 struct sctp_assocparams assocparams; 5051 struct sctp_association *asoc; 5052 struct list_head *pos; 5053 int cnt = 0; 5054 5055 if (len < sizeof (struct sctp_assocparams)) 5056 return -EINVAL; 5057 5058 len = sizeof(struct sctp_assocparams); 5059 5060 if (copy_from_user(&assocparams, optval, len)) 5061 return -EFAULT; 5062 5063 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5064 5065 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5066 return -EINVAL; 5067 5068 /* Values correspoinding to the specific association */ 5069 if (asoc) { 5070 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5071 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5072 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5073 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5074 * 1000) + 5075 (asoc->cookie_life.tv_usec 5076 / 1000); 5077 5078 list_for_each(pos, &asoc->peer.transport_addr_list) { 5079 cnt ++; 5080 } 5081 5082 assocparams.sasoc_number_peer_destinations = cnt; 5083 } else { 5084 /* Values corresponding to the endpoint */ 5085 struct sctp_sock *sp = sctp_sk(sk); 5086 5087 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5088 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5089 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5090 assocparams.sasoc_cookie_life = 5091 sp->assocparams.sasoc_cookie_life; 5092 assocparams.sasoc_number_peer_destinations = 5093 sp->assocparams. 5094 sasoc_number_peer_destinations; 5095 } 5096 5097 if (put_user(len, optlen)) 5098 return -EFAULT; 5099 5100 if (copy_to_user(optval, &assocparams, len)) 5101 return -EFAULT; 5102 5103 return 0; 5104 } 5105 5106 /* 5107 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5108 * 5109 * This socket option is a boolean flag which turns on or off mapped V4 5110 * addresses. If this option is turned on and the socket is type 5111 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5112 * If this option is turned off, then no mapping will be done of V4 5113 * addresses and a user will receive both PF_INET6 and PF_INET type 5114 * addresses on the socket. 5115 */ 5116 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5117 char __user *optval, int __user *optlen) 5118 { 5119 int val; 5120 struct sctp_sock *sp = sctp_sk(sk); 5121 5122 if (len < sizeof(int)) 5123 return -EINVAL; 5124 5125 len = sizeof(int); 5126 val = sp->v4mapped; 5127 if (put_user(len, optlen)) 5128 return -EFAULT; 5129 if (copy_to_user(optval, &val, len)) 5130 return -EFAULT; 5131 5132 return 0; 5133 } 5134 5135 /* 5136 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5137 * (chapter and verse is quoted at sctp_setsockopt_context()) 5138 */ 5139 static int sctp_getsockopt_context(struct sock *sk, int len, 5140 char __user *optval, int __user *optlen) 5141 { 5142 struct sctp_assoc_value params; 5143 struct sctp_sock *sp; 5144 struct sctp_association *asoc; 5145 5146 if (len < sizeof(struct sctp_assoc_value)) 5147 return -EINVAL; 5148 5149 len = sizeof(struct sctp_assoc_value); 5150 5151 if (copy_from_user(¶ms, optval, len)) 5152 return -EFAULT; 5153 5154 sp = sctp_sk(sk); 5155 5156 if (params.assoc_id != 0) { 5157 asoc = sctp_id2assoc(sk, params.assoc_id); 5158 if (!asoc) 5159 return -EINVAL; 5160 params.assoc_value = asoc->default_rcv_context; 5161 } else { 5162 params.assoc_value = sp->default_rcv_context; 5163 } 5164 5165 if (put_user(len, optlen)) 5166 return -EFAULT; 5167 if (copy_to_user(optval, ¶ms, len)) 5168 return -EFAULT; 5169 5170 return 0; 5171 } 5172 5173 /* 5174 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5175 * This option will get or set the maximum size to put in any outgoing 5176 * SCTP DATA chunk. If a message is larger than this size it will be 5177 * fragmented by SCTP into the specified size. Note that the underlying 5178 * SCTP implementation may fragment into smaller sized chunks when the 5179 * PMTU of the underlying association is smaller than the value set by 5180 * the user. The default value for this option is '0' which indicates 5181 * the user is NOT limiting fragmentation and only the PMTU will effect 5182 * SCTP's choice of DATA chunk size. Note also that values set larger 5183 * than the maximum size of an IP datagram will effectively let SCTP 5184 * control fragmentation (i.e. the same as setting this option to 0). 5185 * 5186 * The following structure is used to access and modify this parameter: 5187 * 5188 * struct sctp_assoc_value { 5189 * sctp_assoc_t assoc_id; 5190 * uint32_t assoc_value; 5191 * }; 5192 * 5193 * assoc_id: This parameter is ignored for one-to-one style sockets. 5194 * For one-to-many style sockets this parameter indicates which 5195 * association the user is performing an action upon. Note that if 5196 * this field's value is zero then the endpoints default value is 5197 * changed (effecting future associations only). 5198 * assoc_value: This parameter specifies the maximum size in bytes. 5199 */ 5200 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5201 char __user *optval, int __user *optlen) 5202 { 5203 struct sctp_assoc_value params; 5204 struct sctp_association *asoc; 5205 5206 if (len == sizeof(int)) { 5207 pr_warn("Use of int in maxseg socket option deprecated\n"); 5208 pr_warn("Use struct sctp_assoc_value instead\n"); 5209 params.assoc_id = 0; 5210 } else if (len >= sizeof(struct sctp_assoc_value)) { 5211 len = sizeof(struct sctp_assoc_value); 5212 if (copy_from_user(¶ms, optval, sizeof(params))) 5213 return -EFAULT; 5214 } else 5215 return -EINVAL; 5216 5217 asoc = sctp_id2assoc(sk, params.assoc_id); 5218 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5219 return -EINVAL; 5220 5221 if (asoc) 5222 params.assoc_value = asoc->frag_point; 5223 else 5224 params.assoc_value = sctp_sk(sk)->user_frag; 5225 5226 if (put_user(len, optlen)) 5227 return -EFAULT; 5228 if (len == sizeof(int)) { 5229 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5230 return -EFAULT; 5231 } else { 5232 if (copy_to_user(optval, ¶ms, len)) 5233 return -EFAULT; 5234 } 5235 5236 return 0; 5237 } 5238 5239 /* 5240 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5241 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5242 */ 5243 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5244 char __user *optval, int __user *optlen) 5245 { 5246 int val; 5247 5248 if (len < sizeof(int)) 5249 return -EINVAL; 5250 5251 len = sizeof(int); 5252 5253 val = sctp_sk(sk)->frag_interleave; 5254 if (put_user(len, optlen)) 5255 return -EFAULT; 5256 if (copy_to_user(optval, &val, len)) 5257 return -EFAULT; 5258 5259 return 0; 5260 } 5261 5262 /* 5263 * 7.1.25. Set or Get the sctp partial delivery point 5264 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5265 */ 5266 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5267 char __user *optval, 5268 int __user *optlen) 5269 { 5270 u32 val; 5271 5272 if (len < sizeof(u32)) 5273 return -EINVAL; 5274 5275 len = sizeof(u32); 5276 5277 val = sctp_sk(sk)->pd_point; 5278 if (put_user(len, optlen)) 5279 return -EFAULT; 5280 if (copy_to_user(optval, &val, len)) 5281 return -EFAULT; 5282 5283 return 0; 5284 } 5285 5286 /* 5287 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5288 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5289 */ 5290 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5291 char __user *optval, 5292 int __user *optlen) 5293 { 5294 struct sctp_assoc_value params; 5295 struct sctp_sock *sp; 5296 struct sctp_association *asoc; 5297 5298 if (len == sizeof(int)) { 5299 pr_warn("Use of int in max_burst socket option deprecated\n"); 5300 pr_warn("Use struct sctp_assoc_value instead\n"); 5301 params.assoc_id = 0; 5302 } else if (len >= sizeof(struct sctp_assoc_value)) { 5303 len = sizeof(struct sctp_assoc_value); 5304 if (copy_from_user(¶ms, optval, len)) 5305 return -EFAULT; 5306 } else 5307 return -EINVAL; 5308 5309 sp = sctp_sk(sk); 5310 5311 if (params.assoc_id != 0) { 5312 asoc = sctp_id2assoc(sk, params.assoc_id); 5313 if (!asoc) 5314 return -EINVAL; 5315 params.assoc_value = asoc->max_burst; 5316 } else 5317 params.assoc_value = sp->max_burst; 5318 5319 if (len == sizeof(int)) { 5320 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5321 return -EFAULT; 5322 } else { 5323 if (copy_to_user(optval, ¶ms, len)) 5324 return -EFAULT; 5325 } 5326 5327 return 0; 5328 5329 } 5330 5331 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5332 char __user *optval, int __user *optlen) 5333 { 5334 struct net *net = sock_net(sk); 5335 struct sctp_hmacalgo __user *p = (void __user *)optval; 5336 struct sctp_hmac_algo_param *hmacs; 5337 __u16 data_len = 0; 5338 u32 num_idents; 5339 5340 if (!net->sctp.auth_enable) 5341 return -EACCES; 5342 5343 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5344 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5345 5346 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5347 return -EINVAL; 5348 5349 len = sizeof(struct sctp_hmacalgo) + data_len; 5350 num_idents = data_len / sizeof(u16); 5351 5352 if (put_user(len, optlen)) 5353 return -EFAULT; 5354 if (put_user(num_idents, &p->shmac_num_idents)) 5355 return -EFAULT; 5356 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5357 return -EFAULT; 5358 return 0; 5359 } 5360 5361 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5362 char __user *optval, int __user *optlen) 5363 { 5364 struct net *net = sock_net(sk); 5365 struct sctp_authkeyid val; 5366 struct sctp_association *asoc; 5367 5368 if (!net->sctp.auth_enable) 5369 return -EACCES; 5370 5371 if (len < sizeof(struct sctp_authkeyid)) 5372 return -EINVAL; 5373 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5374 return -EFAULT; 5375 5376 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5377 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5378 return -EINVAL; 5379 5380 if (asoc) 5381 val.scact_keynumber = asoc->active_key_id; 5382 else 5383 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5384 5385 len = sizeof(struct sctp_authkeyid); 5386 if (put_user(len, optlen)) 5387 return -EFAULT; 5388 if (copy_to_user(optval, &val, len)) 5389 return -EFAULT; 5390 5391 return 0; 5392 } 5393 5394 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5395 char __user *optval, int __user *optlen) 5396 { 5397 struct net *net = sock_net(sk); 5398 struct sctp_authchunks __user *p = (void __user *)optval; 5399 struct sctp_authchunks val; 5400 struct sctp_association *asoc; 5401 struct sctp_chunks_param *ch; 5402 u32 num_chunks = 0; 5403 char __user *to; 5404 5405 if (!net->sctp.auth_enable) 5406 return -EACCES; 5407 5408 if (len < sizeof(struct sctp_authchunks)) 5409 return -EINVAL; 5410 5411 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5412 return -EFAULT; 5413 5414 to = p->gauth_chunks; 5415 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5416 if (!asoc) 5417 return -EINVAL; 5418 5419 ch = asoc->peer.peer_chunks; 5420 if (!ch) 5421 goto num; 5422 5423 /* See if the user provided enough room for all the data */ 5424 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5425 if (len < num_chunks) 5426 return -EINVAL; 5427 5428 if (copy_to_user(to, ch->chunks, num_chunks)) 5429 return -EFAULT; 5430 num: 5431 len = sizeof(struct sctp_authchunks) + num_chunks; 5432 if (put_user(len, optlen)) return -EFAULT; 5433 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5434 return -EFAULT; 5435 return 0; 5436 } 5437 5438 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5439 char __user *optval, int __user *optlen) 5440 { 5441 struct net *net = sock_net(sk); 5442 struct sctp_authchunks __user *p = (void __user *)optval; 5443 struct sctp_authchunks val; 5444 struct sctp_association *asoc; 5445 struct sctp_chunks_param *ch; 5446 u32 num_chunks = 0; 5447 char __user *to; 5448 5449 if (!net->sctp.auth_enable) 5450 return -EACCES; 5451 5452 if (len < sizeof(struct sctp_authchunks)) 5453 return -EINVAL; 5454 5455 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5456 return -EFAULT; 5457 5458 to = p->gauth_chunks; 5459 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5460 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5461 return -EINVAL; 5462 5463 if (asoc) 5464 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5465 else 5466 ch = sctp_sk(sk)->ep->auth_chunk_list; 5467 5468 if (!ch) 5469 goto num; 5470 5471 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5472 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5473 return -EINVAL; 5474 5475 if (copy_to_user(to, ch->chunks, num_chunks)) 5476 return -EFAULT; 5477 num: 5478 len = sizeof(struct sctp_authchunks) + num_chunks; 5479 if (put_user(len, optlen)) 5480 return -EFAULT; 5481 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5482 return -EFAULT; 5483 5484 return 0; 5485 } 5486 5487 /* 5488 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5489 * This option gets the current number of associations that are attached 5490 * to a one-to-many style socket. The option value is an uint32_t. 5491 */ 5492 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5493 char __user *optval, int __user *optlen) 5494 { 5495 struct sctp_sock *sp = sctp_sk(sk); 5496 struct sctp_association *asoc; 5497 u32 val = 0; 5498 5499 if (sctp_style(sk, TCP)) 5500 return -EOPNOTSUPP; 5501 5502 if (len < sizeof(u32)) 5503 return -EINVAL; 5504 5505 len = sizeof(u32); 5506 5507 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5508 val++; 5509 } 5510 5511 if (put_user(len, optlen)) 5512 return -EFAULT; 5513 if (copy_to_user(optval, &val, len)) 5514 return -EFAULT; 5515 5516 return 0; 5517 } 5518 5519 /* 5520 * 8.1.23 SCTP_AUTO_ASCONF 5521 * See the corresponding setsockopt entry as description 5522 */ 5523 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5524 char __user *optval, int __user *optlen) 5525 { 5526 int val = 0; 5527 5528 if (len < sizeof(int)) 5529 return -EINVAL; 5530 5531 len = sizeof(int); 5532 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5533 val = 1; 5534 if (put_user(len, optlen)) 5535 return -EFAULT; 5536 if (copy_to_user(optval, &val, len)) 5537 return -EFAULT; 5538 return 0; 5539 } 5540 5541 /* 5542 * 8.2.6. Get the Current Identifiers of Associations 5543 * (SCTP_GET_ASSOC_ID_LIST) 5544 * 5545 * This option gets the current list of SCTP association identifiers of 5546 * the SCTP associations handled by a one-to-many style socket. 5547 */ 5548 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5549 char __user *optval, int __user *optlen) 5550 { 5551 struct sctp_sock *sp = sctp_sk(sk); 5552 struct sctp_association *asoc; 5553 struct sctp_assoc_ids *ids; 5554 u32 num = 0; 5555 5556 if (sctp_style(sk, TCP)) 5557 return -EOPNOTSUPP; 5558 5559 if (len < sizeof(struct sctp_assoc_ids)) 5560 return -EINVAL; 5561 5562 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5563 num++; 5564 } 5565 5566 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5567 return -EINVAL; 5568 5569 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5570 5571 ids = kmalloc(len, GFP_KERNEL); 5572 if (unlikely(!ids)) 5573 return -ENOMEM; 5574 5575 ids->gaids_number_of_ids = num; 5576 num = 0; 5577 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5578 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5579 } 5580 5581 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5582 kfree(ids); 5583 return -EFAULT; 5584 } 5585 5586 kfree(ids); 5587 return 0; 5588 } 5589 5590 /* 5591 * SCTP_PEER_ADDR_THLDS 5592 * 5593 * This option allows us to fetch the partially failed threshold for one or all 5594 * transports in an association. See Section 6.1 of: 5595 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5596 */ 5597 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5598 char __user *optval, 5599 int len, 5600 int __user *optlen) 5601 { 5602 struct sctp_paddrthlds val; 5603 struct sctp_transport *trans; 5604 struct sctp_association *asoc; 5605 5606 if (len < sizeof(struct sctp_paddrthlds)) 5607 return -EINVAL; 5608 len = sizeof(struct sctp_paddrthlds); 5609 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5610 return -EFAULT; 5611 5612 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5613 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5614 if (!asoc) 5615 return -ENOENT; 5616 5617 val.spt_pathpfthld = asoc->pf_retrans; 5618 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5619 } else { 5620 trans = sctp_addr_id2transport(sk, &val.spt_address, 5621 val.spt_assoc_id); 5622 if (!trans) 5623 return -ENOENT; 5624 5625 val.spt_pathmaxrxt = trans->pathmaxrxt; 5626 val.spt_pathpfthld = trans->pf_retrans; 5627 } 5628 5629 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5630 return -EFAULT; 5631 5632 return 0; 5633 } 5634 5635 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5636 char __user *optval, int __user *optlen) 5637 { 5638 int retval = 0; 5639 int len; 5640 5641 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5642 sk, optname); 5643 5644 /* I can hardly begin to describe how wrong this is. This is 5645 * so broken as to be worse than useless. The API draft 5646 * REALLY is NOT helpful here... I am not convinced that the 5647 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5648 * are at all well-founded. 5649 */ 5650 if (level != SOL_SCTP) { 5651 struct sctp_af *af = sctp_sk(sk)->pf->af; 5652 5653 retval = af->getsockopt(sk, level, optname, optval, optlen); 5654 return retval; 5655 } 5656 5657 if (get_user(len, optlen)) 5658 return -EFAULT; 5659 5660 sctp_lock_sock(sk); 5661 5662 switch (optname) { 5663 case SCTP_STATUS: 5664 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5665 break; 5666 case SCTP_DISABLE_FRAGMENTS: 5667 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5668 optlen); 5669 break; 5670 case SCTP_EVENTS: 5671 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5672 break; 5673 case SCTP_AUTOCLOSE: 5674 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5675 break; 5676 case SCTP_SOCKOPT_PEELOFF: 5677 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5678 break; 5679 case SCTP_PEER_ADDR_PARAMS: 5680 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5681 optlen); 5682 break; 5683 case SCTP_DELAYED_SACK: 5684 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5685 optlen); 5686 break; 5687 case SCTP_INITMSG: 5688 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5689 break; 5690 case SCTP_GET_PEER_ADDRS: 5691 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5692 optlen); 5693 break; 5694 case SCTP_GET_LOCAL_ADDRS: 5695 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5696 optlen); 5697 break; 5698 case SCTP_SOCKOPT_CONNECTX3: 5699 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5700 break; 5701 case SCTP_DEFAULT_SEND_PARAM: 5702 retval = sctp_getsockopt_default_send_param(sk, len, 5703 optval, optlen); 5704 break; 5705 case SCTP_PRIMARY_ADDR: 5706 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5707 break; 5708 case SCTP_NODELAY: 5709 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5710 break; 5711 case SCTP_RTOINFO: 5712 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5713 break; 5714 case SCTP_ASSOCINFO: 5715 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5716 break; 5717 case SCTP_I_WANT_MAPPED_V4_ADDR: 5718 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5719 break; 5720 case SCTP_MAXSEG: 5721 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5722 break; 5723 case SCTP_GET_PEER_ADDR_INFO: 5724 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5725 optlen); 5726 break; 5727 case SCTP_ADAPTATION_LAYER: 5728 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5729 optlen); 5730 break; 5731 case SCTP_CONTEXT: 5732 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5733 break; 5734 case SCTP_FRAGMENT_INTERLEAVE: 5735 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5736 optlen); 5737 break; 5738 case SCTP_PARTIAL_DELIVERY_POINT: 5739 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5740 optlen); 5741 break; 5742 case SCTP_MAX_BURST: 5743 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5744 break; 5745 case SCTP_AUTH_KEY: 5746 case SCTP_AUTH_CHUNK: 5747 case SCTP_AUTH_DELETE_KEY: 5748 retval = -EOPNOTSUPP; 5749 break; 5750 case SCTP_HMAC_IDENT: 5751 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5752 break; 5753 case SCTP_AUTH_ACTIVE_KEY: 5754 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5755 break; 5756 case SCTP_PEER_AUTH_CHUNKS: 5757 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5758 optlen); 5759 break; 5760 case SCTP_LOCAL_AUTH_CHUNKS: 5761 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5762 optlen); 5763 break; 5764 case SCTP_GET_ASSOC_NUMBER: 5765 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5766 break; 5767 case SCTP_GET_ASSOC_ID_LIST: 5768 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5769 break; 5770 case SCTP_AUTO_ASCONF: 5771 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5772 break; 5773 case SCTP_PEER_ADDR_THLDS: 5774 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5775 break; 5776 default: 5777 retval = -ENOPROTOOPT; 5778 break; 5779 } 5780 5781 sctp_release_sock(sk); 5782 return retval; 5783 } 5784 5785 static void sctp_hash(struct sock *sk) 5786 { 5787 /* STUB */ 5788 } 5789 5790 static void sctp_unhash(struct sock *sk) 5791 { 5792 /* STUB */ 5793 } 5794 5795 /* Check if port is acceptable. Possibly find first available port. 5796 * 5797 * The port hash table (contained in the 'global' SCTP protocol storage 5798 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5799 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5800 * list (the list number is the port number hashed out, so as you 5801 * would expect from a hash function, all the ports in a given list have 5802 * such a number that hashes out to the same list number; you were 5803 * expecting that, right?); so each list has a set of ports, with a 5804 * link to the socket (struct sock) that uses it, the port number and 5805 * a fastreuse flag (FIXME: NPI ipg). 5806 */ 5807 static struct sctp_bind_bucket *sctp_bucket_create( 5808 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 5809 5810 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5811 { 5812 struct sctp_bind_hashbucket *head; /* hash list */ 5813 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5814 struct hlist_node *node; 5815 unsigned short snum; 5816 int ret; 5817 5818 snum = ntohs(addr->v4.sin_port); 5819 5820 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5821 sctp_local_bh_disable(); 5822 5823 if (snum == 0) { 5824 /* Search for an available port. */ 5825 int low, high, remaining, index; 5826 unsigned int rover; 5827 5828 inet_get_local_port_range(&low, &high); 5829 remaining = (high - low) + 1; 5830 rover = net_random() % remaining + low; 5831 5832 do { 5833 rover++; 5834 if ((rover < low) || (rover > high)) 5835 rover = low; 5836 if (inet_is_reserved_local_port(rover)) 5837 continue; 5838 index = sctp_phashfn(sock_net(sk), rover); 5839 head = &sctp_port_hashtable[index]; 5840 sctp_spin_lock(&head->lock); 5841 sctp_for_each_hentry(pp, node, &head->chain) 5842 if ((pp->port == rover) && 5843 net_eq(sock_net(sk), pp->net)) 5844 goto next; 5845 break; 5846 next: 5847 sctp_spin_unlock(&head->lock); 5848 } while (--remaining > 0); 5849 5850 /* Exhausted local port range during search? */ 5851 ret = 1; 5852 if (remaining <= 0) 5853 goto fail; 5854 5855 /* OK, here is the one we will use. HEAD (the port 5856 * hash table list entry) is non-NULL and we hold it's 5857 * mutex. 5858 */ 5859 snum = rover; 5860 } else { 5861 /* We are given an specific port number; we verify 5862 * that it is not being used. If it is used, we will 5863 * exahust the search in the hash list corresponding 5864 * to the port number (snum) - we detect that with the 5865 * port iterator, pp being NULL. 5866 */ 5867 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 5868 sctp_spin_lock(&head->lock); 5869 sctp_for_each_hentry(pp, node, &head->chain) { 5870 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 5871 goto pp_found; 5872 } 5873 } 5874 pp = NULL; 5875 goto pp_not_found; 5876 pp_found: 5877 if (!hlist_empty(&pp->owner)) { 5878 /* We had a port hash table hit - there is an 5879 * available port (pp != NULL) and it is being 5880 * used by other socket (pp->owner not empty); that other 5881 * socket is going to be sk2. 5882 */ 5883 int reuse = sk->sk_reuse; 5884 struct sock *sk2; 5885 5886 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5887 if (pp->fastreuse && sk->sk_reuse && 5888 sk->sk_state != SCTP_SS_LISTENING) 5889 goto success; 5890 5891 /* Run through the list of sockets bound to the port 5892 * (pp->port) [via the pointers bind_next and 5893 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5894 * we get the endpoint they describe and run through 5895 * the endpoint's list of IP (v4 or v6) addresses, 5896 * comparing each of the addresses with the address of 5897 * the socket sk. If we find a match, then that means 5898 * that this port/socket (sk) combination are already 5899 * in an endpoint. 5900 */ 5901 sk_for_each_bound(sk2, node, &pp->owner) { 5902 struct sctp_endpoint *ep2; 5903 ep2 = sctp_sk(sk2)->ep; 5904 5905 if (sk == sk2 || 5906 (reuse && sk2->sk_reuse && 5907 sk2->sk_state != SCTP_SS_LISTENING)) 5908 continue; 5909 5910 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5911 sctp_sk(sk2), sctp_sk(sk))) { 5912 ret = (long)sk2; 5913 goto fail_unlock; 5914 } 5915 } 5916 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5917 } 5918 pp_not_found: 5919 /* If there was a hash table miss, create a new port. */ 5920 ret = 1; 5921 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 5922 goto fail_unlock; 5923 5924 /* In either case (hit or miss), make sure fastreuse is 1 only 5925 * if sk->sk_reuse is too (that is, if the caller requested 5926 * SO_REUSEADDR on this socket -sk-). 5927 */ 5928 if (hlist_empty(&pp->owner)) { 5929 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5930 pp->fastreuse = 1; 5931 else 5932 pp->fastreuse = 0; 5933 } else if (pp->fastreuse && 5934 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5935 pp->fastreuse = 0; 5936 5937 /* We are set, so fill up all the data in the hash table 5938 * entry, tie the socket list information with the rest of the 5939 * sockets FIXME: Blurry, NPI (ipg). 5940 */ 5941 success: 5942 if (!sctp_sk(sk)->bind_hash) { 5943 inet_sk(sk)->inet_num = snum; 5944 sk_add_bind_node(sk, &pp->owner); 5945 sctp_sk(sk)->bind_hash = pp; 5946 } 5947 ret = 0; 5948 5949 fail_unlock: 5950 sctp_spin_unlock(&head->lock); 5951 5952 fail: 5953 sctp_local_bh_enable(); 5954 return ret; 5955 } 5956 5957 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5958 * port is requested. 5959 */ 5960 static int sctp_get_port(struct sock *sk, unsigned short snum) 5961 { 5962 long ret; 5963 union sctp_addr addr; 5964 struct sctp_af *af = sctp_sk(sk)->pf->af; 5965 5966 /* Set up a dummy address struct from the sk. */ 5967 af->from_sk(&addr, sk); 5968 addr.v4.sin_port = htons(snum); 5969 5970 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5971 ret = sctp_get_port_local(sk, &addr); 5972 5973 return ret ? 1 : 0; 5974 } 5975 5976 /* 5977 * Move a socket to LISTENING state. 5978 */ 5979 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5980 { 5981 struct sctp_sock *sp = sctp_sk(sk); 5982 struct sctp_endpoint *ep = sp->ep; 5983 struct crypto_hash *tfm = NULL; 5984 5985 /* Allocate HMAC for generating cookie. */ 5986 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5987 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5988 if (IS_ERR(tfm)) { 5989 net_info_ratelimited("failed to load transform for %s: %ld\n", 5990 sctp_hmac_alg, PTR_ERR(tfm)); 5991 return -ENOSYS; 5992 } 5993 sctp_sk(sk)->hmac = tfm; 5994 } 5995 5996 /* 5997 * If a bind() or sctp_bindx() is not called prior to a listen() 5998 * call that allows new associations to be accepted, the system 5999 * picks an ephemeral port and will choose an address set equivalent 6000 * to binding with a wildcard address. 6001 * 6002 * This is not currently spelled out in the SCTP sockets 6003 * extensions draft, but follows the practice as seen in TCP 6004 * sockets. 6005 * 6006 */ 6007 sk->sk_state = SCTP_SS_LISTENING; 6008 if (!ep->base.bind_addr.port) { 6009 if (sctp_autobind(sk)) 6010 return -EAGAIN; 6011 } else { 6012 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6013 sk->sk_state = SCTP_SS_CLOSED; 6014 return -EADDRINUSE; 6015 } 6016 } 6017 6018 sk->sk_max_ack_backlog = backlog; 6019 sctp_hash_endpoint(ep); 6020 return 0; 6021 } 6022 6023 /* 6024 * 4.1.3 / 5.1.3 listen() 6025 * 6026 * By default, new associations are not accepted for UDP style sockets. 6027 * An application uses listen() to mark a socket as being able to 6028 * accept new associations. 6029 * 6030 * On TCP style sockets, applications use listen() to ready the SCTP 6031 * endpoint for accepting inbound associations. 6032 * 6033 * On both types of endpoints a backlog of '0' disables listening. 6034 * 6035 * Move a socket to LISTENING state. 6036 */ 6037 int sctp_inet_listen(struct socket *sock, int backlog) 6038 { 6039 struct sock *sk = sock->sk; 6040 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6041 int err = -EINVAL; 6042 6043 if (unlikely(backlog < 0)) 6044 return err; 6045 6046 sctp_lock_sock(sk); 6047 6048 /* Peeled-off sockets are not allowed to listen(). */ 6049 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6050 goto out; 6051 6052 if (sock->state != SS_UNCONNECTED) 6053 goto out; 6054 6055 /* If backlog is zero, disable listening. */ 6056 if (!backlog) { 6057 if (sctp_sstate(sk, CLOSED)) 6058 goto out; 6059 6060 err = 0; 6061 sctp_unhash_endpoint(ep); 6062 sk->sk_state = SCTP_SS_CLOSED; 6063 if (sk->sk_reuse) 6064 sctp_sk(sk)->bind_hash->fastreuse = 1; 6065 goto out; 6066 } 6067 6068 /* If we are already listening, just update the backlog */ 6069 if (sctp_sstate(sk, LISTENING)) 6070 sk->sk_max_ack_backlog = backlog; 6071 else { 6072 err = sctp_listen_start(sk, backlog); 6073 if (err) 6074 goto out; 6075 } 6076 6077 err = 0; 6078 out: 6079 sctp_release_sock(sk); 6080 return err; 6081 } 6082 6083 /* 6084 * This function is done by modeling the current datagram_poll() and the 6085 * tcp_poll(). Note that, based on these implementations, we don't 6086 * lock the socket in this function, even though it seems that, 6087 * ideally, locking or some other mechanisms can be used to ensure 6088 * the integrity of the counters (sndbuf and wmem_alloc) used 6089 * in this place. We assume that we don't need locks either until proven 6090 * otherwise. 6091 * 6092 * Another thing to note is that we include the Async I/O support 6093 * here, again, by modeling the current TCP/UDP code. We don't have 6094 * a good way to test with it yet. 6095 */ 6096 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6097 { 6098 struct sock *sk = sock->sk; 6099 struct sctp_sock *sp = sctp_sk(sk); 6100 unsigned int mask; 6101 6102 poll_wait(file, sk_sleep(sk), wait); 6103 6104 /* A TCP-style listening socket becomes readable when the accept queue 6105 * is not empty. 6106 */ 6107 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6108 return (!list_empty(&sp->ep->asocs)) ? 6109 (POLLIN | POLLRDNORM) : 0; 6110 6111 mask = 0; 6112 6113 /* Is there any exceptional events? */ 6114 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6115 mask |= POLLERR; 6116 if (sk->sk_shutdown & RCV_SHUTDOWN) 6117 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6118 if (sk->sk_shutdown == SHUTDOWN_MASK) 6119 mask |= POLLHUP; 6120 6121 /* Is it readable? Reconsider this code with TCP-style support. */ 6122 if (!skb_queue_empty(&sk->sk_receive_queue)) 6123 mask |= POLLIN | POLLRDNORM; 6124 6125 /* The association is either gone or not ready. */ 6126 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6127 return mask; 6128 6129 /* Is it writable? */ 6130 if (sctp_writeable(sk)) { 6131 mask |= POLLOUT | POLLWRNORM; 6132 } else { 6133 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6134 /* 6135 * Since the socket is not locked, the buffer 6136 * might be made available after the writeable check and 6137 * before the bit is set. This could cause a lost I/O 6138 * signal. tcp_poll() has a race breaker for this race 6139 * condition. Based on their implementation, we put 6140 * in the following code to cover it as well. 6141 */ 6142 if (sctp_writeable(sk)) 6143 mask |= POLLOUT | POLLWRNORM; 6144 } 6145 return mask; 6146 } 6147 6148 /******************************************************************** 6149 * 2nd Level Abstractions 6150 ********************************************************************/ 6151 6152 static struct sctp_bind_bucket *sctp_bucket_create( 6153 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6154 { 6155 struct sctp_bind_bucket *pp; 6156 6157 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6158 if (pp) { 6159 SCTP_DBG_OBJCNT_INC(bind_bucket); 6160 pp->port = snum; 6161 pp->fastreuse = 0; 6162 INIT_HLIST_HEAD(&pp->owner); 6163 pp->net = net; 6164 hlist_add_head(&pp->node, &head->chain); 6165 } 6166 return pp; 6167 } 6168 6169 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6170 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6171 { 6172 if (pp && hlist_empty(&pp->owner)) { 6173 __hlist_del(&pp->node); 6174 kmem_cache_free(sctp_bucket_cachep, pp); 6175 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6176 } 6177 } 6178 6179 /* Release this socket's reference to a local port. */ 6180 static inline void __sctp_put_port(struct sock *sk) 6181 { 6182 struct sctp_bind_hashbucket *head = 6183 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6184 inet_sk(sk)->inet_num)]; 6185 struct sctp_bind_bucket *pp; 6186 6187 sctp_spin_lock(&head->lock); 6188 pp = sctp_sk(sk)->bind_hash; 6189 __sk_del_bind_node(sk); 6190 sctp_sk(sk)->bind_hash = NULL; 6191 inet_sk(sk)->inet_num = 0; 6192 sctp_bucket_destroy(pp); 6193 sctp_spin_unlock(&head->lock); 6194 } 6195 6196 void sctp_put_port(struct sock *sk) 6197 { 6198 sctp_local_bh_disable(); 6199 __sctp_put_port(sk); 6200 sctp_local_bh_enable(); 6201 } 6202 6203 /* 6204 * The system picks an ephemeral port and choose an address set equivalent 6205 * to binding with a wildcard address. 6206 * One of those addresses will be the primary address for the association. 6207 * This automatically enables the multihoming capability of SCTP. 6208 */ 6209 static int sctp_autobind(struct sock *sk) 6210 { 6211 union sctp_addr autoaddr; 6212 struct sctp_af *af; 6213 __be16 port; 6214 6215 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6216 af = sctp_sk(sk)->pf->af; 6217 6218 port = htons(inet_sk(sk)->inet_num); 6219 af->inaddr_any(&autoaddr, port); 6220 6221 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6222 } 6223 6224 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6225 * 6226 * From RFC 2292 6227 * 4.2 The cmsghdr Structure * 6228 * 6229 * When ancillary data is sent or received, any number of ancillary data 6230 * objects can be specified by the msg_control and msg_controllen members of 6231 * the msghdr structure, because each object is preceded by 6232 * a cmsghdr structure defining the object's length (the cmsg_len member). 6233 * Historically Berkeley-derived implementations have passed only one object 6234 * at a time, but this API allows multiple objects to be 6235 * passed in a single call to sendmsg() or recvmsg(). The following example 6236 * shows two ancillary data objects in a control buffer. 6237 * 6238 * |<--------------------------- msg_controllen -------------------------->| 6239 * | | 6240 * 6241 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6242 * 6243 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6244 * | | | 6245 * 6246 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6247 * 6248 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6249 * | | | | | 6250 * 6251 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6252 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6253 * 6254 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6255 * 6256 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6257 * ^ 6258 * | 6259 * 6260 * msg_control 6261 * points here 6262 */ 6263 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6264 sctp_cmsgs_t *cmsgs) 6265 { 6266 struct cmsghdr *cmsg; 6267 struct msghdr *my_msg = (struct msghdr *)msg; 6268 6269 for (cmsg = CMSG_FIRSTHDR(msg); 6270 cmsg != NULL; 6271 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6272 if (!CMSG_OK(my_msg, cmsg)) 6273 return -EINVAL; 6274 6275 /* Should we parse this header or ignore? */ 6276 if (cmsg->cmsg_level != IPPROTO_SCTP) 6277 continue; 6278 6279 /* Strictly check lengths following example in SCM code. */ 6280 switch (cmsg->cmsg_type) { 6281 case SCTP_INIT: 6282 /* SCTP Socket API Extension 6283 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6284 * 6285 * This cmsghdr structure provides information for 6286 * initializing new SCTP associations with sendmsg(). 6287 * The SCTP_INITMSG socket option uses this same data 6288 * structure. This structure is not used for 6289 * recvmsg(). 6290 * 6291 * cmsg_level cmsg_type cmsg_data[] 6292 * ------------ ------------ ---------------------- 6293 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6294 */ 6295 if (cmsg->cmsg_len != 6296 CMSG_LEN(sizeof(struct sctp_initmsg))) 6297 return -EINVAL; 6298 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6299 break; 6300 6301 case SCTP_SNDRCV: 6302 /* SCTP Socket API Extension 6303 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6304 * 6305 * This cmsghdr structure specifies SCTP options for 6306 * sendmsg() and describes SCTP header information 6307 * about a received message through recvmsg(). 6308 * 6309 * cmsg_level cmsg_type cmsg_data[] 6310 * ------------ ------------ ---------------------- 6311 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6312 */ 6313 if (cmsg->cmsg_len != 6314 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6315 return -EINVAL; 6316 6317 cmsgs->info = 6318 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6319 6320 /* Minimally, validate the sinfo_flags. */ 6321 if (cmsgs->info->sinfo_flags & 6322 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6323 SCTP_ABORT | SCTP_EOF)) 6324 return -EINVAL; 6325 break; 6326 6327 default: 6328 return -EINVAL; 6329 } 6330 } 6331 return 0; 6332 } 6333 6334 /* 6335 * Wait for a packet.. 6336 * Note: This function is the same function as in core/datagram.c 6337 * with a few modifications to make lksctp work. 6338 */ 6339 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6340 { 6341 int error; 6342 DEFINE_WAIT(wait); 6343 6344 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6345 6346 /* Socket errors? */ 6347 error = sock_error(sk); 6348 if (error) 6349 goto out; 6350 6351 if (!skb_queue_empty(&sk->sk_receive_queue)) 6352 goto ready; 6353 6354 /* Socket shut down? */ 6355 if (sk->sk_shutdown & RCV_SHUTDOWN) 6356 goto out; 6357 6358 /* Sequenced packets can come disconnected. If so we report the 6359 * problem. 6360 */ 6361 error = -ENOTCONN; 6362 6363 /* Is there a good reason to think that we may receive some data? */ 6364 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6365 goto out; 6366 6367 /* Handle signals. */ 6368 if (signal_pending(current)) 6369 goto interrupted; 6370 6371 /* Let another process have a go. Since we are going to sleep 6372 * anyway. Note: This may cause odd behaviors if the message 6373 * does not fit in the user's buffer, but this seems to be the 6374 * only way to honor MSG_DONTWAIT realistically. 6375 */ 6376 sctp_release_sock(sk); 6377 *timeo_p = schedule_timeout(*timeo_p); 6378 sctp_lock_sock(sk); 6379 6380 ready: 6381 finish_wait(sk_sleep(sk), &wait); 6382 return 0; 6383 6384 interrupted: 6385 error = sock_intr_errno(*timeo_p); 6386 6387 out: 6388 finish_wait(sk_sleep(sk), &wait); 6389 *err = error; 6390 return error; 6391 } 6392 6393 /* Receive a datagram. 6394 * Note: This is pretty much the same routine as in core/datagram.c 6395 * with a few changes to make lksctp work. 6396 */ 6397 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6398 int noblock, int *err) 6399 { 6400 int error; 6401 struct sk_buff *skb; 6402 long timeo; 6403 6404 timeo = sock_rcvtimeo(sk, noblock); 6405 6406 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6407 timeo, MAX_SCHEDULE_TIMEOUT); 6408 6409 do { 6410 /* Again only user level code calls this function, 6411 * so nothing interrupt level 6412 * will suddenly eat the receive_queue. 6413 * 6414 * Look at current nfs client by the way... 6415 * However, this function was correct in any case. 8) 6416 */ 6417 if (flags & MSG_PEEK) { 6418 spin_lock_bh(&sk->sk_receive_queue.lock); 6419 skb = skb_peek(&sk->sk_receive_queue); 6420 if (skb) 6421 atomic_inc(&skb->users); 6422 spin_unlock_bh(&sk->sk_receive_queue.lock); 6423 } else { 6424 skb = skb_dequeue(&sk->sk_receive_queue); 6425 } 6426 6427 if (skb) 6428 return skb; 6429 6430 /* Caller is allowed not to check sk->sk_err before calling. */ 6431 error = sock_error(sk); 6432 if (error) 6433 goto no_packet; 6434 6435 if (sk->sk_shutdown & RCV_SHUTDOWN) 6436 break; 6437 6438 /* User doesn't want to wait. */ 6439 error = -EAGAIN; 6440 if (!timeo) 6441 goto no_packet; 6442 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6443 6444 return NULL; 6445 6446 no_packet: 6447 *err = error; 6448 return NULL; 6449 } 6450 6451 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6452 static void __sctp_write_space(struct sctp_association *asoc) 6453 { 6454 struct sock *sk = asoc->base.sk; 6455 struct socket *sock = sk->sk_socket; 6456 6457 if ((sctp_wspace(asoc) > 0) && sock) { 6458 if (waitqueue_active(&asoc->wait)) 6459 wake_up_interruptible(&asoc->wait); 6460 6461 if (sctp_writeable(sk)) { 6462 wait_queue_head_t *wq = sk_sleep(sk); 6463 6464 if (wq && waitqueue_active(wq)) 6465 wake_up_interruptible(wq); 6466 6467 /* Note that we try to include the Async I/O support 6468 * here by modeling from the current TCP/UDP code. 6469 * We have not tested with it yet. 6470 */ 6471 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6472 sock_wake_async(sock, 6473 SOCK_WAKE_SPACE, POLL_OUT); 6474 } 6475 } 6476 } 6477 6478 /* Do accounting for the sndbuf space. 6479 * Decrement the used sndbuf space of the corresponding association by the 6480 * data size which was just transmitted(freed). 6481 */ 6482 static void sctp_wfree(struct sk_buff *skb) 6483 { 6484 struct sctp_association *asoc; 6485 struct sctp_chunk *chunk; 6486 struct sock *sk; 6487 6488 /* Get the saved chunk pointer. */ 6489 chunk = *((struct sctp_chunk **)(skb->cb)); 6490 asoc = chunk->asoc; 6491 sk = asoc->base.sk; 6492 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6493 sizeof(struct sk_buff) + 6494 sizeof(struct sctp_chunk); 6495 6496 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6497 6498 /* 6499 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6500 */ 6501 sk->sk_wmem_queued -= skb->truesize; 6502 sk_mem_uncharge(sk, skb->truesize); 6503 6504 sock_wfree(skb); 6505 __sctp_write_space(asoc); 6506 6507 sctp_association_put(asoc); 6508 } 6509 6510 /* Do accounting for the receive space on the socket. 6511 * Accounting for the association is done in ulpevent.c 6512 * We set this as a destructor for the cloned data skbs so that 6513 * accounting is done at the correct time. 6514 */ 6515 void sctp_sock_rfree(struct sk_buff *skb) 6516 { 6517 struct sock *sk = skb->sk; 6518 struct sctp_ulpevent *event = sctp_skb2event(skb); 6519 6520 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6521 6522 /* 6523 * Mimic the behavior of sock_rfree 6524 */ 6525 sk_mem_uncharge(sk, event->rmem_len); 6526 } 6527 6528 6529 /* Helper function to wait for space in the sndbuf. */ 6530 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6531 size_t msg_len) 6532 { 6533 struct sock *sk = asoc->base.sk; 6534 int err = 0; 6535 long current_timeo = *timeo_p; 6536 DEFINE_WAIT(wait); 6537 6538 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6539 asoc, (long)(*timeo_p), msg_len); 6540 6541 /* Increment the association's refcnt. */ 6542 sctp_association_hold(asoc); 6543 6544 /* Wait on the association specific sndbuf space. */ 6545 for (;;) { 6546 prepare_to_wait_exclusive(&asoc->wait, &wait, 6547 TASK_INTERRUPTIBLE); 6548 if (!*timeo_p) 6549 goto do_nonblock; 6550 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6551 asoc->base.dead) 6552 goto do_error; 6553 if (signal_pending(current)) 6554 goto do_interrupted; 6555 if (msg_len <= sctp_wspace(asoc)) 6556 break; 6557 6558 /* Let another process have a go. Since we are going 6559 * to sleep anyway. 6560 */ 6561 sctp_release_sock(sk); 6562 current_timeo = schedule_timeout(current_timeo); 6563 BUG_ON(sk != asoc->base.sk); 6564 sctp_lock_sock(sk); 6565 6566 *timeo_p = current_timeo; 6567 } 6568 6569 out: 6570 finish_wait(&asoc->wait, &wait); 6571 6572 /* Release the association's refcnt. */ 6573 sctp_association_put(asoc); 6574 6575 return err; 6576 6577 do_error: 6578 err = -EPIPE; 6579 goto out; 6580 6581 do_interrupted: 6582 err = sock_intr_errno(*timeo_p); 6583 goto out; 6584 6585 do_nonblock: 6586 err = -EAGAIN; 6587 goto out; 6588 } 6589 6590 void sctp_data_ready(struct sock *sk, int len) 6591 { 6592 struct socket_wq *wq; 6593 6594 rcu_read_lock(); 6595 wq = rcu_dereference(sk->sk_wq); 6596 if (wq_has_sleeper(wq)) 6597 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6598 POLLRDNORM | POLLRDBAND); 6599 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6600 rcu_read_unlock(); 6601 } 6602 6603 /* If socket sndbuf has changed, wake up all per association waiters. */ 6604 void sctp_write_space(struct sock *sk) 6605 { 6606 struct sctp_association *asoc; 6607 6608 /* Wake up the tasks in each wait queue. */ 6609 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6610 __sctp_write_space(asoc); 6611 } 6612 } 6613 6614 /* Is there any sndbuf space available on the socket? 6615 * 6616 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6617 * associations on the same socket. For a UDP-style socket with 6618 * multiple associations, it is possible for it to be "unwriteable" 6619 * prematurely. I assume that this is acceptable because 6620 * a premature "unwriteable" is better than an accidental "writeable" which 6621 * would cause an unwanted block under certain circumstances. For the 1-1 6622 * UDP-style sockets or TCP-style sockets, this code should work. 6623 * - Daisy 6624 */ 6625 static int sctp_writeable(struct sock *sk) 6626 { 6627 int amt = 0; 6628 6629 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6630 if (amt < 0) 6631 amt = 0; 6632 return amt; 6633 } 6634 6635 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6636 * returns immediately with EINPROGRESS. 6637 */ 6638 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6639 { 6640 struct sock *sk = asoc->base.sk; 6641 int err = 0; 6642 long current_timeo = *timeo_p; 6643 DEFINE_WAIT(wait); 6644 6645 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6646 (long)(*timeo_p)); 6647 6648 /* Increment the association's refcnt. */ 6649 sctp_association_hold(asoc); 6650 6651 for (;;) { 6652 prepare_to_wait_exclusive(&asoc->wait, &wait, 6653 TASK_INTERRUPTIBLE); 6654 if (!*timeo_p) 6655 goto do_nonblock; 6656 if (sk->sk_shutdown & RCV_SHUTDOWN) 6657 break; 6658 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6659 asoc->base.dead) 6660 goto do_error; 6661 if (signal_pending(current)) 6662 goto do_interrupted; 6663 6664 if (sctp_state(asoc, ESTABLISHED)) 6665 break; 6666 6667 /* Let another process have a go. Since we are going 6668 * to sleep anyway. 6669 */ 6670 sctp_release_sock(sk); 6671 current_timeo = schedule_timeout(current_timeo); 6672 sctp_lock_sock(sk); 6673 6674 *timeo_p = current_timeo; 6675 } 6676 6677 out: 6678 finish_wait(&asoc->wait, &wait); 6679 6680 /* Release the association's refcnt. */ 6681 sctp_association_put(asoc); 6682 6683 return err; 6684 6685 do_error: 6686 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6687 err = -ETIMEDOUT; 6688 else 6689 err = -ECONNREFUSED; 6690 goto out; 6691 6692 do_interrupted: 6693 err = sock_intr_errno(*timeo_p); 6694 goto out; 6695 6696 do_nonblock: 6697 err = -EINPROGRESS; 6698 goto out; 6699 } 6700 6701 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6702 { 6703 struct sctp_endpoint *ep; 6704 int err = 0; 6705 DEFINE_WAIT(wait); 6706 6707 ep = sctp_sk(sk)->ep; 6708 6709 6710 for (;;) { 6711 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6712 TASK_INTERRUPTIBLE); 6713 6714 if (list_empty(&ep->asocs)) { 6715 sctp_release_sock(sk); 6716 timeo = schedule_timeout(timeo); 6717 sctp_lock_sock(sk); 6718 } 6719 6720 err = -EINVAL; 6721 if (!sctp_sstate(sk, LISTENING)) 6722 break; 6723 6724 err = 0; 6725 if (!list_empty(&ep->asocs)) 6726 break; 6727 6728 err = sock_intr_errno(timeo); 6729 if (signal_pending(current)) 6730 break; 6731 6732 err = -EAGAIN; 6733 if (!timeo) 6734 break; 6735 } 6736 6737 finish_wait(sk_sleep(sk), &wait); 6738 6739 return err; 6740 } 6741 6742 static void sctp_wait_for_close(struct sock *sk, long timeout) 6743 { 6744 DEFINE_WAIT(wait); 6745 6746 do { 6747 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6748 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6749 break; 6750 sctp_release_sock(sk); 6751 timeout = schedule_timeout(timeout); 6752 sctp_lock_sock(sk); 6753 } while (!signal_pending(current) && timeout); 6754 6755 finish_wait(sk_sleep(sk), &wait); 6756 } 6757 6758 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6759 { 6760 struct sk_buff *frag; 6761 6762 if (!skb->data_len) 6763 goto done; 6764 6765 /* Don't forget the fragments. */ 6766 skb_walk_frags(skb, frag) 6767 sctp_skb_set_owner_r_frag(frag, sk); 6768 6769 done: 6770 sctp_skb_set_owner_r(skb, sk); 6771 } 6772 6773 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6774 struct sctp_association *asoc) 6775 { 6776 struct inet_sock *inet = inet_sk(sk); 6777 struct inet_sock *newinet; 6778 6779 newsk->sk_type = sk->sk_type; 6780 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6781 newsk->sk_flags = sk->sk_flags; 6782 newsk->sk_no_check = sk->sk_no_check; 6783 newsk->sk_reuse = sk->sk_reuse; 6784 6785 newsk->sk_shutdown = sk->sk_shutdown; 6786 newsk->sk_destruct = inet_sock_destruct; 6787 newsk->sk_family = sk->sk_family; 6788 newsk->sk_protocol = IPPROTO_SCTP; 6789 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6790 newsk->sk_sndbuf = sk->sk_sndbuf; 6791 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6792 newsk->sk_lingertime = sk->sk_lingertime; 6793 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6794 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6795 6796 newinet = inet_sk(newsk); 6797 6798 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6799 * getsockname() and getpeername() 6800 */ 6801 newinet->inet_sport = inet->inet_sport; 6802 newinet->inet_saddr = inet->inet_saddr; 6803 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6804 newinet->inet_dport = htons(asoc->peer.port); 6805 newinet->pmtudisc = inet->pmtudisc; 6806 newinet->inet_id = asoc->next_tsn ^ jiffies; 6807 6808 newinet->uc_ttl = inet->uc_ttl; 6809 newinet->mc_loop = 1; 6810 newinet->mc_ttl = 1; 6811 newinet->mc_index = 0; 6812 newinet->mc_list = NULL; 6813 } 6814 6815 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6816 * and its messages to the newsk. 6817 */ 6818 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6819 struct sctp_association *assoc, 6820 sctp_socket_type_t type) 6821 { 6822 struct sctp_sock *oldsp = sctp_sk(oldsk); 6823 struct sctp_sock *newsp = sctp_sk(newsk); 6824 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6825 struct sctp_endpoint *newep = newsp->ep; 6826 struct sk_buff *skb, *tmp; 6827 struct sctp_ulpevent *event; 6828 struct sctp_bind_hashbucket *head; 6829 struct list_head tmplist; 6830 6831 /* Migrate socket buffer sizes and all the socket level options to the 6832 * new socket. 6833 */ 6834 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6835 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6836 /* Brute force copy old sctp opt. */ 6837 if (oldsp->do_auto_asconf) { 6838 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6839 inet_sk_copy_descendant(newsk, oldsk); 6840 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6841 } else 6842 inet_sk_copy_descendant(newsk, oldsk); 6843 6844 /* Restore the ep value that was overwritten with the above structure 6845 * copy. 6846 */ 6847 newsp->ep = newep; 6848 newsp->hmac = NULL; 6849 6850 /* Hook this new socket in to the bind_hash list. */ 6851 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 6852 inet_sk(oldsk)->inet_num)]; 6853 sctp_local_bh_disable(); 6854 sctp_spin_lock(&head->lock); 6855 pp = sctp_sk(oldsk)->bind_hash; 6856 sk_add_bind_node(newsk, &pp->owner); 6857 sctp_sk(newsk)->bind_hash = pp; 6858 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6859 sctp_spin_unlock(&head->lock); 6860 sctp_local_bh_enable(); 6861 6862 /* Copy the bind_addr list from the original endpoint to the new 6863 * endpoint so that we can handle restarts properly 6864 */ 6865 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6866 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6867 6868 /* Move any messages in the old socket's receive queue that are for the 6869 * peeled off association to the new socket's receive queue. 6870 */ 6871 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6872 event = sctp_skb2event(skb); 6873 if (event->asoc == assoc) { 6874 __skb_unlink(skb, &oldsk->sk_receive_queue); 6875 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6876 sctp_skb_set_owner_r_frag(skb, newsk); 6877 } 6878 } 6879 6880 /* Clean up any messages pending delivery due to partial 6881 * delivery. Three cases: 6882 * 1) No partial deliver; no work. 6883 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6884 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6885 */ 6886 skb_queue_head_init(&newsp->pd_lobby); 6887 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6888 6889 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6890 struct sk_buff_head *queue; 6891 6892 /* Decide which queue to move pd_lobby skbs to. */ 6893 if (assoc->ulpq.pd_mode) { 6894 queue = &newsp->pd_lobby; 6895 } else 6896 queue = &newsk->sk_receive_queue; 6897 6898 /* Walk through the pd_lobby, looking for skbs that 6899 * need moved to the new socket. 6900 */ 6901 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6902 event = sctp_skb2event(skb); 6903 if (event->asoc == assoc) { 6904 __skb_unlink(skb, &oldsp->pd_lobby); 6905 __skb_queue_tail(queue, skb); 6906 sctp_skb_set_owner_r_frag(skb, newsk); 6907 } 6908 } 6909 6910 /* Clear up any skbs waiting for the partial 6911 * delivery to finish. 6912 */ 6913 if (assoc->ulpq.pd_mode) 6914 sctp_clear_pd(oldsk, NULL); 6915 6916 } 6917 6918 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6919 sctp_skb_set_owner_r_frag(skb, newsk); 6920 6921 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6922 sctp_skb_set_owner_r_frag(skb, newsk); 6923 6924 /* Set the type of socket to indicate that it is peeled off from the 6925 * original UDP-style socket or created with the accept() call on a 6926 * TCP-style socket.. 6927 */ 6928 newsp->type = type; 6929 6930 /* Mark the new socket "in-use" by the user so that any packets 6931 * that may arrive on the association after we've moved it are 6932 * queued to the backlog. This prevents a potential race between 6933 * backlog processing on the old socket and new-packet processing 6934 * on the new socket. 6935 * 6936 * The caller has just allocated newsk so we can guarantee that other 6937 * paths won't try to lock it and then oldsk. 6938 */ 6939 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6940 sctp_assoc_migrate(assoc, newsk); 6941 6942 /* If the association on the newsk is already closed before accept() 6943 * is called, set RCV_SHUTDOWN flag. 6944 */ 6945 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6946 newsk->sk_shutdown |= RCV_SHUTDOWN; 6947 6948 newsk->sk_state = SCTP_SS_ESTABLISHED; 6949 sctp_release_sock(newsk); 6950 } 6951 6952 6953 /* This proto struct describes the ULP interface for SCTP. */ 6954 struct proto sctp_prot = { 6955 .name = "SCTP", 6956 .owner = THIS_MODULE, 6957 .close = sctp_close, 6958 .connect = sctp_connect, 6959 .disconnect = sctp_disconnect, 6960 .accept = sctp_accept, 6961 .ioctl = sctp_ioctl, 6962 .init = sctp_init_sock, 6963 .destroy = sctp_destroy_sock, 6964 .shutdown = sctp_shutdown, 6965 .setsockopt = sctp_setsockopt, 6966 .getsockopt = sctp_getsockopt, 6967 .sendmsg = sctp_sendmsg, 6968 .recvmsg = sctp_recvmsg, 6969 .bind = sctp_bind, 6970 .backlog_rcv = sctp_backlog_rcv, 6971 .hash = sctp_hash, 6972 .unhash = sctp_unhash, 6973 .get_port = sctp_get_port, 6974 .obj_size = sizeof(struct sctp_sock), 6975 .sysctl_mem = sysctl_sctp_mem, 6976 .sysctl_rmem = sysctl_sctp_rmem, 6977 .sysctl_wmem = sysctl_sctp_wmem, 6978 .memory_pressure = &sctp_memory_pressure, 6979 .enter_memory_pressure = sctp_enter_memory_pressure, 6980 .memory_allocated = &sctp_memory_allocated, 6981 .sockets_allocated = &sctp_sockets_allocated, 6982 }; 6983 6984 #if IS_ENABLED(CONFIG_IPV6) 6985 6986 struct proto sctpv6_prot = { 6987 .name = "SCTPv6", 6988 .owner = THIS_MODULE, 6989 .close = sctp_close, 6990 .connect = sctp_connect, 6991 .disconnect = sctp_disconnect, 6992 .accept = sctp_accept, 6993 .ioctl = sctp_ioctl, 6994 .init = sctp_init_sock, 6995 .destroy = sctp_destroy_sock, 6996 .shutdown = sctp_shutdown, 6997 .setsockopt = sctp_setsockopt, 6998 .getsockopt = sctp_getsockopt, 6999 .sendmsg = sctp_sendmsg, 7000 .recvmsg = sctp_recvmsg, 7001 .bind = sctp_bind, 7002 .backlog_rcv = sctp_backlog_rcv, 7003 .hash = sctp_hash, 7004 .unhash = sctp_unhash, 7005 .get_port = sctp_get_port, 7006 .obj_size = sizeof(struct sctp6_sock), 7007 .sysctl_mem = sysctl_sctp_mem, 7008 .sysctl_rmem = sysctl_sctp_rmem, 7009 .sysctl_wmem = sysctl_sctp_wmem, 7010 .memory_pressure = &sctp_memory_pressure, 7011 .enter_memory_pressure = sctp_enter_memory_pressure, 7012 .memory_allocated = &sctp_memory_allocated, 7013 .sockets_allocated = &sctp_sockets_allocated, 7014 }; 7015 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7016